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Preface

Originally formed around a set of lectures presented at a NATO Advanced Study
Institute (ASI), this book has grown since then and it has been organised and pre-
sented more like a textbook than the standard “collection of proceedings”. The
lack of a unified reference textbook in seasonal to interannual climate predictions
that covers both the science of the predictions and the real-world uses of the fore-
casts was the main driver for the considerable effort placed into producing an
amalgamated introductory book. Throughout, our objective has been to present a
textbook for people of many disciplines interested in this fascinating and fast
emerging sector. An additional novelty for a NATO ASI series book is that all the
chapters have been thoroughly peer reviewed: each chapter has received the atten-
tion of three or more experts. We believe this reviewing process has considerably
raised the level of the book and the extra time (and pain) needed to complete the
oeuvre has been entirely justified.

The book is targeted at the intelligent reader at postgraduate level, but who
does not need to be an expert in all the fields discussed. The reader may well be
coming from only one of the many disciplines that contribute to the fields of sea-
sonal climate forecasting and risk management: this book aims to provide him/her
with a general overview of all the major issues related to these fields. A summary
at the beginning of each chapter, except for the first, will help all readers select
only those chapters that are relevant or of interest to them while still being able to
grasp the essentials of every chapter.

The fascination of seasonal climate forecasting, of which El Nifio forecasting is
the prime example, comes from its multi-faceted character. Not only does it pose
interesting new challenges for the climate scientific community but also it is natu-
rally linked to a great variety of practical applications, from security related issues,
such as water resource management, food security, and disaster forecasts and pre-
vention, to health planning, agriculture management, energy supply and tourism,
to name but a few. Seasonal to interannual climate forecasts are indeed becoming
a most important element in some policy/decision making systems, especially
within the context of climate change adaptation. Seriously considering the man-
agement of risks posed by climate variability and of development in general on the
seasonal to interannual scale is key to achieving the longer terms goals of climate
change adaptation strategy.
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viii Preface

The NATO ASI Seasonal to Interannual Climate Variability: its Prediction
and Impact on Society was held in the beautiful setting of Gallipoli (Italy) between
23 May and 3 June 2005. This “summer school” attracted applications from a
large number of postgraduate students and professionals. Unfortunately places
were limited but 62 participants from 27 countries could be accommodated.

It would have not been possible to organise this ASI without the collaboration
and support of many people: the team at the NATO Environmental and Earth
Science & Technology (EST) Programme with Mrs. Lynne Nolan (Secretary) and
Dr. Alain Jubier first and Dr. Deniz Beten later (Programme Directors), who assisted
in securing a smooth development of the ASI; Mrs. Elena Bertocco (ASI Secre-
tary) assisted with the copious queries from participants, herself assisted by little
Edward; the members of the Organising Committee (i.e. the editors of this book
plus Mr. Omar Baddour, Direction de la Météorologie Nationale of Morocco and
World Meteorological Organization, WMO); Mr. Rob Hine (European Centre for
Medium Range Weather Forecasts, ECMWF, graphic creator) for producing high
quality promotional material; Mr. Nando Micaletto (ECMWF, technical & local
expert) for ensuring the smooth running of the ASI; Ing Antonio Rizzo and
Dr. Antonio Tommasi (Province of Lecce) for the supremely well planned, varied
and thoroughly enjoyable social and cultural programme; Mrs. Annamaria Caputo,
Mpr. Renato Renna and all the staff at the Ecoresort Le Sirené (Gallipoli) for the
warm and professional hospitality.

We are particularly grateful to the various organisations that supported this ASI
and the preparation of the book financially: NATO in primis, National Oceanic
and Atmospheric Administration Office of Global Programs (NOAA OGP),
ECMWEF, World Meteorological Organization (WMO), the US National Science
Foundation (NSF) and the Province of Lecce. In addition, Troccoli was partly
supported by the European Union projects ENACT (EVK2-2001-00077) and
MERSEA (AIP3-CT-2003-502885) and Mason’s contribution was funded by Co-
operative Agreement ANO7GP0213 from the National Oceanic and Atmospheric
Administration (NOAA) and supported by a grant from the NCAR CSL program
to the IRI.

It has been a privilege to have so many worldwide experts in the field of sea-
sonal to interannual climate predictions as lecturers at the ASI and as contributors
to this book: their contribution made the ASI particularly illuminating and chal-
lenging. Likewise, we were fortunate to have so many talented participants who
actively and enthusiastically participated in the ASI'. Their keen involvement
made the school a very stimulating and educational experience for us all. The
location, a few metres from the beach, along with the many social and cultural
activities no doubt also helped to form an amalgamated group.

! For detailed information on the ASI, see: http://www.ecmwf.int/staff/alberto_troccoli/nato_asi/
asi_programme/index.html



Preface ix

We would like to thank very much the numerous reviewers who dedicated their
time to considerably improving this book: Oscar Alves, Christof Appenzeller,
Walter Baethgen, Tony Barnston, Rasmus Benestad, Pierre Bessemoulin, Cedo
Brankovi¢, Barbara Brown, Dick Dee, Michel Deque, Dave DeWitt, Normand
Gagnon, Brad Garanganga, Lisa Goddard, Xiaofeng Gong, Renate Hagedorn, Jim
Hansen, Peter Hayman, Jaakko Helminen, Ian Jolliffe, Thomas Jung, Slava
Kharin, Ben Kirtman, Willem Landman, Andrew Lorenc, Sabine Marx, Glenn
McGregor, Holger Meinke, Saji Njarackalazhikam Hameed, Warwick Norton,
Laban Ogallo, Tomoaki Ose, Anders Persson, Michele Rienecker, John Roads,
Sandra Robles-Gil, Tim Stockdale, Rowan Sutton, Madeleine Thomson, Coleen
Vogel, Richard Washington, Dan Wilks, Toshio Yamagata.

A special thank you to Rob Hine who helped enormously in preparing this
book by processing most of the figures and assisting in the final editing. We are
grateful also to Anabel Bowen for processing several of the remaining figures.
Thank you also to Els Kooij-Connally and Verusca Bertocco for their valuable
assistance in editing the book.

Lastly, it should be appreciated that there have been many difficulties in pro-
ducing such a multi-authored “textbook”, hence some gaps and jumps are
unavoidable and we hope you will take this into consideration when reading the
book. Despite what we like to think are minor drawbacks, we believe this book
will provide a very useful reference for all those who would like to venture into
the world of climate variability, its prediction and its adaptation strategies. Enjoy
reading this book!

Alberto Troccoli

Mike Harrison

David L.T. Anderson

September 2007 Simon J. Mason
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Part 1
Seasonal Climate Forecasts in Context



Chapter 1
Introduction

Mike Harrison, Alberto Troccoli, David L.T. Anderson,
and Simon J. Mason

Humanity recognised millennia ago the importance of climate variability to the
sustenance of life, whether that variability was expressed in the form of droughts,
floods, heat, cold, or wind. Coping strategies, developed to handle the consequences
of climate variability, helped ensure mankind’s survival, although the historic
record indicates that not all societies successfully overcame past challenges
imposed by long-term droughts, extensive flooding, and the like. Early coping stra-
tegies included migration, invasion, appropriation and storage. In addition many,
probably most, perhaps all, societies developed indigenous knowledge or belief
systems that they felt enabled them to foresee or control those elements of the
climate that are so critical for maintaining water and food supplies.

Much has changed for modern societies, with coping strategies such as migra-
tion, invasion and appropriation frequently constrained by international boundaries
and laws. Indigenous knowledge still plays a major role in many societies, while
new structures, often under the umbrellas of the United Nations or national Aid
Agencies and Non-Governmental Organizations (NGOs), provide safety nets for
those countries currently unable to manage the consequences of climate variability
without support. In the developed world, numerous technological advances, in-
cluding new crop cultivars, integrated approaches to water management, improved
drugs and disease control methods, such as for malaria, have introduced major
new components in the management of climate risks, although not to the extent
that any country has become fully shielded. Nevertheless climate variability in the
developed world is more often an irritant than a hazard to life; in fact at times it is
viewed as a business opportunity. In many countries, however, climate variability
may still threaten life, and, if not, might at the least pose difficult challenges in
regards to economic development, individual climate events occasionally resulting

Mike Harrison
Independent Consultant

Alberto Troccoli and David L.T. Anderson
European Centre for Medium Range Weather Forecasts

Simon J. Mason
International Research Institute for Climate and Society

A. Troccoli et al. (eds.), Seasonal Climate: Forecasting and Managing Risk. 3
© Springer Science+Business Media B.V. 2008



4 M. Harrison et al.

in economic consequences of magnitudes comparable to individual countries’
Gross Domestic Products (GDPs), with several years of re-development often
necessary in such instances.

Included amongst the technological advances that have led to increased
resilience against climate variability are remarkable achievements in the under-
standing, monitoring and prediction of climate variability itself, in tandem with
developments that significantly aid planning and management, including improved
cultivars and cropping methods, new water storage and distribution methodo-
logies, facilitation of international food transportation and storage, and so on.
Technology has become an important instrument in protecting against, mitigating,
planning for, as well as in the direct management of climate risks, and will con-
tinue to be so in the light of future natural and anthropogenically forced climate
change. It has been suggested that while management of the risks of climate vari-
ability might be managed with current technology, and while these technologies
themselves will make substantial contributions to preparations for climate change,
new technologies will be required for the full future management of climate vari-
ability under a changed climate. At this time, however, for many countries the
more immediate challenge is to manage current climate risks both as one key input
to sustainable development and as a significant contribution to preparations for a
future modified climate.

Within this book we will be focusing on one of the new technologies emerging
in the search for improved management of the risks associated with climate vari-
ability, namely seasonal to interannual prediction. Prediction, used as one input
to preparing for and managing the risks of climate variability, is in itself not a
new concept; indigenous methods, normally based on the behaviour of local
flora and/or fauna, and/or on belief systems, have flourished around the world and
have provided societies with foresights over numerous centuries. Modern systems
of prediction, whether based on straightforward empirical links between climate
and certain slowly varying aspects of the geosystem, more often than not sea sur-
face temperatures in tropical ocean basins, or on advanced numerical, computer-
based models of the geosystem itself, are, however, relatively new, although the
genesis of these models may be traced back over the past 100 years.

In principle, modern seasonal to interannual predictions are an answer to the
needs of many whose activities are influenced in some manner by climate vari-
ability, whether this is in terms of creating profit through the marketing of an
appropriate range of goods, or is in terms of critical decisions regarding agricul-
ture and food security. Much of the later body of this book is devoted to exploration
of the extent to which current state-of-the-art predictions address the requirements
of those who have responsibilities for taking decisions in regard to climate-linked
activities, to the impediments, and to the opportunities available. Various exam-
ples are provided of the way in which the systems that deliver climate prediction
information have been set up and of the benefits achieved.

Earlier chapters of the book are devoted to the science and technology behind
the predictions. For the science of seasonal to interannual prediction 1997 was
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perhaps one of the milestone years. During 1997, amongst other pertinent events,
long-term operational support for the Tropical Atmosphere Ocean (TAO) array'
was authorised by the US Congress, many prediction models of different types
became available to take advantage of the information provided by the array, and
one of the most significant recorded El Nifio events developed to bring its parti-
cular signature of climate variability to many parts of the globe. But to understand
the significance of 1997 we need to wind back a little, and to consider the lives of
communities along the equatorial west coast of South America, particularly around
Ecuador, Peru and northern Chile, in previous centuries.

Much of the equatorial west coast of South America is dry in most years, with
fishing, particularly for anchovies, providing major sustenance during past eons.
Nowadays the story is well known of how the anchovy fisherman around the Gulf
of Guayaquil noticed every few years that the fish stocks appeared to disappear for
several months at a time, with resultant deleterious impacts on food reserves.
At the same times heavy rainfall would strike the area, leading to flooding and
wash-aways of crops and mud-built houses. Because these events typically began
around Christmas, the fishermen named them °El Nifo’, after the Christ child. But
the fishermen were not the first. At least the Incas, who had never heard of
El Niflo, recognised its consequences for their food security. Consequently they
farmed diverse stocks at different altitudes in the Andes, experience having indi-
cated that rarely was there simultaneous failure of all stocks.

For many years the concept of El Niflo was little more than a scientific novelty,
studied by few. Even when in the earlier years of the 20th century Gilbert Walker
undertook his ground-breaking research into the causes and prediction of the In-
dian monsoon, and in doing so uncovered the great ‘atmospheric see-saw’ of the
Southern Oscillation, the significance of these discoveries, and their relationship
to El Niflo, was not appreciated. Probably the first El Nifio event that drew wider
attention was that of 1972/73, which was followed by several scientists building
on earlier pioneering work to begin suggesting in the wider literature that El Nifio
was not something that just affected Ecuadorian and Peruvian anchovy-fishing
communities, but was part of a much larger occasional climate anomaly that af-
fected communities in many parts of the world. By the time the large-amplitude
1982/83 event occurred, far greater numbers of scientists were recognising that a
breakthrough was being made in regard to understanding and predicting the cli-
mate system, and from then on a new ‘industry’ was born: an industry that covers
the physical understanding, the consequences for predictability and prediction, and
the onward use, including the politics, of the predictions, all of which are inherent
in the slow changes in the planetary surfaces underlying the atmosphere.

" A network of moored buoys across the tropical Pacific Ocean that delivers via satellites the
monitoring information of both the atmosphere and the ocean (to 500 m depth) on which the
models and predictions depend.
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The basis of this burgeoning industry is that slowly varying components of
the geosystem, most significantly sea surface temperatures across tropical ocean
basins, can impart a ‘memory’ to the atmosphere in the vicinity of any such long-
lived anomalies. And further that the atmosphere works in such a way that this
‘memory’ can be transmitted to parts of the globe remote from the originating sea
surface temperature anomalies — meteorologists refer to this phenomenon as ‘tele-
connections’. Thus, for instance, El Nifio events are fypically (see caveats later)
associated not only with heavy coastal Ecuadorian and Peruvian rainfall, but with
above-average rainfall also in northern Argentina, in East Africa, and in California.
Equally, contemporaneous drought can occur in north-east Brazil, in southern
Africa and over much of Australia. Climate forcing of this type is not restricted
just to changes in the tropical Pacific basin, although as far as is known these are
the most important; the other two ocean basins play their own, more limited, roles,
as do other slowly varying aspects of the geosystem underlying the atmosphere, such
as soil moisture anomalies over various continents and snow extent over Eurasia.

El Niflo, and its related cousin La Nifia, represent major changes in the distribu-
tion of sea surface temperatures across the tropical Pacific basin, with warmer
waters spreading eastward towards South America from their usual position in the
west of the basin during an El Nifio. Anchovies thrive in the cold current running
northwards along the west coast of South America, but during an EI Nifio this cold
current becomes overlaid by the warmer waters, and the anchovy descend towards
the colder nutrient-rich waters below.” For the fishermen the anchovies have dis-
appeared; in practice they are thriving deeper within the ocean than usual, beyond
the reach of any netting system.

Once scientists began to recognise the significance of events in the Pacific
basin, the next stages were to understand the mechanisms involved, to model the
pertinent aspects of the geosystem, and to determine if prediction might be possi-
ble based on this new knowledge. Arguments still exist over the precise mechanisms
involved in El Nifio events, but the basics are understood, as is demonstrated
within this book. Many models of varying complexity have been built to under-
stand the system. And many of these same models have been used to provide
predictions. The advances in this field over the past 30 years are spectacular. These
advances benefited enormously from the TAO array and other observing systems,
both in situ and satellite-based.

Building on developments that have resulted from the recognition of the impor-
tance of, and the growing understanding of the dynamics of El Nifio events, in this
book we cover: overviews of the climate system and the manner in which it works;
current capabilities to model and predict the climate system out to several months

* During La Nifia events waters along the western South American coast become colder than
usual and in the eastern tropical Pacific warmer than usual. During La Nifia events climate anomalies
worldwide tend to be amplified in a canonical pattern roughly the reverse of that for an El Nifio
event, but in this case the anchovies remain near the surface.
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based on the ability to simulate ocean circulations in the Pacific basin and elsewhere;
the manner in which the information produced by the models is treated and deliv-
ered; and finally the ways in which this information is used in decision making in
numerous activities. It is a story of success, but it is also a story of complexity in
several senses, complexities that need further resolution if the full benefits of the
scientific advances are to be obtained.

Complexities emerge in several ways. First, the geosystem itself is complex in
the manner it works, including in the ways in which the various components inter-
act with one another. One prime example of this complexity is that while El Nifio
is the major forcing known on timescales of a few seasons, it is irregular (events
being separated by anything from 2 to 7 years), and, not being alone as a forcing
mechanism, its influence might be overcome by other sources of forcing. Many
around the Indian Ocean basin, for example, recall the 1997/98 El Nifio event,
sometimes referred to by meteorologists as the strongest on record, not for the
canonical response expected (perhaps as during 1982/83) but for the deviations
from that response. For example many areas were braced for droughts — southern
Africa, India, parts of Australia — but rainfall was perfectly adequate in all of these
despite the strength of the event. Equivalently in East Africa above average rain-
fall is the canonical response, but there was no expectation of the devastating
amount of rain that fell at that time (Fig. 1.1). These differences from the best-
wisdom canonical response were attributed to unusual and strong sea surface tem-
perature anomalies across the tropical Indian Ocean, anomalies not always fully
incorporated by the prediction models then available. Assumption of canonical
responses with regard to climate variability is unlikely to represent the safest
available approach.

Scientists have not unravelled the complexity of the geosystem in full, and
models remain relatively simplified approximations of the real world. Hence any
predictions from these models cannot be perfect as the models themselves are not
perfect, but there is a further crucial aspect of complexity here in that the models
are sensitive to various small changes in values of observations used in the
initialization stages, and to aspects of their own formulation in detail, sensitivities
that can lead to entirely different predictions when brought into play. Scientifically
sensitivity to small differences in starting positions is known as ‘chaos’; chaos,
which strictly refers to the characteristic of non-linear systems at certain (but not
all) times to be markedly dependent on various relatively small differences, results
in the inherent impossibility to predict the future in a deterministic sense at some,
and in general for seasonal predictions at all, times — only probabilistic predictions
are appropriate for chaotic systems. Most modern prediction approaches acknow-
ledge chaos and produce probabilistic forecasts, but the delivery and interpretation
of probabilistic forecasts introduces further issues. Ultimately the information pro-
duced by the models is incorporated into decision processes relevant to managed
systems which themselves often have chaotic or uncontrolled aspects. The entire
system is one of complexity throughout, complexities that as yet are not fully
understood nor managed.
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MAJOR GLOBAL CLIMATE ANOMALIES AND EPISODIC EVENTS IN 1998
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Fig. 1.1 Effects of climate variability during the years 1997 (top) and 1998 (bottom) which include
(but extend beyond) the major 1997/98 El Nifio event. Compare these effects with those during a
‘canonical’ El Nifio year in Fig. 6.10. Careful comparison indicates that there were differences
during the 1997/98 from those of the canonical expression, particularly around the Indian Ocean
basin, including: more rainfall than typically occurs over parts of south-eastern Africa, a wet
monsoon, and again more rainfall than typically occurs over northern Australia. Additionally
rainfall over East Africa was far more intense than might have been expected. Strong anomalies
of sea surface temperatures over the tropical Indian Ocean, contemporaneous with and perhaps
related to those in the Pacific Ocean, have been identified as a possible cause (Adapted from
WMO 1999, report No. 905)
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Complexity is not assisted by the fact that the degree to which predictions can
be made with success, even in a probabilistic sense and whether from statistical or
from numerical models, varies geographically, it varies by seasons, it varies by
forecast timescale, it varies by the variable being predicted, and it may exist only
during specific ‘windows of opportunity’. Thus in general terms the highest pre-
dictability of atmospheric temperatures and rainfall exists across the tropical ocean
basins, in particular that of the Pacific, and over certain land areas within or im-
mediately adjacent to those basins. Predictability tends to decrease further away from
the Equator and from the oceans, although some areas, such as North America, are
favoured in certain seasons through enjoying higher predictability than similar
regions at the same latitudes because of the manner in which teleconnections work
in those areas. There is evidence that predictability in the global sense is higher
during El Nifio and La Nifia events than otherwise, and that in some regions, such
as Europe, it may not exist at times other than during these ‘window of opportu-
nity’ events [but equally may not necessarily be high during specific individual
events]. Temperature tends to be more predictable than rainfall. But even for the
most predictable variable at the location with the highest overall predictability it is
always necessary to provide probabilistic predictions. And with that comes the
challenge of interpretation and of translation into effective decisions.

Many centres now generate predictions up to seasonal, and in some cases on
longer scales, using dynamical models on either an operational or a regular re-
search basis; many of these products are placed on either open or password-
protected web sites. Dynamical models, being expensive to develop, maintain and
run, are mainly the preserve of a relatively small number of meteorological or-
ganisations and universities. Broadcasting and distribution of these forecasts
comes, in general but not universally, under the overview of the UN Specialised
Organization, the World Meteorological Organization (WMO). WMO is coordi-
nating the establishment of recognised Global Producing Centres as well as of
Regional Climate Centres as centres of excellence to support climate services.

By comparison with dynamical models, developing and distributing predictions
based on statistical approaches is relatively straightforward. Thus many national
meteorological services, particularly most within Africa, that do not possess the
resource to run dynamical models have created statistical modelling capabilities,
either just for their own country or for wider areas, which form important bases
for national prediction services. Most current evidence suggests that the qualities
of predictions from statistical and numerical sources are competitive. It is possible
also to combine statistical and numerical approaches, either in the prediction stage
where one component is achieved through statistical means, or through the crea-
tion of a consensus of predictions from individual sources.

While there is a relatively small number of forecast producers, those interested
in taking advantage of the predictions are globally widespread. Given that predic-
tion skill tends to be highest overall at lower latitudes, with active advantage of
that fact taken in Australia, the greatest concentration of users (Australia excepted)
might be expected in developing countries, users with responsibilities ranging



10 M. Harrison et al.

from international management of development, including issues such as food and
water security, through all levels down to those taking decisions in the field.
Climate-sensitive commercial interests are growing in the developing world, in-
cluding from businesses based in the developed world. The three classic areas of
interest (but numerous others exist) are agriculture, water resources and health, all
of which are covered in this book in some detail. At higher latitudes, where skill
levels tend to be lower, the greatest number of users are probably those with
commercial interests, with government planners a second important interested
group. In all cases the available evidence suggests that the costs of developing and
maintaining the forecasts are significantly outweighed by the benefits produced.

The book is laid out in five parts. In Part 1, a background to the science and to
the use of the predictions in decision making is provided, in part through this in-
troduction chapter. The scientific core is discussed in Part 2, in which focus is
given to the workings of the climate system and to approaches to prediction, both
dynamical and statistical. Methodologies for adjusting the prediction information
that emerges from the various models so that that information is better tuned for
later decision making, is covered in Part 3. Decision making and some specific
uses of the prediction information are discussed in Part 4, while loose ends and
views to the future are drawn together in Part 5.

To an extent the structure of this book is reminiscent of an end-to-end approach
to the production, delivery and use of the prediction information. In other words it
might be viewed as outlining a unidirectional system in which predictions are fed
through necessary delivery stages for ultimate use in applications. There is nothing
new in such an end-to-end approach, this having been the principal model for
delivery of weather forecasts over many decades. The end-to-end principle was
assumed in first attempts to deliver seasonal predictions in the 1990s and the early
2000s, it was the underlying paradigm for the creation of WMO’s Climate Infor-
mation and Prediction Services (CLIPS) and the US-based International Research
Institute for Climate and Society (IRI), and it remains the assumed principle for a
large body of forecasters and service providers. Experience has indicated, how-
ever, that because of the complexities of the systems involved throughout, the end-
to-end approach is non-optimal, and new approaches/paradigms are being sought.

These new approaches are based on steadily improving understanding of the
decision processes involved in the use of climate information. Decision processes
vary significantly to the extent that a simple one-size-fits-all, end-to-end, approach
to the delivery of climate services is frequently, in practice, unsatisfactory. From
the most broad-brushed perspective, decision processes, and therefore the manner
in which climate information should be delivered, vary between the developed
world and the developing world, between commercial and development contexts,
between sectors (agriculture, water, health and so on), and between the various
levels at which decisions are made (from intergovernmental down through to the
field level). End-to-end delivery of information might be appropriate in, say,
commercial contexts, whereas different approaches are necessary for social and
economic development contexts within the developing world.
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The necessity for climate information providers to be sensitive to the specific
decision needs within each context places an onus on those providers for custom-
isation of services, an onus that requires close cooperation with those taking specific
decisions. The IRI has changed its strategy to approach this challenge through
integrated assessment of all information needs (not limited simply to climate
information) within each context, with the expectation that lessons learned will
ultimately lead to greater facility in optimisation of information delivery across
countries, sectors, and so on. But this raises the question of identification, and
nomenclature, of these decision makers. From the perspective of the end-to-end
model the concept was simply one of delivery to ‘end users’ for use in their
‘applications’. The new paradigm, covering intermediaries/recipients/decision
makers/decision takers/stakeholders/end users, at the full range of levels, with
responsibility for numerous decisions that often do not conform to the straight-
forward concept of ‘application’, has not yet generated an appropriate nomenclature
that places all involved and their actions into clear context. Within this book the
nomenclature used is variable as a result, although we try to be as consistent as
possible, but should throughout be considered within the context of the new,
evolving, paradigm. As will be seen, the learning process in service delivery is
still at an early stage and is not covered in full within this book; the examples pro-
vided give insight, nonetheless, into contexts within which climate information is
being provided and used. Undoubtedly service delivery is one area demanding
active and creative consideration from those engaged within it.

The potential readership of this book is broad, covering numerous disciplines
and levels of expertise. Climatologists with interests specific to atmospheric dy-
namics and numerical modelling cannot be expected to be expert in issues of
communication nor of the behaviour of Anophe les mosquitoes and its links to
climate and malaria. Equally agriculturalists may not be interested in the detailed
structure of climate models. In order to assist those with the limited expertise in
the contents of specific chapters, each chapter begins with a summary of its con-
tents written in such a way as to be accessible to all readers. A list of references is
provided at the end of the book, including a separate list for further reading of
interest to both specialists and non-specialists. Also, two glossaries have been
included to assist all readers, the first dealing with acronyms and the second with
terminology.

Acknowledgements The authors would like to thank Mmes. Cynthia Cudjoe and Leslie Malone
(WMO) for kindly providing the original figure used to generate Fig. 1.1.



Chapter 2
Seasonal Forecasts in Decision Making

Mike Harrison, Alberto Troccoli, Michael Coughlan, and Jim B. Williams

A new and developing vibrant science has been born capable of providing signifi-
cant benefits to humankind, from development work aimed at sustaining and
enhancing the quality of life to increasing the profits of commercial activities. At
the heart of this science lies an improved understanding of the climate system, of
its predictability, and of its links with natural and social systems. An overview
of the integrated structures of these non-independent systems within the context
of the new capabilities in seasonal to interannual prediction is provided in this
chapter, including the fundamental interactions between the various systems, their
natural complexity, the confusion that often arises between the terms ‘climate vari-
ability’ and ‘climate change’, and the essential role climate information, including
predictions, plays in the management of risks associated with climate variability
and change. There follows an introduction to decision making in which climate
information is involved, including discussions on decision processes and communi-
cation, a brief history of relevant climate science, and an overview of political and
social issues directly linked to climate. Finally, two perspectives are provided of
activities that might benefit from decision making that takes advantage of climate
information: first, a predominantly end-to-end perspective in which climate infor-
mation is delivered directly to a particular application; second, a perspective
where the challenge is to integrate climate information into the broader context of
sustainable development. These two positions, direct delivery into specific decisions
for ‘private’ benefit and information provision for the ‘public good’, perhaps rep-
resent the two ends of the broad spectrum within which this new science can
contribute.
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2.1 Climate Variability and Change: The Overlaps
and the Differences

2.1.1 About Systems

The process that starts with the generation of a seasonal to interannual prediction
and ends with someone making use of the prediction is a road that takes us from
the application of pure science in physical systems to the pragmatism of real-
world uncertainties, via the practicalities of operational forecasting frameworks.
The latter systems are arguably more complex and unpredictable than the physical
systems from which we started.

In trying to deliver on the promise offered by scientific knowledge of climate,
we must deal with several ‘systems’ — scientific, environmental, social and eco-
nomic — not only how each functions in its own right, but also how they interface,
overlap and interact with each other. From the pure scientific perspective some
systems are simple and driven by a single dominant force or set of independent
linear forces. Such systems are generally highly predictable, e.g. planetary motion
where gravity is by far the dominant force.' On earth, forces are rarely independ-
ent of each other and are often non-linear. Sometimes there are only a few dominant
forces that give rise to chaotic outcomes; such systems exhibit some level of pre-
dictability but also often have inherent and unpredictable instabilities. At the far
end of the scale there are systems with many roughly equal forces at work, which
lead to random outcomes. In random systems the predictability of any individual
outcome within the system is virtually impossible to assess but statistics may still
tell us quite a lot about how the system will behave as a whole.

Meteorologists, ever the pragmatists, have long recognised the uncertainty in
their science and that there are good reasons for limits to the predictability of ex-
plicit outcomes of the non-linear systems that generate our weather and climate
(Lorenz 1963). Yet by capturing the essence of the physics, dynamics and chemistry
of the system and by exploiting the ‘laws’ of large numbers, meteorologists and
climatologists have become adept both heuristically and mathematically in stretch-
ing the levels of useful skill towards the outer limits of predictability.

! However, when two nearly similar gravitational pulls act on a single body then the system can
become unpredictable.
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2.1.2 Climate and Weather

Climate is traditionally viewed as the integration ‘upwards’ of the characteristics
of discrete weather events and variables over time and to some extent space; occa-
sionally climate is described as ‘the statistics of weather’. The corollary is that the
components of global climate change should be manifest ‘downwards’ on all time
and space scales. This critically important concept (Fig. 2.1) has only recently
been recognised by those concerned with appropriate responses to climate change.
Successful adaptation to climate change will not simply be a case of adding an-
other row of bricks to a sea wall to stem sea level rise, for example, or building
another dam to catch more water in a drier climate. The consequences of ‘global
warming’ will not just appear as an inexorably rising graph of global temperature
but will also be evident through a set of complex changes in the global circulations
of the atmosphere and ocean that will arise, in part, because it is expected that the
warming will be greater over the land than over the sea. In turn, this means that
some areas will become drier or wetter than others, but not every year — just more
frequently than before. It follows that in any given year the mix of weather pat-
terns that a decision maker will have to deal with will also change.
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Fig. 2.1 Climate is traditionally viewed as the integration of discrete weather events and vari-
ables over time and space. The corollary is that the components of global climate change should
be manifest ‘downwards’ on all time and space scales
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Clearly then there is scope for adaptation to climate change on all time and
space scales. Using the information that a seasonal to interannual forecast offers is
as practical a response to climate change as it is to varying seasonal conditions.

The difficulty of distinguishing between ‘climate variability’ and ‘climate
change’ has been addressed within the United Nations Framework Convention on
Climate Change (UNFCCC) by constraining climate change to mean only that
component which is directly the consequence of human activities, in particular the
emissions of greenhouse gases, but also including land use transformations. All
other components of change in the climate are referred to within the UNFCCC as
natural climate variability. Note that these definitions are both independent of
timescale, and thus change and variability according to the UNFCCC definition
cover all scales from the very shortest to those acting over extended periods of
centuries and beyond, the only difference being one of attribution, i.e. between
natural and anthropogenic forcing.

This separation of change and variability is logical when viewed from a
UNFCCC perspective, not least that natural climate variability cannot be ‘man-
aged’ in the UNFCCC sense whereas management is possible to an extent for
climate change as it is by definition human-induced. Two approaches to the
management of climate change are envisaged within the UNFCCC: mitigation of
emissions and adaptation to a changed climate. Within the UNFCCC context ac-
tions and funding regarding mitigation, with emissions taken as the main driver of
change, become self-defining, and it is this perspective that provides the foundation
for the UNFCCC definitions of change and variability. There is less clarity, how-
ever, when it comes to actions and funding for adaptation activities, which in the
strictest UNFCCC sense should apply only to adaptation to whatever modulations on
whatever timescales result purely from anthropogenic causes. In reality, such a
partitioning is highly, if not totally, impractical as making a clear separation be-
tween weather and shorter scale climate fluctuations that are naturally forced from
those that are anthropogenically forced cannot be made. Any adaptation responses,
whether managed or endogenous, will need to factor in the integrated totality of
fluctuations that have resulted from the combination of all sources. Management
of the risks of climate variability on timescales of a season to a year are thus an
inherent aspect of adapting to the consequences of climate change whatever the
timescale. The contribution that management of short-term climate risk can make
to the overall response to long-term climate change has generally been under-
valued during the formative years of the UNFCCC. The broadening in recent
years of the UNFCCC process beyond mitigation to embrace adaptation to a grow-
ing extent has led to a greater appreciation of the need to manage climate risks
over all timescales including the vital contribution that seasonal predictions can
make. Some of the tools that will assist in understanding and managing the conse-
quences of the totality of climate variability and change, whatever the cause, are
covered in this book.
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2.1.3 Adaptation, Climate Variability and Change

Even if separating adaptation to climate variability from adaptation to climate
change becomes problematic, as it will be in many practical instances, what are
the main pathways for adaptive responses? Figure 2.2 suggests that climate sci-
ence can tell us how ‘forcing” within the climate system will produce or induce
changes in weather and longer term climate patterns. Such outcomes will have
their consequences or ‘impacts’, the severity of which will be determined by the
level of vulnerability of a society or ecosystem that is sensitive to weather and
climate. If the impact is sufficiently strong to elicit a response within the commu-
nity, that response may take several forms. In the case of a serious or severe event
that leads to a disaster, for example, the normal human response will be one of
providing emergency relief to affected communities as quickly as possible.
Experiencing an impact might lead one to attempt to do something about future
levels of the undesired forcing. Experimenting with cloud-seeding to prevent
damaging hail is one example of such a response on the shortest timescale. Efforts
at mitigation or abatement of greenhouse gas emissions to forestall further global
warming lie at the other end of the time spectrum. A further “lesson learned” res-
ponse is to take adaptive measures that build resilience to future occurrences of
similar events. Such responses would include building sturdier houses to with-
stand storm-force winds or even adding that extra row of bricks on the sea wall.

| Climate Science ‘

Proactive
Y
—>| Climate Forcing ‘ v
<—| Resilience HAdaptation
Mitigation o
{Emissions Reduction) | Vulnerability ‘
Y
| Relief | | Impact ‘
A
Y
I Response I
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Fig. 2.2 Pathways for responding to climate variability and change. The central axis represents
the sequence of a climatically forced event. The side arms provide optional actions to reduce the
negative impacts of such events, either proactively with the application of scientific understanding
or, in a more reactive sense, when the consequences of an event have already been experienced
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So far, however, all the actions or responses discussed have been ‘reactive’, and
follow once an event has occurred or begun to occur. Figure 2.2 suggests that cli-
mate science has the potential for providing a more proactive pathway to
adaptation. Such a pathway provides opportunities for building resilience and
hence reducing vulnerability to an event before it occurs. It is important to recog-
nise that while reliable and useful prediction is a highly desirable tool to have at
one’s disposal on this pathway it is not always necessary for deriving effective
adaptation strategies. Even in the absence of any predictive capacities, statistical
information about how the climate varies in time and space can be a powerful
planning tool, at least so long as one is confident that the past climate is a good
model for future climate.

2.1.4 Forecasts, Predictions, Projections and Scenarios

The rapidly growing societal awareness of climate change highlights a degree of
terminological confusion within the broader climate community, not only among
those interested in response and adaptation measures but also among climate sci-
entists. Not entirely at one on how best to define the term ‘climate’ as it relates to
the past and to the present, climatologists are faced with the need to describe what
it means when one is talking a bout climate and climatic events into the future.
The term ‘climate forecast’ seemed to suggest an extension of explicit weather
type forecasts out to climate timescales, something that, as we have seen, is clearly
not possible; the addition of the pre-fix ‘long-range’, as in “long-range weather
forecasts”, did little to resolve the confusion on the shorter climate timescales. In
fact the use of synonymic terms to define a range of very different concepts has
left many scrambling to sort out the details, e.g. ‘projection’ as something distinct
from a ‘forecast’ or a ‘prediction’, along with the now almost hackneyed term
‘scenario’. Figure 2.1 provides one attempt at a rational nomenclature, but the
inclusion of climate projections and scenarios on this figure would probably re-
quire a third axis. Those with a sceptical bent on the climate change issue rose
quickly to exploit some of this terminological confusion, despite the best efforts of
the Intergovernmental Panel on Climate Change to have everyone reading from
the same glossary (IPCC 2001).

In essence, all expressions of what the future may hold, whether they are called
forecasts, predictions, projections or scenarios, embody degrees of uncertainty.
Consequently, from a practical or even a basic conceptual point of view, it is the level
of uncertainty that matters and not so much the exact meaning of the term being used.
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2.2 A History and Status of Seasonal to Interannual
Predictions in Decision Making

2.2.1 Introduction

From a practical perspective, there is only one reason for undertaking research and
development to advance seasonal to interannual predictions and for investing in
the infrastructure to produce and deliver them. That reason is to assist whatever
decision processes are of concern to those who might make use of them. To be of
real and measurable value, prediction information must be readily assimilable into
the decision processes of recipients. In practice this goal may represent the ideal
more than the complex reality, but it implies nevertheless that coordination be-
tween supplier and recipient is essential for the derivation of optimal benefit from
the prediction information. Such optimal benefit is difficult to achieve in seasonal
prediction:

e When information is couched in language that recipients find difficult to
interpret — jargon such as “chaos”, “probabilities”, “terciles” and so on

¢ When the provider does not have a clear view of the needs of the recipient

e When the recipient does not have a clear view of the uncertainties inherent in
the information

e Without adequate and ongoing coordination and dialogue between provider

and recipient

The process of dialogue and coordination has been building for many years, but
there remains much to be done in order to achieve optimal support for decision
making.

Following the global emergence of seasonal forecasting after the commission-
ing of the Tropical Atmosphere Ocean (TAO) array, the first approach taken was
to disseminate seasonal to interannual predictions in an “end-to-end” way. This
process generally involves one or more forecast producers delivering predictions
to one or a group of recipients within a specific sector, an approach adopted ini-
tially by both the World Meteorological Organization’s Climate Information and
Prediction Services (CLIPS) initiative and by the International Research Institute
for Climate and Society (IRI).> This end-to-end process has been the traditional
approach taken in the delivery of short-range weather forecasts, and therefore
seemed a logical way forward. In practice end-to-end has proven often to be sub-
optimal for seasonal to interannual predictions because of the intrinsic difficulties
in linking the probabilistically framed predictions to many practical decision pro-
cesses. The outcome to date, by and large, has been a mosaic of small projects,

? Originally named the International Research Institute for Climate Prediction.
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with few that can be regarded as seminal to a more generalised approach. Transla-
tion of results between projects/sectors/geographical areas has proved to be
difficult.

Recognising these difficulties, some organisations have developed strategies
built around the concept of focussed solutions within particular sectors. In this
approach attention is placed on the coordination of all activities within the deliv-
ery and application chain in order to develop a comprehensive decision making
package that will benefit the stakeholders within a specific sector. For example,
one pilot IRI project covered the management of water resources in two dams in
Ceara (Brazil). Water from these dams was used for hydropower generation, for
irrigation (during the greater part of the year when rain is not expected) and for
general purposes, including industrial and personal, consumption. The project
involved the generation of predictions on various timescales, the convening of
several committees of users and water managers, the application of market forces,
involvement of the insurance sector, and the creation and delivery of a tailored
information package to all stakeholders. While not yet commissioned operation-
ally, this project provides a cogent example of the type of innovative solution that
might be applied elsewhere.

However, even this approach, which is still essentially end-to-end in concept,
and similar such approaches, may not be sufficient to tackle the larger issues. As
already mentioned, prediction, when available, is just a single, albeit important,
tool in the management of climate risks. In a broader context the potential contri-
bution of predictions lies in the need to manage climate risks on all timescales.
This broader context includes the management of risks arising from climate
change and desertification and, in a more political/social framework, the achieve-
ment of objectives such as the Millennium Development Goals (MDGs). It covers
additionally incorporation and melding of sources of risk other than climate per se,
and aspects of management of the totality of those risks, including development
and administration of appropriate policies. All approaches require an outcome-
oriented perspective of interaction of all involved disciplines with all users.

2.2.2 Decision Making

The decision is everything: without serving as a basis for decisions, seasonal to
interannual prediction would be little more than a stimulating intellectual chal-
lenge. Yet providing information for possible use in making a decision is not of
itself enough; that information should enlighten a new decision, confirm the vali-
dity of a decision already made, or cause the recipient to adjust a previous decision,
if it is to have value. Without providing value, even the stimulating intellectual
challenge is at risk.
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The value obtained in practice can be determined in numerous ways, including
through (but not restricted to) the form and quality of individual decision pro-
cesses and the degree to which predictions are customised to those decision
processes. High order predictions, such as ones for total agricultural production in
a region, in principle offer the greater potential value as compared to those at
lower orders, say the number of growing degree days during a season, or those at
lower orders still, such as mean temperature and rainfall anomalies over a period.
Most seasonal predictions currently offer only the lowest order of climate predic-
tions, typically of mean temperature and rainfall anomalies, although there is
expanding activity to support higher order predictions in certain geographical
regions and sectors.

While predictions tend to possess a relatively monochromatic character, deci-
sions in a complex environment come in a vibrant spectrum of forms and
approaches. Few decisions are independent of others, and most are based on a
range of information streams. Climate will generally be only one factor under
consideration — see the example of Food Security in Fig. 2.3 — and may be per-
ceived as not even particularly important. Predictions of first order variables such
as rainfall and temperature, unless perceived, or ideally proven, to be of a quality
sufficient to provide value, may receive less attention than basic climatic data, and
less attention than other data streams informing a decision. Yet, in practice, relevant
climate and other data are only infrequently supplied alongside the predictions
themselves as part of a climate service. Similar arguments apply to predictions of
second and third order variables.

Climate
information,
including seasonal
predictions

Crop status
information:
in storage and
harvest

Demographic
information

International

Geopolitical Decision process crop prices and
and institutional —food security availability
factors

information

National and
international
financial

information

Geographical
food distribution
information

National and
international food
transport logistics
information

Fig. 2.3 A simplified example of information streams that might be used in a single decision
process related to food security
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Decisions are made within a rich continuum of overlapping domains involving
sectors, cultures, economics and politics, as well as timescales. Numerous sectors
are affected by climate variability, and indirect interactions can extend those af-
fected into surprising areas. For example, most of the eight MDGs, even those not
explicitly related to climate, can be detrimentally or beneficially influenced re-
spectively by climate variability that undermines or supports the economic and/or
political and/or physical infrastructure of a country. MDG No. 8, Develop a
Global Partnership for Development, which covers mainly international trade
and finance issues, is but one example. Most cultures approach decision making
through their own time-honoured traditions, with many continuing to use indige-
nous knowledge developed over centuries to guide their day-to-day decisions. The
economic, political and statutory backdrop to any decision can influence both the
manner and the outcome of specific decisions. All such issues should be consi-
dered in order to deliver seasonal to interannual predictions tuned according to
pertinent decision processes.

Even the matter of timing proves complex, as decisions are made on a wide
variety of timescales, with a variety of lead-times, few of which will correspond
neatly to the scales and lead-times common to contemporary prediction capabili-
ties. There is often a tension between the window of opportunity for seasonal
prediction that comes from sea surface temperature anomalies and the real re-
quirements of the decision maker. It is this tension that organisations such as the
IRI, the Australian Bureau of Meteorology (BoM) and the Queensland Depart-
ment of Primary Industries (QDPI), for example, are attempting to address.

2.2.3 Communication

Effective communication between provider and recipient is an essential pre-
requisite for maximising the benefits from short-range climate predictions. Good
communication, in both verbal and visual forms, needs to be appropriate to all
stages of the process, starting with the initial introduction of predictions in specific
decision making contexts, continuing through the period of forecast use, and then
extending to the support necessary for further development in their application.
Like most scientists, climatologists tend to use the jargon peculiar to their field.
Recipients also tend to belong to particular disciplines or sectors, each with its
own vernacular. The inevitable consequence is scientist-recipient communication
at a sub-optimal level. This language problem certainly is not restricted to climate,
but attention within the climate context could break down some of the perceptual
barriers that cause predictions to be discounted or used ineffectively. Hence
climate scientists have a fundamental responsibility to understand how their in-
formation is to be used, and to communicate their information in the language of
that use. It helps if the recipients also have some understanding of climate jargon,
but in practice this may not be necessary provided there is confidence in the
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information being received, a confidence more likely to grow given communica-
tion primarily in the vernacular of the recipient. Confidence is linked in context to
credibility, credibility being gained through numerous processes including exten-
sive experience of the quality of the predictions or of receipt of persuasive
information confirming that quality, a requirement again demanding communica-
tion in a form suitable to the recipient. Unfortunately most training activities to
date have focused on teaching recipients climate jargon, rather than on teaching
climate scientists the essential language of recipients and the nature of their deci-
sion making processes.

Sitting alongside verbal communication is the powerful tool of visual com-
munication. Data visualisation techniques have developed rapidly in recent years,
particularly through the use of computers, and have made substantial contributions
to the advancement of all sciences. Data visualisation can also be a potent means
of communicating science and scientific information to the layperson. It is regret-
table, therefore, that novel methods of communicating visual information on
seasonal to interannual climate predictions that are readily accessible to recipients
have been slow to develop and that, in general, visual presentations remain tied to
the perceived communication needs of the climate scientist rather than to the
actual needs of recipients.

Well-designed visualisations could play a vital role within the framework of
specific decision processes:

o To help explain the science

e To provide climatological and other information

¢ To provide the predictions themselves of whatever type

¢ To provide information on the quality of the predictions (i.e. verification)

¢ To place climate information within the context of other information required
for a decision

As yet, many predictions, together with any accompanying verifications, are
made available in formats that do little to assist decision makers. Frequently com-
plementary explanations are written in the jargon of the scientist rather than the
language of the recipient. While it may be a difficult and slow process to improve
the quality of the predictions themselves, much could be done now to improve the
communication of them and their current levels of skill in ways that facilitate their
incorporation into decision processes, with consequent rapid gains in the value of
the predictions. Equally, well designed visualisations can be used to communicate
to the climate scientist how decisions in recipient communities are made. Com-
munication through an effective mix of enhanced verbal and visualisation tech-
niques offers outstanding potential for major advances in targeting and improving
the value of the forecasts.
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2.2.4 A Brief History

Climate prediction, at least that covering the next few seasons, is one of the oldest
professions, with known examples stretching back millennia. Life depends on cli-
mate, and decision making to sustain life requires methods of foreseeing climate
aberrations that threaten life. The extant wealth of indigenous knowledge, built
over many generations, has resulted in a complex of information still frequently
used and implicitly trusted in many parts of the world. Not surprisingly this in-
digenous knowledge universally tends to be derived around seasonal changes in
local flora and fauna, plus astronomical observations. Religion and other belief
structures (including dictums and maxims) are added to the mix in many countries.
Wherever indigenous knowledge is considered fundamental then the usefulness
of any new information source naturally will be first judged against this; it is con-
ceivable, of course, that such comparisons may be biased. Nevertheless the existence
of a culture of indigenous knowledge provides an opportunity for the climate
scientist to introduce new techniques in a sympathetic and synergistic manner.

While a rich global history exists of attempts to predict weather in coming
seasons, it is generally agreed that modern seasonal to interannual prediction
originated in the work of Sir Gilbert Walker, tasked while Director of the Indian
Meteorological Service in the early years of the 20th century with predicting the
monsoon in order to bolster food security for the subcontinent. Indian food secu-
rity in practice has come through the coordinated planning of resources over a few
years, rather than through Walker’s work. However Walker’s legacy lives on through
both the world’s longest-running statistical seasonal prediction system, as main-
tained by the Indian Meteorological Department (IMD), and his identification of
the Southern Oscillation, the great “see-saw” in atmospheric pressure differences
between the South Pacific and the Indonesian region. It was to be several decades
before the relevance of Walker’s work was to be recognised in full, but his work
provides the observational foundation for most modern approaches.

By the 1970s a few scientists were beginning to recognise the relationship
between the Southern Oscillation and El Nifio (to be discussed in Chapter 3),
a periodic warming of sea surface temperatures along the equatorial Pacific South
American coast, and further to acknowledge the societal impacts of individual
El Nifo events. With that progress came evidence of the general potential for sea
surface temperature anomalies, primarily but not uniquely tropical, to influence
remote climates on seasonal timescales. Although the 1972/73 event created a
stirring of interest, it was the 1982/83 event, with its “classic global climate anomaly
configuration” (also known as teleconnection pattern and shown in Fig. 6.10 later
in the book — compare it to the main climate anomalies for the 1997/98 ENSO
event in Fig. 1.1), that propelled El Nifio into global prominence. That event trans-
formed the agenda of the First International Conference on Southern Hemisphere
Meteorology, coincidentally held during August 1983 in a Brazil feeling the full
impacts of the event from flood rains in the south to drought in the northeast. The
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event also set in train an industry building statistical prediction models based on
links between rainfall and anomalous sea surface temperature patterns, an industry
that continues today alongside the sophistication of the global coupled climate
models, the former providing benchmarks for skill assessments of the latter.

Gilbert Walker worked from an entirely pragmatic base, and that same pragma-
tism has been the main driver for new investment in prediction infrastructure.
Certainly influential theoretical work, such as that undertaken in the USA through
the 1980s and 1990s by Peter Lamb and associates (Mjelde et al. 1993, and refer-
ences therein), suggested that the financial returns to be expected from seasonal
prediction could be substantial. Practical experience, such as that gained in the
1990s using seasonal predictions in the Nordeste region of Brazil, an area with some
of the highest seasonal rainfall predictability anywhere, supported the theory.

A further boost to information delivery was given by the major 1997/98
El Niflo event, which happened to coincide with the commissioning of the TAO
array of moored buoys straddling the equatorial Pacific, with the maturation of
the numerous ocean prediction models using TAO data, and with the first of the
Regional Climate Outlook Forums (RCOFs), held to deliver information into
tropical countries most influenced by El Nifio events.

However progress since has been more constrained than appeared to have been
promised by these early successes. A number of dramatic predictions of the con-
sequences of the developing El Nifio event openly and widely broadcast in 1997,
often taking advantage of the emergence of the Internet, were felt to have been
incorrect. The 1997/98 event, although unarguably one of the largest on record in
terms of its intensity and effects, failed to impose the 1982/83-style “classic global
climate anomaly configuration” on which these predictions were based. Confi-
dence was eroded and questions were raised concerning the free and open
distribution of independent and sometimes contradictory predictions. Scientists
pressed the need for presenting predictions as probabilities, a concept that imme-
diately raised a barrier to understanding and acceptance for some users. And
recipients did not always gain the assurance necessary to incorporate this new pre-
diction information into their decisions; many recognised that a false decision
might have long-term effects that might be difficult to reverse. In the worst cases
gambler’s ruin beckoned. The initial positive results from the Brazilian Nordeste
proved difficult to duplicate even in this same region, with later spectacular fore-
cast failures in the region severely denting confidence (Lemos 2003; Meinke et al.
2000).

The science has now entered perhaps a period of consolidation. There is no
doubt that the predictions have measurable skill in the technical sense, and ex-
periments such as PROVOST and DEMETER have demonstrated certain levels of
technical skill beyond the preliminary expectations of participating scientists (for
example over Europe, where earlier research had indicated minimal, if any, pre-
dictability). Prediction models continue to be improved, new sources of prediction
skill are being examined — in part through the COPES (Coordinated Observation
and Prediction of the Earth System) experiment in which research into seasonal
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predictability originating in land surface soil moisture, ice cover and stratospheric
circulations is being assessed — and new activities generated to introduce predic-
tion information to additional user groups and sectors. Yet, as indicated earlier,
it remains unclear that maximum value is being extracted from the current skill
levels of the predictions. In part the apparent lack of value in seasonal forecasts
almost certainly results from non-optimal incorporation of climate information
into the decision matrix of climate-sensitive enterprises. Therein lies a key to the
delivery of the societal benefits inherent within the science.

2.3 Climate-Related Decision Making Under Uncertainty

The proposition that, from the societal point of view, decision making is the
ultimate goal of seasonal to interannual climate prediction has been emphasized
already. It has also been highlighted that climate predictions — and climate infor-
mation in general — will be just one component in most decision making processes
(see Fig. 2.3). Most important of all, however, is the fact that climate prediction is
inherently probabilistic in nature and probabilities always indicate uncertainty in
the final outcome (this fact will be stressed many times throughout the book).
Decision makers who make use of such predictions need to factor in this intrinsic
uncertainty. Defining a practical framework for taking uncertainty into account in
order to assess the level of risk associated with decision making processes is the
subject of this section.” Such a framework is based on decision analysis, a subject
developed under the discipline of decision theory.

Decision theory is a body of knowledge and a related set of analytical methods
of different levels of formality designed to assist decision makers in choosing a
course of action from among a set of alternatives through a careful consideration
of the possible consequences of each alternative. In turn, decision analysis is
essentially concerned with breaking complex problems into manageable parts, by
adopting the ‘divide and conquer’ approach. A large body of work has been de-
veloped in the field of decision analysis, and only its surface will be scratched
here. A good reference for a deeper understanding of the subject is provided by
Goodwin and Wright (2003).

Two of the most important tools in decision analysis are decision tree diagrams
and influence diagrams. These are two tools that attempt to model the decision
making process by illustrating graphically the alternatives, uncertainties, risks and

* The concepts of risk and uncertainty, while related, are very different: uncertainty involves
variables that are constantly changing, whereas risk involves only the uncertain variables that
affect or impact the system’s output directly (Mun 2004). Note, however, that not everyone finds
uncertainty, and its associated probabilities, easy to incorporate into their decision making pro-
cesses.
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objectives of the problem at hand. By offering a visual representation of the deci-
sion problem, these tools are helpful in clarifying the various steps in the decision
process in ways that can lead to creative thinking and to the identification of
issues not previously considered. These features make these two diagrammatic
approaches appealing to decision makers faced with complex decisions. Decision
making in general involves multiple objectives as well as multiple stakeholders. In
order to simplify the treatment, only a single objective and a single stakeholder are
considered here.

The decision tree diagram is a flow diagram that includes the timing of deci-
sions, coverage of uncertainties, and quantification of each possible decision.
Once the objective of the decision has been identified, the decision tree analysis
requires five steps:

. Determine all possible options and risks related to the problem

. Calculate the consequences of all options

. Determine the uncertainty associated with each option

. Generate a tree diagram using the information from the first three steps
. Assess the best course of action

DN AW -

In societies that are driven mainly by economic considerations, the numerical
quantity that expresses the objectives of the situation, and summarises the out-
comes of all the options, is money. In principle, however, there is no reason why
other quantities could not be used; for instance the number of people at risk of
starvation due to a possible drought, or measures that are problematic to quantify,
such as the effects on the environment of particular management options (e.g. de-
sertification, salination, erosion, etc.).

The graphical representation of a decision tree diagram is made up of activity
forks or decision nodes (a square) and event forks or chance nodes (a circle). The
use of a triangle to terminate a branch in the tree is customary. An activity fork is
used when a definitive decision amongst two or more options is required, whereas
an event fork is used when the option is subject to uncertainty. Given the complete
tree diagram, the best course of action is determined by considering the implica-
tions of each option starting from the right of the diagram and moving to the
common start of the tree, towards the left. This process of evaluation of the best
action plan decision is referred to as “folding back” or “pruning” the tree.

Referring to the food security example (Fig. 2.3), it is possible to construct a
highly simplified decision tree diagram by considering only three information
streams: “Crop status information”, “Climate information, including seasonal pre-
diction” and “International crop prices and availability information”. Imagine the
following situation: one million people may be at risk of starvation — the risk is
dependent on the amount of food in the reserves and on the predicted climate con-
ditions. In order to decide on the best course of action (i.e. to reduce the risk of
starvation by providing the population with sufficient food for the coming season)
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a decision tree diagram might be built, as in Fig. 2.4. If the crop reserves are
sufficient, then no action is required.* However, if reserves are insufficient avail-
able options need to be assessed. It is assumed here that the only two accessible
additional pieces of information are a seasonal climate prediction and international
crop prices. The climate prediction offers a 30% chance that rainfall will be suffi-
cient to produce enough crops to meet national demands. For crop prices there are
two options: one is to buy crop in advance, the other is to buy it after the cropping
season has started. In the former case the cost is, say, €10 million, in the latter €30
million. So, for unfavourable predicted climate conditions, the options are to buy
now and spend €10 million or buy later and spend three times as much. In the case
of favourable conditions, the options are to buy now or to hedge, e.g. by purchas-
ing insurance or by buying part of the crop that might be needed. In the case of
hedging, it is assumed that costs of either alternative are €2 million.

The best course of action is then given by the branch with the associated lowest
expense or, in the commercial parlance, the largest profit. By “pruning” the
branches of the tree, one obtains the monetary values as presented. The only value
which needs some explanation is €7.6 million. At each node, the value before that
node is calculated by considering the probability of each branch following the
node. This probability is multiplied by the amount on the corresponding branch
and then summed over the contributions from all branches. In this case there are

Crop status  Climate information Crop prices Crop value

Hedge risk

Favourable
conditions

-€2

Buy now: no confidence

Food not sufficient, 30% in forecast

use climate predictio -€10
-€76
70% €10
Buy later: no confidence
Unfavourable in forecast
Food sufficient, conditions -€30
no action

g

Fig. 2.4 Example of a decision tree diagram with reference to the food security application of
Fig. 2.3. Squares represent decision nodes and circles chance nodes. The use of a triangle to
terminate a branch is customary. Amounts are in million of euros. This is a highly simplified
decision tree, purposely constructed to focus on its mechanics (see text for details)

* For simplicity, options such as building national food reserves or generating foreign income
through sales have been ignored.
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only two branches after the (single) chance node and so the value before that node
is (€2 x 0.3 + €10 x 0.7) million = €7.6 million. In evaluating this problem, it has
been assumed that the decision maker is risk-neutral. The results generalise how-
ever to arbitrary risk attitudes of the decision maker, whether they are risk averse
or risk seeking. The attitude to risk may be assessed by eliciting a utility function.

In the present example, it is straightforward to assess what is the most con-
venient action when food reserves are not sufficient, and this is to spend €2
million to hedge the risk given a favourable prediction, or to buy now otherwise.
However, it is also true that only a single estimate of costs was provided. In prac-
tice, because uncertainty generally exists in the various options forming the
decision tree, sensitivity analyses are conducted with the aim of providing error
estimates associated with all possible outcomes. A more meaningful evaluation of
the risk associated with the selected course of action would thus be obtained. It is
important to note that the use of expert advice or judgment — seasonal prediction
in this case — in event forks generally sharpens the uncertainties associated with
the options in that particular fork. Probabilities would be equal in the absence of
any information, including of historical records,’ i.e. 50-50% instead of the
30-70% (see Fig. 2.4) coming from the knowledge of climate information. The
procedure used to incorporate expert advice in the decision making probability
assessment is referred to as the Bayesian approach. A discussion of Bayesian
theory is given in Chapter 9.

