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Preface

Although the total amount of urban areas covers insignificant percentage of the Earth’s land
surface, but still the growth of these areas is the main reason of various natural environmental
related problems. Currently the influence of urban areas on Earth’s resources consumption,
environmental pollutions and climate changes is clearly observable. The continuous growth of
manmade developments has increased these problems and produced several other negative
effects on natural environments. Rapid growth of population and rural–urban migration due to
higher quality of life especially in developing countries contribute to the horizontal and sprawl
developments. Urban sprawl due to low density, large rural development, spatially segregated
land uses and widespread commercial strip development does not provide a good quality of
urban neighborhood. In addition, urban sprawl and unorganized horizontal city expansion
because of high carbon emission, traffic congestion, agricultural and forest destruction, higher
infrastructural provision costs, various public health problems and several other environ-
mental, economic and social issues are not characterized as an acceptable and sustainable
urban form. Hence, in recent decades there is a growing awareness about urban sprawl
development and its negative consequences.

Due to these negative impacts, attaining urban sustainability is one of the most primary
goals for planners and decision makers in urban-related applications. In general, sustainable
development concerns about the consumption of natural resources in such a way that does not
jeopardize the ability of future generations to use the same resources. With respective to urban
perspectives, sustainable urban development concerns about the minimum inputs of energy
and resources and minimum outputs of air pollution, water pollution, and wastes from an
urban system. Hence, urban sustainability can also be defined as improving quality of life of
human being within the availability of Earth’s limited resources. Urban sustainability takes
into account of three main aspects, namely; social, economic and environmental issues. Each
of these aspects deals with separate issues of an urban system such as: security, livability and
social equity; improve productivity, personal and public finances; pollution levels, the amount
of reserve habitat and resource consumption respectively. Sustainable urban development can
be achieved through an efficient land use growth and management by implementing proper
planning and urban design. These tasks can be done by adopting various strategies and
planning to minimize the energy consumption, protect biological diversity, reduce pollution,
improve social interaction and develop more green landscapes. Therefore, the contribution of
shape and form of the cities has become one of the main focal points to conduct these tasks.

Among various aspects of sustainable urban development, environmental protection
especially agricultural and forest conservations are dominated in tropical regions. Particularly,
small cities and towns with high potential of growth due to proximity to big metropolitan cities
need to be controlled to avoid large horizontal urban expansion. Thus, it is important to
propose various alternative development scenarios based on objectives of urban sustainability
to avoid negative consequences of these urban sprawl developments. Compact city, transit
oriented development (TOD) and smart growth are some examples of such development
scenarios. Among these examples, compact city is widely accepted as one of the most
promising solution for urban development pattern to achieve ultimate goals of urban
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sustainability. Compact urban development with high built-up density, land use diversity and
intensified neighborhood aims to protect natural environment, reduce land consumption,
decrease car dependency, support public transportation facilities, increase walking and cycling
behavior and etc. These characteristics are seen to have contributed to the sustainable urban
development in the form of social, economic and environmental aspects. In addition to
environmental perspectives, compact city has several aspects to improve quality of life as
social advantages.

Compact land use pattern is a relatively new terminology in the field of Urban Planning
which, assumes that the new development should be built around the existing built-up areas in
higher density, intensity and land use diversity and therefore promoting city compactness
characteristics. The revitalization and redevelopment of existing brownfields and abandoned
lands within the city borders is one of the most feasible and cost effective strategies in
increasing city compactness. Evaluation of existing compactness and simulation of compact
urban forms are the main step towards the implementation of compact development initiative
to achieve ultimate goals of urban sustainability. Land use change modeling based on city
compactness, or in a proper terminology, compact land use pattern modeling not only should
consider various complexities of a conventional land use change processing, but also full fill
different perspective of compact urban development concept and eventually sustainable urban
development. In compact land use development human scale factors and quality of life has
higher priority rather than other aspects, which made these kinds of development modeling
more sophisticated.

Generally speaking, compact urban development is a complex and long-term project that
requires a flexible law system and supportive government. Unfortunately, improper under-
standing and agreement about the definitions comprising several concepts and indicators make
urban sustainability and compact city is an extremely difficult achievable task. Consequently,
these complexities have influenced on each phase of sustainable and compact development
processes such as modeling, implementation and measurement. For instance, to develop a
compact city, the initial step is to assess and evaluate the various aspects of existing com-
pactness in order to realize the current situation before any decision-making takes place. In this
regard, there is no standard and consistent evaluation methodology exists in the literature.
Moreover, city compactness has been assessed mainly based on data availability, local zoning
manner and objective of the research itself. For instance, measuring urban density and land use
diversity are usually based on census tracts, which vary in size and resolution. Therefore, the
assessments are not comprehensive and reliable enough because the results can be different by
various zoning manner, cell size, and type of input data. In addition, in large-scale regions
such as country basis, urban compactness is generally measured based on the cellular concept
and the concentration of the built-up cells in a specific area. Whereas city compactness apart
from the urban built-up density (which is an implication of physical compactness) consists of
various other aspects related to functional compactness which reveals valuable and useful
information about the existing condition of cities. Moreover, evaluation of city compactness
can be done through applying common statistical techniques to measure various entities such
as mixed land use development indicating the land use richness of a local neighborhood.
However, the distribution pattern which depends on the adjacency and relationship among
various land use categories can only be evaluated using spatial and mapping based approaches.

In addition to form and shape of the cities, an understanding of spatial distribution of land
use changes and the resulting impacts of this process on urban environment is one of the most
important tasks. The lack of a clear understanding of this process leads to a level of uncertainty
due to inclusive of several unknown and complicated parameters. Land use change phe-
nomenon is a result of complex interaction of various environmental, physical, political,
cultural, and other factors. Monitoring of these changes could reveal the flow of conversion
from natural environment (forest lands) to agricultural fields and finally to built-up areas.
Thus, the simulation and prediction of these changes provide insightful information and allow
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for more systematic analysis of the relationship between forms and process in several envi-
ronmental and urban planning applications.

In this regard, evaluation of previous growth and extraction of development trend as
historical components of land use change modeling is an essential task. This process is
fundamental in order to simulate and predict the future growth and changes of various land use
categories. However, the lack of proper understanding about urban systems, its related issues
and several involved factors and stakeholders make modeling and prediction process a difficult
task. Specifically, land use change arises from complex interaction of various factors and
mainly dependent on spatial location, scale, and current state of land use. The existing
modeling and prediction techniques cannot be solely applied for this complex phenomenon.
A reliable and comprehensive modeling approach which can be created from integration of
several modeling techniques should be proposed in order to tackle related issues and variables.
In addition, the proposed hybrid models should be developed based on the core principles of
land use change modeling. Similarly, the processing scale of the modeling is an important
issue. In a large processing scale (low spatial resolution), the models can evaluate land use
changes at a regional scale, thereby facilitating the definition of appropriate environmental
policies. However, land use modeling at these resolutions is incapable of identifying subtle
land use changes which is observable and effective in local neighborhood bases. Therefore, it
is very important to propose a hybrid model at fine spatial resolution to deal with complexity
of land use modeling and prediction.

First this book describes about the fundamental concept about urban growth and expansion,
historical growth models, forms of urban growth, and its negative consequences on natural and
green environments. Furthermore, the concept of sustainable development with an emphasis
on urban sustainability and its relationship with two common urban forms (sprawl and
compact development) will be discussed in detail. Generally, assessment and evaluation of
various aspects of current pattern of urban areas is important. Hence, the current book has
gone through a comprehensive urban form assessment in two physical and functional aspects.
Especially, compactness assessment is discussed regarding urban density, land use diversity,
and urban intensity evaluations. In this phase, two new terminologies, i.e., Degree of Com-
pactness (DoC) and Trend of Compactness (ToC) which reveal the compactness growth
pattern, will be proposed and explained. In addition to urban form and pattern evaluation, it is
important to analyze the historical trend; and to model and predict the future trend of urban
growth in a finer scale land use changes. This phase is presented with description about the
effective factors through various applied techniques related to urban growth and land use
changes, mainly based on two scenarios: “business as usual” and “compact land use pattern.”

This book is organized into 14 chapters. The first three chapters and Chap. 8 present a
theoretical information and introduction to urban growth and expansion, sustainable urban
development, forms of urban growth, and common techniques applicable in land use change
modeling. Rest of the chapters present the application of these theoretical concepts on specific
case studies with detail explanation about input data, study areas, methodological processes,
and results and discussion.

Chapter 1 provides introduction to urban growth and expansions with retrospective view on
urbanization process and driving factors of urban expansion. Additionally, more descriptions
are given on the forms of urban growth and expansion, historical modeling theories of urban
growth such as Von Thünen theory, concentric zone theory, and central place theory, and
urban growth and natural environment deterioration.

Chapter 2 provides general information about sustainable development with an emphasis
on urban sustainability with respect to three main aspects i.e. environmental, economic and
social sustainability. Next, as a case study, Malaysian perspectives of urban growth and
sustainability is discussed, specifically related to Kuala Lumpur as capital city and Putrajaya as
a newly developed city based on sustainable development paradigms.

Chapter 3 presents two main forms of urban growth: sprawl and compact development.
First, the origin and various positive and negative aspects of sprawl development are
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explained, and then compact development is discussed in detail as an alternative solution to
avoid the negative social, environmental, and economic consequences. Next, compact
development is evaluated with respect to various aspects of sustainable urban development.
Finally, a brief discussion is presented about Malaysian perspectives of compact urban
development.

Chapter 4 presents an assessment and analysis approach of the spatiotemporal patterns of
urban expansions in the Tripoli metropolitan area (Libya) based on the urban sprawl assess-
ment concept. Urban expansion and sprawl are assessed and investigated as a pattern and
process using Urban Expansion Intensity Index (UEII), population and urban expansion
proportions, landscape metrics, entropy model, and degree of freedom model. Tripoli
metropolis, which has not been studied before, was chosen as the area to discover its urban
sprawl patterns, and assess well-established urban modeling techniques in a North African
city. Next, the results of urban sprawl assessment are presented and discussed in detail with
respect to the study area.

In contrast to Chap. 4, Chap. 5 presents the methodological process of city compactness
assessment of Kajang city (Malaysia) based on main compact city paradigms (urban density,
intensity, and land use diversity) for four temporal land use maps of this city (2004, 2008,
2012, and 2015). Kajang is a city located in the eastern part of Selangor province in the
southwestern region of Peninsular Malaysia. City compactness assessment is performed as an
initial step of compact city modeling based on physical and functional assessment by
proposing two new terminologies; degree of compactness (DoC) which illustrates the level of
compactness of the smallest pixels or cells of the study area, and trend of compactness
(ToC) which shows the trend of the growth and loss of compactness of the study area. These
two measurements are implemented and evaluated to reveal the growth pattern of compactness
of the Kajang city. This assessment provides baseline information and guidelines for analysis
of compact land use pattern.

Chapter 6 presents the methodological approaches dealing with the relationship between
city compactness and residential land use growth. Residential land use is selected due to more
significant growth of this land use type than other urban land use categories. This growth
causes the destruction of large amount of green and natural environment, especially in sprawl
urban expansion. Thus, a proper analysis of the reciprocal relationship between residential
growth and compact development is necessary to predict and propose different future alter-
native scenarios. In this process, first, the city compactness of the study area is assessed with
respect to residential land use changes. Second, the growth of residential areas is predicted by
using two common land use change modeling approaches and the future residential maps are
evaluated with respect to city compactness maps. In this manner, the performances of the
selected models are also evaluated for land use change modeling applications in terms of
model accuracy, complexity, and functional relationships between dependent and independent
variables.

Chapter 7 presents a change detection process to discover the spatiotemporal analysis of
urban land use change patterns and highlight the trend of historical development of Kajang
city (Malaysia) during 2004–2015. Land use change assessments provide a clear under-
standing of the built-up growth through various land uses and land cover categories. These
assessments reveal the rates, amount, and directions of the growth. Thus, significant growth
and/or loss of a specific land use type can be highlighted precisely. Cross-tabulation analysis is
applied to each pair of available land use maps of the study area (2004, 2008, 2012, and 2015)
to implement this analysis for Kajang City.

Chapter 8 identifies and explains several common land use change modeling techniques in
order to provide baseline knowledge for the methodological approaches applied in Chaps. 9–11.
Various statistical-based approaches, agent-based models, rule-based models, artificial neural
networks, cellular automata model, and decision tree models are explained and discussed in
detail. In addition, validation of urban modeling techniques is also explained. Urban growth and
land use changes are the main reasons for environmental, social, and economic issues, such as
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hydrological problems, destruction of forests and agricultural fields, natural and wildlife dis-
turbance, and global warming. Thus, a proper understanding of the reason, degree, direction,
and consequences of urban growth and expansion is essential for most urban application
projects which are discussed with examples.

Chapter 9 presents a methodological process for land use change modeling for the Tripoli
metropolis as case study. In this chapter, the simulation process of urban growth in the Tripoli
metropolis is presented and explained to understand its pattern and the role of each urban
driving force behind the urbanization process. In the simulation process, the frequency ratio
(FR) model is first applied based on the real urban expansion rather than entire urbanized area
to present the role of classes within each urban factor and reflect actual urban expansion
tendency. Second, the evidential belief functions (Dempster–Shafer) model (EBF) is applied to
provide further information by generating four maps representing belief, disbelief, uncertainty,
and plausibility of predicted future urban growth. Third, the logistic regression (LR) model is
applied to assess the overall effect of each urban driving factor, and subsequently combined
with a simple growth ratio equation to present probable future scenarios. Fourth, the classic
CA–Markov chain (MC) model was used to predict explicit future urban land use in Tripoli in
2020 and 2025. Finally, a novel hybrid model of CHAID–CA–Markov is proposed based on
the advantages and shortcomings of the aforementioned models, and employed to model,
explain, and predict explicit urban growth in 2020 and 2025. Several multi-temporal
space-borne remote sensing data are used to conduct spatial analysis, modeling, and predic-
tions for urban expansion such as Landsat image 1984, Landsat image 1996, Spot 5 image
2002, Spot 5 image 2010, road networks, population data, digital contour map, and topo-
graphic map.

Chapter 10 presents a methodological process of compact land use change modeling to
simulate and predict future spatiotemporal urban growth in compact form. These processes are
conducted to identify and assess the various aspects of land use change modeling, especially
regarding statistical (factor analysis) and cellular-based concepts. A hybrid land use modeling
approach based on applied modeling techniques is also developed to create a comprehensive
projection of the future development pattern in two scenarios. The first scenario
(business-as-usual scenario) is based on several urban-related factors and interaction among
various land use categories through a historical trend of land use change and growth. Next, the
results are integrated into the CA model to facilitate the application of contiguity filters and
project future land use maps based on the neighborhood concept. In the second scenario
(compact land use scenario), the proposed land use modeling approach and evaluation of
degree of compactness (DoC) and trend of compactness (ToC) are considered in proposing
and implementing a compact land use scenario using the city intensification process. The
proposed model considers the advantages and disadvantages of the existing models and
analyzes the interactions of urban factors as well as their interaction among various land use
categories. The analyses and modeling approaches used in this study can be employed to guide
the identification and measurements of the changes and growth likely to happen in urban areas.
The output maps and results can likewise be helpful for town planning in order to design
compact and eventually sustainable urban areas.

Chapter 11 proposes a brownfields land use change modeling process according to a
compact city paradigm in a larger scale perspectives rather than local aspects. The proposed
model is a statistical-based weights-of-evidence (WoE) approach in the GIS environment. The
growth of three main land use types in Kajang, Malaysia was predicted using several compact
development parameters and other urban and physical site characteristics. This process are
aggregated with an existing brownfields map in order to project future land use types
according to planning strategies, as well as compact development characteristics. It is con-
cluded that the combination of land use change modeling techniques and compact urban
development theory in GIS environment can provide a strong tool for brownfields redevel-
opment planning and strategies.
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Chapter 12 presents a methodological process for extracting the land use/land cover of
Karbala City in Iraq using high-resolution satellite images based on rule-based algorithm
of the object-oriented classification method. Change detection analysis is implemented on the
growth of built-up areas to evaluate the previous trends of land use change pattern. Further-
more, future urban growth and expansion of the study area are projected using the integrated
cellular automata and Markov chain technique. Finally, a novel approach for building
extraction and counting was presented using the eCognition rule-based method. The
methodological process is validated using ground truth points and standard confusion matrix.
These analyses indicate the logical and accepted performance of the methods. The projected
and produced maps can help identify the spatial growth pattern of urban settlement. Such
identification can be used to create adequate future planning for the proper provision of social
and infrastructural facilities for the local residences.

Chapter 13 discusses the applications of geographical information system (GIS) and remote
sensing (RS) in urban-related fields, especially urban development and planning perspectives.
This chapter explains the fundamental concept about GIS and RS and their necessities and
relationship with urban-related issues. The basic concept of GIS is explained regarding its
main components, input data, capabilities, basic analysis tools, mapping, and visualization
abilities. Remote sensing also is explained regarding its advantages with respect to in situ data
collection, resolutions, various sensors, and its capabilities for urban problems. Specifically,
application of radar imagery in building extraction is presented and explained with proper
examples and references. Next, site suitability process as one of the main application of GIS in
urban planning and design is discussed and presented in detail with a special focus on
multicriteria decision-making (MCDM) and analytical hierarchical process (AHP) techniques
in this field. Finally, brief information about GIS application in urban planning and devel-
opment regarding Malaysian perspective from past to present is explained.

Chapter 14 presents a methodological process attempted to describe and quantify the spatial
pattern of urban expansion of the selected study area using several landscape metrics. Four
satellite images of the study area from the years 1984, 1996, 2002, and 2010 are used to
conduct the analysis of urban sprawl patterns in the Tripoli metropolitan area. The applied
spatial landscape metrics provided good insight into urban sprawl from different perspectives
and presented a reliable urban sprawl investigation tool. The findings of this study are useful in
directing prospective urban plans and urbanization policies in Tripoli.

Chapter 15 presents an interesting application on relationship between urbanization and
urban heat island (UHI) effect. The UHI phenomenon affects the environment, regional climate,
and socioeconomic development. In this study, Enhanced Thematic Mapper Plus (ETM+) and
Landsat Thematic Mapper (TM) images acquired in 2002 and 2009, respectively, are used to
evaluate changes in land surface temperature (LST) over different land cover (LC) types during
those years in Putrajaya, a planned city in the south of Kuala Lumpur, Malaysia. Urban thermal
characteristics were further analyzed by investigating the relationships between LST and two
indices, namely, normalized difference vegetation index (NDVI) and normalized difference
built-up index (NDBI). Results suggest an inverse relationship between NDVI and LST and a
strong direct correlation between NDBI and LST in Putrajaya city. Therefore, detecting the
amount of changes in the significant areas, such as vegetated and urban areas, is essential for
future urban strategies related to decreasing LST.

In general, this book discusses about the application of geospatial data, geographic infor-
mation system (GIS) and remote sensing (RS) technologies in analysis and modeling of urban
growth process and its pattern, with a specific focus on sprawl and compact development. This
book confirms that the proposed advanced modeling approaches, geospatial data and GIS are
very practical for identifying urban growth, land use change patterns and their general trends
in future. The analyses and modeling approaches presented in this book can be employed to
guide in identifying and measuring the changes and growth likely to happen in urban areas.
This book also can serve as a guiding text book for postgraduate students and researchers who
are interested in urban growth modeling. Though a lot of work on urban growth and
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assessment has been published as individual papers in various scientific journals; however,
there is also a disconnection between the urban growth modeling and compact city assessment
using remote sensing data. This book can provide an easy path from theory to practical
algorithms with many case studies. In addition, this book can be helpful for town planning and
local development agencies in order to design urban areas in a compact form and eventually
sustainable manner.

I could not have produced this book without the efforts of many people who I would like to
thank here. Foremost among them are my own research team members at Department of Civil
Engineering, Universiti Putra Malaysia and authors of each chapter who worked closely with
me for meeting the deadlines in developing the scope of each chapter. These individuals are
Saleh Abdullahi, Abubakr A.A. Al-sharif, Hossein Mojaddadi, Amer D. Salman Aal-shamkhi,
and Marziyeh Zahabi. Thanks to all my coauthors of individual chapters of this book.

The publication of this book would not have been possible without an excellent cooperation
from my colleagues at Springer Verlag, Germany. Special thanks to Dr. Nabil Khelifi for
motivating and encouraging me to write this book. At Springer Verlag, the efforts of Reyhaneh
Majidi are appreciable.

Finally, I would like to thank my family, wife Sheila, my two adorable kids, Krish Pradhan
and Darsh Pradhan, for their wonderful support and patience in allowing me to spare time to
complete this book.

Serdang, Malaysia Biswajeet Pradhan
April 2017
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1Introduction to Urban Growth and Expansion

Saleh Abdullahi, Biswajeet Pradhan and Abubakr A.A. Al-sharif

1.1 Retrospective View on Urbanization
Process

A city or an urban area is a permanent concentrated human
settlement that is managed or governed by a local or regional
administrative body (Goodal 1987; Kuper 2013). This cen-
tralization pattern provides great opportunity for interaction
among citizens, businesses, and activities. Urban environ-
ments are symbols of civilization and modernization because
of the existence of several complex systems of infrastruc-
tures, services, and facilities. The accessibility of these
community facilities is one of the factors in the growth of
urban areas (Banister 2012; Yamu et al. 2015). In fact, the
concentration of these facilities and services distinguishes
cities from rural areas and villages.

From the global environmental point of view, urbaniza-
tion is the conversion of natural spaces to build up areas for
residential, commercial, and industrial land uses (Xie et al.
2005). Mubareka et al. (2011) defined urbanization as the
growth of land demands to build up areas over a period.
Urbanization is an obvious human behavior to obtain better
quality of life, livability, security, and so on. The urban-
ization level of the urban environments can be measured by
the complexity, extent, and capacity of these factors.
Meanwhile, urbanization increases economic growth and
industrialization (Fig. 1.1).

Historically, concentrated settlements with central man-
agement systems have been created by the agglomeration of
industrial areas in central parts and attracted populations to
live around these areas and along road networks (Yeh et al.
2001). In addition, higher quality of life, livability, safety,
security, and protecting poor people from rising land costs
and speculation were the main aim of urban planners in the
first decades of the nineteenth century (Banister 2012). After
the Second World War, this kind of concentrated urban
shape was replaced by dispersed and decentralized devel-
opment in suburban areas. This decentralization affected the

job opportunities, distribution of facilities and services, and
residential development from a clustering pattern to the
suburban and city edges (Garreau 1991). Hence, the primi-
tive human settlements changed from mono-centric to poly-
centric and dispersed urban patterns. Currently, this kind of
urban pattern is known as sprawl and/or leapfrog develop-
ment, in which the built-up areas that belong to each urban
land use are separated by open spaces, such as natural and
abandoned fields. Ottensmann (1977) defined urban sprawl
as the spread of new spontaneous urban developments on
isolated zones, which are separated from other areas by
unused land. In fact, this transformation is the consequence
of several factors, but the main factors are transportation and
technological development and advancement (Archer et al.
1993).

The majority of Earth’s population lived in rural areas for
a long period before industrialization. Although urban
environments have existed for thousands of years with his-
torical kinds of planning and development, a very small
portion of the population were interested to live in cities
(Elkin et al. 1991). Nevertheless, technological and indus-
trial revolution changed the urban shape and built environ-
ments that attracted rural populations to live and work in
urban areas instead of living in villages and working on
agricultural fields (Arbury 2005).

