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Preface 

Originally formed around a set of lectures presented at a NATO Advanced Study 
Institute (ASI), this book has grown since then and it has been organised and pre-
sented more like a textbook than the standard “collection of proceedings”. The 
lack of a unified reference textbook in seasonal to interannual climate predictions 
that covers both the science of the predictions and the real-world uses of the fore-
casts was the main driver for the considerable effort placed into producing an 
amalgamated introductory book. Throughout, our objective has been to present a 
textbook for people of many disciplines interested in this fascinating and fast 
emerging sector. An additional novelty for a NATO ASI series book is that all the 
chapters have been thoroughly peer reviewed: each chapter has received the atten-
tion of three or more experts. We believe this reviewing process has considerably 
raised the level of the book and the extra time (and pain) needed to complete the 
oeuvre has been entirely justified.  

The book is targeted at the intelligent reader at postgraduate level, but who 
does not need to be an expert in all the fields discussed. The reader may well be 
coming from only one of the many disciplines that contribute to the fields of sea-
sonal climate forecasting and risk management: this book aims to provide him/her 
with a general overview of all the major issues related to these fields. A summary 
at the beginning of each chapter, except for the first, will help all readers select 
only those chapters that are relevant or of interest to them while still being able to 
grasp the essentials of every chapter. 

The fascination of seasonal climate forecasting, of which El Niño forecasting is 
the prime example, comes from its multi-faceted character. Not only does it pose 
interesting new challenges for the climate scientific community but also it is natu-
rally linked to a great variety of practical applications, from security related issues, 
such as water resource management, food security, and disaster forecasts and pre-
vention, to health planning, agriculture management, energy supply and tourism, 
to name but a few. Seasonal to interannual climate forecasts are indeed becoming 
a most important element in some policy/decision making systems, especially 
within the context of climate change adaptation. Seriously considering the man-
agement of risks posed by climate variability and of development in general on the 
seasonal to interannual scale is key to achieving the longer terms goals of climate 
change adaptation strategy. 
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The NATO ASI Seasonal to Interannual Climate Variability: its Prediction 
and Impact on Society was held in the beautiful setting of Gallipoli (Italy) between 
23 May and 3 June 2005. This “summer school” attracted applications from a 
large number of postgraduate students and professionals. Unfortunately places 
were limited but 62 participants from 27 countries could be accommodated.  

It would have not been possible to organise this ASI without the collaboration 
and support of many people: the team at the NATO Environmental and Earth 
Science & Technology (EST) Programme with Mrs. Lynne Nolan (Secretary) and 
Dr. Alain Jubier first and Dr. Deniz Beten later (Programme Directors), who assisted 
in securing a smooth development of the ASI; Mrs. Elena Bertocco (ASI Secre-
tary) assisted with the copious queries from participants, herself assisted by little 
Edward; the members of the Organising Committee (i.e. the editors of this book 
plus Mr. Omar Baddour, Direction de la Météorologie Nationale of Morocco and 
World Meteorological Organization, WMO); Mr. Rob Hine (European Centre for 
Medium Range Weather Forecasts, ECMWF, graphic creator) for producing high 
quality promotional material; Mr. Nando Micaletto (ECMWF, technical & local 
expert) for ensuring the smooth running of the ASI; Ing Antonio Rizzo and  

and thoroughly enjoyable social and cultural programme; Mrs. Annamaria Caputo, 

warm and professional hospitality.  
We are particularly grateful to the various organisations that supported this ASI 

and the preparation of the book financially: NATO in primis, National Oceanic 
and Atmospheric Administration Office of Global Programs (NOAA OGP), 
ECMWF, World Meteorological Organization (WMO), the US National Science 
Foundation (NSF) and the Province of Lecce. In addition, Troccoli was partly 
supported by the European Union projects ENACT (EVK2-2001-00077) and 

operative Agreement AN07GP0213 from the National Oceanic and Atmospheric 
Administration (NOAA) and supported by a grant from the NCAR CSL program 
to the IRI. 

It has been a privilege to have so many worldwide experts in the field of sea-
sonal to interannual climate predictions as lecturers at the ASI and as contributors 
to this book: their contribution made the ASI particularly illuminating and chal-
lenging. Likewise, we were fortunate to have so many talented participants who 
actively and enthusiastically participated in the ASI1. Their keen involvement 
made the school a very stimulating and educational experience for us all. The 
location, a few metres from the beach, along with the many social and cultural 
activities no doubt also helped to form an amalgamated group. 

________________  
1 For detailed information on the ASI, see: http://www.ecmwf.int/staff/alberto_troccoli/nato_asi/ 
asi_programme/index.html 
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Dr. Antonio Tommasi (Province of Lecce) for the supremely well planned, varied 

Mr. Renato Renna and all the staff at the Ecoresort Le Sirené (Gallipoli) for the 

MERSEA (AIP3-CT-2003-502885) and Mason’s contribution was funded by Co-

Preface 



We would like to thank very much the numerous reviewers who dedicated their 
time to considerably improving this book: Oscar Alves, Christof Appenzeller, 
Walter Baethgen, Tony Barnston, Rasmus Benestad, Pierre Bessemoulin, Čedo 
Branković, Barbara Brown, Dick Dee, Michel Deque, Dave DeWitt, Normand 
Gagnon, Brad Garanganga, Lisa Goddard, Xiaofeng Gong, Renate Hagedorn, Jim 
Hansen, Peter Hayman, Jaakko Helminen, Ian Jolliffe, Thomas Jung, Slava 
Kharin, Ben Kirtman, Willem Landman, Andrew Lorenc, Sabine Marx, Glenn 
McGregor, Holger Meinke, Saji Njarackalazhikam Hameed, Warwick Norton, 
Laban Ogallo, Tomoaki Ose, Anders Persson, Michele Rienecker, John Roads, 
Sandra Robles-Gil, Tim Stockdale, Rowan Sutton, Madeleine Thomson, Coleen 
Vogel, Richard Washington, Dan Wilks, Toshio Yamagata. 

A special thank you to Rob Hine who helped enormously in preparing this 
book by processing most of the figures and assisting in the final editing. We are 
grateful also to Anabel Bowen for processing several of the remaining figures. 
Thank you also to Els Kooij-Connally and Verusca Bertocco for their valuable 
assistance in editing the book. 

Lastly, it should be appreciated that there have been many difficulties in pro-
ducing such a multi-authored “textbook”, hence some gaps and jumps are 
unavoidable and we hope you will take this into consideration when reading the 
book. Despite what we like to think are minor drawbacks, we believe this book 
will provide a very useful reference for all those who would like to venture into 
the world of climate variability, its prediction and its adaptation strategies. Enjoy 
reading this book! 

September 2007 

 

Alberto Troccoli 
Mike Harrison 

Simon J. Mason 
David L.T. Anderson 
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Seasonal Climate Forecasts in Context 
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Chapter 1 
Introduction 

and Simon J. Mason  

Humanity recognised millennia ago the importance of climate variability to the 
sustenance of life, whether that variability was expressed in the form of droughts, 
floods, heat, cold, or wind. Coping strategies, developed to handle the consequences 
of climate variability, helped ensure mankind’s survival, although the historic 
record indicates that not  all societies successfully overcame past challenges 
imposed by long-term droughts, extensive flooding, and the like. Early coping stra-
tegies included migration, invasion, appropriation and storage. In addition many, 
probably most, perhaps all, societies developed indigenous knowledge or belief 
systems that they felt enabled them to foresee or control those elements of the 
climate that are so critical for maintaining water and food supplies. 

Much has changed for modern societies, with coping strategies such as migra-
tion, invasion and appropriation frequently constrained by international boundaries 
and laws. Indigenous knowledge still plays a major role in many societies, while 
new structures, often under the umbrellas of the United Nations or national Aid 
Agencies and Non-Governmental Organizations (NGOs), provide safety nets for 
those countries currently unable to manage the consequences of climate variability 
without support. In the developed world, numerous technological advances, in-
cluding new crop cultivars, integrated approaches to water management, improved 
drugs and disease control methods, such as for malaria, have introduced major 
new components in the management of climate risks, although not to the extent 
that any country has become fully shielded. Nevertheless climate variability in the 
developed world is more often an irritant than a hazard to life; in fact at times it is 
viewed as a business opportunity. In many countries, however, climate variability 
may still threaten life, and, if not, might at the least pose difficult challenges in 
regards to economic development, individual climate events occasionally resulting 
________________  
 Mike Harrison 
Independent Consultant 

European Centre for Medium Range Weather Forecasts  

Simon J. Mason 
International Research Institute for Climate and Society 

Mike Harrison, Alberto Troccoli, David L.T. Anderson,  

Alberto Troccoli and David L.T. Anderson 
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in economic consequences of magnitudes comparable to individual countries’ 
Gross Domestic Products (GDPs), with several years of re-development often 
necessary in such instances. 

Included amongst the technological advances that have led to increased  
resilience against climate variability are remarkable achievements in the under-
standing, monitoring and prediction of climate variability itself, in tandem with 
developments that significantly aid planning and management, including improved 
cultivars and cropping methods, new water storage and distribution methodo-
logies, facilitation of international food transportation and storage, and so on. 
Technology has become an important instrument in protecting against, mitigating, 
planning for, as well as in the direct management of climate risks, and will con-
tinue to be so in the light of future natural and anthropogenically forced climate 
change. It has been suggested that while management of the risks of climate vari-
ability might be managed with current technology, and while these technologies 
themselves will make substantial contributions to preparations for climate change, 
new technologies will be required for the full future management of climate vari-
ability under a changed climate. At this time, however, for many countries the 
more immediate challenge is to manage current climate risks both as one key input 
to sustainable development and as a significant contribution to preparations for a 
future modified climate. 

Within this book we will be focusing on one of the new technologies emerging 
in the search for improved management of the risks associated with climate vari-
ability, namely seasonal to interannual prediction. Prediction, used as one input 
to preparing for and managing the risks of climate variability, is in itself not a 
new concept; indigenous methods, normally based on the behaviour of local 
flora and/or fauna, and/or on belief systems, have flourished around the world and 
have provided societies with foresights over numerous centuries. Modern systems 
of prediction, whether based on straightforward empirical links between climate 
and certain slowly varying aspects of the geosystem, more often than not sea sur-
face temperatures in tropical ocean basins, or on advanced numerical, computer-
based models of the geosystem itself, are, however, relatively new, although the 
genesis of these models may be traced back over the past 100 years. 

In principle, modern seasonal to interannual predictions are an answer to the 
needs of many whose activities are influenced in some manner by climate vari-
ability, whether this is in terms of creating profit through the marketing of an 
appropriate range of goods, or is in terms of critical decisions regarding agricul-
ture and food security. Much of the later body of this book is devoted to exploration 
of the extent to which current state-of-the-art predictions address the requirements 
of those who have responsibilities for taking decisions in regard to climate-linked 
activities, to the impediments, and to the opportunities available. Various exam-
ples are provided of the way in which the systems that deliver climate prediction 
information have been set up and of the benefits achieved. 

Earlier chapters of the book are devoted to the science and technology behind 
the predictions. For the science of seasonal to interannual prediction 1997 was 
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perhaps one of the milestone years. During 1997, amongst other pertinent events, 
long-term operational support for the Tropical Atmosphere Ocean (TAO) array1 
was authorised by the US Congress, many prediction models of different types 
became available to take advantage of the information provided by the array, and 
one of the most significant recorded El Niño events developed to bring its parti-
cular signature of climate variability to many parts of the globe. But to understand 
the significance of 1997 we need to wind back a little, and to consider the lives of 
communities along the equatorial west coast of South America, particularly around 
Ecuador, Peru and northern Chile, in previous centuries. 

Much of the equatorial west coast of South America is dry in most years, with 
fishing, particularly for anchovies, providing major sustenance during past eons. 
Nowadays the story is well known of how the anchovy fisherman around the Gulf 
of Guayaquil noticed every few years that the fish stocks appeared to disappear for 
several months at a time, with resultant deleterious impacts on food reserves. 
At the same times heavy rainfall would strike the area, leading to flooding and 
wash-aways of crops and mud-built houses. Because these events typically began 
around Christmas, the fishermen named them ‘El Niño’, after the Christ child. But 
the fishermen were not the first. At least the Incas, who had never heard of  
El Niño, recognised its consequences for their food security. Consequently they 
farmed diverse stocks at different altitudes in the Andes, experience having indi-
cated that rarely was there simultaneous failure of all stocks. 

For many years the concept of El Niño was little more than a scientific novelty, 
studied by few. Even when in the earlier years of the 20th century Gilbert Walker 
undertook his ground-breaking research into the causes and prediction of the In-
dian monsoon, and in doing so uncovered the great ‘atmospheric see-saw’ of the 
Southern Oscillation, the significance of these discoveries, and their relationship 
to El Niño, was not appreciated. Probably the first El Niño event that drew wider 
attention was that of 1972/73, which was followed by several scientists building 
on earlier pioneering work to begin suggesting in the wider literature that El Niño 
was not something that just affected Ecuadorian and Peruvian anchovy-fishing 
communities, but was part of a much larger occasional climate anomaly that af-
fected communities in many parts of the world. By the time the large-amplitude 
1982/83 event occurred, far greater numbers of scientists were recognising that a 
breakthrough was being made in regard to understanding and predicting the cli-
mate system, and from then on a new ‘industry’ was born: an industry that covers 
the physical understanding, the consequences for predictability and prediction, and 
the onward use, including the politics, of the predictions, all of which are inherent 
in the slow changes in the planetary surfaces underlying the atmosphere. 

________________  
1

monitoring information of both the atmosphere and the ocean (to 500 m depth) on which the 
models and predictions depend. 

 A network of moored buoys across the tropical Pacific Ocean that delivers via satellites the 
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The basis of this burgeoning industry is that slowly varying components of 
the geosystem, most significantly sea surface temperatures across tropical ocean 
basins, can impart a ‘memory’ to the atmosphere in the vicinity of any such long-
lived anomalies. And further that the atmosphere works in such a way that this 
‘memory’ can be transmitted to parts of the globe remote from the originating sea 
surface temperature anomalies – meteorologists refer to this phenomenon as ‘tele-
connections’. Thus, for instance, El Niño events are typically (see caveats later) 
associated not only with heavy coastal Ecuadorian and Peruvian rainfall, but with 
above-average rainfall also in northern Argentina, in East Africa, and in California. 
Equally, contemporaneous drought can occur in north-east Brazil, in southern 
Africa and over much of Australia. Climate forcing of this type is not restricted 
just to changes in the tropical Pacific basin, although as far as is known these are 
the most important; the other two ocean basins play their own, more limited, roles, 
as do other slowly varying aspects of the geosystem underlying the atmosphere, such 
as soil moisture anomalies over various continents and snow extent over Eurasia. 

El Niño, and its related cousin La Niña, represent major changes in the distribu-
tion of sea surface temperatures across the tropical Pacific basin, with warmer 
waters spreading eastward towards South America from their usual position in the 
west of the basin during an El Niño. Anchovies thrive in the cold current running 
northwards along the west coast of South America, but during an El Niño this cold 
current becomes overlaid by the warmer waters, and the anchovy descend towards 
the colder nutrient-rich waters below.2 For the fishermen the anchovies have dis-
appeared; in practice they are thriving deeper within the ocean than usual, beyond 
the reach of any netting system. 

Once scientists began to recognise the significance of events in the Pacific 
basin, the next stages were to understand the mechanisms involved, to model the 
pertinent aspects of the geosystem, and to determine if prediction might be possi-
ble based on this new knowledge. Arguments still exist over the precise mechanisms 
involved in El Niño events, but the basics are understood, as is demonstrated 
within this book. Many models of varying complexity have been built to under-
stand the system. And many of these same models have been used to provide 
predictions. The advances in this field over the past 30 years are spectacular. These 
advances benefited enormously from the TAO array and other observing systems, 
both in situ and satellite-based. 

Building on developments that have resulted from the recognition of the impor-
tance of, and the growing understanding of the dynamics of El Niño events, in this 
book we cover: overviews of the climate system and the manner in which it works; 
current capabilities to model and predict the climate system out to several months 

________________  
2

usual and in the eastern tropical Pacific warmer than usual. During La Niña events climate anomalies 
worldwide tend to be amplified in a canonical pattern roughly the reverse of that for an El Niño 
event, but in this case the anchovies remain near the surface. 

 During La Niña events waters along the western South American coast become colder than 
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based on the ability to simulate ocean circulations in the Pacific basin and elsewhere; 
the manner in which the information produced by the models is treated and deliv-
ered; and finally the ways in which this information is used in decision making in 
numerous activities. It is a story of success, but it is also a story of complexity in 
several senses, complexities that need further resolution if the full benefits of the 
scientific advances are to be obtained. 

Complexities emerge in several ways. First, the geosystem itself is complex in 
the manner it works, including in the ways in which the various components inter-
act with one another. One prime example of this complexity is that while El Niño 
is the major forcing known on timescales of a few seasons, it is irregular (events 
being separated by anything from 2 to 7 years), and, not being alone as a forcing 
mechanism, its influence might be overcome by other sources of forcing. Many 
around the Indian Ocean basin, for example, recall the 1997/98 El Niño event, 
sometimes referred to by meteorologists as the strongest on record, not for the 
canonical response expected (perhaps as during 1982/83) but for the deviations 
from that response. For example many areas were braced for droughts – southern 
Africa, India, parts of Australia – but rainfall was perfectly adequate in all of these 
despite the strength of the event. Equivalently in East Africa above average rain-
fall is the canonical response, but there was no expectation of the devastating 
amount of rain that fell at that time (Fig. 1.1). These differences from the best-
wisdom canonical response were attributed to unusual and strong sea surface tem-
perature anomalies across the tropical Indian Ocean, anomalies not always fully 
incorporated by the prediction models then available. Assumption of canonical 
responses with regard to climate variability is unlikely to represent the safest 
available approach. 

Scientists have not unravelled the complexity of the geosystem in full, and 
models remain relatively simplified approximations of the real world. Hence any 
predictions from these models cannot be perfect as the models themselves are not 
perfect, but there is a further crucial aspect of complexity here in that the models 
are sensitive to various small changes in values of observations used in the  
initialization stages, and to aspects of their own formulation in detail, sensitivities 
that can lead to entirely different predictions when brought into play. Scientifically 
sensitivity to small differences in starting positions is known as ‘chaos’; chaos, 
which strictly refers to the characteristic of non-linear systems at certain (but not 
all) times to be markedly dependent on various relatively small differences, results 
in the inherent impossibility to predict the future in a deterministic sense at some, 
and in general for seasonal predictions at all, times – only probabilistic predictions 
are appropriate for chaotic systems. Most modern prediction approaches acknow-
ledge chaos and produce probabilistic forecasts, but the delivery and interpretation 
of probabilistic forecasts introduces further issues. Ultimately the information pro-
duced by the models is incorporated into decision processes relevant to managed 
systems which themselves often have chaotic or uncontrolled aspects. The entire 
system is one of complexity throughout, complexities that as yet are not fully 
understood nor managed. 

7 1 Introduction 



 

(but extend beyond) the major 1997/98 El Niño event. Compare these effects with those during a 
‘canonical’ El Niño year in Fig. 6.10. Careful comparison indicates that there were differences 
during the 1997/98 from those of the canonical expression, particularly around the Indian Ocean 
basin, including: more rainfall than typically occurs over parts of south-eastern Africa, a wet 
monsoon, and again more rainfall than typically occurs over northern Australia. Additionally 
rainfall over East Africa was far more intense than might have been expected. Strong anomalies 
of sea surface temperatures over the tropical Indian Ocean, contemporaneous with and perhaps 
related to those in the Pacific Ocean, have been identified as a possible cause (Adapted from 
WMO 1999, report No. 905) 

Fig. 1.1  Effects of climate variability during the years 1997 (top) and 1998 (bottom) which include 
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Complexity is not assisted by the fact that the degree to which predictions can 
be made with success, even in a probabilistic sense and whether from statistical or 
from numerical models, varies geographically, it varies by seasons, it varies by 
forecast timescale, it varies by the variable being predicted, and it may exist only 
during specific ‘windows of opportunity’. Thus in general terms the highest pre-
dictability of atmospheric temperatures and rainfall exists across the tropical ocean 
basins, in particular that of the Pacific, and over certain land areas within or im-
mediately adjacent to those basins. Predictability tends to decrease further away from 
the Equator and from the oceans, although some areas, such as North America, are 
favoured in certain seasons through enjoying higher predictability than similar 
regions at the same latitudes because of the manner in which teleconnections work 
in those areas. There is evidence that predictability in the global sense is higher 
during El Niño and La Niña events than otherwise, and that in some regions, such 
as Europe, it may not exist at times other than during these ‘window of opportu-
nity’ events [but equally may not necessarily be high during specific individual 
events]. Temperature tends to be more predictable than rainfall. But even for the 
most predictable variable at the location with the highest overall predictability it is 
always necessary to provide probabilistic predictions. And with that comes the 
challenge of interpretation and of translation into effective decisions. 

Many centres now generate predictions up to seasonal, and in some cases on 
longer scales, using dynamical models on either an operational or a regular re-
search basis; many of these products are placed on either open or password-
protected web sites. Dynamical models, being expensive to develop, maintain and 
run, are mainly the preserve of a relatively small number of meteorological or-
ganisations and universities. Broadcasting and distribution of these forecasts 
comes, in general but not universally, under the overview of the UN Specialised 
Organization, the World Meteorological Organization (WMO). WMO is coordi-
nating the establishment of recognised Global Producing Centres as well as of 
Regional Climate Centres as centres of excellence to support climate services. 

By comparison with dynamical models, developing and distributing predictions 
based on statistical approaches is relatively straightforward. Thus many national 
meteorological services, particularly most within Africa, that do not possess the 
resource to run dynamical models have created statistical modelling capabilities, 
either just for their own country or for wider areas, which form important bases 
for national prediction services. Most current evidence suggests that the qualities 
of predictions from statistical and numerical sources are competitive. It is possible 
also to combine statistical and numerical approaches, either in the prediction stage 
where one component is achieved through statistical means, or through the crea-
tion of a consensus of predictions from individual sources. 

While there is a relatively small number of forecast producers, those interested 
in taking advantage of the predictions are globally widespread. Given that predic-
tion skill tends to be highest overall at lower latitudes, with active advantage of 
that fact taken in Australia, the greatest concentration of users (Australia excepted) 
might be expected in developing countries, users with responsibilities ranging 
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from international management of development, including issues such as food and 
water security, through all levels down to those taking decisions in the field. 
Climate-sensitive commercial interests are growing in the developing world, in-
cluding from businesses based in the developed world. The three classic areas of 
interest (but numerous others exist) are agriculture, water resources and health, all 
of which are covered in this book in some detail. At higher latitudes, where skill 
levels tend to be lower, the greatest number of users are probably those with 
commercial interests, with government planners a second important interested 
group. In all cases the available evidence suggests that the costs of developing and 
maintaining the forecasts are significantly outweighed by the benefits produced. 

The book is laid out in five parts. In  Part 1, a background to the science and to 
the use of the predictions in decision making is provided, in part through this in-
troduction chapter. The scientific core is discussed in Part 2, in which focus is 
given to the workings of the climate system and to approaches to prediction, both 
dynamical and statistical. Methodologies for adjusting the prediction information 
that emerges from the various models so that that information is better tuned for 
later decision making, is covered in Part 3. Decision making and some specific 
uses of the prediction information are discussed in Part 4, while loose ends and 
views to the future are drawn together in Part 5. 

To an extent the structure of this book is reminiscent of an end-to-end approach 
to the production, delivery and use of the prediction information. In other words it 
might be viewed as outlining a unidirectional system in which predictions are fed 
through necessary delivery stages for ultimate use in applications. There is nothing 
new in such an end-to-end approach, this having been the principal model for 
delivery of weather forecasts over many decades. The end-to-end principle was 
assumed in first attempts to deliver seasonal predictions in the 1990s and the early 
2000s, it was the underlying paradigm for the creation of WMO’s Climate Infor-
mation and Prediction Services (CLIPS) and the US-based International Research 
Institute for Climate and Society (IRI), and it remains the assumed principle for a 
large body of forecasters and service providers. Experience has indicated, how-
ever, that because of the complexities of the systems involved throughout, the end-
to-end approach is non-optimal, and new approaches/paradigms are being sought. 

These new approaches are based on steadily improving understanding of the 
decision processes involved in the use of climate information. Decision processes 
vary significantly to the extent that a simple one-size-fits-all, end-to-end, approach 
to the delivery of climate services is frequently, in practice, unsatisfactory. From 
the most broad-brushed perspective, decision processes, and therefore the manner 
in which climate information should be delivered, vary between the developed 
world and the developing world, between commercial and development contexts, 
between sectors (agriculture, water, health and so on), and between the various 
levels at which decisions are made (from intergovernmental down through to the 
field level). End-to-end delivery of information might be appropriate in, say, 
commercial contexts, whereas different approaches are necessary for social and 
economic development contexts within the developing world. 
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The necessity for climate information providers to be sensitive to the specific 
decision needs within each context places an onus on those providers for custom-
isation of services, an onus that requires close cooperation with those taking specific 
decisions. The IRI has changed its strategy to approach this challenge through 
integrated assessment of all information needs (not limited simply to climate 
information) within each context, with the expectation that lessons learned will 
ultimately lead to greater facility in optimisation of information delivery across 
countries, sectors, and so on. But this raises the question of identification, and 
nomenclature, of these decision makers. From the perspective of the end-to-end 
model the concept was simply one of delivery to ‘end users’ for use in their 
‘applications’. The new paradigm, covering intermediaries/recipients/decision 
makers/decision takers/stakeholders/end users, at the full range of levels, with 
responsibility for numerous decisions that often do not conform to the straight-
forward concept of ‘application’, has not yet generated an appropriate nomenclature 
that places all involved and their actions into clear context. Within this book the 
nomenclature used is variable as a result, although we try to be as consistent as 
possible, but should throughout be considered within the context of the new, 
evolving, paradigm. As will be seen, the learning process in service delivery is 
still at an early stage and is not covered in full within this book; the examples pro-
vided give insight, nonetheless, into contexts within which climate information is 
being provided and used. Undoubtedly service delivery is one area demanding 
active and creative consideration from those engaged within it. 

The potential readership of this book is broad, covering numerous disciplines 
and levels of expertise. Climatologists with interests specific to atmospheric dy-
namics and numerical modelling cannot be expected to be expert in issues of 
communication nor of the behaviour of Anophe les mosquitoes and its links to 
climate and malaria. Equally agriculturalists may not be interested in the detailed 
structure of climate models. In order to assist those with the limited expertise in 
the contents of specific chapters, each chapter begins with a summary of its con-
tents written in such a way as to be accessible to all readers. A list of references is 
provided at the end of the book, including a separate list for further reading of 
interest to both specialists and non-specialists. Also, two glossaries have been 
included to assist all readers, the first dealing with acronyms and the second with 
terminology. 

Acknowledgements The authors would like to thank Mmes. Cynthia Cudjoe and Leslie Malone 
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Chapter 2 
Seasonal Forecasts in Decision Making 

Mike Harrison, Alberto Troccoli, Michael Coughlan, and Jim B. Williams  

A new and developing vibrant science has been born capable of providing signifi-
cant benefits to humankind, from development work aimed at sustaining and 
enhancing the quality of life to increasing the profits of commercial activities. At 
the heart of this science lies an improved understanding of the climate system, of 
its predictability, and of its links with natural and social systems. An overview 
of the integrated structures of these non-independent systems within the context 
of the new capabilities in seasonal to interannual prediction is provided in this 
chapter, including the fundamental interactions between the various systems, their 
natural complexity, the confusion that often arises between the terms ‘climate vari-
ability’ and ‘climate change’, and the essential role climate information, including 
predictions, plays in the management of risks associated with climate variability 
and change. There follows an introduction to decision making in which climate 
information is involved, including discussions on decision processes and communi-
cation, a brief history of relevant climate science, and an overview of political and 
social issues directly linked to climate. Finally, two perspectives are provided of 
activities that might benefit from decision making that takes advantage of climate 
information: first, a predominantly end-to-end perspective in which climate infor-
mation is delivered directly to a particular application; second, a perspective 
where the challenge is to integrate climate information into the broader context of 
sustainable development. These two positions, direct delivery into specific decisions 
for ‘private’ benefit and information provision for the ‘public good’, perhaps rep-
resent the two ends of the broad spectrum within which this new science can 
contribute. 
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2.1 Climate Variability and Change: The Overlaps  
and the Differences  

2.1.1 About Systems 

The process that starts with the generation of a seasonal to interannual prediction 
and ends with someone making use of the prediction is a road that takes us from 
the application of pure science in physical systems to the pragmatism of real-
world uncertainties, via the practicalities of operational forecasting frameworks. 
The latter systems are arguably more complex and unpredictable than the physical 
systems from which we started. 

In trying to deliver on the promise offered by scientific knowledge of climate, 
we must deal with several ‘systems’ – scientific, environmental, social and eco-
nomic – not only how each functions in its own right, but also how they interface, 
overlap and interact with each other. From the pure scientific perspective some 
systems are simple and driven by a single dominant force or set of independent 
linear forces. Such systems are generally highly predictable, e.g. planetary motion 
where gravity is by far the dominant force.1 On earth, forces are rarely independ-
ent of each other and are often non-linear. Sometimes there are only a few dominant 
forces that give rise to chaotic outcomes; such systems exhibit some level of pre-
dictability but also often have inherent and unpredictable instabilities. At the far 
end of the scale there are systems with many roughly equal forces at work, which 
lead to random outcomes. In random systems the predictability of any individual 
outcome within the system is virtually impossible to assess but statistics may still 
tell us quite a lot about how the system will behave as a whole.  

Meteorologists, ever the pragmatists, have long recognised the uncertainty in 
their science and that there are good reasons for limits to the predictability of ex-
plicit outcomes of the non-linear systems that generate our weather and climate 
(Lorenz 1963). Yet by capturing the essence of the physics, dynamics and chemistry 
of the system and by exploiting the ‘laws’ of large numbers, meteorologists and 
climatologists have become adept both heuristically and mathematically in stretch-
ing the levels of useful skill towards the outer limits of predictability. 

________________  
1

become unpredictable. 
 However, when two nearly similar gravitational pulls act on a single body then the system can 
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2.1.2 Climate and Weather 

Climate is traditionally viewed as the integration ‘upwards’ of the characteristics 
of discrete weather events and variables over time and to some extent space; occa-
sionally climate is described as ‘the statistics of weather’. The corollary is that the 
components of global climate change should be manifest ‘downwards’ on all time 
and space scales. This critically important concept (Fig. 2.1) has only recently 
been recognised by those concerned with appropriate responses to climate change. 
Successful adaptation to climate change will not simply be a case of adding an-
other row of bricks to a sea wall to stem sea level rise, for example, or building 
another dam to catch more water in a drier climate. The consequences of ‘global 
warming’ will not just appear as an inexorably rising graph of global temperature 
but will also be evident through a set of complex changes in the global circulations 
of the atmosphere and ocean that will arise, in part, because it is expected that the 
warming will be greater over the land than over the sea. In turn, this means that 
some areas will become drier or wetter than others, but not every year – just more 
frequently than before. It follows that in any given year the mix of weather pat-
terns that a decision maker will have to deal with will also change. 

Fig. 2.1 Climate is traditionally viewed as the integration of discrete weather events and vari-
ables over time and space. The corollary is that the components of global climate change should 
be manifest ‘downwards’ on all time and space scales 
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Clearly then there is scope for adaptation to climate change on all time and 
space scales. Using the information that a seasonal to interannual forecast offers is 
as practical a response to climate change as it is to varying seasonal conditions. 

The difficulty of distinguishing between ‘climate variability’ and ‘climate 
change’ has been addressed within the United Nations Framework Convention on 
Climate Change (UNFCCC) by constraining climate change to mean only that 
component which is directly the consequence of human activities, in particular the 
emissions of greenhouse gases, but also including land use transformations. All 
other components of change in the climate are referred to within the UNFCCC as 
natural climate variability. Note that these definitions are both independent of 
timescale, and thus change and variability according to the UNFCCC definition 
cover all scales from the very shortest to those acting over extended periods of 
centuries and beyond, the only difference being one of attribution, i.e. between 
natural and anthropogenic forcing. 

This separation of change and variability is logical when viewed from a 
UNFCCC perspective, not least that natural climate variability cannot be ‘man-
aged’ in the UNFCCC sense whereas management is possible to an extent for 
climate change as it is by definition human-induced. Two approaches to the 
management of climate change are envisaged within the UNFCCC: mitigation of 
emissions and adaptation to a changed climate. Within the UNFCCC context ac-
tions and funding regarding mitigation, with emissions taken as the main driver of 
change, become self-defining, and it is this perspective that provides the foundation 
for the UNFCCC definitions of change and variability. There is less clarity, how-
ever, when it comes to actions and funding for adaptation activities, which in the 
strictest UNFCCC sense should apply only to adaptation to whatever modulations on 
whatever timescales result purely from anthropogenic causes. In reality, such a 
partitioning is highly, if not totally, impractical as making a clear separation be-
tween weather and shorter scale climate fluctuations that are naturally forced from 
those that are anthropogenically forced cannot be made. Any adaptation responses, 
whether managed or endogenous, will need to factor in the integrated totality of 
fluctuations that have resulted from the combination of all sources. Management 
of the risks of climate variability on timescales of a season to a year are thus an 
inherent aspect of adapting to the consequences of climate change whatever the 
timescale. The contribution that management of short-term climate risk can make 
to the overall response to long-term climate change has generally been under-
valued during the formative years of the UNFCCC. The broadening in recent 
years of the UNFCCC process beyond mitigation to embrace adaptation to a grow-
ing extent has led to a greater appreciation of the need to manage climate risks 
over all timescales including the vital contribution that seasonal predictions can 
make. Some of the tools that will assist in understanding and managing the conse-
quences of the totality of climate variability and change, whatever the cause, are 
covered in this book. 
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2.1.3 Adaptation, Climate Variability and Change 

Even if separating adaptation to climate variability from adaptation to climate 
change becomes problematic, as it will be in many practical instances, what are 
the main pathways for adaptive responses? Figure 2.2 suggests that climate sci-
ence can tell us how ‘forcing’ within the climate system will produce or induce 
changes in weather and longer term climate patterns. Such outcomes will have 
their consequences or ‘impacts’, the severity of which will be determined by the 
level of vulnerability of a society or ecosystem that is sensitive to weather and 
climate. If the impact is sufficiently strong to elicit a response within the commu-
nity, that response may take several forms. In the case of a serious or severe event 
that leads to a disaster, for example, the normal human response will be one of 
providing emergency relief to affected communities as quickly as possible.  
Experiencing an impact might lead one to attempt to do something about future 
levels of the undesired forcing. Experimenting with cloud-seeding to prevent 
damaging hail is one example of such a response on the shortest timescale. Efforts 
at mitigation or abatement of greenhouse gas emissions to forestall further global 
warming lie at the other end of the time spectrum. A further “lesson learned” res-
ponse is to take adaptive measures that build resilience to future occurrences of 
similar events. Such responses would include building sturdier houses to with-
stand storm-force winds or even adding that extra row of bricks on the sea wall. 

 

Fig. 2.2 Pathways for responding to climate variability and change. The central axis represents 
the sequence of a climatically forced event. The side arms provide optional actions to reduce the 
negative impacts of such events, either proactively with the application of scientific understanding 
or, in a more reactive sense, when the consequences of an event have already been experienced 
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So far, however, all the actions or responses discussed have been ‘reactive’, and 
follow once an event has occurred or begun to occur. Figure 2.2 suggests that cli-
mate science has the potential for providing a more proactive pathway to 
adaptation. Such a pathway provides opportunities for building resilience and 
hence reducing vulnerability to an event before it occurs. It is important to recog-
nise that while reliable and useful prediction is a highly desirable tool to have at 
one’s disposal on this pathway it is not always necessary for deriving effective 
adaptation strategies. Even in the absence of any predictive capacities, statistical 
information about how the climate varies in time and space can be a powerful 
planning tool, at least so long as one is confident that the past climate is a good 
model for future climate. 

2.1.4 Forecasts, Predictions, Projections and Scenarios 

The rapidly growing societal awareness of climate change highlights a degree of 
terminological confusion within the broader climate community, not only among 
those interested in response and adaptation measures but also among climate sci-
entists. Not entirely at one on how best to define the term ‘climate’ as it relates to 
the past and to the present, climatologists are faced with the need to describe what 
it means when one is talking a bout climate and climatic events into the future. 
The term ‘climate forecast’ seemed to suggest an extension of explicit weather 
type forecasts out to climate timescales, something that, as we have seen, is clearly 
not possible; the addition of the pre-fix ‘long-range’, as in “long-range weather 
forecasts”, did little to resolve the confusion on the shorter climate timescales. In 
fact the use of synonymic terms to define a range of very different concepts has 
left many scrambling to sort out the details, e.g. ‘projection’ as something distinct 
from a ‘forecast’ or a ‘prediction’, along with the now almost hackneyed term 
‘scenario’. Figure 2.1 provides one attempt at a rational nomenclature, but the 
inclusion of climate projections and scenarios on this figure would probably re-
quire a third axis. Those with a sceptical bent on the climate change issue rose 
quickly to exploit some of this terminological confusion, despite the best efforts of 
the Intergovernmental Panel on Climate Change to have everyone reading from 
the same glossary (IPCC 2001).  

In essence, all expressions of what the future may hold, whether they are called 
forecasts, predictions, projections or scenarios, embody degrees of uncertainty. 
Consequently, from a practical or even a basic conceptual point of view, it is the level 
of uncertainty that matters and not so much the exact meaning of the term being used. 
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2.2 A History and Status of Seasonal to Interannual  
Predictions in Decision Making  

2.2.1 Introduction 

From a practical perspective, there is only one reason for undertaking research and 
development to advance seasonal to interannual predictions and for investing in 
the infrastructure to produce and deliver them. That reason is to assist whatever 
decision processes are of concern to those who might make use of them. To be of 
real and measurable value, prediction information must be readily assimilable into 
the decision processes of recipients. In practice this goal may represent the ideal 
more than the complex reality, but it implies nevertheless that coordination be-
tween supplier and recipient is essential for the derivation of optimal benefit from 
the prediction information. Such optimal benefit is difficult to achieve in seasonal 
prediction: 

interpret – jargon such as “chaos”, “probabilities”, “terciles” and so on 
•  When the provider does not have a clear view of the needs of the recipient 

the information 

and recipient 

The process of dialogue and coordination has been building for many years, but 
there remains much to be done in order to achieve optimal support for decision 
making. 

Following the global emergence of seasonal forecasting after the commission-
ing of the Tropical Atmosphere Ocean (TAO) array, the first approach taken was 
to disseminate seasonal to interannual predictions in an “end-to-end” way. This 
process generally involves one or more forecast producers delivering predictions 
to one or a group of recipients within a specific sector, an approach adopted ini-
tially by both the World Meteorological Organization’s Climate Information and 
Prediction Services (CLIPS) initiative and by the International Research Institute 
for Climate and Society (IRI).2 This end-to-end process has been the traditional 
approach taken in the delivery of short-range weather forecasts, and therefore 
seemed a logical way forward. In practice end-to-end has proven often to be sub-
optimal for seasonal to interannual predictions because of the intrinsic difficulties 
in linking the probabilistically framed predictions to many practical decision pro-
cesses. The outcome to date, by and large, has been a mosaic of small projects, 

________________  
2

•  When information is couched in language that recipients find difficult to 

•  When the recipient does not have a clear view of the uncertainties inherent in 

•  Without adequate and ongoing coordination and dialogue between provider 

 Originally named the International Research Institute for Climate Prediction. 
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with few that can be regarded as seminal to a more generalised approach. Transla-
tion of results between projects/sectors/geographical areas has proved to be 
difficult. 

Recognising these difficulties, some organisations have developed strategies 
built around the concept of focussed solutions within particular sectors. In this 
approach attention is placed on the coordination of all activities within the deliv-
ery and application chain in order to develop a comprehensive decision making 
package that will benefit the stakeholders within a specific sector. For example, 
one pilot IRI project covered the management of water resources in two dams in 
Ceará (Brazil). Water from these dams was used for hydropower generation, for 
irrigation (during the greater part of the year when rain is not expected) and for 
general purposes, including industrial and personal, consumption. The project 
involved the generation of predictions on various timescales, the convening of 
several committees of users and water managers, the application of market forces, 
involvement of the insurance sector, and the creation and delivery of a tailored 
information package to all stakeholders. While not yet commissioned operation-
ally, this project provides a cogent example of the type of innovative solution that 
might be applied elsewhere. 

However, even this approach, which is still essentially end-to-end in concept, 
and similar such approaches, may not be sufficient to tackle the larger issues. As 
already mentioned, prediction, when available, is just a single, albeit important, 
tool in the management of climate risks. In a broader context the potential contri-
bution of predictions lies in the need to manage climate risks on all timescales. 
This broader context includes the management of risks arising from climate 
change and desertification and, in a more political/social framework, the achieve-
ment of objectives such as the Millennium Development Goals (MDGs). It covers 
additionally incorporation and melding of sources of risk other than climate per se, 
and aspects of management of the totality of those risks, including development 
and administration of appropriate policies. All approaches require an outcome-
oriented perspective of interaction of all involved disciplines with all users. 

2.2.2 Decision Making 

The decision is everything: without serving as a basis for decisions, seasonal to 
interannual prediction would be little more than a stimulating intellectual chal-
lenge. Yet providing information for possible use in making a decision is not of 

if it is to have value. Without providing value, even the stimulating intellectual 
challenge is at risk. 

 

dity of a decision already made, or cause the recipient to adjust a previous decision, 
itself enough; that information should enlighten a new decision, confirm the vali-
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The value obtained in practice can be determined in numerous ways, including 
through (but not restricted to) the form and quality of individual decision pro-
cesses and the degree to which predictions are customised to those decision 
processes. High order predictions, such as ones for total agricultural production in 
a region, in principle offer the greater potential value as compared to those at 
lower orders, say the number of growing degree days during a season, or those at 
lower orders still, such as mean temperature and rainfall anomalies over a period. 
Most seasonal predictions currently offer only the lowest order of climate predic-
tions, typically of mean temperature and rainfall anomalies, although there is 
expanding activity to support higher order predictions in certain geographical 
regions and sectors.  

While predictions tend to possess a relatively monochromatic character, deci-
sions in a complex environment come in a vibrant spectrum of forms and 
approaches. Few decisions are independent of others, and most are based on a 
range of information streams. Climate will generally be only one factor under 
consideration – see the example of Food Security in Fig. 2.3 – and may be per-
ceived as not even particularly important. Predictions of first order variables such 
as rainfall and temperature, unless perceived, or ideally proven, to be of a quality 
sufficient to provide value, may receive less attention than basic climatic data, and 
less attention than other data streams informing a decision. Yet, in practice, relevant 
climate and other data are only infrequently supplied alongside the predictions 
themselves as part of a climate service. Similar arguments apply to predictions of 
second and third order variables. 

Fig. 2.3 A simplified example of information streams that might be used in a single decision 
process related to food security  
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Decisions are made within a rich continuum of overlapping domains involving 
sectors, cultures, economics and politics, as well as timescales. Numerous sectors 
are affected by climate variability, and indirect interactions can extend those af-
fected into surprising areas. For example, most of the eight MDGs, even those not 
explicitly related to climate, can be detrimentally or beneficially influenced re-
spectively by climate variability that undermines or supports the economic and/or 
political and/or physical infrastructure of a country. MDG No. 8, Develop a 
Global Partnership for Development, which covers mainly international trade 
and finance issues, is but one example. Most cultures approach decision making 
through their own time-honoured traditions, with many continuing to use indige-
nous knowledge developed over centuries to guide their day-to-day decisions. The 
economic, political and statutory backdrop to any decision can influence both the 
manner and the outcome of specific decisions. All such issues should be consi-
dered in order to deliver seasonal to interannual predictions tuned according to 
pertinent decision processes. 

Even the matter of timing proves complex, as decisions are made on a wide 
variety of timescales, with a variety of lead-times, few of which will correspond 
neatly to the scales and lead-times common to contemporary prediction capabili-
ties. There is often a tension between the window of opportunity for seasonal 
prediction that comes from sea surface temperature anomalies and the real re-
quirements of the decision maker. It is this tension that organisations such as the 
IRI, the Australian Bureau of Meteorology (BoM) and the Queensland Depart-
ment of Primary Industries (QDPI), for example, are attempting to address. 

2.2.3 Communication 

Effective communication between provider and recipient is an essential pre-
requisite for maximising the benefits from short-range climate predictions. Good 
communication, in both verbal and visual forms, needs to be appropriate to all 
stages of the process, starting with the initial introduction of predictions in specific 
decision making contexts, continuing through the period of forecast use, and then 
extending to the support necessary for further development in their application. 
Like most scientists, climatologists tend to use the jargon peculiar to their field. 
Recipients also tend to belong to particular disciplines or sectors, each with its 
own vernacular. The inevitable consequence is scientist-recipient communication 
at a sub-optimal level. This language problem certainly is not restricted to climate, 
but attention within the climate context could break down some of the perceptual 
barriers that cause predictions to be discounted or used ineffectively. Hence 
climate scientists have a fundamental responsibility to understand how their in-
formation is to be used, and to communicate their information in the language of 
that use. It helps if the recipients also have some understanding of climate jargon, 
but in practice this may not be necessary provided there is confidence in the 
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information being received, a confidence more likely to grow given communica-
tion primarily in the vernacular of the recipient. Confidence is linked in context to 
credibility, credibility being gained through numerous processes including exten-
sive experience of the quality of the predictions or of receipt of persuasive 
information confirming that quality, a requirement again demanding communica-
tion in a form suitable to the recipient. Unfortunately most training activities to 
date have focused on teaching recipients climate jargon, rather than on teaching 
climate scientists the essential language of recipients and the nature of their deci-
sion making processes. 

Sitting alongside verbal communication is the powerful tool of visual com-
munication. Data visualisation techniques have developed rapidly in recent years, 
particularly through the use of computers, and have made substantial contributions 
to the advancement of all sciences. Data visualisation can also be a potent means 
of communicating science and scientific information to the layperson. It is regret-
table, therefore, that novel methods of communicating visual information on 
seasonal to interannual climate predictions that are readily accessible to recipients 
have been slow to develop and that, in general, visual presentations remain tied to 
the perceived communication needs of the climate scientist rather than to the 
actual needs of recipients. 

specific decision processes: 

•  To help explain the science 
•  To provide climatological and other information 
•  To provide the predictions themselves of whatever type 
•  To provide information on the quality of the predictions (i.e. verification) 

for a decision 

As yet, many predictions, together with any accompanying verifications, are 
made available in formats that do little to assist decision makers. Frequently com-
plementary explanations are written in the jargon of the scientist rather than the 
language of the recipient. While it may be a difficult and slow process to improve 
the quality of the predictions themselves, much could be done now to improve the 
communication of them and their current levels of skill in ways that facilitate their 
incorporation into decision processes, with consequent rapid gains in the value of 
the predictions. Equally, well designed visualisations can be used to communicate 
to the climate scientist how decisions in recipient communities are made. Com-
munication through an effective mix of enhanced verbal and visualisation tech-
niques offers outstanding potential for major advances in targeting and improving 
the value of the forecasts. 

•  To place climate information within the context of other information required 

Well-designed visualisations could play a vital role within the framework of 
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2.2.4 A Brief History 

Climate prediction, at least that covering the next few seasons, is one of the oldest 
professions, with known examples stretching back millennia. Life depends on cli-
mate, and decision making to sustain life requires methods of foreseeing climate 
aberrations that threaten life. The extant wealth of indigenous knowledge, built 
over many generations, has resulted in a complex of information still frequently 
used and implicitly trusted in many parts of the world. Not surprisingly this in-
digenous knowledge universally tends to be derived around seasonal changes in 
local flora and fauna, plus astronomical observations. Religion and other belief 
structures (including dictums and maxims) are added to the mix in many countries. 
Wherever indigenous knowledge is considered fundamental then the usefulness 
of any new information source naturally will be first judged against this; it is con-
ceivable, of course, that such comparisons may be biased. Nevertheless the existence 
of a culture of indigenous knowledge provides an opportunity for the climate 
scientist to introduce new techniques in a sympathetic and synergistic manner. 

While a rich global history exists of attempts to predict weather in coming 
seasons, it is generally agreed that modern seasonal to interannual prediction 
originated in the work of Sir Gilbert Walker, tasked while Director of the Indian 
Meteorological Service in the early years of the 20th century with predicting the 
monsoon in order to bolster food security for the subcontinent. Indian food secu-
rity in practice has come through the coordinated planning of resources over a few 
years, rather than through Walker’s work. However Walker’s legacy lives on through 
both the world’s longest-running statistical seasonal prediction system, as main-
tained by the Indian Meteorological Department (IMD), and his identification of 
the Southern Oscillation, the great “see-saw” in atmospheric pressure differences 
between the South Pacific and the Indonesian region. It was to be several decades 
before the relevance of Walker’s work was to be recognised in full, but his work 
provides the observational foundation for most modern approaches. 

By the 1970s a few scientists were beginning to recognise the relationship 
between the Southern Oscillation and El Niño (to be discussed in Chapter 3),  
a periodic warming of sea surface temperatures along the equatorial Pacific South 
American coast, and further to acknowledge the societal impacts of individual  
El Niño events. With that progress came evidence of the general potential for sea 
surface temperature anomalies, primarily but not uniquely tropical, to influence 
remote climates on seasonal timescales. Although the 1972/73 event created a 
stirring of interest, it was the 1982/83 event, with its “classic global climate anomaly 
configuration” (also known as teleconnection pattern and shown in Fig. 6.10 later 
in the book – compare it to the main climate anomalies for the 1997/98 ENSO 
event in Fig. 1.1), that propelled El Niño into global prominence. That event trans-
formed the agenda of the First International Conference on Southern Hemisphere 
Meteorology, coincidentally held during August 1983 in a Brazil feeling the full 
impacts of the event from flood rains in the south to drought in the northeast. The 
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event also set in train an industry building statistical prediction models based on 
links between rainfall and anomalous sea surface temperature patterns, an industry 
that continues today alongside the sophistication of the global coupled climate 
models, the former providing benchmarks for skill assessments of the latter. 

Gilbert Walker worked from an entirely pragmatic base, and that same pragma-
tism has been the main driver for new investment in prediction infrastructure. 
Certainly influential theoretical work, such as that undertaken in the USA through 
the 1980s and 1990s by Peter Lamb and associates (Mjelde et al. 1993, and refer-
ences therein), suggested that the financial returns to be expected from seasonal 
prediction could be substantial. Practical experience, such as that gained in the 
1990s using seasonal predictions in the Nordeste region of Brazil, an area with some 
of the highest seasonal rainfall predictability anywhere, supported the theory. 

A further boost to information delivery was given by the major 1997/98  
El Niño event, which happened to coincide with the commissioning of the TAO 
array of moored buoys straddling the equatorial Pacific, with the maturation of 
the numerous ocean prediction models using TAO data, and with the first of the 
Regional Climate Outlook Forums (RCOFs), held to deliver information into 
tropical countries most influenced by El Niño events. 

However progress since has been more constrained than appeared to have been 
promised by these early successes. A number of dramatic predictions of the con-
sequences of the developing El Niño event openly and widely broadcast in 1997, 
often taking advantage of the emergence of the Internet, were felt to have been 
incorrect. The 1997/98 event, although unarguably one of the largest on record in 
terms of its intensity and effects, failed to impose the 1982/83-style “classic global 
climate anomaly configuration” on which these predictions were based. Confi-
dence was eroded and questions were raised concerning the free and open 
distribution of independent and sometimes contradictory predictions. Scientists 
pressed the need for presenting predictions as probabilities, a concept that imme-
diately raised a barrier to understanding and acceptance for some users. And 
recipients did not always gain the assurance necessary to incorporate this new pre-
diction information into their decisions; many recognised that a false decision 
might have long-term effects that might be difficult to reverse. In the worst cases 
gambler’s ruin beckoned. The initial positive results from the Brazilian Nordeste 
proved difficult to duplicate even in this same region, with later spectacular fore-
cast failures in the region severely denting confidence (Lemos 2003; Meinke et al. 
2006). 

The science has now entered perhaps a period of consolidation. There is no 
doubt that the predictions have measurable skill in the technical sense, and ex-
periments such as PROVOST and DEMETER have demonstrated certain levels of 
technical skill beyond the preliminary expectations of participating scientists (for 
example over Europe, where earlier research had indicated minimal, if any, pre-
dictability). Prediction models continue to be improved, new sources of prediction 
skill are being examined – in part through the COPES (Coordinated Observation 
and Prediction of the Earth System) experiment in which research into seasonal 
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predictability originating in land surface soil moisture, ice cover and stratospheric 
circulations is being assessed – and new activities generated to introduce predic-

almost certainly results from non-optimal incorporation of climate information 
into the decision matrix of climate-sensitive enterprises. Therein lies a key to the 
delivery of the societal benefits inherent within the science. 

2.3 Climate-Related Decision Making Under Uncertainty  

The proposition that, from the societal point of view, decision making is the  
ultimate goal of seasonal to interannual climate prediction has been emphasized 
already. It has also been highlighted that climate predictions – and climate infor-
mation in general – will be just one component in most decision making processes 
(see Fig. 2.3). Most important of all, however, is the fact that climate prediction is 
inherently probabilistic in nature and probabilities always indicate uncertainty in 

uncertainty. Defining a practical framework for taking uncertainty into account in 
order to assess the level of risk associated with decision making processes is the 
subject of this section.3 Such a framework is based on decision analysis, a subject 
developed under the discipline of decision theory. 

Decision theory is a body of knowledge and a related set of analytical methods 
of different levels of formality designed to assist decision makers in choosing a 
course of action from among a set of alternatives through a careful consideration 
of the possible consequences of each alternative. In turn, decision analysis is 
essentially concerned with breaking complex problems into manageable parts, by 
adopting the ‘divide and conquer’ approach. A large body of work has been de-
veloped in the field of decision analysis, and only its surface will be scratched 
here. A good reference for a deeper understanding of the subject is provided by 
Goodwin and Wright (2003).  

Two of the most important tools in decision analysis are decision tree diagrams 
and influence diagrams. These are two tools that attempt to model the decision 
making process by illustrating graphically the alternatives, uncertainties, risks and 

________________  
3

variables that are constantly changing, whereas risk involves only the uncertain variables that 
affect or impact the system’s output directly (Mun 2004). Note, however, that not everyone finds 
uncertainty, and its associated probabilities, easy to incorporate into their decision making pro-
cesses. 

tion information to additional user groups and sectors. Yet, as indicated earlier, 

levels of the predictions. In part the apparent lack of value in seasonal forecasts 
it remains unclear that maximum value is being extracted from the current skill 

Decision makers who make use of such predictions need to factor in this intrinsic 
the final outcome (this fact will be stressed many times throughout the book). 

 The concepts of risk and uncertainty, while related, are very different: uncertainty involves 
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objectives of the problem at hand. By offering a visual representation of the deci-
sion problem, these tools are helpful in clarifying the various steps in the decision 
process in ways that can lead to creative thinking and to the identification of 
issues not previously considered. These features make these two diagrammatic 
approaches appealing to decision makers faced with complex decisions. Decision 
making in general involves multiple objectives as well as multiple stakeholders. In 
order to simplify the treatment, only a single objective and a single stakeholder are 
considered here. 

The decision tree diagram is a flow diagram that includes the timing of deci-
sions, coverage of uncertainties, and quantification of each possible decision. 
Once the objective of the decision has been identified, the decision tree analysis 
requires five steps: 

1. Determine all possible options and risks related to the problem 
2. Calculate the consequences of all options 
3. Determine the uncertainty associated with each option 
4. Generate a tree diagram using the information from the first three steps 
5. Assess the best course of action 

In societies that are driven mainly by economic considerations, the numerical 
quantity that expresses the objectives of the situation, and summarises the out-
comes of all the options, is money. In principle, however, there is no reason why 
other quantities could not be used; for instance the number of people at risk of 
starvation due to a possible drought, or measures that are problematic to quantify, 
such as the effects on the environment of particular management options (e.g. de-
sertification, salination, erosion, etc.). 

The graphical representation of a decision tree diagram is made up of activity 
forks or decision nodes (a square) and event forks or chance nodes (a circle). The 
use of a triangle to terminate a branch in the tree is customary. An activity fork is 
used when a definitive decision amongst two or more options is required, whereas 
an event fork is used when the option is subject to uncertainty. Given the complete 
tree diagram, the best course of action is determined by considering the implica-
tions of each option starting from the right of the diagram and moving to the 
common start of the tree, towards the left. This process of evaluation of the best 
action plan decision is referred to as “folding back” or “pruning” the tree. 

Referring to the food security example (Fig. 2.3), it is possible to construct a 
highly simplified decision tree diagram by considering only three information 
streams: “Crop status information”, “Climate information, including seasonal pre-
diction” and “International crop prices and availability information”. Imagine the 
following situation: one million people may be at risk of starvation – the risk is 
dependent on the amount of food in the reserves and on the predicted climate con-
ditions. In order to decide on the best course of action (i.e. to reduce the risk of 
starvation by providing the population with sufficient food for the coming season) 
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a decision tree diagram might be built, as in Fig. 2.4. If the crop reserves are 
sufficient, then no action is required.4 However, if reserves are insufficient avail-
able options need to be assessed. It is assumed here that the only two accessible 
additional pieces of information are a seasonal climate prediction and international 
crop prices. The climate prediction offers a 30% chance that rainfall will be suffi-

two options: one is to buy crop in advance, the other is to buy it after the cropping 
season has started. In the former case the cost is, say, €10 million, in the latter €30 
million. So, for unfavourable predicted climate conditions, the options are to buy 
now and spend €10 million or buy later and spend three times as much. In the case 
of favourable conditions, the options are to buy now or to hedge, e.g. by purchas-
ing insurance or by buying part of the crop that might be needed. In the case of 
hedging, it is assumed that costs of either alternative are €2 million. 

The best course of action is then given by the branch with the associated lowest 
expense or, in the commercial parlance, the largest profit. By “pruning” the 
branches of the tree, one obtains the monetary values as presented. The only value 
which needs some explanation is €7.6 million. At each node, the value before that 
node is calculated by considering the probability of each branch following the 
node. This probability is multiplied by the amount on the corresponding branch 
and then summed over the contributions from all branches. In this case there are 

Fig. 2.4 Example of a decision tree diagram with reference to the food security application of 
Fig. 2.3. Squares represent decision nodes and circles chance nodes. The use of a triangle to 
terminate a branch is customary. Amounts are in million of euros. This is a highly simplified 
decision tree, purposely constructed to focus on its mechanics (see text for details) 

________________  
4

through sales have been ignored. 

cient to produce enough crops to meet national demands. For crop prices there are 

 For simplicity, options such as building national food reserves or generating foreign income 
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only two branches after the (single) chance node and so the value before that node 
is (€2 × 0.3 + €10 × 0.7) million = €7.6 million. In evaluating this problem, it has 
been assumed that the decision maker is risk-neutral. The results generalise how-
ever to arbitrary risk attitudes of the decision maker, whether they are risk averse 
or risk seeking. The attitude to risk may be assessed by eliciting a utility function. 

In the present example, it is straightforward to assess what is the most con-
venient action when food reserves are not sufficient, and this is to spend €2 
million to hedge the risk given a favourable prediction, or to buy now otherwise. 
However, it is also true that only a single estimate of costs was provided. In prac-
tice, because uncertainty generally exists in the various options forming the 
decision tree, sensitivity analyses are conducted with the aim of providing error 
estimates associated with all possible outcomes. A more meaningful evaluation of 
the risk associated with the selected course of action would thus be obtained. It is 
important to note that the use of expert advice or judgment – seasonal prediction 
in this case – in event forks generally sharpens the uncertainties associated with 
the options in that particular fork. Probabilities would be equal in the absence of 
any information, including of historical records,5 i.e. 50–50% instead of the  
30–70% (see Fig. 2.4) coming from the knowledge of climate information. The 
procedure used to incorporate expert advice in the decision making probability 
assessment is referred to as the Bayesian approach. A discussion of Bayesian 
theory is given in Chapter 9. 

In practice, situations tend to be rather more complex than that shown in Fig. 
2.4, as can be inferred from the number of entries in Fig. 2.3. The number of pos-
sible options would grow substantially were the simple decision tree of Fig. 2.4 
generalised to take into account all the entries in Fig. 2.3. The rapid growth of 
complexity represents a drawback of tree diagrams as they can become difficult to 
follow or to validate.  

The decision making problem is further complicated when different entries in 
the tree are interdependent; for example in the food security case above the act of 
issuing a public climate forecast may affect crop prices directly. At first glance 
tree diagrams appear to represent an end-to-end process, in that they flow sequen-
tially from left to right; a closer examination shows, however, that a diagram can 
become highly interactive due to the interdependence of the various processes.  

An alternative approach to decision trees is the use of influence (or relevance) 
diagrams. The high-level (compact) visual representation of influence diagrams 
makes them particularly valuable for the structuring phase of problem solving, and 
for visually representing large, intricate problems. The complexity of the details 
present in decision trees becomes embedded into the general structure of influence 
diagrams, structure which clearly calls attention to the relationships between the 

________________  
5

formation. Any such information would modify the prior 50–50% probability. 
 In practice, it is virtually impossible not to be able to have access to some additional prior in-
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various elements of the problem. As a consequence, influence diagrams can cope 
with situations in which there is substantial sophistication and complexity. All 
these features make influence diagrams easier to interpret and overall more power-
ful than tree diagrams. Indeed, some authors contend that decision trees should 
only be used as a teaching device for beginners. Note that a ‘properly’ formed 
influence diagram can always be converted into a decision tree (Howard 1990, 
explains the rules to build a ‘proper’ influence diagram). 

The symbols used for influence diagrams are similar to those for decision trees, 
but with some differences. A decision node, drawn as a rectangle, represents a 
variable under the control of the decision maker; an uncertainty node, drawn as an 
oval, represents a variable not directly controlled by the decision maker; a deter-
ministic node, drawn as a double oval, represents an uncertainty that is functionally 
determined by the variables influencing it; and a value node, drawn in many ways, 
including a hexagon or a diamond, represents the variable to be optimised by the 
decision. The nodes are connected to each other via arrowed arcs, which generally 
indicate ‘relevance’. An example of an influence diagram with reference to the food 
security application of Fig. 2.3 is shown in Fig. 2.5.  

This example is just one of the many possible combinations for linking the 
various variables or options of Fig. 2.3. It is important to recognise that decision 
tree diagrams and influence diagrams are never unique in the sense that they aim 
to ‘model’ the experts’ natural thought processes. It is therefore crucial to elicit 
information for the specific problem at hand from as many experts as possible, 
also to try to ensure that wider economic, social and environmental considerations  
(i.e. the three pillars of sustainability) are taken into account. For example, in Fig. 2.5 

Fig. 2.5 Example of an influence diagram with reference to the food security application (see 
Fig. 2.3). For the sake of clarity not all the dependencies have been represented in this diagram 
(e.g. the link between ‘crop status information’ and ‘climate information’) 
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the customary choice to assign certainty to the “Geopolitical factors” and “Demo-
graphic information” variables has been made, and the variable to be optimised is 
“Crop value”, as in the decision tree of Fig. 2.4, but this problem could be stated 
in other ways. 

To summarise, the two most relevant concepts highlighted by Fig. 2.5 are: 

1. Climate information is just one of the components in the decision making process 
2. Climate information enters the decision process under several facets through its 

interdependency with other information streams 

2.3.1 A Holistic Approach to Seasonal Climate Prediction 

A direct corollary to the decision analysis presented in the previous section is that 
climate information has to be considered within its broader context, especially the 
social and economic aspects. This holistic approach, defined as Climate Affairs by 
Glantz (2003), is helpful not only in understanding and managing the many ways 
in which climate variability influences human activities and environmental proc-
esses, but also in identifying how societal and environmental issues not related to 
climate may act as confounding factors to the climate information in the decision 
making process. Indeed, the concept of Climate Affairs was developed with the 
aim of placing climate and climate-related factors on the list of items that decision 
makers should take into consideration. Climate Affairs consists of the following 
component fields: 

•  Climate science: the description of the components of the physical climate 
system, including the role of human activities as forcing factors to the system 

•  Climate impacts: the impacts of the climate on both societies and ecosystems 
•  Climate politics: the process needed to produce climate-related regulations and 

laws 
•  Climate policy and law: the legal and regulatory aspects of climate–society–

environment interactions 
•  Climate economics: the financial aspects of the climate, including cost-

assessments carried out in order to assist in the decision making process 
•  Climate ethics and equity: the set of principles of right conduct and the state of 

being just, impartial, and fair in the context of climate-related impacts (e.g. the 
poor generally have fewer options than the rich in tackling climate-related 
harmful events)  

Food security, as discussed in the previous section, is one of the sectors that 
would greatly benefit from a holistic approach, especially in regions with large 
interannual climate variability. By definition, climate-related issues are crucial in 
such areas, but many problems also arise because of the pressure to exploit these 
areas, as well as through other human choices and perceptions of acceptable risks.  
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It is worth noting that the concept of Climate Affairs goes beyond mere appli-
cations to decision making. Its other purposes are to encourage education and 
communication on climate-society-environmental issues, and to improve under-
standing of how climate variability affects society and the environment. Despite 
the feasibility of assessing risks attributable to climate in a physical sense (e.g. 
probability of a drought, a quantity directly usable in decision analysis), there are 
also many societal aspects which are difficult to quantify, and thus subjective 
judgment often plays a significant role in decision making. It is through focussing 
on education and by developing appropriate communication approaches that the 
level of arbitrary subjectivity of decisions may be reduced.  

The subjective role of climate information was emphasised by the use of the 
word perception above. The perception of the climate (and of its prediction) is often 
distinct from its physically measured characteristics. A prediction for a colder 
winter than normal, for example, can be interpreted in many different ways, depend-
ing on the person to whom this prediction is addressed. A perception is often related 
to the association a person makes to his/her most memorable cold winter. Thus per-
ception relates more to the psychology of the decision maker rather than to ignorance 
or lack of information6 (Weber 2001; Loewenstein et al. 2001). The notion of per-
ception is critical to any decision making process is further explored in Chapter 11. 

In the following specific perceptions of climate by society are discussed briefly. 
There are three non-exclusive ways in which climate may be perceived by society: 
as a hazard, as a resource and as a constraint (Glantz 2003). 

The hazard component is probably the most common way in which society 
tends to view climate, especially when high impact events, such as devastating 
floods or persistent droughts, hit the headlines. The hazard perception is particu-
larly strong for governments, since climate-related harm to a population may have 
repercussions on a government’s duration in power or on its likelihood of re-
election. For governments, it may be more relevant therefore to be concerned with 
climate-related disasters than with enhancing climate as a resource. 

Despite the perceived presence of this sword of Damocles, societies around the 
world view climate as a resource too. In fact people’s lives and activities, includ-
ing commerce, are adjusted in general to the expected flow of the seasons in order 
to take advantage of local climate conditions. 

There are also environments in parts of the globe to which humans are less able 
to adapt. These environments are characterised by conditions where climate is 
seen as a constraint, an impediment to productivity or even to survival. Such is the 
case in marginal agricultural areas, for example, where annual rainfall averages 
are low and interannual climate fluctuations in precipitation are so large that pro-
duction may be meagre in some years, at which times it may be accompanied by 

________________  
6

vided in the interests of the stakeholders and those of the providers. 
 A linked issue is that of legitimacy, which concerns the perception that the system is being pro-

32 M. Harrison et al. 



presented with opportunities that need to be exploited: in the rain-fed wheat sys-
tems of Australia, for instance, 70% of profits are made in 30% of the years. 

Certain global phenomena, such as the seasons or ENSO, may lead to all three 
perceptions of the climate across diverse locations. ENSO, for instance, is perceived 
as a hazard in some regions, as its occurrence is associated variously with droughts 
and floods. Similarly, ENSO may be seen as a resource in those regions where its 
outcomes are beneficial (e.g. warmer winters in Florida during La Niña events; see 
Chapter 12). Finally, ENSO is a constraint on productivity and/or security in 
places where resources are not sufficient to cope with its consequences. The 
objective of factoring seasonal to interannual predictions into decision making 
processes is then one of modifying perceptions towards reducing losses related to 
the hazard and constraint components, and to increasing gains related to the  
resource component.  

2.4 Identifying the Users and the Uses 

For seasonal to interannual forecasts to be of benefit to society it is imperative to 
identify clearly the users as well as the context of each use. Numerous users are 
likely to be interested in decision-making processes for which seasonal forecasts 
might be relevant, sometimes beyond those directly affected by climate variability. 
One example is that of crop switching (e.g. planting sorghum instead of cotton) or 
by using superior drought-adapted varieties when water-deficient conditions are 
expected. Here we give a brief overview of some potential direct uses of predic-
tions; in the following section a more focused discussion from the perspective of 
the developing world is provided. Where possible examples are provided, firstly, 
of ground-level decision processes, and secondly of decision processes at national 
and international level. Note that while the list given below may offer the impres-
sion of independence, some of the sectorial examples nevertheless may be inter-
connected: thus there is a need for appropriate interaction amongst sectors if 
optimal decisions are to be attained. A second factor to recognise is that, while all 
examples in the following are quoted within positive contexts, seasonal forecasts 
may be used, say by traders, to the disadvantage of those unfortunate to live and 
work in negatively affected (e.g. drought) areas.  

2.4.1 Agriculture 

Agriculture, including both plant cultivation and livestock production, is a sector 
heavily dependent on climate, such as in the amount and timing of rainfall, the 

relaxed, e.g. in the rare ‘good’ years of the semi-arid tropics, decision makers are 
economic losses or even starvation. When such constraints are occasionally 
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occurrence of damaging frosts, the length of the growing season, and the number 
of growing degree-days. Seasonal forecasts would therefore assist pre-emptive 
actions, such as the use of varied crop species, or the altered composition and/or 
allocation of browsing herds for more effective exploitation of marginal areas. 
Thus improved use of climate information in agriculture could increase profitabi-
lity and sustainability by allowing farmers to match cropping decisions to expected 
climatic conditions (Stern and Easterling 1999). At the national, regional and inter-
national levels, matters of food security, of international crop yield estimation 
and food flows, and of food marketing can be informed through climate services. 
Practical examples of the uses of seasonal forecasts in agriculture are discussed in 
Chapter 12. 

2.4.2 Disaster Forecasts and Prevention 

Natural disasters associated with extreme climate events, resulting in the loss of 
life, destruction of shelters and food reserves, disruption of food production and 
transportation systems, and health risks are situations faced by large parts of the 
world population. General systems of emergency preparedness and response, such 

Seasonal forecasts could play a role in warning systems in cases in which their 
skill was judged to be at levels sufficient for alerts. International preparations for 
disaster response might also take advantage of climate information. 

2.4.3 Energy 

Most forms of energy production (e.g. gas and hydropower) and the level of en-
ergy consumption are, to varying degrees, affected by climate conditions. Using 
seasonal forecasts as input for load-balance models could potentially decrease the 
overhead necessary to maintain the agreed baseline energy availability, thus help-
ing to optimize the matching of supply and demand. They might also be used for 
planning international energy transfers. 

2.4.4 Finance and Insurance 

Climate information can be used in the financial sector to optimize capital re-
quirements, and to hedge the risk of financial losses due to climate-related events. 
For example, seasonal forecasts can be used by an energy company to optimize 
the use of climate-linked financial products designed to reduce the potential 

as early warning systems, might benefit and avoid costly damages (see Chapter13). 
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impact of adverse weather conditions on the company’s balance sheet, or by an 
insurance company to assess its exposure to climate-related risk. Insurance is now 
being tested in response to climate risk management in the developing world. 

2.4.5 Fisheries 

Fish population fluctuations, whether due to climatic factors or to harvesting or to 
other reasons, are by their nature more difficult to analyse. As a consequence, for 
fishing management, which normally aims at constraining both biological and 
economic overfishing, it might be more challenging to use forecast information 
effectively. One notable exception might be that of Peruvian anchovies whose 
population is highly influenced by El Niño events. 

2.4.6 Food Security 

Food security is naturally related to the agricultural examples given earlier. 
Droughts, floods and cyclones are some of the essential factors in determining the 
quantity and quality of food supply, also referred to as food security. Food secu-
rity is particularly an issue in regions where the interannual climate variability, 
especially in rainfall, is large and local production is the main food supply. For 
such regions, rainfall forecasts could help alleviate problems in low rainfall years. 
It must be noted, however, that climate is only part of the story in food-hardship 
periods; confounding factors such as political situation or locust infestation may 
contribute to exacerbate the problem (e.g. the 2005 food crisis in Niger). 

2.4.7 Health Management 

Human health is sensitive to several types of climatic variations. For some diseases 
close direct and indirect links with climate conditions exist (e.g. malaria epidemics). 
In such cases, climate forecasts might give public health systems early warning of 
the likelihood of epidemics. For instance, tropical disease risk management is an 
application in which the use of climate information is receiving increasing atten-
tion. Health planners need information on the predicted level of risk for malaria, 
meningitis, or cholera epidemics to develop. International strategies for improving 
health and for relevant pandemic responses would benefit from an enhanced use of 
climate information. 
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2.4.8 Hydrology and Water Resource Management 

Water managers may benefit from rainfall forecasts for the planning of irrigation 
systems, surface water storage, groundwater pumping capacity and trans-basin 
diversion. Such forecasts might also contribute to a more effective deployment of 
emergency flood management and relief operations. Information on climate vari-
ability, including predictions, can form an important knowledge source in decisions 
on water security, facility development, and cross-border basin management. 

2.4.9 Policy Making and Public Authorities 

Relevant public institutions have the potential to influence the way in which indi-
vidual users (e.g. a farmer) respond to climate forecasts. Such institutions may act 
via, for instance, proper dissemination of the forecast or by offering incentives, the 
latter possibly coupled with some form of insurance to spread the risk of respond-
ing to probabilistic forecasts. 

2.4.10 Retailing Industry 

The impact of the climate variability is seen across many areas of the retailing 
industry (e.g. ice creams, refreshing beverages or air conditioning units, summer 
or winter clothes). By taking climate forecasts into account, customer demand 
could be better predicted. In turn, this would mean making the most out of sales 
and reducing waste through efficient delivery, staffing and stock control. Climate 
forecasts may influence decisions about provisioning of a particular product, for 
instance coffee imported from Indonesia rather than Brazil or Central America, or 
vice versa, although such decisions can be detrimental to the livelihoods of the 
coffee-growers and their communities. 

2.4.11 Transport and Tourism 

Climate information is potentially useful for planning in the operation of leisure 

transport planners and resort owners to prepare for potential impacts such as for 
storm damage. Equally, these predictions could be used to inform tourists of the 
likely risks they would incur by travelling to specific regions. Current thinking has 

cyclone activity or anomalous climate conditions could, for instance, be used by 
facilities as well as strategic planning and investment. Predictions of tropical 
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it that using climate forecasts for leisure planning may involve risks of litigation 
(e.g. by resort facility owners or washed-out tourists). It should be noted, however, 
that the main difference with the sectors mentioned earlier is that in this case 
information is provided to the general public also. As with the issuing of weather 
forecasts, experience needs to be built on ways to communicate climate forecasts, 
along with their uncertainties, to wider audiences. 

2.5 The Importance of Climate in Key Development Sectors7 

Three top priority development sectors are particularly sensitive to climate vari-
ability, namely agriculture, water resources and health. The situation is most 
critical in Africa where the livelihoods of hundreds of millions of people are ex-
tremely vulnerable to climate variability. Much improved climate risk management 
is essential to support more effective development and to help mitigate disasters.  

Climate exerts a profound influence on the lives of poor people who depend on 
agriculture for their livelihoods and sustenance, who are unprotected against 
climate-related diseases, who lack secure access to water and food, and who are 
vulnerable to hydro-meteorological hazard. For vulnerable communities, develop-
ing flexible, proactive responses to climate variability that enhance resilience is 
both a crucial step toward achieving the MDGs by 2015, and a foundation for 
coping with the uncertainties of a changing climate into the future. Furthermore, 
because climate has a confounding influence on many development outcomes, 
attention to climate variability is essential for evaluating real progress. 

2.5.1 Agriculture in Africa 

All current initiatives for development in Africa emphasize the overriding impor-
tance of agriculture, both for eliminating hunger, and also as a local and national 
economic driver. The Millennium Project proposes major scaled-up interventions 
to enable smallholder agriculture to develop and sustain itself throughout the 
poorest regions of Africa. These interventions then are designed to be coupled 
with a ‘safety net’ to protect communities and local economies in disastrous years, 
so that gains made in better years are not wiped out by unfavourable seasons, as 
happens so often at present. Such an ambitious programme, designed to bring a 

________________  
7

for their Position Paper entitled ‘Sustainable Development: Is the Climate Right’, that was pub-
lished in 2005 and in which a predominantly African perspective was taken; nonetheless this 
section can be read within a wider geographical context. 

 This section is derived largely unaltered, with permission of IRI, from text originally produced 
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hundred million people out of poverty by 2015 in sub-Saharan Africa, explicitly 
recognises the importance of climate variability in its proposals.  

2.5.1.1 Subsistence Farmers 

For too many people in Africa, subsistence agriculture is a desperate form of 
poverty akin to slavery that requires major effort for relatively little return. With 
reduced fallow periods, smaller farm size, declining soil fertility, lower yields, 
increasing indebtedness and isolation from markets, such farmers have relatively 
few choices even before rainfall variability, crop pests and diseases, malaria, 
AIDS and emigration of young labour make their lives even more onerous.  

2.5.1.2 Cash Crop Farmers 

Farmers that engage more with local markets and dealers, can also access credit 
and buy inputs (improved seeds, fertiliser, sprays for pest and disease control) to 
increase the value of their labours. Such farmers tend to be less risk averse and 
more proactive in their management choices, and as such, are in more of a position 
to access and take advantage of weather and climate information, particularly in 
their choice of seeds and other agricultural inputs.  

2.5.1.3 Risk Benefit 

Communities who depend on rain-fed farming for sustenance and livelihood in 
high-risk environments are among those most affected by climate variability, 
but conversely are also often particularly well poised to benefit from improved 
management of climatic risk through appropriate use of climate information. It is 
important to empower rural populations to better manage risk and exploit oppor-
tunity by (a) providing relevant, timely information to the target populations; 

2.5.1.4 Managing the Rural Economy 

Without a healthy rural economy, farming communities cannot get the inputs they 
need to cope better with climate variability and so the cycle of poverty is per-
petuated. There are many ways that governments can improve the rural economy 
(see the Millennium Project proposals for example) in ways that are sensitive to 
 

resource constraints to adaptive responses.  
(b) fostering and guiding adaptive management responses; and (c) addressing 
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prevailing conditions. For example, modern methods of monitoring crop produc-
tion from satellite are now routinely used in most regions of Africa. Coupled 
with seasonal climate prediction, these enable early yield estimation, extend the 
lead-time of food stock or relief decisions, and facilitate timely implementation of 
measures to help ensure local food security or cope with harvest surpluses. And 
knowing in advance the risk of food shortfall/surplus is very important informa-
tion for central government economic advisers, and local government planners, in 
order to make contingency arrangements.  

2.5.2 Water  

Improved water management is recognised as a fundamental requirement for 
development. In the Africa Water Vision for 2025 the key problems identified are: 

1. The multiplicity of transboundary water basins 
2. Extreme spatial and temporal variability of climate and rainfall, and climate 

change 
3. Growing water scarcity 

It is of prime importance for people in Africa today, and tomorrow, that water 
from rainfall is managed more effectively. In order to achieve this, the most  
important step is to ensure that rainfall variability is not simply accepted as an 
inescapable ‘fate from the gods’. Rather, rainfall needs to be regarded as an envi-
ronmental variable that is influenced by increasingly well-understood physical 
processes. As such water supplies can and must be managed better by a whole 
host of decision makers in the diversity of economic and social domains affected 
by fluctuations in availability. 

2.5.2.1 Transboundary River Systems 

Much ocean induced climate variability affects large areas of Africa and its effects 
are particularly noticeable at the scale of transboundary river basins. Attempts are 
being made through the African Network of Basin Organisations to improve man-
agement and decision making in all transboundary river systems, to encourage 
greater cooperation between stakeholders, and to mitigate flooding and reduce 
competition and conflict over access to water. To achieve these objectives effec-
tively, it is absolutely essential to incorporate knowledge of seasonal water 
variability into decision making, and where appropriate, early warning through 
seasonal forecasting. Capacity building in water authorities to enable people to 
use these increasingly powerful tools is essential. 
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2.5.2.2 Reservoir Management 

Reservoirs are designed to hold significant amounts of seasonal runoff to mitigate 
the effects of upriver rainfall variability. The Aswan dam in Egypt provided irriga-
tion through 10 years of drought and sub-normal rainfall over Ethiopia in the 1980s. 
Very often, however, there are conflicting demands on reservoir managers to pro-
vide water for hydropower, irrigation and to manage flood and base flows for the 
health of lower river communities and ecosystems. Without knowledge of future 
rainfall, reservoir managers inevitably tend to be conservative. With reliable indi-
cators of future rainfall quantities, reservoir managers are in a better position to 
make best use of the limited stored water available. Such decisions involve risk, 
and managing risk is an essential component of making the best of a scarce and 
highly variable resource such as water. 

2.5.2.3 Summary 

Climate variability not only affects the design and management of water and sani-
tation infrastructure, but also plays an important role in the planning and design of 
water resource systems. It is essential that knowledge of climate variability be 
incorporated in water management strategies at all timescales, as an integral part 
of knowledge-driven decision-making: optimal system management is impossible 
without it.  

2.5.3 Health Management 

The European heat wave of 2003 had a dramatic impact on mortality causing an 
excess of about 15,000 deaths in France of which about 1,000 were in Paris alone. 
The consequences of unusual warm years in Africa pass largely undocumented. 
We all know from direct personal experience that dry-season illness tends to be 
different from wet season diseases. But how much does the overall incidence of 
disease, and hence death rates, depend on climate variability, and hence fluctuate 
from season to season and year to year? The answer is ‘climate has an enormous 
impact on health’ and many diseases are recognised by the World Health Organi-
zation (WHO) as being climate sensitive. These include: influenza, diarrhoeal 
disease, cholera, meningitis, dengue fever, chikungunya, avian flu, Rift Valley fever, 
leishmaniasis and malaria.  
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2.5.3.1 Malaria 

Malaria is widely appreciated as the most important of the climate-sensitive 
diseases in the world. It is seen as a major impediment to socio-economic devel-
opment particularly in Africa where 90% of the 1–3 million deaths it causes each 
year occur. If we are serious about reducing malaria, and associated maternal and 
child mortality as part of the Millennium Development Goals, then information on 
the seasonality of climate and its variability must be taken into account when plan-
ning and implementing routine health campaigns and epidemic preparedness.  

It is estimated that more than 110 million people in Africa live in regions prone 
to malaria epidemics. The populations affected have little acquired immunity to 
malaria and are therefore vulnerable to explosive epidemics that can cause high case 
fatality rates among all age groups. In spite of the severity and the magnitude of 
the problem, understanding of epidemic malaria is very limited and almost nothing 
is known of the economic burden of malaria epidemics in sub-Saharan Africa. 

For malaria climate is the primary factor in determining at least some epidemics. 
•  Temperature influences development rates of both the malaria parasite and its 

mosquito host. Higher temperatures, but only up to about 40°C, shorten the 
parasite extrinsic incubation period and increase the stability of disease trans-
mission 

•  Increased rainfall in semi-arid areas increases availability of breeding sites 
and therefore augments malaria vector populations if temperature is favourable. 
It is also associated with increases in air humidity that result in higher adult 
vector survivorship and therefore greater probability of disease transmission 

Epidemics frequently occur when periods of drought (during which people can 
lose immunity to the disease) are followed by a return to normal or above normal 
rains in the more arid regions. Combining information on malaria trends and vul-
nerability with rainfall information can provide warnings for high transmission 
years prior to the peak malaria season. For example, the case of Botswana has 
demonstrated a strong impact of December–February rainfall on malaria incidence 
anomalies, which make it possible to alert the Ministry of Health of increased risk 
of an epidemic before the peak transmission period of March and April. Seasonal 
climate forecasts can supply even earlier warning of changes in malaria risk. A 
seasonal climate forecast in November can provide information about the expected 
extent of the next malaria transmission period 5 months before the peak of the 
malaria season and 3–4 months earlier than warnings that are issued based on 
observed rainfall. Prime interventions include planning integrated vector manage-
ment; awareness raising campaigns allied to education, as well as timely 
procurement of drugs. 
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Part II 
The Production of Seasonal Climate 

Forecasts 



A. Troccoli et al. (eds.), Seasonal Climate: Forecasting and Managing Risk. 45 

Chapter 3 
Overview of Seasonal Forecasting 

In many regions of the globe, the largest climate signals after the seasonal cycle 
are those associated with El Niño and La Niña. These are manifestations of a cou-
pled process in which climate changes occur in both atmosphere and ocean. The 
origins of El Niño and La Niña (or ENSO, the El Niño/Southern Oscillation) lie in 
the tropical Pacific, but the effects can be felt to some degree almost globally. It is 
in the equatorial region that coupling between atmosphere and ocean is strong. In 
middle latitudes the coupling is much weaker. Models of varying complexity have 
been developed to study ENSO. So-called intermediate models, where the atmos-
phere is grossly simplified and only the upper ocean is modeled, have been used to 
understand the role of equatorial waves in setting the timescales of ENSO as well 
as being used for seasonal prediction. Seasonal forecasting using complex models 
of the atmosphere and ocean is relatively recent. The atmospheric component of 
such models is very similar to what is used in weather forecasting. This is a much 
more mature science and there is some synergy between weather and seasonal 
forecasting. Both are initial value problems in the sense that the information on 
which a forecast is based depends on these starting conditions. The atmospheric 
initial state for a seasonal forecast is generally provided from the atmospheric state 
created to initialize a weather forecast. So seasonal forecasting relies on weather 
forecasting in that sense. There is a much more important reliance on weather 
forecasting however, which involves the ocean and atmospheric reanalyses. If 
there were sufficient observations of the ocean, then it would be possible to create 
ocean initial conditions just from the observations, but this is not the case. Even 
with today’s observing system it is still necessary to augment the ocean observa-
tions with knowledge of the ocean gleaned from the past history of the ocean 
forcing (momentum, heat and freshwater fluxes), as will be discussed in. Some 
results from complex models are presented to allow an assessment of skill and to 
contrast the predictability of the tropics with the extratropics. The potential impor-
tance of using multi models is introduced which allows some assessment of the 
importance of model error. A developing field is the application of seasonal fore-
casts. For some applications, only a simple concept is required, but for others quite 
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complex application models are needed. Developing these modules can be diffi-
cult as the functional dependence on weather parameters is not always obvious. 
One example is given but a full assessment of the difficulties in developing appli-
cation models is left to later chapters (Chapters 11–13). 

3.1 Introduction 

Weather forecasting is a discipline familiar to all. Weather forecasts have a limited 
forecast range on account of the chaotic nature of the atmosphere (see Lorenz 
1993); the predictability horizon depends on what variable one seeks to predict 
and on what scale. It is perhaps just minutes to hours for smaller-scale features 
such as thunderstorms, but might be as long as a week for large-scale weather sys-
tems. If the useful range of weather prediction is only a few days,1 why then do we 
discuss forecasts to seasons or even longer? The reason is that we believe the ocean 
imparts some memory to the atmosphere, at least in some parts of the globe result-
ing from the fact that the ocean has a much larger heat capacity than the atmosphere 
and consequently is much more ‘inert’. Anomalies in sea surface temperature last 
for a few weeks or longer, depending on the spatial scale, whereas the timescale for 
weather is typically a few days.  

The simplest picture of ocean-atmosphere interaction, however, is not of the 
ocean driving the atmosphere, but of the atmosphere driving the ocean. Hasselmann 
(1976) postulated that the upper ocean was driven by high frequency (stochastic) 
variations in atmospheric heat flux. The sea surface temperature integrates the heat 
flux forcing. That means that the ocean response is the integral of the forcing. If 
the spectrum of forcing is white (no preferred frequency), then the ocean response 
will not be white but red, i.e. with more energy at low frequencies. This is quite a 
good approximation in much of the world.2 However, in the tropics we believe 
that changes in the atmosphere influence the ocean and changes in the ocean in-
fluence the atmosphere. The atmosphere still has much high frequency (stochastic) 
variability but in addition there are low frequency variations which result from 
ocean-atmosphere interaction. Most prominent of these processes are El Niño and 
La Niña.  

 

________________  
1

(about 40–60 days), sometimes called Madden-Julian Oscillation (MJO), and some aspects of 
these may have predictability beyond 10 days. 
2

advection in maintaining the local heat budget, and the role of the subtropics in maintaining the 
heat balance of the upper ocean in the equatorial region. 

 There are atmospheric phenomena with a longer time scale such as the intraseasonal oscillation 

 In Chapter 4 there is a fuller discussion of the upper ocean heat budget, including the role of 

46 D.L.T. Anderson 



Figure 3.1a shows the surface pressure difference between the western equato-
rial Pacific-Indonesian region and the eastern equatorial Pacific. Originally, the 
index was based on Darwin and Tahiti pressures as these were the stations where 
there were long data records. The index was called the Southern Oscillation Index 

large-scale swings in mass between the western and eastern sides of the equatorial 

(SST) in the central east equatorial Pacific (NIÑO3.4) and shows that in the ocean 
the dominant timescale is also typically a few years. Importantly, the EQSOI and 
the NIÑO3.4 records are very highly anti-correlated. What causes these massive 
readjustments of pressure and changes in SST and what sets the timescales? 

The timescales of a few years come mainly from the ocean. Including ocean 
variability can give rise to enhanced atmospheric predictability if we are dealing 
with processes that depend on both media interacting. On the other hand, it is quite 
possible to have some memory in the ocean and some predictability of ocean vari-
ability but with little or no associated atmospheric predictability if the ocean is not 
 

Fig. 3.1 (a) Plot of the EQSOI index as a function of time from 1985 to 2005. (b) Plot of the SST 
in region NIÑO3.4, (190–240°E/5°S–5°N) as a function of time. The dominant timescales in these 
two indices are very similar. (c) The locations of the two regions used in the EQSOI. From the 
Climate Analysis Bulletin, published monthly by NOAA. See: http://www.cpc.ncep.noaa.gov/ 

Pacific. Figure 3.1b shows the time variation of a measure of sea surface temperature 

(SOI). Figure 3.1a shows the more modern EQSOI which is a better indicator of 
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driving the atmosphere by the predictable part of its variability (Latif et al. 2002, 
2006). So including the ocean in the forecast system does not of necessity lead to 
enhanced atmospheric predictability. The ocean may have greater predictability 
than the atmosphere but unfortunately, in general, we are more interested in 
atmospheric prediction than ocean prediction.  

The coupling between the atmosphere and ocean is believed to be quite strong 
in the equatorial region, giving rise to the best example of climate variability on 
year to year timescale, viz. that associated with El Niño and La Niña or ENSO as 
it is frequently now referred to.3 Although El Niño/La Niña are mainly located in 
the tropical Pacific, their influence can extend to almost all parts of the globe. Of 
course in distant regions other processes may also be affecting climate variability 
and ENSO may not be the dominant process. The predictability coming from 
ENSO might be quite weak in such a situation.  

One conceptual model of weather is that of a series of events which are (for 
practical purposes) unconnected: the weather next week is essentially independent 
of the weather this week. An example of such a model is an unbiased coin. If such 
a coin were tossed several hundred times, one would expect to find short runs of 
one face or other, say five heads in a row, purely by chance. If the heads are 
thought of as inactive weather systems, then such a run of heads might correspond 
to drought conditions. There is no point in seeking a physical cause for such a run. 
The ‘drought’ is simply the outcome of a series of chance processes and as such it 
is unpredictable. But weather patterns may not always be purely stochastic. Sup-
pose the coin were slightly biased. Then a sequence of tosses would still throw up 
heads and tails in pretty much random ways as before, but a more careful analysis 
might reveal that there were slightly more heads than tails, which in our simple 
analogue, would correspond to below average rainfall. Individual weather systems 
may still be chaotic, but the statistics governing them may have been altered by 
the bias in a deterministic and predictable way. In the earth’s climate system, it is 
thought to be the slower changes in the ocean sea surface temperature which are 
most important for imparting a degree of predictability. The amount of predictabil-
ity is very much a function of position, with the tropics being more predictable 
than the middle latitudes.  

ENSO involves a positive feedback between the SST gradient along the equator 
and the winds blowing along the equator. It also involves ocean dynamics: whereby 
information in the west equatorial Pacific can influence events in the east equato-
rial Pacific months later. To the extent that we know enough about the processes 
by which this information is propagated eastward via equatorial Kelvin waves and 
how these come to later influence the atmosphere one has a basis for prediction. 

________________  

atmosphere. These are now known to relate to the same process though it took several decades to 
appreciate that this was the case and that they are manifestations of a coupled atmosphere–ocean 
process. 

3 ENSO stands for El Niño Southern Oscillation to reflect the importance of both the ocean and 
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The tropical Atlantic and Indian Oceans may have zonal modes of this type too 
but they are less dominant than in the Pacific, less clearly identifiable against a 
relatively noisier background and of shorter duration. There is some indication 
that there may also be meridional modes of climate variability but again these 
have not been clearly identified. See Wang and Picaut (2004), McCreary and 
Anderson (1991), Neelin et al. (1998), Anderson et al. (1998), Philander (2004), 
and Chang et al. (2006) for some review articles on ENSO. See also the book ed-
ited by Palmer and Hagedorn (2006). Later in this chapter and in Chapters 4 and 6, 
we will consider how these equatorial waves propagate, theories of how they can 
give rise to ENSO, and their potential role in ENSO prediction. 

In low latitudes, where the SSTs are high, the atmosphere exhibits convection 
throughout the depth of the troposphere, the location and intensity of which is in-
fluenced by the SST. In middle latitudes where the SSTs are cooler, there is less 
organized deep convection. Consequently SST variability in middle latitudes does 
not influence the atmosphere as strongly as at the equator. In most of what follows 
we will discuss primarily tropical processes associated with El Niño.  

Not all aspects of climate influenced by El Niño are adverse. Indeed, from a 
North American perspective El Niño might well have a net beneficial impact 
(Goddard and Dilley 2004). Winter is warmer and so money could be saved on 
heating, hurricanes in the Caribbean are less frequent and so hurricane damage 
might be less. 

This latter is a tricky issue. There is no doubt that a major hurricane striking 
Miami such as Andrew did in 1993 or New Orleans as Katrina did in 2005, causes 
huge damage – Katrina caused perhaps the biggest financial meteorological dam-
age in history. But how does one show that such a hit occurred because there was 
a La Niña or avoided because there was an El Niño. This of course cannot be done 
in a definitive (deterministic) way but one might try by using models to determine 
the probability of strikes when there is and when there is not El Niño or La Niña. 
A convincing case on this has not been made as models for seasonal forecasting 
are not yet of a resolution able to simulate cyclone tracks accurately, though fore-
casting tropical cyclones in models is now beginning and will likely improve as 
model resolution increases. Even if the models were able to simulate hurricane 
genesis and tracking well, the answer to whether, e.g. New Orleans avoided a 
major hurricane strike because of El Niño can at best be probabilistic. Maybe one 
can say the probability of New Orleans being struck by a hurricane of category x 
is reduced by a factor y in an El Niño year. 

For models to have realistic hurricane tracks needs quite high horizontal resolu-
tion, perhaps a horizontal resolution of about 150 km or higher. It has not yet been 
evaluated if there is skill in predicting interannual variability in tracks. Models 
do seem to have some skill in predicting the frequency of occurrence, however, 
and it has been shown that multi-models do a better job of predicting the inter-
annual variability in frequency than individual models. 
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There are also processes which can affect the climate which are not generally 
taken into account. The big El Niño of 1982/83 was preceded by a major volcanic 
eruption in Mexico (El Chichon) from 28th March until 4th April 1982. A large 
eruption also occurred in June 1991 in the Philippines (Mt Pinatubo) ahead of the 
weak 1991/92 El Niño. These eruptions are essentially unpredictable on the seasonal 
timescale but it is not clear the extent to which they induce or influence ENSO. 
After they occur, models could be altered to reflect the amount and type of 
volcanic aerosols ejected, though operational models do not yet generally include 
this option. 

3.2 Modelling the Coupled System 

Models of various complexities have been used to represent the atmosphere, the 
ocean and the coupling in between. The atmosphere is well recognised as a highly 
complex system. How then can we simplify it? It might come as a surprise but 
the assumption that on the large scale, the tropical atmosphere is to a consider-
able degree a slave to the ocean seems to work reasonably well. In particular the 
assumption is made that if the SST fields are known, then so is the large scale 
tropical wind. For the timescales of relevance to El Niño or La Niña, only the upper 
ocean is involved. As we will see later the temperature structure of the ocean is 
approximately a mixed layer where the temperature is relatively uniform, beneath 
which is a region where the temperature drops rapidly, called the thermocline. 
Beneath that the temperature drops slowly to the deep ocean. This means that the 
simplest approximation to the ocean is that it consists of two layers, one active 
above the thermocline and one inert beneath the thermocline. A simple model 
based on these ideas is frequently used in oceanography, called a reduced gravity 
model or a one mode baroclinic model. A key feature of such a model with simpli-
fied vertical structure is that the speed of gravity waves (or Kelvin waves which 
have the same speed as gravity waves) is approximately 2 m s−1. This is much 
reduced compared to external waves or barotropic waves.4 (See for more descrip-
tion of equatorial waves and vertical modes). 

 
 
 

________________  
4

acceleration 9.8 m s−2 and H the depth of the basin considered, which is over 200 m/s in the deep 
ocean where the depth is over 4,000 m. Such waves are the agent by which the effects of earth-
quakes spread, for example the Tsunami of Boxing Day 2004, but are not very important for 
climate purposes and are frequently filtered from simplified models. 

 The speed of propagation of barotropic or external gravity waves is √gH, with g the gravity 

McCreary and Anderson (1984) constructed a coupled model embodying the 
above simplifications. Figure 3.2 shows the evolution of the thermocline depth in 
a model when forced with a given wind stress, 1–3 months after the wind is 
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applied.5 It shows four key processes: first, the movement of the thermocline, up 
in some places and down in others in response to the wind forcing, second, the 

 

Fig. 3.2 Plot of the depth of the thermocline in a model of the Pacific Ocean. The geometry has 
been simplified to that of a ‘box’. Only the northern hemisphere is plotted. The region where a 
zonal wind is applied is shown in the upper panel. The wind profile has also been simplified. The 
curve on the left of the box gives the latitudinal profile: the zonal wind is maximum at the equa-
tor dying away by 10N (1,000 km). The wind profile in the zonal direction is given by the curve 
above the box. The wind is maximum at 5,000 km dropping to zero at 2,500 km and 7,500 km. 
The model is initially at rest. The upper panel shows the response after 1 month. If the wind is 
anomalously westerly, then the shading corresponds to a deepening of the thermocline as would 
happen in the onset of El Niño. The asymmetric response with the equatorial signal propagating 
to the east is due to the Kelvin wave. After 3 months (lower panel) the signal has reached the 
eastern boundary and is propagating poleward along this boundary. The eastward asymmetry is 
very clear. Also evident is the shallowing of the thermocline off the equator. This signal has 
already started propagating westward as a planetary wave, sometimes loosely called a Rossby 
wave (From McCreary and Anderson 1984) 

________________  
5

difference between precipitation and evaporation), the wind is the key parameter for processes on 
the time scales up to a year or two, which is why we look at the ocean response to changing 
wind. 

 Although the ocean is forced by the atmospheric wind, the heat flux and the freshwater flux (the 
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asymmetry in the equatorial response – the fastest wave is a Kelvin wave propa-
gating only to the east along the equator. When it reaches the eastern boundary the 
wave splits with energy going polewards in both hemispheres. A third feature is 
the presence of energy propagating more slowly to the west in the form of a plane-
tary wave, sometimes called a long Rossby wave. The fourth feature of note is that 
after a few months, a gradient is set up along the equator in the region of the wind 
forcing. (The key component of the wind is the one blowing along the equator). 
The balance between the thermocline slope and the zonal wind stress is called 
Sverdrup balance (see Chapter 4). 

Figure 3.2 is a model result but with the development of real-time ocean analy-
sis systems it is possible to detect and monitor these waves quite well. Although 
they are disturbances of the thermocline, they have a small (a few cms or in a big  
El Niño, a few tens of centimetres) signal at the surface. These can be detected in 
ocean analysis systems. With the advent of satellite altimeters which can measure 
the bending of the top surface of the ocean, it is also possible to detect them from 
space. Figure 3.3 shows the displacement of the top surface of the ocean from the 
ECMWF analysis system. There are many similarities between this figure and the 
very simple model result shown in Fig. 3.2. For example the region of strong pres-
sure gradient along the equator, the poleward extension of the equatorial signal in 
both hemispheres along the eastern boundary, the region of opposite pressure gra-
dient lying a few degrees off the equator, in both hemispheres though stronger in 
the northern hemisphere in the case of Fig. 3.3. 

 

Fig. 3.3 Plot of the sea level from the ECMWF ocean analysis system at the height of the 
1997/98 El Niño. The lifting of the top surface (corresponding to a depression of the thermocline) 
in the east is clearly visible, as is the propagation polewards along the eastern boundary.  
A depression of the surface near the dateline at around 8ºN is also clearly visible. The similarity 
to Fig. 3.2 is quite striking, despite the use of simplified wind patterns in the model 
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Although the model of McCreary and Anderson was rather simple it did cap-
ture several features of El Niño. A slightly more complex model was constructed 
by Zebiak and Cane (1987) and applied not just to simulating El Niños but to pre-
dicting them. In particular a retrospective prediction was made of the El Niño of 
1982/83 when the model did rather well. Whether this was for the right reason or 
not can be debated. Regardless, their results greatly boosted the possibility of fore-
casting El Niño with physically based models. 

Since these early days much more complex models have been targeted at  
El Niño simulation and prediction. Many models are capable of simulating several 
realistic features of ENSO though one can not be sure that any is truly realistic 
as even in nature no two El Niños are the same, making it harder to validate the 
models. The complex models, sometimes called CGCMs – Coupled General Cir-
culation Models are now used routinely to forecast El Niño and changes to climate 
on a seasonal timescale in general. What is needed to forecast the climate a few 
months ahead with such models will be discussed below and in greater detail in 
Chapters 4–6. 

It is instructive to look at the different characteristics of the atmosphere and 
ocean, especially in the tropical region. Figure 3.4a shows a diagram of the zonal 
wind stress along the equator versus time. This is quite a ‘noisy’ diagram, reflect-
ing the high frequency nature of the atmospheric wind field. In panel (b) the depth 
of the 20°C isotherm is shown from the ocean analysis.6 This is a much smoother 
field reflecting the fact that the ocean integrates the atmospheric forcing. One can 
clearly see the eastward propagation of Kelvin waves excited in the west Pacific. 
This smoother response is not just a feature of thermocline depth. Sea level for 

Figure 3.4 also shows one of the difficulties facing those predicting ENSO. 
There is no doubt that the MJO or Intraseasonal oscillation can be strong in the 
west Pacific and can generate ocean Kelvin waves which propagate eastwards. As 
long as these waves remain beneath the surface displacing the thermocline but not 
influencing SST they do not affect the atmosphere. Many intraseasonal Kelvin 
waves are damped in the eastern equatorial Pacific and do not lead to an El Niño 
or La Niña event. Some, however, do break the surface, generate SST anomalies 
which then can influence the development or demise of an El Niño or La Niña. At 
the present time it is not known how to assess the extent to which an MJO in the 
 

________________  
6

thermocline since it lies roughly in the middle of the thermocline. 

example shows very similar though not identical behaviour (panel c). Finally SST is 
plotted in panel (d). This field is also quite smooth but it does not show the eastward 
propagation so vividly demonstrated in panels (b) and (c). Some simplified models
of ENSO use thermocline depth or depth of the 20°C isotherm as a proxy for SST
(see Chapter 4). This plot shows that that is not a good approximation in general.  