In practice, situations tend to be rather more complex than that shown in Fig.
2.4, as can be inferred from the number of entries in Fig. 2.3. The number of pos-
sible options would grow substantially were the simple decision tree of Fig. 2.4
generalised to take into account all the entries in Fig. 2.3. The rapid growth of
complexity represents a drawback of tree diagrams as they can become difficult to
follow or to validate.

The decision making problem is further complicated when different entries in
the tree are interdependent; for example in the food security case above the act of
issuing a public climate forecast may affect crop prices directly. At first glance
tree diagrams appear to represent an end-to-end process, in that they flow sequen-
tially from left to right; a closer examination shows, however, that a diagram can
become highly interactive due to the interdependence of the various processes.

An alternative approach to decision trees is the use of influence (or relevance)
diagrams. The high-level (compact) visual representation of influence diagrams
makes them particularly valuable for the structuring phase of problem solving, and
for visually representing large, intricate problems. The complexity of the details
present in decision trees becomes embedded into the general structure of influence
diagrams, structure which clearly calls attention to the relationships between the

> In practice, it is virtually impossible not to be able to have access to some additional prior in-
formation. Any such information would modify the prior 50-50% probability.
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various elements of the problem. As a consequence, influence diagrams can cope
with situations in which there is substantial sophistication and complexity. All
these features make influence diagrams easier to interpret and overall more power-
ful than tree diagrams. Indeed, some authors contend that decision trees should
only be used as a teaching device for beginners. Note that a ‘properly’ formed
influence diagram can always be converted into a decision tree (Howard 1990,
explains the rules to build a ‘proper’ influence diagram).

The symbols used for influence diagrams are similar to those for decision trees,
but with some differences. A decision node, drawn as a rectangle, represents a
variable under the control of the decision maker; an uncertainty node, drawn as an
oval, represents a variable not directly controlled by the decision maker; a deter-
ministic node, drawn as a double oval, represents an uncertainty that is functionally
determined by the variables influencing it; and a value node, drawn in many ways,
including a hexagon or a diamond, represents the variable to be optimised by the
decision. The nodes are connected to each other via arrowed arcs, which generally
indicate ‘relevance’. An example of an influence diagram with reference to the food
security application of Fig. 2.3 is shown in Fig. 2.5.

This example is just one of the many possible combinations for linking the
various variables or options of Fig. 2.3. It is important to recognise that decision
tree diagrams and influence diagrams are never unique in the sense that they aim
to ‘model’ the experts’ natural thought processes. It is therefore crucial to elicit
information for the specific problem at hand from as many experts as possible,
also to try to ensure that wider economic, social and environmental considerations
(i.e. the three pillars of sustainability) are taken into account. For example, in Fig. 2.5

Geopolitical
factors \ Demographic

information -
Geographical
food distribution
Crop status
information c Food transport
rop logistics
value
Internatianal
crop prices
Climate
information

Financial
information

Fig. 2.5 Example of an influence diagram with reference to the food security application (see
Fig. 2.3). For the sake of clarity not all the dependencies have been represented in this diagram
(e.g. the link between ‘crop status information’ and ‘climate information”)
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the customary choice to assign certainty to the “Geopolitical factors” and “Demo-
graphic information” variables has been made, and the variable to be optimised is
“Crop value”, as in the decision tree of Fig. 2.4, but this problem could be stated
in other ways.

To summarise, the two most relevant concepts highlighted by Fig. 2.5 are:

1. Climate information is just one of the components in the decision making process
2. Climate information enters the decision process under several facets through its
interdependency with other information streams

2.3.1 A Holistic Approach to Seasonal Climate Prediction

A direct corollary to the decision analysis presented in the previous section is that
climate information has to be considered within its broader context, especially the
social and economic aspects. This holistic approach, defined as Climate Affairs by
Glantz (2003), is helpful not only in understanding and managing the many ways
in which climate variability influences human activities and environmental proc-
esses, but also in identifying how societal and environmental issues not related to
climate may act as confounding factors to the climate information in the decision
making process. Indeed, the concept of Climate Affairs was developed with the
aim of placing climate and climate-related factors on the list of items that decision
makers should take into consideration. Climate Affairs consists of the following
component fields:

o Climate science: the description of the components of the physical climate
system, including the role of human activities as forcing factors to the system

o Climate impacts: the impacts of the climate on both societies and ecosystems

o Climate politics: the process needed to produce climate-related regulations and
laws

o Climate policy and law: the legal and regulatory aspects of climate—society—
environment interactions

o Climate economics: the financial aspects of the climate, including cost-
assessments carried out in order to assist in the decision making process

o Climate ethics and equity: the set of principles of right conduct and the state of
being just, impartial, and fair in the context of climate-related impacts (e.g. the
poor generally have fewer options than the rich in tackling climate-related
harmful events)

Food security, as discussed in the previous section, is one of the sectors that
would greatly benefit from a holistic approach, especially in regions with large
interannual climate variability. By definition, climate-related issues are crucial in
such areas, but many problems also arise because of the pressure to exploit these
areas, as well as through other human choices and perceptions of acceptable risks.
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It is worth noting that the concept of Climate Affairs goes beyond mere appli-
cations to decision making. Its other purposes are to encourage education and
communication on climate-society-environmental issues, and to improve under-
standing of how climate variability affects society and the environment. Despite
the feasibility of assessing risks attributable to climate in a physical sense (e.g.
probability of a drought, a quantity directly usable in decision analysis), there are
also many societal aspects which are difficult to quantify, and thus subjective
judgment often plays a significant role in decision making. It is through focussing
on education and by developing appropriate communication approaches that the
level of arbitrary subjectivity of decisions may be reduced.

The subjective role of climate information was emphasised by the use of the
word perception above. The perception of the climate (and of its prediction) is often
distinct from its physically measured characteristics. A prediction for a colder
winter than normal, for example, can be interpreted in many different ways, depend-
ing on the person to whom this prediction is addressed. A perception is often related
to the association a person makes to his/her most memorable cold winter. Thus per-
ception relates more to the psychology of the decision maker rather than to ignorance
or lack of information® (Weber 2001; Loewenstein et al. 2001). The notion of per-
ception is critical to any decision making process is further explored in Chapter 11.

In the following specific perceptions of climate by society are discussed briefly.
There are three non-exclusive ways in which climate may be perceived by society:
as a hazard, as a resource and as a constraint (Glantz 2003).

The hazard component is probably the most common way in which society
tends to view climate, especially when high impact events, such as devastating
floods or persistent droughts, hit the headlines. The hazard perception is particu-
larly strong for governments, since climate-related harm to a population may have
repercussions on a government’s duration in power or on its likelihood of re-
election. For governments, it may be more relevant therefore to be concerned with
climate-related disasters than with enhancing climate as a resource.

Despite the perceived presence of this sword of Damocles, societies around the
world view climate as a resource too. In fact people’s lives and activities, includ-
ing commerce, are adjusted in general to the expected flow of the seasons in order
to take advantage of local climate conditions.

There are also environments in parts of the globe to which humans are less able
to adapt. These environments are characterised by conditions where climate is
seen as a constraint, an impediment to productivity or even to survival. Such is the
case in marginal agricultural areas, for example, where annual rainfall averages
are low and interannual climate fluctuations in precipitation are so large that pro-
duction may be meagre in some years, at which times it may be accompanied by

S A linked issue is that of legitimacy, which concerns the perception that the system is being pro-
vided in the interests of the stakeholders and those of the providers.
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economic losses or even starvation. When such constraints are occasionally
relaxed, e.g. in the rare ‘good’ years of the semi-arid tropics, decision makers are
presented with opportunities that need to be exploited: in the rain-fed wheat sys-
tems of Australia, for instance, 70% of profits are made in 30% of the years.

Certain global phenomena, such as the seasons or ENSO, may lead to all three
perceptions of the climate across diverse locations. ENSO, for instance, is perceived
as a hazard in some regions, as its occurrence is associated variously with droughts
and floods. Similarly, ENSO may be seen as a resource in those regions where its
outcomes are beneficial (e.g. warmer winters in Florida during La Nifia events; see
Chapter 12). Finally, ENSO is a constraint on productivity and/or security in
places where resources are not sufficient to cope with its consequences. The
objective of factoring seasonal to interannual predictions into decision making
processes is then one of modifying perceptions towards reducing losses related to
the hazard and constraint components, and to increasing gains related to the
resource component.

2.4 Identifying the Users and the Uses

For seasonal to interannual forecasts to be of benefit to society it is imperative to
identify clearly the users as well as the context of each use. Numerous users are
likely to be interested in decision-making processes for which seasonal forecasts
might be relevant, sometimes beyond those directly affected by climate variability.
One example is that of crop switching (e.g. planting sorghum instead of cotton) or
by using superior drought-adapted varieties when water-deficient conditions are
expected. Here we give a brief overview of some potential direct uses of predic-
tions; in the following section a more focused discussion from the perspective of
the developing world is provided. Where possible examples are provided, firstly,
of ground-level decision processes, and secondly of decision processes at national
and international level. Note that while the list given below may offer the impres-
sion of independence, some of the sectorial examples nevertheless may be inter-
connected: thus there is a need for appropriate interaction amongst sectors if
optimal decisions are to be attained. A second factor to recognise is that, while all
examples in the following are quoted within positive contexts, seasonal forecasts
may be used, say by traders, to the disadvantage of those unfortunate to live and
work in negatively affected (e.g. drought) areas.

2.4.1 Agriculture

Agriculture, including both plant cultivation and livestock production, is a sector
heavily dependent on climate, such as in the amount and timing of rainfall, the
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occurrence of damaging frosts, the length of the growing season, and the number
of growing degree-days. Seasonal forecasts would therefore assist pre-emptive
actions, such as the use of varied crop species, or the altered composition and/or
allocation of browsing herds for more effective exploitation of marginal areas.
Thus improved use of climate information in agriculture could increase profitabi-
lity and sustainability by allowing farmers to match cropping decisions to expected
climatic conditions (Stern and Easterling 1999). At the national, regional and inter-
national levels, matters of food security, of international crop yield estimation
and food flows, and of food marketing can be informed through climate services.
Practical examples of the uses of seasonal forecasts in agriculture are discussed in
Chapter 12.

2.4.2 Disaster Forecasts and Prevention

Natural disasters associated with extreme climate events, resulting in the loss of
life, destruction of shelters and food reserves, disruption of food production and
transportation systems, and health risks are situations faced by large parts of the
world population. General systems of emergency preparedness and response, such
as early warning systems, might benefit and avoid costly damages (see Chapterl3).
Seasonal forecasts could play a role in warning systems in cases in which their
skill was judged to be at levels sufficient for alerts. International preparations for
disaster response might also take advantage of climate information.

2.4.3 Energy

Most forms of energy production (e.g. gas and hydropower) and the level of en-
ergy consumption are, to varying degrees, affected by climate conditions. Using
seasonal forecasts as input for load-balance models could potentially decrease the
overhead necessary to maintain the agreed baseline energy availability, thus help-
ing to optimize the matching of supply and demand. They might also be used for
planning international energy transfers.

2.4.4 Finance and Insurance

Climate information can be used in the financial sector to optimize capital re-
quirements, and to hedge the risk of financial losses due to climate-related events.
For example, seasonal forecasts can be used by an energy company to optimize
the use of climate-linked financial products designed to reduce the potential
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impact of adverse weather conditions on the company’s balance sheet, or by an
insurance company to assess its exposure to climate-related risk. Insurance is now
being tested in response to climate risk management in the developing world.

2.4.5 Fisheries

Fish population fluctuations, whether due to climatic factors or to harvesting or to
other reasons, are by their nature more difficult to analyse. As a consequence, for
fishing management, which normally aims at constraining both biological and
economic overfishing, it might be more challenging to use forecast information
effectively. One notable exception might be that of Peruvian anchovies whose
population is highly influenced by El Nifio events.

2.4.6 Food Security

Food security is naturally related to the agricultural examples given earlier.
Droughts, floods and cyclones are some of the essential factors in determining the
quantity and quality of food supply, also referred to as food security. Food secu-
rity is particularly an issue in regions where the interannual climate variability,
especially in rainfall, is large and local production is the main food supply. For
such regions, rainfall forecasts could help alleviate problems in low rainfall years.
It must be noted, however, that climate is only part of the story in food-hardship
periods; confounding factors such as political situation or locust infestation may
contribute to exacerbate the problem (e.g. the 2005 food crisis in Niger).

2.4.7 Health Management

Human health is sensitive to several types of climatic variations. For some diseases
close direct and indirect links with climate conditions exist (e.g. malaria epidemics).
In such cases, climate forecasts might give public health systems early warning of
the likelihood of epidemics. For instance, tropical disease risk management is an
application in which the use of climate information is receiving increasing atten-
tion. Health planners need information on the predicted level of risk for malaria,
meningitis, or cholera epidemics to develop. International strategies for improving
health and for relevant pandemic responses would benefit from an enhanced use of
climate information.
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2.4.8 Hydrology and Water Resource Management

Water managers may benefit from rainfall forecasts for the planning of irrigation
systems, surface water storage, groundwater pumping capacity and trans-basin
diversion. Such forecasts might also contribute to a more effective deployment of
emergency flood management and relief operations. Information on climate vari-
ability, including predictions, can form an important knowledge source in decisions
on water security, facility development, and cross-border basin management.

2.4.9 Policy Making and Public Authorities

Relevant public institutions have the potential to influence the way in which indi-
vidual users (e.g. a farmer) respond to climate forecasts. Such institutions may act
via, for instance, proper dissemination of the forecast or by offering incentives, the
latter possibly coupled with some form of insurance to spread the risk of respond-
ing to probabilistic forecasts.

2.4.10 Retailing Industry

The impact of the climate variability is seen across many areas of the retailing
industry (e.g. ice creams, refreshing beverages or air conditioning units, summer
or winter clothes). By taking climate forecasts into account, customer demand
could be better predicted. In turn, this would mean making the most out of sales
and reducing waste through efficient delivery, staffing and stock control. Climate
forecasts may influence decisions about provisioning of a particular product, for
instance coffee imported from Indonesia rather than Brazil or Central America, or
vice versa, although such decisions can be detrimental to the livelihoods of the
coffee-growers and their communities.

2.4.11 Transport and Tourism

Climate information is potentially useful for planning in the operation of leisure
facilities as well as strategic planning and investment. Predictions of tropical
cyclone activity or anomalous climate conditions could, for instance, be used by
transport planners and resort owners to prepare for potential impacts such as for
storm damage. Equally, these predictions could be used to inform tourists of the
likely risks they would incur by travelling to specific regions. Current thinking has
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it that using climate forecasts for leisure planning may involve risks of litigation
(e.g. by resort facility owners or washed-out tourists). It should be noted, however,
that the main difference with the sectors mentioned earlier is that in this case
information is provided to the general public also. As with the issuing of weather
forecasts, experience needs to be built on ways to communicate climate forecasts,
along with their uncertainties, to wider audiences.

2.5 The Importance of Climate in Key Development Sectors’

Three top priority development sectors are particularly sensitive to climate vari-
ability, namely agriculture, water resources and health. The situation is most
critical in Africa where the livelihoods of hundreds of millions of people are ex-
tremely vulnerable to climate variability. Much improved climate risk management
is essential to support more effective development and to help mitigate disasters.

Climate exerts a profound influence on the lives of poor people who depend on
agriculture for their livelihoods and sustenance, who are unprotected against
climate-related diseases, who lack secure access to water and food, and who are
vulnerable to hydro-meteorological hazard. For vulnerable communities, develop-
ing flexible, proactive responses to climate variability that enhance resilience is
both a crucial step toward achieving the MDGs by 2015, and a foundation for
coping with the uncertainties of a changing climate into the future. Furthermore,
because climate has a confounding influence on many development outcomes,
attention to climate variability is essential for evaluating real progress.

2.5.1 Agriculture in Africa

All current initiatives for development in Africa emphasize the overriding impor-
tance of agriculture, both for eliminating hunger, and also as a local and national
economic driver. The Millennium Project proposes major scaled-up interventions
to enable smallholder agriculture to develop and sustain itself throughout the
poorest regions of Africa. These interventions then are designed to be coupled
with a ‘safety net’ to protect communities and local economies in disastrous years,
so that gains made in better years are not wiped out by unfavourable seasons, as
happens so often at present. Such an ambitious programme, designed to bring a

7 This section is derived largely unaltered, with permission of IRI, from text originally produced
for their Position Paper entitled ‘Sustainable Development: Is the Climate Right’, that was pub-
lished in 2005 and in which a predominantly African perspective was taken; nonetheless this
section can be read within a wider geographical context.
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hundred million people out of poverty by 2015 in sub-Saharan Africa, explicitly
recognises the importance of climate variability in its proposals.

2.5.1.1 Subsistence Farmers

For too many people in Africa, subsistence agriculture is a desperate form of
poverty akin to slavery that requires major effort for relatively little return. With
reduced fallow periods, smaller farm size, declining soil fertility, lower yields,
increasing indebtedness and isolation from markets, such farmers have relatively
few choices even before rainfall variability, crop pests and diseases, malaria,
AIDS and emigration of young labour make their lives even more onerous.

2.5.1.2 Cash Crop Farmers

Farmers that engage more with local markets and dealers, can also access credit
and buy inputs (improved seeds, fertiliser, sprays for pest and disease control) to
increase the value of their labours. Such farmers tend to be less risk averse and
more proactive in their management choices, and as such, are in more of a position
to access and take advantage of weather and climate information, particularly in
their choice of seeds and other agricultural inputs.

2.5.1.3 Risk Benefit

Communities who depend on rain-fed farming for sustenance and livelihood in
high-risk environments are among those most affected by climate variability,
but conversely are also often particularly well poised to benefit from improved
management of climatic risk through appropriate use of climate information. It is
important to empower rural populations to better manage risk and exploit oppor-
tunity by (a) providing relevant, timely information to the target populations;
(b) fostering and guiding adaptive management responses; and (c) addressing
resource constraints to adaptive responses.

2.5.1.4 Managing the Rural Economy

Without a healthy rural economy, farming communities cannot get the inputs they
need to cope better with climate variability and so the cycle of poverty is per-
petuated. There are many ways that governments can improve the rural economy
(see the Millennium Project proposals for example) in ways that are sensitive to
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prevailing conditions. For example, modern methods of monitoring crop produc-
tion from satellite are now routinely used in most regions of Africa. Coupled
with seasonal climate prediction, these enable early yield estimation, extend the
lead-time of food stock or relief decisions, and facilitate timely implementation of
measures to help ensure local food security or cope with harvest surpluses. And
knowing in advance the risk of food shortfall/surplus is very important informa-
tion for central government economic advisers, and local government planners, in
order to make contingency arrangements.

2.5.2 Water

Improved water management is recognised as a fundamental requirement for
development. In the Africa Water Vision for 2025 the key problems identified are:

1. The multiplicity of transboundary water basins

2. Extreme spatial and temporal variability of climate and rainfall, and climate
change

3. Growing water scarcity

It is of prime importance for people in Africa today, and tomorrow, that water
from rainfall is managed more effectively. In order to achieve this, the most
important step is to ensure that rainfall variability is not simply accepted as an
inescapable ‘fate from the gods’. Rather, rainfall needs to be regarded as an envi-
ronmental variable that is influenced by increasingly well-understood physical
processes. As such water supplies can and must be managed better by a whole
host of decision makers in the diversity of economic and social domains affected
by fluctuations in availability.

2.5.2.1 Transboundary River Systems

Much ocean induced climate variability affects large areas of Africa and its effects
are particularly noticeable at the scale of transboundary river basins. Attempts are
being made through the African Network of Basin Organisations to improve man-
agement and decision making in all transboundary river systems, to encourage
greater cooperation between stakeholders, and to mitigate flooding and reduce
competition and conflict over access to water. To achieve these objectives effec-
tively, it is absolutely essential to incorporate knowledge of seasonal water
variability into decision making, and where appropriate, early warning through
seasonal forecasting. Capacity building in water authorities to enable people to
use these increasingly powerful tools is essential.
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2.5.2.2 Reservoir Management

Reservoirs are designed to hold significant amounts of seasonal runoff to mitigate
the effects of upriver rainfall variability. The Aswan dam in Egypt provided irriga-
tion through 10 years of drought and sub-normal rainfall over Ethiopia in the 1980s.
Very often, however, there are conflicting demands on reservoir managers to pro-
vide water for hydropower, irrigation and to manage flood and base flows for the
health of lower river communities and ecosystems. Without knowledge of future
rainfall, reservoir managers inevitably tend to be conservative. With reliable indi-
cators of future rainfall quantities, reservoir managers are in a better position to
make best use of the limited stored water available. Such decisions involve risk,
and managing risk is an essential component of making the best of a scarce and
highly variable resource such as water.

2.5.2.3 Summary

Climate variability not only affects the design and management of water and sani-
tation infrastructure, but also plays an important role in the planning and design of
water resource systems. It is essential that knowledge of climate variability be
incorporated in water management strategies at all timescales, as an integral part
of knowledge-driven decision-making: optimal system management is impossible
without it.

2.5.3 Health Management

The European heat wave of 2003 had a dramatic impact on mortality causing an
excess of about 15,000 deaths in France of which about 1,000 were in Paris alone.
The consequences of unusual warm years in Africa pass largely undocumented.
We all know from direct personal experience that dry-season illness tends to be
different from wet season diseases. But how much does the overall incidence of
disease, and hence death rates, depend on climate variability, and hence fluctuate
from season to season and year to year? The answer is ‘climate has an enormous
impact on health’ and many diseases are recognised by the World Health Organi-
zation (WHO) as being climate sensitive. These include: influenza, diarrhoeal
disease, cholera, meningitis, dengue fever, chikungunya, avian flu, Rift Valley fever,
leishmaniasis and malaria.
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2.5.3.1 Malaria

Malaria is widely appreciated as the most important of the climate-sensitive
diseases in the world. It is seen as a major impediment to socio-economic devel-
opment particularly in Africa where 90% of the 1-3 million deaths it causes each
year occur. If we are serious about reducing malaria, and associated maternal and
child mortality as part of the Millennium Development Goals, then information on
the seasonality of climate and its variability must be taken into account when plan-
ning and implementing routine health campaigns and epidemic preparedness.

It is estimated that more than 110 million people in Africa live in regions prone
to malaria epidemics. The populations affected have little acquired immunity to
malaria and are therefore vulnerable to explosive epidemics that can cause high case
fatality rates among all age groups. In spite of the severity and the magnitude of
the problem, understanding of epidemic malaria is very limited and almost nothing
is known of the economic burden of malaria epidemics in sub-Saharan Africa.

For malaria climate is the primary factor in determining at least some epidemics.

e Temperature influences development rates of both the malaria parasite and its
mosquito host. Higher temperatures, but only up to about 40°C, shorten the
parasite extrinsic incubation period and increase the stability of disease trans-
mission

e Increased rainfall in semi-arid areas increases availability of breeding sites
and therefore augments malaria vector populations if temperature is favourable.
It is also associated with increases in air humidity that result in higher adult
vector survivorship and therefore greater probability of disease transmission

Epidemics frequently occur when periods of drought (during which people can
lose immunity to the disease) are followed by a return to normal or above normal
rains in the more arid regions. Combining information on malaria trends and vul-
nerability with rainfall information can provide warnings for high transmission
years prior to the peak malaria season. For example, the case of Botswana has
demonstrated a strong impact of December—February rainfall on malaria incidence
anomalies, which make it possible to alert the Ministry of Health of increased risk
of an epidemic before the peak transmission period of March and April. Seasonal
climate forecasts can supply even earlier warning of changes in malaria risk. A
seasonal climate forecast in November can provide information about the expected
extent of the next malaria transmission period 5 months before the peak of the
malaria season and 3—4 months earlier than warnings that are issued based on
observed rainfall. Prime interventions include planning integrated vector manage-
ment; awareness raising campaigns allied to education, as well as timely
procurement of drugs.
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Chapter 3
Overview of Seasonal Forecasting

David L.T. Anderson

In many regions of the globe, the largest climate signals after the seasonal cycle
are those associated with El Nifio and La Nifia. These are manifestations of a cou-
pled process in which climate changes occur in both atmosphere and ocean. The
origins of El Nifio and La Nifia (or ENSO, the El Nifio/Southern Oscillation) lie in
the tropical Pacific, but the effects can be felt to some degree almost globally. It is
in the equatorial region that coupling between atmosphere and ocean is strong. In
middle latitudes the coupling is much weaker. Models of varying complexity have
been developed to study ENSO. So-called intermediate models, where the atmos-
phere is grossly simplified and only the upper ocean is modeled, have been used to
understand the role of equatorial waves in setting the timescales of ENSO as well
as being used for seasonal prediction. Seasonal forecasting using complex models
of the atmosphere and ocean is relatively recent. The atmospheric component of
such models is very similar to what is used in weather forecasting. This is a much
more mature science and there is some synergy between weather and seasonal
forecasting. Both are initial value problems in the sense that the information on
which a forecast is based depends on these starting conditions. The atmospheric
initial state for a seasonal forecast is generally provided from the atmospheric state
created to initialize a weather forecast. So seasonal forecasting relies on weather
forecasting in that sense. There is a much more important reliance on weather
forecasting however, which involves the ocean and atmospheric reanalyses. If
there were sufficient observations of the ocean, then it would be possible to create
ocean initial conditions just from the observations, but this is not the case. Even
with today’s observing system it is still necessary to augment the ocean observa-
tions with knowledge of the ocean gleaned from the past history of the ocean
forcing (momentum, heat and freshwater fluxes), as will be discussed in. Some
results from complex models are presented to allow an assessment of skill and to
contrast the predictability of the tropics with the extratropics. The potential impor-
tance of using multi models is introduced which allows some assessment of the
importance of model error. A developing field is the application of seasonal fore-
casts. For some applications, only a simple concept is required, but for others quite
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complex application models are needed. Developing these modules can be diffi-
cult as the functional dependence on weather parameters is not always obvious.
One example is given but a full assessment of the difficulties in developing appli-
cation models is left to later chapters (Chapters 11-13).

3.1 Introduction

Weather forecasting is a discipline familiar to all. Weather forecasts have a limited
forecast range on account of the chaotic nature of the atmosphere (see Lorenz
1993); the predictability horizon depends on what variable one seeks to predict
and on what scale. It is perhaps just minutes to hours for smaller-scale features
such as thunderstorms, but might be as long as a week for large-scale weather sys-
tems. If the useful range of weather prediction is only a few days,' why then do we
discuss forecasts to seasons or even longer? The reason is that we believe the ocean
imparts some memory to the atmosphere, at least in some parts of the globe result-
ing from the fact that the ocean has a much larger heat capacity than the atmosphere
and consequently is much more ‘inert’. Anomalies in sea surface temperature last
for a few weeks or longer, depending on the spatial scale, whereas the timescale for
weather is typically a few days.

The simplest picture of ocean-atmosphere interaction, however, is not of the
ocean driving the atmosphere, but of the atmosphere driving the ocean. Hasselmann
(1976) postulated that the upper ocean was driven by high frequency (stochastic)
variations in atmospheric heat flux. The sea surface temperature integrates the heat
flux forcing. That means that the ocean response is the integral of the forcing. If
the spectrum of forcing is white (no preferred frequency), then the ocean response
will not be white but red, i.e. with more energy at low frequencies. This is quite a
good approximation in much of the world.> However, in the tropics we believe
that changes in the atmosphere influence the ocean and changes in the ocean in-
fluence the atmosphere. The atmosphere still has much high frequency (stochastic)
variability but in addition there are low frequency variations which result from
ocean-atmosphere interaction. Most prominent of these processes are El Nifio and
La Nifia.

! There are atmospheric phenomena with a longer time scale such as the intraseasonal oscillation
(about 40-60 days), sometimes called Madden-Julian Oscillation (MJO), and some aspects of
these may have predictability beyond 10 days.

% In Chapter 4 there is a fuller discussion of the upper ocean heat budget, including the role of
advection in maintaining the local heat budget, and the role of the subtropics in maintaining the
heat balance of the upper ocean in the equatorial region.
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Figure 3.1a shows the surface pressure difference between the western equato-
rial Pacific-Indonesian region and the eastern equatorial Pacific. Originally, the
index was based on Darwin and Tahiti pressures as these were the stations where
there were long data records. The index was called the Southern Oscillation Index
(SOI). Figure 3.1a shows the more modern EQSOI which is a better indicator of
large-scale swings in mass between the western and eastern sides of the equatorial
Pacific. Figure 3.1b shows the time variation of a measure of sea surface temperature
(SST) in the central east equatorial Pacific (NINO3.4) and shows that in the ocean
the dominant timescale is also typically a few years. Importantly, the EQSOI and
the NINO3.4 records are very highly anti-correlated. What causes these massive
readjustments of pressure and changes in SST and what sets the timescales?

The timescales of a few years come mainly from the ocean. Including ocean
variability can give rise to enhanced atmospheric predictability if we are dealing
with processes that depend on both media interacting. On the other hand, it is quite
possible to have some memory in the ocean and some predictability of ocean vari-
ability but with little or no associated atmospheric predictability if the ocean is not
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Fig. 3.1 (a) Plot of the EQSOI index as a function of time from 1985 to 2005. (b) Plot of the SST
in region NINO3.4, (190-240°E/5°S—5°N) as a function of time. The dominant timescales in these
two indices are very similar. (c) The locations of the two regions used in the EQSOI. From the
Climate Analysis Bulletin, published monthly by NOAA. See: http://www.cpc.ncep.noaa.gov/
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driving the atmosphere by the predictable part of its variability (Latif et al. 2002,
2006). So including the ocean in the forecast system does not of necessity lead to
enhanced atmospheric predictability. The ocean may have greater predictability
than the atmosphere but unfortunately, in general, we are more interested in
atmospheric prediction than ocean prediction.

The coupling between the atmosphere and ocean is believed to be quite strong
in the equatorial region, giving rise to the best example of climate variability on
year to year timescale, viz. that associated with El Nifio and La Nifia or ENSO as
it is frequently now referred to.” Although El Nifio/La Nifia are mainly located in
the tropical Pacific, their influence can extend to almost all parts of the globe. Of
course in distant regions other processes may also be affecting climate variability
and ENSO may not be the dominant process. The predictability coming from
ENSO might be quite weak in such a situation.

One conceptual model of weather is that of a series of events which are (for
practical purposes) unconnected: the weather next week is essentially independent
of the weather this week. An example of such a model is an unbiased coin. If such
a coin were tossed several hundred times, one would expect to find short runs of
one face or other, say five heads in a row, purely by chance. If the heads are
thought of as inactive weather systems, then such a run of heads might correspond
to drought conditions. There is no point in seeking a physical cause for such a run.
The ‘drought’ is simply the outcome of a series of chance processes and as such it
is unpredictable. But weather patterns may not always be purely stochastic. Sup-
pose the coin were slightly biased. Then a sequence of tosses would still throw up
heads and tails in pretty much random ways as before, but a more careful analysis
might reveal that there were slightly more heads than tails, which in our simple
analogue, would correspond to below average rainfall. Individual weather systems
may still be chaotic, but the statistics governing them may have been altered by
the bias in a deterministic and predictable way. In the earth’s climate system, it is
thought to be the slower changes in the ocean sea surface temperature which are
most important for imparting a degree of predictability. The amount of predictabil-
ity is very much a function of position, with the tropics being more predictable
than the middle latitudes.

ENSO involves a positive feedback between the SST gradient along the equator
and the winds blowing along the equator. It also involves ocean dynamics: whereby
information in the west equatorial Pacific can influence events in the east equato-
rial Pacific months later. To the extent that we know enough about the processes
by which this information is propagated eastward via equatorial Kelvin waves and
how these come to later influence the atmosphere one has a basis for prediction.

? ENSO stands for El Nifio Southern Oscillation to reflect the importance of both the ocean and
atmosphere. These are now known to relate to the same process though it took several decades to
appreciate that this was the case and that they are manifestations of a coupled atmosphere—ocean
process.
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The tropical Atlantic and Indian Oceans may have zonal modes of this type too
but they are less dominant than in the Pacific, less clearly identifiable against a
relatively noisier background and of shorter duration. There is some indication
that there may also be meridional modes of climate variability but again these
have not been clearly identified. See Wang and Picaut (2004), McCreary and
Anderson (1991), Neelin et al. (1998), Anderson et al. (1998), Philander (2004),
and Chang et al. (2006) for some review articles on ENSO. See also the book ed-
ited by Palmer and Hagedorn (2006). Later in this chapter and in Chapters 4 and 6,
we will consider how these equatorial waves propagate, theories of how they can
give rise to ENSO, and their potential role in ENSO prediction.

In low latitudes, where the SSTs are high, the atmosphere exhibits convection
throughout the depth of the troposphere, the location and intensity of which is in-
fluenced by the SST. In middle latitudes where the SSTs are cooler, there is less
organized deep convection. Consequently SST variability in middle latitudes does
not influence the atmosphere as strongly as at the equator. In most of what follows
we will discuss primarily tropical processes associated with El Nifio.

Not all aspects of climate influenced by El Niflo are adverse. Indeed, from a
North American perspective El Nifio might well have a net beneficial impact
(Goddard and Dilley 2004). Winter is warmer and so money could be saved on
heating, hurricanes in the Caribbean are less frequent and so hurricane damage
might be less.

This latter is a tricky issue. There is no doubt that a major hurricane striking
Miami such as Andrew did in 1993 or New Orleans as Katrina did in 2005, causes
huge damage — Katrina caused perhaps the biggest financial meteorological dam-
age in history. But how does one show that such a hit occurred because there was
a La Nina or avoided because there was an El Nifio. This of course cannot be done
in a definitive (deterministic) way but one might try by using models to determine
the probability of strikes when there is and when there is not El Nifio or La Nifia.
A convincing case on this has not been made as models for seasonal forecasting
are not yet of a resolution able to simulate cyclone tracks accurately, though fore-
casting tropical cyclones in models is now beginning and will likely improve as
model resolution increases. Even if the models were able to simulate hurricane
genesis and tracking well, the answer to whether, e.g. New Orleans avoided a
major hurricane strike because of El Nifio can at best be probabilistic. Maybe one
can say the probability of New Orleans being struck by a hurricane of category x
is reduced by a factor y in an El Nifio year.

For models to have realistic hurricane tracks needs quite high horizontal resolu-
tion, perhaps a horizontal resolution of about 150 km or higher. It has not yet been
evaluated if there is skill in predicting interannual variability in tracks. Models
do seem to have some skill in predicting the frequency of occurrence, however,
and it has been shown that multi-models do a better job of predicting the inter-
annual variability in frequency than individual models.
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There are also processes which can affect the climate which are not generally
taken into account. The big El Nifio of 1982/83 was preceded by a major volcanic
eruption in Mexico (El Chichon) from 28th March until 4th April 1982. A large
eruption also occurred in June 1991 in the Philippines (Mt Pinatubo) ahead of the
weak 1991/92 EI Nino. These eruptions are essentially unpredictable on the seasonal
timescale but it is not clear the extent to which they induce or influence ENSO.
After they occur, models could be altered to reflect the amount and type of
volcanic aerosols ejected, though operational models do not yet generally include
this option.

3.2 Modelling the Coupled System

Models of various complexities have been used to represent the atmosphere, the
ocean and the coupling in between. The atmosphere is well recognised as a highly
complex system. How then can we simplify it? It might come as a surprise but
the assumption that on the large scale, the tropical atmosphere is to a consider-
able degree a slave to the ocean seems to work reasonably well. In particular the
assumption is made that if the SST fields are known, then so is the large scale
tropical wind. For the timescales of relevance to El Nifio or La Nifia, only the upper
ocean is involved. As we will see later the temperature structure of the ocean is
approximately a mixed layer where the temperature is relatively uniform, beneath
which is a region where the temperature drops rapidly, called the thermocline.
Beneath that the temperature drops slowly to the deep ocean. This means that the
simplest approximation to the ocean is that it consists of two layers, one active
above the thermocline and one inert beneath the thermocline. A simple model
based on these ideas is frequently used in oceanography, called a reduced gravity
model or a one mode baroclinic model. A key feature of such a model with simpli-
fied vertical structure is that the speed of gravity waves (or Kelvin waves which
have the same speed as gravity waves) is approximately 2 ms™'. This is much
reduced compared to external waves or barotropic waves.* (See for more descrip-
tion of equatorial waves and vertical modes).

McCreary and Anderson (1984) constructed a coupled model embodying the
above simplifications. Figure 3.2 shows the evolution of the thermocline depth in
a model when forced with a given wind stress, 1-3 months after the wind is

* The speed of propagation of barotropic or external gravity waves is VgH, with g the gravity
acceleration 9.8 m s and H the depth of the basin considered, which is over 200 m/s in the deep
ocean where the depth is over 4,000 m. Such waves are the agent by which the effects of earth-
quakes spread, for example the Tsunami of Boxing Day 2004, but are not very important for
climate purposes and are frequently filtered from simplified models.
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applied.’ It shows four key processes: first, the movement of the thermocline, up
in some places and down in others in response to the wind forcing, second, the
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Fig. 3.2 Plot of the depth of the thermocline in a model of the Pacific Ocean. The geometry has
been simplified to that of a ‘box’. Only the northern hemisphere is plotted. The region where a
zonal wind is applied is shown in the upper panel. The wind profile has also been simplified. The
curve on the left of the box gives the latitudinal profile: the zonal wind is maximum at the equa-
tor dying away by 10N (1,000 km). The wind profile in the zonal direction is given by the curve
above the box. The wind is maximum at 5,000 km dropping to zero at 2,500 km and 7,500 km.
The model is initially at rest. The upper panel shows the response after 1 month. If the wind is
anomalously westerly, then the shading corresponds to a deepening of the thermocline as would
happen in the onset of El Nifio. The asymmetric response with the equatorial signal propagating
to the east is due to the Kelvin wave. After 3 months (lower panel) the signal has reached the
eastern boundary and is propagating poleward along this boundary. The eastward asymmetry is
very clear. Also evident is the shallowing of the thermocline off the equator. This signal has
already started propagating westward as a planetary wave, sometimes loosely called a Rossby
wave (From McCreary and Anderson 1984)

* Although the ocean is forced by the atmospheric wind, the heat flux and the freshwater flux (the
difference between precipitation and evaporation), the wind is the key parameter for processes on
the time scales up to a year or two, which is why we look at the ocean response to changing
wind.
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asymmetry in the equatorial response — the fastest wave is a Kelvin wave propa-
gating only to the east along the equator. When it reaches the eastern boundary the
wave splits with energy going polewards in both hemispheres. A third feature is
the presence of energy propagating more slowly to the west in the form of a plane-
tary wave, sometimes called a long Rossby wave. The fourth feature of note is that
after a few months, a gradient is set up along the equator in the region of the wind
forcing. (The key component of the wind is the one blowing along the equator).
The balance between the thermocline slope and the zonal wind stress is called
Sverdrup balance (see Chapter 4).

Figure 3.2 is a model result but with the development of real-time ocean analy-
sis systems it is possible to detect and monitor these waves quite well. Although
they are disturbances of the thermocline, they have a small (a few cms or in a big
El Nifio, a few tens of centimetres) signal at the surface. These can be detected in
ocean analysis systems. With the advent of satellite altimeters which can measure
the bending of the top surface of the ocean, it is also possible to detect them from
space. Figure 3.3 shows the displacement of the top surface of the ocean from the
ECMWEF analysis system. There are many similarities between this figure and the
very simple model result shown in Fig. 3.2. For example the region of strong pres-
sure gradient along the equator, the poleward extension of the equatorial signal in
both hemispheres along the eastern boundary, the region of opposite pressure gra-
dient lying a few degrees off the equator, in both hemispheres though stronger in
the northern hemisphere in the case of Fig. 3.3.
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Fig. 3.3 Plot of the sea level from the ECMWEF ocean analysis system at the height of the
1997/98 El Nifio. The lifting of the top surface (corresponding to a depression of the thermocline)
in the east is clearly visible, as is the propagation polewards along the eastern boundary.
A depression of the surface near the dateline at around 8°N is also clearly visible. The similarity
to Fig. 3.2 is quite striking, despite the use of simplified wind patterns in the model
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Although the model of McCreary and Anderson was rather simple it did cap-
ture several features of El Nifo. A slightly more complex model was constructed
by Zebiak and Cane (1987) and applied not just to simulating El Nifios but to pre-
dicting them. In particular a retrospective prediction was made of the El Nifio of
1982/83 when the model did rather well. Whether this was for the right reason or
not can be debated. Regardless, their results greatly boosted the possibility of fore-
casting El Nifio with physically based models.

Since these early days much more complex models have been targeted at
El Niflo simulation and prediction. Many models are capable of simulating several
realistic features of ENSO though one can not be sure that any is truly realistic
as even in nature no two El Niflos are the same, making it harder to validate the
models. The complex models, sometimes called CGCMs — Coupled General Cir-
culation Models are now used routinely to forecast El Niflo and changes to climate
on a seasonal timescale in general. What is needed to forecast the climate a few
months ahead with such models will be discussed below and in greater detail in
Chapters 4-6.

It is instructive to look at the different characteristics of the atmosphere and
ocean, especially in the tropical region. Figure 3.4a shows a diagram of the zonal
wind stress along the equator versus time. This is quite a ‘noisy’ diagram, reflect-
ing the high frequency nature of the atmospheric wind field. In panel (b) the depth
of the 20°C isotherm is shown from the ocean analysis.® This is a much smoother
field reflecting the fact that the ocean integrates the atmospheric forcing. One can
clearly see the eastward propagation of Kelvin waves excited in the west Pacific.
This smoother response is not just a feature of thermocline depth. Sea level for
example shows very similar though not identical behaviour (panel c). Finally SST is
plotted in panel (d). This field is also quite smooth but it does not show the eastward
propagation so vividly demonstrated in panels (b) and (c). Some simplified models
of ENSO use thermocline depth or depth of the 20°C isotherm as a proxy for SST
(see Chapter 4). This plot shows that that is not a good approximation in general.

Figure 3.4 also shows one of the difficulties facing those predicting ENSO.
There is no doubt that the MJO or Intraseasonal oscillation can be strong in the
west Pacific and can generate ocean Kelvin waves which propagate eastwards. As
long as these waves remain beneath the surface displacing the thermocline but not
influencing SST they do not affect the atmosphere. Many intraseasonal Kelvin
waves are damped in the eastern equatorial Pacific and do not lead to an El Nifio
or La Nifia event. Some, however, do break the surface, generate SST anomalies
which then can influence the development or demise of an El Nifio or La Nifa. At
the present time it is not known how to assess the extent to which an MJO in the

S Near the equator, the depth of the 20°C isotherm is often used as a proxy for the depth of the
thermocline since it lies roughly in the middle of the thermocline.
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Fig. 3.4 (a) Plot of the zonal wind stress along the equator as a function of time from 1 Nov 2004
until 1 May 2005. The panel on the left corresponds to the Indian Ocean, the middle panel to the
Pacific and the panel on the right to the Atlantic. (b) As for (a), but for the depth of the 20°C iso-
therm. Note the marked eastward propagation. (c) As for (a) but for sea level. The behaviour is simi-
lar to (b) though not identical. (d) As for (a) but for SST. Note the absence of eastward propagation



3 Overview of Seasonal Forecasting 55

west Pacific will generate Kelvin waves and lead to changes in the SST in the east
Pacific. Through ocean analyses one can easily detect the Kelvin waves generated
by an MJO but there is no clear concensus on their importance in general. This is a
hotly debated topic, especially since there was a strong MJO in Feb 1997 preced-
ing the large El Nifio that year. Whether it was key or consequential is still open to
debate (van Oldenborgh 2000; Eisenman et al. 2005; Vecchi et al. 2006).

3.3 Ingredients of a Physically Based Forecast System

There are different strategies for trying to predict the climate a few months ahead.
The simplest and oldest is to seek correlations between different events at different
times. If event X sometimes/often/usually follows event Y by 2 months, then one
has a basis for some form of prediction of X. Initially, the predictors (the Y's) were
easily obtainable observations. Now they could include parameters which have
only recently been available such as temperature in the ocean at say 100 m.
Because of reanalyses of the atmosphere and ocean it is possible to get estimates
for such quantities even if they were not directly measured. As the historical re-
cord gets longer both by new observations, and gets pushed further into the past
by better use of past observations and extended atmospheric reanalyses, there is
likely to be continued scope for a statistical approach to climate prediction. This
will be discussed further in Chapter 7, but in this section we will consider only
forecasts based on dynamical GCMs.

To make a forecast from a dynamical model requires knowledge of the current
state of the system one is trying to predict. The forecast depends on the state of the
atmosphere, ocean and land conditions and therefore initial conditions for the
atmosphere, ocean and land are needed. The most common approach is to separately
initialise the individual main components, namely the ocean, the atmosphere and
the land. The separate initialisations are done mostly for practical reasons as it is
easier and less computational demanding to deal with one component at the time.
The main drawback of this approach is that the separate initial conditions may not
be in balance when forecasts are started and therefore coupling shocks may nega-
tively impact the results of the forecast, from early on in the integration. However,
coupling shocks may be considerably alleviated if common boundaries (e.g. the
SST seen by both the atmospheric and ocean models separately) are treated in a
consistent way (see also Sections 5.1.1 and 6.3.2).

The most important of these initial conditions is likely to be the state of the
ocean, and for the seasonal forecast range, the upper 200-300 m is sufficient. It is
therefore important to use the available observations in order to produce an analy-
sis of the ocean to be used as initial conditions of the ocean model. This involves a
data assimilation system. Because the tropical Pacific is so important to ENSO
forecasting, a special observing system for the equatorial Pacific (from 8S to 8N)
has been developed. See Chapters 1 and 5 for details on this so-called TAO-TRITON
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observing system. This observing array has been extended into the tropical Atlantic,
spanning a somewhat larger latitudinal range than the Pacific, and is in the process
of being extended into the Indian Ocean. The mooring array measures the tem-
perature to a depth of 500 m (some moorings are instrumented to 750 m) at about
ten levels. Observations are available every day from this array, relayed via satel-
lites such that the data is ingested into operational analysis systems within hours
of being taken. Another interesting development has been the expansion of the
ARGO float array (see Chapter 5). These floats measure both temperature and
salinity continuously in depth from 1,000 m (some from 2,000 m) to the surface
but only every 10 days. The third major component is the XBT array. This has
been important in the past though coverage has been declining over the last few
years. There are very few measurements of velocity: there are only five moorings
taking velocity in the whole of the tropical Pacific. So although velocity is an
interesting oceanographic variable, it can only be indirectly obtained from the
analysis system. What current measurements there are can be used for validation.

In any forecast system, it is important to give an estimate of the uncertainty of
the prediction. One source of uncertainty results from the chaotic nature of the
climate system: small uncertainties can grow and give rise to very different se-
quences of weather events. There are two other broad areas of uncertainty asso-
ciated with error in the initial conditions and with errors or uncertainties in the
models used to make the forecasts. Since we are dealing with an initial value prob-
lem, it is necessary to give a measure of uncertainty in the analysis of the ocean
state. One way of estimating that uncertainty is through running ensembles —
many realisations of the same events but perturbed in some way commensurate
with the perceived uncertainty. To estimate the uncertainty in the ocean initial
state we can run an ensemble of ocean analyses. This ensemble can be generated
by taking into account uncertainty in the atmospheric fields that are used to force
the ocean — mainly the wind uncertainty, and uncertainty in the analysis of sea
surface temperature (SST). Uncertainty in other ocean measurements should also
be taken into account through perturbed measurements but this is not commonly
done explicitly at present. It is done indirectly in that when the model first guess is
combined with the observations, perceived errors are ascribed to both in order to
judge how much weight should be given to each source of information. This will
be dealt with further in Chapter 5. Uncertainty in atmospheric initial conditions
can also be dealt with to some degree through the use of ‘singular vector’ pertur-
bations. This is important on the shorter timescales but probably not so important
beyond, say, a month. More details of the ocean observing system and analysis
procedure and the atmospheric counterpart are given in Chapter 5. In principle,
model uncertainties should be included as well, as model errors become important
within the seasonal range, but they are normally not accounted for in any indivi-
dual operational system. They are accounted for, to some degree, by making
forecasts with more than one model (the multi-model approach).

A second ingredient of a forecast system is a model of the atmosphere—ocean
system. Ideally this should also include sea ice but that is not usually done at present
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as ice modelling is complicated and probably does not bring a worthwhile increase
in predictive skill relative to the effort expended. Land initial conditions are pre-
pared through soil moisture and snow cover and all credible AGCMs include a
land package to represent the effects of rainfall, vegetation, run off, etc. Future
work will make the parameterisations of land processes progressively more so-
phisticated. Once the initial conditions have been prepared, the coupled model is
run forward for several months.

Coupled models normally capture the various synoptic features such as anticy-
clones and cyclones quite well. A good model would also reproduce blocking, and
the ability to represent droughts, extreme events leading to floods, etc. It should
also simulate events such as the MJO. There is an important difference between
being able to represent a type of event and being able to forecast a specific event.
For these shorter-lived meteorological events one does not try to predict their
occurrence beyond a few days but hopes to represent their statistical occurrence
correctly. In practice the models are not yet that good since processes such as the
MJO, or blocking tend to be under represented.

As mentioned earlier, an ensemble of forecasts is generated as a means of rep-
resenting uncertainty in the forecasts. Different members of the ensemble will
have highs, lows, MJOs, blocks, etc. occurring at different times in the forecasts.
For a seasonal forecast one is not trying to say what will happen on a given day 3
months ahead but rather how the average weather over a month or a season might
change, i.e. how the lower frequency processes might change. It may be that there
will be an increased probability of drought in some place and in that case more
than half of the ensemble would show below average rainfall.

The final ingredient in any practical forecasting system is a method for dealing
with systematic error, the fact that the models do not represent the climate accu-
rately. One method, adopted by the EUROSIP (see later) project for example is to
create a large number of forecasts over past years. Typically this is 15 years but
this is really too small, and a longer period of 25 years is being attempted. For any
given month for each of these years an ensemble of forecasts is made. This then
defines the model climatology for this month. Forecasts are then compared against
this climatology, and presented as anomalies (Stockdale et al. 1998). By this
means a first-order linear correction for model error can be made. It is a simple
approach and does seem to work reasonably well but further, more refined
approaches are possible as discussed for example by Stephenson et al. (2005).

3.4 How Accurate are Seasonal Forecasts

Let’s start with evaluating predictions of the temperature in the equatorial Pacific. A
key region is NINO3, an area in the Eastern Pacific Ocean (210-270°E/5°S—5°N).
Figure 3.5 shows the growth of error in the forecast as a function of lead-time out
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to 6 months (solid line). One can see a steady growth over the period. (The rms
error between the forecast and the observed value of NINO3 temperature is used
as a measure of forecast accuracy.) Many forecasts have gone into this figure: all
forecasts for all months for all years from 1987 to 2004. Also shown on this plot is
the growth of ensemble spread (dotted line). This grows less fast than the error.
One can interpret this result in two ways.

The negative interpretation says that the spread is smaller than the error and
therefore the forecast system is poorly calibrated: the model forecasts are too
confident — it means that the observed SST frequently lies outside of the range
spanned by the forecast ensemble. Calibration is discussed further in Chapter 8.
An alternative, more optimistic, interpretation is to take the model estimate of
spread as a measure of potential predictability by interpreting one ensemble
member as truth and measuring the differences of other members from that. This
then gives an estimate of the potential limit of predictability in the absence of
model error. The system illustrated is far from that limit. So by working harder
and reducing model error one should (hopefully) be able to improve the forecasts.
Of course the current model might underestimate the limits to potential predict-
ability since the model does not do a good job of reproducing intraseasonal
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Fig. 3.5 Plot of the growth of error in the NINO3 region in the ECMWF seasonal forecast sys-
tem (solid line). Also shown (dotted) is the ensemble spread. These are average values covering
all months for all years from 1987 to 2002. The ensemble spread is obtained by calculating the
ensemble mean and the root-mean-square (rms) difference of ensemble members from the en-
semble mean. Ideally, in a well balanced system, the spread and the error should be similar. In
this example, they are not: the forecasts are too confident, in the sense that the spread is too
small, indicating that all of the uncertainty in the system is not being accounted for. Model error,
a major cause of forecast error, is not represented since all forecasts are made with the same
model. The dot-dashed curve is the skill of persistence, i.e. saying that the anomaly at the start of
the forecast will not change with time
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variability such as the Madden-Julian Oscillation which, it is thought, might play a
role in limiting predictability of ENSO (see also Section 3.2 and Chapter 4). How-
ever, even if the optimistic interpretation of the limit of predictability were correct,
the reality is that such a level of skill has not yet been achieved as the model error
is larger than the spread. One has to work with the practical reality that for now
the model is not well calibrated. This limitation is not specific to ECMWF but
applies to other models as well. The final curve on this figure (dot-dash) is the
growth of error using the simplest of all forecast strategies: that the forecast
anomaly for the month ahead, 2 months ahead, etc. is the same as for the current
month. It may come as a surprise, but many models fail to beat this measure in the
first 1 or 2 months (see for example Fig. 3.6).

One way of improving the forecast reliability is to sample model error in the
ensemble probability distribution function (PDF) and one way to do that is to de-
velop a multi-model approach. This has already been done in a non-real-time mode
(see Palmer and Hagedorn 2006, Chapter 26). A real-time operational multi-model
forecast system, called EUROSIP,” has been implemented at ECMWF, which
currently consists of forecasts from the Met Office, Météo-France and ECMWF,
with planned extension to other models. In order to get some feel for the poten-
tial improvement in forecast skill as a result of the multi-model approach, we plot
in Fig. 3.6 the rms error for the NINO3 region for two models that participate in
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Fig. 3.6 Plot of rms error from a multi-model forecast system using models from ECMWF and
the Met Office. The spread and rms error are better matched in the case of the multimodel. This
is a necessary though not sufficient condition for a good system. As in Fig. 3.5, the dot-dash
curve indicates the skill of persistence

7 EUROSIP stands for EUROpean multi-model Seasonal to Inter-annual Prediction: http:/www.
ecmwf.int/products/forecasts/seasonal/forecast/forecast_charts/eurosip doc.htm.
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real-time multi-model predictions at ECMWEF. The models shown in Fig. 3.6 are
actually from DEMETER (Development of a European Multimodel Ensemble
system for seasonal to inTERannual prediction®) and as such are earlier versions
than are used in real-time operational applications but they should give a fairly
good assessment of what to expect. The error growth is shown for NINO3 in the
Pacific but is evaluated for many regions including the Atlantic and Indian
Oceans. The skill in the Atlantic is lower than in the Pacific: actually the error
growth is similar but the size of the interannual signal is smaller in the Atlantic, so
the error is more serious. Similarly, the anomaly correlation drops more rapidly in
the Atlantic than the Pacific, which is probably related to the fact that climate
anomalies are shorter lived in the equatorial Atlantic which may in turn be related
to the smaller size of the Atlantic basin. Looking at indices gives a concise way of
evaluating skill but is not the only way. A more detailed assessment of model skill
is given in van Oldenburgh et al. (2005), but further analysis is still needed.

One can also evaluate specific events. Either one can look at a forecast and see
where the model (or preferably the multi-model) is predicting a sizeable anomaly
and then retrospectively see if this occurred. An alternative is to see where there
are or have been major climate anomalies and then to see if the model predicted
them. However, the first method of evaluating “real” predictions (i.e. before one
knows the outcome of the forecast) is probably more objective than judging fore-
casts in hindsight.

Further validation is shown in Fig. 3.7. The measure of skill illustrated here is
anomaly correlation as this is quite a simple quantity to evaluate and understand. It
does not make full use of probability information coming from ensembles of inte-
grations. Such skill measures (e.g. Brier skill score) are discussed in Chapter 10.
Figure 3.7 shows the skill for near surface temperature. It is high over the tropical
Pacific, related to ENSO. It is generally low over land related to the smaller heat
capacity of land compared to sea. There is one intriguing region where the skill
over land seems quite high viz over western Europe. This is probably a real signal
as it is present in other models too and is likely related to snow cover (Shongwe
et al. 2007). It is not present in other seasons.

If one considered rainfall, then the correlations are highest in the tropics. The
skill in predicting rainfall is lower than for near surface temperature, even in the
tropics. Although the skill is generally low there may yet be applications which
can benefit from even modest levels of skill.

¥ A completed EU project concerned with seasonal forecasting. For more information see:
http://www.ecmwf.int/research/demeter/.
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Near-surface temperature
Anomaly Correlation Coefficient for EmmO02 with 27 ensemble members
Forecast period 1980-2001 with start in February and averaging period 2 to 4
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Fig. 3.7 Global anomaly correlation for near surface temperature from the ECMWEF model. The
results are for predictions starting on 1 Feb for March, April May starting on 1 Feb. Results will
vary depending on the season being predicted. In general skill is higher in the tropics than at
higher latitudes but the temperature signal over northern Europe is real

3.4.1 Further Verification

For a correct interpretation of seasonal predictions the user needs to complement
the forecast products with knowledge of the forecast skill (e.g. by assessing skill
measures such as those shown in Fig. 3.7). It is not possible in this book to discuss
all the verification methods that have been used but an extensive assessment is
available on the ECMWF web site.” Estimates of model bias for a wide range of
variables, including zonal averages, time series of a set of indices of SST and
large-scale patterns of variability such as the Southern Oscillation Index (SOI),
the Pacific North American Pattern (PNA) and the North Atlantic Oscillation
(NAO) are available. A suite of verification scores for deterministic (e.g. spatial

’ A comprehensive documentation of skill levels, using methods that have been agreed at
the international (WMO) level for the evaluation of long-range forecast systems can
be found at: http://www.ecmwf.int/products/forecasts/d/charts/seasonal/verification Spatial
distributions of the mean errors (biases) are provided at: http://www.ecmwf.int/products/
forecasts/d/charts/seasonal/verification/bias/.
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anomaly correlation and Mean Square Skill Score Error (MSSE)) and probabilistic
forecasts can be viewed for the operational system. The robustness of verification
statistics is always a function of the sample size. For the operational seasonal fore-
cast system, the sample size of 15 years is considered barely sufficient.'® Verification
is performed in cross-validation mode (Michaelson 1987) using the whole set of
forecast data available, i.e. both hindcasts and real time forecasts. The seasonal
forecast skill depends strongly on the season; so forecasts are evaluated separately
for different starting months. Issues such as how to evaluate probability forecasts
will be discussed in Chapter 9.

3.4.1.1 Applications

The development of seasonal forecasting applications is very much in its infancy;
some of the difficulties in developing application models will be covered in Chap-
ter 11. In this section we give just a couple of examples. In the first there is no
formal application model. In the second (malaria) there is an application model
but the issue of validating the application model is bypassed as the same applica-
tion model is used for validation as is used for prediction. The difficulties in
developing a disease model such as malaria are covered in Chapter 13.