Newman (1992) summarized three different periods of
urban environments development.

(1) Traditional, small, and less dense cities, with walking
and cycling transport. Urban structures pattern and
distribution, such as housing, social activities, and
businesses, were tightly intermixed. In this stage, the
overall size, amount of required area for each activity,
and growth of urban areas were insignificant and
limited within an appropriate walking distance (not
more than 5 km), which can be observed in the most of
the European, North American, Australian, and New
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Zealand cities. In this period, a clear physical distinc-
tion between urban areas and villages existed (Herndon
2011).

(2) The technological development of mass public trans-
portation in the later part of the nineteenth century,
which was the initial stage of urban outward expan-
sions. The limitation of growth caused by the slow
transportation forms was reduced and cities could
expand depending on the extent of the train and tram
railways (up to 20–30 km). A large number of cities
were shaped during this period, especially in Europe,
North America, and Australia.

(3) The technological development of automobile, which
began before the Second World War. A significant
growth was observed after the war, when private

vehicle and bus became the main transportation mode.
Thus, the cities grew in all directions, especially along
the road networks (more than 50 km). The prevalence
of private cars and buses increased low-density resi-
dential neighborhoods because the people were not
limited to live in high-density and congested city cen-
ters or near their working places.

Figures 1.2 and 1.3 depict one of the good example of the
forms and extents of city expansions, especially based on
transportation modes.

The expansion of London city is a good example to show
these three periods. In the first years of eighteenth century,
before the development of public transportation, 87% of the
population of this city was living in the inner parts (957,000

Fig. 1.1 Kuala Lumpur City
(Malaysia); Google Earth and
aerial images
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out of 1,100,000). In the first year of the nineteenth century,
after the technological development of passenger trains,
trams, and buses, 70% of the population of this city was
living in the inner parts (4.5 million out of 6.5 million).
Finally, in 2001 and 2011, 45 and 40% of the population
were living in inner parts, respectively. Car ownership only
started to become predominant in the 1970s. Hence, city
expansion is significantly increased after the technological
development of automobiles.

In addition to these periods, the shaping of urban areas
and expansion can be assessed based on five main factors:
industrialization, urbanization, advances in transportation,
zoning ordinances, and growth of middle class affluent
(Herndon 2011). Industrialization converted the
agricultural-based business communities to manufacturing-
and industrial-based communities. Technological advance-
ment in machinery for various industries significantly
increased the productivity and manufacturing profits. This
encouraged the development of large industrial buildings in
rural areas and farm fields; hence, the expansion of the city
borders. The mass rural–urban migration process was
triggered by the conversion of agricultural lands to industrial
buildings that brought job opportunities. Rural–urban
migration increased the urban population dramatically and
expanded the cities horizontally and vertically to

accommodate the newly migrated population. Thus, more
natural and green environments were converted to urban
land uses, especially for residential buildings. This rapid
urbanization process created several problems in the urban
areas, such as pollution, noise, congestion, and improper
infrastructures and utilities. These intolerable problems in
the urban areas encouraged wealthy and affluent residences
to move away from the high-density parts of the cities to the
outskirts for better quality of life in low-density neighbor-
hoods. This aim was achieved, and the human limitations
regarding placement and movement reduced significantly.
This further horizontal expansion of urban areas reduced the
distinction between urban and rural environments.

The environmental and social problems caused by the
rapid urbanization forced the local planning authorities of
urban areas (especially in the United States in the early
nineteenth century and other European countries) to propose
an alternative solution instead of moving from the central
parts to the outskirts of the cities. They proposed to imple-
ment zoning ordinances in urban areas and separate various
activities and land use categories. Their aim was to separate
residential with non-residential (particularly heavy industrial
land use with high pollution and noise) land uses to protect
the public’s health and for the sanitation and security of
residential neighborhoods. The zoning ordinance in urban
areas was first introduced in New York City in 1916 with the
aim of bringing light and air back to the city and homes and
providing assurance of what can only be developed next
door (Gillham 2002). This zonal development and the
increase of the average incomes of the middle class popu-
lation because of industrialization caused the expansion of
horizontal residential development with low density, large
lot size detached homes in the suburban areas. These new
suburban developments further segregated the urban growth
and expansion with low population density (Bruegmann
2006). Consequently, these five factors (industrialization,
urbanization, advances in transportation, zoning ordinances,
and the growth of the middle class affluent), which histori-
cally formed the urban areas, influence the current charac-
teristics of American cities (Herndon 2011), which are
private vehicle dependent, separated and single land use

Fig. 1.2 The schematic illustration of urban growth based on transportation system (Muller 2004)

Fig. 1.3 The schematic illustration of urban expansion distance based
on transportation system (Hugill 2002)
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development, low population density in most neighbor-
hoods, and blurred distinction between cities and countries
(Fig. 1.4).

1.2 Driving Factors of Urban Expansion

In addition to the historical factors mentioned, several other
factors that affect the shaping of urban growth and expan-
sions regardless of periods exist. Cities are among the most
complex structures created by human beings. Dynamism and

continuous growth are the main characteristics of urban
areas. Evaluating the driving factors behind the expansions
is necessary to describe past urban patterns and predict
future patterns (Abdullahi and Pradhan 2015). Urban growth
and developments are consequences of many driving forces
that control social, economic, and environmental variables
(Liu et al. 2003; Verburg et al. 2006; Chen et al. 2014).
From a practical point of view, many urbanization factors
have been identified for urban spatial growth modeling and
decision-making. In this section, a brief explanation will be
presented. In the next chapters, more details on causative

Fig. 1.4 General view of urban
areas during industrial revolution

6 S. Abdullahi et al.



factors of urban growth with proper case studies will be
discussed and evaluated using Geographical Information
System aided statistical assessments.

• Environmental factors related to the environmental
characteristics of a location can be a stimulation and
constraint for urban growth and expansion. These factors
include natural barriers, slope, risk of natural hazard, land
cover categories, and so on.

• Local-scale neighborhood factors that are based on
Tobler’s first law of geography (1979); “Everything is
related to each other, but near things are more related
than distance things” (Sui 2004). The urban land use
pattern usually has a strong influence on the urban
dynamics of land use change and growth.

• Spatial characteristics of the city, such as size of the
urban center, accessibility of the urban center, traffic flow
and congestion, transportation system, and distribution of
community facilities. For instance, new links in the road
network may contribute greatly to the urban dynamics as
an attraction for urban land use.

• Urban local and regional planning policies, such as
zoning ordinance and resource allocation. The occupancy
of the city by land use spaces is planned over time
through land use zoning plans.

• Factors related to individual preferences, level of eco-
nomic development, and socioeconomic and political
issues. These driving factors are very complicated to
model and understand. They are related to human
decision-making processes, which are qualitative, time
dependent, and can be transient in most cases. Conse-
quently, they are difficult to define and calibrate as
stochastic factors in urban dynamic modeling.

1.3 Forms of Urban Growth and Expansion

The growth and expansion of urban areas from the earliest
stages until now are the results of several internal and
external factors, such as industrialization revolution, trans-
portation modes and extent, physical and geographical
properties of site, environmental characteristics, and plan-
ning process. The investigation and evaluation of urban
expansion forms based on these causative factors using
various quantitative classification techniques has greatly
contributed to the comparison of different urban areas
(Huang et al. 2007).

In general, several forms of urban expansion exist, such
as compact or sprawling, clustered or dispersed, leapfrog or
continuous, self-organizing or spontaneous, and organic or
planned (Bhatta 2010). Similarly, Clarke and Gaydos (1998)
classified urban expansion into spread, organic, spontaneous,

diffusive, and road-influenced forms. However, defining
clear boundaries between these growth patterns, which cer-
tainly have some overlaps, is difficult (Yang et al. 2003).
Compact and sprawl developments are the most general
forms of urban growth. Other forms are normally defined
and characterized based on these two forms.

Unlike compact development, which is characterized by
centralization and high-density built-up area, sprawl devel-
opment is mainly a low-density, scattered, and decentralized
urban form (Burton 2000, 2002; Abdullahi et al. 2015).
Urban density consists of various aspects, such as population
density, building density, residential density, and road den-
sity (Abdullahi et al. 2015). Since building types in sprawl
development are mainly single-story building with widely
spaced; hence, most of the urban density aspects remains
low especially building density. Urban sprawl develops the
urban land use along the boundaries of existing cities, which
require the extensions of essential urban infrastructure, such
as sewers, roads, water, and power (Gillham 2002).

The three periods listed by Newman (1992) and other
mentioned factors that affect urban growth all play different
roles in shaping the cities from historical concentrated set-
tlements to various horizontal expansion forms. Newman
(1992) believed that the first stage in separating living from
working places was made possible by the mass public
transportation of trains and trams, which was especially for
the middle class or high-income level. These fast trans-
portation modes made it possible to escape from the
high-density, congested, and polluted central parts to the
low-density and green suburban areas with better neigh-
borhoods. Furthermore, the advancement of electric street-
cars in American and European cities at the end of the
nineteenth century increased the suburban expansion. Public
transportation using trains caused a more dispersed devel-
opment growth because of longer distances between the train
stations. Meanwhile, electric streetcars made contiguous
forms of growth because of the shorter distances among the
stations (Arbury 2005). Hence, the urban expansion form
based on transportation systems and extents is usually
known as the ribbon pattern (Fig. 1.5). This kind of urban
form, which is considered as sprawl development, follows
the main transportation routes outward from the urban cen-
ters. The widths of these expansion corridors were defined
by the walking distances on both sides of the routes. Ribbon
pattern was the main basis of urban growth in several older
American, Australian, and New Zealand cities; hence, it is
considered as the first stage of urban expansion from con-
centrated forms toward decentralized and sprawl develop-
ment (Arbury 2005). Although this kind of urban pattern
extended the traditional walking-based cities significantly, it
is greatly different from the automobile-based expansion
form in terms of density, physical appearance, and residen-
tial development pattern.
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Similarly, road-influenced growth is a linear development
that is influenced by new roads or corridors and generally
surrounded by rural areas up to some distances from existing
developed areas (Wilson et al. 2003). The advancement and
popularization of car dependency in the early twentieth
century was one of the main factors in the growth of urban
areas of decentralized and dispersed forms. Over time, areas
along the roads are converted to urban use as land values
increase and infrastructural facilities are extended perpen-
dicularly from the major roads (Gillham 2002). Similar to
road-influenced urban form, commercial strip development,
which is characterized by major roads, consists of various
facilities, such as restaurants, shopping centers, and fuel
stations. Commercial strip development normally has low
density and surrounded by large parking spaces.

Meanwhile, the clustered type of urban form similar to
historical concentrated human settlement is a neither a linear
nor isolated urban growth and is typically a large, compact,
and dense development (Wilson et al. 2003). In contrast,
dispersed development is a decentralized kind of growth
with low population density, widely separated buildings,
rural developments, and no proper activity center (Schneider
et al. 2008). Leapfrog pattern, which is a kind of dispersed
and sprawl development, occurs beyond the urban fringes
and creates isolated built-up areas; therefore, it is often a
mixture of urban with non-urban uses (Schneider et al.
2008). This discontinuous growth can be considered as the
most extreme urban sprawl, with its greater need for
infrastructure and transportation, and inefficient use of lands
(Gillham 2002). Strong private car dependency and high
land consumption are some of the other characteristics of
these kinds of horizontal expansions because of their
low-density development.

Self-organizing growth is normally controlled by high-
density and large-scale urban development (Bhatta et al.
2010). In contrast, spontaneous growth is normally con-
trolled by small-scale dispersed development and occurs at
the boundary of an existing settlement (Clarke et al. 1998).

Unlike organic growth, planned urban growth is more likely
manmade and controlled and developed by a pre-designed
planning process. In general, most cities and towns seem to
be a mixture of both (organic and planned) developments
and usually contain elements of planned growth against a
backcloth of natural growth (Batty et al. 1994; Batty 2008).

Adolphson (2010) explained the form of urban expansion
mainly based on economic point of view. Centripetal and
centrifugal forces are two factors that affect the growth of
urban areas (Krugman 1996). The agglomeration of the same
kinds of businesses in specific spatial locations or single
business type developments (economies of localization-
centrifugal forces) causes a segregated urban pattern,
whereas the combination of various kinds of businesses or
mixed business types developments (economies of
urbanization-centripetal forces) causes an integrated urban
pattern (McCann 2001). The ratio between these two forces
(centripetal/centrifugal) has a direct relation to the size of the
central area of the city and its capacity to attract more urban
activities. Furthermore, any internal local changes, such as
increase or decrease in the cost of transportation, will affect
this ratio and consequently have an effect on the dispersion
or clustering of urban growth and expansion. Thus,
Adolphson (2010) summarized urban forms in nine main
categories, which are mainly based on specific social–eco-
nomical properties, as shown in Table 1.1. The first three are
simple and the other six forms have structures that are more
complex.

• Compact urban structure. The structure represents
high density and is usually combined with mixed
functionality.

• Dispersed urban structure. The structure is an apparent
central business district (CBD) that is characterized by
maximum urban density, maximum rents, maximum trip
ends, and segregated land use (dominated by low-density
residential suburbs) located in concentric zones around
the CBD.

Fig. 1.5 a Low density of sprawl (radial sprawl), b ribbon sprawl, and c leapfrog development sprawl (Gillham 2002)
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• Corridor urban structure. The intense land uses in this
structure are extended out from the CBD along major
transportation routes.

• Multinucleated urban structure. It is constituted by a
number of sub-centers with local maxima according to
floor space, population and employment density, rents,
and trip ends (Anderson et al. 1996).

• Fringe urban structure. The structure develops when
urban growth occurs at the urban–rural border.

• Ultra-urban structure. The structure is described as an
urban structure that is “beyond something in space and
time.” It appears when communication technology
eliminates the influence of space and time and hence a
metropolis-based region emerges (Newton 1997; Wege-
ner et al. 2004).

1.4 Modeling Theories of Urban Growth:
A Preview

It is clear that a proper understanding of the reason, amount,
direction, and consequences of urban growth and expansion
is essential. Hence, some kind of models and simulation

techniques are required to deal with these issues by
expressing and explaining the growth process. The utiliza-
tion of models in scientific research represents the natural
behaviors and reactions in the real world (Liu 2008). Models
are essential for understanding the dynamic behaviors,
evaluating causative factors, analyzing the consequences,
and supporting the planning and decision-making (Wang
2012). However, the behaviors of phenomena in the real
world are very complex and multidimensional. Some sim-
plifications and predefined assumptions are required to
understand and investigate these processes. The proposed
models should be comprehensive and applicable enough to
support urban growth and create a better and clearer view of
the function of this process. The models can be used as
powerful tools to increase our mental capabilities regarding
urban expansion and make more informed decisions
(Costanza et al. 1998).

Historically, many models were applied to urban growth
applications after the quantitative revolution in geographical
science from the 1950s until the 1960s (Wrigley et al. 1981).
The evolution of remote sensing (RS), geographic informa-
tion science (GIS), and digital computing technology sup-
ported a means of working with very complex mathematical
urban models. Recent models have provided artificial

Table 1.1 Various urban forms
expansion presented by
Adolphson (2010)

1. Areal urban structure (Wright
1935)

2. Point urban structure 3. Linear urban structure (Salas
2009)

4. Compact urban
structure

5. Dispersed urban
structure

6. Corridor urban
structure

7. Multinucleated urban structure 8. Fringe urban structure 9. Ultra-urban structure
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laboratories to conduct numerous analyses and research
applications of the urban system to explain the processes and
behaviors of urban expansion patterns and define the struc-
ture of metropolitan areas. Main urban modeling theories are
discussed in the following sections.

1.4.1 Von Thünen Theory

Most of the models before the 1950s were based on spatial
economic theory. A simple land use and urban expansion
modeling theory was developed by Johann Heinrich Von
Thünen in the eighteenth century (Wang 2012). The theory
explains how market processes affect and control the spatial
distribution of land use in a theoretical geographical context,
as shown in Fig. 1.6 (Parker et al. 2003).

A simple agricultural land use context is used to explain
this theory. The limiting assumptions of the model theory are
as follows:

• The city is located centrally in isolation and no external
influence exists.

• The city is surrounded by unoccupied lands.
• The land is wholly flat and there are no mountains or

rivers to interrupt the terrain.
• The climate and soil quality are consistent.
• Farmers transport their own goods across the land

directly to the city center using oxcarts, that is, the effect
of roads is neglected.

• Farmers act to increase their incomes.

Von Thünen assumed that farming land use will be seg-
regated into a spatially hierarchical configuration and
intensive farming and dairying will take place near the city.
In other words, fruits, vegetables, milk, and other dairy
goods must be brought quickly to markets. Wheat can be
situated further from the markets and the city center, while
ranching can be located in the fringe areas surrounding the

city. Beyond the ranch lands lay the unoccupied lands that
are very far from the city center. Von Thünen’s modeling
theory is simple, but it is still an important theory in terms of
geography. Moreover, the theory excellently illustrates the
balance between transportation and land costs. The theory
assumes that the price of land with its proximity to the city
(Sinclair 1967; Candau 2002).

1.4.2 Concentric Zone Theory

The concentric zone theory was proposed by Burgess in
1926 (King 1985). In this theory, the city is represented as a
series of concentric land use circular zones, centered on the
CBD. However, concentric zone theory offers a descriptive
urban system formation rather than an analytical urban
dynamics like in the von Thünen theory. Burgess proposed
that the city grows by growing the circular concentric land
use zones outward the CBD (Fig. 1.7).

The first zone represents the CBD, which lies at the city
center. The second zone is composed of multi-use transi-
tioning land use mixed with some migrant ghetto residences
and manufacturing areas. The third zone is considered the
working and residential class neighborhoods with few
amenities. The fourth zone consists of better homes with
more spaces than the third zone and is occupied by the
middle class commuters. Finally, the fifth zone is dominated
by higher quality housing and very good amenities. How-
ever, geographic space is generalized and restricted in the
concentric zone theory. Topographic and transportation
influences are also not considered, and the mono-centric
urban expansion is insufficient to represent real urban land
use patterns (Blumenfeld 1949; King 1985; Parker et al.
2003).

1.4.3 Central Place Theory

Central place theory was devised by geographer Walter
Christaller in 1933 when he noticed that towns of a certain
size were roughly equidistant. This theory attempts to

Fig. 1.6 The Von Thünen spatial organization of agricultural land use
(Sinclair 1967) Fig. 1.7 Concentric zone theory (Candau 2002)
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explain the size, number, spatial distribution, and hierar-
chical arrangement of cities. It is also concerned about the
arrangements of cities in terms of providing retail and
wholesale administrative functions and services to citizens.
Christaller defined and examined the functions of each urban
settlement structure and the size of the neighborhood land
and found that modeling each urban settlement location
pattern through geometric shapes, such as hexagons and
triangles, is possible (White 1977; King 1985).

Central place theory defines the central place as an urban
settlement with a number of smaller settlements each at an
equivalent distance from it. The smaller settlements use the
services and shops in the central place. The central place
provides more goods and services than the smaller urban
settlements (towns). This structure is based on simple rules:

• The lesser the number of settlements, the larger the
domain of influence of its services.

• The larger the number of settlements, the fewer the ser-
vices offered.

Figure 1.8 shows that the city is the main settlement. It
has the largest number of services and a large hinterland.
Hence, such cities rarely occur on urban landscapes. The
towns, which have fewer services, are more abundant and
have significantly lesser neighborhoods. This urban pattern
continues in a hierarchical manner to include smaller urban
settlements of villages. Each type of urban settlement places
itself in relation to the subsequently greater urban settlement
equidistant from urban settlements of a similar extent.

Therefore, a hexagonal pattern of urban settlements will
disperse throughout the landscape (Preston 1991; Parr 2002).

1.4.4 Sector Theory

Sector theory is based on the idea that functional land use
regions will expand in wedge-shaped zones outward from
the CBD and in the concept that high-rental areas are initi-
ated in wedge forms and spread out in radial sectors along
lines from the CBD to the urban fringe. However, sector
theory attempts to clarify the trends for several socioeco-
nomic clusters to segregate them in terms of their housing
locations. The theory also proposes that high-quality resi-
dential areas tend to grow outward from the urban center
along the highways over time (Torrens 2000).

The sector model (Fig. 1.9) considers direction and dis-
tance as factors that form residential allocation. The model
also recognizes that CBD is not the only main point of urban
activity (Kivell 2002).

1.4.5 Multiple Nuclei Theory

Multiple nuclei theory is based on the simple fact that most
big cities and many towns have various nubs that serve as
centers of agglomerative growth instead of a simple CBD.
This theory considers the urban spatial system as an urban
area that includes several functional and industrial centers
(Fig. 1.10). However, some of these centers are earlier set-
tlements and others emerged from the urbanization process
and external economies. Multiple nuclei theory surpassed
the ideas that explain the spatial distribution of urban system
activities by recognizing the significant influences on urban
factors, such as accessibility, historical trends, and topog-
raphy. Notably, the theory draws closer to clarifying and
explaining why different urban spatial patterns occur in
recognizing the polycentric structure of metropolises
(Simmons 1965; Torrens 2000).

Fig. 1.8 Christaller’s central place model (King 1985) Fig. 1.9 Sector theory of urban expansion (Candau 2002)
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1.4.6 Bid–Rent Theory

Bid–rent theory is based on von Thünen urban modeling
theory and considers several urban factors like transporta-
tion. Given that transportation costs increase with the dis-
tance from the markets, rents generally tend to decrease
correspondingly. Nevertheless, various forms of urban land
uses (service, retail, housing, or industrial) generate different
bid–rent curves (Fig. 1.11).

An urban land user prefers locations near the city center,
but an urban developer will tend to accept locations that are
further from the city center if rentals are lower. In essence,
bid–rent theory is a study of housing compared to the
amount of required land, and variations in the incomes used
on land, transportation costs, and all services and goods. The
price of land will decrease along with the increase in dis-
tance from the city center and the patterns of housing stock
will emerge if the quality and quantity of services and goods
are held constant. The amount of land that can be bought
will increase as distance from the city center increases, but
transportation costs will increase along with the distance
from the city center. Based on these simple principles, the
wealthy will select the services of lower density housing at

the edge of the city and will pay a higher price for traveling
over the distance. In comparison, the poor will remain in
higher density residential areas near the city center. Bid–rent
and von Thünen modeling theories reflect several aspects of
the dynamicity of urban morphology (Torrens 2000).

1.5 Urban Growth and Natural Environment
Deterioration

Population growth and rural–urban migration because of
several advantages of urban areas for living and working
purposes caused the continuous growth of cities (Xie et al.
2005; Nauman et al. 2015). Technological changes and
industrial developments, especially from the late 1700s
onwards, were one of the main reasons of massive migration
to the urban areas (Arbury 2005). According to United
Nation’s Population Division report, about 38% of the
Earth’s population are in urban areas and this amount is
expected to rise to 61% by 2025 (UNPD 2012; Nauman
et al. 2015). This implies that about 5 billion people out of a
total world population of 8 billion will be living in urban
areas. In addition, 40 large cities will be added every five
years so that there will be 639 metropolises with more than
one million residents by 2025. Seventy-six percent of these
metropolises will be in developing countries (UNPD 2012).
Hence, the growth of urban environments in developing
countries and tropical regions should be the main concern of
urban scientists and researchers in this field (Fig. 1.12).