 Near the equator, the depth of the 20°C isotherm is often used as a proxy for the depth of the 
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Fig. 3.4 (a) Plot of the zonal wind stress along the equator as a function of time from 1 Nov 2004 
until 1 May 2005. The panel on the left corresponds to the Indian Ocean, the middle panel to the 
Pacific and the panel on the right to the Atlantic. (b) As for (a), but for the depth of the 20°C iso-
therm. Note the marked eastward propagation. (c) As for (a) but for sea level. The behaviour is simi-
lar to (b) though not identical. (d) As for (a) but for SST. Note the absence of eastward propagation 
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west Pacific will generate Kelvin waves and lead to changes in the SST in the east 
Pacific. Through ocean analyses one can easily detect the Kelvin waves generated 
by an MJO but there is no clear concensus on their importance in general. This is a 
hotly debated topic, especially since there was a strong MJO in Feb 1997 preced-
ing the large El Niño that year. Whether it was key or consequential is still open to 
debate (van Oldenborgh 2000; Eisenman et al. 2005; Vecchi et al. 2006). 

3.3 Ingredients of a Physically Based Forecast System 

There are different strategies for trying to predict the climate a few months ahead. 
The simplest and oldest is to seek correlations between different events at different 
times. If event X sometimes/often/usually follows event Y by 2 months, then one 
has a basis for some form of prediction of X. Initially, the predictors (the Ys) were 
easily obtainable observations. Now they could include parameters which have 
only recently been available such as temperature in the ocean at say 100 m.  
Because of reanalyses of the atmosphere and ocean it is possible to get estimates 
for such quantities even if they were not directly measured. As the historical re-
cord gets longer both by new observations, and gets pushed further into the past 
by better use of past observations and extended atmospheric reanalyses, there is 
likely to be continued scope for a statistical approach to climate prediction. This 
will be discussed further in Chapter 7, but in this section we will consider only 
forecasts based on dynamical GCMs.  

To make a forecast from a dynamical model requires knowledge of the current 
state of the system one is trying to predict. The forecast depends on the state of the 
atmosphere, ocean and land conditions and therefore initial conditions for the 
atmosphere, ocean and land are needed. The most common approach is to separately 
initialise the individual main components, namely the ocean, the atmosphere and 
the land. The separate initialisations are done mostly for practical reasons as it is 
easier and less computational demanding to deal with one component at the time. 
The main drawback of this approach is that the separate initial conditions may not 
be in balance when forecasts are started and therefore coupling shocks may nega-
tively impact the results of the forecast, from early on in the integration. However, 
coupling shocks may be considerably alleviated if common boundaries (e.g. the 
SST seen by both the atmospheric and ocean models separately) are treated in a 
consistent way (see also Sections 5.1.1 and 6.3.2). 

The most important of these initial conditions is likely to be the state of the 
ocean, and for the seasonal forecast range, the upper 200–300 m is sufficient. It is 
therefore important to use the available observations in order to produce an analy-
sis of the ocean to be used as initial conditions of the ocean model. This involves a 
data assimilation system. Because the tropical Pacific is so important to ENSO 
forecasting, a special observing system for the equatorial Pacific (from 8S to 8N) 
has been developed. See Chapters 1 and 5 for details on this so-called TAO-TRITON 
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observing system. This observing array has been extended into the tropical Atlantic, 
spanning a somewhat larger latitudinal range than the Pacific, and is in the process 
of being extended into the Indian Ocean. The mooring array measures the tem-
perature to a depth of 500 m (some moorings are instrumented to 750 m) at about 
ten levels. Observations are available every day from this array, relayed via satel-
lites such that the data is ingested into operational analysis systems within hours 
of being taken. Another interesting development has been the expansion of the 
ARGO float array (see Chapter 5). These floats measure both temperature and 
salinity continuously in depth from 1,000 m (some from 2,000 m) to the surface 
but only every 10 days. The third major component is the XBT array. This has 
been important in the past though coverage has been declining over the last few 
years. There are very few measurements of velocity: there are only five moorings 
taking velocity in the whole of the tropical Pacific. So although velocity is an 
interesting oceanographic variable, it can only be indirectly obtained from the 
analysis system. What current measurements there are can be used for validation. 

In any forecast system, it is important to give an estimate of the uncertainty of 
the prediction. One source of uncertainty results from the chaotic nature of the 
climate system: small uncertainties can grow and give rise to very different se-
quences of weather events. There are two other broad areas of uncertainty asso-
ciated with error in the initial conditions and with errors or uncertainties in the 
models used to make the forecasts. Since we are dealing with an initial value prob-
lem, it is necessary to give a measure of uncertainty in the analysis of the ocean 
state. One way of estimating that uncertainty is through running ensembles – 
many realisations of the same events but perturbed in some way commensurate 
with the perceived uncertainty. To estimate the uncertainty in the ocean initial 
state we can run an ensemble of ocean analyses. This ensemble can be generated 
by taking into account uncertainty in the atmospheric fields that are used to force 
the ocean – mainly the wind uncertainty, and uncertainty in the analysis of sea 
surface temperature (SST). Uncertainty in other ocean measurements should also 
be taken into account through perturbed measurements but this is not commonly 
done explicitly at present. It is done indirectly in that when the model first guess is 
combined with the observations, perceived errors are ascribed to both in order to 
judge how much weight should be given to each source of information. This will 
be dealt with further in Chapter 5. Uncertainty in atmospheric initial conditions 
can also be dealt with to some degree through the use of ‘singular vector’ pertur-
bations. This is important on the shorter timescales but probably not so important 
beyond, say, a month. More details of the ocean observing system and analysis 
procedure and the atmospheric counterpart are given in Chapter 5. In principle, 
model uncertainties should be included as well, as model errors become important 

forecasts with more than one model (the multi-model approach).  
 

dual operational system. They are accounted for, to some degree, by making 
within the seasonal range, but they are normally not accounted for in any indivi-

A second ingredient of a forecast system is a model of the atmosphere–ocean 
system. Ideally this should also include sea ice but that is not usually done at present 
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as ice modelling is complicated and probably does not bring a worthwhile increase 
in predictive skill relative to the effort expended. Land initial conditions are pre-
pared through soil moisture and snow cover and all credible AGCMs include a 
land package to represent the effects of rainfall, vegetation, run off, etc. Future 
work will make the parameterisations of land processes progressively more so-
phisticated. Once the initial conditions have been prepared, the coupled model is 
run forward for several months.  

Coupled models normally capture the various synoptic features such as anticy-
clones and cyclones quite well. A good model would also reproduce blocking, and 
the ability to represent droughts, extreme events leading to floods, etc. It should 
also simulate events such as the MJO. There is an important difference between 
being able to represent a type of event and being able to forecast a specific event. 
For these shorter-lived meteorological events one does not try to predict their 
occurrence beyond a few days but hopes to represent their statistical occurrence 
correctly. In practice the models are not yet that good since processes such as the 
MJO, or blocking tend to be under represented. 

As mentioned earlier, an ensemble of forecasts is generated as a means of rep-
resenting uncertainty in the forecasts. Different members of the ensemble will 
have highs, lows, MJOs, blocks, etc. occurring at different times in the forecasts. 
For a seasonal forecast one is not trying to say what will happen on a given day 3 
months ahead but rather how the average weather over a month or a season might 
change, i.e. how the lower frequency processes might change. It may be that there 
will be an increased probability of drought in some place and in that case more 
than half of the ensemble would show below average rainfall. 

The final ingredient in any practical forecasting system is a method for dealing 
with systematic error, the fact that the models do not represent the climate accu-
rately. One method, adopted by the EUROSIP (see later) project for example is to 
create a large number of forecasts over past years. Typically this is 15 years but 
this is really too small, and a longer period of 25 years is being attempted. For any 
given month for each of these years an ensemble of forecasts is made. This then 
defines the model climatology for this month. Forecasts are then compared against 
this climatology, and presented as anomalies (Stockdale et al. 1998). By this 
means a first-order linear correction for model error can be made. It is a simple 
approach and does seem to work reasonably well but further, more refined  
approaches are possible as discussed for example by Stephenson et al. (2005). 

3.4 How Accurate are Seasonal Forecasts 

Let’s start with evaluating predictions of the temperature in the equatorial Pacific. A 
key region is NIÑO3, an area in the Eastern Pacific Ocean (210–270°E/5°S–5°N). 
Figure 3.5 shows the growth of error in the forecast as a function of lead-time out 
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to 6 months (solid line). One can see a steady growth over the period. (The rms 
error between the forecast and the observed value of NIÑO3 temperature is used 
as a measure of forecast accuracy.) Many forecasts have gone into this figure: all 
forecasts for all months for all years from 1987 to 2004. Also shown on this plot is 
the growth of ensemble spread (dotted line). This grows less fast than the error. 
One can interpret this result in two ways.  

The negative interpretation says that the spread is smaller than the error and 
therefore the forecast system is poorly calibrated: the model forecasts are too 
confident – it means that the observed SST frequently lies outside of the range 
spanned by the forecast ensemble. Calibration is discussed further in Chapter 8. 
An alternative, more optimistic, interpretation is to take the model estimate of 
spread as a measure of potential predictability by interpreting one ensemble 
member as truth and measuring the differences of other members from that. This 
then gives an estimate of the potential limit of predictability in the absence of 
model error. The system illustrated is far from that limit. So by working harder 
and reducing model error one should (hopefully) be able to improve the forecasts. 
Of course the current model might underestimate the limits to potential predict-
ability since the model does not do a good job of reproducing intraseasonal   
 

Fig. 3.5 Plot of the growth of error in the NIÑO3 region in the ECMWF seasonal forecast sys-
tem (solid line). Also shown (dotted) is the ensemble spread. These are average values covering 
all months for all years from 1987 to 2002. The ensemble spread is obtained by calculating the 
ensemble mean and the root-mean-square (rms) difference of ensemble members from the en-
semble mean. Ideally, in a well balanced system, the spread and the error should be similar. In 
this example, they are not: the forecasts are too confident, in the sense that the spread is too 
small, indicating that all of the uncertainty in the system is not being accounted for. Model error, 
a major cause of forecast error, is not represented since all forecasts are made with the same 
model. The dot-dashed curve is the skill of persistence, i.e. saying that the anomaly at the start of 
the forecast will not change with time 
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variability such as the Madden-Julian Oscillation which, it is thought, might play a 
role in limiting predictability of ENSO (see also Section 3.2 and Chapter 4). How-
ever, even if the optimistic interpretation of the limit of predictability were correct, 
the reality is that such a level of skill has not yet been achieved as the model error 
is larger than the spread. One has to work with the practical reality that for now 
the model is not well calibrated. This limitation is not specific to ECMWF but 
applies to other models as well. The final curve on this figure (dot-dash) is the 
growth of error using the simplest of all forecast strategies: that the forecast 
anomaly for the month ahead, 2 months ahead, etc. is the same as for the current 
month. It may come as a surprise, but many models fail to beat this measure in the 
first 1 or 2 months (see for example Fig. 3.6). 

One way of improving the forecast reliability is to sample model error in the 
ensemble probability distribution function (PDF) and one way to do that is to de-
velop a multi-model approach. This has already been done in a non-real-time mode 
(see Palmer and Hagedorn 2006, Chapter 26). A real-time operational multi-model 
forecast system, called EUROSIP,7 has been implemented at ECMWF, which 
currently consists of forecasts from the Met Office, Météo-France and ECMWF, 
with planned extension to other models. In order to get some feel for the poten-
tial improvement in forecast skill as a result of the multi-model approach, we plot 
in Fig. 3.6 the rms error for the NIÑO3 region for two models that participate in  
 

Fig. 3.6 Plot of rms error from a multi-model forecast system using models from ECMWF and 
the Met Office. The spread and rms error are better matched in the case of the multimodel. This 
is a necessary though not sufficient condition for a good system. As in Fig. 3.5, the dot-dash 
curve indicates the skill of persistence 

________________  
7

ecmwf.int/products/forecasts/seasonal/forecast/forecast_charts/eurosip_doc.htm. 
 EUROSIP stands for EUROpean multi-model Seasonal to Inter-annual Prediction: http://www. 
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real-time multi-model predictions at ECMWF. The models shown in Fig. 3.6 are 
actually from DEMETER (Development of a European Multimodel Ensemble 
system for seasonal to inTERannual prediction8) and as such are earlier versions 
than are used in real-time operational applications but they should give a fairly 
good assessment of what to expect. The error growth is shown for NIÑO3 in the 
Pacific but is evaluated for many regions including the Atlantic and Indian 
Oceans. The skill in the Atlantic is lower than in the Pacific: actually the error 
growth is similar but the size of the interannual signal is smaller in the Atlantic, so 
the error is more serious. Similarly, the anomaly correlation drops more rapidly in 
the Atlantic than the Pacific, which is probably related to the fact that climate 
anomalies are shorter lived in the equatorial Atlantic which may in turn be related 
to the smaller size of the Atlantic basin. Looking at indices gives a concise way of 
evaluating skill but is not the only way. A more detailed assessment of model skill 
is given in van Oldenburgh et al. (2005), but further analysis is still needed. 

One can also evaluate specific events. Either one can look at a forecast and see 
where the model (or preferably the multi-model) is predicting a sizeable anomaly 
and then retrospectively see if this occurred. An alternative is to see where there 
are or have been major climate anomalies and then to see if the model predicted 
them. However, the first method of evaluating “real” predictions (i.e. before one 
knows the outcome of the forecast) is probably more objective than judging fore-
casts in hindsight. 

If one considered rainfall, then the correlations are highest in the tropics. The 
skill in predicting rainfall is lower than for near surface temperature, even in the 
tropics. Although the skill is generally low there may yet be applications which 
can benefit from even modest levels of skill.  
 

________________  

http://www.ecmwf.int/research/demeter/. 

Further validation is shown in Fig. 3.7. The measure of skill illustrated here is 
anomaly correlation as this is quite a simple quantity to evaluate and understand. It 
does not make full use of probability information coming from ensembles of inte-
grations. Such skill measures (e.g. Brier skill score) are discussed in Chapter 10.
Figure 3.7 shows the skill for near surface temperature. It is high over the tropical 
Pacific, related to ENSO. It is generally low over land related to the smaller heat 
capacity of land compared to sea. There is one intriguing region where the skill 
over land seems quite high viz over western Europe. This is probably a real signal 
as it is present in other models too and is likely related to snow cover (Shongwe 
et al. 2007). It is not present in other seasons. 

8  A completed EU project concerned with seasonal forecasting. For more information see: 
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Fig. 3.7 Global anomaly correlation for near surface temperature from the ECMWF model. The 
results are for predictions starting on 1 Feb for March, April May starting on 1 Feb. Results will 
vary depending on the season being predicted. In general skill is higher in the tropics than at 
higher latitudes but the temperature signal over northern Europe is real 

3.4.1 Further Verification 

For a correct interpretation of seasonal predictions the user needs to complement 
the forecast products with knowledge of the forecast skill (e.g. by assessing skill 
measures such as those shown in Fig. 3.7). It is not possible in this book to discuss 
all the verification methods that have been used but an extensive assessment is 
available on the ECMWF web site.9 Estimates of model bias for a wide range of 
variables, including zonal averages, time series of a set of indices of SST and 
large-scale patterns of variability such as the Southern Oscillation Index (SOI), 
the Pacific North American Pattern (PNA) and the North Atlantic Oscillation 
(NAO) are available. A suite of verification scores for deterministic (e.g. spatial 
________________  

distributions of the mean errors (biases) are provided at: http://www.ecmwf.int/products/ 
forecasts/d/charts/seasonal/verification/bias/. 

be found at: http://www.ecmwf.int/products/forecasts/d/charts/seasonal/verification Spatial 
the international (WMO) level for the evaluation of long-range forecast systems can 

9 A comprehensive documentation of skill levels, using methods that have been agreed at 
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anomaly correlation and Mean Square Skill Score Error (MSSE)) and probabilistic 
forecasts can be viewed for the operational system. The robustness of verification 
statistics is always a function of the sample size. For the operational seasonal fore-
cast system, the sample size of 15 years is considered barely sufficient.10 Verification 
is performed in cross-validation mode (Michaelson 1987) using the whole set of 
forecast data available, i.e. both hindcasts and real time forecasts. The seasonal 
forecast skill depends strongly on the season; so forecasts are evaluated separately 
for different starting months. Issues such as how to evaluate probability forecasts 
will be discussed in Chapter 9. 

3.4.1.1 Applications 

 

Fig. 3.8 Solid curve: climatological PDF of temperature at Gallipoli (hypothetical). Dotted 
curve: hypothetical forecast PDF. In this case the two distributions are different in shape as well 
as being displaced relative to each other. In practice, for such a mid-latitude station, one would 
not expect to get such a clean separation (Adapted from Palmer 2006) 

 

________________  
10

project DEMETER, but for a limited set of start months. See web for more details. 

The development of seasonal forecasting applications is very much in its infancy; 
some of the difficulties in developing application models will be covered in Chap-
ter 11. In this section we give just a couple of examples. In the first there is no 
formal application model. In the second (malaria) there is an application model 
but the issue of validating the application model is bypassed as the same applica-
tion model is used for validation as is used for prediction. The difficulties in 
developing a disease model such as malaria are covered in Chapter 13. 

 

 A longer period of forecasts has been performed in an experimental framework in the EU 
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The climatological PDF for temperature at some place, say Gallipoli in June is 
shown in Fig. 3.8. There is very small probability of the temperature being ex-
tremely high or of it being very low. The most likely temperatures are close to the 
average values but there is a fairly high chance of the temperature being a few 
degrees either side. The dotted curve shows the PDF from some hypothetical fore-
cast. If this were an accurate and reliable forecast then there would be much useful 
information: the most likely temperature is quite a bit higher than average but 
there is very little chance of it being very hot or being below the climatological 
average. Readers could use their own ‘implicit’ application models to decide whether 
to take a holiday in Gallipoli or not. 

Often the distributions are not so clearly separated, especially when dealing 
with middle latitude situations, but the changes in the PDF of rainfall in the tropics 
between El Niño and La Niña conditions could be large. If there is a big El Niño 
then the rainfall patterns are shifted: in the west Pacific rainfall decreases, while in 
the central Pacific it increases. For many parts of the world the shift might be quite 
small: like loading the coin only slightly in the analogy in Section 3.1. 

For many applications, the dependence on weather might be quite complex – 
either depending on more than one weather variable or having a non-linear de-
pendence such as a threshold when something only happens if the temperature is 
above or below some value. All of these dependencies can be easily taken into 
account and the potential benefit from seasonal forecasts evaluated, provided the 
transfer function linking the application with the meteorology is well known. 
Unfortunately, it is often quite complex to relate the weather parameters to an appli-
cation, and so difficult to develop/define/verify the transfer function. For example, 
although there is some relationship between say malaria and weather, it might be 

now let us assume that some plausible relationship has been found which depends 
on weather parameters such as temperature and rainfall. One can then use the out-
put from the climate forecast model as input to the ‘malaria’ model.  

The next step is to force the application model with observed quantities from, 
e.g. ERA-40. The application model is the same model whether driven from the 
forecasts or from the analysis. Comparing the output from these two then does not 
verify the application model at all but does give a measure of the forecast skill as 
applied to this application model. Figure 3.9 shows just such an example for 
malaria in southern Africa. If the transfer or application model were good, then the 
potential for malaria prediction in this region is good. Extensive work is needed to 
develop and validate application models such as the malaria models since the data 
may be hard to obtain and the application may be influenced by more than 
weather. 

 

complicated to evaluate and validate. This will be discussed in Chapter 13 but for 
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Fig. 3.9 Predicted malaria prevalence in March, April May predicted from 1st February. The 
spread of the forecasts driven by the ensemble forecasts is depicted by the box-and-whisker rep-
resentation with the whiskers containing the lower and upper tercile of the ensemble. The 
diamonds represent the ensemble mean. The reference driven by the ERA-40 data is shown by 
the black bullets (From Hagedorn et al. 2006) 

3.5 Summary 

A variety of coupled atmosphere ocean models has been developed and used for 
understanding and predicting El Niño and La Niña. The most complex of these 
models are those based around general circulation models of the atmosphere and 
ocean. Such coupled models are essentially the same as those used for weather 
forecasting – but with the added complexity of having an interactive ocean 
module – and they are able to generate weather sequences just like weather fore-
cast models. Change the initial conditions slightly and the model will generate a 
different sequence of weather. If the initial conditions of the ocean and land and to 
a smaller degree the atmosphere differ from normal then the predicted climate will 
differ from the normal climate; anomalies will result. An analogy based on the 
weather coin was introduced: where the loading of the coin is strong, then the 
probability of developing climate anomalies is strong. Where the loading is weak, 
there might be shifts in climate but one might need many realizations to detect 
them. Thus the tropics in an El Niño event is an example where the loading is 
strong, middle latitudes even in an El Niño event might be a case where the 
loading is weak. 
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To cope with the probabilistic nature of climate prediction, ensembles of fore-
casts are made. Ideally to detect weak signals, many realizations are needed. In 
practice only a limited number of ensembles is feasible; typically order 40. Even if 
models were perfect, forecasts would still be probabilistic: there would still be a 
need to make ensembles of integrations. But models are not perfect and so strate-
gies are needed to deal with model error. One strategy is to run as many forecasts 
over as many past events as possible to develop the model climatology. (In prac-
tice, the reforecasts are of the order of 5–15 ensemble members spanning 15–25 
years.) A forecast PDF is then compared against the model climate PDF and cli-
mate anomalies predicted. This approach allows a linear correction for model error 
for any given error. There may be errors which are not linearly related to the 
model climate error; these require more sophisticated correction algorithms than 
those usually applied. Using a single model does not allow one to sample all pos-
sible model error. To some extent this can be accounted for by using more than 
one model; hence the development of operational multi-model activities such as 
the EUROSIP project at ECMWF. Additional error can arise from uncertainty in 
ocean or land initial conditions and so the ensemble should include uncertainty in 
these. This is done to a small degree in the use of an ensemble of ocean conditions 
within any CGCM system but is not yet done for land initial conditions, though it 
is in development. 

Examples of forecasts using state of the art CGCM forecasts are given, but only 
using the simplest measure of skill (anomaly correlation). The skill is highest in 
the tropics, as expected. More sophisticated assessments of skill using probability 
information from the ensembles are possible but are not discussed in this chapter. 
Climate forecasts are themselves of interest but greater use is possible if they feed 
into application models. Such models are rather case specific; many applications 
models are needed. Developing such models is, however, not a trivial matter. 
Further discussion of this is postponed to Chapters 12 and 13. 
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Chapter 4 
Ocean–Atmosphere Basis for Seasonal Climate 
Forecasting 

Brian Hoskins and Paul S. Schopf  
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George Mason University 

There are many phenomena of interest in the atmosphere and ocean, only some of 
which are relevant for seasonal forecasting. One way of identifying the processes 
likely to be active is through scale analysis which identifies the important terms 
in the governing equations and highlights the importance of geostrophic balance. 
Simple arguments for Rossby waves are given. These waves are important in both 
atmosphere and ocean as a means of transferring energy over large distances. 
When the waves are embedded in a westerly flow it is possible for the waves to be 
stationary, giving rise to the possibility of a coherent remote response. A possible 
source of stationary atmospheric Rossby waves could be the deep convection over 
parts of the equatorial oceans where the sea surface temperatures are high. These 
stationary wave trains may interact with mid-latitude phenomena such as the 
storm tracks, so changing the occurrence and preferred locations of storms. This is 
an example of interaction between weather and lower frequency climate changes. 
Other teleconnections are introduced, such as the link between the Indian summer 
monsoon and Mediterranean climate. The area of the world where the interaction 
between the atmosphere and ocean is strongest is in the tropics. It is important to 
understand how the upper equatorial ocean works and how it is connected to the 
subtropical thermocline. The connection of the tropics to the subtropics gives a 
possible mechanism for low frequency variability of ENSO. Various theories of 
ENSO are introduced in which the importance of equatorial Kelvin and Rossby/ 
planetary waves is highlighted. Simple models illustrate oscillatory behaviour in 
certain parameter regimes but damped oscillations in others. While these ideas are 
interesting in generating a framework within which to consider ENSO, the real 
test comes from the making of forecasts and determining by experience the limits 
of predictability. 
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4.1 The Role of the Atmosphere  

4.1.1 Scales 

The atmosphere and ocean are shallow layers of fluid around the Earth acted upon 
by gravitational attraction to the almost spherical solid Earth. Using the Earth para-
meters a, the radius, and Ω, the rotation rate, N the basic buoyancy frequency 
associated with the stable stratification, and typical scales for the phenomenon of 
interest for horizontal and vertical length, L and H, respectively, and horizontal 
velocity, V, we have the following scaling relations: 

H << a (shallow fluid)    and    H << L  

so that hydrostatic balance is a good approximation in the vertical. Also, important 
velocity scales and typical numbers for them are: 

aΩ ~ (gH)1/2 > (NH)1/2 > V  
465  300  100  20 m·s−1 

The first number is the speed at which a parcel on the equator moves purely 
due to the rotation of the Earth. The second, in which the density height scale of 
the atmosphere (about 10 km) has been used, is the speed of external gravity 
waves. The next is the speed of internal gravity waves. The comparatively small 
value of the speed of motion relative to the Earth (V) emphasises the rapid rotation 
of the planet and the relatively small deviation of the atmosphere (and even more 
the ocean) in its motion from solid body rotation with the planet. The last inequality 
emphasises the strong stratification of the atmosphere (and ocean). Behaviour in 
the local vertical and horizontal directions is therefore very different. In the verti-
cal there is generally stable stratification and a balance between the very large 
gravitational and pressure gradient forces. In the horizontal, the much smaller 
Coriolis force associated with the rotation of the Earth can be important. For syn-
optic scales, and indeed for larger scales away from the equator 

V/fL < 1, 

where f = 2Ω sin φ, the Coriolis parameter, is twice the local vertical component 
of rotation of the Earth. This implies that the basic momentum balance in the hori-
zontal is between the Coriolis and pressure gradient forces, and that v is 
approximately geostrophic: 

v ≈ vg = (ρf)−1 k * grad p 
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adiabatically (no heat added) to a standard pressure (usually 1,000 hPa). In the 
absence of heat sources and sinks, it is conserved.  

It is very useful to have another quantity that involves the dynamics and is con-
served following the fluid in the absence of diabatic and frictional processes but, 
in these circumstances, the absolute circulation (C) around a closed material line 
on a constant θ-surface is also conserved. However this is difficult to use directly. 
If the closed material line shape is used to make a material cylinder between this 
θ-surface and its neighbour at θ + δθ, then both the mass, m, of the cylinder and δθ 
are also conserved. Therefore the quantity  

C × δθ/m  

is conserved. Writing the circulation in terms of the absolute vorticity ζ = f k + 
curl v, a measure of the local rotation in the fluid, and using derivatives, this con-
served quantity may be written: 

ρ−1 ζ · grad θ. 

This is called the potential vorticity (PV) and is conserved moving with the 
fluid in the absence of heat sources and sinks. The PV involves the dynamics as 
well as the thermodynamics: from the derivation given here it is basically a meas-
ure of circulation on a θ-surface divided by mass between isentropic surfaces. 

In most large-scale motions of interest there is balanced dynamics involving the 
Coriolis force. The simplest example is geostrophic motion. In such cases the 3-D 
distribution of PV, along with suitable boundary conditions, can be inverted to 
give all the details of the balanced flow. The large stratification is associated with 
a large vertical component of grad θ, and so, on synoptic and larger scales, it is 
the vertical component of absolute vorticity, ζ = f + k · curl v, that is most impor-
tant for PV and so in the analysis of atmospheric motion. 

4.1.2 Atmospheric Phenomena 

A vast range of phenomena occur in the atmosphere and it is essential when mod-
elling the system to consider which of these are to be simulated, and what are their 
characteristics that have to be represented in the model and diagnosed in atmos-
pheric or model data. Probably the most fundamental of these on the larger scale is 
the Rossby wave. Its nature can be understood by considering the situation shown 
in Fig. 4.1. The equatorward initial perturbation in contours of the vertical compo-
nent of absolute vorticity implies a positive vorticity anomaly. Associated with this 
will be cyclonic motion, as shown. The equatorward wind to the west implies a 
 

The potential temperature, θ, is the temperature air would have if it was tak en
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Fig. 4.1 A simple description of Rossby wave dynamics. The basic situation is one with high 
absolute vorticity (or more generally PV as marked here) poleward and low absolute vorticity 
equatorward. The starting point is a local equatorward displacement of the absolute vorticity 
contours, leading to a cyclonic anomaly (represented by a +). This induces north-south flows as 
shown, and these in turn lead to vorticity anomalies as indicated in the panel below. The result is 
a westward movement of the cyclonic anomaly (+) and the development of a new anticyclone to 
the east. These features correspond, respectively, to westward “phase speed” and “eastward 
group velocity”. A basic westerly flow (u) will add on to them, giving a reduction of the former 
and an increase of the latter  

tendency to extend the initial positive vorticity anomaly in this direction: a west-
ward “phase speed”. The poleward wind to the east of the original positive vorti-
city anomaly implies a tendency to create a negative vorticity anomaly there. This 

velocity”. The propagation of the wave activity is measured by the group velocity 
which is therefore eastward. If a basic westerly flow is added, then the eastward 
group velocity becomes larger and the phase speed can become zero, depending 
on the wavelength. The discussion of Rossby waves given here can be extended to 
apply to PV on θ-surfaces, to waves with their crests and troughs tilted from the 
north-south direction, and also to realistic flows on the spherical Earth, in which 
case propagation tends to be along great circle paths rather than east-west lines. 

The existence of such stationary Rossby waves is very important because it 
means that there can be coherent remote responses to stationary wave sources such 
as mountains and regions of persistent deep convection such as the western tropi-
cal Pacific with its high SSTs. This response can occur on planetary scales in a 
wide arc on the eastern side of the wave source. Such responses lead to the clima-
tological average waves and also to monthly or seasonal anomalies, which are 
normally associated with a sequence of height field anomalies of alternating sign. 
An example for October 2000, which was one with record-breaking rainfall in 
England and Wales, is given in Fig. 4.2. The low height-field, cyclonic anomaly 
 

means that the region of wave activity extends in this direction: an eastwards “group 
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Fig 4.2 

over and to the east of the UK is seen as part of a wave pattern. The group velocity 
arguments suggest that the origin of the anomalous pattern should be sought to the 
west, in the Caribbean/Americas region. 

The picture for October 2000 is probably not as simple as this might suggest. 
The North Atlantic storm-track extends from the coast of N America towards NW 
Europe. The weather in Europe is strongly dependent on the position and intensity 
of the storm-track. The anomalous large-scale flow in October 2000 will have 
influenced the storm-track. However the storms themselves will have fed back on 
the larger-scale flow through their vorticity and heat transports, thereby changing 
it. Fluctuations in the North Atlantic near surface westerly flow and in the storm-
track are frequently characterised in terms of the North Atlantic Oscillation 
(NAO). There is much current interest in possibly predictable monthly to seasonal 
timescale behaviour of the NAO that may be related to the strength of the lower 
stratospheric vortex or to sea surface temperature (SST) patterns. 

The absence of storms affecting a region can be associated with a phenomenon 
referred to as blocking, often characterised by a persistent deep positive height 
field anomaly. It is thought that blocking can occur as an interaction between 
weather systems and an anticyclonic anomaly, which may itself form part of an 
anomalous stationary Rossby wave train. Blocking is particularly important for 
Europe, being associated with anomalously dry or wet weather, depending on 
location, and warmer or colder weather, depending on the season. 

The 300 hPa geopotential anomaly from climate for Sep–Nov 2000 (M. Blackburn 
2005, personal communication) 
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In the tropical region a common occurrence is for frequent deep convection to 
occur in a large region for many days. This implies large latent heat release in this 
region. The response of the atmosphere to this heating usually has the general 
characteristic flow pattern which is shown schematically in Fig. 4.3. The middle 
tropospheric latent heating is balanced by adiabatic cooling associated with ascent. 
Off the equator this implies vortex stretching and the generation of cyclonic vor-
ticity below and vortex shrinking and the generation of anticyclonic vorticity 
above. As in the Rossby waves argument, the lower and upper tropospheric circu-
lations extend and move to the west, the latter process continuing until the parts of 
the circulations with, respectively, poleward and equatorward moving air are in 
the heating region. Through considerations of balance, associated with the change 
in the sense of the circulation with height, the mid-troposphere to the west of the 
heating must be warm. Such a pattern of circulations can be associated with 
anomalous heating in any month, perhaps associated with higher or lower SST 
than usual. It can also act as source for a Rossby wave train propagating into 
higher latitudes, perhaps like that seen in Fig. 4.2 for October 2000. 

A particular example of such heating and associated global anomalies is the 
tropical Intra-Seasonal (Madden-Julian) Oscillation. Large regions of much intensi-
fied or weakened convection move slowly from the western Indian Ocean to the 
west Pacific and perhaps continue to the dateline on a monthly timescale. Again this 
offers the possibility of predictive power both in the tropics and in higher latitudes. 

When, such as in the Asian Monsoon, the summer tropical heating region ex-
tends to high enough latitudes there is an interaction with the extra-tropical 
westerlies. These westerlies flow down the sloping θ surface on the western side 
of the circulations with their mid-tropospheric warmth, enhancing the descent there. 
This descent can be further enhanced and localised by topography. Radiative cooling, 
in the absence of convective heating, can then produce further enhancement, leading 
 

Fig. 4.3 A schematic showing the response to large-scale tropical convective heating. The 
convection is shown by a cloud and is assumed to span the equator 
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to very strong local descent. Rodwell and Hoskins (1996) proposed that this is the 
basic mechanism for the summer climate of the Mediterranean, which is therefore 
seen as part of the Asian Summer Monsoon. Such remote associations are very 
important in providing a context for considering seasonal anomalies and their 
forecasting. Indeed, significant weakening of the Asian summer monsoon may 
allow North Atlantic weather systems to enter the Mediterranean and then move 
into southern Europe as in the summer of 2002. 

4.2 The Role of the Ocean in the Climate System 

The fundamental role of the oceans in the climate system is to (1) act as a buffer for 
mitigating transients, (2) contribute to the required pole-to-equator heat transport, 
and (3) provide hidden “memory” in the coupled atmosphere-ocean-land system.  

Over much of the planet, the ocean can be considered to be well-represented as a 
surface mixed layer whose temperature (T) obeys a simple heat conservation law: 

( )p s
Tc h Q t
t

ρ ∂
⋅ ⋅ ⋅ =

∂
 

p
layer (h) varies in space and time – it is typically thin during summer months, and 
thick during the winter. The wintertime depth can reach hundreds of meters or 
more at high latitudes, while during the summer a depth of 10–20 m might be 
found. Figure 4.4 shows the climatological mean profile of temperature at 40°N, 
170°W in the ocean for February and August. During the winter, the cooling and 
wind cause the ocean to be well-mixed down to 200 m, while during the summer, 
 

Fig. 4.3 Climatological temperature values at 40°N, 170°W in the North Pacific for February 
(heavy) and August (light) (Data from NOAA NODC World Ocean Atlas 2005) 

Here ρ is the density and c  the heat capacity of seawater. The depth of the mixed 
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the very shallow surface layers warm up considerably. The surface fluxes (Qs) may 
include a wide range of frequencies, including diurnal cycles, synoptic atmos-
pheric weather, seasonal cycles and longer term climate changes. Due to thermal 
inertia, the ocean mixed layer will damp the high frequencies, providing a “red-
dening” of the spectrum. The deeper the mixed layer, the more pronounced the 
reddening. For the problem of seasonal climate prediction, modelling this mixed 
layer behaviour over the open ocean captures most of the essential physics over 
much of the ocean. Theories and models exist for simulating the 1-dimensional be-
haviour of turbulent mixed layers under the combined effects of heating and wind. 

The above heat balance assumes that there is no heat flux out through the bot-
tom of the mixed layer. For many problems, this treatment is adequate, but such an 
approximation will not permit any transport of heat from one latitude to another. 
The circulation in the ocean can carry heat into or out of the mixed layer. In  
regions of strong currents this extra heating can become important. The mixed 
layer budget becomes 

( )p s c
Tc h Q t Q
t

ρ ∂
⋅ ⋅ ⋅ = −

∂
 

In the time mean, a balance must exist between this circulation-induced heating 
and the surface heat flux, or Qs = Qc. It is this spatial variation of the circulation-
induced heating that enables a net ocean heat transport. Circulation-induced heat-
ing can be caused by vertical motion at the bottom of the mixed layer, horizontal 
currents or turbulent mixing. There are a few distinct regions where the ocean cur-
rents strongly affect the surface heat balance: the western boundary currents, such 
as the Gulf Stream and Kuroshio, the Antarctic circumpolar current, and the tro-
pics, particularly within the equatorial wave guide. The tropics get special attention 
in the seasonal to interannual climate problem not only because the ocean dyna-
mics plays this strong role, but because the atmosphere responds strongly to the 
ocean-induced changes. In the mid-latitudes, the oceans carry heat, but the atmos-
pheric response to this heating is not as strong, and does not cause secondary 
effects that influence the circulation on these timescales. 

4.2.1 The Thermocline – Setting the Stage for El Niño 

While the ocean is very deep, most of the important dynamics for seasonal to 
interannual timescales happen within the relatively thin warm region at the top of 
the ocean known as the thermocline.1 Oceanographers now understand that the 
________________  
1

is sometimes associated with the entire upper ocean through the development of the ventilated 
thermocline theory (see, for instance Pedlosky 1996). 

 The term ‘thermocline’ originally referred to the region of strong thermal gradient, but recently 
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character and shape of the thermocline is described by a dynamical construct 
known as the ventilated thermocline (Luyten et al. 1983). In a static view, one 
would expect the thermocline to be deepest at the equator, where the warmest sur-
face waters are found. But instead, the thermocline almost vanishes along the 
eastern end of the equator in both the Pacific and Atlantic. Cold water from below 
the main thermocline is exposed to the surface in a feature commonly referred to 
as the “cold tongue”. Figure 4.5 and Figure 4.6 show climatological temperature 
sections of the top 500 m of the ocean along the dateline and equator, respec-
tively, for February and August. Note how in Fig. 4.5 the 20°C isotherm is 
deepest at about 20° latitude along the dateline, but that in Fig. 4.6, it comes very 
close to surface at the eastern end of the equator. We can see that close to the sur-
face, seasonal effects matter, but once deeper than a hundred meters or so, the 
seasonal effects are smaller. 

As we will see later in this section, El Niño models function by predicting per-
turbations that happen to the thermocline. Its structure affects the sensitivity of the 
surface temperature to the subsurface ocean variability, which in turn affects the 
coupling between the ocean and atmosphere. Models for El Niño have shown sen-
sitivity to the sharpness and tilt of the thermocline. A new body of research has 
emerged on how long-term variations in the thermocline occur and how they 
might influence the evolution of El Niño. 

The equatorial thermocline connects to the subtropical thermocline through a 
circulation system known as the subtropical cells (STCs) or shallow overturning 
circulation. Work by McCreary and Lu (1994) has shown that the equatorial “cold 
tongue” is not simply an accident of having a thermocline and easterlies along the 
equator, but is an essential property of the STC circulation. 

These cells have a three-dimensional circulation structure, with largely pole-
ward surface branches and equatorward sub-surface flow. When the water flows 
along the surface, it is in constant contact with the atmosphere, and its properties 
are altered by the surface fluxes of heat and freshwater. nce removed from the 
surface, turbulent mixing and heating is much smaller, and the water is found to 
conserve its property over long distances and long times. A common approxima-
tion is that the flow is adiabatic, and flows along surfaces of constant density or 
“isopycnals”.  

McCreary and Lu showed that at about 15° north and south latitudes in the 
Pacific, the lower branch of the cell has a net flow toward the equator, when inte-
grated completely across the basin. Where does this water go? Except for a small 
leakage through the Indonesian throughflow, there is no horizontal outlet. The 
water coming in at this depth must rise to the surface (upwell) within this tropical 
band. With the mean easterly Trade winds, the necessary upwelling conditions 
apply at the eastern end of the equator, along the American coasts, and in a few 
isolated regions such as the Peru upwelling and the Costa Rican dome. 
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from NOAA NODC World Ocean Atlas 2005) 

 

Fig. 4.5 Climatological temperature sections along the equator for February and August (Data 
from NOAA NODC World Ocean Atlas 2005) 

 

Fig. 4.4 Climatological temperature sections along the dateline for February and August (Data 
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Further studies with more complex ocean circulation models have investigated 
the source waters of the equatorial under current or equatorial cold tongue,2 and 
are largely in agreement that the source waters of the equatorial under current and 
equatorial cold tongue lie well within the subtropical gyres. Observations support 
the canonical view of the STCs (Johnson and McPhaden 1999). 

In summary, the large-scale circulation of the top several hundred meters of the 
oceans creates a thermocline with warm water overlying cold, and this thermo-
cline is constrained to be tilted along the equator, with the cold water showing up 
at the surface at the eastern end. This sets the stage upon which fluctuations act to 
produce El Niño and La Niña. 

4.2.2 Variations on the Thermocline 

Once we understand that the thermocline should exist, and that it should surface at 
the equator, it seems natural to ask whether this outcropping is stable, or whether 
the system can experience an oscillation or be disturbed by local wind and weather 
effects. The theory of McCreary and Lu basically states that “since on the average, 
x kg/sec of cool water converges toward the equator from both hemispheres, on 
the average x kg/sec of cool water must surface”. One might think that this sets the 
temperature of the cold tongue, and that El Niño arises from changes in this pro-
cess. But this applies only over a suitable averaging interval. We know that this 
flow can take decades to close the loop. For changes that take only a few months 
or even a few years, another theory is needed that permits significant variations, 
and it is these variations that are now known to be the root cause of El Niño and 
most of tropical climate variability. 

For this theory, we turn to the dynamics of internal gravity waves as modified 
by the special features of planetary rotation – the equatorial Kelvin and Rossby 
waves that propagate signals east and west in the equatorial waveguide (see Moore 
and Philander 1977 or Gill 1982 for a synopsis of equatorial wave dynamics). 

Because of the special nature of the Coriolis effect near the equator, low 
frequency planetary waves take on distinct properties, with one wave type propa-
gating eastward (the Kelvin wave) and a set of others with westward propagation 
(the equatorial Rossby waves). Each wave describes the evolution of the thermo-
cline perturbation (h), the zonal current (u), and the meridional current (v). The 
Kelvin and Rossby waves are different “modes” of the system. Each mode has a 
different pattern in the north-south direction, but they tend to keep all the action 

________________  
2

Rodgers et al. (2003); Fukumori et al. (2004). 
 Rothstein et al. (1998); Harper (2000); Huang and Liu (1999); Malanotte-Rizzoli et al. (2000); 
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ity to the east with the same speed as an internal gravity wave. Modes 1, 3, 5, ... 
are antisymmetric, with h = u = 0 at the equator, and a maximum in meridional 
velocity at the equator. Modes 2, 4, 6, ... are symmetric with perturbations in 
height and zonal current that have local maxima on the equator, and no meridional 
flow across the equator. Note that the gravest symmetric Rossby mode (n = 2) 
propagates to the west with 1/3 the speed of the Kelvin wave. The higher mode 
Rossby waves propagate slower still. 

Figure 4.7 shows the meridional structure of the Kelvin wave. The Kelvin wave 

modes have amplitude extending further from the equator, and have a more oscil-
latory behaviour. 

 

relative amplitude of pressure perturbations from the Kelvin (K) wave and the first three sym-
metric Rossby waves (2, 4 and 6) from linear solutions with an internal gravity wave speed of 
3 m s−1. Anti-symmetric Rossby modes also exist, but are not shown  

In the ocean, the Kelvin and Rossby waves are largely forced by the wind. 
Weakening the trade winds in the centre of the Pacific will generate Kelvin waves 
that cause the thermocline to deepen while at the same time driving Rossby waves 
that cause the thermocline to shallow. Looking along the equator, one would see 
the deepening signal head off to the east and a shallowing signal heading west. 

Other than the slightly strange meridional structure and modified phase speeds, 
the Kelvin-Rossby wave set behave like internal gravity waves in a channel. Only 
one wave can send signals to the east, while all the rest send signals westward. 
Unlike a bounded channel, however, the reflection properties of the Kelvin and 
Rossby waves are different. When Kelvin waves reach the eastern end of the equa-
tor, they propagate poleward along the coast. These coastal Kelvin waves shed 

near the equator. Mode 0 is the Kelvin wave, with a phase speed and group veloc-

dional structure for h and u are the same. Note that the successively higher Rossby 
is somewhat special because it has no meridional current (v = 0), and the meri-

 Fig. 4.6 Meridional structure functions for the equatorial waves. These functions depict the
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some Rossby wave energy as they go, but to a large extent, much of the energy in 
the equatorial Kelvin wave is propagated out of the equatorial zone. 

At the western boundary, Rossby waves have a somewhat complicated reflec-
tion. Cane and Sarachick (1977) demonstrated that Rossby waves reflect into 
equatorial Kelvin waves. When the zonal mass flux in the Rossby wave is inte-
grated in the meridional direction, there can be no net accumulation of mass. The 
Kelvin wave that is reflected has sufficient amplitude to balance this mass conver-
gence. 

What we see from the wave reflections is therefore a “leaky” system: Rossby 
waves propagating westward return their energy in a Kelvin wave travelling east-
ward, but these Kelvin waves leak their energy to higher latitudes when they reach 
the eastern boundary. This leak means that the system can not simply resonate like 
a closed channel, with waves forever bouncing back and forth. Instead, any sus-
tained oscillations of this system must involve forcing. 

These wave dynamics describe the forced and freely propagating linear res-
ponse of the upper ocean to imposed wind stresses. They describe the motion of a 
simplified representation of the thermocline. These motions might be interesting 
in and of themselves, but until and unless they change the SST, they will not have 
any influence over how the atmosphere evolves in time. But if the motions do alter 
the SST, and this change in SST causes changes in the atmosphere that further 
change the winds, then there can be a feedback loop between anomalous winds, 
anomalous currents in the ocean, SST perturbations and finally back to the anoma-
lous winds. This loop is known as a closed feedback loop, in which perturbations 
in the system propagate from one variable to another. Closed feedback loops can 
lead to instabilities in the system. 

The most important modification needed to our theory is to improve the repre-
sentation of the ocean temperature. Although the upper ocean may be treated as 
two distinct layers to explain the essential dynamics, the actual ocean thermocline 
is a region of continuous gradients of temperature and salinity. The forced wave 
motions that alter the thermocline therefore introduce a continuous change in the 
surface temperature. 

We concentrate on the eastern equatorial Pacific, because this is where the 
thermocline outcrops and causes the “cold tongue”. Bjerknes (1966) noted that 
westerly wind anomalies in the central part of the Pacific would drive Kelvin 
waves to the east that would deepen the thermocline and carry warmer water to the 
east. Both effects will cause warming of the SST in the east. Theories, models and 
observations of the atmospheric response to the warmer surface temperature agree 
that such warmer SSTs will lead to further strengthening of the westerly winds. 
Thus a positive feedback loop exists that can extract energy from the system. This 
source of energy is key to overcoming the “leaky” nature of the wave reflection 
arguments made earlier. 

A second important point should be noted about the interaction of the waves 
with the SST: in the western Pacific, and away from the zone where the thermo-
cline outcrops, changes in the depth of the thermocline do not have a perceptible 
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influence on the surface temperature. Although changes have been introduced into 
the ocean, and waves are sending signals around, the ocean has “sequestered” the 
information from the atmosphere. This is a key ingredient of the delayed oscillator 
mechanism, which we discuss next. 

4.2.3 The Delayed Oscillator Theory of Enso 

We now have a view of the system where the thermocline tilts up to the east and 
exposes cold water to the surface. Changes in the position of this thermocline are 
reflected in changes to SST which perturb the atmosphere. These changes give 
rise to a positive feedback through the winds to drive an unstable growth. If he is 
the thickness of the thermocline in the eastern Pacific, and τ̂  is the zonal wind 
stress averaged across the basin, we have  
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This is a simple view of the Bjerknes instability. 
In his original paper, Bjerknes noted how this feedback can explain the emer-

gence of El Niño events, but he then remarked on the difficulty in finding a reason 
for the system to turn around and go from warm to cold. (Or, for that matter from 
cold to warm, as for example at the end of La Niña.) Since we have a rationale for 
the thermocline to be exposed to the surface in the eastern Pacific over the long 
term, such perturbations as described by Bjerknes can not take over and control 
the result forever. This, plus the observed preference for El Niño to occur every 
3–7 years led to a search for a mechanism that could explain an oscillation in the 
equatorial system. One solution can be found in the delayed action oscillator. 

As explained above, the winds that perturb the ocean by driving Kelvin waves 
to the east also drive Rossby waves to the west. They propagate on the deeper 
thermocline, hidden from the atmosphere. When they reach the western boundary, 
they reflect into equatorial Kelvin waves, and propagate back to the east. In this 
case, the equation for he(t) must be modified to include the effects of the Rossby 
waves. The eastward propagation of Kelvin waves along the equator and the 
poleward propagation along an eastern boundary can be clearly seen in Fig. 3.3. 
This figure also shows the westward propagation of Rossby waves from the east-
ern boundary and their generation in mid-ocean and westward propagation to the 
western boundary. 
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The important feature of the Rossby waves is that a wind that drives a shallow-
ing Kelvin wave will drive a deepening Rossby wave, and that a deepening 
Rossby wave reflects into a deepening Kelvin wave. Thus, the evolution of the 
height field in the east is a combination of the Bjerknes instability and information 
from some “old” Rossby wave: 

( ) ˆ( ) ( )e
e

h t
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t
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= − − Δ
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The factor C includes the effects of how the wind drives the Rossby wave, how 
efficiently the western boundary reflection works and how the Kelvin wave alters 
the thermocline thickness. The time t-Δt  reflects the fact that the height at present 
time is influenced by the wind that existed in the past – at the time that the Rossby 
wave was first generated.  

But once again, since τ̂  at any moment is presumed to be proportional to the 
SST anomaly, which is presumed to be proportional to the thermocline displace-
ment, we can combine all these proportionality factors and arrive at: 
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This equation is a differential-difference equation that describes the basic de-
layed action oscillator. Under certain conditions, this equation can lead to growing 
oscillations. 

In their original proposal Schopf and Suarez (1988) include a cubic damping 
term which is intended to reflect the fact that SST can not grow without bounds: 
In our advective model, if the thermocline floods in completely from the west, the 
surface temperature can not get much above 30°C, because that is the warmest 
water available. Similarly, because the process works as an uncovering of the ther-
mocline, if too much water is brought up, the surface will see the relatively uniform 
intermediate water that lies just below the thermocline. Their proposal is therefore 
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This cubic term means that the system will not grow without bound, but will 
undergo regular oscillations of a fixed amplitude. The modification to a non-linear 
system is not fundamental to our understanding of the mechanics of the delayed 
action oscillator.  

By rescaling time with the growth rate AB, and the dimensional he with 
1/ 2( / )AB γ , we see that the oscillator depends on two parameters: 
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system should exhibit self-sustained oscillations or not have been made, but they 
are inconclusive. Instead, experiments with numerical models have been designed 
to examine the point, but in the end there is less to be learned from examining the 
stability question than there is in understanding the elements of the system.  

The key elements of the delayed oscillator are: 

1. Coupled instability in the east via Bjerknes mechanism 
2. Low frequency Rossby wave generation that perturbs the thermocline 
3. Reflection of the thermocline displacements into an equatorial Kelvin wave 
4. “Coupled reflection” at the east 

This last point is an interesting twist on what one would expect if gravity waves 
bounced back and forth across a closed basin. Instead of a period that is set by the 
time it takes a wave to go back and forth across the basin, the delayed oscillator 
operates with a period which is at least twice that time. Recall that the reflection of 
a deepening Kelvin wave at the eastern boundary causes a weak set of deepening 
Rossby waves. In the delayed oscillator, the Rossby waves are not generated at the 
coast, but through the coupling process whereby deepening Kelvin waves give rise 
to shallowing Rossby waves. This phase reversal is key to the period-doubling 
inherent in the system. 

The delayed action oscillator theory demonstrates that El Niño arises from a 
coupled instability in the ocean-atmosphere system. Neither an ocean-only nor 
atmosphere-only model can explain El Niño and its dominant frequency. It implies 
that the memory in the system lies in the thermocline, off the equator. In Chapters 
5 and 6, we discuss the nature of the prediction system, and how model initializa-
tion, and particularly ocean data assimilation is essential to successful forecasts of 
El Niño. One of the main reasons for this lies with the information contained in 
the ocean thermocline and the dynamics of how that information propagates 
through the system, only later to show up as changes in the surface temperature.  

4.2.4 The Recharge Paradigm 

An alternative to the delayed oscillator theory is the recharge paradigm for El Niño. 
In this view, it is recognized that the Rossby and Kelvin waves cross the basin far 

where /D ABα =  and AB tδ = Δ . The system described may undergo self-
sustained or damped oscillations, depending on the location of the base system in 
the parameter space described by α and δ. When oscillations are present, they 
have a period in excess of twice the delay. They are typically far greater than this. 
See McCreary and Anderson (1991) for a full coverage of the various types of 
response as a function of α and δ. 

The delayed action oscillator succeeds in describing a mechanism whereby a 
preferred periodicity for El Niño may exist. As one can see, there are several  
parameters which are not easy to quantify, and attempts to diagnose whether the 
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more quickly than El Niño changes to La Niña. When fast-moving waves are 
forced slowly, it is hard to recognize them as waves at all. Instead of describing 
the changes in the state as due to wave propagation, perhaps we can describe the 
ocean as in quasi-steady state.  

Jin (1997) was able to use this property to develop a simpler system of equa-
tions that describe an oscillator. When the waves are fast, the equatorial Kelvin 
wave can be written in the very simple form: 

he (t) = hw (t) + a1 ˆ τ  

where he is the thermocline height at the eastern end of the equator, and hw is the 
height at the west. ˆ τ  is the average zonal wind stress across the basin, and a1  is a 
proportionality factor. 

Anderson and Gill (1975) demonstrated how the steady circulation of the ocean 
(the so-called Sverdrup flow) is established by the net effect of Rossby waves. In 
the recharge view, the explicit treatment of the Rossby waves of the delayed oscil-
lator are replaced with Sverdrup flow, which causes mass to converge toward the 
equator, thereby setting up changes in the thermocline in the west. An equation for 
the thermocline thickness in the west is then  

dhw

dt
= −rhw − β ˆ τ  

where r is a damping factor, and β is a proportionality factor that builds in the 
different projection of the winds onto the modes as well as a number of other effects.  

The coupling in the recharge oscillator occurs through the SST, as in the de-
layed action oscillator: the stress is proportional to the temperature in the east. In 
the delayed oscillator, the relationship between the thermocline depth and the SST 
is treated as due to several factors:  

dTe

dt
= −a2Te + a3he + a4τ e  

where Te is the SST, which is damped by surface fluxes to some equilibrium, a3he 
reflects the contribution of upwelling, and a4τe represents an advective feedback 
due to wind stress local to the east. 

These terms are then related to two variables as primary hw and Te: the winds 
(both τ̂  and τe) are made proportional to Te. If time is scaled with the Bjerknes 
instability growth rate and hw scaled appropriately, the coupled set of ordinary 
differential equations can be written 
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The recharge oscillator and delayed action oscillator share the same ocean 
dynamics (low frequency forced modes), and depend on two parameters. In both 
views, one parameter sets how fast the western basin fills in relation to the time-
scale of the Bjerknes instability. In the delayed oscillator, it is the Rossby wave 
propagation time, while in the recharge oscillator, it is the damping parameter ˆ r . 
Both theories also have a free parameter describing how strongly the conditions in 
the west influence the SST in the east. 

Given their shared view of ocean dynamics and their ultimate dependence on 
two similar parameters, it is not possible to differentiate the two theories based on 
observations or model experiments. For most questions, they share similar chal-
lenges. For instance, it has been noted that the recharge paradigm depends on the 
latitude at which one wishes to compute the Sverdrup flow. But the delayed oscil-
lator can consider more than one meridional Rossby mode, with higher modes 
extending further poleward and travelling at slower speeds. The delayed oscillator 
is criticized because it may be possible for Rossby waves to propagate through the 
Indonesian archipelago.3 But in the quasi-steady Sverdrup flow of the recharge 
paradigm, the buildup of mass in the west may be returned poleward in western 
boundary flows or may pass through Indonesia just as the low frequency Rossby 
waves. In short, there is little to be gained from differentiating these two views.  

4.2.5 Conclusion 

The ocean is but one part of the climate system. We have discussed how the ocean 
takes up heat to buffer the high frequency changes induced by the atmosphere. 
Next we noted that the large scale circulation created by the combined effects of 
winds and surface heating does not drive the entire ocean uniformly, but leads to a 
rather shallow circulation that is described by the ventilated thermocline. This 
thermocline connects to the equator via the shallow tropical cells, and an inevita-
ble consequence of the atmospheric forcing is that this thermocline will emerge at 
the eastern end of the equator (at least in the Pacific).  

Coupling to the atmosphere and a simple deterministic view of the atmosphere 
led us to discover that this tilted thermocline is perhaps not a stable stationary 
state, but can possibly have unstable, self-sustained oscillations. These oscillations 
lie at the heart of El Niño and La Niña. Whether or not dynamics such as the 
delayed oscillator are strong enough to cause spontaneous changes to the system, 
 

________________  
3

oscillations. 
 Schopf and Suarez (1990) show that a reflection efficiency as low as 15% is sufficient to permit 
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it is clear that other perturbations to this tilted thermocline are capable of causing 
significant changes in the equatorial surface temperatures. Storms, sub-seasonal 
variations, and other unpredictable features of the tropical atmosphere will all 
leave their imprint on the thermocline. Some may lead to expressions in the SST 
that will give rise to coupled instability, some will pass through the system as sub-
surface Kelvin waves with little hope of making a sustained change in the climate 
system. 

models is to build models that must capture all of the essential physics – the mixed 
layers, ventilated thermocline, shallow tropical cells, wave dynamics, and thermo-
dynamics of how the thermocline emerges, and they must be able to be initialized 
with the important information that contains the dynamics of the evolution. 

4.3 The Nature of the Prediction Problem 

The problem of seasonal climate prediction is one of attempting to simulate the 
seasonal average of the weather, not the individual fronts, cold snaps, or storms. 
These “weather” events have been shown to have no predictability beyond a week 
or two (see also Chapter 3). If the climate is the sum of weather, but the weather is 
unpredictable, does this not imply that the climate is unpredictable? In fact, the 
answer is no, the climate can be predictable considerably longer than the weather. 
If a forecast system fails to predict a storm 10 days from now, but predicts one 12 
days from now, the forecast is wrong, but the average number of storms in the 
next month will be correct. The prediction problem relies upon the fact that some 
parts of the system evolve slowly, while others are of short duration. If the short 
events are unpredictable, but an equation can be written to describe the slow evo-
lution, then the high frequency component can be considered unpredictable 
“noise”, and the challenge is to describe the effect of noise on the solution of the 
slow equations. 

the current theories for El Niño/La Niña, which involve the propagation of signals 
on the ocean thermocline, transformation of these signals to SST anomalies, then 
coupling to the atmosphere, modification of the winds and driving of the ocean. 
We derived equations for this slowly evolving part of the system. The oscillator 
theory is very simplified, however, and much can disturb the process. Each  
El Niño develops differently, and the magnitude can vary greatly from one event 
to the next. The examination of this irregularity is fundamental to understanding 
the prediction problem, because it lies at the core of understanding the “predict-
ability limit”. 

The challenge to the problem of seasonal climate prediction via dynamical  

In Chapter 3 and in the previous sections of this chapter we discussed some of  
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4.3.1 Predictability Limits 

The predictability limit is a concept that describes our recognition that we do not 
do as well with models as we can, but that even a perfect model and perfect ini-
tialization will be unable to forecast the climate forever. If the models are 
inherently flawed, then the predictability limit may be a gross overestimate of how 
long we can make a successful forecast, but it is useful to try to approximate this 
limit. If, for instance, it can be demonstrated that no model/initialization system 
can forecast for more than 2 months, why bother to build better and better models 
and more and more expensive observing systems? If, on the other hand, it can be 
shown that forecasts of up to 3 years can be made, then we had better put a lot 
more effort into our models, observing systems and initialization methodology. 

Unfortunately, there is no absolute way to define a predictability limit. We can 
study how models behave, using the “perfect model” technique. To study pre-
dictability, we want to know how fast a perfect model diverges from nature. 
Unfortunately, although we can know what nature did over the past, we can not 
construct a perfect model. Instead, we can examine predictability by replacing 
nature with a model simulation. For this model simulation, there does exist a per-
fect model – the model itself. There also exists perfect initial conditions and 
perfect initialization. 

If we run the same computer code on the same computer many times with 
widely different initial conditions, the solutions will enclose a wide region of phase 
space that describes the climate and its variability. One should see the seasonal 
march of temperatures, for instance, but the model simulation for a specific day 
will vary considerably from one run to the other. This spread in the results of a 
random collection of model runs is known as the “saturation”. 

If we run the same computer code on the same computer many times with ex-
actly identical initial conditions, the model will produce identical results forever, 
unless a coding error exists. There will be no spread between results. But if we 
introduce a very tiny error in the initial conditions, the model runs will diverge. At 
first, if we repeat this experiment over and over with many initial conditions that 
differ by small amounts, we find that the spread in these results is far smaller than 
the saturation. But eventually, solutions with even the tiniest of initial errors will 
reach a spread indistinguishable from saturation. When this occurs, we have 
reached the predictability limit. 

Thus, we can define the predictability limit in the context of a model. But does 
this model represent nature? Is it close enough? If the experiments are repeated 
with another model, will the results be the same? If they are, is it because the two 
models reflect nature, or because they share a systematic bias or systematic error 
that leads to this behaviour? These are questions which confront the theoretician 
trying to deduce a predictability limit. 
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4.3.2 Enso Irregularity and Predictability 

Is there a relationship between the fact that El Niño is irregular and its predict-
ability? This irregularity reflects the complexity of the coupled ocean-atmosphere 
system and hints at the difficulties in predicting ENSO. Is it due to noise in the 
system, the inability to adequately specify the initial conditions, inherent deficien-
cies in the models, or to not-yet-understood fundamentals of the physical system. 

Theories on the cause of ENSO irregularity can be broadly grouped into three 
categories that are related to their assumption about the strength and validity of the 
underlying oscillator and the importance of noise. We have presented the delayed 
action and recharge oscillators as theories for the dominant periodicity of El Niño, 
but there are debates as to whether they actually operate. We know that in certain 
parameter ranges, the equations for these simple systems will describe robust 
oscillations, while in others, the only solution will be a decaying, damped oscilla-
tion. The first is self-sustained, the latter requires some external forcing to keep 
the system going. The three categories of theory on El Niño irregularity split into a 
view that the oscillators are self-sustained, that they are damped, or that they are 
essentially neutral. The role of non-linearity and noise is markedly different in 
each case, and our view of predictability is different in each. 

The first view argues for the importance of non-linearity within the tropical 
coupled system. The non-linearity arises from strong air–sea feedback that puts 
the coupled mode in an unstable dynamic region. In this regime, El Niño can not 
only be described as due to a self-sustained oscillator, but it can interact non-
linearly with either the annual cycle or other coupled modes. A common model 
that is cited in this regime is the Zebiak-Cane coupled model, which can be con-
figured to exhibit strong non-linearities and chaotic behaviour. In this view, the 
loss of predictability is primarily due to the uncertainty in the initial conditions or 
in non-linearities in the atmospheric response to the ocean. It relies upon fairly 
robust ocean wave dynamics that provide the underlying timescales for the 
problem. 

The opposing view to this is the stochastic ENSO theory in which “weather” 
noise generated by the internal dynamics of the atmosphere plays a fundamental 
role in not only giving rise to ENSO irregularity, but also in maintaining ENSO 
variance. In this view, the coupled mode is in a damped regime, and thus the 
ENSO cycle cannot be self-sustained without external noise forcing. The oscillator 
describes a tendency for the system to have a preferred period, but does not ex-
plain much about the appearance of any single event. It is the exact pattern of the 
noise and how it forces the weakly coupled modes that determine whether a large 
or small El Niño or La Niña will next appear. The cyclic nature of the underlying 
oscillator merely alters the odds a little in favour of one side or the other. In this 
view, the role of the equatorial Kelvin wave and the equatorial air-sea coupling is 
important, and the off-equatorial ocean dynamics seems less vital. 
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In between these two viewpoints is the view that ENSO is very close to the di-
viding line between self-sustained and damped behaviour. Its behaviour is 
governed by the temporal characteristics of the single, most dominant coupled 
mode plus the influence of weather noise. In this scenario of ENSO, predictability 
comes from the oscillatory nature of the dominant mode, while the loss of predict-
ability is primarily due to noise influence. Different from the stochastic ENSO 
theory where the noise influences the non-modal growth of the coupled system, 
the role of the noise in this case is to disrupt the regular oscillation of the dominant 
mode. In this regime, the ocean wave dynamics and reflection properties must also 
be sufficient to sustain the oscillation. 

An extension of this view is the notion that over decades, the system can wan-
der across the dividing line between self-sustained oscillations and a damped 
regime – so that predictability may vary from 1 decade to the next (Kirtman and 
Schopf 1998). This concept of time-varying predictability is an important one to 
bear in mind when considering the skill of previous forecasts and whether this 
means that our current forecasts are “better” or “worse” than before. 

Pinpointing exactly where in the parameter regime ENSO resides in reality is 
difficult, if not impossible, given the available observations. Many of the recent 
studies on this issue are based on relatively simple coupled model simulations and 
prediction experiments. Some of the evidence supporting stochastic ENSO theory 
is based on the finding that in the damped regime the coupled model forced by 
stochastic processes produces the best fit to observed ENSO statistics. But in a 
non-linear system such as the delayed oscillator with cubic damping, the system 
will appear as damped, while in fact it will spontaneously generate oscillations. 
Other evidence comes from the finding that there is a lack of support for a con-
tinuous ENSO cycle in the observations. In particular, there is little observational 
evidence that the initiation of an ENSO event relies on the memory of a previous 
event, though the termination of an event is generally consistent with the delayed 
oscillator mechanism. The break in the cycle suggests that the system is in a 
damped regime and the onset of ENSO relies on external influences. Other studies 
dispute the stochastic hypothesis by providing evidence that seems to be more 
consistent with the self-sustained ENSO theory. As demonstrated in Schopf and 
Suarez (1988) and discussed in Jin (1997), a system with a stable, periodic oscilla-
tion in the absence of noise can become irregular with the addition of stochastic 
forcing, and will present statistics that appear to be more stable. Chen et al. (2004) 
provide retrospective forecasts of ENSO over a 148-year period and show that all 
prominent ENSO events can be re-forecasted at lead-times up to 2 years. Such a 
long predictability is in better agreement with the self-sustained ENSO theory than 
the stochastic theory. However it remains to be tested in the crucible of an actual 
forecast. 

What has emerged in the consideration of the theory is the conclusion that 
noise has a profound influence on the system and that ocean wave dynamics are 
essential to obtaining predictive skill as is the proper description of the air-sea 
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coupling. The non-linear, strongly oscillating view gives the most optimistic view 
of predictability, the stochastic version gives the most pessimistic. 

Finally, the debate over where the system lies may have less importance for the 
practical forecaster than for the theoretician. If weather noise has an influence on 
the system, there are two parts to consider: what is the role of noise that occurred 
in the past, and what can we do about the future weather? The past weather noise 
has become stamped on the ocean and is propagating in the system. If we had a 
good observing system and initialization method, one could hope to capture all the 
influences of the past noise, and march forward to a good simulation. This means 
that we need more than a single simple metric for the ocean initial state. It is insuf-
ficient to look at the depth of the thermocline in the west and make a prediction. It 
will not work to describe the average amplitude of the gravest westward propagat-
ing Rossby wave in the ocean. The past noise is inherent in the very complex and 
complete ocean state, and extracting as much of this as possible is the key job of 
the data assimilation systems. 

If one might hope to capture the effects of past “noise” or weather with a good 
observing system, what can we do about the weather events that are going to occur 
over the upcoming seasons that we are attempting to predict? There is evidence 
that some features, such as the Madden-Julian oscillation, may be able to be pre-
dicted for more than a week, but beyond that time, one has to consider these effects 
as unknowable. It is ultimately these disturbances that will limit the predictability 
of seasonal means. Perfect models and perfect initialization will never be able to 
overcome their effect. Experience with idealized model predictability studies 
seems to show that the limit of predictability is significantly longer than we cur-
rently realize with today’s prediction systems. Much work remains to be done, 
advancing the models and refining the initialization systems. 
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Chapter 5 
Getting the Coupled Model Ready  
at the Starting Blocks 

The aim of coupled models is to represent the trajectory of the climate system as 
realistically as possible. Given the chaotic nature of the climate system, it is essen-
tial that the starting point of the coupled model trajectories (i.e. the initial 
conditions) is as close as possible to the observed climate trajectory. In order to 
ensure that this condition is satisfied, observations are used to modify the coupled 
model via the data assimilation approach. In the context of seasonal forecasting, 
data assimilation is nothing more than a combination of observations and model 
data, performed with the aim of achieving the ‘best’ initial state of the coupled 
model. However, what constitutes the best initial state is still under debate as it is 
not obvious whether the best seasonal forecasts are obtained by targeting (a) the 
most accurate initial state estimate or (b) the most consistent (with the model’s 
own preferred state) coupled state or (c) the coupled state that controls some par-
ticular growing modes, or indeed a combination of the three. In this chapter we 
will present generic data assimilation strategies, including some of their history, 
which could be adapted to any of these three options. If observations were abun-
dant, one could just use the information given by the observations to obtain the 
best initial conditions. With the advent of satellites, the last 2 decades of the 20th 
century have seen an enormous increase in Earth observations. Despite this abun-
dance of observations, large parts of the Earth system still remain unobserved: the 
interior of the ocean for instance can not be measured remotely. Data assimilation 
becomes therefore indispensable. At present, data assimilation is applied sepa-
rately to the individual components of the coupled model. Ideally, the initialisation 
should be realized using the coupled model directly but this approach, as dis-
cussed in this chapter, is still in its infancy and progress is not expected to be fast 
as many obstacles, not least the presence of serious model errors in both atmos-
pheric and oceanic models, still hinder its way to a full mature phase.  
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5.1 Data Assimilation Overview 

To some, data assimilation may seem like a daunting mathematical-technical 
problem. In practice, this might be the case, but not more than in any field that 
requires rather heavy use of a mixture of mathematics and computer programming 
languages. The task is made easier, however, if it is clear where one is heading. 
So, although it is true and unavoidable that the foundations of data assimilation are 
purely mathematical, what the mathematics are trying to represent is a pretty 
straightforward concept: data assimilation is a blending of two different represen-
tations of the same system (e.g. the climate system), also referred to as truth. In 
general, the two representations are constituted by (i) a model (normally a  
dynamical one), which aims at representing the system, and (ii) some observa-
tions, which actually sample the system. The aim is to improve the description of 
the system as reproduced by the model by using the information coming from the 
observations. 

5.1.1 

Three main objectives of data assimilation can be identified, even though in prac-
tice they overlap considerably: 

1. To obtain a four dimensional picture of the system (state estimation), consistent 
with both measurements and dynamics 

2. To provide initial conditions to be used by forecast models, as widely devel-
oped for Numerical Weather Predictions (NWPs) 

3. To improve the dynamical model in order to get a better physical description of 
the real system 

These objectives are applicable to data assimilation in general – data assimila-
tion is utilised in a variety of disciplines, e.g. satellite orbit determination or 
dynamic plant models – and these objectives are certainly valid for the atmos-
pheric and oceanic media, with which we are concerned here. 

Since the prediction of the climate system on seasonal to interannual timescales 
is mostly an initial value problem, the role of data assimilation is essentially to 
provide the best possible initial conditions. As discussed in Chapter 3, the most 
common approach is to separately initialise the individual main components, 
namely the ocean, the atmosphere and the land.  

In order to prepare the separate initial conditions, an independent analysis to 
provide a 4-dimensional picture (i.e. in space and time) of the atmosphere is  
undertaken in which the ocean sea surface temperatures (SSTs) are held fixed. The 
atmospheric analyses thus produced are then used to provide momentum and heat 
flux forcings to drive the ocean models into which ocean observations will be  
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assimilated. In so doing, a 4-dimensional estimation of the ocean also becomes 
available. Similarly to the ocean, the land surface module is driven with surface 
fluxes of heat and moisture, including precipitation, from the atmospheric model 
and observations to initialise the land component.1 The individual models thus 
initialised are then coupled and integrated forward to produce seasonal predictions 
(see also Sections 3.3 and 6.3.2). 

The success of a data assimilation system is very much dependent on the qua-
lity of the model available with which the assimilation of data is performed. For 
infinitely dense observation networks, i.e. if one could observe all the variables 
needed by the model, the model used would be irrelevant. In reality, however, the 
level of detail of a model is generally much higher than that provided by observa-
tions and therefore the quality of the model matters a lot. In particular, model 
deficiencies (also known as model errors) should be taken into account when de-
vising data assimilation techniques. Despite their importance, model errors are 
generally ignored in standard assimilation techniques: in so doing the mathematics 
is considerably simplified. More recent approaches have only recently started to 
take model errors into account hence in this chapter we will mostly focus on stan-
dard data assimilation approaches (for more information on model errors in data 
assimilation see Dee 2005 and references therein). 

Data assimilation concepts used by the atmospheric modelling community are 
dealt with first. Although presented as pertaining to the atmosphere, the approaches 
discussed are valid for a wider class of fields, oceanic modelling being one of 
them. After a description of assimilation methods, the types and number of obser-
vations are introduced, first for the atmosphere and then for the ocean. The 
following section presents an investigation of the impact of some assimilation 
methods on seasonal prediction. An outlook on data assimilation strategies, in-
cluding a research area which is gaining increasing interest – coupled data 
assimilation – is subsequently discussed. Before jumping into the formal data as-
similation, some examples, with reference to applications in fields other than 
climate science, are given. 

5.1.2 Data Assimilation Beyond Climate Science 

Missiles are fired with the intent to hit a predetermined target, be it moving or 
stationary. Even when their trajectory is accurately computed beforehand using 
some relatively simple formulae (the model), missile progress has to be constantly 
monitored. It is unlikely that the modelled trajectory describes the trajectory  
________________  
1

assimilation will only be referred to in the “Suggested further reading” chapter (p. 465). Suffice 
to say that methods for land assimilation are often adapted from those discussed here. 

 Although an important component of the climate system on seasonal timescales, land data 
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follow in order to reach the target (the system or truth). It is in these adjustments 
that some data assimilation procedure needs to be employed. In fact, the modelled 
trajectory has to be combined with measurements of the actual trajectory (the 
observations). The result of this operation is an adjustment which is applied to the 
missile so as to nudge it towards the right track along with an updated modelled 
trajectory. This procedure is then repeated regularly until the missile reaches the 
target. 

There is no guarantee, however, that any trajectory could be beneficially adjusted. 
If the missile is fired at an angle such that the actual trajectory lies too far from the 
modelled one, there may be little possibility of bringing the missile back on track. 
This might more easily happen in the case of models of more complex systems 
such as that of climate. The model trajectory might be sufficiently far from the 
observed one that the adjustment required would just be too large. In such a cir-
cumstance, if the adjustment was applied to the model trajectory it would cause 
the model to crash (or blow up) as the model solution would not be compatible 
with the data assimilation solution. An alternative approach would be to disregard 
the adjustment and let the model follow its own trajectory, but then we would not 
talk of data assimilation anymore. Fortunately climate models are not that bad.  

A missile is an easy object to visualise. With a little stretch of the imagination 
it is actually possible to construct data assimilation examples which are somewhat 
out of the ordinary. Take for instance the case of the human mind. Although this 
illustrative example may appear slightly controversial, it can nonetheless be 
thought provoking to some readers (the authors certainly find it intriguing).2 

So how does the human mind fit in the data assimilation framework? Let’s start 
from the sleeping state. When one sleeps, the mind is free to wander and to access 
states over which we have little or no control (e.g. dreams). It is this floating state 
which best describes the analogy between the human mind and the model. We can 
therefore view the model as a collection (or series) of (apparently?) chaotic states, 
which ultimately constitute the human mind. Now, when we wake up, a variety of 
constraints emerge, from the shape of the rooms we live in, to the people we get in 
contact with, to even the strong sense of direction imparted by the sun. All these 
constraints act as observations which the human mind (the model) will (try to) 
assimilate. Clearly, some information is accessible to the human mind even before 
observing what is around. When one wakes up in the morning she/he knows a lot 
about the surroundings (in which house and room one is in, whether or not there is 
a garden, etc.) and this information – in the data assimilation parlance called sta-
tistical information or covariances – is elaborated along with what is actually 
observed.  

________________  
2

order to bring the actual trajectory closer to the trajectory that the missile has to 
actually followed by the missile. Remote adjustments are generally needed in 

 The idea for this example is courtesy of a colleague, Dick Dee. 
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Unlike for the missile, in the case of the human mind, it is less obvious what 
the model should describe and what the objectives of the human mind are. With-
out entering into philosophical debates, it is sufficient to point out that for instance 
from the perspective of free will, the modelled trajectory is represented by the path 
towards anyone’s personally selected target. Interestingly, even in the case of the 
human mind as a model for data assimilation, we can draw the analogy of the 
blowing up of the model: when everyday constraints become too stringent, insanity 
may arise.  

In summary, although we might not realise it, data assimilation is embedded in 
several instances of our everyday life and the examples above might be useful to 
help visualise the data assimilation problem. We are now ready to tackle the 
atmospheric and oceanic data assimilation. 

5.2 Data Assimilation for Prediction 

5.2.1 Introduction to Atmospheric Assimilation 

The primary focus of atmospheric data assimilation has been the production of 
initial conditions for the purpose of numerical weather prediction. As mentioned 
above, there can be other rationales for the assimilation of atmospheric data, tem-
porally consistent climate records for example, but the historical development of 

The prediction problem is frequently idealized mathematically when it is pre-
sented in academic courses and much of the emphasis in textbooks and courses is 
on the dynamical, mathematical and numerical aspects of computational predic-
tion with little presentation of the specifics of how the initial conditions for the 
initial value problem are to be obtained. The initial conditions are ‘observed’ but 
quite a bit goes on between the observation of meteorological variables, using 
satellites and rawindsondes, etc., and the first time step of a numerical weather 
forecast. All of this happens within the domain of atmospheric data assimilation. 

5.2.2 Beginnings of Atmospheric Data Assimilation 

After L. F. Richardson’s heroic effort of computing by hand a numerical weather 
prediction for a single point during the First World War, interest in computational 
prediction of the weather began in earnest with the project at the Institute for  
Advanced Studies at Princeton under the guidance of John von Neumann. In the 
late 1940s, the first electronic computer (the ENIAC) was developed and von 

ving daily operational weather prediction. 
assimilation in an atmospheric context has benefited from the demands of impro-
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Neumann chose weather prediction as one of the first applied problems to be at-
tempted with the ENIAC. The famous experiment detailed in the Tellus article by 
Charney, Fjortoft and von Neuman (1949), computed a 24 hour weather prediction 
over the continental US using the equivalent barotropic model, forecasting the 
height of the 500 hPa pressure surface from an analysis of that field at the initial 
time. The initial analysis was not objectively obtained, however, but was an inter-
polation of the hand-drawn analysis produced by a synoptic meteorologist. 

Clearly, there was a mismatch in the techniques used for producing the initial 
state (subjective) and the forecast field (objective) which needed to be addressed 
and so the first incarnation of atmospheric data assimilation, objective analysis, 
was developed. The first attempt at an objective analysis method was made by 
Panofsky (1949), who proposed and tested a local polynomial fitting technique. In 
this method the height field was assumed to be given as a quadratic polynomial in 
the spatial Cartesian coordinates x and y, i.e.  

i j
ij

i, j 3
z(x, y) a x y

<

= ∑ , 

with the coefficients, aij, determined by a least square minimization (see appendix 
at the end of this chapter) of the difference between the assumed quadratic form 
and the values of z observed at neighbouring radiosonde observation locations. 
Panofsky noted a few limitations of this method having to do with the locality of 
the approximation; (1) the geostrophic vorticity, proportional to the second deriva-
tive of z with respect to x and y, was very noisy, (2) if the method was used to 
analyse the horizontal wind components, the horizontal divergence of the wind 
could become large if the wind components were independently fitted as quadratic 
polynomials and (3) since the method used local fitting, the edges/seams of the of 
the local fits were noticeable. 

The next method developed attempted to rectify some of the shortcomings of 
the Panofsky method and began to utilize the information inherent in the opera-
tional prediction of the weather on a daily time schedule. Bergthorsson and Doos 
in Europe and Cressman in the USA, developed similar schemes for objective 
analysis that incorporated the 24 hour forecast as information for the analysis and 
also made use of the notion of the geometric relationship of observations relative 
to the analysis points in a manner superior to mere function fitting. These were 
accomplished by (1) using the forecast fields as a ‘first guess’ base field and (2) 
devising the method so that observations nearer to the point at which the analysed 
field is required are given more weight than those observations which are farther 
away. Schematically, the method of successive corrections, as the Bergthorsson–
Doos–Cressman scheme is known, can be summarized as follows:  

1. Use the forecast field as first guess 
2. Fit an increment to the first guess weighting the influence of observations to 

their distance from the analysis point 
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3. Successively refine the correction by using fewer remote observations with 
each iteration 

4. Impose geostrophic balance in the iteration scheme 

(The mathematical details are specified in the appendix, Section 5.6.) 
The methods developed by Panofsky, Cressman and Bergthorsson and Doos 

were rooted in the idea that a good atmospheric analysis could be obtained 
through the interpolation of observations to the computational grid of a dynamical 
model. That such interpolation should be guided by the statistical structure of the 
field to be interpolated was not a consideration in these methods. The first to put 
forward such a concept was Arnt Eliassen in 1954 who demonstrated the concept 
for the surface pressure field. Independently, Lev Gandin in the Soviet Union fully 
developed this concept in a book which detailed the method of optimal (or opti-
mum) interpolation (OI). Roughly speaking, OI is designed around the fact that 
the meteorological fields of temperature, wind, humidity and pressure are organ-
ized into systems which are of finite scale and so, for example, the temperature 

interpolation of corrections to the first guess fields forecasts was free from an ad 
hoc weighting factor because the weights and spatial dependence were obtained 
from the statistics of the field itself and secondly the multivariate interpolation 
was easily handled in the OI scheme since the formalism only depends on field 
correlations, which could be between differing variables such as the pressure and 
the wind fields. This second advance made it relatively straightforward to impose 
well-known constraints on the analysis like geostrophic and hydrostatic balance in 
a statistically consistent fashion. 

As above, the mathematical details of the OI method are spelled out in the ap-
pendix. The OI method served the atmospheric prediction community, through the 
1970s and well into the 1980s. The limitations of the method which required the 
development of the current suite of analysis/assimilation methods were associated 
with the fact that OI is ideally suited for the analysis of conventional observations 
of model state variables coming from radiosondes, for example, and not directly 
adaptable to satellite observations which measured radiances. Thus, up to the late 
1980s satellite radiances were first ‘converted’ into inferred temperatures before 
being assimilated into an analysis. A second issue was the lack of temporal consis-
tency in the analysed fields since the only memory in the analysis cycle comes in 
through the (first guess) forecast, which represents only one particular realisation, 
namely that at analysis time. 

anomaly at a point is correlated with the temperature anomaly at nearby points. 
(If it is colder than normal in Lecce, it is oftentimes also colder than normal in 
Gallipoli.) The major advances from successive corrections were firstly that the 
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5.2.3 Four-Dimensional Data Assimilation 

The constraint of temporal consistency and continuity has been one of the main 
tools of the subjective analyses produced by synoptic meteorologists in order to 
maximize the information used in the analyses. These subjective analyses were 
digitized and used to initialise the earliest numerical weather predictions. Tempo-
ral continuity and consistency is an obvious constraint on the atmosphere and so 
even in the relatively early days of NWP Thompson (1968) devised a variational 
method to analyse the atmosphere in both space and time. This was the first 4-
dimensional analysis method proposed but it (like Richardson’s numerical weather 
prediction) was ahead of the computational means necessary for practical utility. 
However, as noted above, a first step towards temporal consistency was effected 
by using the short-range forecast as a first guess in the operational forecast-
analysis-forecast cycle, in the successive corrections first and with the OI later. In 
this way, the information from the previous assimilation was retained, although 
not optimally. A first step to optimal interpolation in time and space required that 
both the first guess (forecast) and the observations to be assimilated be treated as 
random variables with quantifiable error characteristics. An illustrative example 
which can be considered the essence of modern techniques of assimilation is the 
following. Suppose one is given two distinct estimates of the temperature at a lo-
cale, 1T  and 2T , with errors associated with each. (For example, one temperature 
could be a forecast temperature from a model and the other temperature could be 
a measured temperature from a thermometer.) Suppose also that the expected 
errors associated with each estimate as measured by its standard deviation is 

1 2 and σ σ . Then, as shown in the appendix, the linear combination of the tem-
peratures with the least error on average is given by: 

21 TTToptimal βα += , with ( ) ( )2 2 2 2 2 2
2 1 2 1 1 2  and .α σ σ σ β σ σ σ= + = +   

That is the weight given to each temperature is inversely proportional to the 
relative accuracy of the temperature estimate. 

Thinking of one of the temperatures as coming from a forecast to consistently 
incorporate a memory of past analyses and optimally use the forecast, one needs to 
weight the forecast and the observations according to the accuracy in each. The 
missing piece needed to move OI toward four-dimensional assimilation is to use 
an estimate of forecast accuracy in weighting the first-guess field. This ‘quasi-
four-dimensional’ OI method was used until the 1990s by the global operational 
weather centres. 

In the early 1990s the operational centres began preparing for truly four-
dimensional data assimilation by formulating the assimilation in a purely varia-
tional context. This seemingly orthogonal perspective actually coincides with the 
statistical formulation of the assimilation problem, under certain conditions. To 
see this we consider once again the combination of two independent estimates of 
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5.2.4 The Current Practice in Operational Atmospheric Data 
Assimilation 

Several operational centres, ECMWF, Météo-France, the UK Met Office, Canada 
and Japan have adopted a variational implementation of four dimensional data 
assimilation, called 4D-Var. Some of these, and others, are also experimenting with 
a statistical approach to four dimensional assimilation based on the Kalman filter. 
These approaches, advanced variational assimilation and Kalman filtering, have 
been developed because of some of the limitations to the standard OI approach of 
the 1980s. 

Foremost amongst the limitations is the awkward manner in which non-
traditional data, like satellite radiances must be incorporated into data assimilation 
in OI. All observations must be first ‘converted’ into meteorological field variables 

temperature but his time utilize a variational formulation of the problem of obtain-
ing an optimal estimate of temperature. A reasonable way of formulating this 
problem is to hypothesize that the analysed temperature should be close in some 
sense to both 1T  and 2T . This being so, a penalty function 2

1 1( )J W T T= − +  
2

2 2( )W T T−  is defined. By minimizing this penalty function one is assured of ob-
taining a temperature close to both estimates. Minimizing J gives: 

1 1 2 2optT W T W T= +  

which agrees with the statistically optimal estimate given above if 
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These weights can be alternatively expressed as 
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showing that the weights are inversely proportional to the uncertainty in each in-
dividual estimate. 

This makes perfect sense; we wish to weight each estimate proportional to the 
amount of confidence we have in the estimate. If one estimate is very uncertain 
(unreliable) compared to the other estimate, it should be given a much smaller 
weight than the reliable estimate. This is all that any data assimilation method is 
trying to accomplish. 
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before being interpolated and merged in the OI scheme. This meant that a separate 
independent step was necessary which transformed satellite radiances into vertical 
profiles of temperature and humidity mimicking radiosonde observations. This 
independent step mitigated the optimality of ‘Optimal Interpolation’. A second, 
less serious drawback to OI is that despite the conceptual simplicity of the method, 
in practice, optimality was difficult to preserve because the computational cost of 
an optimal interpolation was prohibitively high. Computational shortcuts like 
approximating covariance matrices with spatially compact and vertically separable 
forms were necessary which also lessened the accuracy in the statistical sense, i.e. 
the optimality, of the analysis product. 

In 1990 both ECMWF and NCEP ( began implementing a three dimensional 
variational method of assimilation which, in principle, was merely a reformulation 
of OI in terms of a variational penalty function. However, this reformulation re-
moved the limitations alluded to above. With regard to nonstandard data, the 
variational problem posed worked directly with the observed variables, e.g. satel-
lite radiances, by structuring the cost function to be minimized in terms of an 
observation increment. If iy  is the i-th observation and x  is the state vector of 
meteorological fields of winds and temperatures, etc. at the analysis points, then 
the cost function is formulated in terms of the mismatch between the observation 
and the value of the observation determined from the state vector, i.e. the state 
vector interpolated onto observation space. Thus, ( )i iy H x−  is a variable in the 
cost function, where ( )iH x , is the function which relates the meteorological state 
variables to the observed quantity. In the case of radiances from satellite meas-
urements, this would correspond to the physical laws of radiative transfer relating 
the radiation at a certain wavelength to the absorption and re-emission of radiation 
in the atmosphere which is dependent on the vertical structure of temperature and 
moisture. The cost function used in three dimensional variational assimilation 
(3D-Var) is: 

11
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where B and R are the error covariance matrices for the background (first guess) 
field and the observations respectively. Because the observations are used directly 
in the cost function, the minimization of J leads to a consistently optimal use of 
the observations whether standard or nonstandard. A side benefit of posing the 
assimilation problem in a variational manner is that a great deal of computational 
science has been developed in the past 30 years with the specific goal of produc-
ing computational algorithms which can economically solve variational problems 
in high dimensional spaces like the 3D-Var problem. Using conjugate-gradient 
methods and their extensions, no compromises in the fidelity of the optimization 

assimilation problem as a variational problem essentially eliminated the major 
are necessary for computational reasons, in contrast to OI. Restructuring the 
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drawbacks of OI. The gory details of the solution to the 3D-Var problem are given 
in the appendix. 

As computational power increased in the 1990s, the implementation of tempo-
ral consistency/optimality became feasible using the computational economy of 
the variational formulation and ECMWF led the move to 4D-Var. Formally, 4D-
Var appears to be a small extension to 3D-Var in which the cost function is treated 
as both a function of the state variables and time: 

11
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where the summation over k is over all the discrete times in which observations 
are made and the explicit dependence of the cost function on the state vector at the 
beginning of the interval, )( 0tx , is meant to denote that J is minimized with res-
pect to the initial state vector. Although the modifications in the cost function are 
seemingly minor, an enormous amount of complexity has been added to the varia-
tional problem in going from 3D-Var to 4D-Var. All of the complications have 
been hidden in the need to update )( kxH . This requires the time evolution of the 
state variables, a forecast, and the minimization of J using an iterative algorithm 
like conjugate-gradient requires a linearisation of the forecast dependence on the 
initial state. Both of the above are obtained using linear approximations to the 
forecast model and the transpose, or adjoint, of the linearised model as explained 
further in the appendix. 

In the original development of Kalman (1960) and the interjection into the 
meteorological literature by Peterson and Ghil, the Kalman filter (KF) is applied 
to a linear system of prognostic equations for the state vector x . The linear system 

The additional complexity necessitated by a linearised version of the forecast 
model places an enormous burden on the modelling effort since every component 
of the forecast system must be both linearised and transposed. While the linearisa-
tion is straightforward for the dynamical aspects of an atmospheric forecast model, 
difficulties often arise in developing suitable linear approximations for parameteri-
zed physical processes especially those associated with precipitation. The non-
linearity in these parameterizations is typically of high order with a critical threshold 
triggering different physical behaviours. As an example, convective precipitation 
is frequently tied to critical values of moist stability leading to a non-differentiable 
functional relationship in the convective parameterization. A great deal of testing 
is needed to ensure that linear approximations to this threshold behaviour are  
accurate enough to be of benefit in the assimilation cycle. Because the infrastruc-
ture development is so demanding and the computational cost so prohibitive in 
4D-Var, researchers have begun experimenting with Kalman filtering methods. 
These were first discussed in the meteorological analysis context by Peterson 
(1968) and brought to prominence there by Ghil and colleagues in the 1980s (Ghil 
et al. 1981).  
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is assumed to only approximate the true evolution of the state vector and so a rep-
resentation of model deficiencies is included in the system in the form of an 
additive noise term which is uncorrelated in time (so-called white noise). Note that 
no such allowance for model imperfection exists in the standard 4D-Var assimila-
tion at the major NWP centres. The KF requires not only a linear prognostic 
equation for the state vector but also requires that an explicit prediction be made 
of the expected covariance of the error in the forecast using the same linear dy-
namics. The KF then utilizes the standard statistical perspective of determining the 
best linear unbiased estimate (BLUE) given the forecast error covariance of the 
prediction and the known error covariance of the observation at any given time. 
This is essentially a vector version of the problem which was discussed above, 
combining two estimates of the scalar temperature at a single point. The power of 
the KF approach is that, if all the assumptions of linear dynamics and of model 
errors being uncorrelated in time hold, then Kalman showed that the BLUE is 
determined sequentially with no need to include any history of the past observa-
tions. The history is included by optimally using the information in the dynamics. 
The mathematical detail of the standard KF is given in the appendix, but even 
without the detail several of the drawbacks of the method can be easily seen. First, 
the meteorological equations are not linear and so, as in 4D-Var, a linearisation of 
the equations must be undertaken. Second, prediction errors using even the full 
non-linear prediction equations are not uncorrelated from one time step to the next 
in a prediction model and so white noise is probably not a good approximation to 
such errors when a linear forecast system is used. 

The first two drawbacks reflect limitations in the Kalman mathematical frame-
work for the problem of assimilation for weather prediction and these will 
compromise the optimality of the assimilated state vector. The third and most im-
portant drawback of the KF is that it requires a covariance prediction. Since a 
typical weather prediction model has a state vector with order 610≈n  elements, 

122 10≈n . This is 
computationally impractical and so to consider the KF algorithm at all in an at-
mospheric context, a strategy must be devised to limit the dimensionality of the 
covariance prediction. After several years of experimentation, one of the most 
promising approaches to limiting the dimensionality is the use of ensemble meth-
ods to estimate error covariance, as first suggested and developed by Evensen 
(1994, 1997) and elaborated upon by Tippett et al. (2003). 

In the ensemble Kalman filter (EnKF), the approach is similar to ensemble pre-
diction in which a multitude of forecasts are made with slightly deviating initial 
conditions in order to give a distribution of probable states of forecasted weather. 
For ensemble weather prediction, as practiced at ECMWF, NCEP and in Canada, 
research has focused on the art of ensemble construction and been principally con-
cerned with the method of specification of the initial ensemble realizations. The 
singular vector technique (Palmer et al. 1994) and the bred vector method (Toth 
and Kalnay 1997) have been the strategies devised to limit the dimensionality (and 
thus the number of realizations needed) in ensemble prediction at ECMWF and 

the error covariance of the state vector is a matrix with order 
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NCEP respectively. The success of ensemble prediction with a moderate numbers 
of realizations (order 50–100) gives hope that a similar strategy can be made to 
work for data assimilation. However, as opposed to the circumstance in ensemble 
prediction, more than the forecast uncertainty, the forecast error covariance is 
needed for the EnKF. The advantage of the EnKF is that 100 realizations of short 
range forecasts is far less expensive to compute than a forecast for n x n elements 
of a full covariance matrix. There are two other advantages that come along with 
the EnKF: first, the issue of initialisation of the ensemble realizations using bred 
or singular vectors diminishes since the post-observation ensemble is required to 
estimate, as accurately as it can, the uncertainty in the forecast system at that time. 
The assimilation ensemble is an appropriate set of realizations to initiate an en-
semble prediction, although one might wish to augment this ensemble with 
realizations spanning additional directions, e.g. selected singular vector directions. 
Second, since the model used to advance the state variable in each of the ensemble 
realizations is the full non-linear prediction model, no linearisation approximation 
is made and so EnKF is an efficient algorithm for extending the Kalman filter to 
the non-linear dynamics domain (the so-called extended Kalman filter). 

The EnKF is sequential so a description of its basic cycle begins with an en-
semble of forecast states just after observations have been incorporated into the 
system. All members of the ensemble are updated using the forecast model to the 
time at which a new observation is available. At this point the forecast error co-
variance is estimated using the ensemble of realizations. The observation and the 
estimate of the observed quantity are optimally combined using the forecast error 
covariance and the observational error variance to determine the BLUE for the 
quantity. Using the forecast covariance all the state variables which are correlated 
with the observation are updated in each realization of the ensemble in a manner 
which updates the mean and covariance of the ensemble so that it is consistent 
with the BLUE (i.e. linear Kalman filter) expected reduction in error. This des-
cription is for a single observation but in fact the algorithm can be shown to be 
independent of order if multiple simultaneous observations are to be assimilated as 
is the case for the radiosonde network. Each individual observation can be assimi-
lated sequentially as if their arrival were at differing times without changing the 
assimilated state. At any point in the cycle an ensemble of realizations reflecting 
the uncertainty of the state vector is obtained and can be used for ensemble predic-
tions (details of the EnKF formulation are given in the appendix). 

As one can note from the description of the EnKF, there remain at least two 
weaknesses in the EnKF as currently formulated. The first is the standard concern 
in using ensembles: that with a small number of realizations in a high dimensional 
system, sampling errors can be substantial. The optimistic perspective regarding 
sampling errors is that while an atmospheric model has several million degrees of 
freedom, the dynamical structure of the atmosphere is such that at least locally the 
relevant number of degrees of freedom for the atmosphere is small and that the 
prediction model evolution does an excellent job of singling out the most relevant 
and important degrees of freedom for error growth. This is the rationale for bred 
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and singular vector ensemble sampling strategies and it is hard-wired into the 
EnKF. The second weakness is related to the mix between linearity and non-linearity 
in the current version of the EnKF. As described above, the sole extension to non-
linearity is the use of the fully non-linear equations to advance the state vector and 
error covariance. All other aspects of the algorithm are identical to the linear KF. This 
restriction is not absolutely necessary but it is convenient and can be considered to be 
equivalent to fitting a Gaussian distribution to the ensemble of realizations for the 
purpose of determining the weighted compromise between the observations and the 
forecast realization. This is similar to what is done in 4D-Var where a linearisation of 
the forecast model is used. Thus, the EnKF as currently used will suffer in the same 
highly non-linear threshold situations (e.g. rain/no rain) that are problematic for 4D-
Var. This limitation can be removed using a Bayesian formulation, but doing so is 
beyond the current state of the art in EnKF. 

5.2.5 Atmospheric Initialisation 

As developed earlier in this section and in operational practice, all observations 
are compared with the ‘virtual’ observations that would have been obtained from 
the background guess field at the time of observation. This requires a so-called 
forward operator, denoted )(xH  earlier, to convert from the model state vector 
to the particular observation. In the case of direct observations of state variables 
like temperature or winds this is usually only a spatial interpolation operator. In 
contrast, in the case of satellite radiances, extensive radiative transfer modeling is 
needed to connect the observed radiances with the state vector at a given time. 

The need for forward models is just one of the challenges associated with the 
incorporation of satellite data into the assimilation cycle. In addition to this is the 
challenging nature of the spatio-temporal structure of the data itself (see Section 
5.3.1). Despite the challenges associated with satellite data, one of the great suc-
cesses in moving to a variational framework for assimilation has been the improve-
ments in forecasts directly attributable to the improved extraction of information 
in satellite radiances. This is primarily attributable to the use of forward operators 
instead of independently derived equivalent vertical soundings in the assimilation. 
The most convincing demonstration of this is shown in Fig. 5.1 which depicts the 
improvements in Southern Hemisphere forecast skill at the ECMWF. Since 
ground based observations are much more sparse in the Southern Hemisphere, the 
duplication of the Northern Hemisphere skill by forecasts for the Southern Hemi-
sphere is due almost entirely to the improvements made in incorporating satellite 
data into the assimilation. 

Another aspect of data assimilation that was ignored in the discussion of meth-
odology is the need for imposing a so-called balance constraint in the process 
of assimilating observations. The need for a balance constraint comes from the 
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Fig. 5.1 Improvement in the anomaly correlation skill score in ECMWF forecast system over 
the past 25 years. Improvement is shown for various forecast lead-times up to a 10 day lead. The 
upper curve for each lead-time shows skill in the Northern Hemisphere while the lower curve 
shows skill in the Southern Hemisphere 

necessity of dimensional reduction that was discussed with regard to the Kalman 
filter. In particular, the use of localization in the ensemble covariances, necessary 
because of severe statistical under-sampling problems, can generate unbalanced 
motions in a balanced ensemble. A balance constraint on the assimilation provides 
information that restricts the degrees of freedom allowed to respond to data. The 
basic constraint used in this restriction is that the atmosphere (and thus a predic-
tion model of the atmosphere) should not evolve too fast. Specifically, the 
atmosphere and atmospheric models support motions on a wide span of space and 
timescales, from sound waves to quasi-stationary variations due to slow forcing 
of the atmosphere by the ocean. Weather variations evolve and progress on a 
timescale of days to weeks for synoptic scales and hours to days for convection 
and mesoscale disturbances. The fact that weather does not propagate as fast as 
acoustic and high frequency buoyancy oscillations is used in variational assimila-
tion methods to maximize the information associated with an observation. The 
process of filtering high frequency oscillations from the assimilated state requires a 
compatibility condition (i.e. a balance of the terms responsible for the oscillation) 
resulting in a balance condition. This is described mathematically in the appendix. 
The dispersion diagram for waves in an equatorial beta plane model of the tropical 
atmosphere is shown in Fig. 5.2. For the external mode of the atmosphere and the 
equatorial beta plane model, the phase speed of the Kelvin wave shown in this figure 
is the same as a sound wave, propagating at 300 m/s. This is far faster than the speed 
of Rossby waves which propagate at the advective speed of ~10–20 m/s. 
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Fig. 5.2 The dispersion diagram showing the scaled frequency vs wavenumber for waves on an 
equatorial beta-plane. Eastward propagating waves have positive wavenumber while westward 
propagating waves are denoted with a negative wavenumber 

With 4D-Var the temporal consistency of the dynamics is such that the need for 
balanced initialisations independent of the assimilation cycle has diminished and 
in practice it is no longer carried out. In the atmosphere it is more convenient to 
enforce balance as a weak constraint, i.e. penalizing imbalance in the penalty func-
tion. Similar balance constraint arguments apply in oceanic data assimilation too. 

5.2.6 Introduction to Oceanic Assimilation 

For climate prediction on timescales longer than a few months the main source of 
predictability comes from the ocean component (e.g. Palmer and Anderson 1994). 
Therefore particular attention has to be devoted to the way in which the ocean is 
initialised. On the other hand, climate prediction is a field considerably younger 
than weather prediction and so data assimilation in the ocean has lagged behind its 
sister discipline in the atmosphere. In fact, most techniques used in ocean data 
assimilation were first developed for atmospheric data assimilation (one exception 
is the EnKF, which was initially tested in an oceanic context), and these were 
described in the previous section. Climate forecasting is not the only driver for 
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ocean data assimilation, but it has provided the main impetus. Given that data as-
similation methods have already been introduced, only some practical aspects of 
the methods used for the ocean are described in this section.  