P — Climatological probability distribution “
------- Forecast probability distribution i

Probability of occurrence

»
>

X

Fig. 3.8 Solid curve: climatological PDF of temperature at Gallipoli (hypothetical). Dotted
curve: hypothetical forecast PDF. In this case the two distributions are different in shape as well
as being displaced relative to each other. In practice, for such a mid-latitude station, one would
not expect to get such a clean separation (Adapted from Palmer 2006)

1% A longer period of forecasts has been performed in an experimental framework in the EU
project DEMETER, but for a limited set of start months. See web for more details.
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The climatological PDF for temperature at some place, say Gallipoli in June is
shown in Fig. 3.8. There is very small probability of the temperature being ex-
tremely high or of it being very low. The most likely temperatures are close to the
average values but there is a fairly high chance of the temperature being a few
degrees either side. The dotted curve shows the PDF from some hypothetical fore-
cast. If this were an accurate and reliable forecast then there would be much useful
information: the most likely temperature is quite a bit higher than average but
there is very little chance of it being very hot or being below the climatological
average. Readers could use their own ‘implicit” application models to decide whether
to take a holiday in Gallipoli or not.

Often the distributions are not so clearly separated, especially when dealing
with middle latitude situations, but the changes in the PDF of rainfall in the tropics
between El Nifio and La Nifia conditions could be large. If there is a big El Nifio
then the rainfall patterns are shifted: in the west Pacific rainfall decreases, while in
the central Pacific it increases. For many parts of the world the shift might be quite
small: like loading the coin only slightly in the analogy in Section 3.1.

For many applications, the dependence on weather might be quite complex —
either depending on more than one weather variable or having a non-linear de-
pendence such as a threshold when something only happens if the temperature is
above or below some value. All of these dependencies can be easily taken into
account and the potential benefit from seasonal forecasts evaluated, provided the
transfer function linking the application with the meteorology is well known.
Unfortunately, it is often quite complex to relate the weather parameters to an appli-
cation, and so difficult to develop/define/verify the transfer function. For example,
although there is some relationship between say malaria and weather, it might be
complicated to evaluate and validate. This will be discussed in Chapter 13 but for
now let us assume that some plausible relationship has been found which depends
on weather parameters such as temperature and rainfall. One can then use the out-
put from the climate forecast model as input to the ‘malaria’ model.

The next step is to force the application model with observed quantities from,
e.g. ERA-40. The application model is the same model whether driven from the
forecasts or from the analysis. Comparing the output from these two then does not
verify the application model at all but does give a measure of the forecast skill as
applied to this application model. Figure 3.9 shows just such an example for
malaria in southern Africa. If the transfer or application model were good, then the
potential for malaria prediction in this region is good. Extensive work is needed to
develop and validate application models such as the malaria models since the data
may be hard to obtain and the application may be influenced by more than
weather.
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Fig. 3.9 Predicted malaria prevalence in March, April May predicted from st February. The
spread of the forecasts driven by the ensemble forecasts is depicted by the box-and-whisker rep-
resentation with the whiskers containing the lower and upper tercile of the ensemble. The
diamonds represent the ensemble mean. The reference driven by the ERA-40 data is shown by
the black bullets (From Hagedorn et al. 2006)

3.5 Summary

A variety of coupled atmosphere ocean models has been developed and used for
understanding and predicting El Nifio and La Nifia. The most complex of these
models are those based around general circulation models of the atmosphere and
ocean. Such coupled models are essentially the same as those used for weather
forecasting — but with the added complexity of having an interactive ocean
module — and they are able to generate weather sequences just like weather fore-
cast models. Change the initial conditions slightly and the model will generate a
different sequence of weather. If the initial conditions of the ocean and land and to
a smaller degree the atmosphere differ from normal then the predicted climate will
differ from the normal climate; anomalies will result. An analogy based on the
weather coin was introduced: where the loading of the coin is strong, then the
probability of developing climate anomalies is strong. Where the loading is weak,
there might be shifts in climate but one might need many realizations to detect
them. Thus the tropics in an El Niflo event is an example where the loading is
strong, middle latitudes even in an El Niflo event might be a case where the
loading is weak.
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To cope with the probabilistic nature of climate prediction, ensembles of fore-
casts are made. Ideally to detect weak signals, many realizations are needed. In
practice only a limited number of ensembles is feasible; typically order 40. Even if
models were perfect, forecasts would still be probabilistic: there would still be a
need to make ensembles of integrations. But models are not perfect and so strate-
gies are needed to deal with model error. One strategy is to run as many forecasts
over as many past events as possible to develop the model climatology. (In prac-
tice, the reforecasts are of the order of 5-15 ensemble members spanning 15-25
years.) A forecast PDF is then compared against the model climate PDF and cli-
mate anomalies predicted. This approach allows a linear correction for model error
for any given error. There may be errors which are not linearly related to the
model climate error; these require more sophisticated correction algorithms than
those usually applied. Using a single model does not allow one to sample all pos-
sible model error. To some extent this can be accounted for by using more than
one model; hence the development of operational multi-model activities such as
the EUROSIP project at ECMWF. Additional error can arise from uncertainty in
ocean or land initial conditions and so the ensemble should include uncertainty in
these. This is done to a small degree in the use of an ensemble of ocean conditions
within any CGCM system but is not yet done for land initial conditions, though it
is in development.

Examples of forecasts using state of the art CGCM forecasts are given, but only
using the simplest measure of skill (anomaly correlation). The skill is highest in
the tropics, as expected. More sophisticated assessments of skill using probability
information from the ensembles are possible but are not discussed in this chapter.
Climate forecasts are themselves of interest but greater use is possible if they feed
into application models. Such models are rather case specific, many applications
models are needed. Developing such models is, however, not a trivial matter.
Further discussion of this is postponed to Chapters 12 and 13.
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Chapter 4
Ocean—Atmosphere Basis for Seasonal Climate
Forecasting

Brian Hoskins and Paul S. Schopf

There are many phenomena of interest in the atmosphere and ocean, only some of
which are relevant for seasonal forecasting. One way of identifying the processes
likely to be active is through scale analysis which identifies the important terms
in the governing equations and highlights the importance of geostrophic balance.
Simple arguments for Rossby waves are given. These waves are important in both
atmosphere and ocean as a means of transferring energy over large distances.
When the waves are embedded in a westerly flow it is possible for the waves to be
stationary, giving rise to the possibility of a coherent remote response. A possible
source of stationary atmospheric Rossby waves could be the deep convection over
parts of the equatorial oceans where the sea surface temperatures are high. These
stationary wave trains may interact with mid-latitude phenomena such as the
storm tracks, so changing the occurrence and preferred locations of storms. This is
an example of interaction between weather and lower frequency climate changes.
Other teleconnections are introduced, such as the link between the Indian summer
monsoon and Mediterranean climate. The area of the world where the interaction
between the atmosphere and ocean is strongest is in the tropics. It is important to
understand how the upper equatorial ocean works and how it is connected to the
subtropical thermocline. The connection of the tropics to the subtropics gives a
possible mechanism for low frequency variability of ENSO. Various theories of
ENSO are introduced in which the importance of equatorial Kelvin and Rossby/
planetary waves is highlighted. Simple models illustrate oscillatory behaviour in
certain parameter regimes but damped oscillations in others. While these ideas are
interesting in generating a framework within which to consider ENSO, the real
test comes from the making of forecasts and determining by experience the limits
of predictability.
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4.1 The Role of the Atmosphere

4.1.1 Scales

The atmosphere and ocean are shallow layers of fluid around the Earth acted upon
by gravitational attraction to the almost spherical solid Earth. Using the Earth para-
meters a, the radius, and €, the rotation rate, N the basic buoyancy frequency
associated with the stable stratification, and typical scales for the phenomenon of
interest for horizontal and vertical length, L and H, respectively, and horizontal
velocity, V, we have the following scaling relations:

H <<a (shallow fluid) and H<<L

so that hydrostatic balance is a good approximation in the vertical. Also, important
velocity scales and typical numbers for them are:

aQ - (gH)1/2 > (NH)1/2 > V
465 300 100 20 ms’

The first number is the speed at which a parcel on the equator moves purely
due to the rotation of the Earth. The second, in which the density height scale of
the atmosphere (about 10 km) has been used, is the speed of external gravity
waves. The next is the speed of internal gravity waves. The comparatively small
value of the speed of motion relative to the Earth (V) emphasises the rapid rotation
of the planet and the relatively small deviation of the atmosphere (and even more
the ocean) in its motion from solid body rotation with the planet. The last inequality
emphasises the strong stratification of the atmosphere (and ocean). Behaviour in
the local vertical and horizontal directions is therefore very different. In the verti-
cal there is generally stable stratification and a balance between the very large
gravitational and pressure gradient forces. In the horizontal, the much smaller
Coriolis force associated with the rotation of the Earth can be important. For syn-
optic scales, and indeed for larger scales away from the equator

VAL <1,
where f = 2Q sin ¢, the Coriolis parameter, is twice the local vertical component
of rotation of the Earth. This implies that the basic momentum balance in the hori-

zontal is between the Coriolis and pressure gradient forces, and that v is
approximately geostrophic:

Vzvg:(pf)’1 k * grad p
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The potential temperature, 0, is the temperature air would have if it was taken
adiabatically (no heat added) to a standard pressure (usually 1,000 hPa). In the
absence of heat sources and sinks, it is conserved.

It is very useful to have another quantity that involves the dynamics and is con-
served following the fluid in the absence of diabatic and frictional processes but,
in these circumstances, the absolute circulation (C) around a closed material line
on a constant 6-surface is also conserved. However this is difficult to use directly.
If the closed material line shape is used to make a material cylinder between this
0-surface and its neighbour at 6 + 86, then both the mass, m, of the cylinder and 66
are also conserved. Therefore the quantity

C x 06/m

is conserved. Writing the circulation in terms of the absolute vorticity § = fk +
curl v, a measure of the local rotation in the fluid, and using derivatives, this con-
served quantity may be written:

p ' ¢ grad 6.

This is called the potential vorticity (PV) and is conserved moving with the
fluid in the absence of heat sources and sinks. The PV involves the dynamics as
well as the thermodynamics: from the derivation given here it is basically a meas-
ure of circulation on a 6-surface divided by mass between isentropic surfaces.

In most large-scale motions of interest there is balanced dynamics involving the
Coriolis force. The simplest example is geostrophic motion. In such cases the 3-D
distribution of PV, along with suitable boundary conditions, can be inverted to
give all the details of the balanced flow. The large stratification is associated with
a large vertical component of grad 0, and so, on synoptic and larger scales, it is
the vertical component of absolute vorticity, £ =f+ k - curl v, that is most impor-
tant for PV and so in the analysis of atmospheric motion.

4.1.2 Atmospheric Phenomena

A vast range of phenomena occur in the atmosphere and it is essential when mod-
elling the system to consider which of these are to be simulated, and what are their
characteristics that have to be represented in the model and diagnosed in atmos-
pheric or model data. Probably the most fundamental of these on the larger scale is
the Rossby wave. Its nature can be understood by considering the situation shown
in Fig. 4.1. The equatorward initial perturbation in contours of the vertical compo-
nent of absolute vorticity implies a positive vorticity anomaly. Associated with this
will be cyclonic motion, as shown. The equatorward wind to the west implies a
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Fig. 4.1 A simple description of Rossby wave dynamics. The basic situation is one with high
absolute vorticity (or more generally PV as marked here) poleward and low absolute vorticity
equatorward. The starting point is a local equatorward displacement of the absolute vorticity
contours, leading to a cyclonic anomaly (represented by a +). This induces north-south flows as
shown, and these in turn lead to vorticity anomalies as indicated in the panel below. The result is
a westward movement of the cyclonic anomaly (+) and the development of a new anticyclone to
the east. These features correspond, respectively, to westward “phase speed” and “eastward
group velocity”. A basic westerly flow (u) will add on to them, giving a reduction of the former
and an increase of the latter

tendency to extend the initial positive vorticity anomaly in this direction: a west-
ward “phase speed”. The poleward wind to the east of the original positive vorti-
city anomaly implies a tendency to create a negative vorticity anomaly there. This
means that the region of wave activity extends in this direction: an eastwards “group
velocity”. The propagation of the wave activity is measured by the group velocity
which is therefore eastward. If a basic westerly flow is added, then the eastward
group velocity becomes larger and the phase speed can become zero, depending
on the wavelength. The discussion of Rossby waves given here can be extended to
apply to PV on 60-surfaces, to waves with their crests and troughs tilted from the
north-south direction, and also to realistic flows on the spherical Earth, in which
case propagation tends to be along great circle paths rather than east-west lines.
The existence of such stationary Rossby waves is very important because it
means that there can be coherent remote responses to stationary wave sources such
as mountains and regions of persistent deep convection such as the western tropi-
cal Pacific with its high SSTs. This response can occur on planetary scales in a
wide arc on the eastern side of the wave source. Such responses lead to the clima-
tological average waves and also to monthly or seasonal anomalies, which are
normally associated with a sequence of height field anomalies of alternating sign.
An example for October 2000, which was one with record-breaking rainfall in
England and Wales, is given in Fig. 4.2. The low height-field, cyclonic anomaly
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Fig 4.2 The 300 hPa geopotential anomaly from climate for Sep—Nov 2000 (M. Blackburn
2005, personal communication)

over and to the east of the UK is seen as part of a wave pattern. The group velocity
arguments suggest that the origin of the anomalous pattern should be sought to the
west, in the Caribbean/Americas region.

The picture for October 2000 is probably not as simple as this might suggest.
The North Atlantic storm-track extends from the coast of N America towards NW
Europe. The weather in Europe is strongly dependent on the position and intensity
of the storm-track. The anomalous large-scale flow in October 2000 will have
influenced the storm-track. However the storms themselves will have fed back on
the larger-scale flow through their vorticity and heat transports, thereby changing
it. Fluctuations in the North Atlantic near surface westerly flow and in the storm-
track are frequently characterised in terms of the North Atlantic Oscillation
(NAO). There is much current interest in possibly predictable monthly to seasonal
timescale behaviour of the NAO that may be related to the strength of the lower
stratospheric vortex or to sea surface temperature (SST) patterns.

The absence of storms affecting a region can be associated with a phenomenon
referred to as blocking, often characterised by a persistent deep positive height
field anomaly. It is thought that blocking can occur as an interaction between
weather systems and an anticyclonic anomaly, which may itself form part of an
anomalous stationary Rossby wave train. Blocking is particularly important for
Europe, being associated with anomalously dry or wet weather, depending on
location, and warmer or colder weather, depending on the season.
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In the tropical region a common occurrence is for frequent deep convection to
occur in a large region for many days. This implies large latent heat release in this
region. The response of the atmosphere to this heating usually has the general
characteristic flow pattern which is shown schematically in Fig. 4.3. The middle
tropospheric latent heating is balanced by adiabatic cooling associated with ascent.
Off the equator this implies vortex stretching and the generation of cyclonic vor-
ticity below and vortex shrinking and the generation of anticyclonic vorticity
above. As in the Rossby waves argument, the lower and upper tropospheric circu-
lations extend and move to the west, the latter process continuing until the parts of
the circulations with, respectively, poleward and equatorward moving air are in
the heating region. Through considerations of balance, associated with the change
in the sense of the circulation with height, the mid-troposphere to the west of the
heating must be warm. Such a pattern of circulations can be associated with
anomalous heating in any month, perhaps associated with higher or lower SST
than usual. It can also act as source for a Rossby wave train propagating into
higher latitudes, perhaps like that seen in Fig. 4.2 for October 2000.

A particular example of such heating and associated global anomalies is the
tropical Intra-Seasonal (Madden-Julian) Oscillation. Large regions of much intensi-
fied or weakened convection move slowly from the western Indian Ocean to the
west Pacific and perhaps continue to the dateline on a monthly timescale. Again this
offers the possibility of predictive power both in the tropics and in higher latitudes.

When, such as in the Asian Monsoon, the summer tropical heating region ex-
tends to high enough latitudes there is an interaction with the extra-tropical
westerlies. These westerlies flow down the sloping 8 surface on the western side
of the circulations with their mid-tropospheric warmth, enhancing the descent there.
This descent can be further enhanced and localised by topography. Radiative cooling,
in the absence of convective heating, can then produce further enhancement, leading

Fig. 4.3 A schematic showing the response to large-scale tropical convective heating. The
convection is shown by a cloud and is assumed to span the equator
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to very strong local descent. Rodwell and Hoskins (1996) proposed that this is the
basic mechanism for the summer climate of the Mediterranean, which is therefore
seen as part of the Asian Summer Monsoon. Such remote associations are very
important in providing a context for considering seasonal anomalies and their
forecasting. Indeed, significant weakening of the Asian summer monsoon may
allow North Atlantic weather systems to enter the Mediterranean and then move
into southern Europe as in the summer of 2002.

4.2 The Role of the Ocean in the Climate System

The fundamental role of the oceans in the climate system is to (1) act as a buffer for
mitigating transients, (2) contribute to the required pole-to-equator heat transport,
and (3) provide hidden “memory” in the coupled atmosphere-ocean-land system.
Over much of the planet, the ocean can be considered to be well-represented as a
surface mixed layer whose temperature (7) obeys a simple heat conservation law:

oT
. he—= t
prey,h— 0,

Here p is the density and ¢, the heat capacity of seawater. The depth of the mixed
layer (/) varies in space and time — it is typically thin during summer months, and
thick during the winter. The wintertime depth can reach hundreds of meters or
more at high latitudes, while during the summer a depth of 10-20 m might be
found. Figure 4.4 shows the climatological mean profile of temperature at 40°N,
170°W 1in the ocean for February and August. During the winter, the cooling and
wind cause the ocean to be well-mixed down to 200 m, while during the summer,
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Fig. 4.3 Climatological temperature values at 40°N, 170°W in the North Pacific for February
(heavy) and August (light) (Data from NOAA NODC World Ocean Atlas 2005)
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the very shallow surface layers warm up considerably. The surface fluxes (Q;) may
include a wide range of frequencies, including diurnal cycles, synoptic atmos-
pheric weather, seasonal cycles and longer term climate changes. Due to thermal
inertia, the ocean mixed layer will damp the high frequencies, providing a “red-
dening” of the spectrum. The deeper the mixed layer, the more pronounced the
reddening. For the problem of seasonal climate prediction, modelling this mixed
layer behaviour over the open ocean captures most of the essential physics over
much of the ocean. Theories and models exist for simulating the 1-dimensional be-
haviour of turbulent mixed layers under the combined effects of heating and wind.

The above heat balance assumes that there is no heat flux out through the bot-
tom of the mixed layer. For many problems, this treatment is adequate, but such an
approximation will not permit any transport of heat from one latitude to another.
The circulation in the ocean can carry heat into or out of the mixed layer. In
regions of strong currents this extra heating can become important. The mixed
layer budget becomes

p-cp-h-Z—f=Qs<t>—Qc

In the time mean, a balance must exist between this circulation-induced heating
and the surface heat flux, or O; = Q.. It is this spatial variation of the circulation-
induced heating that enables a net ocean heat transport. Circulation-induced heat-
ing can be caused by vertical motion at the bottom of the mixed layer, horizontal
currents or turbulent mixing. There are a few distinct regions where the ocean cur-
rents strongly affect the surface heat balance: the western boundary currents, such
as the Gulf Stream and Kuroshio, the Antarctic circumpolar current, and the tro-
pics, particularly within the equatorial wave guide. The tropics get special attention
in the seasonal to interannual climate problem not only because the ocean dyna-
mics plays this strong role, but because the atmosphere responds strongly to the
ocean-induced changes. In the mid-latitudes, the oceans carry heat, but the atmos-
pheric response to this heating is not as strong, and does not cause secondary
effects that influence the circulation on these timescales.

4.2.1 The Thermocline — Setting the Stage for El Niiio

While the ocean is very deep, most of the important dynamics for seasonal to
interannual timescales happen within the relatively thin warm region at the top of
the ocean known as the thermocline." Oceanographers now understand that the

' The term ‘thermocline’ originally referred to the region of strong thermal gradient, but recently
is sometimes associated with the entire upper ocean through the development of the ventilated
thermocline theory (see, for instance Pedlosky 1996).
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character and shape of the thermocline is described by a dynamical construct
known as the ventilated thermocline (Luyten et al. 1983). In a static view, one
would expect the thermocline to be deepest at the equator, where the warmest sur-
face waters are found. But instead, the thermocline almost vanishes along the
eastern end of the equator in both the Pacific and Atlantic. Cold water from below
the main thermocline is exposed to the surface in a feature commonly referred to
as the “cold tongue”. Figure 4.5 and Figure 4.6 show climatological temperature
sections of the top 500 m of the ocean along the dateline and equator, respec-
tively, for February and August. Note how in Fig. 4.5 the 20°C isotherm is
deepest at about 20° latitude along the dateline, but that in Fig. 4.6, it comes very
close to surface at the eastern end of the equator. We can see that close to the sur-
face, seasonal effects matter, but once deeper than a hundred meters or so, the
seasonal effects are smaller.

As we will see later in this section, El Nifio models function by predicting per-
turbations that happen to the thermocline. Its structure affects the sensitivity of the
surface temperature to the subsurface ocean variability, which in turn affects the
coupling between the ocean and atmosphere. Models for El Nifio have shown sen-
sitivity to the sharpness and tilt of the thermocline. A new body of research has
emerged on how long-term variations in the thermocline occur and how they
might influence the evolution of El Niflo.

The equatorial thermocline connects to the subtropical thermocline through a
circulation system known as the subtropical cells (STCs) or shallow overturning
circulation. Work by McCreary and Lu (1994) has shown that the equatorial “cold
tongue” is not simply an accident of having a thermocline and easterlies along the
equator, but is an essential property of the STC circulation.

These cells have a three-dimensional circulation structure, with largely pole-
ward surface branches and equatorward sub-surface flow. When the water flows
along the surface, it is in constant contact with the atmosphere, and its properties
are altered by the surface fluxes of heat and freshwater. nce removed from the
surface, turbulent mixing and heating is much smaller, and the water is found to
conserve its property over long distances and long times. A common approxima-
tion is that the flow is adiabatic, and flows along surfaces of constant density or
“isopycnals”.

McCreary and Lu showed that at about 15° north and south latitudes in the
Pacific, the lower branch of the cell has a net flow toward the equator, when inte-
grated completely across the basin. Where does this water go? Except for a small
leakage through the Indonesian throughflow, there is no horizontal outlet. The
water coming in at this depth must rise to the surface (upwell) within this tropical
band. With the mean easterly Trade winds, the necessary upwelling conditions
apply at the eastern end of the equator, along the American coasts, and in a few
isolated regions such as the Peru upwelling and the Costa Rican dome.
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Fig. 4.4 Climatological temperature sections along the dateline for February and August (Data
from NOAA NODC World Ocean Atlas 2005)

Fig. 4.5 Climatological temperature sections along the equator for February and August (Data
from NOAA NODC World Ocean Atlas 2005)
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Further studies with more complex ocean circulation models have investigated
the source waters of the equatorial under current or equatorial cold tongue,” and
are largely in agreement that the source waters of the equatorial under current and
equatorial cold tongue lie well within the subtropical gyres. Observations support
the canonical view of the STCs (Johnson and McPhaden 1999).

In summary, the large-scale circulation of the top several hundred meters of the
oceans creates a thermocline with warm water overlying cold, and this thermo-
cline is constrained to be tilted along the equator, with the cold water showing up
at the surface at the eastern end. This sets the stage upon which fluctuations act to
produce El Nifio and La Niia.

4.2.2 Variations on the Thermocline

Once we understand that the thermocline should exist, and that it should surface at
the equator, it seems natural to ask whether this outcropping is stable, or whether
the system can experience an oscillation or be disturbed by local wind and weather
effects. The theory of McCreary and Lu basically states that “since on the average,
x kg/sec of cool water converges toward the equator from both hemispheres, on
the average x kg/sec of cool water must surface”. One might think that this sets the
temperature of the cold tongue, and that El Nifio arises from changes in this pro-
cess. But this applies only over a suitable averaging interval. We know that this
flow can take decades to close the loop. For changes that take only a few months
or even a few years, another theory is needed that permits significant variations,
and it is these variations that are now known to be the root cause of El Nifio and
most of tropical climate variability.

For this theory, we turn to the dynamics of internal gravity waves as modified
by the special features of planetary rotation — the equatorial Kelvin and Rossby
waves that propagate signals east and west in the equatorial waveguide (see Moore
and Philander 1977 or Gill 1982 for a synopsis of equatorial wave dynamics).

Because of the special nature of the Coriolis effect near the equator, low
frequency planetary waves take on distinct properties, with one wave type propa-
gating eastward (the Kelvin wave) and a set of others with westward propagation
(the equatorial Rossby waves). Each wave describes the evolution of the thermo-
cline perturbation (%), the zonal current (), and the meridional current (v). The
Kelvin and Rossby waves are different “modes” of the system. Each mode has a
different pattern in the north-south direction, but they tend to keep all the action

% Rothstein et al. (1998); Harper (2000); Huang and Liu (1999); Malanotte-Rizzoli et al. (2000);
Rodgers et al. (2003); Fukumori et al. (2004).
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near the equator. Mode 0 is the Kelvin wave, with a phase speed and group veloc-
ity to the east with the same speed as an internal gravity wave. Modes 1, 3, 5, ...
are antisymmetric, with h = u = 0 at the equator, and a maximum in meridional
velocity at the equator. Modes 2, 4, 6, ... are symmetric with perturbations in
height and zonal current that have local maxima on the equator, and no meridional
flow across the equator. Note that the gravest symmetric Rossby mode (7 = 2)
propagates to the west with 1/3 the speed of the Kelvin wave. The higher mode
Rossby waves propagate slower still.

Figure 4.7 shows the meridional structure of the Kelvin wave. The Kelvin wave
is somewhat special because it has no meridional current (v = 0), and the meri-
dional structure for 4 and u are the same. Note that the successively higher Rossby
modes have amplitude extending further from the equator, and have a more oscil-
latory behaviour.
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Fig. 4.6 Meridional structure functions for the equatorial waves. These functions depict the
relative amplitude of pressure perturbations from the Kelvin (K) wave and the first three sym-
metric Rossby waves (2, 4 and 6) from linear solutions with an internal gravity wave speed of
3 ms . Anti-symmetric Rossby modes also exist, but are not shown

In the ocean, the Kelvin and Rossby waves are largely forced by the wind.
Weakening the trade winds in the centre of the Pacific will generate Kelvin waves
that cause the thermocline to deepen while at the same time driving Rossby waves
that cause the thermocline to shallow. Looking along the equator, one would see
the deepening signal head off to the east and a shallowing signal heading west.

Other than the slightly strange meridional structure and modified phase speeds,
the Kelvin-Rossby wave set behave like internal gravity waves in a channel. Only
one wave can send signals to the east, while all the rest send signals westward.
Unlike a bounded channel, however, the reflection properties of the Kelvin and
Rossby waves are different. When Kelvin waves reach the eastern end of the equa-
tor, they propagate poleward along the coast. These coastal Kelvin waves shed
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some Rossby wave energy as they go, but to a large extent, much of the energy in
the equatorial Kelvin wave is propagated out of the equatorial zone.

At the western boundary, Rossby waves have a somewhat complicated reflec-
tion. Cane and Sarachick (1977) demonstrated that Rossby waves reflect into
equatorial Kelvin waves. When the zonal mass flux in the Rossby wave is inte-
grated in the meridional direction, there can be no net accumulation of mass. The
Kelvin wave that is reflected has sufficient amplitude to balance this mass conver-
gence.

What we see from the wave reflections is therefore a “leaky” system: Rossby
waves propagating westward return their energy in a Kelvin wave travelling east-
ward, but these Kelvin waves leak their energy to higher latitudes when they reach
the eastern boundary. This leak means that the system can not simply resonate like
a closed channel, with waves forever bouncing back and forth. Instead, any sus-
tained oscillations of this system must involve forcing.

These wave dynamics describe the forced and freely propagating linear res-
ponse of the upper ocean to imposed wind stresses. They describe the motion of a
simplified representation of the thermocline. These motions might be interesting
in and of themselves, but until and unless they change the SST, they will not have
any influence over how the atmosphere evolves in time. But if the motions do alter
the SST, and this change in SST causes changes in the atmosphere that further
change the winds, then there can be a feedback loop between anomalous winds,
anomalous currents in the ocean, SST perturbations and finally back to the anoma-
lous winds. This loop is known as a closed feedback loop, in which perturbations
in the system propagate from one variable to another. Closed feedback loops can
lead to instabilities in the system.

The most important modification needed to our theory is to improve the repre-
sentation of the ocean temperature. Although the upper ocean may be treated as
two distinct layers to explain the essential dynamics, the actual ocean thermocline
is a region of continuous gradients of temperature and salinity. The forced wave
motions that alter the thermocline therefore introduce a continuous change in the
surface temperature.

We concentrate on the eastern equatorial Pacific, because this is where the
thermocline outcrops and causes the “cold tongue”. Bjerknes (1966) noted that
westerly wind anomalies in the central part of the Pacific would drive Kelvin
waves to the east that would deepen the thermocline and carry warmer water to the
east. Both effects will cause warming of the SST in the east. Theories, models and
observations of the atmospheric response to the warmer surface temperature agree
that such warmer SSTs will lead to further strengthening of the westerly winds.
Thus a positive feedback loop exists that can extract energy from the system. This
source of energy is key to overcoming the “leaky” nature of the wave reflection
arguments made earlier.

A second important point should be noted about the interaction of the waves
with the SST: in the western Pacific, and away from the zone where the thermo-
cline outcrops, changes in the depth of the thermocline do not have a perceptible
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influence on the surface temperature. Although changes have been introduced into
the ocean, and waves are sending signals around, the ocean has “sequestered” the
information from the atmosphere. This is a key ingredient of the delayed oscillator
mechanism, which we discuss next.

4.2.3 The Delayed Oscillator Theory of Enso

We now have a view of the system where the thermocline tilts up to the east and
exposes cold water to the surface. Changes in the position of this thermocline are
reflected in changes to SST which perturb the atmosphere. These changes give
rise to a positive feedback through the winds to drive an unstable growth. If 4, is
the thickness of the thermocline in the eastern Pacific, and 7 is the zonal wind
stress averaged across the basin, we have

7(t) = Ah,(1)
Oh,
ot

where 4 and B are proportionality constants. Then,

oh,
ot

This is a simple view of the Bjerknes instability.

In his original paper, Bjerknes noted how this feedback can explain the emer-
gence of El Nifio events, but he then remarked on the difficulty in finding a reason
for the system to turn around and go from warm to cold. (Or, for that matter from
cold to warm, as for example at the end of La Nifia.) Since we have a rationale for
the thermocline to be exposed to the surface in the eastern Pacific over the long
term, such perturbations as described by Bjerknes can not take over and control
the result forever. This, plus the observed preference for El Niflo to occur every
3-7 years led to a search for a mechanism that could explain an oscillation in the
equatorial system. One solution can be found in the delayed action oscillator.

As explained above, the winds that perturb the ocean by driving Kelvin waves
to the east also drive Rossby waves to the west. They propagate on the deeper
thermocline, hidden from the atmosphere. When they reach the western boundary,
they reflect into equatorial Kelvin waves, and propagate back to the east. In this
case, the equation for %.(2) must be modified to include the effects of the Rossby
waves. The eastward propagation of Kelvin waves along the equator and the
poleward propagation along an eastern boundary can be clearly seen in Fig. 3.3.
This figure also shows the westward propagation of Rossby waves from the east-
ern boundary and their generation in mid-ocean and westward propagation to the
western boundary.

=B7

= ABT
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The important feature of the Rossby waves is that a wind that drives a shallow-
ing Kelvin wave will drive a deepening Rossby wave, and that a deepening
Rossby wave reflects into a deepening Kelvin wave. Thus, the evolution of the
height field in the east is a combination of the Bjerknes instability and information
from some “old” Rossby wave:

ot

The factor C includes the effects of how the wind drives the Rossby wave, how
efficiently the western boundary reflection works and how the Kelvin wave alters
the thermocline thickness. The time -4t reflects the fact that the height at present
time is influenced by the wind that existed in the past — at the time that the Rossby
wave was first generated.

But once again, since 7 at any moment is presumed to be proportional to the
SST anomaly, which is presumed to be proportional to the thermocline displace-
ment, we can combine all these proportionality factors and arrive at:

Oh ()
ot

This equation is a differential-difference equation that describes the basic de-
layed action oscillator. Under certain conditions, this equation can lead to growing
oscillations.

In their original proposal Schopf and Suarez (1988) include a cubic damping
term which is intended to reflect the fact that SST can not grow without bounds:
In our advective model, if the thermocline floods in completely from the west, the
surface temperature can not get much above 30°C, because that is the warmest
water available. Similarly, because the process works as an uncovering of the ther-
mocline, if too much water is brought up, the surface will see the relatively uniform
intermediate water that lies just below the thermocline. Their proposal is therefore

oh, (1)

= ABh (t) - C7(t — At)

= ABh,(t)— Dh,(t — At)

= ABh (t)— Dh (t — At) - yh(t)

This cubic term means that the system will not grow without bound, but will
undergo regular oscillations of a fixed amplitude. The modification to a non-linear
system is not fundamental to our understanding of the mechanics of the delayed
action oscillator.

By rescaling time with the growth rate 4B, and the dimensional A, with
(AB/y)"*, we see that the oscillator depends on two parameters:

B 0-ah,a-0)-10)
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where =D/ AB and O = ABAt. The system described may undergo self-
sustained or damped oscillations, depending on the location of the base system in
the parameter space described by o and 6. When oscillations are present, they
have a period in excess of twice the delay. They are typically far greater than this.
See McCreary and Anderson (1991) for a full coverage of the various types of
response as a function of a and 6.

The delayed action oscillator succeeds in describing a mechanism whereby a
preferred periodicity for El Nifio may exist. As one can see, there are several
parameters which are not easy to quantify, and attempts to diagnose whether the
system should exhibit self-sustained oscillations or not have been made, but they
are inconclusive. Instead, experiments with numerical models have been designed
to examine the point, but in the end there is less to be learned from examining the
stability question than there is in understanding the elements of the system.

The key elements of the delayed oscillator are:

. Coupled instability in the east via Bjerknes mechanism

. Low frequency Rossby wave generation that perturbs the thermocline

. Reflection of the thermocline displacements into an equatorial Kelvin wave
. “Coupled reflection” at the east

AW N —

This last point is an interesting twist on what one would expect if gravity waves
bounced back and forth across a closed basin. Instead of a period that is set by the
time it takes a wave to go back and forth across the basin, the delayed oscillator
operates with a period which is at least twice that time. Recall that the reflection of
a deepening Kelvin wave at the eastern boundary causes a weak set of deepening
Rossby waves. In the delayed oscillator, the Rossby waves are not generated at the
coast, but through the coupling process whereby deepening Kelvin waves give rise
to shallowing Rossby waves. This phase reversal is key to the period-doubling
inherent in the system.

The delayed action oscillator theory demonstrates that El Nifio arises from a
coupled instability in the ocean-atmosphere system. Neither an ocean-only nor
atmosphere-only model can explain El Nifio and its dominant frequency. It implies
that the memory in the system lies in the thermocline, off the equator. In Chapters
5 and 6, we discuss the nature of the prediction system, and how model initializa-
tion, and particularly ocean data assimilation is essential to successful forecasts of
El Nifio. One of the main reasons for this lies with the information contained in
the ocean thermocline and the dynamics of how that information propagates
through the system, only later to show up as changes in the surface temperature.

4.2.4 The Recharge Paradigm

An alternative to the delayed oscillator theory is the recharge paradigm for El Nifio.
In this view, it is recognized that the Rossby and Kelvin waves cross the basin far
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more quickly than El Nifio changes to La Nifla. When fast-moving waves are
forced slowly, it is hard to recognize them as waves at all. Instead of describing
the changes in the state as due to wave propagation, perhaps we can describe the
ocean as in quasi-steady state.

Jin (1997) was able to use this property to develop a simpler system of equa-
tions that describe an oscillator. When the waves are fast, the equatorial Kelvin
wave can be written in the very simple form:

h,(t)=h,()+ a7

where £, is the thermocline height at the eastern end of the equator, and #,, is the
height at the west. 7 is the average zonal wind stress across the basin, and a; is a
proportionality factor.

Anderson and Gill (1975) demonstrated how the steady circulation of the ocean
(the so-called Sverdrup flow) is established by the net effect of Rossby waves. In
the recharge view, the explicit treatment of the Rossby waves of the delayed oscil-
lator are replaced with Sverdrup flow, which causes mass to converge toward the
equator, thereby setting up changes in the thermocline in the west. An equation for
the thermocline thickness in the west is then

dh w
dt

where 7 is a damping factor, and f is a proportionality factor that builds in the
different projection of the winds onto the modes as well as a number of other effects.

The coupling in the recharge oscillator occurs through the SST, as in the de-
layed action oscillator: the stress is proportional to the temperature in the east. In
the delayed oscillator, the relationship between the thermocline depth and the SST
is treated as due to several factors:

dT,

e

dt

where T, is the SST, which is damped by surface fluxes to some equilibrium, a;#,
reflects the contribution of upwelling, and a,z, represents an advective feedback
due to wind stress local to the east.

These terms are then related to two variables as primary #4,, and 7,: the winds
(both 7 and 7,) are made proportional to T,. If time is scaled with the Bjerknes
instability growth rate and 4, scaled appropriately, the coupled set of ordinary
differential equations can be written

=—rh,—p7

=-a,I, +ah,+a,r,

ar, =T +h,
dt
dh,
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The recharge oscillator and delayed action oscillator share the same ocean
dynamics (low frequency forced modes), and depend on two parameters. In both
views, one parameter sets how fast the western basin fills in relation to the time-
scale of the Bjerknes instability. In the delayed oscillator, it is the Rossby wave
propagation time, while in the recharge oscillator, it is the damping parameter 7.
Both theories also have a free parameter describing how strongly the conditions in
the west influence the SST in the east.

Given their shared view of ocean dynamics and their ultimate dependence on
two similar parameters, it is not possible to differentiate the two theories based on
observations or model experiments. For most questions, they share similar chal-
lenges. For instance, it has been noted that the recharge paradigm depends on the
latitude at which one wishes to compute the Sverdrup flow. But the delayed oscil-
lator can consider more than one meridional Rossby mode, with higher modes
extending further poleward and travelling at slower speeds. The delayed oscillator
is criticized because it may be possible for Rossby waves to propagate through the
Indonesian archipelago.” But in the quasi-steady Sverdrup flow of the recharge
paradigm, the buildup of mass in the west may be returned poleward in western
boundary flows or may pass through Indonesia just as the low frequency Rossby
waves. In short, there is little to be gained from differentiating these two views.

4.2.5 Conclusion

The ocean is but one part of the climate system. We have discussed how the ocean
takes up heat to buffer the high frequency changes induced by the atmosphere.
Next we noted that the large scale circulation created by the combined effects of
winds and surface heating does not drive the entire ocean uniformly, but leads to a
rather shallow circulation that is described by the ventilated thermocline. This
thermocline connects to the equator via the shallow tropical cells, and an inevita-
ble consequence of the atmospheric forcing is that this thermocline will emerge at
the eastern end of the equator (at least in the Pacific).

Coupling to the atmosphere and a simple deterministic view of the atmosphere
led us to discover that this tilted thermocline is perhaps not a stable stationary
state, but can possibly have unstable, self-sustained oscillations. These oscillations
lie at the heart of El Nifio and La Nifia. Whether or not dynamics such as the
delayed oscillator are strong enough to cause spontaneous changes to the system,

* Schopf and Suarez (1990) show that a reflection efficiency as low as 15% is sufficient to permit
oscillations.
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it is clear that other perturbations to this tilted thermocline are capable of causing
significant changes in the equatorial surface temperatures. Storms, sub-seasonal
variations, and other unpredictable features of the tropical atmosphere will all
leave their imprint on the thermocline. Some may lead to expressions in the SST
that will give rise to coupled instability, some will pass through the system as sub-
surface Kelvin waves with little hope of making a sustained change in the climate
system.

The challenge to the problem of seasonal climate prediction via dynamical
models is to build models that must capture all of the essential physics — the mixed
layers, ventilated thermocline, shallow tropical cells, wave dynamics, and thermo-
dynamics of how the thermocline emerges, and they must be able to be initialized
with the important information that contains the dynamics of the evolution.

4.3 The Nature of the Prediction Problem

The problem of seasonal climate prediction is one of attempting to simulate the
seasonal average of the weather, not the individual fronts, cold snaps, or storms.
These “weather” events have been shown to have no predictability beyond a week
or two (see also Chapter 3). If the climate is the sum of weather, but the weather is
unpredictable, does this not imply that the climate is unpredictable? In fact, the
answer is no, the climate can be predictable considerably longer than the weather.
If a forecast system fails to predict a storm 10 days from now, but predicts one 12
days from now, the forecast is wrong, but the average number of storms in the
next month will be correct. The prediction problem relies upon the fact that some
parts of the system evolve slowly, while others are of short duration. If the short
events are unpredictable, but an equation can be written to describe the slow evo-
lution, then the high frequency component can be considered unpredictable
“noise”, and the challenge is to describe the effect of noise on the solution of the
slow equations.

In Chapter 3 and in the previous sections of this chapter we discussed some of
the current theories for El Nifio/La Nifia, which involve the propagation of signals
on the ocean thermocline, transformation of these signals to SST anomalies, then
coupling to the atmosphere, modification of the winds and driving of the ocean.
We derived equations for this slowly evolving part of the system. The oscillator
theory is very simplified, however, and much can disturb the process. Each
El Nifio develops differently, and the magnitude can vary greatly from one event
to the next. The examination of this irregularity is fundamental to understanding
the prediction problem, because it lies at the core of understanding the “predict-
ability limit”.



86 B. Hoskins, P.S. Schopf

4.3.1 Predictability Limits

The predictability limit is a concept that describes our recognition that we do not
do as well with models as we can, but that even a perfect model and perfect ini-
tialization will be unable to forecast the climate forever. If the models are
inherently flawed, then the predictability limit may be a gross overestimate of how
long we can make a successful forecast, but it is useful to try to approximate this
limit. If, for instance, it can be demonstrated that no model/initialization system
can forecast for more than 2 months, why bother to build better and better models
and more and more expensive observing systems? If, on the other hand, it can be
shown that forecasts of up to 3 years can be made, then we had better put a lot
more effort into our models, observing systems and initialization methodology.

Unfortunately, there is no absolute way to define a predictability limit. We can
study how models behave, using the “perfect model” technique. To study pre-
dictability, we want to know how fast a perfect model diverges from nature.
Unfortunately, although we can know what nature did over the past, we can not
construct a perfect model. Instead, we can examine predictability by replacing
nature with a model simulation. For this model simulation, there does exist a per-
fect model — the model itself. There also exists perfect initial conditions and
perfect initialization.

If we run the same computer code on the same computer many times with
widely different initial conditions, the solutions will enclose a wide region of phase
space that describes the climate and its variability. One should see the seasonal
march of temperatures, for instance, but the model simulation for a specific day
will vary considerably from one run to the other. This spread in the results of a
random collection of model runs is known as the “saturation”.

If we run the same computer code on the same computer many times with ex-
actly identical initial conditions, the model will produce identical results forever,
unless a coding error exists. There will be no spread between results. But if we
introduce a very tiny error in the initial conditions, the model runs will diverge. At
first, if we repeat this experiment over and over with many initial conditions that
differ by small amounts, we find that the spread in these results is far smaller than
the saturation. But eventually, solutions with even the tiniest of initial errors will
reach a spread indistinguishable from saturation. When this occurs, we have
reached the predictability limit.

Thus, we can define the predictability limit in the context of a model. But does
this model represent nature? Is it close enough? If the experiments are repeated
with another model, will the results be the same? If they are, is it because the two
models reflect nature, or because they share a systematic bias or systematic error
that leads to this behaviour? These are questions which confront the theoretician
trying to deduce a predictability limit.
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4.3.2 Enso Irregularity and Predictability

Is there a relationship between the fact that El Nifio is irregular and its predict-
ability? This irregularity reflects the complexity of the coupled ocean-atmosphere
system and hints at the difficulties in predicting ENSO. Is it due to noise in the
system, the inability to adequately specify the initial conditions, inherent deficien-
cies in the models, or to not-yet-understood fundamentals of the physical system.

Theories on the cause of ENSO irregularity can be broadly grouped into three
categories that are related to their assumption about the strength and validity of the
underlying oscillator and the importance of noise. We have presented the delayed
action and recharge oscillators as theories for the dominant periodicity of El Nifo,
but there are debates as to whether they actually operate. We know that in certain
parameter ranges, the equations for these simple systems will describe robust
oscillations, while in others, the only solution will be a decaying, damped oscilla-
tion. The first is self-sustained, the latter requires some external forcing to keep
the system going. The three categories of theory on El Nifio irregularity split into a
view that the oscillators are self-sustained, that they are damped, or that they are
essentially neutral. The role of non-linearity and noise is markedly different in
each case, and our view of predictability is different in each.

The first view argues for the importance of non-linearity within the tropical
coupled system. The non-linearity arises from strong air—sea feedback that puts
the coupled mode in an unstable dynamic region. In this regime, El Nifio can not
only be described as due to a self-sustained oscillator, but it can interact non-
linearly with either the annual cycle or other coupled modes. A common model
that is cited in this regime is the Zebiak-Cane coupled model, which can be con-
figured to exhibit strong non-linearities and chaotic behaviour. In this view, the
loss of predictability is primarily due to the uncertainty in the initial conditions or
in non-linearities in the atmospheric response to the ocean. It relies upon fairly
robust ocean wave dynamics that provide the underlying timescales for the
problem.

The opposing view to this is the stochastic ENSO theory in which “weather”
noise generated by the internal dynamics of the atmosphere plays a fundamental
role in not only giving rise to ENSO irregularity, but also in maintaining ENSO
variance. In this view, the coupled mode is in a damped regime, and thus the
ENSO cycle cannot be self-sustained without external noise forcing. The oscillator
describes a tendency for the system to have a preferred period, but does not ex-
plain much about the appearance of any single event. It is the exact pattern of the
noise and how it forces the weakly coupled modes that determine whether a large
or small El Nifio or La Nifia will next appear. The cyclic nature of the underlying
oscillator merely alters the odds a little in favour of one side or the other. In this
view, the role of the equatorial Kelvin wave and the equatorial air-sea coupling is
important, and the off-equatorial ocean dynamics seems less vital.
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In between these two viewpoints is the view that ENSO is very close to the di-
viding line between self-sustained and damped behaviour. Its behaviour is
governed by the temporal characteristics of the single, most dominant coupled
mode plus the influence of weather noise. In this scenario of ENSO, predictability
comes from the oscillatory nature of the dominant mode, while the loss of predict-
ability is primarily due to noise influence. Different from the stochastic ENSO
theory where the noise influences the non-modal growth of the coupled system,
the role of the noise in this case is to disrupt the regular oscillation of the dominant
mode. In this regime, the ocean wave dynamics and reflection properties must also
be sufficient to sustain the oscillation.

An extension of this view is the notion that over decades, the system can wan-
der across the dividing line between self-sustained oscillations and a damped
regime — so that predictability may vary from 1 decade to the next (Kirtman and
Schopf 1998). This concept of time-varying predictability is an important one to
bear in mind when considering the skill of previous forecasts and whether this
means that our current forecasts are “better” or “worse” than before.

Pinpointing exactly where in the parameter regime ENSO resides in reality is
difficult, if not impossible, given the available observations. Many of the recent
studies on this issue are based on relatively simple coupled model simulations and
prediction experiments. Some of the evidence supporting stochastic ENSO theory
is based on the finding that in the damped regime the coupled model forced by
stochastic processes produces the best fit to observed ENSO statistics. But in a
non-linear system such as the delayed oscillator with cubic damping, the system
will appear as damped, while in fact it will spontaneously generate oscillations.
Other evidence comes from the finding that there is a lack of support for a con-
tinuous ENSO cycle in the observations. In particular, there is little observational
evidence that the initiation of an ENSO event relies on the memory of a previous
event, though the termination of an event is generally consistent with the delayed
oscillator mechanism. The break in the cycle suggests that the system is in a
damped regime and the onset of ENSO relies on external influences. Other studies
dispute the stochastic hypothesis by providing evidence that seems to be more
consistent with the self-sustained ENSO theory. As demonstrated in Schopf and
Suarez (1988) and discussed in Jin (1997), a system with a stable, periodic oscilla-
tion in the absence of noise can become irregular with the addition of stochastic
forcing, and will present statistics that appear to be more stable. Chen et al. (2004)
provide retrospective forecasts of ENSO over a 148-year period and show that all
prominent ENSO events can be re-forecasted at lead-times up to 2 years. Such a
long predictability is in better agreement with the self-sustained ENSO theory than
the stochastic theory. However it remains to be tested in the crucible of an actual
forecast.

What has emerged in the consideration of the theory is the conclusion that
noise has a profound influence on the system and that ocean wave dynamics are
essential to obtaining predictive skill as is the proper description of the air-sea
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coupling. The non-linear, strongly oscillating view gives the most optimistic view
of predictability, the stochastic version gives the most pessimistic.

Finally, the debate over where the system lies may have less importance for the
practical forecaster than for the theoretician. If weather noise has an influence on
the system, there are two parts to consider: what is the role of noise that occurred
in the past, and what can we do about the future weather? The past weather noise
has become stamped on the ocean and is propagating in the system. If we had a
good observing system and initialization method, one could hope to capture all the
influences of the past noise, and march forward to a good simulation. This means
that we need more than a single simple metric for the ocean initial state. It is insuf-
ficient to look at the depth of the thermocline in the west and make a prediction. It
will not work to describe the average amplitude of the gravest westward propagat-
ing Rossby wave in the ocean. The past noise is inherent in the very complex and
complete ocean state, and extracting as much of this as possible is the key job of
the data assimilation systems.

If one might hope to capture the effects of past “noise” or weather with a good
observing system, what can we do about the weather events that are going to occur
over the upcoming seasons that we are attempting to predict? There is evidence
that some features, such as the Madden-Julian oscillation, may be able to be pre-
dicted for more than a week, but beyond that time, one has to consider these effects
as unknowable. It is ultimately these disturbances that will limit the predictability
of seasonal means. Perfect models and perfect initialization will never be able to
overcome their effect. Experience with idealized model predictability studies
seems to show that the limit of predictability is significantly longer than we cur-
rently realize with today’s prediction systems. Much work remains to be done,
advancing the models and refining the initialization systems.



Chapter 5
Getting the Coupled Model Ready
at the Starting Blocks

Joe Tribbia and Alberto Troccoli

The aim of coupled models is to represent the trajectory of the climate system as
realistically as possible. Given the chaotic nature of the climate system, it is essen-
tial that the starting point of the coupled model trajectories (i.e. the initial
conditions) is as close as possible to the observed climate trajectory. In order to
ensure that this condition is satisfied, observations are used to modify the coupled
model via the data assimilation approach. In the context of seasonal forecasting,
data assimilation is nothing more than a combination of observations and model
data, performed with the aim of achieving the ‘best’ initial state of the coupled
model. However, what constitutes the best initial state is still under debate as it is
not obvious whether the best seasonal forecasts are obtained by targeting (a) the
most accurate initial state estimate or (b) the most consistent (with the model’s
own preferred state) coupled state or (c) the coupled state that controls some par-
ticular growing modes, or indeed a combination of the three. In this chapter we
will present generic data assimilation strategies, including some of their history,
which could be adapted to any of these three options. If observations were abun-
dant, one could just use the information given by the observations to obtain the
best initial conditions. With the advent of satellites, the last 2 decades of the 20th
century have seen an enormous increase in Earth observations. Despite this abun-
dance of observations, large parts of the Earth system still remain unobserved: the
interior of the ocean for instance can not be measured remotely. Data assimilation
becomes therefore indispensable. At present, data assimilation is applied sepa-
rately to the individual components of the coupled model. Ideally, the initialisation
should be realized using the coupled model directly but this approach, as dis-
cussed in this chapter, is still in its infancy and progress is not expected to be fast
as many obstacles, not least the presence of serious model errors in both atmos-
pheric and oceanic models, still hinder its way to a full mature phase.
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5.1 Data Assimilation Overview

To some, data assimilation may seem like a daunting mathematical-technical
problem. In practice, this might be the case, but not more than in any field that
requires rather heavy use of a mixture of mathematics and computer programming
languages. The task is made easier, however, if it is clear where one is heading.
So, although it is true and unavoidable that the foundations of data assimilation are
purely mathematical, what the mathematics are trying to represent is a pretty
straightforward concept: data assimilation is a blending of two different represen-
tations of the same system (e.g. the climate system), also referred to as truth. In
general, the two representations are constituted by (i) a model (normally a
dynamical one), which aims at representing the system, and (ii) some observa-
tions, which actually sample the system. The aim is to improve the description of
the system as reproduced by the model by using the information coming from the
observations.

5.1.1 Data Assimilation Strategy for Seasonal Forecasts

Three main objectives of data assimilation can be identified, even though in prac-
tice they overlap considerably:

1. To obtain a four dimensional picture of the system (state estimation), consistent
with both measurements and dynamics

2. To provide initial conditions to be used by forecast models, as widely devel-
oped for Numerical Weather Predictions (NWPs)

3. To improve the dynamical model in order to get a better physical description of
the real system

These objectives are applicable to data assimilation in general — data assimila-
tion is utilised in a variety of disciplines, e.g. satellite orbit determination or
dynamic plant models — and these objectives are certainly valid for the atmos-
pheric and oceanic media, with which we are concerned here.

Since the prediction of the climate system on seasonal to interannual timescales
is mostly an initial value problem, the role of data assimilation is essentially to
provide the best possible initial conditions. As discussed in Chapter 3, the most
common approach is to separately initialise the individual main components,
namely the ocean, the atmosphere and the land.

In order to prepare the separate initial conditions, an independent analysis to
provide a 4-dimensional picture (i.e. in space and time) of the atmosphere is
undertaken in which the ocean sea surface temperatures (SSTs) are held fixed. The
atmospheric analyses thus produced are then used to provide momentum and heat
flux forcings to drive the ocean models into which ocean observations will be
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assimilated. In so doing, a 4-dimensional estimation of the ocean also becomes
available. Similarly to the ocean, the land surface module is driven with surface
fluxes of heat and moisture, including precipitation, from the atmospheric model
and observations to initialise the land component.' The individual models thus
initialised are then coupled and integrated forward to produce seasonal predictions
(see also Sections 3.3 and 6.3.2).

The success of a data assimilation system is very much dependent on the qua-
lity of the model available with which the assimilation of data is performed. For
infinitely dense observation networks, i.e. if one could observe all the variables
needed by the model, the model used would be irrelevant. In reality, however, the
level of detail of a model is generally much higher than that provided by observa-
tions and therefore the quality of the model matters a lot. In particular, model
deficiencies (also known as model errors) should be taken into account when de-
vising data assimilation techniques. Despite their importance, model errors are
generally ignored in standard assimilation techniques: in so doing the mathematics
is considerably simplified. More recent approaches have only recently started to
take model errors into account hence in this chapter we will mostly focus on stan-
dard data assimilation approaches (for more information on model errors in data
assimilation see Dee 2005 and references therein).

Data assimilation concepts used by the atmospheric modelling community are
dealt with first. Although presented as pertaining to the atmosphere, the approaches
discussed are valid for a wider class of fields, oceanic modelling being one of
them. After a description of assimilation methods, the types and number of obser-
vations are introduced, first for the atmosphere and then for the ocean. The
following section presents an investigation of the impact of some assimilation
methods on seasonal prediction. An outlook on data assimilation strategies, in-
cluding a research area which is gaining increasing interest — coupled data
assimilation — is subsequently discussed. Before jumping into the formal data as-
similation, some examples, with reference to applications in fields other than
climate science, are given.

5.1.2 Data Assimilation Beyond Climate Science

Missiles are fired with the intent to hit a predetermined target, be it moving or
stationary. Even when their trajectory is accurately computed beforehand using
some relatively simple formulae (the model), missile progress has to be constantly
monitored. It is unlikely that the modelled trajectory describes the trajectory

' Although an important component of the climate system on seasonal timescales, land data
assimilation will only be referred to in the “Suggested further reading” chapter (p. 465). Suffice
to say that methods for land assimilation are often adapted from those discussed here.
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actually followed by the missile. Remote adjustments are generally needed in
order to bring the actual trajectory closer to the trajectory that the missile has to
follow in order to reach the target (the system or truth). It is in these adjustments
that some data assimilation procedure needs to be employed. In fact, the modelled
trajectory has to be combined with measurements of the actual trajectory (the
observations). The result of this operation is an adjustment which is applied to the
missile so as to nudge it towards the right track along with an updated modelled
trajectory. This procedure is then repeated regularly until the missile reaches the
target.

There is no guarantee, however, that any trajectory could be beneficially adjusted.
If the missile is fired at an angle such that the actual trajectory lies too far from the
modelled one, there may be little possibility of bringing the missile back on track.
This might more easily happen in the case of models of more complex systems
such as that of climate. The model trajectory might be sufficiently far from the
observed one that the adjustment required would just be too large. In such a cir-
cumstance, if the adjustment was applied to the model trajectory it would cause
the model to crash (or blow up) as the model solution would not be compatible
with the data assimilation solution. An alternative approach would be to disregard
the adjustment and let the model follow its own trajectory, but then we would not
talk of data assimilation anymore. Fortunately climate models are not that bad.

A missile is an easy object to visualise. With a little stretch of the imagination
it is actually possible to construct data assimilation examples which are somewhat
out of the ordinary. Take for instance the case of the human mind. Although this
illustrative example may appear slightly controversial, it can nonetheless be
thought provoking to some readers (the authors certainly find it intriguing).”

So how does the human mind fit in the data assimilation framework? Let’s start
from the sleeping state. When one sleeps, the mind is free to wander and to access
states over which we have little or no control (e.g. dreams). It is this floating state
which best describes the analogy between the human mind and the model. We can
therefore view the model as a collection (or series) of (apparently?) chaotic states,
which ultimately constitute the human mind. Now, when we wake up, a variety of
constraints emerge, from the shape of the rooms we live in, to the people we get in
contact with, to even the strong sense of direction imparted by the sun. All these
constraints act as observations which the human mind (the model) will (try to)
assimilate. Clearly, some information is accessible to the human mind even before
observing what is around. When one wakes up in the morning she/he knows a lot
about the surroundings (in which house and room one is in, whether or not there is
a garden, etc.) and this information — in the data assimilation parlance called sta-
tistical information or covariances — is elaborated along with what is actually
observed.

% The idea for this example is courtesy of a colleague, Dick Dee.
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Unlike for the missile, in the case of the human mind, it is less obvious what
the model should describe and what the objectives of the human mind are. With-
out entering into philosophical debates, it is sufficient to point out that for instance
from the perspective of free will, the modelled trajectory is represented by the path
towards anyone’s personally selected target. Interestingly, even in the case of the
human mind as a model for data assimilation, we can draw the analogy of the
blowing up of the model: when everyday constraints become too stringent, insanity
may arise.

In summary, although we might not realise it, data assimilation is embedded in
several instances of our everyday life and the examples above might be useful to
help visualise the data assimilation problem. We are now ready to tackle the
atmospheric and oceanic data assimilation.