The growth of urban areas consists of different aspects or
dimensions, such as population growth, physical growth,
and economic growth. However, a strong and direct relation
among these growth aspects exists. Economic and industrial
developments attract huge amounts of population from rural
areas, especially in developing countries, because of dis-
satisfaction with life in rural areas. Population growth sig-
nificantly increases the physical expansion of urban areas.
Nevertheless, the main concern of these growths from the
environmental point of view is the physical expansion of
built-up areas (urbanization processes of industry, com-
merce, and residence) through rural areas, which destroys a
great extent of the natural environment (Kumar et al. 2007;
Bhatta 2010; Abu Hammad et al. 2012). Xie et al. (2005)
also defined urbanization as the conversion of natural envi-
ronment to build up areas. Although the total amount of
urban areas covers a very insignificant percentage of the
Earth’s land surface, the growth of these areas is still the
main reason of various natural environment problems. Cur-
rently, the influence of urban areas on Earth’s resources
consumption, environmental pollutions, climate changes,
and so on is clearly observable. The continuous growth of
these manmade developments has magnified these problems
and produced several other negative effects on the natural

Fig. 1.10 Multiple nuclei model or urban expansion (Candau 2002)

Fig. 1.11 Alonso model of housing stock based on bid–rent (Candau
2002)
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environments. Hence, in the recent decades an awareness of
the uncontrolled urban development and its negative con-
sequences has grown (Hennig et al. 2015; Sisodia et al.
2016). Uncontrolled and horizontal development is consid-
ered as urban sprawl (Jiang et al. 2007). Urban sprawl has
triggered various environmental and resource problems
because of the fact that urban growth normally converts
agricultural and forest lands to build up areas and increase
wasteful use of land resources (Yeh et al. 2001; Blaikie et al.
2015). Wilson et al. (2003) stated from an overall perspec-
tive that unorganized urban development requires more
pavements, hence increases air and water pollution; destroys
forest lands, farmland, woodlots, and open space; disrupts
ecosystems and fragment habitats; and increases fossil fuel
consumption and emission of greenhouse gases.

Land use changes caused by urban growth have disturbed
the biogeochemical life cycle to a great extent, increased
water and food consumption, and consequently resulted in
associated sewage and pollution problems (Xie et al. 2005).
Unorganized urban expansion can affect agricultural pro-
duction because of the conversion of farm lands into human
settlements; affect the ecosystem because of the increase in
emissions from transportation; have an effect on urban center
dynamic behavior because of the further segregation or
integration of urban structures; cause social welfare disad-
vantages because of the undersupply of collective con-
sumption goods (Adolphson 2010).

Carbon dioxide emission is one of the main air pollutants
from urban areas and human activities. About 61% of the
Earth’s population is expected to be living in urban envi-
ronments by 2025 (UNPD 2012). About 70% of the overall
carbon dioxide emissions are from these human settlements.
Thus, dealing with this problem in a global and national
scale is important to achieve more sustainable urban areas.
Specifically, fast growing countries need to be more serious
in monitoring and controlling the growth of and propose and

implement low carbon societies (Fujita et al. 2009). As
mentioned before, one of the main environmental effects is
the growth of the physical aspects of urban areas. Residential
buildings have more significant growth than other land use
categories and building types. In this regard, different
building construction materials have substantial effect on the
rate of carbon emission. For instance, timber housing con-
struction emits less carbon dioxide than the concrete build-
ings because of high carbon emission during cement
production. Hence, considering the construction materials
used for the development is important during the planning
and implementation of low carbon societies, in addition to
land use management and control of growth and expansion.

Numerous studies have been conducted regarding the
effects of urban growth and expansion on surface tempera-
ture and global climate changes (Vörösmarty et al. 2000;
Weng et al. 2004; Jenerette et al. 2007; Kahn 2009;
Lemonsu et al. 2015). Heat waves are good examples of
these negative effects in post-industrial countries (Kaveckis
et al. 2014). Heat wave refers to a period of uncommon hot
weather. Urban heat island (UHI) is a common and spe-
cialized terminology for this issue, which refers to the
intensified heat produced by a relatively warmer local cli-
mate over the urban areas (Kaveckis et al. 2014). UHI can
have a negative effect on the comfort and health of people,
especially for those with heart diseases, the children, and the
elderly (Svensson et al. 2002).

Flash flood caused by surface runoff is another environ-
mental problem of urban expansion because of the conver-
sion of vegetation land cover to impervious urban land use,
such as buildings and paved surfaces. Hence, more frequent
and severe floods can occur because of less infiltration of
urban surface land uses, especially those developed in
watersheds (Douglas 1983).

Therefore, the most common unorganized urban expan-
sion, which is known as sprawl development, does not

Fig. 1.12 Metropolises in
Europe and North Asia
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provide a good quality of urban neighborhood because of
low density, large rural development, spatially segregated
land uses, and widespread commercial strip development
(Burchell et al. 2000). In addition, urban sprawl and unor-
ganized horizontal city expansion are not considered
acceptable and sustainable urban forms because of high
carbon emission, traffic congestion, agricultural and forest
destruction, higher infrastructural provision costs, various
public health problems, and so on (Carruthers 2002; Gu et al.
2013; Litman 2015; Post et al. 2015). Hence, devoting
considerable attempts on studying the proper balance
between rural and urban areas for the preservation of natural
environments while fulfilling the existing population initial
needs (Xie et al. 2005) to attain sustained growth over a
longer period of time is important.
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2Sustainable Urban Development

Saleh Abdullahi and Biswajeet Pradhan

2.1 Introduction

The idea of sustainable development emerged in the late
nineteenth century in the observation of the various critical
environmental problems caused by the continuous growth of
urban areas, especially in rural and natural environments.
Meadows et al. (1972) were the first authors to use the
sustainable terminology in their research regarding human
development pattern. They stated that a tragic destruction of
the global environment will occur in the 2000s if the current
trend of human development and resource consumption
continues. Hence, a fundamental solution is required to
control the growth trend and define specific guidelines to
address the ecological and economic aspect of the environ-
ment. In addition to this first spark of sustainable develop-
ment concept, the 1972 UN conference on Human
Environment and the 1973 oil crisis resulted in the strong
agreement among scientists and stockholders that the exist-
ing development trend should not continue forever and
proper preservation and care of the natural and environ-
mental resources is required for future generations (Arbury
2005). After the publication of Our Common Future by the
Brundtland Commission in 1987 (WCED 1987), the concept
of sustainable development has become as an important
objective to make a better quality of life in the economic,
social, and environmental perspectives (Fig. 2.1). Based on
this concept, the concern on the future of the world’s envi-
ronment and its resources became an established fact of life,
and this was accompanied by expressions of good intention
from governments worldwide (Burton et al. 2003).

In a general perspective, sustainable development can be
defined as the utilization of natural resources for current
human activities without jeopardizing the ability of future
generations to use the same resources (WCED 1987). Con-
sidering how well we balance socioeconomic, environmental,
and land use growth objectives is important when making
decisions today. This statement recognizes the importance of
ensuring that the needs of the world’s current population are
satisfied, with consideration for the needs of the future

generation. In addition to the three main aspects of sustainable
development, three basic principles should be considered
related to inter-generational equity, social justice, and trans-
frontier responsibility (Haughton and Hunter 2004). These
principles are significantly important, especially in the case of
the urban perspective of sustainability. The inter-generational
equity principle implies the main definition of sustainable
development regarding the future generation’s right to use the
same resources. Social justice principle is more concerned
with the social aspects of urban areas related to poverty, which
should be tackled in the current generation because it is one of
the main reasons of environmental destructions. This aim
could be achieved through the proper distribution of resources
and facilities, more comprehensive environmental conserva-
tion projects and guidelines, and social equity policies. The
transfrontier responsibility principle deals with the social
responsibility toward the natural environment at a global scale,
and not limited to national borders (Haughton and Hunter
2004).

In general, an associated or linked action is believed
capable of securing the ability of future generations to fulfill
their own responsibilities (WCED 1987). This process
should involve issues related to natural environment and
resources, stable economy, the maintenance of quality of
life, and the protection of the planning and development
strategies of the society. The responsibilities of actors to
achieve sustainable development in different scales, from the
local to national levels, were specified by the United Nations
Conference on Environment and Development in 1992 in
Rio de Janeiro, when they were made part of Agenda 21
(Bleicher and Gross 2010). Thus, various attempts were
implemented in the 1990s to specify the objective of sus-
tainable development and determine indicators to control the
growth and development projects. Moreover, several semi-
nars and workshops were held to increase the general
understanding of the sustainable development concept and
its objectives and indicators. In addition, experts and sci-
entists propose a sustainability benchmark rule for the
comparison of enterprises related to sustainability, such as
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the one created by Van den Brick and Van der Woerd
(2004).

The dependence of sustainable development on space,
time, scale, and the actors involved should be realized
(Bleicher and Gross 2010). Franz and Nathanail (2005)
stated that “Sustainability is neither static in time nor does it
imply a fixed spatial perspective. It cannot be seen as a
destination but rather as a never ending journey.” Therefore,
sustainability for any project and action related to social,
environmental, and economic should be involve with its
specified characteristics in terms of its spatial, temporal, and
thematic contexts (Olsson 2009).

2.2 Urban Sustainability

In urban perspectives, sustainable urban development is
concerned with the minimum inputs and outputs from an
urban system. Sustainability has become a key planning
objective in urban growth and development since the sus-
tainable development declaration by the International Union
for the Conservation of Nature and Natural Resources
(IUCN), the United Nations Environment Program, and the
World Wildlife Fund in 1980, and the announcement
regarding sustainable cities in the Toronto Declaration on
World Cities and Their Environment in 1990 (Lin and Yang
2006). A sustainable city is defined as a city designed with
environmental consideration, with minimum consumption of
energy, water, and food and minimum output of waste and
air, water, and soil pollutions. Urban sustainability can also
be defined as the improvement of the quality of life of

human beings within the capacity of Earth’s limited
resources. Hence, urban sustainability is the ability of cities
to reduce the environmental effect of urban activities while
improving social equity and livability in urban areas
(Newman and Kenworthy 1999; Chiu 2008; van Wee and
Handy 2016). Moreover, urban sustainability attempts to
deal with the question of how societies develop and run their
urban systems to ensure the preconditions of development
for future generations. Thus, discovering how inhabitants
can be educated and participate in developing a quality
environment is important (Nurul 2015).

In the recent decade, more attention has been given to
urban sustainability because these human-made settlements
are the source of air, water, and land pollutions and the main
consumers of natural land, food, and energy. Elkin et al.
(1991) believed that urban areas have never been sustainable
because of the linkage between urban growth process and
desertification and significant disturbance in cyclical eco-
logical systems caused by the extra production and extrac-
tion of food and materials. Although no strong agreement for
this concept exists because of the lack of unique definition
and scope, the concept is very important for human societies
because of the continuous destruction of natural and envi-
ronmental resources. The conversion of valuable agricultural
and forest lands into build up areas has become the main
issue for urban sustainability, especially in developing and
tropical countries. For instance, countries with rapid popu-
lation growth cannot risk losing large amounts of agricul-
tural fields to feed their population. However, although rapid
growth in developing countries seems to cause more
unsustainability, resource consumption in large and

Fig. 2.1 Three general aspects of sustainable development (WCED 1987)
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developed cities is much more than that in developing cities
(Arbury 2005). Thus, sustainability implementation in
developed cities should be prioritized as well.

In this regard, the lack of land use change and urban
growth management cause unnecessary destruction of huge
amounts of natural environment (Abdullahi and Pradhan
2015). Hence, one of the main objectives of sustainable
urban development is to avoid this issue based on four
operational factors (Li and Yeh 2000):

• Avoid conversion of valuable natural environment at the
initial stage of urban development.

• Perform proper land requirements analysis based on the
land resource capacity.

• Implement land priority analysis to avoid destruction of
valuable agricultural fields.

• Develop compact development with higher urban density
and less land consumption.

The implementation of these factors and adoption of
various other strategies and plans to minimize energy con-
sumption, protect biological diversity, reduce pollution,
improve social interaction, and so on are essential tasks to
achieve urban sustainability (Kropp and Lein 2013). To
achieve these objectives, urban sustainability is evaluated
and implemented within three main perspectives, namely,
environmental, social, and economic. Each of these aspects
deals with separate issues of an urban system, such as
security, livability, and social equity; productivity, personal,
and public finances; and pollution levels, amount of reserve
habitat, and resource consumption, respectively (Lin and
Yang 2006) (Fig. 2.2).

2.2.1 Environmental Sustainability

Environmental sustainability is a principal concept in this
theory and can be evaluated by measuring the pollution
levels, amount of reserve habitat, and resource consumption
(Lin and Yang 2006; Mellino and Ulgiati 2015). This con-
cept places higher priority on a variety of plant and animal
species, pollution reduction, and efficient utilization of
resources. From the natural resources perspective, environ-
mental effects depend on how these resources are prepared
for utilization, how the produced energies are transmitted to
consumers, the amount of wastes and pollutions created
from consumption, and the effect of these processes on the
natural resources. Many agree that the environmental prob-
lems of urban areas are caused by urban sprawl and spatial
segregation (Chiu 2012). Kopfmüller et al. (2001) summa-
rized a list of some environmental sustainability goals as
follows:

• Sustainable utilization of renewable resources. The rate
of utilization of these sources should not be more than
their regeneration rate and should not endanger the
capacity and dynamics of the corresponding ecosystem.

• Sustainable utilization of nonrenewable resources. These
resources should be protected seriously.

• Avoiding the utilization of natural environment as a sink
of urban waste and pollutions.

• Avoiding any kinds of disasters and negative effects to
humans and natural environments.

Emission of carbon dioxide is one of the major pollutions
that mainly arise from urban areas and human activities.

• Green environment protection

• Fuel consumption

• Water and air pollution

• Domestic waste management

• Food and water consumption

• Soil protection 

Environmental 

• Urban production

• Enterprise investment

• Public service cost

• Economic growth 

Economic

• Public service

• Security and safety

• Population growth

• Housing affordability

• Accessibility 

Social

Fig. 2.2 General aspects of
urban sustainability (Lin and
Yang 2006)
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These man-made environments are responsible for 70% of
the overall carbon emission mainly because of fossil fuel
consumption and land use changes (Ho and Kean 2007). The
rapid growth of CO2 emissions from the urban environment
has become one of the main concerns of urban scientists and
planners. Several research has shown that population and
economic growths are the major causative factors of this
emission in the recent decades. Shi (2001) estimated that 1%
increase in population contributes to 1.28% increase in CO2

emissions. In addition, economic growth causes increases in
income level, industrial development, construction devel-
opment, and so on. All these consequences lead to increase
in carbon emissions in a variety of ways. For instance,
income growth and advancement in production of affordable
automobiles significantly increase private car ownership and
reduce the usage of public transportation, which eventually
increase CO2 emissions in urban areas. Thus, addressing this
issue and planning for low-carbon societies, especially for
developing countries with rapid urban growth and expan-
sion, are essential. The low-carbon society terminology was
first used in 2003 when developed countries aimed to reduce
CO2 emissions to sustain the world’s climate. The project to
create a comprehensive view and definition for low-carbon
society has been started by the Japan–England collaboration
(Ho and Kean 2007). It involves the collaboration of several
researches to review greenhouse gas (GHG) emission stud-
ies, analyze approaches to achieve a low-carbon society, and
share knowledge and information among countries.

In addition to population and economic factors, different
construction materials for urban development emit different
amounts of CO2. For instance, timber housing emits less
CO2 than reinforced-concrete housing because of the uti-
lization of calcium carbonate as a raw material for cement
production (Fujita et al. 2009). Gerilla et al. (2007) estimated
that reinforced-concrete housing emits 23% higher CO2 than
timber housing. In fact, CO2 emissions from building con-
struction are mainly also supplied by other negative envi-
ronmental effects, such as fuel combustion and cement
production process. Thus, changing the policies in building
construction that are particularly related to materials uti-
lization will clearly reduce air pollution and achieve the
environmental goals of urban sustainability. Several other
efforts can also be effective in achieving these goals in this
field, such as increasing the building durability, promoting
more compact urban form and development, controlling the
urban growth, and avoiding suburban development.

Meanwhile, forest resource sustainability should also be
considered during the selection of construction materials for
development projects. Particularly in timber production, the
environmental effects of this task on forest resources should
be properly estimated and minimized. Fujita et al. (2009)

assessed the effect of building (particularly residential
buildings) construction using timber on forest resources
through the following procedures:

(1) The entire floor area of a newly constructed area was
computed by considering the number of housing units
and floor area of each housing unit.

(2) The timber consumption was assessed by considering
the floor area of each housing unit and timber required
for each floor area.

(3) The amount of forest area required for the construction
of a residential building was evaluated based on forest
productivity.

Different types of buildings based on the usage (resi-
dential, commercial, industrial), number and size of the
building, interior and exterior designs, and other parameters
consume different amounts of timber materials. Fujita et al.
(2009) concluded that consuming forest resources in a sus-
tainable way in a region of rapid population growth is pos-
sible because of the higher requirement of such resources,
which exceed productivity. In addition, higher building
durability reduces the negative effect on forest resources.

However, controlling the rapid population growth and
urban expansion is more effective in reducing environmental
effects, such as air pollution and forest destruction, than
changing construction materials from concrete to timber.

In a wider perspective, a low-carbon city can be achieved
by promoting low-carbon emission policies, such as urban
growth and expansion control, fuel or automobile con-
sumption regulations, and emission limitations. However,
implementing and developing sustainable urban forms, such
as compact city, eco-city, transit-oriented development
(TOD), is also a good alternative to reduce carbon emission
in a global scale. Every country emits different amounts of
carbon dioxide (Table 2.1). Developed countries emit more
than half of the total emissions. Meanwhile, the rapid pop-
ulation and economic growth of Asian countries has also led
to the increase in their carbon emissions. Furthermore, the
evaluation of the world average emissions per capita, as
shown in Table 2.2, shows that the per capita emission of
developed regions is more than that of the world average and
developing countries (Ho and Kean 2007). Thus, these sig-
nificant differences in the carbon emissions of countries
caused urgency in addressing and proposing a proper solu-
tion for the global warming and climate change problems.

Several protocols and agreements have been signed by
most of the countries as a solution to reduce environmental
pollution, especially those related to global warming and
climate changes, such as the Kyoto Protocol, Stockholm
Convention on Persistent Organic Pollutants, Montreal
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Protocol on substances that deplete the ozone layer, Basel
Convention on the trans boundary movement of hazardous
waste and their disposal, Rotterdam Convention on prior
consent procedure for hazardous chemical and pesticides in
international trade, and the Cartagena Protocol on bio-safety
(Ho and Kean 2007). Environmental implementation

policies are mainly accomplished using several quality
guidelines and rules, such as measurements of air pollutants
to control air pollutions. Despite the fact that some actions,
such as forest preservation, reduction and control of private
car transportation, and other indirect reduction of carbon
dioxide emissions, reduce these air pollutants, concentrating

Table 2.1 Total CO2 emissions
by region, 1990–2003

Region 1990 (million
metric tons)

2000 (million
metric tons)

2003 (million
metric tons)

% Change p.a.
1990–2003 (%)

World 21,283.38 23,832.70 25,575.99 1.6

Asia (excluding
middle east)

5014.89 7272.53 8477.90 5.3

Central America and
Caribbean

379.32 467.09 500.58 2.5

Europe – 6002.02 6277.17 1.5

Middle East and North
Africa

926.96 1474.34 1645.98 6.0

North America 5274.41 6232.06 6257.98 1.4

South America 537.47 757.03 740.45 2.9

Developed countries – 14,623.79 15,043.57 1.0

Developing countries 5839.34 8475.59 9810.41 5.2

High-income countries 10,452.47 12,123.43 12,420.82 1.4

Middle-income
countries

– 9204.17 12,420.82 1.1

Low-income countries 912.89 1494.26 1631.11 6.1

Table 2.2 CO2 emissions per
capita by region, 1990–2003

Region 1990 (metric tons
per capita)

2000 (metric tons
per capita)

2003 (metric tons
per capita)

% Change
1990–2003 (%)

World 4.0 3.9 4.1 0.2

Asia (excluding
middle east)

1.7 2.1 2.4 3.2

Central America and
Caribbean

2.7 2.8 2.9 0.6

Europe 10.1 8.1 8.5 −1.2

Middle East and
North Africa

3.0 3.9 4.1 2.8

North America 18.6 19.8 19.3 0.3

South America 1.8 2.2 2.0 0.9

Developed countries 12.0 11.0 11.1 −0.6

Developing
countries

1.5 1.9 2.1 3.1

High-income
countries

11.8 12.8 12.8 0.7

Middle-income
countries

0.6 0.7 0.8 2.6

Low-income
countries

3.3 3.2 3.5 0.5
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directly on carbon dioxide emissions and thinking toward
achieving a low-carbon society seriously are more important.

2.2.2 Economical Sustainability

The US Environmental Protection Agency defined sustain-
able development as “the effort to reconcile the competing
demands of regional development, namely, community
integrity, economic development, and environmental pro-
tection” (EPA 2006). Although all three concepts of sus-
tainability seem equally important, the diagram to describe
these three concepts, which was presented by Krueger et al.
(2012), shows the economic aspect as the central point of
sustainable development, surrounded by the environment
and social aspects (Fig. 2.3).

The economical sustainability objective is to improve the
productivity of personal and public finances (Lin and Yang
2006; Bhattacharya et al. 2015). According to the literature
(Kopfmüller et al. 2001; Bleicher and Gross 2010), several
sustainability goals in the economic aspect are applicable,
such as the following:

• Autonomous subsistence based on income from own
work. All members of a society must be given the right to
be able to secure their own livelihood (including bringing
up their children and providing for old age) by means of
a freely chosen occupation.

• Reducing high-income and wealth inequities. The vari-
ance and range between high and low incomes should be
reduced.

• Sustainable development of man-made, human, and
knowledge capitals. Capital goods, human capital, and
knowledge capital are to be developed such that eco-
nomic performance can be maintained or improved.

Therefore, an economic framework to implement these
goals is required, should be applied and proposed by gov-
ernments, and should be supported by local residents.

In the Western context, the concept of sustainable
development is mainly related to the need for adjustment of
economic models to maintain a balance between economic
growth and social requirements while protecting local
ecologies and reducing the negative effect of growth on the
global environment (Subeh and Al-Rawashdeh 2012). In
contrast, other environmental and social sustainability
objectives place second in terms of priority in developing
countries because of several problems, such as economic
growth, water scarcity, food security, and health. In the
recent decades, most of the developing countries, especially
in Eastern-Asia, have encountered significant growth and
changes in economic and social aspects. Globalization,
economic growth, and reconstitution have increased the
burden and negative effects on the urbanization process.
Thus, most of these countries started supporting and pro-
moting sustainability principles to reduce and control these
effects on the urbanization process. They attempted to con-
trol and manage the economic growth to maintain a balance
among the three main aspects (environmental, social, and
economic) of sustainable development (Subeh and
Al-Rawashdeh 2012). Meanwhile, Grossman and Krueger
(1995) stated that economic growth will ultimately benefit
from natural environment preservation and conservation. In
fact, sustainable economic growth is the main necessity for
environmental and social improvement because the eco-
nomic policies and activities of an urban area have signifi-
cant effect on urban environmental and social conditions.