5.2.7 
Initial Conditions 

As mentioned in the introduction (Chapter 1), several research and/or operational 
centres, such as ECMWF, the UK Meteorological Office and the Australian 
Bureau of Meteorology Research Centre (BMRC), routinely produce seasonal 
forecasts. The data assimilation systems used to initialise the ocean component are 
normally based on either optimal interpolation or 3D-Var. Although the basic 
formulation of the background errors in the OI or 3D-Var frameworks is pre-
scribed, and therefore fixed in time, it is possible to introduce more complex flow-
dependent features. So, for instance, even when only temperature observations are 
available at a certain location and they are directly assimilated, salinity corrections 
can be applied too by exploiting ocean physical and dynamical features (e.g. the 
preservation of the temperature-salinity relationship, as in Troccoli and Haines 
1999). This procedure introduces a flow-dependent feature to the background 
errors of the OI system. It is therefore analogous to including a time-varying di-
mension to the OI. In addition, the salinity corrections are designed in such a way 
that imbalances in the density field, normally present when temperature is modi-
fied independently of salinity, are markedly reduced (Troccoli et al. 2002). 

5.3 Observing Systems 

Up to now, only the methodology of data assimilation for the purpose of prediction 
has been described without any discussion of the observational data that goes into 
the process. Since observations are the essential ingredient of a data assimilation 
system, it is crucial to know what the main components of the atmospheric and ocean 
observing systems are. A comparison between these two systems is also explored. 

5.3.1 The Atmospheric Observing System 

Atmospheric observations can be segregated into two types: in situ measurements of 
variables which require sensors to be collocated with the measurement and remotely 
sensed measurements which rely on inferring physical variables from afar through 
the inversion of a radiated signal. The radiosonde measurements and satellite  

Methods used by Prediction Centres for Preparing Ocean 
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temperature retrievals are prototypical examples of in situ and remotely sensed data 
streams used in atmospheric assimilation. Figure 5.3a shows the temporal evolution 
of satellite sources as used in the ECMWF data assimilation system (i.e. most of the 
available satellite sources). In Fig. 5.3b it can be seen how the increasing number of 
satellite data sources have reflected on the growth in the number of data used in the 
ECMWF analysis: in excess of 5 million data are used each day.  

The spatial data coverage of atmospheric measurements is shown Fig. 5.4. The 
different coverage for the in situ observations (top two panels) and that for satel-
lite observations (lower two panels) it is noticeable. Quantities normally measured 
by in situ instruments are temperature, wind velocity, pressure, humidity and pre-
cipitation. Currently, there are about 600,000 in situ observations available per day 
on average (see Fig. 5.3b). Typical measurements from instruments on board sat-
ellites are radiances (which depend on temperature and humidity), wind speed and 
cloud products. The number of satellite observations is much larger than the num-
ber of in situ observations: as shown in Fig. 5.3b they are about ten times larger 
and they are predicted to grow considerably over the next decade. Table 5.1 below
 details the data sources and the variables they measure. 

Fig. 5.3 (a) The growth and mix of satellite observations used in ECMWF operational analyses. 
(b) The total number of observations used each day in the operational ECMWF analysis as a 
function of time  
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Fig. 5.4 Typical data coverage over a 6-hour period for different data sources. (a) Synop/ship 
instrument which measures surface temperature, wind velocity, pressure and precipitation;  
(b) Aircraft for temperature and wind; (c) GRAD for geostationary radiances; (d) ATOVS for 
polar orbiting radiances. (a)–(b) are in situ measurements whereas (c)–(d) are satellite measure-
ments (as can noticed from their different coverage) 

Table 5.1 A summary of the main observation sources (in parenthesis is their technical name) 
and the variables they measure. The variables are denoted by u and v for wind components, z for 
geopotential height, p for surface pressure, T for temperature, rh for relative humidity and q for 
specific humidity, respectively  

Observation source Measured quantities 

IN SITU 

Synoptic surface observations (SYNOP/ SHIP) u, v, p (or z), rh  
Aircraft reports (AIRCRAFT) u, v, T, q  
Drifting buoy reports (BUOY) u, v, p  
Radiosonde soundings (TEMP) u, v, T, q  
Wind soundings (PILOT/PROFILER) u, v  

SATELLITE 

Satellite cloud track winds (SATOB) u, v  
Geostationary radiances (GRAD) Radiances 
Polar orbiting radiances (ATOVS) Radiances 
Wind scatterometer (SCAT)  Wind speed 
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5.3.2 The Oceanic Observing System 

Despite the volume of the ocean being only about three times smaller than that of 
the atmosphere (ca. 4.2·1018 m3 for the atmosphere and ca. 1.4·1018 m3 for the 
ocean),3 the number of observations in the ocean is considerably smaller than 
those in the atmosphere. This disparity has contributed to the slower progress in 
oceanic data assimilation. 

In the 1980s the number of oceanographic observations available was several 
orders of magnitude smaller than its meteorological counterpart. However, with 
the advent of satellite oceanography, starting in the 1980s, things have changed 
considerably. Still, there is only so much satellites can measure over the ocean: 
most notably, the sea surface height (SSH), the SST, the sea surface salinity (SSS) 
and ocean colour. The oceanic medium is, in fact, opaque to most electromagnetic 
waves, the most transmittable frequencies being in the visible range (corresponding 

measurements are only used to observe the surface of the ocean. To learn about the 
ocean subsurface, direct measurements are necessary, via so-called in situ instruments. 

In terms of surface measurements, the SST is one of the most relevant quanti-
ties. Instruments which remotely measure SST are on board several satellite 
missions. With the objective of developing a new generation of global, multi-
sensor, high-resolution (~6 hours and 10 km) SST products, an international pro-
ject, GHRSST4 (The GODAE High Resolution SST), has recently started.  

Another remote measurement is SSH, which has been measured from space 
since the mid-1980s. The first mission was Geosat launched in 1985, followed by 
ERS-1, ERS-2, Geosat follow-on, TOPEX/Poseidon and currently Jason-1. Sea 
surface salinity is also a quantity that can in principle be measured from space, 
although the accuracy of remote SSS measurements is not as good as that of SST. 
Despite the fact that both salinity and temperature affect the density of seawater, 
salinity is still poorly observed. Plans are underway, however, for satellite mis-
sions (SMOS – Soil Moisture and Ocean Salinity – due for launch in 2008 and 
Aquarius due for launch in 2009) to measure SSS.  

Up to the beginning of the 21st century, the majority of in situ instruments only 
measured temperature profiles. These included instruments like XBTs (eXpend-

________________  
3

for seasonal predictions. This implies a more dramatic effect on the disparity of number of ob-
servations between atmosphere and ocean. However, it should be born in mind that volume 
consideration is only part of the story because the time and space scales of processes in the two 
media are different too. The bottom line is that roughly speaking the ocean is less well observed 
than the atmosphere. 

e-folding scale of about 20 m at most (Apel 1987). In practice, therefore, remote 
wavelengths are from ca. 1 µm to ca. 100 nm), for which the penetration has an 

4  http://www.ghrsst-pp.org/ 

 The volumetric ratio is actually much larger if we consider that only the upper ocean is relevant 
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able BathyThermographs), mostly along shipping lanes, and the TAO-TRITON 
array (Tropical Atmosphere Ocean/Triangle Trans Ocean Buoy Network), which 
consists of approximately 70 moorings in the Tropical Pacific Ocean.5 The Tropi-
cal Ocean Global Atmosphere (TOGA) programme provided the framework into 
which these moorings, as well as some XBTs and other in situ measurements like 
tide gauges were developed from the mid-1980s to the end of the 20th century. In 
addition, campaigns or fixed term projects such as WOCE (World Ocean Circula-
tion Experiment) also provided in situ observations. Since the year 2000, a new 
observation system called Argo has been introduced. This system has largely 
modified the way in which the ocean subsurface is observed. Before Argo, obser-
vations were mostly taken at the same location (e.g. TAO array) or along tracks 
concentrated along shipping routes (e.g. XBT profiles) or within limited regions 
(e.g. Conductivity-Temperature-Depth, CTD) during research campaigns. With 
Argo, which consists of free-drifting profiling floats that measure the temperature 
and salinity of the upper 2,000 m of the ocean, most of the ocean can in principle 
be covered. A large number of Argo floats have been deployed so far: in mid-2006 
there were about 2,500, and this should reach about 3,000 in 2007–2008; their 
measurements are available in near real time.6  

To maintain the collected data also requires considerable and concerted efforts. 
Under the CLIVAR7 (Climate Variability and Predictability) and GODAE umbrellas, 
several regional projects have taken the challenge to contribute to the development 
of continuous, automatic, and permanent ocean observation networks. For instance, 
in the USA the USGODAE8 project is the reference point, while in Europe, Coriolis9 
has taken the lead. In addition, researchers such as those at the UK Met Office, 
produce and maintain a range of gridded datasets of meteorological variables for 
use in climate monitoring and climate modelling.10  

5.3.3 Comparison Between Atmospheric and Oceanic Systems 

Figure 5.5 shows the temporal evolution of in situ observations in the ocean, for 
temperature and salinity separately as well as for their sum. Temperature observations 
have consistently outnumbered salinity observations. There are two important 

________________  
5

6

7

8

9

10

 http://www.pmel.noaa.gov/tao/ 

 http://www.argo.ucsd.edu 

 http://www.clivar.org/ 

 http://www.usgodae.org/ 

 http://www.coriolis.eu.org/ 

 http://www.hadobs.org/ 
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reasons for this: salinity plays a secondary role in the sea water density and salinity 
is much more expensive to measure. However, with the advent of Argo floats this 
discrepancy has been considerably reduced (see Fig. 5.5 after the year 2000). 
More generally, with Argo the oceanic observing system has drastically improved, 
both in terms of coverage and in terms of number of observations. Given the im-
mensity of the oceans, large gaps still exist and more observations are needed in 
order to reduce the uncertainties in the oceanic circulation, as also concluded by 
the recently completed EU project ENACT (ENhanced ocean data Assimilation 
and ClimaTe Prediction, see the ENACT web site for more info11). 

It is apparent then that by comparison with the ocean, the atmosphere is much 
better observed with an average of about 600,000 in situ observations per day com-
ing from instruments like Synop, Aircraft, Pilot/Profilers, Buoys and Temp. Since 
the in situ observations in the ocean are only about 15 thousand per day (Fig. 5.5), 
the observing systems in the two media differ by a considerable factor of forty.12 

 

time (dotted line: salinity, dashed line: temperature, solid line: sum of the two). Temperature 
observations have historically been more abundant than salinity ones. The noticeable downturn 
in observations in the 1990s was due to the reduction in XBT (eXpendable BathyThermographs) 
profiles. Since 2000, however, with the advent of the ARGO floats (see text), salinity – as well as 
temperature – observations have considerably increased. 

 

________________  
11

12

teristics of the two media, such as the different radius of deformation (smaller in the ocean) and 
the different timescales of variability (longer in the ocean). Even taking such differences into 
consideration, it is likely that the ocean remains under-observed compared to the atmosphere. 

 http://www.ecmwf.int/research/EU_projects/ENACT/index.html 

 However, this comparison does not take into consideration differences in the physical charac-

Fig. 5.5 Global number of in-situ oceanic observations on typical model levels as a function of 
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5.4 Impact of Oceanic Data Assimilation on Seasonal Forecasts 

One of the purposes of data assimilation in the ocean is to provide improved initial 
conditions which should lead to improved seasonal forecasts. In the absence of 
oceanic data assimilation facilities, a fallback solution is to use the oceanic initial 
conditions created by a forced-only integration, i.e. an integration with exactly the 
same settings as those used in a data assimilation experiment but without assimi-
lating any data.  

Despite seasonal forecast performance being germane to the testing of ocean data 
assimilation systems, there is a surprisingly modest amount of literature which 
addresses this issue. Some of the reasons for this paucity will become clearer later in 
this section. Alves et al. (2004), one of the few such references, showed that the use 
of an OI data assimilation system improved considerably the performance of their 
coupled model seasonal integrations. More recent results, outcome of the ENACT 
project, are presented here (Davey 2006). In Fig. 5.6, the assessment of the impact of 
a 3D-Var assimilation system of seasonal hindcasts (or retrospective forecasts or 
even re-forecasts) is made in terms of SST anomaly correlations for four different 
start dates (1st Feb, 1st May, 1st Aug and 1st Nov) so chosen to resolve the annual 
cycle. These correlations are compared to another set of hindcasts, started from a 
 

Anomaly correlation for SST as a function of the hindcast lead-time for 3D-Var (solid) 
and forced-only (dashed). The dotted curve uses persistence as the predictor, i.e. using the value 
of the month zero for all subsequent months. The assessment period is 1987–2001 and the region 
is NIÑO3.4 [170–120°W, 5°S–5°N]. Correlation is very high for both hindcast sets and it is 
slightly superior for the 3D-Var case 

Fig. 5.6 
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forced-only ocean run (dashed line), and to predictions made using persistence, i.e. 
using the value of the month zero for all subsequent months.13  

In the central equatorial Pacific (the NIÑO3.4 region), correlation values for 
both sets of hindcasts (forced-only and 3D-Var initial conditions) are very high – 
in excess of 0.85 at 6 month lead-time – and markedly better than persistence – 
less than 0.6 at 5 month lead (Fig. 5.6). The high correlation in these hindcasts is a 
manifestation of the ability of the coupled model to capture well the SST variabi-
lity on seasonal timescales in this region. This ability seems to be independent of 
the two methods used to provide the initial conditions, however, as the correlation 
for 3D-Var is only marginally better than that for forced-only. This similarity is an 
indication that, in this region, both the surface forcings used to produce the ocean 
initial conditions and the characteristics of the coupled model (and its errors) play 
a prominent role. However, these two factors, the surface forcings and the coupled 
model errors, play different roles. Whereas improvement in the surface forcings, 
as have happened in recent years, bring the forced-only and the data assimilation 
hindcasts closer to each other, improvements in the coupled model, though much 
more difficult to achieve, would increase their separation as the effect of better 
initial conditions via the use of data assimilation should reflect on the dynamical 
evolution of the coupled system on the seasonal timescale. These results thus indi-
cate that, currently, the error in the coupled hindcasts is dominant as it reaches 
about 0.5°C in root-mean-square error (RMSE) in NIÑO3.4 at lead-month 6 (Fig. 
5.7), which is large considering that the interannual variability is only about twice 
that (not shown). This large RMSE is believed to be largely due to errors in the 
coupled forecast model that manifest themselves both at the beginning, via the so-
called coupling shock, and during the integration of the coupled models; these 
model errors are one reason why assimilation of ocean data makes only a modest 
impact on the seasonal hindcast skill. 

It is instructive to assess forecast performance in regions other than the equato-
rial Pacific, hitherto undoubtedly the primary target of seasonal forecasts given the 
prominence of the ENSO signal. Correlations in the North Atlantic (Fig. 5.8) are 
smaller than in NIÑO3.4 as expected from the map in Fig. 3.7, although their val-
ues are large in absolute terms. Unexpectedly, however, data assimilation does not 
seem to have a positive impact on correlation. Closer inspection indicates that 
correlations in the assimilation hindcasts are approximately constant over the 6 
month range and do not suffer from the sharp drop at month 6, present in both the 
forced-only run and in persistence. This behaviour seems to suggest that subsur-
face information contained in the 3D-Var initial conditions might have a positive 
impact on the hindcast performance, possibly via the emergence of subsurface 
signal. It is also worth noting that oceanic regions other than the tropical Pacific 
 

________________  
13 Persistence is the cheapest way to make predictions. 
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As in Fig. 5.6 but for the root-mean-square error (RMSE). As for the correlation in Fig. 
5.6, the RMSE in both hindcast sets is considerably reduced with respect to persistence. More-
over, the initial conditions provided by the 3D-Var assimilation yield improved hindcasts 
RMSEs for all lead-times compared to the hindcasts started from forced-only oceanic initial 
conditions 

As in Fig. 5.6 but for the North Atlantic region [70°W–15°E, 30–70°N]. For this mid-
latitude region, the two hindcast sets do not perform as well as in Niño3.4 and the 3D-Var initial 
conditions do not seem to yield improved correlations in the first few months of the hindcast. 
Ocean data assimilation in mid-latitude has thus far received less attention than in tropical 
regions. Persistence, on the other hand, is a better predictor than in Niño3.4 

have received less attention in the context of data assimilation (e.g. balances in 
density and velocity fields used near the tropics may not hold at higher latitudes) 
and hence the potential for improvement may be substantial. 

Fig. 5.7 

Fig. 5.8 
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In the case of the ocean, it is arguable whether “less sophisticated” methods 
such as OI or 3D-Var, together with improvements as discussed in Section 5.2.7, 
might be as effective as the “more advanced” methods when seasonal forecast 
performance is taken as the measure of success. As part of the ENACT project, 
two of the more advanced methods, 4D-Var and EnKF, were also used to provide 
initial conditions for seasonal forecasts. Albeit preliminary, results from these two 
methods showed no significant improvement in forecast performance. While it is 
true that further development is needed for methods such as 4D-Var and EnKF for 
the ocean, the apparent lack of impact is likely related to the size of coupled model 
errors, as discussed above. 

5.5 Data Assimilation: An Outlook  

5.5.1 
Medium Term for Initialising the Ocean? 

In order to address this question, it is useful to recall the main features in a data 
assimilation system used to create ocean initial conditions. The principal quality of 
an oceanic initial condition is the optimal use of as many available observations as 
possible accompanied by the attainment of a well balanced oceanic state. Such an 
initial condition would provide an accurate representation of the ocean state and at 
the same time should help reduce errors due to coupling shocks. In principle, the 
two best candidate methods to achieve this twofold objective are 4D-Var and 
EnKF. As presented in Section 5.2, the former has the advantage of providing a 
dynamically consistent representation of the system over the relatively short as-
similation window, whereas the main advantage of the latter is the representation 
of flow-dependent features which have evolved over time, derived from an en-
semble of realisations. The disadvantage of both systems is that they are com-
putationally demanding and this limits the amount and speed of experimentation. 
Moreover, systematic errors in the coupled model are a significant cause of fore-
cast error. Neither 4D-Var nor the EnKF, in their normal forms as described here, 
are designed to cope well with systematic errors. This is why, at present, systems 
such as improved OI and 3D-Var are the preferred choice of most, if not all, sea-
sonal forecasting systems with ocean data assimilation capabilities.  

In summary, although 4D-Var and EnKF are considered as the best options for 
the medium term future of ocean data assimilation, further developments are 
needed before firm conclusions can be drawn in terms of their impact on seasonal 
forecasts. It should also be kept in mind that model errors arising during the cou-
pled integration might hinder improvements in the initialisation procedure and 
therefore the seasonal forecast metric may not be the best to assess the quality of a 
data assimilation system. 

What Assimilation Methods are Going to be used in the 
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5.5.2 Coupled Data Assimilation: Arguments for and Against 

Up to now, the discussion has been concerned only with data assimilation per-
formed separately in the model components, namely in the atmosphere and ocean. 
As seen in Section 5.1.1, there is only a very weak coupling, via the commonly 
used SST, in the assimilation across component models and so there is no attempt 
to reach an optimal coupled state of the system for prediction purposes. Since sea-
sonal prediction depends critically on coupling the atmosphere to the ocean and land 
surface, the question of assimilation in coupled climate models should be addressed. 

The idea of performing data assimilation in the coupled system, rather than car-
rying it out in each component separately as is currently done, has appealed to 
scientists for quite some time, as illustrated by Miyakoda as far back as 1986. Al-
though it is considered as a fascinating area of research, coupled data assimilation 
has not yet properly taken off. 

There are three main reasons why this is so. First, as described earlier, the most 
advanced methods of assimilation are extremely computationally expensive and 
coupling an atmospheric model to either an ocean or land surface model for joint 
assimilation only exacerbates an already severe resource limitation. The dimen-
sionality of the problem increases by the dimensionality of the additional ocean 
model’s degrees of freedom and the consequent need for covariance information 

the atmosphere, the ocean and the land surface; the ocean and land can be treated 
as stationary boundary conditions for the atmosphere over an assimilation cycle 
without much error. Because of this, the decoupled assimilation method sketched 
in Section 0 works well. Lastly, there are very large systematic biases in coupled 
models which can overwhelm the benefits of consistency and information sharing 
that are the raison d’etre for coupled assimilation. An example of the speed with 
which such biases can impact coupled forecasts is shown in Fig. 5.9, depicting the 
systematic 2 m temperature biases at month zero (top) and month 1 (bottom) lead-
times in an ensemble of ENSO predictions using the ECMWF coupled model. 

In spite of these technical and conceptual difficulties, the interest in the scien-
tific community to tackle the issue of coupled assimilation is rising and works 
such as that by Galanti et al. (2003) might signal the beginning of this new phase 
in data assimilation. 

5.6 Mathematical Appendix 

Because so much of data assimilation requires mathematical expression to describe 
the methods used, many of the mathematical details of the methods presented in 

(atmosphere). Second, there is a large mismatch between the natural timescales of 
of co-varying component model variables like SST (ocean) and cloudiness 

the core of the contribution have been relegated to this appendix. It is hoped it can  
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The evolution of the 2 m temperature systematic error (or bias) in °C at month zero 
(top) and month 1 (bottom) lead-times in an ensemble of seasonal forecasts using the ECMWF 
coupled model (System 3). Note how the bias generally increases with increasing lead-time. The 
ensemble of cases is taken from asset of forecasts initiated at the beginning of each July from 
1981 to the year 2000 (hence top panel shows July mean and bottom panel August mean) 

be used as a concise reference for those actually attempting to practice the art 
of assimilation. A note of caution has to be spent: practical applications of any 
assimilation method are always distinctly different from their theoretical formula-
tion. Therefore, if you intend to implement any of the following methods, it would 
be prudent to consult the given references. 

5.6.1 Least Squares Minimization 

The method of Panofsky used a least squares polynomial fit to the height field, i.e. 
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Fig. 5.9 
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The coefficients ai,j are determined by minimizing the misfit at the observation 
points. Thus 

∑ −≡
obs

obszzI 2)(  

is minimized by differentiating I with respect to each coefficient and setting the 
derivative equal to zero, 
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This results in a linear algebraic system of equations to be solved for the ai,j ’s. 

5.6.2 Cressman Scheme 

The scheme of successive corrections developed by Cressman and Bergthorsson 
and Doos assimilates deviations from a background or first guess. So for any state 
variable, say the temperature T at point j, its increment is given by: 
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where Tb is the first guess temperature and the sum is over all i = 1,2,…N  
temperature observations present at analysis time. The weight function given by 
Cressman is 
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where d(i,j) is the distance between the points i and j. The analysed temperature is 
thus a weighted average of the background and the increments to the background, 
or innovations, from the observed temperature. 
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5.6.3 Optimal Interpolation (OI) 

This method, pioneered by Gandin (1965), uses the statistical covariance between 
fields at different points in space to determine the interpolation weights. As in the 
Cressman scheme it uses the anomaly of both the observations and the analysed 
field from a background field supplied from climatology or a forecast field. This is 
done as follows. The field is broken into the guess and the anomaly,  

'
grid guess gridf f f≈ +  

where the guess field, assumed to be bias-free, is climatology in Gandin’s original 
formulation and the anomaly is assumed to be a weighted average of the anoma-
lies in the observations, i.e. 

' '
,grid k k obs

k

f w f=∑  

The weights are then selected using the minimum mean square error (least 
squares) criterion, with 

2 2( ' ' )grid trueE f f= −  

being the mean square error and at each grid point then 

2 2( ' )= − −∑i i guess k k
k

E f f w f  

where the over bar denotes the statistical average and i and k represent the analysis 
point and the observation points respectively. Minimizing, results in: 

2
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which is a linear algebraic equation for the weights in terms of the two-point 
covariances of the field f. 

OI is usually implemented by solving these simultaneous equations in matrix 
form (they turn out to be the same equations as for 3D-Var below, see Lorenc 
1986). There are as many equations as observations, so to reduce computational 
costs only a local selection of observations is used in each location. 
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5.6.4 Variational Assimilation 

Both 3D-Var and 4D-Var have a similar structure with only minor modifications 
in the final form of the assimilated state. Of course, the computational cost and 
actual assimilated state are generally very different. 3D-Var begins with the cost 
function defined as:  

1 11 1
2 2( ) ( ) ( ( )) ( ( ))− −= − − + − −B RT T

b bJ x x x x y H x y H x  

where the various terms have been defined in Section 5.2.4. Differentiating this 
gives an equation for its gradient with respect to x: 

1 1 1( ) ( ( )) ( )− − −∇ = − − − + −B H R H R HT T
x b b bJ x x y H x x x  

where J has been expanded about the background state, bx . Setting the gradient to 
zero to find the minimum gives: 

1 1 1 1( ) ( ( ))− − − −− = + −B H R H H RT T
a b bx x y H x . 

The distinguishing feature of 3D-Var and 4D-Var algorithms is that they only 
need software to calculate the scalar J, and its gradient gradx J; the latter is the size 
of a model state and so no more complicated to manipulate. With these, and an 
appropriate descent algorithm, the x which minimises J can be found to any  
desired accuracy, without ever needing to explicitly represent or manipulate the 
matrices B and R – which would be impossible for the size of models and num-
bers of observations used. 

The equivalence between this approach and OI can be seen by deriving an 
explicit equation for the ax  which minimises the penalty function. At the minimum 

0=∇J

 ( )( )= + −Ka b bx x y H x . 

1 1 1 1( )− − − −= +K B H R H H R HT T . 

But this form is not the most convenient because of the many matrix inverse 
operations. With some matrix manipulations an equivalent form, 

1( )−= +K BH HBH RT T , 

, giving: 

filter equations below, is given by: 
The Kalman gain matrix K, so-called because it appears also in the Kalman 
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can be developed which is computationally less demanding and is of the form 
where the uncertainties in the background and observations are more easily seen 
as contributing to the weight of each. Neither of these forms for K can even be 
stored, let alone calculated, for the huge models and many observations in our 
problems. The second form, made cheaper by considering at one time only a lim-
ited local area and data selection, is implemented in OI. 

( ) ( )bx x t x tδ ≡ − . Linearity enters through the use of a linear model to update 
,0 0( ) ( )i ix t x tδ δ= M , where ,0iM  is the linear operator (matrix) propagating 

the initial value )( 0txδ  to the ith time interval. The 4D-Var cost function is then 
given by: 

1
0 0 0

1
,0 0 ,0 0

( ( )) ( ( )) ( ( ))

(( ( ( ))) ( ( ( )))

δ δ δ

δ δ δ δ

−

−

=

+ − −∑
B

M R M

T

T
k k k k k

k

J x t x t x t

y H x t y H x t  

where ( ) ( ( ) )k k b ky y t H x tδ ≡ −  and the linearised propagator M  has been 
used to update the deviation state vector xδ . Note that the summation over the 
index k corresponds now to a summation over all the observation within the time 
interval over which J is defined. As above, the analysis increment to the back-
ground can be written in terms of a gain matrix of the form 

−= + 1K BH (HBH R)T T  or 1 1 1( )− − −= +K B H RH H RT T  

so that the analysis increment is:  

1 1 1
0( ) ( ( ) ( ) ( ) ( )δ δ− − −= +∑ ∑iB HM R HM HM R HMT T

i i i i
i i

x t y  

An additional step normally taken is to further re-arrange the terms so as to 
avoid directly defining the matrix B . This is done by defining B  as T=B UU  
After a little math: T

bJ u uδ δ= . 
Useful references for atmospheric applications of 4D-Var are Klinker et al. 

(2000), Fisher (2003), Lorenc and Rawlins (2005) and for the oceanic applications 

5.6.5 The Kalman Filter 

The main advance in the Kalman Filter is the use of a forecast of the error covari-
ance. Consistent with linear dynamics 

that the problem can be well approximated in a linear fashion in terms of 
It is common to use an incremental form of 4D-Var, in which one assumes 

Vialard et al. (2003), Weaver et al. (2003, 2005). 
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,0 0( ) ( )i ix t x tδ δ= M , 

the forecast error covariance at time step i + 1 is given by 

1, 1,( 1) ( )+ ++ = +P M P M QT
f i i a i ii i  

where Q  is a model error covariance taken to be white noise in time and )(iaP  
is the analysis error covariance at time step i. The gain matrix is: 

 1( ) ( ) ( )( ( ) ( ) ( ) ( ))−= +K P H H P H RT T
f fi i i i i i i  

so that the analysis increment is given by 

( ) ( ) ( )( ( ) ( ) ( ))− = −K Ha f fx i x i i y i i x i  

( ) ( ( ) ( )) ( )= −P I K H Pa fi i i i . 

If the model M is linear, and if we either set Q = 0 here or allow for non-zero Q 
in 4D-Var, then these equations have an identical solution to 4D-Var. The differ-
ence is in the algorithm – 4D-Var iterates over a time window so that it can avoid 
explicit representation of the error covariances, whereas the Kalman filter does not 
iterate and can be integrated forward indefinitely, at the additional cost of explicit 
representation of the covariance matrix. 

5.6.6 The Ensemble Kalman Filter 

In the Ensemble Kalman filter (EnKF) the idea is to assume the ensemble covari-
ance is a good estimate of the forecast error covariance: 

( )( )≈ = − −P P x x x x
T

f f f f f f
e  

(In practice the ensemble covariance is often localized in space to minimize the 
sampling errors inherent in small magnitude, geographically distant correlations.)  

 

for minimum mean square error it is:  
vector. To complete the algorithm the analysis error covariance must be specified; 
where the increment is the difference between the analysis and forecast state 

123 5 Getting Coupled Model Ready 



The analysis on each member of the ensemble: 

( ) ( )1
( )

−
= + + −x x P H HP H R y H xa f f T f T o f

j j j  

The same relation holds true for the ensemble mean: 

( ) ( )1
( )

−
= + + −x x P H HP H R y H xa f f T f T o f  

Useful references for oceanic applications are: Keppenne et al. (2005) and 
Leeuwenburgh (2005).  

5.6.7 Balance 

The atmosphere supports free variations on multiple timescales and some high 
frequency variations, like sound waves, typically have only very small amplitude. 
This fact can be used to constrain assimilation. A model for the atmosphere can be 
written in the following fashion 

)(xNxL
dt
xd

=+  

where L represents linear terms in the equation and N represents the non-linear 
terms. The fact that an atmospheric model can support high frequency variations is 
evident in the structure of the characteristic frequencies associated with the eigen-
values of the matrix L. The development of a balance relationship begins with the 
separation of the state vector x  into low frequency components y and high fre-
quency components z  using the eigenvectors of L to effect this decomposition. 
The high-frequency equation can be written: 

),( zyNzL
dt
zd

zz =+  

Balance conditions are derived by noting that high frequency variations can be 
suppressed by minimizing the time derivative term in the equations in some fash-

0=z , corresponding 
to geostrophic balance in a primitive equation model. More refined balance condi-
tions posit a slave relationship between the high-frequency part of the state vector 
and the low frequency components; i.e. )( yMz = . This ensures that the dyna-
mics, at least for a short period of time, resides on a slow manifold of possible 

ion. A simple way to minimize the time tendency is to set 
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solutions and the constraint of balance can be used either diagnostically in assimi-
lation by requiring the covariance structures obey the balance constraint or 
directly as part of the variational assimilation by imposing balance as a weak con-
straint.  

Although (normal mode) initialisation was used for many years at weather cen-
tres such as ECMWF, it is no longer used now that 4D-Var is operational having 
been replaced by a weak constraint. It is not generally used in ocean analysis. 
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Chapter 6 
Modelling the Atmospheric, Oceanic 
and Coupled System 

Brian Hoskins, Paul Schopf, and Antonio Navarra 

A model of the coupled system consists of component models of the atmosphere 
and of the ocean as well as software to link the two. The atmosphere must see 
the slowly evolving ocean sea surface temperature (SST) while the ocean must 
see the rapidly changing weather, in the form of the surface exchange of momen-
tum, heat and freshwater. Although one should consider the coupled system as a 
whole, much progress has been made by considering aspects of the atmosphere 
and ocean modules separately. Computer restrictions mean that both the atmos-
pheric and oceanic components have to be simplified. Many processes in both 
media take place at scales smaller than can be resolved by the component models 
and so must be parameterised as they cannot be explicitly resolved. Methods to 
deal with limitations to parameterisation are discussed. A variety of ways of vali-
dating testing and improving atmospheric general circulation models is considered. 
This can be done by making long runs of atmospheric models with observed SSTs 
or with simplified earth systems, such as aqua-planet models, to determine the 
importance of the process withheld. Often several different models are used in 
order to intercompare results. Examination of imbalances early in the model fore-
casts can also give clues as to model deficiencies. This latter use is interesting as it 
brings together to some degree weather and climate forecasting. Some other pro-
mising options are to run models at very high resolution for limited periods and 
to use the model results to guide and test the development of parameterisations 
appropriate for lower resolution. Early models of ENSO used ocean models of in-
termediate complexity in which the ‘essential’ physics was included but many 
processes were either excluded or heavily parameterised. However, there are now 
many coupled models using ocean general circulation modules. These are, like 
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their atmospheric counterparts less prescriptive, with many more degrees of free-
dom. Parameterisation of subgrid processes is important particularly mixing along 
and across density surfaces. How to deal with salt, poor representation of the flux 
of freshwater across the surface, and the run-off from rivers and melting ice pose 
particular challenges. Examples of model error in some key atmospheric fields 
such as precipitation when the atmosphere is forced by the observed SSTs and 
when the atmosphere is coupled to the ocean are shown. The errors may well get 
bigger in the coupled case as errors in either the atmosphere or the ocean may 
cause errors in the other medium and a positive feedback may result. This results 
in climate drift, a major problem facing all modellers of climate, be it on a short or 
a long climate timescale. 

6.1 Atmospheric Models 

Atmospheric models have been developed for the weather forecasting problem. 
They form the central component of predictions on longer timescales, including 
projections of climate change due to human activity and of predictive Earth sys-
tem models with the inclusion of extra ingredients such as interactive vegetation, 
atmospheric composition and ice sheets.  

The basis for the models is the set of equations for momentum, mass, thermo-
dynamics, and water vapour content. To put them on to a computer, these 
equations for a continuous fluid have to be turned into a description of the system 
using a finite set of numbers. This is usually performed using the values at a dis-
crete number of levels in the vertical, in the horizontal by using discrete points 
alone or in combination with the coefficients of a representation in terms of func-
tions (spherical harmonics), and using discrete intervals in time. There is a wide 
range of choices to be made over how to represent derivatives in space and time, 
but there is considerable experience in atmospheric modelling and other computa-
tional fluid dynamics applications to guide this choice. 

As will be discussed later, processes should either be represented explicitly or 
parameterised, i.e. their effect on the model variables is represented in terms of the 
model variables themselves. Considerable effort has been put into developing many 
different parameterisations of radiative processes, clouds, convection of various 
kinds, large-scale latent heat release, surface exchanges and boundary layer turbu-
lence, the drag associated with gravity waves triggered by mountains and perhaps 
by rapid events in the atmosphere, and interior mixing processes. These have been 
developed in the context of observational studies including special targeted obser-
vational programmes and, sometimes, detailed modelling of the phenomena under 
consideration. For one version of the ECMWF model, the temperature tendencies 
over the first time-step given by the radiation and convection parameterisations 
zonally and over 1 year are given in Fig. 6.1a and b, respectively, and the total 
tendency given by all the parameterisations in Fig. 6.1c. 
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Fig. 6.1 Parameterised temperature tendencies computed from single time-steps in the ECMWF 
model and averaged zonally and over 1 year: (a) Radiation, (b) Convection, and (c) Total.  
(d) shows the residual between the total parameterised tendency (given in (c)) and the tendency 
due to the dynamics 

The resolution of the model and the detailed nature of the individual para-
meterisations used depend on the timescale for the prediction to be made and the 
computational power available. For example weather forecasting for 1 day may 
require only crude representation of some radiative processes, whereas climate 
change simulations will need to reflect accurately the detailed effect of trace con-
stituents on the residual between short and long wave radiation. Currently, the hori-
zontal grid of the model may be 30–50 km for a global weather prediction model 
and 100–250 km for a climate model. The vertical resolutions used in the various 
contexts tend to be more similar, typically 0.5–1 km, respectively in the two contexts. 

6.1.1 Model Performance Evaluation 

6.1.1.1 Introductory Comments 

The fundamental evaluation of model performance is through comparison with the 
real system. There are a number of difficulties in this evaluation. Firstly, there is 
uncertainty over the state of the real system at any instant and consequently in any 
statistics derived over a period. Observations are limited in space and time and in 
the components observed. Estimates of, for example, precipitation can be made from 
rain-gauge data together with inferences from satellite radiance measurements. 
Alternatively, use can be made of the data assimilation performed at operational 
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forecast centres where all the available observations and the previous short range 
forecast are combined together in the context of the model. However the product 
of such data analysis will reflect any errors in the model used. Routine operational 
analyses over a period suffer from the fact that the observational system changes 
in time, e.g. there are few satellite data before 1979, and also that the analysis sys-
tem itself undergoes changes. To overcome the latter problem various centres have 
performed reanalyses for many decades of observational data using modern analy-
sis systems. They also try to use data that may have not been available for the 
analyses performed at the time. Details about reanalyses may be found at the web 
address below.1  

One particular reanalysis is that at ECMWF for the period 1957–2002 (Uppala 
et al. 2005, see also Chapter 3). An atlas compiled from the so-called ERA-40 data 
is available on the web2 as well as a special quick access web version.3 However, 
whether in the routine operational process or in the special reanalyses there remain 
considerable discrepancies in some fields, such as precipitation, between the pro-
ducts from different analysis centres. 

The second uncertainty in evaluation of atmospheric model performance is 
associated with the extent of the system concerned. For example in the seasonal 
context if the atmospheric model is coupled to an ocean, any errors may, or may 
not be due to defects in the ocean model. If the sea surface temperatures (SSTs) 
and sea ice are held constant throughout the forecast then this will lead to errors. If 
in hindcast mode the SSTs and sea ice are specified from observations, errors 
could still arise due to the lack of two-way interaction between the atmosphere 
and the underlying ocean. 

6.1.1.2 Model Intercomparisons 

Models may also be compared with each other as well as with the real system. 
There has been a lot of such activity, focussed mainly on the World Climate 
Research Programme/Working Group on Numerical Experimentation Atmos-
pheric Model Intercomparison Project (AMIP). A large number of comparisons of 
particular aspects in many models run with specified SSTs and sea ice for a 17-
year period have been performed. One aim is to learn about the skill that may be 
possible in predictions on monthly or seasonal timescales using current atmos-
pheric models. AMIP and other model intercomparison studies have proved very 
successful in this regard. A second aim is to determine whether particular model 
abilities or defects can be related to particular model ingredients. However, such 

________________  
1 See: http://dss.ucar.edu/pub/reanalyses.html 
2 See: http://www.ecmwf.int/publications/library/do/references/list/192 
3 See: http://www.ecmwf.int/research/era/ERA-40_Atlas/index.html  
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associations have in general proved elusive because of the large number of non-
linear interactions and the large variety of processes represented in models.4  

One approach to obtaining information on how fundamental aspects of model 
results are related to its ingredients involves the making of drastic simplifications. 
To learn about the representation of the basic equations, the so-called dynamical 
core experiments (Held and Suarez 1994) reduce the physical parameterisation 
package to a relaxation to a specified thermodynamic structure on a timescale of 
about 1 week plus a simple boundary layer drag. To investigate the interaction of 
the physical parameterisations with the dynamics, full models have been retained 
but with the underlying planet simplified to be water covered everywhere with a 
specified zonally symmetric SST plus possibly simple anomalies. A model inter-
comparison has been performed using such aqua-planet models.5 It has been found 
for example that under certain circumstances some models give a single convec-
tive maximum on the equator, whereas others give two maxima either side of the 
equator, a double Inter Tropical Convergence Zone (ITCZ). 

6.1.1.3 Systematic Errors 

For an operational weather forecast model, errors can be examined at various 
timescales. Using the technique based on summing initial time-step tendencies 
pioneered by Klinker and Sardeshmukh (1992), referring again to Fig. 6.1, if the 
forecast model were consistent with the initial data given to it, then on average the 
thermal tendency given by the parameterisations (Fig. 6.1c) would be exactly can-
celled by that associated with the resolved dynamics. Figure 6.1d shows that the 
actual cancellation is far from exact. This could be due to errors in the observa-
tional data or its assimilation, in the equation representation in the model or in the 
physical process parameterisation. In the latter cases it could be associated with a 
systematic error or with a short timescale spin-up/adjustment process. The sys-
tematic error grows and evolves in time. However, as discussed in Jung (2005) the 
growth saturates and the seasonal mean error for the same model run in hindcast 
mode with specified SSTs (Fig. 6.2a) has many features in common with the  
10-day error (Fig. 6.2b), and the long-term anticyclonic error over the western and 
central North Pacific is in fact present even at day 3 (not shown). 

6.1.1.4 Extratropical Systems 

Two important aspects of the extratropical weather and climate are the storm-
tracks and blocking highs. The storm-tracks are the regions in which mid-latitude 
 ________________  
4 See: http://www-pcmdi.llnl.gov/projects/amip/ for details of AMIP. 
5 See: http://www.met.reading.ac.uk/~mike/APE/ for details. 
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Fig. 6.2 Systematic errors for Dec–Mar in the ECMWF model in the period of about 1960–2000 for 
10 days (a) and seasonal forecasts (b) 

weather systems characteristically grow move and decay. Any changes in the 
Northern Hemisphere storm-tracks in any particular season are important, in par-
ticular for North America and Europe that are situated at the end of the two main 
tracks. Figure 6.3 shows the average winter storm-tracks determined from ERA-40 
(as in Hoskins and Hodges 2002) and from three AMIP models (which will have been 
updated since this figure was made). It is clear that the models capture the general 
storm-track structure but have errors in the detail that vary from model to model.  

The frequency, intensity and positioning of blocking highs are crucial for any 
season in many mid-latitude regions, and in particular for Europe. Blocking is  
associated with a reversal of the usual westerlies on the equatorial flank of the high, 
and strong meridional flows upstream and downstream and these features tend to 
be fairly stationary. All these aspects lead to anomalous weather. On seasonal and 
longer timescales it has been found that most models capture the regions in which 
blocking tends to occur, but they under-estimate its frequency and intensity. 

6.1.1.5 Tropical Behaviour 

Models have general success in simulating tropical phenomena such as monsoons 
on average though their variability is difficult to capture. On the seasonal time-
scale there is great interest in ENSO which is a coupled ocean-atmosphere 
phenomenon for which there is some predictive skill. However the ENSO onset 
may be strongly influenced by westerly wind bursts associated with the progres-
sion of large regions of organised convection from the Indian Ocean to the West 
Pacific on a timescale of weeks. This “Intraseasonal or Madden-Julian Oscilla-
tion”, and also convectively coupled equatorial waves and even the diurnal cycle 
all still provide big challenges for atmospheric models. See also Chapters 3 and 4. 
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Fig. 6.3 Northern hemisphere winter storm-tracks in ERA data and in three AMIP (Atmospheric 
Model Intercomparison Project) models. The field shown is the track density of cyclonic features 

6.1.2 Prospects for Improving Models 

A number of different approaches for improving models will be discussed. 

6.1.2.1 Comparison with New Observations 

The advent of a new observational instrument gives an opportunity for a fresh 
view of model performance through a comparison with its observational data. For 
example, in the SINERGEE project, the observations of outgoing long wave radia-
tion (OLR) and albedo made by the GERB satellite have been compared with 

at 850 hPa (K. Hodges 2005, personal communication) 
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Hadley Centre model data.6 One conclusion was that in the model the Sahara 
desert did not reflect sufficient solar radiation. Alternatively the new observations 
may come from one of the special limited-time, focussed observational pro-
grammes. 

6.1.2.2 Diagnoses of Observational and Model Data 

The development and application of new diagnostics based on theoretical under-
standing may give new insights into model behaviour. The analysis of equatorial 
waves with embedded deep convection provides one example. A diagnosis of con-
vection in the tropics, or equivalently of high, cold cloud shows that the models 
do not correctly capture the peaks in wave number and frequency that are present 
in the observations and the phase speeds are wrong. Going further than this, using 
a new technique, based on equatorial wave theory, it is possible to isolate particu-
lar wave structures in the observations and the models. Initial indications from one 
such study are that models are seriously in error in some aspects of the wave struc-
tures. The challenge will be to understand why and produce model changes that 
improve the representation, without introducing other deleterious effects.  

As discussed above, initial tendencies or single time-steps in models initiated 
from good data analyses can indicate spurious imbalances in the model terms. The 
data analysis system itself can also yield useful information through study of the 
increments added to the model first guess in the data assimilation procedure. For 
example, if the observations are always trying to moisten the model tropical at-
mosphere, it suggests that the model parameterisations are producing too much 
drying in the region. 

6.1.2.3 Performance on Weather-Seasons-Climate 

Looking at their performance on timescales other than seasonal can provide inter-
esting insight into which aspects of models that are to be used for seasonal 
forecasting need attention. On the short timescale, the ability of the models to rep-
resent individual synoptic systems or regimes of flow can be assessed by using 
them for re-forecasting the weather. On longer timescales, running the models for 
one or more years will give information on the tendency of the model to drift to a 
different climate. Such a tendency may be damaging for seasonal and shorter 
timescale predictions but may be less clear as to its nature. 

The models can be run either with specified SST or in coupled mode. Seasonal 
hindcasts themselves can also be run in coupled or uncoupled mode. Controlled 

________________  
6 http://www.nerc-essc.ac.uk/Research/Atmospheric/Atmospheric.htm#sinergee 

134 B. Hoskins et al. 



experimentation can elucidate the relationship between errors in the model per-
formance; for example, by warming the SSTs to artificially improve the con-
vection in the tropical west Pacific, the impact of this error on the model results 
elsewhere can be assessed (Turner et al. 2005). 

6.1.2.4 Results for Simplified Problems 

As discussed above, running a full atmospheric model with a simplified lower 
boundary, for example an aqua-planet, can yield useful information on the repre-
sentation of the dynamics and the parameterisations, and the interaction between 
them. Going even further, by drastically simplifying the parameterisations, dyna-
mical core experiments can provide useful comparative information on numerical 
representations of the basic equations. 

6.1.2.5 Very High Resolution Runs 

Operational forecast models are run at a spatial resolution (particularly in the hori-
zontal) that is determined by the availability of computer power. However in case-
study mode, global models can be, and are being run with an order of magnitude 
finer resolution, 10 km or less. Such studies give information on benefits that may 
be had through, and problems that may be solved by, going to finer resolution. 
They may also yield ideas on how the parameterisations at lower resolutions could 
mimic the higher resolution behaviour and therefore perform better. Another ver-
sion of this investigation is to run a limited area version of the model in which 
even higher resolution will be possible. The negative aspect in this case is that 
there is now dependence on the imposed boundary conditions. 

6.1.2.6 Different Computational Approaches 

In atmospheric modelling and in the wider area of computational fluid dynamics 
there are new ideas on numerical methods that may improve seasonal forecast 
models. Different grid meshes to cover the sphere, and different ways of determin-
ing derivatives in space and of integrating in time are all being raised and tested. 
Options for the vertical coordinate, such as potential temperature (θ) are being 
assessed. This coordinate has the advantage that air would move along the coordi-
nate surface unless heat was added to it. However the disadvantages associated 
with θ-surfaces intersecting the Earth’s surface have currently limited its applica-
tion. Given the important role played by it (see Chapter 4), another theoretically 
very attractive option is to use potential vorticity (PV) as one of the model variables.  
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6.1.2.7 Development of New Parameterisations 

Apart from Section 6.1.2.6, the approaches discussed above are generally aimed at 
giving information on possible defects in the parameterisations. The hope is that 
this will suggest how they may be modified or new parameterisations may be 
developed. They also provide means for testing models that include these modi-
fied or new parameterisations.  

Another way of developing a new convective parameterisation, for example, is 
to use experimentation with a cloud resolving model, based on a grid of perhaps 
100 m or less in a box the size of a few grid cells in the global model, and look for 
the equilibrium tendencies associated with the simulated convection for steady 
boundary conditions. This can be seen as setting the target for the convective 
parameterisation. This technique is now gaining wide popularity. However, help 
in capturing the crucial interaction of convection and dynamics in tropical waves 
may require resolutions of a few hundred metres in more realistic limited area 
models of large regions in the tropics.  

In future, parameterisations may be introduced for processes that have not pre-
viously been considered to need any scheme. For example, most models exhibit 
regions in the upper troposphere in the tropics where the absolute vorticity is of  
opposite sign to the Coriolis parameter. As expected from theoretical considera-
tions, a linear version of the ECMWF model suggests that these regions are 
unstable (“inertial” instability). However any such perturbations have very limited 
growth in the full non-linear model and are presumably removed by other pro-
cesses in it. It is not clear whether the net result of this removal is as observed in  

Fig. 6.4 Frameworks for parameterisation, as discussed in the text. The upper panel shows the 
current method and the lower panel a method that may be preferable. Nt is the truncation scale of 
the model and is the scale at which parameterisation is currently performed. Np the scale at which 
the model fields are “believable”, and it is arguable that this is the scale at which parameterisa-
tions should take their input fields and give their tendencies 
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the real atmosphere. When the latter is understood better it may be decided that an 
explicit parameterisation is needed in the model. 

It is possible that the whole approach to parameterisation should be rethought. 
In current schemes, following Lander and Hoskins (1997), the framework for 

wavenumber (Nt) or scale divides the range of scales into those not represented 
and those represented. However the scales slightly larger than Nt (arguably up to 
about four times this scale) are poorly resolved. Information is taken from the 
model at the grid-scale, where it is not to be trusted. It is fed into a parameterisa-
tion scheme and the resultant tendencies are fed back onto the grid-scale at which 
the model is not able to treat them correctly. This approach was necessary when 
the range of scales included in a model was not very large. However, given that 
this is no longer the case, the alternative scheme shown in the lower part of Fig. 
6.4 may be preferable. Here information given to the parameterisation is taken 
from the model at the scale that is believed (Np) and tendencies are fed back on the 
same scale, a scale at which the model is able to handle them properly. There are 
questions about which parameterisations should be handled in this manner and 
what to do about singularities such as coastlines. It is probable that parameterisa-
tions that are essentially dissipative should be applied on the scale Nt, but that 
those that can be viewed as forcing should be applied on the larger scale Np. This 
approach is now being tested. 

Until recently, parameterisations have been deterministic in the sense that a 
particular set of grid-scale values of model variables will always yield the same 
tendency from, for example, the convective parameterisation. However it is now 
increasingly recognised that it is unrealistic to think that this is the case, and 
representations of the random element are being included in “stochastic” para-
meterisations (e.g. Palmer 2001). Also, organised behaviour on sub-grid scales 
may feedback energy onto the retained scales: again representations of such 
“backscatter” are being tested (e.g. Shutts 2005). Finally there is also now  
research on representing convection in particular by embedding a specialised 
prognostic model that interfaces with the full model near the grid-scale. One ver-
sion of this (“super-parameterisation”, see Grabowski 2001) is a cloud resolving 
model simplified for computational reasons to use only one horizontal dimension. 
Another is to have a model in which convective clouds are represented by so-
called cellular automata (Wolfram 1994) that obey simple rules which determine 
their growth, interaction and decay. 

6.2 Ocean Modelling 

Ocean models are a critical component of seasonal forecast systems. As outlined 
in Chapters 3 and 4, there are a few essential roles for the ocean in the climate 
system, and it is important that numerical models for the ocean capture these fea-
tures and represent the physics included in them.  

parameterisation can be described as in the top part of Fig. 6.4. The truncation
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There are two opposing goals of modelling – to elucidate the essential dyna-
mics or to simulate and forecast. Often, elucidation means removing processes 
believed to be non-essential, paring away process after process until only the sim-
plest possible model remains which is able to capture the phenomenon. Each 
process successfully removed can then be identified as not essential to the physics, 
and the “most elegant” model can be constructed. Once the simplest model can be 
built, second- and third-order approximations can be constructed to make more 
and more faithful renditions of nature. 

This strategy of isolating the essential physics, then incrementally adding com-
plexity can lead to relatively successful prediction systems, as exemplified by the 
Zebiak and Cane (1987) coupled model for El Niño. They derive their success 
from two sources: first, they contain most of the relevant physics, second, they 
avoid systematic drifts and biases which can quickly corrupt more complex models. 
(Every time complexity is added to a model, additional unknown parameters are 
added to the system as well as additional ways to introduce substantial biases.) 

We have outlined a view of the processes in the ocean as one-dimensional 
mixed layer physics, ventilated thermocline mechanics, shallow tropical cells, 
surfacing of the thermocline and details of the interaction of the thermocline with 
the sea surface.  

6.2.1 Models for El Niño 

Over time a hierarchy of models has been used to simulate El Niño. They fall into 
the following categories: 

6.2.1.1 Single Layer Reduced Gravity Models 

These models capture the equatorial wave dynamics of the upper ocean. They rep-
resent the ocean as a relatively shallow layer of warm water sitting atop an 
infinitely deep, dense abyss. The displacement of the interface between the warm 
and cold water introduces horizontal pressure gradients. Combining the effect of 
these pressure forces with the Coriolis force and surface stress yields the momen-
tum balance describing the horizontal flow. This flow is then used in the mass 
equation to compute the changes in interface displacement. 
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where g’ = g·∆ρ/ρo, and ∆ρ is the density difference between the surface layer and 
ρo is the abyssal density. H is the mean layer thickness. 

By choosing the mean thickness of the layer and the density difference between 
the surface and the abyss, the model can be made to have a wave propagation 
speed ( 'g H ) consistent with the various baroclinic modes of a continuously 
stratified ocean – usually the gravest mode is chosen. Such models provide a use-
ful solution to simple wave propagation questions in the presence of complex 
boundaries, including islands, or in the presence of complex wind forcing.  
Examples of such models include the studies of Busalacchi and O’Brien (1981) 
and Cane and Patton (1984). 

The most obvious limitation of the single layer reduced gravity model is that it 
fails to simulate the SST. A parameterisation of the SST is often made by relating 
the anomalous layer thickness with an anomalous subsurface temperature. A thin 
surface layer is presumed to indicate that there is less warm water near the surface 
and the abyssal water is brought up closer to the surface. Imagining that some 
form of mixing acts to modify the temperature, the shallow thermocline is then 
mapped to a cooler surface temperature. An alternative derivation can be made in 
a statistical sense, relating the observed record of thermocline displacement to 
temperature anomalies. This latter method can be used to make arguments that 
localize the SST response, because in some regions the change in thermocline is 
not as strongly related to the change in SST as in others (see Fig. 3.4). 

6.2.1.2 Two Layer Reduced Gravity Models 

To overcome the objection that SST is not predicted in a single layer model, a 
number of models were built which included two reduced-gravity layers, where 
the top layer had a representation of a shallow surface mixed layer, and the second 
layer described the remainder of the water above the thermocline. The deeper 
ocean was still represented as an infinitely deep abyss. 

These models differ largely in their treatment of the second layer temperature 
and how that temperature interacts with the mixed layer during upwelling. The 
Schopf and Cane (1983) model carried an explicit equation for both the tempera-
ture of the layer and its vertical gradient. The surface layer also carries a full 
thermodynamic equation for the SST, including non-linear advection, surface 
heating, diffusion, and vertical advection across the base of the mixed layer. The 
model in Zebiak and Cane (1987) treats the second layer density as fixed, and then 
parameterises the temperature profile based on the thickness of the layer or posi-
tion of the thermocline. This model has served as the ocean component of one of 
the first successful ENSO prediction systems, which combined this ocean with a 
simplified non-linear atmosphere model. Its success supports the notion that 
theories based on ocean wave dynamics (the delayed oscillator and recharge para-
digms) represent the dynamics of ENSO, while by no means proving the point, 
since it also failed to predict major ENSO events such as that in 1997/98. 
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6.2.1.3 Multi-layer Reduced Gravity Models 

While the two layer models add an equation for the surface temperature, they 
depend heavily on the parameterisation of the sub-surface thermal structure, and 
the representation of its dynamics through a single vertical mode. Models with 
several layers in the vertical were then developed as a natural extension to these 
systems. Such models can represent the ventilated thermocline very well (see 
Chapter 4). They share the reduced gravity approach to the theory, allow for 
several outcroppings of isopycnal surfaces, and are fully non-linear. When coded 
with care, they exhibit very good conservation of potential vorticity – a require-
ment for the ventilated thermocline – and can be run in nearly global mode for 
thousands of years, reaching an equilibrium state very quickly. 

These models connect the mid-latitude thermocline with the equatorial zone, and 
therefore provide a means for completing the shallow tropical cells, the equatorial 
Kelvin and Rossby waves, and the mixed layer dynamics. A model of this complex-
ity is in use for routine seasonal prediction at the NASA Goddard Modeling and 
Assimilation Office (Schopf and Loughe 1995). A variant on this approach uses 
sigma-coordinates to treat the thermocline water, rather than isopycnals (Gent and 
Cane 1989), and has also been used for many coupled ocean-atmosphere studies. 

6.2.1.4 Ocean General Circulation Models 

Ocean general circulation models (OGCMs) have become the model of choice for 
coupled climate prediction systems. The reduced gravity models take advantage of 
the very small changes found in the background state of the deep ocean over the 
seasonal to interannual timescales. The simplest single layer models have no pro-
blem maintaining the proper wave speeds, since they are built in to the equations 
as external parameters, not predicted by the model. The two layer reduced gravity 
models share this constraint. The multi-layer reduced gravity models are the first 
in our hierarchy which have to maintain their own climatology. If their only draw-
back were the inability to represent the slow thermohaline circulation, it would 
likely have little impact on the simulation of seasonal to interannual climate. But 
one serious deficiency affects reduced gravity models: their inability to represent 
the effects of topography, in particular the effects of the shallow passages and 
straits through the Indonesian archipelago. 

An ocean circulation model does not require or impose the “background condi-
tions”, and instead proceeds to solve the primitive equations of motion and 
thermodynamics in a direct fashion. They must create the background state, the 
abyssal water, thermocline and near surface mixed layers. Since it is hoped that 
they mimic the dynamics of the real ocean, some features, such as the very slow 
evolution of the deep water, should be reflected in their solutions. It is common 
practice to start these models from some climatology, and so it is hoped that the  
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Fig. 6.5 Schematic of El Niño and La Niña 

deep ocean, which would take millennia to equilibrate, can be very nearly in equi-
librium at the start of an integration. If the ventilated thermocline theory is 
meaningful, it implies that the pressure gradients in the deep ocean are very small, 
and this slow evolution of conditions in the deep is consistent with our assump-
tion. The ventilated thermocline dynamics must be reflected in solutions to the 
primitive equations, and an accurate integration of these equations should give 
similar behaviour to the multi-layer reduced gravity model, and hopefully, to the 
real ocean. 
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But the challenge to the OGCMs is great. Figure 6.5 shows a typical cartoon of 
El Niño vs. La Niña: the thermocline changes dramatically, theconvection shifts 
over large regions, and the ocean is depicted as a single layer. Figure 6.6 shows 
observed sections of temperature along the equator (Johnson et al. 2002). The top 
two panels show the climatological tempera tures for 6 months around the annual 
cycle. The bottom two panels show the conditions during a canonical El Niño and 
La Niña. What should be apparent is that the El Niño is not a large shift of the 
thermal structure of the ocean, but rather one that is about the size of the annual 
cycle itself. It is also apparent that an approximation of a two-layered system 
seems plausible when looking at the equator. If one looks at meridional sections 
across the equator, however, the complexity of the thermocline becomes more 
apparent, becoming more diffuse toward the west and more diffuse at higher 
latitudes. Figure 6.7 shows these sections from Johnson et al. (2002). 

While the two layer models exploit the sharp thermocline, the OGCM must 
produce it. Small errors in the numerics or physics can easily lead to substantial 
changes in the simulated mean state. Inspection of Figs. 6.6 and 6.7 reveals that a 
10 m vertical displacement of an isotherm could lead to a 1°C or 2°C temperature 
anomaly. Experience with several ocean models used in El Niño prediction reveals 
that these models tend to share a number of problems, not the least of which is an 
overly diffuse thermocline. 

 Fig. 6.6 Observed temperature profiles along the equator for April and October (top panels) and 
for El Niño and La Niña (bottom) (after Johnson et al. 2002)  
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Fig. 6.7 Sections of mean potential temperature across the Pacific at longitudes of 165°E, 
180°E, 140°W and 110°W (after Johnson et al. 2002) 

6.2.2 Challenges and Improvements to Ocean Models 

There are two essential components of modern ocean models, usually referred to as 
“dynamics” and “physics”. Dynamics integrates the equations of motion on scales 
down to the resolution of the computational mesh, while physics includes the parame-
terisations of effects of finer scale motions, which usually take the form of “mixing”. 
While research continues on improving the hydrodynamic codes, it is clear that 
modern ocean models suffer more from errors in the treatment of small-scale 
motions than from errors in the simulation of well-resolved hydrodynamic processes. 

Mixing occurs in several regions in the ocean, and can be very vigorous and 
important in establishing the character of the flow. In other regions, we believe 
that mixing is very weak, especially mixing across surfaces of constant potential 
density (isopycnals). This type of mixing is known as diapycnal mixing. When 
diapycnal mixing occurs, there is a significant increase in the potential energy of 
the water column. There must be an equivalent source of turbulent energy in order 
to accomplish this mixing. Mixing of tracers along isopycnal surfaces does not 
involve a change in potential energy, and such mixing can happen much more 
effectively than diapycnal mixing. The rate of isopycnal mixing appears to be 
about 107 or 108 times greater than diapycnal. Although diapycnal mixing is far, 
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far smaller than that along such surfaces, diapycnal mixing is essential for the 
effective transport of heat in the climate system. Its accurate representation in 
climate system models is therefore important, if for no other reason than obtaining 
the proper distribution of heat. On the other hand, the ventilated thermocline 
theory depends on the diapycnal mixing being low. The multi-layer reduced gravity 
models discussed above are able to run with essentially no diapycnal mixing 
below the surface turbulent layer. Many other consequences arise, however, if we 
consider the transport of salt and other significant materials. 

The first numerical models of the ocean circulation were constructed in the 
relatively straightforward geometrically based coordinate systems on which the 
hydrodynamic codes could be efficiently and easily represented. Numerical schemes 
for the equations of motion are either highly dissipative in their nature, or need 
additional damping of the finest scale motions. For many years, models were so 
coarse in resolution and needed so much “numerical glue” that the parameterisa-
tion of diapycnal and other mixing processes had no need to be physically based. 
While the numerical schemes still need suppression of the finest scale motions 
through mixing, modern modelling practice has chosen to add the damping in a 
way which aligns the effects along isopycnal surfaces (either by rotating the mix-
ing tensor or by using isopycnal coordinate systems). With the combined advent 
of higher resolution and an appreciation for improved numerical techniques, we 
have now arrived at a point where diapycnal mixing can be set by physically based 
parameterisations. 

Although mixing along isopycnal surfaces is far larger than diapycnal, the 
problem of adequately representing such mixing is far from solved. The highly 
energetic eddies of the ocean circulation cause intense motions on scales that are 
still not well resolved except by the most ambitious computing efforts. For the 
seasonal prediction problem, there is advantage that the size of these eddies in-
creases near the equator, and it is now fairly common to resolve them within 10° 
of the equator. But returning to the premise that the equatorial thermocline de-
pends on the shallow tropical cells, the effect of unresolved eddies has been shown 
to be very important in the subduction process which creates the source waters of 
these cells, as well as causing a mixing of potential vorticity in the cells them-
selves. For the class of models used for climate simulations and forecasts, it is 
likely that it will be many years before eddy resolving ocean models are used in 
these integrations. Further, the class of eddy-resolving models that can be foreseen 
in the next 20 years will still need sub-grid scale parameterisations of still smaller 
motions in order to close the problem. This leaves the problem of parameterisation 
of eddy fluxes as another key issue to improving coupled model simulations of 
climate. 

For the seasonal to interannual prediction problem, the most important mixing 
processes are those of:  

• Surface boundary layer processes 
• Shear driven upper ocean mixing 
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• Internal wave breaking 
• Interaction of eddies with mixed layers 
• Mixing within the thermocline at lateral boundaries 
• Double diffusion and salt fingering 

The first three directly affect the simulation of the tropical and equatorial pro-
files of temperature, salinity and currents. The last three influence the establish-
ment of the shallow tropical cells, and therefore have an indirect influence on the 
equatorial thermocline. The importance of these latter three arises if we are at-
tempting to simulate the coupled climate in a drift-free model. Modern data 
assimilation methods can probably obviate the need for exact solution of the sub-
tropical thermocline, but these effects have been shown to have a direct bearing on 
models’ abilities to simulate El Niño. Meehl et al. (2001) showed that significant 
changes in El Niño amplitude in coupled models seem to be related to the back-
ground diffusivity used in the ocean models (see Fig. 6.8). In numerical experi-
ments with a simplified coupled model, much of this sensitivity comes from the 
diffusive effects outside the equatorial belt, further emphasizing the importance of 
simulating the STCs in establishing the equatorial thermocline. 

In equatorial regions the thermocline is often relatively strong and shallow, 
which allows cold water to be maintained near the surface, where it can be made 
available for cooling the surface. Variations in the strength of such cooling are 
primary factors in the El Niño cycle of equatorial SST. Since the diapycnal mixing 
of heat in the thermocline continually works to destroy this thermocline it is 
important to understand the processes involved, and to represent them accurately 
in ocean models. One such process is thought to be mixing due to breaking internal

Fig. 6.8 Effect of background vertical diffusivity on simulated El Niño amplitude from a variety of 
coupled models at varying resolutions (after Meehl et al. 2001)  
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waves. It is commonly represented in ocean models as Fickian diffusion with a 
constant coefficient (1–2 cm2 s−1) given by extratropical tracer release experi-
ments (Ledwell et al. 1993). Despite the lack of observational support, models 
also need the corresponding viscosity and typically use a constant Prandtl number 
of about ten. However, there would be significant consequences should these val-
ues prove to depend on the Coriolis parameter and hence for there to be smaller 
diffusivity at the equator. 

Another mixing process derives its energy from the shear between the surface 
and the equatorial under current (EUC). Microstructure measurements have provided  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.9 September 1999 Sea Surface temperature (SST), wind stress magnitude, wind stress 
divergence and wind stress curl observed from satellites (after Chelton et al. 2001). The contours 
in the lower 3 panels are the SST from the top panel 
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many estimates of its diffusivity, which has been formulated as a function of local 
Richardson number (Peters et al. 1988). Usually ocean model implementations 
follow Pacanowski and Philander (1981). The sensitivity of the equatorial struc-
ture to these parameterisations was demonstrated in Yu and Schopf (1997).  

A third process, which may be a combination of the first two, is known as 
deep-cycle turbulence. It is observed on the equator in the central Pacific, where 
the mean shear of the EUC and a daily cycle of daytime solar heating and night 
time surface convection combine to produce strong turbulence extending tens of 
meters into the stratified water below the surface layer. 

Above, we asserted that “physics” and unresolved motions give larger pro-
blems in ocean modelling than the solution of the hydrodynamic equations, but 
even the solution of the hydrodynamics becomes problematical when the features 
are barely resolved by the computational mesh. For the problem of El Niño, the 
most important issue here are the tropical instability waves – a series of ocean 
eddies on the scale of 700 km that appear seasonally just north of the equator in the 
eastern Pacific, and across the Atlantic. The challenge is to accurately model the 
fine scale structure of the ocean eddy field and its relation to the surface fluxes – 
particularly the surface stress. Chelton et al. (2001) demonstrated the strong rela-
tionship which appears to exist between the SST and the surface stress, even 
downto the scale of the tropical instability waves. Figure 6.9 shows the SST and 
surface stress properties for a week at the start of September 1999. The strong 
relationship between the SST and the stress shows the influence of coupled ocean-
atmosphere effects down to a very small scale. Of particular importance are the 
divergence and curl of the wind stress, which show up as very clearly linked to the 
SST. These scales can now be represented in ocean circulation models, but are 
only beginning to be resolved in the most ambitious atmospheric GCMs. 

6.2.2.1 Summary 

Ocean general circulation models are the basis for most coupled forecast systems 
currently in use at national forecast centres. They have the strong advantage of 
being able to represent almost all the important physics for El Niño and La Niña. 
Today, when coupled to atmospheric models, they produce climate simulations 
with significant biases that lead to rather rapid degradation of the forecasts (see 
Figs. 5.9 and 6.16 later in this chapter). Data assimilation and forecast assimilation 
techniques can be used to improve the prediction and to correct for the systematic 
biases that arise in the model, but it is clear that the models themselves can be 
substantially improved by the inclusion of better treatments of the small scale 
physics that are so important in controlling the overall, long term simulation. The 
interests of the ocean modelling community for seasonal to interannual prediction 
are not so very far removed from those studying the role of the ocean in climate 
change. 
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General circulation models are designed to include dynamics and physics. The 
early two-layer models succeeded in large part by excluding physical processes. 
By including physics, the models enable better representation of nature, but by 
including physics badly, the models can rapidly go astray. It is clear that ocean 
models will go to ever increasing resolution; whether they can include more and 
more accurate representation of the physics remains to be seen. 

6.3 Coupled Modelling of the Atmosphere-Ocean System 

6.3.1 Teleconnections  

As the equatorial Pacific is engaged in a fancy dance of waves, the rest of the 
world can hardly miss it. Just as a couple of top dancers quickly draw the attention 
of the whole ballroom, so the dance of the Pacific is felt around the world. The 
large SST anomalies in the equatorial Pacific activate large areas of deep convec-
tion, enormous amounts of heat are released into the atmosphere and anomalous 
circulations quickly set in. The anomalous heating displaces the normal distribu-
tion of east-west (Walker-like) circulation cells in the global equatorial zone. The 
normal distribution of vertical velocity is modified and subsidence appears in un-
usual and distant places, carrying drought, or exceptional rains where instead 
upward motion is moved. All along the equator, in Brasil, East Africa, the Indian 
subcontinent, the consequences of the Pacific dance are sorely felt. These tele-
connections are a dramatic consequence of the coupled mechanisms in the equa-
torial region; they transfer the impact of ocean-atmosphere processes to distant 
regions and, exploiting the slow timescales of the ocean, can influence the atmo-
sphere for a long time. 

Teleconnections are not limited to the equatorial area. The equatorial atom-
sphere is very sensitive to anomalous heating that quickly generates high level 
vorticity areas that become the sources for the generation of atmospheric planetary 
Rossby waves, propagating into the mid-latitudes in both hemispheres. The signal 
of the Pacific is now carried away tens of thousands of kilometres, stretching like 
beads of a necklace across the Pacific to North America, and sometime to Europe. 
Similar chains of anomalies extend into the Southern Hemisphere, affecting South 
America, Australia and South Africa. 

Figure 6.10 shows some of the climate impacts of the teleconnections stem-
ming from El Niño. One can see regions as far away as North America and 
southern Africa which are affected by El Niño. These connections are statistically 
derived: i.e. they often occur when there is an El Niño, but there is no requirement 
that any or all of these patterns will occur in any given El Niño. 
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Fig. 6.10 Plot of the frequently observed climate anomalies in temperature and precipitation 
associated with El Niño. This plot is for Dec–Feb, often the peak phase of El Niño. Other sea-
sons will have other climate anomalies (teleconnections). A given El Niño will not necessarily 
show all of these climate anomalies 

6.3.2 Developments in Coupled Modelling 

The progress of science has been gradually formalized into a rather well-accepted 
pattern. Experiments provide results that require explanations, theorists try to 
come up with a theoretical framework that might explain existing experimental 
results and possibly make some predictions that can be tested by further experi-
ments. Eventually a crucial experiment, i.e. an experimental set under controlled 
conditions, will be designed, allowing the selection between competing theories 
and providing for the time being, the best explanation. 

This process is clearly not possible in the case of the dynamics of the ocean and 
atmosphere. The climate system can be observed and measured, processes can be 
identified, diagnosed and budgets of conserved quantities can be calculated, but 
we cannot make “experiments” in the sense used in many other fields of science. 
We cannot change the system artificially to verify ideas and theories, monitor in 
detail the evolution of processes, under conditions different from what we see on 
our Earth. Unfortunately, this interplay between theory and experiments is the 
main driving force behind the development of science. The scientific considera-
tion of climate has been therefore seriously jeopardized by the difficulties 
encountered trying to apply the general paradigm.  

The transformation of climate science into a quantitative science has been made 
possible by the development of numerical models. The equations that regulate 
the evolution of the atmosphere and oceans were already known at the end of the  
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19th century, but their mathematical complexities placed them beyond the mathe-
matical-solving capabilities of the time. The spectacular advances in computational 
techniques and computational capabilities in the late 20th century have allowed 
the realization of numerical models of the climate system. Models have become 
very advanced constructions, from the early pioneering work (Manabe and Bryan 
1969; Manabe et al. 1975, 1979; Bryan et al. 1975; Schlesinger 1979; Washington 
et al. 1980). They are now capable of simulating the mechanisms and the evolu-
tion of the climate system, even if we are far from a totally satisfactory simulation 
of mean climate and its variability. The climate system is composed of many sub-
systems, but the main elements remain the atmosphere, the oceans and to some 
extent the sea ice. We have seen in the previous pages how the atmospheric and 
oceanic modules are realized and we will describe how they can interact with each 
other. The interactive model is simply called a coupled model. 

The basic scheme for a coupled model is described in Fig. 6.11. The scheme 
describes how as the atmospheric model and the ocean model evolve they can 
exchange the information that is necessary for the interaction. 

The ocean model requires from the atmospheric component several physical 
fields necessary to complete the momentum and energy balance at the ocean sur-
face. The momentum input is provided by the wind stress fields, whereas the 
energy budget is obtained by providing the short wave radiation flux (solar), the 

Fig. 6.11 A schematic representation of an atmosphere-ocean coupled model 

by the net freshwater flux, precipitation minus evaporation. Up to the late 20th 
century, many ocean models used in coupled modelling used the rigid lid ap-
proximation which implies that the net freshwater flux does not change the total 

net long wave radiation flux and the net sensible heat flux. The mass flux is obtained  
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mass, but rather modifies the salt concentration in the salinity equation. More 
modern models relax this constraint and allow the free surface to vary (the so-
called free surface). The net effect is to allow surface gravity waves, which, how-
ever, impose constraints on the time step.7 

The impact of the ocean on the atmosphere is exerted mainly through the dis-
tribution of SST. The SST distribution is a major forcing factor especially in the  
equatorial area by its effect in regulating convection. Deep convection in the tro-
pics can start easily over warm ocean waters. As a rule of thumb the value of 28°C 
is often mentioned as an empirical rule. The tropical convective towers release 
massive amount of latent heat in the condensation/precipitation processes and they 
are therefore the main energy source for the deep atmosphere.  

We must introduce a third component to manage the delicate dance between the 
atmosphere and the ocean, the coupler. The coupler is the software component that 
keeps track of the time, directing the right traffic between the models and making 
sure that the right data is available at the right time. The role of the coupler, like a 
conductor in an orchestra, is to harmonize all the communications, manage the 
software messaging and interpolate the data from the grid in the ocean model to 
the atmospheric model. Some implementation of coupled models can expand the 
role of the coupler by including in the coupler the calculation of the fluxes them-
selves, but in general they include only the interpolation. Several couplers have 
been developed in the past few years. OASIS, the coupler developed at CERFACS 
(Valcke et al. 2004) has become popular in Europe; in the USA several couplers 
are being consolidated under the Earth System Modeling Framework.8 

The basic physics of the coupling may look deceptively simple. If the models 
exchange fields at the proper time the right interactions are properly represented, 
with a beneficial result on the accuracy of the simulation. However, the devil is in 
the details. The fields to be exchanged are rarely on the same numerical grid. The 
most commonly used models for the atmosphere use spectral techniques, based on 
spherical harmonics, that require a latitude-longitude grid that is regular in the 
longitudinal direction, but uses special latitudes based on the zeros of the Legendre 
polynomials. Such a grid is known as a “Gaussian grid”. Modern ocean models 
use orthogonal curvilinear grids which locate the poles in unusual locations. Regular 
grids have been discontinued in the past because they generate the pole problem, 

________________  
7 The reason why the rigid lid approximation was introduced is that it filtered out external gravity 
waves, but had the undesirable effect of altering the propagation of long external Rossby waves. 
Without the rigid lid approximation the time step has to be very short (order of 10 minutes) or 
some other approximations have to be made. In both cases, a substantial computational effort is 
needed to solve for the external mode which has only a minor effect on climate. Very few ocean 
models now use the rigid lid approximation. Preference is given to dealing with the barotropic 
mode separately and in many cases stepping it forward with short time steps of a few minutes. 
Killworth et al. 1991. 
8 Collins et al. (2006) and Delworth et al. (2006). See also: http://www.esmf.ucar.edu 

151 6 Modelling the Coupled System 



namely the fact that the grid points get closer and closer in the polar regions 
because of the convergence of the meridians.  

The ever decreasing size of the spatial cells at the poles decreases the numerical 
stability of the calculation, by increasing the chance that a basic numerical stabil-
ity threshold (the Courant-Levy-Friedrich or CFL limit) is crossed. Atmospheric 
models had to resort to complex schemes of filtering at the poles to control the 
problem, before the introduction of spectral models that finessed the entire issue, 
since spectral models by construction do not suffer from this ailment. Because of 
continental boundaries, global spectral models are not viable for the ocean; the 
pole problem for the ocean can be treated by using almost-global models, i.e. cut-
ting the domain short of the extreme North polar areas. Limiting the domain to 
non-polar regions, however, is not a satisfactory solution. It is not realistic and it 
prevents the possibility of simulating the evolution of the Arctic Ocean that has 
important climate effects, especially on the North Atlantic. A better solution has 
been to apply a conformal transformation to the regular latitude-longitude grid of 
the ocean. Conformal transformations rotate and stretch the grid, moving the poles 
to other positions. In a general case moving around the North pole on the sphere 
will not be very helpful: it will merely be shifted to another position. In the case of 
the ocean we can place the new poles over land, effectively eliminating them from 
the numerical solution of the ocean. 

Conformal grids are a very elegant solution to the pole problem, but there are 
no free lunches. The backdrop is that the grids become highly distorted on the 
sphere, assuming strange orientations and there is almost no chance that the ocean 
grid boxes will fit the atmospheric grid boxes of the Gaussian grid. The interpola-
tion problem between the atmosphere and ocean grids becomes a delicate affair. A 
badly designed interpolation can introduce systematic errors in the energy budget 
at the surface, resulting in fictitious sources or sinks of heat that prevent the 
achievement of a closed energy budget. No interpolation is perfect, of course, but 
a serious effort must be made to keep the imbalances at a minimum. The develop-
ers of OASIS, for instance, have introduced an energy-conserving interpolation 
that successfully minimizes the errors. 

The definition of the complete coupled problem requires also that we determine 
how often the coupling is realized, i.e. how often the atmosphere, the ocean and 
the other components that we may include have to exchange their data. In reality, 
the interaction is continuous: the ocean is affecting the atmosphere via the tem-
perature at the same instant in which the wind is affecting the ocean. In the 
discontinuous world of the models the atmosphere and the ocean are marching at 
finite steps. The fast atmospheric processes require short time steps, whereas the 
relatively slow ocean evolution can be described with longer time steps. One may 
have for instance a time step of 2 hours for the ocean and a time step of 30 minutes 
for the atmosphere. In principle, the best strategy would be to couple, i.e. exchange 
data, every time step, but it would be a waste to use the minimum denominator and 
evolve the ocean with the fast atmospheric time step. Rather, the longer time step 
is usually chosen as the coupling time step. In some cases, the coupling has been 

152 B. Hoskins et al. 



performed only every 24 hours using average fields, but this is becoming less 
common as it does not allow an accurate resolution of the coupling on the time-
scale of the daily cycle. 

As can be seen in Fig. 6.12, the time march of the coupled model is rather regu-
lar and the coupling is occurring at frequent intervals, even to the point of being 
able to resolve the daily cycle. This kind of strategy for coupling is known as syn-
chronous coupling, since there is essentially no time shift or lag between the fields 
that are exchanged. It is obviously computationally demanding since it requires 
the calculation of two models at the same time, discarding the opportunity offered 
by the different timescales for the ocean and the atmosphere. 

It is possible to use a different strategy, particularly in the case of very long 
simulations, that is also somewhat computationally cheaper. The price to be paid 
in this case is that it is going to be less accurate. In this approach the coupling is 
not realized at all times, but only in selected periods. The large scale thermal 
structure of the ocean requires a long time to be generated from atmospheric forc 
ing. If in the particular application the details of the coupling are not needed, but 
there is only interest in forcing the ocean with a statistically realistic atmosphere, 

 

Fig. 6.12 A possible strategy for the simulation of a coupled model: synchronous coupling. In 
this case the models are executed at the same time and the data are exchanged in principle every 
time step. In practice, data are exchanged at some congruent number of time steps depending on 
the size of the time step in the atmosphere and the ocean. Typically the atmosphere has a 
timestep considerably shorter than that of the ocean. So in practice, the coupling might be done 
every ocean timestep, but not every atmospheric timestep (for a better representation, the ocean 
timestep is only twice that of the atmosphere in this schematic)  

then the approach has some merit. In practice, the atmosphere and the ocean are 
allowed to interact for a limited time, then the ocean model is evolved persisting 
the atmospheric condition until the next coupling period and so on. This approach 
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is called asynchronous and it is sometimes used to create statistically balanced ini-
tial conditions, when hundreds of years of simulation are required to reach a 
statistically stable steady state. It is of limited value in the case of the forecasts at 
seasonal range, since in this case the details of the interactions can not be neglected. 

The initialisation problem has also some peculiar issues that are unique to cou-
pled modelling. In general, the objective of initialisation is to provide a smooth 
start to the simulation, trying to avoid initial shocks and long adjustment pro-
cesses. It is desirable to minimize the adjustment process in short term seasonal 
forecasts in order to avoid the distortion of the solution in the initial phases of the 
forecasts. In the case of long climate coupled simulation, a poorly adjusted initial 
state may show up in lengthy adjustment that may take tens of years, as the model 
slowly searches for its own equilibrium. 

Weather forecasting has developed a sophisticated set of procedures to produce 
an initial condition that is a faithful representation of the state of the atmosphere at 
a given time and provide a physically consistent description of the wind, tempera-
ture and in general all the other fields that are necessary for the evolution of the 
model. This procedure is known as data assimilation (see Chapter 5). It basically 
consists of a space time interpolation of the available data, constrained by the set 
of physical relations that we know must be valid in the real world. The embodi-
ment of the known consistency relations is realized in our numerical models that 
represent in a way our best estimate of the laws that regulate the evolution of the 
atmosphere and ocean. Data assimilation methods therefore basically mix observa-
tions and model evolution, yielding our best estimate of the instantaneous state of 
the atmosphere or ocean. These methods are discussed in Chapter 5 and there is no 
need to discuss them here in detail, but it is worth while discussing the specific 
issues for the coupled system case.  

Data assimilation methods have been extensively developed for the atmosphere 
and, in recent years, also for the ocean. As discussed in Chapter 3, the coupled 
evolution is dominated by the ocean and balancing the ocean component of the 
initial condition is essential for the forecast. At the present time, true coupled data 
assimilation systems, capable of assimilating observations both in the atmosphere 
and in the ocean at the same time, are still in a developing stage (see Section 5.5). 
The existing system tries to exploit the short memory of the atmosphere and they 
concentrate all effort on the balancing of the ocean side. Figure 6.13 shows two 
possible arrangements for the initialisation of a coupled model.  

In the first approach, called Robust Diagnostic, the system is evolved in time 
as a coupled model, exchanging data usually using a synchronous approach, but in 
the exchange process one or more of the exchanged fields at the ocean-atmosphere 
interface is substituted with the real observed one(s). In principle, both SST and 
surface salinity can be constrained, in practice a typical choice is to use some sort 
of constraining of just SST, using usually strong relaxation constants. In this way 
it is possible to prevent the SST field deviating too strongly from reality and ad-
versely affecting the evolution of the atmospheric model. Another possibility is to 
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Fig. 6.13 Possible strategies for the initialisation of a coupled model: Robust Diagnostic (top) 
and Spin-up (bottom). The red arrows indicate the initialisation periods. The yellow arrow is the 
start of the free coupled integration 

do the same on the surface winds, in this case it is the winds from the atmospheric 
models that are discarded and the real observed surface winds or stresses are pro-
vided to the ocean model. 

The capability of the ocean to be strongly determined by the atmospheric forc-
ing that is partially exploited by the Robust Diagnostic technique can be more 
strongly employed in another strategy of initialisation. In this case the ocean 
model is time marched alone, but forced by observed atmospheric fields. This ap-
proach, called simply Spin-up, has the advantage of being very simple to imple-
ment and is also relatively cheap since it involves only the integration of the ocean 
model (see also Sections 3.3 and 5.1.1). The disadvantage is that it makes no use 
of subsurface data. It must rely entirely on the ocean model parameterisation and 
numerics to carry the observed atmospheric signal into the ocean depth and to 
generate a realistic current pattern. There are no rules for the length of the period 
to be used for the spin-up, but values of 10–20 years are common for producing 
initial condition for seasonal forecasts. Spin-up for coupled simulations used in 
climate scenario experiments, may extend to hundreds of years due to the presence 
of sea-ice that introduce a timescale that is considerably longer. 

The quality of the interaction between ocean and atmosphere is such that the 
qualitative behaviour of a coupled model may be quite different from that of its 
constituent components. It would be tempting to use a modelling strategy that 
would call for an accurate preparation, for instance, of the atmospheric model 
separately from the ocean model, maybe exploiting the expertise of a specialized 
modelling group. Model design is based on basic physical and in general, scien-
tific principles, but there are still large numbers of parameters that are insuf-
ficiently known. The modellers have some liberty to assign these values. Physical 
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cesses that are too fast or too small-scale to be explicitly calculated by the time-
marching equations. Details and numerical settings in the parameterisation are 
designed to get the best overall result in reproducing phenomenologically the 
atmosphere and the oceans. 

The models are trying to obtain the best global results: in practice the net effect 
of the overall exercise is a delicate balance of errors. Figure 6.14 shows an exam-
ple of this kind; the precipitation distribution for boreal summer for the atmo-
spheric model forced by observed, prescribed SST is shown on the left column for 
three different resolutions with the ‘observed’ precipitation shown in the bottom 
panel for comparison. The atmospheric model is only partially successful in 
reproducing the observed precipitation patterns, even when the correct, i.e. ob-
served, SSTs are provided. For example, the monsoonal precipitation in the Bay of 
Bengal is largely underestimated and there is too much precipitation in the equato-
rial Indian Ocean. In the Philippines and East of the Philippines the precipitation is 
positioned too much along the lines of the parallels, rather than gently moving 
toward the equator. A gap appears at the equator between the precipitation in the 
Philippines and the South Pacific Convergence Zone (SPCZ) that is absent in the 
observations. Increasing the horizontal resolution from T30 (top) to T42 (middle) 
to T106 (bottom) has some beneficial effects. The artificial patterns visible in the 
low resolution simulation that modulates the precipitation disappear, the SPCZ is 
better defined and the precipitation over the Bay of Bengal and the Western Ghats 
also appears to improve, but the major deficiencies are still there. A large precipi-
tation deficit appears in the Central Pacific, separating the SPCZ from the areas 
north of the equator and cutting the ITCZ north of the equator into two separate 
pieces. 

When the same atmospheric model is coupled to a fairly advanced ocean model, 
without other changes to the formulation or to the optional parameters in the 
parameterisations we obtain the column on the right (Cherchi and Navarra 2006). 
One can see that coupling has not been able to eliminate some of the large inconsis-
tencies of the left column and appears to have introduced new error areas. The 
coupled model has its own typical signature of error pattern, it has its own system-
atic error. The precipitation seems to be much more zonal than in the previous case, 
though some improvements seem to be confirmed in the Indian subcontinent and in 
the equatorial Indian Ocean. The results of the coupled model do not seem particu-
larly better than the atmospheric only model, in some cases they are worse. 

It is difficult to separate the preparation and development of a coupled model 
into its separate components. The developments must be done on the model that is 
the final target of the development itself. If the goal is a coupled model, then all 
the development must be done with the coupled model, possibly at the same reso-
lution that will be used in the end for the scientific application or forecasts. In 
practice, there is no guarantee that, once coupled, the model will retain the nice 
properties identified in the original component models. This phenomenon is due to 
the known large sensitivity of the climate models to small perturbations. Small 
 

processes are represented through parameterisations that represent in bulk, pro-
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Fig. 6.14 The rain distribution for Summer (July-August-September) obtained in atmosphere 
only models (left column) and coupled models (right column) compared to observations (bottom 
panel). The experimental set-up is such that the atmospheric model used in the prescribed SST 
experiments (left) is the same used in the atmospheric component of the coupled model (right). 
Nevertheless, it is possible to see how the distribution simulated by the coupled model is qualita-
tively different from the atmospheric mode. These experiments show that the structure of the 
SST that determine the distribution of precipitation in the tropics, even with the same model. All 
values are in mm/day 
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imbalances in the model can amplify more readily in the coupled model than in 
atmosphere or ocean only models. The reason is that coupled models are less con-
strained than the individual models and so small errors can grow in more ways 
than before, leading to new characteristic patterns for the systematic error.  

This discussion certainly applies to the tropical areas, where SST and convec-
tion are strongly linked, leading to a very close relation between SST and 
precipitation, but the effect of the coupling is also felt outside of the areas where 
coupling is strongest. The strong coupling in the equatorial Pacific modulates the 
position and intensity of the large convective areas in the region that are crucial 
for the maintenance of the extra tropical general circulation. The variability in the 
mid-latitudes is therefore also remotely affected by the complex atmosphere-ocean 
interaction that is taking place.  

The coupled processes in the tropics can conceptually affect the mid-latitudes 
in two ways. They can directly force stationary Rossby wavetrains that show up as 
chains of anomalies at monthly and seasonal timescales, arching from the Pacific 
toward North America and occasionally deep into the North Atlantic. They can 
also affect the statistics of the mid-latitude internal variability, making slightly 
more probable some flow configurations than in normal conditions and changing 
the frequency and pattern of the dominant modes of variation. It is conceivable 
that these two processes are both active at the same time, sometimes dominating 
each other or contributing more equally to the variability. 

It is not surprising than the modes of variability in the mid-latitudes are  
affected by coupling. The extra degrees of freedom offered by coupling make the 
simulation more challenging and difficult. The model is much more sensitive and 
errors have more ways to interact with others and amplify. An example is given in 
Fig. 6.15, showing the first EOF mode of the Boreal Winter (January-February-
March – JFM) from the ERA reanalysis, and simulations. The simulations are cho-
sen as a 40-year simulation using an atmosphere-only model forced by observed 
SST, also sometimes called AMIP-like integrations, and two 200-year simulations 
with coupled models with the same atmospheric model. The horizontal resolution 
of the atmospheric model used is T30.  

The observations show a familiar picture. The leading mode of variability has 
active centres over the North Pacific, extending over North America and the 
Atlantic. The dynamical interpretations of the alternating anomalies can be elu-
sive, since many processes have been proposed to explain the peculiar shape of the 
anomalies, such as forced Rossby wavetrains and internal non-linear interactions, 
though a final explanation is probably still missing. The shape of the anomalies is 
however less controversial. The anomalies have a dominant spatial scale in the 
zonal direction, but there is definitely variability in the zonal direction. It is possi-
ble to see how the positive anomalies are interrupted by negative anomalies 
around the latitude circle at 40°N. These features are captured by the prescribed 
SST model, with some noticeable differences. The main centre of action over the 
Pacific is weaker than in the reanalysis and the break in the positive anomalies  
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Fig. 6.15 The leading modes of variability shown as the first mode of an Empirical Orthogonal 
Function analysis of the Winter (January-February-March) 500 mb geopotential heights, for the 
Observations (ERA reanalysis, top, left), an atmosphere model forced by prescribed observed 
SST (top, right) and two coupled models with different atmospheric resolution (bottom right and 
left). The main centres of action are in the North Pacific and in the North Atlantic and they are 
captured by all simulations, but it is possible to note how the systematic errors are qualitatively 
different even if the atmospheric model used in the simulation is the same 

over the Atlantic sector is missing. The dominance of the zonal spatial scale is 
enhanced and the centres of action are stretched in the latitudinal direction. These 
are the typical errors produced by a model under the chosen conditions. They are 
peculiar to a particular model, but they have also some characteristics that are 
common to many models. 

The coupled models yield different results. The zonalization is further en-
hanced and the main centre over the Pacific is larger, slightly tilted in its 
orientation and shifted to the north. The variations in the zonal directions are se-
verely damped and along the 40°N parallel there is almost no zero crossing line 
for the anomalies. 

It is not surprising that these results and those shown in the previous picture 
indicate that overall the coupled models give worse simulations of the climate 
variability than the atmosphere-only model. Coupled models have a much more 
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difficult task, since they have to reproduce with fewer constraints the climate vari-
ability. Even with the help of realistic initial conditions, as is the case in seasonal 
forecasting, coupled models have a difficult time to reproduce anomalies. The 
extra degrees of freedom generated by the release of the ocean SST constraints 
provide other paths through which errors can grow and distort the evolution. Ini-
tial errors in the ocean initial conditions can now feedback by altering the surface  
winds and in turn modifying the SST again, but also errors in the model numerical 
formulation and unrealistic features of the parameterisations can feedback between 
the ocean and the atmosphere, amplifying to finite magnitude in new ways.  

This is particularly evident in long simulations. The long term drift in the SIN-
TEX coupled model (Gualdi et al. 2003) shows as a slow, secular increase of the 
zonal average of the surface temperatures, which is more pronounced in the high 
latitudes, especially in the North Atlantic. Different models will have different 
patterns of drift. An example from a seasonal forecast system is given in Fig. 6.16 
which shows the average error in the Met Office coupled model after 4–6 months 
of integration. In this model at this time of year the ocean is biased warm in the 
upwelling regions of the Pacific and Atlantic oceans. The picture over land is 
more complex: India and parts of the central United States are also warm but 
many other land areas have a cold bias. At different times of year the bias will be  
different (cf. Fig. 5.9). Although the size of the drift is not small compared with 
the signal one is trying to predict, the presence of a drift by itself is not necessarily 
a damning feature for a model and several techniques to (partially) eliminate its  
 

Fig. 6.16 Plot of the bias in the predicted near surface temperature from the UK Met Office 
seasonal forecast model. This plot shows the bias in May, June July season from 1959 to 2001 
for forecasts started in February. Other start dates or models will have different drift patterns 
(see: http://www.ecmwf.int/research/demeter/d/charts/verification/bias/). In general, the size of 
the drift is not small compared to the size of the signal one is trying to predict  
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effects on the data analysis are available, but it is an indication of some imbalance 
in the coupled model and it would be desirable to keep it to a minimum (see for 
example Stockdale et al. 1998). 

The evaluation of coupled models is usually performed along similar lines as 
stand-alone atmosphere or ocean models, i.e. comparison with observations for the 
mean state and variability, budget analysis to verify internal consistency and ideal-
ized experiments to verify the over all physical consistency. In the case of 
seasonal forecast, the skill score of the forecast is in itself a form of verification, 
but it is less stringent than in the case of weather forecasts because of the probabil-
istic nature of the seasonal forecast itself. Seasonal forecasts have the advantage 
that it is possible to generate ensembles with relatively small perturbations in the 
initial conditions and perform the related analysis. Ensembles for longer climate 
simulations are much more difficult to produce and less effective in sampling the 
phase space. New techniques that take into account the special features of the cou-
pled system have to be developed, like the Coupled Manifold (Navarra and 
Tribbia 2005). 

The future development of coupled models will probably involve better dy-
namical cores to minimize the inconsistencies between the numerical formulations 
of the ocean and atmosphere. The grand challenge is to eliminate, or at least at-
tenuate, the systematic errors in the basic representation of climate that are still 
persistent after more than 20 years of research, of which probably the most impor-
tant is the double ITCZ that models present in the tropical Pacific. 
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Chapter 7 
Statistical Modelling 

Statistical models provide an alternative approach to using dynamical models in 
seasonal climate forecasting. In statistical models relationships between one set of 
data, the predictors, and a second set, the predictands, are sought. Common pre-
dictands include seasonal mean temperatures and accumulated precipitation, and 
are typically predicted using antecedent sea surface temperatures primarily within 
the tropical oceans. Predictions are made on the assumption that historically ob-
served relationships are expected to apply in the future. There are many conditions 
for such an assumption to be valid, including the need for high-quality datasets to 
ensure that the historical relationships are robustly measured, and the need for 
relationships to have a sound theoretical basis. Because of the possibility of identi-
fying spurious relationships between the predictors and the predictands, the 
statistical model should be tested carefully on independent data. Most statistical 
models are based on linear regression, which provides a “best guess” forecast 
under the assumption that a given change in the value of a predictor results in a 
constant change in the expected value of the predictand regardless of the value of 
the predictor. Modifications to the linear model can be made or alternative statisti-
cal procedures used when there is good reason to expect a relationship to be non-
linear. However, other weaknesses of linear regression may also require these 
alternatives to be considered seriously. The primary problems with linear regres-
sion are multiplicity, multicolinearity, and non-normality of the predictands. 
Multiplicity refers to the effects of having a large number of candidate predictors: 
the danger of finding a spurious relationship increases. Multicolinearity arises 
when more than one predictor is used in the model and there are strong relation-
ships between the predictors which can result in large errors in calculating the 
parameters of the model. Finally, a linear regression model may not be ade-
quately constructed if the data being predicted have a strongly skewed or 
 

________________  
Simon J. Mason 
International Research Institute for Climate and Society 

Omar Baddour 
Moroccan Meteorological Service 

Simon J. Mason and Omar Baddour 

© Springer Science+Business Media B.V. 2008 



otherwise non-Gaussian distribution; seasonally accumulated precipitation often 
exhibits such problems. Alternative forms of linear and non-linear statistical 
models can be applied to address such distributional problems. 

7.1 Introduction 

Whereas seasonal climate prediction using general circulation models is based 
upon successful modelling of the physics of the interactions between the atmos-
phere and the earth’s surface (primarily the sea surface) and of the dynamics of 
these components of the climate system (Chapters 3–6), the earliest scientific 
efforts at forecasting seasonal climate anomalies were based on empirical observa-
tions of the atmosphere alone. In the late-19th and early-20th centuries, Gilbert 
Walker, working on the problem of predicting the Indian monsoon, discovered 
that seasonal anomalies in different parts of the tropics were connected. For ex-
ample, droughts in India and Australia would often occur in the same year. In such 
cases where there is a lag between the observed climate of one region and that of 
another, prediction may be possible. The most important pattern of connected cli-
mate anomalies identified by Walker was the Southern Oscillation, which 
describes opposite changes in sea-level pressure between the western and eastern 
Pacific Ocean, and involves major disruptions to the trade winds across the south-
ern Pacific. Such relationships between climate anomalies in different areas are 
known as “teleconnections”, and constituted the basis for early empirical methods 
of seasonal climate forecasting. 

Teleconnections are suggestive of some large-scale forcing of the atmosphere, 
but it has only been since about the mid-1960s that forcing mechanisms have been 
identified and understood. The Southern Oscillation, for example, is closely  
related to the state of the sea surface temperatures (SSTs) in the equatorial Pacific 
Ocean: occasional large-scale warming and cooling of the equatorial Pacific 
Ocean, known as El Niño and La Niña respectively, simultaneously require and 
cause prolonged changes in the trade winds over the Pacific Ocean. These changes 
are associated with large-scale shifts in the location of areas of heavy rainfall, and, 
in turn, can affect climate conditions in other parts of the globe. Anomalous SSTs 
outside of the equatorial Pacific also can affect regional climate (for example, 
changes in the meridional SST gradient of the tropical Atlantic Ocean have import-
ant implications for rainfall over north-eastern Brazil and over much of West 
Africa). Most of the statistical prediction models used currently in operational 
forecasting attempt to model such relationships between observed climate and 
anomalous SSTs. 

In this chapter, the basic principles of statistical modelling for seasonal climate 
prediction are introduced in Section 7.2. Section 7.3 discusses in some detail the 
mathematics of linear regression, which is the most commonly used statistical 
prediction method used in practice. Linear regression forms the basic framework 
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for a range of more sophisticated statistical techniques, and these, and other statis-
tical techniques, are introduced in Section 7.4, after a discussion of some of the 
limitations of linear regression. 

7.2 Statistical Modelling for Climate Prediction 

Although some statistical seasonal climate prediction systems are built upon ob-
served atmospheric teleconnections, the most common approach is to model 
historical relationships between the climate anomalies to be predicted and the 
underlying forcing mechanisms – specifically, observed SST anomalies. Statistical 
methods have been used by centres such as the Met Office (United Kingdom), the 
Bureau of Meteorology (Australia), and the National Centers for Environmental 
Prediction (USA) for a number of decades, and supplement the dynamically based 
models that these centres also use. In the late 1990s, facilitated by extensive 
capacity building programs and an increasing availability of computing power, 
statistical methods of seasonal forecasting have been adopted by many national 
meteorological services throughout the world. These statistical models are con-
structed primarily to generate forecasts of seasonal precipitation totals, but air 
temperature forecasts are made also. 

7.2.1 Requirements for Applying Statistical Methods  
in Climate Prediction 

Statistical methods aim to identify relationships between two sets of variables 
through statistical analyses performed on the historical records of the data known 
as time series. The two sets of variables are: 

• A set of variables to be predicted (often denoted Y), and called predictands or 
response/dependent variables, such as seasonal total rainfall, and monthly aver-
age maximum and minimum temperatures 

• A set of variables used to make the predictions (often denoted X), and called 
predictors or explanatory/independent variables, such as SSTs or atmospheric 
indices (e.g. Southern Oscillation Index – SOI) 

The intention is to identify within the historical records a “significantly” con-
sistent relationship between observed values of the predictors and of the pre-
dictands. A “significantly” consistent relationship is one that is strong enough to 
be unlikely to have occurred by chance, and so provides a reasonable level of con-
fidence with which to make a prediction. Of course, for a prediction to be made, a 
lag between the observations on the predictors and on the predictands is implicit. 
The lag defines the lead-time of the forecast: by convention, the lead-time is defined 
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as the time period between the end of the recording time of the predictors and the 
beginning of the target period. For example, if the average SSTs for June are used 
to predict the total rainfall for the 3-month period August–October, the lag is 1-
month (the last observation of the SSTs is made on 30 June, and the target period 
starts on 01 August). For any significant (lagged) relationship between the predic-
tors and the predictands to be identified, there are some basic data requirements 
that must be met. These requirements are described in the following sections. 

7.2.1.1 Data Quality Issues 

If relationships between predictors and predictands are to be modelled reliably, 
both sets of data need to be of high quality. The quality of a dataset is determined 
by the accuracy of the recorded values, the spatial and temporal resolution of the 
data, and the length of available records. 