5.2 Data Assimilation for Prediction

5.2.1 Introduction to Atmospheric Assimilation

The primary focus of atmospheric data assimilation has been the production of
initial conditions for the purpose of numerical weather prediction. As mentioned
above, there can be other rationales for the assimilation of atmospheric data, tem-
porally consistent climate records for example, but the historical development of
assimilation in an atmospheric context has benefited from the demands of impro-
ving daily operational weather prediction.

The prediction problem is frequently idealized mathematically when it is pre-
sented in academic courses and much of the emphasis in textbooks and courses is
on the dynamical, mathematical and numerical aspects of computational predic-
tion with little presentation of the specifics of how the initial conditions for the
initial value problem are to be obtained. The initial conditions are ‘observed’ but
quite a bit goes on between the observation of meteorological variables, using
satellites and rawindsondes, etc., and the first time step of a numerical weather
forecast. All of this happens within the domain of atmospheric data assimilation.

5.2.2 Beginnings of Atmospheric Data Assimilation

After L. F. Richardson’s heroic effort of computing by hand a numerical weather
prediction for a single point during the First World War, interest in computational
prediction of the weather began in earnest with the project at the Institute for
Advanced Studies at Princeton under the guidance of John von Neumann. In the
late 1940s, the first electronic computer (the ENIAC) was developed and von
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Neumann chose weather prediction as one of the first applied problems to be at-
tempted with the ENIAC. The famous experiment detailed in the Tellus article by
Charney, Fjortoft and von Neuman (1949), computed a 24 hour weather prediction
over the continental US using the equivalent barotropic model, forecasting the
height of the 500 hPa pressure surface from an analysis of that field at the initial
time. The initial analysis was not objectively obtained, however, but was an inter-
polation of the hand-drawn analysis produced by a synoptic meteorologist.

Clearly, there was a mismatch in the techniques used for producing the initial
state (subjective) and the forecast field (objective) which needed to be addressed
and so the first incarnation of atmospheric data assimilation, objective analysis,
was developed. The first attempt at an objective analysis method was made by
Panofsky (1949), who proposed and tested a local polynomial fitting technique. In
this method the height field was assumed to be given as a quadratic polynomial in
the spatial Cartesian coordinates x and y, i.e.

z(X,y) = Z aijxiyj >

i.j<3

with the coefficients, ajj, determined by a least square minimization (see appendix
at the end of this chapter) of the difference between the assumed quadratic form
and the values of z observed at neighbouring radiosonde observation locations.
Panofsky noted a few limitations of this method having to do with the locality of
the approximation; (1) the geostrophic vorticity, proportional to the second deriva-
tive of z with respect to x and y, was very noisy, (2) if the method was used to
analyse the horizontal wind components, the horizontal divergence of the wind
could become large if the wind components were independently fitted as quadratic
polynomials and (3) since the method used local fitting, the edges/seams of the of
the local fits were noticeable.

The next method developed attempted to rectify some of the shortcomings of
the Panofsky method and began to utilize the information inherent in the opera-
tional prediction of the weather on a daily time schedule. Bergthorsson and Doos
in Europe and Cressman in the USA, developed similar schemes for objective
analysis that incorporated the 24 hour forecast as information for the analysis and
also made use of the notion of the geometric relationship of observations relative
to the analysis points in a manner superior to mere function fitting. These were
accomplished by (1) using the forecast fields as a ‘first guess’ base field and (2)
devising the method so that observations nearer to the point at which the analysed
field is required are given more weight than those observations which are farther
away. Schematically, the method of successive corrections, as the Bergthorsson—
Doos—Cressman scheme is known, can be summarized as follows:

1. Use the forecast field as first guess
2. Fit an increment to the first guess weighting the influence of observations to
their distance from the analysis point
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3. Successively refine the correction by using fewer remote observations with
each iteration
4. Impose geostrophic balance in the iteration scheme

(The mathematical details are specified in the appendix, Section 5.6.)

The methods developed by Panofsky, Cressman and Bergthorsson and Doos
were rooted in the idea that a good atmospheric analysis could be obtained
through the interpolation of observations to the computational grid of a dynamical
model. That such interpolation should be guided by the statistical structure of the
field to be interpolated was not a consideration in these methods. The first to put
forward such a concept was Arnt Eliassen in 1954 who demonstrated the concept
for the surface pressure field. Independently, Lev Gandin in the Soviet Union fully
developed this concept in a book which detailed the method of optimal (or opti-
mum) interpolation (OI). Roughly speaking, OI is designed around the fact that
the meteorological fields of temperature, wind, humidity and pressure are organ-
ized into systems which are of finite scale and so, for example, the temperature
anomaly at a point is correlated with the temperature anomaly at nearby points.
(If it is colder than normal in Lecce, it is oftentimes also colder than normal in
Gallipoli.) The major advances from successive corrections were firstly that the
interpolation of corrections to the first guess fields forecasts was free from an ad
hoc weighting factor because the weights and spatial dependence were obtained
from the statistics of the field itself and secondly the multivariate interpolation
was easily handled in the OI scheme since the formalism only depends on field
correlations, which could be between differing variables such as the pressure and
the wind fields. This second advance made it relatively straightforward to impose
well-known constraints on the analysis like geostrophic and hydrostatic balance in
a statistically consistent fashion.

As above, the mathematical details of the OI method are spelled out in the ap-
pendix. The OI method served the atmospheric prediction community, through the
1970s and well into the 1980s. The limitations of the method which required the
development of the current suite of analysis/assimilation methods were associated
with the fact that OI is ideally suited for the analysis of conventional observations
of model state variables coming from radiosondes, for example, and not directly
adaptable to satellite observations which measured radiances. Thus, up to the late
1980s satellite radiances were first ‘converted’ into inferred temperatures before
being assimilated into an analysis. A second issue was the lack of temporal consis-
tency in the analysed fields since the only memory in the analysis cycle comes in
through the (first guess) forecast, which represents only one particular realisation,
namely that at analysis time.
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5.2.3 Four-Dimensional Data Assimilation

The constraint of temporal consistency and continuity has been one of the main
tools of the subjective analyses produced by synoptic meteorologists in order to
maximize the information used in the analyses. These subjective analyses were
digitized and used to initialise the earliest numerical weather predictions. Tempo-
ral continuity and consistency is an obvious constraint on the atmosphere and so
even in the relatively early days of NWP Thompson (1968) devised a variational
method to analyse the atmosphere in both space and time. This was the first 4-
dimensional analysis method proposed but it (like Richardson’s numerical weather
prediction) was ahead of the computational means necessary for practical utility.
However, as noted above, a first step towards temporal consistency was effected
by using the short-range forecast as a first guess in the operational forecast-
analysis-forecast cycle, in the successive corrections first and with the OI later. In
this way, the information from the previous assimilation was retained, although
not optimally. A first step to optimal interpolation in time and space required that
both the first guess (forecast) and the observations to be assimilated be treated as
random variables with quantifiable error characteristics. An illustrative example
which can be considered the essence of modern techniques of assimilation is the
following. Suppose one is given two distinct estimates of the temperature at a lo-
cale, 7 and 7,, with errors associated with each. (For example, one temperature
could be a forecast temperature from a model and the other temperature could be
a measured temperature from a thermometer.) Suppose also that the expected
errors associated with each estimate as measured by its standard deviation is
o, and o,. Then, as shown in the appendix, the linear combination of the tem-
peratures with the least error on average is given by:

T,ima = &1, + BT, , with a:0'22/(0'12+0'22) andﬂ=of/(of+0'22).

That is the weight given to each temperature is inversely proportional to the
relative accuracy of the temperature estimate.

Thinking of one of the temperatures as coming from a forecast to consistently
incorporate a memory of past analyses and optimally use the forecast, one needs to
weight the forecast and the observations according to the accuracy in each. The
missing piece needed to move OI toward four-dimensional assimilation is to use
an estimate of forecast accuracy in weighting the first-guess field. This ‘quasi-
four-dimensional’ OI method was used until the 1990s by the global operational
weather centres.

In the early 1990s the operational centres began preparing for truly four-
dimensional data assimilation by formulating the assimilation in a purely varia-
tional context. This seemingly orthogonal perspective actually coincides with the
statistical formulation of the assimilation problem, under certain conditions. To
see this we consider once again the combination of two independent estimates of
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temperature but his time utilize a variational formulation of the problem of obtain-
ing an optimal estimate of temperature. A reasonable way of formulating this
problem is to hypothesize that the analysed temperature should be close in some
sense to both 7, and7,. This being so, a penalty function J =W (T -T) +
W.(T-T, )’ is defined. By minimizing this penalty function one is assured of ob-

taining a temperature close to both estimates. Minimizing J gives:
L, =W +WlI,

which agrees with the statistically optimal estimate given above if

2 2
o o
Wi=—>— and W,=——"—.
o, +0, o, +0,
These weights can be alternatively expressed as
—2 —2
o o
W= 721 ) and W, = 722 2
o, +0, o, +o0,

showing that the weights are inversely proportional to the uncertainty in each in-
dividual estimate.

This makes perfect sense; we wish to weight each estimate proportional to the
amount of confidence we have in the estimate. If one estimate is very uncertain
(unreliable) compared to the other estimate, it should be given a much smaller
weight than the reliable estimate. This is all that any data assimilation method is
trying to accomplish.

5.2.4 The Current Practice in Operational Atmospheric Data
Assimilation

Several operational centres, ECMWF, Météo-France, the UK Met Office, Canada
and Japan have adopted a variational implementation of four dimensional data
assimilation, called 4D-Var. Some of these, and others, are also experimenting with
a statistical approach to four dimensional assimilation based on the Kalman filter.
These approaches, advanced variational assimilation and Kalman filtering, have
been developed because of some of the limitations to the standard OI approach of
the 1980s.

Foremost amongst the limitations is the awkward manner in which non-
traditional data, like satellite radiances must be incorporated into data assimilation
in OI. All observations must be first ‘converted’ into meteorological field variables
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before being interpolated and merged in the OI scheme. This meant that a separate
independent step was necessary which transformed satellite radiances into vertical
profiles of temperature and humidity mimicking radiosonde observations. This
independent step mitigated the optimality of ‘Optimal Interpolation’. A second,
less serious drawback to Ol is that despite the conceptual simplicity of the method,
in practice, optimality was difficult to preserve because the computational cost of
an optimal interpolation was prohibitively high. Computational shortcuts like
approximating covariance matrices with spatially compact and vertically separable
forms were necessary which also lessened the accuracy in the statistical sense, i.e.
the optimality, of the analysis product.

In 1990 both ECMWF and NCEP ( began implementing a three dimensional
variational method of assimilation which, in principle, was merely a reformulation
of OI in terms of a variational penalty function. However, this reformulation re-
moved the limitations alluded to above. With regard to nonstandard data, the
variational problem posed worked directly with the observed variables, e.g. satel-
lite radiances, by structuring the cost function to be minimized in terms of an
observation increment. If y; is the i-th observation and X is the state vector of
meteorological fields of winds and temperatures, etc. at the analysis points, then
the cost function is formulated in terms of the mismatch between the observation
and the value of the observation determined from the state vector, i.c. the state
vector interpolated onto observation space. Thus, y, —H (X) is a variable in the
cost function, where /,(X) , is the function which relates the meteorological state
variables to the observed quantity. In the case of radiances from satellite meas-
urements, this would correspond to the physical laws of radiative transfer relating
the radiation at a certain wavelength to the absorption and re-emission of radiation
in the atmosphere which is dependent on the vertical structure of temperature and
moisture. The cost function used in three dimensional variational assimilation
(3D-Var) is:

J= %(i_ib)TB_l(i_xb)
+ /5 (y—H(Z) R (§ - H(¥))

where B and R are the error covariance matrices for the background (first guess)
field and the observations respectively. Because the observations are used directly
in the cost function, the minimization of J leads to a consistently optimal use of
the observations whether standard or nonstandard. A side benefit of posing the
assimilation problem in a variational manner is that a great deal of computational
science has been developed in the past 30 years with the specific goal of produc-
ing computational algorithms which can economically solve variational problems
in high dimensional spaces like the 3D-Var problem. Using conjugate-gradient
methods and their extensions, no compromises in the fidelity of the optimization
are necessary for computational reasons, in contrast to OI. Restructuring the
assimilation problem as a variational problem essentially eliminated the major
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drawbacks of OI. The gory details of the solution to the 3D-Var problem are given
in the appendix.

As computational power increased in the 1990s, the implementation of tempo-
ral consistency/optimality became feasible using the computational economy of
the variational formulation and ECMWF led the move to 4D-Var. Formally, 4D-
Var appears to be a small extension to 3D-Var in which the cost function is treated
as both a function of the state variables and time:

J(E(t) = S G(t) - %) B (F(t,) - %,)
+I UG -HE) R (5, - H(E))

where the summation over k is over all the discrete times in which observations
are made and the explicit dependence of the cost function on the state vector at the
beginning of the interval, X(Z,), is meant to denote that J is minimized with res-
pect to the initial state vector. Although the modifications in the cost function are
seemingly minor, an enormous amount of complexity has been added to the varia-
tional problem in going from 3D-Var to 4D-Var. All of the complications have
been hidden in the need to update H (X, ). This requires the time evolution of the
state variables, a forecast, and the minimization of J using an iterative algorithm
like conjugate-gradient requires a linearisation of the forecast dependence on the
initial state. Both of the above are obtained using linear approximations to the
forecast model and the transpose, or adjoint, of the linearised model as explained
further in the appendix.

The additional complexity necessitated by a linearised version of the forecast
model places an enormous burden on the modelling effort since every component
of the forecast system must be both linearised and transposed. While the linearisa-
tion is straightforward for the dynamical aspects of an atmospheric forecast model,
difficulties often arise in developing suitable linear approximations for parameteri-
zed physical processes especially those associated with precipitation. The non-
linearity in these parameterizations is typically of high order with a critical threshold
triggering different physical behaviours. As an example, convective precipitation
is frequently tied to critical values of moist stability leading to a non-differentiable
functional relationship in the convective parameterization. A great deal of testing
is needed to ensure that linear approximations to this threshold behaviour are
accurate enough to be of benefit in the assimilation cycle. Because the infrastruc-
ture development is so demanding and the computational cost so prohibitive in
4D-Var, researchers have begun experimenting with Kalman filtering methods.
These were first discussed in the meteorological analysis context by Peterson
(1968) and brought to prominence there by Ghil and colleagues in the 1980s (Ghil
etal. 1981).

In the original development of Kalman (1960) and the interjection into the
meteorological literature by Peterson and Ghil, the Kalman filter (KF) is applied
to a linear system of prognostic equations for the state vector X . The linear system
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is assumed to only approximate the true evolution of the state vector and so a rep-
resentation of model deficiencies is included in the system in the form of an
additive noise term which is uncorrelated in time (so-called white noise). Note that
no such allowance for model imperfection exists in the standard 4D-Var assimila-
tion at the major NWP centres. The KF requires not only a linear prognostic
equation for the state vector but also requires that an explicit prediction be made
of the expected covariance of the error in the forecast using the same linear dy-
namics. The KF then utilizes the standard statistical perspective of determining the
best linear unbiased estimate (BLUE) given the forecast error covariance of the
prediction and the known error covariance of the observation at any given time.
This is essentially a vector version of the problem which was discussed above,
combining two estimates of the scalar temperature at a single point. The power of
the KF approach is that, if all the assumptions of linear dynamics and of model
errors being uncorrelated in time hold, then Kalman showed that the BLUE is
determined sequentially with no need to include any history of the past observa-
tions. The history is included by optimally using the information in the dynamics.
The mathematical detail of the standard KF is given in the appendix, but even
without the detail several of the drawbacks of the method can be easily seen. First,
the meteorological equations are not linear and so, as in 4D-Var, a linearisation of
the equations must be undertaken. Second, prediction errors using even the full
non-linear prediction equations are not uncorrelated from one time step to the next
in a prediction model and so white noise is probably not a good approximation to
such errors when a linear forecast system is used.

The first two drawbacks reflect limitations in the Kalman mathematical frame-
work for the problem of assimilation for weather prediction and these will
compromise the optimality of the assimilated state vector. The third and most im-
portant drawback of the KF is that it requires a covariance prediction. Since a
typical weather prediction model has a state vector with order 7 ~10° elements,
the error covariance of the state vector is a matrix with order 7> ~ 10 "*. This is
computationally impractical and so to consider the KF algorithm at all in an at-
mospheric context, a strategy must be devised to limit the dimensionality of the
covariance prediction. After several years of experimentation, one of the most
promising approaches to limiting the dimensionality is the use of ensemble meth-
ods to estimate error covariance, as first suggested and developed by Evensen
(1994, 1997) and elaborated upon by Tippett et al. (2003).

In the ensemble Kalman filter (EnKF), the approach is similar to ensemble pre-
diction in which a multitude of forecasts are made with slightly deviating initial
conditions in order to give a distribution of probable states of forecasted weather.
For ensemble weather prediction, as practiced at ECMWEF, NCEP and in Canada,
research has focused on the art of ensemble construction and been principally con-
cerned with the method of specification of the initial ensemble realizations. The
singular vector technique (Palmer et al. 1994) and the bred vector method (Toth
and Kalnay 1997) have been the strategies devised to limit the dimensionality (and
thus the number of realizations needed) in ensemble prediction at ECMWF and
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NCEDP respectively. The success of ensemble prediction with a moderate numbers
of realizations (order 50-100) gives hope that a similar strategy can be made to
work for data assimilation. However, as opposed to the circumstance in ensemble
prediction, more than the forecast uncertainty, the forecast error covariance is
needed for the EnKF. The advantage of the EnKF is that 100 realizations of short
range forecasts is far less expensive to compute than a forecast for n x n elements
of a full covariance matrix. There are two other advantages that come along with
the EnKF: first, the issue of initialisation of the ensemble realizations using bred
or singular vectors diminishes since the post-observation ensemble is required to
estimate, as accurately as it can, the uncertainty in the forecast system at that time.
The assimilation ensemble is an appropriate set of realizations to initiate an en-
semble prediction, although one might wish to augment this ensemble with
realizations spanning additional directions, e.g. selected singular vector directions.
Second, since the model used to advance the state variable in each of the ensemble
realizations is the full non-linear prediction model, no linearisation approximation
is made and so EnKF is an efficient algorithm for extending the Kalman filter to
the non-linear dynamics domain (the so-called extended Kalman filter).

The EnKF is sequential so a description of its basic cycle begins with an en-
semble of forecast states just after observations have been incorporated into the
system. All members of the ensemble are updated using the forecast model to the
time at which a new observation is available. At this point the forecast error co-
variance is estimated using the ensemble of realizations. The observation and the
estimate of the observed quantity are optimally combined using the forecast error
covariance and the observational error variance to determine the BLUE for the
quantity. Using the forecast covariance all the state variables which are correlated
with the observation are updated in each realization of the ensemble in a manner
which updates the mean and covariance of the ensemble so that it is consistent
with the BLUE (i.e. linear Kalman filter) expected reduction in error. This des-
cription is for a single observation but in fact the algorithm can be shown to be
independent of order if multiple simultaneous observations are to be assimilated as
is the case for the radiosonde network. Each individual observation can be assimi-
lated sequentially as if their arrival were at differing times without changing the
assimilated state. At any point in the cycle an ensemble of realizations reflecting
the uncertainty of the state vector is obtained and can be used for ensemble predic-
tions (details of the EnKF formulation are given in the appendix).

As one can note from the description of the EnKF, there remain at least two
weaknesses in the EnKF as currently formulated. The first is the standard concern
in using ensembles: that with a small number of realizations in a high dimensional
system, sampling errors can be substantial. The optimistic perspective regarding
sampling errors is that while an atmospheric model has several million degrees of
freedom, the dynamical structure of the atmosphere is such that at least locally the
relevant number of degrees of freedom for the atmosphere is small and that the
prediction model evolution does an excellent job of singling out the most relevant
and important degrees of freedom for error growth. This is the rationale for bred
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and singular vector ensemble sampling strategies and it is hard-wired into the
EnKF. The second weakness is related to the mix between linearity and non-linearity
in the current version of the EnKF. As described above, the sole extension to non-
linearity is the use of the fully non-linear equations to advance the state vector and
error covariance. All other aspects of the algorithm are identical to the linear KF. This
restriction is not absolutely necessary but it is convenient and can be considered to be
equivalent to fitting a Gaussian distribution to the ensemble of realizations for the
purpose of determining the weighted compromise between the observations and the
forecast realization. This is similar to what is done in 4D-Var where a linearisation of
the forecast model is used. Thus, the EnKF as currently used will suffer in the same
highly non-linear threshold situations (e.g. rain/no rain) that are problematic for 4D-
Var. This limitation can be removed using a Bayesian formulation, but doing so is
beyond the current state of the art in EnKF.

5.2.5 Atmospheric Initialisation

As developed earlier in this section and in operational practice, all observations
are compared with the “virtual’ observations that would have been obtained from
the background guess field at the time of observation. This requires a so-called
forward operator, denoted H (X) earlier, to convert from the model state vector
to the particular observation. In the case of direct observations of state variables
like temperature or winds this is usually only a spatial interpolation operator. In
contrast, in the case of satellite radiances, extensive radiative transfer modeling is
needed to connect the observed radiances with the state vector at a given time.

The need for forward models is just one of the challenges associated with the
incorporation of satellite data into the assimilation cycle. In addition to this is the
challenging nature of the spatio-temporal structure of the data itself (see Section
5.3.1). Despite the challenges associated with satellite data, one of the great suc-
cesses in moving to a variational framework for assimilation has been the improve-
ments in forecasts directly attributable to the improved extraction of information
in satellite radiances. This is primarily attributable to the use of forward operators
instead of independently derived equivalent vertical soundings in the assimilation.
The most convincing demonstration of this is shown in Fig. 5.1 which depicts the
improvements in Southern Hemisphere forecast skill at the ECMWEF. Since
ground based observations are much more sparse in the Southern Hemisphere, the
duplication of the Northern Hemisphere skill by forecasts for the Southern Hemi-
sphere is due almost entirely to the improvements made in incorporating satellite
data into the assimilation.

Another aspect of data assimilation that was ignored in the discussion of meth-
odology is the need for imposing a so-called balance constraint in the process
of assimilating observations. The need for a balance constraint comes from the
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Fig. 5.1 Improvement in the anomaly correlation skill score in ECMWF forecast system over
the past 25 years. Improvement is shown for various forecast lead-times up to a 10 day lead. The
upper curve for each lead-time shows skill in the Northern Hemisphere while the lower curve
shows skill in the Southern Hemisphere

necessity of dimensional reduction that was discussed with regard to the Kalman
filter. In particular, the use of localization in the ensemble covariances, necessary
because of severe statistical under-sampling problems, can generate unbalanced
motions in a balanced ensemble. A balance constraint on the assimilation provides
information that restricts the degrees of freedom allowed to respond to data. The
basic constraint used in this restriction is that the atmosphere (and thus a predic-
tion model of the atmosphere) should not evolve too fast. Specifically, the
atmosphere and atmospheric models support motions on a wide span of space and
timescales, from sound waves to quasi-stationary variations due to slow forcing
of the atmosphere by the ocean. Weather variations evolve and progress on a
timescale of days to weeks for synoptic scales and hours to days for convection
and mesoscale disturbances. The fact that weather does not propagate as fast as
acoustic and high frequency buoyancy oscillations is used in variational assimila-
tion methods to maximize the information associated with an observation. The
process of filtering high frequency oscillations from the assimilated state requires a
compatibility condition (i.e. a balance of the terms responsible for the oscillation)
resulting in a balance condition. This is described mathematically in the appendix.
The dispersion diagram for waves in an equatorial beta plane model of the tropical
atmosphere is shown in Fig. 5.2. For the external mode of the atmosphere and the
equatorial beta plane model, the phase speed of the Kelvin wave shown in this figure
is the same as a sound wave, propagating at 300 m/s. This is far faster than the speed
of Rossby waves which propagate at the advective speed of ~10-20 m/s.
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Fig. 5.2 The dispersion diagram showing the scaled frequency vs wavenumber for waves on an
equatorial beta-plane. Eastward propagating waves have positive wavenumber while westward
propagating waves are denoted with a negative wavenumber

With 4D-Var the temporal consistency of the dynamics is such that the need for
balanced initialisations independent of the assimilation cycle has diminished and
in practice it is no longer carried out. In the atmosphere it is more convenient to
enforce balance as a weak constraint, i.e. penalizing imbalance in the penalty func-
tion. Similar balance constraint arguments apply in oceanic data assimilation too.

5.2.6 Introduction to Oceanic Assimilation

For climate prediction on timescales longer than a few months the main source of
predictability comes from the ocean component (e.g. Palmer and Anderson 1994).
Therefore particular attention has to be devoted to the way in which the ocean is
initialised. On the other hand, climate prediction is a field considerably younger
than weather prediction and so data assimilation in the ocean has lagged behind its
sister discipline in the atmosphere. In fact, most techniques used in ocean data
assimilation were first developed for atmospheric data assimilation (one exception
is the EnKF, which was initially tested in an oceanic context), and these were
described in the previous section. Climate forecasting is not the only driver for
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ocean data assimilation, but it has provided the main impetus. Given that data as-
similation methods have already been introduced, only some practical aspects of
the methods used for the ocean are described in this section.

5.2.7 Methods used by Prediction Centres for Preparing Ocean
Initial Conditions

As mentioned in the introduction (Chapter 1), several research and/or operational
centres, such as ECMWF, the UK Meteorological Office and the Australian
Bureau of Meteorology Research Centre (BMRC), routinely produce seasonal
forecasts. The data assimilation systems used to initialise the ocean component are
normally based on either optimal interpolation or 3D-Var. Although the basic
formulation of the background errors in the OI or 3D-Var frameworks is pre-
scribed, and therefore fixed in time, it is possible to introduce more complex flow-
dependent features. So, for instance, even when only temperature observations are
available at a certain location and they are directly assimilated, salinity corrections
can be applied too by exploiting ocean physical and dynamical features (e.g. the
preservation of the temperature-salinity relationship, as in Troccoli and Haines
1999). This procedure introduces a flow-dependent feature to the background
errors of the OI system. It is therefore analogous to including a time-varying di-
mension to the OI. In addition, the salinity corrections are designed in such a way
that imbalances in the density field, normally present when temperature is modi-
fied independently of salinity, are markedly reduced (Troccoli et al. 2002).

5.3 Observing Systems

Up to now, only the methodology of data assimilation for the purpose of prediction
has been described without any discussion of the observational data that goes into
the process. Since observations are the essential ingredient of a data assimilation
system, it is crucial to know what the main components of the atmospheric and ocean
observing systems are. A comparison between these two systems is also explored.

5.3.1 The Atmospheric Observing System

Atmospheric observations can be segregated into two types: in situ measurements of
variables which require sensors to be collocated with the measurement and remotely
sensed measurements which rely on inferring physical variables from afar through
the inversion of a radiated signal. The radiosonde measurements and satellite
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temperature retrievals are prototypical examples of in situ and remotely sensed data
streams used in atmospheric assimilation. Figure 5.3a shows the temporal evolution
of satellite sources as used in the ECMWF data assimilation system (i.e. most of the
available satellite sources). In Fig. 5.3b it can be seen how the increasing number of
satellite data sources have reflected on the growth in the number of data used in the
ECMWEF analysis: in excess of 5 million data are used each day.

The spatial data coverage of atmospheric measurements is shown Fig. 5.4. The
different coverage for the in situ observations (top two panels) and that for satel-
lite observations (lower two panels) it is noticeable. Quantities normally measured
by in situ instruments are temperature, wind velocity, pressure, humidity and pre-
cipitation. Currently, there are about 600,000 in situ observations available per day
on average (see Fig. 5.3b). Typical measurements from instruments on board sat-
ellites are radiances (which depend on temperature and humidity), wind speed and
cloud products. The number of satellite observations is much larger than the num-
ber of in situ observations: as shown in Fig. 5.3b they are about ten times larger
and they are predicted to grow considerably over the next decade. Table 5.1 below

details the data sources and the variables they measure.
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Fig. 5.3 (a) The growth and mix of satellite observations used in ECMWF operational analyses.
(b) The total number of observations used each day in the operational ECMWF analysis as a
function of time
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Fig. 5.4 Typical data coverage over a 6-hour period for different data sources. (a) Synop/ship
instrument which measures surface temperature, wind velocity, pressure and precipitation;
(b) Aircraft for temperature and wind; (c) GRAD for geostationary radiances; (d) ATOVS for
polar orbiting radiances. (a)—(b) are in situ measurements whereas (c)—(d) are satellite measure-
ments (as can noticed from their different coverage)

Table 5.1 A summary of the main observation sources (in parenthesis is their technical name)
and the variables they measure. The variables are denoted by u and v for wind components, z for
geopotential height, p for surface pressure, T for temperature, rh for relative humidity and q for
specific humidity, respectively

Observation source Measured quantities
IN SITU

Synoptic surface observations (SYNOP/ SHIP) u, v, p (or z), rh
Aircraft reports (AIRCRAFT) uv,T,q
Drifting buoy reports (BUOY) uVv,p
Radiosonde soundings (TEMP) u,v, T, q

Wind soundings (PILOT/PROFILER) u, v
SATELLITE

Satellite cloud track winds (SATOB) u, v
Geostationary radiances (GRAD) Radiances
Polar orbiting radiances (ATOVS) Radiances

Wind scatterometer (SCAT) Wind speed
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5.3.2 The Oceanic Observing System

Despite the volume of the ocean being only about three times smaller than that of
the atmosphere (ca. 4.2:10!8 m3 for the atmosphere and ca. 1.4-1018 m3 for the
ocean),” the number of observations in the ocean is considerably smaller than
those in the atmosphere. This disparity has contributed to the slower progress in
oceanic data assimilation.

In the 1980s the number of oceanographic observations available was several
orders of magnitude smaller than its meteorological counterpart. However, with
the advent of satellite oceanography, starting in the 1980s, things have changed
considerably. Still, there is only so much satellites can measure over the ocean:
most notably, the sea surface height (SSH), the SST, the sea surface salinity (SSS)
and ocean colour. The oceanic medium is, in fact, opaque to most electromagnetic
waves, the most transmittable frequencies being in the visible range (corresponding
wavelengths are from ca. 1 pm to ca. 100 nm), for which the penetration has an
e-folding scale of about 20m at most (Apel 1987). In practice, therefore, remote
measurements are only used to observe the surface of the ocean. To learn about the
ocean subsurface, direct measurements are necessary, via so-called in situ instruments.

In terms of surface measurements, the SST is one of the most relevant quanti-
ties. Instruments which remotely measure SST are on board several satellite
missions. With the objective of developing a new generation of global, multi-
sensor, high-resolution (~6 hours and 10 km) SST products, an international pro-
ject, GHRSST* (The GODAE High Resolution SST), has recently started.

Another remote measurement is SSH, which has been measured from space
since the mid-1980s. The first mission was Geosat launched in 1985, followed by
ERS-1, ERS-2, Geosat follow-on, TOPEX/Poseidon and currently Jason-1. Sea
surface salinity is also a quantity that can in principle be measured from space,
although the accuracy of remote SSS measurements is not as good as that of SST.
Despite the fact that both salinity and temperature affect the density of seawater,
salinity is still poorly observed. Plans are underway, however, for satellite mis-
sions (SMOS — Soil Moisture and Ocean Salinity — due for launch in 2008 and
Aquarius due for launch in 2009) to measure SSS.

Up to the beginning of the 21st century, the majority of in situ instruments only
measured temperature profiles. These included instruments like XBTs (eXpend-

* The volumetric ratio is actually much larger if we consider that only the upper ocean is relevant
for seasonal predictions. This implies a more dramatic effect on the disparity of number of ob-
servations between atmosphere and ocean. However, it should be born in mind that volume
consideration is only part of the story because the time and space scales of processes in the two
media are different too. The bottom line is that roughly speaking the ocean is less well observed
than the atmosphere.

* http://www.ghrsst-pp.org/
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able BathyThermographs), mostly along shipping lanes, and the TAO-TRITON
array (Tropical Atmosphere Ocean/Triangle Trans Ocean Buoy Network), which
consists of approximately 70 moorings in the Tropical Pacific Ocean.’ The Tropi-
cal Ocean Global Atmosphere (TOGA) programme provided the framework into
which these moorings, as well as some XBTs and other in situ measurements like
tide gauges were developed from the mid-1980s to the end of the 20th century. In
addition, campaigns or fixed term projects such as WOCE (World Ocean Circula-
tion Experiment) also provided in situ observations. Since the year 2000, a new
observation system called Argo has been introduced. This system has largely
modified the way in which the ocean subsurface is observed. Before Argo, obser-
vations were mostly taken at the same location (e.g. TAO array) or along tracks
concentrated along shipping routes (e.g. XBT profiles) or within limited regions
(e.g. Conductivity-Temperature-Depth, CTD) during research campaigns. With
Argo, which consists of free-drifting profiling floats that measure the temperature
and salinity of the upper 2,000 m of the ocean, most of the ocean can in principle
be covered. A large number of Argo floats have been deployed so far: in mid-2006
there were about 2,500, and this should reach about 3,000 in 2007-2008; their
measurements are available in near real time.°

To maintain the collected data also requires considerable and concerted efforts.
Under the CLIVAR” (Climate Variability and Predictability) and GODAE umbrellas,
several regional projects have taken the challenge to contribute to the development
of continuous, automatic, and permanent ocean observation networks. For instance,
in the USA the USGODAE? project is the reference point, while in Europe, Coriolis’
has taken the lead. In addition, researchers such as those at the UK Met Office,
produce and maintain a range of gridded datasets of meteorological variables for
use in climate monitoring and climate modelling.'’

5.3.3 Comparison Between Atmospheric and Oceanic Systems

Figure 5.5 shows the temporal evolution of in situ observations in the ocean, for
temperature and salinity separately as well as for their sum. Temperature observations
have consistently outnumbered salinity observations. There are two important

> http://www.pmel.noaa.gov/tao/
S http://www.argo.ucsd.edu

7 http://www.clivar.org/

¥ http://www.usgodae.org/

? http://www.coriolis.eu.org/

' http://www.hadobs.org/



112 J. Tribbia, A. Troccoli

reasons for this: salinity plays a secondary role in the sea water density and salinity
is much more expensive to measure. However, with the advent of Argo floats this
discrepancy has been considerably reduced (see Fig. 5.5 after the year 2000).
More generally, with Argo the oceanic observing system has drastically improved,
both in terms of coverage and in terms of number of observations. Given the im-
mensity of the oceans, large gaps still exist and more observations are needed in
order to reduce the uncertainties in the oceanic circulation, as also concluded by
the recently completed EU project ENACT (ENhanced ocean data Assimilation
and ClimaTe Prediction, see the ENACT web site for more info'").

It is apparent then that by comparison with the ocean, the atmosphere is much
better observed with an average of about 600,000 in situ observations per day com-
ing from instruments like Synop, Aircraft, Pilot/Profilers, Buoys and Temp. Since
the in situ observations in the ocean are only about 15 thousand per day (Fig. 5.5),
the observing systems in the two media differ by a considerable factor of forty.'*

Number of observations per day (x103)
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Fig. 5.5 Global number of in-situ oceanic observations on typical model levels as a function of
time (dotted line: salinity, dashed line: temperature, solid line: sum of the two). Temperature
observations have historically been more abundant than salinity ones. The noticeable downturn
in observations in the 1990s was due to the reduction in XBT (eXpendable BathyThermographs)
profiles. Since 2000, however, with the advent of the ARGO floats (see text), salinity — as well as
temperature — observations have considerably increased.

" http://www.ecmwf.int/research/EU_projects/ENACT/index.html

"2 However, this comparison does not take into consideration differences in the physical charac-
teristics of the two media, such as the different radius of deformation (smaller in the ocean) and
the different timescales of variability (longer in the ocean). Even taking such differences into
consideration, it is likely that the ocean remains under-observed compared to the atmosphere.
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5.4 Impact of Oceanic Data Assimilation on Seasonal Forecasts

One of the purposes of data assimilation in the ocean is to provide improved initial
conditions which should lead to improved seasonal forecasts. In the absence of
oceanic data assimilation facilities, a fallback solution is to use the oceanic initial
conditions created by a forced-only integration, i.e. an integration with exactly the
same settings as those used in a data assimilation experiment but without assimi-
lating any data.

Despite seasonal forecast performance being germane to the testing of ocean data
assimilation systems, there is a surprisingly modest amount of literature which
addresses this issue. Some of the reasons for this paucity will become clearer later in
this section. Alves et al. (2004), one of the few such references, showed that the use
of an OI data assimilation system improved considerably the performance of their
coupled model seasonal integrations. More recent results, outcome of the ENACT
project, are presented here (Davey 2006). In Fig. 5.6, the assessment of the impact of
a 3D-Var assimilation system of seasonal hindcasts (or retrospective forecasts or
even re-forecasts) is made in terms of SST anomaly correlations for four different
start dates (1st Feb, 1st May, 1st Aug and 1st Nov) so chosen to resolve the annual
cycle. These correlations are compared to another set of hindcasts, started from a

NINO34 SST: anomaly correlation wrt NCEP 0lv2
60 start dates from 19870201 to 20011101 (Feb/May/Aug/Nov)
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Lead time (months)

Fig. 5.6 Anomaly correlation for SST as a function of the hindcast lead-time for 3D-Var (solid)
and forced-only (dashed). The dotted curve uses persistence as the predictor, i.e. using the value
of the month zero for all subsequent months. The assessment period is 1987-2001 and the region
is NIN03.4 [170-120°W, 5°S—5°N]. Correlation is very high for both hindcast sets and it is
slightly superior for the 3D-Var case
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forced-only ocean run (dashed line), and to predictions made using persistence, i.e.
using the value of the month zero for all subsequent months. "

In the central equatorial Pacific (the NINO3.4 region), correlation values for
both sets of hindcasts (forced-only and 3D-Var initial conditions) are very high —
in excess of 0.85 at 6 month lead-time — and markedly better than persistence —
less than 0.6 at 5 month lead (Fig. 5.6). The high correlation in these hindcasts is a
manifestation of the ability of the coupled model to capture well the SST variabi-
lity on seasonal timescales in this region. This ability seems to be independent of
the two methods used to provide the initial conditions, however, as the correlation
for 3D-Var is only marginally better than that for forced-only. This similarity is an
indication that, in this region, both the surface forcings used to produce the ocean
initial conditions and the characteristics of the coupled model (and its errors) play
a prominent role. However, these two factors, the surface forcings and the coupled
model errors, play different roles. Whereas improvement in the surface forcings,
as have happened in recent years, bring the forced-only and the data assimilation
hindcasts closer to each other, improvements in the coupled model, though much
more difficult to achieve, would increase their separation as the effect of better
initial conditions via the use of data assimilation should reflect on the dynamical
evolution of the coupled system on the seasonal timescale. These results thus indi-
cate that, currently, the error in the coupled hindcasts is dominant as it reaches
about 0.5°C in root-mean-square error (RMSE) in NINO3.4 at lead-month 6 (Fig.
5.7), which is large considering that the interannual variability is only about twice
that (not shown). This large RMSE is believed to be largely due to errors in the
coupled forecast model that manifest themselves both at the beginning, via the so-
called coupling shock, and during the integration of the coupled models; these
model errors are one reason why assimilation of ocean data makes only a modest
impact on the seasonal hindcast skill.

It is instructive to assess forecast performance in regions other than the equato-
rial Pacific, hitherto undoubtedly the primary target of seasonal forecasts given the
prominence of the ENSO signal. Correlations in the North Atlantic (Fig. 5.8) are
smaller than in NIN03.4 as expected from the map in Fig. 3.7, although their val-
ues are large in absolute terms. Unexpectedly, however, data assimilation does not
seem to have a positive impact on correlation. Closer inspection indicates that
correlations in the assimilation hindcasts are approximately constant over the 6
month range and do not suffer from the sharp drop at month 6, present in both the
forced-only run and in persistence. This behaviour seems to suggest that subsur-
face information contained in the 3D-Var initial conditions might have a positive
impact on the hindcast performance, possibly via the emergence of subsurface
signal. It is also worth noting that oceanic regions other than the tropical Pacific

"3 Persistence is the cheapest way to make predictions.
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have received less attention in the context of data assimilation (e.g. balances in
density and velocity fields used near the tropics may not hold at higher latitudes)
and hence the potential for improvement may be substantial.

NINO34 SST: rms errors wrt NCEP 0lv2
60 start dates from 19870201 to 20011101 (Feb/May/Aug/Nov)

Lead time (months)

Fig. 5.7 As in Fig. 5.6 but for the root-mean-square error (RMSE). As for the correlation in Fig.
5.6, the RMSE in both hindcast sets is considerably reduced with respect to persistence. More-
over, the initial conditions provided by the 3D-Var assimilation yield improved hindcasts
RMSEs for all lead-times compared to the hindcasts started from forced-only oceanic initial
conditions

NATL SST: anomaly correlation wrt NCEP 0lv2

60 start dates from 19870201 to 20011101 (Feb/May/Aug/Nov)
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Fig. 5.8 As in Fig. 5.6 but for the North Atlantic region [70°W—15°E, 30—70°N]. For this mid-
latitude region, the two hindcast sets do not perform as well as in Nifio3.4 and the 3D-Var initial
conditions do not seem to yield improved correlations in the first few months of the hindcast.
Ocean data assimilation in mid-latitude has thus far received less attention than in tropical
regions. Persistence, on the other hand, is a better predictor than in Nifio3.4
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In the case of the ocean, it is arguable whether “less sophisticated” methods
such as OI or 3D-Var, together with improvements as discussed in Section 5.2.7,
might be as effective as the “more advanced” methods when seasonal forecast
performance is taken as the measure of success. As part of the ENACT project,
two of the more advanced methods, 4D-Var and EnKF, were also used to provide
initial conditions for seasonal forecasts. Albeit preliminary, results from these two
methods showed no significant improvement in forecast performance. While it is
true that further development is needed for methods such as 4D-Var and EnKF for
the ocean, the apparent lack of impact is likely related to the size of coupled model
errors, as discussed above.

5.5 Data Assimilation: An Outlook

5.5.1 What Assimilation Methods are Going to be used in the
Medium Term for Initialising the Ocean?

In order to address this question, it is useful to recall the main features in a data
assimilation system used to create ocean initial conditions. The principal quality of
an oceanic initial condition is the optimal use of as many available observations as
possible accompanied by the attainment of a well balanced oceanic state. Such an
initial condition would provide an accurate representation of the ocean state and at
the same time should help reduce errors due to coupling shocks. In principle, the
two best candidate methods to achieve this twofold objective are 4D-Var and
EnKF. As presented in Section 5.2, the former has the advantage of providing a
dynamically consistent representation of the system over the relatively short as-
similation window, whereas the main advantage of the latter is the representation
of flow-dependent features which have evolved over time, derived from an en-
semble of realisations. The disadvantage of both systems is that they are com-
putationally demanding and this limits the amount and speed of experimentation.
Moreover, systematic errors in the coupled model are a significant cause of fore-
cast error. Neither 4D-Var nor the EnKF, in their normal forms as described here,
are designed to cope well with systematic errors. This is why, at present, systems
such as improved OI and 3D-Var are the preferred choice of most, if not all, sea-
sonal forecasting systems with ocean data assimilation capabilities.

In summary, although 4D-Var and EnKF are considered as the best options for
the medium term future of ocean data assimilation, further developments are
needed before firm conclusions can be drawn in terms of their impact on seasonal
forecasts. It should also be kept in mind that model errors arising during the cou-
pled integration might hinder improvements in the initialisation procedure and
therefore the seasonal forecast metric may not be the best to assess the quality of a
data assimilation system.
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5.5.2 Coupled Data Assimilation: Arguments for and Against

Up to now, the discussion has been concerned only with data assimilation per-
formed separately in the model components, namely in the atmosphere and ocean.
As seen in Section 5.1.1, there is only a very weak coupling, via the commonly
used SST, in the assimilation across component models and so there is no attempt
to reach an optimal coupled state of the system for prediction purposes. Since sea-
sonal prediction depends critically on coupling the atmosphere to the ocean and land
surface, the question of assimilation in coupled climate models should be addressed.

The idea of performing data assimilation in the coupled system, rather than car-
rying it out in each component separately as is currently done, has appealed to
scientists for quite some time, as illustrated by Miyakoda as far back as 1986. Al-
though it is considered as a fascinating area of research, coupled data assimilation
has not yet properly taken off.

There are three main reasons why this is so. First, as described earlier, the most
advanced methods of assimilation are extremely computationally expensive and
coupling an atmospheric model to either an ocean or land surface model for joint
assimilation only exacerbates an already severe resource limitation. The dimen-
sionality of the problem increases by the dimensionality of the additional ocean
model’s degrees of freedom and the consequent need for covariance information
of co-varying component model variables like SST (ocean) and cloudiness
(atmosphere). Second, there is a large mismatch between the natural timescales of
the atmosphere, the ocean and the land surface; the ocean and land can be treated
as stationary boundary conditions for the atmosphere over an assimilation cycle
without much error. Because of this, the decoupled assimilation method sketched
in Section 0 works well. Lastly, there are very large systematic biases in coupled
models which can overwhelm the benefits of consistency and information sharing
that are the raison d’etre for coupled assimilation. An example of the speed with
which such biases can impact coupled forecasts is shown in Fig. 5.9, depicting the
systematic 2 m temperature biases at month zero (top) and month 1 (bottom) lead-
times in an ensemble of ENSO predictions using the ECMWF coupled model.

In spite of these technical and conceptual difficulties, the interest in the scien-
tific community to tackle the issue of coupled assimilation is rising and works
such as that by Galanti et al. (2003) might signal the beginning of this new phase
in data assimilation.

5.6 Mathematical Appendix

Because so much of data assimilation requires mathematical expression to describe
the methods used, many of the mathematical details of the methods presented in
the core of the contribution have been relegated to this appendix. It is hoped it can



118 J. Tribbia, A. Troccoli

60°N
50°N
40°N
30°N
20°N
10°N

10°8
20°8
30°8
40°8
50°8

120°E 160°E

60°N
50°N
40°N
30°N
20°N
10°N

o
10°8
20°8
30°S

40°8
50°8 3
160°W 120°W 80°W 40°W 0" 20°E 40°E 60°E 80°E 120°E 160°E
_____ I —
-4 -3 2 Sl 05 025 075 15 25 3.5

Fig. 5.9 The evolution of the 2 m temperature systematic error (or bias) in °C at month zero
(top) and month 1 (bottom) lead-times in an ensemble of seasonal forecasts using the ECMWF
coupled model (System 3). Note how the bias generally increases with increasing lead-time. The
ensemble of cases is taken from asset of forecasts initiated at the beginning of each July from
1981 to the year 2000 (hence top panel shows July mean and bottom panel August mean)

be used as a concise reference for those actually attempting to practice the art
of assimilation. A note of caution has to be spent: practical applications of any
assimilation method are always distinctly different from their theoretical formula-
tion. Therefore, if you intend to implement any of the following methods, it would
be prudent to consult the given references.

5.6.1 Least Squares Minimization

The method of Panofsky used a least squares polynomial fit to the height field, i.e.

z(x,y) = Zai,jxiyj-

i+j<3
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The coefficients a;; are determined by minimizing the misfit at the observation
points. Thus

I= Z(Z_Zobs)z

obs

is minimized by differentiating / with respect to each coefficient and setting the
derivative equal to zero,

ol
oa,

i,j

=0.

This results in a linear algebraic system of equations to be solved for the a;; ’s.

5.6.2 Cressman Scheme

The scheme of successive corrections developed by Cressman and Bergthorsson
and Doos assimilates deviations from a background or first guess. So for any state
variable, say the temperature T at point j, its increment is given by:

D wliy )T, () =T, (i)
T (N =T, (j) =F——
Zw(i, 7

where T}, is the first guess temperature and the sum is over all i = 1,2,...N
temperature observations present at analysis time. The weight function given by
Cressman is

2 .o\ 2
w(i, j) = max(O,% ,
r-+d(,j)

where d(i,j) is the distance between the points i and j. The analysed temperature is
thus a weighted average of the background and the increments to the background,
or innovations, from the observed temperature.
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5.6.3 Optimal Interpolation (OI)

This method, pioneered by Gandin (1965), uses the statistical covariance between
fields at different points in space to determine the interpolation weights. As in the
Cressman scheme it uses the anomaly of both the observations and the analysed
field from a background field supplied from climatology or a forecast field. This is
done as follows. The field is broken into the guess and the anomaly,

'

fgrid ~ fguess + fgrid

where the guess field, assumed to be bias-free, is climatology in Gandin’s original
formulation and the anomaly is assumed to be a weighted average of the anoma-
lies in the observations, i.e.

fgrid = Z ka}(,()bb‘
k

The weights are then selected using the minimum mean square error (least
squares) criterion, with

E2 = (f 'grid_f'true)z

being the mean square error and at each grid point then

E_[2: (f/‘ _f:gfuess _zwkf‘k )2

where the over bar denotes the statistical average and i and & represent the analysis
point and the observation points respectively. Minimizing, results in:

OE?
E =0:>(f',-f'k)=ZWj(f'_,- /)

ow,

which is a linear algebraic equation for the weights in terms of the two-point
covariances of the field 1.

Ol is usually implemented by solving these simultaneous equations in matrix
form (they turn out to be the same equations as for 3D-Var below, see Lorenc
1986). There are as many equations as observations, so to reduce computational
costs only a local selection of observations is used in each location.
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5.6.4 Variational Assimilation

Both 3D-Var and 4D-Var have a similar structure with only minor modifications
in the final form of the assimilated state. Of course, the computational cost and
actual assimilated state are generally very different. 3D-Var begins with the cost
function defined as:

J=H(E-%) BTG -%)+ K (-HE) R (Y- H ()

where the various terms have been defined in Section 5.2.4. Differentiating this
gives an equation for its gradient with respect to x:

VJ=B'(x-%)-HR'3-H(,))+HR'H(Z-%,)

where J has been expanded about the background state, X, . Setting the gradient to
zero to find the minimum gives:

X, -% =B"+HR'H'HR'(G-H®,)).

The distinguishing feature of 3D-Var and 4D-Var algorithms is that they only
need software to calculate the scalar J, and its gradient grad, J; the latter is the size
of a model state and so no more complicated to manipulate. With these, and an
appropriate descent algorithm, the x which minimises J can be found to any
desired accuracy, without ever needing to explicitly represent or manipulate the
matrices B and R — which would be impossible for the size of models and num-
bers of observations used.

The equivalence between this approach and OI can be seen by deriving an
explicit equation for the 55“ which minimises the penalty function. At the minimum
VJ=0, giving:

%, =% +K(3-H(%,)).

The Kalman gain matrix K, so-called because it appears also in the Kalman
filter equations below, is given by:

K=B"'+HR'H'HR'H.

But this form is not the most convenient because of the many matrix inverse
operations. With some matrix manipulations an equivalent form,

K=BH (HBH' +R)"',
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can be developed which is computationally less demanding and is of the form
where the uncertainties in the background and observations are more easily seen
as contributing to the weight of each. Neither of these forms for K can even be
stored, let alone calculated, for the huge models and many observations in our
problems. The second form, made cheaper by considering at one time only a lim-
ited local area and data selection, is implemented in OI.

It is common to use an incremental form of 4D-Var, in which one assumes
that the problem can be well approximated in a linear fashion in terms of
ox=x(t)— X, (t). Linearity enters through the use of a linear model to update
0x(t,)=M, 0x(t,), where M, is the linear operator (matrix) propagating
the initial Value ox (l‘ o) to the ith tlme interval. The 4D-Var cost function is then
given by:

J(85(ty)) = (6%(1,)) B~ (5%(¢,))
+Z ((5J7k - H(Mk,oé‘f(to )))T Rkil (5)71( - [——I(Mk,oé‘i(to)))

where 0y, = y(¢,)—H(X,(¢,) ) and the linearised propagator M has been
used to update the deviation state vector OX . Note that the summation over the
index k corresponds now to a summation over all the observation within the time
interval over which J is defined. As above, the analysis increment to the back-
ground can be written in terms of a gain matrix of the form

K=BH'(HBH" +R)" or K=(B"'+H'RH)"'H'R™
so that the analysis increment is:

5x(1,) = (B™ + > (HM,)" R(HM,)" Y (HM,)" R"'(HM, )57,

An additional step normally taken is to further re-arrange the terms so as to
avoid directly defining the matrix B . This is done by defining B as B =UU"
After a little math: J, = i Oui .

Useful references for atmospheric applications of 4D-Var are Klinker et al.
(2000), Fisher (2003), Lorenc and Rawlins (2005) and for the oceanic applications
Vialard et al. (2003), Weaver et al. (2003, 2005).

5.6.5 The Kalman Filter

The main advance in the Kalman Filter is the use of a forecast of the error covari-
ance. Consistent with linear dynamics



5 Getting Coupled Model Ready 123
S%(t) =M, ,5%(t,).

the forecast error covariance at time step i + 1 is given by

Pa (Z)MT i + Q

i+,

P (i+1)=M

i+1,0

where Q is a model error covariance taken to be white noise in time and P, (i)
is the analysis error covariance at time step i. The gain matrix is:

K(i) =P, ()H" ()(H@HP,(H () + R()"
so that the analysis increment is given by
X, () =X, () =K@O(y@) -H@)x, (i)

where the increment is the difference between the analysis and forecast state
vector. To complete the algorithm the analysis error covariance must be specified;
for minimum mean square error it is:

P,()) = I-K@OH@)P, ().

If the model M is linear, and if we either set Q = 0 here or allow for non-zero Q
in 4D-Var, then these equations have an identical solution to 4D-Var. The differ-
ence is in the algorithm — 4D-Var iterates over a time window so that it can avoid
explicit representation of the error covariances, whereas the Kalman filter does not
iterate and can be integrated forward indefinitely, at the additional cost of explicit
representation of the covariance matrix.

5.6.6 The Ensemble Kalman Filter

In the Ensemble Kalman filter (EnKF) the idea is to assume the ensemble covari-
ance is a good estimate of the forecast error covariance:

S T N TN

(In practice the ensemble covariance is often localized in space to minimize the
sampling errors inherent in small magnitude, geographically distant correlations.)
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The analysis on each member of the ensemble:
x! =x/ +P/H (HP'H' +R) (v’ ~H(x)))
i =X y j
The same relation holds true for the ensemble mean:
x'=x’ +P/H" (HP/H' +R) (y” - H(F))

Useful references for oceanic applications are: Keppenne et al. (2005) and
Leeuwenburgh (2005).

5.6.7 Balance

The atmosphere supports free variations on multiple timescales and some high
frequency variations, like sound waves, typically have only very small amplitude.
This fact can be used to constrain assimilation. A model for the atmosphere can be
written in the following fashion

9x | 1w = N(X)
dt

where L represents linear terms in the equation and N represents the non-linear
terms. The fact that an atmospheric model can support high frequency variations is
evident in the structure of the characteristic frequencies associated with the eigen-
values of the matrix L. The development of a balance relationship begins with the
separation of the state vector X into low frequency components ) and high fre-
quency components Z using the eigenvectors of L to effect this decomposition.
The high-frequency equation can be written:

Balance conditions are derived by noting that high frequency variations can be
suppressed by minimizing the time derivative term in the equations in some fash-
ion. A simple way to minimize the time tendency is to set Z = 0, corresponding
to geostrophic balance in a primitive equation model. More refined balance condi-
tions posit a slave relationship between the high-frequency part of the state vector
and the low frequency components; i.e. Z = M (). This ensures that the dyna-
mics, at least for a short period of time, resides on a slow manifold of possible
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solutions and the constraint of balance can be used either diagnostically in assimi-
lation by requiring the covariance structures obey the balance constraint or
directly as part of the variational assimilation by imposing balance as a weak con-
straint.

Although (normal mode) initialisation was used for many years at weather cen-
tres such as ECMWEF, it is no longer used now that 4D-Var is operational having
been replaced by a weak constraint. It is not generally used in ocean analysis.



Chapter 6
Modelling the Atmospheric, Oceanic
and Coupled System

Brian Hoskins, Paul Schopf, and Antonio Navarra

A model of the coupled system consists of component models of the atmosphere
and of the ocean as well as software to link the two. The atmosphere must see
the slowly evolving ocean sea surface temperature (SST) while the ocean must
see the rapidly changing weather, in the form of the surface exchange of momen-
tum, heat and freshwater. Although one should consider the coupled system as a
whole, much progress has been made by considering aspects of the atmosphere
and ocean modules separately. Computer restrictions mean that both the atmos-
pheric and oceanic components have to be simplified. Many processes in both
media take place at scales smaller than can be resolved by the component models
and so must be parameterised as they cannot be explicitly resolved. Methods to
deal with limitations to parameterisation are discussed. A variety of ways of vali-
dating testing and improving atmospheric general circulation models is considered.
This can be done by making long runs of atmospheric models with observed SSTs
or with simplified earth systems, such as aqua-planet models, to determine the
importance of the process withheld. Often several different models are used in
order to intercompare results. Examination of imbalances early in the model fore-
casts can also give clues as to model deficiencies. This latter use is interesting as it
brings together to some degree weather and climate forecasting. Some other pro-
mising options are to run models at very high resolution for limited periods and
to use the model results to guide and test the development of parameterisations
appropriate for lower resolution. Early models of ENSO used ocean models of in-
termediate complexity in which the ‘essential’ physics was included but many
processes were either excluded or heavily parameterised. However, there are now
many coupled models using ocean general circulation modules. These are, like
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their atmospheric counterparts less prescriptive, with many more degrees of free-
dom. Parameterisation of subgrid processes is important particularly mixing along
and across density surfaces. How to deal with salt, poor representation of the flux
of freshwater across the surface, and the run-off from rivers and melting ice pose
particular challenges. Examples of model error in some key atmospheric fields
such as precipitation when the atmosphere is forced by the observed SSTs and
when the atmosphere is coupled to the ocean are shown. The errors may well get
bigger in the coupled case as errors in either the atmosphere or the ocean may
cause errors in the other medium and a positive feedback may result. This results
in climate drift, a major problem facing all modellers of climate, be it on a short or
a long climate timescale.

6.1 Atmospheric Models

Atmospheric models have been developed for the weather forecasting problem.
They form the central component of predictions on longer timescales, including
projections of climate change due to human activity and of predictive Earth sys-
tem models with the inclusion of extra ingredients such as interactive vegetation,
atmospheric composition and ice sheets.

The basis for the models is the set of equations for momentum, mass, thermo-
dynamics, and water vapour content. To put them on to a computer, these
equations for a continuous fluid have to be turned into a description of the system
using a finite set of numbers. This is usually performed using the values at a dis-
crete number of levels in the vertical, in the horizontal by using discrete points
alone or in combination with the coefficients of a representation in terms of func-
tions (spherical harmonics), and using discrete intervals in time. There is a wide
range of choices to be made over how to represent derivatives in space and time,
but there is considerable experience in atmospheric modelling and other computa-
tional fluid dynamics applications to guide this choice.