2.2.3 Social Sustainability

Social sustainability, as one the main aspects of urban sus-
tainability, generally refers to how local residences behave
within the physical environment of the city. In addition,
social sustainability is concerned on security, livability, and
social equity (Lin and Yang 2006). This aspect of sustain-
ability can be identified by the access to community facilities
(such as educational and health facilities), access to green
and open spaces, job availability and accessibility, avail-
ability of public transportation, access to a proper walking
and cycling environment, level of domestic living spaces,
security condition, levels of social segregation, and avail-
ability of affordable housing (Burton 2000). In addition,
social sustainability can be achieved through the following
(Kopfmüller et al. 2001; Bleicher and Gross 2010):

• Protection of human health from hazards and risks from
man-made environmental pollution;

• Securing the satisfaction of basic requirements (housing,
nutrition, clothing, medical care, and so on) of all
members of society;Fig. 2.3 Urban sustainability formulation (Krueger and Buckingham

2012)
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• Equal access of people to all information, education,
occupation, and social, political, and economic positions;

• Just distribution of for natural resources; and
• Participation in societal decision-making processes.

Thus, community safety, social equity, and a general
acceptable level of quality of life are the main aspects of
social sustainability. A sustainable society attempts to pro-
vide these properties to increase life satisfaction for the
current and future generations. On the one hand, social
equity focuses on narrower aspects, such as the accessibility
and availability of community facilities and services and
affordable housing, which are related to the characteristics of
urban form and pattern. On the other hand, the broader
aspects of social sustainability deal with social interaction,
participation, and satisfaction from the living environment
(Barton and Tsourou 2000). Quality of life is about good
links between the living conditions with respect to working
and community facilities. These links promote social inter-
action and a sense of community within the urban environ-
ment (Bramley and Kirk 2005). Security and safety, another
aspect of social sustainability, are related to the extent of
daily living activities of the residence without any fears,
such as fear of being attacked, fear of being run-over, and
fear of falling (Butterworth 2000). These negative feelings
limit the eagerness to participate and interact with others in
the community. Mixed land use development, proper and
safe pedestrian, adequate street lighting, and well -main-
tained footways are some characteristics of a safe
neighborhood.

With regard to the physical environment and develop-
ment pattern of urban areas, land use diversity and
pedestrian-friendly streets are important to increase social
interaction and provide a sense of belonging to the com-
munity (Barton 2000). These properties have been applied in
recent sustainable urban forms, such as new urbanism and
compact city, where local residences have better opportu-
nities of social interaction because of proximity and acces-
sibility (Abdullahi et al. 2015b; Nurul 2015). Numerous
studies have proven that urban form and pattern have sig-
nificant effects on urban sustainability, especially in social
and environmental sustainability. Urban form is related to
the size, shape, and intensity of human settlements and the
spatial distribution of various land use categories. Various
aspects of urban forms, such as density, shape, degree of
dispersion or concentration, and level of infrastructure for
public transport, all have influence on social sustainability
(Bramley and Kirk 2005). Social sustainability is directly
linked to the behavior of local residents with respect to the
characteristics of their neighborhoods. It also concerns the
social relationship between society and natural environment
over a long period of time (Barton and Tsourou 2000). Built

environment and urban form play crucial roles in the urban
health, well-being, social interaction, and participation of the
residents (Littig and Grießler 2005). Porta (2001) illustrated
the relationship between urban form and sustainability, with
focus on the social aspects (Fig. 2.4). Social interaction
emerges from street life in urban area, which indicates how
urban form affects the living behavior of local residents in
terms of the utilization of public spaces and their contribu-
tion to various social interactions (Nurul 2015).

Although urban areas and the number of cities are con-
tinuously increasing, that is, 40 large cities every 5 years
(UNPD 2012), urban populations are not evenly distributed
nor are cities at the same level of development. Therefore,
following the sustainable development declaration, sustain-
ability has become a key goal in urban planning. In a general
environmental view, urbanization refers to the conversion of
natural land cover to artificial man-made settlement. Hence,
understanding this trend is important to evaluate the effects
of urbanization at global and regional levels (Xie et al.
2005).

The descriptions of the different aspects of sustainable
development depict sustainable development as a multidi-
mensional concept that includes various perspectives
(Figueira et al. 2005). Particularly, sustainable land devel-
opment is a complex issue, which involves negotiations and
compromises of various stakeholders (Li and Liu 2008).
Barbier (1987) stated that sustainable development implies
the simultaneous maximization of biological, economic, and
social system goals. Hence, although fulfilling several
objectives at the same time is impossible, adopting
multi-disciplinary approaches, which can consider various

Fig. 2.4 The relationship between urban form and urban sustainability
(Porta 2001)
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perspectives of such a complex concept, is more rational. In
addition, sustainable urban development and planning
requires the analysis of extensive geospatial data to explore,
design, modify, illustrate, and evaluate the proposed alter-
native scenarios (Henton and Studwell 2000). For instance,
Li and Liu (2008) embedded sustainable development
strategies with two other land use change modeling
approaches to simulate planning options related to residen-
tial development (Fig. 2.5). Cellular automata (CA) and
agent-based model were the two techniques used as spatial
exploratory tools for generating alternative development
patterns within a geographical information system (GIS).
Sustainable development strategies were applied to regulate
the model behaviors. The outputs will be compatible with
environmental protection goals by controlling the proposed
models and approaches based on sustainable urban devel-
opment parameters. In most countries, the government is
responsible for the sustainable use of land resources and
determines the proper distribution of land requirements to
various planning periods.

The idea of sustainable development has been extensively
critiqued, especially the principles applied to urban areas. In
fact, the idea is so general and thus impossible to contradict
(Arbury 2005). Naess (2001) stated that “…a manifold range
of strategies and projects are promoted with the claim that
they are derived from the very concept of sustainable
development. It has become practically impossible not to be
a supporter of a sustainable development, so there is a clear
danger that the concept will be watered out.” In addition,
how and when a proper sustainability of a specific project
will be achieved is not clear because of the wide extent of
the sustainable development concept and complexity of its
principle.

Thus, a successful sustainable development can be
accomplished through changes in the lifestyle of individual
citizens and large-scale developments should be planned to
be more environmental, economic, and socially sustainable
while appealing to consumers as attractive places to live in.
Among the various urban development forms, compact

development provide more sustainable environment with
respect to urban sprawl development because of its charac-
teristics (Burton 2000; Burton et al. 2003; Arbury 2005;
Abdullahi et al. 2015a).

2.3 Urban Growth and Urban Sustainability:
Malaysian Perspectives

The rapid urbanization process in Malaysia has increased the
concern on urban sustainable strategies considering quanti-
tative emission, carbon footprint measurements, preservation
of natural environments, and so on. After her independence
in 1957, Malaysia rapidly grew with vast residential and
township developments in the 1970s and 1980s (Ho et al.
2013). Consequently, huge amounts of natural spaces,
especially agricultural lands at the peripheral of the cities,
were converted to build up areas to accommodate the new
urban populations. Furthermore, regional development
authorities (RDAs) were established to implement urban-
ization strategies for less-developed states and expand the
urban areas significantly. Several suburban towns, such as
Bandar Tun Razak and Bandar Penawar, were developed to
serve newly developed frontier regions. In the early 1990s,
the concept of sustainable urban development was included
in the national development plan of Malaysia; unfortunately,
this move remained piecemeal and was only expressed
quantitatively (Ho et al. 2013). More functional and appli-
cable strategies are required to achieve a real sustainable
development environment.

Fortunately, National Physical Plan 2025 and National
Urbanization Plan 2006 (JPBD 2006) present strategic spa-
tial policies on urban physical growth and land conservation
(Ho et al. 2013). These plans aim to create more livable and
sustainable Malaysian cities. These national planning frame
works have eight objectives (JPBD 2010);

• Shaping the national spatial framework,
• Improvement of national economic competitiveness,
• Modernization of agricultural sector,
• Strengthening of tourism development,
• Management of human settlement,
• Conservation of wildlife and natural resources,
• Integration of all national transportation networks, and
• Installation of appropriate infrastructure.

The Malaysian government has always supported sus-
tainable development objectives regarding environmental,
economic, and social sustainability in all of their develop-
ment projects (MGTC 2010). The aim of Malaysia to reach
the developed nation status is included in her “vision 2020.”
The main objective of this vision, which was established in
1991 (during the Sixth Malaysian Plan), is for Malaysia to

Fig. 2.5 Multi-disciplinary approaches for residential development
based on sustainable development strategies (Li and Liu 2008)
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be a self-dependent industrialized nation by the year 2020
(PNMB 2010). This vision does not only consider the eco-
nomic perspective, but also considers education, techno-
logical development, social satisfaction, and political goals.
Urban planning strategies in the mid-1990s emphasized on
mega projects and major township developments, such as
Putrajaya and Cyberjaya, to create suitable economic and
technological developments. All these developments were
aimed to achieve urban sustainability without targeting some
important issues, such as reduction in carbon emission (Ho
et al. 2013). Thus, Malaysia included another objective in
vision 2020, that is, the reduction of emission intensity of
GDP by 40% from the 2005 level. This objective requires
the support of government agencies, especially regional and
local planning authorities. Table 2.3 illustrates the evolution
of sustainable development and urban population from 1960
to 2020.

Malaysia started to implement this objective by creating
roadmap projects and designing two new cities (Putrajaya
and Cyberjaya) under the Green Technology and Water of
the Ministry of Energy. These two cities were developed
based on the urban sustainability principle (Green technol-
ogy) as an example for other development projects. Green
technology should be a motivation for further improvement
in the national economy, reduction in environmental
destruction and GHG emissions, and increase in the usage of
renewable energies, and to promote overall sustainable
urban development.

Other Malaysian strategy to achieve urban sustainability
is to improve the environmental condition through the
reduction of air and water pollution, solid waste manage-
ment, and increase energy efficiency and promote renewable

energies and environmental friendly technologies (EPU
2006). One way to achieve most of these sustainable
development objectives and strategies, especially in the case
of urban environments, is to develop the urban areas in a
more compact manner. Recently, experts in The World Bank
have also called on Malaysia to develop compact cities as
part of its development efforts (MEM 2011). However,
compact urban development is not an automatic task. It
requires planning the urban environment to be of high
density with proper distribution of facilities and a good
public transportation system. Hence, various compact
development plans are required to adopt the recommenda-
tions of the World Bank.

Historically, urban planning in Malaysia was started in
1929 by Charles Reade, who was responsible for improving
the development of Kuala Lumpur (Samat 2006). Previously,
“blue print” was the main approach in the preparation and
monitoring of urban growth and development (Selamat et al.
2012). This approach was able to investigate the develop-
ment problems, create development plans, and evaluate pre-
vious trends of growth and changes (Samat 2006). However,
this approach had several drawbacks, such as difficulties in
monitoring of uncontrolled urban growth, complexity, and
time-consuming process (Yusoff et al. 2010), hence the
emergence of new technologies, such as Geographical
Information System (GIS), remote sensing, and several sta-
tistical and cellular bases, that addressed these problems
using spatial and attribute data processing and analysis.

Currently, the Town and Country Planning Department
(DTCP) is responsible for urban planning development and
monitoring based on three levels of organization (Selamat
et al. 2012):

Table 2.3 Evolution of sustainable development and urban population from 1960 to 2020

Vision Colonial period:
British colonial office

Post-independence:
old economy policy

New economic
policy (OPP1)

Vision 2020

National
development policy
(OPP2)

National vision
policy (OPP3)

New
economic
model

Era Natural resource and
agricultural

Industrial Information and communication
technology + globalization

Human
settlement

– Traditional villages
– Traditional towns
and colonial towns

– New villages and
estates

– FELDA settlements
– 1st Satellite town:
Petaling Jaya

– RDAs
settlements

– Villages in urban
area

– 1st Satellite
town: Petaling
Jaya

– Emerging new
township

– Megaproject of multimedia super corridor,
Cyberjaya, Putrajaya

– The new mark on sustainable townships, housing
estate, homes

Urban–rural
population

– Urban population increased from 27 to 72%
– Rural population reduced from 73 to 28%
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(a) the federal role is to advise the Federal Government on
the issue of land development;

(b) the state as a state adviser on land planning; and
(c) the local level governs the use of land and buildings.

Providing a sustainable and livable environment is the
main concern of the Malaysian government to ensure that the
people’s quality of life is protected. Thus, the planning and
development of neighborhoods in such a manner is attempted
to have potential to serve the community with proper social
interactions and participations. The lack of these interactions
would lead to some urban problems, such as threat to the
safety and sense of security of residents. Unfortunately,
Malaysian cities are facing a decline in quality of living in
terms of safety (Nurul 2015). Proper social interaction
increases an individual’s well-being and reduces feeling of
fear in the neighborhood (JPBD 2006). Nevertheless, gov-
ernments recognize that urban form and pattern have sig-
nificant influences on social sustainability in terms of
accessibility, social interactions, quality of life, and satis-
faction. Thus, as documented in the 10th Malaysian Plan, the
government is committed to improve the overall quality of
life. The Malaysian government has emphasized the need to
ensure that urban areas are moving progressively toward
building a vibrant and attractive living environment (Nurul
2015). This objective involves the improvement of the fea-
tures of public transportation facilities, such as accessibility,
security, and convenience. It also involves the important role
of physical pattern and living environment characteristics in
ensuring that the high quality of life of residences is pro-
tected. A study in Malaysia indicated that housing environ-
ment satisfaction is an important indicator of housing quality
and condition, which affects the quality of life of individuals.
It determines the way they respond to their residential
neighborhood and environment (Salleh 2008).

In addition to the evaluation and analysis of housing
affordability as a social aspect of urban sustainability,
addressing the environmental aspect of residential growth
and construction is essential. Figure 2.6 shows that Malaysia
had a growth of 38% in unit numbers of housing stocks from
2001 to 2007 (Fujita et al. 2009).

In addition, the trend of utilizing concrete as a housing
construction material has grown significantly, which has led
to the rapid increase in CO2 emissions. As mentioned in the
environmental aspect of urban sustainability, different con-
struction materials emit different amounts of CO2. For
instance, timber housing emits less CO2 than
reinforced-concrete housing because of the utilization of
calcium carbonate as a raw material for cement production
(Fujita et al. 2009). In this regard, the consumption of timber
(by consideration of sustainable usage and under forest
conservation guidelines) in Malaysia, which is a country of
rich forest resource, for construction materials instead of
concrete can reduce CO2 emissions. Fujita et al. (2009)
proposed an assessment approach for CO2 emissions for
housing construction based on material usage in Malaysia.
This approach, as shown in Fig. 2.7, was implemented using
life cycle analysis (LCA) data, residential interior designs,
and estimated costs of types of structure materials for
common residential buildings in Malaysia, such as terrace,
semi-detached, low-cost, and detached houses. The results
indicated that the CO2 emissions of timber housing are about
30% lower than that of concrete housing (Fig. 2.8). In
addition, housing of low building density, such as terrace
housing, emits lower CO2 because of lower structural
weights and consequently lower timber construction material
is required. Thus, changing the policy in building con-
struction particularly related to material utilization will
clearly reduce carbon emissions and help achieve environ-
mental urban sustainable development.

Fig. 2.6 Housing stock in
Malaysia categorized by housing
type (Fujita et al. 2009)

26 S. Abdullahi and B. Pradhan



Malaysia also signed the Kyoto Protocol of the United
Nations Framework Convention on Climate Change on
March 12, 1999, which was further ratified on September 4,
2002. However, this agreement does not ensure that all the
countries involved will reduce their emissions significantly
(Ho and Kean 2007). Table 2.4 shows that Malaysia, as a
newly developed country, has a higher amount of emission
than the world average, which is about 3.8 metric tons per
capita.

The Malaysian government has been constantly insisting
on environmental friendly development projects. The gov-
ernment contribution to these environmental conservation
perspectives was enhanced, especially after the 8th Malay-
sian plan (2001–2005) (EPU 2001). Thus, Malaysia ranks
38th among the 146 countries in the world, with an envi-
ronmental sustainability index (ESI) of 54, because of
endeavors in various aspects to achieve sustainable devel-
opment (Ho and Kean 2007). Malaysia and most other
countries believe that economic growth should be achieved
with the consideration of environmental issues. The
Malaysian government has concentrated on promoting
environmental quality in various aspects of air, water qual-
ity, and solid waste management and the usage of cleaner
energies and technologies (EPU 2006). Particularly, the

government focuses on global warming and climate change
and implements various actions to decrease CO2 emissions
and promote energy efficiency. The promotion of energy
efficiency and increase in consumption of renewable energy
are also mentioned in the 9th Malaysian Plan (EPU 2006) as
environment-friendly actions. The aim of the plan was to
lead the development of the country based on sustainable
development strategies to facilitate and manage natural
environment resources. A fundamental action to achieve this
objective was to set up a new Ministry of Natural Resources
and Environment to organize and manage 10 environmental
and natural resources agencies.

One of the main actions in terms of energy efficiency and
sustainable energy consumption is to reduce petroleum
products and replace the current fuels with renewable ener-
gies. In addition, the government aims to ensure a secure,
reasonable cost, and effective supply of energy by focusing
on various energy sectors to promote competitiveness and
reliability of the economy. The highest amount of energy in
Malaysia, like in most of the other countries, is mainly
consumed by transportation followed by industrial, com-
mercial, and residential purposes (Table 2.5). In the 9th
Malaysia Plan, the amount of national average energy con-
sumption was projected to increase by about 2217.9 PJ. In

Fig. 2.7 The concept of
methodological flowchart for
approach using changed-material
(concrete and timber wall in
house construction) effect (Fujita
et al. 2009)
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addition, the amount of per capita of energy consumption
was projected to grow from year 2000 to 2010 (EPU 2006).
Several essential controls and tasks have been implemented
by the government, such as Small Renewal Energy Power
Program (SREP) and Malaysia Building Integrated Photo-
voltaic Technology Application Project (MBIPV), to address
the sustainable energy consumption through the use of
renewable energy resources (Ho and Kean 2007).

Malaysia and other countries should continue their efforts
to reduce carbon dioxide emissions because these emissions

and all kinds of pollutions will inevitably increase because
economic and population growth, as shown in Fig. 2.9.

In continuing the efforts by promoting sustainable
development policies, the 10th Malaysia plan (2011–2015)
emphasized on environmental protection and conservation
through the National Green technology Policy 2009 and
National Climate Change Policy 2009 (Ho et al. 2013). The
National Green technology Policy focuses on promoting the
utilization of green technologies and the establishment of
Green Technology Financing Scheme (GTFS). Meanwhile,

Table 2.4 The list of the
countries and the amount of CO2

emissions in 2002

Country CO2 emissions (tons/capita) Country CO2 emissions (tons/capita)

United State 19.9 Thailand 3.5

Saudi Arabia 18.1 Gabon 2.8

Australia 18.0 Egypt 2.2

Canada 14.2 China 2.2

Czech Republic 11.6 Brazil 1.9

Norway 11.2 Uruguay 1.7

Russia 9.9 Indonesia 1.5

UK 9.8 India 1.1

Germany 9.6 Philippines 1.0

Japan 9.5 Guatemala 0.9

South Africa 7.5 Pakistan 0.9

Ukraine 7.0 Yemen 0.6

Malaysia 6.2 Togo 0.5

France 6.1 Nigeria 0.4

Sweden 5.3 Bangladesh 0.3

Iran 4.9 Ethiopia 0.1

Mexico 4.5 Mozambique 0.1

Argentina 3.9 Uganda 0.1

Turkey 3.5 Mali 0.1

Source UNEP/GRID-Arendal (2007)

Table 2.5 Energy consumption
of various sectors in Malaysia,
2000–2010 (EPU 2006)

Sources Peta Joules (PJ) Percentage of the total

2000 2005 2010 2000 2005 2010 Growth
rate
(% p.a.)

Industrial (include manufacturing,
mining, and construction)

477.6 630.7 859.9 38.4 38.6 38.8 6.4

Transportation 505.5 661.3 911.7 40.6 40.5 41.1 6.6

Housing/commerce 162.0 213 284.9 13.0 13.1 12.8 6.0

Non-energy (include natural gas,
bitumen, asphalt, industrial feedstock,
and grease)

94.2 118.7 144.7 7.6 7.3 6.5 4.0

Agriculture/forestry 4.4 8.0 16.7 0.4 0.5 0.8 15.9

Sum 1243.7 1631.7 2217.9 100.0 100.0 100.0 6.3
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the National Climate Change Policy deals with the planning
and implementation of the low-carbon economy principle
(EPU 2010). Some of the actions to achieve this principle are
as follows (Ho et al. 2013):

• Creating incentives for investments in renewable energy,
• Promoting energy efficiency to encourage productive use

of energy,
• Improving solid waste management,
• Conserving forests, and
• Reducing emissions to improve air quality.

2.3.1 Kuala Lumpur Sustainable Development
Planning

For example, Kuala Lumpur, the capital city of Malaysia,
has a vision to be a world class city that promotes various
aspects of urban sustainability, economic justice, a just and
functional government, distribution of community facilities,
and acceptable quality of life. The Kuala Lumpur Structure
Plan 2020 (KLSP 2020) highlighted that the aim and
objective of Kuala Lumpur involve implementing a sus-
tainable city to ensure the planning and development of this
city will maintain a balance among the physical, economic,
social, and environmental aspects.

Some of the main policies and strategies to achieve sus-
tainable development that is holistic embrace the universal
principles of Islam Hadhari that are listed below:

• Faith and piety toward God;
• A fair and trustworthy government;
• Free and liberated people;
• A rigorous pursuit and mastery of knowledge;
• Balance and comprehensive economic development;

• Acceptable quality of life for local residents;
• Protection of the rights of minority groups and women;
• Cultural and moral integrity;
• Preservation of the natural and green environment; and
• Strong military powers.

Therefore, the foundation for the world class Kuala
Lumpur is based on the commitment toward a holistic
planning and development, and this city committed itself to
sustainability as its main planning objective. In this regard,
the National Physical Plan (NPP), a national level plan for
up to year 2020, specifies the policies of physical develop-
ment and preservation environment within Peninsular
Malaysia. The main goal of the NPP is to create an efficient,
equitable, and sustainable national spatial framework to
guide the overall development of the country toward
achieving a competitive developed nation status by the year
2020. The objectives of this plan are

• To rationalize national spatial planning for economic
efficiency and global competitiveness;

• To optimize utilization of land and natural resources for
sustainable development;

• To promote balanced regional development for national
unity; and

• To secure spatial and environmental quality and diversity
for a high quality of life (Fig. 2.10).

The Draft KL City Plan 2020 emphasizes on livability
and quality of life for the people of Malaysia. It will secure
the protection of residential neighborhoods to decrease the
disparity problems of the urban poor. In addition, the city
plan emphasizes on public transportation and quality of
services to improve and increase investments and develop-
ment. The environmental aspects of sustainable urban
development are considered substantial paradigms for
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growth and development in the proposed Draft. Environ-
mental protection zones were determined and proper rules
related to the conservation of these sites were proposed. The
main objectives of the 9th Malaysian plan are

• To move the economy up the value chain,
• To raise the capacity for knowledge and innovation and

nurture the “first class mentality,”
• To address persistent socioeconomic inequalities con-

structively and productively,
• To improve the standard and sustainability of quality of

life,
• To strengthen the institutional and implementation

capacity.