Apart from the problems of human and instrumental errors in recording climate 
variables, inaccuracies in historical records can arise from changes in instrumenta-
tion, relocation of recording sites, and/or changes in the recording environment. 
For example, the relocation of a thermometer even just a short way down slope 
could introduce an artificial jump in recorded temperatures because of adiabatic 
effects and changes in exposure. Any such changes in the recorded climate that are 
not a reflection of real changes are known as “inhomogeneities”. Statistical mod-
els are designed to “explain” the observed variability in the predictand data by 
reference to the observed variability in the predictor data. If part of the variability 

try to use this component of the variability to “explain” the variability in the pre-
dictands. Correction for inhomogeneities is therefore an important component of 
the statistical model-building procedure. There are a variety of checks for data 
inhomogeneities, the most reliable of which make use of metadata. Metadata are 
information about the data themselves, and include, for example, information about 
any changes in instrumentation or changes in the location of the recording site. 

Inhomogeneities in data can also be introduced by changes in the temporal 
resolution of the recordings. For example, the introduction of continuous tempera-
ture recordings has allowed a more accurate calculation of the daily mean 
temperature than was previously possible using only the average of the maximum 
and minimum temperatures. The average of the maximum and the minimum tends 
to be higher than the integrated average, and so a change in the way the daily 
average is calculated could introduce an artificial change in the computed tem-
perature. The temporal resolution of the data can also affect the quality of the 
information that can be communicated as part of a seasonal climate forecast. For 
example, although seasonal precipitation forecasts are usually communicated as 
some form of information about the total rainfall to be expected over a 3-month 

try to “explain” this component as if it were real. Similarly, if part of the variability
in the predictand dataset is a result of inhomogeneities, the statistical model will  

in the predictor dataset is a result of inhomogeneities, the statistical model will 
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period, if higher resolution data are available it may be possible to provide some 
information about the statistics of weather within the season. There are strong 
relationships between seasonal rainfall totals and rain-day frequencies and heavy 
rain-day frequencies in many parts of the world, and so a forecast of above-normal 
seasonal rainfall could be translated into statements about the numbers of days of 
rain (or heavy rain) that might be expected. However, these additional details are 
possible only if precipitation measurements are available at the daily timescale. 

In addition to the temporal resolution, the spatial resolution of the data is of 
direct relevance to data quality issues. Station-based data, for example, are site 
specific, and forecasts that have been derived from models using station data may 
not be applicable to neighbouring areas. For precipitation, the applicability of a 
forecast for a nearby site can decline much more rapidly over short distances com-
pared to that for temperature because of the highly localised nature of precipitation, 
especially in areas of convective rainfall. For precipitation forecasts, therefore, a 
relatively high density of stations would be advantageous. Sometimes forecasts 
are made for area-averaged precipitation or temperature. The area-averaging 
generally improves the forecast performance because the locally specific and un-
predictable component of variability is reduced by the averaging. A downside, 
however, is that the forecast loses its specificity for individual locations, and so 
some form of translation is required to make the forecast relevant for specific 
locations. This translation is known as “downscaling” (see Chapter 8). 

Other aspects of data quality, such as the presence of missing values and out-
liers, relate directly to sampling issues, and are discussed separately in the 
following section. 

7.2.1.2 Sampling Issues 

The extent to which a modelled relationship between predictors and predictands 
accurately represents the true relationship depends in part upon the number of re-
cords available. Inevitably there will be some errors in estimating the form and 
strength of this relationship because of the limited number of years for which cli-
mate observations are available, and such errors will contribute to inaccurate 
predictions. These errors typically are larger for short records than for long  
records. For most statistical models used in seasonal climate forecasting it is 
recommended that at least 30 years of data be available for constructing a model 
in order to reduce the effects of sampling errors to an acceptable level. 

There are three kinds of sampling errors that can occur when constructing a 
statistical model: 

• The wrong predictors are selected 
• The wrong forms of the individual relationships between each predictor and the 

predictands are selected 
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• The strength of the individual relationships between each predictor and the pre-
dictands is estimated incorrectly 

In practice, as the complexity of the model is increased each of the three forms 
of sampling error become more severe, and sample sizes need to be increased to 
compensate. To guard against the first two forms of error, statistical significance 
tests are performed as an attempt to estimate the probability that the error in ques-
tion has occurred (i.e. that a spurious relationship has been identified). Because 
these tests are not foolproof, and are subject to problems (Section 7.4.1), they should 
always be supplemented by theoretical considerations; a sound physical explana-
tion should accompany any relationship that is implied by a statistical model. The 
theoretical basis can be supplied by research using GCMs, and/or by more detailed 
statistical analyses, perhaps using other climate datasets to investigate moisture 
fluxes, for example. 

The poor availability of sufficient historical data to construct a robust statistical 
model is compounded by the presence of missing values. The simplest option is 
to omit the cases in which there are missing values from the analysis, but this 
approach easily can leave few or no cases with which to construct a model. Instead, 
attempts can be made to estimate the missing values. These procedures typically 
rely on relationships between various climatological variables. For example, if 
SSTs are to be used as predictors missing SST records could be estimated either 
from records for nearby locations and the spatial correlation structure of the tem-
peratures, and/or from records immediately prior to and subsequent to the missing 
values and the temporal correlation structure for that location. Alternatively, if 
rainfall data are to be used as predictands, missing rainfall values could be esti-
mated from the observed values for neighbouring stations, and/or from station 
values for variables that are not missing, such as temperature and humidity. 

An additional aspect of sampling problems that should be addressed is the 
presence of outliers. Outliers are values either that are extreme in their own right, 
lying well outside of the range of the majority of the other data records, or are 
values that are inconsistent with relationships with other variables. In either case, 
it has to be decided whether the outliers accurately represent what really happened 
because if they are retained they will have a large effect on most statistical mod-
els. If the outliers are considered accurate, it may still be desirable to reduce their 
impact on the model so that the data assumptions implicit in constructing the 
model are not violated (see further discussion in Sections 7.3.3 and 7.4.1). For 
example, seasonal precipitation data for many parts of the globe are positively 
skewed1; the largest seasonal totals therefore can have an undue influence on 
many statistical models, and this influence can be reduced by applying the model 

________________  
1 Positive skewness occurs fairly commonly in meteorological data, and is evident in seasonal 
precipitation totals for many parts of the globe, most notably in arid and semi-arid areas. Maxi-
mum air temperatures in continental interiors can be weakly negatively skewed. 
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to the logarithms of the precipitation totals. The logarithmic transformation is 
often effective in reducing the positive skewness of data. 

7.2.1.3 Trends 

Before attempting to build a statistical prediction model, it is common practice to 
remove any long-term trends in both the predictors and predictands. The argument 
for removing the trends is that if trends are present in the predictand(s) and any of 
the predictors the probability of identifying a spurious empirical relationship is 
increased. Effectively, the assumption of independent model errors is violated 
(Section 7.3.3) unless the trends are removed. However, there are two situations 
under which it would be unadvisable to remove the trends: if there are prior rea-
sons for expecting trends in the predictands to be caused by trends in any of the 
predictors; if trends are present in any of the predictands or of the predictors, but 
not in both. In the latter case, if there is a trend in a predictor, but not the predic-
tand, it seems unreasonable to expect the higher frequency variability of the 
predictor to provide predictive skill, but for the long-term trend to be unrelated to 
the predictand; if there is a trend in the predictand, then a good statistical model 
would seek a predictor for this trend. 

7.3 Building a Statistical Prediction Model 

In this section the primary steps in constructing a statistical model for climate pre-
diction are detailed. The focus is on using SSTs as predictors and seasonal rainfall 
totals as predictands, although the procedure is similar for other variables. Linear 
regression modelling is used as a statistical model, while alternative statistical 
procedures are considered in Section 7.4.2. 

7.3.1 Definition of Predictands 

Assuming that the necessary data quality control has been conducted, the first step 
in constructing a statistical model for seasonal climate prediction is to define the 
predictand. Seasonal rainfall totals are by far the most commonly used predictand, 
although increasing attention is being given to prediction of the intra-seasonal 
statistics of seasonal rainfall, such as the number of rain-days. Only one seasonal 
total per year is used in the model; other seasons are modelled separately because 
of the seasonally varying nature and influence of the forcing mechanisms that 
make seasonal climate prediction possible. The standard procedure is to define a 
season as a 3-month total or average, but care should be taken to ensure that the 
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season is defined appropriately; specifically, within a season the predictand should 
have a consistent response to the underlying forcing mechanisms. For example, in 
much of southern Africa, rainfall in November is positively associated with warm 
ENSO events, but the relationship in December and January is negative. It would 
therefore be inappropriate to forecast a November–January season. 

If forecasts are to be made for regional averages rather than individual stations, 
the regions need to be delimited. The regions should be defined on the basis of 
similar relationships with the forcing mechanisms (for example, similar correla-
tions with SSTs). There are numerous ways of defining the regions, and no single 
method has been identified as universally preferable. The most commonly used 
techniques include grouping stations with highest loadings on the same principal 
component (see Section 7.4.2 for further discussion of principal components), and 
cluster analysis. Once stations have been allocated to a region, a regional rainfall 
index, *

kr , is then calculated for each year, k, typically using the following equation: 

 ,*
1

r rm ik ir wik si i

−
= ∑
=

, (7.1) 

where wi is a weight applied to the ith of m stations, rk,i is the rainfall at this ith 
station during year k, and ir  and si are the average and standard deviation of the 
station’s rainfall, preferably calculated over a common reference period. The 
weights are defined to sum to unity, and can be set to avoid favouring unduly the 
contributions of clusters of stations to the regional index. In practice, if the station 
network is reasonably even, for the sake of simplicity the weights often are set 
equal for each station. The subtraction of the mean and division by the standard 
deviation standardises the data at each station and is designed to avoid giving 
stations with large mean and variance excessive weight (See Chapter 8, Section 
8.3.3, for further discussion about standardisation, including some of its limitations). 

7.3.2 Definition of Candidate Predictors 

The most commonly used predictors in statistical models for seasonal climate pre-
diction are SSTs. There are a number of global SST datasets available with 
varying spatial resolution (from 10° × 10° to 1° × 1°), and some extend as far back 
as the mid-19th century (although data quality is considerably improved from 
about the 1950s). Whichever dataset is used, there are a large number of grids 
from which to choose, and some kind of pre-selection of grids and area-averaging 
of SSTs should be performed. Some area-averages have been predefined, such as 
the NIÑO3 index (5°S–5°N, 150–90°W), but similar averages may be required for 
other areas if SSTs here are thought to have an important effect on rainfall vari-
ability in the region of interest. These area-averages should be defined based on 
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theoretical considerations and extensive supporting statistical research. Simple 
correlations between the rainfall index and global SSTs followed by delimitation 
of areas with high correlation should be avoided because of problems with fishing 
(section 7.4.1) and subsequent problems of potential overestimation of the per-
formance of the statistical model. 

The temporal resolution of the predictors is not necessarily the same as that of 
the predictands. Because SSTs change much more slowly than the atmosphere, a 
1-month average is less noisy than a 1-month average of some atmospheric vari-
able, and more faithfully highlights recent trends in temperatures compared to a 3-
month average. As a result, statistical models are frequently constructed using 
SSTs for the latest month available. Of course, for an operational forecast to be 
made, the predictor data must be available before the beginning of the target pe-
riod. The lag between the availability of the predictor data and the beginning of 
the target period defines the lead-time of the forecast (section 7.2.1). 

7.3.3 Statistical Model Construction 

7.3.3.1 Model Formulation – Simple Linear Regression 

The simplest statistical model consists of a single predictand and a single predic-
tor. In this case a regression model assumes a linear relationship between the 
predictor, x, and the predictand, y: 

 0 1y xβ β ε= + + , (7.2) 

where β0 and β1 are parameters to be estimated, and ε is an “error” term represent-
ing the unpredictable component of the predictand. The parameter β0 is often 
called the “regression constant” or the “intercept”, while β1 is referred to as the 
“regression coefficient” or the “slope”. The predictable component, ŷ , is given by: 

 0 1ŷ xβ β= + . (7.3) 

The objective in fitting a regression model is to estimate the parameters β0 and 
β1 so that the differences, or “residuals”, between the estimated2 values of the pre-
dictands, ŷ , and the observed values, y, are minimised. From Eqs. (7.2) and (7.3): 

________________  
2 In this chapter ŷ  is referred to as “estimates” or “fitted values” when applied to cases within 
the training period (i.e. to cases used to estimate the regression parameters), and to “predictions” 
only when new values of x are applied. See Sections 7.3.3.3 and 7.3.3.4 for a definition and dis-
cussion of the training period. 
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For a set of n years of data, the sum of the squares of these errors, SSE, is 
minimised,3 i.e.: 
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Equation (7.5) is minimised by setting its first partial derivatives to zero: 
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and: 
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From Eq. (7.6), the two regression parameters can be obtained as: 
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________________  
3 The minimisation of the sum of the squared errors is by far the most commonly used form of 
estimation in seasonal climate prediction. The only other minimization criterion that has been 
used to any notable degree is that of minimising the sum of the absolute errors, and is known as 
“least absolute deviation” (LAD) regression. See Section 7.4.2.2 for further discussion of LAD 
regression. 
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and 

 0 1b y b x= − , (7.7b) 

where b0 and b1 are estimates of the parameters β0 and β1, respectively. 
The regression coefficient is closely related to Pearson’s product moment 

correlation coefficient,4 r: 

 1
1 x yr b s s−= , (7.8) 

where sx and sy are the standard deviations of x and y, respectively. The correlation 
coefficient is a widely used measure of the strength of linear association between 
the predictor and the predictand. Although it can be estimated using Eq. (7.8), it is 
more commonly calculated using: 

 
( )( )
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n

k k
k

x y

x x y y
r

s s
=

− −
=
∑

 (7.9) 

The numerator in Eq. (7.9) is related to the covariance by a factor of n, and will 
be positive if positive anomalies in both the predictor and the predictand tend to 
occur in corresponding cases, and will be negative if opposite anomalies tend to 
occur. Equation (7.9) defines the correlation as the standardised covariance. Fre-
quently the correlation is squared, and it can then be interpreted as the proportion 
of the variance of the predictand that can be ‘explained’ using the predictor.  

value of the NIÑO3.4 index. Lusaka is located in part of southern Africa where El 
Niño (La Niña) conditions are frequently associated with below-normal (above-
normal) rainfall. The correlation is −0.49, and is statistically significant at a 1% 
significance level, indicating that there is a strong statistical basis for making a 
prediction. The figure shows that rainfall tends to decrease over Lusaka as the 
equatorial Pacific becomes warmer. The relationship with October values of the 
NIÑO3.4 index implies that a prediction can be made with a lead-time of 1 month 
using the formula: 

 INOrainfall 607 81 October N 3.4= − × . (7.10) 

________________  
4 There are other correlation coefficients, but Pearson’s is by far the most widely used, and unless 
specified otherwise, the term “correlation” refers to Pearson’s correlation. 

Zambia, is shown as the y variable in Fig. 7.1, and is regressed against the October 
As an example, December–February 1961/62–2000/01 rainfall over Lusak a,
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Fig. 7.1 Example of a linear regression model in which October values of the Niño3.4 index 
are used to predict December–February 1961/62–2000/01 rainfall totals for Lusaka, Zambia. The 
solid line represents the regression model 

The negative regression coefficient in Eq. (7.9) means that the expected sea-
sonal rainfall decreases by more than 80 mm for every 1°C increase in 
temperature in the central equatorial Pacific. 

7.3.3.2 Model Formulation – Multiple Linear Regression 

When more than one predictor is used, a multiple regression model assumes the 
following form: 

 0 1 1 2 2 ...y x xβ β β ε= + + + + . (7.11) 

Given m predictors and n cases (years of data), the regression model becomes: 

 0 1 ,1 ,ˆ ...k k m k my x xβ β β= + + + . (7.12) 

Equation (7.12) has 1p m= +  parameters, and can be simplified in matrix 
notation to: 

 ˆ =y Xβ , (7.13) 
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where X is a n × p array in which the rows represent each year of data, and the 
columns represent each predictor, with the first column containing unity,5 and the i 
+ 1th column containing the ith predictor. 

As with simple linear regression, the objective is to estimate the parameters β 
so that the sum of squares of errors is minimised: 
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(7.14) 

Similarly, Eq. (7.14) can be minimised by taking the first derivatives: 

 2 2T TESS∂
= − + =

∂
X y X Xβ 0

β
, (7.15) 

which can be rearranged to give: 

 ( ) 1T T−
=β X X X y . (7.16) 

In practice, the inverse in Eq. (7.16) is difficult to calculate and can be prone to 
rounding errors if the predictors are inter-correlated, and so most statistical pack-
ages use alternative formulations and advanced linear algebra techniques, such as 
the singular value decomposition, to obtain the parameter estimates. 

7.3.3.3 Predictor Selection 

Unless the predictors to be used are predefined, the candidate predictors would 
normally be tested for inclusion in the final model that is to be used to make pre-
dictions. The standard approach is to include only those predictors in the final 
regression equation that contribute to a significant reduction in the size of the 
errors. Since the addition of any additional predictor into the model will always 
reduce the size of the errors, this reduction needs to be significantly large, i.e. the 
estimates need to improve sufficiently for us to be confident that the inclusion of 
the added predictor will effect an improvement in real-time predictions. 
________________  
5 This extra column is used for the regression constant, which is given as the first element of β. 
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A commonly used procedure for selecting predictors is stepwise regression. 
There are three main forms of stepwise regression: 

• Forward selection: Predictors are added one-by-one, with the remaining candi-
date predictor that reduces the size of the errors the most being added next, and 
continuing until the errors cannot be significantly reduced. 

• Backward elimination: All candidate predictors are initially included, and then 
predictors are removed one-by-one, with the predictor that increases the size of 
the errors the least being removed next, and continuing until the errors can only 
be increased significantly.; 

• Stepwise selection: Predictors are added one-by-one in the same way as for 
forward selection, but at each stage the included predictors are retested so that 
if the removal of any of these predictors results in an insignificant increase in 
the size of the errors they are removed. 

All of these stepwise procedures require a criterion for deciding whether the 
change in the size of the errors is significantly large. The approach generally used 
is based upon the F-statistic, and involves a decomposition of the total sum of 
squares about the mean of the predictand, SST: 
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where y has been centred around zero by subtraction of the mean. The SST is de-
composed into two components: the explained component as modelled by the 
regression model, SSR, and the unexplained component or sum of the squares of 
the errors, SSE, as defined in Eq. (7.14). The regression sum of squares is calcu-
lated as: 
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so that SST = SSR + SSE. The F-statistic tests whether the change in SSR for the pre-
dictor under consideration is significantly large compared to the mean of the 
squared errors, MSE, after including the predictor. The MSE is the SSE divided by 

1n p− − . Under the assumption that the predictor is unrelated to the predictand, 
the F-statistic is drawn from an F distribution with one and 1n p− −  degrees of 
freedom. A predefined value of this statistic can be defined for a given level of 
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significance (typically 0.05), and if the calculated F-statistic exceeds this value the 
predictor results in a significant improvement in the estimates of y. The procedure, 
however, is problematic, partly because of the sensitivity of the F-statistic to dis-
tributional assumptions (Section 7.3.3), and because of problems related to 
multiplicity (Section 7.4.1), which invalidate the significance tests. 

Nevertheless, given the definitions of SST and SSR in Eqs. (7.17) and (7.18), the 
ratio SSR/SST provides an indication of the proportion of the total variability in the 
predictor that can be explained by the regression model. This proportion, denoted 
R2, is known as the coefficient of determination, and is the multivariate equivalent 
of the squared correlation coefficient (Section 7.3.3). An adjusted R2 is sometimes 
calculated to correct for the number of parameters in the model.6 The procedure 
described above based on the F-statistic is equivalent to selecting which of the two 
models (the one with and the one without the predictor under question) has the 
larger adjusted R2. 

None of the stepwise procedures guarantees that the best possible set of predic-
tors (i.e. the one that minimises the errors) is selected, and so one option is to 
search through all possible combinations to find that subset that reduces the size of 
the errors most significantly. Since this search can be computationally prohibi-
tively expensive if the number of candidate predictors is large,7 an alternative is to 
modify the simpler forward selection and backward elimination procedures de-
scribed above by swapping out at each step any predictors that can effect an 
improvement in the model. The predictors are swapped one-by-one with the pre-
dictor that improves the model the most being introduced as replacement. The 
swapping continues until no further improvement is possible. 

A somewhat different approach is to identify a model that makes a good set of 
independent predictions, as opposed to one that minimises the errors in estimating 
the data used to construct the model. The problem with minimising Eqs. (7.5) and 
(7.14) is that the model is optimised only to describe the relationship between the 
predictors and predictand over a set period, known as the training or calibration 
period (the period of the data used to construct the model), but there is no guaran-
tee that this model will make good predictions when it is applied over a different 
period. Some procedures search for the set of predictors that make the best set of 
independent predictions by using only part of the data to construct the model and 
then examining the predictions for the data that was withheld. Techniques for per-
forming this independent assessment are discussed in further detail in Section 7.3.3. 

________________  
6 Note that the adjusted R2 cannot be interpreted as the proportion of variability explained. 
7 Given k candidate predictors the number of possible combinations is 2k – 1. 
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7.3.3.4 Model Assumptions 

Before assessing how well the regression model can predict the response variable, 
it is important to assess the validity of the model. If various assumptions about the 
data used in constructing the model cannot be upheld, the model parameters may 
be estimated incorrectly, and the predictions made in real-time will then be less 
accurate than expected. These assumptions are enumerated below. Alternative 
procedures for when these assumptions are invalid are discussed in Section 7.4. 

• Errors are identically and independently distributed (iid) 

The forecast errors (Eq. 7.4) should show no tendency to increase or decrease 
in size either in the long-term or for identifiable sub-periods of the data. Similarly, 
the variance of the errors should not be related to values of the predictors (“homo-
scedasticity”). This latter restriction is often a problem when constructing 
statistical models to predict precipitation because forecast errors typically increase 
as the forecasted precipitation increases simply because there is a lower bound to 
precipitation. 

In addition, the errors are assumed to be independent of each other. This as-
sumption means that the model should show no tendency to underestimate or 
overestimate the observed values over a string of years. In combination with the 
assumption of a zero mean-error, the independence of errors means that each time 
a new prediction is made, the probability of overestimating (or underestimating) 
the observed value is 0.5 in all cases.8 The Durbin-Watson test is recommended 
for testing independence of the errors, and works by identifying whether there is 
any autocorrelation in the errors (i.e. is it possible to “predict” the errors from pre-
vious errors?). 

• Predictand is normally distributed 

Although strictly it is only the model errors that need to be normally distrib-
uted, in practice, this distributional assumption about the errors is more often met 
when the predictand itself is normally distributed. In addition, if the predictand is 
not normally distributed, the regression parameters can be heavily influenced by 
the more extreme values. Since seasonal rainfall totals for many areas have a posi-
tively skewed distribution (see, for example, Fig. 7.1), it is often advisable to 
transform the data so that the transformed data are normally distributed. Com-
monly used transformation functions include the logarithm, and the square root 
and other power transformations. 

 
 

________________  
8 More generally, because of the assumption of fixed variance, the probability that the error will 
exceed any pre-defined value is a constant. 
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• Linear relationship 

If the relationship between (any of) the predictor(s) and the predictand is non-
linear, Eqs. (7.2) and (7.11) are of the wrong “form”. The true form of the rela-
tionship(s) may be unknown, but more complex relationships can be examined 
using alternative regression models (Section 7.4.2). Apart from testing for  
improvements in the predictions if a more complex model is used, it can be useful 
to reorder the predictions so that they are sorted by the value of (one of) the  
predictor(s) rather than chronologically, and then re-conducting the test for inde-
pendence. If the true form of the relationship is quadratic, for example, but is 
assumed to be linear, the residuals will be of a similar sign at the beginning and 
end of the re-ordered series, and of the opposite sign in the middle. 

• Uncorrelated predictors 

For multiple regression, the model parameters can be estimated inaccurately 
when there are strong correlations between the predictors. The presence of strong 
correlations between predictors is known as multicolinearity, and is discussed in 
further detail in Section 7.4.1. 

Since measures of the errors in estimating the y values (“goodness of fit” mea-
sures), are as much a function of the number of parameters included in the model 
as they are of the quality of the model’s ability to describe the variability in the 
predictand, they are not necessarily very informative. In order to estimate how 
well the model can predict new values, a separate set of data that was not used to 
construct the model is required. Two approaches are used, and in both cases the 
data is divided into a “training” or “calibration” period, and an “independent” or 
“verification” period: 

• Cross-validation: One year is withheld (together, optionally, with additional 
years immediately preceding and succeeding; this omitted period is known as 
the cross-validation window), and the remaining years are used to train the 
model. A prediction is made for the omitted year or the year in the middle of a 
window larger than one, and the procedure is repeated until a prediction has 
been made for each year (Fig. 7.2a and b). 

• Retroactive validation: The model is trained using only the first few years of 
the data, and a prediction is made for the year immediately after the end of the 
training period. The model is then updated, adding the year just predicted to the 
training period, and a prediction for the following year is made (Fig. 7.2c). This 
procedure is continued until a prediction for the last year has been made. 
(Sometimes the subsequent k years are predicted, where k > 1, and the model is 
only updated every k years). 

7.3.3.5   Model Evaluation 
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 Fig. 7.2 Schematic diagrams illustrating the procedure for (a) leave-one-out cross-validation, 
(b) leave-three-out cross-validation, and (c) retroactive validation 

In each case, the objective is to generate a set of “out-of-sample” predictions. 
These predictions need to be independent of the data used in the training set, but 
assuring complete independence is exceptionally difficult, particularly with cross-
validation. One of the main ways in which “leakage” of information from the 
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training to the verification sample is allowed to occur is through a failure to re-
select the predictors adequately at each step. It is important that the predictors are 
allowed to be reselected rather than only allowing the model’s parameters to be 
recalculated.9 Ideally each training period should be independent of each other, but 
since that is impractical because of limited sample sizes, some effort to ensure that 
at least some of the training periods differ should be made. In cross-validation this 
independence can only be achieved by using a fairly large window. 

Retroactive validation closely mimics the operational generation of predictions, 
and so should give a realistic estimate of how well the model would have per-
formed if it had been operational since the first year of the independent predictions 
(although selection of candidate predictors by using all the data can bias the  
results). The downside of retroactive validation is that predictions are made only 
for a subset of the data, and so the small sample size will contribute to large errors 
in the estimates of the quality of the predictions. 

In cases where the predictor(s) is (are) specified and the distributional assump-
tions described in the previous section do not hold, bootstrapping of the model 
parameters should be conducted. Bootstrapping involves randomly re-sampling 
pairs of predictor and predictand values, and then recalculating the regression 
using the resample. There are many ways of designing a bootstrap procedure, but 
the standard approach is to generate a sample that has the same number of cases as 
the original sample. The cases are drawn with replacement, for otherwise the boot-
strap sample would be identical to the original sample. A large number of 
bootstrap samples are generated, and regression models constructed for each one. 
The distribution of the regression parameters provides an indication of the uncer-
tainty in estimating the “correct” parameters.10 

7.3.3.6 Scoring Metrics 

Given a set of independent predictions, the most commonly used metric to calcu-
late how well these predictions match the observed outcomes is the correlation 
coefficient. The correlation coefficient was introduced in Section 7.3.3, where it 
was used to measure the strength of the linear association between the predictor(s) 
and predictand. To use the correlation for forecast verification, simply replace x 
 

________________  
9 By reselecting the predictors at each step it is quite possible that the actual set of predictors that 
are used to make an operational forecast are not actually selected in some or even any of the 
cross-validation steps. This failure to test using the operational predictors may seem problematic, 
but an essential part of the cross-validation procedure is to test the predictor selection process. 
10 Although not widely performed, one way of estimating the uncertainty in a prediction would 
be to make a suite of predictions using models constructed using the bootstrap samples. More 
widely used methods are discussed in the following section. 
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with ŷ  in Eq. (7.9). Note, however, that the correlation is not a measure of fore-
cast accuracy for two reasons: the subtraction of the means of x and y in the 
numerator eliminates any bias in the forecasts, and the division by the respective 
standard deviations eliminates any variance bias. (See Section 7.3.3 and Chapter 
8, for definitions of accuracy, bias, and variance bias.) As a result, predictions of 
rainfall, for example, that are consistently too wet or too dry, and vary too much or 
too little can still achieve a perfect verification score. In the context of statistical 
models, such problems are not usually very severe because the predictions should 
be reasonably well calibrated over the training period. As a result, the mean bias 
should be fairly small, although in most cases the variance will be underestimated, 
simply because in an imperfect model predictions err towards the climatological 
mean. 

The squared correlation coefficient is often quoted as the percentage of vari-
ance of the observed values that is successfully predicted. While technically 
correct, this percentage is often misinterpreted as some measure of how frequently 
the forecasts are “correct”. In the context of the deterministic predictions from 
regression models, “accuracy” is a more appropriate quality of the forecasts than 
correctness because the predicted and observed values will always differ if only by 
a very small amount, and so the predictions are never “correct” in a strict sense. 
Accuracy generally is indicated using an average of some measure of the errors. 
The mean squared error, introduced in Section 7.3.3, is a natural choice because it 
is a quantity that has been minimised when the model was constructed, but is not 
particularly intuitive otherwise. The root mean squared error resolves the concep-
tual problem of interpreting squared errors, but the mean absolute error is the 
simplest to understand: it indicates by how much, on average, the predictions dif-
fer from the observed outcomes. A still more informative approach would be to 
indicate in a contingency table or histogram how frequently errors of different 
magnitude occur. 

Other widely used metrics are based on the contingency table: it has become 

referring to the driest/coldest third of cases, and the other categories defined ac-
cordingly.11 The deterministic forecasts can be classified into one of these three 
categories, and a table comparing the forecast and observed categories can then be 
constructed. An example is shown in Table 7.1a for 30 years of cross-validated 
predictions of December–February Lusaka rainfall using only the NIÑO3.4 index 
as predictor. The “correct” predictions are shown in the diagonal cells from top 
left to bottom right. 

________________  
11 Categories do not have to be equiprobable, and more (or less) than three categories can be 
defined. The principles of verification remain the same, however. 

labelled “below-normal”, “normal”, and “above-normal”, with “below-normal 
popular to assign the observed values to one of three equiprobable categories, 
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Table 7.1 (a) Contingency table and (b) variance-adjusted contingency table of cross-validated 
predictions of December–February 1971/72–2000/01 rainfall totals for Lusaka, Zambia, using 
the October NIÑO3.4 index as sole predictor. The categories are equiprobable, and are marked B 
for below-normal, N for normal, and A for above-normal 

(a) 
PREDICTIONS  

 
A N B TOTAL 

A 3 7 0 10 
N 0 7 3 10 OBSERVATIONS 
B 1 5 4 10 

 TOTAL 4 19 7 30 

(b) 
PREDICTIONS  

 
A N B TOTAL 

A 5 4 1 10 
N 2 4 4 10 OBSERVATIONS 
B 3 2 5 10 

 TOTAL 10 10 10 30 

There is a wide range of summary measures of such contingency tables, but 
they are not discussed here because the loss of information as a result of the cate-
gorization of the observations and predictions, and deterministic nature of the 
predictions mean that such an interpretation of the climate prediction information 
is undesirable. The interested reader is referred to Jolliffe and Stephenson (2003) 
and Wilks (2005) for details. 

The number of predictions of the normal category is higher than for the other 
categories because of the lower variance of the predictions compared to the obser-
vations. As a result, the variance of the forecasts is sometimes increased 
artificially so that the number of predictions in each category is equal. The result-
ing contingency table is shown in Table 7.1b. Such variance adjustment is pro-
blematic because the squared errors are no longer minimised, and it can be seen 
from Table 7.1b that there is no improvement in the total number of correct predic-
tions (5 + 4 + 5 compared with 3 + 7 + 4), while there is an increase in the number 
of two-category misses (i.e. predictions of above-normal when below-normal 
occurred, or vice versa). Variance-adjustment should therefore be discouraged. 

Ideally, if the forecasts are categorised they should be expressed as probabili-
ties. Methods for generating probabilistic forecasts from the deterministic 
predictions of regression models are discussed in the following section. The veri-
fication of probabilistic forecasts is a complex issue, and is discussed in detail in 
Chapter 10. 
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7.3.3.7 Generating Probabilistic Forecasts 

Once the regression model has been constructed, predictions can be made using 
Eqs. (7.3) and (7.13) given new values of the predictor(s). However, these equa-
tions give only a “best-guess” of the outcome, and no indication of the uncertainty 
is provided. There are a number of ways in which this best-guess forecast can be 
converted to a probabilistic forecast, but the most reliable procedure is to use in-
formation about the variance of the errors in estimating previous known values. 
The error variance is widely used to define a prediction interval on the forecast, 
although it is possible to obtain probabilities for predefined categories as well. If 
the errors in the forecasts are assumed to be Gaussian, these probabilities can be 
calculated by integration of the t-distribution using the best-guess as the mean and 
the error variance as the variance. (See Chapter 8, Section 8.5.1 for discussions on 
different ways of communicating forecast uncertainty.) The error variance is nor-
mally calculated from the fitted values, although the errors in the cross-validated 
forecasts could be used instead, and may be more reliable. 

Alternative approaches include using contingency tables that compare the cate-
gory of the forecast with the observed category for a set of forecasts. Then if 60% 
of the times that the forecast has indicated below-normal rainfall the observation 
was also below-normal, for example, the forecast would specify a 60% probability 
of below-normal rainfall the next time the forecast indicates below-normal. There 
are two problems with this approach: very large samples are required to estimate 
the probabilities reliably, and; no distinction is made between the probabilities 
issued when the forecast indicates well below-normal rainfall, and when it indi-
cates marginally below-normal. The large differences in the amount of rainfall that 
can be classified as “below-normal”, for example, could be offset by increasing 
the number of categories, but only at the cost of requiring still larger samples. 
Given these problems, the use of contingency tables to obtain forecast probabili-
ties is not recommended. Instead there is a suite of statistical procedures that can 
be used to obtain these probabilities directly rather than estimating a best-guess 
and then trying to account for the uncertainty subsequently. These procedures are 
discussed in Section 7.4.2. 

7.4  Alternative Statistical Methods to Linear Regression 

Linear regression forms the basis for a number of more sophisticated statistical 
techniques that have been used in seasonal climate prediction. Some of these tech-
niques are discussed in Section 7.4.2, all of which have in common an attempt to 
estimate a “best-guess” forecast. Some alternative statistical techniques that esti-
mate forecast probabilities without providing a best-guess are considered in Section 
7.4.2. However, to understand the motivation for using any of these methods, it is 
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first helpful to consider some of the limitations and potential pitfalls of linear 
regression, and these issues are outlined in Section 7.4.1. 

7.4.1 Problems with Linear Regression 

The problems and potential pitfalls listed in this section are not exclusive to linear 
regression, but are listed to provide a context for understanding the more sophisti-
cated techniques described in Sections 7.4.2 and 7.4.3. In many cases the alter-
native techniques attempt to address only a subset of the problems listed below. 

7.4.1.1 Multiplicity 

One of the primary difficulties in using linear regression for seasonal climate 
forecasting is identifying the predictors to use in the model. Most frequently, pre-
dictors used are measurements of SSTs, but land-surface characteristics and 
atmospheric indices are also used for forecasting in countries such as India where 
the use of such variables has been supported by extensive research on seasonal 
predictability. Whether or not SSTs are used exclusively, the pool of candidate 
predictors is vast, and the problem arises of which subset of these predictors 
should be included in the regression model. The temptation is to choose the pre-
dictors that are best correlated with the predictands, but the probability of 
identifying highly, but spuriously, correlated predictors increases12 as the pool of 
candidate predictors is expanded. This problem is known as “multiplicity”, and the 
search for predictors by repeated testing of the strength of statistical relationships 
is known as “fishing”, and almost invariably results in the creation of a statistical 
model that performs worse than anticipated when used operationally. 

One reason why “fishing” results in models that perform poorly in operations is 
that standard tests of statistical significance used in constructing a statistical model 
assume that the predictors to be used in the regression model have already been 
selected, and these tests become invalid when only the models that give the best 
results are selected. If a number of regression models are tested with the aim of 
identifying those that work well, then problems of multiplicity arise. Standard 
significance tests require adjustment for multiplicity, otherwise there is an in-
creased danger of accepting predictors that should not be included in the model, 
and/or of overestimating the strength of the model’s predictive capability. This 
selection of spurious, or of too many, predictors is known as “over-fitting”. 

________________  
12 I.e. the probability of making a type-I error increases. 
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Cross-validation (Section 7.3.3) is used to test for over-fitting. Leave-one-out 
cross-validation appears to be the standard approach in the atmospheric sciences 
(leave-k-out is used if the data are autocorrelated, but k typically is set only to a 
maximum of twice the decorrelation time). However, it is not widely recognised in 
the atmospheric sciences literature that a substantial proportion of the data needs 
to be omitted to obtain unbiased results. How much data should be omitted re-
mains a question for further research, but there have been suggestions that it 
should be as much as 40–60% (Xu and Liang 2001). Frequently, therefore, the 
problems of multiplicity are not adequately addressed. 

An aspect of multiplicity is evident not just when constructing a model with a 
large pool of candidate predictors, but also when constructing a number of models, 
perhaps for different stations and/or seasons. If numerous models are constructed, 
the probability of finding at least one that gives spuriously “good” predictions 
increases, and so the statistical significance of the overall set of results needs to be 
assessed. Tests for “field significance” have been designed to address this ques-
tion. Multiplicity problems can apply to GCM forecasts as well since forecasts are 
made for a large number of locations, variables, lags, and target periods. 

7.4.1.2 Multicolinearity 

Multicolinearity is a problem that sometimes arises when more than one predictor 
is used in a regression model. If the predictors used are themselves highly cor-
related with each other, errors in estimating the model parameters can become 
substantial. The errors in these parameter estimates can give poor predictions 
when new values of the predictors are applied to the model, and can also create 
problems in interpreting the regression coefficients. Whereas multiplicity results 
in bad forecasts because of the inclusion of incorrect predictors in the model, multi-
colinearity can cause bad forecasts even when the correct predictors are included 
simply because the regression parameters may be poorly estimated. 

To illustrate the difficulty of interpreting regression parameters when predictors 
are correlated, consider a simple multiple regression model to predict the March 
values of the NIÑO3.4 index from the January and February values. Using data for 
1971–2000, the regression coefficients for January and February, respectively 
are −0.395 and 1.216, which seems to imply that the March value is negatively 
correlated with the January value, whereas one would expect a slightly weaker 
positive correlation than for February. However, when the January and February 
values are used in separate models as the only predictors, the coefficients change 
to 0.628 and 0.761, respectively, showing that the values in both months are posi-
tively correlated with that in March. 
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7.4.1.3 Non-linearity 

Linear regression assumes a linear relationship between the predictor(s) and the 
predictand. This assumption means that for a given change in the value of a pre-
dictor, (e.g. a 1°C increase in SST in a specified area), the expected change in the 
predictand (e.g. an increase in seasonal rainfall of 100°mm) is the same regardless 
of the actual sea temperature, and regardless of the values of the other predictors. 
Given the non-linear nature of the atmosphere the linearity assumption seems 
inherently unreasonable, and the flexibility to model non-linear relationships sta-
tistically may be desirable. In practice, however, the linearity assumption is often 
a reasonable approximation, and even where it is not, the degrees of freedom 
required to identify the correct form of the relationship are likely to be lacking. 

7.4.1.4 Assumptions About Data Distribution 

In addition to the linearity assumption, linear regression assumes that the predic-
tand (but not necessarily the predictors) is normally distributed. While this 
assumption may be quite reasonable for variables such as geopotential heights, for 
other variables the data may not be normally distributed, and fitting a linear 
regression then becomes problematic. Although the distribution of surface air 
temperatures is skewed, this can generally be ignored because the skewness is not 
usually severe. However, with precipitation, skewness can be marked (see exam-
ples in Chapter 8, Section 8.3.1), and there is the related problem that precipitation 
has a lower limit of zero. It makes no sense for a regression line on precipitation to 
extend below zero since negative precipitation is meaningless, but a linear regres-
sion model is unaware of such a constraint. The lower limit on precipitation also 
means that even if a regression model is fitted, the errors are usually larger for 
larger precipitation rates than for rates close to zero. This increase in the variance 
of the errors in estimating precipitation for larger precipitation amounts violates 
the homoscedasticity assumption of multiple linear regression. Although these 
problems could be addressed by using certain forms of generalised linear models 
(see Section 7.4.3), they are frequently ignored, or assumed not to be problematic. 

7.4.2 Regression-based Statistical Prediction Techniques 

7.4.2.1 Power and Non-linear Regression 

Even when the relationship between the predictor and predictand is non-linear, a 
transformation of the values of the predictors and/or predictand may make it pos-
sible to treat the problem as linear. The most commonly used transformations are 
power transformations (e.g. using the square or the square-root of the predictors), 
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and adding these to the pool of predictors. The resulting models, known as power 
regression models,13 have been used extensively in statistical predictions of the 
Indian monsoon, for example. However, caution has to be taken since the problem 
of multiplicity is exacerbated by expanding the number of candidate predictors, 
and theoretical justifications for the power transformations should be supplied. In 
addition, multicolinearity is introduced with most power transformations. Power 
regression is sometimes used in seasonal forecasts of climate impacts, where non-
linear relationships between climate variables and the application data in question 
have a theoretical basis (e.g. Chapters 12 and 13). Other examples of non-linear 
regression include exponential models, which are used more frequently in fore-
casting impacts than in forecasts of seasonal climate per se. 

Compared to power regression models, neural networks constitute a consider-
able increase in the complexity with which non-linear relationship can be modelled. 
Neural networks are a recent development in seasonal climate prediction, but have 
been applied successfully, and have been implemented as the statistical atmos-
pheric component in hybrid coupled models. The neural networks are constructed 
by optimizing sets of weights applied to the predictors, which are then transformed 
using a non-linear function (usually the hyperbolic tangent), and then further 
weighting functions are applied to provide estimates of the predictand values. The 
weights are optimised so that the squared errors in the estimates are minimised, 
as with linear regression. Because of the large numbers of model parameters 
involved, care has to be taken to avoid over-fitting. 

7.4.2.2 Regression Models for Non-normally Distributed Data 

Although linear regression assumes that the data being analysed are normally dis-
tributed, the procedure can be generalised to allow for predictands with alternative 
distributions. These generalised linear models (GLMs) are discussed in more de-
tail in Section 7.4.3, where versions of GLMs for estimating probabilities are 
considered. However, there are forms of GLMs for data with a Poisson distribu-
tion that are suitable for modelling data that are recorded as counts, and these have 
been applied in seasonal forecasting of tropical cyclones. Versions are also avail-
able for data with a gamma distribution that would be suitable for forecasts of 
rainfall, but these have not been widely used. 

A primary reason why linear regression becomes problematic when the predic-
tands are not normally distributed is that the more extreme observations (for 
example the very wet years) have an undue influence on the regression parameters. 
While GLMs address this problem by making it possible to assume distributions 

________________  
13 Polynomial regression models are special cases of power regression, allowing only integer 
powers to be used. 
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that are more representative of the data, another alternative is to use regression 
models that are less sensitive to extreme values. There are two ways in which this 
sensitivity can be reduced. In robust regression, one option is to reset all errors 
(i.e. squared differences between the observed and the fitted value) exceeding a 
maximum value to this threshold. The procedure is not widely used. The second 
approach is to redefine how the errors are calculated: specifically, instead of 
squaring the errors, which tends to exaggerate the magnitude of large errors, the 
absolute errors can be used. This procedure is known as least absolute deviation 
(LAD) regression, and has been used in tropical cyclone forecasting, for example. 

7.4.2.3 Ridge Regression 

Ridge regression constitutes an attempt to address the problem of multicolinearity 
by placing constraints on the model parameters. In effect the procedure artificially 
inflates the variances of the predictors relative to their covariances, and thus un-
derplays the effects of the inter-correlations when estimating the model regression 
coefficients. Ridging is used in the constructed analogue procedure, in which a 
least squares estimate of the spatial pattern of the most recently observed values of 
the predictands is obtained by weighting the patterns for all years in the historical 
data. As an example of a simple constructed analogue model, consider the problem 
of forecasting the December Niño3.4 index from the June value. Assume that the 
June and December values of the index are known for 1971–2000, and that the 
June 2001 value is available to make a forecast for December 2001. Weights 
would be assigned to the June values for 1971–2000 to estimate the June value for 
2001. These same weights would then be applied to the December 1971–2000 
values to construct a forecast for December 2001. Given that the number of 
weights to be calculated (30) is larger than the number of values being estimated 
(1), there is no unique solution to the weights, but the ridging helps to provide a 
stable solution. 

7.4.2.4 Principal Components Regression 

Principal components regression (PCR) improves on ridge regression by address-
ing some of the problems arising from both multicolinearity and multiplicity. The 
only difference between multiple regression and PCR is that in PCR the principal 
components of the predictors are used in the model instead of the original predic-
tors themselves. Principal components are optimal summaries of large sets of data, 
obtained by defining sets of weights, or “loadings”, that are applied to obtain a 
linear combination of the original data. They are ideally suited to the problem at 
hand, since they will reduce a large candidate pool of predictors to a much smaller 
number, while retaining much of the information in the original data. In addition, 
each of the principal components is uncorrelated with all the others, and so problems 
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of multicolinearity are avoided. More complex versions of principal component 
analysis can be used in PCR that represent, for example, modes of variability that 
have an evolutionary component, and are discussed further in the next section. 

In theory it is possible to expand a PCR equation into an equivalent multiple 
regression equation given the PCR coefficients and the loadings used to define the 
principal components. The coefficients of this expanded multiple regression have 
smaller error variance than if the coefficients had been estimated directly, because 
the negative effects of multicolinearity are usually associated with the higher order 
principal components that would generally be omitted from the analysis. However, 
the coefficients are biased, and so problems of interpretation remain. Despite these 
issues, and problems in determining the number of principal components to retain 
in the model, principal components regression is an attractive alternative to multi-
ple linear regression. 

7.4.2.5 Maximum Covariance Analysis, Canonical Correlation Analysis, 
and Redundancy Analysis 

When making predictions for a number of different stations or gridpoints, princi-
pal components regression can be an inefficient procedure since separate models 
have to be constructed and tested for each location. In addition, if the predictands 
are inter-correlated, it is possible for predictions at one or more of the locations to 
be somewhat inconsistent with those at others because of different sampling errors 
in the estimated regression coefficients, or even in the selection of predictors, for 
models at neighbouring sites. There are various techniques that can be used to 
make predictions at a set of locations. These techniques include canonical correlation 
analysis (CCA), redundancy analysis, and maximum covariance analysis14 (MCA). 
These techniques are widely used in spatial downscaling problems (Chapter 8). 

The basic principle behind all of these techniques involves forecasting modes 
or spatial patterns of variability spanning across the region of interest rather than 
making forecasts for individual locations. In this context, a mode is akin to a 
weighted average15 of the individual locations. More than one mode can be pre-
dicted, and the predictions for these modes are then superimposed to construct 
 

 

________________  
14 Maximum covariance analysis is frequently referred to as singular value decomposition (SVD) 
or SVD analysis. This nomenclature, however, is confusing because SVD is often used to per-
form other analyses, including multiple regression, principal components analysis, and CCA. 
Von Storch and Zwiers (1999) propose calling the technique maximum covariance analysis. 
15More strictly, because the sum of the squares of the weights rather than the sum of the weights 
per se, is required to be unity, the modes are a “weighted sum” or a “linear combination”. 
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forecasts for all locations. The modes are predicted using a second set of modes 
obtained from the predictors so that spatial patterns of variability in the predictors 
are used to predict spatial patterns in the predictands. If UX and UY are the weights 
for the predictors and predictands, respectively, the modes, or new variables, are: 

 =X XZ XU , (7.19a) 

 =Y YZ YU . (7.19b) 

As an example, the first coupled mode (obtained using CCA) of September SSTs 
for the Indian Ocean and October–December precipitation over part of East Africa 
is shown in Fig. 7.3. The mode suggests that warming in the western tropical 
Indian Ocean with cooling in the eastern tropical Indian Ocean and far western 
Pacific (Fig. 7.3a) can be used to predict anomalously wet conditions over the 
bulk of Tanzania and Kenya (Fig. 7.3b). The opposite precipitation pattern would 
be predicted given a reversal of the anomalous zonal temperature gradient in the 
tropical Indian Ocean. The temporal variability of these modes is shown in Fig. 
7.3c; the correlation between the modes is 0.706. 

The differences between MCA, CCA, and redundancy analysis are in the pro-
perties of the weights that define the modes: 

• In MCA each pair of modes has maximum covariance 
• In CCA each pair of modes has maximum correlation 
• In redundancy analysis the explained variance in the predictand modes is 

maximised 

weights for either the predictors or the predictands that generate new variables 
with maximum variance.) For MCA, the covariance between the modes is: 

 T= X YC Z Z . (7.20) 

The covariance matrix C is a diagonal matrix with the diagonal elements defin-
ing the covariances of the coupled modes of predictors and predictands. Equation 
(7.20) can be written in terms of X and Y by substituting from Eq. (7.19): 

 
( )T

T T

=

=

X Y

X Y

C XU YU

U X YU . (7.21) 

 

(Compare principal component analysis, in which the aim is to define a set of 

Maps of the weights are frequently plotted to indicate the coupled spatial patterns. 
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Example of the first coupled mode of (a) September 1951–2000 sea surface tempera-
tures for part of the Indian Ocean used to predict (b) October–December 1951–2000 precipitation 
over East Africa. Both datasets were pre-filtered by using only the first few principal com-
ponents. The maps show the correlations between the original gridded data and the respective 
temporal scores (c) for the predictor (black) and predictand (grey) components of the first 
canonical coupled mode 

Fig. 7.3 
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XTY is the covariance of X and Y (i.e. the covariance matrix of the original pre-
dictors and predictands) and so Eq. (7.21) can be rearranged to express this 
covariance matrix, CXY, in terms of the diagonal matrix C, and two orthogonal 
matrices: 

 T=XY X YC U CU . (7.22) 

In other words, the weights UX and UY that maximise the covariances between 
the spatial modes of predictors and predictands can be obtained from a singular 
value decomposition of the covariance matrix of the original predictors and pre-
dictands. Then, given a new set of predictors, x, forecasts, ŷ , can be generated: 

 1ˆ T−= X X Yy xU Σ CU , (7.23) 

where ΣX is a diagonal matrix containing the variances of the ZX. Only those cou-
pled modes that explain a large proportion of the total variance are used in the 
prediction, and so typically only the first few coupled modes are retained. Effec-
tively, the smaller diagonal elements of the matrix C effectively are set to zero. 

However, Eq. (7.23) does not provide least-squares estimates of the predict-
ands, and so MCA is not regularly used in seasonal climate forecasting. Instead 
MCA is more useful in identifying coupled modes of, for example, SST fields and 
rainfall that may provide a basis for seasonal forecasting. A much more commonly 
used variant of MCA in prediction problems is CCA, which aims to identify alter-
native sets of weights, VX and VY,16 that maximise the correlations rather than the 
covariances between the modes of variability. In CCA the modes defined in Eq. 
(7.19) are first standardised, replacing UX and UY by VX and VY, respectively, so 
that C in Eq. (7.20) becomes a squared correlation matrix, R. Predictions, given a 
new set of predictors, are then given by: 

 1ˆ −= X Yy xV RV . (7.24) 

In practical terms, CCA identifies linear combinations of predictors that can 
successfully predict linear combinations of the predictands, regardless of how 
much of the total variance either linear combination explains. Consequently, there 
is a danger of identifying well-correlated modes of variability that do not explain 
much of the total variability. Although the objective in MCA of maximising the 
covariances rather than the correlations between the modes may seem more perti-
nent, MCA is also problematic in that the covariances are maximised in part by 
the variances of the modes for the predictors, and so it is possible that the total 

________________  
16 Note that VX and VY are not orthogonal matrices, whereas UX and UY are. 

193 7 Statistical Modelling 



explained variance of the predictands is low. Further, both methods are subject to 
interpretation problems, and neither approach is likely to identify robust and easily 
interpretable modes of variability. Redundancy analysis is a third option that de-
serves further attention. Redundancy analysis replaces ZX in Eq. (7.19a) with 
the standardised values, and thus seeks to maximise the explained variance in the 
predictands without necessarily using the largest modes of the variability in the 
predictors. Redundancy analysis can thus be seen as intermediate between CCA 
and MCA. In practice, differences in the results of the various techniques are 
usually minimal. 

In most applications of MCA and CCA in the climate literature, the observa-
tions and forecasts are pre-filtered by using a subset of the principal components 
of the data. While the pre-filtering simplifies the solution of the CCA or MCA, the 
computational gain is lost through having to calculate the principal components. 
Instead, the main advantage of the pre-filtering is that the noise levels in both the 
forecasts and the observations are reduced, and so the chances of finding spurious 
relationships are decreased. This advantage is likely to be greater for CCA than for 
MCA because the former does not require the coupled modes to represent large 
proportions of the total variance of the original data. 

7.4.2.6 Other Principal Component Analysis-related Techniques 

There is a hierarchy of sophisticated ways in which these components can be de-
fined. In the simplest formulation, the principal components are defined using a 
set of predictor variables all of which represent measurements synchronous with 
each other. Prediction using principal components of SSTs at various locations, 
but all measured at the same time, would be an example. This form of principal 

If the predictors are measured at a number of different lags, the principal 
components become “extended” empirical orthogonal functions (EOFs),17 whose 
computation is equivalent to that of multi-channel singular spectrum analysis. For 
example, SSTs for a set of locations measured at a number of different times of 
the year are sometimes used to predict future SSTs. If a single predictor is used in 
this context so that the principal components are calculated only from the auto-
correlation (or auto-covariance) of this series, the technique is known as singular 
spectrum analysis (SSA). Although SSA has not been used widely in seasonal 

________________  
17 Empirical orthogonal functions are the loadings that define the principal components. Although 
some authors have drawn a distinction between principal component analysis and empirical  
orthogonal function analysis based on the normalization of the eigenvectors (Richman 1986), 
this distinction is not widely adhered to and the two are in most cases synonymous (von Storch 
and Zwiers 1999; Joliffe 2007). 

As mentioned in Section 7.4.2.4, principal components can be useful as predictors. 

components regression is discussed in Section 7.4.2.4. 
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climate forecasting, it has been used in an attempt to identify the predictable com-
ponent of the Indian monsoon variability. Similarly, complex EOFs have been 
used in predictability studies, but have not been widely applied in seasonal climate 
forecasting. Complex EOF analysis, sometimes called Hilbert singular decomposi-
tion, involves advancing all oscillatory components of any wavelength in the data 
by 90°, and including these as imaginary components in a principal component 
analysis. The procedure allows lags to be identified in modes of variability. 

Principal oscillation pattern (POP) analysis is fundamentally different to the 
techniques described above. It performs an eigenvalue decomposition of the ma-
trix of first order autoregressive (AR-1) coefficients, and hence identifies optimal 
multivariate AR-1 models that can be used for prediction purposes. POP analysis 
has similar objectives to complex EOF analysis in seeking to identify evolutionary 
modes of variability, but has been more widely used than the latter in seasonal 
prediction. Linear inverse modelling is a version of POP analysis. 

7.4.2.7 Autoregressive Models and Optimal Climate Normals 

Linear inverse modelling and POP analysis are sophisticated versions of simpler 
models known as autoregressive models. Autoregressive models are mathemati-
cally the same as linear regression models except that the predictors are the same 
variable as the predictand, only measured at different lags. So, for example, if the 
NIÑO3.4 index is forecasted with a regression model using only earlier values of 
the index, then this model would be autoregressive. The best known example of 
such a model is the CLIPER (CLImatology and PERsistence) model that has been 
used to forecast the ENSO phase using lagged and autoregressive relationships. 
The basic principle involved is that some variables, such as SSTs, change slowly, 
and so recent evolution can be used as a guide to future values. The name CLIPER 
implies that future values are predicted using a combination of: the seasonal mean 
value (climatology) towards which the value of the predictand is expected to drift 
at increasingly long lead-times, and; the most recently observed anomalies, that 
are expected to decay18 only slowly (persist). 

A special case of using persistence and climatology as a forecast is that of 
optimal climate normals (OCNs). In most cases of seasonal climate forecasting, a 
forecast is made by projecting the most recently observed climate state into the 
future, i.e. from the previous day (or month or perhaps season) into a coming sea-
son. However, with OCN a forecast is made under the assumption that a good 
guide to the climate conditions for the target season are the conditions that have 
been observed for the same season over the last few years. The forecast for the 

________________  
18 It is possible, such as when forecasting ENSO anomalies at certain times of the year, for 
anomalies to grow in a CLIPER model (Knaff and Landsea 1997), but such cases are unusual. 
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coming season is then simply the average of the last few years, and the objective is 
to identify the number of years to average to give the best forecast. The idea is that 
the 30-year standard climatological period can be improved upon in some cases 
when there is low-frequency variability (e.g. inter-decadal variability or trend) in 
the climate. Using OCNs is sometimes a useful option in areas with inherently low 
seasonal predictability. 

7.4.3 Probabilistic Statistical Prediction Techniques 

Rather than trying to estimate a best-guess forecast value and then accounting for 
the uncertainty in this forecast, there are a number of statistical techniques that can 
be used to estimate forecast probabilities directly. Some of these methods are 
alternative versions of the regression models mentioned in Section 7.4.2, and are 

procedures that are similar to ensemble forecasting are described. 

7.4.3.1 Generalised Linear Models 

Although multiple regression can be used to estimate probabilities as the depend-
ent variable, this is not generally advised because there is no constraint that the 
estimated probability is between zero and one, and because the distributional as-
sumptions of the procedure are violated (Wilks 2005). Instead a variety of models 
that are ultimately based on linear regression are available. Although these gene-
ralised linear models are closely related to linear regression they are discussed 
separately in this section. 

Generalised linear models are based on the standard linear regression equation: 

 Tη = β x , (7.25) 

where β is the set of regression parameters, and x is the set of predictors. The 
linear predictor η is related to the predictand, which in this case is a Bernoulli 
variable with mean p̂ . via a link function. The three most commonly used link 
functions for Bernoulli variables are: 

 
ˆ

log
ˆ1

p
p

η =
−

⎡ ⎤
⎢ ⎥⎣ ⎦

, (7.26a) 

 [ ]1 p̂η −= Φ , (7.26b) 

described in further detail in Section 7.4.3.1, while others are based on classifica-
tion problems, and are discussed in Section 7.4.3.2. In Section 7.4.3.1 statistical 
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 [ ][ ]ˆlog log 1 pη = − − , (7.26c) 

where 1−Φ  is the inverse normal distribution function. These link functions are 
known as the logit, probit, and complementary log-log functions, respectively. In 
practice, the differences between the three are minimal, but the logistic link is the 
most widely used, and easiest to compute. 

Instead of training the model using observed rainfall or temperatures, for  
example, the predictand has to be categorised into one of two groups. For example, 
in Fig. 7.1a December 1950–2000 values of the NIÑO3.4 index are shown as 
anomalies and plotted against the June values. The regression line and the scatter 
of values imply a reasonably strong relationship between the phase of ENSO  
in June and that 6 months later. In Fig. 7.4b, all the values of the December 
NIÑO3.4 index that exceed the upper quartile are converted to a value of 1, and all 
the values less than the upper quartile to a value of 0. The values on the x-axis (the 
June NIÑO3.4 index) are left unchanged. Rather than trying to fit a straight line to 
the data points, an S-shaped curve is used. Eqs. (7.26a–c) are different ways of 
converting a straight line to an S-shaped curve that ranges between 0 as a mini-
mum, and 1 as a maximum. 

In this example of a generalised linear model, observations are listed either as 
0s and 1s, and the fitted curve is interpreted as providing an estimate of the 
probability that future values will exceed the threshold used to define the cate-
gories (i.e. the probability that the December NIÑO3.4 index will exceed the upper 

 

Fig. 7.4 Example of (a) a linear regression model and (b) a generalised linear regression model. 
June values of the Niño3.4 index are used to predict December 1971–2000 values. The dashed 
horizontal line represents the upper quartile of December values of the index 
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quartile). The limitation to only two categories can be too restrictive, but it is pos-
sible to further divide the categories either by nesting models, or by simultaneous 
fitting of parallel models. 

The forms of generalised linear models described above, resolve issues related 
to data distribution assumptions, of indicating forecast uncertainty, and, to some 
extent, that of linearity, but do not address the problems of multiplicity and multi-
colinearity. The latter two problems can be addressed in similar ways to that for 
linear regression, e.g. by using principal components as predictors. 

7.4.3.2 Classification Procedures 

Classification procedures have been used in seasonal climate forecasting more 
extensively than generalised linear models. As with generalised linear models, the 
observations are assigned to one of two or more categories, and then probabilities 
are calculated that a new observation will be within each of the categories given 
new values of the predictors. An important distinction, however, is that categories 
are nominal in classification procedures, so that if there are three or more, the pro-
cedures do not know, for example, that they are ordered as below-normal, near-
normal, and above-normal. In most cases of seasonal climate forecasting the fact 
that the categories are nominal in classification procedures is likely to be a disad-
vantage because relationships between predictors and predictands are most often 
likely to be monotonic. 

Discriminant analysis is the most widely used classification procedure in sea-
sonal climate forecasting. The values of the predictand are assigned to one of the 
categories, and the mean values of the predictors are then calculated for each 
category separately. If the predictors have good discriminatory power then the 
differences in the means of the predictors between the various categories will be 
large. For example, if seasonal rainfall is strongly influenced by the ENSO phe-
nomenon, then the difference in the average value of the NIÑO3.4 index when 
rainfall is above-normal compared to when rainfall is below-normal will be large. 
Given the covariances of the predictors in each category the probability that a new 
observation will be in each category can be calculated from the new values of the 
predictors, and from knowledge about the prior probabilities of each category. 
Mathematically, it is simpler to assume that the covariances are the same for each 
category, and a linear classification can be defined to identify the most likely cate-
gory. If this assumption of equal covariance is dropped, the classification function 
becomes quadratic. The quadratic function only performs noticeably better than 
the linear function when the differences in covariance are marked. 

Canonical variate analysis has had limited application in seasonal climate fore-
casting, but it has been used in predicting the phase of the ENSO phenomenon. 

identifies optimal linear combinations of the predictors to maximise correlations 
canonical correlation analysis as well. Just as canonical correlation analysis 
The technique is similar to discriminant analysis, but has some similarities to 
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with linear combinations of the predictands, canonical variate analysis seeks opti-
mal linear combinations of the predictors, but in this case to maximise the 
discrimination between the categories. The discrimination is defined by the ratio 
of between-group to total variance. 

using monthly NIÑO3.4 indices from January–November to predict the ENSO 
phase for the following December. Three phases are defined based on the outer 
quartiles of the December value of the index, and are represented by the different 
symbols: the open circles represent years in which the December NIÑO3.4 index 
was below the lower quartile (i.e. La Niña events), the open triangles years in 
which the index was above the upper quartile (i.e. El Niño events), and the open 
squares years in which the index was within the inter-quartile range (i.e. neutral 
events). The x-axis represents the first canonical variate (a linear combination of 
the NIÑO3.4 indices for January–November), which maximises the distances bet-
ween the mean values of canonical variate scores for the three categories, as 
represented by the solid symbols. This canonical variate therefore maximises the 
distances along the x-axis between the three solid symbols. The first canonical 
 

Fig. 7.5 Example of a canonical variate analysis model. The x-axis represents the first canonical 
variate of monthly NIÑO3.4 indices from January–November, and the y-axis the second. The 
hollow symbols represent observed scores on the canonical variates for 1971–2000, and the solid 
symbols the corresponding mean values. The circles represent years in which the December 
NIÑO3.4 index was below the lower quartile, the triangles years in which the index was above 
the upper quartile, and squares years in which the index was within the inter-quartile range. The 
large dashed circles represent distances of one standard deviation 

An example is provided in Fig. 7.5, where canonical variates are computed 
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variate successfully distinguishes the three categories, but is most effective in 
identifying the El Niño events (represented by the triangles). The second canonical 
variate maximises the distances between the categories along the y-axis, and helps 
to distinguish the La Niña events (circles) from the neutral events (squares). The 
dashed circles indicate distances in multiples of one standard deviation from the 
category means, (assuming that the variances in all three categories are equal), and 
can be used to visualise in which category a new observation is most likely to occur. 

Classification procedures address a number of the problems listed in Section 
7.4.1. Because the predictands are categorised in both discriminant analysis and 
canonical variate analysis, no assumptions are made about their distribution. 
However, it is assumed that the predictors are normally distributed, and linear 
discriminant analysis is sensitive to violations of this assumption. Quadratic ana-
lysis is more robust, except when the data are highly skewed. As with the forms of 

colinearity remain as problems, but can be addressed in similar ways to that for 
linear regression, e.g. by using principal components as predictors. 

7.4.3.3 Analogue Procedures 

Analogue procedures have some similarity to classification procedures, but are 
listed separately because of a number of important differences from discriminant 
analysis and canonical variate analysis, and because of a wide flexibility in how 
the analogues can be used to make a prediction. The essential step is to identify 
years from the historical records in which the states of the predictors were similar 
to the states for the current forecast. Some index of similarity (or of dissimilarity) 
is used to calculate how closely current conditions resemble previously observed 
conditions. A frequently used measure of similarity is the Mahalanobis distance, 
which is similar to the squared distance, but which compensates for correlations 
between the predictors. 

The distinction between this step of identifying similar years and classification 
is that the similarity of individual years, rather than of the mean of a predefined 
category of years, is investigated. However, in some of the simpler analogue pro-
cedures, often, but not exclusively, used when there is only one predictor, the 
predictor(s) is (are) classified into one of a set of predefined classes, and other 
years within this category are treated as analogues. A widely used example of this 
classification step in an analogue procedure is the Southern Oscillation phase 
system, in which the current state and recent evolution of the Southern Oscillation 
Index are classified into one of the five categories rapidly falling, rapidly rising, 
consistently positive, consistently negative, and consistently near-zero. 

Once analogue years have been identified, a forecast is constructed using the 
observed values for these selected years. The forecast can be constructed in 

normally the variability within the analogue years would also be considered to 
a number of ways, the simplest of which is to use the mean value, although 

generalised linear models discussed in Section 7.4.3.1, multiplicity and multi-
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provide some indication of the uncertainty in the forecast. If the forecast sample is 
sufficiently large, the probability that the predictand will exceed a threshold value 
could be obtained by counting the proportion of times it was exceeded in the ana-
logue sample (although errors in calculating this proportion are likely to be large). 
A more reliable approach would be to fit an appropriate distribution to the ana-
logue and to derive a forecast from this fitted distribution. The problem is 
essentially identical to that of constructing a forecast from an ensemble of GCM 

(Section 8.5.2). 
A special case of an analogue procedure is the constructed analogue, which 

combines all previous cases. The procedure is a form of ridge regression, which is 
discussed in further detail in Section 7.4.2. 

cedures for obtaining a forecast from an ensemble are discussed in Chapter 8 
predictions. Each analogue year can be treated as an ensemble member. Pro-
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Climate Forecasts 
 



  

Chapter 8 

Simon J. Mason  

Producing a seasonal climate forecast from a dynamical model involves a great 
deal more than simply running the model and viewing the results. The first prob-
lem is to decide which dynamical model(s) should be run given the practical 
constraints of computing resources. In this chapter the pros and cons of using the 
more computationally intensive fully coupled models compared to atmosphere-
only models are discussed. After running a dynamical model, regardless of its 
complexity, corrections need to be made for systematic errors because the model’s 
climatology and that of the observed climate are invariably different. Some simple 
procedures for correcting these systematic errors are assessed, but more sophisti-
cated methods are advisable to adjust for spatial displacements of the model 
climate. Since the model predictions represent large spatial averages, and gener-
ally are presented as seasonal averages, downscaling may be required to make the 
forecast relevant for specific locations, and to provide more detailed information 
about the statistics of weather within the season. Commonly used spatial and tem-
poral downscaling procedures are described. Some procedures for describing the 
uncertainty in the forecast are discussed (further details are provided in Chapter 
9). Evidence is presented that forecasts can be improved by combining outputs 
from different models. Finally, the reliability of the forecast needs to be deter-
mined by verification of a historical set of forecasts. Verification procedures are 
discussed in Chapter 10. 

8.1 Introduction 

In Chapter 7, the procedures for constructing a statistical model for generating 
seasonal climate forecasts were described. Although dynamical models have been 
described in detail in Chapters 3 and 6, the procedures for using such models to 
________________  
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produce forecasts are far from straightforward. These procedures are described in 
this chapter, beginning with a discussion of alternative methods of running the 
dynamical models (Section 8.2), followed by explanations of how to correct for 
systematic errors in the outputs of the models (Section 8.3) and to tune the predic-
tions so that they become valid for specific locations (Section 8.4). Procedures for 
obtaining a probabilistic forecast from an ensemble of model predictions are then 
discussed in Section 8.5, and finally methods for combining predictions from dif-
ferent models are outlined (Section 8.6). 

8.2 One-Tiered and Two-Tiered Forecasting 

As discussed in Chapters 3 and 4, seasonal climate forecasting is premised upon 
feedbacks between the atmosphere and boundary conditions at and near the earth’s 
surface. When producing seasonal climate forecasts using general circulation 
models (GCMs), there are a number of fundamentally different ways of modelling 
these interactions between the atmosphere and the lower boundary. These ap-
proaches range in complexity: in the simplest case, only the atmosphere is forecast 
using dynamical models while the boundary conditions are specified by persisting 
the most recently observed values; in the most complex case the atmosphere to-
gether with all the various components of the lower boundary thought to be of 
importance to atmospheric variability at seasonal timescales are modelled as fully 
interacting. These two extremes, as well as some intermediate options, are dis-
cussed in further detail below (Section 8.2.1), and arguments for and against the 
various levels of complexity in the modelling are considered in Section 8.2.2. 

8.2.1 One- and Two-Tiered Forecasting Designs 

The simplest method of dynamically modelling the climate system at seasonal 
timescales is to model only the atmosphere while specifying values for the various 
parameters of interest in the lower boundary. If forecasts of the atmosphere are to 
be made, future values for the boundary conditions have to be specified, and so 
these values have to be forecast prior to integrating the atmospheric model. A 
“two-tiered” forecast is thus required: forecasts of the boundary conditions are 
made first, followed by forecasts of the atmosphere with the forecast boundary 
conditions prescribed (Bengtsson et al. 1993). 

Two-tiered forecasting systems invariably involve a system in which sea surface 
temperatures (SSTs) are forecast first, while procedures for forecasting the other 

 
components of the atmospheric boundary are not explicitly mentioned. Forecasts of  
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Two-tiered approaches allow the boundary to influence the atmospheric vari-
ability over the period of model integration, but do not permit the atmosphere to 
feedback to the boundary. Rather than specifying the boundary conditions at the 
ocean surface and allowing no feedback from the atmosphere, highly simplified 
models of the oceans can be coupled to the atmospheric model. Although fully 
non-linear ocean models coupled to simplified atmospheric models, known as 
hybrid models (Barnett et al. 1993), have been popular, their counterpart models 
have not been widely used in seasonal forecasting of the atmosphere. Such slab 
ocean models would allow two-way heat fluxes between the atmosphere and 
ocean, but do not involve ocean circulation. This restricted feedback of the atmos-
phere to the ocean may have advantages over the standard two-tiered approaches, 
and such models deserve further attention. 

The most complex method of modelling the climate system at seasonal 
timescales is to model all components of the climate system thought to be relevant 
at seasonal timescales. Operational examples of such models involve separate 
models for the atmosphere and ocean that are run synchronously and interactively. 
Such “fully-coupled” models generate forecasts of the atmosphere and of the 
boundary conditions simultaneously, and so sometimes are referred to as “one-
tiered” forecasting systems. 

8.2.2 Advantages of One- and Two-Tiered Forecasting Designs 

One-tiered forecasting systems, or fully coupled models, are widely acknowledged 
to represent the state-of-the-art in seasonal climate forecasting. However, compre-
hensive comparisons of one and two-tiered systems are lacking (see Graham et al. 
2005 and Guérémy et al. 2005 for some preliminary results), and regardless of 
relative performances, there are advantages to two-tiered approaches that are 
likely to contribute to their continued use for the next several years at least. Some 
of these advantages are outlined in Sections 8.2.2.2–8.2.2.4 after a brief summary 
of the advantages of one-tiered systems (Section 8.2.2.1). 

land-surface conditions, for example, generally are produced by coupling a land-
surface model to an atmospheric model, even in two-tiered systems in which SSTs 
are prescribed. Forecasts of SSTs have involved methods from as simple as persis-
tence of the latest observed conditions, through statistical forecasts and partial-
ocean hybrid model forecasts, to basin forecasts from fully coupled models, or 
some combination of the above. Forecasts of land-surface conditions, including of 
the biosphere, remain relatively primitive compared to forecasts of the sea surface, 
primarily because of a paucity of observational data, and there are even substantial 
problems using the best estimates of the latest observed conditions (Anderson and 
Ploshay 2000). 
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8.2.2.1 Advantages of One-Tiered Forecasting Designs 

One-tiered forecasting systems represent the most comprehensive attempt to  
incorporate all the components of the climate system thought to be relevant for 
understanding atmospheric variability at seasonal to interannual timescales.  
Because they allow for feedbacks between the atmosphere and the other compo-
nents of the climate system, coupled models should, theoretically, provide the 
most realistic representation of how the real climate system operates, and hence 
should be able to generate better forecasts than their two-tiered counterparts. An 
implicit assumption in two-tiered systems is that the atmosphere responds to SST 
forcing, but does not in turn affect the oceans. As indicated in Chapters 4 and 6, 
strong feedback between the ocean and the atmosphere occurs within the equato-
rial Pacific Ocean, for example, while atmospheric influence on tropical Indian 
Ocean variability appears to be stronger than the influence of the ocean on the 
atmosphere. Similarly, in the extra-tropics, pioneering research on ocean-
atmosphere interaction over the North Pacific indicated that the ocean variability 
is more a response to atmospheric variability than vice versa. 

In a two-tiered system, where the atmosphere is uncoupled from the ocean,  
unrealistic forcing of the model atmosphere can occur. For example, Indian mon-
soon rainfall in most uncoupled models is positively correlated to tropical Indian 
Ocean SSTs because of higher moisture fluxes, but in coupled models, and in the 
real world, negative correlations are evident because the ocean surface heats in 
response to changes in the trade winds (Wu and Kirtman 2005). The imposed forc-
ing in two-tiered systems can therefore result in incorrect simulations, whereas the 
coupling permitted in one-tiered designs should result in a more realistic represen-
tation of observed climate variability. Although coupled models do not currently 
perform much better because of moisture flux problems (Wu et al. 2006), im-
provements in the model physics should result in more realistic simulations, 
whereas improvements in the physics of an uncoupled atmospheric model will not 
necessarily resolve the problem. 

8.2.2.2 Computational Advantages of Two-Tiered Forecasting Designs 

Fully coupled models require huge computational resources, and so currently are 
used for operational forecasting only at some of the so-called Global-Producing 
Centres (GPCs). Because of the computational costs, forecasts are compromised, 
either in the resolution of the model atmosphere and/or ocean, the ensemble size, 
the lead-time, the frequency of forecast production, and/or the generation of retro-
spective forecasts used for assessing forecast performance and calibrating for 
model errors. For example, of the seven models that constituted part of the DE-
METER experiment (Palmer et al. 2004), only three have hindcasts extending 
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respective mean responses only in the tropics. Alternative savings involve cou-
pling a global atmospheric model to a single-basin ocean-model, and prescribing 
sea temperatures elsewhere (Ineson and Davey 1997). 

The computational advantages of two-tiered forecasting systems could permit 
the integration of the atmospheric model at higher resolutions than are possible 
when the same model is run in one-tiered mode, or the generation of a larger en-
semble. In countries where only moderately powerful computing resources are 
available, the computational advantages enable two-tiered dynamical seasonal 
forecasts to be generated locally. These computational advantages are enhanced by 
a relatively weak improvement in forecast quality with increased spatial resolution 
in two-tiered systems compared to their one-tiered counterparts. Apparently the 
coupling of the ocean and atmosphere is modelled most effectively at high resolu-
tions, whereas if the atmospheric model is uncoupled many of the benefits of 
improved resolution are lost. 

Additional computational advantages can be achieved if no attempt is made to 
assimilate observed data into the atmospheric model. While there is some resultant 
loss of predictability from initial conditions in the first few weeks of the forecast, 
the loss of skill at longer lead-times is considered minimal, and is partly offset by 
avoiding problems associated with model drift (Chapter 6). The computational 
costs involved in data assimilation are substantial, and are an essential component 
of ocean forecasting (see Chapter 5), and so assimilation is dispensable only if no 
ocean model is to be run. 

8.2.2.3 Atmospheric Predictions from Improved Sea Surface Temperature 
Predictions in Two-Tiered Forecasting Designs 

The quality of seasonal climate forecasts of the atmosphere is intricately related to 
the quality of the forecasts of the lower boundary forcing, particularly of SSTs. If 
coupled model forecasts of the lower boundary can be improved by using other 
forecasting methods, it may be possible to improve on the atmospheric forecasts 
by using these superior boundary forcings in a two-tiered scheme. For example, 
since forecasts of persisted SST anomalies are difficult to outperform at lead-times 
of less than about 3 months, prescribing SST anomalies at short lead-times may 
provide improved skill in two-tiered atmospheric predictions. While fully coupled 
models can outperform two-tiered systems in which SSTs are prescribed from 
simple statistical models, the two-tiered systems may perform at least equally as 
well as fully coupled systems when more skilful SST forecasts are used. More 
detailed research on the comparative performances of one- and two-tiered systems 
is required. 

back more than 40 years, and these for only four initialization dates during the 
year and for a sufficient number of ensemble members to estimate the models’ 

209 8 Dynamical Model Predictions 



8.2.2.4 Research Value of Integrations with Controlled Boundary 
Conditions 

Apart from the benefits of two-tiered forecasts in an operational setting, atmos-
pheric GCM integrations uncoupled to ocean models can be of considerable 
research value. Some of the more valuable examples of such research are dis-
cussed in this section. 

Atmospheric GCMs forced with observed SSTs have been analysed exten-

seasonal and longer timescales. Typically estimates of potential predictability in-
volve comparing the variability in the simulated atmospheric responses across 
different ensemble members (intra-ensemble variability) with the inter-annual 
variability of the ensemble mean to obtain an estimate of the contribution of the 
SST forcing to the total variability: if the intra-ensemble variability is small com-
pared to the interannual, then the SSTs are evidently constraining the (model’s) 
atmospheric variability, implying that there is predictability. Alternatively, if en-
semble size is small, a more reliable approach may be to compare the interannual 
variability of the simulated atmosphere when forced with observed as against cli-
matological SSTs. Other strategies include, for example, comparing the forecast 
distributions to the climatological distribution, or examining the distribution of the 
proportion of ensemble members exceeding the climatological median. However, 
all strategies are based on estimating how much of the atmospheric variability is 
forced, and how much is free internal variability. Detailed investigations of the 
potential predictability of the atmosphere were conducted as part of the PRedic-
tion Of climate Variations On Seasonal to inter-annual Time-scales (PROVOST; 
Branković and Palmer 2000; Palmer et al. 2000), and Dynamical Seasonal Predic-
tion (DSP; Shukla et al. 2000) projects. 

Differences in the skill of simulating observed atmospheric variability when a 
model is forced using persisted instead of observed SST anomalies can be used to 
diagnose the loss of predictability that results from having imperfect SST fore-
casts. In the Sahel, for example, where rainfall variability is strongly affected by 
SSTs in the tropical Atlantic Ocean, the weak persistence of SSTs from 1 month 
to the next effects poor forecast skill of seasonal rainfall over the region, but skill 
increases markedly with decreasing lead-time (Ward 1998). 

Alternative experiments have considered the effects of prescribing SSTs in 
only one (or occasionally two) of the three main ocean basins, or in specific areas 
thought to have important influences on atmospheric variability. Such experiments 
are valuable in diagnosing model systematic errors and also forecast biases that 
may result from using incomplete forecasts of SSTs in operational settings. How-
ever, because of their artificial nature, coupled with the fact that the total oceanic 

concerned with the influence of SSTs in specific areas on the global (or regional)  

sively. Such experiments attempt to provide estimates of the potential pre- 
dictability (an indication of the upper limit of predictive skill) of the climate at 

vidual oceanic impacts, they cannot adequately provide answers to questions 
impact on the atmosphere may not be a simple linear combination of the indi-
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atmosphere. Other problems with these kinds of experiments result from the crea-
tion of artificial SST gradients at the edges of the domain of perturbed temperatures, 
even when the temperatures are reduced to climatology smoothly. 

8.3 Systematic Model Error Correction 

Regardless of how seasonal climate forecasts are made using atmospheric GCMs, 
substantial differences between the observed and model climates invariably are 
evident, and need to be corrected in order to provide reasonable forecasts. Defini-
tions of various types of systematic error are provided in Section 8.3.1. Statistical 
tests for identifying errors in model output are detailed in Section 8.3.2, and are 
followed by a critique of commonly used methods for correcting for these errors 
(Section 8.3.3). Discussion on the correction of spatial errors in model output is 
provided in Section 8.3.4. 

8.3.1 Systematic Model Errors 

Systematic errors refer to any difference between the observed and the model cli-
matology (implied definitions in the literature vary). The simplest form of 
systematic error is the mean bias: more generally, the central tendency of the 
model climatology differs from that for the observations. An example is shown in 
Fig. 8.1a, which compares observed1 with simulated June–August precipitation 

graph shows the frequencies of average precipitation rates over the 3-month  
period, and clearly indicates a bias in the model: simulated rates are consistently 
too high. This bias in the mean precipitation rate is known as an unconditional 
bias because the model rate is too high regardless of the actual simulated (or fore-
cast) rate. 

As well as indicating a mean bias, Fig. 8.1a indicates that the variance of the 
simulated precipitation rates is larger than the observed variance. Variance biases 
can occur even when the mean bias is minimal, as shown in Fig. 8.1b, which 
shows precipitation rates for March–May instead of June–August. Variance biases 

________________  
1 The New et al. (2000) gridded rainfall data were used. These data are based on station observa-
tions interpolated to a grid. 

observed SSTs, and the statistics were obtained using 24 ensemble members. The 

rates for the 50-year period 1951–2000 averaged over a large area of eastern 

4.5 model (Roeckner et al. 1996) at a resolution of about 2.8° and forced with 
Africa (10°N–10°S, 3050°E). The precipitation was simulated using the ECHAM 
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are also known as conditional biases because the model anomalies are consistently 
too strong (weak) when the model variance is larger (smaller) than the observed 
variance. Systematic errors in reproducing the shape of the climatological distribu-
tion can also occur: in Fig. 8.1c, the model’s mean and variance are too high, 

observed (black) and simulated (grey) daily precipitation intensities over eastern Africa showing 
a mean bias; (b) area-averaged March–May 1951–2000 observed (black) and simulated (grey) 
daily precipitation intensities over eastern Africa showing a variance bias; and (c) area-averaged 
June–August 1951–2000 observed (black) and simulated (grey) daily precipitation intensities 
over southern Africa showing mean, variance, and shape biases 

Any differences between the observed and model climatologies are sympto-
matic of differences in behaviour of the real and model atmospheres. However, 
these differences should be distinguished from predictive errors, which relate to 
differences in the observed and simulated/forecast climate for specific cases. Pre-
dictive errors relate to the skill of the model forecasts, and are not necessarily 
symptomatic of systematic errors. In the absence of any inherent predictability the 
individual forecasts will not generally correspond well with the observations, but 
the model climatology may be realistic. 

Fig. 8.1 Example of model systematic errors: (a) area-averaged June–August 1951–2000  

averaged over part of southern Africa (20–30°S, 15°–25°E). 
while the skewness is too low. This example is for June–August precipitation 
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8.3.2 Detecting Systematic Model Errors 

Standard error statistics, such as the (root) mean-squared error and mean absolute 
error, measure differences between paired observations and simulations/forecasts. 
As a result, these metrics do not distinguish systematic model errors from predic-
tive errors. Ideally these two forms of error should be distinguished. In the 
following sections, selected tests for systematic errors are described. A summary 
of the tests is presented in Table 8.1, where a few additional tests that are not dis-
cussed in the following text are mentioned. [See Sheskin (2007) for further 
details.] A selection of tests for predictive skill is provided in Chapter 10. 

Table 8.1 Statistical tests, and respective distributional assumptions, for identifying systematic 
errors. All tests assume independence of the samples. Additional details of these tests can be 
obtained from Conover (2001) and Sheskin (2007) 

Systematic Error Test Additional assumptions 

All Kolmogorov-Smirnov 
Fisz-Cramér-von Mises 
Relative entropy 

 

Central-tendency 
 Mean 
 Median 

 
Student’s t 
Mann-Whitney U 
Median 

 
Equal variance; normality 
Equal variance; similar shape 
 

Spread F 
Siegel Tukey, David’s, Mood’s 
Moses 

Normality 
Equal central-tendency; symmetry 
Similar shape 

The standard test for systematic model errors is the two-sample Kolmogorov-
Smirnov test, which compares the cumulative distributions derived from the 
model and the observed climatologies.2 The test compares the maximum vertical 
difference between these two empirical distributions, D, against a null distribution 
for the statistic; if the maximum vertical distance is large, the two distributions are 
likely to be different, and so the model climatology does not match that for the 
observations. The null distribution for D, and for all the other statistics discussed 
in this section, depends upon the number of cases used to construct the empirical 
cumulative distributions, and so depends upon the number of years and the ensemble 
size. Systematic errors can be identified more robustly given large numbers of 
cases. 

The two-sample Kolmogorov-Smirnov test does not distinguish between  
different forms of systematic error. Separate tests are available for identifying 
mean- and variance biases, while biases in skewness and higher order moments 
(collectively referred to as errors in the shape of the distribution) are not widely 

________________  
2 Alternatives include the Fisz-Cramér-von Mises test (the integral of the squared differences 
between the two cumulative distributions) and relative entropy (Elmore 2005). 
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used. Mean biases are commonly identified using Student’s t-test, which compares 
the differences in the climatological means. The test is highly sensitive to distribu-
tional assumptions (the observed and model climatologies should both be 
Gaussian), and so alternative tests are required that are not sensitive to these  
assumptions. The alternative tests compare differences in medians rather than 
means, since the median is not strongly influenced by the presence of a few ex-
treme values, and so they test for a bias in the central tendency rather than strictly 
testing for a mean bias. The Mann-Whitney U-test is the most frequently used 
alternative to the t-test. The U-test effectively calculates the probability that a ran-
domly sampled observation is larger (or smaller) than a randomly sampled 
forecast. This probability should be 0.5 if there is no bias in the central tendency 
of the model climatology. Strictly, the U-test should not be used if there is a vari-
ance bias, in which case the median test is preferable. The median test calculates 
the proportion of observations (or simulations) above the pooled median, and is 
free of any assumptions about other forms of systematic error. Again the propor-
tion should be 0.5 if there is no mean bias. 

Tests for variance bias (or, more generally, dispersion bias) are numerous. The 
most commonly used is the F-test, which compares the ratio of the variances of 
the observations and simulations to Fisher’s F distribution. The ratio should be 1.0 
if there is no variance bias, but the test is highly sensitive to distributional assump-
tions, and should probably be used infrequently. Unfortunately, there is no 
obvious alternative test to use; there are of the order of 100 candidate tests, but 
virtually all of them carry some distributional assumptions. A Moses-type test, 
which is designed to compare the frequencies of extreme values in two samples, 
can be recommended if the assumption that there are no errors in the shape of the 
distribution is reasonable. There are a number of variations on this test, but the 
core idea is to compare the central tendencies of measures of dispersion of random 
sub-samples of the observations and simulations (Kössler 1999). If there is no 
dispersion bias, the central tendencies will be similar. 

Although these tests are used widely when considering climate change simula-
tions, in seasonal climate forecasting systematic errors are usually removed using 
a simple statistical correction (Section 8.3.3) and are then ignored, and so the tests 
are rarely applied. As long as there is some predictive skill, forecast accuracy need 
not be adversely affected by such errors. If the model’s atmosphere is responding 
to anomalous boundary forcing in the correct direction (for example, the model 
indicates unusually dry conditions when unusually dry conditions occur) then this 
variability is believable regardless of any conditional and unconditional biases. 

8.3.3 Correcting Systematic Model Errors 

Although the terms are often used in different ways in the climate literate, a  
distinction is sometimes drawn between “calibrated” model output, which has 
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been corrected for systematic errors, and “recalibrated” model output, which has 
been corrected for model skill in addition to systematic errors. The procedures 
described in this section perform model calibration. Some model recalibration 
schemes are discussed later (see also Chapter 9, Section 9.3). 

Removal of systematic errors usually involves application of the generalized 
formula: 

 1ˆ [ [ ]]o o m mz g g z −= , 

were zm is the modelled value of the parameter of interest, ˆoz  is the calibrated 
value, gm is a function that transforms the modelled values onto a new distribution, 
and go is a function that transforms the observed values onto a distribution that is 
assumed to be the same as that for gm. 

In the simplest case, gm and go are functions that centre the data to have a mean 
of zero (i.e. [ ]g z z z= − , where g is a transformation function applied either to 
the model or the observed values, z is a model or observed value, and z  is  
the corresponding climatological mean). In this case Eq. (8.1) simply subtracts the 
difference in the sample means between the model and the observations from the 
model climatology, thus removing the mean bias. An alternative option, which is 
suitable when correcting for variables with a zero bound (such as precipitation), 
scales by the ratio of the observed and simulated means (i.e. [ ]g z z z= ). This 
scaling affects the variance (but not the shape) of the bias-corrected model clima-
tology, unlike the centring procedure. 

Scaling assumes that any errors in the variance are simply a function of the 
mean bias (i.e. that the coefficients of variation for the model and observed clima-
tologies are identical). Since this assumption is frequently invalid, corrections for 
both mean and variance are generally made by standardizing the data (i.e. 

( )
tion is a widely used procedure that successfully removes mean and variance 
biases, but can be problematic when used on data with a zero bound, and/or when 
there are systematic errors in the shape of the model’s climatological distribution. 
These problems occur because it is generally implicit that application of Eq. (8.1) 
implies application of the formula 

 1ˆ [ [ ]]o o m mz F F z −= , (8.2) 

where Fm is a cumulative distribution function for the model data and Fo is a  
cumulative distribution function for the observations. Specifically, when data are 
standardized, Fm represents the normal distribution function fitted to the model 
data, and returns the quantile associated with the corresponding standard normal 
deviate; the corresponding quantile from the normal distribution fitted to the observed 

(8.1)

g[ ]z z= − z s , where s is the climatological standard deviation). Standardiza-
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data is then used to obtain the transformed value.3 This procedure works only to 
the extent that the normal distribution provides a good fit to both sets of data, oth-
erwise errors in estimating the quantiles of the two distributions can result in 
unreasonable transformations. Consider the effects of standardizing the June–
August precipitation data for southern Africa, described above: the model and 
observed data are plotted as empirical distribution functions in Fig. 8.2, and the 
fitted normal distribution functions are superimposed. For model precipitation 
rates of less than about 0.1 mm/day (the driest 5–10% of cases), the transformed 
precipitation is negative, as illustrated by the corresponding vertical legs of the 
dotted line. 

Unless both the model and the observed data are normally distributed, stan-
dardization should not be performed. Instead more appropriate distribution 
functions should be applied in Eq. (8.2). While the empirical distribution functions 
could be used, the function for the model data isknown better than for the observa-
tions because of the larger sample size provided by the multiple ensemble 
members. The relatively poor representation of the empirical distribution function 
for the observations can create problems particularly when transforming extreme 
values. The alternative is to use a fitted distribution other than the normal distribu-
tion. The two-parameter gamma distribution is an attractive option for data that 
are positively skewed and zero-bound, and its parameters are easy to estimate 
 

Fig. 8.2 Examples of empirical and fitted distribution curves for area-averaged June–August 
1951–2000 simulated (left) and observed (right) daily precipitation intensities over southern 
Africa. The dotted line represents a transformation of model precipitation by standardization to 
remove mean and variance biases 

________________  
3 The conversion from a deviate on the standard normal distribution is redundant, but the applica-
tion of the cumulative normal distribution function in Eq. 8.2 is implicit, as evident when 
standardization is viewed graphically, as in Fig. 1.2. 
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when the skewness is not too marked (Wilks 2005). Fitted gamma distributions for 
the model and observed data in Fig. 8.2 are shown, and the improvement in the 
estimation of the quantiles over the fitted normal distributions is evident not just in 
the tails of the distribution. 

The procedure of fitting appropriate distribution functions4 and applying Eq. 
(8.2) requires methods for estimating the distribution parameters. In most cases, the 
simplest procedure is to use the method of moments: for a given distribution the 
mean and variance of the distribution can be calculated analytically in terms of  
the distribution parameters, and so these parameters can be set to give a distribu-
tion with the same mean and variance as the sample data. These parameter estimates 
can be sensitive to outliers, and so a more robust procedure, known as L-moments, 
has been developed based on order-statistics (Hosking 1990). A more popular  
approach, however, is to use maximum likelihood estimation: the parameter val-
ues that maximise the likelihood of yielding the sample data are obtained. In a few 
cases, such as with the normal distribution, these values can be derived easily, but 
for most distributions they have to be obtained using iterative procedures. 

8.3.4 Correcting Spatial Errors in Model Output 

One aspect of systematic error that has not been addressed in Section 8.3.3 is the 
problem of spatial errors in model output; climate features in the model are often 
displaced, as shown by example in Fig. 8.3. The figure compares the first principal 
components of ensemble-mean forecasts of October–December precipitation for 
eastern Africa from the ECMWF model (Palmer et al. 2004) and of observed rain-
fall for the same period (New et al. 2000). While the model successfully forecasts 
rainfall variability over much of the region to the east of about 30°E, the main 
mode of variability, which involves region-wide anomalously wet or dry condi-
tions, is displaced to the west by about 15°. Such displacements can result in poor 
predictions if they are not corrected. 

If climate features in the model are displaced relative to the observations, even 
by only short distances, comparing the model output at any grid with the corre-
sponding observations using the types of methods described in Section 8.3.2 is 
inappropriate a priori. Instead, the spatial structure of the model output requires 
correction prior to correcting any systematic errors in the climatological distribu-
tions for individual gridpoints. Standard methods for correcting such spatial errors 
involve multivariate statistical techniques that typically address mean and dispersion  
 

________________  
4 Different distributional forms could be used for the model and the observed data if their distri-
butions have different shapes. 
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Fig. 8.3 Correlations with the respective first principal components of (a) forecast precipitation 
and (b) observed precipitation over eastern Africa for October–December 1961–2000. The pre-
cipitation forecasts are from the August runs of the ECMWF model generated as part of the 
DEMETER project (Palmer et al. 2004) 

biases5 at the same time. In practice, most techniques used to correct for spatial 
errors address forecast skill, and so perform model recalibration rather than simply 
model calibration, as distinguished in the previous section. A sample of spatial 
correction techniques is presented in this section. [See von Storch and Zwiers 
(1999) and Wilks (2005) for further details.] 

________________  
5 Non-linear statistical downscaling techniques such as neural networks could theoretically cor-
rect for shape biases in addition to mean and variance biases. 
 

The two most widely used statistical techniques for correcting spatial system-
atic errors are extensions to multiple linear regression, namely maximum covariance 
analysis (MCA) and canonical correlation analysis (CCA). The procedures are 
essentially identical to those described in Section 7.4.2.5 of Chapter 7, and so are 
discussed only briefly here. The idea is to use the model predictions as the predic-
tors in a statistical prediction model. In both MCA and CCA spatial patterns of 
precipitation variability, for example, in the model are identified that have similar 
temporal variability to spatial patterns in the observations. Since the similarities 
are defined only in terms of the temporal variability there is no explicit attempt to 
match the spatial patterns. Consequently, in practice, MCA and CCA may be able 
to identify a feature of the climate such as the PNA pattern whose temporal vari-
ability may be predicted well because of a realistic modelled response to El Niño 
conditions, but which may be displaced in the model (as in Fig. 8.3). Both proce-
dures will effectively transform the model’s imperfect PNA prediction to a more 
realistic prediction of PNA variability. 
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Whichever approach is used for correcting systematic spatial errors, the size of 
the domain(s) used requires consideration. If the objective is simply to correct for 
the displacement of climate features in the model, then forecasts only from nearby 
areas should be considered. However, multiple CCA or MCA corrections would 
then be necessary, and these would have to be blended somehow. Using larger 
domains helps to avoid artificial spatial noise in the corrected fields, and is com-
putationally more efficient, but the statistical correction procedures are likely to 
identify teleconnection patterns, and so are no longer conducting purely spatial 
correction. Whether or not the identification of teleconnection patterns is undesir-
able is an open question, and the general question of domain selection requires 
further research. 

8.4 Statistical Downscaling 

A typical gridpoint in a GCM used to make seasonal predictions represents an area 
of about 50,000–100,000 km2, which is invariably much coarser than the spatial 
scales at which opportunities to apply seasonal climate forecasts exist. The GCM 
output therefore needs to be “downscaled” to resolutions and/or locations com-
mensurate with user-requirements. Downscaling involves the translation of a 
forecast to a spatial (and/or temporal) resolution that is finer than that at which the 
forecasts are produced. Reasons for performing downscaling are discussed in 
more detail in Section 8.4.1, and some examples of spatial downscaling using sta-
tistical models are provided. An introduction to some statistical techniques to 
downscale seasonal forecasts to finer temporal resolutions is given in Section 
8.4.2. Dynamical methods of downscaling using limited area models are not  
discussed. 

8.4.1 Spatial Downscaling 

Since GCMs are designed to represent planetary scale processes, those processes 

resolutions that would permit more realistic reproductions of regional climate, and 
even if computational resources were available, careful re-parameterization of the 
models would be required (parameterizations are tuned to work at specific model 
resolutions). Apart from the inevitable errors that arise from the imperfect repre-
sentation of the real world because of the discretization of space (and time) within 
GCMs, downscaling is required even for a model that reproduces the observed 
climate perfectly because of the detailed spatial variability of climate. Such issues 
are discussed in further detail in the following paragraphs. 

meterized. Computational constraints make it impractical to operate GCMs at 
that operate at spatial scales smaller than the model resolution have to be para-
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Fig. 8.4 Observed (a) and simulated (b) January–March mean precipitation for 1950–1999 

Gridded model output represents an average of an essentially arbitrary area, and 
so, even if the model reproduces the area-averaged climatology realistically, there 
may be substantial systematic “errors” when these forecasts are interpreted as rep-
resentative of specific locations. For example, Fig. 8.4 illustrates averaged 
January–March precipitation totals for 1950–1999 over part of North America 
(Fig. 8.4a) together with simulated precipitation totals using the ECHAM 4.5 
model averaged over the same period (Fig. 8.4b). The observed data were ob-
tained from the Surface Water Modeling Group at the University of Washington 
(Maurer et al. 2001, 2002). This dataset is derived from station data spatially in-
terpolated to a grid resolution of 0.125° latitude × longitude over land, which 
should be compared with the approximately 2.8° resolution of the ECHAM model 
data. Apart from any errors in the reproduction of the broad-scale climate features, 
the variability of climate within any of the GCM grids is obvious, and so, at a 
minimum, GCM grid averages would have to be rescaled to become representative 
for any specific location. 

Detailed spatial variability of mean climate not only affects the systematic “errors” 
for specific locations, but also translates into detailed variability in the predictability 
of climate. As a simple illustration, the correlations between the NIÑO3.4 index 
and observed January–March precipitation over part of North America are shown 
in Fig. 8.5. Within short distances large differences in the correlation are evident, 
and imply that GCM output could give highly misleading forecasts for sub-grid 
areas even after correcting for systematic errors. In addition, because seasonal 
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predictability of climate generally is greater for large compared to small area-
averages (Gong et al. 2003), performance measures comparing GCM output with 
commensurate observational data do not necessarily give reliable indications of 
the accuracy of the models at the spatial scales at which seasonal climate forecasts 
are to be used. Downscaling is thus required to assess locally specific systematic 
as well as predictive errors. 

Fig. 8.5 Spearman’s correlations between observed January–March seasonal precipitation for 
1950–1999 and simultaneous values of the seasonally averaged NIÑO3.4 index 

If high resolution observational data or data for specific locations are available, 
detailed spatial corrections can be made to provide forecasts at resolutions that the 
GCM itself is unable to resolve. To illustrate, the precipitation data for the 50-year 
period January–March 1950–1999 were used to downscale simulations of precipi-
tation from the ECHAM 4.5 model. A canonical correlation analysis(Chapter 7, 
Section 7.4.2) was used to downscale the GCM data. Results are shown in Fig. 
8.6, which compares the skill of the downscaled predictions with the skill achiev-
able by linearly interpolating the output for surrounding GCM gridpoints. The 
skill score used (Spearman’s correlation) considers only the predictive errors, not 
any remaining systematic errors. 

In Fig. 8.6, results are shown for downscaling the GCM precipitation fields di-
rectly, but there have been a number of successful attempts to downscale to station 
precipitation using other outputs from the GCM. For example, the model’s geopo-
tential heights are used frequently, sometimes with more than one level being 
considered simultaneously. Potential vorticity fields have also been used success-
fully. However, little attention has so far been given to downscaling multiple 
fields; if downscaled predictions of precipitation and of temperature are required, 
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for example, these are generally conducted independently, which could result in 
locally inconsistent results. In contrast, greater attention to correlations between 
different weather variables has been given in methods of temporal downscaling, 
and these methods are discussed in the following section. 

 

Fig. 8.6 Spearman’s correlations between observed and simulated January–March 1950–1999 
precipitation. Results are shown for (a) ECHAM 4.5 output linearly interpolated to the 0.125° 
resolution of the observational data, and (b) ECHAM 4.5 output spatially corrected using canoni-
cal correlation analysis. All results are cross-validated using a leave-five-out cross-validation 
window 

8.4.2 Temporal Downscaling 

Apart from the incompatibility between the spatial resolution of the forecast and 
that of the observations, other problems with GCM output preclude their applica-
tion without additional downscaling. An important constraint to the use of GCM 
output and, more generally, of seasonal climate forecasts, is the temporal resolu-
tion of the predictions. As discussed in Chapter 3, seasonal climate is predictable 
only when the forecast is considered as an aggregate of weather over a period of 
typically about 3 months; it is not possible to provide accurate predictions of the 
weather on any given day within the season. However, for many application mod-
els, including hydrology and crop models, it is necessary to have forecasts for 
each day of the season. While the sensitivity of the predictions from such application
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Since GCMs are generally run at a temporal resolution of about 20 minutes to 
generate seasonal forecasts, the simplest solution to the need to obtain weather 
statistics over the period of the seasonal forecasts would be to use the GCM output. 
However, there are some severe biases in GCM weather data, which are perhaps 
best illustrated by considering the frequency distribution of daily precipitation 
intensities. An example is shown in Fig. 8.7, which compares the frequencies of 
simulated and observed daily precipitation amounts for San Diego for the 50-year 
period 01 January 1950–31 December 1999. The model clearly underestimates the 
frequency of dry days (note that the y-axis is logarithmic) and of precipitation in-
tensities exceeding about 4 mm/day. In other words, the model generates too much 
drizzle, a problem that is characteristic of GCM-based forecasts for all timescales. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An alternative to using the GCM daily output is to disaggregate the seasonal 
forecast using statistical methods. Disaggregation involves computing sub-

commonly used statistical procedure is the analogue method, which uses the ob-
served sub-seasonal statistics of seasons that are similar to the forecast for the 
target season. (See Chapter 7 for more details on statistical forecasting tech-
niques.) Such procedures can be limited severely by sample size, and so are most 

 
Fig. 8.7 Relative frequencies of observed and ECHAM 4.5-simulated daily precipitation intensities 
for San Diego for the 50-year period 1951–2000. The simulated precipitation is for the gridpoint 
nearest to San Diego. Note the logarithmic y-axis, and the uneven intervals on the x-axis 

models to the precise weather on specific days may be low as long as the seasonal 
weather statistics are accurate, some means of obtaining atmospheric forecasts
at the required temporal resolution is required. In this section, various means of
obtaining seasonal forecasts at high temporal resolution are discussed. 

seasonal weather statistics that are consistent with the seasonal forecast. One 
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so the number of analogue years large, compared with those for many other coun-
tries. An alternative approach is to use simple statistical relationships between 
seasonal climate and sub-seasonal weather statistics. For example, simple relation-
ships between seasonal rainfall totals and the frequencies of raindays or of heavy 
raindays can be regressed. Such relationships could then be used to estimate 
weather statistics contingent upon the forecast for the seasonal aggregate. 