As will be discussed later, processes should either be represented explicitly or
parameterised, i.e. their effect on the model variables is represented in terms of the
model variables themselves. Considerable effort has been put into developing many
different parameterisations of radiative processes, clouds, convection of various
kinds, large-scale latent heat release, surface exchanges and boundary layer turbu-
lence, the drag associated with gravity waves triggered by mountains and perhaps
by rapid events in the atmosphere, and interior mixing processes. These have been
developed in the context of observational studies including special targeted obser-
vational programmes and, sometimes, detailed modelling of the phenomena under
consideration. For one version of the ECMWF model, the temperature tendencies
over the first time-step given by the radiation and convection parameterisations
zonally and over 1 year are given in Fig. 6.1a and b, respectively, and the total
tendency given by all the parameterisations in Fig. 6.1c.
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Fig. 6.1 Parameterised temperature tendencies computed from single time-steps in the ECMWF
model and averaged zonally and over 1 year: (a) Radiation, (b) Convection, and (c) Total.
(d) shows the residual between the total parameterised tendency (given in (c)) and the tendency
due to the dynamics

The resolution of the model and the detailed nature of the individual para-
meterisations used depend on the timescale for the prediction to be made and the
computational power available. For example weather forecasting for 1 day may
require only crude representation of some radiative processes, whereas climate
change simulations will need to reflect accurately the detailed effect of trace con-
stituents on the residual between short and long wave radiation. Currently, the hori-
zontal grid of the model may be 30—50 km for a global weather prediction model
and 100-250 km for a climate model. The vertical resolutions used in the various
contexts tend to be more similar, typically 0.5—1 km, respectively in the two contexts.

6.1.1 Model Performance Evaluation

6.1.1.1 Introductory Comments

The fundamental evaluation of model performance is through comparison with the
real system. There are a number of difficulties in this evaluation. Firstly, there is
uncertainty over the state of the real system at any instant and consequently in any
statistics derived over a period. Observations are limited in space and time and in
the components observed. Estimates of, for example, precipitation can be made from
rain-gauge data together with inferences from satellite radiance measurements.
Alternatively, use can be made of the data assimilation performed at operational
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forecast centres where all the available observations and the previous short range
forecast are combined together in the context of the model. However the product
of such data analysis will reflect any errors in the model used. Routine operational
analyses over a period suffer from the fact that the observational system changes
in time, e.g. there are few satellite data before 1979, and also that the analysis sys-
tem itself undergoes changes. To overcome the latter problem various centres have
performed reanalyses for many decades of observational data using modern analy-
sis systems. They also try to use data that may have not been available for the
analyses performed at the time. Details about reanalyses may be found at the web
address below.'

One particular reanalysis is that at ECMWF for the period 1957-2002 (Uppala
et al. 2005, see also Chapter 3). An atlas compiled from the so-called ERA-40 data
is available on the web” as well as a special quick access web version.” However,
whether in the routine operational process or in the special reanalyses there remain
considerable discrepancies in some fields, such as precipitation, between the pro-
ducts from different analysis centres.

The second uncertainty in evaluation of atmospheric model performance is
associated with the extent of the system concerned. For example in the seasonal
context if the atmospheric model is coupled to an ocean, any errors may, or may
not be due to defects in the ocean model. If the sea surface temperatures (SSTs)
and sea ice are held constant throughout the forecast then this will lead to errors. If
in hindcast mode the SSTs and sea ice are specified from observations, errors
could still arise due to the lack of two-way interaction between the atmosphere
and the underlying ocean.

6.1.1.2 Model Intercomparisons

Models may also be compared with each other as well as with the real system.
There has been a lot of such activity, focussed mainly on the World Climate
Research Programme/Working Group on Numerical Experimentation Atmos-
pheric Model Intercomparison Project (AMIP). A large number of comparisons of
particular aspects in many models run with specified SSTs and sea ice for a 17-
year period have been performed. One aim is to learn about the skill that may be
possible in predictions on monthly or seasonal timescales using current atmos-
pheric models. AMIP and other model intercomparison studies have proved very
successful in this regard. A second aim is to determine whether particular model
abilities or defects can be related to particular model ingredients. However, such

! See: http://dss.ucar.edu/pub/reanalyses.html
% See: hitp://www.ecmwf.int/publications/library/do/references/list/192

? See: http://www.ecmwf.int/research/era/ERA-40_Atlas/index.html
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associations have in general proved elusive because of the large number of non-
linear interactions and the large variety of processes represented in models.*

One approach to obtaining information on how fundamental aspects of model
results are related to its ingredients involves the making of drastic simplifications.
To learn about the representation of the basic equations, the so-called dynamical
core experiments (Held and Suarez 1994) reduce the physical parameterisation
package to a relaxation to a specified thermodynamic structure on a timescale of
about 1 week plus a simple boundary layer drag. To investigate the interaction of
the physical parameterisations with the dynamics, full models have been retained
but with the underlying planet simplified to be water covered everywhere with a
specified zonally symmetric SST plus possibly simple anomalies. A model inter-
comparison has been performed using such aqua-planet models.’ It has been found
for example that under certain circumstances some models give a single convec-
tive maximum on the equator, whereas others give two maxima either side of the
equator, a double Inter Tropical Convergence Zone (ITCZ).

6.1.1.3 Systematic Errors

For an operational weather forecast model, errors can be examined at various
timescales. Using the technique based on summing initial time-step tendencies
pioneered by Klinker and Sardeshmukh (1992), referring again to Fig. 6.1, if the
forecast model were consistent with the initial data given to it, then on average the
thermal tendency given by the parameterisations (Fig. 6.1c) would be exactly can-
celled by that associated with the resolved dynamics. Figure 6.1d shows that the
actual cancellation is far from exact. This could be due to errors in the observa-
tional data or its assimilation, in the equation representation in the model or in the
physical process parameterisation. In the latter cases it could be associated with a
systematic error or with a short timescale spin-up/adjustment process. The sys-
tematic error grows and evolves in time. However, as discussed in Jung (2005) the
growth saturates and the seasonal mean error for the same model run in hindcast
mode with specified SSTs (Fig. 6.2a) has many features in common with the
10-day error (Fig. 6.2b), and the long-term anticyclonic error over the western and
central North Pacific is in fact present even at day 3 (not shown).

6.1.1.4 Extratropical Systems

Two important aspects of the extratropical weather and climate are the storm-
tracks and blocking highs. The storm-tracks are the regions in which mid-latitude

* See: hitp://www-pemdi.llnl.gov/projects/amip/ for details of AMIP.
* See: http://www.met.reading.ac.uk/~mike/APE/ for details.
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Fig. 6.2 Systematic errors for Dec—Mar in the ECMWF model in the period of about 1960-2000 for
10 days (a) and seasonal forecasts (b)

weather systems characteristically grow move and decay. Any changes in the
Northern Hemisphere storm-tracks in any particular season are important, in par-
ticular for North America and Europe that are situated at the end of the two main
tracks. Figure 6.3 shows the average winter storm-tracks determined from ERA-40
(as in Hoskins and Hodges 2002) and from three AMIP models (which will have been
updated since this figure was made). It is clear that the models capture the general
storm-track structure but have errors in the detail that vary from model to model.
The frequency, intensity and positioning of blocking highs are crucial for any
season in many mid-latitude regions, and in particular for Europe. Blocking is
associated with a reversal of the usual westerlies on the equatorial flank of the high,
and strong meridional flows upstream and downstream and these features tend to
be fairly stationary. All these aspects lead to anomalous weather. On seasonal and
longer timescales it has been found that most models capture the regions in which
blocking tends to occur, but they under-estimate its frequency and intensity.

6.1.1.5 Tropical Behaviour

Models have general success in simulating tropical phenomena such as monsoons
on average though their variability is difficult to capture. On the seasonal time-
scale there is great interest in ENSO which is a coupled ocean-atmosphere
phenomenon for which there is some predictive skill. However the ENSO onset
may be strongly influenced by westerly wind bursts associated with the progres-
sion of large regions of organised convection from the Indian Ocean to the West
Pacific on a timescale of weeks. This “Intraseasonal or Madden-Julian Oscilla-
tion”, and also convectively coupled equatorial waves and even the diurnal cycle
all still provide big challenges for atmospheric models. See also Chapters 3 and 4.
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Fig. 6.3 Northern hemisphere winter storm-tracks in ERA data and in three AMIP (Atmospheric
Model Intercomparison Project) models. The field shown is the track density of cyclonic features
at 850 hPa (K. Hodges 2005, personal communication)

6.1.2 Prospects for Improving Models

A number of different approaches for improving models will be discussed.

6.1.2.1 Comparison with New Observations

The advent of a new observational instrument gives an opportunity for a fresh
view of model performance through a comparison with its observational data. For
example, in the SINERGEE project, the observations of outgoing long wave radia-
tion (OLR) and albedo made by the GERB satellite have been compared with
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Hadley Centre model data.® One conclusion was that in the model the Sahara
desert did not reflect sufficient solar radiation. Alternatively the new observations
may come from one of the special limited-time, focussed observational pro-
grammes.

6.1.2.2 Diagnoses of Observational and Model Data

The development and application of new diagnostics based on theoretical under-
standing may give new insights into model behaviour. The analysis of equatorial
waves with embedded deep convection provides one example. A diagnosis of con-
vection in the tropics, or equivalently of high, cold cloud shows that the models
do not correctly capture the peaks in wave number and frequency that are present
in the observations and the phase speeds are wrong. Going further than this, using
a new technique, based on equatorial wave theory, it is possible to isolate particu-
lar wave structures in the observations and the models. Initial indications from one
such study are that models are seriously in error in some aspects of the wave struc-
tures. The challenge will be to understand why and produce model changes that
improve the representation, without introducing other deleterious effects.

As discussed above, initial tendencies or single time-steps in models initiated
from good data analyses can indicate spurious imbalances in the model terms. The
data analysis system itself can also yield useful information through study of the
increments added to the model first guess in the data assimilation procedure. For
example, if the observations are always trying to moisten the model tropical at-
mosphere, it suggests that the model parameterisations are producing too much
drying in the region.

6.1.2.3 Performance on Weather-Seasons-Climate

Looking at their performance on timescales other than seasonal can provide inter-
esting insight into which aspects of models that are to be used for seasonal
forecasting need attention. On the short timescale, the ability of the models to rep-
resent individual synoptic systems or regimes of flow can be assessed by using
them for re-forecasting the weather. On longer timescales, running the models for
one or more years will give information on the tendency of the model to drift to a
different climate. Such a tendency may be damaging for seasonal and shorter
timescale predictions but may be less clear as to its nature.

The models can be run either with specified SST or in coupled mode. Seasonal
hindcasts themselves can also be run in coupled or uncoupled mode. Controlled

S http://www.nerc-essc.ac.uk/Research/Atmospheric/Atmospheric. htm#sinergee
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experimentation can elucidate the relationship between errors in the model per-
formance; for example, by warming the SSTs to artificially improve the con-
vection in the tropical west Pacific, the impact of this error on the model results
elsewhere can be assessed (Turner et al. 2005).

6.1.2.4 Results for Simplified Problems

As discussed above, running a full atmospheric model with a simplified lower
boundary, for example an aqua-planet, can yield useful information on the repre-
sentation of the dynamics and the parameterisations, and the interaction between
them. Going even further, by drastically simplifying the parameterisations, dyna-
mical core experiments can provide useful comparative information on numerical
representations of the basic equations.

6.1.2.5 Very High Resolution Runs

Operational forecast models are run at a spatial resolution (particularly in the hori-
zontal) that is determined by the availability of computer power. However in case-
study mode, global models can be, and are being run with an order of magnitude
finer resolution, 10 km or less. Such studies give information on benefits that may
be had through, and problems that may be solved by, going to finer resolution.
They may also yield ideas on how the parameterisations at lower resolutions could
mimic the higher resolution behaviour and therefore perform better. Another ver-
sion of this investigation is to run a limited area version of the model in which
even higher resolution will be possible. The negative aspect in this case is that
there is now dependence on the imposed boundary conditions.

6.1.2.6 Different Computational Approaches

In atmospheric modelling and in the wider area of computational fluid dynamics
there are new ideas on numerical methods that may improve seasonal forecast
models. Different grid meshes to cover the sphere, and different ways of determin-
ing derivatives in space and of integrating in time are all being raised and tested.
Options for the vertical coordinate, such as potential temperature (8) are being
assessed. This coordinate has the advantage that air would move along the coordi-
nate surface unless heat was added to it. However the disadvantages associated
with 6-surfaces intersecting the Earth’s surface have currently limited its applica-
tion. Given the important role played by it (see Chapter 4), another theoretically
very attractive option is to use potential vorticity (PV) as one of the model variables.
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6.1.2.7 Development of New Parameterisations

Apart from Section 6.1.2.6, the approaches discussed above are generally aimed at
giving information on possible defects in the parameterisations. The hope is that
this will suggest how they may be modified or new parameterisations may be
developed. They also provide means for testing models that include these modi-
fied or new parameterisations.

Another way of developing a new convective parameterisation, for example, is
to use experimentation with a cloud resolving model, based on a grid of perhaps
100 m or less in a box the size of a few grid cells in the global model, and look for
the equilibrium tendencies associated with the simulated convection for steady
boundary conditions. This can be seen as setting the target for the convective
parameterisation. This technique is now gaining wide popularity. However, help
in capturing the crucial interaction of convection and dynamics in tropical waves
may require resolutions of a few hundred metres in more realistic limited area
models of large regions in the tropics.

In future, parameterisations may be introduced for processes that have not pre-
viously been considered to need any scheme. For example, most models exhibit
regions in the upper troposphere in the tropics where the absolute vorticity is of
opposite sign to the Coriolis parameter. As expected from theoretical considera-
tions, a linear version of the ECMWF model suggests that these regions are
unstable (“inertial” instability). However any such perturbations have very limited
growth in the full non-linear model and are presumably removed by other pro-
cesses in it. It is not clear whether the net result of this removal is as observed in
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Fig. 6.4 Frameworks for parameterisation, as discussed in the text. The upper panel shows the
current method and the lower panel a method that may be preferable. N is the truncation scale of
the model and is the scale at which parameterisation is currently performed. N, the scale at which
the model fields are “believable”, and it is arguable that this is the scale at which parameterisa-
tions should take their input fields and give their tendencies
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the real atmosphere. When the latter is understood better it may be decided that an
explicit parameterisation is needed in the model.

It is possible that the whole approach to parameterisation should be rethought.
In current schemes, following Lander and Hoskins (1997), the framework for
parameterisation can be described as in the top part of Fig. 6.4. The truncation
wavenumber (N,) or scale divides the range of scales into those not represented
and those represented. However the scales slightly larger than N, (arguably up to
about four times this scale) are poorly resolved. Information is taken from the
model at the grid-scale, where it is not to be trusted. It is fed into a parameterisa-
tion scheme and the resultant tendencies are fed back onto the grid-scale at which
the model is not able to treat them correctly. This approach was necessary when
the range of scales included in a model was not very large. However, given that
this is no longer the case, the alternative scheme shown in the lower part of Fig.
6.4 may be preferable. Here information given to the parameterisation is taken
from the model at the scale that is believed (N,) and tendencies are fed back on the
same scale, a scale at which the model is able to handle them properly. There are
questions about which parameterisations should be handled in this manner and
what to do about singularities such as coastlines. It is probable that parameterisa-
tions that are essentially dissipative should be applied on the scale N;, but that
those that can be viewed as forcing should be applied on the larger scale N,,. This
approach is now being tested.

Until recently, parameterisations have been deterministic in the sense that a
particular set of grid-scale values of model variables will always yield the same
tendency from, for example, the convective parameterisation. However it is now
increasingly recognised that it is unrealistic to think that this is the case, and
representations of the random element are being included in “stochastic” para-
meterisations (e.g. Palmer 2001). Also, organised behaviour on sub-grid scales
may feedback energy onto the retained scales: again representations of such
“backscatter” are being tested (e.g. Shutts 2005). Finally there is also now
research on representing convection in particular by embedding a specialised
prognostic model that interfaces with the full model near the grid-scale. One ver-
sion of this (“super-parameterisation”, see Grabowski 2001) is a cloud resolving
model simplified for computational reasons to use only one horizontal dimension.
Another is to have a model in which convective clouds are represented by so-
called cellular automata (Wolfram 1994) that obey simple rules which determine
their growth, interaction and decay.

6.2 Ocean Modelling

Ocean models are a critical component of seasonal forecast systems. As outlined
in Chapters 3 and 4, there are a few essential roles for the ocean in the climate
system, and it is important that numerical models for the ocean capture these fea-
tures and represent the physics included in them.
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There are two opposing goals of modelling — to elucidate the essential dyna-
mics or to simulate and forecast. Often, elucidation means removing processes
believed to be non-essential, paring away process after process until only the sim-
plest possible model remains which is able to capture the phenomenon. Each
process successfully removed can then be identified as not essential to the physics,
and the “most elegant” model can be constructed. Once the simplest model can be
built, second- and third-order approximations can be constructed to make more
and more faithful renditions of nature.

This strategy of isolating the essential physics, then incrementally adding com-
plexity can lead to relatively successful prediction systems, as exemplified by the
Zebiak and Cane (1987) coupled model for El Nifio. They derive their success
from two sources: first, they contain most of the relevant physics, second, they
avoid systematic drifts and biases which can quickly corrupt more complex models.
(Every time complexity is added to a model, additional unknown parameters are
added to the system as well as additional ways to introduce substantial biases.)

We have outlined a view of the processes in the ocean as one-dimensional
mixed layer physics, ventilated thermocline mechanics, shallow tropical cells,
surfacing of the thermocline and details of the interaction of the thermocline with
the sea surface.

6.2.1 Models for El Nifio

Over time a hierarchy of models has been used to simulate El Nifio. They fall into
the following categories:

6.2.1.1 Single Layer Reduced Gravity Models

These models capture the equatorial wave dynamics of the upper ocean. They rep-
resent the ocean as a relatively shallow layer of warm water sitting atop an
infinitely deep, dense abyss. The displacement of the interface between the warm
and cold water introduces horizontal pressure gradients. Combining the effect of
these pressure forces with the Coriolis force and surface stress yields the momen-
tum balance describing the horizontal flow. This flow is then used in the mass
equation to compute the changes in interface displacement.
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where g’ = g-4p/p,, and 4p is the density difference between the surface layer and
po 1s the abyssal density. H is the mean layer thickness.

By choosing the mean thickness of the layer and the density difference between
the surface and the abyss, the model can be made to have a wave propagation
speed (4/g'H ) consistent with the various baroclinic modes of a continuously
stratified ocean — usually the gravest mode is chosen. Such models provide a use-
ful solution to simple wave propagation questions in the presence of complex
boundaries, including islands, or in the presence of complex wind forcing.
Examples of such models include the studies of Busalacchi and O’Brien (1981)
and Cane and Patton (1984).

The most obvious limitation of the single layer reduced gravity model is that it
fails to simulate the SST. A parameterisation of the SST is often made by relating
the anomalous layer thickness with an anomalous subsurface temperature. A thin
surface layer is presumed to indicate that there is less warm water near the surface
and the abyssal water is brought up closer to the surface. Imagining that some
form of mixing acts to modify the temperature, the shallow thermocline is then
mapped to a cooler surface temperature. An alternative derivation can be made in
a statistical sense, relating the observed record of thermocline displacement to
temperature anomalies. This latter method can be used to make arguments that
localize the SST response, because in some regions the change in thermocline is
not as strongly related to the change in SST as in others (see Fig. 3.4).

6.2.1.2 Two Layer Reduced Gravity Models

To overcome the objection that SST is not predicted in a single layer model, a
number of models were built which included two reduced-gravity layers, where
the top layer had a representation of a shallow surface mixed layer, and the second
layer described the remainder of the water above the thermocline. The deeper
ocean was still represented as an infinitely deep abyss.

These models differ largely in their treatment of the second layer temperature
and how that temperature interacts with the mixed layer during upwelling. The
Schopf and Cane (1983) model carried an explicit equation for both the tempera-
ture of the layer and its vertical gradient. The surface layer also carries a full
thermodynamic equation for the SST, including non-linear advection, surface
heating, diffusion, and vertical advection across the base of the mixed layer. The
model in Zebiak and Cane (1987) treats the second layer density as fixed, and then
parameterises the temperature profile based on the thickness of the layer or posi-
tion of the thermocline. This model has served as the ocean component of one of
the first successful ENSO prediction systems, which combined this ocean with a
simplified non-linear atmosphere model. Its success supports the notion that
theories based on ocean wave dynamics (the delayed oscillator and recharge para-
digms) represent the dynamics of ENSO, while by no means proving the point,
since it also failed to predict major ENSO events such as that in 1997/98.
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6.2.1.3 Multi-layer Reduced Gravity Models

While the two layer models add an equation for the surface temperature, they
depend heavily on the parameterisation of the sub-surface thermal structure, and
the representation of its dynamics through a single vertical mode. Models with
several layers in the vertical were then developed as a natural extension to these
systems. Such models can represent the ventilated thermocline very well (see
Chapter 4). They share the reduced gravity approach to the theory, allow for
several outcroppings of isopycnal surfaces, and are fully non-linear. When coded
with care, they exhibit very good conservation of potential vorticity — a require-
ment for the ventilated thermocline — and can be run in nearly global mode for
thousands of years, reaching an equilibrium state very quickly.

These models connect the mid-latitude thermocline with the equatorial zone, and
therefore provide a means for completing the shallow tropical cells, the equatorial
Kelvin and Rossby waves, and the mixed layer dynamics. A model of this complex-
ity is in use for routine seasonal prediction at the NASA Goddard Modeling and
Assimilation Office (Schopf and Loughe 1995). A variant on this approach uses
sigma-coordinates to treat the thermocline water, rather than isopycnals (Gent and
Cane 1989), and has also been used for many coupled ocean-atmosphere studies.

6.2.1.4 Ocean General Circulation Models

Ocean general circulation models (OGCMs) have become the model of choice for
coupled climate prediction systems. The reduced gravity models take advantage of
the very small changes found in the background state of the deep ocean over the
seasonal to interannual timescales. The simplest single layer models have no pro-
blem maintaining the proper wave speeds, since they are built in to the equations
as external parameters, not predicted by the model. The two layer reduced gravity
models share this constraint. The multi-layer reduced gravity models are the first
in our hierarchy which have to maintain their own climatology. If their only draw-
back were the inability to represent the slow thermohaline circulation, it would
likely have little impact on the simulation of seasonal to interannual climate. But
one serious deficiency affects reduced gravity models: their inability to represent
the effects of topography, in particular the effects of the shallow passages and
straits through the Indonesian archipelago.

An ocean circulation model does not require or impose the “background condi-
tions”, and instead proceeds to solve the primitive equations of motion and
thermodynamics in a direct fashion. They must create the background state, the
abyssal water, thermocline and near surface mixed layers. Since it is hoped that
they mimic the dynamics of the real ocean, some features, such as the very slow
evolution of the deep water, should be reflected in their solutions. It is common
practice to start these models from some climatology, and so it is hoped that the
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deep ocean, which would take millennia to equilibrate, can be very nearly in equi-
librium at the start of an integration. If the ventilated thermocline theory is
meaningful, it implies that the pressure gradients in the deep ocean are very small,
and this slow evolution of conditions in the deep is consistent with our assump-
tion. The ventilated thermocline dynamics must be reflected in solutions to the
primitive equations, and an accurate integration of these equations should give
similar behaviour to the multi-layer reduced gravity model, and hopefully, to the
real ocean.

December - February El Niiio Conditions

T
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1

Fig. 6.5 Schematic of El Nifio and La Nifia
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But the challenge to the OGCMs is great. Figure 6.5 shows a typical cartoon of
El Niflo vs. La Nina: the thermocline changes dramatically, theconvection shifts
over large regions, and the ocean is depicted as a single layer. Figure 6.6 shows
observed sections of temperature along the equator (Johnson et al. 2002). The top
two panels show the climatological tempera tures for 6 months around the annual
cycle. The bottom two panels show the conditions during a canonical El Nifio and
La Nifia. What should be apparent is that the EI Nifio is not a large shift of the
thermal structure of the ocean, but rather one that is about the size of the annual
cycle itself. It is also apparent that an approximation of a two-layered system
seems plausible when looking at the equator. If one looks at meridional sections
across the equator, however, the complexity of the thermocline becomes more
apparent, becoming more diffuse toward the west and more diffuse at higher
latitudes. Figure 6.7 shows these sections from Johnson et al. (2002).

While the two layer models exploit the sharp thermocline, the OGCM must
produce it. Small errors in the numerics or physics can easily lead to substantial
changes in the simulated mean state. Inspection of Figs. 6.6 and 6.7 reveals that a
10 m vertical displacement of an isotherm could lead to a 1°C or 2°C temperature
anomaly. Experience with several ocean models used in El Nifio prediction reveals
that these models tend to share a number of problems, not the least of which is an
overly diffuse thermocline.
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Fig. 6.6 Observed temperature profiles along the equator for April and October (top panels) and
for El Nifio and La Nifia (bottom) (after Johnson et al. 2002)
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Fig. 6.7 Sections of mean potential temperature across the Pacific at longitudes of 165°E,
180°E, 140°W and 110°W (after Johnson et al. 2002)

6.2.2 Challenges and Improvements to Ocean Models

There are two essential components of modern ocean models, usually referred to as
“dynamics” and “physics”. Dynamics integrates the equations of motion on scales
down to the resolution of the computational mesh, while physics includes the parame-
terisations of effects of finer scale motions, which usually take the form of “mixing”.
While research continues on improving the hydrodynamic codes, it is clear that
modern ocean models suffer more from errors in the treatment of small-scale
motions than from errors in the simulation of well-resolved hydrodynamic processes.
Mixing occurs in several regions in the ocean, and can be very vigorous and
important in establishing the character of the flow. In other regions, we believe
that mixing is very weak, especially mixing across surfaces of constant potential
density (isopycnals). This type of mixing is known as diapycnal mixing. When
diapycnal mixing occurs, there is a significant increase in the potential energy of
the water column. There must be an equivalent source of turbulent energy in order
to accomplish this mixing. Mixing of tracers along isopycnal surfaces does not
involve a change in potential energy, and such mixing can happen much more
effectively than diapycnal mixing. The rate of isopycnal mixing appears to be
about 107 or 10® times greater than diapycnal. Although diapycnal mixing is far,
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far smaller than that along such surfaces, diapycnal mixing is essential for the
effective transport of heat in the climate system. Its accurate representation in
climate system models is therefore important, if for no other reason than obtaining
the proper distribution of heat. On the other hand, the ventilated thermocline
theory depends on the diapycnal mixing being low. The multi-layer reduced gravity
models discussed above are able to run with essentially no diapycnal mixing
below the surface turbulent layer. Many other consequences arise, however, if we
consider the transport of salt and other significant materials.

The first numerical models of the ocean circulation were constructed in the
relatively straightforward geometrically based coordinate systems on which the
hydrodynamic codes could be efficiently and easily represented. Numerical schemes
for the equations of motion are either highly dissipative in their nature, or need
additional damping of the finest scale motions. For many years, models were so
coarse in resolution and needed so much “numerical glue” that the parameterisa-
tion of diapycnal and other mixing processes had no need to be physically based.
While the numerical schemes still need suppression of the finest scale motions
through mixing, modern modelling practice has chosen to add the damping in a
way which aligns the effects along isopycnal surfaces (either by rotating the mix-
ing tensor or by using isopycnal coordinate systems). With the combined advent
of higher resolution and an appreciation for improved numerical techniques, we
have now arrived at a point where diapycnal mixing can be set by physically based
parameterisations.

Although mixing along isopycnal surfaces is far larger than diapycnal, the
problem of adequately representing such mixing is far from solved. The highly
energetic eddies of the ocean circulation cause intense motions on scales that are
still not well resolved except by the most ambitious computing efforts. For the
seasonal prediction problem, there is advantage that the size of these eddies in-
creases near the equator, and it is now fairly common to resolve them within 10°
of the equator. But returning to the premise that the equatorial thermocline de-
pends on the shallow tropical cells, the effect of unresolved eddies has been shown
to be very important in the subduction process which creates the source waters of
these cells, as well as causing a mixing of potential vorticity in the cells them-
selves. For the class of models used for climate simulations and forecasts, it is
likely that it will be many years before eddy resolving ocean models are used in
these integrations. Further, the class of eddy-resolving models that can be foreseen
in the next 20 years will still need sub-grid scale parameterisations of still smaller
motions in order to close the problem. This leaves the problem of parameterisation
of eddy fluxes as another key issue to improving coupled model simulations of
climate.

For the seasonal to interannual prediction problem, the most important mixing
processes are those of:

o Surface boundary layer processes
¢ Shear driven upper ocean mixing
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o Internal wave breaking

o Interaction of eddies with mixed layers

e Mixing within the thermocline at lateral boundaries
o Double diffusion and salt fingering

The first three directly affect the simulation of the tropical and equatorial pro-
files of temperature, salinity and currents. The last three influence the establish-
ment of the shallow tropical cells, and therefore have an indirect influence on the
equatorial thermocline. The importance of these latter three arises if we are at-
tempting to simulate the coupled climate in a drift-free model. Modern data
assimilation methods can probably obviate the need for exact solution of the sub-
tropical thermocline, but these effects have been shown to have a direct bearing on
models’ abilities to simulate El Nifio. Meehl et al. (2001) showed that significant
changes in El Nifio amplitude in coupled models seem to be related to the back-
ground diffusivity used in the ocean models (see Fig. 6.8). In numerical experi-
ments with a simplified coupled model, much of this sensitivity comes from the
diffusive effects outside the equatorial belt, further emphasizing the importance of
simulating the STCs in establishing the equatorial thermocline.

In equatorial regions the thermocline is often relatively strong and shallow,
which allows cold water to be maintained near the surface, where it can be made
available for cooling the surface. Variations in the strength of such cooling are
primary factors in the El Nifio cycle of equatorial SST. Since the diapycnal mixing
of heat in the thermocline continually works to destroy this thermocline it is
important to understand the processes involved, and to represent them accurately
in ocean models. One such process is thought to be mixing due to breaking internal
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waves. It is commonly represented in ocean models as Fickian diffusion with a
constant coefficient (1-2 cm” s™') given by extratropical tracer release experi-
ments (Ledwell et al. 1993). Despite the lack of observational support, models
also need the corresponding viscosity and typically use a constant Prandtl number
of about ten. However, there would be significant consequences should these val-
ues prove to depend on the Coriolis parameter and hence for there to be smaller
diffusivity at the equator.

Another mixing process derives its energy from the shear between the surface
and the equatorial under current (EUC). Microstructure measurements have provided
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many estimates of its diffusivity, which has been formulated as a function of local
Richardson number (Peters et al. 1988). Usually ocean model implementations
follow Pacanowski and Philander (1981). The sensitivity of the equatorial struc-
ture to these parameterisations was demonstrated in Yu and Schopf (1997).

A third process, which may be a combination of the first two, is known as
deep-cycle turbulence. It is observed on the equator in the central Pacific, where
the mean shear of the EUC and a daily cycle of daytime solar heating and night
time surface convection combine to produce strong turbulence extending tens of
meters into the stratified water below the surface layer.

Above, we asserted that “physics” and unresolved motions give larger pro-
blems in ocean modelling than the solution of the hydrodynamic equations, but
even the solution of the hydrodynamics becomes problematical when the features
are barely resolved by the computational mesh. For the problem of El Nifio, the
most important issue here are the tropical instability waves — a series of ocean
eddies on the scale of 700 km that appear seasonally just north of the equator in the
eastern Pacific, and across the Atlantic. The challenge is to accurately model the
fine scale structure of the ocean eddy field and its relation to the surface fluxes —
particularly the surface stress. Chelton et al. (2001) demonstrated the strong rela-
tionship which appears to exist between the SST and the surface stress, even
downto the scale of the tropical instability waves. Figure 6.9 shows the SST and
surface stress properties for a week at the start of September 1999. The strong
relationship between the SST and the stress shows the influence of coupled ocean-
atmosphere effects down to a very small scale. Of particular importance are the
divergence and curl of the wind stress, which show up as very clearly linked to the
SST. These scales can now be represented in ocean circulation models, but are
only beginning to be resolved in the most ambitious atmospheric GCMs.

6.2.2.1 Summary

Ocean general circulation models are the basis for most coupled forecast systems
currently in use at national forecast centres. They have the strong advantage of
being able to represent almost all the important physics for El Nifio and La Nifia.
Today, when coupled to atmospheric models, they produce climate simulations
with significant biases that lead to rather rapid degradation of the forecasts (see
Figs. 5.9 and 6.16 later in this chapter). Data assimilation and forecast assimilation
techniques can be used to improve the prediction and to correct for the systematic
biases that arise in the model, but it is clear that the models themselves can be
substantially improved by the inclusion of better treatments of the small scale
physics that are so important in controlling the overall, long term simulation. The
interests of the ocean modelling community for seasonal to interannual prediction
are not so very far removed from those studying the role of the ocean in climate
change.
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General circulation models are designed to include dynamics and physics. The
early two-layer models succeeded in large part by excluding physical processes.
By including physics, the models enable better representation of nature, but by
including physics badly, the models can rapidly go astray. It is clear that ocean
models will go to ever increasing resolution; whether they can include more and
more accurate representation of the physics remains to be seen.

6.3 Coupled Modelling of the Atmosphere-Ocean System

6.3.1 Teleconnections

As the equatorial Pacific is engaged in a fancy dance of waves, the rest of the
world can hardly miss it. Just as a couple of top dancers quickly draw the attention
of the whole ballroom, so the dance of the Pacific is felt around the world. The
large SST anomalies in the equatorial Pacific activate large areas of deep convec-
tion, enormous amounts of heat are released into the atmosphere and anomalous
circulations quickly set in. The anomalous heating displaces the normal distribu-
tion of east-west (Walker-like) circulation cells in the global equatorial zone. The
normal distribution of vertical velocity is modified and subsidence appears in un-
usual and distant places, carrying drought, or exceptional rains where instead
upward motion is moved. All along the equator, in Brasil, East Africa, the Indian
subcontinent, the consequences of the Pacific dance are sorely felt. These fele-
connections are a dramatic consequence of the coupled mechanisms in the equa-
torial region; they transfer the impact of ocean-atmosphere processes to distant
regions and, exploiting the slow timescales of the ocean, can influence the atmo-
sphere for a long time.

Teleconnections are not limited to the equatorial area. The equatorial atom-
sphere is very sensitive to anomalous heating that quickly generates high level
vorticity areas that become the sources for the generation of atmospheric planetary
Rossby waves, propagating into the mid-latitudes in both hemispheres. The signal
of the Pacific is now carried away tens of thousands of kilometres, stretching like
beads of a necklace across the Pacific to North America, and sometime to Europe.
Similar chains of anomalies extend into the Southern Hemisphere, affecting South
America, Australia and South Africa.

Figure 6.10 shows some of the climate impacts of the teleconnections stem-
ming from El Niflo. One can see regions as far away as North America and
southern Africa which are affected by El Nifio. These connections are statistically
derived: i.e. they often occur when there is an El Nifio, but there is no requirement
that any or all of these patterns will occur in any given El Niflo.
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Fig. 6.10 Plot of the frequently observed climate anomalies in temperature and precipitation
associated with El Nifo. This plot is for Dec—Feb, often the peak phase of El Nifo. Other sea-
sons will have other climate anomalies (teleconnections). A given El Niflo will not necessarily
show all of these climate anomalies

6.3.2 Developments in Coupled Modelling

The progress of science has been gradually formalized into a rather well-accepted
pattern. Experiments provide results that require explanations, theorists try to
come up with a theoretical framework that might explain existing experimental
results and possibly make some predictions that can be tested by further experi-
ments. Eventually a crucial experiment, i.e. an experimental set under controlled
conditions, will be designed, allowing the selection between competing theories
and providing for the time being, the best explanation.

This process is clearly not possible in the case of the dynamics of the ocean and
atmosphere. The climate system can be observed and measured, processes can be
identified, diagnosed and budgets of conserved quantities can be calculated, but
we cannot make “experiments” in the sense used in many other fields of science.
We cannot change the system artificially to verify ideas and theories, monitor in
detail the evolution of processes, under conditions different from what we see on
our Earth. Unfortunately, this interplay between theory and experiments is the
main driving force behind the development of science. The scientific considera-
tion of climate has been therefore seriously jeopardized by the difficulties
encountered trying to apply the general paradigm.

The transformation of climate science into a quantitative science has been made
possible by the development of numerical models. The equations that regulate
the evolution of the atmosphere and oceans were already known at the end of the
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19th century, but their mathematical complexities placed them beyond the mathe-
matical-solving capabilities of the time. The spectacular advances in computational
techniques and computational capabilities in the late 20th century have allowed
the realization of numerical models of the climate system. Models have become
very advanced constructions, from the early pioneering work (Manabe and Bryan
1969; Manabe et al. 1975, 1979; Bryan et al. 1975; Schlesinger 1979; Washington
et al. 1980). They are now capable of simulating the mechanisms and the evolu-
tion of the climate system, even if we are far from a totally satisfactory simulation
of mean climate and its variability. The climate system is composed of many sub-
systems, but the main elements remain the atmosphere, the oceans and to some
extent the sea ice. We have seen in the previous pages how the atmospheric and
oceanic modules are realized and we will describe how they can interact with each
other. The interactive model is simply called a coupled model.

The basic scheme for a coupled model is described in Fig. 6.11. The scheme
describes how as the atmospheric model and the ocean model evolve they can
exchange the information that is necessary for the interaction.

The ocean model requires from the atmospheric component several physical
fields necessary to complete the momentum and energy balance at the ocean sur-
face. The momentum input is provided by the wind stress fields, whereas the
energy budget is obtained by providing the short wave radiation flux (solar), the
net long wave radiation flux and the net sensible heat flux. The mass flux is obtained
by the net freshwater flux, precipitation minus evaporation. Up to the late 20th
century, many ocean models used in coupled modelling used the rigid lid ap-
proximation which implies that the net freshwater flux does not change the total
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mass, but rather modifies the salt concentration in the salinity equation. More
modern models relax this constraint and allow the free surface to vary (the so-
called free surface). The net effect is to allow surface gravity waves, which, how-
ever, impose constraints on the time step.’

The impact of the ocean on the atmosphere is exerted mainly through the dis-
tribution of SST. The SST distribution is a major forcing factor especially in the
equatorial area by its effect in regulating convection. Deep convection in the tro-
pics can start easily over warm ocean waters. As a rule of thumb the value of 28°C
is often mentioned as an empirical rule. The tropical convective towers release
massive amount of latent heat in the condensation/precipitation processes and they
are therefore the main energy source for the deep atmosphere.

We must introduce a third component to manage the delicate dance between the
atmosphere and the ocean, the coupler. The coupler is the software component that
keeps track of the time, directing the right traffic between the models and making
sure that the right data is available at the right time. The role of the coupler, like a
conductor in an orchestra, is to harmonize all the communications, manage the
software messaging and interpolate the data from the grid in the ocean model to
the atmospheric model. Some implementation of coupled models can expand the
role of the coupler by including in the coupler the calculation of the fluxes them-
selves, but in general they include only the interpolation. Several couplers have
been developed in the past few years. OASIS, the coupler developed at CERFACS
(Valcke et al. 2004) has become popular in Europe; in the USA several couplers
are being consolidated under the Earth System Modeling Framework.®

The basic physics of the coupling may look deceptively simple. If the models
exchange fields at the proper time the right interactions are properly represented,
with a beneficial result on the accuracy of the simulation. However, the devil is in
the details. The fields to be exchanged are rarely on the same numerical grid. The
most commonly used models for the atmosphere use spectral techniques, based on
spherical harmonics, that require a latitude-longitude grid that is regular in the
longitudinal direction, but uses special latitudes based on the zeros of the Legendre
polynomials. Such a grid is known as a “Gaussian grid”. Modern ocean models
use orthogonal curvilinear grids which locate the poles in unusual locations. Regular
grids have been discontinued in the past because they generate the pole problem,

7 The reason why the rigid lid approximation was introduced is that it filtered out external gravity
waves, but had the undesirable effect of altering the propagation of long external Rossby waves.
Without the rigid lid approximation the time step has to be very short (order of 10 minutes) or
some other approximations have to be made. In both cases, a substantial computational effort is
needed to solve for the external mode which has only a minor effect on climate. Very few ocean
models now use the rigid lid approximation. Preference is given to dealing with the barotropic
mode separately and in many cases stepping it forward with short time steps of a few minutes.
Killworth et al. 1991.

¥ Collins et al. (2006) and Delworth et al. (2006). See also: http://www.esmf.ucar.edu
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namely the fact that the grid points get closer and closer in the polar regions
because of the convergence of the meridians.

The ever decreasing size of the spatial cells at the poles decreases the numerical
stability of the calculation, by increasing the chance that a basic numerical stabil-
ity threshold (the Courant-Levy-Friedrich or CFL limit) is crossed. Atmospheric
models had to resort to complex schemes of filtering at the poles to control the
problem, before the introduction of spectral models that finessed the entire issue,
since spectral models by construction do not suffer from this ailment. Because of
continental boundaries, global spectral models are not viable for the ocean; the
pole problem for the ocean can be treated by using almost-global models, i.e. cut-
ting the domain short of the extreme North polar areas. Limiting the domain to
non-polar regions, however, is not a satisfactory solution. It is not realistic and it
prevents the possibility of simulating the evolution of the Arctic Ocean that has
important climate effects, especially on the North Atlantic. A better solution has
been to apply a conformal transformation to the regular latitude-longitude grid of
the ocean. Conformal transformations rotate and stretch the grid, moving the poles
to other positions. In a general case moving around the North pole on the sphere
will not be very helpful: it will merely be shifted to another position. In the case of
the ocean we can place the new poles over land, effectively eliminating them from
the numerical solution of the ocean.

Conformal grids are a very elegant solution to the pole problem, but there are
no free lunches. The backdrop is that the grids become highly distorted on the
sphere, assuming strange orientations and there is almost no chance that the ocean
grid boxes will fit the atmospheric grid boxes of the Gaussian grid. The interpola-
tion problem between the atmosphere and ocean grids becomes a delicate affair. A
badly designed interpolation can introduce systematic errors in the energy budget
at the surface, resulting in fictitious sources or sinks of heat that prevent the
achievement of a closed energy budget. No interpolation is perfect, of course, but
a serious effort must be made to keep the imbalances at a minimum. The develop-
ers of OASIS, for instance, have introduced an energy-conserving interpolation
that successfully minimizes the errors.

The definition of the complete coupled problem requires also that we determine
how often the coupling is realized, i.e. how often the atmosphere, the ocean and
the other components that we may include have to exchange their data. In reality,
the interaction is continuous: the ocean is affecting the atmosphere via the tem-
perature at the same instant in which the wind is affecting the ocean. In the
discontinuous world of the models the atmosphere and the ocean are marching at
finite steps. The fast atmospheric processes require short time steps, whereas the
relatively slow ocean evolution can be described with longer time steps. One may
have for instance a time step of 2 hours for the ocean and a time step of 30 minutes
for the atmosphere. In principle, the best strategy would be to couple, i.e. exchange
data, every time step, but it would be a waste to use the minimum denominator and
evolve the ocean with the fast atmospheric time step. Rather, the longer time step
is usually chosen as the coupling time step. In some cases, the coupling has been
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performed only every 24 hours using average fields, but this is becoming less
common as it does not allow an accurate resolution of the coupling on the time-
scale of the daily cycle.

As can be seen in Fig. 6.12, the time march of the coupled model is rather regu-
lar and the coupling is occurring at frequent intervals, even to the point of being
able to resolve the daily cycle. This kind of strategy for coupling is known as syn-
chronous coupling, since there is essentially no time shift or lag between the fields
that are exchanged. It is obviously computationally demanding since it requires
the calculation of two models at the same time, discarding the opportunity offered
by the different timescales for the ocean and the atmosphere.

It is possible to use a different strategy, particularly in the case of very long
simulations, that is also somewhat computationally cheaper. The price to be paid
in this case is that it is going to be less accurate. In this approach the coupling is
not realized at all times, but only in selected periods. The large scale thermal
structure of the ocean requires a long time to be generated from atmospheric forc
ing. If in the particular application the details of the coupling are not needed, but
there is only interest in forcing the ocean with a statistically realistic atmosphere,
then the approach has some merit. In practice, the atmosphere and the ocean are
allowed to interact for a limited time, then the ocean model is evolved persisting
the atmospheric condition until the next coupling period and so on. This approach
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Fig. 6.12 A possible strategy for the simulation of a coupled model: synchronous coupling. In
this case the models are executed at the same time and the data are exchanged in principle every
time step. In practice, data are exchanged at some congruent number of time steps depending on
the size of the time step in the atmosphere and the ocean. Typically the atmosphere has a
timestep considerably shorter than that of the ocean. So in practice, the coupling might be done
every ocean timestep, but not every atmospheric timestep (for a better representation, the ocean
timestep is only twice that of the atmosphere in this schematic)
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is called asynchronous and it is sometimes used to create statistically balanced ini-
tial conditions, when hundreds of years of simulation are required to reach a
statistically stable steady state. It is of limited value in the case of the forecasts at
seasonal range, since in this case the details of the interactions can not be neglected.

The initialisation problem has also some peculiar issues that are unique to cou-
pled modelling. In general, the objective of initialisation is to provide a smooth
start to the simulation, trying to avoid initial shocks and long adjustment pro-
cesses. It is desirable to minimize the adjustment process in short term seasonal
forecasts in order to avoid the distortion of the solution in the initial phases of the
forecasts. In the case of long climate coupled simulation, a poorly adjusted initial
state may show up in lengthy adjustment that may take tens of years, as the model
slowly searches for its own equilibrium.

Weather forecasting has developed a sophisticated set of procedures to produce
an initial condition that is a faithful representation of the state of the atmosphere at
a given time and provide a physically consistent description of the wind, tempera-
ture and in general all the other fields that are necessary for the evolution of the
model. This procedure is known as data assimilation (see Chapter 5). It basically
consists of a space time interpolation of the available data, constrained by the set
of physical relations that we know must be valid in the real world. The embodi-
ment of the known consistency relations is realized in our numerical models that
represent in a way our best estimate of the laws that regulate the evolution of the
atmosphere and ocean. Data assimilation methods therefore basically mix observa-
tions and model evolution, yielding our best estimate of the instantaneous state of
the atmosphere or ocean. These methods are discussed in Chapter 5 and there is no
need to discuss them here in detail, but it is worth while discussing the specific
issues for the coupled system case.

Data assimilation methods have been extensively developed for the atmosphere
and, in recent years, also for the ocean. As discussed in Chapter 3, the coupled
evolution is dominated by the ocean and balancing the ocean component of the
initial condition is essential for the forecast. At the present time, true coupled data
assimilation systems, capable of assimilating observations both in the atmosphere
and in the ocean at the same time, are still in a developing stage (see Section 5.5).
The existing system tries to exploit the short memory of the atmosphere and they
concentrate all effort on the balancing of the ocean side. Figure 6.13 shows two
possible arrangements for the initialisation of a coupled model.

In the first approach, called Robust Diagnostic, the system is evolved in time
as a coupled model, exchanging data usually using a synchronous approach, but in
the exchange process one or more of the exchanged fields at the ocean-atmosphere
interface is substituted with the real observed one(s). In principle, both SST and
surface salinity can be constrained, in practice a typical choice is to use some sort
of constraining of just SST, using usually strong relaxation constants. In this way
it is possible to prevent the SST field deviating too strongly from reality and ad-
versely affecting the evolution of the atmospheric model. Another possibility is to
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Fig. 6.13 Possible strategies for the initialisation of a coupled model: Robust Diagnostic (top)
and Spin-up (bottom). The red arrows indicate the initialisation periods. The yellow arrow is the
start of the free coupled integration

do the same on the surface winds, in this case it is the winds from the atmospheric
models that are discarded and the real observed surface winds or stresses are pro-
vided to the ocean model.

The capability of the ocean to be strongly determined by the atmospheric forc-
ing that is partially exploited by the Robust Diagnostic technique can be more
strongly employed in another strategy of initialisation. In this case the ocean
model is time marched alone, but forced by observed atmospheric fields. This ap-
proach, called simply Spin-up, has the advantage of being very simple to imple-
ment and is also relatively cheap since it involves only the integration of the ocean
model (see also Sections 3.3 and 5.1.1). The disadvantage is that it makes no use
of subsurface data. It must rely entirely on the ocean model parameterisation and
numerics to carry the observed atmospheric signal into the ocean depth and to
generate a realistic current pattern. There are no rules for the length of the period
to be used for the spin-up, but values of 10-20 years are common for producing
initial condition for seasonal forecasts. Spin-up for coupled simulations used in
climate scenario experiments, may extend to hundreds of years due to the presence
of sea-ice that introduce a timescale that is considerably longer.

The quality of the interaction between ocean and atmosphere is such that the
qualitative behaviour of a coupled model may be quite different from that of its
constituent components. It would be tempting to use a modelling strategy that
would call for an accurate preparation, for instance, of the atmospheric model
separately from the ocean model, maybe exploiting the expertise of a specialized
modelling group. Model design is based on basic physical and in general, scien-
tific principles, but there are still large numbers of parameters that are insuf-
ficiently known. The modellers have some liberty to assign these values. Physical
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processes are represented through parameterisations that represent in bulk, pro-
cesses that are too fast or too small-scale to be explicitly calculated by the time-
marching equations. Details and numerical settings in the parameterisation are
designed to get the best overall result in reproducing phenomenologically the
atmosphere and the oceans.

The models are trying to obtain the best global results: in practice the net effect
of the overall exercise is a delicate balance of errors. Figure 6.14 shows an exam-
ple of this kind; the precipitation distribution for boreal summer for the atmo-
spheric model forced by observed, prescribed SST is shown on the left column for
three different resolutions with the ‘observed’ precipitation shown in the bottom
panel for comparison. The atmospheric model is only partially successful in
reproducing the observed precipitation patterns, even when the correct, i.e. ob-
served, SSTs are provided. For example, the monsoonal precipitation in the Bay of
Bengal is largely underestimated and there is too much precipitation in the equato-
rial Indian Ocean. In the Philippines and East of the Philippines the precipitation is
positioned too much along the lines of the parallels, rather than gently moving
toward the equator. A gap appears at the equator between the precipitation in the
Philippines and the South Pacific Convergence Zone (SPCZ) that is absent in the
observations. Increasing the horizontal resolution from T30 (top) to T42 (middle)
to T106 (bottom) has some beneficial effects. The artificial patterns visible in the
low resolution simulation that modulates the precipitation disappear, the SPCZ is
better defined and the precipitation over the Bay of Bengal and the Western Ghats
also appears to improve, but the major deficiencies are still there. A large precipi-
tation deficit appears in the Central Pacific, separating the SPCZ from the areas
north of the equator and cutting the ITCZ north of the equator into two separate
pieces.

When the same atmospheric model is coupled to a fairly advanced ocean model,
without other changes to the formulation or to the optional parameters in the
parameterisations we obtain the column on the right (Cherchi and Navarra 2006).
One can see that coupling has not been able to eliminate some of the large inconsis-
tencies of the left column and appears to have introduced new error areas. The
coupled model has its own typical signature of error pattern, it has its own system-
atic error. The precipitation seems to be much more zonal than in the previous case,
though some improvements seem to be confirmed in the Indian subcontinent and in
the equatorial Indian Ocean. The results of the coupled model do not seem particu-
larly better than the atmospheric only model, in some cases they are worse.

It is difficult to separate the preparation and development of a coupled model
into its separate components. The developments must be done on the model that is
the final target of the development itself. If the goal is a coupled model, then all
the development must be done with the coupled model, possibly at the same reso-
lution that will be used in the end for the scientific application or forecasts. In
practice, there is no guarantee that, once coupled, the model will retain the nice
properties identified in the original component models. This phenomenon is due to
the known large sensitivity of the climate models to small perturbations. Small
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Fig. 6.14 The rain distribution for Summer (July-August-September) obtained in atmosphere
only models (left column) and coupled models (right column) compared to observations (bottom
panel). The experimental set-up is such that the atmospheric model used in the prescribed SST
experiments (left) is the same used in the atmospheric component of the coupled model (right).
Nevertheless, it is possible to see how the distribution simulated by the coupled model is qualita-
tively different from the atmospheric mode. These experiments show that the structure of the
SST that determine the distribution of precipitation in the tropics, even with the same model. All
values are in mm/day
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imbalances in the model can amplify more readily in the coupled model than in
atmosphere or ocean only models. The reason is that coupled models are less con-
strained than the individual models and so small errors can grow in more ways
than before, leading to new characteristic patterns for the systematic error.

This discussion certainly applies to the tropical areas, where SST and convec-
tion are strongly linked, leading to a very close relation between SST and
precipitation, but the effect of the coupling is also felt outside of the areas where
coupling is strongest. The strong coupling in the equatorial Pacific modulates the
position and intensity of the large convective areas in the region that are crucial
for the maintenance of the extra tropical general circulation. The variability in the
mid-latitudes is therefore also remotely affected by the complex atmosphere-ocean
interaction that is taking place.

The coupled processes in the tropics can conceptually affect the mid-latitudes
in two ways. They can directly force stationary Rossby wavetrains that show up as
chains of anomalies at monthly and seasonal timescales, arching from the Pacific
toward North America and occasionally deep into the North Atlantic. They can
also affect the statistics of the mid-latitude internal variability, making slightly
more probable some flow configurations than in normal conditions and changing
the frequency and pattern of the dominant modes of variation. It is conceivable
that these two processes are both active at the same time, sometimes dominating
each other or contributing more equally to the variability.

It is not surprising than the modes of variability in the mid-latitudes are
affected by coupling. The extra degrees of freedom offered by coupling make the
simulation more challenging and difficult. The model is much more sensitive and
errors have more ways to interact with others and amplify. An example is given in
Fig. 6.15, showing the first EOF mode of the Boreal Winter (January-February-
March — JFM) from the ERA reanalysis, and simulations. The simulations are cho-
sen as a 40-year simulation using an atmosphere-only model forced by observed
SST, also sometimes called AMIP-like integrations, and two 200-year simulations
with coupled models with the same atmospheric model. The horizontal resolution
of the atmospheric model used is T30.

The observations show a familiar picture. The leading mode of variability has
active centres over the North Pacific, extending over North America and the
Atlantic. The dynamical interpretations of the alternating anomalies can be elu-
sive, since many processes have been proposed to explain the peculiar shape of the
anomalies, such as forced Rossby wavetrains and internal non-linear interactions,
though a final explanation is probably still missing. The shape of the anomalies is
however less controversial. The anomalies have a dominant spatial scale in the
zonal direction, but there is definitely variability in the zonal direction. It is possi-
ble to see how the positive anomalies are interrupted by negative anomalies
around the latitude circle at 40°N. These features are captured by the prescribed
SST model, with some noticeable differences. The main centre of action over the
Pacific is weaker than in the reanalysis and the break in the positive anomalies
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Fig. 6.15 The leading modes of variability shown as the first mode of an Empirical Orthogonal
Function analysis of the Winter (January-February-March) 500 mb geopotential heights, for the
Observations (ERA reanalysis, top, left), an atmosphere model forced by prescribed observed
SST (top, right) and two coupled models with different atmospheric resolution (bottom right and
left). The main centres of action are in the North Pacific and in the North Atlantic and they are
captured by all simulations, but it is possible to note how the systematic errors are qualitatively
different even if the atmospheric model used in the simulation is the same

over the Atlantic sector is missing. The dominance of the zonal spatial scale is
enhanced and the centres of action are stretched in the latitudinal direction. These
are the typical errors produced by a model under the chosen conditions. They are
peculiar to a particular model, but they have also some characteristics that are
common to many models.

The coupled models yield different results. The zonalization is further en-
hanced and the main centre over the Pacific is larger, slightly tilted in its
orientation and shifted to the north. The variations in the zonal directions are se-
verely damped and along the 40°N parallel there is almost no zero crossing line
for the anomalies.

It is not surprising that these results and those shown in the previous picture
indicate that overall the coupled models give worse simulations of the climate
variability than the atmosphere-only model. Coupled models have a much more
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difficult task, since they have to reproduce with fewer constraints the climate vari-
ability. Even with the help of realistic initial conditions, as is the case in seasonal
forecasting, coupled models have a difficult time to reproduce anomalies. The
extra degrees of freedom generated by the release of the ocean SST constraints
provide other paths through which errors can grow and distort the evolution. Ini-
tial errors in the ocean initial conditions can now feedback by altering the surface
winds and in turn modifying the SST again, but also errors in the model numerical
formulation and unrealistic features of the parameterisations can feedback between
the ocean and the atmosphere, amplifying to finite magnitude in new ways.

This is particularly evident in long simulations. The long term drift in the SIN-
TEX coupled model (Gualdi et al. 2003) shows as a slow, secular increase of the
zonal average of the surface temperatures, which is more pronounced in the high
latitudes, especially in the North Atlantic. Different models will have different
patterns of drift. An example from a seasonal forecast system is given in Fig. 6.16
which shows the average error in the Met Office coupled model after 46 months
of integration. In this model at this time of year the ocean is biased warm in the
upwelling regions of the Pacific and Atlantic oceans. The picture over land is
more complex: India and parts of the central United States are also warm but
many other land areas have a cold bias. At different times of year the bias will be
different (cf. Fig. 5.9). Although the size of the drift is not small compared with
the signal one is trying to predict, the presence of a drift by itself is not necessarily
a damning feature for a model and several techniques to (partially) eliminate its

Fig. 6.16 Plot of the bias in the predicted near surface temperature from the UK Met Office
seasonal forecast model. This plot shows the bias in May, June July season from 1959 to 2001
for forecasts started in February. Other start dates or models will have different drift patterns
(see: http://www.ecmwf.int/research/demeter/d/charts/verification/bias/). In general, the size of
the drift is not small compared to the size of the signal one is trying to predict
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effects on the data analysis are available, but it is an indication of some imbalance
in the coupled model and it would be desirable to keep it to a minimum (see for
example Stockdale et al. 1998).

The evaluation of coupled models is usually performed along similar lines as
stand-alone atmosphere or ocean models, i.e. comparison with observations for the
mean state and variability, budget analysis to verify internal consistency and ideal-
ized experiments to verify the over all physical consistency. In the case of
seasonal forecast, the skill score of the forecast is in itself a form of verification,
but it is less stringent than in the case of weather forecasts because of the probabil-
istic nature of the seasonal forecast itself. Seasonal forecasts have the advantage
that it is possible to generate ensembles with relatively small perturbations in the
initial conditions and perform the related analysis. Ensembles for longer climate
simulations are much more difficult to produce and less effective in sampling the
phase space. New techniques that take into account the special features of the cou-
pled system have to be developed, like the Coupled Manifold (Navarra and
Tribbia 2005).

The future development of coupled models will probably involve better dy-
namical cores to minimize the inconsistencies between the numerical formulations
of the ocean and atmosphere. The grand challenge is to eliminate, or at least at-
tenuate, the systematic errors in the basic representation of climate that are still
persistent after more than 20 years of research, of which probably the most impor-
tant is the double ITCZ that models present in the tropical Pacific.