In addition, the National Urbanization Policy (NUP) is a
fundamental framework for the Draft KL City Plan 2020.
This policy calls for the creation of visionary cities, which
promote livable communities and sustainable urban devel-
opment. In terms of regional sustainability (which is an
accepted agenda for KL and other neighboring planning
organizations), development management based on a con-
sultative approach is the main urban development activity.
This involves issues relevant to road networks, public
transportation networks, and solid waste management. These
common agenda and related efforts emphasize on improving
spatial and environmental quality and diversity. These efforts
and the cooperation of KL and surrounding municipalities
should be implemented progressively to solve the problems

of regional sustainability. Some of these efforts are listed as
follows:

• Promoting and preserving urban and green landscapes,
• Improving road and rail networks,
• Conserving forest environments,
• Controlling housing and development expansion,
• Managing solid waste and drainage issues,
• Monitoring commercial and industrial activities, and
• Controlling land use growth and changes of the city.

Therefore, the plan of Kuala Lumpur City for the future is
generally concentrated on urban sustainability based on the
main aspects related to environmental conservation, social
equity, and stable economic growth. The consideration of
these aspects provides guidelines for the management of
land use growth and development and monitoring of envi-
ronmental and economic activities.

2.3.2 Putrajaya City as a “City in a Garden”

Putrajaya is a city designed to serve the federal administra-
tive center of Malaysia and located 25 km away from Kuala
Lumpur (KL). This city is designed as an example of the
future Malaysian sustainable urban development. The master
plan of this city was established in October 1995, and the
government units relocated from KL to Putrajaya in 1999
(Kang 2012). The construction project of this city was

Fig. 2.10 Aerial image of Kuala
Lumpur city
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accomplished in 2012. However, the concept of changing
the Federal Government’s administrative function from
Kuala Lumpur was proposed about 20 years ago. In the
early 1970s, the capital city of Malaysia was under a struggle
because of traffic congestion, weak infrastructure and utili-
ties, and the numerous occurrences of flash floods along with
the rapid growth in population and urban economy. Thus,
the aim was to develop a “City in a Garden” and an
“Intelligent City,” which are intended to cater to the current
and future projected population (Ariffini 2003) (Fig. 2.11).

This city is a great model of planned administrative city
that illustrates the struggle of many former colonies to forge
a distinct national identity that reflects both the values and
aspirations of the new nation and differentiates itself from its
colonial past (Moser 2010).

While Putrajaya City was developed as an act of pro-
moting sustainable urban development principles, significant
effort has not been exerted to reduce energy consumption
and carbon dioxide emissions, except in the case of natural
spaces surrounding the lake (Kang 2012). Malaysia has a
daytime temperature of more than 30 °C and high level of
humidity. Nevertheless, most of the buildings in the city are
constructed and covered by steel and glass, which are aes-
thetically nice, but allows sunlight to enter the buildings,
necessitating strong air conditioning to reduce the tempera-
ture inside (Moser 2010). Although higher density is rec-
ognized as one of the main characteristics of urban
sustainability (to encourage walking and cycling), this city
now has a low density with long distances (for walking
mode) between daily destinations. The lack of sunshade on

pedestrian roads discourages traveling by walking and
cycling (particularly because of sunshine and heavy rain),
which forces local residents to commute using their private
vehicles (Moser 2010). Qureshi and Ho (2011) estimated
that the CO2 emission of Putrajaya will decrease by 2.4% if
walking and cycling become the main transportation mode.

Another problem of this city is traffic and the lack of car
parking places. The delay in the development of the rail
transit system for public transportation increased the private
car dependency, which accounts for more than 80% of the
commuting population (Nor et al. 2006). Presently, the
public transport of this city consists of three bus companies
for inter-city public transport, which transfer commuters
from KL to other city centers in the neighboring areas, and
one other private bus service (Kang 2012). In addition to
these buses, train systems also link KL, Putrajaya, and the
international airport of Malaysia. However, the current
transportation system does not fulfill the travel demand of
the city (Nor et al. 2006). A huge volume of commuters to
the central part of the city is expected from various parts of
this city and other surrounding regions because most of the
government offices, community facilities, and services are
located in this area. However, not enough buses exist to
transport local residences from residential neighborhoods to
these city points of interest (Kang 2012) (Fig. 2.12).

Kang (2012) estimated the annual income of bus trans-
portation systems in Putrajaya to be less than 0.6 million
USD, causing them to suffer a loss of 5.80 million USD each
year. Thus, improving public transportation systems and
imposing penalties on commuting by private car to promote

Fig. 2.11 The location of
Putrajaya city
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public transportation to 70% of the city transport, as set in
the new plan for 2025. In spite of some deficiencies, the
development effort on an administrative sustainable city with
various environmental friendly policies and planning is an
admirable project and should also be implemented in other
high-density capital cities.
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3Sprawl Versus Compact Development

Saleh Abdullahi, Biswajeet Pradhan and Abubakr A.A. Al-sharif

3.1 Introduction

Among all urban growth patterns, compact and sprawl
developments are the most common patterns (Fig. 3.1).
However, continuing debates on the advantages and disad-
vantages of these two urban forms exist. Compact city is a
high-density built-up area with proximity among various
land use types (Schwarz 2010), whereas urban sprawl is an
inefficient urbanization with low density and higher car
dependency, thus increasing air and water pollutions and
ecological disturbance (Torrens and Alberti 2000). This
chapter deals with these two forms of urban growth. First,
the origin and various positive and negative aspects of
sprawl development will be explained, and then compact
development will be discussed in detail as an alternative
solution to avoid the negative social, environmental, and
economic consequences. Finally, compact development will
be evaluated with respect to various aspects of sustainable
urban development.

3.2 Sprawl Urban Growth

Historically, concentrated settlements were created by the
agglomeration of industrial buildings surrounded by resi-
dential areas. After the Second World War, this traditional
concentrated urban shape was replaced by dispersed and
decentralized development in suburban areas because of
several factors. This decentralization affected the job
opportunities, distribution of facilities and services, and
residential development (Garreau 1991). Hence, primitive
human settlements were changed from monocentric to
polycentric and dispersed urban patterns. Although Lewis
Mumford (1961) believed that “the suburb becomes visible
almost as early as the city itself,” the current suburban
development is significantly different from the limited one
that existed in the nineteenth century. Currently, this kind of

urban pattern is known as sprawl development, in which the
built-up areas belong to each urban land use and are sepa-
rated by open spaces, such as natural and abandoned fields.

Many factors affect the growth of urban areas, especially
in low-density and horizontal expansion forms. Industrial
revolution, technological development of transportation,
either mass public transportation by trains and trams or
automobile (private vehicles and buses), the zoning of the
land use activities and categories, and the growth of middle
class affluent were the main factors that affected the growth
of urban environments. Gillham (2002) stated that the cur-
rent suburban development is the consequence of industrial
revolution and the advancement of transportation modes and
communication in the nineteenth century. In addition to
these advancements, various planning and development
policies proposed by local authorities contributed to the
growth of suburban development (Duany et al. 2001). For
instance, the Federal Housing Administration and Veterans
Administration loan program in the US provided mortgages
for more than 11 million new residential units (Arbury
2005). Such planning policies encourage the development of
new residential areas instead of the redevelopment or reno-
vation of existing residential buildings. Furthermore, the
implementation of the zoning ordinance in urban areas
caused the growth of single land use development and
separation of various activities and land use categories. The
spatial separation of residential and working places
increased car dependency and made automobile the first
transportation mode. Thus, the combination of all these
factors increased the growth of sprawl development and
caused a blurred distinction between urban and rural areas.

Urbanization process is the complex phenomenon of
transforming rural areas into urban lands, resulting in various
effects on environmental structures (Weng 2007). Rapid
urbanization leads to dispersed urban development sur-
rounding existing urban areas causing the urban sprawl
phenomenon (Adolphson 2010). Exponential growth in
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urban population requires more facilities, houses, and so on,
thus forcing the expansion at the boundary of existing urban
areas to the rural environment. Hence, urban sprawl is
supported by piecemeal extensions of essential urban
infrastructures, such as sewers, roads, water, and power
(Gillham 2002). Historically, the escape of the middle class
affluent of the population after industrialization period from
the high-density central parts, with congestion, pollution,
and so on, to the low-density suburban areas with better
neighborhoods was the main reason of suburban expansion.
Currently, economic issues force the low-income population
to acquire and construct undeveloped and cheap lands for
more affordable residential buildings, especially in devel-
oping countries. Minimum regulation for construction,
maximum tax incentives, low commuting costs, and the role
of individual choices are some other factors that promote
fringe development (Deal and Schunk 2004).

The concept of sprawl development suffers from com-
plexity and difficulties in definition (Angel et al. 2007;
Bhatta 2010). Bhatta (2010) defined urban sprawl as a sit-
uation where urban growth adversely affects an urban
environment that is neither an appropriate rural area for
agricultural purposes nor a suitable urban condition. Irwin
and Bockstael (2007) stated that sprawl is an expression that
is often used loosely to explain various concepts linked both
to pattern and process and to both causes and consequences.
They decomposed this expression into eight dimensions,
which consists of socioeconomic factors, such as accessi-
bility, land use diversity, and concentration of community
services. In addition to these, density, continuity, clustering,
centrality, and nuclearity are also included in the dimensions
of sprawl development (Galster et al. 2006; Frenkel and
Ashkenazi 2008).

The term “urban sprawl” can be used both as a verb
(process) and as a noun (condition), but it still requires a
clearer definition despite many researchers claiming to

“know it when they see it” (Galster et al. 2006). However, a
general agreement exists that urban sprawl is the combined
effect of growing affluence, changing life style, and increase
in private mobility (Dieleman and Wegener 2004). Thus, a
concern toward the interaction between transportation and
urban form is important to understand sprawl development
(Fig. 3.2).

After 1900, daily travel distance rose to 1 km/person/day,
based on the analysis of Arnuld Grubler in France, and this
value increased to 10 km/person/day in 1960 and
50 km/person/day in 2000 (Banister 2012). This analysis
and other global assessments (Table 3.1) show travel dis-
tance increased significantly after 1950 because of the con-
tinuous growth in population and wealth, and globalization
of the world economy (Schäfer 2009). Table 3.1 shows that
car dependency is higher in industrialized countries than in

Fig. 3.1 a General view of compact urban development and b sprawl urban development

Fig. 3.2 The relationship between trip length, dispersal and urban
form (Banister 2012)
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others, with some convergence in developing and reforming
economies (Banister 2012).

The complexity of urban sprawl is also caused by the
micro and macro perspectives of this phenomenon. At the
micro level, changes in geography, climate, local public
policy, and so on may all influence the expansion patterns of
cities. At the macro level, urban sprawl reflects interregional
migration, population growth, changes in transport systems
of commuting, and increasing income among others.
Unfortunately, no clear and distinguishable classification of
sprawl development with significant regional and temporal
variations exists (Cheng and Masser 2003). Consequently,
sufficient data with detailed information on the micro spatial
causes of sprawl are required to study and analyze urban
sprawl accurately.

Urban sprawl development has several characteristics, as
given by Gillham (2002), such as leapfrog or scattered,
commercial strip, low density, and large expanses of single
land use developments. Leapfrog or scattered development
increases the growth of isolated built-up areas along the city
borders. Similar to satellite towns, this kind of urban pattern
is the most land resources-consuming form, with the highest
car dependency and requirements of transportation network
and other utilities. Commercial strip development is char-
acterized by huge major roads lined with fast food restau-
rants, gas stations, shopping centers, drive-through banks,
office complexes, and many other structures (Gillham 2002).
This kind of urban pattern has low density and high car
dependency, with long and low box configurations of retails
surrounded by parking spaces. The development character-
ized by widespread, single story buildings with separate
parking spaces and roadways in low density is the most
obvious format of sprawl urban development. Urban density
can be measured through a variety of aspects, such as pop-
ulation, building, residential, road, and density. Generally, a
population density lower than 25 persons per hectare is

assumed low, such as most of the North American and
Australian cities. Meanwhile, most of the European cities
with 50 persons per hectare and Asian cities often with more
than 100 persons per hectare are assumed as high-density
urban developments (Elkin et al. 1991; Arbury 2005).
Finally, developing urban areas of single land use pattern
with separation of different land use categories and urban
activities is another important characteristic of sprawl
development. Single land use development absolutely
increases daily car dependency because of the separation of
living, working, and recreational facilities locations.

Although urban sprawl development has several envi-
ronmental, social, and economic effects on human life and
natural environment because of its pattern and characteris-
tics, it has some positive aspects as well. In the quality of life
perspective, sprawl development provides single-family
homes on large parcels with high movement freedom and
green environment out of the city center with high density,
traffic congestion, and high crime and poverty rates
(Burchell and Mukherji 2003). A large house in a green and
low-density neighborhood and multiple car ownership indi-
cate affluence and wealth in most the cultures. Urban sprawl
is the world of freedom of land ownership and wealth
accumulation. In the economic profitability perspective,
construction in sprawl development is a good option instead
of the redevelopment of existing brownfield sites within city
centers. Site clearance is the most important step in new
development, which is more costly in brownfield redevel-
opment than in rural development. In addition, although
brownfield redevelopment seems to have the advantages of
infrastructure and utility accessibility, infrastructures are
usually provided by local authorities. Hence, the absence of
lack of infrastructures would not be a big issue in the case of
rural development (Carruthers and Ulfarsson 2008). Subur-
ban and urban fringes are more attractive for living purposes
than inner cities because of such advantages. Gordon and

Table 3.1 Growth in global per capita travel distance (Schäfer 2009)

1950 2005 2050 1950–2005 2005–2050

PKT/cap PKT/cap PKT/cap % Change % Change

Industrialized economies 4530 18,400 42,200 (29,500) +306.2 +129.3 (+60.3)

Reforming economies 947 5620 15,000 (16,300) +493.4 +166.9 (+190.0)

Developing economies 388 3660 6800 (14,600) +843.3 +85.8 (+298.9)

World 1420 6020 11,400 (16,400) +323.9 +89.4 (+172.4)

Unit Passenger kilometers traveled per person per year by all modes including air. Projections for 2050 are based on economic growth rates of the
MIT EPPA model reference run and those of the IPCC SRES-B1 scenario (in brackets)
Industrialized economies: North America, Pacific OECD, and Western Europe
Reforming economies: Eastern Europe and former Soviet Union
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Richardson (1997) advocated sprawl development because
of its low density and it is less crowded than the compact
city center areas. Burchell and Mukherji (2003) believe that
market, policy, and personal choices support sprawl devel-
opment because of the relative abundance of resources and
few care about the needs of the society.

The negative effects of sprawl development on human life
and natural environment should not be forgotten because of
these few personal benefits. Urban sprawl has become a
major problem in rapidly growing and developing countries
(Grant 2006; Dadi et al. 2016). Several developed countries
have also experienced or are experiencing sprawl develop-
ment. The negative impacts were highlighted further since
the emergence of the sustainable urban development concept
(Yeh and Li 2001). Therefore, this topic has gained con-
siderable amount of attention among public and urban
researchers because of various unsustainability characteris-
tics. Public concern about this topic and its effects increased
significantly after the 1990s (Bengston et al. 2005).

One of the main critical issues regarding sprawl devel-
opment is the improper land resources management and
energy consumption in rural developments. Particularly, one
of the popular topics in the literature is the quantification of
the infringement of built-up areas onto the open spaces and
agricultural fields to evaluate the amount of encroachment of
various development scenarios (Jaeger et al. 2010; Hayek
et al. 2011). The advantage of having large parcel houses
with private yards and parking spaces in a low-density
neighborhood absolutely requires big lands, which means
the conversion of natural environment to urban land. For
instance, 24% of the counties in USA are affected by sprawl
development and 55.8% of the projected houses for the
period of 2000–2025 will be developed in suburban areas
(Burchell and Mukherji 2003). Thus, in the recent decades, a
wide expansion of sprawl development has also been
observed in developed countries. These expansions destroy
large areas of agricultural fields; the American Farmland
Trust states that about 400,000 acres of agricultural areas
converted to urban land are characterized by sprawl devel-
opment (Gillham 2002). These growths through rural envi-
ronments also destroy the natural habitat of many species
and cause their endangerment. In addition, sprawl develop-
ment entails higher car dependency because of the dispersed
pattern of urban structures (buildings), and consequently,
more land areas are consumed for road networks, parking
spaces, and other infrastructures related to transportation
(Duany et al. 2001).

The dispersion of urban structures and separation of
human activities in sprawl development in addition to higher
land consumption increase fuel consumption, traffic con-
gestion, and commuting time. This also leads to the
increased concern on air quality and the associated costs
from human and environmental health issues (Deal and

Schunk 2004). Specifically, concern on the global warming
issue causes more attention to be focused on the air pollution
and carbon emission from the automobile dependency of the
sprawl development pattern. Although the carbon emission
of current automobiles have been significantly reduced
compared with older models (made before 1970) because of
technological advancement, the spatial dispersion of urban
patterns (which increase vehicle miles traveled—VMT) has
still caused the emission of huge amounts of carbon into the
air in the recent decades (Arbury 2005). Thus, considering
that sprawl urban development increases VMT substantially
is very important. Southworth (2001) identified three main
factors of this growth in the past 25 years: (1) population
growth, which mainly increases car ownership levels,
(2) reduction in fuel prices, technological advancement of
automobiles in terms of fuel consumption and improvement
of roads and highway networks, and (3) changes in the land
use pattern and distribution, which are affected by sprawl
urban development characteristics: low density, single land
use, and dispersed developments. The comfort of traveling
by private vehicle rather than public transportation and
higher priority given to living neighborhood condition rather
than the proximity to the working places are other reasons of
VMT growth in the recent years. The air pollution brought
about by this rapid growth is significant; The US Environ-
mental Protection Agency indicated that motor vehicles
emitted over 50 million tons of carbon monoxide into the air,
over seven million tons of nitrous oxides, over five million
tons of volatile organic compounds, 320 tons of sulfur
dioxide, and almost 15 million tons of road dust into the
nation’s air in 1997 (Nozzi 2003). In addition, Nozzi (2003)
released some statistical information related to the negative
health problems caused by these pollutions, such as 50–70
million respiratory-related restricted activity days, over 850
million headaches caused by carbon monoxide,
20,000–46,000 cases of chronic respiratory illnesses, 530
cases of cancer, and over 40,000 premature deaths. Unfor-
tunately, pedestrians and cyclists are in danger more than the
vehicle drivers themselves (Arbury 2005). In the central
parts of the city, situations are even worse because of the
concentration of activities, building arrangements, and
higher traffic congestion. The construction and expansion of
road networks to control the traffic congestion not only
increase land consumption but also have no positive effect
on the pollution levels, as experienced in USA (Nozzi 2003).
Instead, the reduction of the number and length of auto-
mobile trips, which are mainly related to urban pattern and
form, will significantly reduce air pollutions.

In economic perspectives, the economic segregation
caused by a large monolithic development is most evident at
the suburban development (Deal and Schunk 2004). The
migration of a specific income population and moving of
resources to the fringe cause a donut effect, social instability,
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and decline in the central parts of the cities. In addition,
sprawl development increases the provision costs and inef-
ficiency of infrastructures and utilities because of dispersed
settlements. The provision cost of water and sewerage sys-
tem is significantly high in horizontal and dispersed devel-
opment (Arbury 2005). For instance, the American
government is planning to spend about $190 billion for the
provision of these two infrastructural systems in 2000–2025
for single-family detached residential neighborhoods
(Burchell and Mukherji 2003). Obviously, the preparation of
these infrastructural systems for compact residential build-
ings requires less amount of investment in both construction
and maintenance. Burchell and Mukherji (2003) believe that
more than 100 million gallons of water and sewer demand
per day could be saved through a more compact develop-
ment, without depriving residents of any fundamental
facilities. Furthermore, the remarkable amount of road con-
struction projects is another negative economic effect of
urban sprawl development in case of infrastructural provi-
sion costs because of the dispersion of urban structures.
The US government has planned to expend about 900 billion
US dollars for road network expansion for sprawl develop-
ment pattern from 2000 to 2025 (Burchell and Mukherji
2003).

In addition to infrastructural and utility provisions and
maintenance costs, sprawl development reduces the effi-
ciency of community facilities and services. The potential of
these facilities to serve the community in more compact
neighborhoods, especially in city centers, is higher because
of their accessibility to local residents. Moreover, the dis-
tribution and allocation of such facilities in built-up areas are
easier and cheaper, particularly in the brownfield redevel-
opment process. Burchell and Mukherji (2003) estimated
that the American government spends about 143.2 billion
US dollars annually for the provision of community facilities
and services for sprawl urban pattern, in which 99.4 billion
US dollars are compensated through the revenues from
developments. Thus, 43.8 billion US dollars of financial
resources are spent annually in sprawl development, whereas
this could be reduced to 4.2 billion US dollars in compact
urban pattern. These values are mainly the direct expenses in
dispersed urban pattern. Several indirect financial costs are
consequences of horizontal urban development, such as air
and water pollution, health issues, and traffic congestion.
Nozzi (2003) estimated that in 1991, the air pollution from
motor vehicles caused up to $531 billion worth of health
damage, $5 billion of crop damage, $44 billion of visibility
damage, and $365 million of building damage.

Dispersed and horizontal urban pattern also has financial
effects on private and personal businesses. It requires more
funds for advertisement, delivery, maintenance, communi-
cation, and so on because of the distribution of their cus-
tomers in suburban areas along the city boundary. Site

suitability for the headquarters or branches of a particular
business in a widely expanded city is more complicated and
risky rather than that in the city center in a compact urban
form. Meanwhile, sprawl development creates a segregated
community because the central areas are occupied by those
who are not able to migrate to urban fringes, which increases
crime and poverty like in many American cities (Deal and
Schunk 2004). Consequently, private and public investments
decrease significantly, which leaves the city centers with
abandoned infrastructures and utilities. Thus, the most
unsustainable economic aspect of sprawl urban development
is the migration from the inner cities to and investment on
new infrastructures and utilities in suburban areas. However,
individuals and the society also benefit from sprawl devel-
opment. For instance, developers and personal purchasers in
some cases prefer low-density development patterns because
they are cheaper (Deal and Schunk 2004).

Sprawl urban development has several negative effects on
social matters, which directly violate the social aspects of
urban sustainability, such as health issues, segregated com-
munity, and social inequity (Gillham 2002; Nozzi 2003;
Deal and Schunk 2004; Song and Knaap 2004; Abdullahi
and Pradhan 2015). Some of these effects were already
mentioned in previous explanations of the consequences of
environmental or economical disadvantages of urban sprawl
development. Such development pattern is highly dependent
on private cars, but because of the cost of this transportation,
poor people are limited to public transportation; forces the
poor people to live in undesirable environments; increases
the cases of mental illness because of fear of high traffic
volumes; and segregates the community because of the daily
travels of most residents to the suburban area (Hillman 1996;
Arbury 2005). One of the worst effects of horizontal urban
growth is the creation of gated or walled communities,
which isolate and separate the living and social activities of
local residents even in one neighborhood. A gated commu-
nity consists of single- or two-story building residential
streets with various facilities, such as park and kindergarten,
which are closed by walls or fences (Fig. 3.3). Le Goix
(2005) explained this type of urban community as “…a
physical and obvious expression of the post-industrial soci-
etal changes (fragmentation, individualism, loss of commu-
nities) as part of a commoditization of urban public space
and as a penetration of ideologies of fear and security sup-
ported by economic and political factors.”