Based on observed relationships between seasonal climate and sub-seasonal 
weather, fairly sophisticated statistical techniques for simulating weather over a 
season have been developed. These procedures are based on “weather generators”, 
of which there are a wide range of different designs (Wilks and Wilby 1999). 
Most weather generators have been constructed to generate series of daily precipi-
tation, and invariably consider the question of precipitation occurrence separately 
from precipitation amount. Precipitation occurrence is modelled in one of two 
ways: either as a chain-dependent process or by spell-lengths. As a chain-dependent 
process, the probability of precipitation is calculated contingent upon the occur-
rence of precipitation on the previous (day), which is equivalent to modelling 
precipitation occurrence as a Markov process. For example, the seasonal cycle of 
probability of precipitation in San Diego given that the previous day was wet is 
compared for that given that the previous day was dry in Fig. 8.8a and b, respec-
tively. Throughout the year the probability of a wet day is considerably higher 
given that the previous day was wet compared to when the previous day was dry. 
These differences in precipitation probability are indicative of the persistence of 
weather in San Diego, indicating that spells of weather tend to last a few days, 
rather than weather changing randomly from day to day. Weather generators based 
on Markov models simulate a series of precipitation occurrence by randomly gen-
erating wet and dry days by considering the weather generated on the previous 
(few) day(s), and should thus generate weather spells with realistic duration. The 
second approach to modelling precipitation occurrence is to generate a string of 

 

Fig. 8.8 Annual cycle of the probability of precipitation occurrence for San Diego for the 50-year 
period 1951–2000, given that (a) the previous day was wet, and (b) the previous day was dry. 
The black vertical bars show the probabilities calculated for each day, while the grey shading 
indicates smoothed probabilities using the first few harmonics of the annual cycle 

commonly used in places such as Australia where datasets are relatively long, and 
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and dry spell-lengths are usually modelled using a negative binomial distribution. 
The spell-length generator operates by randomly drawing alternating random 
spell-lengths drawn from the corresponding negative binomial distributions. 

Whichever way precipitation occurrence is modelled, the generated occur-
rences of precipitation need to be conditioned somehow on the seasonal forecast. 
Again there is a range of options for modelling this conditioning (Wilby et al. 
2002). For example, if a Markov model is used, the probability of precipitation 
can be conditioned not only on the generated occurrence of precipitation on the 
previous day(s), but also on some aspect of the seasonal forecast, such as the pre-
dicted rainfall total exceeding some predefined threshold. As a simple example, 
Fig. 8.9 compares the probabilities during El Niño and La Niña years of daily pre-
cipitation during the winter months of January–March in San Diego exceeding 
various thresholds. Rainfall at all but the highest intensities typically occurs more 
frequently under El Niño conditions than under La Niña conditions. 

Alternatively, the probability of precipitation could be estimated using a statis-
tical model. This regression approach has the advantage of not dividing the 
degrees of freedom up by the repeated splitting of the dataset when calculating 
conditioned parameters, but does require the form of the relationship between the 
conditioning variable and the precipitation probability to be specified. 

A more sophisticated approach to conditioning the generator on the seasonal 
forecast involves modelling the occurrence of precipitation on the basis of the pre-
dicted daily sequence of the large-scale atmospheric circulation. Since the daily 

 

Fig. 8.9 Histograms of wet spells in San Diego commencing any time between 01 January and 
31 March for the 50-year period 1951–2000, given that the January–March averaged NIÑO3.4 
index was greater than +0.7 (i.e. El Niño conditions prevailed), and less than −0.7 (i.e. La Niña 
conditions prevailed) 

alternating wet and dry spell-lengths. The frequency distributions of observed wet  
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need to condition the precipitation on the previous days’ weather (either by 
Markov or spell-length modelling). Because the weather persistence is implicit in 
this approach, these models are called “hidden Markov models” (Robertson et al. 
2004). Hidden Markov models condition the precipitation probability by identify-
ing specific weather patterns and then classifying each day into one of the 
patterns. The daily sequence of the atmospheric circulation over the period of the 
seasonal forecast would normally be provided by the GCM, and so the procedure 
is somewhat similar to the spatial downscaling procedures described in Section 
8.4.1. Apart from obvious differences in the form of the statistical model used, and 
in the temporal resolution of the GCM output (daily compared to seasonal aver-
age), the procedures have this in common: the large-scale GCM output is 
statistically corrected to provide an estimate of precipitation (daily occurrence or 
seasonal total). 

Precipitation intensity is modelled in a similar way to spell-lengths: the distri-
bution of non-zero precipitation intensities is represented (frequently by a gamma 
or mixed exponential distribution), and random intensities are generated for days 
in which precipitation is specified to occur. Thus intensity is modelled subsequent 
to occurrence. Again, the intensity of precipitation can be conditioned upon some 
aspect of the seasonal forecast if there is evidence that seasonal variability is  
affected by changes in precipitation intensity. Since the inter-annual variability of 
precipitation can be affected by changes in precipitation frequency and/or inten-
sity, weather generators can be designed to account for both/either effect. 

Weather generators can be designed to model a suite of meteorological parame-
ters in such a way that the relationships between the parameters are consistent 
with the relationship in the real. For example, in many parts of the world there is a 
relationship between precipitation occurrence and maximum temperature, and 
some applications of seasonal forecasts it may be important to retain this relation-
ship. Generated temperatures (and other parameters) are conditioned upon the 
generated precipitation occurrence. In a similar way, it is possible to generate 
weather sequences at a range of locations so that the generated weather is spatially 
realistic by accounting for the spatial correlations in the meteorological parame-
ters. This consideration may be important in hydrological modelling, for example, 
where the spatial distribution of precipitation across a river catchment is important 
in affecting runoff. 

8.5 Using Ensembles 

There are two primary motivations for generating an ensemble of predictions 
(whether from a single model or a set of models). One is that the average of a set 
of predictions more closely approximates the climate signal than the prediction 
from any single ensemble member. However, a second motivation is to obtain  
 

atmospheric circulation has the weather persistence implicitly built in, there is no  

226 S.J. Mason



some indication of the uncertainty in the prediction.  Since the ensemble mean 
indicates only the central tendency of the predictions, a separate measure is re-
quired to indicate the uncertainty. However, it is not obvious how the ensemble 
members can be used to indicate forecast uncertainty, or even whether they are 
successful in doing so. In Section 8.5.1 how uncertainty in a forecast can be com-
municated is discussed. Then some methods for describing the forecast 
uncertainty using an ensemble are considered (Section 8.5.2). A description of 
procedures for assessing how well the ensemble can be used for indicating 
changes in forecast uncertainty is reserved for Chapter 10. 

8.5.1 Forecast Uncertainty, Forecast Confidence 
and Forecast Probabilities 

Given the inherent uncertainty in forecasting seasonal climate conditions, the fore-
caster needs to provide some indication of this uncertainty. A common way of 
communicating such uncertainty is by indicating the level of confidence to be 
placed in the forecast. This level of confidence is inversely related to the degree of 
uncertainty in the forecast: when uncertainty is large a low level of confidence in 
the forecast is communicated, whereas when uncertainty is reduced confidence 
increases. The distribution of possible outcomes defines the full extent of the un-
certainty in the prediction, but this distribution is unknown and so has to be 
approximated somehow. Once approximated, the forecaster’s confidence can then 
be defined. The confidence in the forecast can be communicated in a number of 
ways, and how the ensemble may be used depends on which format is adopted. 

One of the simplest ways of indicating forecast uncertainty is to specify a range 
of values within which the observed value is expected to lie with a predefined 
level of confidence. Usually this level of confidence is kept fixed from forecast to 
forecast, and the varying uncertainty is reflected by adjusting the width of the in-
terval. Thus, when uncertainty is large (small) the interval is made wide (narrow). 
For example, forecast A, which states that there is a 90% probability of a seasonal 
rainfall total being between 100 and 200 mm indicates greater uncertainty than 
forecast B, which states that there is a 90% probability of the total being between 

________________

 

6

 Here, and elsewhere in this Section, “uncertainty” relates to the range of possible outcomes for 

similar, then forecast uncertainty is low, but if they differ substantially then forecast uncertainty 
is high. 

6

Murphy (1973a). Murphy’s definition is independent of the forecasts themselves, whereas here, 
a specific target period, and is not the same as, the climatological uncertainty as defined by 

as discussed later, uncertainty is represented by the extent to which the forecasts of individual 
ensemble members for the same target differ. If the forecasts for all the ensemble members are 

227 8 Dynamical Model Predictions 



An alternative approach to that is more commonly used in seasonal climate 
forecasting is to fix the interval and to allow the level of confidence to vary. The 
interval itself can be fixed to meet the user interests, although in practice it is most 
commonly defined from the terciles of the observed data as measured over a cli-
matological period. The fixed intervals are normally called “categories”, along 
with the unbounded categories either side of the interval. More than one interval 
can be specified, and in this respect quintiles are being used with increasing fre-
quency. To illustrate: the interval of 100–200 mm used in forecast A above could 
be used for all forecasts; decreased uncertainty implicit in forecast B would then 
be communicated by increasing the probability that the seasonal rainfall total will 
be within this range rather than by narrowing the range. It should be noted that  
there is no simple relationship between the change in the probability assigned to  

 

Fig. 8.10 Hypothetical example illustrating the complex relationship between forecast probabil-
ity and forecast uncertainty. Forecast A (solid line) represents a forecast with relatively low 
uncertainty, and forecast B (dashed line) represents one with relatively high uncertainty. The 
narrow vertical lines indicate the limits of intervals for which forecast probabilities are desired. 
These probabilities are calculated by integrating the areas beneath the lines A and B within the 
range of the intervals 

an interval and the changing level of uncertainty in the forecast, as illustrated in  
Fig. 8.10. Two forecasts are shown in the figure; forecast A involves less uncertainty 

125 and 175 mm.  This format is known as a prediction interval (see Chapter 9) 
and is not widely used in seasonal climate forecasting partly because such inter-
vals are frequently misinterpreted. 

 If the confidence level is α, it would normally be assumed that the probability that the observed 
value will be less than the lower limit of the interval (125 mm in forecast B) is the same as the 
probability that the observed value will be greater than the upper limit (175 mm). This probabil-
ity would be 1–2α (5%) However, it is not necessary for the interval to be centred in this way, as 
long as the corresponding tail probabilities are then specified. 

________________

7

7
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than forecast B. In the interval 21–22°C the probability increases with the more  
uncertain forecast, but decreases in the interval 25–26°C. This problem in inter-
pretation can be avoided by specifying the probabilities for all categories, and 
comparing these probabilities to the climatological probabilities for the categories. 

More detailed summaries of the distribution of possible outcomes, and thus of 
the uncertainty in the forecast, are possible by assuming a distributional form and 
describing this distribution by its parameter values (for example, the mean and 
variance of a normal distribution). These distributions can be used to estimate 
probabilities for any intervals, or intervals for any levels of confidence. Alterna-
tively, some of the percentiles of the distribution (fitted or otherwise) can be 
specified. These options are discussed in more detail in the following sections. 

8.5.2 Forecast Ensembles and Forecast Uncertainty 

After correcting for systematic errors in the individual ensemble members (Sec-
tion 8.3), their distribution is supposed to give an indication of the distribution of 
possible outcomes. The distribution of the ensemble members should therefore 
indicate the uncertainty in the forecast: in simple terms, if the various ensemble 
members are forecasting similar values then uncertainty is low, whereas if the 
values differ widely then uncertainty is high. However, with a finite ensemble size 
the distribution of the current forecasts is imperfectly sampled, and so the uncer-
tainty implied by the forecasts has to be estimated. 

One of the simplest ways of using the ensemble to indicate forecast uncertainty 
is to estimate the probabilities for categories by counting the proportions of the 
ensemble members indicating outcomes within each category. Errors in calculat-
ing these probabilities by counting can be derived from the binomial distribution, 
and can be substantial. The probabilities are more reliably obtained by fitting a 
distribution to the ensemble members using one of the methods described in  
Section 8.3.3 and then calculating the probabilities from the fitted distribution 
(Kharin and Zwiers 2003). Further improvements can sometimes be made by as-
suming a distributional form for the sampling errors associated with each 
ensemble member rather than for the ensemble distribution as a whole. Each en-
semble member is “dressed” with a fitted distribution (Roulston and Smith 2002). 
One advantage of this approach is that the prediction errors of the forecasts can be 
accounted for to some extent. Alternatively, the probabilities could be estimated 
directly using a statistical model, such as a generalized linear model (Tippett et al. 
2007). The statistical model would correct for both the predictive and the system-
atic errors in the model(s). 

The use of a statistical model for estimating probabilities does not necessarily 
mean that the uncertainty implied by the ensemble distribution provides useful 
information. The most obvious candidates for predictors in the statistical model 
are the first few moments of the ensemble distribution, and virtually all of the  

229 8 Dynamical Model Predictions 



usable information is in the ensemble mean. The ensemble mean communicates no 
information about the uncertainty in the forecast, which, instead, is derived from 
the error variance of the ensemble mean predictions. Errors in calculating the en-
semble variance appear to be too large to derive much useful information in the 
ensemble spread (Kharin and Zwiers 2003). Alternative measures of spread, such 
as the inter-quartile range, could be used, but more detailed studies are required to 
identify how much of the variability in the ensemble spread beyond the sampling 
variability truly represents variability in forecast uncertainty. There has been 
minimal investigation into the information content of the shape of the ensemble 
distribution. 

Instead of using the ensemble to estimate probabilities for predefined catego-
ries, they could be used to estimate the values associated with specific percentiles 
of the ensemble distribution. For example, the ensemble median is arguably more 
informative than the mean since the former is amenable to making a simple prob-
abilistic forecast (there is an estimated 50% probability that the observed value 
will exceed the ensemble median, but the probability of exceeding the mean is 
unknown unless some distributional assumptions are made). The percentiles can 
be estimated either by fitting a distribution to the ensemble or to the individual 
ensemble members, or by treating the individual ensemble members as percentiles 
of the distribution. The latter approach is implicit when constructing ranked histo-
grams, as discussed in Chapter 10. Effectively, such procedures are an extension 
to those used for defining prediction intervals since each end of the interval repre-
sents a fixed percentile of the forecast distribution. 

8.6 Combining Forecasts 

There is ample evidence that combining seasonal climate predictions from a suite 
of models provides an improved forecast over using even the best of the individual 
models (Doblas-Reyes et al. 2005; Hagedorn et al. 2005). The improvement is 
evident not only in forecasts of seasonal averages but also in some of the intra-
seasonal statistics such as storm frequencies. Similar conclusions can be drawn for 
forecasts at medium-range and shorter timescales, and multi-model approaches are 
being used increasingly in climate change work. At all timescales the improve-
ment in the forecasts results from the improved representation of uncertainty 
arising from imperfections in model physics. In a single-model ensemble, uncer-
tainty is represented only in terms of the initial conditions, and each ensemble 
member is subject to the same errors in the model physics, so that clustering of 
forecasts tends to occur. Alternative ways of accounting for the uncertainties aris-
ing from model errors include stochastic parameterization, and perturbed physics 
approaches, but the use of multi-models is likely to remain popular both in  
research and operations. 
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Simple averaging of predictions from different models is usually sufficient to 
improve the quality of a forecast, but it is tempting to weight the models by their 
respective skill levels. However, a major difficulty in assigning differing weights 
arises from the limited availability of hindcasts for which to assess relative model 
performances robustly. If the skill levels of the models cannot be definitively com-
pared, it is then exceptionally difficult to outperform the simple average of the 
models’ respective predictions (Kharin and Zwiers 2002). Further, as the number 
of models is increased, problems of over-parameterization arise, and so simple 

To illustrate, monthly predictions of the NIÑO3.4 index from three of the mod-
els that participated in the DEMETER experiment were combined using a range of 
methods. Each of the three models (ECMWF, CNRM, and the Met Office) had 
nine ensemble members, produced forecasts from four start dates, and generated 
predictions with lead-times of up to 5 months. Hindcasts were available for the 44-
year period 1959–2002, and all results were cross-validated using a 3-year cross-

The details of the various combination schemes are not important, but include 
two Bayesian model weighting schemes, canonical variate analysis, generalized 
linear models, multiple regression, and stepwise regression. For all but the Bayes-
ian schemes, the respective model ensemble means were used.  Simple model 
averaging (i.e. equal model weighting) was used as a benchmark level of skill. In 
all cases the forecasts were expressed as probabilities of the NIÑO3.4 index falling 
below the lower quartile, above the upper quartile, or within the inter-quartile 
range. The forecasts were evaluated using the quadratic score, which is a measure 
of the squared error in the probability assigned to the category that verified (Chap-
ter 10). The score ignores the probabilities assigned to the other categories. Since 
it is an error score, a perfect set of forecasts would achieve a score of 0.0. 

Since each of the schemes can be applied to the models individually to recali-
brate the model output, the models can be combined in one of two ways: 
recalibrate each model individually, and then calculate a simple average of the 
recalibrated predictions (“recalibration”); apply the schemes to all the models si-
multaneously (“combination”). For the simple equal weighting, the combination 
and recalibration schemes will give identical results. The scores for the various 
schemes are illustrated in Fig. 8.11. Most of the schemes improve the forecasts of 
individual models, and in most cases the combined forecasts (using either combi-
nation approach) improve upon the forecasts from the best single model. The 

________________  
8 The use of the ensemble mean only generally gave the best results. Alternatives tried were: to 
include the ensemble variance (which can provide some marginal improvements in skill), and 
higher moments; to use all the ensemble members; to use the first few principal components of 
the ensemble members. 

8

effective approach. 
averaging of recalibrated model output again generally proves to be the most 

Results for all lead-times and seasons were pooled. 
validation window (i.e. 1 year either side of the predicted year was omitted). 
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averaging of the recalibrated forecast consistently outperforms the combination 
method, presumably because of the over-parameterization of the latter. 

The results shown in Fig. 8.11 are based on combining forecasts from only 
three models. Since many of the models used in seasonal climate forecasting are 
fairly closely related, the predictions from these models are often strongly corre-
lated, potentially creating problems of multicolinearity (see Chapter 7, Section 
7.4.1). Some success has been achieved in addressing multicolinearity problems 
by using procedures equivalent to truncated principal components regression.  

 

Fig. 8.11 Quadratic scores for monthly predictions of the NIÑO3.4 index, using various forecast 
combination schemes [Bayesian model weighting schemes (BAYES1 and BAYES2, canonical 
variate analysis (CANVAR), generalized linear models (GLM), multiple linear regression 
(MLR), stepwise regression (STEP), and equal weighting (EQUAL)]. The schemes are compared 
by combining the predictions using two procedures: attempting to account for differences in 
model skill (“combination”), and by simple averaging of predictions after recalibrating the indi-
vidual models (“recalibration”). Results for the individual models are shown also 

Such an approach will also help to reduce problems of multiplicity that arise from 
considering the skill of more than one model (Chapter 7, Section 7.4.1), and which 
are exacerbated when downscaling approaches are incorporated into combination 
algorithms. However, it is not clear that principal components regression is appro-
priate in the context of forecasts of precipitation, for example, where the assump-
tions of multivariate normality are often violated. 

Problems of multicolinearity in forecast combination algorithms, while not 
unique to multiple regression, which has been a commonly used method for com-
bining forecasts, are not an issue with some alternative combination methods. 
Canonical covariate analysis, for example, has some strong similarities to princi-
pal component regression, and explicitly addresses the inter-correlations of models 
(and of individual ensemble members, if used). In addition, the first few principal 
components of the model predictions could also be used in a wide range of alter-
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native statistical schemes, such as generalized linear models (Chapter 7, Section 
7.4.3). These approaches deserve further consideration, especially in the context of 
combining predictions of precipitation amounts, where the standard assumptions 
of multiple regression (multivariate normality) are sometimes invalid. 

8.7 Summary 

Producing a seasonal climate forecast from a dynamical model involves a great 
deal more than simply running the model, and viewing the results. The first prob-
lem is to decide which dynamical model(s) should be run given the practical 
constraints of computing resources. Assuming that dynamical models can repre-
sent the underlying physical processes correctly, fully coupled models theoretically 
should give the best predictions of seasonal climate if they can be initialized accu-
rately, but this initialization can be problematic, and computing resources can be 
prohibitive. An alternative is to use uncoupled atmospheric models and to pre-
scribe the SST forcing. In the latter case, the SSTs have to be predicted first, and 
so the uncoupled approach involves a “two-tiered” process. 

Once model predictions have been made, they then need to be corrected for 
systematic errors. These errors result from consistent differences between the 
model and the observed climatologies, and can be identified by differences in the 
probability distributions of climate parameters for the model and the observed 
data. However, since one contribution to the systematic errors in the model is that 
the geography is distorted, simple gridpoint-by-gridpoint comparisons of model 
and observed climatologies can be inappropriate. Instead some form of spatial 
correction to the model output is desirable. 

Even after systematic error and spatial correction, the model predictions may 
require further processing in order to be made relevant for specific locations. All 
dynamical models produce output that represents an averaged value over a gridded 
area typically of the order of between 10,000 and 100,000 km2. Because local cli-
mate can vary considerably over fairly short distances, especially in areas of 
marked terrain, this gridded average may be unrepresentative of specific locations 
within the grid. The model prediction must therefore be “downscaled”. Down-
scaling can also involve the conversion of a prediction for a gross summary of 
weather over a season, such as a 3-month rainfall total, to one containing more 
detailed information about the statistics of weather within the season. 

After correcting the model output, the uncertainty in the forecast then needs to 
be communicated. Apart from the fact that an average of an ensemble of predic-
tions is almost invariably a more accurate forecast than any single prediction, 
ensembles are a commonly used method of representing the uncertainty in the 
forecast. (The question of whether the ensemble does in fact provide a reliable 
indication of forecast uncertainty is deferred until Chapter 10.) If the various pre-
dictions from the ensemble are in close agreement then presumably we can place 
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more confidence in the forecast than when the ensemble members predict widely 
different outcomes. There are a number of ways of assessing the level of agree-
ment amongst the ensemble members. The most widely used approach is to count 
the proportion of ensemble members that predict an event of interest. However, 
more sophisticated procedures are available, and involve fitting a distribution to 
the predictions, which gives a more reliable indication of the model’s forecast 
distribution, and using statistical models to correct the forecast distribution to ac-
count for model skill. Such procedures are discussed in more detail in the 
following chapter. 

Just as an ensemble of predictions from one model provides a more accurate 
forecast than any single model prediction, so also forecasts obtained by combining 
predictions from a range of different models are an improvement upon forecasts 
derived from a single model. There have been numerous attempts recently to com-
bine predictions from different models in ways that account for differences in the 
skill of the individual models. However, with the typically small sample sizes 
available for seasonal forecasts, it is difficult to estimate with sufficient accuracy 
the differences in the performances of the models, and so a simple average of the 
predictions from the various models is a high standard to beat. 

After constructing a forecast, an indication of the reliability of the probabilistic 
information communicated needs to be performed by conducting a detailed assess-
ment of the quality of a set of historical forecasts produced in a consistent way 
with the current forecast. The verification of these historical predictions provides 
an indication of the information content in the forecast, and relevant procedures 
are discussed in Chapter 10. 
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Chapter 9 

David B. Stephenson  

This chapter reviews the basic probability concepts needed to understand pro-
bability forecasting and presents some simple Bayesian approaches for producing 
well-calibrated probability forecasts. Forecasts are inherently uncertain and it is 
important that this uncertainty is estimated and communicated to forecast users so 
that they can make optimal decisions. Forecast uncertainty can be quantified by 
issuing probability statements about future observable outcomes based on current 
forecasts and past observations and forecasts. Such probabilistic forecasts can be 
issued in a variety of different forms: as a set of probabilities for a discrete set of 
events; as probabilities for counts of events; as quantiles of a continuous variable; 
as interval forecasts (pairs of quantiles); as full probability density functions or 
cumulative distribution functions; or as forecasts for whole spatial maps. Since 
models predict the future state of model variables rather than actual real-world 
observable variables, probability forecasts need to be recalibrated on observations 
as an inherent part of the forecasting process. Rather than the (marginal) pro 
bability distribution of ensemble predictions, what forecasters should issue are 
estimates of the conditional probability distribution of the future observed quantity 
given the available sample of ensemble predictions.  

9.1 Introduction 

There is one thing in climate science that we can be certain about: weather and 
climate forecasts will always be uncertain. To deterministic ways of thinking, this 
uncertainty is rather annoying, but is a defining characteristic of many areas of 
modern science. How should we deal with this forecast uncertainty? One approach 
is to deny it and simply issue deterministic forecasts (e.g. “it will rain tomorrow”) 
with no estimate of the forecast uncertainty. This doesn’t mean that the forecaster 
thinks there is no uncertainty in the forecasts, but rather that an estimate of the 
forecast uncertainty is not available. Although simple to communicate, this  
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approach has several problems. Rather than be interpreted as the most probable 
future outcome, the forecast can be misinterpreted to be the only possible future 
outcome. This can lead the forecast user to lose confidence in the forecast provider 
when the forecast outcome fails to happen. Hence, probability forecasts can be 
more “believable” than are deterministic forecasts. Probability forecasts are also 
required for the user to be able to make optimal decisions – the predicted uncer-
tainty of the forecasts is a key element in the decision-making process. In order to 
make optimal decisions, it is necessary for the forecast user to be able to quantify 
risk by having estimates of the probabilities of all the different possible outcomes. 

Hence, the goal of weather and climate forecasting is to provide the most reli-
able probability estimates for future observed events given the available 
predictions and all available past information. Unless one has a perfect model 
identical to that of the real world initialised identically to the real world (!), model 
predictions should not be considered to be identical to forecasts of observable 
events. In practice, the probability of future observables has to be inferred from 
the set of available weather and climate predictions. The conditional probability 
distribution of the future observable is not simply the probability distribution of 
the ensemble predictions – it has to be estimated from the model data using a suit-
able probability model such as a regression model. This important process of 
mapping the forecasts back into observation space has been referred to as fore-
cast assimilation by Stephenson et al. (2005). 

Most seasonal forecasting centres calibrate their forecasts to look like reality 
by simply adding constants and/or multiplying by constants to correct for biases in 
the mean and variance (Chapter 8). This simple procedure is based solely on the 
mean and variance of past forecasts and past observations, and ignores informa-
tion about the joint distribution of past observations and forecasts (e.g. the skill of 
the forecasts). A better approach is to recalibrate the forecasts using a model 
based on the regression, for example, of past forecasts on past observations. For 
example, the Swedish Meteorology and Hydrology Institute uses an adaptive 
Kalman filtering technique to adjust all the ensemble members based on daily up-
dates of an error equation evaluated on the control forecast. Rather than perceive 
this as a simple post-processing step, one should realize that this is an inherently 
important aspect of the forecasting process that requires as much care and atten-
tion as invested in other aspects of the forecasting process such as coupled model 
development, data assimilation, ensemble generation, etc. The full potential of 
climate forecasts cannot be fully realized without these activities. 

The aim of this chapter is to give a brief introduction into why we need pro-
bability forecasts, how they can be issued, and what needs to be done to make 
well-calibrated probability forecasts. Section 9.3 motivates why we should issue 
probability forecasts and discusses the different types of probability forecast. 
Section 9.3 gives a brief overview of the basic probability concepts needed to 
understand probability forecasts. Finally, Section 9.4 presents ideas and examples 
on how to produce well-calibrated probability forecasts. 

236 D.B. Stephenson 



9.2 Probability Forecasts: Why Issue Them and What are They? 

9.2.1 Why Issue Probability Forecasts? 

Forecasts can be either deterministic or probabilistic. Deterministic forecasts issue 
a specific value or category that is considered to be most likely to occur in the 
future. Unless issued together with skill measures such as mean squared forecast 
error, deterministic forecasts provide no indication of forecast uncertainty. In con-
trast, probabilistic forecasts do attempt to quantify the uncertainty by making clear 
probability statements about the chance of occurrence of future outcomes. 

There are several important reasons why it is better to issue probabilistic fore-
casts rather than deterministic forecasts: 

• The future state of a complex system such as climate cannot be predicted with 
certainty 

• Probability forecasts allow different decision-makers (forecast users) to make 
their own optimal decisions, whereas deterministic forecasts are essentially a 
decision already made by the forecaster 

• Probability forecasts are essential for quantitative assessment of risk 
• It is dishonest and legally dangerous to claim that there is no uncertainty in the 

However, there are several difficulties when issuing probabilistic forecasts, 
such as: 

• More information needs to be communicated so the forecasts can be difficult to 
communicate concisely (e.g. in short television broadcasts) 

• The understanding and perception of probability and risk varies enormously 
from person to person 

• Not all users want to make optimal decisions – they often prefer the forecaster 
to issue a definitive statement about what will happen (despite the fact that this 
is impossible!) 

• The probabilities may be difficult to quantify reliably especially when uncer-
tainties are due to unknown unknowns (e.g. missing processes) and cascade 
through several stages of the ensemble forecasting system.  

In order to surmount these difficulties it is necessary for forecasters and users 
to work together at improving communication and understanding of what they are 
attempting to achieve. 

forecasts. 
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9.2.2 Sources of Uncertainty 

Uncertainty is endemic in forecasting because the future is not certain. There is a 
growing need in climate science to quantify the different sources of uncertainty. 
To help do this, it is useful to try and classify all the different possible sources of 
uncertainty. 

Uncertainty arises from two main sources: aleatoric and epistemic. Aleatoric 
uncertainty is due to chance (from the Latin word aleator meaning a dice-player) 
whereas epistemic (or structural) uncertainty arises from our incomplete and in-
correct knowledge of the world. Epistemic uncertainty can be summarized by the 
unknown unknowns in the famous quote by Donald Rumsfeld at the US Defence 
Department Briefing on February 12, 2002: 

Reports that say that something hasn’t happened are always interesting to me, 
because as we know, there are known knowns; there are things we know we 
know. We also know there are known unknowns; that is to say we know there 
are some things we do not know. But there are also unknown unknowns – the 
ones we don’t know we don’t know. And if one looks throughout the history of 
our country and other free countries, it is the latter category that tends to be the 
difficult one. 

Below is a classification of the types of uncertainty that arise in climate science: 

• Observational uncertainty 
o Sampling error in measurements 
o Systematic error in measurements (e.g. instrumental biases) 
o Inherent uncertainty in statistics caused by sampling of natural variability 

over finite periods (e.g. the historical record, the future forecast period, the 
30-year base period used to define climatology) 

• Model data sampling uncertainty (aleatoric uncertainty) 
o Finite length model simulations (e.g. climate time-slices) 
o Finite ensemble of all possible model runs 

• Model parametric uncertainty (i.e. known unknowns) 
o Physical uncertainty in model parameters (e.g. cloud physics) 
o Sampling uncertainty in statistical estimates of parameters 
o Non-uniqueness in model parameters (model parameter degeneracy) 

• Model structural uncertainty (i.e. unknown unknowns) 
o Incomplete knowledge of external factors (e.g. future emissions scenarios) 
o Misidentification of physical and/or statistical models (e.g. simplification of 

land-surface processes, weak but unaccounted for effects such as slow com-
position changes) 

o Numerical and representation error (e.g. grid boxes are not the same as 
single-site locations) 
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Various strategies have been developed in recent years in order to get estimates 
of these different sources of uncertainty – for example, ensemble and multi-model 
prediction and stochastic parameterization techniques. However, it is important  
to be aware that uncertainty is invariably underestimated due to the fundamental 
inability to quantify epistemic uncertainty caused by unknown unknowns (there 
can always be surprises – e.g. the appearance of the Antarctic ozone hole!). 

9.2.3 Types of Probabilistic Forecast 

Probabilistic forecasts are probability statements about future outcomes. They 
need not simply be issued as a probability for an event. Some examples of differ-
ent probabilistic forecasts (see additional discussion in Chapter 8, Section 8.4.1) 
are listed here: 

1. A set of probabilities for the discrete set of events that can occur. For example, 
probabilities of 0.2, 0.4, and 0.4 for the categories of below-normal, normal, 
and above-normal. For binary events (two mutually exclusive and complete 
categories such as rain and no-rain), effectively only one probability needs to 
be issued (e.g. probability of rain) since the two probabilities must add up to 
one (one of the events must happen!). 

2. Probabilities for counts: e.g. the probability of 4 hurricanes making landfall in 
the U.S. 

3. Interval forecasts in which one specifies a range of continuous values in which 
is likely to include the observation with a certain fixed probability. For example, 
temperature could be predicted to be in the range [23.7°C, 29.3°C] with 95% 
chance – this is known as a prediction interval in the statistics literature (not to 
be confused with confidence interval that refers to an interval on a distributional 
parameter not a random variable). Error bars (as often used by physicists) such as 
10.0°C ± 1.2°C are constructed by adding and subtracting one standard devia-
tion, and are examples of 68.3% prediction intervals for Normally distributed 
variables. 

4. One or more quantiles of a continuous variable. For example, one could predict 
the 50th quantile (the median) of the distribution, in which case the observed 
value would be expected on average to exceed this value on half the occasions. 
Note that predicting the median is fundamental different to predicting the mean 
since in general one does not know a priori the probability of exceeding mean 
value. If one wants to be correct 50% of the time then one should use the me-
dian value rather than the mean – it is for this reason that median forecasts are 
popular in financial forecasting. 

5. The full probability density function (p.d.f.) or cumulative distribution function 
(c.d.f.) of a continuous variable. In other words, one could try to predict a 
whole function each time. If the distribution always has the same form, then it 
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may be possible to summarize this distribution by fitting it to a known distribution 
function (e.g. Normal/Gaussian) and then quote the distribution’s parameters 
(e.g. the mean and variance of the Normal distribution). 

6. Probability forecasts for whole spatial maps (e.g. precipitation maps). These 
forecasts are p.d.f.’s of a 2-dimensional spatial function and methods have not 
yet been fully developed for doing such forecasts. 

Despite many years of issuing weather and climate forecasts, there is still much 
work to be done on producing and assessing such types of forecast. There is also a 
real need to educate the forecast users as to why probability forecasts are pre-
ferable and how they can best use them. 

9.3 Basic Probability Concepts 

9.3.1 Interpretations 

Probability is open to many different interpretations. It underpins modern statistics 
and is essential for rigorous scientific enquiry. The concept was formally defined 
by Pierre Simon Laplace in his 1812 treatise on the analytical theory of probabili-
ties and has caused much debate ever since. The word “probability” is derived 
from the Latin word probare meaning to test/approve, which is rather paradoxical 
since only when the probability is exactly one or zero can anything be definitely 
proven! 

The probability p = P(A) of an event A is a measure between 0 and 1 of 
whether the event is likely to happen. When p = 1 the event is certain to happen, 
when p = 0 the event is impossible, and when p = 0.5 there is a maximum un-
certainty about whether or not the event will happen. 

In 1933, Andrey Kolmogorov formulated three basic axioms that a number has 
to satisfy to be a probability: 

1. All probabilities are greater than or equal to zero: ( ) 0P A ≥  for all events (i.e. 
no event is more unlikely than a zero probability event). 

2. The probabilities of all events in event space always sum up to one (i.e. some 
outcome must happen!). 

3. The probability of either one or other mutually exclusive events (i.e. events that 
cannot happen at the same time) is equal to the sum of the probabilities of each 
event alone. In other words, (  or ) ( ) ( )P A B P A P B= +  for all mutually  
exclusive events A and B. 

Note that the axioms can be restated more generally in terms of conditional 
probabilities, e.g. the probability of event A given event C occurs, P(A|C), rather 
than in terms of absolute probabilities such as P(A). 
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A simple way of communicating probability is in the form of the odds of an 
event. The odds of an event is defined as the ratio of the probability of the event 
occurring to the probability of it not occurring, i.e. P(A)/P(not A). So an event 
with probability 0.001 has odds of 1/999 (or 999:1 against in gambling jargon). 
Odds can range from zero to infinity and are equal to one for events whose occur-
rence and non-occurrence are equally likely (known as evens by gamblers). Odds 
can be used to assess the total risk of a set of independent events by simply multi-
plying together the odds of the individual events. 

There are several different ways in which probability can be estimated and  
interpreted: 

• Number of symmetric ways 

If an event A can happen in k ways out of a total of m equally likely possible 
ways, then the probability of A is given by P(A) = k/m. For example, the pro-
bability of getting an odd number when throwing a 6-sided die is given by 3/6 
since there are three ways to get an odd number (i.e. numbers {1,3,5}) out of a 
total of six equally likely outcomes {1,2,3,4,5,6}. 

• Relative frequency of an event in repeated trials/experiments 

For repeated trials, probability can be estimated by the “long-run” relative fre-
quency of an event out of a set of many trials. If an event occurs k times in n trials 
then the relative frequency k/n provides an unbiased estimate of the probability of 
the event. In the asymptotic limit as the number of trials n tends to infinity, the 
relative frequency converges to the true probability of the event (by the “Law of 
Large Numbers”). This approach to defining probability from repeated trials is 
known as the “frequentist” interpretation. Note that unlike laboratory experiments, 

• Subjective approach 

The frequentist approach has a number of disadvantages. Firstly, it cannot be 
used to provide probability estimates for events that occur once only or rarely (e.g. 
climate change). Secondly, the frequentist estimates are based entirely on the 
sample and so cannot take into account any prior belief (e.g. common sense or 
scientific knowledge) about the event. For example, an unbiased coin could easily 
produce three heads only when tossed ten times and this would lead to a fre-
quentist probability estimate of 0.33 for heads. However, our belief in the rarity of 
biased coins would lead us to suspect this estimate as being too low. In other 
words, the frequentist estimate would fail to reflect our true beliefs. In such cases 
a more flexible approach to probability must be adopted that makes use of not 
only the available sample of data but also incorporates any prior information. The 
word subjective does not mean that this approach is less rigorous than the frequen-
tist approaches – instead it means that the estimated probability of an event will 
not necessarily be the same number for everyone but will depend on what prior 
information each person has. 

repeated! 
individual weather and climate events are unique and so can never be truly 
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One way to elicit the subjective probability of an event A from a group of  
experts is to ask what price B they would pay for a fair bet. The subjective pro-
bability p = B/W is then given by the price they would be prepared to pay to bet 
divided by the amount W they would win if the event occurred. Fair means that nei-
ther you nor the betting partner would be expected to make any net profit, i.e. 

( )p W B− +
taken into account, e.g. any bias in the coins, the previous form of a horse in a horse 
race, etc. This is often achieved by using Bayes’ theorem (see next section) and so 
the subjective estimation of probability is often referred to as Bayesian estimation/ 
inference.1 

9.3.2 Joint and Conditional Probabilities 

We are often interested in the situation when two events happen at the same time. 
For example, to get snow falling on the ground, it is necessary that two events, {A = 
“precipitating cloud”} and {B = “boundary layer below freezing”} occur at the 
same time. 

The joint probability (  and )P A B of events A and B is the probability that the 
two events occur together. The conditional probability ( | )P A B of A given B, is 
defined as ( | ) (  and ) / ( )P A B P A B P B=  and gives the probability of A occur-
ring given that B has occurred. For example, to estimate the conditional 
probability of rain during El Niño episodes, one would estimate the probability of 
rain only during El Niño events rather than over all events. The concept of condi-
tioning is fundamental for understanding statistical models (see Section 9.3.4). 
The unconditional probabilities P(A) and P(B) are known as marginal probabilities 
and so the joint probability (  and )P A B  is the product of the conditional pro-
bability ( | )P A B  and the marginal probability P(B). 

These ideas can be illustrated by considering exclusive, exhaustive, and/or 
independent events: 

• Exclusive events are events that cannot occur simultaneously so (  and ) 0P A B = , 
and ( | ) 0P A B =  if ( ) 0P B > . 

 

________________  
1 For a good online introduction, see: http://en.wikipedia.org/wiki/Bayesian_inference 

• Exhaustive events are events that describe all the possible outcomes and so 
) = ( )P A +  

) = ( ) ( )P A P B+ −  
(  and )P A B ). 

 

P B( ) −1  (by using the probability identity P(  oA Br  
P A(  or B) =1 . It can be shown that for such events P(A B and 

(1− p)(−W ) = 0 . To make a fair bet,  all prior knowledge must be 
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• Independent events are ones where (  and ) ( ) ( )P A B P A P B=  and so 
( |P A B

Events where P(A|B) differs from P(A) are known as dependent events since 
the occurrence or non-occurrence of event B affects the chance of event A 
occurring. 

Events can share one or more of these properties, for example, the events heads 
and tails of a single coin toss provide examples of exclusive and exhaustive 
events. Exclusive independent events can only occur if one or more of the events 
have zero probability of occurring. 

9.3.3 The Prosecutor’s Falacy and Bayes’ Theorem 

To assume that ( | ) ( | )P A B P B A=  results in a mistake known to the legal pro-
fession as the Prosecutor’s fallacy. One form of the fallacy results from neglecting 
the a priori odds of a defendent being guilty – i.e. the chance of an individual 
being guilty absenting specific evidence is the gross incident rate of perpetrators in 
the general population. When a prosecutor has collected some evidence B (for 
instance a DNA match) and has an expert testify that the probability ( | )P B A  of 
finding this evidence if the accused were innocent (event A) is tiny, the fallacy 
occurs if it is concluded that the probability of the accused being innocent 

( | )P A B  must be comparably tiny. The probability of innocence ( | )P A B  would 
only necessarily be comparably tiny if the probability of innocence P(A) is compar-
able to the a priori presumption of guilt P(B). 

By equating: 

(  and ) ( | ) ( )P A B P A B P B=  and (  and ) ( | ) ( )P A B P B A P A= , 

one can derive the very useful identity known as Bayes’ theorem: 

 ( | ) ( )( | )
( )

P B A P AP A B
P B

=  (9.1) 

probability P(A) to the posterior probability ( | )P A B  conditioned on event B. 
A is the event to be predicted, P(A) are ones prior beliefs about A, and B is the 
sample of data available (e.g. numerical climate model predictions). In other 
words, by conditioning on newly available data, it is possible to update ones 
estimate of the probability of event A. 

) (= P A) . The probability of A is unaffected by conditioning on B. 

Bayes’ theorem provides a useful way of getting from the unconditioned prior 
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9.3.4 Regression as a Conditional Probability Model 

Empirical forecasting and forecast calibration and verification rely heavily upon 
regression models. Although it might not seem obvious at first sight, regression 
models are models for conditional probabilities. Consider, for example, the linear 
regression of a response variable, Y, on an explanatory variable, X: 

 0 1Y Xβ β ε= + + . (9.2) 

The parameters 0 1, ,  and εβ β σ can be estimated by minimising the sum of the 
squared errors, which is known as Ordinary Least Squares (OLS) estimation. This 
is equivalent to Maximum Likelihood Estimation (MLE) if one assumes that  
the random effects are independent of one another and of X, and are Gaussian 
(Normally) distributed with zero mean and a constant variance: 

 2~ (0, )Nε σ . (9.3) 

random variables (e.g. X), lower-case Roman letters to denote specific or ob-
served/measured values of random variables (e.g. x), and Greek letters to denote 
unknown population parameters (e.g. β1, σ, etc.). For example, the probability of 
a random variable being more than x units above the mean is denoted 

( )P X xμ− > . 
The two OLS equations above can be written more elegantly as the following 

conditional probability model: 

 2
0 1| ~ ( , )Y X N Xβ β σ+  (9.4) 

In other words, the values of Y for a given value of X are normally distributed 
with a mean value given by 0 1Xβ β+ and a constant variance of σ2. Hence, linear 
regression can be understood as a probability model/distribution for Y that has 
distribution parameters (the population mean) which depend linearly on X. The 
joint, marginal, and conditional probability distributions are illustrated in Fig. 9.1. 

By writing regression models as probability models, it becomes evident how 
the models can be extended. For example, for processes with varying amounts of 
variance (heteroscedastic processes) the variance can also be made to depend on X 
or to model non-normal responses one can use a different distribution to normal. It 
can also be clearly noted that unlike correlation, regression has a direction – Y is 
conditioned on X, which is very different to X being conditioned on Y (see the 
earlier discussion about the Prosecutor’s fallacy). 

 

The symbols ~ (N .)  here mean distributed as a Normal distribution with para-
meters (.). Modern statistical terminology uses upper-case Roman letters to denote 
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Fig. 9.1 Scatter plot showing marginal distributions (histograms at the edge of the plot) and 
isolines of the joint probability density together with a regression fit showing the conditional 
probability distribution at a specific value of x 

9.4 Recalibration and Combination 

9.4.1 Basic Ideas  

Recalibration and combination are topics of fundamental importance in fore-
casting. There are essentially two main reasons why forecasts do not match  
observations: 

• Forecasts are unable to discriminate between different observed situations 
• Forecasts are poorly labelled, e.g. the forecasts are on average 5°C too warm 

The ability of a forecasting system to discriminate between observed situations 
is known as forecast resolution, and its existence is a necessary yet not sufficient 
condition for forecasts to have any skill. For example, the probability forecasts of 
a day having rain rather than no-rain should on average be greater on observed 
rain days than on no-rain days. Forecast accuracy also depends on the good label-
ling of the forecasts, which is referred to as forecast reliability. For example, it 
should rain on average on 60% of the days when the forecaster issues probability  
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of rain forecasts equal to 0.6. Forecast reliability can be improved by recalibration 
of the forecasts using previous pairs of forecasts and observations, whereas fore-
cast resolution cannot generally be improved by recalibration. However, resolu-
tion can be improved by combining forecasts with other forecasts that are better 
able to resolve different situations. 

Well-calibrated probability forecasts of future weather or climate variables can 
be produced in many different ways. One of the simplest methods for producing a 
probability forecasts is to estimate uncertainty on a deterministic prediction by 
fitting a probability distribution to a sample of past prediction errors (the differ-
ences between the past observed values and the corresponding predictions). 
Another more sophisticated approach is to develop a regression model of the 
observations on the predictions and then use the regression equation to make 
probabilistic predictions of future observables. This calibration approach using 
linear regression is known as Model Output Statistics (MOS) and has been widely 
used to improve deterministic predictions in the U.S. and elsewhere (see Glahn 
and Lowry 1972; Wilks 2005). Forecasts are improved by recalibration because 
numerical model predictions are only ever approximations to reality and so they 
will always have systematic prediction errors (“All models are wrong, but some 
are useful” – G. E. P. Box). 

In order to quantify forecast uncertainty due to uncertainty in initial conditions, 
many operational forecasting centres are now producing ensembles of weather and 
climate forecasts rather than single deterministic forecasts. Since forecast users 
generally require well-calibrated probability forecasts, new synthesis methods 
have started to be developed for recalibration and combination of multi-model 
ensemble predictions. For example, the MOS methodology can easily be extended 
to multi-model predictions from several different numerical models by performing 
a multiple regression of the observations on the set of different predictors. There 
are many possible methods for combining forecasts, but no unique method can be 
prescribed that is ideal for all the types of weather/climate forecasting problems. 
However, there is a need to establish a framework that can incorporate the differ-
ent approaches for combining weather and climate predictions in order to provide 
the most informative forecasts of future observables. 

9.4.2 Conceptual Framework for Forecasting 

Figure 9.2 shows a highly simplified low-dimensional schematic of the forecasting 
process. The state vector of the real atmosphere moves dynamically around  
q-dimensional observation state space whereas the model state vector moves 
around p-dimensional model state space (Stephenson et al. 2005). Three important 
steps are needed in order to find the probability density function ( | )f ip y y  of a 
future observable variable fy : 
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Conceptual framework for forecasting. Note the duality between data assimilation that 
maps data from observation space into model space and forecast assimilation (calibration and 
combination) that maps model predictions back into forecasts of observable quantities (From 
Stephenson et al. 2005) 

• Data assimilation to find ( | )i ip x y . To initialize models with observations, 
information in observation state space need to be mapped into model state 
space (Bouttier and Courtier 1999). 

• Ensemble prediction to find ( | )f ip x x . The desired probability density is ob-
tained by approximating the integral over all possible model states xi by a finite 
sum of predictions from randomly generated initial conditions (Monte Carlo 
sampling). For this to be a good approximation, the initial ensemble states 
should be randomly sampled from the distribution ( | )i ip x y . This condition is 
not generally satisfied in current operational ensemble forecasting systems 
(Stephenson and Doblas-Reyes 2000). 

It is often naïvely assumed that in the absence of systematic errors (Chapter 8, 
Section 8.2), predicted model variables are equal to forecasts of observations (i.e. 

f fx y= ). This is mathematically incorrect since it ignores the important distinc-
tion between model state space and observation state space – the two spaces are 

Fig. 9.2 

• forecast assimilation to find ( | )f fp y x . A procedure for mapping the model 
predicted state back into observation space. This important final stage has been 
referred to as forecast assimilation by Stephenson et al. (2005) due to its ana-
logy to data assimilation (apparent in Fig. 9.2). Forecast assimilation is a 
generic framework that incorporates all other post-processing approaches such 
as bias-correction, statistical downscaling, model output statistics, perfect prog-
nosis, etc. (Wilks 2005). 
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not the same. Model variables (e.g. grid point variables) are only ever representa-
tions of observable variables (e.g. measurements at specific locations). This fal-
lacy then leads to the probability distribution of ensemble predictions ( | )f ip x y  
being mistaken for the real quantity of interest: the posterior predictive distribu-
tion of the observables ( | )f ip y y . Instead of equating model predictions with 
observables (i.e. f fy x= ), model predictions should instead be considered as 
proxy information that can be used to infer the probability of future observables.  

In order to be able to convert ensembles of model predictions into a probability 
forecast, forecast assimilation requires a probability model (e.g. regression) for 
linking fx  to fy . Bayes’ theorem can be used to estimate the conditional pro-
babilities from the unconditional (uninformed) probability distributions. For 
example, variational data assimilation uses 

 
( | ) ( )( | )

( )
i i i

i i
i

p y x p xp x y
p y

=  (9.5) 

to update the prior (background) distribution ( )ip x  to obtain the posterior distri-
bution ( | )i ip x y . Similarly forecast assimilation can make use of 

 
( | ) ( )

( | )
( )

f f f
f f

f

p x y p y
p y x

p x
=  (9.6) 

to update the prior (e.g. the climatological) distribution ( )fp y  to obtain the more 
certain posterior distribution ( | )f fp y x . 

The following sections demonstrate these concepts with a few simple examples. 

9.4.3 Forecasts of a Binary Event 

The Bayesian approach is best illustrated using the simple example of forecasts of 
a binary event labelled by the random variable Y = 0 or 1 (e.g. no-rain/rain). 
Suppose that out of an ensemble of m  forecasts, x forecasts predict that the event 
will occur and m x−  forecasts predict that it will not occur. The frequentist esti-
mate for the probability ( 1| )p P Y X x= = =  is the relative frequency /x m . 
However, this estimate has several serious disadvantages: 

• When 0x =  and m, the forecaster issues probabilities of 0 and 1, respectively. 
In other words, the forecaster states that the event is either completely impos-
sible or completely certain to occur. It is unlikely the forecaster really believes 
this statement! 
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• . 
Different size ensembles lead to different sets of probability values that can 
make comparison and interpretation difficult. 

All these disadvantages can be avoided by adopting a more Bayesian approach. 
The Bayesian approach uses Bayes’ theorem to update prior knowledge about p, 
described by the prior probability density function ( )f p , using information con-
tained in the model prediction data x: 

 
( ) ( )

( | )
( )

f x p f p
f p x

f x
=  (9.7) 

Note that uncertainty about the probability of the future event is now incorpo-
rated by using probability distributions rather than single point values of p. 
Provided the distribution of p is not multi-modal, the probability density function 
of the probability can be modelled quite flexibly using the two-parameter Beta 
distribution: 

 1 1( )( ) (1 )
( ) ( )

f p p pα βα β
α β

− −Γ +
= −
Γ Γ

, (9.8) 

where (.)Γ  is the Gamma function is a normalising constant that is required to 
ensure that the integral of the probability density ( )f p  from 0p =  to 1 equals 

. 
The mean and variance of the Beta distribution are given by: 

 
αμ

α β
=

+
, (9.9a) 

and 

 2
2( ) ( 1)
αβσ

α β α β
=

+ + +
. (9.9b) 

Some examples of Beta distributions are shown in Fig. 9.3. 

)m xβ + − In other words, the effect of the model predictions is simply to update 
the Beta parameters describing the probability distribution for the probability of 
the event: ,x m xα α β β→ + → + − . 

 

0, 1/m, 2/m, ..., 1The probabilities can take only the finite set of discrete values 

p ~ Beta(α ,β )one. The probability is said to be Beta distributed as follows: 

p ~ Beta(α ,β ) , Using Bayes’ theorem, it can be shown that when the prior is 
~ Bin(m, p) , X p|and the number of predicted events is binomially distributed, 

with probability p, then the posterior distribution p | (X = x) ~ Beta(α + x, . 
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Fig. 9.3 Some examples of symmetric beta distributions: Beta(2.0,2.0), Beta(8.0,8.0), Beta(0.5,0.5), 
and Beta(1.0,1.0) 

An example of this is shown in Fig. 9.4 where it is assumed that the prior mean 
probability of the event is 0.2 (e.g. climatology) and then this is updated by 
knowledge that 0x =  out of 9m =  ensemble predictions forecast the event. For 
the sake of argument, it is assumed here that information in the prior is equiva-
lentto 6 ensemble forecasts and so 6α β+ =  and hence 1.2α =  and 4.8β = . 
This kind of expert judgement about relative information in the data is needed in 
order to be able to define the prior. By comparing panels (a) and (b) in Fig. 9.4, 

sharpen the distribution (reduce the uncertainty in the probability of the event) and 
to shift it towards zero. If a forecast user wanted a point summary for the probability 
forecast, one could issue the mean probability value ( ) /( ) 0.08x mα α β+ + + =  
or the posterior mode (the most probable probability value): 

( 1) /( 2) 0.015x mα α β+ − + + − = . 

The uncertainty in p can be summarised by the standard deviation of the poste-
rior distribution: 

2( )( ) /( ) ( 1)x m x m mα β α β α β+ + − + + + + + = 0.068. 
 

it can be noted that the effect of the ensemble predictions in this example is to 
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Comparison of prior and posterior distributions of a probability forecast for a binary 
event: prior distribution Beta(1.2,4.8) (dashed line) and posterior distribution Beta(1.2,13.8) 
(solid line) 

9.4.4 Forecasts of Normally Distributed Variables 

The equations for forecast assimilation of normally distributed predictions are 
simply the dual of the equations used for variational data assimilation but with x 
and y interchanged. One assumes that the 1q ≥  observable variables y and the 

1p ≥  model predictions x are (multivariate) normally distributed as follows: 

 b Cy y ε= + , (9.10a) 

and 

 0( ) Sx G y y ε= − + , (9.10b) 

where by  is the background observable state (e.g. the climatological mean value 
or a persistence forecast) and Cε  and Sε  are (multivariate) normally distributed 
errors with zero mean and background observable covariance C and forecast error 
covariance S
 
 

Fig. 9.4 

, respectively. For generality, a bias term y0 needs to be included to 
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take account of the mean forecast bias often found in model predictions. The ( )p q×  
matrix G is the forecast likelihood operator that can be estimated by multivariate 
regression of the model predictions on the observed values. The equations can be 
rewritten more elegantly as the following probability models: 

 ~ ( , )by N y C , (9.11a) 

and 

 0| ~ ( ( ), )x y N G y y S− . (9.11b) 

 
Then Bayes’ theorem can be used to show that 

 | ~ ( , )ay x N y D , (9.12) 

with the forecast observable state ya and the forecast error covariance D given by 

 0( ( ))a b by y L x G y y= + − − , (9.12a) 

 1( )T TL CG GCG S −= + , (9.12b) 

 1 1 1( ) ( )TD I LG C G S G C− − −= − = + . (9.12c) 

The ( )q p×  matrix L is the forecast gain/weight matrix that quantifies the rela-
tive contribution of the predictions to updating the prior background mean by . The 
model prediction data updates the background observable state to give an im-
proved forecast of the observable. The forecast observable state is the mode of the 
posterior distribution ( | )p y x , and is referred to as the Maximum A Posteriori 
Estimate (MAPE) that should not to be confused with the Maximum Likelihood 
stimate (MLE) which maximises ( | )p x y . The MAPE maximises the probability 

given up to a constant by  

 1 1
0 0( ) ( ) ( ( )) ( ( ))T T

b bJ y y C y y x G y y S x G y y− −= − − + − − − − . (9.13) 

The cost function is the sum of two penalty terms: one that penalises departures 
from the background observable state and one that penalises departures from cali-
brated model predictions. This variational formulation of forecast combination and 
calibration is analogous to the variational formulation of data assimilation (e.g. 
 

p(y | x)  or alternatively minimises the cost function −2log p(y | x) , which is 
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3-d VAR), and can be implemented in a continuous manner using Kalman filter 
and other state space approaches. Two examples are briefly presented to illustrate 
the power of this approach. 

9.4.4.1 Example 1: NIÑO3.4 Index Forecasts 

Coelho et al. (2004) used the above approach to recalibrate and combine multi-
model hindcasts (past forecasts) of the NIÑO3.4 index in December starting from 
the preceding July. The hindcasts were freely provided by the European Union 
project DEMETER.2 A similar Bayesian approach (but with the inclusion of 
ensemble spread information in the likelihood model) was also used by Coelho 
et al. (2003) to assess the additional skill provided by coupled model seasonal 
forecasts of the NIÑO3.4 index produced by different versions of the seasonal 
forecasting system at ECMWF. 

A least squares regression of historical December values of the NIÑO3.4 index 
on preceding July values was used to define a simple prior probability forecast. 
Forecasts made in cross-validation mode (i.e. omitting the year to be forecast 
when estimating the regression parameters) generated by this empirical approach 

Note that all except one of the 13 observed values fall within the 95% prediction 
interval. The empirical forecast is, by definition, designed to be well-calibrated and 
so on average only 1 in 20 observations should fall outside the prediction interval. 

This is certainly not the case for interval forecasts based on the ensemble mean 
and spread of the raw uncorrected 9-member ECMWF coupled model forecasts 
(Figure 9.5b). The coupled model forecasts give a narrower prediction interval 
that fails to contain the majority of the observations. This reliability problem is 
due primarily (but not entirely) to the coupled model forecasts being too cold. In 
addition to being too cold, the coupled model forecasts also have less variance 
than that seen in the observations. 

Figure 9.5c shows the forecasts obtained by Bayesian combination of the statis-
tical and coupled model forecasts. These forecasts have narrower and better 
calibrated prediction intervals than those of the statistical or coupled model fore-
casts alone. The combination and recalibration has helped to improve the precision 
and accuracy of these interval forecasts. 

 

________________  
2 See: http://www.ecmwf.int/research/demeter 

are shown in Figure 9.5a. The empirical scheme shows some skill in forecasting
the observed values that arises because of the persistence during ENSO events.  
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Fig. 9.5 Interval forecasts of December NIÑO3.4 index starting from preceding July: (a) empirical 
regression forecasts, (b) raw ECMWF ensemble mean coupled forecasts, and (c) the Bayesian 
combined forecasts. Observed values (circles), mean forecasts (circles at midpoint of grey shad-
ing), and 95% prediction interval (grey shading) 
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9.4.4.2 Example 2: Equatorial Pacific Sea Surface Temperatures 

Inspired by the success of this approach, the forecast assimilation equations were 
then tested for multi-variable (i.e. grid point data) multi-model ensemble predic-
tions. Stephenson et al. (2005) demonstrated the method on 6-month lead forecasts 
of equatorial Pacific sea surface temperatures. 

Figure 9.6a shows longitude-time plots of probability forecasts for the binary 
event of SSTs being below their long-term mean value. The naïve multi-model 
approach calculated the probabilities by fitting Normal distributions to the seven 
model ensemble means at each of the 56 grid points. The forecast assimilation ap-
proach used the distribution of historical values as the prior and then combined this 
with the ensemble means from the seven coupled models taking care to calibrate 
these all together using a multivariate regression to estimate the likelihood parame-
ters. From Fig. 9.6a, it can be seen that the forecast assimilation approach was able  
to shift the patterns eastward in order to get the correct sign of SST anomaly west 
of the dateline. Figure 9.7 shows the Brier score (see Chapter 10) as a function of 
longitude for both these combination approaches – the forecast assimilation gives 
better skill (lower Brier score) in both the eastern and western Pacific. 

 

Fig. 9.6 Longitude-time plots of equatorial Pacific SST observations and forecasts: (a) observed 
anomalies 1980–2001, (b) binary event of observed anomaly less than or equal to zero, (c) multi-
model ensemble mean and variance probability forecast of the event, and (iv) the forecast assimi-
lation probability forecast (From Stephenson et al. 2005) 
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This pilot study demonstrated that the forecast assimilation procedure could be 
successfully applied to multi-model grid point fields. Coelho et al. (2005) went on 
to apply the approach to improve hindcast predictions of seasonal mean preci-
pitation over South America. The success of this approach has led to the 
EUROBRISA Project, a new transatlantic initiative, that will use this approach in 
real-time to improve seasonal forecasts for South America (see the EUROBRISA 
web site for more details3). 

The main ideas in this chapter are that: 

• Predictions of model variables are fundamentally different to forecasts of ob-
servables. Model predictions need to be mapped back into observations as an 
inherent part of the forecasting process (forecast assimilation). 

• The probability distribution of ensemble predictions is not what we need to know. 
What we need are estimates of the conditional probability distribution of the  
future observed quantity given the available sample of ensemble prediction data. 
 

________________  
3 See: http://www.met.rdg.ac.uk/~swr01cac/EUROBRISA 

 The Brier score for the forecasts as function of longitude (From Stephenson et al. 2005) Fig. 9.7 

9.5    Summary 
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Bayesian methodology allows one to estimate this distribution by simultaneously 
combining and recalibrating the ensemble predictions. It can be used to produce a 
reliable (well-calibrated) posterior distribution that avoids making unbelievable 
statements (e.g. such as issuing probabilities of 0 and 1). 
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Chapter 10 
How Do We Know Whether Seasonal 
Climate Forecasts are Any Good? 

Simon J. Mason and David B. Stephenson  

When seasonal climate forecasts are expressed probabilistically, it is not possible 
to answer simple questions such as “how often are the forecasts correct?” The 
simpler attributes of forecast quality, such as “accuracy” or “correctness” are not 
applicable to probabilistic forecasts, and instead the main attributes of interest are: 
reliability, which defines whether the confidence communicated in the forecasts is 
appropriate; resolution, which defines whether there is any usable information in 
the forecasts; discrimination, which defines whether the forecasts are discernibly 
different given different outcomes (somewhat similar to the attribute of resolu-
tion); and sharpness, which defines the level of confidence that is communicated 
in the forecasts (regardless of whether that level is appropriate). How these attrib-
utes are measured depends on how the forecasts are expressed. In this chapter 
these attributes are explained in detail, and representation by various graphical 
procedures and scoring metrics is described. Partly because there is more than one 
desirable attribute to good probabilistic forecasts, it is argued that there is no sin-
gle scoring metric that can adequately summarise forecast quality, and that in 
many cases graphical procedures also hide important aspects of forecast quality. 
The aim in this chapter is to provide some guidelines for interpreting and recog-
nising the strengths and limitations of the most important verification tools as 
applied to seasonal climate forecasts. 

________________  
Simon J. Mason 
International Research Institute for Climate and Society 

David B. Stephenson 
University of Exeter 
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10.1 Introduction 

Forecast verification is an essential part of atmospheric science: the science of 
meteorology is ultimately judged by the skill of its predictions. Forecast verifica-
tion is a multi-disciplinary area of research that requires careful summary and 
interpretation of pairs of past forecasts and observations. A comprehensive over-
view of forecast verification is presented in Jolliffe and Stephenson (2003); only a 
brief summary of issues can be presented here, and so the focus is on topics that 
are not discussed at length there. Specifically, because of the probabilistic nature 
of seasonal climate forecasts, this chapter considers only the verification of prob-
ability forecasts and of ensembles of forecasts more generally. 

The chapter only considers procedures for indicating the quality of forecasts as 
opposed to their value; “forecast quality” is concerned with how well the forecasts 
match the observations, whereas “forecast value” is concerned with the benefit 
(whether economic, social, or otherwise) that can be realised through decisions 
made in response to the forecasts. In focussing on questions of quality, the poten-
tial for forecasts to have value is addressed; whether the forecasts can actually be 
used to realise that value raises questions about the impact of the climate condi-
tions that verify, and about the options available for mitigating such impacts. 
Using even the simplest of decision-making models it can be demonstrated that 
forecasts with high quality can have negative value. For example, one such model, 
namely the cost-loss model, posits a specific “loss” resulting from the occurrence 
of adverse climate conditions, and a specific “cost” that can be incurred to miti-
gate these costs entirely if action is taken in advance. Given a set of forecasts and 
observations, it is possible to compare the costs and losses that would be incurred 
with and without forecasts. Despite its over-simplicity, the model is useful in 
demonstrating that seasonal forecasts can have value only under certain condi-
tions: the relative costs of taking some actions compared to the losses mitigated 
can result in dis-benefit, even with high quality forecasts. Readers interested in 
procedures for estimating forecast value should consult the book by Katz and 
Murphy (1997). 

A primary theme of the current chapter is that just as forecast quality is a  
necessary, but not sufficient, condition for forecasts to have value, so also individual 
attributes of forecast quality are necessary but not sufficient for “good” forecasts. 
In the following section the complex nature of forecast verification is indicated. 
The impossibility of summarising the quality of a set of forecasts by a single num-
ber is emphasised; because of the multifaceted nature of forecast quality, any 
single metric inevitably hides important information about the quality of the fore-
casts. Some graphical procedures are detailed (Section 10.2.1) that provide a more 
comprehensive indication of quality than is possible using scores. Nevertheless, 
for good and bad reasons, scores remain popular, and since there are large num-
bers of verification scores that have been proposed, the properties of such scores 
for probability forecasts are considered in Section 10.3 so as to provide criteria for 
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identifying which scores may be preferable to others. In Section 10.4, some exam-
ples of commonly used verification scores for probability forecasts are examined. 

10.2 Attributes of Good Probability Forecasts 

Perhaps the single most commonly asked verification question is “How often are 
the forecasts correct?” Although this question has intuitive appeal, when forecasts 
are presented as probabilities, questions about the “correctness” or otherwise of 
forecasts become unanswerable. Instead, probability forecasts are assessed on the 
basis of whether they reliably indicate changes in the uncertainty of the outcome: 
the forecasts are considered “reliable” when the forecast probability is an accurate 
estimation of the relative frequency of the predicted outcome (Murphy 1993). 

Reliability, however, is not the only attribute of probability forecasts that is  
important. If the climatological probability of an outcome can be estimated accu-
rately in advance, a set of forecasts that always indicate the climatological 
probability will be reliable, but will not provide any indication of the changing 
likelihood of the outcome from case to case. A second attribute, namely that of 
“resolution”, is therefore important. Probability forecasts have good resolution 
when they can successfully distinguish cases in which the probability of an event 
is high from those in which the probability is low. Forecasts with good resolution 
will have varying probabilities from forecast to forecast, and the more these prob-
abilities diverge from the climatological probability, the sharper the forecasts are 
said to be. From an alternative perspective, if forecasts are good, the discrimina-
tion between the forecasts will be clearly defined given different outcomes. 

Good probability forecasts will have good reliability as well as high resolution 
(and, implicitly, high sharpness), and will be well-discriminated. How these vari-
ous attributes are measured depends to a large extent on the format of the 
probability forecasts. In the following sections the definitions of these attributes 
are considered in more detail. In the following discussions various scores are men-
tioned that aim to measure only a specific attribute of the quality of a set of 
forecasts. In each case, with the exception of the ROC area (Section 10.2.3), these 
scores are distinct from scores that attempt to provide an overall summary of fore-
cast quality. Discussion about the summary scores is reserved until Section 10.4. 

10.2.1 Reliability 

10.2.1.1 Definition 

As discussed in Chapter 8 (Section 8.5.2), one objective in generating an ensemble 
of forecasts is to obtain an indication of the uncertainty in a forecast. However, it 

261 10 How Good are Seasonal Forecasts? 



cannot automatically be assumed that the distribution of the ensemble members 
reliably indicates the true uncertainty: a decrease in the variance of the ensemble 
members does not necessarily mean that the outcome has become less uncertain. If 
the implied uncertainty in the forecasts is appropriate, the forecasts are said to be 
reliable or well-calibrated. Specifically, reliability is defined as consistency be-
tween the a priori predicted probabilities of an event and the a posteriori observed 
relative frequencies of this event. Reliability is measured in different ways de-
pending on how the uncertainty in the forecast is indicated (see Chapter 9, Section 
9.2.3 for an introduction to the different ways in which probability forecasts can 
be expressed). 

10.2.1.2 Reliability of Interval Forecasts 

Reliability is calculated most simply when forecast uncertainty is indicated using 
prediction intervals. In this case the forecast confidence is kept fixed, and so reli-
ability can be assessed by comparing the coverage probability (sometimes called 
“capture rate”: the proportion of times the observed value is contained within the 
prediction interval) with the confidence level for the intervals. If the observed 
value falls too infrequently (or frequently) within the range defined by the predic-
tion intervals then the forecasts are over-confident (under-confident). 

To illustrate, two sets of forecasts of the December values of the NIÑO3.4 index 
for 1981–2000 are shown in Table 10.1. The forecasts were obtained by simple 
linear regression using either the June or the September values of the index as pre-
dictors. The models were trained using data for 1951–1980. Prediction intervals 
were calculated based on the cross-validated error variance over the training  
period (Chapter 7, Section 7.3.3), and the widths of the intervals were set to define 
a 50% level of confidence (i.e. 50% of the intervals are expected to contain the 
observation). For both sets of forecasts, eight of the 20 years (40%) are contained 
within the prediction intervals. The intervals are therefore too narrow, and the 
forecasts are thus over-confident. 

Although they have intuitive appeal, there are a number of problems with using 
coverage probabilities as measures of forecast quality. The first problem is that 
this measure of reliability does not distinguish between sets of predictions with 
similar coverage probabilities but different interval widths. For example, both sets 
of forecasts in Table 10.1 have equal reliability, but the forecasts from September 
have consistently narrower intervals than those from June, and so are more infor-
mative (the narrower intervals imply less uncertainty in the forecast). A related 
problem is that the correct coverage probability, p say, can be achieved by unskil-
ful forecasts simply by making the prediction interval infinitely wide p% of the 
time, and infinitely narrow the remaining times. These problems point to the im-
possibility of adequately representing forecast quality by a single score. More 
specifically, reliability is a necessary but not a sufficient attribute of a good set of 
forecasts (Murphy 1991). 
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Table 10.1 Observed values and forecasts of the December 1981–2000 NIÑO3.4 index. The  
upper and lower 50% prediction intervals are indicated, and intervals that capture the observed 
value are shaded  

Years Obs June September 

1981 −0.105 −0.391 (−0.807 to 0.0.25) −0.191 (−0.494 to 0.112) 
1982 2.590 2.019 (1.567 to 2.472) 1.998 (1.673 to 2.323) 
1983 −0.464 1.343 (0.911 to 1.775) 0.044 (−0.258 to 0.347) 
1984 −1.238 −0.811 (−1.231 to −0.390) −0.017 (−0.319 to 0.286) 
1985 −0.212 −0.725 (−1.144 to −0.305) −0.253 (-0.556 to 0.050) 
1986 1.261 0.283 (−0.133 to 0.699) 1.225 (0.914 to 1.536) 
1987 1.167 2.218 (1.758 to 2.678) 2.421 (2.086 to 2.756) 
1988 −1.892 −1.969 (−2.418 to −1.520) −1.121 (−1.431 to −0.812) 
1989 0.094 −0.812 (−1.233 to −0.391) −0.207 (−0.510 to 0.095) 
1990 0.491 0.323 (−0.093 to 0.740) 0.496 (0.192 to 0.800) 
1991 1.756 1.569 (1.131 to 2.007) 0.769 (0.463 to 1.075) 
1992 0.399 1.342 (0.910 to 1.775) 0.343 (0.040 to 0. 647) 
1993 0.371 1.341 (0.908 to 1.773) 0.742 (0.436 to 1.048) 
1994 1.272 0.807 (0.386 to 1.229) 0.903 (0.595 to 1.210) 
1995 −0.785 0.249 (−0.167 to 0.665) −0.451 (−0.755 to −0.148) 
1996 −0.394 −0.127 (−0.542 to 0.268) −0.155 (−0.458 to 0.147) 
1997 2.629 2.272 (1.810 to 2.734) 2.955 (2.605 to 3.305) 
1998 −1.366 −0.419 (−0.836 to −0.003) −0.644 (−0.949 to −0.339) 
1999 −1.408 −1.011 (−1.435 to −0.587) −0.838 (−1.144 to −0.532) 
2000 −0.695 −0.547 (−0.965 to −0.129) −0.309 (−0.612 to −0.006) 

10.2.1.3 Reliability of Probabilities for Categories 

When forecasts are communicated as a variable probability assigned to a prede-
fined category, reliability is effectively defined in the same way as for the 
prediction intervals: forecasts are reliable if the observation falls within the cate-
gory as frequently as the forecast implies. The “observed relative frequency” 
(equivalent to the “coverage probability” for interval forecasts), has to be calcu-
lated for each distinct value of the forecast probability. For example, seasonal 
rainfall totals should be between 100 and 200 mm on 20% of the occasions in 
which the forecast probability for this interval is 20%, and on 40% of the occa-
sions in which the forecast probability for this interval is 40%, etc. 

The observed relative frequencies conditional upon the forecast probability  
can be plotted as reliability or attributes diagrams.1 Although the diagrams are 
designed to show the reliability of forecast probabilities for a specific event (i.e. 
for a two-category system), because the definition of an event does not have to 

________________  
1 The attributes diagram is the same as the reliability diagram, but includes an additional line to 
indicate where resolution equals reliability (see Hsu and Murphy 1986; Mason 2004). 
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remain fixed, forecasts for multiple categories can be included in the calculations.2  
The interpretation of reliability diagrams may be facilitated by considering some 
idealised examples as shown in Fig. 10.1. If the forecasts are perfectly reliable 
then the observed relative frequency will equal the forecast probability for all val-
ues of the forecast probability, and so the reliability curve will lie along the 45° 
diagonal. In practice, even if forecasts have excellent reliability, sampling errors 
result in departures from the diagonal, and so some indication of how close the 
curve is to the diagonal may be required to assist in the interpretation of the curve 
(Bröcker and Smith 2007; Kumar 2007). 

More typically the forecasts are not perfectly reliable anyway, and so the curve 
will lie off the diagonal illustrating one or more of the characteristics shown  
in Fig. 10.1. In Fig. 10.1a the forecast probabilities are consistently lower than the 
observed relative frequencies, indicating that the event always occurs more  

________________  
2 A separate multi-category reliability diagram showing the percentage of observations less than 
distinct percentiles of the forecast distribution has been proposed (Hamill 1997), but has not yet 
been widely adopted. 

frequently than anticipated. In Fig. 10.1b the opposite is true, and the event occurs 
less frequently than anticipated. In these two cases the forecaster is under-/over-
forecasting, respectively. For seasonal climate forecasts, the most common situa-
tion is indicated in Fig. 10.1c. Here the event occurs more frequently than 
indicated when the forecast indicates a decreased probability of the event occur-
ring compared to climatology (to the left of the dotted line), but less frequently 
than indicated when the forecast indicates an increased probability of the event 
occurring compared to climatology (to the right of the dotted line). Although the 
forecasts correctly indicate increases and decreases in the probabilities of the 
events, the changes in probability are over-stated, and the forecasts are said to be 
over-confident. The greater the degree of over-confidence, the shallower is the 
slope of the curve. If the curve becomes horizontal there is no information in the 
forecasts: the relative frequency of the event equals the climatological probability 
regardless of the forecast probability, and the forecasts are said to have no resolu-
tion (Section 10.2.2). A fourth possibility is indicated in Fig. 10.1d, where the 
changes in the forecast probabilities understate the changes in the relative fre-
quencies of the event, and the forecasts are said to be under-confident. In this case 
the forecasts have high resolution, but poor reliability. 

An example of a reliability diagram is shown in Fig. 10.2. The diagram is based 
on 43 years of forecasts of NIÑO3.4 sea surface temperature (SST) anomalies, 
produced as part of the DEMETER project (Palmer et al. 2004). Forecasts from 
the ECMWF, Météo-France, and Met Office models for lead-times of 0–5 months 
and for four initialization seasons are included. For each model, nine ensemble 
members were available. The forecast probabilities were obtained by calculating 
the proportions of ensemble members forecasting temperatures in the coldest 
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(black) and warmest (grey) 25% of years, respectively. For seasonal forecasts it is 
standard to bin the forecast probabilities into 11 categories, with the first bin rep-
resenting forecast probabilities of <5%, the second 5–15%, …, and the last ≥95%.3 
The frequencies with which forecasts in each bin occur are presented in a histo-
gram. The reliability curves follow the 45° line closely indicating good reliability 
for forecasts of both anomalously warm and anomalously cold conditions. The 
histogram indicates that the forecast probabilities do not peak in frequency at the 
climatological probability of 25%, which is what would have been expected if the 
models had had little or no signal. Ideally, the forecasts should have high frequen-
cies of probabilities close to 0% and 100%, whilst retaining reliability (i.e. the 
forecasts should be sharp), in which case the histogram would be u-shaped.  

________________  
3 Since it is possible to tweak the binning to optimize the impression of reliability, the WMO has 
recommended the procedure as adopted here. These recommendations are detailed in the Stan-
dardized Verification System for Long-Range Forecasts (SVSLRF). Further details about the 
SVSLRF, which contains a list of recommended verification procedures, are available from the 
WMO Lead Centre for Verification:  http://www.bom.gov.au/wmo/lrfvs/ 

 

Fig. 10.1 Idealized reliability diagrams indicating cases of (a) under-forecasting, (b) over-
forecasting, (c) over-confidence, (d) under-confidence. The vertical dotted line indicates the 
climatological probability of the event occurring, which in this case is set at 50%  
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However, the precise shape of the histogram of sharp forecasts depends on the 
climatological probability of the event (see Section 10.2.4). 

A measure of the distance between the sample reliability curve and the diagonal 
is an intuitive measure of forecast reliability. A commonly used such metric is the 
reliability component of the Murphy (1973a) decomposition of the Brier score 
(Section 10.4.1). Assuming that there are m points on the reliability curve, and that 
the forecast probability for the kth point is pk, the reliability score is defined as: 

 ( )2

1

1
reliability score

m

k k k
k

n p o
n =

= −∑ , (10.1) 

where ko  is the observed relative frequency for the kth probability bin, and nk is 
the number of forecasts in this bin. 

The distances defined by Eq. (10.1) represent the differences between the vari-
ous forecast probabilities and the corresponding observed relative frequencies (the 
probabilities that should have been assigned), and thus are measures of the average  

 

Fig. 10.2 Examples of reliability diagrams for ECMWF, Météo-France, and Met Office 0–5-
month lead forecasts of NIÑO3.4 SST anomalies. The forecast probabilities were obtained by 
calculating the proportions of ensemble members forecasting temperatures in the coldest (black) 
and warmest (grey) 25% of years, respectively. The histogram indicates the frequency of fore-
casts of probabilities of <5%, 5–15%, etc.  
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“error” in the forecast probabilities. Therefore small values of Eq. (10.1) represent 
good reliability (see the discussion on necessarily mean that the forecasts contain  
useful information; perpetual forecasts of the climatological probability have per-
fect reliability. Therefore, as discussed in Section 10.2.1.1, reliability is a necessary 
but not sufficient attribute of good forecasts. 

Errors in calculating the observed relative frequencies for each forecast prob-
ability bin are binomially distributed with parameters nk (the number of forecasts 
in bin k) and pk (the average forecast probability for this bin). Given the limited 
sample sizes of seasonal forecasts, the number of forecasts in a given bin can be 
too small to give a meaningful estimate of the observed relative frequency 
(Bröcker and Smith 2007). To increase the sample size, pooling of forecasts is 
necessary, whether from different lead-times or seasons (as in Fig. 10.2), and or 
for different locations. Information about differences in the quality of the forecasts 
for the different lead-times, seasons, and locations is therefore masked, and there 
are good a priori reasons to expect the quality to differ (see Chapter 3). Pooling of 
forecasts for different locations is particularly problematic, not only because the 
forecast for proximate locations are unlikely to be independent (thus over-estimating 
the number of forecasts in each bin), but more specifically because it could be 
argued that the interpretation of the forecast probabilities is being changed. A  
(reliable) forecast probability of p% should imply that an event can be expected to 
occur on p% of the occasions a forecast with this probability is issued, but if fore-
casts are pooled for different locations the forecast is being verified with the 
interpretation that an event is expected to occur over p% of the locations at which 
a forecast with this probability is issued. For all these reasons, reliability diagrams 
have not been used extensively for seasonal forecasts, although when sufficient 
forecasts are available the use of the diagrams is promoted in SVSLRF. 

10.2.1.4 Reliability of Ensemble Forecasts 

Reliability diagrams are appropriate only for forecasts presented as probabilities of 
events (although the definition of an event does not have to remain fixed). A 
common method of indicating reliability when the forecast distribution is pre-
sented as percentiles is to use the ranked histogram (popularly called a Talagrand 
diagram). The ranked histogram is constructed by sorting the m ensemble mem-
bers to form m + 1 bins, and then counting the numbers of times the observed 
value falls within each bin. If the forecast distribution reliably reproduces the dis-
tribution of possible outcomes then the observed value should be a random draw 
from this same distribution, and so should occur in each of the bins an equal num-
ber of times (Hamill 2001). The proportion of the total number of observations in 
each bin therefore should follow a uniform distribution, and a Cramér – von Mises 
test can be used to test for systematic errors (Elmore 2005). 

Examples of ranked histograms are illustrated in Fig. 10.3. The histograms 
were constructed using 50 years of model simulations of September–November 
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rainfall for Brisbane (Fig. 10.3a) and Kalgoorlie (Fig. 10.3b), Australia.4 Nine  
ensemble members were considered, creating ten bins, and so if the ensemble  
distribution is reliable the observed rainfall would be expected to occur in each bin 
five times. For Brisbane (Fig. 10.3a), most of the observations are in the last bin, 
indicating that the observed rainfall is frequently more than the simulated rainfall 
of all nine ensemble members. The approximate upward slope of the histogram 
from left to right indicates that the simulated rainfall is negatively biased: the me-
dian observed rainfall over the 50-year period is about 180 mm compared to the 
median simulated rainfall of about 150 mm. In contrast, for Kalgoorlie (Fig. 
10.3b) the mean bias is minimal (41 mm observed, 44 mm simulated), but the 
numbers of times that the observed rainfall is either less than or more than all nine 
simulated values (the first and last bins) is inflated. Inflated frequencies in the out-
ermost bins indicate that the observed rainfall falls outside the range of the 
ensemble distribution too frequently, and the binned histogram is said to be u-
shaped. A u-shaped histogram is often interpreted to be indicative of an ensemble 
variance that is too small (increasing the variance of the ensemble distribution 
would decrease the proportion of observations outside the ensemble range), but 
can also be a result of conditional bias (Hamill 2001). There is no significant cor-
relation between the ensemble mean and the observed rainfall for Kalgoorlie, and 
so when dry (wet) conditions are forecast, the observed rainfall is likely to be 
more (less) than all the ensemble members. 

 

Fig. 10.3 Ranked histogram for ECHAM4.5 simulations of September–November 1951–2000 
seasonal rainfall totals for (a) Brisbane and (b) Kalgoorlie, Australia  

________________  
4 The simulations are from the ECHAM4.5 atmospheric general circulation model (Roeckner  
et al. 1996), forced with observed SSTs. For this example the simulations for Brisbane and Kal-
goorlie are taken simply as the model value for the grid containing 27.45°S, 153.03°E, and 
30.78°S, 121.45°E, respectively. 
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Since it is possible to construct a perfectly uniform ranked histogram from 
forecasts that do not have good resolution (Hamill 2001), a modification to the 
histogram has been proposed to test that the probability of each of the bins re-
mains constant regardless of the forecast. This probability, known as the 
conditional exceedance probability (CEP), is defined as: 

 ( ) ( )0, 1,
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where β0,k and β1,k are parameters to be estimated, x is the observed value, and ˆkx  
is the kth percentile of the forecast distribution. The CEP is useful for measuring 
whether the probability of the observation exceeding the ensemble median, for 
example, increases if the ensemble forecasts are all indicating anomalously dry 
conditions. If this probability is conditional upon the actual forecast values then it 
is argued that the forecasts from the ensembles are unreliable even if, over all the 
forecasts, the ensemble median is exceeded 50% of the time (Mason et al. 2007). 

10.2.1.5 Multi-dimensional Reliability 

Ranked histograms and CEP diagrams both consider the prediction of a single 
parameter at a single point. Since dynamical models produce predictions of multi-
ple parameters at multiple points, there may be interest in verifying the joint 
distributions of these predictands. For example, it is possible that a model could 
produce reasonable forecasts of precipitation and of temperature, but produce un-
realistic simultaneous forecasts of these two parameters. Recent developments in 
verification methodology have begun to address the need to assess a model’s abil-
ity to predict reliable joint distributions of parameters. Two such procedures are 
considered here: minimum spanning trees and bounding boxes. 

Minimum spanning trees are a multi-dimensional adaptation of the ranked his-
togram (Wilks 2004). An example of a minimum spanning tree is shown in Fig. 
10.4a, showing the simulations (crosses) and observations (circle) of rainfall for 
Brisbane and Kalgoorlie for 2000. The tree is constructed by connecting each en-
semble member with the nearest other member, and the total distance of all the 
connecting lines is then computed. This procedure is repeated replacing one of the 
ensemble members with the observed values, and thus treating the observation as 
if it were an ensemble member. The distances obtained using the outcome in place 
of each ensemble member are used to define the bins in the histogram. Then the 
distance obtained using all ensemble members without the outcome is binned. A 
histogram is constructed by repeating the procedure for all forecasts; as with the 
ranked histogram, if the outcome is indistinguishable from the ensemble members 
the minimum spanning distance for the tree constructed using all the ensemble 
members will be a random draw from the bins, and so the histogram should be 
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level. In Fig. 10.4b, the histogram shows too many distances in the first bin, indi-
cating that the replacement of an ensemble member with the observed values 
typically increases the total spanning distance (i.e. the ensemble members are not 
a good representation of the outcome). Downward sloping histograms can result 
from mean biases, an ensemble spread that is too small, and/or conditional biases 
(cf. ranked histograms, for which only the mean bias results in a sloping histogram 
in either direction depending on the sign of the bias). As with ranked histograms, a 
uniform minimum spanning tree histogram.  

Bounding boxes are defined as the range of the ensemble predictions in k-
dimensional space (Weisheimer et al. 2005). If the vector of observed values falls 
within the box then the outcome is interpreted as being consistent with the multi-
dimensional distribution of the ensemble members, and thus is indistinguishable 
from an ensemble member. Bounding boxes are most commonly used with un-
calibrated model output. 

Fig. 10.4 (a) Minimum spanning tree for observed (circle) and ECHAM4.5 simulations (crosses) 
of September–November 2000 seasonal rainfall totals for Brisbane and Kalgoorlie, Australia. 
The tree is constructed for the case without the observation. (b) Minimum spanning tree histo-
gram for 1951–2000 

10.2.2 Resolution and Discrimination 

10.2.2.1 Definition 

It has been argued in the previous section that reliability is a necessary but not 
sufficient attribute of a good set of forecasts. Specifically, if the climatological 
probability of an event is known then a number of simple strategies can be devised 
to ensure that the forecasts are reliable, but which are otherwise uninformative.  
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What is required in addition to reliability is an ability to distinguish between cases 
when the probability of an event is inflated from cases when the probability is 
deflated. More precisely, forecasts have good resolution when the outcome is 
strongly conditioned upon the forecast. 

10.2.2.2 Resolution Given Probabilities for Categories 

Resolution is most clearly defined in the context of forecasts expressed as prob-
abilities for categories: if the forecasts have good resolution and good reliability 
then the probability of an event occurring should increase (or decrease) when the 
forecast probability increases (or decreases). In this context the most commonly 
used measure of forecast resolution is, like that for reliability, based upon the 
Murphy (1973a) decomposition of the Brier score, and is closely related to the 
reliability diagram  (Section 10.4.1). It is defined as: 

 ( )2

1

1
resolution score

m

k k
k

n o o
n =

= −∑ , (10.2) 

where o  is the climatological probability of the event. Unlike the reliability score, 
the resolution score is not an error score, but can be interpreted as the weighted 
variance of the observed relative frequencies, with large variance representing 
good resolution (see Section 10.3.1 on score orientation). Note that because of the 
squaring in Eq. (10.2) forecasts that have an increase in the observed relative fre-
quency with a decrease in the forecast probability will score equally well on 
resolution as forecasts that indicate the correct direction of change in the probabi-
lity of an event. As with reliability, therefore, resolution is not a sufficient attribute 
of good forecasts. 

10.2.3 Discrimination 

10.2.3.1 Definition 

The attribute of discrimination is similar to that of resolution, but considers the 
conditional distribution of the forecasts given the outcomes rather than of the out-
comes given the forecasts. Whereas resolution is concerned with whether the 
expected outcome differs as the forecast changes, discrimination is concerned with 
whether the forecast differs given different outcomes. In the general framework 
for forecast verification introduced by Murphy and Winkler (1987), the first per-
spective is known as a calibration-refinement factorization, whereas the latter is 
called a likelihood-base rate factorization. 

271 10 How Good are Seasonal Forecasts? 



10.2.3.2 Discrimination Given Probabilities for Categories – the Relative 
Operating Characteristics (ROC) 

The most commonly used method of identifying whether a set of forecasts is well-
discriminated given different outcomes is the relative operating characteristics 
(ROC; sometimes called receiver operating characteristics) graph (Mason 2003). 
This procedure requires the outcome to be binary, just as in the case of a reliability 
diagram, and so separate results are usually calculated for each category if there 
are more than two categories. The rather horribly named ROC is actually equiva-
lent to a non-parametric test commonly used for testing for differences in central 
tendency, namely the Mann-Whitney U-test5 (Mason and Graham 2002). In the 
current context, the U-test can be applied to assess whether there is any difference 
in (i.e. discrimination between) the forecasts when an event occurs compared to 
when the event does not occur. The ROC is most commonly applied to probabilis-
tic forecasts, in which case it indicates whether the forecast probability was higher 
when an event occurred compared to when not, but it can as easily be applied to 
deterministic forecasts (in which case it indicates whether the forecast rainfall, for 
example, is higher when rainfall is above-normal than when not). 

As a simple example, Table 10.2a contains 30 years of retroactive probabilistic 
forecasts of above-normal (defined as observed rainfall being above the upper-tercile)  
December–February total rainfall for Lusaka, Zambia, obtained using a simple 
statistical model.6 These forecasts can be ranked from most confident to least con-
fident, and the ranks of the forecasts are shown in the third column. It seems 
reasonable to select the seasons with the highest probability (1973/74 and 1975/76, 
with forecasts of 65%) as the seasons in which one would be most confident about 
the observed rainfall being above-normal. Similarly, the season with the second 
highest probability (1975/76, with a forecast of 60%) would be the season in 
which one would be next most confident that observed rainfall was above-normal. 

The table can be re-ordered so that the seasons are listed in order of the ranks 
of the forecasts rather than chronologically, as shown in Table 10.2b. The seasons 
for which one would be most confident observed rainfall was above-normal are 
________________  
5 More strictly, the Mann-Whitney U-test is used to test whether the probability that a sample 
from one population (e.g. a forecast for when rainfall is observed to be above-normal) has a 
value larger than that from another (e.g. a forecast rainfall is observed not to be above-normal) is 
50%, but if assumptions are made about the distributions of the two populations (specifically, 
that they have similar shapes and variances) then the test can be used to compare the central 
tendencies (the medians) of the distributions (Sheskin 2007). These assumptions generally are 
irrelevant in the context of forecast verification. 
6 The data are based on the example in Chapter 7, Section 7.3.3. The retroactive procedure used 
an initial 10-year training period (1961/62–1970/71) to forecast the next year, and was updated 
each year so that the last training period for forecasting 2000/01 was 39 years long. Forecast 
probabilities were obtained from the error variance of the cross-validated predictions (see 
Chapter 7, Section 7.3.3), and then rounded to the nearest 5%. 
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then at the top of the table. If the forecasts are good, then the actual seasons in 
which rainfall was above-normal should be towards the top of the table. If the 
forecasts are effectively useless, the above-normal seasons will be randomly dis-
tributed through the table, and if they are bad these seasons will be towards the 
bottom of the table. The actual seasons of above-normal rainfall are marked by 
grey shading, and do appear preferentially to be towards the top of the table. 

To construct the ROC, start at the top of the table and, treating each forecast as 
a prediction of an event (i.e. above-normal rainfall), count the proportion of correct 
forecasts (the hit-rate) and incorrect forecasts (the false-alarm rate). These scores 
are shown in Table 10.2b: for the highest ranking forecasts, rainfall was above-normal 

Table 10.2 (a) Forecast probabilities and ranks (in descending order) for above-normal December–
February 1981/82–2000/01 seasonal rainfall totals for Lusaka, Zambia, made using a simple statisti-
cal model. (b) Forecasts shown in order of descending rank, with corresponding hit and false-
alarm rates. The ‘events’ (observed rainfall above the upper tercile) are indicated by grey shading  

(a)                                                                                       (b) 
Year Forecast 

(%) 
Rank  Rank Year Hit rate False-alarm 

rate 

1971/72 45 4  1 1973/74   
1972/73 10 29  1 1975/76 1 of 10 1 of 20 
1973/74 65 1  3 1988/89 2 of 10 1 of 20 
1974/75 40 9  4 1971/72   
1975/76 65 1  4 1978/79   
1976/77 30 19  4 1995/96   
1977/78 30 19  4 1998/99   
1978/79 45 4  4 1999/00 4 of 10 4 of 20 
1979/80 35 14  9 1974/75   
1980/81 35 14  9 1983/84   
1981/82 35 14  9 1984/85   
1982/83 20 23  9 1989/90   
1983/84 40 9  9 2000/01 7 of 10 6 of 20 
1984/85 40 9  14 1979/80   
1985/86 35 14  14 1980/81   
1986/87 20 23  14 1981/82   
1987/88 15 27  14 1985/86   
1988/89 55 3  14 1996/97 9 of 10 9 of 20 
1989/90 40 9  19 1976/77   
1990/91 25 22  19 1977/78   
1991/92 20 23  19 1992/93 10 of 10 11 of 20 
1992/93 30 19  22 1990/91 10 of 10 12 of 20 
1993/94 20 23  23 1982/83   
1994/95 15 27  23 1986/87   
1995/96 45 4  23 1991/92   
1996/97 35 14  23 1993/94 10 of 10 16 of 20 
1997/98 5 30  27 1987/88   
1998/99 45 4  27 1994/95 10 of 10 18 of 20 
1999/00 45 4  29 1972/73 10 of 10 19 of 20 
2000/01 40 9  30 1997/98 10 of 10 20 of 20 
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in only one of the years and so one of the ten above-normal events were correctly 
identified, and one of the twenty non-events. The next highest ranking forecast 
(1988/89) was for a season that was above-normal, and so now two of the ten 
events have been correctly selected. Effectively Table 10.2b involves constructing 
a series of contingency tables in which forecasts of an event are issued using suc-
cessively lower warning thresholds, t. Initially a warning is issued when the 
forecast probability is at least 65%, then the threshold is lowered to 55%, etc. So, 
at each point on the ROC curve, the hit and false-alarm rates, HR(t) and FR(t)  
respectively, are calculated as: 

 ( )( ) 1HR t P p t x= ≥ = , (10.3) 

 ( )( ) 0FR t P p t x= ≥ = , (10.4) 

where p is the forecast probability, and x = 1 if the event occurs, and x = 0  
otherwise. 

The ROC graph is constructed by plotting the hit rates against the false-alarm 
rates. The graph for the example is shown in Fig. 10.5. The diagonal line on the 
graph indicates the line of no-skill. If the events were uniformly distributed 
through the table, the hit and false-alarm rates would accumulate at approximately 
the same rate, and so the ROC curve would follow the diagonal line. However, if 
the forecasts are good, the hit rate will accumulate faster, and so the graph will 
curve towards the upper left. In the extreme case of perfect discrimination, the 
curve will reach the top left corner. The example shows that the forecasts are well-
discriminated. 

Noting that the procedure for constructing the ROC graph is based only on the 
ranks of the forecasts, it should be evident that any monotonic transformation of 
the forecasts will not affect the graph at all. For example, if the forecast probabili-
ties for all forecasts were increased (or decreased) by 10%, the graph would be 
unaffected. Alternatively if the forecast probabilities for all forecasts above 50% 
were increased by a fixed amount, and those below were decreased, the graph 
would again be unaffected. This insensitivity has been cited as a criticism of this 
verification procedure since the reliability of the forecast probabilities is ignored. 
The message is that a good ROC graph does not necessarily imply that the fore-
casts are well-calibrated. 

The area beneath the ROC graph is increasingly used as a measure of discrimi-
nation, partly because of the inclusion of the ROC as a recommended verification 
procedure in the SVSLRF. For forecasts of no skill, for which the ROC curve lies 
along the diagonal, the area would be 0.5, and the maximum area of perfect discrimi-
nation is 1.0. The area is related to the U-statistic by a factor of the numbers of 
events and non-events, and can be interpreted as the probability of successfully  
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Fig. 10.5 ROC diagram for the retroactive forecasts of December–February 1981/82–2000/01 
seasonal rainfall totals for Lusaka, Zambia  

distinguishing an event from a non-event given a forecast of each (Mason and 
Graham 2002). For the example in Fig. 10.5, the area is 0.7675, implying that 
there is a greater than 75% probability that the forecasts can successfully discrimi-
nate an above-normal season from other seasons. The area is sometimes criticised 
as a summary measure of forecast performance because of its insensitivity to reli-
ability. However, the ROC graph has an advantage over the reliability diagram in 
being less sensitive to sampling errors, and so can be more meaningfully construc-
ted given the small sample sizes typical of seasonal forecasting. 

10.2.4 Sharpness 

10.2.4.1 Definition 

Resolution, in the sense defined above, together with reliability, incorporate the 
idea of “sharpness”. Although there is no formally recognised mathematical defi-
nition of sharpness,7 the general concept is usually clear: sharpness refers to the 
degree to which the forecasts depart from the climatology. If forecasts are ex-
pressed as intervals, sharp forecasts are indicated by narrow intervals; if as 
probabilities of categories, sharp forecasts are expressed as probabilities that differ 
from the climatological probability, and are close to 0% or 100%; if as a forecast 
distribution, sharp forecasts are indicated as narrow distributions. Sharp forecasts 

________________  
7 The variance of the forecasts around the climatological probability is sometimes used to define 
sharpness, although arguably this definition makes sense only if the climatological probability is 
0.5. 
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imply high confidence (see Chapters 8, Section 8.5.1), but do not necessarily  
imply good forecasts; as with reliability, sharpness is a necessary but not sufficient 
condition for high forecast quality. 

Unfortunately, after appropriate recalibration (see Chapters 8 and 9) the sharp-
ness of seasonal forecasts is typically much weaker than that of weather forecasts 
because of the large inherent uncertainty in predicting seasonal climate. In the 
extreme case of no predictability, the forecast probability should always be equal 
to the climatological probability. 

A specific question of interest that is concerned with the sharpness of forecasts 
pertains to the ability of an ensemble to indicate changes in the uncertainty in the 
forecast. More specifically, does a sharper forecast mean that uncertainty is re-
duced? This question has received considerable attention in the context of forecast 
ensembles (including multi-model ensembles) where there is interest in the case-
to-case variability in the ensemble spread: does this variability in the ensemble 
distribution contain any useful information? In other words, can one be more con-
fident that the observed value will be close to the ensemble mean when the 
ensemble spread is small compared to when it is large? Two general approaches to 
the question have been adopted, both of which can be fraught with difficulties. 
One approach involves seeking a relationship between some measure of the spread 
in the ensemble, and some measure of accuracy in the central tendency of the en-
semble distribution. These procedures are discussed in next section. The second 
approach attempts to measure the quality of the forecasts when the ensemble dis-
tribution is considered explicitly and to compare this with the quality when the 
variability in the ensemble distribution is ignored (Section 10.2.4.3). 

10.2.4.2 Accuracy8–Spread Relationships 

A common approach to the question of determining the information content of  
an ensemble distribution is to identify whether there is any relationship between 
the accuracy of the forecast, as measured by the “error” in the ensemble mean, and 
the uncertainty in the forecast, as measured by the ensemble variance (the 
“spread”). The theory behind this approach is that a larger ensemble spread im-
plies greater uncertainty in the forecast, and hence larger errors in the ensemble 
mean can be expected. However, this theory is often based on a misconception of 
any accuracy-spread relationship that may exist. Assuming that the ensemble dis-
tribution is a reliable indicator of the true distribution of possible outcomes, the 
expected error is zero regardless of the uncertainty; it is the variance of the errors 
that should increase with increasing ensemble spread, not the expected error, as 
________________  
8 The term “skill” is often confusingly used instead of accuracy. Although “skill” is often used in 
a more generic sense than the definition provided in the glossary, in the current context it in-
variably refers to “accuracy”, and so the latter term is preferred here. 
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indicated in Fig. 10.6. This misconception is not adequately resolved by defining 
the error in absolute terms (or by squaring the errors), and any standard form of 
regression between forecast error and some measure of forecast spread is poorly 
designed to identify any relationship that may exist. 

10.2.4.3 Skill of the Ensemble Spread 

Given the form of the relationship between accuracy and spread as indicated in 
Fig. 10.6, it is more helpful to reconstitute the problem as identifying whether 
there is any useful information in the case-to-case variability in the ensemble 
spread (or, more generally, the ensemble distribution9). An approach that offers 
more promise than seeking accuracy-spread relationships when sample sizes are 
small is to calculate whether the performance metric of the forecasts improves if 
the information in the spread of the ensemble distribution is considered compared 
to if the ensemble distribution is kept fixed. It is inferred that the variability in the 
ensemble spread does provide meaningful indications of changes in uncertainty if 
the measure of forecast quality is highest for the forecasts with varying ensemble 
spread. 

There are numerous ways of implementing such a procedure. Perhaps the sim-
plest is to assess the quality of the ensemble forecasts when using a counting 
procedure to obtain forecast probabilities (Chapter 8, Section 8.5.2), and then to 
reassess the quality after reducing the ensemble to the ensemble mean so that the 
forecast probabilities are either 0% or 100%. Although such an approach is unfair 
because most of the information in the ensemble mean is lost by converting it to a 
binary forecast, it has been used occasionally, most commonly when the ROC area 
is the verification metric of choice. Because of the unfair treatment of the ensem-
ble mean as a single-member ensemble, such results are heavily biased in favour 
of finding useful information in the ensemble spread. A fairer approach using the 
ROC is to calculate the area based on the ranks of the ensemble means. However, 
the results can then be biased against finding information in the ensemble distribu-
tion because of the unsatisfactory calculation of probabilities by counting for the 
ensemble. 