Chapter 7
Statistical Modelling

Simon J. Mason and Omar Baddour

Statistical models provide an alternative approach to using dynamical models in
seasonal climate forecasting. In statistical models relationships between one set of
data, the predictors, and a second set, the predictands, are sought. Common pre-
dictands include seasonal mean temperatures and accumulated precipitation, and
are typically predicted using antecedent sea surface temperatures primarily within
the tropical oceans. Predictions are made on the assumption that historically ob-
served relationships are expected to apply in the future. There are many conditions
for such an assumption to be valid, including the need for high-quality datasets to
ensure that the historical relationships are robustly measured, and the need for
relationships to have a sound theoretical basis. Because of the possibility of identi-
fying spurious relationships between the predictors and the predictands, the
statistical model should be tested carefully on independent data. Most statistical
models are based on linear regression, which provides a “best guess” forecast
under the assumption that a given change in the value of a predictor results in a
constant change in the expected value of the predictand regardless of the value of
the predictor. Modifications to the linear model can be made or alternative statisti-
cal procedures used when there is good reason to expect a relationship to be non-
linear. However, other weaknesses of linear regression may also require these
alternatives to be considered seriously. The primary problems with linear regres-
sion are multiplicity, multicolinearity, and non-normality of the predictands.
Multiplicity refers to the effects of having a large number of candidate predictors:
the danger of finding a spurious relationship increases. Multicolinearity arises
when more than one predictor is used in the model and there are strong relation-
ships between the predictors which can result in large errors in calculating the
parameters of the model. Finally, a linear regression model may not be ade-
quately constructed if the data being predicted have a strongly skewed or
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otherwise non-Gaussian distribution; seasonally accumulated precipitation often
exhibits such problems. Alternative forms of linear and non-linear statistical
models can be applied to address such distributional problems.

7.1 Introduction

Whereas seasonal climate prediction using general circulation models is based
upon successful modelling of the physics of the interactions between the atmos-
phere and the earth’s surface (primarily the sea surface) and of the dynamics of
these components of the climate system (Chapters 3—6), the earliest scientific
efforts at forecasting seasonal climate anomalies were based on empirical observa-
tions of the atmosphere alone. In the late-19th and early-20th centuries, Gilbert
Walker, working on the problem of predicting the Indian monsoon, discovered
that seasonal anomalies in different parts of the tropics were connected. For ex-
ample, droughts in India and Australia would often occur in the same year. In such
cases where there is a lag between the observed climate of one region and that of
another, prediction may be possible. The most important pattern of connected cli-
mate anomalies identified by Walker was the Southern Oscillation, which
describes opposite changes in sea-level pressure between the western and eastern
Pacific Ocean, and involves major disruptions to the trade winds across the south-
ern Pacific. Such relationships between climate anomalies in different areas are
known as “teleconnections”, and constituted the basis for early empirical methods
of seasonal climate forecasting.

Teleconnections are suggestive of some large-scale forcing of the atmosphere,
but it has only been since about the mid-1960s that forcing mechanisms have been
identified and understood. The Southern Oscillation, for example, is closely
related to the state of the sea surface temperatures (SSTs) in the equatorial Pacific
Ocean: occasional large-scale warming and cooling of the equatorial Pacific
Ocean, known as El Nifio and La Nifa respectively, simultaneously require and
cause prolonged changes in the trade winds over the Pacific Ocean. These changes
are associated with large-scale shifts in the location of areas of heavy rainfall, and,
in turn, can affect climate conditions in other parts of the globe. Anomalous SSTs
outside of the equatorial Pacific also can affect regional climate (for example,
changes in the meridional SST gradient of the tropical Atlantic Ocean have import-
ant implications for rainfall over north-eastern Brazil and over much of West
Africa). Most of the statistical prediction models used currently in operational
forecasting attempt to model such relationships between observed climate and
anomalous SSTs.

In this chapter, the basic principles of statistical modelling for seasonal climate
prediction are introduced in Section 7.2. Section 7.3 discusses in some detail the
mathematics of linear regression, which is the most commonly used statistical
prediction method used in practice. Linear regression forms the basic framework
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for a range of more sophisticated statistical techniques, and these, and other statis-
tical techniques, are introduced in Section 7.4, after a discussion of some of the
limitations of linear regression.

7.2 Statistical Modelling for Climate Prediction

Although some statistical seasonal climate prediction systems are built upon ob-
served atmospheric teleconnections, the most common approach is to model
historical relationships between the climate anomalies to be predicted and the
underlying forcing mechanisms — specifically, observed SST anomalies. Statistical
methods have been used by centres such as the Met Office (United Kingdom), the
Bureau of Meteorology (Australia), and the National Centers for Environmental
Prediction (USA) for a number of decades, and supplement the dynamically based
models that these centres also use. In the late 1990s, facilitated by extensive
capacity building programs and an increasing availability of computing power,
statistical methods of seasonal forecasting have been adopted by many national
meteorological services throughout the world. These statistical models are con-
structed primarily to generate forecasts of seasonal precipitation totals, but air
temperature forecasts are made also.

7.2.1 Requirements for Applying Statistical Methods
in Climate Prediction

Statistical methods aim to identify relationships between two sets of variables
through statistical analyses performed on the historical records of the data known
as time series. The two sets of variables are:

e A set of variables to be predicted (often denoted Y), and called predictands or
response/dependent variables, such as seasonal total rainfall, and monthly aver-
age maximum and minimum temperatures

e A set of variables used to make the predictions (often denoted X), and called
predictors or explanatory/independent variables, such as SSTs or atmospheric
indices (e.g. Southern Oscillation Index — SOI)

The intention is to identify within the historical records a “significantly” con-
sistent relationship between observed values of the predictors and of the pre-
dictands. A “significantly” consistent relationship is one that is strong enough to
be unlikely to have occurred by chance, and so provides a reasonable level of con-
fidence with which to make a prediction. Of course, for a prediction to be made, a
lag between the observations on the predictors and on the predictands is implicit.
The lag defines the lead-time of the forecast: by convention, the lead-time is defined
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as the time period between the end of the recording time of the predictors and the
beginning of the target period. For example, if the average SSTs for June are used
to predict the total rainfall for the 3-month period August-October, the lag is 1-
month (the last observation of the SSTs is made on 30 June, and the target period
starts on 01 August). For any significant (lagged) relationship between the predic-
tors and the predictands to be identified, there are some basic data requirements
that must be met. These requirements are described in the following sections.

7.2.1.1 Data Quality Issues

If relationships between predictors and predictands are to be modelled reliably,
both sets of data need to be of high quality. The quality of a dataset is determined
by the accuracy of the recorded values, the spatial and temporal resolution of the
data, and the length of available records.

Apart from the problems of human and instrumental errors in recording climate
variables, inaccuracies in historical records can arise from changes in instrumenta-
tion, relocation of recording sites, and/or changes in the recording environment.
For example, the relocation of a thermometer even just a short way down slope
could introduce an artificial jump in recorded temperatures because of adiabatic
effects and changes in exposure. Any such changes in the recorded climate that are
not a reflection of real changes are known as “inhomogeneities”. Statistical mod-
els are designed to “explain” the observed variability in the predictand data by
reference to the observed variability in the predictor data. If part of the variability
in the predictand dataset is a result of inhomogeneities, the statistical model will
try to “explain” this component as if it were real. Similarly, if part of the variability
in the predictor dataset is a result of inhomogeneities, the statistical model will
try to use this component of the variability to “explain” the variability in the pre-
dictands. Correction for inhomogeneities is therefore an important component of
the statistical model-building procedure. There are a variety of checks for data
inhomogeneities, the most reliable of which make use of metadata. Metadata are
information about the data themselves, and include, for example, information about
any changes in instrumentation or changes in the location of the recording site.

Inhomogeneities in data can also be introduced by changes in the temporal
resolution of the recordings. For example, the introduction of continuous tempera-
ture recordings has allowed a more accurate calculation of the daily mean
temperature than was previously possible using only the average of the maximum
and minimum temperatures. The average of the maximum and the minimum tends
to be higher than the integrated average, and so a change in the way the daily
average is calculated could introduce an artificial change in the computed tem-
perature. The temporal resolution of the data can also affect the quality of the
information that can be communicated as part of a seasonal climate forecast. For
example, although seasonal precipitation forecasts are usually communicated as
some form of information about the total rainfall to be expected over a 3-month
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period, if higher resolution data are available it may be possible to provide some
information about the statistics of weather within the season. There are strong
relationships between seasonal rainfall totals and rain-day frequencies and heavy
rain-day frequencies in many parts of the world, and so a forecast of above-normal
seasonal rainfall could be translated into statements about the numbers of days of
rain (or heavy rain) that might be expected. However, these additional details are
possible only if precipitation measurements are available at the daily timescale.

In addition to the temporal resolution, the spatial resolution of the data is of
direct relevance to data quality issues. Station-based data, for example, are site
specific, and forecasts that have been derived from models using station data may
not be applicable to neighbouring areas. For precipitation, the applicability of a
forecast for a nearby site can decline much more rapidly over short distances com-
pared to that for temperature because of the highly localised nature of precipitation,
especially in areas of convective rainfall. For precipitation forecasts, therefore, a
relatively high density of stations would be advantageous. Sometimes forecasts
are made for area-averaged precipitation or temperature. The area-averaging
generally improves the forecast performance because the locally specific and un-
predictable component of variability is reduced by the averaging. A downside,
however, is that the forecast loses its specificity for individual locations, and so
some form of translation is required to make the forecast relevant for specific
locations. This translation is known as “downscaling” (see Chapter 8).

Other aspects of data quality, such as the presence of missing values and out-
liers, relate directly to sampling issues, and are discussed separately in the
following section.

7.2.1.2 Sampling Issues

The extent to which a modelled relationship between predictors and predictands
accurately represents the true relationship depends in part upon the number of re-
cords available. Inevitably there will be some errors in estimating the form and
strength of this relationship because of the limited number of years for which cli-
mate observations are available, and such errors will contribute to inaccurate
predictions. These errors typically are larger for short records than for long
records. For most statistical models used in seasonal climate forecasting it is
recommended that at least 30 years of data be available for constructing a model
in order to reduce the effects of sampling errors to an acceptable level.

There are three kinds of sampling errors that can occur when constructing a
statistical model:

o The wrong predictors are selected
o The wrong forms of the individual relationships between each predictor and the
predictands are selected
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o The strength of the individual relationships between each predictor and the pre-
dictands is estimated incorrectly

In practice, as the complexity of the model is increased each of the three forms
of sampling error become more severe, and sample sizes need to be increased to
compensate. To guard against the first two forms of error, statistical significance
tests are performed as an attempt to estimate the probability that the error in ques-
tion has occurred (i.e. that a spurious relationship has been identified). Because
these tests are not foolproof, and are subject to problems (Section 7.4.1), they should
always be supplemented by theoretical considerations; a sound physical explana-
tion should accompany any relationship that is implied by a statistical model. The
theoretical basis can be supplied by research using GCMs, and/or by more detailed
statistical analyses, perhaps using other climate datasets to investigate moisture
fluxes, for example.

The poor availability of sufficient historical data to construct a robust statistical
model is compounded by the presence of missing values. The simplest option is
to omit the cases in which there are missing values from the analysis, but this
approach easily can leave few or no cases with which to construct a model. Instead,
attempts can be made to estimate the missing values. These procedures typically
rely on relationships between various climatological variables. For example, if
SSTs are to be used as predictors missing SST records could be estimated either
from records for nearby locations and the spatial correlation structure of the tem-
peratures, and/or from records immediately prior to and subsequent to the missing
values and the temporal correlation structure for that location. Alternatively, if
rainfall data are to be used as predictands, missing rainfall values could be esti-
mated from the observed values for neighbouring stations, and/or from station
values for variables that are not missing, such as temperature and humidity.

An additional aspect of sampling problems that should be addressed is the
presence of outliers. Outliers are values either that are extreme in their own right,
lying well outside of the range of the majority of the other data records, or are
values that are inconsistent with relationships with other variables. In either case,
it has to be decided whether the outliers accurately represent what really happened
because if they are retained they will have a large effect on most statistical mod-
els. If the outliers are considered accurate, it may still be desirable to reduce their
impact on the model so that the data assumptions implicit in constructing the
model are not violated (see further discussion in Sections 7.3.3 and 7.4.1). For
example, seasonal precipitation data for many parts of the globe are positively
skewed'; the largest seasonal totals therefore can have an undue influence on
many statistical models, and this influence can be reduced by applying the model

! Positive skewness occurs fairly commonly in meteorological data, and is evident in seasonal
precipitation totals for many parts of the globe, most notably in arid and semi-arid areas. Maxi-
mum air temperatures in continental interiors can be weakly negatively skewed.
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to the logarithms of the precipitation totals. The logarithmic transformation is
often effective in reducing the positive skewness of data.

7.2.1.3 Trends

Before attempting to build a statistical prediction model, it is common practice to
remove any long-term trends in both the predictors and predictands. The argument
for removing the trends is that if trends are present in the predictand(s) and any of
the predictors the probability of identifying a spurious empirical relationship is
increased. Effectively, the assumption of independent model errors is violated
(Section 7.3.3) unless the trends are removed. However, there are two situations
under which it would be unadvisable to remove the trends: if there are prior rea-
sons for expecting trends in the predictands to be caused by trends in any of the
predictors; if trends are present in any of the predictands or of the predictors, but
not in both. In the latter case, if there is a trend in a predictor, but not the predic-
tand, it seems unreasonable to expect the higher frequency variability of the
predictor to provide predictive skill, but for the long-term trend to be unrelated to
the predictand; if there is a trend in the predictand, then a good statistical model
would seek a predictor for this trend.

7.3 Building a Statistical Prediction Model

In this section the primary steps in constructing a statistical model for climate pre-
diction are detailed. The focus is on using SSTs as predictors and seasonal rainfall
totals as predictands, although the procedure is similar for other variables. Linear
regression modelling is used as a statistical model, while alternative statistical
procedures are considered in Section 7.4.2.

7.3.1 Definition of Predictands

Assuming that the necessary data quality control has been conducted, the first step
in constructing a statistical model for seasonal climate prediction is to define the
predictand. Seasonal rainfall totals are by far the most commonly used predictand,
although increasing attention is being given to prediction of the intra-seasonal
statistics of seasonal rainfall, such as the number of rain-days. Only one seasonal
total per year is used in the model; other seasons are modelled separately because
of the seasonally varying nature and influence of the forcing mechanisms that
make seasonal climate prediction possible. The standard procedure is to define a
season as a 3-month total or average, but care should be taken to ensure that the
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season is defined appropriately; specifically, within a season the predictand should
have a consistent response to the underlying forcing mechanisms. For example, in
much of southern Africa, rainfall in November is positively associated with warm
ENSO events, but the relationship in December and January is negative. It would
therefore be inappropriate to forecast a November—January season.

If forecasts are to be made for regional averages rather than individual stations,
the regions need to be delimited. The regions should be defined on the basis of
similar relationships with the forcing mechanisms (for example, similar correla-
tions with SSTs). There are numerous ways of defining the regions, and no single
method has been identified as universally preferable. The most commonly used
techniques include grouping stations with highest loadings on the same principal
component (see Section 7.4.2 for further discussion of principal components), and
cluster analysis. Once stations have been allocated to a region, a regional rainfall
index, rk* , is then calculated for each year, £, typically using the following equation:

% m vy .—r
r, :ElwiL, (7.1)

Si

where w; is a weight applied to the ith of m stations, 7, is the rainfall at this ith
station during year k, and 7, and s, are the average and standard deviation of the
station’s rainfall, preferably calculated over a common reference period. The
weights are defined to sum to unity, and can be set to avoid favouring unduly the
contributions of clusters of stations to the regional index. In practice, if the station
network is reasonably even, for the sake of simplicity the weights often are set
equal for each station. The subtraction of the mean and division by the standard
deviation standardises the data at each station and is designed to avoid giving
stations with large mean and variance excessive weight (See Chapter 8, Section
8.3.3, for further discussion about standardisation, including some of its limitations).

7.3.2 Definition of Candidate Predictors

The most commonly used predictors in statistical models for seasonal climate pre-
diction are SSTs. There are a number of global SST datasets available with
varying spatial resolution (from 10° x 10° to 1° x 1°), and some extend as far back
as the mid-19th century (although data quality is considerably improved from
about the 1950s). Whichever dataset is used, there are a large number of grids
from which to choose, and some kind of pre-selection of grids and area-averaging
of SSTs should be performed. Some area-averages have been predefined, such as
the NINO3 index (5°S—5°N, 150-90°W), but similar averages may be required for
other areas if SSTs here are thought to have an important effect on rainfall vari-
ability in the region of interest. These area-averages should be defined based on
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theoretical considerations and extensive supporting statistical research. Simple
correlations between the rainfall index and global SSTs followed by delimitation
of areas with high correlation should be avoided because of problems with fishing
(section 7.4.1) and subsequent problems of potential overestimation of the per-
formance of the statistical model.

The temporal resolution of the predictors is not necessarily the same as that of
the predictands. Because SSTs change much more slowly than the atmosphere, a
I-month average is less noisy than a 1-month average of some atmospheric vari-
able, and more faithfully highlights recent trends in temperatures compared to a 3-
month average. As a result, statistical models are frequently constructed using
SSTs for the latest month available. Of course, for an operational forecast to be
made, the predictor data must be available before the beginning of the target pe-
riod. The lag between the availability of the predictor data and the beginning of
the target period defines the lead-time of the forecast (section 7.2.1).

7.3.3 Statistical Model Construction

7.3.3.1 Model Formulation — Simple Linear Regression

The simplest statistical model consists of a single predictand and a single predic-
tor. In this case a regression model assumes a linear relationship between the
predictor, x, and the predictand, y:

y=p+pBx+¢, (7.2)

where f, and S, are parameters to be estimated, and ¢ is an “error” term represent-
ing the unpredictable component of the predictand. The parameter f, is often
called the “regression constant” or the “intercept”, while £, is referred to as the
“regression coefficient” or the “slope”. The predictable component, J, is given by:

y=p,+px. (7.3)
The objective in fitting a regression model is to estimate the parameters f, and

[ so that the differences, or “residuals”, between the estimated” values of the pre-
dictands, ¥, and the observed values, y, are minimised. From Egs. (7.2) and (7.3):

% In this chapter J is referred to as “estimates” or “fitted values” when applied to cases within
the training period (i.e. to cases used to estimate the regression parameters), and to “predictions”
only when new values of x are applied. See Sections 7.3.3.3 and 7.3.3.4 for a definition and dis-
cussion of the training period.
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For a set of n years of data, the sum of the squares of these errors, SSg, is
minimised,’ i.e.:

n
. . 2
min $S, = min 2 &,
k=1
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Equation (7.5) is minimised by setting its first partial derivatives to zero:
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From Eq. (7.6), the two regression parameters can be obtained as:

n

Dl -, -]
b =+ (7.7a)

1 n
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k=1

3 The minimisation of the sum of the squared errors is by far the most commonly used form of
estimation in seasonal climate prediction. The only other minimization criterion that has been
used to any notable degree is that of minimising the sum of the absolute errors, and is known as
“least absolute deviation” (LAD) regression. See Section 7.4.2.2 for further discussion of LAD
regression.
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and
b,=y-bx, (7.7b)

where by and b, are estimates of the parameters S, and S, respectively.
The regression coefficient is closely related to Pearson’s product moment
correlation coefficient," r:

r= blsxs;l R (7.8)

where s, and s, are the standard deviations of x and y, respectively. The correlation
coefficient is a widely used measure of the strength of linear association between
the predictor and the predictand. Although it can be estimated using Eq. (7.8), it is
more commonly calculated using:

n

Z(xk _f)(yk —f)
p =4 (7.9)
S.S

X7y

The numerator in Eq. (7.9) is related to the covariance by a factor of n, and will
be positive if positive anomalies in both the predictor and the predictand tend to
occur in corresponding cases, and will be negative if opposite anomalies tend to
occur. Equation (7.9) defines the correlation as the standardised covariance. Fre-
quently the correlation is squared, and it can then be interpreted as the proportion
of the variance of the predictand that can be ‘explained’ using the predictor.

As an example, December—February 1961/62-2000/01 rainfall over Lusaka,
Zambia, is shown as the y variable in Fig. 7.1, and is regressed against the October
value of the NIN03.4 index. Lusaka is located in part of southern Africa where El
Nifio (La Nifia) conditions are frequently associated with below-normal (above-
normal) rainfall. The correlation is —0.49, and is statistically significant at a 1%
significance level, indicating that there is a strong statistical basis for making a
prediction. The figure shows that rainfall tends to decrease over Lusaka as the
equatorial Pacific becomes warmer. The relationship with October values of the
NINO3.4 index implies that a prediction can be made with a lead-time of 1 month
using the formula:

rainfall = 607 — 81x October NiN03.4 . (7.10)

* There are other correlation coefficients, but Pearson’s is by far the most widely used, and unless
specified otherwise, the term “correlation” refers to Pearson’s correlation.
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Fig. 7.1 Example of a linear regression model in which October values of the Nifio3.4 index
are used to predict December—February 1961/62-2000/01 rainfall totals for Lusaka, Zambia. The
solid line represents the regression model

The negative regression coefficient in Eq. (7.9) means that the expected sea-
sonal rainfall decreases by more than 80 mm for every 1°C increase in
temperature in the central equatorial Pacific.

7.3.3.2 Model Formulation — Multiple Linear Regression

When more than one predictor is used, a multiple regression model assumes the
following form:

y=pB,+Bx +pBx, +. . +¢. (7.11)
Given m predictors and n cases (years of data), the regression model becomes:
V=Bt Bx et X (7.12)

Equation (7.12) has p =m+1 parameters, and can be simplified in matrix
notation to:

§=XB, (7.13)
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where X is a n x p array in which the rows represent each year of data, and the
columns represent each predictor, with the first column containing unity,’ and the i
+ 1th column containing the ith predictor.

As with simple linear regression, the objective is to estimate the parameters p
so that the sum of squares of errors is minimised:

n
min SS, =min ) _&;

k=1

=ming’e
= min(y - XB)T (y - X[i)
:minyry—2BTXTy+BTXTXB (7.14)

Similarly, Eq. (7.14) can be minimised by taking the first derivatives:

oSS
£ - 2X'y+2X'Xp=0, (7.15)
B
which can be rearranged to give:
p=(X'X) Xy . (7.16)

In practice, the inverse in Eq. (7.16) is difficult to calculate and can be prone to
rounding errors if the predictors are inter-correlated, and so most statistical pack-
ages use alternative formulations and advanced linear algebra techniques, such as
the singular value decomposition, to obtain the parameter estimates.

7.3.3.3 Predictor Selection

Unless the predictors to be used are predefined, the candidate predictors would
normally be tested for inclusion in the final model that is to be used to make pre-
dictions. The standard approach is to include only those predictors in the final
regression equation that contribute to a significant reduction in the size of the
errors. Since the addition of any additional predictor into the model will always
reduce the size of the errors, this reduction needs to be significantly large, i.e. the
estimates need to improve sufficiently for us to be confident that the inclusion of
the added predictor will effect an improvement in real-time predictions.

* This extra column is used for the regression constant, which is given as the first element of f.
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A commonly used procedure for selecting predictors is stepwise regression.
There are three main forms of stepwise regression:

o Forward selection: Predictors are added one-by-one, with the remaining candi-
date predictor that reduces the size of the errors the most being added next, and
continuing until the errors cannot be significantly reduced.

o Backward elimination: All candidate predictors are initially included, and then
predictors are removed one-by-one, with the predictor that increases the size of
the errors the least being removed next, and continuing until the errors can only
be increased significantly.;

o Stepwise selection: Predictors are added one-by-one in the same way as for
forward selection, but at each stage the included predictors are retested so that
if the removal of any of these predictors results in an insignificant increase in
the size of the errors they are removed.

All of these stepwise procedures require a criterion for deciding whether the
change in the size of the errors is significantly large. The approach generally used
is based upon the F-statistic, and involves a decomposition of the total sum of
squares about the mean of the predictand, SS7:

S8, =Yy’
i=l
= yry , (7.17)

where y has been centred around zero by subtraction of the mean. The SS7 is de-
composed into two components: the explained component as modelled by the
regression model, SSg, and the unexplained component or sum of the squares of
the errors, SSg, as defined in Eq. (7.14). The regression sum of squares is calcu-
lated as:

=b’X'Xb > (7.18)

so that SS7= SSi + SSg. The F-statistic tests whether the change in SS for the pre-
dictor under consideration is significantly large compared to the mean of the
squared errors, MSg, after including the predictor. The MSy is the SS divided by
n— p—1. Under the assumption that the predictor is unrelated to the predictand,
the F-statistic is drawn from an F' distribution with one and n— p —1 degrees of
freedom. A predefined value of this statistic can be defined for a given level of



7 Statistical Modelling 177

significance (typically 0.05), and if the calculated F-statistic exceeds this value the
predictor results in a significant improvement in the estimates of y. The procedure,
however, is problematic, partly because of the sensitivity of the F-statistic to dis-
tributional assumptions (Section 7.3.3), and because of problems related to
multiplicity (Section 7.4.1), which invalidate the significance tests.

Nevertheless, given the definitions of SS7and SSy in Egs. (7.17) and (7.18), the
ratio SSg/SSr provides an indication of the proportion of the total variability in the
predictor that can be explained by the regression model. This proportion, denoted
R?, is known as the coefficient of determination, and is the multivariate equivalent
of the squared correlation coefficient (Section 7.3.3). An adjusted R is sometimes
calculated to correct for the number of parameters in the model.® The procedure
described above based on the F-statistic is equivalent to selecting which of the two
models (the one with and the one without the predictor under question) has the
larger adjusted R”.

None of the stepwise procedures guarantees that the best possible set of predic-
tors (i.e. the one that minimises the errors) is selected, and so one option is to
search through all possible combinations to find that subset that reduces the size of
the errors most significantly. Since this search can be computationally prohibi-
tively expensive if the number of candidate predictors is large,” an alternative is to
modify the simpler forward selection and backward elimination procedures de-
scribed above by swapping out at each step any predictors that can effect an
improvement in the model. The predictors are swapped one-by-one with the pre-
dictor that improves the model the most being introduced as replacement. The
swapping continues until no further improvement is possible.

A somewhat different approach is to identify a model that makes a good set of
independent predictions, as opposed to one that minimises the errors in estimating
the data used to construct the model. The problem with minimising Egs. (7.5) and
(7.14) is that the model is optimised only to describe the relationship between the
predictors and predictand over a set period, known as the training or calibration
period (the period of the data used to construct the model), but there is no guaran-
tee that this model will make good predictions when it is applied over a different
period. Some procedures search for the set of predictors that make the best set of
independent predictions by using only part of the data to construct the model and
then examining the predictions for the data that was withheld. Techniques for per-
forming this independent assessment are discussed in further detail in Section 7.3.3.

% Note that the adjusted R* cannot be interpreted as the proportion of variability explained.

7 Given k candidate predictors the number of possible combinations is 2° — 1.
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7.3.3.4 Model Assumptions

Before assessing how well the regression model can predict the response variable,
it is important to assess the validity of the model. If various assumptions about the
data used in constructing the model cannot be upheld, the model parameters may
be estimated incorrectly, and the predictions made in real-time will then be less
accurate than expected. These assumptions are enumerated below. Alternative
procedures for when these assumptions are invalid are discussed in Section 7.4.

* Errors are identically and independently distributed (iid)

The forecast errors (Eq. 7.4) should show no tendency to increase or decrease
in size either in the long-term or for identifiable sub-periods of the data. Similarly,
the variance of the errors should not be related to values of the predictors (“homo-
scedasticity”). This latter restriction is often a problem when constructing
statistical models to predict precipitation because forecast errors typically increase
as the forecasted precipitation increases simply because there is a lower bound to
precipitation.

In addition, the errors are assumed to be independent of each other. This as-
sumption means that the model should show no tendency to underestimate or
overestimate the observed values over a string of years. In combination with the
assumption of a zero mean-error, the independence of errors means that each time
a new prediction is made, the probability of overestimating (or underestimating)
the observed value is 0.5 in all cases.® The Durbin-Watson test is recommended
for testing independence of the errors, and works by identifying whether there is
any autocorrelation in the errors (i.e. is it possible to “predict” the errors from pre-
vious errors?).

» Predictand is normally distributed

Although strictly it is only the model errors that need to be normally distrib-
uted, in practice, this distributional assumption about the errors is more often met
when the predictand itself is normally distributed. In addition, if the predictand is
not normally distributed, the regression parameters can be heavily influenced by
the more extreme values. Since seasonal rainfall totals for many areas have a posi-
tively skewed distribution (see, for example, Fig. 7.1), it is often advisable to
transform the data so that the transformed data are normally distributed. Com-
monly used transformation functions include the logarithm, and the square root
and other power transformations.

¥ More generally, because of the assumption of fixed variance, the probability that the error will
exceed any pre-defined value is a constant.
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* Linear relationship

If the relationship between (any of) the predictor(s) and the predictand is non-
linear, Eqs. (7.2) and (7.11) are of the wrong “form”. The true form of the rela-
tionship(s) may be unknown, but more complex relationships can be examined
using alternative regression models (Section 7.4.2). Apart from testing for
improvements in the predictions if a more complex model is used, it can be useful
to reorder the predictions so that they are sorted by the value of (one of) the
predictor(s) rather than chronologically, and then re-conducting the test for inde-
pendence. If the true form of the relationship is quadratic, for example, but is
assumed to be linear, the residuals will be of a similar sign at the beginning and
end of the re-ordered series, and of the opposite sign in the middle.

* Uncorrelated predictors

For multiple regression, the model parameters can be estimated inaccurately
when there are strong correlations between the predictors. The presence of strong
correlations between predictors is known as multicolinearity, and is discussed in
further detail in Section 7.4.1.

7.3.3.5 Model Evaluation

Since measures of the errors in estimating the y values (“goodness of fit” mea-
sures), are as much a function of the number of parameters included in the model
as they are of the quality of the model’s ability to describe the variability in the
predictand, they are not necessarily very informative. In order to estimate how
well the model can predict new values, a separate set of data that was not used to
construct the model is required. Two approaches are used, and in both cases the
data is divided into a “training” or “calibration” period, and an “independent” or
“verification” period:

o Cross-validation: One year is withheld (together, optionally, with additional
years immediately preceding and succeeding; this omitted period is known as
the cross-validation window), and the remaining years are used to train the
model. A prediction is made for the omitted year or the year in the middle of a
window larger than one, and the procedure is repeated until a prediction has
been made for each year (Fig. 7.2a and b).

e Retroactive validation: The model is trained using only the first few years of
the data, and a prediction is made for the year immediately after the end of the
training period. The model is then updated, adding the year just predicted to the
training period, and a prediction for the following year is made (Fig. 7.2¢). This
procedure is continued until a prediction for the last year has been made.
(Sometimes the subsequent k& years are predicted, where £ > 1, and the model is
only updated every k years).



180 S.J. Mason, O. Baddour
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Fig. 7.2 Schematic diagrams illustrating the procedure for (a) leave-one-out cross-validation,
(b) leave-three-out cross-validation, and (c) retroactive validation

In each case, the objective is to generate a set of “out-of-sample” predictions.
These predictions need to be independent of the data used in the training set, but
assuring complete independence is exceptionally difficult, particularly with cross-
validation. One of the main ways in which “leakage” of information from the
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training to the verification sample is allowed to occur is through a failure to re-
select the predictors adequately at each step. It is important that the predictors are
allowed to be reselected rather than only allowing the model’s parameters to be
recalculated.’ Ideally each training period should be independent of each other, but
since that is impractical because of limited sample sizes, some effort to ensure that
at least some of the training periods differ should be made. In cross-validation this
independence can only be achieved by using a fairly large window.

Retroactive validation closely mimics the operational generation of predictions,
and so should give a realistic estimate of how well the model would have per-
formed if it had been operational since the first year of the independent predictions
(although selection of candidate predictors by using all the data can bias the
results). The downside of retroactive validation is that predictions are made only
for a subset of the data, and so the small sample size will contribute to large errors
in the estimates of the quality of the predictions.

In cases where the predictor(s) is (are) specified and the distributional assump-
tions described in the previous section do not hold, bootstrapping of the model
parameters should be conducted. Bootstrapping involves randomly re-sampling
pairs of predictor and predictand values, and then recalculating the regression
using the resample. There are many ways of designing a bootstrap procedure, but
the standard approach is to generate a sample that has the same number of cases as
the original sample. The cases are drawn with replacement, for otherwise the boot-
strap sample would be identical to the original sample. A large number of
bootstrap samples are generated, and regression models constructed for each one.
The distribution of the regression parameters provides an indication of the uncer-
tainty in estimating the “correct” parameters.'’

7.3.3.6 Scoring Metrics

Given a set of independent predictions, the most commonly used metric to calcu-
late how well these predictions match the observed outcomes is the correlation
coefficient. The correlation coefficient was introduced in Section 7.3.3, where it
was used to measure the strength of the linear association between the predictor(s)
and predictand. To use the correlation for forecast verification, simply replace x

° By reselecting the predictors at each step it is quite possible that the actual set of predictors that
are used to make an operational forecast are not actually selected in some or even any of the
cross-validation steps. This failure to test using the operational predictors may seem problematic,
but an essential part of the cross-validation procedure is to test the predictor selection process.

' Although not widely performed, one way of estimating the uncertainty in a prediction would
be to make a suite of predictions using models constructed using the bootstrap samples. More
widely used methods are discussed in the following section.
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with § in Eq. (7.9). Note, however, that the correlation is not a measure of fore-
cast accuracy for two reasons: the subtraction of the means of x and y in the
numerator eliminates any bias in the forecasts, and the division by the respective
standard deviations eliminates any variance bias. (See Section 7.3.3 and Chapter
8, for definitions of accuracy, bias, and variance bias.) As a result, predictions of
rainfall, for example, that are consistently too wet or too dry, and vary too much or
too little can still achieve a perfect verification score. In the context of statistical
models, such problems are not usually very severe because the predictions should
be reasonably well calibrated over the training period. As a result, the mean bias
should be fairly small, although in most cases the variance will be underestimated,
simply because in an imperfect model predictions err towards the climatological
mean.

The squared correlation coefficient is often quoted as the percentage of vari-
ance of the observed values that is successfully predicted. While technically
correct, this percentage is often misinterpreted as some measure of how frequently
the forecasts are “correct”. In the context of the deterministic predictions from
regression models, “accuracy” is a more appropriate quality of the forecasts than
correctness because the predicted and observed values will always differ if only by
a very small amount, and so the predictions are never “correct” in a strict sense.
Accuracy generally is indicated using an average of some measure of the errors.
The mean squared error, introduced in Section 7.3.3, is a natural choice because it
is a quantity that has been minimised when the model was constructed, but is not
particularly intuitive otherwise. The root mean squared error resolves the concep-
tual problem of interpreting squared errors, but the mean absolute error is the
simplest to understand: it indicates by how much, on average, the predictions dif-
fer from the observed outcomes. A still more informative approach would be to
indicate in a contingency table or histogram how frequently errors of different
magnitude occur.

Other widely used metrics are based on the contingency table: it has become
popular to assign the observed values to one of three equiprobable categories,
labelled “below-normal”, “normal”, and “above-normal”, with “below-normal
referring to the driest/coldest third of cases, and the other categories defined ac-
cordingly."" The deterministic forecasts can be classified into one of these three
categories, and a table comparing the forecast and observed categories can then be
constructed. An example is shown in Table 7.1a for 30 years of cross-validated
predictions of December—February Lusaka rainfall using only the NINO3.4 index
as predictor. The “correct” predictions are shown in the diagonal cells from top
left to bottom right.

' Categories do not have to be equiprobable, and more (or less) than three categories can be
defined. The principles of verification remain the same, however.
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Table 7.1 (a) Contingency table and (b) variance-adjusted contingency table of cross-validated
predictions of December—February 1971/72-2000/01 rainfall totals for Lusaka, Zambia, using
the October NINO3.4 index as sole predictor. The categories are equiprobable, and are marked B
for below-normal, N for normal, and A for above-normal

(a)
PREDICTIONS
A N B TOTAL
A 3 7 0 10
OBSERVATIONS N 0 7 3 10
B 1 5 4 10
TOTAL 4 19 7 30
(b)
PREDICTIONS
A N B TOTAL
A 5 4 1 10
OBSERVATIONS N 2 4 4 10
B 3 2 5 10
TOTAL 10 10 10 30

There is a wide range of summary measures of such contingency tables, but
they are not discussed here because the loss of information as a result of the cate-
gorization of the observations and predictions, and deterministic nature of the
predictions mean that such an interpretation of the climate prediction information
is undesirable. The interested reader is referred to Jolliffe and Stephenson (2003)
and Wilks (2005) for details.

The number of predictions of the normal category is higher than for the other
categories because of the lower variance of the predictions compared to the obser-
vations. As a result, the variance of the forecasts is sometimes increased
artificially so that the number of predictions in each category is equal. The result-
ing contingency table is shown in Table 7.1b. Such variance adjustment is pro-
blematic because the squared errors are no longer minimised, and it can be seen
from Table 7.1b that there is no improvement in the total number of correct predic-
tions (5 + 4 + 5 compared with 3 + 7 + 4), while there is an increase in the number
of two-category misses (i.e. predictions of above-normal when below-normal
occurred, or vice versa). Variance-adjustment should therefore be discouraged.

Ideally, if the forecasts are categorised they should be expressed as probabili-
ties. Methods for generating probabilistic forecasts from the deterministic
predictions of regression models are discussed in the following section. The veri-
fication of probabilistic forecasts is a complex issue, and is discussed in detail in
Chapter 10.
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7.3.3.7 Generating Probabilistic Forecasts

Once the regression model has been constructed, predictions can be made using
Egs. (7.3) and (7.13) given new values of the predictor(s). However, these equa-
tions give only a “best-guess” of the outcome, and no indication of the uncertainty
is provided. There are a number of ways in which this best-guess forecast can be
converted to a probabilistic forecast, but the most reliable procedure is to use in-
formation about the variance of the errors in estimating previous known values.
The error variance is widely used to define a prediction interval on the forecast,
although it is possible to obtain probabilities for predefined categories as well. If
the errors in the forecasts are assumed to be Gaussian, these probabilities can be
calculated by integration of the z-distribution using the best-guess as the mean and
the error variance as the variance. (See Chapter 8, Section 8.5.1 for discussions on
different ways of communicating forecast uncertainty.) The error variance is nor-
mally calculated from the fitted values, although the errors in the cross-validated
forecasts could be used instead, and may be more reliable.

Alternative approaches include using contingency tables that compare the cate-
gory of the forecast with the observed category for a set of forecasts. Then if 60%
of the times that the forecast has indicated below-normal rainfall the observation
was also below-normal, for example, the forecast would specify a 60% probability
of below-normal rainfall the next time the forecast indicates below-normal. There
are two problems with this approach: very large samples are required to estimate
the probabilities reliably, and; no distinction is made between the probabilities
issued when the forecast indicates well below-normal rainfall, and when it indi-
cates marginally below-normal. The large differences in the amount of rainfall that
can be classified as “below-normal”, for example, could be offset by increasing
the number of categories, but only at the cost of requiring still larger samples.
Given these problems, the use of contingency tables to obtain forecast probabili-
ties is not recommended. Instead there is a suite of statistical procedures that can
be used to obtain these probabilities directly rather than estimating a best-guess
and then trying to account for the uncertainty subsequently. These procedures are
discussed in Section 7.4.2.

7.4 Alternative Statistical Methods to Linear Regression

Linear regression forms the basis for a number of more sophisticated statistical
techniques that have been used in seasonal climate prediction. Some of these tech-
niques are discussed in Section 7.4.2, all of which have in common an attempt to
estimate a “best-guess” forecast. Some alternative statistical techniques that esti-
mate forecast probabilities without providing a best-guess are considered in Section
7.4.2. However, to understand the motivation for using any of these methods, it is
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first helpful to consider some of the limitations and potential pitfalls of linear
regression, and these issues are outlined in Section 7.4.1.

7.4.1 Problems with Linear Regression

The problems and potential pitfalls listed in this section are not exclusive to linear
regression, but are listed to provide a context for understanding the more sophisti-
cated techniques described in Sections 7.4.2 and 7.4.3. In many cases the alter-
native techniques attempt to address only a subset of the problems listed below.

7.4.1.1 Multiplicity

One of the primary difficulties in using linear regression for seasonal climate
forecasting is identifying the predictors to use in the model. Most frequently, pre-
dictors used are measurements of SSTs, but land-surface characteristics and
atmospheric indices are also used for forecasting in countries such as India where
the use of such variables has been supported by extensive research on seasonal
predictability. Whether or not SSTs are used exclusively, the pool of candidate
predictors is vast, and the problem arises of which subset of these predictors
should be included in the regression model. The temptation is to choose the pre-
dictors that are best correlated with the predictands, but the probability of
identifying highly, but spuriously, correlated predictors increases'” as the pool of
candidate predictors is expanded. This problem is known as “multiplicity”, and the
search for predictors by repeated testing of the strength of statistical relationships
is known as “fishing”, and almost invariably results in the creation of a statistical
model that performs worse than anticipated when used operationally.

One reason why “fishing” results in models that perform poorly in operations is
that standard tests of statistical significance used in constructing a statistical model
assume that the predictors to be used in the regression model have already been
selected, and these tests become invalid when only the models that give the best
results are selected. If a number of regression models are tested with the aim of
identifying those that work well, then problems of multiplicity arise. Standard
significance tests require adjustment for multiplicity, otherwise there is an in-
creased danger of accepting predictors that should not be included in the model,
and/or of overestimating the strength of the model’s predictive capability. This
selection of spurious, or of too many, predictors is known as “over-fitting”.

"2 Ie. the probability of making a type-I error increases.
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Cross-validation (Section 7.3.3) is used to test for over-fitting. Leave-one-out
cross-validation appears to be the standard approach in the atmospheric sciences
(leave-k-out is used if the data are autocorrelated, but & typically is set only to a
maximum of twice the decorrelation time). However, it is not widely recognised in
the atmospheric sciences literature that a substantial proportion of the data needs
to be omitted to obtain unbiased results. How much data should be omitted re-
mains a question for further research, but there have been suggestions that it
should be as much as 40-60% (Xu and Liang 2001). Frequently, therefore, the
problems of multiplicity are not adequately addressed.

An aspect of multiplicity is evident not just when constructing a model with a
large pool of candidate predictors, but also when constructing a number of models,
perhaps for different stations and/or seasons. If numerous models are constructed,
the probability of finding at least one that gives spuriously “good” predictions
increases, and so the statistical significance of the overall set of results needs to be
assessed. Tests for “field significance” have been designed to address this ques-
tion. Multiplicity problems can apply to GCM forecasts as well since forecasts are
made for a large number of locations, variables, lags, and target periods.

7.4.1.2 Multicolinearity

Multicolinearity is a problem that sometimes arises when more than one predictor
is used in a regression model. If the predictors used are themselves highly cor-
related with each other, errors in estimating the model parameters can become
substantial. The errors in these parameter estimates can give poor predictions
when new values of the predictors are applied to the model, and can also create
problems in interpreting the regression coefficients. Whereas multiplicity results
in bad forecasts because of the inclusion of incorrect predictors in the model, multi-
colinearity can cause bad forecasts even when the correct predictors are included
simply because the regression parameters may be poorly estimated.

To illustrate the difficulty of interpreting regression parameters when predictors
are correlated, consider a simple multiple regression model to predict the March
values of the NINO3.4 index from the January and February values. Using data for
1971-2000, the regression coefficients for January and February, respectively
are —0.395 and 1.216, which seems to imply that the March value is negatively
correlated with the January value, whereas one would expect a slightly weaker
positive correlation than for February. However, when the January and February
values are used in separate models as the only predictors, the coefficients change
to 0.628 and 0.761, respectively, showing that the values in both months are posi-
tively correlated with that in March.
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7.4.1.3 Non-linearity

Linear regression assumes a linear relationship between the predictor(s) and the
predictand. This assumption means that for a given change in the value of a pre-
dictor, (e.g. a 1°C increase in SST in a specified area), the expected change in the
predictand (e.g. an increase in seasonal rainfall of 100°mm) is the same regardless
of the actual sea temperature, and regardless of the values of the other predictors.
Given the non-linear nature of the atmosphere the linearity assumption seems
inherently unreasonable, and the flexibility to model non-linear relationships sta-
tistically may be desirable. In practice, however, the linearity assumption is often
a reasonable approximation, and even where it is not, the degrees of freedom
required to identify the correct form of the relationship are likely to be lacking.

7.4.1.4 Assumptions About Data Distribution

In addition to the linearity assumption, linear regression assumes that the predic-
tand (but not necessarily the predictors) is normally distributed. While this
assumption may be quite reasonable for variables such as geopotential heights, for
other variables the data may not be normally distributed, and fitting a linear
regression then becomes problematic. Although the distribution of surface air
temperatures is skewed, this can generally be ignored because the skewness is not
usually severe. However, with precipitation, skewness can be marked (see exam-
ples in Chapter 8, Section 8.3.1), and there is the related problem that precipitation
has a lower limit of zero. It makes no sense for a regression line on precipitation to
extend below zero since negative precipitation is meaningless, but a linear regres-
sion model is unaware of such a constraint. The lower limit on precipitation also
means that even if a regression model is fitted, the errors are usually larger for
larger precipitation rates than for rates close to zero. This increase in the variance
of the errors in estimating precipitation for larger precipitation amounts violates
the homoscedasticity assumption of multiple linear regression. Although these
problems could be addressed by using certain forms of generalised linear models
(see Section 7.4.3), they are frequently ignored, or assumed not to be problematic.

7.4.2  Regression-based Statistical Prediction Techniques

7.4.2.1 Power and Non-linear Regression

Even when the relationship between the predictor and predictand is non-linear, a
transformation of the values of the predictors and/or predictand may make it pos-
sible to treat the problem as linear. The most commonly used transformations are
power transformations (e.g. using the square or the square-root of the predictors),
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and adding these to the pool of predictors. The resulting models, known as power
regression models,"” have been used extensively in statistical predictions of the
Indian monsoon, for example. However, caution has to be taken since the problem
of multiplicity is exacerbated by expanding the number of candidate predictors,
and theoretical justifications for the power transformations should be supplied. In
addition, multicolinearity is introduced with most power transformations. Power
regression is sometimes used in seasonal forecasts of climate impacts, where non-
linear relationships between climate variables and the application data in question
have a theoretical basis (e.g. Chapters 12 and 13). Other examples of non-linear
regression include exponential models, which are used more frequently in fore-
casting impacts than in forecasts of seasonal climate per se.

Compared to power regression models, neural networks constitute a consider-
able increase in the complexity with which non-linear relationship can be modelled.
Neural networks are a recent development in seasonal climate prediction, but have
been applied successfully, and have been implemented as the statistical atmos-
pheric component in hybrid coupled models. The neural networks are constructed
by optimizing sets of weights applied to the predictors, which are then transformed
using a non-linear function (usually the hyperbolic tangent), and then further
weighting functions are applied to provide estimates of the predictand values. The
weights are optimised so that the squared errors in the estimates are minimised,
as with linear regression. Because of the large numbers of model parameters
involved, care has to be taken to avoid over-fitting.

7.4.2.2 Regression Models for Non-normally Distributed Data

Although linear regression assumes that the data being analysed are normally dis-
tributed, the procedure can be generalised to allow for predictands with alternative
distributions. These generalised linear models (GLMs) are discussed in more de-
tail in Section 7.4.3, where versions of GLMs for estimating probabilities are
considered. However, there are forms of GLMs for data with a Poisson distribu-
tion that are suitable for modelling data that are recorded as counts, and these have
been applied in seasonal forecasting of tropical cyclones. Versions are also avail-
able for data with a gamma distribution that would be suitable for forecasts of
rainfall, but these have not been widely used.

A primary reason why linear regression becomes problematic when the predic-
tands are not normally distributed is that the more extreme observations (for
example the very wet years) have an undue influence on the regression parameters.
While GLMs address this problem by making it possible to assume distributions

" Polynomial regression models are special cases of power regression, allowing only integer
powers to be used.
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that are more representative of the data, another alternative is to use regression
models that are less sensitive to extreme values. There are two ways in which this
sensitivity can be reduced. In robust regression, one option is to reset all errors
(i.e. squared differences between the observed and the fitted value) exceeding a
maximum value to this threshold. The procedure is not widely used. The second
approach is to redefine how the errors are calculated: specifically, instead of
squaring the errors, which tends to exaggerate the magnitude of large errors, the
absolute errors can be used. This procedure is known as least absolute deviation
(LAD) regression, and has been used in tropical cyclone forecasting, for example.

7.4.2.3 Ridge Regression

Ridge regression constitutes an attempt to address the problem of multicolinearity
by placing constraints on the model parameters. In effect the procedure artificially
inflates the variances of the predictors relative to their covariances, and thus un-
derplays the effects of the inter-correlations when estimating the model regression
coefficients. Ridging is used in the constructed analogue procedure, in which a
least squares estimate of the spatial pattern of the most recently observed values of
the predictands is obtained by weighting the patterns for all years in the historical
data. As an example of a simple constructed analogue model, consider the problem
of forecasting the December Nifio3.4 index from the June value. Assume that the
June and December values of the index are known for 1971-2000, and that the
June 2001 value is available to make a forecast for December 2001. Weights
would be assigned to the June values for 1971-2000 to estimate the June value for
2001. These same weights would then be applied to the December 1971-2000
values to construct a forecast for December 2001. Given that the number of
weights to be calculated (30) is larger than the number of values being estimated
(1), there is no unique solution to the weights, but the ridging helps to provide a
stable solution.

7.4.2.4 Principal Components Regression

Principal components regression (PCR) improves on ridge regression by address-
ing some of the problems arising from both multicolinearity and multiplicity. The
only difference between multiple regression and PCR is that in PCR the principal
components of the predictors are used in the model instead of the original predic-
tors themselves. Principal components are optimal summaries of large sets of data,
obtained by defining sets of weights, or “loadings”, that are applied to obtain a
linear combination of the original data. They are ideally suited to the problem at
hand, since they will reduce a large candidate pool of predictors to a much smaller
number, while retaining much of the information in the original data. In addition,
each of the principal components is uncorrelated with all the others, and so problems
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of multicolinearity are avoided. More complex versions of principal component
analysis can be used in PCR that represent, for example, modes of variability that
have an evolutionary component, and are discussed further in the next section.

In theory it is possible to expand a PCR equation into an equivalent multiple
regression equation given the PCR coefficients and the loadings used to define the
principal components. The coefficients of this expanded multiple regression have
smaller error variance than if the coefficients had been estimated directly, because
the negative effects of multicolinearity are usually associated with the higher order
principal components that would generally be omitted from the analysis. However,
the coefficients are biased, and so problems of interpretation remain. Despite these
issues, and problems in determining the number of principal components to retain
in the model, principal components regression is an attractive alternative to multi-
ple linear regression.

7.4.2.5 Maximum Covariance Analysis, Canonical Correlation Analysis,
and Redundancy Analysis

When making predictions for a number of different stations or gridpoints, princi-
pal components regression can be an inefficient procedure since separate models
have to be constructed and tested for each location. In addition, if the predictands
are inter-correlated, it is possible for predictions at one or more of the locations to
be somewhat inconsistent with those at others because of different sampling errors
in the estimated regression coefficients, or even in the selection of predictors, for
models at neighbouring sites. There are various techniques that can be used to
make predictions at a set of locations. These techniques include canonical correlation
analysis (CCA), redundancy analysis, and maximum covariance analysis'* (MCA).
These techniques are widely used in spatial downscaling problems (Chapter 8).
The basic principle behind all of these techniques involves forecasting modes
or spatial patterns of variability spanning across the region of interest rather than
making forecasts for individual locations. In this context, a mode is akin to a
weighted average' of the individual locations. More than one mode can be pre-
dicted, and the predictions for these modes are then superimposed to construct

' Maximum covariance analysis is frequently referred to as singular value decomposition (SVD)
or SVD analysis. This nomenclature, however, is confusing because SVD is often used to per-
form other analyses, including multiple regression, principal components analysis, and CCA.
Von Storch and Zwiers (1999) propose calling the technique maximum covariance analysis.

More strictly, because the sum of the squares of the weights rather than the sum of the weights
per se, is required to be unity, the modes are a “weighted sum” or a “linear combination”.
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forecasts for all locations. The modes are predicted using a second set of modes
obtained from the predictors so that spatial patterns of variability in the predictors
are used to predict spatial patterns in the predictands. If Ux and Uy are the weights
for the predictors and predictands, respectively, the modes, or new variables, are:

7, =XU

X

(7.19a)

X o

Z,=YU (7.19b)

Y Y *©

Maps of the weights are frequently plotted to indicate the coupled spatial patterns.
As an example, the first coupled mode (obtained using CCA) of September SSTs
for the Indian Ocean and October—December precipitation over part of East Africa
is shown in Fig. 7.3. The mode suggests that warming in the western tropical
Indian Ocean with cooling in the eastern tropical Indian Ocean and far western
Pacific (Fig. 7.3a) can be used to predict anomalously wet conditions over the
bulk of Tanzania and Kenya (Fig. 7.3b). The opposite precipitation pattern would
be predicted given a reversal of the anomalous zonal temperature gradient in the
tropical Indian Ocean. The temporal variability of these modes is shown in Fig.
7.3c¢; the correlation between the modes is 0.706.

The differences between MCA, CCA, and redundancy analysis are in the pro-
perties of the weights that define the modes:

e In MCA each pair of modes has maximum covariance

o In CCA each pair of modes has maximum correlation

e In redundancy analysis the explained variance in the predictand modes is
maximised

(Compare principal component analysis, in which the aim is to define a set of
weights for either the predictors or the predictands that generate new variables
with maximum variance.) For MCA, the covariance between the modes is:

C=7.7 (7.20)

- HxHy e

The covariance matrix C is a diagonal matrix with the diagonal elements defin-
ing the covariances of the coupled modes of predictors and predictands. Equation
(7.20) can be written in terms of X and Y by substituting from Eq. (7.19):

Cc=(xu,) YU,
=UX'YU, . (7.21)
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Fig. 7.3 Example of the first coupled mode of (a) September 1951-2000 sea surface tempera-
tures for part of the Indian Ocean used to predict (b) October—December 1951-2000 precipitation
over East Africa. Both datasets were pre-filtered by using only the first few principal com-
ponents. The maps show the correlations between the original gridded data and the respective
temporal scores (c) for the predictor (black) and predictand (grey) components of the first
canonical coupled mode
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XY is the covariance of X and Y (i.e. the covariance matrix of the original pre-
dictors and predictands) and so Eq. (7.21) can be rearranged to express this
covariance matrix, Cxy, in terms of the diagonal matrix C, and two orthogonal
matrices:

C,, =U.CU,. (7.22)

In other words, the weights Uy and Uy that maximise the covariances between
the spatial modes of predictors and predictands can be obtained from a singular
value decomposition of the covariance matrix of the original predictors and pre-
dictands. Then, given a new set of predictors, x, forecasts, ¥ , can be generated:

y=xU,Z/CU,, (7.23)

where Xy is a diagonal matrix containing the variances of the Zx. Only those cou-
pled modes that explain a large proportion of the total variance are used in the
prediction, and so typically only the first few coupled modes are retained. Effec-
tively, the smaller diagonal elements of the matrix C effectively are set to zero.

However, Eq. (7.23) does not provide least-squares estimates of the predict-
ands, and so MCA is not regularly used in seasonal climate forecasting. Instead
MCA is more useful in identifying coupled modes of, for example, SST fields and
rainfall that may provide a basis for seasonal forecasting. A much more commonly
used variant of MCA in prediction problems is CCA, which aims to identify alter-
native sets of weights, Vyx and Vy,'¢ that maximise the correlations rather than the
covariances between the modes of variability. In CCA the modes defined in Eq.
(7.19) are first standardised, replacing Ux and Uy by Vx and Vy, respectively, so
that C in Eq. (7.20) becomes a squared correlation matrix, R. Predictions, given a
new set of predictors, are then given by:

y=xV,RV . (7.24)

In practical terms, CCA identifies linear combinations of predictors that can
successfully predict linear combinations of the predictands, regardless of how
much of the total variance either linear combination explains. Consequently, there
is a danger of identifying well-correlated modes of variability that do not explain
much of the total variability. Although the objective in MCA of maximising the
covariances rather than the correlations between the modes may seem more perti-
nent, MCA is also problematic in that the covariances are maximised in part by
the variances of the modes for the predictors, and so it is possible that the total

1 Note that Vx and Vy are not orthogonal matrices, whereas Ux and Uy are.
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explained variance of the predictands is low. Further, both methods are subject to
interpretation problems, and neither approach is likely to identify robust and easily
interpretable modes of variability. Redundancy analysis is a third option that de-
serves further attention. Redundancy analysis replaces Zx in Eq. (7.19a) with
the standardised values, and thus seeks to maximise the explained variance in the
predictands without necessarily using the largest modes of the variability in the
predictors. Redundancy analysis can thus be seen as intermediate between CCA
and MCA. In practice, differences in the results of the various techniques are
usually minimal.

In most applications of MCA and CCA in the climate literature, the observa-
tions and forecasts are pre-filtered by using a subset of the principal components
of the data. While the pre-filtering simplifies the solution of the CCA or MCA, the
computational gain is lost through having to calculate the principal components.
Instead, the main advantage of the pre-filtering is that the noise levels in both the
forecasts and the observations are reduced, and so the chances of finding spurious
relationships are decreased. This advantage is likely to be greater for CCA than for
MCA because the former does not require the coupled modes to represent large
proportions of the total variance of the original data.

7.4.2.6 Other Principal Component Analysis-related Techniques

As mentioned in Section 7.4.2.4, principal components can be useful as predictors.
There is a hierarchy of sophisticated ways in which these components can be de-
fined. In the simplest formulation, the principal components are defined using a
set of predictor variables all of which represent measurements synchronous with
each other. Prediction using principal components of SSTs at various locations,
but all measured at the same time, would be an example. This form of principal
components regression is discussed in Section 7.4.2.4.

If the predictors are measured at a number of different lags, the principal
components become “extended” empirical orthogonal functions (EOFs),"” whose
computation is equivalent to that of multi-channel singular spectrum analysis. For
example, SSTs for a set of locations measured at a number of different times of
the year are sometimes used to predict future SSTs. If a single predictor is used in
this context so that the principal components are calculated only from the auto-
correlation (or auto-covariance) of this series, the technique is known as singular
spectrum analysis (SSA). Although SSA has not been used widely in seasonal

' Empirical orthogonal functions are the loadings that define the principal components. Although
some authors have drawn a distinction between principal component analysis and empirical
orthogonal function analysis based on the normalization of the eigenvectors (Richman 1986),
this distinction is not widely adhered to and the two are in most cases synonymous (von Storch
and Zwiers 1999; Joliffe 2007).
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climate forecasting, it has been used in an attempt to identify the predictable com-
ponent of the Indian monsoon variability. Similarly, complex EOFs have been
used in predictability studies, but have not been widely applied in seasonal climate
forecasting. Complex EOF analysis, sometimes called Hilbert singular decomposi-
tion, involves advancing all oscillatory components of any wavelength in the data
by 90°, and including these as imaginary components in a principal component
analysis. The procedure allows lags to be identified in modes of variability.