Although it is mainly based on the local planning
authority’s regulation and policy and cultural issues, gated
communities have been growing because of several advan-
tages, such as security, safety, available parking spaces, and
low density. Nevertheless, the main concern about this type
of community planning is the loss of public spaces and
creation of a self-perpetuating segregationist pattern, where
children may grow up with less or no sense of empathy for
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those living outside the gate and perceive them with suspi-
cion and contempt (Duany et al. 2001; Arbury 2005). These
types of community segregations reduce concern and
responsibility for others beyond the subdivision walls.

However, gated communities of urban sprawl pattern are
not the only factor or cause of segregated urban areas. Urban
environments may be separated according to different types
of residential areas with specific qualities, characteristics,
and landscapes. People prefer to live in a neighborhood
where the levels of the residents are similar. Thus, con-
struction companies promote these separations based on
building quality and neighborhoods to increase their profit
from these classifications. In addition, local residents prefer
to maintain the value of the area (avoid construction of lower
quality housing in their neighborhoods) to prevent any
negative effect on the values of their properties (Duany et al.
2001). This subdivision of urban areas into several
homogenous neighborhood clusters limit the living location
selection and force people to live in specific areas based on
the level of their income and their status in society. More-
over, the lifestyle, social activities, such as school types for
children, entertainment, and recreation, level of health care

and insurance, and so on are also determined by the same
level and position. In contrast, in concentrated and compact
urban forms, facilities are properly distribution and the wider
range of residential areas without walls and gates increase
social equity by providing opportunity for interaction among
the residents with different backgrounds and levels in the
same environment. The wide range of residential types
without classification pattern increases the affordability of
houses in cities and consequently reduces the limitation of
neighborhood selection and concentration of crime and
poverty in a specific area.

In the medical and health perspectives, urban sprawl
development creates several negative issues because of its
physical characteristics. One of the main effects is higher car
dependency, especially private vehicles, which significantly
increases death while traveling. Nozzi (2003) reported that,
“The number of people who die on US highways every year
is the equivalent to a fully loaded Boeing 747 aircraft
crashing every three days, killing everyone aboard. In 2000,
almost 6.5 million motor vehicle crashes killed 41,821
people and injured more than three million.” In addition to
vehicular accidents, the car dependency of urban sprawl

Fig. 3.3 Several gated
communities in one main local
street. Photo of Malaysia taken by
author
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significantly reduces walking and cycling, thus increasing
several physical illnesses, such as hypertension, heart dis-
eases, and type-two diabetes (Kelly-Schwartz et al. 2004;
Badland and Schofield 2005). In fact, a strong but quite
complex relationship exists among the type of urban pattern,
physical activities, and effect on the health of local residents
(Kelly-Schwartz et al. 2004). Hence, considering the effect
of urban forms properties, such as accessibility, density,
dispersion, and centralization, on the lifestyle and activities
of the residents is important.

Density, as one of the main aspects of urban forms, is
influenced not only by the suburban development caused by
sprawl growth, but also by the inner city land use intensities
and population, residential, and employment densities (Clark
2013). From the energy consumption perspective, lower
built-up density causes more radiant heat energy to surface
heat island formation than higher density development
(Stone and Rodgers 2001). Recently, the energy efficiency of
urban sprawl has received much attention in the literature
(Mindali et al. 2004; Norman et al. 2006; Milan and Creutzig
2016). Ewing et al. (2003) summarized the negative conse-
quences of urban sprawl in three points: (1) de-investment in
urban core areas and decline of the city center, (2) private
vehicle dependency and thus increase in number of VMT,
road congestion, and air pollution, and (3) the loss of open
spaces and scenic areas in and close to the urban regions.

Unfortunately, the complexity of issues and disciplines
prevent a public understanding of suburban development
and its negative effects. New concepts, tools, technology,
and methods are required to increase our understanding of
dynamic urban growth and land use changes. Fortunately,
the availability of sophisticated computational models, such
as cellular automata, statistical approach, factor analysis
techniques, and professional geographical and mapping
system like GIS, help us to deal with these complex phe-
nomena (Bhatta 2010; Bhatta et al. 2010).

Urban sprawl is not simply characterized by low density
development. Walking and cycling behaviors, land use
diversity, and a reduced car dependency are arguably more
important determinants of sprawl development pattern. The
contradictions of sprawl urban development and urban sus-
tainability principles are significantly visible in the expla-
nation of Calthorpe (1993) of urban areas as “…the city and
suburb are now locked in a mutually negating evolution
towards loss of community, human scale, and nature. In
practical terms, these patterns of growth have created on one
side congestion, pollution, and isolation and on the other
urban disinvestment and economic hardship.” Suburban
development is no longer compatible with today’s life
because of the difference in household structures, living
behaviors, workplace environments, and increasing envi-
ronmental concerns. For instance, the growing number of

working mothers requires short commutes and accessible
neighborhoods because they cannot take their children to
work every day (Arbury 2005). Calthorpe (1993) believed
that traffic congestion and unaffordable housing are the two
main reasons suburban development is no longer compatible
with today’s life. Thus, a proper development plan based on
traditional walkable communities with high accessibility and
minimum car dependency is required. In addition to these
properties, a mixed and concentrated living manner from
different levels and cultures reduces social segregation and
polarization. Traditional neighborhoods that are more com-
pact are likely to lead to better quality of life than those
dominated by urban sprawl (Arbury 2005).

As listed above, urban sprawl development has several
conflicts with urban sustainability in environmental, eco-
nomic, and social perspectives. Thus, alternative scenarios
regarding planning, controlling, and developing patterns all
around the world need to be proposed and implemented,
especially in developed countries, where local residents in
North America consume 16 times more energy than those in
Africa and over 8 times more than the residents in Asia and
South America on average (Burton et al. 2003). Developed
countries are able to propose more solution to achieve urban
sustainability because of this difference (White 1994).
However, cities are clearly the best location to apply and
implement sustainable development rules because of their
concentrated populations who are the main consumers of
natural resources and major sources of environmental
problems and pollution (Burton et al. 2003). Naess and
Sandberg (1996) summarized several elements of urban
development and spatial planning required to achieve sus-
tainable urban development as follows:

• Significant devaluation in energy consumption and
emission based on ecological and distributional parame-
ters of urban sustainability at the global level;

• Reduction in land conversion and destruction of natural
environment, ecosystem, and soil resources of food
production;

• Reduction in the utilization of environmentally harmful
construction materials;

• Replacement of open-ended flows, where natural
resources are transformed into waste, with closed loops
that rely on local resources to a greater extent;

• Providing a calm, healthy, and green environment for
residents to experience and become emotionally related
to nature.

A substantial revision in the urban system and process is
necessary to achieve the goals of urban sustainability. Most
of these goals are the exact drawbacks of sprawl urban
development. Hence, most of the urban scientists and
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researchers in the 1990s focused on how to plan the urban
form in a more sustainable manner. From this debate,
compact cities are recognized as one of the best alternative
scenarios to achieve urban sustainability. The Agenda 21
and Habitat Agenda of the UN both proposed a compact and
concentrated urban pattern, natural environment preserva-
tion, reduction of car dependency, reduction of waste and
pollution, creation of livable and community-oriented
human environments, development of affordable residential
areas, improvement of social equity, and development of a
restorative local economy as the solution to achieve sus-
tainable urban development (Wheeler 2000).

3.3 Compact Urban Development

Generally, sustainable urban development can be achieved
through an efficient land use growth and management that
implement proper planning and urban design. These tasks
can be accomplished by adopting various strategies and
planning to minimize the energy consumption, protect bio-
logical diversity, reduce pollution, improve social interac-
tion, and develop more green landscapes (Kropp and Lein
2013). Therefore, the contribution of the shape and form of
the cities has become one of the focus points to conduct
these tasks. Many scholars and urban scientists believe that
urban forms can be significantly linked to urban sustain-
ability although it is not simple and straightforward.
Therefore, much attention has been focused on the rela-
tionship between urban form and sustainability in the recent
decades, that is, the implications of the shape and form of
cities on sustainable development. From this debate, a strong
agreement that compact cities are one of the most sustainable
urban forms exists because of their various urban sustain-
ability characteristics, such as less car dependency, public
transportation promotion, rural development containment,
and natural environment preservation (Livingstone and
Authority 2003). These characteristics have contributed to
the objectives of sustainable urban development in terms of
social, economic, and environmental concerns. The popu-
larization of sustainable development has contributed to the
promotion of compact cities by enhancement of its ecolog-
ical and environmental justifications.

In the 1970s, a round-shaped urban form with a popula-
tion of about 250,000 persons in a radius of less than 3 km
was considered as the most efficient urban form because of
its high degree of compactness (Zagorskas et al. 2007). In
the 1980s, the argument on urban compaction versus dis-
persion was the “order of the day” (Breheny 1996). In the
1990s, the European Union was the main arena for the
debate on the advantages and disadvantages of compact city.
For instance, Gordon and Richardson (1997) reiterate their

warnings against compact urban form as a planning goal.
Ewing (1997) believed that policy intervention should be
involved in urban growth because sprawl development has
several problems. Anderson et al. (1996) investigated the
evidences on the relationship between urban forms and
energy consumption for mobility. Bourne (1996) propounds
compact city from the aspect of re-urbanization, while
Breheny (1996) attempted to weigh the validity of the
arguments presented by the “centrists” and the
“de-centrists”. Some scholars believed that high centraliza-
tion and density should be the main objectives for environ-
mental conservation as a goal of urban sustainability.
Similarly, Adolphson (2010) mentioned that the compact
city paradigm characterized by high density and land use
diversity in this decade was promoted to achieve urban
sustainability. Compact city preserves natural and rural
environments, reduces private vehicle transportation, pro-
motes public transportation, promotes walking and cycling,
improves accessibility to community facilities, and increases
urban vitality (Burton 2002). However, opponents accused
compact city of suppressing human freedom and life style
and creating problems, such as traffic congestion and air
pollution. Newman and Kenworthy (1999) stated that most
of the scholars agree that fuel consumption for traveling is
reduced because of the proximity of various land use types
in a compact city. Although the relationship is complicated,
compact development can help reduce energy consumption
and resource depletion.

The concept of compact city is related to the shape and
pattern of urban features, such as spatial distribution, land
use categories, and spatial pattern of road networks. In
addition, it is related to activities and behaviors of the local
residents of an urban region. In general, compact develop-
ment can be defined as high-density urban settlements that
promote central area revitalization, mixed land use devel-
opment, rural development containment, public transporta-
tion facilities, and concentrated developments around
transportation stations (Burton et al. 2003). This type of
urban pattern has several advantages:

• Less car dependency, thus lower emissions,
• Reduced energy consumption,
• Better public transport services,
• Increased walking and cycling habits, thus healthy

community,
• Increased overall accessibility,
• Reuse of infrastructure and previously developed land,
• Regeneration of existing urban areas and urban vitality,
• Higher quality of life,
• Preservation of green spaces,
• Creation of a proper environment for enhanced business

and trading activities, and so on.
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The European Commission’s Green Paper (CEC 2004,
2005) strongly advocates compact development, assuming
that it makes urban areas more environmentally sustainable
and improves quality of life. This type of urban development
is being extensively promoted in European cities as a solution
to the problem of sustainability (Livingstone and Authority
2003). Compact city has also received high attention in most
of the Asian cities because of the significantly limited land
resources and infrastructures and sensitivity to natural envi-
ronment (Lin and Yang 2006). Doi (2005) stated that one of
the most promising ways to achieve sustainability in towns
and cities is by implementing a compact city with high
density and intensity of urban forms and mixed land use
development. Unlike that of sprawl development, the spatial
containment strategies of a compact city have been viewed as
a potential solution to the undesirable social and environ-
mental effects, particularly when compact city is integrated
with a suitable planning process (Neuman 2005). Concen-
trated development obviously encourages the redevelopment
of existing brownfields and abandoned lands and provides
opportunities to reuse existing infrastructures (Abdullahi and
Pradhan 2015). Inner development reduces land consump-
tion, protects rural environments, and revitalizes urban cen-
ters. Several examples of European cities show that the inside
city can be a target of development (Zagorskas et al. 2007). In
the land consumption aspect, more land areas are consumed
in sprawl development for road networks and other infras-
tructures related to automobile because of the dispersed
pattern of urban structures. This compares with about ten
percent more of compact cities being devoted to the auto-
mobile, which would lead to a far smaller loss of productive
land (Duany et al. 2001) (Fig. 3.4).

Compact city should be supported by multimodal trans-
portation facilities, including a system oriented toward
public transit, road network, cycling, and pedestrian. The

compact city idea is concerned about the proximity of urban
activities to ensure better access to services and community
facilities via public transport, walking, and cycling, and
more efficient utility and infrastructural provision (Doi
2005). Proper transport land use strategies encourage the use
of alternatives to private vehicles. Empirical studies tend to
confirm the transport and health benefits of densification,
infill development, land use diversity, and job–housing
balance (TRB 2005). Frumkin et al. (2004) and Stone et al.
(2007) also stated that compact city is one way to reduce
commuting and stimulate physical activities, thus reducing
emissions and greenhouse gases and improving public health
(Fig. 3.5).

Some of the main aims of compact city are to enhance the
individual quality of life and achieve sustainable urban
forms. Neighborhood characteristics, such as accessibility to
community services, opportunities for recreational facilities,
environmental quality, and mitigation of natural hazards are
essential components of a good quality of life (Doi 2005).
Compact city is expected to support these opportunities
through more livable communities, increasing accessibility
to various land use categories, and revitalizing old urban
areas compared with sprawled or dispersed development.

Compact city does not necessarily imply a monocentric
urban pattern. The focus of the sustainability debate has
shifted toward a polycentric urban region because urban
areas are integrated within regional settings; the perspective
of “multicentred forms of compaction” (Burton et al. 2003).

Figure 3.6 shows that three main indicators are com-
monly used to describe and measure compact city: urban
density, land use diversity, and urban intensity (Burton
2000; Lin and Yang 2006; Abdullahi et al. 2015). Each of
these indicators can be further divided into and measured by
some variables. The next sections will define and discuss
these three indicators of a compact city.

Fig. 3.4 General perspective of
suburban areas in compact and
sprawl development
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3.3.1 Urban Density

Density has been considered as one of the most and
important aspects of urban development. Historically, most
of the urban forms, such as The Garden City (1900 in UK),
The Neighborhood Unit (1920s in US), and Suburbia (from
the 1920s onward in the USA), were developed by adopting
a low-density format (Banister 2012). However, much
higher density development was seen in the Urban Mod-
ernism era (new urban developments in Europe). In fact, it
was widely proven that high density development is an
effective characteristic to achieve urban sustainability
(Carruthers 2002; Arifwidodo 2012). For instance, higher
density development improves the government efficiency in
financing developments and lowering infrastructural costs
(Carruthers and Ulfarsson 2008); higher residential density
may reduce car travel because of higher accessibility (Burton
2002; Macfarlane et al. 2015); medium or higher residential
density increases public transportation efficiency and
thresholds to support concentrations of economic activities,
services, and facilities (CEC 1992); higher building densities
reduce traffic jam and this can be the main solution to pro-
vide cities with environmental and quality of life benefits
(Banister 2012); and higher population density promotes and

supports public transportation, increases vitality and viable
community facilities and services, such as recycling and
local power regeneration (Force and Rogers 1999). Williams
(1999) stated that higher density settlement improves social
sustainability because of the more efficient use of commu-
nity facilities and services, higher accessibility, and increa-
ses vitality, vibrancy, cultural activities, and social
interaction. In the United States, the essential components of
a walkable city are high-density development, which is the
“new urbanist” antidote to car dependency and sprawl
development (Calthorpe 1993). Banister (2012) conducted a
comprehensive study on the relation between urban density
and transportation efficiency to achieve urban sustainability.
Adolphson (2010) also tested and evaluated the relation
between urban density and land use diversity from a poly-
centric perspective. He used a kernel convolution to calcu-
late the internal distribution of densities.

Although density is mainly considered as population
density, building density is also one the most common
interpretations of city compactness assessment in terms of
physical compactness. Higher building density saves sig-
nificant land, decreases energy consumption, and promotes
affordable housing (DETR 1998). Moreover, higher energy
efficiency can be achieved through compact housing forms,
such as terraced housing and low rise blocks of flats (DETR
1998; Newton et al. 2000). However, the concept of resi-
dential density and housing form is a complex topic that
requires the consideration of various issues, such as building
design, public spaces, public fronts, private backs, crime
rate, and safety (Burton 2002). In fact, density measurement
is the most common interpretation of compact urban
development (Fig. 3.7).

Although, higher density is one of the main concerns and
characteristics of a compact city, the capacity and potential
of the corresponding city to serve the high-density popula-
tion, such as providing efficient public transportation, should

Fig. 3.5 Schematic view of
transportation advantages of
compact city, a compact city and
b non-compact city

Compact city

Urban density

Land use diversityUrban intensity

Fig. 3.6 Three main concepts of Compact city paradigm
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be studied carefully during planning and development.
Compact city and its main aims toward urban sustainability
cannot be achieved by simply increasing population density,
building proximity, and number of residential units. Mean-
while, the measurement of density is another challenge,
which the urban scientists and urban planners have not
reached technical agreement on. Variation in density
assessments, such as net, gross, overall, and zonal densities,
causes a complex analysis and evaluation of the urban
application process. For instance, several measures are
assessed in England, such as “dwellings per hectare,”
“habitable rooms per hectare,” or “bed spaces per hectare,”
to identify an optimum urban density value (Arbury 2005).
Thus, considering the various aspects of urban density
compatible with the characteristics of the study area is
important.

3.3.2 Land Use Diversity

Land use diversity is another main component of compact
cities. In a mixed land use area, different land use categories

are mixed vertically in the same building or horizontally in
the same neighborhood (Lin and Yang 2006; Abdullahi et al.
2015; Tian et al. 2015). Various land use categories, such as
different commercial, residential, light industrial, and com-
munity facilities (school, hospital, recreational facilities,
library, and so on) can be included within a mixed land use
environment (Fig. 3.8).

Since 1990s, urban studies have led to the advocacy of
urban areas that are spatially compact with higher land use
diversity (Zagorskas et al. 2007). Historically, mixing vari-
ous land uses has been the main feature of urban environ-
ments since the first human civilization. The traveling
distances of local residences from the center living areas
were limited to a small radius because walking was the main
transportation mode. Thus, various daily and weekly desti-
nations, such as facilities and services, commercial build-
ings, agricultural fields, and industrial areas, were all located
in small spaces, which caused limitations on urban expan-
sion and availability of site for required land uses. In this
situation, most of the residential buildings were used as
working places depending on the type of profession and
trade, such as solicitorship and dressmaking. In fact, most of

Fig. 3.7 High and low
residential density
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the urban areas in the world have the same characteristics,
which are walking as the main transportation mode, mixing
of land uses either in the same building or in a small
neighborhood, and high population density in urban and low
in suburban areas, which cause a clear distinction between
urban and rural areas (Morris 2013). However, the indus-
trialization period caused substantial changes in the devel-
opment pattern that separated various land use categories,
especially industrial areas from residential neighborhoods.
This process was stimulated by other factors and periods,
such as urbanization, advances in transportation, zoning
ordinances, and the rise of an affluent middle class (Herndon
2011). However, in the recent decades, scientists and urban
planners have realized the negative effects of this separated
land use development (related to environmental, social, and
economic aspects) and thus started to return to mixed land
use development pattern, especially based on compact city
paradigms. This modern idea of land use diversity is dif-
ferent with respect to the historical mixed development
pattern, especially in relation to the Euclidian zonal manner.
Although all land use categories in historical cities were
together in a single zone or district, the current land use
diversity is mainly single tiles within a mosaic of mostly
single-use zoning classifications (Herndon 2011). Moreover,
the historical land use diversity of urban developments has
been growing gradually over long periods without prede-
fined planning and design. In contrast, the current develop-
ment is based on the master plan of the city, which was
designed based on the urban capacity and local demands in a
shorter period (Schwanke 2003). Thus, considering these
differences and evaluating their consequences are important
in planning and developing a mixed land use development.

Although the concept of mixed land use development
seems to be simple and straightforward (combination of
several land use categories), planning and implementing a

proper mixed development zone is a very complex and
challenging project. These challenges are related to the level
of integration or degree of compatibility of land use types,
vertical or horizontal land use diversity, and size and
capacity of the site (Herndon 2011). Moreover, although a
general agreement on the concept of mixed land use devel-
opment exists, several scientists still argue that no clear and
acceptable definition of this kind of development pattern
exists, such as Rowley (1996), Grant (2002), Hoppen-
brouwer and Louw (2005) and Rabianski et al. (2009). In
this regard, in 1990s, Rowley (1996) proposed a conceptual
model for land use diversity based on the aspect of the
internal texture of settlements in 1990s. Figure 3.9 shows
that this model mainly considers horizontal land use diver-
sity or that within contiguous buildings. Rowley’s model
assumed that the physical pattern of mixed land use area is
related to urban texture, setting, and site.

On the other hand, Hoppenbrouwer and Louw (2005)
proposed a topology for the mixed development pattern
based on spatial perspective that is managed by function,
dimension, scale, and urban texture. Figure 3.10 shows that
the function element is related to individual land use types,
such as residential, commercial, and community facilities.
The dimension consists of shared premise, horizontal, ver-
tical, and time dimensions. The scale starts from the build-
ing, zone and continues to the city and region levels. Finally,
urban texture includes grain, density, and the interweaving
of functions.

With all these complexity and variables involved, land
use diversity has been strongly suggested by several scien-
tists and scholars to achieve sustainable urban development.
Musakwa and Van Niekerk (2013) and Song and Rodríguez
(2005) discussed the direct advantages of mixed land use
development for urban sustainability. Numerous studies
have proven that efficient transportation facilities and healthy

Fig. 3.8 A schematic example
of horizontal mixed land use
development
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communities can be achieved through dense mixed land use,
infill development, and proximity between the living and
working places (TRB 2005). For instance, Gu et al. (2013)
presented that the fuel consumption for transportation within
the city could be significantly reduced by providing a mix-
ture of living, working, and entertainment activities in one
location. Gainza and Livert (2013) also observed the positive
effect of high density and mixed land use development on
the time and energy consumption of transportation. Ding
(2004) and Song et al. (2013) stated that the close proximity
of various land use types encourages walking and cycling
behavior in a community. In addition, the close proximity of
infrastructure and facilities (such as heat and power plants)
to consumers (residential and commercial buildings) can
reduce energy waste during transmission. Reusing energy
wastes can increase energy consumption efficiency as well.