A more satisfactory procedure is to use a distribution-fitting approach to  
obtain probability forecasts from the ensemble (Chapter 8, Section 8.5.2). The 
question at hand can then be reformulated to: is there any information in the en-
semble beyond the first moment of its distribution? The forecast probabilities are 
first obtained by fitting a distribution firstly with a fixed variance (or a variance  
 

________________  
9 For the sake of economy of phrase, in the rest of this section the term “spread” is assumed to 
incorporate changes in shape as well as variance. 
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Fig. 10.6 (a) Distributions of forecast errors given high confidence forecasts with small ensemble 
spread (A) and low confidence forecasts with large ensemble (B); and (b) a hypothetical sample 
of ensemble mean error and ensemble spread measurements for a continuous range of spread 
values. The distributions in (a) are drawn from the points on the x-axis marked in (b) 

that is a function only of the mean in the case of meteorological parameters with 
skewed distributions, such as precipitation), and secondly with a variance defined 
by the ensemble variance. If the forecast distribution does contain useful informa-
tion the score should improve by allowing the variance to vary, and it can then be 
inferred that the ensemble provides useful information about the uncertainty in the 
forecast. It is thus possible to decompose the skill of the ensemble into signal and 
indications of uncertainty. 

As an example, consider simulations of Brisbane September–November total 
rainfall for the 50-year period 1951–2000. The simulations are based on output 
from the ECHAM4.5 atmospheric general circulation model forced with observed 
SSTs. Fitting a gamma distribution to the 85 ensemble members, probabilities for 
the rainfall less than the lower tercile were calculated. The gamma distribution was 
fitted using a fixed and a varying shape parameter. Compared to climatology, a Brier 
skill score (see Section 10.4.1) of 0.081 was achieved given a fixed shape para-
meter, and of 0.060 given a varying shape parameter, indicating positive skill in both 
cases. However, the probabilities given the varying shape parameter scored slightly 
worse, and the negative skill score of −0.022 when measured against the fixed shape 
parameter indicates that there is no useful information in the ensemble shape. 

10.3 Properties of Summary Measures for Probability  
Forecasts 

Although it has been argued throughout Section 10.2 that forecast quality cannot 
be represented adequately by a single metric because there is more than one impor-
tant attribute of good probability forecasts, sometimes it is desirable to quantify 
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the forecast performance in a summary measure. Metrics that measure the individ-
ual attributes have been discussed briefly, but in all cases were found to be 
problematic as summary measures of overall quality: specifically, while a bad 
score does indicate bad forecasts, a good score does not necessarily indicate good 
forecasts. Before considering examples of summary measures of forecast quality it 
is therefore of value to consider the desirable properties such scores should have. 

There is a wide range of performance scores, partly reflecting the need for dif-
ferent verification methods depending on how the probability forecasts are issued. 
Scores for cases in which there are only two categories are discussed in detail in 
Section 10.4.1, while scores for multiple categories are considered in Section 
10.4.2. There are a few measures that apply to forecast distributions on a continu-
ous scale, and these are covered in Section 10.4.3. Very few studies have 
addressed verification methods for probability forecasts of count data, interval and 
quantile forecasts, and probability forecasts of spatial distributions; these are areas 
of probability forecasting that merit more attention. 

10.3.1 Score Orientation and Skill Scores 

Before discussing the desirable properties of verification scores (Section 10.3.2), it 
is helpful to distinguish between positively and negatively oriented scores. Good 
forecasts achieve a high score if the score is positively oriented, but a low score if 
it is negatively oriented. Negatively oriented scores frequently are some measure 
of the error in the score: if the forecasts are good the errors will be small, and so 
the score will be low. Positively oriented scores, however, give credit to good 
forecasts, and so a high score is desirable. In this chapter all scores are presented 
in their negatively oriented versions unless indicated otherwise. 

Skill scores are positively oriented scores with specific characteristics: they 
compare the quality of one set of forecasts with that of a second set, known as the 
reference forecasts (sometimes the second set is implied), and equal zero if the 
quality of the two sets of forecasts is identical. A commonly used formula for de-
riving a skill score, SS, from a positively oriented score is: 

 ref

per ref

S S
SS

S S

−
=

−
, (10.5a) 

where S is the score for the forecasts in question, Sref is the score for the reference 
forecasts, and Sper is the score for a perfect set of forecasts. For a negatively oriented 
score (Murphy 1973b), Sper = 0, and so Eq. (10.5a) reduces to: 
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Skill scores usually have a maximum value of one (or 100%), when the first set 
of forecasts perfectly outperforms the reference set, but their lower limit depends 
on the score for the reference forecasts, which can make the interpretation and 
comparison of negative skill scores complicated. Using Eq. (10.5), a positive skill 
score can be interpreted as the fractional improvement in the score for the fore-
casts against the score for the reference forecasts. An alternative formulation for a 
skill score is 

 refSS S S= − , (10.6a) 

for positively oriented scores, and 

 refSS S S= − , (10.6b) 

for negatively oriented scores. Using Eq. (10.6), a positive skill score can be inter-
preted as the amount of improvement in the score for the forecasts against the 
score for the reference forecasts. 

Because a skill score is a relative score, the interpretation of the score depends 
upon the choice of the reference forecasts. Commonly used reference strategies 
include climatology and persistence, but these strategies are not necessarily 
equally unskilful. For example, when forecasting SSTs, the slowly evolving nature 
of the oceans makes persistence a much harder standard to beat for short lead-time 
forecasts than climatology (Sections 3.4, in Chapter 3, and 5.4, in Chapter 5). In 
addition, because scores necessarily over-simplify the complex nature of forecast 
verification, a negative skill score against climatology and/or persistence does not 
automatically imply that the forecasts do not contain any useful information. This 
information may have been lost by the score (Mason 2004). 

10.3.2 Desirable Properties of Probabilistic Forecast  
Verification Scores 

Given the wide range of scores available for assessing the quality of probabilistic 
forecasts, it is helpful to define a set of criteria that can be used to identify which 
scores may be the most appropriate. Three criteria are considered: propriety, equi-
tability, and locality (Murphy 1993). 
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10.3.2.1 Propriety 

An important concept in verification is whether or not a score can be improved by 
hedging of the forecasts. The Oxford English Dictionary defines hedging as “the 
securing of, or limiting the possible loss on, a debt, bet, or the like”. In the context 
of forecast verification, “hedging” occurs when a forecaster issues a forecast dif-
ferent to what (s)he truly believes. Certain non-mathematical targets of perfor-
mance can encourage a forecaster to issue a forecast that is inconsistent with 
his/her true belief: for example, not wishing to cause excessive alarm. However, 
some verification scores can also be hedged: the forecaster is encouraged to mod-
ify the forecast in order to improve the expected value of the score. Hedging is 
undesirable because it encourages the forecaster to issue a forecast that may be 
inconsistent with his/her true beliefs simply in order to achieve a better score, and 
so it is best to choose scores that cannot be improved by forecasting anything 
other than the forecaster’s true beliefs. 

A strictly proper score is a probability score, S, for which the forecaster 
uniquely optimises the expected score by forecasting his/her true beliefs. So if the 
forecaster believes an event occurs with probability q then the expected score 
should be minimised when the forecast probability actually issued, p, equals q. 
The score will be minimised if there is a unique stationary point at which 

 ( , ) 0 at 
q

S p q p q
p
∂

= =
∂

. (10.7) 

A score is proper, but not strictly proper, if Eq. (10.7) is true for more than one 
value of q. Unfortunately, most skill scores defined using Eq. (10.5) are not 
strictly proper unless the categories are equiprobable, and/or unless the forecaster 
has absolute certainty about the outcome (Murphy 1973b; Gneiting and Raftery 
2007). Skill scores defined using Eq. (10.6) may therefore be preferable, although 
further research is required to investigate their properties. 

10.3.2.2 Equitability 

Another property of scores that sometimes is considered desirable is equitability; a 
score is equitable if it takes the same value for all unskilful forecasts that have no 
association with the observations (i.e. forecasts that have no resolution). In the 
context of probabilistic forecasts there are a variety of forecast strategies that can 
be adopted that have no resolution (e.g. random forecasts, and perpetual forecasts 
of constant probabilities, including of climatological probabilities). Although it 
may seem desirable that these various naïve strategies should score equally badly, 
it is impossible for a probabilistic score to be equitable and strictly proper, and the 
latter property is to be preferred (Jolliffe and Stephenson 2007). The differences in 
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the scores of differing no-resolution forecast strategies can be attributed to differ-
ences in their reliability. 

10.3.2.3 Locality 

A skill score is local if it depends only on the probability assigned to the outcome. 
The desirability of this property of verification scores is disputed: two main argu-
ments are presented against locality, but both arguments are inconclusive. The 
first argument is that non-local scores can be less sensitive to the categorization of 
the observed values than local scores; the more categories that are used the lower 
the score tends to be (Daan 1985). However, one could argue that a forecast sys-
tem with many categories attempts to communicate more information than a 
system with only a few, and so a greater degree of precision is required. Another 
argument against locality is that it seems reasonable to account for “distance” (i.e. 
to credit forecasts that assign high probability close to the observed value as well 
as to the outcome itself). For, example, given two forecasts for three ordinal cate-
gories, A {0.2, 0.3, 0.5) and B {0.1, 0.4, 0.5}, forecast B would seem a better 
score if the third category verified since, while both forecasts assign the same 
probability to this category, forecast B assigns a higher probability to the adjacent 
category. Forecast B has more probability close to the verification, and so seems 
intuitively better than forecast A. Implicit in such reasoning is the assumption that 
because category 3 verified, category 1 was less likely to have occurred than cate-
gory 2. However, we know only that category 3 occurred, and do not know what 
the relative probabilities of the other categories were. In fact, we do not even 
know that category 3 was the most likely. The reliability of the probabilities of all 
three categories can only be assessed by considering the categories individually. 
From one perspective, then, locality seems to be a desirable property, although if it 
is accepted as such, there are a number of non-local scores that are widely used, 
including the ranked probability score (RPS; see Section 10.4.2). 

10.4 Summary Measures for Probability Forecasts 

10.4.1 Some Scores for Binary Events 

By far the most commonly used summary measure of the quality of probability 
forecasts of binary events is the Brier score.10 The Brier score is analogous to the 

________________  
10 Strictly, the Brier score, being a special case of the probability score (Section 10.4.2) for when 
there are only two categories, is defined both for the event and for the non-event categories.  
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mean-squared error, but is defined in terms of the “error” in the probabilities 
rather than in the actual units of the observations, and is calculated using: 

 ( )2

1

1
Brier score

n

i i
i

p o
n =

= −∑ , (10.8) 

where oi is 1 if the event occurs in the ith case, or 0 otherwise. Murphy (1973a) 
defined a well-used algebraic decomposition of the Brier score consisting of reli-
ability, resolution, and uncertainty. The first two terms have been discussed in 
Sections 10.2.1 and 10.2.2, respectively, where their relationships to the reliability 
diagram were explained. The uncertainty term, defined as 

 ( )uncertainty 1o o= − , (10.9) 

is independent of the forecasts, but because it depends on the relative frequencies 
of the observed events, it can complicate comparison of scores for different sets of 
verification data if these relative frequencies are not constant. 

The skill score version of the Brier score [using Eq. (10.5)] is negatively biased 
when climatology is used as a reference strategy, so that forecast quality looks 
worse than it really is. For ensemble forecasts this bias is related to sampling  
errors in calculating the forecast probabilities (Müller et al. 2005), and can be  
corrected by adding an additional uncertainty term that accounts for these sam-
pling errors. Without the additional uncertainty term the imperfectly estimated 
probabilities for the forecasts are compared to perfectly estimated (and therefore 
perfectly reliable) climatological probabilities, making for an unfair comparison. 
The correction term, d, is calculated as 

 
( )1o o

d
m
−

= , (10.10) 

where m is the number of ensemble members (Weigel et al. 2007). The debiased 
skill score is calculate using 

 1
ref

S
SS

S d
= −

+
, (10.11) 

                                                                                                                
Because the definition in Eq. (10.8) applies only to the event, it is more correctly called the half-
Brier score. However, since the contribution from the non-event category is the same 
[ ( ) ( ) ( )( )22 1 1i i i ip o p o− = − − − ], it is redundant to score them both, and for the sake of simplic-
ity the Brier score is widely calculated using Eq. (10.8). Throughout this chapter, the phrase 
“Brier score” refers to the half-Brier score, unless specified otherwise. 
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and since Sref  reduces to Eq. (10.9) for climatological forecasts, Eq. (10.11)  
simplifies to 

 
( )

1
1

S
SS

d m
= −

+
. (10.12) 

As an alternative score, just as the mean absolute error is sometimes used in 
place of the mean squared error, a mean absolute score for probability forecasts 
has been proposed: 
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A third score is the logarithmic score, defined as: 

 ( ) ( )[ ]
1

1
logarithmic score 1 log 1 log

n

i i i i
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o p o p
n =

= − − − −∑ , (10.14) 

the verifying category. Since the logarithm of 1 is 0, Eq. (10.14) is an “error” 
score, like Eqs. (10.8) and (10.13). 

The Brier, mean absolute, and logarithmic scores can be generalised as the 
mean error over all cases: 

 
1

1
( , )

n

i i
i

S S p o
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The Brier score and mean absolute scores are quadratic and linear “error” or 
loss functions, whereas the logarithmic score is the negative log likelihood for a 
set of n independent Bernoulli events. As loss functions, the scores are negatively 
oriented in that smaller scores imply more skilful forecasts. The loss function for 
the above three scores is symmetric since ( ,0) (1 ,1)S p S p= −  and so they are 
each completely defined by just the single loss function ( ,0)S p . This loss func-
tion is given by p2, p, and ( )log 1 p− −  for the Brier, absolute, and logarithmic 
scores, respectively. 

The expected value of the score for an event that has probability q of occur-
rence (sometimes confusingly referred to as the “true probability”, and hereafter 
referred to as the “event probability”) is given by: 

 ( ( , )) (1 ) ( ,0) ( ,1) ( , )E S p X q S p qS p S p q= − + = . 

Consistent with the scores being minimized when the forecast probability 
equals the event probability, the minimum values occur where p q=  (Jolliffe and 
Stephenson 2007). Note, however, that the score is a function of the event prob-
ability, q, and is smallest when 0q =  and 1 (i.e. when the observed event is least 

which is the average of the negative of the logarithm of the probability assigned to 
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uncertain).11 The Brier and logarithmic scores have a saddle point (maxima of a 
valley and minima of a ridge) at 0.5p q= =  whereas the mean absolute score 
has a flat ridge at 0.5.q =  This saddle point defines the unique stationary point 
required for a score to be strictly proper [Eq. (10.7)], thus implying that the Brier 
and logarithmic scores are proper scores, but the absolute score is not (if the fore-
caster thinks that the event probability is 0.5, it does not matter what probability 
(s)he issues since the expected score will be 0.5 regardless of the probability  
issued). 

The logarithmic score penalises much more heavily poor forecasts different 
from p q=  than does either the Brier or the absolute score. The penalty becomes 
infinitely large when a probability of 0% is assigned to an event that does happen, 
or when a probability of 100% is assigned to an event that does not happen. This 
apparently excessive penalty can be justified on the basis that the implied odds of 
the actual outcome were infinitely small. 

10.4.2 Scores for Multi-category Forecasts 

The probability score is defined as the average over n forecasts of the sum of 
squared probability “errors” for each category, j, of m categories: 

 ( )2

1 1

1
probability score

n m

ij ij
i j

p o
n = =

= −∑∑ . (10.15) 

The full Brier score is a special case of the probability score for when there are 
two categories. The probability score considers the probability assigned to all 
categories, and so it does not have the property of locality. Despite being non-
local, since there is no implicit ordering in the categories, the probability score 
does not account for distance, and for this reason it is not widely used. Because of 
the failure to account for distance, coupled with the lack of locality, the score has 
some undesirable properties. Consider, for example, the two forecasts A = {0.45, 
0.55, 0.00} and B = {0.40, 0.30, 0.30}. If the first category verifies, the score for 
B (0.5400) is less than (and hence better than) for A (0.6050), despite the fact that 
A issues a higher probability to the outcome, and a higher probability to the adja-
cent category. A simple modification to Eq. (10.15) reduces it to the half-Brier 
score [Eq. (10.8)] and thus would resolve these problems: 

________________  
11 In the case of the Brier score, this dependence on the observed probability is reflected by the 
uncertainty term in Murphy’s (1973a) decomposition of the score. 
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A commonly used alternative to the probability score is the ranked probability 
score (RPS), which addresses the problem of lack of effectiveness by considering 
distance. Instead of comparing the probabilities assigned to each category with that of 
a perfect deterministic forecast, the RPS compares the cumulative probabilities: 

 ( )2

1 1

1
ranked probability score
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ij ij
i j

P O
n = =

= −∑∑ . (10.17) 

where Pij is the cumulative probability assigned to category j in the ith forecast, 
and Oij is 1 if the ith observation is in any of the categories less than or equal to j, 
and is 0 otherwise [cf. Eq. (10.8)]. So, the example forecasts A and B above, 
would be expressed as A = {0.45, 1.00, 1.00} and B = {0.40, 0.70, 1.00}. Simi-
larly, for the observations, the cumulative probabilities given a perfectly 
deterministic forecast are used (i.e. {1.00, 1.00, 1.00}, {0.00, 1.00, 1.00}, and 
{0.00, 0.00, 1.00} if the first, second, and third categories were to verify, respec-
tively). The RPS for A (0.3025), given that category 1 verifies, is now less than 
for forecast B (0.4500), and so the RPS correctly identifies A as the better fore-
cast. Despite being strictly proper, the RPS, by definition, does not have the 
property of locality. 

The skill score version [Eq. (10.5)] of RPS is biased when climatology is used 
as the reference strategy for the same reasons as with the Brier score. The skill 
score can be debiased using Eq. (10.11), but d is defined as 

 
2 1
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d
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−

= , (10.18) 

where k is the number of categories, as long as the categories are equiprobable. 
See Weigel et al. (2007) for corrections to unequal categories. 

In the previous section, the linear probability score was rejected because it is 
not a strictly proper score. The score can be generalized for cases when there are 
more than two categories [in a similar way to Eq. (10.15)], but it still suffers from 
the same problem of lack of propriety as its two-category version. 

The logarithmic score is defined as the average of the negative of the logarithm 
of the probability assigned to the verifying category, and so can be interpreted as a 
measure of probability “error”: 
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Just as with the binary version of the score, it penalizes large forecast errors 
much more severely than any of the other scores, and in the extreme case of a zero 
probability being assigned to a verifying event, the logarithmic score is infinite. 
Although not yet widely used, the logarithmic score has all the desirable proper-
ties of verification scores (ignoring equitability), and can be generalized to cases 
of continuous forecasts and still retain all properties (see Section 10.4.3). 

10.4.3 Scores for Continuous Forecasts 

Probabilistic scores for continuous forecasts are not widely used for seasonal cli-
mate forecasts, partly because full forecast distributions are rarely specified, and 
also partly because options for scoring such forecasts have not been discussed 
much in the climate literature. There is a version of the linear error in probability 
space (LEPS)  suitable for probabilistic forecasts (Ward and Folland 1991). The 
LEPS score was derived to measure the error in a forecast in terms of distance 
measured by the climatological cumulative distribution rather than in terms of the 
original units of the forecast (so, for example, a forecast error of 1°C for a nor-
mally distributed variable would be penalised much more heavily if the forecast 
and observed value are close to the mean than if near the tails of the distribution). 
The version of the score for continuous probabilistic forecasts lacks propriety, and 
so its use should be discouraged (Mason and Mimmack 2002). 

A preferable option is the continuous version of the ranked probability score 
(CRPS): 

( ) ( )[ ]2

1

1
continuous ranked probability score

n

i i
i

F z O z dz
n

∞

−∞
=

= −∑∫ , (10.20) 

where Fi(z) is the cumulative forecast probability for the ith forecast, and Oi(z)  
is 0 if the ith observation is less than z, and is 1 otherwise [cf. Eq. (10.17)]. The 
score describes the average of the squared difference between the forecast and 
observed cumulative distributions, where the observed cumulative distribution is a 
step function represented by the cumulative distribution of a perfectly accurate 
deterministic forecast; it is calculated by integrating the squares of the vertical 
distances between the two curves,12 as represented by the grey shaded areas in see 
Fig. 10.7. Note that the squaring in Eq. (10.20) is along the probability axis not 
along the x-axis, and so the score reduces to the mean absolute error if the fore-
casts are deterministic (Hersbach 2000). 

________________  
12 Compare the Kolmogorov-Smirnov test, discussed in Chapter 8, which is based on the largest 
vertical distance between two such cumulative distributions. 
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The linear error score defined in Eq. (10.13) has been generalised for ensemble 
forecasts (Wilson et al. 1999), but the score lacks propriety. However, it can be 
adjusted so that it is strictly proper: 

 ( ) ( )2
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1
proper linear score 2

n

i i
i

f z dz f x
n

∞

−∞
=

= −⎡ ⎤
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where fi(x) is the forecast probability density at the observed value, x (Bröcker and 
Smith 2007). The integral in Eq. (10.21) renders the score proper, and is a repre-
sentation of the sharpness of the forecasts, but does make the score lack locality. 
The only score that has the propriety, and the locality properties is the continuous 
version of the logarithmic score (Roulston and Smith 2002): 
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1
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i
i

f
n =

= −∑ . (10.22) 

Fig. 10.7 Example of a forecast for the December 2000 NIÑO3.4 index (using the June predictor 
from Table 10.1) showing the “error” (grey shading) in the cumulative forecast probability, as 
measured by the squared distance between the forecast distribution (solid line) and the distribu-
tion for a perfectly accurate deterministic forecast (dashed line). The integral of the squared 
vertical distances between the two curves (shown by the arrow at an index value of −0.5) is the 
contribution to the continuous ranked probability score  

10.5 Summary 

Forecast verification, or the evaluation of the quality of a set of forecasts, is a mul-
tifaceted problem, and so there is no single metric that can comprehensively 
represent the quality of the forecasts. The problem is complicated in the case of 
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probability forecasts because naïve attributes of forecast quality, such as “accu-
racy”, are inappropriate – the question of whether a specific probability forecast is 
correct or incorrect is unanswerable. Specially designed verification procedures 
are therefore required for probability forecasts, but there are several different types 
of probability forecast, and each requires its own methods for verification. The 
main attributes of interest are: 

• Reliability, whether the confidence communicated in the forecasts is appropriate 
• Resolution, whether there is any usable information in the forecasts 
• Discrimination, whether the forecasts are discernibly different given different 

outcomes (somewhat similar to the attribute of resolution) 
• Sharpness, the level of confidence that is communicated in the forecasts  

(regardless of whether that level is appropriate) 

indicate reliability, resolution, and sharpness), and the relative operating character-
istics graph (which indicates discrimination). Numerous summary measures of 
forecast quality have been defined, and so in choosing between them it is helpful 
to define a set of properties that verification scores should have. Perhaps the most 
important property is that only those verification scores should be used that cannot 
be improved by hedging the forecasts. Scores for probability forecasts that have 
this property are called proper scores. Unfortunately, the score that is arguably the 
easiest to interpret, namely the mean absolute probability error, is not strictly 
proper. Squared and logarithmic scoring rules are therefore generally preferred, 
although the logarithmic score is the only one that can be generalised to forecast 
of continuous probability distributions. 

 
 
 
 

The most commonly used graphical procedures for indicating forecast quality 
are the reliability diagram and accompanying frequency histogram (which together 
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Chapter 11 
Communicating Seasonal Forecasts 

Mike Harrison and Jim B. Williams  

Delivering, taking advantage of, and obtaining benefit from climate information, 
including predictions, are at least as substantial a challenge as producing the pre-
dictions in the first instance. It is also a challenge into which relatively limited 
resources have been invested so far by comparison to those devoted to the predic-
tion problem. In part that contrast in resources use is underpinned by the relatively 
well-defined nature of the prediction problem as contrasted to the wide, multi-
disciplinary issues raised in terms of taking advantage and receiving benefit from 
climate information. It is out of the question for this book to delve into all of the 
issues involved, so extensive are these in terms of different sectors, individual 
countries, levels of decision makers, concerns/constraints regarding specific deci-
sions, and so on, that we have attempted to provide only on overview in the hope 
that this will provide context against which individual issues might be considered. 
Specific examples of the use of climate information, and of the benefits derived 
therefrom, are provided in Chapters 12 and 13, whereas here the focus is on some 
of the fundamental issues underpinning climate services. To a certain, but not ex-
clusive, extent the authors of this chapter have taken a perspective related to issues 
in developing parts of the world, issues that are thought to require a range of addi-
tional approaches to the straightforward end-to-end model appropriate to business 
uses. Nonetheless much of the chapter is relevant to the delivery of business in-
formation. Examples are included in Chapters 12 and 13 of both business and 
development activities. Consideration is given to the context of climate services 
within international development, the physical delivery of information (including 
delivery to remote communities), and difficulties in presentational delivery of in-
formation. Presentational delivery remains a major impediment to extracting the 
benefit from climate services, yet remains one to which minimal consideration is 
given in many instances. The focus here is on the pitfalls of oral information 
delivery; space precludes detailed coverage of visual information delivery, a further 
critical area. 

________________  
Mike Harrison 
Independent Consultant 

Jim B. Williams 
Consultant with the NRGroup 
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11.1 Learning to Manage Climate Risk in Development 

Climate variability has received less attention than other development issues, in 
part because it has been considered one aspect of the environmental baseline that 
is not amenable to intervention. Climate clearly impacts development, for example 
on our ability to achieve the Millennium Development Goals (MDGs).1 If future 
management of climate risks is to be improved then the need is to understand rea-
sons for the relative lack of progress to date, and to incorporate lessons learned 
into future strategies. 

The impacts of climate variability on development are twofold, direct and indirect. 

1. Direct: Events such as droughts and flooding take a direct toll on lives, health, 
livelihoods, assets and infrastructure. Climate directly impacts food and fibre 
production, and the epidemiology of infectious diseases. Severe or repeated 
climate shocks can push vulnerable households into a persistent poverty trap 
when their individual coping responses usually involve divestment of produc-
tive assets, such as livestock or land. Without advanced warning, reactive 
societal safety nets are costly, and difficult to mobilize and target effectively 
(Benson and Clay 2004; this applies also in developed countries – Cutter et al. 
2006).  

2. Indirect: Although less visible than direct impacts, the indirect impacts of cli-
matic uncertainty are equally serious impediments to development. Knowledge 
that a region is prone to climate events that endanger resources acts as a disin-
centive to investment, adoption of innovation and the success of other 
development interventions, particularly when approaches to the management 
and mitigation of those events are not available. For the risk-averse decision 
maker, climatic uncertainty necessitates short planning horizons and conserva-
tive risk management strategies that buffer against detrimental climatic events. 
But this is often achieved at the expense of inefficient resource use, reduced 
average productivity and profitability, and accelerated resource degradation 
due, for example, to under-investment in soil fertility inputs or conservation 
measures.  

But in spite of its pervasive importance, and powerful new advances in climate-
related science, opportunities have been largely underexploited in decision making 
not only in Africa, from where most examples are drawn in this chapter, but 
throughout the globe. Lip service is often paid to climate and its variability, but in 
practice, studies (Gibberd et al. 1995) have shown that climate information is 

________________  
1 See http://www.undp.org/mdg/abcs.shtml for a full list of the Goals, the Targets used to specify 
each Goal, the Indicators used to measure achievement of each Target, and the organisations 
(mainly UN) with ‘ownership’ of each Indicator. 
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rarely, if ever, incorporated into planning and management decisions as effectively 
as it could be. 

Why should this be so? By far the majority of water supplies and agricultural 
production in Africa is dependent on rainfall, which fluctuates considerably from 
year to year. If water availability and food production are both in such short sup-
ply as to be a major brake on development, surely use of climate information to 
optimise use of these scarce resources should be a top priority? 

Many reasons contribute to the low priority given to incorporating knowledge 
of climate variability into decision-making. It is most important that these be un-
derstood and addressed in concert because together they present a formidable 
obstacle to progress. Recognised reasons include: 

1. Whose responsibility? In many instances the ability of national ‘resource man-
agement systems’ to respond to climate information is weak or non-existent. 
Resources are not so much ‘managed’ as collectively exploited. Such a system 
works adequately when population density is low in relation to the resource 
base, but as populations grow and resource use becomes more intensive, sea-
sonal variation in water (rainfall) becomes ever more important to a growing 
multitude of stakeholders. Well-informed, coordinated and timely decision 
processes to proactively manage resources, involving meteorological services, 
disaster management organisations, agricultural departments and extension ser-
vices, and so on, then become most important; but this is difficult if neither the 
information (in many cases in Africa due to collapse in observing and exten-
sion networks) nor the system and infrastructure and institutional architectures 
for making appropriate decisions exist, until an emergency is declared.  

2. Reluctance towards risk management: In the past the occurrence of periodic 
drought was almost welcomed by mid-level government administrators. All 
sorts of project failures, from the colonial East African Groundnut Scheme on-
wards, were written off ‘because of the drought’, with no further questions 
asked (nevertheless it must be admitted that climate was far from being the 
only impediment faced by the Groundnut Scheme). It is important that collec-
tively we become more proactive in resource management and include climatic 
risk in our calculations, amending management decisions as a continuous proc-
ess rather than working to a fixed schedule. Of course one alternative to risk 
management is amelioration of resilience to climate variability (irrigation being 
one example); nevertheless risk management remains a major option in many 
parts of the world.  

3. Research-extension gap: The agricultural research literature is populated with 
studies demonstrating the importance of climate variability, and how best to 
cope with it in different areas. Converting climate information into actionable 
decisions is not, however, always straightforward. Research systems, in addi-
tion, are often isolated from the communities they serve, and beneficial 
outcomes are difficult to achieve when messages are over-complex for an in-
adequately trained (or non-existent) extension service to devise appropriate 
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improvements to current practice in farming communities. New appropriate and 
user-friendly approaches to mass communication of such information are  
required avoiding the difficulties outlined later in this chapter. 

4. Insufficient climate data and resources available: There has been a major 
decline in the number of climate observing stations, particularly but not 
uniquely in Africa, over the past 40 years. While this has been compensated, to 
some extent, by the development of operational weather satellites covering  
Africa, adoption and use of these new technologies in climate risk management 
has been slow in coming. In some areas the basic climate network has become 
so sparse that it will be difficult to detect and quantify climate change trends in 
these areas, let alone inter-annual variability. Improving the basic network in 
Africa is a current concern of the Global Climate Observing System (GCOS), 
based in WMO, among others. Additionally national weather services also  
often have limited personal and material resources. 

5. Institutional obstacles: Climate risk management is an interdisciplinary activ-
ity, affecting many economic sectors and aspects of life, but it has no effective 
champion. In many Meteorological Services in Africa the application of cli-
mate knowledge in agriculture, health, water and other sectors is a low priority 
activity, poorly staffed and weakly focused. Relatively few Meteorological 
Services in Africa are fully engaged in their country’s own national develop-
ment and disaster risk reduction agendas. Supporting civil aviation services and 
participating in the global meteorological agenda have for many years been 
much higher priorities for these Services. As a consequence many climate ob-
serving networks are badly run down, and the data that exist are of limited 
utility and are analysed in a fragmented way, if at all. Some view the introduc-
tion of policies to commercialise meteorological and climate services or to seek 
cost recovery for data collection as an unmitigated disaster with regards to 
promoting the overall beneficial use of these data.  

6. Farmers know best: People who have been working their fields for years in 
traditional manners have usually developed more or less successful coping 
strategies based on managing risk. They often have traditional ‘seasonal fore-
casting’ methods based on bird, animal and plant observations. However while 
traditional practices may be resistant to change, experience often demonstrates 
farmers’ desires for ‘other’ knowledge systems that may be used alongside, and 
perhaps ultimately may displace, local practices. Complementary approaches, 
rather than replacement, offer a sympathetic way towards the introduction of 
new technologies, but in doing so it should be borne in mind that: 

• Adaptation will be facilitated if new forecasts are treated synergistically 
alongside traditional methods. 

• Traditional methods may not be able to cope with rapid population growth 
and land fragmentation, or systematic climate change (as in the Sahel during 
the 1970s and 1980s). 
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• Traditional farmers may resist change from a risk-reduction to a production 
maximisation strategy until they have an adequate safety net to support them 
through bad years; insurance safety nets are being piloted in several African 
countries. 

7. Negative perceptions regarding reliable climate forecast capabilities: For 
many people the very idea of long-term or seasonal climate forecasting is con-
sidered an unrealisable dream, or one that challenges a ‘divine prerogative’. 
While short-term weather forecasting has radically improved with the refine-
ment of satellite coverage and global models, its forward view is restricted to a 
few days at most, so (they ask) how can one possibly give credit to a 3-month 
forecast? There is thus a significant credibility gap to be overcome, one that 
will be assisted by providing evidence that the new technology offers effective 
risk management options. 

11.1.1 Towards Resolution: Improved Governance  
and Improved Science 

All problems as outlined above can and must be overcome. In parts of Africa they 
are reflections of a wider suite of compounding problems over the last 25 years, 
including weak governance in some cases. Yet, elsewhere, application of climate 
science is moving forward rapidly, stimulated both by practical everyday require-
ments to optimise resource management as well as by the urgent need to understand 
global warming and climate change impacts. 

11.2 Seasonal to Interannual Prediction: An Overview  
of its Role in Decision Making 

11.2.1 The Management and Social Background to Applications 
of Seasonal to Interannual Prediction 

There are numerous reasons for using seasonal to interannual predictions in deci-
sion making. Planning business processes, both national and international, has 
provided the motivation in many countries, but equally there is a wide range of 
potential applications in terms of public good. Included amongst the latter are 
national and international resource management (including water and food security), 
disaster preparedness and response, poverty reduction, protection of biodiversity, 
and the frequently discussed objective of sustainable development. 
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standards in a sustainable manner, has been translated with respect to the develop-
ing world into actions codified as the MDGs. The underlying principle behind the 
MDGs is the generation of convergence of multi-country, multi-institutional  
activities and funding into defined and targeted, internationally agreed, activities. 
Of the eight MDGs, most, probably all, have a dependency on climate variability. 
Even in MDGs such as No. 2, “Achieve universal primary education”, for which 
the climate variability link might not be immediately evident, there are indirect 
dependencies for which predictions might provide guides. For example, primary 
education requires, amongst other things, appropriate levels of health, which in 
turn are dependent upon adequate food and water supplies, and thus on environ-
mental sustainability. Further, social stress, caused by environmental degradation 
and/or natural disasters, or political stress induced, say, by drought, might under-
mine the structural basis on which education is dependent. For MDGs such as 
No. 1, “Eradicate extreme poverty and hunger”, and No. 7, “Ensure environmental 
sustainability”, the links with climate variability are more immediately transparent. 
The view that environmental sustainability, and through that climate variability, 
underpins all MDGs (which in any case are interrelated and thus interdependent 
on climate) has been stated in various assessments, including: 

• A healthy environment underpins human life and well-being by providing food, 
clean water, disease control, and protection from natural disasters – and is thus 
necessary to achieve each Goal (UN 2005). 

• Ensuring environmental sustainability and access to energy services is key to 
achieving all of the MDGs (UNDP 2005). 

• The Millennium Ecosystem Assessment and other global and regional studies 
have established beyond doubt the linkages between poverty, security and the 
environment – achievement of the MDGs and eradication of poverty will not be 
possible without taking on the issue of environmental sustainability (UNDP 
2005). 

The first MDG provides a useful exemplar of the complexity of issues surround-
ing decision making within the contexts of climate variability and sustainable 
development. Within a study of the MDGs in relationship to climate variability, 
scientists commissioned by the IRI have identified aspects of climate variability 
that might adversely affect achievement of the Goals – the following examples are 
relevant to Goals to “Eradicate extreme poverty and hunger” and those regarding 
health (IRI 2005): 

• National loss of agricultural production through drought and flood  lack of 
food security 

• Drought or flooding can lead to poor water quality  increased morbidity and 
mortality from diarrhoeal disease 

Sustainable development, with its agenda of maintaining and improving living 
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• Flooding, or return to normal after drought, create favourable conditions for the 
spread of mosquito-borne diseases  higher infection rates, such as for ma-
laria, and a reduced work force 

• Loss of infrastructure through severe climate events, such as floods and storms 
 removal of infrastructure necessary to achieve the goal, and diversion of 

funding to replace infrastructure 
• Climate variability acting as a disincentive  might affect investment, intensi-

fication, technological adoption, fertiliser use, high value agricultural enterprises 
• Repeated hydrological disasters  stagnated economic growth 
• As a consequence the poor might be trapped in a downward spiral of increasing 

poverty and asset loss 

Accordingly information on climate variability, including predictions, might be 
used in a variety of ways to provide increased lead in early warnings relevant to 
the first MDG, and to manage opportunities and risks in years with both above and 
below-average agricultural production. It might also assist in stabilising crop 
stocks in terms of price and availability, and to adjust credit flows and production 
inputs to farmers. Insurance schemes designed to benefit poor farmers can also 
take advantage of the information. Further, advanced warning facilitates prepara-
tions for hydrometeorological disasters, and also helps in mitigating their 
consequences, through assisting planning to reduce losses in infrastructure and 
productive assets. 

However, in order to achieve the above, climate information must be mixed  
appropriately with other information flows (as discussed in greater detail in 
Chapter 2), perhaps economic and productive assets, perhaps population statistics, 
perhaps infrastructural distribution, perhaps relevant policies and statutes, perhaps 
cultural approaches to decision making, and so on, in a manner that assists final 
regional and local decision making at all levels. There is a growing body of evi-
dence to suggest that optimal decision making based on climate information is 
achieved cooperatively, through participatory processes in both vertical and hori-
zontal senses, rather than through independent actions of individual stakeholders, 
or even individual businesses despite the normal propensity to seek business ad-
vantage. Participatory processes also help guard against possible detriment to 
uninformed individuals and groups. Thus a further desirable attribute towards opti-
mising benefit is some form of coordinated decision making leading to harmonised 
responses to all information streams, including climate. 

A practical example of the multiple information sources needed in one specific 
activity, agricultural production in a developed country, Australia, has been  
examined in an extensive operational research programme at the Agricultural  
Production Systems Research Unit (APSRU) in Queensland. Historical and cur-
rent information streams are made available via the Internet to guide decisions at 
farm through to State levels. These information streams include (not a comprehen-
sive list): local and national rainfall (in particular its stratification according to 
phases of the Southern Oscillation Index), soil conditions, local and national crop 
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production and yields, fertiliser costs, and international crop prices. In order to 
combine all information streams with the aim of assisting decision processes at 
farm and higher levels, scientists at APRSU have developed a number of com-
puter-based tools, including APSIM – the Agricultural Production System 
Simulator.2 

Activities in Australia are greatly assisted by the availability of quality, well-
distributed (spatially and temporally) data, not only on climate but also on the 
other information streams necessary for optimal decision making. Where certain 
data do not exist, such as some historical crop yield data, simulation techniques 
have been developed to fill in the record. Some transfer of the APSRU approach 
to other countries, under the Res Agricola (Farmers’ Affairs) banner, including to 
some in the developing world, has been undertaken. But one problem in many 
countries is a lack of the data necessary to support relatively sophisticated ap-
proaches of this nature. Only proactive approaches will start addressing these 
fundamental data paucities. 

Agriculture provides a fine exemplar of the various problems faced regarding 
decision making under the uncertainty imposed by climate variability. Decision 
making of this type takes place across a broad range of scales of various types and 
differing approaches, which include: 

• Spatial 
o Local cropping decisions 
o National/regional food stocks and trade 
o International food security 

• Temporal 
o Short-term logistics, such as planting and harvesting 
o Medium-term planning of crop types, sequencing and rotations 
o Long-term industrial decisions and land use 

• Cultural 
o Commercial through to subsistence 
o Science-lead (based on ENSO predictions, for example) through to belief- or 

experience-lead (including indigenous knowledge) 
• Institutional 
o Policies/regulations/statutes of any particular organisation or individual 

within those of each country 

Within agriculture alone there is thus a broad gamut of outcomes sought, one that 
extends when other sectors are included. It may be difficult, perhaps impossible, 
to provide a single stream of climate information that is optimally tuned for deci-
sion making across all scales, and more defined solutions by objective are likely to 
________________  
2 See: http://www.apsru.gov.au/apsru/ 
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be needed. There is a further consideration in that risk often only makes sense 
within the culture and psychology of individual decision makers. In that regard the 
approach currently adopted in general of setting up specific pilot projects may be 
well founded in practical terms, no generic approach likely to be derivable at this 
stage. The downside of this approach is that portability is often problematic, as 
solutions developed for specific applications at particular locations on the different 
scales may not necessarily translate readily to other locations and scales. For  
example, outputs from local-scale pilot projects may be difficult to scale up to 
national level or to be transferred to a different country. 

Cultural and institutional issues often present some of the major impediments 
to incorporation of climate information into decision making. It may be an over-
simplification, but where climate is immediately identifiable as representing a 
control on an activity (for example, societies have long recognised this control in 
terms of food security), then the use of climate information and the desire to have 
more information of higher quality is usually incontestable. On the other hand 
where the role of climate has been less well defined, or the perception exists that 
climate information is of insufficient quality to assist in decision making, as per-
haps within the context of the education MDG mentioned earlier, then there may 
well be a relatively low, or even no, uptake of the information. 

An excellent example of cultural/institutional impediments restricting the use 
of climate information is provided by the World Bank. The World Bank has just 
one major mission objective – to reduce global poverty. In doing that, issues of 
sustainable development, as now codified within the MDGs, loom large. Yet des-
pite the fact that the Bank has played a major role in supporting international 
activities related to climate change, and is responsible for a major fund for activi-
ties in this area, climate does not yet appear within the guidelines for assessment 
of most projects to be funded by the Bank. Consideration of methodologies for 
assessing projects from a climate perspective, whenever appropriate, is now being 
made (Mathur et al. 2004; Burton and van Aalst 2004). 

Thus if seasonal to interannual prediction, not to mention climate information 
in the broader sense, is to play a major role in decision making across the range of 
scales and potential sectors, then there is a need to mainstream the information 
into those organisations responsible for taking decisions. Mainstreaming is 
achieved through a sequence of approaches, amongst which needs to be the provi-
sion of convincing evidence that the information is credible, is relevant, and, most 
importantly, provides value. Or that, at the least, it has the potential to provide 
value. Demonstrating value is a complex task across the entire range of scales and 
sectors, and needs to be achieved from the perspectives of potential users with 
their individual needs rather than from the individual perspective of the climatolo-
gist. Without careful and sustained collaborative conversations there is the danger 
that the full benefits of the developing short-range climate prediction technology 
may not be attained. 

One key issue is that any demonstration of value should be sensitive to existing 
and accepted decision processes – and that means that different approaches may 
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be necessary for demonstrating value to subsistence farmers in Africa, to African 
national and regional bodies responsible for defining the institutional support and 
legal frameworks in which the subsistence farmers work, to the various NGO’s, 
and to the World Bank in its activities to alleviate poverty in Africa. Any demon-
stration of value should also recognise that the time frameworks of decisions 
throughout all scales do not necessarily accord neatly with those common to cur-
rent seasonal predictions, and that therefore climate information may need to be 
accommodated to each specific requirement. The current relative inflexibility of 
climate information, including seasonal predictions in terms of their somewhat 
fixed spatial and temporal scales, does little to aid the demonstration of value in 
many cases. Climatologists face a major challenge in developing a technological 
package that better addresses the requirements of the decision-making community 
at all levels and across all scales, a challenge necessarily addressed cooperatively 
through expanding interdisciplinary activities. 

11.2.2 Delivery of Short-Range Climate Predictions to Users 

One of the keys in demonstrating the value of seasonal predictions lies in the 
manner forecast information is communicated to the decision making community. 
Given the variety of potential decision makers, as outlined above, it seems 
unlikely that any single communication approach may satisfy all decision makers, 
and that some level of customisation is necessary. 

Delivery, a major element of communication, breaks down into two compo-
nents, dealt with separately in the following. The first of these components, 
technical delivery, has proved to be rather easier to progress than the second, pre-
sentational delivery. 

11.2.2.1 Technical Delivery 

In principle it is now possible to deliver forecasts, and other climatological infor-
mation, to potential users almost anywhere on the planet within a brief period after 
production. One of the vital components of the delivery system, the Internet, was 
just coming into widespread use at the time of recognition in early 1997 that a 
major El Niño event was likely to be on the way. Throughout the middle part of 
that year predictions and interpretations were distributed worldwide from numer-
ous centres, including universities and research institutes, using the new tool of the 
Internet. In hindsight that explosive use was not necessarily beneficial, given that 
many of the interpretations broadcast were based on the expectation that the  
canonical consequences of an El Niño would occur, which did not always prove to 
be the case, particularly across some regions surrounding the Indian Ocean. 
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The Internet continues, alongside and through the media, to be one prime chan-
nel of distribution for prediction information, and no doubt will carry on being so 
for the foreseeable future. Numerous prediction centres, including national mete-
orological centres, universities, and research institutes, now provide open or 
subscribed access to their latest prediction information, created using numerous 
numerical and/or statistical modelling approaches, through this channel. But  
despite its immediate and obvious benefits, use of the Internet raises a number of 
issues that restrict its usefulness: 

• In principle it permits access to forecasts for all, regardless of their appreciation 
of the information presented. 

• It allows contrasting and contradictory information to be broadcast without 
consolidation or guidance. 

• It makes available information in a variety of formats that the lay user may be 
unable to integrate with ease. 

• It carries no guarantees concerning the quality of specific information. 
• While potentially an invaluable opportunity for broadcasting educational mate-

rial to users, there is no certainty that any educative information will be 
absorbed; in fact much, although not all, educative material available through 
the Internet is written from the perspective of climatologists rather than that of 
a user, and aids little in decision processes. 

On the positive side the Internet has many potential benefits, not least regarding 
responsiveness and flexibility. Information may be tailored, for example, to aid 
specific decisions; in fact, in principle, information could be delivered in formats 
specific to individual decisions. One further undoubted advantage, amongst many, 
of the Internet is its ability to facilitate information exchange between climate cen-
tres, permitting them to integrate information in such a manner as to provide more 
focussed information for the user. Two major such integration initiatives are out-
lined below, but there are numerous other regional activities in various parts of the 
world. Regional Climate Outlook Forums (RCOFs) were a progressive develop-
ment over several years, which culminated in the pilot series in southern Africa 
covering the 1997/98 rainfall season in that region. Originally RCOFs were con-
ceived without the Internet, although that facility has significantly aided their 
development. RCOFs were designed to be an approach to bring the benefits of 
seasonal predictions to governments and a variety of recipients for whom those 
benefits might be substantial but who might not receive that benefit through insuf-
ficient resources. Thus RCOFs bring together, in meetings often exceeding 100 
attendees from a number of countries: 

• Climatologists, whose roles are to create consensus forecasts from all available 
inputs (of which there are usually numerous, including from international and 
national centres), to interpret that consensus for users, and to educate users on 
issues climatological. 
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• Numerous types of user, from high-level decision makers, through intermediar-
ies, to those at the working levels, whose roles are to inform the climatologists 
of their views and issues, and to work with the climatologists to understand the 
range of actions possible, given the consensus forecast. 

• The media, in their role as essential intermediaries with users throughout the 
region. 

Following the serendipitous initiation of the southern African pilot coincident 
with the 1997/98 El Niño event, RCOFs were constituted rapidly in other parts of 
the globe in order to help address expected forthcoming major climate anomalies. 
RCOFs continue to be held on regular schedules in various regions, have become 
valued components of the annual calendar by all involved, but are threatened in 
some locations through the high costs of holding these events; virtual forums, in 
which most information is transferred via the Internet, have been tested in some 
regions as a direct approach to restricting costs (IRI 2000). 

The second initiative is the Regional Climate Centre (RCC) programme, a pro-
ject of WMO. No formal RCCs have been instituted as yet, although proto-RCCs 
exist in a number of regions, such as ACMAD3 for Africa, AGRHYMET4 for 
West Africa, ICPAC5 for East Africa, and SADC-DMC6 for southern Africa. Rec-
ognising that climate expertise is often limited, especially in developing countries, 
RCCs have been designed to provide a regional expert resource base on which 
national meteorological services from all represented countries can call for advice 
on climatological matters. In regard to seasonal predictions the design of RCCs 
tasks them with creating consensus predictions from all Global Prediction Centres7 
as well as local sources, and to interpret and provide that prediction information 
through national institutes, such as the National Meteorological Services within 
the region. 

Through a combination of the Internet, RCOFs and RCCs, information on cli-
mate variability can be transmitted to and received by a majority of individuals 
and institutes globally. But in the developing world that set of delivery approaches 
omits to include many who do not have access to the facilities of modern commu-
nications. An approach to conveying information to these populations, particularly 
those in rural locations, has been developed, originally around the distribution of 

________________  
3 See: http://www.acmad.ne/ 
4 See: http://www.agrhymet.ne/eng/ 
5 See: http://www.icpac.net/ 
6 See: http://www.dmc.co.zw/ 
7 See: http://www.wmo.int/pages/prog/wcp/wcasp/clips/producers_forecasts.html for the full list 
of Global Producing Centres. 
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wind-up radios that require no energy sources other than muscle power.8 Satellite 
technology in the form of the RANET project9 built around the First Voice Inter-
national facilities using the Worldspace system of geostationary platforms,10 tied 
in with relatively cheap digital radio receivers that include modems permitting 
data to be downloaded directly into personal computers, have now been combined 
with the use of radio broadcasts to deliver climate information into remote areas of 
Africa, Asia and the Western Pacific. RANET, in principle, permits the reception 
of timely seasonal prediction and other climate information over large parts of the 
globe that otherwise would have no access. 

Other delivery systems not yet considered are possible. Prominent amongst 
these are the use of mobile telephones, a technology that has expanded rapidly in 
many developing countries. Innovative use of existing social structures, often un-
tapped as yet, would assist with information delivery and education. 

11.2.2.2 Presentational Delivery 

Far more complex than physical delivery of information, and more important in 
determining the value of the transmitted information, is the communication of that 
information in the most effective manner for decision making. From the recipient 
perspective, whether an international manager or a subsistence farmer, optimising 
the input of climate information into decision making is the prime objective. It is 
not enough, therefore, merely to provide predictions, with related validation and 
verification information, but it is a responsibility to ensure that the entire package 
is presented such as to facilitate the decision processes of the ultimate recipients. 
Few of the current delivery channels offer information organised from the deci-
sion making perspective. 

Communication separates into two aspects – visual and oral/written, both with 
their own specific pitfalls. The focus in the following is on oral/written, but first 
consider the presentation of predictions from RCOFs as an example of one issue 
of visual communication. The RCOF consensus predictions take a probabilistic 
form not purposely designed to assist any specific decision process, and are pre-
sented in tiered probabilities for each sub-region (Fig. 11.1). Yet in the back-
ground each region is coloured with an indication of the most probable outcome, 
an indication that readily may be taken to indicate a deterministic prediction. As 
an exercise, consider what message would be taken from this display by those 
 

________________  
8 The original wind-up radio, Freeplay, was designed by Trevor Baylis and initially manufactured in 
South Africa, later China. 
9 See: http://www.ranetproject.net/ 
10 See: http://www.firstvoiceint.org/ and http://www.worldspace.com/ 
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Fig. 11.1 Example of consensus prediction, for September–December 2006, from one of the 
East African Regional Climate Outlook Forums (courtesy of ICPAC). For each region tercile 
probabilities are indicated by figures, with wettest terciles at top. Background colours in the 
original, here converted to grey scale (for colour version see: http://www.icpac.net under “Fore-
casts”), indicate the most probable outcomes. Although present, but not clear in grey scale, these 
colours, which are prominent, often combine two similarly likely terciles into the form, say, 
“unlikely to be driest tercile” 
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unversed in its interpretation. Then consider how an untrained individual might 
interpret the visual information offered by the various alternate web sites provid-
ing predictions, each with their own visual presentational characteristics, for the 
same region. Finally, consider how that untrained individual might interpret the 
validation information presented on the various web sites, with their wide variations 
in selected metrics. The opportunities for delivering unintended messages through 
ill-considered visual presentations are endless, and, as is discussed further in 
Chapters 12 and 13, ideally all such presentations should be considered in full in 
collaboration with all recipients. 

Written and spoken communications, as visual communications, offer clima-
tologists numerous opportunities to fail in exchanging information with stake-
holder communities. Perhaps one of the simplest examples is given by use of 
the word “normal”, a word that occurs frequently in the languages both of clima-
tologists and of stakeholder communities, but one that translates imprecisely 
between individuals on numerous occasions. In fact during an RCOF in Kenya a 
few years ago there was most animated discussion of the interpretation of the 
word “normal” amongst over 100 delegates, with no consensus achieved. What 
might seem to be a “normal” rainfall season to a climatologist may appear any-
thing but to, say, an agriculturist whose concerns extend well beyond rainfall 
totals themselves. Equally a “normal” agricultural season may be anything but in 
climatological terms. These two examples fail to illustrate by far all the contexts 
within which the word “normal” might lead to misinterpretation. Other apparently 
simple words may be equally readily misconstrued – “extremes” is a further 
example that arises regularly. 

More complex miscommunications occur in a number of ways (affecting visual 
as well as written communication), including through the psychological processes 
that are sometimes referred to as ‘cognitive illusions’. The ‘framing effect’ offers 
a straightforward example – the two statements “there is a 30% chance of a 
drought this coming season” and “there is a 70% probability that rainfall will be 
adequate for cropping this coming season” effectively provide the same informa-
tion, but the manners in which the statements are stated, or framed, invite possibly 
diverse decisions, a defensive approach against drought in the first case and a 
positive response to take advantage of possible beneficial climate conditions in the 
second. Further cognitive illusions are listed in the table below (based on Nicholls 
1999), with examples given relating to events and experiences in RCOFs during 
1997 and 1998 in southern Africa (when, given the impending substantial El Niño 
event, many presumed that rainfall-season drought, perhaps severe, was inevita-
ble, although in reality adequate rain fell in many areas): 
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Cognitive illusion Brief explanation RCOF example 

Framing effect Framing of the same informa-
tion in different ways invites 
dissimilar decisions. For ex-
ample, ‘40% probability of 
above average rains’ vs. ‘60% 
probability it will be average 
to dry’.  

1997/98 worded forecasts were 
framed more from the perspective of 
drought (because of the overconfi-
dence of some involved – see below) 
than from the perspective of possible 
average to above-average rainfall. 

Availability Biases originating either in 
information readily brought to 
mind or experienced recently, 
or in the relative availability 
of information, say through 
the media or Internet. More 
weight is given to recent or 
readily remembered informa-
tion and/or to widely available 
information than to easily 
forgotten information or that 
with more restricted availabil-
ity, however valid. 

Media focus, often concentrating on 
the 1982/83 El Niño-related drought, 
preconditioned many to expect dry 
conditions in southern Africa  
because of the upcoming El Niño. 
Contrasting information that El Niño 
events are not always related to 
droughts in the region was not read-
ily available. Many RCOF delegates 
made frequent reference to the 
1991/92 drought, an event then 
clearly remaining in numerous 
minds. 

Anchoring Decisions may be based on, 
i.e. anchored to, familiar but 
perhaps unrelated and/or  
irrelevant information. On 
occasions this may be com-
pletely disconnected 
information, even if it is not 
perceived as such. But more 
often it may seem to be  
related but in reality offers 
limited benefit regarding 
current decisions. 

Interpretation of the likely outcomes 
of the 1997/98 El Niño were fre-
quently anchored on the 1982/83 
and, especially, 1991/92 droughts. 
As background there was a ‘weak’ 
El Niño during 1991/92. The 
drought that year was one of the 
worst on record and was fresh in 
memory at the time but gave little  
or even no pertinent information 
regarding conditions in 1997. 

Asymmetry  
between losses  
and gains 

Related to framing, the per-
ception gained that a 
particular line of action will 
yield the best outcome in 
terms of balancing possible 
losses and gains. Decisions 
tend to be made in either the 
most favourable or the most 
defensive manners according 
to individual perceptions of 
risk. 

Wording of 1997/98 RCOF predic-
tions, while carefully prepared, 
nevertheless promoted the concept 
of impending severe drought. This 
lead some to take drastic actions, 
such as not planting or selling/ 
slaughtering all cattle, in the belief 
that such actions would minimise 
overall losses. 

Ignoring base rates Neglecting prior probabilities 
in coming to a decision – they 
can have considerable effects 
on decision processes based 
on a prediction. A classic 
example is for the UK  

The prior probability of below-
average rainfall across the full  
October to March rainfall season in 
South Africa, given an El Niño event 
in train, is only about 60%. This fact 
was usually ignored during 1997/98 

(continued) 
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Cognitive illusion Brief explanation RCOF example 

24-hour forecast, which has a 
claimed ‘accuracy’ of 83%. 
Given that, and assuming rain 
is predicted (deterministi-
cally), then the probability of 
no rain falling within any 
particular hour is not 17% but 
70%. This offers a rather 
different perspective on the 
original forecast. The figure 
of 70% may be calculated  
(an enlightening exercise to 
undertake) using the base rate 
of 0.08 for hourly rainfall, i.e. 
the prior probability of rain in 
any hour is 0.08 (Matthews 
1996). 

when many scientists and others 
unconditionally linked El Niño 
events with drought (the quoted 
figure of 60% is a ‘guestimate’  
derived from the South African 
Weather Service web site). 

Overconfidence Everyone tends to be overcon-
fident in their beliefs and 
predictions, and climatolo-
gists, farmers, health 
practitioners, etc., are no  
exceptions. Only through 
regular critical feedback 
might overconfidence become 
less prevalent. Overconfi-
dence tends to be greatest 
when accuracy is near chance 
levels. 

Overconfident predictions for an El 
Niño-forced drought in southern 
Africa were made by many clima-
tologists and others in 1997/98. 
Related equally overconfident  
expectations of drought impacts on 
farming and water resources in 
1997/98 were assumed uncondition-
ally in several southern African 
countries. Forecasters of necessity 
create individual seasonal forecasts 
relatively infrequently, and thus 
receive feedback equally rarely, 
leading to the potential for overcon-
fidence. 

Confirmation and 
hindsight bias 

Biases that result from over-
confident and imprecise 
recalls of past events (for 
example, forecasters tend to 
recall and promote preferen-
tially their perceived previous 
accurate predictions while 
tending to discount or even 
ignore those ‘less accurate’). 
Or biases based on presumed 
correct knowledge. The over-
confidence is such that 
information that might discon-
firm the bias is often not 
sought or is rejected. 

Bias that El Niño events inevitably 
result in drought over southern  
Africa was widespread in 1997/98. 
Disconfirming evidence demonstrat-
ing that there is not a one-to-one 
association between drought and El 
Niño events was either discounted 
or, more generally, simply ignored 
or not even sought. 
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Cognitive illusion Brief explanation RCOF example 

Decision regret Stronger potential regret in 
hindsight over decisions that 
lead to loss than those that 
lead to benefit. Thus there is 
often an irrational bias to-
wards taking decisions so as 
to minimise possible regret 
should those decisions prove 
wrong. 

Given that the 1997/98 southern 
African rainfall season was antici-
pated so negatively in deterministic 
terms by many, it is perhaps not 
surprising that no examples of deci-
sion regret immediately stand out 
from that RCOF experience – op-
tions simply did not appear to have 
been available at the time. Note that 
this is distinct from the regret felt in 
hindsight in southern Africa around 
decisions based on expectations of a 
drought some believed had been 
forecast unequivocally. 

Inconsistent  
intuition 

A preference to base decisions 
on personal intuitions rather 
than on objective methods. 
The former tend to be incon-
sistent while much evidence 
suggests objective approaches 
tend to produce the best  
results overall. In part this 
results from a lack of trust in 
automation and an inclination 
to make own judgements. 

Intuitive modification by experts of 
probabilities when combining vari-
ous numerical and statistical 
predictions during the course of 
agreeing a RCOF consensus forecast 
likely resulted in sub-optimal con-
sensus predictions of probabilities. 

Belief persistence Either (a) first impressions are 
recalled preferentially over 
later ones, or (b) inertia in 
changing beliefs on the basis 
of later information received. 

As an example of (a): the perceived 
‘failed’ first RCOF forecasts for 
1997/98 lead to later persistence of 
the belief that seasonal forecasts are 
‘poor’ as a general rule (this percep-
tion required subsequent 
management attention). As an ex-
ample of (b): the first forecast seen 
during the RCOF prediction consen-
sus-building process is often 
weighted more highly than later-
seen forecasts – in RCOFs these first 
forecasts tend to be each climatolo-
gist’s ‘own’, which that 
climatologist then tends to over-
weight against other forecasts. 

Group conformity Group dynamics may lead to 
an erroneous biased consen-
sus, perhaps through the 
dominance of one individual 
or of one well-presented  
opinion. 

The process of producing an RCOF 
consensus prediction by a group of 
experts through subjective interpre-
tation of various individual inputs 
usually results in a fine example of 
group conformity, as does the inter-
pretation of that prediction by 
groups of users. 
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All of the above cognitive illusions may afflict both climatologists and stake-
holders in a variety of manners, and all may lead to sub-optimal information 
delivery and processing, and hence decision making. Noting that the manner in 
which prediction information is employed may substantially affect the ultimate 
value obtained for any application, value that is often assumed, incorrectly, to be 
dependent upon prediction skill alone, then it becomes clear that there are numer-
ous impediments to demonstrating, and maintaining, the value offered by a 
prediction service. Forecast quality, approaches to information delivery, and the 
manner in which information is processed and in which decisions are made, all 
influence separately but substantially the final outcome value achieved. 

A third verbal issue, that stands alongside the interpretation of words and the 
manner in which words are used to communicate information, is the issue of the 
language used itself, often referred to as jargon. Normally – and that word is used 
according to this particular author’s normal manner – climatologists and stake-
holders use language in their own accepted community-wide ways, but with, 
unfortunately, limited overlap between those language groups. Effective commu-
nication is most assured when similar language is used on both sides, and in 
principle in order to feed the information most efficaciously into decision making 
the language used primarily should be that of the stakeholder rather than that of 
the climatologist. Climatologists thus face the extensive challenges of understand-
ing the languages of the stakeholders they are attempting to serve and of focusing 
their information into the decision models of those stakeholders. 

The policy and development community, for example, tends to use words such 
as ‘vulnerability’, ‘resilience’, capacity’, ‘development’, ‘poverty’, ‘equity’ and 
‘adaptation’. Each of those words originates in conceptual models widely accepted 
and understood within the recipient community. These communities are seeking 
assistance and insights from climate experts that will directly help resolve issues 
as they interpret them, and it is into these models or issues that climatologists ide-
ally should be projecting their information. Using language such ‘El Niño’, 
‘drought’, ‘above average cyclone frequencies’, and the like, tends primarily to 
maintain, or even build, barriers between climatologists and recipient communi-
ties. Climate change jargon provides some excellent examples of the possible 
language/conceptual barriers raised between communities (adapted from Mathur 
et al. 2004): 

• The IPCC considers climate change a pollution problem whereas the develop-
ment community is concerned with the practical implications in terms of 
development, poverty and equity, and, in particular, with their management – 
information provided by the IPCC in general offers little to resolve the issues of 
the development community. 

• While the climate community looks at science, scenarios and impacts, the de-
velopment community is concerned with priorities, assistance strategies, and 
reductions in vulnerability. 
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• Climatologists discuss ‘future adaptation’, ‘top-down perspectives’ and ‘global 
assessments’, whereas the development community is concerned about ‘base-
line adaptation’, ‘bottom-up perspectives’ and ‘national assessments’. 

Factor Scientist’s perspective Water manager’s perspective 

Identifying a 
critical issue 

Based on a broad understanding of 
the nature of water management 

Based on experience of a particular 
system 

Time frame Variable Immediate (operations) 
Long-term (infrastructure) 

Spatial resolution Defined by data availability or 
funding 

Defined by institutional boundaries 
or authorities 

Goals Prediction 
Explanation 
Understanding of natural system 

Optimisation of multiple condi-
tions and minimisation of risk 

Basis for deci-
sions 

Generalising multiple facts and 
observations 
Use of scientific procedures and 
methods 
Availability of research funding 
Disciplinary perspective 

Tradition 
Procedure 
Professional judgement 
Training 
Economics 
Politics 
Job risks 

Expectation Understanding 
Prediction 
On-going improvement 
Statistical significance of results 
Innovations in method/theory 

Accuracy of information 
Appropriate methodology 
Save money and time 
Protect the public 
Project jobs, agendas or institu-
tions 

Product 
characteristics 

Complex 
Scientifically defensible 

As simple as possible without 
losing accuracy 
Importance of context 

Frame Physical (atmospheric, hydro-
logic, etc.) conditions as drivers 
Dependent on scientific discipline 

Safety and well-being 
Profit 
Consistency with institutional 
culture, policy, etc. 

Nature of use Conceptual Applied 

 
There are some fundamental disconnects in the above list, disconnects that  

apply in both directions between the development and the climate variability 
communities. Disconnects of this type need to be addressed if the full potential of 
seasonal prediction, and of climate information in general, is to be achieved. 

It is not only with policy and development activities that language barriers 
exist, these barriers also being present in communication with expert sectoral fore-
cast users, including those working within commercial contexts. The following 
table summarises language/perceptual barriers with regards to water management 
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that need to be overcome to achieve maximum communication and information 
transfer and optimal decision making11: 

The list in the above table extends the issue from language representing a bar-
rier simply in terms of disciplinary outcomes and objectives to the institutional 
and cultural impediments built into language and communication. For example, as 
taken from the above table, any scientist might consider data issues primarily in 
terms of availability and funding while the water manager might be considering 
the specifics for a given system regardless of data availability. Similarly, while the 
scientist might be concerned with the statistical minutiae of predictions and their 
verification, the water manager would be most concerned with receiving and using 
accurate information that helps him/her meet his/her objectives. 

Any ideal delivery system would overcome all visual, language, cognitive and 
psychological barriers discussed in this section – word selection, word usage/ 
cognitive illusions, and disciplinary/cultural/institutional language use – and de-
liver information as required by each stakeholder ready for their processing 
directly into their particular decisions. To date, consideration of this objective 
within the context of seasonal to interannual prediction, an issue of far greater 
immediate importance than improving forecast quality per se, has been limited, 
and predictions continue in general to be provided in the eye of the climatologist 
rather than in the eye of the recipient. Focussed attention to the issue of communi-
cation is necessary if seasonal prediction is to deliver full benefit in all contexts; 
options raised frequently recently include the creation of ‘bridging institutes’ and 
the training of a cadre of communicators able to bridge the gaps between clima-
tologists and recipients. 

Acknowledgements The authors would like to thank Ms. Benedict Owuor (ICPAC) for kindly 
providing the original figure used to generate Fig. 11.1. 

 
 

________________  
11 Adapted from a personal communication from Pulwarty R (2003).  
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Chapter 12 
Building National and Specialised 
Climate Services 

Beneficial application of information, whether this information is based on historical 
data or on predictions, is the ultimate objective of any climate service. The definitive 
measure of success of a climate service is in the value that climate information 
imparts in its final use. In earlier parts of this book we have examined the science 
of seasonal to interannual prediction itself, whereas here we are exploring the 
ways in which that information might be used. By contrast with the scope for the 
earlier sections of the book the possible issues to be considered here are substan-
tial, and beyond any capability to provide a fully comprehensive treatment. In the 
previous chapter, there was an examination of structural and institutional issues 
requiring serious consideration in the establishment of climate services, whereas 
in this chapter and the following one there is a restricted, of necessity, review of 
some current activities in the field. It should be stressed that all examples in these 
two chapters follow the end-to-end model for applications rather than the integrated 
approach, a presentation consistent with the prevailing on-the-ground situation at 
the time of writing; in due course the balance between the two models may 
change. The two examples in this Chapter both relate to the building of climate 
services, in the first case by a Meteorological Service for a range of prospective 
users, and in the second by a University providing services mainly to the agricul-
ture and forestry sectors. Developing world countries are frequently well-placed 
geographically to benefit from the maximum prediction skills available, and in the 
first section the full process taken by the Moroccan Meteorological Service to develop 
climate services to support planning for agriculture and water, including at high 

_________________ 

Florida State University 

Direction de la Meteorologie Nationale (Morocco) 

John Bellow, Abdalah Mokssit, Jim O’Brien, and Rachid Sebbari  

John Bellow and Jim O’Brien

Abdalah Mokssit and Rachid Sebbari 

government levels, is described; thus in this example there are multiple users at 
different decision levels. A commercial approach for agriculture and forestry is 
described in the second section, where the potential user base is broad with a wide
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range of requirements that cannot be serviced on a one-to-one basis, and therefore less 
personal communication processes, in this case built around the Internet, are needed. 

12.1 The Genesis of Seasonal Forecast Needs in the Maghreb  

12.1.1 Introduction 

Around the world many countries are facing problems of maintaining water sup-
plies in the face of long lasting droughts and other hazards, such as floods, wind 
storms and heat waves. Across the Mediterranean region the imbalance between 
water resource and demand within linked sectors, such as agriculture, is often 
critical, although there are large disparities between countries. Hence there is in-
creasing need to provide seasonal climate predictions to enable countries to 
manage activities in sectors relevant for their development, such as agriculture and 
water resources, especially in cases when high impact anomalous climate events 
are expected. 

12.1.2 Seasonal Forecasts for the Maghreb Region  

Recent scientific achievements of the 20th century, based on enhanced observa-
tional capabilities, improved understanding of the physics of the climate system, 
and the advent of computer-based numerical climate forecasting of seasonal climate 
patterns, have enabled the international scientific community to begin predicting 
some components of the climate system for the next season, or even the next year, 
for some regions of the world. 

Two fundamental approaches are used to make seasonal predictions. The first is 
based on statistical techniques, such as regressions, canonical component analyses, 
singular value decompositions, etc. (see Chapter 7). This approach can provide a 
useful initial understanding of the mechanisms that generate climate anomalies. 
It is mainly based on the identification of potential predictors, such as El Niño or 
other sea surface temperature anomalies, and the use of appropriate statistical 
methods to formulate quantitative predictor(s)-predictand relationships which 
represent the prediction model. Prior to developing a statistical model for Morocco, 
precipitation indices were computed based on a regionalization study using rotated 
principal component analyses, which led to identification of five coherent over-
lapping regions. A quantitative comparison of calculated versus observed values 
of the predictand provides hindcast verification of forecast performance, i.e. 
assessment of the skill of the model. 
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The second approach is based on numerical modelling (see Chapters 4–6). The 
prediction model is developed from basic atmospheric and oceanographic circula-
tion theory rather than from past observations, as with statistical techniques. The 
basis of this approach is that tropical oceans and atmosphere behave as a coupled 
system. This approach is based on numerical modelling of the impacts of sea sur-
face temperature (SST) anomalies on the (mainly) tropical atmosphere. Models 
are now able to produce realistic simulations of the major large-scale features of 
ENSO and to provide predictions of the future state of ENSO from information 
about the current state of the ocean, and also of Moroccan rainfall and tempera-
tures. Additionally the two approaches, statistical and numerical modeling, can be 
combined to make predictions of Moroccan temperatures and rainfall through 
downscaling techniques (see Chapters 7 and 8). 

12.1.3 Seasonal Forecasting – The Al Moubarak  
and El Masifa Projects 

The Direction de la Météorologie Nationale (DMN) of Morocco has explored both 
statistical and dynamical approaches to making seasonal predictions of precipita-
tion in Morocco through two major projects, Al Moubarak (based on statistical 
models) and El Masifa (based on both dynamical and statistical models).1 These 
studies have led to adoption of a statistical model which uses SST anomalies over 
the tropical Pacific Ocean in October-November-December to make predictions of 
precipitation for February-March-April over Morocco. Also, the skill of the 
Arpège-Climat dynamical model from Météo-France has been evaluated, and this 
model is now running on the DMN supercomputer (an IBM) to make seasonal 
predictions every month using SST anomalies. 

Nevertheless one has to recall that the purpose of long range prediction is to 
implement a procedure, in this case end to end, that produces information end us-
ers consider helpful in decision making. To achieve this, the following steps are 
normally adopted by DMN, as was the case in the El Masifa and Al Moubarak 
projects: 

1. Produce a clear definition of the seasonal forecasting project objectives 

tions and understanding of each variable). 

_________________ 
1 The two projects, Al Moubarak and El Masifa, are part of the same programme: Al Moubarak.  

2. Define a realistic project framework in terms of deliverables; all spatial and 
temporal scales to be agreed between the National Meteorological and Hydro-
logical Service and the end user (all end users will have their own interpreta-

3. Complete preliminary studies to assess predictability in the targeted region 
while collecting all the necessary data: climate data, ocean data (including 
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ments, reanalysis data (Fig. 12.1). 

climate indices for all (Fig. 12.2). 

6. Conduct an a priori evaluation of potential prediction skills (Fig. 12.3). 

be obtained. 

Chapter 11).  

 

Fig. 12.1 Using a statistical technique known as Canonical Correlation Analysis (CCA) estimated 
patterns of correlation between two fields have been derived as an example of a preliminary 
predictability study. The diagram illustrates the most important pattern of correlation between 
Sea Surface Temperature anomalies in the tropical Pacific Ocean in the months October–
December (OND) and February–May (FMAM) rainfall across Morocco (shown in the top left-
hand corner, where the numbers represent correlations between regional indices of rainfall and 
the first rainfall canonical component). In this case SST Anomalies over most of the Pacific 
Ocean tend to be inversely correlated with Moroccan rainfall; the negative correlations in the 
Ocean are strongest in the region affected by ENSO. Overall there is a relatively high correlation 
between Pacific Tropical SST anomalies and late season rainfall at 4 months lag (the time lag is 
here measured taking the middle of the seasons considered) 

SSTs), data from existing numerical model simulations and prediction experi-

4. Determine climatologically homogeneous regions and define appropriate 

5. Determine sound project methodologies and procure tools as necessary (such 
as a Global Circulation Model from an advanced centre – this might be 
achieved in partnership with the advanced centre, in the Moroccan case Météo-
France, although some international/organizational funding might be required). 

7. Agree exchange and evaluation protocols with targeted end users. In these pro-
tocols, all conditions and limitations on use of the prediction bulletin needs to 
be carefully defined, and end user commitment to providing feedback should 

8. Design format of an end user information bulletin: ensure terminology used is 
understood by end users. Agree with end users dissemination method for the 
information bulletin (consider collaborative end user participation in producing 
the bulletin, as is the case in the Regional Climate Outlook Forums, see 
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Fig. 12.2 Five overlapping rainfall regions for Morocco, derived using rotated principal com-
ponent analysis based on precipitation data from many synoptic stations (circles). These regions 
were used in the El Masifa project 

9. Develop evaluation/verification procedures agreed with end users. 
10. Create a forum for communication with the end users. 
11. Hold capacity building workshops to improve the overall system, including 

communications between scientists and end users. 

Results of the preliminary predictability experiment presented in Fig. 12.3 were 
based on a 15-year Arpège-Climat experiment for the Maghreb region. In sum-
mary, key results from this experiment were: 

• The quality of predictions from the ARPÈGE model decreases eastward, from 
Morocco to Tunisia. 

• Statistical methods are more accurate for Algeria. 
• The Analogue method is better than other linear methods. 
• Tunisia is the country with lowest rainfall predictability (perhaps because of its 

distance from the Atlantic Ocean). 
• Prediction skill is generally higher for seasons than for individual months. 

To summarise this section, the operational end-to-end chain that goes from the 

 
Fig. 12.4. 
raw climate data to the final decision process in a given sector is illustrated in
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Fig. 12.3 Results of rainfall prediction hindcast experiments – differences between predicted 
rainfall terciles less observed terciles are shown based on direct grid point predictions from the 
Météo-France Arpège GCM on the left and following statistical downscaling of the model pre-
dictions on the right. The Regions are as in Fig. 12.2. In total 40 Arpège-Climat runs were used. 
The statistical downscaling used principal component analyses of predicted 500 hPa height fields 
across the period December 1978–November 1993, from which the ten highest-loaded components 

Fig. 12.4 Weather information “flow” in the decision process and value adding chain: Risk 
reduction areas  

were used in the multiple linear regression downscaling model to district monthly rainfall indices 
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There is also a need for a dialogue between climatologists and end users  
regarding the limits of uncertainty in prediction, not only within a climate context 
but also within an end user context (Fig. 12.5). 

 

Climate forecast uncertainty and management of agricultural applications 

12.1.4 Correlation Studies of the North Atlantic Oscillation, Sea 
Surface Temperature Anomalies and Moroccan Rainfall 

The North Atlantic Oscillation (NAO) is one of the atmospheric see-saws origi-
nally discovered, as was the Southern Oscillation, by Gilbert Walker. In this case 
it represents adjustments in surface pressure between the regions of Iceland and 
the Azores. When the oscillation is positive (relatively high pressure in the Azores 
region) then the winter Atlantic storms tend to take a more northerly track, bring 
rainfall to northern Europe but leaving southern Europe and Morocco relatively 
dry. These storms track further south, bring above-average rainfall to Morocco, 
when the oscillation is negative (relatively low pressure in the Azores region) 
(Fig. 12.6). 

Fig. 12.5 
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Fig. 12.6 Schematic of the positive (left) and negative (right) phases of the North Atlantic  
Oscillation (NAO) (adapted from Martin Visbeck and Heidi Cullen)  

North Atlantic and Southern Oscillations with the Arpège-Climat model at various 
lead times are shown in Fig. 12.7. Correlations remain positive between predicted 
and observed values of the Southern Oscillation Index for several months, whereas 
those for the NAO index become zero almost immediately. Unfortunately these 
 

Fig. 12.7 Lagged correlations between observed and predicted values of the North Atlantic and
Southern Oscillations indices based on experiments with the Arpège-Climat model 

Results of numerical experiments to predict the two indices representing the 
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model experiments, as with many others, suggest that the predictability of the 
NAO index, together with onward prediction of Moroccan rainfall, is limited by 
this approach. More promising for prediction of Moroccan rainfall are approaches 
through the Southern Oscillation and/or Pacific Ocean sea surface temperature 
anomalies. 

Correlations between the Arpège-Climat model ensemble mean and observed 
seasonal rainfall over Morocco reach about 0.4, predictability that presumably 
originates more in the South Pacific Ocean than it does in the North Atlantic  
Ocean (Fig. 12.8). 

 

Fig. 12.8 Cross-correlation between observed precipitation values and the ensemble mean of three 
GCM ECHAM4 runs over 1961–1993 during February, March and April, with values around 0.4 
for Morocco 

12.1.5 Operational Seasonal Forecasts Using Global Climate 
Model Runs  

The main method used in Morocco for prediction is statistical downscaling of 
numerical ensemble predictions from the Arpège-Climat model. In summary, the 
ensemble approach adopted is as follows: 

 

323 12 Climate Services 



 

• Nine runs (ensemble members) are started from different initial atmospheric 
conditions, and forced with the same predicted SST anomalies, created by mak-
ing predictions for the 5 coming months using a simple multiple regression 

• A further nine ensemble runs are started from the same initial atmospheric con-
ditions but forced with different predicted SST anomalies, created by adding 
small perturbations to the latest observations and then employing the same em-
pirical model as described in the previous bullet. 

• Initial atmospheric conditions are those for the last day of each month and for 
each of the previous 8 days. 

access to global analyses – this is not expected to cause any severe degradation 
in the quality of the predictions. 

12.1.5.1 Direct Model Products 

Two main direct outputs are available from the model runs (i.e. the two sets of 
nine members). The first is a deterministic prediction based on the ensemble mean 
of the nine members initialized with different atmospheric conditions but the same 
SST anomalies (Fig. 12.9a). 

The second direct model product is a probability prediction of rainfall based on 
all 18 ensemble members (Fig. 12.9b). 
 

Fig. 12.9 (a) Nine-member ensemble mean deterministic prediction for April-May-June (AMJ) 
2005 using February 2005 SSTs. The scale is calibrated in standard deviations. Moroccan rainfall 
in general was expected to be close to normal according to this prediction. (b) Probabilities that 
rainfall will exceed the average in AMJ 2005 according to the full 18-member ensemble: north-
ern parts of Morocco perhaps have a better than 50% chance of seeing rainfall above average. 
Discrepancies in the two forecast maps stem from the use of different number of members  
(9 versus 18) 

•  In practice predictions are substituted for analyses at DMN since DMN has no 

model in which the predictands are SST anomalies for the previous 2 months. 
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12.1.5.2 Spatial Downscaling to Regional Scales 

There are three possible methods for spatially downscaling forecast information 
from global models to scales of interest to end users considered in Morocco. Two 
statistical approaches, regressions and development of analogues, have been as-
sessed; the third, use of high resolution regional climate models, has not yet been 
adopted in Morocco. As the statistical approaches are based on 18-member  
Arpège-Climat model ensemble predictions, both deterministic (from the ensemble 
mean) and probabilistic (derived from all ensemble members) downscaled rainfall 
predictions are possible. Both statistical methods have been evaluated with simu-
lations of nine member ensembles using the three European models that formed 
the DEMETER project and five homogeneous rainfall districts in northern  
Morocco (Fig. 12.2). These techniques will be applied operationally at DMN 
shortly.  

12.1.5.3 Statistical Downscaling: Regression Method 

The regression method used is based on principal component analysis of atmos-
pheric fields including sea level pressure, 500 hPa heights and predicted rainfall. 
Multi-linear regressions have been created between observed district rainfall (over 
20 synoptic stations over the period 1961–90 were used, see also Fig. 12.2) and 
the various atmospheric principal components. Loadings for these principal com-
ponents are then calculated from Arpège-Climat model predictions, after which 
predicted district rainfall totals are derived from the regression equations. This 
regression method provides 18 predictions for each regional precipitation index on 
which to base a probability prediction. 

12.1.5.4 Statistical Downscaling: Analogues Method 

The analogue method works by searching for large scale patterns of a variable 
(such as sea level pressure or 500 hPa heights) in past years that are similar to pre-
dicted patterns of this variable from the Arpège-Climat model. Similitude is 
computed through a Euclidian distance or through correlation coefficients calcu-
lated over a selected number of principal components. The observed precipitation 
of each analogue year is then considered as the prediction. The number of predic-
tions available from the analogue method is 18 times the number of principal 
components used, from which both deterministic and probabilistic forecasts may 
be calculated. Examples of the spatially limited direct model deterministic and 
probabilistic predictions are illustrated in Fig. 12.10, which also demonstrate
the potential additional detail available from downscaling when compared to
Fig. 12.9.  

325 12 Climate Services 



 

12.1.6 Calibration of Model Precipitation Indices 

As an alternative to downscaling it is possible to use direct numerical predictions 
after these have been recalibrated (as in Fig. 12.10). The approach adopted in 
Morocco has been developed over the period since 1998 using a variety of differ-
ent ensemble systems, beginning with three members in 1998 and extending to 18 
members now; based on these ensembles, outputs can be provided in both deter-
ministic (anomaly) or probabilistic (tercile) formats. In order to calibrate the 
model, in which means and standard deviations of specific variables may differ 
from those in the real world, it is necessary to derive reference climatologies for 
the model as well as for the observations. Model climatologies have been gener-
ated from retrospective runs performed in the same ensemble configuration as 
currently used in operations (notably for the SST statistical forecast scheme), and 
using the same number of ensemble members, across the 1979–1993 period. 
Observed climatologies have been based on either the ERA-15 data set or, for 
precipitation, on the Xie-Arkin data set. 

The starting point for a deterministic forecast is the ensemble average, from 
which the downscaled normalized anomaly is converted to an anomaly recali-
brated in terms of observational distributions through the following process (see 
also Chapter 8, Section 8.3). First, the average anomaly Am from the model is 
calculated: 

Am = F - Fclim, 

 

Fig. 12.10 (a) Deterministic precipitation predictions for two overlapping seasons over 
Morocco, May–July (MJJ) 2004 derived directly from Arpège-Climat model predictions. The 
scale is calibrated in standard deviations. Northern Morocco is likely to receive a little below 
normal rainfall. (b) As in (a), but for probabilistic predictions. The prediction suggests there is an 
increased likelihood of below-normal rainfall over northern Morocco. The scale is probabilities 
of exceeding normal 
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where F is the ensemble average forecast for month M and Fclim is the average 
forecast for the model climate reference experiments for the same month. Second, 
from this model average anomaly a normalized model average anomaly index, Im, 
is computed: 

 

Im= Am/σclim 

where σclim is the interannual standard deviation for the model climate reference 
experiments for that month. Third, the recalibrated predicted observed average 
anomaly, Ao, is calculated:  

Ao = Im * σobs 

where σobs is the interannual standard deviation of the observations for that month; 
Ao is referred to as the ‘anomaly’ in the model product. 

In the next stage seasonal anomalies Ao(season) and Im(season) are calculated as sim-
ple arithmetic averages Ao(m) and Im(m) across three consecutive months. Next a 
student t-test is performed to identify locations where anomalies differ signifi-
cantly from model climatology anomalies: 

t = (Am/σintra)*√N 

where σintra is the within-ensemble standard deviation for the month or the season, 
N is the number of ensemble members and t is the so-called t value. Finally, terciles 
are calculated assuming a Gaussian distribution, where for the below normal ter-
cile Im < −0.43,2 for the normal tercile (−0.43 < Im < +0.43), and for the above 
normal tercile Im > +0.43. 

An example of the final prediction product used in the bulletin sent to end users 
is given in Fig. 12.11. 

Subsequent to El Masifa, a number of prediction products from various model-
ing centres have been used to compile the current experimental prediction 
products Bulletin. These include the Bulletin El Masifa dynamical forecast from 
ARPEGE-Climat and the statistical forecast of SST anomalies, the NAO forecasts 
from CIMMS, and model predictions from ECMWF, the UK Met Office, the 
ECHAM3 dynamical model, the IRI and NCEP products. An example of the Sea-
sonal Prediction Bulletin produced under the Al Moubarak programme and 
distributed every month since July 1996 within Morocco is provided in Fig. 12.12. 

_________________ 
2 The value 0.43 (of a standard deviation) corresponds to 16.5% of the Gaussian distribution, 
hence (−0.43 < Im < +0.43) corresponds to 33% of the distribution.  
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12.1.7 Generating Interaction and Collaboration with Users 

The most important step in developing a service based on seasonal predictions is 
to identify key sectors and decision makers that could benefit from seasonal fore-
casts in their management processes and to get in touch with potential users. The 
relationship with users could be set up in many ways but it is preferable to have 
collaborative relationships instead of commercial relationships. As an example, 
for Morocco the key sectors are high ministerial authorities, hydrological services 
and agriculture services. 

 

of 1999–2000, and based on the five districts illustrated in Fig. 12.2. Predicted precipitation 
anomalies are categorized as “Above Normal” (Humide), “Near Normal” (Normal), and “Below 

Fig. 12.11  An example of a prediction from the El Masifa project distributed during the winter 
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Direction de la Météorologie Nationale 

Centre National de Recherches Météorologique 

Programme El Moubarak 

Bulletin de prévision saisonnière des précipitations au Maroc 
Echéance : Octobre à Décembre 1999 et Janvier 2000. Issue le : 4/10/99 

Introduction :  
Nous présentons-ci-après un ensemble de prévision saisonnière issues de centres Météorolo-
gique mondiaux différents et qui concerne le Maroc. Elles sont toutes à titre expérimental. La 
DMN n’assume aucune responsabilité sur les décisions prises sur la base de ces prévisions. 

Prévision issue du CIMMS (université d’Oklahoma - USA -) : 
Les prévisions du CIMMS sont élaborées à partir du mois de Novembre et portent sur le mois 
de Décembre, Janvier, Février et la saison Mars-Avril. 

Prévision dynamique issue d’El Masifa: (base : Septembre 99) 
Le modèle ARPEGE-Climat prévoit pour la moitié nord du Maroc (Régions Sahariennes ex-
clues) ce qui suit: 

Oct 99 Nov 99 Déc 99 Jan 2000 
Normal Humide Sec Normal 

   
Oct-Nov-Déc (OND 99) Nov-Déc-99 - Jan 2000 

Humide Normal 

Prévision issue de l’U.K Met-Office: (base: Septembre 99) 
Pour OND: Précipitation autour de la normale sur tout le Maroc légèrement au-dessus 

de la normale sur les provinces du sud. La prévision issue de ce modèle 
pour cette saison n’est pas assez fiable. 

Prévision issue du CEPMMT (i.e. ECMWF in French): (base: Septembre 99) 
Pour OND: Le modèle ne présente pas de signal significatif sur le Royaume. 

Prévision issue d’autres modèles climatiques: (base: Septembre 99) 
Pour OND: Dans l’ensemble le deux modèles ECHAM3 et CCM3 prévoient de condi-

tions au-dessous de la normale sur les côtes atlantiques et des conditions 
normales partout ailleurs. 

   
Conclusions:   
      L’analyse de sorties de l’ensemble de modèles, à part le modèle ARPEGE-Climat, montre 
que la saison Oct-Nov-Déc sera en général Normale à Sèche sur le Maroc. Le modèle AR-
PEGE-Climat prévoit quant à lui un état légèrement humide sur la moitié nord du Royaume. 

Fig. 12.12 A sample page from the Al Moubarak project Forecast Bulletin that corresponds to 
the illustrations in Fig. 12.11 
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Collaboration should focus on the following objectives: 

• Evaluate user needs 
• Develop and demonstrate applications which address practical user needs 
• Establish interactive dialogue with primary users 
• Develop data/information delivery systems 

Of course, in Morocco the agricultural and hydrological sectors are leading ex-
amples with which to develop collaborations. This could be done mainly through a 
Memorandum of Understanding (see example in Appendix, Section 12.3), in 
which the key elements to consider are: 

• Experimental basis 
• Seasonal forecast products and their presentation (e.g. Seasonal Forecast Bulletin) 
• Target areas 
• Delivery system 
• Need for feedback: user evaluation of the forecasts 

To ensure the usefulness of the Seasonal Forecast Bulletin, the information in 
the Bulletin should fulfil end user information needs. The producer of the seasonal 
forecasts should assess end user needs and propose a product which meets these 
needs and is easy to interpret. The forecast producer should consider the precise 
information requirements, as well as the appropriate time and space scales, as 
shown below in Table 12.1 for the agriculture sector. 

The Bulletin producer should also explain to end users the uncertainty of sea-
sonal forecasts. This could be done through explaining the use of the product. It is 
also very important to show the added value that the end user can benefit from. 
One way of estimating this information is by using skill scores such as the cost-

on the quality of the forecasts, the choice of probability threshold, the event, the 
user, and the manner in which decisions are made and the type of decisions being 
made (e.g. the same forecast may mean something very important for a wheat 
grower and very little to a citrus grower because of differences in crop phenology, 
technology employed, etc.). 

Activity Information needed Time and space scales 

Cultivar selection Average temperature, total rainfall Season, field 

Campaign monitor-
ing, seeding period 

Minimum temperature, freezing days, 
average temperature, total rainfall 

1 day, month, season, field 

Operations and man-
power management 

Minimum temperature, freezing days, 
average temperature, total rainfall 

1 day, month, season, field 

 

Table 12.1  Time and space scales associated with various agricultural practices that might be 
assisted by a climate service 

loss model, or any other score presented in Chapter 10. Ultimately, value depends 
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Ensemble prediction systems have been shown in many studies to improve the 
quality of seasonal forecasts when compared to deterministic systems. Further, it 
is important to use as many seasonal forecasts as possible to produce a multi-
model ensemble, many of which are available through the Internet sites of mete-
orological centres. Each forecast should be weighted appropriately, perhaps using 
the skill of the model used to make the prediction. 

The quality of probabilistic forecasts of regional Moroccan winter precipitation 
with the three models of Météo-France, the UK Met Office and ECMWF has been 
evaluated in the framework of the DEMETER project. The DEMETER results 
indicate that using multi-model ensembles is a pragmatic approach to the problem 
of representing model uncertainties in seasonal to interannual forecasts: probabil-
ity forecast skill scores based on multi-model ensembles are generally higher than 
those from any single-model ensemble. 

12.1.7.1 Presentation and Delivery of Information 

Following discussions with end users the final seasonal forecast product may be 
defined. It has been decided from discussions between DMN and Moroccan Hydro-
logical and Agricultural Services to provide predicted regional rainfall indices in 
terciles representing dry, normal and wet cases on a monthly basis. As a result, the 
Bulletin as illustrated in Figs. 12.11 and 12.12 is now issued to end users and sent 
mainly by mail at the beginning of each month. 

12.1.7.2 Benefiting from Seasonal Forecast: Some Success Stories at DMN  

Evaluation indicated that the Bulletins provide useful information for many users. 
Dissemination of a prototype experimental seasonal forecast for higher-skill areas 
is already operational in Morocco for many users, especially high authorities, the 
hydrological and agricultural services. An external evaluation has been done by 
the hydrological service that demonstrated that the predictions are useful and can 
be used in many cases to make strategic decisions, such as selling water to farmers 
for irrigation, planting trees in forests, etc. 

The usefulness of seasonal predictions is indisputable. This climate information 
can be utilised by many users to assist in difficult decisions, such as those con-
cerning the amount of water available to produce hydro-energy, for supply to the 
agriculture sector and to communities, or for water management in general, so as 
to be prepared in case of droughts or floods. Such decisions are becoming more 
important because of the continual increase of water demand from all vital sectors, 
such as agriculture, energy power production, industry, etc.  
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Examples of the use of seasonal information in Morocco in the water resource 
sector include two forecasts utilized in the management of the Al Wahda Dam. In 
order to inaugurate the dam, the reservoir had to be filled. A large rain event was 
forecast on the medium range timescale: this information was used to set the inau-
guration date. A large amount of rain indeed happened and the dam could be thus 
inaugurated, in January 1997. Once the reservoir was full, the decision to generate 
hydroelectric power, by activating the turbines, had to be taken: this decision was 
eventually based on seasonal forecast. 

For the Basin Management Agency (BMA) a decision to supply water to 
ORMVA (the agricultural office) to sell onwards to farmers for irrigation was also 
taken using seasonal forecast information. During the winter of 1998, the launch 
of a reforestation operation in the middle Atlas Mountains (1,200,000 trees 
planted) was based upon seasonal forecast information. 

12.1.7.3 Feedbacks from Users 

In order to develop seasonal prediction services it is necessary to consider product 
evaluation/verification. Evaluation should be done not only by the producer to 
demonstrate the quality of the forecast, but also by the end user to determine the 
benefit (value) gained from the seasonal forecast information. Some evaluation 
results for end-users in Morocco follow.  

External evaluations were performed by the Ministry of Public Works, Agri-
culture and Environment. In this framework two main interesting results emerged:  

• Users have their own evaluation/assessment approaches, which may differ sub-
stantially from the standard climatological ones. 

• Users own perception of the forecast information plays an important role in 
such an evaluation/assessment. 

12.1.8 Conclusions and Perspectives 

In summary, based on both internal and external evaluations, it has been demon-
strated that the El Masifa forecasts are improvements over climatology with 
46–50% good forecasts as compared to 33% for climatology (see Table 12.3). 
Curiously, the assessment carried out by the Ministry of Agriculture and Public 
Works shows that the percentage of good seasonal forecasts (i.e. | F – O | = 0) is 
higher at lead time 3 months (i.e. M+3) than at shorter lead times (see Table 12.2). 

There is still a need for better and more robust models used for seasonal fore-
casts for the Maghreb region: the El Masifa project has certainly contributed to 
model improvements and has also given the opportunity to install a forecast system 
which is now a useful asset for DMN.  
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Table 12.2 Seasonal forecasts assessment performed by the Moroccan Ministry of Agriculture 
and Public Works mostly based on their perception of how the rainfall was predicted. The first 
column, | F – O |, represent the “distance” of the forecast from the observations; a value of 0 
(first row) means that the forecasts fall in the same category as the observations, hence this is 
considered a good forecast. The following four columns, M+1 to M+4, indicate the lead time in 
months. Note that the sum of each column is 100%  

Ministry of Agriculture and Public Works 
Forecast M+1 M+2 M+3 M+4 

| F – O | = 0 29% 54% 63% 22% 
| F – O | = 1 41% 26% 28% 60% 
| F – O | = 2 30% 20% 9% 18% 

Table 12.3 Summary of seasonal forecasts assessment performed by both the Moroccan Minis-
try of Agriculture and Public Works (second column) and the Direction de la Météorologie 
Nationale (third and fourth columns). Values as in Table 12.2, but now the lead times are con-
densed in a single value   

Forecast Ministry sample DMN sample DMN-region IV sample 
| F – O | = 0 39% 46% 50% 
| F – O | = 1 34% 33% 39% 
| F – O | = 2 27% 15% 11% 

In order to improve on these achievements, several aspects of the seasonal fore-
casting system of DMN will be looked at in the near future:  

• Introduction of probabilistic predictions via an ensemble prediction system 
• Evaluation of skill over Morocco when using other GCMs 
• Implementation of a coupled GCM-ocean model 
• More research in downscaling and regional modelling 
• Evaluation of seasonal forecasts for specific applications via case studies to 

respond user needs (e.g. in the agricultural and water resource sectors) 

12.2 Mitigating El Niño/Southern Oscillation (ENSO) Effects  
in the Southeastern USA for Agriculture and Wild Fires 

The Southeast Climate Consortium (SECC) provides climate services to the 
Southeastern United States and has grown out of its early inception as the Florida 
Climate Consortium (FLC), comprised of Florida State University, University of 
Florida, and University of Miami. The consortium has expanded with the support 
of the Regional Integrated Sciences and Assessment (RISA) and funding from the 
Risk Management Agency (RMA) and the Cooperative State Research, Extension, 
and Education Service (CSREES) of the United States Department of Agriculture 
to include Auburn University, University of Alabama at Huntsville, and the 
University of Georgia. The scope of consortium activities was also expanded from 
services for agricultural producers to encompass the needs and interests of forest 
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managers, state and local policy makers, and water resource management agen-
cies. The SECC links the resources of the Alabama, Florida, and Georgia state 
climate offices and researchers in the biophysical and social sciences at the par-
ticipating universities to apply research based information about seasonal climate 
variability to the needs of diverse stakeholders throughout the region. The SECC’s 
mission is ‘to use advances in climate sciences, including improved capabilities to 
forecast seasonal climate, to provide scientifically sound information and decision 
support tools for agriculture, forestry, and water resources management in the 
Southeastern USA.’ 

12.2.1 Delivery of Climate Services 

Previous studies have suggested that the development and delivery of seasonal 
climate forecasts could be beneficially applied to the management process in agri-
culture (Lamb 1981; Sonka et al. 1987; Stern and Easterling 1999; Hansen and 
Jones 2000). The actual utility of the forecasts is impacted by the specific agricul-
tural operation under question and both the flexibility and the willingness of the 
decision maker to consider the forecast information. Additionally, the forecast 
skill, the timeliness of the forecast with respect to when meaningful adaptations 
can be made, and the ease with which decision makers can acquire and understand 
the forecast, all contribute to the benefits that a forecast might produce. Hansen 
et al. (2004) suggest that a clear understanding of forecast skill by growers is of 
particular concern because opportunities to benefit from forecasts of good agricul-
tural conditions as well as to prepare against forecast poor agricultural conditions 
will be missed if forecast accuracy is not understood. Both forms of missed oppor-
tunities may further serve to damage the credibility of the forecasting organisation 
and reduce the likelihood of future forecasts being fully considered. 

12.2.1.1 ENSO Signal in the Southeast 

Climate forecasting in the Southeastern United States derives most of its skill from 
teleconnections with sea surface temperatures in the equatorial Pacific, and the 
SECC has emphasized the use of the El Niño/Southern Oscillation (ENSO) index 
defined by the Japanese Meteorological Agency (JMA) in its forecasts. With this 
index, the monthly mean sea surface temperature anomalies are averaged for the 
area 4°N–4°S and 150°W–90°W. The index is a 5-month running mean of spatially 
averaged SST anomalies. Where index values are 0.5°C or greater for 6 consecutive 
months (including October, November and December), the ENSO phase for October 
through the following September is categorized as El Niño, La Niña (index values 
equal or less than −0.5°C), or neutral (between −0.5°C and +0.5°C). Previous  
research has demonstrated that ENSO exerts a substantial influence (Fig. 12.13) 
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Fig. 12.13 Temperature anomalies in the Southeastern United States due to the two ENSO 
phases, El Niño (top) and La Niña (bottom)  
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whereby El Niño years tend to be cooler and La Niña years somewhat warmer 
between October and April (Kiladis and Diaz 1989; Sittel 1994). There is substan-
tial spatial variability in this signal however, with a reduced amplitude in the 
southern Florida peninsula. Impacts on precipitation are also spatially variable, 
with rainfall greater than climatology generally observed during those months 
(Fig. 12.14) under the influence of El Niño conditions and reduced rainfall when 
La Niña conditions predominate (Sittel 1994). 

In examining the impact of ENSO phase on regional and seasonal climate vari-
ability, historical temperature, and precipitation records from the NOAA national 
climate data center (NCDC) were categorized into El Niño, La Niña, or Neutral 
phases using the JMA definition given above. The presence of significant variabil-
ity in seasonal climate that can be explained by shifts in sea surface temperature 
therefore provides the underlying basis for the development of climate services by 
the SECC. 

12.2.1.2 Team Approach to Developing Climate Services 

The SECC has emphasized a participatory approach with users of climate infor-
mation to generating research questions and developing applications for climate 
information and climate forecasts. Ideally, the SECC acts as a nexus to bring to-
gether a range of stakeholders, including climate scientists and forecasters, 
researchers and managers of natural resources, decision and policy makers, and 
Extension agents and producers, and coordinates the development, formulation, 
and delivery of climate information appropriate to the range of stakeholder groups. 
This approach considers the framework of Pielke and others (Pielke et al. 2000) by 
explicitly including representatives involved in the generation of information/ 
forecasts, those involved in the communication and dissemination of the informa-
tion, and the end users at local and regional scales. 

In practice, partnerships with stakeholders involve the SECC, the state Co-
operative Extension services, who emphasize the summation and communication 
of current knowledge and advice to producers and resource users at the county 
scale, the state climatologists and climate offices who are considered official 
sources of climate information for state and local governments, and topic specific 
focus groups or advisory boards comprised of representatives of industry, produc-
ers, and Extension. These collaborations were initiated early enough to elicit 
potential end-user preferences for media and format of presentation and have con-
tributed directly to early and rapid adoption by some user groups. These results 
also suggest that information presented through the Internet and Extension bulle-
tins is a preferred way for stakeholders to access climate information in this 
region. End-users have limited time and interest in considering the full range of 
complexity and detail that can be communicated through terciles, deciles, or box- 
and whisker plots, and these early findings indicate that simple presentations, such 
 

336 J. Bellow et al. 



El Niño (top) and La Niña (bottom) 
Fig. 12.14  Precipitation anomalies in the Southeastern United States due to the two ENSO phases, 
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as the probability of exceeding a critical threshold, are greatly preferred, and that 
in many cases this information should be presented in comparison to historical or 
reference conditions to provide meaningful context.  