Principal oscillation pattern (POP) analysis is fundamentally different to the
techniques described above. It performs an eigenvalue decomposition of the ma-
trix of first order autoregressive (AR-1) coefficients, and hence identifies optimal
multivariate AR-1 models that can be used for prediction purposes. POP analysis
has similar objectives to complex EOF analysis in seeking to identify evolutionary
modes of variability, but has been more widely used than the latter in seasonal
prediction. Linear inverse modelling is a version of POP analysis.

7.4.2.7 Autoregressive Models and Optimal Climate Normals

Linear inverse modelling and POP analysis are sophisticated versions of simpler
models known as autoregressive models. Autoregressive models are mathemati-
cally the same as linear regression models except that the predictors are the same
variable as the predictand, only measured at different lags. So, for example, if the
NINO3.4 index is forecasted with a regression model using only earlier values of
the index, then this model would be autoregressive. The best known example of
such a model is the CLIPER (CLImatology and PERsistence) model that has been
used to forecast the ENSO phase using lagged and autoregressive relationships.
The basic principle involved is that some variables, such as SSTs, change slowly,
and so recent evolution can be used as a guide to future values. The name CLIPER
implies that future values are predicted using a combination of: the seasonal mean
value (climatology) towards which the value of the predictand is expected to drift
at increasingly long lead-times, and; the most recently observed anomalies, that
are expected to decay'® only slowly (persist).

A special case of using persistence and climatology as a forecast is that of
optimal climate normals (OCNSs). In most cases of seasonal climate forecasting, a
forecast is made by projecting the most recently observed climate state into the
future, i.e. from the previous day (or month or perhaps season) into a coming sea-
son. However, with OCN a forecast is made under the assumption that a good
guide to the climate conditions for the target season are the conditions that have
been observed for the same season over the last few years. The forecast for the

' It is possible, such as when forecasting ENSO anomalies at certain times of the year, for
anomalies to grow in a CLIPER model (Knaff and Landsea 1997), but such cases are unusual.
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coming season is then simply the average of the last few years, and the objective is
to identify the number of years to average to give the best forecast. The idea is that
the 30-year standard climatological period can be improved upon in some cases
when there is low-frequency variability (e.g. inter-decadal variability or trend) in
the climate. Using OCNs is sometimes a useful option in areas with inherently low
seasonal predictability.

7.4.3  Probabilistic Statistical Prediction Techniques

Rather than trying to estimate a best-guess forecast value and then accounting for
the uncertainty in this forecast, there are a number of statistical techniques that can
be used to estimate forecast probabilities directly. Some of these methods are
alternative versions of the regression models mentioned in Section 7.4.2, and are
described in further detail in Section 7.4.3.1, while others are based on classifica-
tion problems, and are discussed in Section 7.4.3.2. In Section 7.4.3.1 statistical
procedures that are similar to ensemble forecasting are described.

7.4.3.1 Generalised Linear Models

Although multiple regression can be used to estimate probabilities as the depend-
ent variable, this is not generally advised because there is no constraint that the
estimated probability is between zero and one, and because the distributional as-
sumptions of the procedure are violated (Wilks 2005). Instead a variety of models
that are ultimately based on linear regression are available. Although these gene-
ralised linear models are closely related to linear regression they are discussed
separately in this section.
Generalised linear models are based on the standard linear regression equation:

n=p"x, (7.25)

where B is the set of regression parameters, and x is the set of predictors. The
linear predictor 7 is related to the predictand, which in this case is a Bernoulli
variable with mean p . via a link function. The three most commonly used link
functions for Bernoulli variables are:

n= 10g{ u " } (7.26a)
I-p

n=o"[p], (7.26b)
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n =log[-log[1- p]]. (7.26¢)

where @' is the inverse normal distribution function. These link functions are
known as the logit, probit, and complementary log-log functions, respectively. In
practice, the differences between the three are minimal, but the logistic link is the
most widely used, and easiest to compute.

Instead of training the model using observed rainfall or temperatures, for
example, the predictand has to be categorised into one of two groups. For example,
in Fig. 7.1a December 1950-2000 values of the NINO3.4 index are shown as
anomalies and plotted against the June values. The regression line and the scatter
of values imply a reasonably strong relationship between the phase of ENSO
in June and that 6 months later. In Fig. 7.4b, all the values of the December
NINO3.4 index that exceed the upper quartile are converted to a value of 1, and all
the values less than the upper quartile to a value of 0. The values on the x-axis (the
June NINO3.4 index) are left unchanged. Rather than trying to fit a straight line to
the data points, an S-shaped curve is used. Eqgs. (7.26a—c) are different ways of
converting a straight line to an S-shaped curve that ranges between 0 as a mini-
mum, and 1 as a maximum.

In this example of a generalised linear model, observations are listed either as
Os and 1s, and the fitted curve is interpreted as providing an estimate of the
probability that future values will exceed the threshold used to define the cate-
gories (i.e. the probability that the December NIN03.4 index will exceed the upper
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Fig. 7.4 Example of (a) a linear regression model and (b) a generalised linear regression model.
June values of the Nifio3.4 index are used to predict December 1971-2000 values. The dashed
horizontal line represents the upper quartile of December values of the index
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quartile). The limitation to only two categories can be too restrictive, but it is pos-
sible to further divide the categories either by nesting models, or by simultaneous
fitting of parallel models.

The forms of generalised linear models described above, resolve issues related
to data distribution assumptions, of indicating forecast uncertainty, and, to some
extent, that of linearity, but do not address the problems of multiplicity and multi-
colinearity. The latter two problems can be addressed in similar ways to that for
linear regression, e.g. by using principal components as predictors.

7.4.3.2 Classification Procedures

Classification procedures have been used in seasonal climate forecasting more
extensively than generalised linear models. As with generalised linear models, the
observations are assigned to one of two or more categories, and then probabilities
are calculated that a new observation will be within each of the categories given
new values of the predictors. An important distinction, however, is that categories
are nominal in classification procedures, so that if there are three or more, the pro-
cedures do not know, for example, that they are ordered as below-normal, near-
normal, and above-normal. In most cases of seasonal climate forecasting the fact
that the categories are nominal in classification procedures is likely to be a disad-
vantage because relationships between predictors and predictands are most often
likely to be monotonic.

Discriminant analysis is the most widely used classification procedure in sea-
sonal climate forecasting. The values of the predictand are assigned to one of the
categories, and the mean values of the predictors are then calculated for each
category separately. If the predictors have good discriminatory power then the
differences in the means of the predictors between the various categories will be
large. For example, if seasonal rainfall is strongly influenced by the ENSO phe-
nomenon, then the difference in the average value of the NINO3.4 index when
rainfall is above-normal compared to when rainfall is below-normal will be large.
Given the covariances of the predictors in each category the probability that a new
observation will be in each category can be calculated from the new values of the
predictors, and from knowledge about the prior probabilities of each category.
Mathematically, it is simpler to assume that the covariances are the same for each
category, and a linear classification can be defined to identify the most likely cate-
gory. If this assumption of equal covariance is dropped, the classification function
becomes quadratic. The quadratic function only performs noticeably better than
the linear function when the differences in covariance are marked.

Canonical variate analysis has had limited application in seasonal climate fore-
casting, but it has been used in predicting the phase of the ENSO phenomenon.
The technique is similar to discriminant analysis, but has some similarities to
canonical correlation analysis as well. Just as canonical correlation analysis
identifies optimal linear combinations of the predictors to maximise correlations
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with linear combinations of the predictands, canonical variate analysis seeks opti-
mal linear combinations of the predictors, but in this case to maximise the
discrimination between the categories. The discrimination is defined by the ratio
of between-group to total variance.

An example is provided in Fig. 7.5, where canonical variates are computed
using monthly NINO3.4 indices from January—November to predict the ENSO
phase for the following December. Three phases are defined based on the outer
quartiles of the December value of the index, and are represented by the different
symbols: the open circles represent years in which the December NINO3.4 index
was below the lower quartile (i.e. La Nifna events), the open triangles years in
which the index was above the upper quartile (i.e. EI Nifio events), and the open
squares years in which the index was within the inter-quartile range (i.e. neutral
events). The x-axis represents the first canonical variate (a linear combination of
the NINO3.4 indices for January—November), which maximises the distances bet-
ween the mean values of canonical variate scores for the three categories, as
represented by the solid symbols. This canonical variate therefore maximises the
distances along the x-axis between the three solid symbols. The first canonical
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Fig. 7.5 Example of a canonical variate analysis model. The x-axis represents the first canonical
variate of monthly NINO3.4 indices from January—November, and the y-axis the second. The
hollow symbols represent observed scores on the canonical variates for 1971-2000, and the solid
symbols the corresponding mean values. The circles represent years in which the December
NINO3.4 index was below the lower quartile, the triangles years in which the index was above
the upper quartile, and squares years in which the index was within the inter-quartile range. The
large dashed circles represent distances of one standard deviation
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variate successfully distinguishes the three categories, but is most effective in
identifying the El Nifio events (represented by the triangles). The second canonical
variate maximises the distances between the categories along the y-axis, and helps
to distinguish the La Nifia events (circles) from the neutral events (squares). The
dashed circles indicate distances in multiples of one standard deviation from the
category means, (assuming that the variances in all three categories are equal), and
can be used to visualise in which category a new observation is most likely to occur.

Classification procedures address a number of the problems listed in Section
7.4.1. Because the predictands are categorised in both discriminant analysis and
canonical variate analysis, no assumptions are made about their distribution.
However, it is assumed that the predictors are normally distributed, and linear
discriminant analysis is sensitive to violations of this assumption. Quadratic ana-
lysis is more robust, except when the data are highly skewed. As with the forms of
generalised linear models discussed in Section 7.4.3.1, multiplicity and multi-
colinearity remain as problems, but can be addressed in similar ways to that for
linear regression, e.g. by using principal components as predictors.

7.4.3.3 Analogue Procedures

Analogue procedures have some similarity to classification procedures, but are
listed separately because of a number of important differences from discriminant
analysis and canonical variate analysis, and because of a wide flexibility in how
the analogues can be used to make a prediction. The essential step is to identify
years from the historical records in which the states of the predictors were similar
to the states for the current forecast. Some index of similarity (or of dissimilarity)
is used to calculate how closely current conditions resemble previously observed
conditions. A frequently used measure of similarity is the Mahalanobis distance,
which is similar to the squared distance, but which compensates for correlations
between the predictors.

The distinction between this step of identifying similar years and classification
is that the similarity of individual years, rather than of the mean of a predefined
category of years, is investigated. However, in some of the simpler analogue pro-
cedures, often, but not exclusively, used when there is only one predictor, the
predictor(s) is (are) classified into one of a set of predefined classes, and other
years within this category are treated as analogues. A widely used example of this
classification step in an analogue procedure is the Southern Oscillation phase
system, in which the current state and recent evolution of the Southern Oscillation
Index are classified into one of the five categories rapidly falling, rapidly rising,
consistently positive, consistently negative, and consistently near-zero.

Once analogue years have been identified, a forecast is constructed using the
observed values for these selected years. The forecast can be constructed in
a number of ways, the simplest of which is to use the mean value, although
normally the variability within the analogue years would also be considered to



7 Statistical Modelling 201

provide some indication of the uncertainty in the forecast. If the forecast sample is
sufficiently large, the probability that the predictand will exceed a threshold value
could be obtained by counting the proportion of times it was exceeded in the ana-
logue sample (although errors in calculating this proportion are likely to be large).
A more reliable approach would be to fit an appropriate distribution to the ana-
logue and to derive a forecast from this fitted distribution. The problem is
essentially identical to that of constructing a forecast from an ensemble of GCM
predictions. Each analogue year can be treated as an ensemble member. Pro-
cedures for obtaining a forecast from an ensemble are discussed in Chapter 8
(Section 8.5.2).

A special case of an analogue procedure is the constructed analogue, which
combines a/l previous cases. The procedure is a form of ridge regression, which is
discussed in further detail in Section 7.4.2.
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Chapter 8
From Dynamical Model Predictions
to Seasonal Climate Forecasts

Simon J. Mason

Producing a seasonal climate forecast from a dynamical model involves a great
deal more than simply running the model and viewing the results. The first prob-
lem is to decide which dynamical model(s) should be run given the practical
constraints of computing resources. In this chapter the pros and cons of using the
more computationally intensive fully coupled models compared to atmosphere-
only models are discussed. After running a dynamical model, regardless of its
complexity, corrections need to be made for systematic errors because the model’s
climatology and that of the observed climate are invariably different. Some simple
procedures for correcting these systematic errors are assessed, but more sophisti-
cated methods are advisable to adjust for spatial displacements of the model
climate. Since the model predictions represent large spatial averages, and gener-
ally are presented as seasonal averages, downscaling may be required to make the
forecast relevant for specific locations, and to provide more detailed information
about the statistics of weather within the season. Commonly used spatial and tem-
poral downscaling procedures are described. Some procedures for describing the
uncertainty in the forecast are discussed (further details are provided in Chapter
9). Evidence is presented that forecasts can be improved by combining outputs
from different models. Finally, the reliability of the forecast needs to be deter-
mined by verification of a historical set of forecasts. Verification procedures are
discussed in Chapter 10.

8.1 Introduction

In Chapter 7, the procedures for constructing a statistical model for generating
seasonal climate forecasts were described. Although dynamical models have been
described in detail in Chapters 3 and 6, the procedures for using such models to
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produce forecasts are far from straightforward. These procedures are described in
this chapter, beginning with a discussion of alternative methods of running the
dynamical models (Section 8.2), followed by explanations of how to correct for
systematic errors in the outputs of the models (Section 8.3) and to tune the predic-
tions so that they become valid for specific locations (Section 8.4). Procedures for
obtaining a probabilistic forecast from an ensemble of model predictions are then
discussed in Section 8.5, and finally methods for combining predictions from dif-
ferent models are outlined (Section 8.6).

8.2 One-Tiered and Two-Tiered Forecasting

As discussed in Chapters 3 and 4, seasonal climate forecasting is premised upon
feedbacks between the atmosphere and boundary conditions at and near the earth’s
surface. When producing seasonal climate forecasts using general circulation
models (GCMs), there are a number of fundamentally different ways of modelling
these interactions between the atmosphere and the lower boundary. These ap-
proaches range in complexity: in the simplest case, only the atmosphere is forecast
using dynamical models while the boundary conditions are specified by persisting
the most recently observed values; in the most complex case the atmosphere to-
gether with all the various components of the lower boundary thought to be of
importance to atmospheric variability at seasonal timescales are modelled as fully
interacting. These two extremes, as well as some intermediate options, are dis-
cussed in further detail below (Section 8.2.1), and arguments for and against the
various levels of complexity in the modelling are considered in Section 8.2.2.

8.2.1 One- and Two-Tiered Forecasting Designs

The simplest method of dynamically modelling the climate system at seasonal
timescales is to model only the atmosphere while specifying values for the various
parameters of interest in the lower boundary. If forecasts of the atmosphere are to
be made, future values for the boundary conditions have to be specified, and so
these values have to be forecast prior to integrating the atmospheric model. A
“two-tiered” forecast is thus required: forecasts of the boundary conditions are
made first, followed by forecasts of the atmosphere with the forecast boundary
conditions prescribed (Bengtsson et al. 1993).

Two-tiered forecasting systems invariably involve a system in which sea surface
temperatures (SSTs) are forecast first, while procedures for forecasting the other
components of the atmospheric boundary are not explicitly mentioned. Forecasts of
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land-surface conditions, for example, generally are produced by coupling a land-
surface model to an atmospheric model, even in two-tiered systems in which SSTs
are prescribed. Forecasts of SSTs have involved methods from as simple as persis-
tence of the latest observed conditions, through statistical forecasts and partial-
ocean hybrid model forecasts, to basin forecasts from fully coupled models, or
some combination of the above. Forecasts of land-surface conditions, including of
the biosphere, remain relatively primitive compared to forecasts of the sea surface,
primarily because of a paucity of observational data, and there are even substantial
problems using the best estimates of the latest observed conditions (Anderson and
Ploshay 2000).

Two-tiered approaches allow the boundary to influence the atmospheric vari-
ability over the period of model integration, but do not permit the atmosphere to
feedback to the boundary. Rather than specifying the boundary conditions at the
ocean surface and allowing no feedback from the atmosphere, highly simplified
models of the oceans can be coupled to the atmospheric model. Although fully
non-linear ocean models coupled to simplified atmospheric models, known as
hybrid models (Barnett et al. 1993), have been popular, their counterpart models
have not been widely used in seasonal forecasting of the atmosphere. Such slab
ocean models would allow two-way heat fluxes between the atmosphere and
ocean, but do not involve ocean circulation. This restricted feedback of the atmos-
phere to the ocean may have advantages over the standard two-tiered approaches,
and such models deserve further attention.

The most complex method of modelling the climate system at seasonal
timescales is to model all components of the climate system thought to be relevant
at seasonal timescales. Operational examples of such models involve separate
models for the atmosphere and ocean that are run synchronously and interactively.
Such “fully-coupled” models generate forecasts of the atmosphere and of the
boundary conditions simultaneously, and so sometimes are referred to as “one-
tiered” forecasting systems.

8.2.2 Advantages of One- and Two-Tiered Forecasting Designs

One-tiered forecasting systems, or fully coupled models, are widely acknowledged
to represent the state-of-the-art in seasonal climate forecasting. However, compre-
hensive comparisons of one and two-tiered systems are lacking (see Graham et al.
2005 and Guérémy et al. 2005 for some preliminary results), and regardless of
relative performances, there are advantages to two-tiered approaches that are
likely to contribute to their continued use for the next several years at least. Some
of these advantages are outlined in Sections 8.2.2.2-8.2.2.4 after a brief summary
of the advantages of one-tiered systems (Section 8.2.2.1).
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8.2.2.1 Advantages of One-Tiered Forecasting Designs

One-tiered forecasting systems represent the most comprehensive attempt to
incorporate all the components of the climate system thought to be relevant for
understanding atmospheric variability at seasonal to interannual timescales.
Because they allow for feedbacks between the atmosphere and the other compo-
nents of the climate system, coupled models should, theoretically, provide the
most realistic representation of how the real climate system operates, and hence
should be able to generate better forecasts than their two-tiered counterparts. An
implicit assumption in two-tiered systems is that the atmosphere responds to SST
forcing, but does not in turn affect the oceans. As indicated in Chapters 4 and 6,
strong feedback between the ocean and the atmosphere occurs within the equato-
rial Pacific Ocean, for example, while atmospheric influence on tropical Indian
Ocean variability appears to be stronger than the influence of the ocean on the
atmosphere. Similarly, in the extra-tropics, pioneering research on ocean-
atmosphere interaction over the North Pacific indicated that the ocean variability
is more a response to atmospheric variability than vice versa.

In a two-tiered system, where the atmosphere is uncoupled from the ocean,
unrealistic forcing of the model atmosphere can occur. For example, Indian mon-
soon rainfall in most uncoupled models is positively correlated to tropical Indian
Ocean SSTs because of higher moisture fluxes, but in coupled models, and in the
real world, negative correlations are evident because the ocean surface heats in
response to changes in the trade winds (Wu and Kirtman 2005). The imposed forc-
ing in two-tiered systems can therefore result in incorrect simulations, whereas the
coupling permitted in one-tiered designs should result in a more realistic represen-
tation of observed climate variability. Although coupled models do not currently
perform much better because of moisture flux problems (Wu et al. 2006), im-
provements in the model physics should result in more realistic simulations,
whereas improvements in the physics of an uncoupled atmospheric model will not
necessarily resolve the problem.

8.2.2.2 Computational Advantages of Two-Tiered Forecasting Designs

Fully coupled models require huge computational resources, and so currently are
used for operational forecasting only at some of the so-called Global-Producing
Centres (GPCs). Because of the computational costs, forecasts are compromised,
either in the resolution of the model atmosphere and/or ocean, the ensemble size,
the lead-time, the frequency of forecast production, and/or the generation of retro-
spective forecasts used for assessing forecast performance and calibrating for
model errors. For example, of the seven models that constituted part of the DE-
METER experiment (Palmer et al. 2004), only three have hindcasts extending
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back more than 40 years, and these for only four initialization dates during the
year and for a sufficient number of ensemble members to estimate the models’
respective mean responses only in the tropics. Alternative savings involve cou-
pling a global atmospheric model to a single-basin ocean-model, and prescribing
sea temperatures elsewhere (Ineson and Davey 1997).

The computational advantages of two-tiered forecasting systems could permit
the integration of the atmospheric model at higher resolutions than are possible
when the same model is run in one-tiered mode, or the generation of a larger en-
semble. In countries where only moderately powerful computing resources are
available, the computational advantages enable two-tiered dynamical seasonal
forecasts to be generated locally. These computational advantages are enhanced by
a relatively weak improvement in forecast quality with increased spatial resolution
in two-tiered systems compared to their one-tiered counterparts. Apparently the
coupling of the ocean and atmosphere is modelled most effectively at high resolu-
tions, whereas if the atmospheric model is uncoupled many of the benefits of
improved resolution are lost.

Additional computational advantages can be achieved if no attempt is made to
assimilate observed data into the atmospheric model. While there is some resultant
loss of predictability from initial conditions in the first few weeks of the forecast,
the loss of skill at longer lead-times is considered minimal, and is partly offset by
avoiding problems associated with model drift (Chapter 6). The computational
costs involved in data assimilation are substantial, and are an essential component
of ocean forecasting (see Chapter 5), and so assimilation is dispensable only if no
ocean model is to be run.

8.2.2.3 Atmospheric Predictions from Improved Sea Surface Temperature
Predictions in Two-Tiered Forecasting Designs

The quality of seasonal climate forecasts of the atmosphere is intricately related to
the quality of the forecasts of the lower boundary forcing, particularly of SSTs. If
coupled model forecasts of the lower boundary can be improved by using other
forecasting methods, it may be possible to improve on the atmospheric forecasts
by using these superior boundary forcings in a two-tiered scheme. For example,
since forecasts of persisted SST anomalies are difficult to outperform at lead-times
of less than about 3 months, prescribing SST anomalies at short lead-times may
provide improved skill in two-tiered atmospheric predictions. While fully coupled
models can outperform two-tiered systems in which SSTs are prescribed from
simple statistical models, the two-tiered systems may perform at least equally as
well as fully coupled systems when more skilful SST forecasts are used. More
detailed research on the comparative performances of one- and two-tiered systems
is required.
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8.2.2.4 Research Value of Integrations with Controlled Boundary
Conditions

Apart from the benefits of two-tiered forecasts in an operational setting, atmos-
pheric GCM integrations uncoupled to ocean models can be of considerable
research value. Some of the more valuable examples of such research are dis-
cussed in this section.

Atmospheric GCMs forced with observed SSTs have been analysed exten-
sively. Such experiments attempt to provide estimates of the potential pre-
dictability (an indication of the upper limit of predictive skill) of the climate at
seasonal and longer timescales. Typically estimates of potential predictability in-
volve comparing the variability in the simulated atmospheric responses across
different ensemble members (intra-ensemble variability) with the inter-annual
variability of the ensemble mean to obtain an estimate of the contribution of the
SST forcing to the total variability: if the intra-ensemble variability is small com-
pared to the interannual, then the SSTs are evidently constraining the (model’s)
atmospheric variability, implying that there is predictability. Alternatively, if en-
semble size is small, a more reliable approach may be to compare the interannual
variability of the simulated atmosphere when forced with observed as against cli-
matological SSTs. Other strategies include, for example, comparing the forecast
distributions to the climatological distribution, or examining the distribution of the
proportion of ensemble members exceeding the climatological median. However,
all strategies are based on estimating how much of the atmospheric variability is
forced, and how much is free internal variability. Detailed investigations of the
potential predictability of the atmosphere were conducted as part of the PRedic-
tion Of climate Variations On Seasonal to inter-annual Time-scales (PROVOST;
Brankovi¢ and Palmer 2000; Palmer et al. 2000), and Dynamical Seasonal Predic-
tion (DSP; Shukla et al. 2000) projects.

Differences in the skill of simulating observed atmospheric variability when a
model is forced using persisted instead of observed SST anomalies can be used to
diagnose the loss of predictability that results from having imperfect SST fore-
casts. In the Sahel, for example, where rainfall variability is strongly affected by
SSTs in the tropical Atlantic Ocean, the weak persistence of SSTs from 1 month
to the next effects poor forecast skill of seasonal rainfall over the region, but skill
increases markedly with decreasing lead-time (Ward 1998).

Alternative experiments have considered the effects of prescribing SSTs in
only one (or occasionally two) of the three main ocean basins, or in specific areas
thought to have important influences on atmospheric variability. Such experiments
are valuable in diagnosing model systematic errors and also forecast biases that
may result from using incomplete forecasts of SSTs in operational settings. How-
ever, because of their artificial nature, coupled with the fact that the total oceanic
impact on the atmosphere may not be a simple linear combination of the indi-
vidual oceanic impacts, they cannot adequately provide answers to questions
concerned with the influence of SSTs in specific areas on the global (or regional)
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atmosphere. Other problems with these kinds of experiments result from the crea-
tion of artificial SST gradients at the edges of the domain of perturbed temperatures,
even when the temperatures are reduced to climatology smoothly.

8.3 Systematic Model Error Correction

Regardless of how seasonal climate forecasts are made using atmospheric GCMs,
substantial differences between the observed and model climates invariably are
evident, and need to be corrected in order to provide reasonable forecasts. Defini-
tions of various types of systematic error are provided in Section 8.3.1. Statistical
tests for identifying errors in model output are detailed in Section 8.3.2, and are
followed by a critique of commonly used methods for correcting for these errors
(Section 8.3.3). Discussion on the correction of spatial errors in model output is
provided in Section 8.3.4.

8.3.1 Systematic Model Errors

Systematic errors refer to any difference between the observed and the model cli-
matology (implied definitions in the literature vary). The simplest form of
systematic error is the mean bias: more generally, the central tendency of the
model climatology differs from that for the observations. An example is shown in
Fig. 8.1a, which compares observed' with simulated June—August precipitation
rates for the 50-year period 1951-2000 averaged over a large area of eastern
Africa (10°N-10°S, 3050°E). The precipitation was simulated using the ECHAM
4.5 model (Roeckner et al. 1996) at a resolution of about 2.8° and forced with
observed SSTs, and the statistics were obtained using 24 ensemble members. The
graph shows the frequencies of average precipitation rates over the 3-month
period, and clearly indicates a bias in the model: simulated rates are consistently
too high. This bias in the mean precipitation rate is known as an unconditional
bias because the model rate is too high regardless of the actual simulated (or fore-
cast) rate.

As well as indicating a mean bias, Fig. 8.1a indicates that the variance of the
simulated precipitation rates is larger than the observed variance. Variance biases
can occur even when the mean bias is minimal, as shown in Fig. 8.1b, which
shows precipitation rates for March-May instead of June—August. Variance biases

" The New et al. (2000) gridded rainfall data were used. These data are based on station observa-
tions interpolated to a grid.
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are also known as conditional biases because the model anomalies are consistently
too strong (weak) when the model variance is larger (smaller) than the observed
variance. Systematic errors in reproducing the shape of the climatological distribu-
tion can also occur: in Fig. 8.1c, the model’s mean and variance are too high,
while the skewness is too low. This example is for June—August precipitation
averaged over part of southern Africa (20-30°S, 15°-25°E).
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Fig. 8.1 Example of model systematic errors: (a) area-averaged June—August 1951-2000
observed (black) and simulated (grey) daily precipitation intensities over eastern Africa showing
a mean bias; (b) area-averaged March—-May 1951-2000 observed (black) and simulated (grey)
daily precipitation intensities over eastern Africa showing a variance bias; and (c) area-averaged
June—August 1951-2000 observed (black) and simulated (grey) daily precipitation intensities
over southern Africa showing mean, variance, and shape biases

Any differences between the observed and model climatologies are sympto-
matic of differences in behaviour of the real and model atmospheres. However,
these differences should be distinguished from predictive errors, which relate to
differences in the observed and simulated/forecast climate for specific cases. Pre-
dictive errors relate to the skill of the model forecasts, and are not necessarily
symptomatic of systematic errors. In the absence of any inherent predictability the
individual forecasts will not generally correspond well with the observations, but
the model climatology may be realistic.
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8.3.2 Detecting Systematic Model Errors

Standard error statistics, such as the (root) mean-squared error and mean absolute
error, measure differences between paired observations and simulations/forecasts.
As a result, these metrics do not distinguish systematic model errors from predic-
tive errors. Ideally these two forms of error should be distinguished. In the
following sections, selected tests for systematic errors are described. A summary
of the tests is presented in Table 8.1, where a few additional tests that are not dis-
cussed in the following text are mentioned. [See Sheskin (2007) for further
details.] A selection of tests for predictive skill is provided in Chapter 10.

Table 8.1 Statistical tests, and respective distributional assumptions, for identifying systematic

errors. All tests assume independence of the samples. Additional details of these tests can be
obtained from Conover (2001) and Sheskin (2007)

Systematic Error ~ Test Additional assumptions

All Kolmogorov-Smirnov
Fisz-Cramér-von Mises
Relative entropy
Central-tendency

Mean Student’s ¢ Equal variance; normality
Median Mann-Whitney U Equal variance; similar shape
Median
Spread F Normality
Siegel Tukey, David’s, Mood’s Equal central-tendency; symmetry
Moses Similar shape

The standard test for systematic model errors is the two-sample Kolmogorov-
Smirnov test, which compares the cumulative distributions derived from the
model and the observed climatologies.” The test compares the maximum vertical
difference between these two empirical distributions, D, against a null distribution
for the statistic; if the maximum vertical distance is large, the two distributions are
likely to be different, and so the model climatology does not match that for the
observations. The null distribution for D, and for all the other statistics discussed
in this section, depends upon the number of cases used to construct the empirical
cumulative distributions, and so depends upon the number of years and the ensemble
size. Systematic errors can be identified more robustly given large numbers of
cases.

The two-sample Kolmogorov-Smirnov test does not distinguish between
different forms of systematic error. Separate tests are available for identifying
mean- and variance biases, while biases in skewness and higher order moments
(collectively referred to as errors in the shape of the distribution) are not widely

? Alternatives include the Fisz-Cramér-von Mises test (the integral of the squared differences
between the two cumulative distributions) and relative entropy (Elmore 2005).
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used. Mean biases are commonly identified using Student’s #-test, which compares
the differences in the climatological means. The test is highly sensitive to distribu-
tional assumptions (the observed and model climatologies should both be
Gaussian), and so alternative tests are required that are not sensitive to these
assumptions. The alternative tests compare differences in medians rather than
means, since the median is not strongly influenced by the presence of a few ex-
treme values, and so they test for a bias in the central tendency rather than strictly
testing for a mean bias. The Mann-Whitney U-test is the most frequently used
alternative to the #-test. The U-test effectively calculates the probability that a ran-
domly sampled observation is larger (or smaller) than a randomly sampled
forecast. This probability should be 0.5 if there is no bias in the central tendency
of the model climatology. Strictly, the U-test should not be used if there is a vari-
ance bias, in which case the median test is preferable. The median test calculates
the proportion of observations (or simulations) above the pooled median, and is
free of any assumptions about other forms of systematic error. Again the propor-
tion should be 0.5 if there is no mean bias.

Tests for variance bias (or, more generally, dispersion bias) are numerous. The
most commonly used is the F-test, which compares the ratio of the variances of
the observations and simulations to Fisher’s F distribution. The ratio should be 1.0
if there is no variance bias, but the test is highly sensitive to distributional assump-
tions, and should probably be used infrequently. Unfortunately, there is no
obvious alternative test to use; there are of the order of 100 candidate tests, but
virtually all of them carry some distributional assumptions. A Moses-type test,
which is designed to compare the frequencies of extreme values in two samples,
can be recommended if the assumption that there are no errors in the shape of the
distribution is reasonable. There are a number of variations on this test, but the
core idea is to compare the central tendencies of measures of dispersion of random
sub-samples of the observations and simulations (Kdssler 1999). If there is no
dispersion bias, the central tendencies will be similar.

Although these tests are used widely when considering climate change simula-
tions, in seasonal climate forecasting systematic errors are usually removed using
a simple statistical correction (Section 8.3.3) and are then ignored, and so the tests
are rarely applied. As long as there is some predictive skill, forecast accuracy need
not be adversely affected by such errors. If the model’s atmosphere is responding
to anomalous boundary forcing in the correct direction (for example, the model
indicates unusually dry conditions when unusually dry conditions occur) then this
variability is believable regardless of any conditional and unconditional biases.

8.3.3 Correcting Systematic Model Errors

Although the terms are often used in different ways in the climate literate, a
distinction is sometimes drawn between “calibrated” model output, which has
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been corrected for systematic errors, and “recalibrated” model output, which has
been corrected for model skill in addition to systematic errors. The procedures
described in this section perform model calibration. Some model recalibration
schemes are discussed later (see also Chapter 9, Section 9.3).

Removal of systematic errors usually involves application of the generalized
formula:

z,=g,lg.lz,1", (8.1)

were z,, is the modelled value of the parameter of interest, Z, is the calibrated
value, g, is a function that transforms the modelled values onto a new distribution,
and g, is a function that transforms the observed values onto a distribution that is
assumed to be the same as that for g,,.

In the simplest case, g, and g, are functions that centre the data to have a mean
of zero (i.e. g[z]=z—Z, where g is a transformation function applied either to
the model or the observed values, z is a model or observed value, and Z is
the corresponding climatological mean). In this case Eq. (8.1) simply subtracts the
difference in the sample means between the model and the observations from the
model climatology, thus removing the mean bias. An alternative option, which is
suitable when correcting for variables with a zero bound (such as precipitation),
scales by the ratio of the observed and simulated means (i.e. g[z]=2z/Z). This
scaling affects the variance (but not the shape) of the bias-corrected model clima-
tology, unlike the centring procedure.

Scaling assumes that any errors in the variance are simply a function of the
mean bias (i.e. that the coefficients of variation for the model and observed clima-
tologies are identical). Since this assumption is frequently invalid, corrections for
both mean and variance are generally made by standardizing the data (i.e.
glz]= (z -z ) / s, where s is the climatological standard deviation). Standardiza-
tion is a widely used procedure that successfully removes mean and variance
biases, but can be problematic when used on data with a zero bound, and/or when
there are systematic errors in the shape of the model’s climatological distribution.
These problems occur because it is generally implicit that application of Eq. (8.1)
implies application of the formula

z,=F|[F,[z,I"", (8.2)

where F,, is a cumulative distribution function for the model data and F, is a
cumulative distribution function for the observations. Specifically, when data are
standardized, F,, represents the normal distribution function fitted to the model
data, and returns the quantile associated with the corresponding standard normal
deviate; the corresponding quantile from the normal distribution fitted to the observed
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data is then used to obtain the transformed value.” This procedure works only to
the extent that the normal distribution provides a good fit to both sets of data, oth-
erwise errors in estimating the quantiles of the two distributions can result in
unreasonable transformations. Consider the effects of standardizing the June—
August precipitation data for southern Africa, described above: the model and
observed data are plotted as empirical distribution functions in Fig. 8.2, and the
fitted normal distribution functions are superimposed. For model precipitation
rates of less than about 0.1 mm/day (the driest 5-10% of cases), the transformed
precipitation is negative, as illustrated by the corresponding vertical legs of the
dotted line.

Unless both the model and the observed data are normally distributed, stan-
dardization should not be performed. Instead more appropriate distribution
functions should be applied in Eq. (8.2). While the empirical distribution functions
could be used, the function for the model data isknown better than for the observa-
tions because of the larger sample size provided by the multiple ensemble
members. The relatively poor representation of the empirical distribution function
for the observations can create problems particularly when transforming extreme
values. The alternative is to use a fitted distribution other than the normal distribu-
tion. The two-parameter gamma distribution is an attractive option for data that
are positively skewed and zero-bound, and its parameters are easy to estimate
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Fig. 8.2 Examples of empirical and fitted distribution curves for area-averaged June—August
1951-2000 simulated (left) and observed (right) daily precipitation intensities over southern
Africa. The dotted line represents a transformation of model precipitation by standardization to
remove mean and variance biases

? The conversion from a deviate on the standard normal distribution is redundant, but the applica-
tion of the cumulative normal distribution function in Eq. 8.2 is implicit, as evident when
standardization is viewed graphically, as in Fig. 1.2.
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when the skewness is not too marked (Wilks 2005). Fitted gamma distributions for
the model and observed data in Fig. 8.2 are shown, and the improvement in the
estimation of the quantiles over the fitted normal distributions is evident not just in
the tails of the distribution.

The procedure of fitting appropriate distribution functions* and applying Eq.
(8.2) requires methods for estimating the distribution parameters. In most cases, the
simplest procedure is to use the method of moments: for a given distribution the
mean and variance of the distribution can be calculated analytically in terms of
the distribution parameters, and so these parameters can be set to give a distribu-
tion with the same mean and variance as the sample data. These parameter estimates
can be sensitive to outliers, and so a more robust procedure, known as L-moments,
has been developed based on order-statistics (Hosking 1990). A more popular
approach, however, is to use maximum likelihood estimation: the parameter val-
ues that maximise the likelihood of yielding the sample data are obtained. In a few
cases, such as with the normal distribution, these values can be derived easily, but
for most distributions they have to be obtained using iterative procedures.

8.3.4 Correcting Spatial Errors in Model Output

One aspect of systematic error that has not been addressed in Section 8.3.3 is the
problem of spatial errors in model output; climate features in the model are often
displaced, as shown by example in Fig. 8.3. The figure compares the first principal
components of ensemble-mean forecasts of October—December precipitation for
eastern Africa from the ECMWF model (Palmer et al. 2004) and of observed rain-
fall for the same period (New et al. 2000). While the model successfully forecasts
rainfall variability over much of the region to the east of about 30°E, the main
mode of variability, which involves region-wide anomalously wet or dry condi-
tions, is displaced to the west by about 15°. Such displacements can result in poor
predictions if they are not corrected.

If climate features in the model are displaced relative to the observations, even
by only short distances, comparing the model output at any grid with the corre-
sponding observations using the types of methods described in Section 8.3.2 is
inappropriate a priori. Instead, the spatial structure of the model output requires
correction prior to correcting any systematic errors in the climatological distribu-
tions for individual gridpoints. Standard methods for correcting such spatial errors
involve multivariate statistical techniques that typically address mean and dispersion

* Different distributional forms could be used for the model and the observed data if their distri-
butions have different shapes.
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Fig. 8.3 Correlations with the respective first principal components of (a) forecast precipitation
and (b) observed precipitation over eastern Africa for October—December 1961-2000. The pre-
cipitation forecasts are from the August runs of the ECMWF model generated as part of the
DEMETER project (Palmer et al. 2004)

biases’ at the same time. In practice, most techniques used to correct for spatial
errors address forecast skill, and so perform model recalibration rather than simply
model calibration, as distinguished in the previous section. A sample of spatial
correction techniques is presented in this section. [See von Storch and Zwiers

(1999) and Wilks (2005) for further details.]
The two most widely used statistical techniques for correcting spatial system-

atic errors are extensions to multiple linear regression, namely maximum covariance
analysis (MCA) and canonical correlation analysis (CCA). The procedures are
essentially identical to those described in Section 7.4.2.5 of Chapter 7, and so are
discussed only briefly here. The idea is to use the model predictions as the predic-
tors in a statistical prediction model. In both MCA and CCA spatial patterns of
precipitation variability, for example, in the model are identified that have similar
temporal variability to spatial patterns in the observations. Since the similarities
are defined only in terms of the temporal variability there is no explicit attempt to
match the spatial patterns. Consequently, in practice, MCA and CCA may be able
to identify a feature of the climate such as the PNA pattern whose temporal vari-
ability may be predicted well because of a realistic modelled response to El Nifio
conditions, but which may be displaced in the model (as in Fig. 8.3). Both proce-
dures will effectively transform the model’s imperfect PNA prediction to a more
realistic prediction of PNA variability.

> Non-linear statistical downscaling techniques such as neural networks could theoretically cor-
rect for shape biases in addition to mean and variance biases.
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Whichever approach is used for correcting systematic spatial errors, the size of
the domain(s) used requires consideration. If the objective is simply to correct for
the displacement of climate features in the model, then forecasts only from nearby
areas should be considered. However, multiple CCA or MCA corrections would
then be necessary, and these would have to be blended somehow. Using larger
domains helps to avoid artificial spatial noise in the corrected fields, and is com-
putationally more efficient, but the statistical correction procedures are likely to
identify teleconnection patterns, and so are no longer conducting purely spatial
correction. Whether or not the identification of teleconnection patterns is undesir-
able is an open question, and the general question of domain selection requires
further research.

8.4 Statistical Downscaling

A typical gridpoint in a GCM used to make seasonal predictions represents an area
of about 50,000—100,000 km?, which is invariably much coarser than the spatial
scales at which opportunities to apply seasonal climate forecasts exist. The GCM
output therefore needs to be “downscaled” to resolutions and/or locations com-
mensurate with user-requirements. Downscaling involves the translation of a
forecast to a spatial (and/or temporal) resolution that is finer than that at which the
forecasts are produced. Reasons for performing downscaling are discussed in
more detail in Section 8.4.1, and some examples of spatial downscaling using sta-
tistical models are provided. An introduction to some statistical techniques to
downscale seasonal forecasts to finer temporal resolutions is given in Section
8.4.2. Dynamical methods of downscaling using limited area models are not
discussed.

8.4.1 Spatial Downscaling

Since GCMs are designed to represent planetary scale processes, those processes
that operate at spatial scales smaller than the model resolution have to be para-
meterized. Computational constraints make it impractical to operate GCMs at
resolutions that would permit more realistic reproductions of regional climate, and
even if computational resources were available, careful re-parameterization of the
models would be required (parameterizations are tuned to work at specific model
resolutions). Apart from the inevitable errors that arise from the imperfect repre-
sentation of the real world because of the discretization of space (and time) within
GCMs, downscaling is required even for a model that reproduces the observed
climate perfectly because of the detailed spatial variability of climate. Such issues
are discussed in further detail in the following paragraphs.
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Fig. 8.4 Observed (a) and simulated (b) January—March mean precipitation for 1950—1999

Gridded model output represents an average of an essentially arbitrary area, and
so, even if the model reproduces the area-averaged climatology realistically, there
may be substantial systematic “errors” when these forecasts are interpreted as rep-
resentative of specific locations. For example, Fig. 8.4 illustrates averaged
January—March precipitation totals for 1950-1999 over part of North America
(Fig. 8.4a) together with simulated precipitation totals using the ECHAM 4.5
model averaged over the same period (Fig. 8.4b). The observed data were ob-
tained from the Surface Water Modeling Group at the University of Washington
(Maurer et al. 2001, 2002). This dataset is derived from station data spatially in-
terpolated to a grid resolution of 0.125° latitude x longitude over land, which
should be compared with the approximately 2.8° resolution of the ECHAM model
data. Apart from any errors in the reproduction of the broad-scale climate features,
the variability of climate within any of the GCM grids is obvious, and so, at a
minimum, GCM grid averages would have to be rescaled to become representative
for any specific location.

Detailed spatial variability of mean climate not only affects the systematic “errors”
for specific locations, but also translates into detailed variability in the predictability
of climate. As a simple illustration, the correlations between the NINO3.4 index
and observed January—March precipitation over part of North America are shown
in Fig. 8.5. Within short distances large differences in the correlation are evident,
and imply that GCM output could give highly misleading forecasts for sub-grid
areas even after correcting for systematic errors. In addition, because seasonal
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Fig. 8.5 Spearman’s correlations between observed January—March seasonal precipitation for
1950-1999 and simultaneous values of the seasonally averaged NINO3.4 index

predictability of climate generally is greater for large compared to small area-
averages (Gong et al. 2003), performance measures comparing GCM output with
commensurate observational data do not necessarily give reliable indications of
the accuracy of the models at the spatial scales at which seasonal climate forecasts
are to be used. Downscaling is thus required to assess locally specific systematic
as well as predictive errors.

If high resolution observational data or data for specific locations are available,
detailed spatial corrections can be made to provide forecasts at resolutions that the
GCM itself is unable to resolve. To illustrate, the precipitation data for the 50-year
period January—March 1950-1999 were used to downscale simulations of precipi-
tation from the ECHAM 4.5 model. A canonical correlation analysis(Chapter 7,
Section 7.4.2) was used to downscale the GCM data. Results are shown in Fig.
8.6, which compares the skill of the downscaled predictions with the skill achiev-
able by linearly interpolating the output for surrounding GCM gridpoints. The
skill score used (Spearman’s correlation) considers only the predictive errors, not
any remaining systematic errors.

In Fig. 8.6, results are shown for downscaling the GCM precipitation fields di-
rectly, but there have been a number of successful attempts to downscale to station
precipitation using other outputs from the GCM. For example, the model’s geopo-
tential heights are used frequently, sometimes with more than one level being
considered simultaneously. Potential vorticity fields have also been used success-
fully. However, little attention has so far been given to downscaling multiple
fields; if downscaled predictions of precipitation and of temperature are required,
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Fig. 8.6 Spearman’s correlations between observed and simulated January—March 1950-1999
precipitation. Results are shown for (a) ECHAM 4.5 output linearly interpolated to the 0.125°
resolution of the observational data, and (b) ECHAM 4.5 output spatially corrected using canoni-
cal correlation analysis. All results are cross-validated using a leave-five-out cross-validation
window

for example, these are generally conducted independently, which could result in
locally inconsistent results. In contrast, greater attention to correlations between
different weather variables has been given in methods of temporal downscaling,
and these methods are discussed in the following section.

8.4.2 Temporal Downscaling

Apart from the incompatibility between the spatial resolution of the forecast and
that of the observations, other problems with GCM output preclude their applica-
tion without additional downscaling. An important constraint to the use of GCM
output and, more generally, of seasonal climate forecasts, is the temporal resolu-
tion of the predictions. As discussed in Chapter 3, seasonal climate is predictable
only when the forecast is considered as an aggregate of weather over a period of
typically about 3 months; it is not possible to provide accurate predictions of the
weather on any given day within the season. However, for many application mod-
els, including hydrology and crop models, it is necessary to have forecasts for
each day of the season. While the sensitivity of the predictions from such application
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models to the precise weather on specific days may be low as long as the seasonal
weather statistics are accurate, some means of obtaining atmospheric forecasts
at the required temporal resolution is required. In this section, various means of
obtaining seasonal forecasts at high temporal resolution are discussed.

Since GCMs are generally run at a temporal resolution of about 20 minutes to
generate seasonal forecasts, the simplest solution to the need to obtain weather
statistics over the period of the seasonal forecasts would be to use the GCM output.
However, there are some severe biases in GCM weather data, which are perhaps
best illustrated by considering the frequency distribution of daily precipitation
intensities. An example is shown in Fig. 8.7, which compares the frequencies of
simulated and observed daily precipitation amounts for San Diego for the 50-year
period 01 January 1950-31 December 1999. The model clearly underestimates the
frequency of dry days (note that the y-axis is logarithmic) and of precipitation in-
tensities exceeding about 4 mm/day. In other words, the model generates too much
drizzle, a problem that is characteristic of GCM-based forecasts for all timescales.
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Fig. 8.7 Relative frequencies of observed and ECHAM 4.5-simulated daily precipitation intensities
for San Diego for the 50-year period 1951-2000. The simulated precipitation is for the gridpoint
nearest to San Diego. Note the logarithmic y-axis, and the uneven intervals on the x-axis

An alternative to using the GCM daily output is to disaggregate the seasonal
forecast using statistical methods. Disaggregation involves computing sub-
seasonal weather statistics that are consistent with the seasonal forecast. One
commonly used statistical procedure is the analogue method, which uses the ob-
served sub-seasonal statistics of seasons that are similar to the forecast for the
target season. (See Chapter 7 for more details on statistical forecasting tech-
niques.) Such procedures can be limited severely by sample size, and so are most
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commonly used in places such as Australia where datasets are relatively long, and
so the number of analogue years large, compared with those for many other coun-
tries. An alternative approach is to use simple statistical relationships between
seasonal climate and sub-seasonal weather statistics. For example, simple relation-
ships between seasonal rainfall totals and the frequencies of raindays or of heavy
raindays can be regressed. Such relationships could then be used to estimate
weather statistics contingent upon the forecast for the seasonal aggregate.

Based on observed relationships between seasonal climate and sub-seasonal
weather, fairly sophisticated statistical techniques for simulating weather over a
season have been developed. These procedures are based on “weather generators”,
of which there are a wide range of different designs (Wilks and Wilby 1999).
Most weather generators have been constructed to generate series of daily precipi-
tation, and invariably consider the question of precipitation occurrence separately
from precipitation amount. Precipitation occurrence is modelled in one of two
ways: either as a chain-dependent process or by spell-lengths. As a chain-dependent
process, the probability of precipitation is calculated contingent upon the occur-
rence of precipitation on the previous (day), which is equivalent to modelling
precipitation occurrence as a Markov process. For example, the seasonal cycle of
probability of precipitation in San Diego given that the previous day was wet is
compared for that given that the previous day was dry in Fig. 8.8a and b, respec-
tively. Throughout the year the probability of a wet day is considerably higher
given that the previous day was wet compared to when the previous day was dry.
These differences in precipitation probability are indicative of the persistence of
weather in San Diego, indicating that spells of weather tend to last a few days,
rather than weather changing randomly from day to day. Weather generators based
on Markov models simulate a series of precipitation occurrence by randomly gen-
erating wet and dry days by considering the weather generated on the previous
(few) day(s), and should thus generate weather spells with realistic duration. The
second approach to modelling precipitation occurrence is to generate a string of
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Fig. 8.8 Annual cycle of the probability of precipitation occurrence for San Diego for the 50-year
period 1951-2000, given that (a) the previous day was wet, and (b) the previous day was dry.
The black vertical bars show the probabilities calculated for each day, while the grey shading
indicates smoothed probabilities using the first few harmonics of the annual cycle
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alternating wet and dry spell-lengths. The frequency distributions of observed wet
and dry spell-lengths are usually modelled using a negative binomial distribution.
The spell-length generator operates by randomly drawing alternating random
spell-lengths drawn from the corresponding negative binomial distributions.

Whichever way precipitation occurrence is modelled, the generated occur-
rences of precipitation need to be conditioned somehow on the seasonal forecast.
Again there is a range of options for modelling this conditioning (Wilby et al.
2002). For example, if a Markov model is used, the probability of precipitation
can be conditioned not only on the generated occurrence of precipitation on the
previous day(s), but also on some aspect of the seasonal forecast, such as the pre-
dicted rainfall total exceeding some predefined threshold. As a simple example,
Fig. 8.9 compares the probabilities during El Nifio and La Nifia years of daily pre-
cipitation during the winter months of January—March in San Diego exceeding
various thresholds. Rainfall at all but the highest intensities typically occurs more
frequently under El Nifio conditions than under La Nifia conditions.

Alternatively, the probability of precipitation could be estimated using a statis-
tical model. This regression approach has the advantage of not dividing the
degrees of freedom up by the repeated splitting of the dataset when calculating
conditioned parameters, but does require the form of the relationship between the
conditioning variable and the precipitation probability to be specified.

A more sophisticated approach to conditioning the generator on the seasonal
forecast involves modelling the occurrence of precipitation on the basis of the pre-
dicted daily sequence of the large-scale atmospheric circulation. Since the daily
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Fig. 8.9 Histograms of wet spells in San Diego commencing any time between 01 January and
31 March for the 50-year period 1951-2000, given that the January—March averaged NINO3.4
index was greater than +0.7 (i.e. El Nifo conditions prevailed), and less than —0.7 (i.e. La Nifia
conditions prevailed)
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atmospheric circulation has the weather persistence implicitly built in, there is no
need to condition the precipitation on the previous days’ weather (either by
Markov or spell-length modelling). Because the weather persistence is implicit in
this approach, these models are called “hidden Markov models” (Robertson et al.
2004). Hidden Markov models condition the precipitation probability by identify-
ing specific weather patterns and then classifying each day into one of the
patterns. The daily sequence of the atmospheric circulation over the period of the
seasonal forecast would normally be provided by the GCM, and so the procedure
is somewhat similar to the spatial downscaling procedures described in Section
8.4.1. Apart from obvious differences in the form of the statistical model used, and
in the temporal resolution of the GCM output (daily compared to seasonal aver-
age), the procedures have this in common: the large-scale GCM output is
statistically corrected to provide an estimate of precipitation (daily occurrence or
seasonal total).

Precipitation intensity is modelled in a similar way to spell-lengths: the distri-
bution of non-zero precipitation intensities is represented (frequently by a gamma
or mixed exponential distribution), and random intensities are generated for days
in which precipitation is specified to occur. Thus intensity is modelled subsequent
to occurrence. Again, the intensity of precipitation can be conditioned upon some
aspect of the seasonal forecast if there is evidence that seasonal variability is
affected by changes in precipitation intensity. Since the inter-annual variability of
precipitation can be affected by changes in precipitation frequency and/or inten-
sity, weather generators can be designed to account for both/either effect.

Weather generators can be designed to model a suite of meteorological parame-
ters in such a way that the relationships between the parameters are consistent
with the relationship in the real. For example, in many parts of the world there is a
relationship between precipitation occurrence and maximum temperature, and
some applications of seasonal forecasts it may be important to retain this relation-
ship. Generated temperatures (and other parameters) are conditioned upon the
generated precipitation occurrence. In a similar way, it is possible to generate
weather sequences at a range of locations so that the generated weather is spatially
realistic by accounting for the spatial correlations in the meteorological parame-
ters. This consideration may be important in hydrological modelling, for example,
where the spatial distribution of precipitation across a river catchment is important
in affecting runoff.

8.5 Using Ensembles

There are two primary motivations for generating an ensemble of predictions
(whether from a single model or a set of models). One is that the average of a set
of predictions more closely approximates the climate signal than the prediction
from any single ensemble member. However, a second motivation is to obtain
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some indication of the uncertainty in the prediction.® Since the ensemble mean
indicates only the central tendency of the predictions, a separate measure is re-
quired to indicate the uncertainty. However, it is not obvious how the ensemble
members can be used to indicate forecast uncertainty, or even whether they are
successful in doing so. In Section 8.5.1 how uncertainty in a forecast can be com-
municated is discussed. Then some methods for describing the forecast
uncertainty using an ensemble are considered (Section 8.5.2). A description of
procedures for assessing how well the ensemble can be used for indicating
changes in forecast uncertainty is reserved for Chapter 10.

8.5.1 Forecast Uncertainty, Forecast Confidence
and Forecast Probabilities

Given the inherent uncertainty in forecasting seasonal climate conditions, the fore-
caster needs to provide some indication of this uncertainty. A common way of
communicating such uncertainty is by indicating the level of confidence to be
placed in the forecast. This level of confidence is inversely related to the degree of
uncertainty in the forecast: when uncertainty is large a low level of confidence in
the forecast is communicated, whereas when uncertainty is reduced confidence
increases. The distribution of possible outcomes defines the full extent of the un-
certainty in the prediction, but this distribution is unknown and so has to be
approximated somehow. Once approximated, the forecaster’s confidence can then
be defined. The confidence in the forecast can be communicated in a number of
ways, and how the ensemble may be used depends on which format is adopted.
One of the simplest ways of indicating forecast uncertainty is to specify a range
of values within which the observed value is expected to lie with a predefined
level of confidence. Usually this level of confidence is kept fixed from forecast to
forecast, and the varying uncertainty is reflected by adjusting the width of the in-
terval. Thus, when uncertainty is large (small) the interval is made wide (narrow).
For example, forecast A, which states that there is a 90% probability of a seasonal
rainfall total being between 100 and 200 mm indicates greater uncertainty than
forecast B, which states that there is a 90% probability of the total being between

5 Here, and elsewhere in this Section, “uncertainty” relates to the range of possible outcomes for
a specific target period, and is not the same as, the climatological uncertainty as defined by
Murphy (1973a). Murphy’s definition is independent of the forecasts themselves, whereas here,
as discussed later, uncertainty is represented by the extent to which the forecasts of individual
ensemble members for the same target differ. If the forecasts for all the ensemble members are
similar, then forecast uncertainty is low, but if they differ substantially then forecast uncertainty
is high.
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125 and 175 mm.” This format is known as a prediction interval (see Chapter 9)
and is not widely used in seasonal climate forecasting partly because such inter-
vals are frequently misinterpreted.

An alternative approach to that is more commonly used in seasonal climate
forecasting is to fix the interval and to allow the level of confidence to vary. The
interval itself can be fixed to meet the user interests, although in practice it is most
commonly defined from the terciles of the observed data as measured over a cli-
matological period. The fixed intervals are normally called “categories”, along
with the unbounded categories either side of the interval. More than one interval
can be specified, and in this respect quintiles are being used with increasing fre-
quency. To illustrate: the interval of 100-200 mm used in forecast A above could
be used for all forecasts; decreased uncertainty implicit in forecast B would then
be communicated by increasing the probability that the seasonal rainfall total will
be within this range rather than by narrowing the range. It should be noted that
there is no simple relationship between the change in the probability assigned to
an interval and the changing level of uncertainty in the forecast, as illustrated in
Fig. 8.10. Two forecasts are shown in the figure; forecast A involves less uncertainty

A
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A

probability

20 22 24 26 28 30

Fig. 8.10 Hypothetical example illustrating the complex relationship between forecast probabil-
ity and forecast uncertainty. Forecast A (solid line) represents a forecast with relatively low
uncertainty, and forecast B (dashed line) represents one with relatively high uncertainty. The
narrow vertical lines indicate the limits of intervals for which forecast probabilities are desired.
These probabilities are calculated by integrating the areas beneath the lines A and B within the
range of the intervals

" If the confidence level is ¢, it would normally be assumed that the probability that the observed
value will be less than the lower limit of the interval (125 mm in forecast B) is the same as the
probability that the observed value will be greater than the upper limit (175 mm). This probabil-
ity would be 12 (5%) However, it is not necessary for the interval to be centred in this way, as
long as the corresponding tail probabilities are then specified.
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than forecast B. In the interval 21-22°C the probability increases with the more
uncertain forecast, but decreases in the interval 25-26°C. This problem in inter-
pretation can be avoided by specifying the probabilities for all categories, and
comparing these probabilities to the climatological probabilities for the categories.
More detailed summaries of the distribution of possible outcomes, and thus of
the uncertainty in the forecast, are possible by assuming a distributional form and
describing this distribution by its parameter values (for example, the mean and
variance of a normal distribution). These distributions can be used to estimate
probabilities for any intervals, or intervals for any levels of confidence. Alterna-
tively, some of the percentiles of the distribution (fitted or otherwise) can be
specified. These options are discussed in more detail in the following sections.

8.5.2 Forecast Ensembles and Forecast Uncertainty

After correcting for systematic errors in the individual ensemble members (Sec-
tion 8.3), their distribution is supposed to give an indication of the distribution of
possible outcomes. The distribution of the ensemble members should therefore
indicate the uncertainty in the forecast: in simple terms, if the various ensemble
members are forecasting similar values then uncertainty is low, whereas if the
values differ widely then uncertainty is high. However, with a finite ensemble size
the distribution of the current forecasts is imperfectly sampled, and so the uncer-
tainty implied by the forecasts has to be estimated.