3.3.3 Urban Intensity

Urban intensity is related to the process of achieving city
compactness. In fact, city intensification can be defined as
the process to making an urban area more compact and

sustainable. Infill development, brownfield revitalization,
and mixed land use developments are examples of city
intensification resulting in a positive density growth (Burton
2002; Lin and Yang 2006). Infill development can be sup-
ported by existing services and infrastructures, whereas rural
development requires provision of various new services and
utilities (water supply, electricity, road network, and so on).
Burton (2002) identified three main tasks in implanting
intensification: increase population, development, and land
use diversity. Similar to the mixed land use development, an
important aspect of urban intensity is related to the land use
distribution pattern, which indicates the crowd and liability
of an area. Higher urban intensity also reduces car depen-
dency, conserve lands, and regenerate central parts of the
city. According to the city compactness definition
(self-dependency from outside), city intensification deter-
mines the degree of compactness of an urban area. There-
fore, urban intensity can also be viewed in terms of the
availability and accessibility of various required community
facilities and services. In this manner, it supports the eco-
nomic sustainability aspects as well (Burton 2002). Proper
accessibility and availability of various required community
facilities, such as health, educational, and shopping centers,

Fig. 3.9 Rowley’s mixed land
use development (Rowley 1996)
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to the residential and working areas decrease the dependence
of the local residents on their own private vehicles. These
facilities can be more efficiently provided and accessed in
the compact urban form, thus reducing the cost of their
provision and ensuring sustainability (Carruthers and
Ulfarsson 2008; Arifwidodo 2012). Hence, urban intensity
can be evaluated by considering the activeness, availability,
proximity, quality, and quantity of each type of community
facilities (such as health, educational, public transportation,
point of interests, open space, and recreational facilities as
well as job opportunity) with respect to the characteristics of

the local residences and neighborhood. Detailed information
on the local population is required to evaluate the local
demands. Meanwhile, updated information on existing
facilities, such as capacities, locations, and qualities, should
be available. Transportation facility is one of the most
important aspects to consider in these assessments. Evalu-
ating the local population demands based on some local
and/or standard guidelines, such as the one given by De
Chiara (1990), which shown in Table 3.2 is important.

Compact urban development can be implemented in a
variety of scales, from urban infill and central area

Fig. 3.10 Hoppenbrouwer and
Louw mixed land use
development (Hoppenbrouwer
and Louw 2005)
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revitalization to the creation of an entirely new development,
such as the idea of Urban Villages in United Kingdom and
New Urbanism in the United States (Zagorskas et al. 2007).
In theory, urban villages are human scale, compact, of mixed
land use, and of mixed tenure neighborhoods within a wider
urban area, diverse open spaces, less car dependency,
self-dependency in terms of residents’ employment needs,
and shopping, recreation, and community activities (Chung
2010).

Although numerous studies have been conducted on the
advantages of compact city, some scholars still argue that the
compact city concept is unrealistic and undesirable (Breheny

et al. 1999). As an alternative, decentralized concentration
based around a single city or groups of towns, may be
acceptable. Like compact city, this kind of development is
high density and a land use diverse settlement with clear
boundaries (Williams et al. 2000). In this debate regarding
urban density, some believe that high concentration makes it
possible to achieve sustainability and contributes to global
environmental preservation, while others are skeptical
because they are concerned about the freedom of human
nature, quality of life, and lifestyle (Zagorskas et al. 2007).
For instance, Yang et al. (2012) stated that a proper clustered
development in suburban zones helps maintain a shorter

Table 3.2 Minimum population
required for community facilities

Community facility Minimum
population

Community facility Minimum
population

Education Health

Kindergarten 500 Clink 10,000

Primary school 1800 Welfare center 25,000

Secondary school 5000 Hospital 100 beds 25,000

High school 9000 Public clinical center 35,000

Educational library 5000 Hospital 225 beds 50,000

Specialized college 50,000 Psychiatric hospital 50,000

College 100,000 Rehabilitation center 75,000

University 500,000 Hospital 340 beds 75,000

University (graduate studies) 1,000,000 Hospital 450 beds 100,000

Institutional Recreation

Post office 1200 Small playground 1000

Library 500 Restaurant 2000

Church 500 Local park 3000

Public city hall 5000 Play ground 5000

Fire station 10,000 Gym and fitness 10,000

Police station 10,000 Sport club 10,000

Waste management center 10,000 Museum 20,000

Employment Theater 20,000

Institutional 10,000 Cinema 20,000

Services 10,000 Coffee shop 20,000

Light industry 10,000 Swimming pool 20,000

Heavy industry 50,000 Local TV station 20,000

Industrial park 100,000 City recreational park 500,000

Miscellaneous 50,000 Zoo 1,000,000

Commercial Transportation

Small shop 500 Private parking 100

Super market 2000 Workshop 2000

Bakery 3000 Public parking 15,000

Pharmacy 3000 Public bus services 20,000

Bank 5000 Taxi services 20,000

Shopping mall 20,000 Train services 50,000

Hotel 25,000 Local airport 70,000
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commuting duration. The linkage between the shorter
commute and suburban development has been proven by
other studies on Asian and European cities with similar
density contexts (Alpkokin et al. 2008; Veneri 2009). In the
case of the natural environment preservation in rural areas
and the provision of green environments inside urban areas,
some scholars believe that compact city preserves these
green environments in suburban areas because of
high-density and concentrated development (Gordon and
Richardson 1997; Burton 2002). Meanwhile, the high land
use diversity and high intensity promote social sustainability
and improve quality of life by the provision and distribution
of local parks and recreational facilities. In contrast, other
studies concluded that high density urban pattern may
decrease the amount of green environments and can threaten
ecological variety and living environment because of the
concentration of human settlements (Burton 2000; Van Der
Waals 2000). In general, gradual and more concentrated
development seems more effective in saving and protecting
the rural environment through the utilization of the existing
infrastructures and redevelopment of abandoned lands. Thus,
compact urban development significantly affects the envi-
ronmental aspect of urban sustainability.

Although the positive effects of compact city on social
sustainability, such as improvements in neighborhood
attraction, accessibility, public transportation, and social
equity, are recognized clearly, some researchers also men-
tioned a few of the negative effects of high-density devel-
opment, such as insufficient living space, higher expenditure
because of congestion, and high crime rates and housing
prices (Breheny 1996; Gordon and Richardson 1997; Burton
2000). These issues encourage moving from the concen-
trated development to low-density suburban areas, which
continue the growth of sprawl development (Senior et al.
2004; Stewart 2005). In the case of negative health issues,
the negative health effects of higher density living are likely
to be the result of other aspects of the residence, such as
being part of a segregated “ghetto”, being located next to a
polluted highway, and poor construction, rather than simply
its high density.

Although a broad consensus on its merits exists, imple-
menting a sustainable compact development is not an easy
task. It is a complex and long-term process, which requires
proper planning, a flexible law system, and a supportive
government (Chinyio et al. 1998; CEC 2005). One of the
main problems is the administrative fragmentation of urban
regions, which usually consists of a national government,
several provinces or states, and many municipalities from
urban to rural areas. In this regard, Dieleman et al. (1999)
listed a number of specific conditions that are responsible for
the implementation of a compact city, such as:

• The strategic planning tradition,
• The municipal finance system,
• The mass production of social housing, and
• Land policy.

A powerful planning authority, which has the ability to
govern the area for at least next 20 years, is required to
develop a compact urban pattern or increase the existing
compactness of a region. The authority should provide
financial and planning supports to the required infrastruc-
tures and utilities, such as road network, rail systems, and
water and electricity supply. Financial support is very
important for the feasibility of the compact city policy. In
addition to these powers and supports, having a wide con-
sensus among the local residents on the policy of compact
urban development and the advantages of this kind of urban
form is important.

3.4 Compact Urban Development Versus
Urban Sustainability

The concept of sustainable development has given a major
stimulus to the question of the contribution of urban forms
in reducing the energy consumption and pollution levels
(Breheny et al. 1999). Thus, researchers and urban planners
focused on the relationship between the forms and shape of
the cities with urban sustainability. Although it is not
simple and straightforward, urban forms can be signifi-
cantly linked to urban sustainability. Several urban devel-
opment paradigms for achieving urban sustainability exist.
In this regard, compact city is one of the popular paradigms
in urban application fields. Compact city with its charac-
teristics, such as high density, land use diversity, and rural
development containments, attempts to be effective in
preventing the effects of urban sprawl. These properties are
clearly compatible with urban sustainability. Nevertheless,
illustrating a clear and straightforward relationship between
compact city and urban sustainability is important. The
advantages of compact urban development on urban sus-
tainability might be hampered, neglected, and/or even
proven detrimental to sustainable development. Some
scholars and urban scientists examined and reviewed the
concepts of compact city. For instance, Burton (2002)
concluded that compact city paradigms provide both posi-
tive and negative effects on the social aspect of urban
sustainability by assessing the compactness of several
British cities. Meanwhile, regarding physical environment
and development pattern of the urban areas, land use
diversity and pedestrian-friendly streets are important to
increase social interaction and provide a sense of
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community (Barton 2000). These properties have been
applied in recent sustainable urban forms, such as New
Urbanism and compact city, in which local residents have
better opportunities for social interaction because of prox-
imity (Nurul 2015). The assessment of the compact city
and social issues can be implemented by investigating the
compact form related parameters with social variables. For
instance, the one-to-one assessment of urban density,
diversity, and housing types related to the frequency of
meeting, how well local residents know their neighbors,
and how they interact with their neighbors (Nurul 2015).

Many concepts and indicators exist to define and measure
compact city and urban sustainability. For instance, density
is one of the major physical characteristics of compact city
and can be evaluated in terms of various aspects, such as
population, residential, and road densities. Meanwhile,
social sustainability is one of the main aspects of sustainable
development in the urban perspective that can be assessed in
terms of accessibility, equity, security, and safety. Thus, the
evaluation and investigation of the relationship between
compact city and urban sustainability should be performed
considering all the aspects and indicators of these two con-
cepts. Nevertheless, directly evaluating the relationships
among these aspects and indicators is not enough. The
relationships could be comprehensively clarified if the extent
to which the compact city paradigm affects sustainability
could be examined in terms of concepts, rather than in terms
of the component indicators (Lin and Yang 2006). Lin and
Yang (2006) proposed a structural equation modeling to
evaluate the relationship based on the concepts and indica-
tors of compact city and urban sustainability. In fact, this
model is able to analyze complex associations among vari-
ous indicators by aggregating the capabilities of path and
factor analysis.

Compact city is described by several concepts, such as
free-standing, contained, autonomous, moderately sized, and
self-contained (Scoffham and Vale 1996; Burton et al. 2003).
However, some identical terms used in defining compact city
in various literatures were explained in the previous section,
namely, urban density, diversity, and intensity. Urban sus-
tainability also involves various concepts and principles

related to social, environmental, and economic issues
(Fig. 3.11).

Most of the researchers usually evaluate these concepts
based on a one-to-one indicators and indices correspondence
with respect to several case studies. For instance, Lin and
Yang (2006) evaluated this relationship by considering 44
indices of compact cities and 119 indices of sustainable
development for 92 samples of cities in Taiwan (Fig. 3.12).

For instance, the environmental sustainability availability
and accessibility of green and natural spaces for local resi-
dents are some of the main issues regarding the quality of
life as a social issue. Thus, urban compactness pattern in
terms of density, diversity, and intensity can be evaluated as
an aspect of urban sustainability. The high and low densities
of urban areas affect the amount of local parks and green
spaces. Higher land use diversity, including recreational
facilities and preserved natural environments, fulfill this
aspect of urban sustainability. In contrast, single land use
development, either fully residential or industrial land use, is
implicated for less compactness and less sustainability. In
the preservation of natural environment in rural areas, some
scholars believe that compact city preserves these green
environments in suburban areas because of high density and
concentrated development (Gordon and Richardson 1997;
Burton 2002). Meanwhile, convenient and proper public
transportation facilities encourage traveling to the nearest
natural and green environments, which indicates a sustain-
able intensifying urban pattern. Higher density and land use
diversity encourage walking and cycling because of the
availability and accessibility of various points of interests,
while high intensified city with good quality of public
transportation reduces private car dependency. These char-
acteristics significantly affect fuel consumption, which is
eventually an indication or measurement tool for the envi-
ronmental aspect of urban sustainability. However, higher
density can increase air pollution because of the concentra-
tion of activities. Thus, evaluation of air pollutants, such as
PM10, SO2, NO2, and Co, is good assessment tool for the
environmental sustainability of a compact city.

In economical perspectives, high density and land use
diversity increase economic production and efficiently

Fig. 3.11 Main indicators of
compact city and sustainable
development
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facilitate land use management. In addition, an intensified
city with concentration of various facilities and services
attracts enterprise investments. The assessment of these
measures with respect to local residence is a suitable eval-
uation of the economic sustainability of a compact city
because the amounts of urban production and investment are
indications of sustainable development. Moreover, higher
density and diversity increase the efficiency of infrastruc-
tures and utilities. Thus, an analysis regarding the expendi-
ture per level of infrastructure supply can be a measure of
public services efficiency.

In terms of social sustainability, a compact city affects
various social issues because of its concentrated form and
spatial distribution pattern of several community facilities
based on the density, diversity, and intensity characteristics
of the urban area. In general, higher density increases the
concentration of community facilities, and consequently
leads to a higher quality of life. Thus, the assessment of
these facilities and services with respect to quality and
quantity per capita of local residents can be used as measure
of the sustainability of a compact city. Burton (2000) stated
that an overly dense area can increase crime rate and reduce
security and safety. In contrast, other researchers, like Elkin
et al. (1991), believed that higher compactness increases
safety by putting eyes on the street to deter wrongdoing.
Hence, crime rate and personal site survey from local

residents can be used in the evaluation of the safety aspect of
urban compactness. Moreover, Burton (2000) estimated that
a compact city usually increases housing prices because of
the high demand and low supply of residential units. This
growth reduces the amount of funds for expenditures on
other aspects. Although they are more complicated and more
parameters should be considered, housing price and afford-
ability can be a used as measures of social sustainability of
compact urban development.

As a conclusion and according to a comprehensive lit-
erature review in this field, compact urban development has
a significant effect on various aspects of urban sustainability,
which are either positive or negative effects. Lin and Yang
(2006) and Thinh et al. (2002) found positive effects on the
economic aspects in terms of production and enterprise
investment. In contrast, several negative effects were found
in terms of less green fields, higher crime rate, and increase
in house and land prices. Nevertheless, these negative effects
should not debilitate the concept of compact urban devel-
opment because of its comprehensive and significant
advantages with respect to urban sprawl development.
Therefore, several complementary strategies are required to
ensure the sustainability of compact urban development.
These strategies should enhance the positive effects and
attempt to mitigate the negative effects of compact urban
pattern. For instance, several variables regarding the

Fig. 3.12 Hypothetical path
diagram for model specification
(Lin and Yang 2006)
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demands and characteristics of local residents should be
estimated and included in planning and designing a
high-density development and in the general development of
a compact city. These variables are as follows:

• The environmental capacity and proper green spaces;
• Community facilities and services, such as educational,

recreational, and medical centers;
• Enough floor space area for living and recreational

activities;
• The traveling and commuting demands and the capacity

of road networks and public transportation;
• Enough security to control the crime rate.

Moreover, land and housing prices should be controlled
to improve housing affordability. Meanwhile, the positive
effects of compact city on urban system according to urban
sustainability need to be enhanced and promoted. However,
very precise and comprehensive assessment variables are
required because a sustainable compact development is a
long-term and very complex project. A high number of
sampling units, accurate data, and powerful tools, such as
remote sensing and geographical information system, are
required for the assessment model implementation.

3.5 Compact Urban Development: Malaysian
Perspectives

Malaysian government as documented in the 10th Malaysian
Plan is committed to improve various aspects of urban areas
to achieve more sustainable environments. This commitment
involves efficient public transportation facilities, accessibil-
ity of various community facilities and services, security and
safety, environmental conservation, and provision of green
urban landscapes. One of the main current policies on
urbanization in the 10th Malaysian Plan is to build an urban

environment with high quality of life by building vibrant and
livable cities and promoting compact and efficient cities
(EPU 2010). In this plan, livability is defined as a city with
vibrant, attractive, and secure environment for the local
residents to live, work, and entertain/be entertained. This city
has a proper governance, competitive economy, high quality
of life, and sustainable environment. Promotion of mixed
land use development to encourage living, working, and
recreational activities within the same compact neighbor-
hood is an example of a mechanism to increase livability.
Meanwhile, zoning ordinance, urban growth boundaries,
growth control regulations, and other development incen-
tives are some mechanisms to encourage compact urban
development. In addition, in National Physical Plan 2,
concentrated development in core centers for higher effi-
ciency and high value added growth is promoted. In this
plan, achieving energy efficient compact city is one of the
main policies of urban growth management. Table 3.3 and
Fig. 3.13 present some of the local projects of the Kuala
Lumpur city in the way of the sustainable aspect of compact
urban development.

For instance, Kajang city has applied several develop-
ment strategies regarding land use and development, land-
scape and biodiversity, security and safety, renewable
energy, integrating transport and development, development
accessibility, and urban design principles aspects. Specifi-
cally, the local planning authority of Kajang (JPBD) pro-
posed several other strategies, as shown in Table 3.4. These
strategies consisted of several aspects, such as mixed land
use development, building design, housing design, sense of
place, public transportation, neighborhood, and promotion of
walking, cycling, and green environment.

Nurul (2015) explored the city compactness of Kuala
Lumpur and Putrajaya cities and its effects on social sus-
tainability. This aspect of urban sustainability was assessed
with respect to the behavior of local residences within the
physical environment. The assessment process was based on

Table 3.3 Current initiative
towards compact city

Compact city paradigms Site and details

Transit oriented development (TOD) – KL central
– Subang Jaya transit nodes residential areas
– Sentul public housing
– Mid Valley shopping mall

Mixed land use development – Service apartment in KL
– Subang Jaya
– South city (Serdang)

Brownfield redevelopment – KL central
– KLCC
– SOGO shopping center

High density development – Pantai Dalam
– Damansara residential neighborhood
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quantitative approaches through questionnaire survey from
local households. The results revealed the significant effects
of land use diversity, pedestrian-friendly streets, density, and
residential building types. Table 3.5 shows that people liv-
ing in higher density neighborhoods (population and resi-
dential) have better social interaction with each other. Higher

land use diversity provides opportunities for local residents
to participate more within the neighborhood because of
walking and cycling to and from local community facilities
and services. Moreover, neighborhoods with terraced hous-
ing types have higher levels of social interaction than those
with other types.

Fig. 3.13 Initiative towards
compact city; a Mid Valley
shopping mall, b Sentul public
housing, c Subang Jaya, d Kuala
Lumpur conventional center, e
Sogo shopping mall, and g South
city plaza
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4Urban Sprawl Assessment

Abubakr A.A. Al-sharif, Biswajeet Pradhan and Saleh Abdullahi

4.1 Background

Urban form is related to the size, shape, and intensity of
human settlements and the spatial distribution of various
land use categories and urban features. Urban forms are
described by several key variables, such as density, shape,
degree of dispersal or concentration, and quality of public
transport infrastructures.

Many studies show that urban form and pattern signifi-
cantly affect urban sustainability, especially social and
environmental sustainability. Therefore, assessing and con-
trolling the current and future patterns of urban areas are
essential in achieving urban sustainability paradigms. In this
regard, mapping urban expansion can reveal the abstracted
and simplified changes in urban regions (Abed and Kaysi
2003). Change detection in urban area applications has
recently shifted from basic detection to the measurement of
patterns, analysis of processes and patterns of urban
expansion, and quantification of urban change. However,
urban systems analysis covers a varied spectrum of scientific
studies, such as political and historical processes (Flint
2002), urban crime analysis (Ceccato et al. 2002), site
selection analysis (Abdullahi et al. 2014), urban population
estimation (Zhang 2003), urban heat island research (Rigo
and Parlow 2007), merging urban ecology and socioeco-
nomics (Zhang et al. 2006), land use/cover evaluation (Yuan
2008), urban change analysis and the growth modeling (Park
et al. 2011; Al-shalabi et al. 2013), compactness and sprawl
assessment (Abdullahi et al. 2015; Al-sharif and Pradhan
2015) and so on.

Urban expansion is quantified by determining the amount
of built-up areas between two periods (Bhatta 2009). As a
process or pattern, sprawl quantification is a challenging
subject that lacks a clear universal definition, and sprawl
cannot be easily modeled or quantified (Bhatta 2010). As an
alternative to urban sprawl, urban expansion modeling
allows researchers to quantify the amount of areas that have

been transformed for urban land use and to identify urban
sprawl based on their judgment (Angel et al. 2007). How-
ever, this concept makes the urban sprawl phenomenon
indistinct, thereby discouraging researchers from measuring
urban sprawl. Although previous studies have measured
urban expansion forms, they have several limitations in
capturing urban sprawl characteristics. Such measurement
processes also produce outcomes that cannot be easily
interpreted because of the limitations and inaccuracy of the
input information, including remote sensing data (Paolini
et al. 2006; Bhatta et al. 2010b). Bhatta et al. (2010a)
mentioned that urban sprawl could be assessed in absolute
and relative scales. Relative assessments measure many
elements that can be compared across various regions within
a city, different metropolises, or different periods. Relative
urban measurements allow analysts to decide whether the
study area is sprawling or not, while absolute assessments
clearly distinguish compact cities from sprawled ones.
However, most urban sprawl measurement methods are
relative measures that can be considered as indicators of
urban sprawl. Therefore, defining a clear threshold is a
crucial and challenging step in the absolute measurement of
urban sprawl. Some researchers have proposed rules for
defining such a threshold, but these rules are unclear to other
urban experts. Urban relative measures may not provide
wise conclusions on urban sprawl, and the defined threshold
that is applied in one city may not be reliably applied in
others.

Several statistics and spatial metrics have been proposed
for evaluating and measuring urban sprawl. Spatial metrics
are numeric figures that determine spatial patterns of land
cover classes, land cover patches, or whole landscape
mosaics of a geographic zone (McGarigal and Marks 1995).
These metrics, known as landscape metrics, are used in
landscape ecology to describe and identify main ecological
relationships, such as adjacency and connectivity (Yeh and
Huang 2009; Ramachandra et al. 2013). Apart from
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landscape ecology, the assumptions and approaches of
landscape metrics can be used in various environments, such
as urban areas (Pham et al. 2011). These spatial metrics have
significant applications in identifying and quantifying urban
growth, sprawl, and fragmentation (McGarigal and Marks
1995; McGarigal et al. 2002). These metrics are classified
into three types. Class metrics are calculated for each class in
the landscape, patch metrics are calculated for each patch in
the landscape, and landscape metrics are calculated for the
entire patch mosaic. Many spatial metrics in the literature are
based on these three types, as shown in Table 4.1
(McGarigal and Marks 1995).

An important question in this field is the following: what
are the appropriate spatial metrics for urban growth/sprawl
analysis and measurement? Several researchers have defined
eight dimensions of land use patterns to quantify urban
sprawl (Galster et al. 2006). Angel et al. (2007) proposed
numerous landscape metrics for evaluating, manifesting, and
characterizing urban sprawl, but did not recommend any
sprawl threshold for distinguishing growth from sprawl.
Moreover, the results that are derived from applied metrics
are confusing and difficult to comprehend because some
metrics may contradict one another.

Many researchers have established multiple indices
through descriptive statistical and geographic information
system (GIS) analysis to measure urban sprawl (Hasse
2004). These urban indices analyze various aspects, such as
employment, resource consumption, population, living
quality, and architecture aesthetics. The most-used indices
include spatial configuration (accessibility, fragmentation,
and proximity), density (employment, residential, and pop-
ulation densities), growth rate (built-up area and population),
land use efficiency, and per capita land consumption (Sutton
2003; Jiang et al. 2007). However, the following questions
still demand straight answers: (1) What is the per capita
consumption of land in sprawling cities? and (2) What is the
built-up area expansion rate in non-sprawling cities?