The development of individual services or forecasts arises on a case by case  
basis as the outcome of interactions between SECC climate Extension specialists 
and other stakeholders. Climate Extension specialists are able to introduce to a 
group the current ‘state of understanding of climate variability and climate fore-
casting’ and initiate discussions about ways in which stakeholders’ activities and 
decisions might be influenced by this knowledge. Stakeholders are able to identify 
their strategic management options that are influenced by variability in climate 
conditions and begin to identify the characteristic of a climate service product that 
could support their decision making process. Lead time and seasonality of the in-
formation, the accuracy or uncertainty in the information that would be acceptable, 
and the actual type of information that will support adaptive management, are 
some characteristics that stakeholders have provided that has subsequently been 
incorporated into prototype forecast products. Climate specialists and researchers 
then use this information from stakeholders to assess the full potential for develop-
ing a product with the desired attributes; whether the forecast product will have 
skill, if the available data supports delivery at the timescales and frequency that is 
required for successful adoption, and how the resultant forecast can be delivered 
and communicated to potential end users. Prototype decision support tools or fore-
casts are developed and shared with stakeholders, who are able to further contribute 
to its refinement by identifying weaknesses or areas for enhancement. Refined 
prototypes are ultimately incorporated into the AgClimate.org web site, where they 
become available to a broad audience. The AgClimate web site has a comments 
mechanism that allows additional user feedback to be solicited and incorporated 
into the products on an ongoing basis. 

12.2.2 Examples of Applied Forecasts 

12.2.2.1 Wildfire Forecast 

The seasonal variation in temperature and precipitation across the southeast dra-
matically influences the potential for forest and grass fires, a phenomenon that 
historically has been determinative in the vegetation and ecology of the region at a 
landscape scale. The work of Brenner (1991) and Jones et al. (1999) in the south-
eastern USA, and that of Swetnam and Betancourt (1990) in the western United 
States, have shown that the ENSO phase is a significant predictor of the risk of 
wildfires occurring. However, in the Southeast, increasing development and popu-
lation pressures, prescribed burning, and the conversion of forest and scrub lands 
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have served to diminish the signal in terms of actual number of acres burned. In 
areas with extensive development and conversion, the occurrence of anomalously 
wet or dry conditions combined with cooler or warmer temperatures may not have 
the same implications for fire risk as in those areas with greater forest cover. Fur-
thermore, due to differences in seasonal climate and plant phenology, absolute 
changes in precipitation or temperature levels are not directly related to changes in 
seasonal fire risk, as wildfire risk is magnified when the two act in concert.  

Through interaction with regional foresters and land managers, a drought index 
widely used and accepted by stakeholders for assessing fire conditions in forests 
was chosen and an investigation made to examine the potential impacts of ENSO 
phase on this index rather than on precipitation and temperature alone. The KBDI, 
or Keetch-Byram Drought Index (Keetch and Byram 1968), is a cumulative index 
wherein the KBDI value for yesterday is modified by the maximum temperature 
and precipitation values for the past 24 hours to develop a new KBDI value for 
today. The value of KBDI for a location can then be used by managers and forest-
ers, as well as state and local governments, to assess the fire risk in their areas. 
The values of KBDI range from 0 (saturated soil and fuel) to 800 (extremely dry 
soil and fuel). Four threshold values for KBDI, 450, 500, 550, and 650, were cho-
sen to represent the categories of risk of interest to managers. The approach was to 
examine the range of KBDI values for the historic period of record 1948 through 
2004 using National Weather Service Cooperative Observer Network (TD3200) 
data, which provide daily maximum and minimum temperatures, and daily pre-
cipitation totals. Because fire danger in the southeast is confined climatologically 
to the January through July period, the study emphasized monthly anomalies in 
the location specific KBDI values. During each of the years the evolution of KBDI 
values across the region was examined relative to the JMA ENSO index value. 
Examination of monthly KBDI values across the region indicated that fire danger 
is influenced by ENSO phase, with substantially increased risks during the La 
Niña or ‘cold’ phase and anomalously lower risks during the El Niño or ‘warm’ 
phase.  

The next step is to develop this relationship into a probabilistic forecast for 
each of the threshold values at the county scale. Because of the limited number of 
ENSO events in the historic record, a bootstrapping approach was used to resam-
ple the historic record on a monthly basis. The bootstrap data set consisted of 
1,000 years of resampled data for each station, and provided 250 years of climate 
data for each ENSO phase and for climatology (all years). The forecasts for each 
month at a location were then developed by combining the current KBDI condi-
tions at the station with each of the resampled years from the appropriate ENSO 
phase. The probability distribution of the occurrence of each of the four threshold 
KBDI values for 7 days or more during the month was produced in this fashion. 
The resultant forecast was mapped to a county scale map of the three States for 
each threshold value, moderately dry (450), abnormally dry (500), severely dry 
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(550), and extremely dry (650). Probabilities were also color coded so that in-
creasingly intense and darker reddish-brown colors were associated with increased 
probabilities of high KBDI values (Fig. 12.15). 

Fig. 12.15 Keetch-Byram drought index (KBDI) applied to the southeast United States using 
current conditions and an ENSO based precipitation forecast. KBDI drought forecasts are 
updated monthly with a maximum 6 month lead time 
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Finally, the forecast probability was compared to the probability for the central 
60% of climatological values for all years, and counties where the probability of a 
threshold KBDI value being exceeded were marked with a plus sign ‘+’ while 
counties where the probability for a threshold was found to be in the lower 20% 
tail were marked with a minus sign ‘-’. The forecast has been extensively re-
viewed by a broad range of stakeholders and is produced on a monthly basis 
during January through July. The tool (Fig. 12.15) can be viewed at http:// 
agclimate.org. Users choose the monthly forecast period of interest from January 
to July and are provided with KBDI risk forecasts for four critical thresholds rele-
vant to the southeast USA. Where high risk conditions are observed, managers 
may be able to reallocate resources and personnel or take preventative measures 
such as prescribed burning to manage the risk. 

12.2.2.2 Yield Risk Tool 

The earliest example in the SECC of using climate information to generate applied 
forecasts is for crop yield risk. The ENSO signals on precipitation and tempera-
tures using the JMA index classifications suggest possible influences of climate 
anomalies on crop yields, and previous studies (Jones et al. 2000; Hansen 2002) 
have provided evidence supporting the hypothesis that crop yields show ENSO 
mediated anomalies. Participatory research on potential uses of climate informa-
tion indicated that producers might respond to predicted variability in seasonal 
precipitation and temperature by altering the planting dates of their crops. Changes 
in planting dates may enhance the probability of greater crop yields either by 
avoiding suboptimal conditions early or late in the season or by capitalizing on 
expectations of good growing conditions. Crop simulation models, such as the 
DSSAT 4.0 (Jones et al. 2003) family of models, use daily weather variables 
(maximum and minimum temperature, daily total precipitation, and total incident 
solar radiation), previously validated parameters for individual crops and crop 
varieties, and location specific soil attributes, to predict crop performance and 
yield by simulating physiological processes driven by environmental conditions. 
Because these models have been relatively well validated within the southeast, as 
well as under a broader range of conditions, they provide a basis to examine the 
relative impacts of climate variability on crop yield.  

The National Climate Data Center (NCDC) cooperative observer network data 
(TD3200) was used to drive crop simulations at the county scale during the his-
toric period of record, 1948–2004. During the nominative cropping seasons for 
peanuts, cotton, tomato, and potato, yields simulations were made using the three 
dominant soil types within a county, at successive planting dates from the earliest 
possible dates to the latest for each year of the record. Using the historic JMA 
ENSO index, simulated yields were classified by ENSO phase and averaged 
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to their specific situations: crops, location, soil type, as well as average yields seen 
on their specific fields. They can then look at the expected impacts of changes in 
planting date based on the current ENSO forecast. Through further interactions 
with stakeholders across the region, the tool was modified to permit users to indi-
cate availability of irrigation, to specify crop varieties where early or late cultivars 
exists, and fertilization levels for some crops.  

The yield forecasts are presented as probabilities of achieving specific yield 
levels or of exceeding specific yields given the users proposed planting date and 
the current ENSO phase. In Fig. 12.16 a yield forecast for peanut yields in 
Mitchell County, Georgia is provided. After selecting the appropriate county, the 
user has also chosen Norfolk loamy sand from a choice of three dominant soil 
types for the county. The forecast yield distribution assumes a long-term yield of  
2,400 lb acre−1, a 14 May sowing date, and that the current ENSO phase is  
El Niño. A grower may use this tool to explore the impacts of the ENSO phase on 
changes in crop performance associated with alternate planting dates with a spe-
cific county and soil. The information may further support variety selection, field 
allocation and other strategic management activities.  

Fig. 12.16 Probabilistic crop yield forecast for Mitchell county, Georgia for Georgia Green  
variety peanut assuming a 14 May sowing date and a long term mean yield of 2,400 lbs acre−1 

 

within planting date and soil type. The completed yield values for relevant coun-
ties were incorporated into a simple tool that allows users to customize the output 
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12.2.2.3 Chilling Units and Growing Degree Day Tools 

The observed impacts of ENSO on winter temperatures and freeze events natu-
rally suggest a possible role for climate information in managing production risks 
associated with the production of perennial crops in the Southeast. Working with 
fruit breeders, growers, horticultural researchers, and fruit Extension agents, re-
search was undertaken to examine the impacts of ENSO phase on winter chill 
accumulation throughout the region. Chill accumulation or chilling is a measure of 
time spent at or within certain temperature ranges, for example, hours during 
which the temperature is below 45°F. Different crops have specific temperature 
ranges that are most efficient in permitting chilling and eventually overcoming 
dormancy. Sufficient accumulation of chilling promotes improved yields of fruits, 
better growth by the plants, and more synchronous timing of harvests, while insuf-
ficient chilling tends to reduce fruit quality and yields and distorts both plant 
growth and the timing of development stages of the crop such as maturity dates of 
fruits. Growers and Extension agents believe that knowledge about expected chill 
accumulation may support decisions about marketing strategies, horticultural 
management such as pruning and fertilization, and applications of oils or other 
approaches to overcome insufficient chilling. 

The TD3200 data set from NCDC was used to develop daily measures of chill-
ing for a variety of perennial crops for the period 1948 through 2004. Totals for 
biweekly periods throughout the winter in each county were then analyzed with 
the historic JMA ENSO index to identify potential spatial or temporal signal in 
chill anomalies within the region. The results indicated a strong increase in chill 
accumulation over much of the region during El Niño events, and a milder though 
still significant decrease in chill associated with La Niña. Examination of 15 day 
periods throughout the season produced the unexpected result of indicating a tem-
poral shift for when the majority of chilling takes place. El Niño events have 
historically been associated with a shift toward greater chilling in the early winter 
November to January (NDJ) as compared to climatology or La Niña. Growers 
found this particularly interesting, as it may promote earlier maturity and harvest 
dates and permit greater sales during lucrative early marketing windows. 

The research results were then developed into two decision support tools that 
stakeholders can access via the Internet. The first tool provides forecasts for chill 
accumulation on a county by county basis across the region. Users select from 
three crop specific formulations for chilling, blueberry, peach, or strawberry, or a 
generic 45°F chill hours model; they also indicate their location. The tool initially 
provides expected average accumulations and anomalies of chilling based on the 
current SECC ENSO forecast (Fig. 12.17). Users can make comparisons based on 
alternate ENSO forecasts for further insight. Accumulation values are provided for 
biweekly periods from October through April, the nominal period for chill across 
the region. Additionally the seasonal total in each period is also displayed. Users 
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Fig. 12.17 SECC chill forecast tool customized for blueberry crops in Leon county, Florida. 
This presentation of the forecast emphasizes biweekly (histogram) and seasonal (area curves) 
chill accumulations based on an El Niño ENSO phase as defined by the JMA index 

may examine records from the most recent 5 previous years at their location in 
order to integrate their prior knowledge and the individual performances at spe-
cific operations. The tool also provides a means for examining the complete 
probability distribution and probability of exceedance distributions for total chill 
accumulation at 2 week intervals throughout the season based on an ENSO forecast. 

Alternately, the same research has been developed into a tool to provide rapid 
forecasts of spatial patterns of chilling. For individual crops or the generic chill 
hours formulation, users can look at ENSO phase-based forecasts for seasonal and 
biweekly periods throughout the winter. Two forms of the probability forecast are 
provided. The first map type indicates the probability of accumulating chill greater 
than the median accumulation for each county and indicates the counties expected 
to receive greater than ‘normal’ chill for the chosen time period (Fig. 12.18). The 
second map type emphasizes the tails of the probability distribution and shows the 
probability that accumulated chilling will be greater or less than the 20% tail. Chill 
maps are color coded as well with intense blue colors indicating high probabilities 
of more chilling (cool conditions) and intense reds indicating low probabilities 
(warm conditions). 
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Fig. 12.18 The SECC chill forecast is also distributed as a spatial forecast based on the mapping 
of county level probabilities. The map provides the probability of experiencing greater chill ac-
cumulation levels than the median in each county based on the current ENSO phase forecast. The 
illustrated forecast has been customized to provide a seasonal forecast for the period 1 Oct 
through 14 Feb. The forecast provides an outlook for 45°F chill accumulation as well as crop 
specific chill accumulation for blueberry, peach and strawberry 

When chill accumulations are forecast to be adequate or better for a crop, grow-
ers may more confidently make investments in management and marketing. 
Comparisons of forecasts and recent historical conditions may also permit growers 
to calibrate experiences specific to their operations in planning for timing of labor, 
pruning, market contracts. In situations where inadequate chilling is likely, growers 
may forego investments, curtail expenditures, or plan for compensating management 
such as the application of suitable oil sprays to overcome some chilling deficits. 

12.2.2.4 Seasonal and Commodity Outlooks 

Working closely with Extension agents and Extension specialists responsible for 
specific commodities or agricultural sectors indicated a need for a different sort of 
decision support tool from those previously discussed. In several cases a model to 
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run simulation based forecasts for a specific commodity was not available, or the 
agents had concerns that had not been fully researched. During the process of re-
peated meetings and discussions about the potentials, limitations, and applications 
of climate information, it has become increasingly clear that there is a strong de-
mand for interpreted climate forecasts or outlooks that are easily understood by 
specialists with limited previous exposure to climate and meteorological science 
and the statistical approaches. The interpreted forecasts also need to be easily and 
efficiently communicated by Extension agents to their clients, the farmers, who 
may or may not have access directly to the agclimate.org web site. The develop-
ment and delivery of seasonal climate outlooks and commodity outlooks by the 
SECC grew as a response to this need. 

The initial approach to this product involved four quarterly climate outlooks re-
leased in early September, December, March, and June. Commodity specific 
outlooks for winter pasture (September), Citrus (December) and Peanut (Septem-
ber and March) were also released. In order to develop the outlooks the first step is 
to examine current sea surface temperature trends within the equatorial Pacific and 
to fix the official ENSO phase forecast that will be used by all the forecast prod-
ucts that are available through the AgClimate web site. The selection of the 
appropriate ENSO phase classification is made by an experienced climatologist 
from one of the American Association of State Climatologists Recognized State 
Climate Office (ARSCO) offices within the region. One of the state climatologists 
then reviews the expected shifts from climatology and writes a brief one page 
summary of expected impacts during the following 3 months. The summary in-
cludes a synopsis of current ENSO conditions and trends written in simple 
laymen’s terms. The document then contains a review of the expected impacts of 
the predicted ENSO phase on temperature and precipitation related variables. The 
next section of the summary reviews the current climatic conditions within the 
region and compares them with the predicted impacts. Finally, seasonally appro-
priate climatic impacts such as wildfire risk, freeze risk, or hurricane forecasts are 
included. This document is then approved by the state climatologists and becomes 
the basis for further interpretation. 

Commodity specific outlooks are then developed through a collaborative proc-
ess between climate Extension specialists in the SECC and commodity Extension 
specialists in the state cooperative Extension programs. The information from the 
seasonal climate outlook is discussed with the commodity specialists who consider 
the forecast and are able to ask detailed questions and to consider the implications 
of the forecast for the activities related to their commodity in the upcoming 
quarter. A new outlook that provides much less detail about expected climatic 
conditions, but which applies the climate forecast to management options that can 
be adjusted, is produced. For example, in the winter forage outlook which is re-
leased in early September, the principal climatic impacts of the expected ENSO 
phase are briefly discussed and then are followed by a discussion of appropriate 
forage crops that should or should not be planted, whether certain land features, 
i.e. sloping lands or lowlands, will require particular consideration, what types of 
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field conditions might warrant adaptive management, and how the anticipated 
climatic conditions might effect strategic management decision such as planting 
dates, supplemental feed purchases, variety selection, fertilizer applications, etc. 
The outlook concludes with additional sources of information specific to both cli-
matic and forage conditions in the region and a list of contacts who producers and 
county agents might contact for further details as needed. This document is then 
circulated between the climate Extension specialists and the commodity specialist 
in each state for revision and final approval, after which it is released directly to 

12.2.3 Future Directions 

Currently, SECC climate services are based primarily on analysis of historic 
ENSO signals downscaled to the county scale, as well as the use of bootstrapped 
data sets derived from the same period of record. The use of other approaches to 
forecast derived climate variables that stakeholders find useful is an active area of 
research within the SECC. Within the Southeast USA, the summer months and 
ENSO neutral phases are times of limited predictability, yet these periods remain 
very important to producers. The use of numerical climate models for simulating 
crop yields is being explored, using both dynamical and statistical approaches to 
downscaling from large scale (200 km grids) to local scale (20 km grids, counties, 
or stations). 

An alternate approach to improving the suite of forecast products, based on cli-
mate variability, is the incorporation of near real-time observational data into the 
forecast product. The SECC is partnering with the Florida automated weather net-
work (FAWN) and the Georgia Environmental monitoring network (GAEMN) to 
explore approaches to integrating observational data into hybrid products. Here, 
the data for the season to date of the individual forecast product is drawn from the 
daily or hourly station data and is processed with the historical data sets (TD3200) 
representing the remaining seasonal interval. This has the advantage of removing 
successively more variation from the probability forecasts, but at the expense of 
reduction in forecast lead times and increased maintenance and production costs 
for each forecast update. The initial decisions to base current products on bi-
weekly, monthly, and seasonal intervals suggest that biweekly updates may be 
warranted; however most current products were designed to be easily expanded by 
the addition of a ‘current season’ forecast, which would default to observational 
data at any update frequency combined with the forecast based on the current 
ENSO phase for the remainder of the forecast period. 

Climate services for reducing risk in agriculture and natural resource manage-
ment are more than an archive of historic climate data that has been processed into 
daily, weekly, monthly, seasonally, or spatial discrete averages. The work of the 

AgClimate web site.  
county Extension agents via email and made available for downloading at the
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SECC continues to support the idea that forecasts and the climate variables se-
lected for analysis can be successfully identified through interactions with the 
proposed end users. When analyses are made and forecasts provided intentionally 
to address stated needs and interests, adoption can be substantially enhanced. 
When provided with alternate approaches to provide the same types of climate 
information, users can readily identify which formats are most accessible, as well 
as identify where the format and substance is lacking if they are to readily incor-
porate the information into their decision making processes. The high degree of 
interest in the prototype tools and decision support system has led to the expansion 
of many Extension programs in the region to include discussion of climate vari-
ability and climate forecasting alongside more traditional topics. Recent successes 
in developing and providing climate services proceed from interactions between a 
strong ENSO climate signal in the region and dialogue between the SECC and a 
relatively small segment of the potential end users of information on climate vari-
ability. Further work in disseminating information on climate variability and 
forecasting with new user groups will likely lead to further research and ultimately 
development of additional products to support newly identified activities where 
applied climate information can contribute to better decision making and reduced 
exposure to risk. 

12.3 Appendix 

12.3.1 Memorandum of Understanding (in French) 

Royaume du Maroc 
Secrétariat d’Etat auprès du ministère de l’Aménagement du Territoire,  

de l’Eau et de l’Environnement, Chargé de l’Eau 
Direction de la Météorologie Nationale 

 
Convention de coopération avec 

Dans le domaine de la prévision saisonnière 
 

P. J: 1- Exemple de bulletin de prévision saisonnière  
 2- Spécimen de questionnaire d’évaluation de l’utilisation de la prévision 

 
La Direction de la Météorologie Nationale s’est intéressée, depuis Juillet 1994, 

au développement de la prévision saisonnière pour répondre au grand besoin 
nationale en la matière. De nombreuses étapes ont été franchies jusqu’à présents et 
d’importants progrès ont été réalisés dont la production régulière, depuis Mars 
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1998, de bulletins de prévision saisonnière de précipitation. Ces bulletins sont 
élaborés à titre expérimental et sont envoyés aux autorités de décision dont le 
Ministère de l’Aménagement du Territoire, de l’Eau et du Climat, le Ministère de 
l’Equipement et du Transport, la Gendarmerie Royale, .... 

 Tenant compte des résultats encourageants obtenus et afin de satisfaire au 
mieux les usagers en : 

• adaptant les produits de la prévision saisonnière à leurs attentes,  
• choisissant parmi la multitude des paramètres produits par nos modèles de pré-

vision saisonnière, ceux qui répondent le plus à leurs besoin, 
• les aidant à cibler les prédicteurs potentiels basés sur les sorties de nos modè-

les et directement utilisables pour leurs prévisions et programmations (rende-
ments agricoles, gestion des barrages, …),  
la DMN s’engage à mettre, mensuellement de Septembre à Février, à la dispo-

sition de ………, un bulletin de prévision saisonnière de type celui en pièce jointe 
dans les conditions précisées par les articles 1 à 6 ci-dessous : 

 Article 1 : La durée de la mise à disposition du bulletin est fixée par la DMN.  
Article 2 : La forme ainsi que le contenu du bulletin sont susceptibles de 

changer en fonction des progrès et besoins. 
 Article 3 : Les prévisions sont livrées gratuitement à titre expérimental et la 

DMN n’assume aucune responsabilité pour les décisions prises en se basant sur 
ces prévisions.  

Article 4 : L’usager …. s’engage à faire un rapport trimestriel détaillé, type 
celui en pièce jointe, sur les utilisations faites des prévisions et sur les apports 
économiques qu’elle ont permis.  

Article 5 : L’usager……. s’engage à ne pas diffuser ou donner ces prévisions à 
quiconque et sous aucune condition.  

Article 6 : Des réunions régulières peuvent se faire, suivant le besoin, entre les 
services concernés par la prévision saisonnière des deux entités (Service de Etudes 
Climatiques de la DMN et ….de …. Usager) pour discuter des éventuelles nou-
veautés et /ou modifications concernant le produit.  

Signé pour la DMN   Signé pour l’usager ….
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Chapter 13 
Water, Health and Early Warnings 

Yahya Abawi, Paul Llanso, Mike Harrison, and Simon J. Mason  

Following on from the previous Chapter are three contributions that cover the 
remaining “classical” areas for applications (alongside agriculture) of hydrology 
and health. Water management is the focus in the first section, in which a number 
of projects are described whereby historical and forecast information is used directly 
in planning specific actions; in this case the forecaster-user chain is short and 
manageable at a personal level. Next is a detailed account of the steps required to 
establish climate services in the health area. Finally, Early Warning Systems are 
described. Early Warning Systems have not tended to use predictions until re-
cently, traditionally having been built around historical observations. In that 
context Early Warning Systems provide an example of an application mainly 
designed for humanitarian benefit built solely using climate data alongside other 
information, but with growing use of predictions. A worked example is included 
establishing the impact of climate variability on disease incidence, the results of 
which provide a basis for incorporating seasonal climate forecasts into a Malaria 
Early Warning System in southern Africa. 

13.1 Introduction 

In this chapter experiences in communicating and applying seasonal forecasts in 
the areas of water management (Section 13.2), human health (Section 13.3), and in 
early warning systems generally (Section 13.4) are discussed. It is emphasised 
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throughout that not only do predictions form only one component of climate in-
formation that is of interest in these sectors, but that climate is only one of many 
factors that influence decisions. As argued in Chapter 2, seasonal climate predictions 
need to form one component of a broader climate service, involving information at 
a range of timescales, including monitoring and historical information. This chap-
ter provides examples of the importance of understanding the context within 
climate information may be used in the respective sectors. 

13.2 Application of Seasonal Climate Forecasting in Water  
Resources Management 

13.2.1 Introduction 

This section describes the application of seasonal climate forecasts in water re-
sources management in three different environments: a large scale irrigation 
system in the Murray Darling Basin of Australia; a medium scale irrigation system 
in the Indonesian island of Lombok; and small water resources systems in the 
Pacific Islands. Each case study is described in terms of their unique characteris-
tics and lessons learned from these studies, which may help overcome some of the 
barriers discussed. 

Although advances in climate science and improvements in modelling provide 
a direct quantification of the benefits and risks of using seasonal climate forecasts 
in making management decisions, there remain significant barriers to widespread 
adoption of such forecasting tools. Nicholls (1999) identified the difficulty people 
have in estimating and dealing with probabilities, risk and uncertainty as being 
one of the primary barriers. Additional constraints include: understanding pro-
bability and probabilistic forecasts and their reliability, lack of integration and 
evaluation, political and institutional influences, relevance and timing. Most of 
these barriers to the use of climate predictions represent a lack of knowledge about 
the forecast and impact systems, a forecast delivery problem, or difficulties in us-
ers reacting to the forecasts (Nicholls 1999). One reason why the quality of 
seasonal forecasts remains an impediment is that decision makers are not only 
concerned with statistical validity of a forecast from a climatology perspective, but 
also how reliably a forecast predicts impacts on the systems that are being studied. 
In a study of subsistence farming in Africa, Hulme et al. (1992) found that indi-
vidual farmers were unlikely to benefit from forecasts because of poor forecast 
quality, of having insufficient flexibility to respond, and of the fact that decisions 
are based on a range of factors of which climate is only one.  

In water resources management there are additional impediments that limit the 
use of seasonal climate forecasts. These include: 
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• Dealing with complex systems: water management involves issues of supply, 
quality, allocation, distribution, reliability and competing demands between 
consumptive (production) and non-consumptive (environmental) users. Often 
the development of a hydrological model for a catchment takes several years to 
calibrate and validate and is unique to each catchment. This validation must be 
in place before the impact of seasonal climate forecasts can properly be assessed. 

• Relevance: climate forecasts mainly focus on prediction of rainfall. In some 
cases this may be used sometimes to predict impacts on agricultural decisions, 
such as in subsistence farming where a direct relationship exists. However, the 
impact on water resources systems is a combination of multiple interacting and 
complex variables. Forecasts of rainfall may not be directly relevant to water 
allocation decisions, whereas forecasts of streamflow may have more rele-
vance.  

• Lack of hydrological data: hydrological data (e.g. streamflow data) are limited, 
particularly in developing countries, unlike rainfall data where long-term re-
cords, albeit with major gaps in some regions, exist for many locations around 
the world that are useful for developing climate prediction models. Even where 
hydrological data exist, they are highly impacted by the construction of dams, 
weirs and irrigation diversions. To assess the impact of climate variability on 
streamflow and water allocation decisions we need synthesised or ‘natural’ re-
cords of streamflow where the effect of infrastructure development and 
irrigation diversions has been removed. These could then be used to simulate 
various scenarios of development and operational rules within a system. 

• External constraints: Legal requirements can often lead to inappropriate and 
inefficient water use. In many countries, including Australia, water authorities 
will not allocate irrigation water based on probabilistic forecasts of dam in-
flows for reasons of litigation. They use a no-risk or zero-inflow scenario when 
deciding on allocation even where, as discussed later, a strong and statistically 
significant relationship between ENSO and future dam-inflows exists, e.g. as in 
north-eastern Australia. This conservative approach to water allocation by wa-
ter agencies may adversely impact on growers’ decisions to increase planting 
area, resulting in lost opportunities. 

Despite these difficulties, significant opportunities exist for applying seasonal 
climate forecasts in water resources decision making. Catchment scale responses, 
such as streamflow, can capture the global and regional effects of climate variabil-
ity (e.g. ENSO) much better than point scale responses such as rainfall. Dutta et al. 
(2006) found that higher skill (as measured by the LEPS score) was associated 
with seasonal forecasts of streamflow as compared to rainfall for the same period 
within the same catchment. Skillful forecasts of streamflow were also possible at 
longer lead-times (up to 4 months) than for rainfall. 

In a study of Columbia River hydropower in the USA, Hamlet et al. (2002) 
found that forecasts of streamflow with 6 months lead-time can facilitate improve-
ments in the operating performance and can increase energy production by as 
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much as 5.5 million MWh/year, resulting in an average increase in annual reve-
nue of approximately $153 million per year.  

Bates (2002) identified several key points that need to be taken into account by 
researchers when dealing with climate forecasting and its application in water re-
sources management: 

• The net benefits of using seasonal forecasts in water management have not 
been demonstrated. This demonstration must take place within operational set-
tings so that the focus is on user needs rather than those of climate scientists. 

• Users require objective, explicit and user-friendly forecasts at temporal and 
spatial scales appropriate to their needs. They also require applicable informa-
tion about forecasting errors and uncertainty. 

• Appropriate mechanisms for technology transfer of climate forecasts to end-
users must be in place. 

• Socio-economic aspects of forecasting are crucial. For example stakeholders 
need better education on climate issues and processes, forecasting techniques 
and probability. On the other hand, scientists need to recognise the effects of 
institutional, political, educational and cultural constraints on policy formula-
tion and decision making. 

• Problems and issues are more complex in developing than in developed coun-
tries, because of lack of funding, data paucity, institutional capacity, social 
capital and lower priority placed for meteorological services, and there is a 
need to strengthen local meteorological capacities. 

• Uptake of seasonal climate forecasts in water resources management would be 
best achieved through a cooperative approach between forecasters and users. 

The following section describes the application of seasonal climate forecasts in 
water resources management from large-scale irrigation systems in the Murray 
Darling Basin of Australia and the Indonesian island of Lombok, to small water 
resources systems in the Pacific Islands. It is not intended to give a detailed ac-
count of the models or results, but to highlight salient differences between the 
systems and suggest possible solutions to addressing some of the impediments to 
effective implementation of climate forecasting in water resources management. 

13.2.2 Border Rivers Catchment 

A project funded by the Australian Murray Darling Basin Commission examined 
the use of seasonal climate forecasts in irrigation management and water alloca-
tion decisions in the Border Rivers catchment (between 27°30′ and 30°2′ S; 
148°39′ and 152°9′ E) in the northern part of the Murray Darling Basin (Fig. 
13.1). The key objectives were to answer these questions: 
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Fig. 13.1 Location of the Border Rivers catchment in the northern Murray Darling Basin, Australia 

• Can seasonal climate forecasts lead to improved decision making, and thus 
higher profits, for growers, by guiding adjustments of areas planted to cotton in 
each season? 

• What is the potential economic impact of seasonal climate forecasts if water 
managers incorporate climate forecasts in water allocation decisions?  

• What is the likely uptake of climate forecast information in decision making by 
irrigators? 

The results of these investigations have been reported by Abawi et al. (2005), 
Richie et al. (2004), Keogh et al. (2004), and Dutta et al. (2006). In this section the 
second question is briefly explored as this issue is seen as one of the barriers to the 
adoption of seasonal climate forecasts in irrigation decision making. 

The Border Rivers catchment covers an area of 44,100 km2 with an average  
annual rainfall of 800 mm in the east and of 550 mm in the west. Despite consid-
erable infrastructure development during the last 2 decades, water remains 
limiting for irrigation due to the high climate variability associated with ENSO, 
which has a dominant influence on the climate of the region. Irrigated cotton 
accounts for 83% of the 53,900 ha developed for agriculture and is planted in 
early October and harvested in March. 

Sources of irrigation water are from announced allocations (expressed as a per-
centage of an irrigator’s licensed entitlement) and from water pumped directly 
from the river system during periods of high flow (off-allocation). Off-allocation  
pumping is only permitted when flows in the river exceed certain thresholds set 
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for riparian needs and end of system flows. These thresholds are defined in the 
Border Rivers Water Resources Plan. For example, an annual target of 60% of 
mean annual flow is set for end of system flows to ensure downstream require-
ments are met. Allocations are determined by the water authority just prior to a 
cropping season and are based on a resource assessment taking into account:  
(a) the actual amount of water in State-owned storages; (b) high security require-
ments such as urban, industry, horticulture and dairying; (c) losses such as in 
delivery, seepage and evaporation; and (d) total licenses issued to irrigators. 
These allocations may be increased during the growing season if additional flow 
is received, but for legal reasons the water managers use a zero-inflow scenario 
when deciding on the allocations. 

Risk-averse irrigators will make crop area decisions based on their initial allo-
cation. However, a risk-preferring irrigator may take additional future inflows into 
account when making his/her decisions. Considering that in this catchment more 
than 60% of average annual flows occur after planting, knowledge of future in-
flow probabilities would be invaluable to farmers contemplating what area to 
plant. Unfortunately, no mechanism exists to communicate future inflow pro-
babilities to the irrigators. This is a significant barrier to the adoption of seasonal 
climate forecasts, particularly in north-eastern Australia where the impact of 
ENSO on rainfall and streamflow is high and the skill in forecasts is moderate to 
high (Dutta et al. 2006). 

To assess the impact of ENSO on dam inflows and water allocation decisions, 
daily ‘natural’ flows (1890–1997) for major streams and tributaries were obtained 
from the New South Wales (NSW) Department of Land and Water Conservation 
(DLWC) and used in a hydrological model (Integrated Quantity Quality Model – 
IQQM; DLWC 1998) to simulate dam inflows, allocation levels, water availability 
and other hydrological variables. These simulations were based on the current 
level of development and operating rules within the catchment. 

Relevant hydrological data were extracted from the model output based on ana-
logue years of El Niño, La Niña, and non-ENSO events. An analysis based on 
these events provided a useful reference of climate extremes. The presence or ab-
sence of these events is usually well known by June to September based on sea 
surface temperature (SST) anomalies in the Pacific Ocean, and can provide suffi-
cient lead-time for decision making. 

Using this approach Abawi et al. (2005) showed a median difference in annual 
inflow between the La Niña and the El Niño years in all state-owned dams within 
the catchment of 144 gigalitres (Gl). The median difference in inflow in the Octo-
ber–March period (inflows that water managers will not consider in the allocation 
decisions) was 55 Gl. Assuming that 40% of this water is lost due to evaporation, 
conveyance and other losses, the net additional volume of water (33 GL) translates 
to an irrigated cotton area of approximately 5,500 ha or 10% of the total area  
developed in the catchment. The additional value of this water based on the cur-
rent price, yield and water requirements of cotton is about $16 million. The socio-
economic impact of this additional water in employment and its multiplying effect 
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on the regional economy could be in the order of two–three times or up to $45 
million. The results presented here were based on the median flow, however, it 
can be repeated for the mean or other percentile values of the flow and could be 
used as a risk management tool. 

To overcome the legal barrier faced by water managers, a possible solution 
would be to simulate allocations levels, based on seasonal climate forecasts, at the 
beginning and end of a cropping season and make these results available to irriga-
tors. These results based on El Niño and La Niña events are given in Abawi et al. 
(2005), but could be reproduced for any climate predictors (e.g. SOI) and predic-
tands (e.g. streamflow, allocation, rainfall). An example of the results from that 
study shows a 50% chance that during a typically dry El Niño year the allocation 
may be increased from an initial 28% to a final of 60% of the irrigator’s license 
entitlement (corresponding results for La Niña years shows an increase from an 
initial 74% to a final of 100%). If appropriate dialogue can be established between 
water managers and water users, and the information on future inflows could be 
communicated on an all-care-but-no-responsibility basis, growers may incorporate 
such information into their decision making process. This shift of risk from water 
managers to water users would alleviate the legal issues faced by the water man-
agers and pave the way for the adoption of climate forecasts in decision-making 
by the irrigators. Obviously the uptake of such information would ultimately de-
pend on many factors including the type of enterprise, farm size, commodity price 
and future markets, financial position and an individual’s attitude to risk. 

To determine the factors that influence farmers’ decisions and whether they 
would use seasonal climate forecasts in their decisions, a mail survey was sent to 
931 irrigators involved in agricultural production from regulated water supplies in 
the Border Rivers, Gwydir, Namoi and upper Condamine catchments of the 
Murray Darling Basin. The questionnaire was designed to obtain information 
about general farm characteristics; irrigators’ knowledge of the climate system 
including relationship between El Niño/Southern Oscillation and rain-
fall/streamflow; how irrigators make cropping and water decisions; who they 
consult; and information sources and use of computer technology. One hundred 
and seventy responses were received from the survey and the results described in 
(Keogh et al. 2004). The results show that almost 67% of irrigators access sea-
sonal climate outlook information, but only 20% are sufficiently confident to 
apply this in their decisions. Almost 75% would change their crop area, and 43% 
their crop type, if given advanced information on probable water availability up to 
4 months ahead of the irrigation season. The likelihood of climate-related decision 
making increased substantially with the size of the farm and type of enterprise 
(cotton farmers vs non-cotton farmers). Forecasts appear to be particularly useful 
for cotton growers; 80% of them were prepared to consider changing their crop 
area, compared to 45% of non-cotton growers. Farmers with more than 600 ha of 
irrigation are twice as likely to use climate forecasts in decision making than 
farmers irrigating less than 100 ha. 
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Risk-averse farmers are unlikely to incorporate seasonal climate forecasts in 
their decision making. The level of risk-aversion is inversely proportional to the 
level of wealth (Anderson et al. 1977), an observation which supports the findings 
of this survey that likely users of seasonal climate forecasts are large corporate 
irrigators and farmers. 

To communicate results and to seek irrigators’ and water managers’ input to the 
research process, effective dialogue between irrigators, researchers and water 
managers was established through a steering committee, and regular meetings held 
during the progress of the project. This formative evaluation (evaluation during 
the life of the project) was used to gather information that may help identify fac-
tors that contribute to successful or low uptake of the research. In response to this 
feedback, regular monthly articles were published in local newsletters with up-
dated information on streamflow forecasts, the general climate outlook and on 
understanding basic forecast terminology. The survey by Keogh et al. (2004) was 
conducted 3 years after the project commenced. The improved level of climate 
knowledge gained by irrigators is possibly a reflection of this cooperative  
approach. 

13.2.3 Indonesian Island of Lombok 

A similar study to that in the Murray-Darling Basin, funded by the Australian 
Centre for International Agricultural Research,1 is being conducted on the island 
of Lombok in Indonesia to develop hydrological and crop models to assess the 
value of seasonal climate forecasts in water allocation and irrigation decisions. 

Lombok lies in the eastern part of the Indonesian Archipelago and is situated 
between 8°12′ and 9°01′ S and between 115°46′ and 116°43′ E, covering a land 
area of approximately 4,800 km2. The climate of Lombok is tropical and it is pos-
sible to grow three successive crops (usually rice, rice, secondary crops) each year 
provided water is not limited. Most rainfall occurs in the wet monsoon season 

October. Seasonal and inter-annual rainfall variability is strongly influenced by 
ENSO. More than 90% of droughts in eastern Indonesia are associated with El 
Niño events. The influence of ENSO on the climate of Indonesia is described by 
Haylock and McBride (2001). 

Rice is the dominant irrigated crop grown on the island. Whilst irrigation infra-
structure is well developed water use efficiency is low, and large parts of the 
island experience water shortages due to inadequate supply and distribution of 
irrigation water, particularly in El Niño years. 

________________  
1 See: http://www.acair.gov.au 

‘Musim Hujan’ from November-March followed by the dry season from April-
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The approach used in assessing the utility of climate forecasts is similar to that 
described in the Border Rivers catchment. A significant difference in hydrology 
and water management issues in Lombok from the Borders River is that most riv-
ers are un-regulated, with little storage upstream of irrigation areas. Therefore 
prediction of streamflows during the irrigation season is of higher importance for 
effective irrigation decisions and water allocations than in the Australian case. 

Water availability throughout the irrigation system was modelled using the 
IQQM model and a Linear Programming Model (LPM) was developed to opti-
mize cropping decisions under different climate, water, land and institutional 
constraints. A detailed description of the models, data issues and methodologies is 
given in Abawi et al. (2002). In this section some of the issues which are likely to 
impact on the adoption of seasonal climate forecasts in developing counties such 
as Indonesia are highlighted. 

• Understanding the socio-economic culture in developing countries is crucial for 
successful adoption of climate information. Rice is grown more for its social 
value than for its economic value. The Indonesian Government encourages 
farmers to grow rice for self-sufficiency reasons. Farmers prefer to grow rice 
than any other crop because it provides the staple diet and can be stored on 
their farms for long periods, providing a buffer against crop failure in some 
seasons. Farmers’ preferences, as well as those of the Government, must be in-
corporated in the development of decision support models. 

• Understanding of markets, as well as of supply and demand issues, is very im-
portant. Rice requires twice or three times the amount of water to grow than 
other crops which may have a higher market value. In decision support models 
(e.g. LPM) if profit maximisation is the primary goal, crops such as chilies, 
vegetables and tobacco may be the preferred solution because of their higher 
value and lesser demand for water. However, in a closed market there is little 
opportunity for export, and market saturation will result in a sharp drop in 
prices causing financial losses to the farmer. Government regulations limiting 
the production of certain crops such as tobacco must also be taken into account 
as part of an overall solution. 

• An average farm size in Lombok is about 0.25 ha (cf. 600 ha in the Border Riv-
ers catchment). Most farmers are risk-averse, preferring less risky sources of 
income in order to reduce the possibility of loss. Therefore little visible oppor-
tunity exists for adjusting cropping patterns at the individual farm level based 
on climate forecast information. However, significant economic gains can be 
made through water allocation and cropping decisions at a scale that integrates 
the characteristics of many of these smaller farms. Water is allocated to each ir-
rigation area by a committee of irrigators and government advisors. Input from 
government advisors with knowledge and access to climate forecasts is crucial 
to the success of these decisions. 
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• Strategies such as water pricing and water trading which are often adopted in 
developed countries in response to water shortages, such as those during an El 
Niño, are unlikely to be acceptable in Indonesia due to cultural and religious 
beliefs. 

Other issues which may affect potential use of seasonal climate forecasts in ag-
ricultural decisions on the Indonesian Island of Lombok were identified in a 
survey by Sayuti et al. (2004) and include: 

• Farmers have a low level of education; 75% have never been to school or have 
received only elementary schooling. 

• A propensity for farmers to believe traditional forecasts (e.g. astrology and in-
digenous knowledge such as the flowering times of trees, movement of insects 
and wildlife) rather than scientific information such as forecasts based on 
ENSO. 

• About half of the farmers in Lombok believe the advice of the government on 
water availability and crops to plant. 

• 40% of farmers may change crop type if the government advises of an impend-
ing shortage or excess of water in the coming season. 

Educational attainment levels influence the ability to adopt innovative proc-
esses and have significant implications in the development and implementation of 
action plans dealing with technology transfer. The survey in Lombok also showed 
a strong dependence by the farmers on advice from the government. This provides 
significant opportunities for working with government agencies, in addition to 
farmer groups, to successfully implement results, as government agencies also 
control water allocation and, in some cases, seed allocation. The role of govern-
ment in the implementation of new programs has been used in Indonesia during 
the green revolution when the Indonesian army helped in the spread and adoption 
of new and improved rice varieties while farmers initially resisted the change.  

In summary, social and cultural issues in developing countries are just as  
important as the science of seasonal climate forecasting. Forecasts must be reliable 
and skillful before anything can be done, but if the social, cultural and educational 
issues are ignored, prediction technologies are unlikely to be adopted. 

13.2.4 Pacific Islands 

Similar climate-related issues to those discussed for north-eastern Australia and 
Indonesia exist in the Pacific Islands. Drought is one of the major hazards facing 
Pacific Island nations, is strongly related to ENSO events on many islands, and 
can have severe impacts throughout the region. The drought impacts of the 1997–
98 ENSO event have been well documented (Glantz 2001). Lessons learned from 
the 1997–98 droughts in the Pacific demonstrate the need for effective and 
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timely forecasting and warning systems, drought response strategies, information 
on quantitative measures of drought, improved water management and improved 
crop and stock management. 

Despite their vulnerability to the impacts of climate variability, most Pacific 
countries have limited meteorological service capacity to provide timely climate 
forecasts for their climate sensitive industries. In 2002 the Australian overseas aid 
agency, AusAid, funded a project to improve local meteorological capacity by  
developing climate forecasting software and by providing training for meteorological 
service staff and stakeholders from agriculture, water, health, fisheries, and disaster 
management. A further objective of the project was to evaluate the utility of sea-
sonal climate forecasts in the management of water resources in selected countries. 

Climate prediction software, called SCOPIC (Seasonal Climate Outlooks for 
the Pacific Island Countries2), was developed based on the operational seasonal 
climate forecasting system used by the Australian Bureau of Meteorology. 
SCOPIC produces forecasts based on the relationships between SST anomalies in 
the Pacific and Indian Oceans with rainfall or other hydro-meteorological vari-
ables on Pacific islands. Training in the use of the software, on climate issues and 
processes, and on forecasting techniques and basic statistical concepts such as 
probability and data analysis, was provided in a series of workshops in nine  
Pacific Island Countries (Fiji, Vanuatu, Tonga, Samoa, Cook Islands, Solomon, 
Kiribati, Tuvalu and Niue). Feedback from these workshops was used in the de-
sign of the software to meet the requirements of Meteorological Services and other 
stakeholders. Experiences from the workshops which may help in forecast prepa-
ration, delivery and the adoption of seasonal climate information, are discussed 
below. 

Understanding the strengths and weaknesses of a forecasting system by users 
can engender user confidence in the forecasts. Unfortunately many climate fore-
casts issued by Meteorological Services to the public focus only on the probability 
of certain rainfall events, and errors and uncertainties of forecasts and forecast 
skills are not explicitly communicated. Visual presentations can help in the under-
standing of complex climate concepts, particularly when users do not have a 
detailed understanding of scientific issues. An example of such visual presenta-
tions is illustrated in Fig. 13.2, which shows the skill of seasonal climate forecasts 
in Kiribati (left) and in the Solomon Islands (right). Skills of forecasts for succes-
sive 3 month periods are expressed using LEPS scores (Linear Error in Probability 
Space; Potts et al. 1996) along the x-axis for different lead-times (y-axis). Shades 
of blue indicate more skill than climatology, while shades of red indicate less skill 
than climatology. This snapshot presentation is helpful in assessing when a fore-
cast is useful and when it is not. For example, prediction of rainfall has moderate 
to high skill throughout the year in Kiribati with relatively long lead-times. On the 

________________  
2 See: http://www.bom.gov.au/climate/pi-cpp 
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other hand, in the Solomon Islands, there is good skill during November to March 
(wet season) but no skill from April to August (dry season). Understanding the 
strengths and weakness of a forecast can reduce the uncertainty associated with 
using climate forecasts in decision-making. 

Users are more likely to appreciate the real levels of skill if these are explained 
using a time series of how the forecast would have performed in the past (hindcast), 
showing when they work and when they are unreliable. This approach may also 
help in communicating concepts such as ‘probability’ as most people understand 
frequencies (e.g. number of consistent forecasts from a total number of forecasts 
issued) better than probabilities. This is illustrated in Fig. 13.3 for the forecasts of 
June-July-August (JJA) circled in Fig. 13.2. It shows a time series of cross-
validated hindcasts for the period in question. In cross-validated analysis, data for 
predicted periods are omitted successively from the model to avoid model bias. 
Here forecasts are expressed in terciles, i.e. the probability of rainfall being below-
normal (tercile 1), normal (tercile 2) and above-normal (tercile 3). Although in a 
probabilistic forecast all eventual outcomes within a forecast pdf are possible, users’ 
expectations of such forecasts are that the likely outcome would be within the tercile 
with the highest probability, particularly when these probabilities are significantly 
higher than climatology. To illustrate this, for each year of analysis, a blue bar is 
used in Fig. 13.3 to indicate that the observed value of rainfall was in the same ter-
cile as the tercile with the highest probability (consistent forecast). A red bar 
indicates that observed rainfall was different by two categories from the most 
probable (inconsistent forecast), and yellow bars indicate that observed rainfall 
was in the neighbouring category (near consistent forecast). This illustration 
helps in understanding the frequency of observed rainfalls being within a user’s 
expectation of a forecast. It also demonstrates that from the user perspective the 
utility of a forecast is not uniform and it is possible to a have a long sequence of 
‘consistent’ forecasts (in the sense that observed rainfall lay in the predicted highest-
probability tercile) followed by a succession of ‘inconsistent or near consistent’ 
forecasts. 

Fig. 13.2 LEPS scores for 3 month rainfall forecasts based on SST anomalies in the central eastern 
Pacific and the Indian Ocean. Kiribati (left); Solomon Islands (right) 
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lies in central eastern Pacific and the Indian Ocean. Kiribati (top); Solomon Islands (bottom), T1, 
T2, T3 are rainfall terciles. P denotes tercile with highest forecast probability. O denotes tercile 
with observed value of rainfall 

User expectations are often different from those of forecast providers. Forecasts 
produced by Meteorological Services usually offer a 3-month rainfall outlook 
based on current values of key climate predictors. In many applications, however, 
forecasts of different durations and lead-times are needed. For example, in Fiji 
monthly forecasts of rainfall are needed to plan effectively for fertiliser applica-
tion to sugar crops. This mismatch between user needs and what is currently 
available from forecasting systems is likely to limit the use of seasonal climate 
forecasts in certain applications, and provides a real challenge for the developers 
of climate forecast systems to tailor forecasts that meet user requirements. 

The second aim of this study in the Pacific Islands was to evaluate the utility of 
seasonal climate prediction in the management of selected water resources. On 
small islands, the main use of water is for domestic purposes and water is obtained 
either from rainwater tanks (e.g. Tuvalu) or shallow groundwater sources (e.g. 
Kiribati). In these simple hydrological systems there is a direct link between his-
torical rainfall trends (ranging from a few months to a few years) and the status of 
water resources (such as the volume of water in tanks, groundwater salinity or the 
volume of shallow fresh groundwater lenses). Thus rainfall periods (totals) used in 
climate analyses depend on the ‘hydrological residence time’ of the selected water 
resource system. For example, rainfall totals over a 2- or 4-month period may cor-
relate with water supplies in rainwater tanks (e.g. Funafuti in Tuvalu), while 
rainfall totals over a 30-month period may better reflect the volume of ground-
water lens (e.g. Tarawa in Kiribati). 

 

Fig. 13.3  Cross-validate hindcast analysis of a 3 month rainfall forecasts based on SST anoma-
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Analysis of past rainfalls can be used to monitor the status of these resources 
and actions taken once pre-determined thresholds are reached. White et al. (1999) 
used rainfall ranking (rainfall percentiles for different periods) to define ‘drought’ 
in a manner relevant to domestic water supplies on the Pacific Islands of Tuvalu 
and Kiribati. A time series of rainfall percentiles (over a time period appropriate to 
the system under study) can be used to warn of impending drought (e.g. when per-
centiles fall below 40%) or severe drought periods (e.g. when percentiles fall 
below 10%). Using these definitions historical droughts can be identified and re-
lated to climate episodes. Statistics on past correct warnings (i.e. when the 10% 
threshold is reached following the warning threshold of 40%) and false warnings 
(i.e. the threshold of 10% was not reached after the preliminary warning), in con-
junction with the current status of ENSO, can be used to develop appropriate early 
warning and water management strategies. Past strategies to deal with the impacts 
of droughts on water resources have included restrictions on water supply, raising 
consumer awareness about the need for water conservation, and transportation of 
water or emergency use of desalination systems. 

The drought identification method based on percentile ranking of rainfalls for 
different periods has been incorporated in the SCOPIC software, and the potential 
utility of this method as an early warning system is illustrated through an example 
of the 1997–98 El Niño in the Solomon Islands and Kiribati. The results are 
shown in Fig. 13.4 for both Kiribati and Solomon Islands, but are discussed here 
only in the context of drought for the Solomon Islands. In the Solomon Islands, a 
warm phase of ENSO (El Niño) is associated with drier conditions, whereas a 
warm phase of ENSO in the Kiribati is associated with wetter conditions because 
of its location further east in the Niño 3.4 pool of water in the central-eastern Pa-
cific Ocean. This is illustrated in Fig. 13.4 by rainfall being out of phase in these 
countries for the El Niño of 1997–98 and La Niña of 1998–99. 

In Fig. 13.4 is shown the time series of 6-month rainfall percentiles from 1995 
to 1999, covering the El Niño event of 1997–98 and the La Niña event of 1998–
99. The time series shows a sharp decline in rainfall percentiles from August 1997 
(onset of El Niño) to February 1998, and for most of this period rainfall was below 
the 10% (severe-drought). Based on this information a drought warning could 
have been issued in August 1997 when the rainfall percentiles fell below 40%. 
Statistics on the success rate of past warnings in similar climate patterns, com-
bined with forecasting of future rainfall, could then be used to implement 
appropriate drought management strategies. This is illustrated in Fig. 13.4 for 
SON, NDJ and JFM forecasts based on SST anomalies in the Pacific and Indian 
Oceans. The forecasts for the Solomon Islands (and similarly in Kiribati) capture 
the progress of the 1997–98 El Niño particularly towards the end of 1997 when 
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Fig. 13.4 Six-month rainfall percentile values and 3-month rainfall forecasts during the  
El Niño-event of 1997–98. Pie charts represent probability of above-normal (aqua), normal (yel-
low), and below-normal (orange) rainfall 

ENSO is mature (see SST maps3). Tercile forecasts of rainfall, i.e. chances of 
below-normal:normal:above-normal for SON and NDJ were 42:52:6 and 86:13:1 
respectively, which shows a high probability of below-normal rainfall particularly 
later in the year. Knowing the skill of forecasts during this period of the year (Fig. 
13.2), decision makers could be confident on the basis of this knowledge of 
implementing appropriate strategies to deal with the hazards. Specific decisions 
will depend on the particular country and system. Research in various aspects of 
water management on the Pacific Islands is currently in progress. 

________________  
3 See: http://www.nrm.qld.gov.au/longpdk 
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13.2.5 Conclusions 

Climate variability has a significant impact on water resource systems ranging 
from small water supplies for domestic consumption to large scale irrigation sys-
tems; however, opportunities for applying climate forecasts in water management 
decisions are not fully utilised. A number of impediments to the use of climate 
forecasts have been identified, including forecast accuracy, dealing with probabili-
ties, risk and uncertainty, impact assessment, legal and institutional barriers, lack 
of integration, and communication. Possible solutions to some of these impedi-
ments have been suggested using the three case studies in the Asia-Pacific region. 
These include engagement of users in the research process, formative evaluation 
of research outcomes, communicating forecasts in a manner understandable to the 
users and demonstrating the benefits of forecasts relevant to the system being in-
vestigated. While it is clear that no single solution will fit all systems, indeed the 
treatment of all systems as homogenous has played a significant part in the lack of 
technology transfer and adoption in the past, prioritization of these issues (impede-
ments) may reveal a starting point to increase the use of climate forecasts in water 
management decision making. 

Clearly, forecast skill must exist before progress can be made, however, skill in 
a forecast system does not guarantee successful adoption. A perfect forecast will 
not have an impact unless it can lead to changes in decisions. Engendering user 
confidence in forecasts remains a high priority. For this to occur, the value of fore-
casts must be demonstrated through integration of forecasts with impact systems. 
Given the complexity of water resource systems, Einstein’s quote “Make things as 
simple as you can, but no simpler” is a good guide to where we can begin with 
integration of climate systems, hydrological models and impact assessments. 

The way forecasts are communicated influence their acceptance. Most users 
have difficulty in understanding probability but are comfortable if information is 
expressed in terms of frequency. The SCOPIC software was designed to overcome 
these difficulties in communication by providing a range of options for the user 
which has led to its wide acceptance in the Pacific region. 

Building local capacity helps breakdown institutional barriers by raising profile 
of meteorological services in the community, establishes user confidence, and 
improves integration between science and management and the breakdown of 
communication barriers. This is a priority that needs to be addressed by leading 
institutions and governments around the world particularly in developing countries 
that are most vulnerable to impact of climate variability and climate change. 

ENSO has a strong footprint in the region described by the three case studies 
which helps overcome the first barrier (forecast accuracy) and paves the way for 
impact assessment to be carried out. Forecast skill must exist for benefits to be 
demonstrated, but if the social, cultural and educational issues are overlooked 
these prediction technologies are unlikely to be successful in producing outcomes. 
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The three case studies have highlighted the importance of engaging stakeholders 
and the end-users in the research process, hence gaining ownership of the con-
cepts, and helping in technology transfer. 

13.3 Applications of Seasonal Forecasts to the Health Sector 

We urge ministries of health and other ministries, as well as research institutions, 
to improve our understanding of the regional and national burden of disease due to 
weather and climate extremes and to identify effective and efficient interventions, 
such as early warning systems, surveillance mechanisms and crisis management. – 
WHO 2004a 

This section examines how climate information is being applied to one of the 

of the basic relationships between climate and health are identified. Section 13.3.2 
then explores the issue of acquiring and preparing data for the study and modeling 
of the relationships as well as the conduct of routine operations that employ that 
knowledge. It concludes with recommendations on establishing operational ser-
vices that incorporate the knowledge into public health services. 

The goal of this section is not simply to describe the status and future prospects 
for the use of climate information in one important branch of human experience. 
Instead, it is to motivate climate modelers, climatologists, and those who are per-
fecting climate prediction to apply their knowledge and skills in creating concrete 
actions to diminish human misery.  

13.3.1 Basic Relationships Between Climate and Human Health 

As mentioned by Thompson and Perry (1997) and others, climate information is 
applied every day to many areas of human activities besides health, including 
energy, water management, agriculture and forestry, fisheries, urban and building, 
recreation and tourism, financial services, and transportation. But the focus in this 
chapter on human health makes the topic especially relevant to readers of this 
book, and the examples given are generally useful in understanding the procedures 
involved in the development and implementation of all climate applications. Ap-
plications in climate and health generally address four aspects of the human 
condition: disease, performance, comfort and attitude. While the last three areas 
are important and fit within a definition of health, most nations’ health priorities 
are in the reduction of disease impacts. 

This section deals with diseases that have been shown to have a relationship 
with climatic conditions and their changes that fall into two categories: infectious 
 

most important areas of human existence: human health. In Section 13.3.1, some 
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diseases such as malaria, dengue fever, meningitis, Lyme disease, West Nile virus, 
St. Louis encephalitis, and Murray Valley encephalitis; and, non-infectious diseases, 
which include heat stroke, skin cancer, allergic rhinitis, and some diseases of the 
eyes. 

Malaria killed more than a million people in 2003, primarily in developing 
countries. Climate relationships are strongest in the life cycles of the vector – 
Anopheles mosquitoes – and of the parasite – Plasmodium falciparum being the 
most lethal (Thomson et al. 2004b). Lack of, or overabundance of precipitation 
can severely restrict the pools and stagnant ponds that are habitats for the mos-
quito’s juvenile stages, and ambient air temperature directly affects the growth 
cycle of the parasite within the adult mosquito. The variations in climatic factors 
associated with El Niño events show some correlation to malaria outbreaks, and 
the scientific knowledge about the relationships is used in modeling the life stages 
of the parasite and the vector with respect to climate parameters. That, in turn, is 
one basis of a Malaria Early Warning System (Section 13.4.2) that can help to 
focus malaria control methods, which promise to reduce outbreaks and reduce the 
costs of control efforts. 

Pathogens that incubate and develop outside the host (e.g. vectors such as the 
tick or mosquito) are usually susceptible to climatic conditions to some degree 
(WHO 2004b). The pathogen that carries malaria needs ambient temperatures of 
about 17°C to begin to develop within the mosquito. And, higher temperatures 
than that will cause the pathogen to develop more quickly, potentially allowing the 
mosquito’s bites to infect more people. 

Climatic variations will influence the distribution and development rate of the 
vectors, too, affecting such aspects and activities as the metabolic rate, egg pro-
duction, and the rate of blood meals, as well as the characteristics of the vector 
itself. Rainfall extremes can affect the vector’s habitat – too much may wash away 
habitat sites, but excesses that are somewhat below that amount can give the vec-
tor many more places that stay viable longer, permitting more eggs to develop. 
Decreased humidity usually means decreased vector life, and can be modeled for 
some vectors using saturation vapor pressure. Less rainfall usually means fewer 
useful habitats – small pools shrink to become unviable to maintain growth of 
the vector in its juvenile stages. While vectors that need conditions of fast moving 
waters may see their habitat diminish in periods of rainfall deficit, in a small 
number of cases other vectors that like still water may find their habitat increased, 
as the drying and slackening of streamflows may leave behind perfectly useful 
breeding pools. In general, though, more rainfall equals more useful habitats and 
vice versa. 

Increased habitat can increase the geographical distribution of vectors. So, if 
rainfall can be correlated with specific vectors’ habitat, and rainfall variations can 
be adequately predicted, projections can be made of what is likely to happen to 
vector distributions geographically and seasonally. While climate information is 
hardly the key to cures in infectious diseases, it can be a beneficial component of 
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the control of the vectors and pathogens, and in some cases, in the treatment of the 
disease. 

Climatic variations play an important role in some non-infectious diseases. The 
human body can withstand considerable external heat as long as it can dissipate 
the heat it generates internally, through thermoregulatory processes (WHO 2004a). 
It normally does this through convection, conduction, respiration, radiation and 
evaporation of sweat. But when the amount of incoming heat is high enough and 
the evaporative cooling produced by sweating is overwhelmed, the amount of 
body heat builds up, and heat illnesses can result. For example, heat related deaths 
rose dramatically across much of Europe in 2003, when the number of hot summer 
days was far above the long term average (WMO 2004). Climatic factors that most 
influence human health include air temperature, solar radiation, humidity, and 
wind speed. 

13.3.2 Digging and Cleaning Datasets 

“Enhanced planning and decision making is a fundamental capability, at all levels, 
for the prevention or mitigation of the negative impacts that are often associated 
with natural hazards. To that end, increased accuracy and reliability of information 
on weather, climate and water on a global scale and the free, unrestricted and 
timely access to that information, are some of the requisites for effective natural 
disaster risk assessment, vulnerability analysis, preparedness and response.“ – 
Michel Jarraud, Secretary-General of the World Meteorological Organization, in 
his statement to the World Summit on the Information Society. 

Global health depends on the choices we make collecting and using informa-
tion. Tools, methods and policies for managing information shape our ability to 
detect health problems, identify solutions and deliver effective interventions. As 
we leverage this new commitment [to invest in both the developing and industrial-
ized worlds in strengthening data collection and management], we have learned 
several important lessons: first, there is an urgent need and opportunity to extract, 
analyse and use existing data across institutional and administrative boundaries; 
second, users must be enabled to interact and query their data instead of simply 
collecting volumes of printed reports; and, third, countries need help in communi-
cating with politicians and the media to make it clear that better information is in 
the mutual interest of the government and its citizens. – Dr Sally Stansfield, 
Executive Secretary of the WHO-hosted Health Metrics Network (former Asso-
ciate Director for Global Health Strategies of the Bill & Melinda Gates Foundation), 
introducing the HMN Strategy and Plan of Operations for 2007/2008. 

Recognizing potential relationships between climate and other environmental 
components, on the one hand, and disease pathogens (and vectors) and humans on 
the other, depends on the availability of observations of the components and their 
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resulting responses. Modelling those relationships depends on observations, as does 
the development and testing of operational services based on the models. Even the 
prediction of the evolution of a climate-sensitive disease, and related prediction-
based early warning systems, require observations. And, the assessment of the qual-
ity and appropriateness of the outputs of those services depends on observations. 

This section addresses the following questions: 

• What observational data do you need? 
• Where can you get it? 
• What problems are there with it? 
• What can be done about the problems? 

13.3.2.1 What Observational Data do you Need? 

In the context of human health, the data will be related to diseases, their impacts in 
humans, and related societal factors. Epidemiological data are needed to understand 
the causes of diseases and the factors that determine their distribution. Public 
health administrative data will describe the evolutions of epidemics, the clinical 
practices that are employed as well as the periods of the practices and results of 
treatments, and the control practices and their results. Data on the status and evo-
lutions in a country’s or region’s infrastructure may figure into the understanding 
of the capacity and means that were or are employed in the control and treatment 
activities, as well as describing the variations and status of land use practices and 
other aspects of human activity that have a relationship with variations in vegeta-
tion, climate and diseases. And demographic data will provide information on 
population characteristics that affect vulnerability to diseases. 

Climate and environment data will describe the weather, water, biological and 
terrestrial variations and status that may influence the diseases. Weather data will 
include traditional surface and upper air observations of elements including air 
temperature, rainfall and other forms of precipitation, humidity, wind, and solar 
radiation, and related elements such as visibility and suspended dust. Hydrological 
data will provide the status and trends of streamflows, rivers and lakes, and river 
basins. Oceanographic data will provide information on sea surface temperature and 
bathymetric profiles, as well as wind structure. Remotely sensed data will provide 
information on meteorological elements such as precipitation, cloudiness, humid-
ity, snow and ice cover, solar radiation, wind, sea surface temperature and sea 
levels, and will also provide information on the status of vegetation. Forecast 
model output will furnish analyses and predictions of many of those variables, at 
varying grid resolutions. Geographic data will be needed to address the location, 
elevation, slope and aspect of study sites as well as the boundaries with water 
masses; and land use data will provide information on desertification, cultivation 
and irrigation practices, urbanization, and infrastructural changes that influence 
diseases. 
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13.3.2.2 Where Can You Get the Data? 

Health-related data depend on the approaches to disease surveillance and the qual-
ity, quantity and completeness of the disease data. Data that describe diseases are 
often provided in the standard format of the International Classification of  
Diseases (ICD) and Related Health Problems. The best case will be in situations 
of notifiable diseases, especially where they are subjected to well-resourced sur-
veillance programmes. The researcher in that case may find well documented, 
logically aggregated, consistent, and relatively complete data through the Ministry 
of Health. “In other situations, existing systems may need extensive modification, 
either in the way in which disease data are collected (e.g. diagnostics), or the 
manner in which data from individual health facilities are collected, aggregated 
and communicated to higher levels in the health system.” – WHO 2004b. To cap-
ture information from disease outbreaks over small geographic areas or time 
periods, one may have to contact public health offices, municipal hospitals or 
individual clinics. Other sources include academic literature and WHO Regional 
Offices. The search for societal data can follow similar routes through respective 
national ministries at one end and literature searches at the other. 

Climate and environmental data usually have fairly well centralized and struc-
tured archives and observational networks. The National Meteorological and 
Hydrological Services maintain the most comprehensive datasets for their nations’ 
historical surface and upper air observations. They also participate in daily global 
data exchange of current observations through the WMO’s Global Telecommuni-
cations System. The specifics of the available data and the method of acquiring it 
may be obtained from the WMO Permanent Representative (PR) of the country or 
territory where the disease is located, or the PR of the country or territory where 
the researcher is located. Aggregated data of lower resolution may reside at 
WMO Regional Specialized Meteorological Centres, and may be requested 
through the PRs noted above. The WMO also coordinates the international archive 
of globally exchanged hydrometeorological data (traditional as well as remotely 
sensed) through the World Data Centres in the United States (Asheville, North 
Carolina) and the Russian Federation (Moscow). Special datasets of very high 
resolution may also be acquired through academic researchers, scientific organisa-
tions and the scientific literature. Searches through Internet web sites often can 
find relevant datasets that may be downloaded directly, or which may be provided 
through correspondence with the owners. For example, the European Climate As-
sessment project makes available quality-controlled climatic datasets from within its 
region.4 

________________  
4 See http://eca.knmi.nl 
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13.3.2.3 What are Some Problems with the Data? 

Researchers frequently encounter problems with observational data related to health, 
demographics, land use, infrastructure, environment, etc. The WMO generally clas-
sifies problems in hydrometeorological datasets into four categories (WMO 
2003b): 

• Inhomogeneity 
o Variations and unreal trends due to changes in instruments, sensors or pro-

cessing equipment, observing or reporting practices, station locations, 
formulae, station environments (and changes in sensor algorithms or drift). 

• Inaccuracy 
o Variations due to irregular staffing, deteriorated or failed equipment, imprecise 

reporting of location or elevation, improper encoding or decoding. 
• Erroneous data 
o Errors in dataset identifiers, algorithms, transmission, transcription, encoding. 

• Missing, incomplete or insufficient data 
o Missing due to limited observing programme, failed sensor platform or sen-

sor, data exchange policy or practice 
o Incomplete due to non-digitized data, gaps due to civil conflict or disaster, 

inhomogeneity 
o Insufficient due to resolution in time, space, parameter set 

Researchers frequently face similar problems with health data, compounded 
greatly by the absence of coordinated procedures for near-real time data collection 
and database management on all scales (sub-national through global scale).  

13.3.2.4 What Can be Done About Data Problems  
in Climate- and Health-Related Datasets? 

The following procedures are taken from the experience of WMO in handling tra-
ditional surface and upper air hydrometeorological data. They may also be 
applicable to other types of observational data that are needed in establishing the 
baseline relationships in climate and health. 

The WMO promotes the overcoming of inhomogeneity in datasets by recom-
mended practices known as “Direct” and “Indirect”. Direct practices are active as 
soon as they are adopted. Examples include the maintenance of a network of Ref-
erence Climate Stations, and adherence to the Global Climate Observing System’s 
Monitoring Principles. Indirect methods are applied on historical datasets, and 
include the use of metadata to re-quality control the data, using reference time 
series, breakpoint identification, and adjustment of data. 
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Procedures to limit inaccuracies in data, and to adjust inaccuracies in historical 
data, are described in the WMO’s Guidelines on Climate Observation Networks 
and Systems (WMO 2003a) and Guidelines on Data Rescue (DARE). For errone-
ous data, the researcher can communicate with the dataset owner or manager  
to overcome errors in dataset identifiers, algorithms, transmission, transcription, 
encoding. It still may be necessary to apply DARE procedures. 

Missing, incomplete or insufficient data can be the most frustrating problem for 
a researcher. The recommendations that follow cannot provide data for observa-
tions that were never taken, for example. If the data are missing due to a limited 
observing programme, data exchange policy or practice, seek the data through the 
WMO Permanent Representatives, through literature searches, or through institu-
tional or academic networks. If they are incomplete due to their not having been 
digitized, or they have gaps due to civil conflict or disaster, or are questionable 
due to inhomogeneity, the National Meteorological and Hydrological Service may 
be able to resurrect the data through the application of procedures through the 
DARE project. It may be possible to have adequate results by substituting another 
dataset for the desired one. For example, Climate Change Detection indices can 
provide analyzed data that capture climatic extremes and trends (WMO 2003c). 
Data that are insufficient due to resolution in time, space, or parameter set may be 
approximated through use of remotely sensed data from Meteorological satellite, 
profiler, Doppler RADAR, etc. And model data that are needed at a specific loca-
tion may be approximated through extrapolation of surrounding gridpoints’ data. 

To begin addressing health data collection and management problems, the 
World Health Organization began hosting the Health Metrics Network (HMN) in 
2005 (WHO 2004b). The HMN operates through high level collaboration among 
countries, international agencies, donors and foundations, and technical experts. It 
was initiated with a large grant from the Bill and Melinda Gates Foundation. The 
objectives of the HMN are the following: 

• Define and set standards for core health information platform designs, key in-
dicators, data and analytic capacities and guidelines for intra- and international 
information use 

• Accelerate and focus development and improvement of national Health Infor-
mation Systems in developing countries 

• Develop policies and strengthen systems and incentives that improve access to 
and use of information by local, regional, national and global constituencies 

13.3.3 Examples of Climate Applications for Human Health 

Our specific contribution . . . has been to add an understanding of climate variability 
as a driver of both land-use change and human health and thus as an important con-
founding factor in understanding land use-health interactions. – M. C. Thomson 
et al. (2004a) 
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This section explores applications in which knowledge of climate variability is 
used to enhance the understanding, control and treatment of a number of diseases. 

13.3.3.1 Onchocerciasis (River Blindness) and Its Relation  
to Land Use Cover Change5 

This disease is sensitive to climate variability, especially in the macro sense of the 
seasonal distribution of its vectors and the availability and viability of vectors’ 
habitats. However, the purpose of discussing it here is to set the stage for an 
exploration of the complexities of the contributions and feedbacks among eco-
logical and social systems that make the development of climate applications for 
health so interesting. 

Onchocerciasis was a neglected disease, but it has become more devastating 
since the 1970s. Its effects are greatest on the rural populations of the West African 
savannah living near fast-flowing rivers. The vector is the blackfly which needs to 
have a particular type of underwater vegetation to lay its eggs. At the initiation of 
the Onchocerciasis Program (OCP) in 1974, some savannah villages close to river 
valley habitats of the blackfly vector were suffering severely, with 60% adults 
infected, and 3–5% already blind. Many villages had been completely abandoned. 
At the peak of the OCP control activities in 1986, the estimates were that 30 
million were affected and 2.4 million were infected. The Programme’s 20-year 
eradication programme put the disease under virtually total control in 11 coun-
tries in West Africa. Resettlement occurred rapidly in villages that had been 
abandoned. 

There are two species of the fly, and two ways the pathogen works in humans. 
In the savannah areas, there is a prevalence for the blinding form of the disease. In 
the deep forest, however, there is more likely to be a skin disease, which is much 
less problematic than blindness. The causal agent is the filarial worm – a seg-
mented, small worm. The vector is the savannah species of blackfly that 
transmits the filarial worm to humans through its bite, and is mainly controlled by 
insecticide sprayed on savannah rivers. In the epidemic areas, the vector control 
for humans is supplemented by an oral drug – ivermectin tablets – that act on the 
filarial worm. 

The spraying could be made ineffective by changes in climate that would  
increase the flow of rivers sufficiently to wash away insecticide without washing 
out the fly’s habitat. But, the control programme has benefited from climatic 
knowledge and prediction of the monsoon winds and associated rainfall patterns, 
which has been used to plan the timing, locations, and type of insecticide used 
(Thomson et al. 2004b). 

________________  
5 Drawing heavily on work reported in Thomson et al. (2004a).  
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Intentional deforestation to convert areas for agriculture and human habitation 
resulted in savannah flies moving to newly habitable areas and bringing the blind-
ing form of disease. Between 1973 and 1990, the studied area experienced a 10% 
increase in urban habitat, 18% increase in savannah area, 11% decrease in de-
graded forest, and 17% decrease in dense forest. This caused significant changes 
in the habitat for the fly and the type of fly that brings the blinding disease, and 
these had serious impacts on the growing numbers of humans in the region. From 
1975 to 1980, the river blindness variety of the disease was only prevalent in 
10.5% of the area. By 1997, it had virtually doubled. The existence of the effective 
control program meant that human settlement could move into other, uncontrolled 
areas, i.e. previously vacant land, and it did so with vigor. In 1973 along the river, 
5% of the area was cultivated. In 1983, 30% was cultivated; by 1993, 70% was 
cultivated, and with the increase in cultivation and human habitation along the 
rivers humans were being increasingly exposed. Humans were also changing how 
water got to the river, which affected the habitat sites for the vectors. 

By the mid-1990s the method of control of the disease had swung from one that 
relied predominantly on spraying insecticide on the vector habitats (as had been 
done under the OCP), to the oral drug (ivermectin) treatment of humans (the 
method employed in the African Program for Onchocerciasis Control (APOC) that 
followed after the OCP). But, expansion of the control efforts into forested areas 
resulted in severe adverse reactions and death among patients taking the drug, 
which was associated with ivermectin. Distribution of the drug was impeded be-
cause control organisations did not want to increase the problems of the reaction 
of the drug. 

Why was it happening, and what could be done? The path to the answer to the 
first part of that question lay beyond onchocerciasis, to Loa loa – another disease 
that is transmitted by a different vector. It was shown that people infected through 
bites from the chrysops fly and contracting Loa loa were the ones having serious 
reactions to the ivermectin. The drug became ineffective not because it couldn’t 
handle the onchocerciasis, but because, in the presence of the Loa loa in the 
body (a less serious disease), it resulted in severe reaction. 

13.3.3.2 Loa Loa6 

Loa loa is now the major issue – 20% of the population that is subjected to both 
onchocerciasis and Loa loa is at risk of adverse reactions to ivermectin. That 
means that, in terms of onchocerciasis, medical professionals are having to ana-
lyze who will get severe reactions, and they are working on alternative methods of 
introducing the drug ivermectin or other treatments. 

________________  
6 Drawing heavily on work reported in Thomson et al. (2004a, c). 
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The APOC gave high priority to mapping the spatial distribution of loiasis, so 
that it could modify its approaches to treatment and enhance the surveillance 
methods. Looking at all of Cameroon, for example, meant a great area to have to 
cover. But by focusing on areas where a 20% or greater prevalence was predicted, 
they could find where the Loa loa presence was dramatically increasing. Extensive 
study began with mapping the distribution of environmental factors that influ-
enced Loa loa distribution. The mapping showed that the Chrysops fly habitat was 
associated with fringe areas between the dense forest and its borders with culti-
vated areas, where the fly could live in the high crowns and the larval stages could 
grow in wet, organically rich and muddy low-lying areas. That is a vastly different 
habitat from that of the blackfly of onchocerciasis, which needs fast-moving water. 

A risk map was developed using data from Cameroon. Considerable prevalence 
data was available, through the Centre Pasteur of French Research for Develop-
ment organisation (IRD). Newly available environmental data included imagery 
from the SPOT sensor and the Synthetic Aperture Radar sensor (SAR). The avail-
able population data were extensive – over 14,000 individuals from 95 villages 
over period of 10 years – age, sex, presence or absence of Loa loa, and the amount 
of blood taken for examination – and were factors for the regression analysis. Data 
on the village – latitude and longitude from the ordinance survey map or a 
Global Positioning System – were used to anchor epidemiological data. Population 
density, normalized difference vegetation index data (NDVI) from SPOT and 
SAR, and altitude from the US Geological Survey’s Digital Elevation Model were 
obtained. The NDVI satellite data show the seasonal and inter-seasonal variations 
in the vegetation, which provides information on the status of the vector habitat as 
it responds to climatic variations. The data also correlate well with the changes in 
the distribution of the vectors. But, the NDVI data has 1 km resolution, while 
some forest galleries that are important in looking for vector habitat are only 50 m 
wide. Synthetic aperture radar resolved to 100 m was used and the finer resolution 
gave more detail in looking at forest areas.  

Using the environmental data and considerations of age and gender, a logistic 
regression model was used to map the spatial prevalence of the disease. Of parti-

13.3.3.3 Meningococcal Epidemic Meningitis7 

Meningococcal Meningitis transmission is by direct droplet contact. This disease 
only exists in the nose and throats of humans. Twenty- to forty percent of the West 
________________  
7 Drawing heavily on work reported in Thomson et al. (2004a). 

Cameroon region, the Sudan, and Ethiopia. 

cular concern are areas where the prevalence exceeds 20%, and in only a very
few locations did the prevalence exceed this threshold when the model indicated 
lower levels of risk. The model has been applied to map risk of the disease in the 
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African populations that are affected are symptomless carriers – they have it in 
nasal cavities in membranes but exhibit no symptoms. The seasonality and inter-
annual variability of the disease are related to the proportion of clinical infections 
that get strong enough for patients to begin seeking treatment, compared to the 
sub-clinical infections. It is the strength of the infection, and the cycle of spread-
ing the disease to another, that is more important to researchers, rather than the 
behavior of the persons in transmitting the disease. 

The disease is sensitive to climate variations, especially on the seasonal scale. 
Epidemics typically reach their peak at the height of the dry season and diminish 
once the rainy season commences. If vaccination starts before the peak, the dis-
ease can be managed better, but that is costly and depends on well maintained 
surveillance and response mechanisms. An alternative is to vaccinate ahead of the 
onset of cases, but while that may be cost-effective it is difficult to implement. 

There is a concentration of geographical distribution and seasonal occurrence in 
the Sahel zone of Africa – the risk factors are dry, dusty conditions, which in-
crease the risk of the disease. The main apparent contributor is land use and land 
use change, where cultivation stirs up the soil. The fine airborne dust (1 µ) is a 
factor in the disease, as particles can reach well into the lungs. 

Modelling through the Meningitis Forecasting Project for Africa showed that 
absolute humidity and land cover are reliable indicators to distinguish between 
areas with high and low risk of epidemic events. Other important indicators in-
clude population density, dust and soil type. Meningitis epidemics have been 
shown to be influenced strongly by low absolute humidity and dusty conditions 

certain specific regions, and that the environment and particularly the climate 
variations are strong influences on where and when they will occur. The high pre-
dictive value of the model developed through the Project showed that an 
environmental model can be instrumental for policy makers in understanding the 
distribution of meningitis epidemic risk across Africa. 

The model also has the potential to be useful in a Meningitis Early Warning 
System. It is able to resolve environmental components to inter-annual variability 
with respect to the different times of the year in which they are important. How-
ever, much work remains to be done, especially on the ways that the environmental 
and other factors influence the onset and extent of epidemics. 

Changes in the spatial and temporal distribution of diseases result from changes 
in population, climate, land use, economy, and social structure, among others. 
Health decision makers often require simple solutions to complex problems. It is 
important to work with policy makers to understand their decision frameworks, to 
initiate the dialogue as to the value of specific information and to develop their use 
of uncertain information. 

Africa shows that the risk of Meningitis epidemics in Africa is concentrated in 
outside the tropics as well. Analysis by the Meningitis Forecasting Project for
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13.4 Early Warning Systems 

Early Warning Systems (EWS) are a common approach in many activity areas to 
preparing to deal with anticipated problems when there is still time available to 
respond to and to mitigate those problems. According to the Department of Early 
Warning and Assessment (DEWA) of UNEP the fundamental roles of Early 
Warning Systems are to analyse and assess trends, to provide policy advice, to 
provide early warning information on threats, and to catalyse international coop-
eration based on best-available scientific and technical capabilities. A scan of the 
web reveals Early Warning Systems for breast cancer, national development pro-
jects, Internet and credit card fraud, war and conflict outbreak, the energy and 
water balance of the earth’s surface, paedophilia, volcanic eruptions and earth-
quakes, and many more. One evolving EWS that has attracted much recent media 
attention at the time of writing is the Indian Ocean Tsunami EWS, instituted fol-
lowing the 26 December 2004 event. Many of these systems listed above naturally 
involve no element of climate, and frequently in the past those that do incorporate 
climate as a component have issued warnings based only on climate observations 
and not on predictions per se, a situation that is now changing rapidly as the 
potential benefits of predictions are becoming recognised. Famine, drought, heat, 
and health-related EWSs are examples of those that include climate components. 

All Early Warning Systems tend to follow the same basic model. Relevant 
events known to be associated through experience and observation with the issue 
of concern, say famine, are monitored and interpreted. Actions are then taken once 
pre-determined trigger points are reached. In some cases there may be only a sin-
gle trigger point, such as with a tsunami system when an earthquake satisfying 
basic criteria and/or evidence of an existing tsunami will trigger an “evacuate” 
instruction, whereas in other systems several trigger levels may exist instigating 
progressively more urgent responses. In all cases the idea is simply to use knowl-
edge of precursors, together with efficacious monitoring, to provide as much 
warning as possible that potentially adverse impacts, such as declining food stocks 
or conditions suitable for a malaria outbreak, are in the course of development. 
Early Warning Systems in general do not predict that specific adverse impacts will 
occur in due course, but merely extend preparation time compared to systems that 
respond only once impacts have been recognised, at which stage it is often too late 
to take remedial actions. Systems that maintain watches for on-the-ground signs 
that impacts, perhaps famine, are occurring in reality, but without providing warn-
ing, are known as Early Detection Systems (EDS); EDS’s are frequently used to 
complement EWS’s. There is a recent trend, however, to incorporate predictions, 
including weather and climate, within EWS’s in order to help focus the warnings. 

A new concept of early warning has been developed using the ideas of chemi-
cal theory, in particular the terms ‘hotspot’ indicating a reaction that might become 
unstable, ‘flashpoint’ at which the reaction begins but may still be reversed, and 
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Fig. 13.5 Diagrammatic representation of the various stages through which environmental 
changes might translate to become firepoints. Preventative action is best undertaken at the ‘criti-
cal zones’ level rather than await the creation of hotspots and, later, flashpoints within them 

‘firepoint’ at which the reaction cannot be reversed. Although Fig. 13.5 has been 
prepared on this concept within the context of environmental changes it is readily 
revised within any other context. Within the layers of Fig. 13.5 an EDS might be 
designed to operate within known critical zones, and in particular hotspots, to in-
dicate that a flashpoint has been reached. An EWS would operate throughout to 
monitor the changing situation and to interpret information in terms of the like-
lihood that hotspots will translate to flashpoints. 

At one time there was a remarkable proliferation of Early Warning Systems in 
developing countries, often with individual NGO’s, International Development 
Agencies, UN Agencies and national Government Departments having their own 
systems, each with their own specific, but at times duplicative, objectives. Some 
consolidation has taken place in recent years, frequently under UN bodies includ-
ing UNEP DEWA, such that duplication and differential triggering have been 
reduced. Examples of major Early Warning System activities include: 

• The Humanitarian Early Warning System, HEWS,8 organised by the UN World 
Food Programme on behalf of the IASC (Inter-Agency Standing Committee), 

________________  
8 See: http://www.hewsweb.org 
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which represents a large number of UN Agencies, various Inter-Government 
Agencies, NGOs and other Institutes – HEWS provides a one-stop web source 
for droughts, floods, storms and other weather events, locust invasions, seismic 
events, avian influenza, plus others on an as-needed basis. 

• The Global Information and Early Warning System, GIEWS,9 of the UN Food 
and Agriculture Organization, and the Famine Early Warning Systems Net-
work, FEWS NET,10 run by the US Agency for International Development 
together with several other US Government agencies, both with a focus on food 
security in the developing world. 

• The Malaria Early Warning System, MEWS, coordinated by the UN World 
Health Organization, that developed from the Roll Back Malaria project. 

Most Early Warning Systems have similar generic requirements: 

• A good quality archive of historical data covering as many aspects relevant to 
the issue of concern as possible, in all necessary spatial and temporal detail; 
this archive should include all factors that relate to vulnerability in regard to the 
issue of concern and may therefore extend beyond information just on the 
events of interest to include, say, population data, land use data, economic data, 
climate data, and so on. 

• An understanding of the historical data in terms of its relationships to, and 
hence its information content with regard to producing warnings for, the issue 
of concern. 

• Agreed approaches to recognising trigger points and to responding to these in 
established manners, preferably with an experience-base assisting in establish-
ing best practice. 

• An adequate monitoring system for all relevant data at appropriate temporal 
and spatial resolutions. 

• Systems for accessing monitoring data and for broadcasting warnings to deci-
sion makers within time constraints appropriate to the issue of concern. 

• Institutional support at all necessary levels for maintaining the system and for 
responding to the warnings. 

Each of the requirements in the above list presents its own specific challenges, 
particularly in regions where data are lacking, or data archiving is inadequate, or 
the necessary research is incomplete. But the final bullet in the above list is per-
haps the most important, as without appropriate institutional support the potential 
benefits of any EWS may not be realised; care needs to be taken in any demon-
stration project that institutional constraints are recognised and addressed. 

________________  
9 See: http://www.fao.org/WAICENT/faoinfo/economic/giews/english/index.htm 
10 See: http://www.fews.net 
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Prediction per se, and seasonal to interannual climate prediction in particular, 
does not currently form a component of many Early Warning Systems, although 
on the climate side developments in the understanding of ENSO have enabled 
benefit to be gained from knowledge of the canonical expressions on temperatures, 
rainfall, storms, etc. during different phases of ENSO. However such knowledge 
can be used inappropriately when specific ENSO events produce non-canonical 
responses, as occurred around some parts of the Indian Ocean basin during the 
1997/98 El Niño (see Figs. 1.1 and 6.10). Seasonal climate prediction, rather than 
use of climatology, is preferential, but so far has not been employed to the extent 
that it might. Perhaps one reason for the relative lack of use of climate prediction 
information, despite the evident advantages of its employment, is absence of clear 
demonstrations that predictions at their current state of development will benefit 
warnings. Further these predictions may lack the spatial and temporal specificities 
considered desirable to improve EWSs. 

One area in which progress has been made in the incorporation of seasonal to 
interannual rainfall prediction is in MEWS, the Malaria Early Warning System, 
where additional Forums over and above the RCOFs have been trialled in southern 
Africa with regard to converting climate predictions into malaria outbreak predic-
tions. As detailed in Section 13.4.2, there is a close link between both climate and 
climate variability with malaria incidence, both spatially and temporally, but it is 
in the epidemic areas where climate is only intermittently conducive to the spread 
of the disease that prediction would be of greatest benefit. Modelling studies have 
demonstrated that malaria incidence is, to an extent, predictable based on climate 
inputs alone, and thus prediction might be used either independently or within the 
structure of an EWS. Pilot studies within the southern African region have taken 
the approach of introducing predictions within the structure of a MEWS, as illus-
trated in Fig. 13.6. 

The bottom row in Fig. 13.6 illustrates across 4 years the weekly incidence of 
malaria morbidity and mortality at a location within an epidemic zone, with the 
black line indicating historical averages. In the row above are shown rainfall ob-
servations for the 4 years, together with, in black, the climatology. Of interest, 
naturally, in this epidemic area is the fourth year, during which a malarial out-
break was preceded by above-average rainfall that established breeding sites for 
the vectors. Flag 3 (see top row), a trigger point obtained through an EDS, pro-
vides confirmation that an outbreak is in progress during this fourth year, but 
offers on its own rather limited preparatory opportunities. An EWS, that had not 
only suggested increasing vulnerability of the population to an outbreak through 
the earlier years (because of reduced resistance resulting from a period of limited 
mortality/morbidity accompanying rainfall around or below average – second 
row), but that also recognised the relatively high rainfall of the fourth year, 
might have offered a trigger point at Flag 2 at the onset of the heavy rains, with a 
few weeks’ preparatory advantage over Flag 3. 

Seasonal rainfall prediction, as in the third row, might offer the further months 
of preparatory time associated with the trigger point of Flag 1. In practice the 
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Fig. 13.6 Example of the manner in which a malaria Early Warning System might work using 
seasonal climate predictions (middle row) in an epidemic area. Malaria incidence is given in the 
bottom row with observed rainfall above; respective climatologies are shown as black lines. 
Vulnerability of the population is shown via a traffic light approach in the second row, while 
triggers are shown in the top row. See text for full details 

decision making in this case is slightly more complex than is suggested in Fig. 
13.6 as the probabilistic seasonal rainfall predictions shown have inflated levels of 
skill, and in reality the category with the highest probability is not likely to occur 
as frequently as indicated. Nevertheless this pilot study illustrates the potential 
benefits offered by seasonal to interannual prediction within the context of Early 
Warning Systems. 

13.4.1 Health Early Warning Systems 

13.4.1.1 Dengue Fever Early Warning in Indonesia 

Dr Dana Focks (Focks 2003) reported on developments of an early warning sys-
tem for dengue and dengue hemorrhagic fever in Southeast Asia. The early 
warning system predicted dengue prevalence in March to May in Yogyakarta, 
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Indonesia. Using sea surface temperature data from meteorological satellite and 
data from the epidemic from 1987–1989 to develop a statistical model, the Dengue 
Early Warning system with 3 months’ lead time was predicting correctly and had 
one error in the prediction for the year 1992 (a false positive): the model gave a 
probability of 0.64 of “epidemic” and 0.36 of “no epidemic”. The WHO and 
PAHO formerly had promoted insecticide aerosols for control of mosquitoes – a 
government based approach that was costly and didn’t work, and was abandoned. 
Then in the 1990s the new approach became “community-based source reduc-
tion”, with the goal to clean or eliminate open containers (e.g. discarded tires, 
empty oil drums) that fill with water, which are a habitat for the mosquitoes that 
carry dengue. But, without a strong, direct government push, the recommendations 
were not followed through, which meant that there was no effective control with 
that approach either. The latest strategy is to use a climate-based Early Warning 
System to focus control on the containers most likely to provide adequate habitats, 
for example, a particular class; or, all those abandoned in selected sites, e.g. public 
lots and gathering rainwater, etc., to help focus the cleanup efforts. 

13.4.1.2 Heat Health Warning Systems 

Two major activities are underway to develop guidelines on heat health warning 
systems (HHWS). The World Meteorological Organization through its Commis-
sion for Climatology is studying universal thermal heat indices and heat health 
warning systems, with the goal of issuing guidelines that will help all WMO 
Members to establish warning systems to protect their populations from extreme 
heat events (WMO 2004). At the heart of most HHWS are forecasts of dangerous 
heat conditions, which can be based on: 

1. Single meteorological variables such as air temperature or relative humidity. 
Relative humidity is often not used effectively, but temperature does contain 
information about the thermal environment. 

2. Simple thermal indices (historic) as, e.g. the Heat Index. These are believed to 
have limited relevance and limited reliability. 

3. Weather classifications (holistic approach). This approach has been shown to 
be successful in heat/health studies. The technique requires the development of 
a synoptic or weather type classification that can, depending on the level of so-
phistication, be data and analysis intensive. Furthermore, synoptic or weather 
types, as is the case for human energy-based biometeorological indices, can 
never be verified, as they are statistical or numerical constructs. This contrasts 
with conventional meteorological variables, as forecast values of these can be 
compared with actual observed values. 

4. Heat budget models, such as the Universal Thermal Climate Index (UTCI). 
These are thermophysiologically relevant, consider the complete heat exchange 
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Such procedures are able to fulfill the precondition that the same value of an 
index always means the same for the human body, independently from the 
combination of the single values of the meteorological input parameters. 

The other major activity is the Watch Warning System work package of the 
Assessment and Prevention of Acute Health Effects of Weather Conditions in 
Europe (PHEWE) project and the associated EuroHeat project (considering the 
utility of seasonal climate forecasts), under the of the Fifth Framework Pro-
gramme, funded by the European Union (WHO 2004a). 

13.4.2 The Malaria Early Warning System: Malaria  
Incidence – Climate Relationships in Botswana 

In this section, a step-by-step analysis is presented of the relationship between the 
annual incidence of confirmed malaria in Botswana, and a country-wide average 
of rainfall during the peak rainfall season. The results are then used to make a pre-
diction of malaria incidence. The analysis is based on previous research by 
Thomson et al. (2005, 2006), but updates the data to 2005. The reader should be 
able to repeat, as an exercise, the analyses using the data presented in the tables.  

Table 13.1 shows a set of annual total confirmed and unconfirmed malaria 
cases in Botswana for the 24-year period 1982–2005, together with the estimated 
population for the country. Any analysis of trends in malaria (or any other disease) 
should take account of changes in the population since the total number of people 
infected will almost inevitably increase if the total population increases. It is more 
informative to consider the trends in the proportion of people affected by a dis-
ease. For example, since the population of Botswana increased by approximately 
80% over the 24-year period, the total number of malaria cases would have to in-
crease by more than 80% to indicate that the disease had become more wide-
spread. The standard way of indicating the proportion of people affected by the 
disease is to divide the number of cases by the total population. This number is 
known as the incidence. The incidence is often multiplied by 1,000 to indicate 

Figure 13.7 indicates that outbreaks of malaria seem to have occurred at inter-
vals averaging about 4 years. These outbreaks were then followed by exponential  
declines in incidence. This pattern is characteristic of a population’s evolving 
immunity: after an outbreak, immunity is built up, and incidence declines, but 
with the consequent decreased exposure to the disease, immunity is lost, and the 
disease can re-occur at a potentially devastating extent. 

conditions, and are valid for all thermal environments (both heat and cold). 

malaria. The confirmed incidences per 1,000 are illustrated in Fig. 13.7. 
how many people out of a typical sample of 1,000 people were infected with
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Table 13.1 Annual confirmed and unconfirmed malaria cases in Botswana for 1982–2005,  
together with the estimated total population 
 

 Malaria cases  
Year Confirmed Unconfirmed Population 
1982 85 332 1,019,690 
1983 161 1,167 1,051,227 
1984 320 1,831 1,083,739 
1985 628 1,867 1,117,256 
1986 1,437 2,994 1,151,811 
1987 326 1,228 1,187,434 
1988 9,013 21,587 1,224,159 
1989 5,398 14,842 1,262,019 
1990 1,916 8,457 1,301,051 
1991 1,783 12,012 1,326,796 
1992 415 4,293 1,358,554 
1993 14,615 40,722 1,391,073 
1994 5,335 24,251 1,424,369 
1995 2,271 16,451 1,458,463 
1996 25,641 80,004 1,493,373 
1997 19,811 100,579 1,529,118 
1998 5,810 59,623 1,565,719 
1999 12,754 72,803 1,603,196 
2000 8,056 71,555 1,641,570 
2001 4,716 48,281 1,680,863 
2002 1,283 28,907 1,721,096 
2003 1,830 23,657 1,762,292 
2004 3,453 22,404 1,804,475 
2005 1,738 14,019 1,847,666 

 

 

Fig. 13.7 Annual confirmed malaria incidences per 1,000 population in Botswana for 1982–2005. 
The black bars indicate epidemic years: those in which the incidence exceeded the upper quartile 
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If an outbreak is severe, it is called an epidemic. Epidemic years are formally 
identified as years in which incidence is higher than the upper quartile. The upper 
quartile defines the level of incidence that is exceeded on average once in every 4 
years. The epidemic years are highlighted as black bars in the graph, and they  
occurred in 1988, 1993, 1996, 1997, 1999, and 2000. The worst epidemic occurred 
in 1996, and seemed to be part of an upward trend that has apparently been  
reversed. This upward trend is attributable, in part, to changes in the resistance of 
the malaria parasite to drugs, and represents an increase in vulnerability of the 
population to the disease. Similar vulnerability trends have been widely reported 
in other parts of the continent and beyond. 

Changes in malaria control policy were implemented in 1996, and, if effective, 
would be evident in the data for 1997 and later. The policy intervention does  
appear to have been effective in halting, or even reversing the upward trend. How-
ever, the simplest way to test the effectiveness of the intervention is to consider its 
impact on the ratio of unconfirmed to confirmed malaria cases. Since the inci-
dence of unconfirmed malaria consists of cases of malaria-type symptoms that 
could just be cases of fever, the ratio of unconfirmed to confirmed incidence is 
likely to have increased if the changes in malaria control have been effective. In 
Fig. 13.8 the confirmed and unconfirmed incidences are compared for pre- and 
post-policy change years. The incidences for 1997 onwards are shown in grey, and 
there is a clear increase in the ratio of unconfirmed to confirmed cases represented 
by the displacement of the grey markers to the right of the graph. The intervention 
therefore appears to have been effective. 

Since most statistical tests assume that the data being analysed are normally 
distributed, the incidence data should ideally be transformed because the annual 
values are strongly positively skewed (skewness is approximately 1.8). Taking the 
 

Fig. 13.8 Annual confirmed and unconfirmed malaria incidences per 1,000 population in  
Botswana for 1982–1996 (black) and 1997–2005 (grey) 
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logarithm of the incidence eliminates the positive skewness, and even introduces a 
slight negative skew (skewness is approximately −0.3). The log-transformed inci-
dence is therefore a more appropriate value than the incidence for performing 
statistical analyses. 

Epidemic malaria generally occurs in one of two areas: semi-arid areas where 
insufficient rainfall usually limits breeding areas for mosquitoes; and highland 
areas where cold temperatures can severely restrict the breeding cycle of the 
malaria parasite. In the “desert fringe malaria” areas, where rainfall deficiencies 
typically restrict the occurrence of malaria, occasional seasons of heavy rainfall 
can result in epidemic malaria because of the increase in mosquito breeding sites. 
Botswana is a semi-arid country, and most of the rainfall occurs in the summer 
months December–February (Fig. 13.9, black bars). The malaria incidence peaks 
about 2 months later (Fig. 13.9, grey bars). Rainfall varies considerably from year 
to year in Botswana (Table 13.2), and so, epidemic years may be most likely to 
occur after a good rainfall season. 

Given the vulnerability trends already mentioned, as well as the effects of the 
policy intervention of 1996, a simple correlation between the rainfall and the log 
malaria incidence would not give an accurate indication of the strength of the 
effect of rainfall on epidemic risk. A regression model is to be used to estimate the 
influence of climate, but it is necessary to account for these known non-climatic 
influences in the model in order to estimate the climate’s influence more accu-
rately. Consider first the policy intervention. There are a number of possible 
effects of this intervention: 

 

Fig. 13.9 Averaged weekly confirmed malaria incidences per 1,000 population in Botswana 
(black bars) and averaged weekly rainfall totals 1997–2005, as percentages of the mean annual 
totals. The weekly averages are filtered using a 5-week running mean 
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1. The background incidence (as measured by the mean) may been have changed 
2. The vulnerability trend may have been changed 
3. A combination of the two previous effects may have occurred 
4. There may have been no discernible effect at all 

To test these possibilities, additional variables need to be included in the re-
gression model. Firstly, an indicator variable (a series of 0s and 1s) is defined that 
indicates years in which the intervention has occurred. This variable will therefore 
equal 0 up to 1996, and 1 from 1997 onwards. In a regression model, this variable 
can be used to represent a change in the background incidence (option a). An addi-
tional new variable is required to represent option b, but the vulnerability trend 
itself needs to be accounted for first. The vulnerability trend can be represented as 
a simple linear trend component by including the year in the regression model. 
The possibility of a modified trend can then be calculated by superimposing an 
additional trend component on the long-term vulnerability trend, starting only in 
1997. This modified trend is incorporated by a variable that is obtained by multi-
plying the year by the indicator variable. Thus, three new variables are included 
that describe the possible effects of trends in vulnerability, and the effect of the 
policy intervention on both the trend and on the mean incidence. 

Table 13.2 December–February rainfall (mm per day) averaged over Botswana for 1981/82–
2002/03. The Climate Prediction Center Merged Analysis of Precipitation (CMAP) data were 
averaged across the 20 grid points between 17.5–27.5°S and 17.5–30.0°E as approximately rep-
resenting Botswana 

Year Rainfall 
1981/82 1.81 
1982/83 1.81 
1983/84 1.93 
1984/85 2.46 
1985/86 2.37 
1986/87 1.89 
1987/88 3.67 
1988/89 3.93 
1989/90 2.44 
1990/91 2.98 
1991/92 1.70 
1992/93 2.48 
1993/94 3.33 
1994/95 1.90 
1995/96 3.80 
1996/97 3.56 
1997/98 2.19 
1998/99 2.66 
1999/00 4.88 
2000/01 2.31 
2001/02 1.76 
2002/03 2.23 
2003/04 2.48 
2004/05 2.37 
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Before proceeding, one additional new variable should be considered. In other 
areas excess rainfall has been found to impact mosquito populations negatively 
through the destruction of breeding sites. Independent research results indicate the 
existence of a quadratic relationship between rainfall and malaria incidence: an 
increase in the mosquito population, and hence the epidemic risk, with an increase 
in rainfall will only occur up to a certain point; if there is too much rainfall the risk 
of an epidemic may decline. To consider this possible effect of excess rainfall, an 
additional variable representing rainfall squared is included. 

Five explanatory variables are therefore to be included in the model: rainfall, 
rainfall squared (to account for the possible effects of too much rain), year (to rep-
resent the vulnerability trend), year from 1997 onwards (to represent the effects of 
the policy intervention on the vulnerability trend), and an indicator variable (to 
represent the effects of the policy intervention on the background incidence). The 
results of the regression model are shown in Table 13.3. The partial t-statistics for 
all the regression parameters are well above 2.0, indicating that all five variables 
explain a significant proportion of the total variance at a 95% level of confidence. 
The coefficients for the two climate variables describe an inverted u-shape (be-
cause the parameter for rainfall squared is negative, −0.26), confirming that excess 
rainfall may result in a decrease in malaria incidence. The vulnerability trend was 
reversed by the policy intervention (the intervention parameter of −0.16 is stronger 
than the vulnerability trend of 0.07), but the positive coefficient for the effect of 
the intervention on the mean incidence (322.44) seems to imply that the incidence 
has increased. This paradox is simply a reflection partly of the fact that there are 
more years in the 24-year sample prior to the intervention than following it, and 
partly of a discontinuity in the trend line. 