One of the simplest ways of using the ensemble to indicate forecast uncertainty
is to estimate the probabilities for categories by counting the proportions of the
ensemble members indicating outcomes within each category. Errors in calculat-
ing these probabilities by counting can be derived from the binomial distribution,
and can be substantial. The probabilities are more reliably obtained by fitting a
distribution to the ensemble members using one of the methods described in
Section 8.3.3 and then calculating the probabilities from the fitted distribution
(Kharin and Zwiers 2003). Further improvements can sometimes be made by as-
suming a distributional form for the sampling errors associated with each
ensemble member rather than for the ensemble distribution as a whole. Each en-
semble member is “dressed” with a fitted distribution (Roulston and Smith 2002).
One advantage of this approach is that the prediction errors of the forecasts can be
accounted for to some extent. Alternatively, the probabilities could be estimated
directly using a statistical model, such as a generalized linear model (Tippett et al.
2007). The statistical model would correct for both the predictive and the system-
atic errors in the model(s).

The use of a statistical model for estimating probabilities does not necessarily
mean that the uncertainty implied by the ensemble distribution provides useful
information. The most obvious candidates for predictors in the statistical model
are the first few moments of the ensemble distribution, and virtually all of the
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usable information is in the ensemble mean. The ensemble mean communicates no
information about the uncertainty in the forecast, which, instead, is derived from
the error variance of the ensemble mean predictions. Errors in calculating the en-
semble variance appear to be too large to derive much useful information in the
ensemble spread (Kharin and Zwiers 2003). Alternative measures of spread, such
as the inter-quartile range, could be used, but more detailed studies are required to
identify how much of the variability in the ensemble spread beyond the sampling
variability truly represents variability in forecast uncertainty. There has been
minimal investigation into the information content of the shape of the ensemble
distribution.

Instead of using the ensemble to estimate probabilities for predefined catego-
ries, they could be used to estimate the values associated with specific percentiles
of the ensemble distribution. For example, the ensemble median is arguably more
informative than the mean since the former is amenable to making a simple prob-
abilistic forecast (there is an estimated 50% probability that the observed value
will exceed the ensemble median, but the probability of exceeding the mean is
unknown unless some distributional assumptions are made). The percentiles can
be estimated either by fitting a distribution to the ensemble or to the individual
ensemble members, or by treating the individual ensemble members as percentiles
of the distribution. The latter approach is implicit when constructing ranked histo-
grams, as discussed in Chapter 10. Effectively, such procedures are an extension
to those used for defining prediction intervals since each end of the interval repre-
sents a fixed percentile of the forecast distribution.

8.6 Combining Forecasts

There is ample evidence that combining seasonal climate predictions from a suite
of models provides an improved forecast over using even the best of the individual
models (Doblas-Reyes et al. 2005; Hagedorn et al. 2005). The improvement is
evident not only in forecasts of seasonal averages but also in some of the intra-
seasonal statistics such as storm frequencies. Similar conclusions can be drawn for
forecasts at medium-range and shorter timescales, and multi-model approaches are
being used increasingly in climate change work. At all timescales the improve-
ment in the forecasts results from the improved representation of uncertainty
arising from imperfections in model physics. In a single-model ensemble, uncer-
tainty is represented only in terms of the initial conditions, and each ensemble
member is subject to the same errors in the model physics, so that clustering of
forecasts tends to occur. Alternative ways of accounting for the uncertainties aris-
ing from model errors include stochastic parameterization, and perturbed physics
approaches, but the use of multi-models is likely to remain popular both in
research and operations.
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Simple averaging of predictions from different models is usually sufficient to
improve the quality of a forecast, but it is tempting to weight the models by their
respective skill levels. However, a major difficulty in assigning differing weights
arises from the limited availability of hindcasts for which to assess relative model
performances robustly. If the skill levels of the models cannot be definitively com-
pared, it is then exceptionally difficult to outperform the simple average of the
models’ respective predictions (Kharin and Zwiers 2002). Further, as the number
of models is increased, problems of over-parameterization arise, and so simple
averaging of recalibrated model output again generally proves to be the most
effective approach.

To illustrate, monthly predictions of the NIN0O3.4 index from three of the mod-
els that participated in the DEMETER experiment were combined using a range of
methods. Each of the three models (ECMWEF, CNRM, and the Met Office) had
nine ensemble members, produced forecasts from four start dates, and generated
predictions with lead-times of up to 5 months. Hindcasts were available for the 44-
year period 1959-2002, and all results were cross-validated using a 3-year cross-
validation window (i.e. 1 year either side of the predicted year was omitted).
Results for all lead-times and seasons were pooled.

The details of the various combination schemes are not important, but include
two Bayesian model weighting schemes, canonical variate analysis, generalized
linear models, multiple regression, and stepwise regression. For all but the Bayes-
ian schemes, the respective model ensemble means were used.® Simple model
averaging (i.e. equal model weighting) was used as a benchmark level of skill. In
all cases the forecasts were expressed as probabilities of the NIN03.4 index falling
below the lower quartile, above the upper quartile, or within the inter-quartile
range. The forecasts were evaluated using the quadratic score, which is a measure
of the squared error in the probability assigned to the category that verified (Chap-
ter 10). The score ignores the probabilities assigned to the other categories. Since
it is an error score, a perfect set of forecasts would achieve a score of 0.0.

Since each of the schemes can be applied to the models individually to recali-
brate the model output, the models can be combined in one of two ways:
recalibrate each model individually, and then calculate a simple average of the
recalibrated predictions (“recalibration”); apply the schemes to all the models si-
multaneously (“combination”). For the simple equal weighting, the combination
and recalibration schemes will give identical results. The scores for the various
schemes are illustrated in Fig. 8.11. Most of the schemes improve the forecasts of
individual models, and in most cases the combined forecasts (using either combi-
nation approach) improve upon the forecasts from the best single model. The

¥ The use of the ensemble mean only generally gave the best results. Alternatives tried were: to
include the ensemble variance (which can provide some marginal improvements in skill), and
higher moments; to use all the ensemble members; to use the first few principal components of
the ensemble members.
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averaging of the recalibrated forecast consistently outperforms the combination
method, presumably because of the over-parameterization of the latter.

The results shown in Fig. 8.11 are based on combining forecasts from only
three models. Since many of the models used in seasonal climate forecasting are
fairly closely related, the predictions from these models are often strongly corre-
lated, potentially creating problems of multicolinearity (see Chapter 7, Section
7.4.1). Some success has been achieved in addressing multicolinearity problems
by using procedures equivalent to truncated principal components regression.
Such an approach will also help to reduce problems of multiplicity that arise from
considering the skill of more than one model (Chapter 7, Section 7.4.1), and which
are exacerbated when downscaling approaches are incorporated into combination
algorithms. However, it is not clear that principal components regression is appro-
priate in the context of forecasts of precipitation, for example, where the assump-
tions of multivariate normality are often violated.

NN rccalibration 3 CNRM
[ combination  E ECMWF
0.25 4 —1 UKMO

0.20 1

0.15 1

0.10 4

Quadratic score

0.05

0.00 L
BAYES1 BAYES2 CANVAR GLM MLR STEP  EQUAL

Fig. 8.11 Quadratic scores for monthly predictions of the NIN0O3.4 index, using various forecast
combination schemes [Bayesian model weighting schemes (BAYES1 and BAYES2, canonical
variate analysis (CANVAR), generalized linear models (GLM), multiple linear regression
(MLR), stepwise regression (STEP), and equal weighting (EQUAL)]. The schemes are compared
by combining the predictions using two procedures: attempting to account for differences in
model skill (“combination”), and by simple averaging of predictions after recalibrating the indi-
vidual models (“recalibration”). Results for the individual models are shown also

Problems of multicolinearity in forecast combination algorithms, while not
unique to multiple regression, which has been a commonly used method for com-
bining forecasts, are not an issue with some alternative combination methods.
Canonical covariate analysis, for example, has some strong similarities to princi-
pal component regression, and explicitly addresses the inter-correlations of models
(and of individual ensemble members, if used). In addition, the first few principal
components of the model predictions could also be used in a wide range of alter-
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native statistical schemes, such as generalized linear models (Chapter 7, Section
7.4.3). These approaches deserve further consideration, especially in the context of
combining predictions of precipitation amounts, where the standard assumptions
of multiple regression (multivariate normality) are sometimes invalid.

8.7 Summary

Producing a seasonal climate forecast from a dynamical model involves a great
deal more than simply running the model, and viewing the results. The first prob-
lem is to decide which dynamical model(s) should be run given the practical
constraints of computing resources. Assuming that dynamical models can repre-
sent the underlying physical processes correctly, fully coupled models theoretically
should give the best predictions of seasonal climate if they can be initialized accu-
rately, but this initialization can be problematic, and computing resources can be
prohibitive. An alternative is to use uncoupled atmospheric models and to pre-
scribe the SST forcing. In the latter case, the SSTs have to be predicted first, and
so the uncoupled approach involves a “two-tiered” process.

Once model predictions have been made, they then need to be corrected for
systematic errors. These errors result from consistent differences between the
model and the observed climatologies, and can be identified by differences in the
probability distributions of climate parameters for the model and the observed
data. However, since one contribution to the systematic errors in the model is that
the geography is distorted, simple gridpoint-by-gridpoint comparisons of model
and observed climatologies can be inappropriate. Instead some form of spatial
correction to the model output is desirable.

Even after systematic error and spatial correction, the model predictions may
require further processing in order to be made relevant for specific locations. All
dynamical models produce output that represents an averaged value over a gridded
area typically of the order of between 10,000 and 100,000 km”. Because local cli-
mate can vary considerably over fairly short distances, especially in areas of
marked terrain, this gridded average may be unrepresentative of specific locations
within the grid. The model prediction must therefore be “downscaled”. Down-
scaling can also involve the conversion of a prediction for a gross summary of
weather over a season, such as a 3-month rainfall total, to one containing more
detailed information about the statistics of weather within the season.

After correcting the model output, the uncertainty in the forecast then needs to
be communicated. Apart from the fact that an average of an ensemble of predic-
tions is almost invariably a more accurate forecast than any single prediction,
ensembles are a commonly used method of representing the uncertainty in the
forecast. (The question of whether the ensemble does in fact provide a reliable
indication of forecast uncertainty is deferred until Chapter 10.) If the various pre-
dictions from the ensemble are in close agreement then presumably we can place
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more confidence in the forecast than when the ensemble members predict widely
different outcomes. There are a number of ways of assessing the level of agree-
ment amongst the ensemble members. The most widely used approach is to count
the proportion of ensemble members that predict an event of interest. However,
more sophisticated procedures are available, and involve fitting a distribution to
the predictions, which gives a more reliable indication of the model’s forecast
distribution, and using statistical models to correct the forecast distribution to ac-
count for model skill. Such procedures are discussed in more detail in the
following chapter.

Just as an ensemble of predictions from one model provides a more accurate
forecast than any single model prediction, so also forecasts obtained by combining
predictions from a range of different models are an improvement upon forecasts
derived from a single model. There have been numerous attempts recently to com-
bine predictions from different models in ways that account for differences in the
skill of the individual models. However, with the typically small sample sizes
available for seasonal forecasts, it is difficult to estimate with sufficient accuracy
the differences in the performances of the models, and so a simple average of the
predictions from the various models is a high standard to beat.

After constructing a forecast, an indication of the reliability of the probabilistic
information communicated needs to be performed by conducting a detailed assess-
ment of the quality of a set of historical forecasts produced in a consistent way
with the current forecast. The verification of these historical predictions provides
an indication of the information content in the forecast, and relevant procedures
are discussed in Chapter 10.



Chapter 9
An Introduction to Probability Forecasting

David B. Stephenson

This chapter reviews the basic probability concepts needed to understand pro-
bability forecasting and presents some simple Bayesian approaches for producing
well-calibrated probability forecasts. Forecasts are inherently uncertain and it is
important that this uncertainty is estimated and communicated to forecast users so
that they can make optimal decisions. Forecast uncertainty can be quantified by
issuing probability statements about future observable outcomes based on current
forecasts and past observations and forecasts. Such probabilistic forecasts can be
issued in a variety of different forms: as a set of probabilities for a discrete set of
events; as probabilities for counts of events; as quantiles of a continuous variable;
as interval forecasts (pairs of quantiles); as full probability density functions or
cumulative distribution functions; or as forecasts for whole spatial maps. Since
models predict the future state of model variables rather than actual real-world
observable variables, probability forecasts need to be recalibrated on observations
as an inherent part of the forecasting process. Rather than the (marginal) pro
bability distribution of ensemble predictions, what forecasters should issue are
estimates of the conditional probability distribution of the future observed quantity
given the available sample of ensemble predictions.

9.1 Introduction

There is one thing in climate science that we can be certain about: weather and
climate forecasts will always be uncertain. To deterministic ways of thinking, this
uncertainty is rather annoying, but is a defining characteristic of many areas of
modern science. How should we deal with this forecast uncertainty? One approach
is to deny it and simply issue deterministic forecasts (e.g. ““it will rain tomorrow”)
with no estimate of the forecast uncertainty. This doesn’t mean that the forecaster
thinks there is no uncertainty in the forecasts, but rather that an estimate of the
forecast uncertainty is not available. Although simple to communicate, this
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approach has several problems. Rather than be interpreted as the most probable
future outcome, the forecast can be misinterpreted to be the only possible future
outcome. This can lead the forecast user to lose confidence in the forecast provider
when the forecast outcome fails to happen. Hence, probability forecasts can be
more “believable” than are deterministic forecasts. Probability forecasts are also
required for the user to be able to make optimal decisions — the predicted uncer-
tainty of the forecasts is a key element in the decision-making process. In order to
make optimal decisions, it is necessary for the forecast user to be able to quantify
risk by having estimates of the probabilities of all the different possible outcomes.

Hence, the goal of weather and climate forecasting is to provide the most reli-
able probability estimates for future observed events given the available
predictions and all available past information. Unless one has a perfect model
identical to that of the real world initialised identically to the real world (!), model
predictions should not be considered to be identical to forecasts of observable
events. In practice, the probability of future observables has to be inferred from
the set of available weather and climate predictions. The conditional probability
distribution of the future observable is not simply the probability distribution of
the ensemble predictions — it has to be estimated from the model data using a suit-
able probability model such as a regression model. This important process of
mapping the forecasts back into observation space has been referred to as fore-
cast assimilation by Stephenson et al. (2005).

Most seasonal forecasting centres calibrate their forecasts to look like reality
by simply adding constants and/or multiplying by constants to correct for biases in
the mean and variance (Chapter 8). This simple procedure is based solely on the
mean and variance of past forecasts and past observations, and ignores informa-
tion about the joint distribution of past observations and forecasts (e.g. the skill of
the forecasts). A better approach is to recalibrate the forecasts using a model
based on the regression, for example, of past forecasts on past observations. For
example, the Swedish Meteorology and Hydrology Institute uses an adaptive
Kalman filtering technique to adjust all the ensemble members based on daily up-
dates of an error equation evaluated on the control forecast. Rather than perceive
this as a simple post-processing step, one should realize that this is an inherently
important aspect of the forecasting process that requires as much care and atten-
tion as invested in other aspects of the forecasting process such as coupled model
development, data assimilation, ensemble generation, etc. The full potential of
climate forecasts cannot be fully realized without these activities.

The aim of this chapter is to give a brief introduction into why we need pro-
bability forecasts, how they can be issued, and what needs to be done to make
well-calibrated probability forecasts. Section 9.3 motivates why we should issue
probability forecasts and discusses the different types of probability forecast.
Section 9.3 gives a brief overview of the basic probability concepts needed to
understand probability forecasts. Finally, Section 9.4 presents ideas and examples
on how to produce well-calibrated probability forecasts.
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9.2 Probability Forecasts: Why Issue Them and What are They?

9.2.1 Why Issue Probability Forecasts?

Forecasts can be either deterministic or probabilistic. Deterministic forecasts issue
a specific value or category that is considered to be most likely to occur in the
future. Unless issued together with skill measures such as mean squared forecast
error, deterministic forecasts provide no indication of forecast uncertainty. In con-
trast, probabilistic forecasts do attempt to quantify the uncertainty by making clear
probability statements about the chance of occurrence of future outcomes.

There are several important reasons why it is better to issue probabilistic fore-
casts rather than deterministic forecasts:

o The future state of a complex system such as climate cannot be predicted with
certainty

o Probability forecasts allow different decision-makers (forecast users) to make
their own optimal decisions, whereas deterministic forecasts are essentially a
decision already made by the forecaster

o Probability forecasts are essential for quantitative assessment of risk

o It is dishonest and legally dangerous to claim that there is no uncertainty in the
forecasts.

However, there are several difficulties when issuing probabilistic forecasts,
such as:

e More information needs to be communicated so the forecasts can be difficult to
communicate concisely (e.g. in short television broadcasts)

e The understanding and perception of probability and risk varies enormously
from person to person

o Not all users want to make optimal decisions — they often prefer the forecaster
to issue a definitive statement about what will happen (despite the fact that this
is impossible!)

o The probabilities may be difficult to quantify reliably especially when uncer-
tainties are due to unknown unknowns (e.g. missing processes) and cascade
through several stages of the ensemble forecasting system.

In order to surmount these difficulties it is necessary for forecasters and users
to work together at improving communication and understanding of what they are
attempting to achieve.
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9.2.2 Sources of Uncertainty

Uncertainty is endemic in forecasting because the future is not certain. There is a
growing need in climate science to quantify the different sources of uncertainty.
To help do this, it is useful to try and classify all the different possible sources of
uncertainty.

Uncertainty arises from two main sources: aleatoric and epistemic. Aleatoric
uncertainty is due to chance (from the Latin word aleator meaning a dice-player)
whereas epistemic (or structural) uncertainty arises from our incomplete and in-
correct knowledge of the world. Epistemic uncertainty can be summarized by the
unknown unknowns in the famous quote by Donald Rumsfeld at the US Defence
Department Briefing on February 12, 2002:

Reports that say that something hasn’t happened are always interesting to me,
because as we know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say we know there
are some things we do not know. But there are also unknown unknowns — the
ones we don’t know we don’t know. And if one looks throughout the history of
our country and other free countries, it is the latter category that tends to be the
difficult one.

Below is a classification of the types of uncertainty that arise in climate science:

o Observational uncertainty

o Sampling error in measurements

o Systematic error in measurements (e.g. instrumental biases)

o Inherent uncertainty in statistics caused by sampling of natural variability
over finite periods (e.g. the historical record, the future forecast period, the
30-year base period used to define climatology)

e Model data sampling uncertainty (aleatoric uncertainty)

o Finite length model simulations (e.g. climate time-slices)
o Finite ensemble of all possible model runs

e Model parametric uncertainty (i.e. known unknowns)

o Physical uncertainty in model parameters (e.g. cloud physics)
o Sampling uncertainty in statistical estimates of parameters
o Non-uniqueness in model parameters (model parameter degeneracy)

e Model structural uncertainty (i.e. unknown unknowns)

o Incomplete knowledge of external factors (e.g. future emissions scenarios)

o Misidentification of physical and/or statistical models (e.g. simplification of
land-surface processes, weak but unaccounted for effects such as slow com-
position changes)

o Numerical and representation error (e.g. grid boxes are not the same as
single-site locations)
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Various strategies have been developed in recent years in order to get estimates
of these different sources of uncertainty — for example, ensemble and multi-model
prediction and stochastic parameterization techniques. However, it is important
to be aware that uncertainty is invariably underestimated due to the fundamental
inability to quantify epistemic uncertainty caused by unknown unknowns (there
can always be surprises — e.g. the appearance of the Antarctic ozone hole!).

9.2.3 Types of Probabilistic Forecast

Probabilistic forecasts are probability statements about future outcomes. They
need not simply be issued as a probability for an event. Some examples of differ-
ent probabilistic forecasts (see additional discussion in Chapter 8, Section 8.4.1)
are listed here:

1. A set of probabilities for the discrete set of events that can occur. For example,
probabilities of 0.2, 0.4, and 0.4 for the categories of below-normal, normal,
and above-normal. For binary events (two mutually exclusive and complete
categories such as rain and no-rain), effectively only one probability needs to
be issued (e.g. probability of rain) since the two probabilities must add up to
one (one of the events must happen!).

2. Probabilities for counts: e.g. the probability of 4 hurricanes making landfall in
the U.S.

3. Interval forecasts in which one specifies a range of continuous values in which
is likely to include the observation with a certain fixed probability. For example,
temperature could be predicted to be in the range [23.7°C, 29.3°C] with 95%
chance — this is known as a prediction interval in the statistics literature (not to
be confused with confidence interval that refers to an interval on a distributional
parameter not a random variable). Error bars (as often used by physicists) such as
10.0°C + 1.2°C are constructed by adding and subtracting one standard devia-
tion, and are examples of 68.3% prediction intervals for Normally distributed
variables.

4. One or more quantiles of a continuous variable. For example, one could predict
the 50th quantile (the median) of the distribution, in which case the observed
value would be expected on average to exceed this value on half the occasions.
Note that predicting the median is fundamental different to predicting the mean
since in general one does not know a priori the probability of exceeding mean
value. If one wants to be correct 50% of the time then one should use the me-
dian value rather than the mean — it is for this reason that median forecasts are
popular in financial forecasting.

5. The full probability density function (p.d.f.) or cumulative distribution function
(c.d.f.) of a continuous variable. In other words, one could try to predict a
whole function each time. If the distribution always has the same form, then it
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may be possible to summarize this distribution by fitting it to a known distribution
function (e.g. Normal/Gaussian) and then quote the distribution’s parameters
(e.g. the mean and variance of the Normal distribution).

6. Probability forecasts for whole spatial maps (e.g. precipitation maps). These
forecasts are p.d.f.’s of a 2-dimensional spatial function and methods have not
yet been fully developed for doing such forecasts.

Despite many years of issuing weather and climate forecasts, there is still much
work to be done on producing and assessing such types of forecast. There is also a
real need to educate the forecast users as to why probability forecasts are pre-
ferable and how they can best use them.

9.3 Basic Probability Concepts
9.3.1 Interpretations

Probability is open to many different interpretations. It underpins modern statistics
and is essential for rigorous scientific enquiry. The concept was formally defined
by Pierre Simon Laplace in his 1812 treatise on the analytical theory of probabili-
ties and has caused much debate ever since. The word “probability” is derived
from the Latin word probare meaning to test/approve, which is rather paradoxical
since only when the probability is exactly one or zero can anything be definitely
proven!

The probability p = P(A) of an event A is a measure between 0 and 1 of
whether the event is likely to happen. When p = 1 the event is certain to happen,
when p = 0 the event is impossible, and when p = 0.5 there is a maximum un-
certainty about whether or not the event will happen.

In 1933, Andrey Kolmogorov formulated three basic axioms that a number has
to satisfy to be a probability:

1. All probabilities are greater than or equal to zero: P(A4) >0 for all events (i.e.
no event is more unlikely than a zero probability event).

2. The probabilities of all events in event space always sum up to one (i.c. some
outcome must happen!).

3. The probability of either one or other mutually exclusive events (i.e. events that
cannot happen at the same time) is equal to the sum of the probabilities of each
event alone. In other words, P(A or B)= P(A)+ P(B) for all mutually
exclusive events A and B.

Note that the axioms can be restated more generally in terms of conditional
probabilities, e.g. the probability of event A given event C occurs, P(A|C), rather
than in terms of absolute probabilities such as P(A).
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A simple way of communicating probability is in the form of the odds of an
event. The odds of an event is defined as the ratio of the probability of the event
occurring to the probability of it not occurring, i.e. P(A)/P(not A). So an event
with probability 0.001 has odds of 1/999 (or 999:1 against in gambling jargon).
Odds can range from zero to infinity and are equal to one for events whose occur-
rence and non-occurrence are equally likely (known as evens by gamblers). Odds
can be used to assess the total risk of a set of independent events by simply multi-
plying together the odds of the individual events.

There are several different ways in which probability can be estimated and
interpreted:

o Number of symmetric ways

If an event A can happen in k ways out of a total of m equally likely possible
ways, then the probability of A is given by P(A) = k/m. For example, the pro-
bability of getting an odd number when throwing a 6-sided die is given by 3/6
since there are three ways to get an odd number (i.e. numbers {1,3,5}) out of a
total of six equally likely outcomes {1,2,3,4,5,6}.

o Relative frequency of an event in repeated trials/experiments

For repeated trials, probability can be estimated by the “long-run” relative fre-
quency of an event out of a set of many trials. If an event occurs k times in n trials
then the relative frequency k/n provides an unbiased estimate of the probability of
the event. In the asymptotic limit as the number of trials n tends to infinity, the
relative frequency converges to the true probability of the event (by the “Law of
Large Numbers”). This approach to defining probability from repeated trials is
known as the “frequentist” interpretation. Note that unlike laboratory experiments,
individual weather and climate events are unique and so can never be truly
repeated!

e Subjective approach

The frequentist approach has a number of disadvantages. Firstly, it cannot be
used to provide probability estimates for events that occur once only or rarely (e.g.
climate change). Secondly, the frequentist estimates are based entirely on the
sample and so cannot take into account any prior belief (e.g. common sense or
scientific knowledge) about the event. For example, an unbiased coin could easily
produce three heads only when tossed ten times and this would lead to a fre-
quentist probability estimate of 0.33 for heads. However, our belief in the rarity of
biased coins would lead us to suspect this estimate as being too low. In other
words, the frequentist estimate would fail to reflect our true beliefs. In such cases
a more flexible approach to probability must be adopted that makes use of not
only the available sample of data but also incorporates any prior information. The
word subjective does not mean that this approach is less rigorous than the frequen-
tist approaches — instead it means that the estimated probability of an event will
not necessarily be the same number for everyone but will depend on what prior
information each person has.
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One way to elicit the subjective probability of an event A from a group of
experts is to ask what price B they would pay for a fair bet. The subjective pro-
bability p = B/W is then given by the price they would be prepared to pay to bet
divided by the amount W they would win if the event occurred. Fair means that nei-
ther you nor the betting partner would be expected to make any net profit, i.e.
p(W —=B)+(1—p)(~W)=0. To make a fair bet, all prior knowledge must be
taken into account, e.g. any bias in the coins, the previous form of a horse in a horse
race, etc. This is often achieved by using Bayes’ theorem (see next section) and so
the subjective estimation of probability is often referred to as Bayesian estimation/
inference.'

9.3.2 Joint and Conditional Probabilities

We are often interested in the situation when two events happen at the same time.
For example, to get snow falling on the ground, it is necessary that two events, {A =
“precipitating cloud”} and {B = “boundary layer below freezing”} occur at the
same time.

The joint probability P(A and B) of events A and B is the probability that the
two events occur together. The conditional probability P(A|B) of A given B, is
defined as P(A|B)= P(A and B)/ P(B) and gives the probability of A occur-
ring given that B has occurred. For example, to estimate the conditional
probability of rain during El Nifio episodes, one would estimate the probability of
rain only during El Niflo events rather than over all events. The concept of condi-
tioning is fundamental for understanding statistical models (see Section 9.3.4).
The unconditional probabilities P(A) and P(B) are known as marginal probabilities
and so the joint probability P(A and B) is the product of the conditional pro-
bability P(A4|B) and the marginal probability P(B).

These ideas can be illustrated by considering exclusive, exhaustive, and/or
independent events:

 Exclusive events are events that cannot occur simultaneously so P(4 and B)=0,
and P(4|B)=0 if P(B)>0.

o Exhaustive events are events that describe all the possible outcomes and so
P(A or B)=1. It can be shown that for such events P(4 and B) = P(A)+
P(B)—1 (by using the probability identity P(A4 or B)= P(A) + P(B)—
P(4 and B)).

! For a good online introduction, see: http://en.wikipedia.org/wiki/Bayesian_inference
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o Independent events are ones where P(A and B)=P(A)P(B) and so
P(A|B)=P(A). The probability of A is unaffected by conditioning on B.
Events where P(A|B) differs from P(A) are known as dependent events since
the occurrence or non-occurrence of event B affects the chance of event A
occurring.

Events can share one or more of these properties, for example, the events heads
and tails of a single coin toss provide examples of exclusive and exhaustive
events. Exclusive independent events can only occur if one or more of the events
have zero probability of occurring.

9.3.3 The Prosecutor’s Falacy and Bayes’ Theorem

To assume that P(A4|B)= P(B| A) results in a mistake known to the legal pro-
fession as the Prosecutor’s fallacy. One form of the fallacy results from neglecting
the a priori odds of a defendent being guilty — i.e. the chance of an individual
being guilty absenting specific evidence is the gross incident rate of perpetrators in
the general population. When a prosecutor has collected some evidence B (for
instance a DNA match) and has an expert testify that the probability P(B|A) of
finding this evidence if the accused were innocent (event A) is tiny, the fallacy
occurs if it is concluded that the probability of the accused being innocent
P(A4|B) must be comparably tiny. The probability of innocence P(4|B) would
only necessarily be comparably tiny if the probability of innocence P(A) is compar-
able to the a priori presumption of guilt P(B).
By equating:

P(A4 and B)=P(A|B)P(B) and P(A and B)=P(B| A)P(4),
one can derive the very useful identity known as Bayes’ theorem:

P(4| B = LBLAPA) (Bl)f;f (4) ©.1)

Bayes’ theorem provides a useful way of getting from the unconditioned prior
probability P(A) to the posterior probability P(A4|B) conditioned on event B.
A is the event to be predicted, P(A) are ones prior beliefs about A, and B is the
sample of data available (e.g. numerical climate model predictions). In other
words, by conditioning on newly available data, it is possible to update ones
estimate of the probability of event A.
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9.3.4 Regression as a Conditional Probability Model

Empirical forecasting and forecast calibration and verification rely heavily upon
regression models. Although it might not seem obvious at first sight, regression
models are models for conditional probabilities. Consider, for example, the linear
regression of a response variable, Y, on an explanatory variable, X:

Y=8+pX+¢. (9.2)

The parameters /3, 3, and o, can be estimated by minimising the sum of the
squared errors, which is known as Ordinary Least Squares (OLS) estimation. This
is equivalent to Maximum Likelihood Estimation (MLE) if one assumes that
the random effects are independent of one another and of X, and are Gaussian
(Normally) distributed with zero mean and a constant variance:

&~N(0,07%). 9.3)

The symbols ~ N(.) here mean distributed as a Normal distribution with para-
meters (.). Modern statistical terminology uses upper-case Roman letters to denote
random variables (e.g. X), lower-case Roman letters to denote specific or ob-
served/measured values of random variables (e.g. x), and Greek letters to denote
unknown population parameters (e.g. B1, o, etc.). For example, the probability of
a random variable being more than x units above the mean is denoted
P(X —u>x).

The two OLS equations above can be written more elegantly as the following
conditional probability model:

Y| X ~N(B,+pX,0%) 9.4)

In other words, the values of Y for a given value of X are normally distributed
with a mean value given by S, + X and a constant variance of o. Hence, linear
regression can be understood as a probability model/distribution for Y that has
distribution parameters (the population mean) which depend linearly on X. The
joint, marginal, and conditional probability distributions are illustrated in Fig. 9.1.

By writing regression models as probability models, it becomes evident how
the models can be extended. For example, for processes with varying amounts of
variance (heteroscedastic processes) the variance can also be made to depend on X
or to model non-normal responses one can use a different distribution to normal. It
can also be clearly noted that unlike correlation, regression has a direction — Y is
conditioned on X, which is very different to X being conditioned on Y (see the
earlier discussion about the Prosecutor’s fallacy).
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Fig. 9.1 Scatter plot showing marginal distributions (histograms at the edge of the plot) and
isolines of the joint probability density together with a regression fit showing the conditional
probability distribution at a specific value of x

9.4 Recalibration and Combination

9.4.1 Basic Ideas

Recalibration and combination are topics of fundamental importance in fore-
casting. There are essentially two main reasons why forecasts do not match
observations:

« Forecasts are unable to discriminate between different observed situations
o Forecasts are poorly labelled, e.g. the forecasts are on average 5°C too warm

The ability of a forecasting system to discriminate between observed situations
is known as forecast resolution, and its existence is a necessary yet not sufficient
condition for forecasts to have any skill. For example, the probability forecasts of
a day having rain rather than no-rain should on average be greater on observed
rain days than on no-rain days. Forecast accuracy also depends on the good label-
ling of the forecasts, which is referred to as forecast reliability. For example, it
should rain on average on 60% of the days when the forecaster issues probability
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of rain forecasts equal to 0.6. Forecast reliability can be improved by recalibration
of the forecasts using previous pairs of forecasts and observations, whereas fore-
cast resolution cannot generally be improved by recalibration. However, resolu-
tion can be improved by combining forecasts with other forecasts that are better
able to resolve different situations.

Well-calibrated probability forecasts of future weather or climate variables can
be produced in many different ways. One of the simplest methods for producing a
probability forecasts is to estimate uncertainty on a deterministic prediction by
fitting a probability distribution to a sample of past prediction errors (the differ-
ences between the past observed values and the corresponding predictions).
Another more sophisticated approach is to develop a regression model of the
observations on the predictions and then use the regression equation to make
probabilistic predictions of future observables. This calibration approach using
linear regression is known as Model Output Statistics (MOS) and has been widely
used to improve deterministic predictions in the U.S. and elsewhere (see Glahn
and Lowry 1972; Wilks 2005). Forecasts are improved by recalibration because
numerical model predictions are only ever approximations to reality and so they
will always have systematic prediction errors (“All models are wrong, but some
are useful” — G. E. P. Box).

In order to quantify forecast uncertainty due to uncertainty in initial conditions,
many operational forecasting centres are now producing ensembles of weather and
climate forecasts rather than single deterministic forecasts. Since forecast users
generally require well-calibrated probability forecasts, new synthesis methods
have started to be developed for recalibration and combination of multi-model
ensemble predictions. For example, the MOS methodology can easily be extended
to multi-model predictions from several different numerical models by performing
a multiple regression of the observations on the set of different predictors. There
are many possible methods for combining forecasts, but no unique method can be
prescribed that is ideal for all the types of weather/climate forecasting problems.
However, there is a need to establish a framework that can incorporate the differ-
ent approaches for combining weather and climate predictions in order to provide
the most informative forecasts of future observables.

9.4.2 Conceptual Framework for Forecasting

Figure 9.2 shows a highly simplified low-dimensional schematic of the forecasting
process. The state vector of the real atmosphere moves dynamically around
g-dimensional observation state space whereas the model state vector moves
around p-dimensional model state space (Stephenson et al. 2005). Three important
steps are needed in order to find the probability density function p(y,|y,) of a
future observable variable y,:
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Fig. 9.2 Conceptual framework for forecasting. Note the duality between data assimilation that
maps data from observation space into model space and forecast assimilation (calibration and

combination) that maps model predictions back into forecasts of observable quantities (From
Stephenson et al. 2005)

o Data assimilation to find p(x,|y,). To initialize models with observations,
information in observation state space need to be mapped into model state
space (Bouttier and Courtier 1999).

« Ensemble prediction to find p(x, | x,) . The desired probability density is ob-
tained by approximating the integral over all possible model states x; by a finite
sum of predictions from randomly generated initial conditions (Monte Carlo
sampling). For this to be a good approximation, the initial ensemble states
should be randomly sampled from the distribution p(x; | y,). This condition is
not generally satisfied in current operational ensemble forecasting systems
(Stephenson and Doblas-Reyes 2000).

o forecast assimilation to find p( Yy | x /.). A procedure for mapping the model
predicted state back into observation space. This important final stage has been
referred to as forecast assimilation by Stephenson et al. (2005) due to its ana-
logy to data assimilation (apparent in Fig. 9.2). Forecast assimilation is a
generic framework that incorporates all other post-processing approaches such
as bias-correction, statistical downscaling, model output statistics, perfect prog-
nosis, etc. (Wilks 2005).

It is often naively assumed that in the absence of systematic errors (Chapter 8,
Section 8.2), predicted model variables are equal to forecasts of observations (i.e.
X, =y, ). This is mathematically incorrect since it ignores the important distinc-
tion between model state space and observation state space — the two spaces are
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not the same. Model variables (e.g. grid point variables) are only ever representa-
tions of observable variables (e.g. measurements at specific locations). This fal-
lacy then leads to the probability distribution of ensemble predictions p(x, |y;)
being mistaken for the real quantity of interest: the posterior predictive distribu-
tion of the observables p(y,|y;). Instead of equating model predictions with
observables (i.e. y,=x,), model predictions should instead be considered as
proxy information that can be used to infer the probability of future observables.

In order to be able to convert ensembles of model predictions into a probability
forecast, forecast assimilation requires a probability model (e.g. regression) for
linking x, to y,. Bayes’ theorem can be used to estimate the conditional pro-
babilities from the unconditional (uninformed) probability distributions. For
example, variational data assimilation uses

P | x)p(x)

(9.5)
p(y;)

p(xi |y,) =

to update the prior (background) distribution p(x,) to obtain the posterior distri-
bution p(x, | y,). Similarly forecast assimilation can make use of

p(x 1y )p(y,)
p(x,)

Py, lx,)= (9.6)

to update the prior (e.g. the climatological) distribution p(y f) to obtain the more
certain posterior distribution p(y, |x,).
The following sections demonstrate these concepts with a few simple examples.

9.4.3 Forecasts of a Binary Event

The Bayesian approach is best illustrated using the simple example of forecasts of
a binary event labelled by the random variable Y = 0 or 1 (e.g. no-rain/rain).
Suppose that out of an ensemble of m forecasts, x forecasts predict that the event
will occur and m —x forecasts predict that it will not occur. The frequentist esti-
mate for the probability p=P(¥Y =1|X =x) is the relative frequencyx/m .
However, this estimate has several serious disadvantages:

e When x =0 and m, the forecaster issues probabilities of 0 and 1, respectively.
In other words, the forecaster states that the event is either completely impos-
sible or completely certain to occur. It is unlikely the forecaster really believes
this statement!
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o The probabilities can take only the finite set of discrete values 0, 1/m, 2/m, ..., 1.
Different size ensembles lead to different sets of probability values that can
make comparison and interpretation difficult.

All these disadvantages can be avoided by adopting a more Bayesian approach.
The Bayesian approach uses Bayes’ theorem to update prior knowledge about p,
described by the prior probability density function f( p), using information con-
tained in the model prediction data x:

S p)

f(plx) 0

(9.7)

Note that uncertainty about the probability of the future event is now incorpo-
rated by using probability distributions rather than single point values of p.
Provided the distribution of p is not multi-modal, the probability density function
of the probability can be modelled quite flexibly using the two-parameter Beta
distribution:

F@+ph) o

1-p)’ ™, 9.8
T@r(5) (I-p) (9-8)

f(p)=

where I'(.) is the Gamma function is a normalising constant that is required to
ensure that the integral of the probability density f(p) from p =0 to 1 equals
one. The probability is said to be Beta distributed as follows: p ~ Beta(e, 5).
The mean and variance of the Beta distribution are given by:

a
- 9.9
H prwk (9.9a)
and
2 af (9.9b)

o = .
(a+B) (a+B+1)

Some examples of Beta distributions are shown in Fig. 9.3.

Using Bayes’ theorem, it can be shown that when the prior is p ~ Beta(a, f),
and the number of predicted events is binomially distributed, X | p ~ Bin(m, p),
with probability p, then the posterior distribution p|(X =x) ~ Beta(a + x,.
[+ m — x) In other words, the effect of the model predictions is simply to update
the Beta parameters describing the probability distribution for the probability of
theevent: ¢ > a+x,f > f+m—x.
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Fig. 9.3 Some examples of symmetric beta distributions: Beta(2.0,2.0), Beta(8.0,8.0), Beta(0.5,0.5),
and Beta(1.0,1.0)

An example of this is shown in Fig. 9.4 where it is assumed that the prior mean
probability of the event is 0.2 (e.g. climatology) and then this is updated by
knowledge that x =0 out of m =9 ensemble predictions forecast the event. For
the sake of argument, it is assumed here that information in the prior is equiva-
lentto 6 ensemble forecasts and so @ + ff =6 and hence @« =1.2 and f=4.8.
This kind of expert judgement about relative information in the data is needed in
order to be able to define the prior. By comparing panels (a) and (b) in Fig. 9.4,
it can be noted that the effect of the ensemble predictions in this example is to
sharpen the distribution (reduce the uncertainty in the probability of the event) and
to shift it towards zero. If a forecast user wanted a point summary for the probability
forecast, one could issue the mean probability value (e + x)/(a + f+m)=0.08
or the posterior mode (the most probable probability value):

(a+x-D/(a+pf+m—2)=0.015.

The uncertainty in p can be summarised by the standard deviation of the poste-
rior distribution:

\/(a+x)(ﬂ+m—x)/(a+,3+m)2(a+ﬂ+m+l) =0.068.
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Probability density f(x)

Fig. 9.4 Comparison of prior and posterior distributions of a probability forecast for a binary
event: prior distribution Beta(1.2,4.8) (dashed line) and posterior distribution Beta(1.2,13.8)
(solid line)

9.4.4 Forecasts of Normally Distributed Variables

The equations for forecast assimilation of normally distributed predictions are
simply the dual of the equations used for variational data assimilation but with x
and y interchanged. One assumes that the g >1 observable variables y and the
p =1 model predictions x are (multivariate) normally distributed as follows:

y=y,+écq, (9.10a)

and
x=G(y—y,)+sg, (9.10b)
where y, is the background observable state (e.g. the climatological mean value
or a persistence forecast) and &, and & are (multivariate) normally distributed

errors with zero mean and background observable covariance C and forecast error
covariance S, respectively. For generality, a bias term y0 needs to be included to
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take account of the mean forecast bias often found in model predictions. The (p x g)
matrix G is the forecast likelihood operator that can be estimated by multivariate
regression of the model predictions on the observed values. The equations can be
rewritten more elegantly as the following probability models:

y~N(y,,C), (9.11a)
and

x| y~NG(—=1y)S) . (9.11b)

Then Bayes’ theorem can be used to show that
yIx~N(,,D), (9.12)

with the forecast observable state ya and the forecast error covariance D given by

V=Y, +Lx=G(y, =), (9.12a)
L=CG"(GCG" +8)™, (9.12b)
D=(I-LG)C=(G'S'G+C")". (9.12¢)

The (g x p) matrix L is the forecast gain/weight matrix that quantifies the rela-
tive contribution of the predictions to updating the prior background mean y, . The
model prediction data updates the background observable state to give an im-
proved forecast of the observable. The forecast observable state is the mode of the
posterior distribution p(y|x), and is referred to as the Maximum A Posteriori
Estimate (MAPE) that should not to be confused with the Maximum Likelihood
stimate (MLE) which maximises p(x|y). The MAPE maximises the probability
p(y|x) or alternatively minimises the cost function —2log p(y|x), which is
given up to a constant by

J=(=1) C (=) +(x=G(y=y)" S (x=G(y=y)). (9.13)

The cost function is the sum of two penalty terms: one that penalises departures
from the background observable state and one that penalises departures from cali-
brated model predictions. This variational formulation of forecast combination and
calibration is analogous to the variational formulation of data assimilation (e.g.
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3-d VAR), and can be implemented in a continuous manner using Kalman filter
and other state space approaches. Two examples are briefly presented to illustrate
the power of this approach.

9.4.4.1 Example 1: NINO3.4 Index Forecasts

Coclho et al. (2004) used the above approach to recalibrate and combine multi-
model hindcasts (past forecasts) of the NIN0O3.4 index in December starting from
the preceding July. The hindcasts were freely provided by the European Union
project DEMETER.” A similar Bayesian approach (but with the inclusion of
ensemble spread information in the likelihood model) was also used by Coelho
et al. (2003) to assess the additional skill provided by coupled model seasonal
forecasts of the NINO3.4 index produced by different versions of the seasonal
forecasting system at ECMWF.

A least squares regression of historical December values of the NIN03.4 index
on preceding July values was used to define a simple prior probability forecast.
Forecasts made in cross-validation mode (i.e. omitting the year to be forecast
when estimating the regression parameters) generated by this empirical approach
are shown in Figure 9.5a. The empirical scheme shows some skill in forecasting
the observed values that arises because of the persistence during ENSO events.
Note that all except one of the 13 observed values fall within the 95% prediction
interval. The empirical forecast is, by definition, designed to be well-calibrated and
so on average only 1 in 20 observations should fall outside the prediction interval.

This is certainly not the case for interval forecasts based on the ensemble mean
and spread of the raw uncorrected 9-member ECMWF coupled model forecasts
(Figure 9.5b). The coupled model forecasts give a narrower prediction interval
that fails to contain the majority of the observations. This reliability problem is
due primarily (but not entirely) to the coupled model forecasts being too cold. In
addition to being too cold, the coupled model forecasts also have less variance
than that seen in the observations.

Figure 9.5¢c shows the forecasts obtained by Bayesian combination of the statis-
tical and coupled model forecasts. These forecasts have narrower and better
calibrated prediction intervals than those of the statistical or coupled model fore-
casts alone. The combination and recalibration has helped to improve the precision
and accuracy of these interval forecasts.

% See: http://www.ecmwf.int/research/demeter
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Fig. 9.5 Interval forecasts of December NINO3.4 index starting from preceding July: (a) empirical
regression forecasts, (b) raw ECMWF ensemble mean coupled forecasts, and (c) the Bayesian
combined forecasts. Observed values (circles), mean forecasts (circles at midpoint of grey shad-
ing), and 95% prediction interval (grey shading)
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9.4.4.2 Example 2: Equatorial Pacific Sea Surface Temperatures

Inspired by the success of this approach, the forecast assimilation equations were
then tested for multi-variable (i.e. grid point data) multi-model ensemble predic-
tions. Stephenson et al. (2005) demonstrated the method on 6-month lead forecasts
of equatorial Pacific sea surface temperatures.

Figure 9.6a shows longitude-time plots of probability forecasts for the binary
event of SSTs being below their long-term mean value. The naive multi-model
approach calculated the probabilities by fitting Normal distributions to the seven
model ensemble means at each of the 56 grid points. The forecast assimilation ap-
proach used the distribution of historical values as the prior and then combined this
with the ensemble means from the seven coupled models taking care to calibrate
these all together using a multivariate regression to estimate the likelihood parame-
ters. From Fig. 9.6a, it can be seen that the forecast assimilation approach was able
to shift the patterns eastward in order to get the correct sign of SST anomaly west
of the dateline. Figure 9.7 shows the Brier score (see Chapter 10) as a function of
longitude for both these combination approaches — the forecast assimilation gives
better skill (lower Brier score) in both the eastern and western Pacific.
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Fig. 9.6 Longitude-time plots of equatorial Pacific SST observations and forecasts: (a) observed
anomalies 1980-2001, (b) binary event of observed anomaly less than or equal to zero, (c) multi-
model ensemble mean and variance probability forecast of the event, and (iv) the forecast assimi-
lation probability forecast (From Stephenson et al. 2005)
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Fig. 9.7 The Brier score for the forecasts as function of longitude (From Stephenson et al. 2005)

This pilot study demonstrated that the forecast assimilation procedure could be
successfully applied to multi-model grid point fields. Coelho et al. (2005) went on
to apply the approach to improve hindcast predictions of seasonal mean preci-
pitation over South America. The success of this approach has led to the
EUROBRISA Project, a new transatlantic initiative, that will use this approach in
real-time to improve seasonal forecasts for South America (see the EUROBRISA
web site for more details®).

9.5 Summary

The main ideas in this chapter are that:

o Predictions of model variables are fundamentally different to forecasts of ob-
servables. Model predictions need to be mapped back into observations as an
inherent part of the forecasting process (forecast assimilation).

o The probability distribution of ensemble predictions is not what we need to know.
What we need are estimates of the conditional probability distribution of the
future observed quantity given the available sample of ensemble prediction data.

? See: http://www.met.rdg.ac.uk/~swr01cac/EUROBRISA
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Bayesian methodology allows one to estimate this distribution by simultaneously
combining and recalibrating the ensemble predictions. It can be used to produce a
reliable (well-calibrated) posterior distribution that avoids making unbelievable
statements (e.g. such as issuing probabilities of 0 and 1).



Chapter 10
How Do We Know Whether Seasonal
Climate Forecasts are Any Good?

Simon J. Mason and David B. Stephenson

When seasonal climate forecasts are expressed probabilistically, it is not possible
to answer simple questions such as “how often are the forecasts correct?” The
simpler attributes of forecast quality, such as “accuracy” or “correctness” are not
applicable to probabilistic forecasts, and instead the main attributes of interest are:
reliability, which defines whether the confidence communicated in the forecasts is
appropriate; resolution, which defines whether there is any usable information in
the forecasts; discrimination, which defines whether the forecasts are discernibly
different given different outcomes (somewhat similar to the attribute of resolu-
tion); and sharpness, which defines the level of confidence that is communicated
in the forecasts (regardless of whether that level is appropriate). How these attrib-
utes are measured depends on how the forecasts are expressed. In this chapter
these attributes are explained in detail, and representation by various graphical
procedures and scoring metrics is described. Partly because there is more than one
desirable attribute to good probabilistic forecasts, it is argued that there is no sin-
gle scoring metric that can adequately summarise forecast quality, and that in
many cases graphical procedures also hide important aspects of forecast quality.
The aim in this chapter is to provide some guidelines for interpreting and recog-
nising the strengths and limitations of the most important verification tools as
applied to seasonal climate forecasts.
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10.1 Introduction

Forecast verification is an essential part of atmospheric science: the science of
meteorology is ultimately judged by the skill of its predictions. Forecast verifica-
tion is a multi-disciplinary area of research that requires careful summary and
interpretation of pairs of past forecasts and observations. A comprehensive over-
view of forecast verification is presented in Jolliffe and Stephenson (2003); only a
brief summary of issues can be presented here, and so the focus is on topics that
are not discussed at length there. Specifically, because of the probabilistic nature
of seasonal climate forecasts, this chapter considers only the verification of prob-
ability forecasts and of ensembles of forecasts more generally.

The chapter only considers procedures for indicating the quality of forecasts as
opposed to their value; “forecast quality” is concerned with how well the forecasts
match the observations, whereas “forecast value” is concerned with the benefit
(whether economic, social, or otherwise) that can be realised through decisions
made in response to the forecasts. In focussing on questions of quality, the poten-
tial for forecasts to have value is addressed; whether the forecasts can actually be
used to realise that value raises questions about the impact of the climate condi-
tions that verify, and about the options available for mitigating such impacts.
Using even the simplest of decision-making models it can be demonstrated that
forecasts with high quality can have negative value. For example, one such model,
namely the cost-loss model, posits a specific “loss” resulting from the occurrence
of adverse climate conditions, and a specific “cost” that can be incurred to miti-
gate these costs entirely if action is taken in advance. Given a set of forecasts and
observations, it is possible to compare the costs and losses that would be incurred
with and without forecasts. Despite its over-simplicity, the model is useful in
demonstrating that seasonal forecasts can have value only under certain condi-
tions: the relative costs of taking some actions compared to the losses mitigated
can result in dis-benefit, even with high quality forecasts. Readers interested in
procedures for estimating forecast value should consult the book by Katz and
Murphy (1997).

A primary theme of the current chapter is that just as forecast quality is a
necessary, but not sufficient, condition for forecasts to have value, so also individual
attributes of forecast quality are necessary but not sufficient for “good” forecasts.
In the following section the complex nature of forecast verification is indicated.
The impossibility of summarising the quality of a set of forecasts by a single num-
ber is emphasised; because of the multifaceted nature of forecast quality, any
single metric inevitably hides important information about the quality of the fore-
casts. Some graphical procedures are detailed (Section 10.2.1) that provide a more
comprehensive indication of quality than is possible using scores. Nevertheless,
for good and bad reasons, scores remain popular, and since there are large num-
bers of verification scores that have been proposed, the properties of such scores
for probability forecasts are considered in Section 10.3 so as to provide criteria for
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identifying which scores may be preferable to others. In Section 10.4, some exam-
ples of commonly used verification scores for probability forecasts are examined.

10.2 Attributes of Good Probability Forecasts

Perhaps the single most commonly asked verification question is “How often are
the forecasts correct?” Although this question has intuitive appeal, when forecasts
are presented as probabilities, questions about the “correctness” or otherwise of
forecasts become unanswerable. Instead, probability forecasts are assessed on the
basis of whether they reliably indicate changes in the uncertainty of the outcome:
the forecasts are considered “reliable” when the forecast probability is an accurate
estimation of the relative frequency of the predicted outcome (Murphy 1993).

Reliability, however, is not the only attribute of probability forecasts that is
important. If the climatological probability of an outcome can be estimated accu-
rately in advance, a set of forecasts that always indicate the climatological
probability will be reliable, but will not provide any indication of the changing
likelihood of the outcome from case to case. A second attribute, namely that of
“resolution”, is therefore important. Probability forecasts have good resolution
when they can successfully distinguish cases in which the probability of an event
is high from those in which the probability is low. Forecasts with good resolution
will have varying probabilities from forecast to forecast, and the more these prob-
abilities diverge from the climatological probability, the sharper the forecasts are
said to be. From an alternative perspective, if forecasts are good, the discrimina-
tion between the forecasts will be clearly defined given different outcomes.

Good probability forecasts will have good reliability as well as high resolution
(and, implicitly, high sharpness), and will be well-discriminated. How these vari-
ous attributes are measured depends to a large extent on the format of the
probability forecasts. In the following sections the definitions of these attributes
are considered in more detail. In the following discussions various scores are men-
tioned that aim to measure only a specific attribute of the quality of a set of
forecasts. In each case, with the exception of the ROC area (Section 10.2.3), these
scores are distinct from scores that attempt to provide an overall summary of fore-
cast quality. Discussion about the summary scores is reserved until Section 10.4.

10.2.1 Reliability

10.2.1.1 Definition

As discussed in Chapter 8 (Section 8.5.2), one objective in generating an ensemble
of forecasts is to obtain an indication of the uncertainty in a forecast. However, it
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cannot automatically be assumed that the distribution of the ensemble members
reliably indicates the true uncertainty: a decrease in the variance of the ensemble
members does not necessarily mean that the outcome has become less uncertain. If
the implied uncertainty in the forecasts is appropriate, the forecasts are said to be
reliable or well-calibrated. Specifically, reliability is defined as consistency be-
tween the a priori predicted probabilities of an event and the a posteriori observed
relative frequencies of this event. Reliability is measured in different ways de-
pending on how the uncertainty in the forecast is indicated (see Chapter 9, Section
9.2.3 for an introduction to the different ways in which probability forecasts can
be expressed).

10.2.1.2 Reliability of Interval Forecasts

Reliability is calculated most simply when forecast uncertainty is indicated using
prediction intervals. In this case the forecast confidence is kept fixed, and so reli-
ability can be assessed by comparing the coverage probability (sometimes called
“capture rate”: the proportion of times the observed value is contained within the
prediction interval) with the confidence level for the intervals. If the observed
value falls too infrequently (or frequently) within the range defined by the predic-
tion intervals then the forecasts are over-confident (under-confident).

To illustrate, two sets of forecasts of the December values of the NINO3.4 index
for 1981-2000 are shown in Table 10.1. The forecasts were obtained by simple
linear regression using either the June or the September values of the index as pre-
dictors. The models were trained using data for 1951-1980. Prediction intervals
were calculated based on the cross-validated error variance over the training
period (Chapter 7, Section 7.3.3), and the widths of the intervals were set to define
a 50% level of confidence (i.e. 50% of the intervals are expected to contain the
observation). For both sets of forecasts, eight of the 20 years (40%) are contained
within the prediction intervals. The intervals are therefore too narrow, and the
forecasts are thus over-confident.

Although they have intuitive appeal, there are a number of problems with using
coverage probabilities as measures of forecast quality. The first problem is that
this measure of reliability does not distinguish between sets of predictions with
similar coverage probabilities but different interval widths. For example, both sets
of forecasts in Table 10.1 have equal reliability, but the forecasts from September
have consistently narrower intervals than those from June, and so are more infor-
mative (the narrower intervals imply less uncertainty in the forecast). A related
problem is that the correct coverage probability, p say, can be achieved by unskil-
ful forecasts simply by making the prediction interval infinitely wide p% of the
time, and infinitely narrow the remaining times. These problems point to the im-
possibility of adequately representing forecast quality by a single score. More
specifically, reliability is a necessary but not a sufficient attribute of a good set of
forecasts (Murphy 1991).
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Table 10.1 Observed values and forecasts of the December 1981-2000 NINO3.4 index. The
upper and lower 50% prediction intervals are indicated, and intervals that capture the observed
value are shaded

Years Obs June September

1981 —0.105 —0.391 (-0.807 to 0.0.25) —0.191 (—0.494 t0 0.112)
1982 2.590 2.019 (1.567 to 2.472) 1.998 (1.673 to 2.323)
1983 —0.464 1.343 (0.911 to 1.775) 0.044 (—0.258 t0 0.347)
1984 —-1.238 —0.811 (-1.231 to —0.390) —0.017 (—0.319 to 0.286)
1985 -0.212 —0.725 (-1.144 to —0.305) —0.253 (-0.556 to 0.050)
1986 1.261 0.283 (-0.133 t0 0.699) 1.225(0.914 to 1.536)
1987 1.167 2.218 (1.758 t0 2.678) 2.421 (2.086 to 2.756)
1988 -1.892 —1.969 (-2.418 to —1.520) —1.121 (-1.431 to —0.812)
1989 0.094 —0.812 (-1.233 to —0.391) —0.207 (—=0.510 to 0.095)
1990 0.491 0.323 (-0.093 to 0.740) 0.496 (0.192 to 0.800)
1991 1.756 1.569 (1.131 to 2.007) 0.769 (0.463 to 1.075)
1992 0.399 1.342 (0.910 to 1.775) 0.343 (0.040 to 0. 647)
1993 0.371 1.341 (0.908 to 1.773) 0.742 (0.436 to 1.048)
1994 1.272 0.807 (0.386 to 1.229) 0.903 (0.595 to 1.210)
1995 —0.785 0.249 (-0.167 to 0.665) —0.451 (—0.755 to —0.148)
1996 —-0.394 —0.127 (—0.542 to 0.268) —0.155 (-0.458 to 0.147)
1997 2.629 2.272 (1.810 to 2.734) 2.955 (2.605 to 3.305)
1998 -1.366 —0.419 (—0.836 to —0.003) —0.644 (—=0.949 to —0.339)
1999 —-1.408 —1.011 (-1.435 to —0.587) —0.838 (—1.144 to —0.532)
2000 —0.695 —0.547 (=0.965 to —0.129) —0.309 (=0.612 to —0.006)

10.2.1.3 Reliability of Probabilities for Categories

When forecasts are communicated as a variable probability assigned to a prede-
fined category, reliability is effectively defined in the same way as for the
prediction intervals: forecasts are reliable if the observation falls within the cate-
gory as frequently as the forecast implies. The “observed relative frequency”
(equivalent to the “coverage probability” for interval forecasts), has to be calcu-
lated for each distinct value of the forecast probability. For example, seasonal
rainfall totals should be between 100 and 200 mm on 20% of the occasions in
which the forecast pr