Table 13.3 

annual confirmed malaria incidence for Botswana for 1982–2005 

 Intercept Rain Rain2 Vulnerability Intervention 

     Mean Trend 
Parameter −148.85 2.00 −0.26 0.07 322.44 −0.16 
Standard 
error 30.41 0.42 0.07 0.02 72.92 0.04 

Partial  
t-statistic 4.89 4.77 3.96 4.76 4.42 4.42 

 
Using the results in Table 13.3, the annual log incidences that can be attributed 

to the vulnerability trend and to the effects of the policy intervention can be calcu-
lated. The contributions from these non-climate variables are obtained by using 
the regression parameters from the Table for these variables only. These contribu-
tions can then be subtracted from the observed incidences so that the effects of the 
vulnerability trend and the policy intervention are removed. It is important to 
estimate the regression parameters for these non-climate variables while includ-
ing the climate variables in the model because it is possible that part of the 

Regression parameters, standard errors, and partial t-statistics for estimating log 

389 13 Water, Health and Early Warnings 



observed trend up to, and after, 1996, and any change in the mean after 1996 are 
partly an effect of climate trends over the same period. The log incidences after 
removing the non-climatic effects (and after centering so that the mean over the 
24-year period is zero) are shown in Fig. 13.10. The “epidemic” years have been 
re-identified, and are shown in black. The new years are the same as shown in Fig. 
13.7, except that 1989, is classified as an epidemic year instead of 2000. 

If the regression is recomputed using only the climate explanatory variables to 
explain the incidence data shown in Fig. 13.10, the regression parameters (except 
that for the intercept) are essentially unchanged, but the strength of the influence 
of the climate can be estimated. The climate variables explain about 75% of the 
variance of the adjusted incidence data. The strength of this relationship is indi-
cated in Fig. 13.11, where the quadratic nature of the relationship is evident. The 
quadratic relationship appears to be primarily a result of the 1 year with almost 
5 mm/day of rainfall (the year 2000), but the quadratic curve shown was calcu-
lated without using 2000. There is an imperceptible change in the curve if 2000 is 
included. The curve indicates that the risk of an epidemic is maximized when 
there is about 3.75 mm/day. 

A forecast of incidence can be made given a prediction of rainfall using the 
results in Table 13.4. The ensemble-mean rainfall prediction for December–
February 2005/06 for Botswana from the ECMWF model was about 2.61 mm/day 
(after bias correction). This rainfall prediction converts to an estimated log inci-
dence for 2006 of 0.14, or an incidence of 1.15 per 1,000. With a population of 
about 1.9 million, the estimated number of confirmed malaria cases would be a little 
 

Fig. 13.10 Annual anomalies of confirmed log malaria incidences per 1,000 population in  
Botswana for 1982–2005, after removing the vulnerability trend and the effects of the policy 
intervention. The black bars indicate epidemic years: those in which the incidence exceeded the 
upper quartile 
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Fig. 13.11 Annual anomalies of confirmed log malaria incidences per 1,000 population in  
Botswana for 1982–2005, after removing the vulnerability trend and the effects of the policy 
intervention, and observed December–February rainfall for 1981/82–2004/05. The quadratic line 
was calculated without including 2000 

Table 13.4 Regression parameters, standard errors, and partial t-statistics for estimating anoma-
lous log annual confirmed malaria incidence for Botswana for 1982–2005, after removing the 
vulnerability trend and the effects of the policy intervention 

 Intercept Rain Rain2 
Parameter −3.24 2.00 −0.26 
Standard error 0.53 0.37 0.06 
Partial t-statistic 6.06 5.35 4.39 

 
under 2,200, which is not enough to qualify as an epidemic, but certainly enough 
to indicate an increased threat against the background of the downward trend re-
sulting from the policy intervention. Of course, the epidemic risk should not be 
estimated using only an ensemble-mean rainfall prediction. One possible approach 
would be to use the ensemble of predictions and to obtain incidence estimates 
from each member. The Malaria Early Warning System described above demon-
strates the effective use of combining the monitoring of weather, providing 
seasonal to interannual prediction of weather with respect to climatological norms, 
understanding the vulnerability of population, and monitoring through sentinel sites 
the actual incidence of the disease, to provide effective early warning of potential 
malaria epidemics (WHO 2001). 
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13.4.3 Establishing and Furthering Operational Climate  
Services for Health11 

Climate directly impacts food and fibre production, and the epidemiology of infec-
tious diseases. Severe or repeated climate shocks can push vulnerable households 
into a persistent poverty trap when their individual coping responses involve 
divestment of productive assets, such as livestock or land. Without advanced 
warning, societal safety nets are costly, and difficult to mobilize and target effec-
tively. – IRI 2005 

This joint Communicable Disease Surveillance and Response, Protection of the 
Human Environment, and Roll Back Malaria publication was prepared with the 
understanding that climate based Early Warning Systems, when fully developed, 
do have the potential to provide increased lead times in which to implement epi-
demic prevention and /or control activities. Therefore their development should be 
encouraged, and both positive and negative experience of using such systems 
should be documented. – WHO 2004b 

For an early warning system that incorporates climate information, we must 
understand the influences that climate has on human behavior, pathogens, and 
vectors. Certain human behaviour is strongly influenced by climate variability, 
and can determine the disease transmission pattern. Seasonal influences can 
change the balance of immunity or resistance. For example, with seasonal influ-
enza in Europe, people tend to spend more time indoors in the winter, resulting in 
increasing exposures and contributing to the peak time for an outbreak of influ-
enza. Similarly, gastroenteritis in developed countries can be associated with non-
climatic factors, as people tend be outside more in the warmer weather, cooking 
and eating outside and sometimes not cooking food thoroughly, or putting cooked 
food onto the plates that had been used for the raw food, thereby introducing 
pathogens. 

If one is interested in developing a climate early warning system for a disease, 
there are some confounders that must be addressed: population vulnerability, in-
cluding the likelihood that a vector will find someone within the population that is 
infectable, and malnutrition (the immune system is depressed). In the Kenyan 
western highlands, epidemics may only occur when the population has become 
largely non-immune. For example, if it has been a while since the last epidemic, a 
high proportion of the young may not have been exposed. 

Dynamics of the pathogen can be highly sensitive to climate, especially those 
pathogens that are born outside the final host. Thresholds of temperature fre-
quently determine the viability of juvenile stages. But pathogen dynamics can also 
be confounders, such as in malaria where some pathogens are becoming resistant 

________________  
11 The bulk of this section draws from the report, Using Climate To Predict Disease Out-
breaks:  A Review (WHO 2004b). 
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to control and treatment drugs. If people are becoming infected at a higher rate, it 
may be due to climatic causes but it may also be due to changes in vulnerability. 
Climate factors such as temperature, rainfall and humidity strongly influence 
many of the patterns of geographical distribution and development of some dis-
ease vectors. However, the contribution of population movement and agricultural 
practices (e.g. deforestation and irrigation schemes) were shown to be very impor-

It is important to rationalize the contributions of climate variability and of con-
founders in the variance of the aspect of disease that is the goal of an early 
warning system, to determine if it adds sufficient value and is practical to imple-
ment. The early warning system needs to look not only at the question of will 
there be an epidemic, but when an epidemic will occur. And it is important to 
know which of the factors will give the key information. 

In developing a climate based early warning system, some perceptions may form 
obstacles and should be anticipated and addressed. That climate factors form only 
part of the set of the determinants can be reason enough for some to dismiss their 
value. The recipients may respect the climate factors, but not act on the early warn-
ing for other reasons. There may be insufficient interest at high levels in preventing 
a crisis. And, “In most cases purpose of early warning is undermined, because relief 
arrives too late due to poor organization at the donor level” (WHO 2004b). 

What is the phase in an early warning system that is most crucial in determining 
its success? It is the phase following the issuance of an early warning. “Early warn-
ings are of little use if the capacity to respond is not present” (WHO 2004b). The 
system must be budgeted for, the resources must be there, and all multidisciplinary 
collaboration must already have taken place and been successful. A preparedness 
plan and the organisation to apply it must exist, and each responding organisation 
must know its tasks, understand how their tasks fit in a well-integrated response, and 
have the will and commitment to implement their specific tasks. 

Perhaps the most important phase of the development of an early warning sys-
tem is the one that precedes it: the process of identifying the principal disease or 
diseases of most concern and interest, and of securing funding for the activity. The 
goals of an early warning system should be set in close collaboration among the 
climate scientists and the public health community. 

13.4.3.1 Framework for Developing a Climate Based Early  
Warning System 

From its study of existing early warning systems, the WHO determined that  
the framework consists of four preliminary phases, evaluate the epidemiological 
potential, the early warning system itself, and the response and evaluation. 

tant in the discussion on onchocerciasis and Loa loa (Section 13.3.3): not only 
were people exposed to a higher risk of infection due to what was already in the 
savannah area, but the pathogen in the forest was converting to being a savannah 
type of pathogen. 
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The first of the preliminary phases is to evaluate the epidemiological potential: 

fication of the geographical location of epidemic areas is conducted, using such 
means as remote sensing and sentinel sites. Climatic and non-climatic disease risk 
factors are determined next. Then, the link between climate variability and climate 
predictors is quantified, and the models are constructed, taking care to account for 
confounders. Biological models and models of the processes in the pathogen, vec-
tor or host are incorporated to the extent that they explain how the disease aspects 
are affected by incremental increases or decreases in various climatic factors. 

The early warning phase depends on disease surveillance, which differs from 
prediction in that surveillance is expressly concerned with detecting the incidence 
of the disease. The early warning system also incorporates the monitoring of the 
disease risk factors – what is the population doing, what is happening with drug 
resistance, what is the state and trend of the climatic factors? Monitoring requires 
datasets from earth observation and meteorological satellites, as well as traditional 
surface and upper air instruments. The last step comprises preparing model fore-
casts and running the health forecast model in an operational way at appropriate 
times. 

The response phase concerns the treatment and control activities, and is tailored 
to the geographical and disease characteristics. It involves the treatment of people 
or control of vectors, and also informs the relief or containment activities, which 
are mostly the role of governments. The response should follow a predetermined 
preparedness and response plan, developed by a multi-disciplinary team – an inte-
gration of climatologists, operational meteorologists, researchers in the science of 
prediction, climate analysts with expertise in remote sensing, technical specialists 
to advise on the layers of information and analysis through GIS; and experts in 
epidemiology, treatment and control, population movement, land use, and policy 
makers. Funding may require extensive international involvement, so some repre-
sentation of international funding experts may be helpful at some stages in the 
team. 

The evaluation phase is open-ended, starting with an initial assessment and 
continuing with periodic assessments. Through the use of a questionnaire, inter-
views, or other procedures, it seeks answers to questions such as: is the early 
warning easy to use, are the predictions accurate, is the process cost effective, 
what is the best way to spend the resources for this problem? The developers and 
operators have to collaborate with users/stakeholders to get the answers – they are 
the ultimate experts in applying the control, or working with the treatments in clinics. 

Securing the funding for collaborative work is complex: who takes the lead in 
initiating a project like this – is it the government, the climate community, control 
people, epidemiologists? That depends on whether it is a short-term project, or a 
sustainable activity, which has implications for the source of the resources. In 
many cases, the sustainability of such projects has depended greatly on the con-
tinuation of donor funding.  

defining what constitutes an epidemic, and looking at how the disease progresses – 
the progression of pathogen and the vector, and human behaviour. Next, identi-
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What would be the responses that are expected once an early warning is issued? 
That would be specific to what the early warning was designed to do. In most 
cases an early warning system provides input information into work already being 
done, rather than mandating unique actions. The likely result is that the kinds of 
work necessary to reduce the impact of an epidemic will have a better likelihood 
of succeeding. And, it will contribute to the reduction of death and human suffering. 
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Part V 
The Future of Seasonal Climate 

Forecasting 



annual variability than on day-to-day weather events, disasters apart. Yet, within 

Chapter 14 
A Way Forward for Seasonal Climate  
Services 

Mike Harrison, Alberto Troccoli, David L.T. Anderson,  
Simon J. Mason, Michael Coughlan, and Jim B. Williams 

The enthusiasm for engaging the challenges of Seasonal to Interannual Prediction, 
both within the disciplines of physical and social sciences and at their interface, 
was well demonstrated through the energetic engagement of all during the May 
to June 2005 NATO ASI course, upon which this book is based. Several panel 
sessions were held during the course, which permitted everyone to offer views 
within an informal setting; some, not reflected in the main body of the book, are 
incorporated in this chapter. Little stays stationary in such a fast-developing field, 
and so, to provide the most advanced position at publication, this summarising 
chapter has included some of the latest development to supplement the material 
drawn from the course presentations and the panel discussions. Additionally, a 
view to the future is offered so as to provide further stimulation to those interested 
in the fascinating field of Seasonal to Interannual Climate. 

14.1 The Science 

In many communities throughout the world, economic, social and environmental 
development is rather more directly dependent on seasonal climate and its inter-
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the meteorological community much greater effort and expense goes into produc-
ing the daily weather forecast. At the same time, many communities are left to 
cope with the vagaries of climate with little effort being directed at providing the 
best-available climate information. Emphases are beginning to change, however, 
consequent on growing concerns over climate change and the recent advent of 
seasonal forecasting with its promising future developments, including increasing 
levels of skill. Seasonal forecasting not only makes climatology a ‘living and very 
practical science’, but also provides a most useful context for considering and 
valuing the daily weather forecast. It also provides a practical first step for coping 
with climate change: an inability to cope with climate variability as it is, does not 
augur well for how society might cope with the variability of some future climatic 
regime. 

Two interrelated major scientific developments have made the progress in prac-
tical climatology possible: a vastly enriched knowledge of the physics of climate 
variability, achieved through enhanced global scale observing systems combined 
with the development of analytical and interpretative techniques; and the creation 
of computer-based models of the climate system – simple through to complex – 
that use observations to generate forecasts on timescales of a season or longer. 

14.1.1 Understanding Climate Variability 

Central to the enhanced understanding of climate variability lies the ever increas-
ing knowledge of how the oceans and the atmosphere interact. In simple terms, the 
ocean provides a ‘long-term memory’ for the atmosphere while in turn the atmos-
phere helps drive the slow variations in the ocean. Furthermore, the ‘memory’ 
imposed by the ocean is distributed rapidly by the atmosphere, teleconnected to 
distant parts of the globe. The ENSO phenomenon, with its opposing maxima of 
El Niño and La Niña, is the strongest known modulator of climate variability on 
the global scale (other than the annual cycle of the sun) and provides predictabi-
lity. Despite the recurrence of an El Niño phase every 2–7 years, ENSO is not an 
oscillatory phenomenon as such: an El Niño is not necessarily followed by a La 
Niña. The reason for the non-periodicity is not yet understood but several theories 
have been put forward, all revolving around the hypothesis that ENSO can be  
approximated by oscillatory systems. These theories can be divided into two main 
categories: (i) ENSO is a self-sustained oscillator; (ii) ENSO is a damped oscillator. 
In (i), the oscillator possesses a natural frequency which is perturbed by chaotic 
processes (weather) to be irregular, whereas in (ii), the oscillator requires some 
external forcing to keep the system going. The role of non-linearity and noise is 
markedly different in each case. Despite the attempts to provide unified theories 
for ENSO, the cause of the irregularity is still an open research topic. 
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One of the critical factors in these theories is the understanding of how ENSO 
events are initiated. Once an ENSO event has started, models – and therefore theo-
ries – do a reasonably good job at forecasting the subsequent evolution of the 
event, with lead-times up to several months. An atmospheric phenomenon called 
the Madden-Julian Oscillation (MJO), an intraseasonal oscillation of about 40–60 
days, likely plays a major role in the initiation process and is currently the leading 
candidate under investigation. There is little doubt that weather can influence the 
evolution of ENSO events: the strengthening of the link between the weather and 
the seasonal to interannual climate communities is likely to be a fruitful path for 
research and future progress at both timescales. 

Within this book there has been a focus on ENSO and its effects. ENSO is not 
alone, however, in forcing interannual seasonal variability. Both the tropical In-
dian and the Atlantic Ocean basins host processes related to rainfall variations in 
parts of surrounding continental masses, while the evidence for pertinent roles for 
extra-tropical oceans is also growing. None appears to exert the global-scale influ-
ences of the Pacific centred ENSO but nevertheless their effects are undoubtedly 
critical in some regions, and further understanding will lead almost certainly to 
improved predictions for these areas. 

Not all seasonal variability is attributable to atmosphere-ocean interactions, and 
evidence is mounting that other sources of predictability exist. These sources in-
clude amounts of soil moisture across the continental masses, the distributions of 
continental snow and polar ice, atmospheric aerosol distributions, and even strato-
sphere/troposphere interactions. 

There will remain always some seasonal variability not attributable to the phe-
nomena discussed above; some climatologists might place this unexplained 
portion of the variability, which varies according to region, in the bin labeled 
‘noise’, stating that it is not predictable – at least, with current models. Hopefully 
research breakthroughs, currently unforeseen, will prise some of the ‘noise’ from 
that bin and place it into a category bearing promise of improved predictions, 
thereby improving the predictability of the climate system. 

14.1.2 Models 

There are two basic approaches to seasonal to interannual predictions – statistical 
and dynamical – and both have progressed substantially over the past decades. 

Dynamical models of the climate system are appealing tools for learning about 
the climate and for attempting to predict it. The appeal stems from the fact that 
these models are based on physical principles, as expressed by their mathematical 
formulation. Moreover, since model resolution may be modified with minimal 
effort and also the level of complexity can be usually adjusted in a modular way 
(e.g. a model of sea ice can be included or not depending if one is interested in 
high latitude phenomena), such models can be all the more attractive, and versatile. 

401 14 A Way Forward for Climate Services 



The drawback is the large cost, both in financial terms (including computational, 
in a proportional way to resolution and complexity) and human resource terms 
and, therefore, their development is normally the prerogative of major research 
centres. These models have allowed considerable improvement in the quality of 
operational seasonal forecasts and will most likely contribute to further improve-
ments in the future. However, even the most sophisticated model only gives an 
approximate representation of the very complex climate system. For example, 
resolution of current operational seasonal forecast models is not normally suffi-
cient to resolve important phenomena such as the MJO in a satisfactory way. More 
crucially, however, atmospheric convection in the tropics, upon which also the 
MJO is dependent, is a weak point of most, if not all, models. Thus, the full poten-
tial of numerical models is far from being achieved and a vigorous model 
development phase is still underway through: improvement in the representation 
of critical physical processes such as atmospheric convection and oceanic coastal 
upwelling; increase in the level of model complexity; increase in model resolu-
tion; representation of model uncertainties via the use of multi-models and/or the 
implementation of stochastic processes. 

Although dynamical models have numerous advantages over statistical models, 
and offer greater prospects for long-term improvements in performance, statistical 
models remain in wide use, and are likely to do so for years to come. Much of the 
popularity of statistical models comes from practical considerations, such as their 
minimal demands on computational resources and their relative simplicity. For 
these reasons statistical models are used extensively in developing countries. 
However, even in countries such as the United States, statistical models constitute 
an important input to the mix of operational forecasting systems for the simple 
reason that they continue to outperform dynamical model forecasts in some in-
stances. With the establishment in November 2006 of Global Producing Centres, 
dynamical model predictions are being made increasingly available to forecasting 
centres that do not have the resources to run their own models, and so an upsurge 
in the application of statistical models to downscale and recalibrate dynamical 
model predictions is beginning. This process should enable most countries to take 
advantage of both approaches. 

The output of dynamical and statistical models is increasingly used in a variety 
of decision making frameworks. Model enhancements, as well as increases in  
dynamical model resolution, will advance the science of seasonal forecasting in 
the long term. Additional practical benefit will be gained from greater flexibility 
in the interpretation of, and enhanced information supplied by, all types of models. 
For example, more detailed predictions in both the spatial and temporal senses, is 
the sine qua non for all who prepare and use seasonal forecasts, with information 
regarding the start of rains in seasonal regimes being prominent amongst the latter. 
Modellers so far have given limited attention to these problems, mainly on the 
grounds that these details fall into the area of unpredictable noise, but also because 
of resource limitations. Nevertheless, there are encouraging signs that advances will 
be made, not only through higher resolution models, but also through post-processing 
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of the global model forecasts, either through empirical means or by embedding 
regional climate models capable, in principle, of providing information at higher 
spatial and temporal scales. It is likely that development and beneficial use of this 
information will need close coordination between providers and users. 

14.1.3 Assessment of the Skill of the Models 

Because seasonal forecasts are expressed as probabilities, they cannot be assessed 
as ‘right’ or ‘wrong’ in any simplistic way. While it is possible to assess the accu-
racy of deterministic forecasts, for probabilistic forecasts other attributes such as 
reliability and resolution are more appropriate. None of these attributes can be 
communicated in a single score, although regrettably there continues to be undue 
reliance on scores without recognition of the limited information that such scores 
can communicate. There are detailed diagnostic techniques that have been devised 
to provide comprehensive assessments of the quality of the forecasts, but a major 
limitation is that large sample sizes are generally required. Sample sizes of sea-
sonal forecasts are small compared to those for weather forecasts, for example, 
and so robust estimates of forecast quality are lacking. Very few assessments of 
the quality of seasonal forecasts have been performed for the simple reason that 
these forecasts (and hindcasts) have been produced only since the early 1990s, 
providing sample sizes of only about 15 years. 

Partly to address the problem of limited sample size, considerable effort has 
been invested in generating hindcasts, and projects such as DEMETER have been 
invaluable in obtaining realistic estimates of operational performance. Perhaps the 
main conclusion from these forecasts/hindcasts is that although seasonal forecasts 
of parameters such as the NIÑO3.4 index or of 200 hPa heights can be predicted 
with impressive skill, parameters of more direct interest to potential users of such 
forecasts, such as near-surface air temperatures and precipitation, are much harder 
to predict. Nevertheless there is considerable information content in the forecasts 
of temperature and precipitation at certain times of year and for some areas, 
mostly within the tropics and sub-tropics. Temperature forecasts are notably better 
than precipitation, although recent attempts to focus on the frequency of precipita-
tion, rather than on total precipitation, are yielding promising results. 

14.1.4 Conversion of Model Forecasts into Useable Form 

Despite the major investment required to generate a prediction from a dynamical 
model (whether a coupled ocean-atmosphere model, or an atmosphere-only 
model), generating the model output is only one step in an involved process for 
generating a seasonal forecast. Dynamical models are far from perfect, and the 
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differences between model and observed climates can result in substantial errors 
in forecasts. Because these errors are systematic, they can usually be removed 
using relatively simple statistical procedures. However, best results are obtained 
when systematic spatial displacements of the model’s climate features are consid-
ered, and these spatial corrections require more advanced procedures. 

Even without systematic errors, some form of post-processing of the model 
output is usually required to make forecasts relevant at spatial scales and locations 
of interest to specific users. Predictions straight out of a dynamical model are gen-
erally representative of large spatial averages, and “downscaling” procedures are 
required to translate the resolution of the forecasts to a more practically useful 
scale. Downscaling procedures have also been developed to provide statistics 
about the intraseasonal characteristics of weather. The dynamical models are use-
ful for providing predictions of seasonally averaged conditions, but their current 
representations of weather variability are insufficiently realistic to be used di-
rectly. Downscaling (both temporal and spatial) can be performed using either 
statistical techniques or with limited-area, high-resolution dynamical models. The 
latter are expensive to run, and despite some promising results, there have still 
been no clear indications that they can outperform the statistical procedures. 

Regardless of the temporal and spatial resolution of the forecasts desired, there 
is overwhelming evidence that the best forecast can be made by considering out-
puts from a suite of models. This multi-model approach can be justified on the 
basis of improved representation of the uncertainties in the forecast arising from 
imperfections in the models. Multi-model approaches are effective whether the 
individual models are dynamical, statistical, or a combination of both. However, 
there is still some debate about the best ways to combine the predictions from the 
different models. It seems intuitively appealing to weight the better models more 
highly than the ones with less skill, but in practice the limited sample sizes avail-
able make it virtually impossible to estimate differences in the skill of models 
robustly. As a result, simple averaging of the predictions from different models 
remains a very competitive procedure. 

14.2 Communication and Integration 

Developments in the underlying science need to be matched by improvements in 
the way climate information is communicated and integrated into societal structures. 
The current focus of seasonal to interannual prediction research is on the develop-
ment of forecast systems, and particularly on dynamical models. Coupled models, 
perhaps the most promising long-term solution for predictions at the global scale 
in the maximum possible detail and with the highest quality, are complex and ex-
pensive to develop and maintain, as are the observing networks required to support 
them. Rightly, there is continuing investment in these models. But commensurate 
investment is required also in all downstream aspects, including delivery systems, 
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interpretation and decision making approaches, management and mainstreaming, 
which ultimately determine the levels of societal benefit achieved. Benefit, or 
value, is not achieved through forecast quality alone. More consideration is re-
quired in building the case for increasing the funding of research in these latter 
areas. 

Technology for information delivery is in reasonably good shape. Modern com-
munications systems, satellites, the Internet and mobile phones offer the 
opportunity for rapid dissemination of information of all forms on the global scale. 
Even in the more remote areas where most advanced communications systems 
have not as yet penetrated, there are developments such as the RANET1 project 
providing viable options that are progressively extending into more geographical 
areas. There is no technological reason in principle why, within the foreseeable 
future, even the most remote user might not have rapid access to some form of 
past, current and future climate variability information, should they so wish. The 
physical difficulties of delivery are being surmounted. 

Delivery, however, is not simply a matter of providing the necessary technical 
facilities, but covers also the information delivered, its content and the manner in 
which it is presented. Communication with users is a key component of the fore-
casting system and particular focus should be devoted to this aspect in the near 
future. People often tend to think and view life in more or less deterministic terms 
(B is a result of A, or A causes B) but coping with unavoidable uncertainty or 
‘risk’ demands more complex thought processes and a greater degree of prudence 
in order to cope with the possibility of making what might be seen in hindsight as 
a ‘wrong’ decision. Major efforts are required, possibly using familiar instances of 
probabilistic forecasting (as betting on horse racing and other uncertainties) to find 
ways of raising awareness in people towards managing seasonal risk, so that they 
can make best use of seasonal forecasts. 

Ideally, the entire delivery system should be designed to assist decision pro-
cesses, however individual. Here advances have also been made in recent years. 
An example is the approach adopted by APSRU2 in delivering information in a 
utilisable manner, information that not only covers past and future climate variabil-
ity but also, within the Australian farming context, multiple related information 
streams presented in a form that assists decision making. The Australian Bureau of 
Meteorology has also led in the production of user-friendly web sites.3 

Whereas the APSRU approach is predominantly a service delivered through the 
Internet, face to face communication was pioneered in the Regional Climate Out-
look Forums (RCOFs). Since their initiation during 1997, these Forums have 

________________  
1 RAdio and InterNET for the Communication of Hydro-Meteorological and Climate Related 
Information. See: http://www.ranetproject.net/ 
2 Agricultural Production Systems Research Unit. See: http://www.apsru.gov.au/apsru/  
3 See: http://www.bom.gov.au/silo/ 
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continued in many parts of the developing world.4 And they continue to flourish 
with the first such event for continental Asia having been held in April 2005 in 
Beijing. The Forums, in their original form, are expensive to run, and in some 
regions there are concerns over sustainability. Regardless of sustainability, RCOFs 
have most certainly provided a stimulus to the introduction of climate services, 
including seasonal predictions, in many parts of the world. The nascent Regional 
Climate Centres, a project of WMO, will likely support future communication 
with stakeholders. 

Finally, numerous pilot projects have probed the difficulties and the value  
obtainable from climate services. Within the current volume are examples of  
leadership by the National Meteorological Service of Morocco, and by Florida 
State University. There are other examples from Australia, Africa, the USA and 
the South Pacific. Various projects run under the banner of climate change, such 
as some within AIACC,5 in practice tend to address climate variability rather than 
climate change per se. 

Hence there has been a wealth of activity over recent years to promote the dis-
semination and uptake of the forecasts. But, despite this progress, there are still 
few clear demonstrations of consistently achievable value obtainable through the 
use of the developing prediction technology. What has been progressively recog-
nised over the last few years are the outstanding issues of delivering services, 
within all of the technological and cultural contexts that that entails, as discussed 
below. 

As has been argued in numerous places in this book, central to achieving value 
is both the decision process itself and the delivery of information appropriate to 
each decision. The decision process is the pivot around which information and 
knowledge are converted into value. The decision process is a growing area of 
research within the context of seasonal forecasts and requires substantially further 
attention. Improved understanding of decision processes, especially those pro-
cesses that lie at the nexus of multiple information streams (such as those with 
economic, environmental and social components) will provide substantial benefits 
in designing climate information to achieve optimal benefit. A start was made in 
2006 at the WMO International Conference on “Living with Climate Variability 
and Change”.6 More is needed, however. 

________________  
4 See: http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html 
5 Assessments of Impacts and Adaptation to Climate Change. See: http://www.start.org/ 
project_pages/aiacc.html 
6 See: http://www.livingwithclimate.fi 
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14.3 Getting There 

It is essential that the objectives for any service delivery intended to provide value 
are recognised and incorporated as that service is created. According to one lead-
ing institute that works to build bridges between climate scientists and climate 
information stakeholders, the IRI,7 the prerequisites for future services built on 
seasonal to interannual predictions include: 

• Recognising stakeholders’ needs, both real and perceived 
• Identifying viable decision options that are sensitive to climate variability and 

to forecast content 
• (in reflection of the preceding) Focussing on those aspects of stakeholders’ 

activities with viable decision options 
• Building effective and appropriate communication 
• Generating sustained support by institutions and favourable policies (including 

at government level) 

This is a valuable opening list of essential prerequisites; each is fundamental 
and each raises its own challenges. However it could be argued that “effective and 
appropriate communication” is the most fundamental aspect of all. Communica-
tion is necessary between all involved, throughout the forecaster to decision maker 
chain, to recognise stakeholder needs, to identify viable decision options, and to 
develop and deliver forecasts that address viable decision options. Communication 
is necessary also to build institutional commitment and to introduce the conditions 
suitable for the creation of favourable policies, including government policies, 
where they do not exist. To date, it is debateable whether there has been effective 
universal broadcasting of the benefits potentially but realistically available from 
the forecasts, and equally whether there has been effective communication bet-
ween providers and stakeholders in all contexts. It is certainly debateable whether 
many products currently available freely through the Internet provide the level of 
communication of climate information in all regards that is necessary. 

It is in regards to communication that the most significant advances may be 
made in the next few years. Compared with the steady evolution expected in fore-
casting systems, short-term benefits are readily available through improved 
communication and decision making. Most certainly there will be advances in our 
understanding of climate processes, our ability to observe the environment in 
numerous regards, and our ability to model and predict the environment, and bene-
fits from these will unquestionably reach those attempting to manage under 
climate variability. But the most tangible stakeholder benefits are most likely to 
originate first in the delivery of information through protocols more amenable to 

________________  
7 http://iri.columbia.edu/outreach/publication/report/06-01/report06-01.pdf  
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stakeholder understanding and to incorporation into decision processes than is 
often the case today. 

production, malaria incidence, water resource levels, and so on. And few, if any, 
of these applications possess linear transfer functions from climate information to 
the application-related response. Approaches have been tested whereby model 
output is fed subsequently into sectorial models, such as for crop prediction or 
dam management. These approaches might be referred to as ‘two-tier sectorial’ 
models whereby coupled models provide the climate input, or ‘three-tier sectorial’ 
models when separate ocean and atmosphere components are used. Increasingly 
comprehensive ‘single-tier sectoral’ climate models are being developed, currently 
more specifically in regard to climate change, where such additional factors are 
being incorporated directly with the atmospheric model itself. This approach 
ensures climate feedbacks are simulated dynamically and guarantees overall con-
sistency of predictions. These more comprehensive models most likely will find a 
role in ensemble seasonal prediction, and will later be extended to embedded 
regional climate models. Inevitably adoption of this approach will raise new issues 
regarding the validation of these extended models within the framework of inter-
annual climate variability, and introduce new contexts of predictability, and 
challenges with linking to decision processes. 

Regarding the interface between producers and stakeholders, one issue is that 
only a relatively small number of decision processes are neatly aligned to the 
timescales and lead-times associated with current prediction technology. There is 
an argument to adjust technical development away from the focus on improve-
ment of predictions within the known window of predictability, towards 
development of information requirements dependent upon timescales appropriate 
to the decision processes themselves. That approach would require more imagina-
tive use of climate information (which at times is neglected in the rush to use 
forecasts), more creative interpretation of the predictions themselves, and incorpo-
ration of other pertinent non-climate information, in order to provide a focussed 
complex designed to facilitate individual decision processes. Such an approach 
would focus all available information onto the specific requirements of individual 
decisions. The importance of decision processes is being recognised increasingly, 
with conferences such as “Living with Climate Variability and Change” men-
tioned in the previous section. One object of this conference was to transfer some 
research focus from ‘skill/quality’ to ‘decision processes’. This and similar con-
ferences may well assist in guiding the design of future research and operational 
programmes. 

Regarding melding producer and stakeholder perspectives, the approach of  
developing full information and decision making packages for specific applica-
tions adopted by, for example, the IRI and APSRU is likely to begin to replace the 
original end-to-end concept that was taken at the outset, not least by CLIPS and 
the IRI, and that is still predominantly in use. That is not to say that end-to-end 

One of the main difficulties at present is in converting climate information 
directly into information of assistance in decision making in terms of agricultural 
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processes are inappropriate on all occasions – business uses are one example 
where the end-to-end model may in general be best (notwithstanding the fact the 
coordinated and cooperative decision making can lead frequently to optimal out-
comes, even in the business world). The new comprehensive approach should be 
encouraged, but it retains nevertheless the disadvantage of producing solutions 
that tend to be culturally, sectorally and geographically specific. 

Scientific advances will only produce benefit provided there is conversion of 
new information into value. A more coordinated approach would be beneficial in 
achieving this in regard to seasonal to interannual prediction, and the engagement 
of some form of international process would stimulate the coordination needed in 
all regards of defining research needs across the board, incorporating stakeholders 
at all levels, mainstreaming into policy, and delivering improved decision processes. 

14.4 Goodbye Cinderella, Hello “Seamless Future” 

For many years climate was the preserve of geographers, statisticians and historians. 
The emergence of meteorology during the mid-20th century as a ‘hard’, scientific 
discipline steeped in the mathematics of thermodynamics and fluid dynamics saw 
climate take on an almost ‘Cinderella’ role. Climatologists were more or less rele-
gated to the task of archiving the data gathered for the sole purpose of predicting 
tomorrow’s weather. During the latter part of the century that retreat to the back-
ground begun to reverse, with the mass of data collected beginning to reveal that 
climate, hitherto thought of as static except over very long periods, was anything 
but static. The 30 years needed to ‘define’ the climate of a locality did little more 
than define the climate of that 30 year period, with the climate of successive 30 
year periods differing, and often markedly so. Hence the notion of climate vari-
ability was born. 

As knowledge of the causes of climate variability grew, led by the rush to under-
stand El Niño, then so too did the capacity to model the climate system. By 
coupling components replicating processes in the oceans and over the land surface 
to what was already being modelled in the atmosphere, one could begin to model 
the whole climate system, and indeed that broadening path continues with notions 
of ‘earth system’ modelling. 

The imperative to understand the human imprint on climate began to rise 
around the same time, and indeed for a period has subsumed to a large extent the 
importance of modelling and predicting ‘natural’ climate variability. In reality 
the distinction is somewhat artificial since any effort to predict the climate of the 
future must perforce take into account all processes in play, both human and 
natural, to the extent that they are significant on the timescale of the prediction. 
Thus climate variability is now a prime area in which to develop a career, and its 
importance to society and the contribution that its science can make are now 
mostly recognised. 
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Yet the study of climate variability has not yet fully shrugged off its ‘Cinderella’ 
image, as the quality of seasonal predictions, the putative rationale for research in 
the area, are perceived as failing to live up to the expectations set by short range 
weather forecasts. As we have seen throughout this book, for reasons that have as 
much to do with understanding human perceptions as with understanding the 
fundamental physical science, bridging the weather-climate predictability gap is 
not a trivial task. 

Nonetheless, the notion of a ‘seamless’ forecasting system with lead times from 
minutes to centuries is an attractive concept and possibly one that will eventuate 
as a reality in time. Already we are beginning to see ‘unified’ models that are 
capable of being run in various timescale modes and spatial resolutions, along 
with the application of ensemble predictions and multi-model schemes to the chal-
lenges of weather forecasting, seasonal prediction, and climate projections. 

In reality, however, the journey has barely started with decision making still 
mostly compartmentalised on the supply side by practical distinctions between 
weather and climate forecasting activities, and on the demand side by a host of 
factors that have little to do with weather and or climate. Seamless forecasting 
systems promise as yet little information that is not already available in the separate 
formats. So the paradigm remains unfulfilled, viz. that of a ‘seamless forecasting 
system’ linked into a ‘seamless decision making system’, with clear challenges 
remaining for both sides of the divide. 

Undoubtedly, a major driver for progress lies in what the science of climate 
variability offers by way of an opportunity for learning to adapt to climate change, 
with the seasonal forecast models providing a basis for validating climate change 
models, as well as offering a bridge to weather forecasting models. Adaptation and 
modelling together, in both seamless decision making and forecasting contexts 
still seems a logical path forward. 
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Acronyms 

Common acronyms used throughout the book are defined here. Additional details 
on asterisked terms are provided in the Glossary of Terms. 

3D-Var Three-dimensional Variational (Data Assimilation) 

4D-Var Four-dimensional Variational (Data Assimilation) 

AGCM* Atmospheric Global Circulation Model 

ACMAD African Centre of Meteorological Applications for Development 

AGRHYMET 
Centre Regional de Formation et d’Application en Agrométéorologie et 
Hydrologie Opérationnelle 

AIACC Assessments of Impacts and Adaptation to Climate Change 

AMIP Atmospheric Model Intercomparison Project 

APSIM Agricultural Production System Simulator 

APSRU Agricultural Production Systems Research Unit 

AR Autoregressive 

ARSCO 
American Association of State Climatologists Recognized State Climate 
Office 

AU African Union 

BMA Basin Management Agency 

BMRC Bureau of Meteorology Research Centre 

BoM Bureau of Meteorology 

CC* Climate Change 

CCA Canonical Correlation Analysis 

CDF* Cumulative Distribution Function 

CEP Conditional Exceedance Probability 

CGCM* Coupled Global Circulation Model 

CIMMS Cooperative Institute for Mesoscale Meteorological Studies 

CLIMAG Climate Prediction and Agriculture 

CLIPER CLImatology and PERsistence 

CLIPS Climate Information and Prediction Services 

CNRM Centre National de Recherches Météorologiques 

COPES Coordinated Observation and Prediction of the Earth System 
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CV* Climate Variability 

DA* Data Assimilation 

DEMETER 
Development of a European Multimodel Ensemble system for seasonal to 
inTERannual prediction 

DEWA Department of Early Warning and Assessment 

DJF December, January, February 

DMC Drought Monitoring Centre 

DMN Direction de la Météorologie Nationale 

DNA Deoxyribonucleic acid 

DSP Dynamical Seasonal Prediction 

ECHAM ECWMF-Max Plank Institute Hamburg 

ECMWF European Centre for Medium-Range Weather Forecasts 

EDS Early Detection System 

ENACT ENhanced ocean data Assimilation and ClimaTe Prediction 

EnKF Ensemble Kalman Filter 

ENSO* El Niño/Southern Oscillation 

EOF* Empirical Orthogonal Function 

ERA-15 ECMWF Re-analyses (for the 15-year period 1979-1993) 

ERA-40 

ERS European Remote Sensing 

ESSP Earth System Science Partnership 

EUC* Equatorial Under Current 

EUROBRISA EURO-BRazilian Initiative for improving SOuth American seasonal forecasts 

EUROSIP EUROpean multi-model Seasonal to Inter-annual Prediction 

EWS Early Warning System 

FAO Food and Agriculture Organization 

FAWN Florida Automated Weather Network 

FEWS NET Famine Early Warning Systems Network 

FLC Florida Climate Consortium 

FMAM February, March, April, May 

GAEMN Georgia Environmental Monitoring Network 

GCM* Global Circulation Model 

GCOS Global Climate Observing System 

GDP Gross Domestic Product 

GERB Geostationary Earth Radiation Budget 

GHRSST GODAE High Resolution Sea Surface Temperature 

ECMWF Re-analyses (for the 40-year + period 1958-2001) 
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GIEWS Global Information and Early Warning System (FAO) 

Gl Gigalitres (109 litres) 

GLM Generalised Linear Model 

GMT Greenwich Mean Time 

GODAE Global Ocean Data Assimilation Experiment 

GPC Global Producing Centre 

Ha Hectare (10,000 square metres) 

HEWS Humanitarian Early Warning System 

hPa hectoPascal (a measure of pressure) 

IASC Inter-Agency Standing Committee 

IBM International Business Machines 

ICPAC IGAD Climate Prediction and Applications Centre 

ICSU International Council for Science 

ICTZ* Inter Tropical Convergence Zone 

IGAD Intergovernmental Authority on Development 

IGBP International Geosphere-Biosphere Programme 

IHDP International Human Dimensions Programme 

iid Identically and Independently Distributed 

IMD Indian Meteorological Department 

IOC Intergovernmental Oceanographic Commission 

IPCC Inter-Governmental Panel on Climate Change 

IQQM Integrated Quantity Quality Model (hydrological) 

IRI International Research Institute for Climate and Society  

JAS July, August, September 

JFM January, February, March 

JJA June, July, August 

JMA Japanese Meteorological Agency 

KBDI Keetch-Byram Drought Index 

KF Kalman Filter 

LAD Least absolute deviation 

LEPS Linear error in probability space 

LPM Linear Programming Model 

MAPE Maximum A Posteriori Estimate 

MCA Maximum Covariance Analysis 

MDG* Millennium Development Goal 

MEWS Malaria Early Warning System 
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MJJ May, June, July 

MLE Maximum Likelihood Estimate 

MOS Model Output Statistics 

MoU Memorandum of Understanding 

NAO* North Atlantic Oscillation 

NCEP National Centers for Environmental Prediction 

NDJ November, December, January 

NGO Non-Governmental Organisation 

NMHS National Meteorological and Hydrological Service 

NMS National Meteorological Service 

NOAA National Oceanic and Atmospheric Administration 

NCDC National Climate Data Center 

NSWDLWC New South Wales Department of Land and Water Conservation (Australia) 

NWP Numerical Weather Prediction 

OCN Optimal Climate Normal 

ODA Official Development Assistance 

OGCM* Oceanic (or Ocean) Global Circulation Model 

OGP Office of Global Programs 

OI Optimal (or Optimum) Interpolation 

OLS Ordinary Least Squares 

OND October, November, December 

ORMVA Offices Régionaux de Mise en Valeur Agricole 

PCR Principal Components Regression 

PDF (or pdf)* Probability Density (or Distribution) Function 

PNA Pacific–North America 

POP Principal Oscillation Pattern 

PROVOST PRediction Of climate Variations On Seasonal to interannual Time-scales 

QDPI Queensland Department of Primary Industries 

RANET 
RAdio and InterNET for the Communication of Hydro-Meteorological and 
Climate Related Information 

RCC Regional Climate Centre 

RCOF Regional Climate Outlook Forum 

RISA Regional Integrated Sciences and Assessment 

RMS (rms) Root-Mean-Square 

RMSE (rmse) Root-Mean-Square Error 

SADC Southern African Development Community 

414 Acronyms 



SCOPIC Seasonal Climate Outlook for the Pacific Island Countries 

SECC Southeast Climate Consortium 

SINERGEE 
Simulations from a Numerical weather prediction model to Exploit Radia-
tion data from a new Geostationary satellite, Explore radiative processes 
and Evaluate models. 

SIP Seasonal to Interannual Prediction 

SO* Southern Oscillation 

SOI* Southern Oscillation Index 

SSA Singular Spectrum Analysis 

SSH Sea Surface Height 

SST Sea Surface Temperature 

SSTA Sea Surface Temperature Anomaly 

START SysTem for Analysis, Research and Training 

SVD Singular Value Decomposition 

TAO* Tropical Atmosphere Ocean 

TOGA Tropical Ocean Global Atmosphere 

UN United Nations 

UNCED United Nations Conference on Environmental Development (1992) 

UNEP United Nations Environment Programme 

UNFCCC* United Nations Framework Convention on Climate Change 

USDA United States Department of Agriculture 

USDA-
CSREES 

USDA Cooperative State Research, Education, and Extension Service 

USDA-RMA USDA Risk Management Agency 

UTC Coordinated Universal Time 

WB World Bank 

WCP World Climate Programme 

WCASP World Climate Applications and Services Programme 

WCDMP World Climate Data and Monitoring Programme 

WCIRP World Climate Impact Assessment and Response Strategies Programme 

WCRP World Climate Research Programme 

WFP World Food Programme 

WHO World Health Organization 

WMO* World Meteorological Organization 

XBT eXpendable BathyThermographs 

Z 
Zulu: abbreviated form of time equivalent as far as meteorological practice 
requires to GMT or UTC 
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Glossary of Terms 

Alberto Troccoli, Simon J. Mason, Mike Harrison, and David L.T. Anderson 

Abstract: No, this is not the definition of abstract! There is still some confusion 
about meaning of some terms in the climate field. This “glossary of terms” chapter 
aims at reducing the level of uncertainty of these key terms. Note that when terms 
in this glossary are used within the definition of other terms we refer to them by 
italicising the terms. 

Accuracy: In the context of forecast verification, the magnitude of the error(s) in a 
single or a set of forecasts: an “accurate” forecast is one with a small error. The 
accuracy of a set of forecasts is usually calculated by averaging the error metric 
over the individual forecasts. In the context of data quality, accuracy refers to the 
difference between the recorded values and the observed values. 

Adaptation: Change to accommodate to new circumstances. In the UNFCCC this 
is change of activities to accommodate to Climate Change, but can refer more 
broadly to any changes required to address Climate Variability. Can take many 
forms, e.g. anticipatory/proactive, autonomous, planned, private, public, reactive, 
future, baseline. Hence also ‘Adaptation Strategy’. ‘Adaptation Capacity’ denotes 
the level of ability to adapt. 

Analogue (US spelling: Analog): In the context of seasonal forecasting, an 
“analogue year” is a year in which the season in question is considered similar to 
the target season. The similarity is usually defined in terms of the state of the pre-
dictors, and the outcome is therefore expected to be similar. A commonly used 
example of applying analogue years is to use the observed climate during past 
occurrences of El Niño conditions to forecast the climate during a subsequent 
El Niño. 

Analysis [Field]: The result of the combination of observations with model data 
for a specific space-time interval, performed with a data assimilation method. In 
the context of forecasts, it provides the initial conditions for coupled integrations. 

Anomaly: The difference between an observed value of a meteorological variable 

long-term average (e.g. JFM 1961–1990). In the case of seasonally averaged  
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temperature, for example, a positive anomaly occurs when the temperature for the 
season in question is higher than average, and a negative anomaly occurs when the 
season is unusually cold. 

Anomaly Correlation: The correlation between two sets of data in which distinct 
mean values are first subtracted from different data points to remove, for example, 
a seasonal cycle, or a spatially varying climatology. These seasonal and spatial 
effects would otherwise dominate the variances in the data resulting in mislead-
ingly strong correlations. 

Application: An activity which makes use of climate information such as a 
seasonal forecast.  

Aqua-planet: An idealised configuration used in Atmospheric Global Circulation 
Models (AGCMs) in which the lower boundary is simply represented by a water 
covered world. This simplified environment is used to investigate atmospheric 
processes such as the distribution and variability of convection in the tropics and 
of the storm-tracks in mid-latitudes.  

Assimilation Cycle: The sequence of operations necessary to produce an assimila-
tion analysis, normally carried out at regular time intervals (typically order of a 
few hours for the atmosphere and few days for the ocean).  

Assistance Strategy: As used for determining aid for developing countries by 
international aid agencies. 

Atmospheric General Circulation Model (AGCM): A Global Circulation 
Model for the atmosphere.  

Background (or First Guess) [Field]: A reference model state that is combined 
with observations to generate an analysis [field] using a data assimilation method. 
Background is the best estimate of the system prior to the use of the observations, 
which might be the direct model output, in which case it is also called fore 
cast field or, more generally, the combination of model output with other (pre-
interpolated) data (e.g. a climatology). The use of the background field ensures 
that the analysis provides a smooth field from regions with good observation 
coverage to those with no or sparse observations.  

Bias: A measure of how far the average statistic lies from the parameter it is esti-
mating; i.e. the expected error that arises when estimating a quantity. In the 
context of forecast verification and model validation, the difference is between the 
average of the forecasts or simulations and the average of the observed values. 
Forecasts of rainfall, for example, are positively biased if, on average, they indi-
cate conditions that are wetter than observed. 
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Biodiversity: The spectrum of life forms, and the width of this spectrum. 

Bootstrap: A self-help start-off approach, in want of any standard starting pro-
cedure, using whatever information is to hand. Originates from “picking oneself 
up by the bootstraps”, and is used in many basic start-up contexts (including start-
ing computers after a power down).  

Bottom Up: A management approach that examines and resolves issues at the 
lowest, working levels, then ripples solutions upwards to the management and 
policy levels (cf. top down). 

Calibration: The correction of model output for systematic errors. Model calibra-
tion usually involves a correction only for a bias in the mean value, and sometimes 
for the variance, but more sophisticated procedures can be used (Chapter 8, 
Section 8.3.3). See also Recalibration. Calibration can also refer to the training of 
a statistical model (Chapter 7, Section 7.3.3.5). 

Capacity: The resource (human, technological, environmental, management) to 
complete activities and/or achieve goals. Hence also Capacity Building. 

Chaos: A mode of behaviour of certain non-linear dynamical systems in which the 
most relevant characteristic is its sensitivity to initial conditions (the “butterfly 
effect”): small variations in the initial conditions of two dynamic systems in other-
wise identical states will lead to a dramatic divergence in the behaviour of the 
systems over time. As a result of this sensitivity, systems that exhibit chaos often 
appear to be random. The randomness, however, is only apparent as such systems 
are indeed deterministic: they are in fact described by well defined mathematical 
expressions that do not contain random parameters. 

Chilling Units: See Degree-Days. 

Climate: The description in totality on all timescales of the atmosphere, the 
oceans, the land and the cryosphere within which weather sits at the short time-
scale. Relates also to the manner in which atmospheric and/or oceanic and/or 
cryospheric processes are experienced, personally, environmentally, or through 
process outcomes. 

Climate Affairs: All aspects of policy and management related to processes to 
which climate is pertinent. 

Climate (or Climatic) Change: Any real or perceived adjustment in any aspect of 
the climate. Changes can occur over numerous timescales and through a variety of 
forcing mechanisms. However the definition of Climate Change used by the 
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UNFCCC covers anthropogenically forced change only, on whatever timescales. 
Change occurring through natural causes on whatever timescale comes under the 
heading of Climate Variability according to the UNFCCC. 

Climate Extreme: In the statistical sense, a climate event that sits towards the 
outer limits of observed distribution, such as temperatures in the coldest 5% or 
rainfall in the wettest 1% of occurrences. However, often used to indicate an 
undesirable societal and/or environmental consequence in which climate is known 
or is perceived to have played a dominant role. This latter use tends to ignore both 
any association with the statistical definition and also any other factor(s) that 
might have been present, however key. 

Climate Forcing: Any external or internal mechanism that determines in part the 
form of the climate. Solar radiation and the earth’s rotation represent the two major 
external factors. Internal factors include distributions of sea surface temperatures, 
of snow, etc. 

Climate Forecasting/Prediction: Official terminology of WMO for predictions 
beyond 2 years; includes Climate Variability predictions that cover interannual, 
decadal and multi-decadal climate anomalies and Climate Predictions that cover 
future climate resulting both from natural variability and from anthropogenic 
causes. Elsewhere often used in the sense of predicting any and all changes in 
climate from all causes over the next century (this is the sense used by the IPCC, 
whereas the UNFCCC uses it for anthropogenically forced change only), and thus 
is broader than the official WMO definition. Normally does not imply seasonal or 
interannual predictions, for which the terms ‘Short-Range Climate Prediction’ and 
‘Seasonal to Interannual Prediction’ are used. 

Climate Information: Any information on climate available to be used in inform-
ing decisions. Frequently used in the sole context of historical records of observation 
data, but can include predictions or any other information produced using models. 

Climate Risk Management: The process of mitigating the consequences of pos-
sible future, perhaps predicted, climate events on timescales of interest in advance 
of those events, taking into account as many information streams as feasible. 

Climate Services: Any service that provides raw and/or interpreted Climate 
Information to users. Normally part of the function of a National Meteorological 
and Hydrological Service (NMHS), but independent and/or commercial climate 
services exist. 

Climate Shock: The consequences of an unexpected climate event, strictly  
regardless of timescale but often used in the sense of relatively short timescale 
events. 

420 Glossary of Terms 



Climate Uncertainty: That aspect(s) of future climate that cannot be predicted 
with certainty; often used also to indicate the perception of lack of knowledge of 
the future. 

Climate Variability: Differences in climate between any two, or a sequence of, 
periods; often used in the interannual sense. Variability can occur over any time-
scales and through a variety of forcing mechanisms. However, the definition of 
Climate Variability used by the UNFCCC covers natural, i.e. not anthropo-
genically forced, variability on whatever timescales. Variability occurring through 
anthropogenic causes on whatever timescale comes under the heading of Climate 
Change according to the UNFCCC. 

Climatology: The description and scientific study of climate in all its aspects. Often 
the term is used to refer to the observed distribution of a meteorological para-
meter, or set of parameters, over a number of years (typically a 30-year period). 

Cognitive Illusions: Perceptual difficulties that enable individuals to draw fully or 
partially incorrect conclusions while remaining convinced of the certainty of their 
arguments. 

Cold Phase: The La Niña stage of El Niño/Southern Oscillation (ENSO) during 
which sea surface temperatures over the eastern equatorial Pacific Ocean are below 
average. 

Coping Range/Strategies: The ability to handle climate variability, the process(es) 
of doing so, and the limits of climate beyond which it is not possible to manage. 

Cost-Loss Model: A simple economic model covering the costs of protecting 
against an adverse event and the benefits (losses reduced) gained from that protec-
tion. 

Coupled Model: Any two or more models which work independently but are 
linked at set time intervals to provide mutual feedbacks. In the case of seasonal to 
interannual forecasting this normally refers to the coupling of an atmospheric 
model to an ocean model and possibly to other important component models such 
as a land model and a sea-ice model. 

Coupled General Circulation Model (CGCM): See Coupled Model and General 
Circulation Model.  

Cumulative [or Probability] Distribution Function (CDF): A function that des-
cribes the probability distribution of a continuous or discrete variable by defining 
the probability that all possible values of the variable will be exceeded. 
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Data Assimilation: The combination of observations and model data, with the 
objective to achieve the ‘best’ description of the system being modelled. The 
‘best’ description is normally the one in which the end result (also called analysis) 
is as close as possible to the observations but with the constraints imposed by the 
system (e.g. its dynamics), as given by the model data as well as by the statistics 
employed to relate observations and model data (error covariance). Many data 
assimilation methods are available as described in Chapter 5. 

Decile: Each part of a distribution that divides the data into ten equal parts. 

Decision Maker/Taker: See User. 

Decision Process: The methodology through which information is assessed and a 
decision taken. Numerous factors, including cultural and policy factors, determine 
each process; thus there is no universally standard decision process in any context. 

Degree-Days: A method of assessing the overall effect of temperature across a 
period. Growing degree-days (or units), for example, are calculated from the 
multiple of the number of hours the temperature is above a value necessary for 
growth in a particular plant with the excess temperature above that value; heating 
degree-days (or units) similarly are for those below a value at which heating is 
required. 

Determinism (deterministic): In the context of predictions, to forecast specific 
values. A deterministic prediction offers a statement of an expected future with no 
likelihood attached. 

Downscaling: The translation of a forecast from one spatial and/or temporal reso-
lution to a finer resolution. In spatial downscaling, the term is frequently applied 
to the translation of a forecast from a gridded average to a local point. 

Drift (also Climate Drift): The tendency for the solution of a dynamical (or 
numerical) model to move away from the observed state of the system being simu-
lated, due to the presence of systematic model errors. Normally the drifting 
solution eventually reaches a new equilibrium, the so-called model climate. 

Drought: A shortfall in water supply for an extended period below a threshold 
that is appropriate within each specific context (e.g. agriculture). 

Dynamical Modelling: The process of simulating a system, such as the atmosphere, 
by solving, usually on a computer, the basic equations of state (the dynamics and 
the energy) for that system, in a numerical way. 

El Niño: The warm phase of ENSO.  
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El Niño/Southern Oscillation (ENSO): A complex system of interaction between 
the atmosphere and the oceans, specifically across the equatorial Pacific Ocean. 
The strongest known internal forcing mechanism of climate variability through 
atmospheric teleconnections to many parts of the globe.  

Empirical Modelling: See Statistical Modelling. 

Empirical Orthogonal Function (EOF): See Principal Component. 

End-to-End: The mono-directional approach frequently used in the delivery and 
use of meteorological products. At one end sit the raw data, in the middle are data 
processing, perhaps forecasting, and processing, while at the other end is the user 
and their application. 

End User: See User. 

Ensemble: A set of predictions (each referred to as a member) for a specific target 
period designed to test the sensitivity of a forecast to various differences, such as 
in the type of model, the initial state (chaos), model physics, etc. Typically uses 
one or more dynamical models but statistical models can also be used independ-
ently or alongside dynamical models. A correctly created ensemble defines an esti-
mated distribution of future states providing a full set of the range of possibilities 
and their associated probabilities. 

Ensemble Member: One of a set of forecasts for the same target period. The 
phrase is usually, but not necessarily, applied to refer to a single prediction from a 
specific model. 

Equity: Used in the development community to indicate fairness in sharing of 
resources. 

Equatorial Under Current (EUC): A jetlike ocean current flowing just below 
the sea surface toward the east and within a few degrees of the equator, especially 
in the Pacific and Atlantic oceans. It can reach speeds of more than 1 metre per 
second at a depth of about 100 m. 

Error Covariance [Matrix]: The statistical relationship between a variable and 
another variable (including itself), in space and time, used to determine the rela-
tive weight of these variables when they are combined to produce an analysis. 
Error covariance is central to data assimilation as it determines the relative import-
ance of, for example, observations and model, or more generally background, 
data. Hence ‘Observation Error Covariance’ and ‘Background Error Covariance’. 
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Event: In forecast verification, an event is an observation, during the target period 
of a forecast, of a specific outcome of interest. The outcome is explicitly binary: 
either an event occurs during the target period, or it does not occur. For some 
meteorological variables, occurrence is inherently binary (precipitation occurrence, 
for example), but for continuous variables, an event can be defined if the observed 
value lies within the limits defining the category of interest (temperature above 
30°C, for example, defines an event for a category with no upper bound). 

Extended-Range Weather Forecasting: Official terminology of the WMO to 
indicate predictions from 10 to 30 days (in general provided as averages across 
periods of several days). 

Extension Service: Normally used regarding agriculture, typically a government 
service that provides expert advice to farmers. 

First Guess [Field]: Same as Background.  

Forcing: The source of the disturbance of a dynamical system, which normally 
appears on the right-hand-side of the equation of the system. For example, wind 
stress is one of the forcings of the ocean (models). See also Climate Forcing. 

Forecast [field]: In data assimilation, model output used to form the background 
field, so-called because it is usually the result of a model integration started from 
an analysis produced in the previous assimilation cycle. 

Forecasting System: Ranges in meaning from a comprehensive view integrating 
all the components that go into making a forecast – from the generation of initial 
conditions of the dynamical models used for the forecasts, to the running of the 
coupled dynamical models, to the calibration and assessment of the model output, 
to the application of forecast products to specific users – to contiguous parts of 
this comprehensive definition. The meaning should be clear by its context. 

Gambler’s Ruin: Risk management under uncertainty leads to a sequence of 
gains and losses that on overage should produce a net gain. Gambler’s Ruin occurs 
when catastrophic losses are taken that prevent further activity. 

General Circulation Model (GCM): A set of equations describing the three-
dimensional evolution of the system to be modelled (e.g. the atmosphere) in a 
numerical form. The equations include those of the dynamics and energy of the 
system, as well as those of any other relevant process (e.g. chemical reactions).  

Global Producing Centre: A WMO designation conferred from November 2006 
on Centres that produce and distribute a minimum suite of global seasonal forecast 
products, typically using some form of GCM. 
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Group Velocity: The rate at which wave energy propagates. For nondispersive 
waves, such as a Kelvin wave, the phase and group velocities are the same. For 
dispersive waves, such as Rossby waves, the group and phase velocities are gener-
ally different. 

Hindcast: See Re-forecast. 

Homoscedasticity: The property of homogeneity of variance. A set of data has the 
property of homoscedasticity if there is equality in the variances of subsets of the 

Impact: Often used in the sense of the consequence(s) of a climate event, fre-
quently a climate extreme or climate change, sometimes without due consideration 
of any other factors that may be present. 

Increment: See Observation Increment. 

Indigenous Knowledge: That knowledge built over centuries, and passed down 
through generations, that defines a society’s learnt response(s) to events. 

Initialisation: All the steps required to prepare a coupled model (for an integra-
tion) normally performed via a data assimilation method. Sometimes it refers only 
to the final step of ensuring dynamical balance intra- and inter-components of a 
coupled model, required to avoid jumps (also called shocks) in the solution of the 
model in the early stages of the integration.  

Integration [of a Numerical Model]: The advancement in time of the solution of 
the numerical equations which constitute the model. When the integration refers to 
future times it is often called a forecast, whereas for past times it can be referred to 
as re-forecast or hindcast. 

Inter Tropical Convergence Zone (ITCZ): A belt of high rainfall near the equator. 
It is formed by the vertical ascent of warm, moist air converging from the north 
and south. It is usually found a few degrees to the north of the equator but moves 
north and south with the seasons. 

La Niña: The cold phase of ENSO. 

Internal Waves: Waves that can propagate through a fluid because it is stratified. 
In the tropical ocean, the speed of internal waves is 3 m s–1 or less. Internal Kelvin 
and Rossby waves are important in equatorial processes such as El Niño. They can 
travel large distances in the ocean (up to 10,000 km). Internal Kelvin waves also 
exist in the atmosphere where speeds are somewhat higher than in the ocean. 

data defined a priori (e.g. by time or by value of a second parameter). 
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Lead-Time: The time between the earliest moment at which the forecast could be 
released and the starting-time for which the forecast applies. The lead-time is not 
the same as the amount of advanced warning that is provided by the forecast: a 
forecast released at the beginning of the target period has a lead-time of zero, but 
does not imply that there is no advanced warning. 

Long-Range Forecasting: Official terminology of the WMO to indicate predic-
tions from 30 days to 2 years, usually provided as averages across a sub-period; 
includes Monthly Outlooks, 3-month or 90-Day Outlooks, and Seasonal Outlooks. 

Madden-Julian Oscillation (MJO): A tropical atmospheric phenomenon charac-
terised by an oscillation on the intraseasonal timescale (about 40–60 day). Some 
aspects of the MJO may have predictability beyond 10 days (the Medium Range). 

Medium-Range Weather Forecasting: Official terminology of the WMO to indi-
cate predictions from 72 hours (3 days) to 240 hours (10 days). 

Member: See Ensemble Member. 

Metadata: Information about the data themselves. In the context of meteor-
ological observations, metadata typically are data about the instruments and their 
location, and the recording procedures. 

Millennium Development Goals (MDGs): A set of eight Goals, originally agreed 
at the UN Millennium Summit in New York in 2000, that provides a time-bound 
(2015) international coordination framework for development activities. For all 
Goals there are certain quantifiable targets, each with sets of indicators. 

Millennium Project: A project to assess approaches to achieving the Millennium 
Development Goals. 

Mitigation: To reduce the consequences of an adverse event. In the UNFCCC 
mitigation is used in the context of reducing anthropogenically forced Climate 
Change through the reduction of greenhouse gas emissions. 

Neutral Phase: That phase of ENSO that lies between the warm phase and the 
cold phase. 

NIÑO3.4: One commonly used measure (or metric) of the state of ENSO based on 
sea surface temperatures over the tropical Pacific Ocean (similarly NIÑO3, NIÑO4, 
etc.). Specifically, the metric is calculated as the spatially averaged sea surface 
temperature over the domain 5°N–5°S, 170–120°W. 
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Normal: Used variously by climatologists and stakeholders, and thus prone to 
misinterpretation. Statistically it is the average value of a distribution. In seasonal 
forecasts, it is often used to indicate the central (i.e. inter-tercile) category (i.e. the 
middle third of data); thus also in this context above-normal and below-normal. 

North Atlantic Oscillation: An atmospheric see-saw of pressure across the North 
Atlantic Ocean with two standard ‘centres of action’, one over Iceland and the 
other on the Azores. Swings from one phase to another produce large changes in 
the mean wind speed and direction over the Atlantic. Influential on European and 
North African climate. 

Nowcasting: Official terminology of the WMO to indicate a description of current 
weather conditions and predictions out to 2 hours. 

Numerical Modelling: The utilisation of a set of mathematical equations solved 
by means of computational procedures. In principle it should refer to either  
Dynamical Modelling or Statistical Modelling, but in practice it is more often used 
as synonymous with the former. 

Observation Increment [or just Increment]: The difference between an obser-
vation and the interpolated model background value at the location of that 
observation. In other words, it determines the strength of the correction due to the 
data assimilation process. Normally, the first step in any data assimilation pro-
cedure: in the limiting case of an increment being equal to zero (i.e. model datum 
identical to the observation), no further calculations are required. 

Oceanic (or Ocean) General Circulation Model (OGCM): A Global Circula-
tion Model for the ocean.  

Outlier: A datum that is numerically distant from other data in the same dataset. 
Outliers may be indicative of observational errors in which case they should be 
corrected or omitted from analyses, but when they represent climate extremes they 
may have an undue influence on the analysis. 

Parameterisation: Normally utilised in dynamical models for simulating physical 
processes at scales smaller than those resolved by the model: radiative processes, 
clouds, convection of various kinds, large-scale latent heat release, etc. – the 
cumulative statistical effects of these processes are represented in terms of the 
model variables themselves rather than being represented explicitly. 

Percentile: Each part of a distribution that divides the data into 100 equal parts. 
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Poverty: The social condition of having access to insufficient resources to main-
tain a satisfactory basic state of living. Poverty reduction is the main focus of the 
World Bank, and is included in the Millennium Development Goals. 

Prandtl Number: The ratio of kinematic viscosity to thermal diffusivity. Small 
Prandtl number means heat diffuses more rapidly compared to momentum. 

Predictability: The extent to which future states of a system may be predicted 
based on knowledge of current and past states of the system. Since knowledge of 
the system’s past and current states is generally imperfect, as are the models that 
utilize this knowledge to produce a prediction, predictability is inherently limited. 
Even with arbitrarily accurate models and observations, there may still be limits to 
the predictability of a physical system. 

Predictand: Sometimes called a “target” or “response” or “dependent” variable, a 
predictand is a variable for which a forecast is to be made. Common predictands 
in seasonal climate forecasting are 3-month rainfall totals and 3-month average air 
temperature. 

Prediction System: Synonymous with Forecasting System.  

Predictor: Sometimes called an “explanatory” or “independent” variable, a pre-
dictor is a variable which is used to make a forecast, and in many cases is some 
measurement of the forcing mechanism that makes seasonal prediction possible. 
Common predictors in seasonal climate forecasting are monthly averaged sea 
surface temperatures, and the Southern Oscillation Index. 

Principal Component: A new variable, calculated similarly to a weighted aver-
age of an original set of variables, with the property that as much of the variance 
of the original variables as possible is represented, and with the total squared 
weights adding to one. Additional new variables, or principal components, can be 
defined that represent as much of the remaining variance as possible. Principal 
components exploit correlations between the original variables, and thus can act as 
efficient summaries of large datasets: much of the total variance of the original 
data may be represented by only a few principal components. Principal com-
ponents are sometimes called empirical orthogonal functions (EOFs), although, 
strictly speaking, the EOFs are the weights that define the principal components. 

Probability Density Function (PDF or pdf): A function that describes the pro-
bability of the value of a continuous variable being within any interval that must 
be calculated by integration. For discrete variables the probability is described by 
a probability mass function. 
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Probability Distribution: A complete mathematical description of the probabilities 
of all measurable subsets of a variable. 

Projection: An estimate of a future state, or a series of envisaged possible future 
states, obtained from expert interpretation of available information. 

Quality: In the context of predictions used as a generic term to indicate the tech-
nical level of excellence of the forecasts; e.g. deterministic forecasts that are 
consistently accurate are of relatively high quality. Compare with Skill. There is 
no necessary direct correlation between skill and value, value being dependent on 
the actual use of a prediction and the manner of that use. 

Quintile: Each part of a distribution that divides the data into five equal parts. 

Random Error: The imprecision in a given process due to the hard-to-control 
(sometimes uncontrollable) nature of some elements of the process. For example, 
repeated measurements of the same quantity are bound to yield different values 
(if precision of the instrument is sufficiently high) because the conditions of mea-
surement vary, even if ever so slightly, from one measurement to the other. To 
sample such error, coupled models are often started from initial conditions that 
differ by small amounts.  

Reanalysis: Use of the very latest numerical models and all available observations 
to create new analyses of the state of the atmosphere and/or oceans over past 
years. This approach produces consistent data sets over a number of years of 
higher quality than previously available, and that are invaluable for meteorological 
and climatological research. 

Recalibration: The statistical adjustment of model output to improve the similar-
ity between the model simulations/forecasts and the observed climate (Chapter 8, 
Section 8.3.3). See also Calibration. 

Reference Climatology: A standard climatology for a model generated through 
integrations over many years; changes, such as climate changes, may be detected 
against this in late work with the model. 

Re-forecast: A model integration over past times. Implementation of such inte-
grations serves several purposes, two of which are highlighted here: (i) to assess 
and/or calibrate model integrations for future times (i.e. forecasts) and (ii) invest-
igate performance of latest models over past events (e.g. the 1997–98 El Niño).  

Regional Climate Model: A numerical model working over a smaller geographi-
cal region than a Global Circulation Model but at much higher resolution in order 
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to provide enhanced spatial and temporal detail over that region. It typically  
employs boundary conditions taken from a Global Circulation Model. 

Resilience: A measure of the extent to which a society or a system, such as an 
agricultural system, is capable of withstanding the deleterious consequences of 
some adverse event. Hence ‘building resilience’.  

Richardson Number: The ratio of the static stability squared to the wind shear 
squared. It gives a measure of the likelihood of a fluid to develop instabilities. 

Risk Assessment: A study to determine the outcomes of decisions along with 
their probabilities.  

Scenario: One vision of the future created through expert interpretation of avail-
able information. 

Seamless Decision Making System: The implementation of a sequence of related 
or interlinked decisions across climatic timescales, adjusted as timescales change 
(cf. Seamless Forecasting System). Those decisions may be related only to a spe-
cific portion of the timescales, but that portion may readily extend within, beyond 
or across the artificial timescale boundaries set up by the scientists.  

Seamless Forecasting System: The implementation of unified procedures aimed 
to provide information which appears transparent to the user. In weather/climate 
forecasting it usually refers to the use of a single dynamical (coupled) model, 
which is integrated over different time and space scales, e.g. from a few days to 
many decades, with an essentially fixed setup. Currently, artificial timescale 
boundaries between medium-range, monthly, seasonal, decadal and climate 
change are common in the production of forecasts. Given the absence of such 
boundaries in nature, Seamless Forecasting seems a natural approach. Note that 
purely from a user perspective, a Seamless Forecasting System is not strictly 
necessary if model output were provided in a seamless way. 

Shock: A jump in the numerical solution of a model integration caused by an 
abrupt change in the initial conditions. Hence ‘Coupling shock’ or, more gener-
ally, ‘Forecast shock’.  

Short-Range Weather Forecasting: Official terminology of the WMO to indicate 
predictions from 12 to 72 hours (3 days). 

Risk: Uncertainty for which the probability distribution of an outcome (e.g. the 
objective of a decision making process) is known.  
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Singular Value Decomposition (SVD): The decomposition of a matrix into a 
diagonal matrix and two orthonormal (orthogonal and with unit length) matrices. 
Somewhat confusingly, “SVD analysis” is often used to refer to maximum covari-
ance analysis (Chapter 7, Section 7.4.3), which is one of many possible uses of 
SVD; for example, SVD is often used to calculate principal components in multiple 
regression and canonical correlation analyses. 

Skewness: A measure of the asymmetry of the frequency distribution of records of 
a single variable. If there are more large positive than negative departures from the 
median then the data are positively skewed. Conversely, if there are fewer large 
positive than negative departures from the median then the data are negatively 
skewed. Skewness can affect the results of some statistical tests, and so distribu-
tional assumptions always should be considered. 

Skill: A relative measure of the quality of a series of forecasts taken against an 
alternate forecast approach, usually a much simpler and cheaper approach such as 
guessing, or use of climatology, or persisting recent observations. Calculated such 
that a skill of 0% indicates the forecasts and the alternates are of identical quality, 
and positive values are desirable with 100% indicating perfect forecasts. 

Solid Body Rotation: When a fluid rotates as if it were a solid. 

Southern Oscillation (SO): An atmospheric see-saw of pressure across the 
Pacific Ocean with two standard ‘centres of action’, Darwin in Northern Australia 
and Tahiti in the central South Pacific Ocean. At these centres of action long-term 
sea-level atmospheric pressures are strongly inversely correlated such that when 
pressure is higher than normal at one it is lower than normal at the other. The 
atmospheric component of a major atmosphere-ocean interaction across the  
Pacific, part of which is the El Niño – hence ENSO. 

Southern Oscillation Index (SOI): A measure of the state of the Southern Oscil-
lation (q.v.); various approaches used. 

Stakeholders: See User. 

Statistical Modelling: In the broad sense using statistics to represent linkages 
within a system, but used within this book to indicate the employment of statistical 
relationships between predictors and predictands to create a predictive equation. 

Statistical Significance: A standard procedure for interpreting the strength of a 
test statistic, such as the correlation between a set of forecasts and the correspond-
ing observations. Statistical significance tests estimate how likely it is that a score 
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that is at least as large as the calculated score on the test statistic could have been 
achieved purely as a result of a sampling accident. If this probability, known as a 
p-value, is sufficiently low (typically <5%, although other thresholds are used), 
then the result is said to be “statistically significant”. 

Sustainable Development: Probably the most controversial of the terms in this 
glossary. Here a few alternatives are given: pick your choice. 

1. Development that meets the needs of the present without compromising the 
ability of future generations to meet their own needs. Report of the Brundtland 
Commission, Our Common Future (1987). 

2. The management and conservation of the natural resources base, and the orient-
ation of technological and institutional change, in such a manner as to ensure 
the attainment and continued satisfaction of human needs for present and future 
generations.  

3. Within a country or region, gradual change characterized by economic growth, 
increased social equity, constructive modification of ecosystems, and mainte-
nance of the natural resource base. 

Systematic Error: Any difference between the observed and model climates 
caused by non-random sampling errors. The most commonly considered system-
atic error is the bias in the mean climate of the model. 

Target Period: The period for which the forecast applies. 

Teleconnection: A simultaneous or successive association between climate 
anomalies in separate parts of the globe. The climate anomalies in the disparate 
regions are related by having a common forcing mechanism broadcast over dis-
tances through a mechanism generically referred to as a teleconnection. The best 
known example of a teleconnection is the Southern Oscillation, which involves 
opposite tendencies in sea-level pressure in the western and east-central tropical 
South Pacific Ocean, and which is then transmitted to distant parts of the globe. 

Tercile: Each part of a distribution that divides the data into three equal parts. 
Note that there are two terciles (the upper and lower), which define three cate-
gories. Sometimes, somewhat confusingly, the “tercile” is used to refer to the 

gory above the upper tercile).  

Top Down: A management approach that examines and resolves issues at the 
highest policy and management levels, then ripples solutions downwards to the 
working levels (cf. bottom up). 

categories defined by the division (e.g. “above-normal tercile” refers to the cate-
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Tropical Atmosphere Ocean (TAO) Array: An array of moored buoys across 
the tropical Pacific Ocean. These relay latest oceanic and atmospheric data via 
satellite links that are used in many seasonal prediction models. 

Type I Error: The rejection of a null hypothesis when the null hypothesis is true. 
A type I error is made when the result of a statistical test is accepted as statistic-
ally significant when the strength of the result is only a result of sampling error. In 
statistical modelling, for example, type I errors include accepting spurious predic-
tors, which results in operational forecasts being of lower quality than anticipated. 

Type II Error: The acceptance of a null hypothesis when the alternative hypothe-
sis is true. A type II error is made when the result of a statistical test is accepted as 
statistically insignificant when the weakness of the result is a result of sampling 
error or insufficient data. In statistical modelling, for example, type II errors result 
in actual forecast quality being less than the potential predictability. 

Useful: Often used by climatologists in the context of their perceived value of 
their predictions, but frequently unfounded until proven to have value. 

User: Many terms have been used to name those to whom seasonal predictions are 
directed – decision makers, decision takers, recipients, stakeholders, end-users, 
and so on. There is no clear distinction between these terms, and each may be 
interpreted differently at distinct stages of the delivery chain. Hence ‘user’ is em-
ployed here in a generic sense to cover the interpretation intended in this book. A 
‘user’ is anyone that makes use of Climate Information available at any stage of 
the (comprehensive) forecasting system. As a consequence, there are different 
levels of users including intermediate or end/final users. 

United National Framework Convention on Climate Change (UNFCCC): One 
of the so-called Rio Conventions that emerged from UNCED in 1992. The 
UNFCCC provides the framework under which intergovernmental climate change 
negotiations are held, and from which the Kyoto Protocol emerged. 

Validation: The evaluation of the ability of a model to make good forecasts 
and/or to reproduce observed features of the climate system. Sometimes used as 
synonymous with Verification.  

Value: Value is provided when information, such as a prediction, is employed 
actively to adjust an existing decision or to illuminate or confirm a new decision; 
predictions, of whatever quality, that are not used in, or do not contribute towards, 
any decision processes have no value. It is also used to indicate a measure of the 
benefit achieved through climate information use. Contrast with quality. 

433 Glossary of Terms 



Verification: The measurement of the quality of a forecast or of a sequence of 
forecasts. The term is sometimes used to refer to the eventual outcome to which 
the forecast was targeted; thus a forecast is compared to its verification in assess-
ing the quality of the former. 

Very Short Range Weather Forecasting: Official terminology of the WMO to 
signify predictions from 2 to 12 hours. 

Vulnerability: A measure of the extent to which a society or a system might be 
affected adversely by an event; hence vulnerability reduction. 

Warm Phase: The El Niño stage of ENSO during which sea surface temperatures 
over the eastern equatorial Pacific Ocean are above average. 

Weather: The day-to-day evolution of the atmosphere, as measured by variables 
such as temperature, wind and precipitation. Given its shorter averaging time, 
weather undergoes larger fluctuations than climate, which therefore acts as a 
weather smoother or integrator. Thus, at any given location, daily temperature 
anomalies of many degrees are normal whereas seasonal temperature anomalies 
are usually only a few degrees. 

Wind Stress: Force exerted on surfaces with small irregularities (typically the 
oceans) by the atmosphere, due to pressure differences and viscosity. It is propor-
tional to the square of the wind speed and it is the main driver of upper ocean 
circulation. 

World Meteorological Organization (WMO): A Specialised Agency of the UN, 
based in Geneva, responsible for the international management concerning the 
atmosphere and oceans. 
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ensembles, 247 

as indicators of sharpness, 276 
combination of, 253 

construction, 102 
evolution of its spread, 58 
in indicating uncertainty and defining 

probabilities, 229, 247 
reasons for producing, 226 
used to generate probabilistic predictions, 

236 
EQSOI, 47 
equatorial under current, 77, 146 
ERA-15, 326 
ERA-40, 130 
Ethiopia, 40 
EUROBRISA Project, 256 
EuroHeat project, 384 
Europe, 25 
European heat wave of 2003, 40 
European Union, 384 
EUROSIP, 57, 65 

and multi-model, 59 
external gravity waves. See waves 
extratropical weather, 131 
eye diseases, 368 
 
 
F 
false-alarm rate, 273 
Famine Early Warning Systems Network, 380 
Fiji, 363 
first guess field, 97, 100, See also data 

assimilation 
First International Conference on Southern 

Hemisphere Meteorology, 24 
Florida, 336 
Florida automated weather network, 347 
Florida Climate Consortium, 333 
Florida state climate office, 334 
Florida State University, 333, 406 
Food and Agriculture Organization, 380 
forced-only integration, 113 
forecast assimilation, 147, 236, 247 
forecast field, 96, 120, See also data 

assimilation 
forecast likelihood operator, 252 
forecast skill. See skill 
framing effect, 307 

G 
gambler’s ruin, 25 
gastroenteritis, 392 
Georgia Environmental monitoring network, 

347 
Georgia state climate office, 334 
Georgia, USA, 342 
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Global Climate Observing System, 296,  
372 

Global Information and Early Warning 
System, 380 

Global Prediction Centres, 304 
Global Producing Centres, 9, 208, 402 
Global Telecommunications System, 371 
GODAE, 110, 111 
grid 

conformal transformation, 152 
Gaussian, 151 
latitude-longitude, 151 
pole problem, 151 

group velocity, 70, 78 
Guidelines on Climate Observation Networks 

and Systems, 373 
Guidelines on Data Rescue, 373 
Gulf of Guayaquil, 5 
Gulf Stream, 74 
 
 
H 
Hadley Centre 

dynamical model, 134 
Health Metrics Network, 373 
heat balance 

oceanic mixed layer, 74 
heat capacity 

ocean and atmosphere, 46 
of seawater, 73 

heat conservation 
law, 73 

heat flux 
forcing of the ocean, 46 

heat health warning systems, 383 
heat stroke, 368 
heat transport, 74 
heating 

equatorial, 148 
high frequency 

in the climate system, 85 
high frequency oscillations 

filtering of, 105 
Hilbert singular decomposition, 195 
hindcast, 62, 113, 114, 130, 208, 231, 256, 

362, See also re-forecast 
Humanitarian Early Warning System, 379 
hurricane 

tracks in models, 49 
hydrodynamic 

equations, 147 
numerical code, 143, 144 

hydrostatic balance, 68 

I 
Iceland, 321 
ICPAC, 304 
impediments 

to use of climate information, 301 
India, 7, 164 
Indian Meteorological Department, 24 
Indian Ocean, 7, 191, 208 

precipitation, 156 
Indian Ocean Tsunami Early Warning 

Sysytem, 378 
indigenous knowledge, 3, 22, 24 
Indonesia, 358, 383 
Indonesian throughflow, 75, 140 
initial conditions 

error in, 86 
main features, 116 
of atmosphere and ocean, 55 

initial state, 96 
initial value problem, 56 
initialisation 

common approach, 55 
of individual models, 93 

instability 
“inertial”, 136 

Integrated Quantity Quality Model, 356 
Inter Tropical Convergence Zone, 131, 156 
Inter-Agency Standing Committee, 380 
Intergovernmental Panel on Climate Change, 

18 
issues of language use, 311 

internal gravity waves. See waves 
International Classification of Diseases,  

371 
International Research Institute for Climate 

and Society, 10, 19, 22, 327, 407, 408 
Internet 

issues in forecast delivery, 303 
interpolation, 152 

energy-conserving, 152 
Intraseasonal oscillation, 58, 72, 89, 132,  

401 
and west Pacific, 53 
in dynamical models, 402 

IRD, 376 
isopycnal, 75, 140 
 
 
J 
Japan, 99 
Japanese Meteorological Agency, 334 
Jarraud, Michel, 369 
 

geostrophic motion, 69 
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K 
Kalman, 101 
Kalman filter. See data assimilation 
Keetch-Byram Drought Index 

relationship to ENSO, 339 
use in predicting wildfires, 339 

Kelvin waves. See waves 
Kenya, 191, 307, 392 
Kiribati, 361, 363 
Kolmogorov axioms, 240 
Kuroshio, 74 
 
 
L 
La Niña, 6, 400 

cartoon, 142 
oceanic canonical conditions, 142 
relationship to Southern Oscillation, 164 
result of ocean-atmosphere interaction, 46 

latent heat 
in the tropics, 72 

Linear Error in Probability Space, 361 
linear regression 

data distributions issue, 187 
linear regression, 171, See also statistical 

prediction models 
multicolinearity issue, 186 
multiplicity issue, 185 
non-linearity issue, 187 

linearisation 
of model equations, 102 

Loa loa, 375 
Lyme disease, 368 
 
 
M 
Madden-Julian Oscillation (MJO). See 

Intraseasonal oscillation 
mainstreaming 

of climate information, 301 
malaria, 368, 392 

application model, 63 
control policy in Botswana, 386 
epidemics, 41 
relationship to climate in Botswana, 384 

Malaria Early Warning Systems, 380 
and Regional Climate Outlook Forums, 

381 
basis, 368 

Mann-Whitney U-test, 214, 272 
mass equation, 138 
measurements. See also Earth Observations 

types of, 107 

Mediterranean summer climate 
a basic mechanism, 73 

meningitis, 368 
Meningitis Early Warning System, 377 
Meningitis Forecasting Project, 377 
meningococcal meningitis, 376 
Météo-France, 99, 317, 318, 331 

and EUROSIP, 59 
Meteorological Services 

role in development, 296 
metrics 

accuracy-spread relationships, 276 
bounding boxes, 270 
Brier score, 255, 282 
Brier score decomposition to measure 

reliability, 266 
Brier score decomposition to measure 

resolution, 271 
calibration-refinement factorization, 271 
capture rate, 262 
conditional exceedance probability, 269 
continuous ranked probability score, 287 
correlation coefficient, 173, 181 
coverage probability, 262 
distribution fitting to measure sharpness, 277 
equitability, 281 
for contingency tables, 182 
for correcting model spatial errors, 218 
for detection of systematic errors, 213 
hit rate, 273 
likelihood-base rate factorization, 271 
linear error in probability space (LEPS), 

287 
linear error score, 288 
linear probability score, 286 
locality, 282 
logarithmic score, 284, 286 
mean absolute score, 284 
minimum spanning trees, 269 
need for use of several in forecast 

verification, 260 
pooling to increase sample size, 267 
positive and negative orientations, 279 
probability score, 285 
propriety, 281 
quadratic score, 285 
ranked histogram, 267 
reliability (or attributes) diagrams, 263 
reliability measured by Brier score 

decomposition, 266 
resolution measured by Brier score 

decomposition, 271 
skill score, 161 
skill scores, 279 
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skill-spread relationships, 277 
summary measures, 279 
Talagrand diagram, 267 
used for model evaluation, 181 

Millennium Development Goals, 20, 22, 37, 
41, 294, 301 

and climate variability, 298 
Millennium Ecosystem Assessment, 298 
Millennium Project, 38 
mixed layer 

oceanic, 50, 73, 139, 140 
mixing 

diapycnal, 143 
isopycnal, 143 
oceanic, 139, 143 
oceanic, processes, 144 

MJO. See Intraseasonal oscillation 
model crash, 94 
model errors. See also systematic model errors 

and forecast skill, 59 
and weather forecasts, 131 
in coupled system, 116 
in data assimilation, 93 
in ocean models, 143 
of coupled system, 114 

model output statistics, 246 
monsoon, 132 

Asian, 72 
Morocco 

development of climate services, 317, 328 
development of seasonal forecasts in, 316 
sample Memorandum of Understanding, 

330 
multi-model 

and EUROSIP, 65 
and interannual variability, 49 
approach, 59 
ensembles, 404 

multivariate interpolation, 97 
Murray Darling Basin, 354 
Murray Valley encephalitis, 368 
 
 
N 
NASA Goddard Modeling and Assimilation 

Office, 140 
National Centers for Environmental Prediction 

(NCEP), 100, 165, 327 
National Climate Data Center, 341 
New South Wales Department of Land and 

Water Conservation, 356 
Niger, 35 
NIÑO3 index, 170 

NIÑO3.4 index, 173, 182, 186, 189, 197, 198, 
199, 220, 231, 253, 262, 264 

hindcast correlation, 114 
noise 

and its influence on climate system, 88 
in ENSO theory, 87 
in the climate system, 85 
white, 102 

non-linearity 
in ENSO theory, 87 

North America, 220 
North Atlantic Oscillation, 61, 71, 321 

CIMMS forecasts, 327 
use in forecasts for Morocco, 323 

north-east Brazil, 6 
numerical models. See dynamical prediction 

models and also statistical models 
Numerical Weather Prediction, 92, 98 

by hand, 95 
 
 
O 
OASIS, 151, 152 
objective analysis, 96, See also data 

assimilation 
observational system 

non stationarity of, 130 
ocean 

as memory of the earth system, 46 
ocean analysis 

detection of subsurface features, 52 
ocean general circulation models, 140, 147 
ocean-atmosphere interaction 

basic mechanism, 46 
in the tropics, 46 

October 2000 
record rainfall England, 70 

onchocerciasis (river blindness), 374 
Onchocerciasis Program, 374 
one mode baroclinic model, 50 
operational centres 

atmospheric, 99 
seasonal prediction, 107 

Optimal Interpolation. See data assimilation 
optimum interpolation. See Optimal 

Interpolation 
overturning circulation 

shallow, 75 
 
 
P 
Pacific Islands, 360 
Pacific North America pattern, 218 
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Pacific North American, 61 
Pacific Ocean, 164, 191, 208, 255 
parameterisation, 156, See also dynamical 

prediction models 
“stochastic”, 137 
“super-parameterisation”, 137 
and its interaction with dynamics, 135 
and organised behaviour, 137 
and singularities, 137 
deterministic, 137 
dissipative, 137 
for convection, 136 
future development, 137 
oceanic, 143 
of mixing processes, 144 
of various physical processes, 128 

parameterized physical processes 
and their linear approximation, 101 

penalty function, 99 
perception 

and seasonal predictions, 32 
of climate, 296 
of climate forecasts, 297 
of ENSO, 33 

perfect model approach, 86 
persistence, 114 
phase speed, 70, 78 
Philippines 

precipitation, 156 

post-processing 
of dynamical model forecasts, 404 

potential temperature. See temperature 
potential vorticity. See vorticity 
Prandtl number, 146 
precipitation 

modelled global distribution, 156 
predictability 

approaches to study, 86 
of climate, 85 
of the atmosphere due to the ocean, 47 
of the ocean, 48 
of weather, 46 
of weather events, 85 
potential, 58, 210 
seasonal, 9 
sources of, 26 
time-varying, 88 

predictability limit, 85, 89 
estimate, 86 
issues, 86 
working definition, 86 

prediction 
terminological confusion, 18 

predictor, 55 
presentation of forecasts 

and decision processes, 305 
cognitive illusions, 307 
framing effect, 307 
in southwestern USA, 336 
issues of language use with water 

managers, 312 
use of individual words, 307 
use of language, 311 

pressure gradient 
force, 68 

primitive equations, 140 
principal oscillation pattern analysis, 195 
probabilistic forecasts, 7, See also seasonal to 

interannual predictions 
and ensembles, 246 
basis of interpretation, 240 
compared with deterministic forecasts, 237 
conceptual framework of, 246 
conditional probabilities, 240 
defined, 237 
discrimination of forecasts, 271 
examples of, 239 
expressed as odds, 241 
for binary events, 248 
for normally distributed variables,  

251 
forecast likelihood operator, 252 
multi-dimensional reliability, 269 
over/under-confidence, 262, 264 
recalibration of ensembles, 247 
reliability of forecasts, 245, 261 
resolution of forecasts, 245, 271 
sharpness measured by ensemble forecasts, 

276 
sharpness of forecasts, 261, 275 
verification. See also metrics 

probabilities 
Bayes’ theorem, 243 
estimation of, 241 
joint and conditional, 242 
Prosecutor’s fallacy, 243 

probability distribution function 
climatological, 63 

Prosecutor’s fallacy, 243 
Protection of the Human Environment,  

392 
PROVOST, 25, 210 
 
 
Q 
Queensland Department of Primary Industries, 

22 

Plasmodium falciparum, 368 
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R 
radiation 

long wave, 129, 133, 150 
short wave, 129, 150 

radiative transfer, 104 
radiosonde. See Earth Observations 
RANET project, 305, 405 
ranked histogram, 267, See also metrics 
ranked probability score, 286, See also metrics 
reanalysis 

of the atmosphere, 130 
recalibration of model predictions 

use in Morocco, 326 
recharge oscillator, 82 

equations, 84 
relation with delayed oscillator, 84 

recharge paradigm. See recharge oscillator 
reduced gravity model, 50, 139, 140 
redundancy analysis, 190 
Reference Climate Stations, 372 
re-forecast, 88, 113, 134, See also hindcast 
Regional Climate Centres, 9, 304, 406 
Regional Climate Outlook Forums, 303, 307, 

318, 405 
and Malaria Early Warning Systems, 381 
issues of interpretation of consensus 

forecasts, 305 
Regional Integrated Sciences and Assessment, 

333 
regression, 171, See also statistical prediction 

models, See also linear regression 
principal components, 189 

relative operating characteristics. See also 
metrics 

relative operating characteristics (ROC), 261, 
272 

area, 274, 277 
reliability. See also metrics, See also 

probabilistic forecasts 
of forecasts, 59, 261 

Res Agricola, 300 
resolution. See also metrics, See also 

probabilistic forecasts 
of forecasts, 261 

retrospective forecast. See re-forecast 
Richardson, 95, 98 
ridge regression, 189 
rigid lid approximation, 150 
Risk Management Agency, 333 
Robust Diagnostic, 154 
Roll Back Malaria, 380, 392 
root-mean-square error, 114 
Rossby wave. See waves 

rotation rate 
of the Earth, 68 

 
 
S 
SADC-DMC, 304 
Sahara desert 

and model performance, 134 
Sahel, 210 
Sally Stansfield, 369 
San Diego, 223 
satellite altimeter. See Earth Observations 
satellite data. See Earth Observations 
saturation 

of model integrations, 86 
science 

progress of, 149 
sea surface temperature 

coupling to convection, 158 
duration of anomaly, 46 
its anomalies and use in forecasts for 

Morocco, 323 
perturbations and wind anomalies, 79 

seamless 
forecasting and decision making systems, 

410 
Seasonal Forecast Bulletins 

design of, 330 
El Masifa, 327 
in southwest USA, 346 
Pacific Island Countries, 361 

seasonal to interannual predictions 
and decision processes, 19 
and Early Warning Systems, 381 
and their probabilistic nature, 65, 161 
benefit from, 19 
benefits in Morocco, 331 
calibration and recalibration, 236 
combination of multiple forecasts – 

approaches and issues, 230 
differences between user requirements and 

provider capabilities, 363 
dynamical and statistical approaches to, 

401 
end-to-end approach, 19 
essential physics, 85 
for water management, 352 
forecast evaluation by users in Morocco, 

332 
forecast quality, 260, 403 
forecast quality related to value, 260 
forecast value, 260 
history of, 24 
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impediments to use, 19, 352 
in decision making, 297 
method used in Morocco, 323 
perceptions of by Australia farmers, 357 
probabilistic forecasts, 7 
probabilistic predictions and decision 

making, 236 
probabilistic predictions from ensembles, 

236 
quality of re the quality of boundary 

forcing predictions, 209, 210 
relationship between deterministic and 

probabilistic predictions, 235 
types of models, 9 
uses, 10 
verification methods. See metrics 

self-sustained oscillations, 82, 84 
self-sustained oscillator, 87 
shallow layers of fluid 

atmosphere and ocean, 68 
shallow tropical cell, 138, 140, 144, 145 
sharpness. See also probabilistic forecasts 

of forecasts, 261 
SINERGEE project, 133 
singular vector, 102, 104 
singular vector decomposition, 190 
skill 

and its seasonal dependency, 62 
of forecasts, 278 
of global surface temperature forecasts, 60 
of hindcasts, 114 
of precipitation forecasts, 60 

skill score. See also probabilistic forecasts, See 
also metrics 

skin cancer, 368 
Solomon Islands, 361, 364 
South America, 5 
South Pacific, 406 
South Pacific Convergence Zone, 156 
Southeast Climate Consortium, 333 
Southern Africa, 6, 7, 170, 216, 303, 307, 309 
Southern Oscillation, 164, 322 

discovery of, 24 
relationship to El Niño, 24 
use in forecasts for Morocco, 322 

Southern Oscillation Index, 47, 61, 200, 299 
spectral analysis 

singular (multichannel), 194 
spectrum 

“reddening” of the, 74 
of forcing, 46 

spherical harmonics, 151 
Spin-up, 155 

SPOT, 376 
spread 

in integration results, 86 
St. Louis encephalitis, 368 
Standardised Verification System Long-Range 

Forecasts, 267, 274 
state estimation, 92 
state vector, 100 
statistical model, 55 
statistical prediction models 

analogues for probabilistic predictions, 200 
assessment of validity, 178 
autoregressive models, 195 
basic design of, 165 
canonical variate analysis, 198 
classification procedures for probabilistic 

predictions, 198 
CLIPER model, 195 
combination, 245 
data quality issues, 166 
generalised linear models for probabilistic 

predictions, 196 
generation of probabilistic predictions, 

184, 196 
identification and handling of predictands, 

169 
identification and handling of predictors, 

170, 175 
least absolute deviation regression, 189 
linear inverse modelling, 195 
maximum covariance analysis, 190 
metrics for evaluation, 181 
model evaluation, 179 
multiple linear regression, 174 
neural networks, 188 
optimal climate normals, 195 
power and other non-linear regression, 188 
predictions for rain days or heavy rain, 167 
quadratic analysis, 200 
recalibration, 245 
regression as a conditional probability 

model, 244 
regression for non-normal distributions, 

188 
removal of trends, 169 
sampling errors, 167 

storm-tracks, 131 
North Atlantic, 71 

stratification 
of atmosphere and ocean, 68 

streamflow 
forecasts for, 353 

subtropical cell, 75, 77 
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method in data assimilation, 96 
surface fluxes, 74 
surface forcings 

of the ocean, 114 
surface pressure 

difference in the Pacific ocean, 47 
sustained oscillations, 79 
Sverdrup 

balance, 52 
flow, 83, 84 

synoptic scales, 105 
Synthetic Aperture Radar, 376 
systematic biases. See systematic model  

errors 
systematic model errors, 147, 161, See also 

model errors 
correction of, 214 
correction of spatial errors, 217 
dealing with, 57 
in coupled models, 116, 117 
metrics for detection of, 213 
precipitation, 156 
relation to prediction errors, 212 
types of, 211 

systems 
types of and their interrelationship, 14 

 
 
T 
Tahiti, 47 
Tanzania, 191 
TAO-TRITON. See Earth Observations 
teleconnections, 148 

as basis of statistical predictions, 164 
related to El Niño, 148, 164 

temperature 
potential, 69 

temperature-salinity relationship, 107 
thermocline, 140, 145 

definition, 74 
oceanic, 50, 139 
overly diffused, 142 
perturbation, 77 
ventilated, 75, 140, 141, 144 

thermodynamic equation, 139 
thermohaline circulation, 140 
time scales 

mismatch between atmosphere and ocean, 
117 

topography, 140 
Trade winds, 75 
transfer function 

for applications, 63 

Tropical Atmosphere Ocean (TAO) array, 5, 
19, 25 

Tropical Ocean Global Atmosphere (TOGA), 
111 

tropical weather, 132 
Tunisia, 319 
turbulent mixing, 74 
Tuvalu, 363 
two layers 

as approximation for the ocean, 50 
typical scales 

atmosphere and ocean, 68 
 
 
U 
UK Met Office, 99, 107, 111, 165, 327, 331 

and EUROSIP, 59 
dynamical model, 160 

uncertainty 
aleatoric, 238 
approaches to indicating, 227 
epistemic, 238 
in atmospheric analysis, 56 
in models, 56 
in ocean analysis, 56 
indication using ensembles, 229 
model data sampling, 238 
model parametric, 238 
model structural, 238 
observational, 238 
of prediction, 56 
sources of, 238 

uncertainty, confidence and probabilities, 227, 
235 

United Nations Framework Convention on 
Climate Change, 16 

United States Department of Agriculture, 333 
United States of America, 25, 406 
Universal Thermal Climate Index, 383 
University of Alabama at Huntsville, 333 
University of Florida, 333 
University of Georgia, 333 
University of Miami, 333 
University of Washington, 220 
upwelling 

oceanic, 75 
US Agency for International Development, 

380 
uses of predictions 

agriculture, 33, 37 
disasters and prevention, 34 
energy, 34 
financial, 34 

successive corrections, 98 
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fisheries, 35 
food security, 35 
health, 40 
policy making, 36 
retailing, 36 
transport and tourism, 36 
water management, 36, 39 

 
 
V 
value of predictions. See also metrics 

extraction of, 26 
factors in demonstrating value, 301 
gain, 405 
in decision making, 20 

variance 
observational error, 103 

variational approach. See data assimilation 
verification of forecasts. See also metrics 

on ECMWF website, 61 
visualisation 

of forecast quality, 361 
vortex shrinking, 72 
vortex stretching, 72 
vorticity 

absolute, 69 
anticyclonic, 72 
cyclonic, 72 
geostrophic, 96 
potential, 69, 135 

 
 
W 
Walker circulation, 148 
Walker, Gilbert, 5, 24, 164, 321 
water management 

and seasonal predictions, 20 
complexity of systems, 353 
data issues, 353 
external constraints, 353 
legal barriers, 357 
objectives for Border Rivers, 355 
relevance of seasonal to interannual 

predictions, 353 
wave dynamics, 79 

equatorial, 138 
oceanic, 88, 139 

wave theory 
equatorial, 134 

waveguide 
equatorial, 77 

wavenumber 
truncation, 137 

waves 
barotropic, 50 
dispersion diagram, 105 
electromagnetic, 110 
equatorial, 134 
equatorial Rossby and Kelvin, main 

features, 81 
external, 50 
external gravity, speed of, 68 
fancy dance, 148 
gravity, oceanic, 50 
interaction with sea surface temperature, 

79 
internal gravity, 77 
internal gravity, speed of, 68 
internal, breaking, 146 
Kelvin, 80, 105, 140 
Kelvin and Rossby, 82 
Kelvin, equatorial, 48, 77, 87 
Kelvin, oceanic, 52 
Kelvin, propagation, 53 
Kelvin, structure of, 78 
propagation, 80 
propagation speed, 139 
reflections, 79 
Rossby, 105, 140, 148 
Rossby, equatorial, 77 
Rossby, main features, 69 
Rossby, oceanic, 52 
Rossby, reflection, 79 
sound, 105 
structures, 134 
surface gravity, 151 
tropical instability, 147 

wavetrains 
stationary Rossby, 158 

weak coupling 
in atmosphere and oceanic models, 117 

weather forecasts 
and predictability, 46 

weather generators, 224 
weather noise, 89 
West Africa, 164 
West Nile virus, 368 
westerly flow, 70 
westerly wind bursts, 132 
western Pacific, 305 
wildfires 

forecasting for, 338 
wind stress, 150 

curl, 147 
wind-up radios, 305 
World Bank, 301 
World Data Centres, 371 
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World Health Organization, 40, 371, 373, 380 
World Meteorological Organization, 9, 19, 

369 
Commission for Climatology, 383 
Regional Specialized Meteorological 

Centres, 371 
World Ocean Circulation Experiment, 111 
 
 

X 
XBT. See Earth Observations 
Xie-Arkin, 326 
 
 
Z 
Zambia, 173, 182, 272 
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