Torrens (2008) suggested that urban sprawl should be
analyzed and measured at multiple scales and should cover
gross and net lands. To provide a clear insight into sprawl,
Torrens examined this concept at the metropolitan area,
intra-urban, and land parcel levels using 42 measures.
However, the complexity of such methodology resulted in
confusing outcomes because of the various metrics and
scales used. Jiang et al. (2007) suggested 13 integrated
geospatial indices for measuring urban sprawl in the Beijing
metropolis. Such an approach required minimal interpreta-
tion effort yet required extensive inputs of multi-temporal
data, such as GDP, population, land use master planning,
land use maps, highway maps, floor area ratio, and city
center maps. Given that developing countries have insuffi-
cient temporal data, most of the proposed indices are difficult
to derive. Jiang et al. also did not propose a clear threshold

for characterizing sprawl. However, the applied temporal
analysis is a valuable technique for comparing various cities
and zones within a metropolis or the status of an urban area
at different periods. The number of metrics to be applied
presents another problem in urban sprawl measurement.
Some researchers have proposed and compared various
metrics for urban expansion analysis. However, such com-
parisons did not yield a standard set of urban spatial metrics
for measuring urban sprawl (Alberti and Waddell 2000;
Herold et al. 2003). Given that several spatial metrics are
correlated and produce redundant information, some of these
metrics cannot quantify different patterns. Urban analysts
must use metrics that are relatively independent of one
another to produce a reliable measure of urban sprawl and to
achieve a meaningful detection of the urban landscape
structure. Many metrics are often necessary to describe and
characterize urban landscape because a single measure
cannot cover everything (Turner et al. 2001). However,
different spatial metrics may also produce varied conclusions
(Herold et al. 2003)

The spatial resolution of remotely sensed data presents
another challenge in urban analysis and sprawl assessment.
Several metrics, such as spatial heterogeneity and patch
analysis, are dependent on spatial resolution. For example,
separate objects may appear falsely compact and may be
wrongly merged together. On the one hand, a greater spatial
resolution corresponds to an improved urban sprawl inter-
pretability. On the other hand, a very high spatial resolution
leads to high object diversity that can produce unexpected
problems, such as an additional number of patches or
increased heterogeneity.

In the multi-temporal analysis of urban sprawl, using
different resolutions will also render resolution-dependent
metrics unusable. The intensity of annual urban expansion
and the density of built-up areas efficiently describe the
sprawl characteristics of rapidly changing and low-density
areas, but these metrics have weak ability in identifying the
specific spatial patterns of urban growth and sprawl. These
spatial metrics are not explicitly common; for instance, the
expansion of built-up areas to the growth of households in a
city. This category of urban metrics measures what is present
without referring to a particular location on the landscape.

The entropy method of Shannon is a very popular tech-
nique that determines urban sprawl by integrating GIS into
remotely sensed data (Yeh and Xia 2001; Kumar et al. 2007;
Ramachandra et al. 2013). Relative entropy is used to
measure entropy values ranging from 0 to 1. According to
Yeh and Li (2001), given that the entropy method can
evaluate the distribution of a geographical phenomenon, one
can determine the degree of urban sprawl change by mea-
suring the entropy difference between two time instances.
The entropy method is also more spatial, robust, and static
than other methods (Bhatta et al. 2010a). Many studies show
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that this method outperforms other spatial dispersal statistics,
such as Moran’s coefficient, which depends on the shape,
size, and number of zones used to compute the statistics

(Tsai 2005). Relative entropy also alleviates the scale effect
of the modifiable areal unit problem (Yeh and Xia 2001;
Bhatta et al. 2010a).

Table 4.1 Main urban
landscape metric from ‘FragStats’
software

Metrics Patch Class Landscape

Area-edge Patch area

Radius of gyration

Patch perimeter Largest patch index

– Total edge

– Edge density

– Total area

– Percentage of land scape –

Shape Perimeter area ratio

Shape index

Fractal dimension index

Related circumscribing circle

Contiguity index

– Perimeter area fractal dimension

Core area Core area

Number of core area

Core area index

– Total core area

– Core area percent of landscape –

– Number of disjunction core area

– Disjunction core area density

Contrast Edge contrast index

– Contrast weighted edge density

– Total edge contrast index

Aggregation Euclidean nearest neighbor distance

Proximity index

Similarity index

– Number of patches

– Patch density

– Landscape division index

– Splitting index

– Effective mesh size

– Aggregation index

– Clumpiness Contagion

– Landscape shape index

– Normalized LSI Patch cohesion index

Diversity – – Patch richness

– – Patch richness density

– – Relative patch richness

– – Shannon’s diversity index

– – Simpson’s diversity index

– – Shannon’s evenness

– – Simpson’s evenness
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In the case of a well-planned city, future urban expansion
is often modeled and planned using a highly advanced
approach. Given that urban growth is generally restricted
within clearly defined borderlines, real urban growth cannot
exceed the planned expansion, and the extent to which the
observed urban expansion meets the expected or planned
expansion needs to be evaluated. Pearson’s chi-square
statistics (degree of freedom) measures and compares the
observed expansion with the expected expansion (Almeida
et al. 2005). However, given that this technique considers
urban expansion both as a process and pattern, chi-square
cannot distinguish the urban expansion patterns from its
processes. The chi-square and entropy methods are different
urban growth measures that may be unrelated to each other.
Bhatta et al. (2010a) proposed a degree-of-goodness mea-
sure to assess the degree of relation and compactness
between observed and planned expansions. However, this
measure is a new technique in urban analysis and assessment
that requires further study and evaluation because of its
limitations.

4.2 Case Study: Methodological Process
of Urban Sprawl Assessment for Tripoli
Metropolitan Area, Libya

As a case study, this section assesses and analyzes the
spatiotemporal patterns of urban expansions in the Tripoli
metropolitan area based on the urban sprawl assessment
concept. Urban expansion and sprawl are assessed and
investigated as a pattern and process using Urban Expansion
Intensity Index (UEII), population and urban expansion
proportions, landscape metrics, entropy model, and degree
of freedom model.

Libya lies along the Mediterranean coast and stretches
deep into the Saharan region. Although Libya mostly con-
sists of rocky plains and sandy seas, a narrow band of fertile
lowlands stretches across the northern edge of the country.
Nearly three-fourth of the Libyan population resides in urban
areas that occupy only 1.5% of the country’s land area along
the coast. As the capital city of Libya, the Tripoli agglom-
eration has the largest concentration of population and
economic activities not only in the Tripoli region but also in
the entire country. Therefore, this area has a very important
role in the socioeconomic development of the country (UPA
2009). The study area is located along the Mediterranean
coast in the northwestern part of Libya between longitudes
12°54′ 04″ E and 13°26′ 38″ E and between latitudes 32°36′
18″ N and 32°54′ 17″ N, and occupies a total land area of
approximately 1143.73 km2. The Tripoli metropolitan area
includes the districts of Tripoli Center, Hey Alandalus,
Tajoura, Janzur, Kaser Ben Ghashir, Alswani, AinZara,
AbuSlim, and Suq Aljumma (Fig. 4.1).

Regarding urban sprawl, the Urban Planning Agency
reported in 2009 that citizens generally demanded better
housing and larger land to build their houses. Those areas
that can accommodate such demands are generally situated
in the peripheries of urban areas and mostly comprise agri-
cultural land within the agglomeration boundary. Sprawl can
easily occur in areas without careful land use planning and
with cheap personal transportation. Sprawl is not a land use
category, but a settlement type that may take several forms.
In Tripoli, sprawl may be observed in housing, industries,
commercial activities, and services that are mixed with the
old agricultural landscape. Sprawl may be either legal or
illegal, but the category in itself is very extensive and
all-encompassing. Economy is also an important factor in
the spread of suburban sprawl. The lands near the city center
have very high prices, while those located far away from the
center have very modest prices. Numerous industrial enter-
prises are not welcomed in Tripoli, and many young couples
cannot afford a site or a house in the city. However, couples
with relatives who own farmlands may build and expand
such lands to meet their increasing economic and family
needs.

Tripoli was selected for this case study because of its
significant growth over the last decades, but the urban
growth patterns of this city were never analyzed in the lit-
erature. Tripoli serves many functions, such as the political
center; the economic, industrial, and service capital; and the
communicator of Libya with other countries. Despite the
urban plans of the Libyan government, Tripoli has witnessed
a rapid yet haphazard urban growth over the past decades.
Corruption, political unrest, and economic conditions may
have affected urban planning and subsequently resulted in
massive urban sprawl. Therefore, the main concerns for
Tripoli include its fast and uncontrolled urban expansion and
the conversion of fertile green lands and environmental
reserve areas, both of which have resulted in socioeconomic
and physical problems.

4.2.1 Data Collection and Preprocessing

Remotely sensed and GIS-prepared data were used in this
study (Table 4.2). Unfortunately, the available data are
limited in quantity and the images cannot be collected for
equal periods.

Several approaches have been developed and used for the
preparation, processing, and extracting of information from
remotely sensed data. Moreover, the selection of algorithms
or methods to be applied depends on the objective of the
study. For this study, the ENVI and ARC/INFO GIS soft-
ware packages were used for image processing, generating
classified land cover/land use maps, spatial analysis, and
map production.
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Fig. 4.1 The location map of
Tripoli metropolitan (Libya)

Table 4.2 Collected data and
sources

Data Source of data

Landsat image 1984 (30 m resolution) Biruni remote sensing center

Landsat image 1996 (30 m resolution) Biruni remote sensing center

Spot 5 image 2002 (2.5 m resolution) Biruni remote sensing center

Spot 5 image 2010 (5 m resolution) Libyan centre for remote sensing and space science

Roads network (shape file) Urban planning agency, Libya

Population data census General information authority, Libya

Digital contour map (5 m interval) Biruni remote sensing center
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The collected images were standard products that were
radiometrically and geometrically corrected. However,
image supplying agencies adopt different standards, thereby
resulting in low accuracy of the image overlay. To address
this problem, the images were rectified and georeferenced
during preprocessing to achieve a highly accurate image
overlay. The varying spatial resolutions of the images used
in this study were corrected by resampling the
high-resolution images to match the low-resolution ones.
Given that the resampling process reduces the spatial details,
the pixel sizes of the images were unchanged to avoid
changing the precision of the classification process with
various radiometric spectral and spatial resolutions.

A vector map of the Tripoli metropolitan area was used
for clipping images. The maximum likelihood supervised
classification method was applied to the images during the

classification process. All images were then classified by
selecting precise samples (78 polygons) as training area
samples to present different classes for each individual
image. Three classes, namely, built-up (impervious sur-
faces), non-built-up (agriculture), and restricted or excluded
areas, were investigated. The classified images were then
resampled to the same spatial resolution (30 m � 30 m), in
which each map contains 1,816,750 cells. The pixel size was
selected to avoid reducing the spatial details of the images.
Therefore, resampling was conducted after the image
classification.

For modeling input, thematic raster maps of all variables
were prepared and calculated in the Arc-Info GIS environ-
ment, and were presented in raster maps with grid cell sizes
of 30 m � 30 m as shown in Figs. 4.2, 4.3, 4.4 and 4.5. The
independent input data included the following:

Fig. 4.2 Thematic raster maps of
independent variables: a Distance
to active economy centers,
b Distance to CBD, c Easting
coordinate, d Northing
coordinate, e Slope, f Restricted
areas, g Distance to nearest
urbanized area, h Population
density, i Distance to educational
area, j Urban area, k Distance to
roads, l Distance to coastal area
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• Distance to active economy centers
• Distance to central business districts (CBDs)
• Easting coordinate
• Northing coordinate
• Slope
• Restricted areas
• Distance to nearest urbanized area
• Population density
• Distance to educational area
• Urban area
• Distance to roads
• Distance to coastline.

All prepared data were converted to ASCII and IDRISI
formats for further analysis and simulation using the IBMSPSS
Statistics 20, IDRISI-Selva, and FRAGSTATS software.

4.2.2 Zones Division to Assess Urban Expansion
and Sprawl

Most urban application processes and projects are based on
zonal format. Urban sprawl assessments cover many dif-
ferent zone divisions, such as circular buffer zones for the
city center, buffer zones for roads, eight-pie sections to
represent eight directions, designed transects along the axes
of urban expansions, and zone division based on admin-
istrative boundaries (Bhatta et al. 2010a; Sarvestani et al.
2011; Yue et al. 2013). Given that the entropy method does
not depend on the type and number of divisions or the
zoning manners of the study area, we applied two
approaches to assess the urban expansion patterns of the
study area. The first approach is based on the administra-
tive boundaries of districts in the study area (Fig. 4.1),
while the second approach divides the study area into five

Fig. 4.2 (continued)
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Fig. 4.3 Urban expansion from
1984 to 2002

Fig. 4.4 Urban expansion from
1996 to 2002
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pie sections to consider and assess urban sprawl direction.
These sections are then divided into multiple zones to
consider the effect of distance from CBD and to determine
the sprawl in each zone, as shown in Fig. 4.6.

The aforementioned approach provides additional details
on the urban growth process and its patterns in the entire
study area, for each zone, and at different periods. How-
ever, the central point of Tripoli, which matches the CBD
and represents the starting point of the urbanization process
along the history of the study area, had already been
determined. Consequently, a 51-zone vector map of the
study area was used to clip the classified imageries and to
divide the area into 51 zones (Fig. 4.6). The urban growth
and built-up area for all zones and for each temporal
point were calculated with the respective zone borders by
multiplying pixel size by the number of pixels in each
zone.

The following sections present different approaches for
spatially analyzing and assessing urban development. These
techniques identify whether the urban expansion process and
its patterns can be considered either as sprawl or growth.
These assessments provide a clear understanding of urban
growth/sprawl and highlight urban sprawl from different
perspectives.

4.2.3 Built-up Area and Population

The urbanization process (urban sprawl) is among the major
significant drivers of land cover/use change and is mainly
associated with population growth (Barredo et al. 2003;
Weng 2007). Rapid population growth is also considered as
the main factor in urban sprawl and urban spatial problems
(Maktav et al. 2005; Bhatta 2009; Sarvestani et al. 2011).
Urban sprawl is directly related to socioeconomic informa-
tion and population figures. For example, unexpected pop-
ulation growth, which is associated with unplanned
development activities, will result in uncontrolled urban
sprawl with poor infrastructure and economic performance
(Sarvestani et al. 2011). Unplanned development and urban
sprawl occur when the percentage of built-up areas exceeds
that of population growth (Barnes et al. 2001; Soffianian
et al. 2010). Therefore, the population in an area is an
important metric for measuring the urban sprawl process.
The proportion of total built-up areas in the total population
is a simple acceptable measure for identifying and quanti-
fying urban sprawl (Sharma et al. 2012; Sandhya Kiran and
Joshi 2013).

In the case study, the amounts of built-up lands for
districts in four time instances were obtained by clipping

Fig. 4.5 Urban expansion from
2002 to 2010
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the final classified images using the provided vector map of
districts. The quantity of pixels in each district was mul-
tiplied by grid size. The imaging time of some images
deviated from the population census dates (1984, 1995, and
2006). To address this problem, the population data were
interpolated to match the RS data dates. For the 2010
population, the annual population growth rate from 1995 to
2006 was assumed constant. Therefore, the 2010

population was computed based on the 2006 population.
Table 4.3 shows the observed and interpolated population
figures for Tripoli. The built-up area and population data
were used to assess and investigate the urban sprawl pro-
cess and its spatial patterns. The relationships among
built-up area, population, and urban sprawl were analyzed
further to provide a clear understanding of the urbanization
in the study area.

Fig. 4.6 Zone divisions of the
study area

Table 4.3 Total population and
total area (km2) of Tripoli districts

District Year District area

1984 1996 2002 2010

Central Tripoli 132,505 128,270 129,130 130,354 16.62

Suq Aljumma 81,378 103,207 118,124 131,650 44.03

Tajoura 59,575 93,852 110,281 133,677 82.93

AinZara 145,562 184,619 206,501 237,662 256.03

Kasr Ben Ghashir 49,348 66,782 76,829 83,137 274.62

AbuSlim 201,886 212,156 221,280 234,273 137.53

Hey Alandlus 218,317 240,051 240,454 241,029 68.91

Janzour 87,331 126,593 144,369 169,681 109.20

Alswani 13,340 17,396 19,842 23,324 153.86

Total population 989,242 1,172,928 1,266,810 1,384,787 1,143.73

Source General information authority, Libya
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4.2.4 Observed and Theoretical Expected
Built-up Area Expansion

The observed expansion must be compared with the fore-
casted urban expansion to understand the divergence of
urban growth. However, unlike developed countries, devel-
oping countries usually lack clear urban plans or estimations
of urban expansion. Equation (4.1) was used to calculate the
theoretical expected urban growth for all zones in each
period as follows (Almeida et al. 2005):

Ge
i ¼

Gz
t � Gt

t

G
; ð4:1Þ

where Ge
i is the expected urban growth in the zone, Gt

t is the
total growth in three periods in one zone, Gz

t is the total
growth in 51 zones in one period, and G is the total growth
of the study area in all periods.

4.2.5 Urban Expansion Intensity Index (UEII)

In the urbanization process, the expansion differs per region
and direction because of the policy on urban driving factors
and their spatial effects. Such factors include road network,
population density, slope, and economics. The differences in
expansion are referred to as the preference of urban growth.
In this process, the UEII was employed to assess and analyze
quantitatively the differences in urban spatial expansion as
well as to recognize the preference of urban growth in a
certain period (Ren et al. 2013).

The UEII reflects the future direction and potential of
urban expansions as well as compares the speed or intensity
of urban land use change in different periods. UEII values
ranging from 0 to 0.28, 0.28 to 0.59, 0.59 to 1.05, 1.05 to
1.92, and >1.92 indicate slow, low-speed, medium-speed,
high-speed, and very high-speed development, respectively.
The UEII for the entire study area, each temporal span, and
each zone is calculated as follows:

UEIIit ¼ ULAi;b � ULAi;a

t

� �
=TLAi � 100; ð4:2Þ

where UEIIit is the annual average UEII of the ith zone in
period t; ULAi;a and ULAi;b are the quantities of the built-up
area at periods a and b in the (ith) spatial zone, respectively;
and TLAi is the total area of the (ith) spatial zone.

4.2.6 Shannon’s Entropy Model

The entropy technique of Shannon is widely used to study
the urban sprawl phenomenon (Ramachandra et al. 2013).

As a favorable measure of spatial dispersion or concen-
tration, the entropy model can be used to analyze and
assess any geographical variable, reveal the configuration
and orientation of spatial patterns, and investigate spatial
variables within a GIS (Yeh and Xia 2001; Sudhira et al.
2004; Kumar et al. 2007). Previous urban researches have
used this technique to analyze the urban patterns and
identify the urban sprawl of a specific area for a specified
period, but do not consider sprawl direction, sprawl vari-
ation, and distance to CBD. The level of urban sprawl is
represented by the entropy value, which ranges from 0 to
logeðnÞ. A value of 0 indicates compact distribution in an
urban area, while a value nearer to logeðnÞ indicates dis-
persed distribution. In other words, high entropy values
indicate sprawl occurrence (Yeh and Xia 2001; Sandhya
Kiran and Joshi 2013).

In this study, the absolute value of entropy Hn was
determined as follows:

Hn ¼
Xn
i

Piloge
1
Pi

� �
; ð4:3Þ

where Pi is the percentage of the variable in the ith district
(i.e., percentage of built-up lands in each district) obtained
by dividing the proportion of built-up lands in the ith district
by the total proportion of built-up areas in all districts, and
n indicates the number of districts (n = 9).

The relative entropy as demonstrated in Eq. (4.4) can
be obtained by dividing the calculated absolute Shannon’s
entropy by loge nð Þ. The relative entropy value always
varies between 0 and 1, with a value of 0 denoting compact
distribution and values near 1 indicating dispersed
distribution.

Hn ¼
Xn
i

Piloge
1
Pi

� �
=loge nð Þ ð4:4Þ

To evaluate the urban sprawl process, the change rate of
urban dispersion (change in sprawl) between two periods
was calculated as follows:

DHn ¼ Hn t2ð Þ � Hn t1ð Þ; ð4:5Þ
where DHn denotes the variation of entropy values between
two periods, Hn t1ð Þ is the relative entropy at time t1ð Þ, and
Hn t2ð Þ is the relative entropy at time t2ð Þ.

Using the proposed zone division approach, we recalcu-
lated the relative entropy values using Eq. (4.4), where Pi is
the probability or percentage of the variable occurring within
zone i (i.e., percentage of urban area in the ith zone deter-
mined by the urban area in the ith zone divided by the zone
area), and n is the total number of zones (n = 51).
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4.2.7 Degree of Freedom Model

Pearson’s chi-square was used to check the degree of free-
dom between pairs of variables and to describe the same
class of land cover change (Almeida et al. 2005; Bhatta et al.
2010a). In this study, the degree of freedom for urban growth
was calculated as follows:

ðObserved Growth� Expected rowthÞ2
Expected Growth

ð4:6Þ

Pearson’s chi-square statistics estimates the freedom or
degree of variation between the observed and expected
urban growth. The chi-square statistics for each time period
was computed using Eq. (4.7) as follows:

Dt
i ¼

Xn
i

Dz
i ; ð4:7Þ

where Dt
i is the degree of freedom of growth in the ith

period, and Dz
i is the degree of freedom of growth for the ith

zone in the same period.
The degree of freedom for each zone was computed using

Eq. (4.8) as follows:

Dz
i ¼

Xn
i

Dt
i ð4:8Þ

The overall degree of freedom of the study area was
calculated by summing the degrees of freedom across all
periods or zones. The lower limit of the chi-square was 0,
which indicates that the observed and expected growth
values are equal.

4.2.8 Landscape Metrics

Numerous landscape metrics were developed, tested, and
used for landscape structure and composition analysis in the
last three decades (Turner et al. 1989; Yeh and Huang 2009).
Generally, the urban sprawl process changes and modifies
the landscape compositions over time by increasing land-
scape fragmentation and generating small urban patches. In
this study, six landscape metrics analyses were performed to
investigate and analyze the spatiotemporal patterns of urban
sprawl in the study area and to assess sprawl from different
prospective. The applied landscape metrics, which measure
clumpiness, aggregation, complexity, and level of dispersion
of urban area classes in the study area landscape (Tau-
benböck et al. 2009), include edge density (ED), largest
patch index (LPI), shape index (SHAPE), landscape shape
index (LSI), patch density (PD), and Simpson’s evenness
index (SIEI). For urban landscape analysis, the FRAG-
STATS Version 4 (McGarigal et al. 2002) statistical package
was employed to calculate all landscape quantitative mea-
sures as shown in Table 4.4.

Table 4.4 Description of
landscape metrics used to
investigate and quantify urban
sprawl patterns in Tripoli
(McGarigal et al. 2002)

Landscape metrics Description

Edge density (ED) ED ¼ E
A ð10; 000ÞED� 0, without limit (in hectares)

E = total length (m) of edge in landscape
A = total landscape area (m2)

Largest patch index
(LPI)

LPI ¼ MAXðaijÞ
A ð100Þ; 0\LPI� 100%

aij = area (m2) of patch ij
A = total landscape area (m2)

Shape index (SHAPE) SHAPE equals patch perimeter (m) divided by the square root of patch area
(m2), adjusted by a constant to adjust for a square standard
SHAPE ¼ 0:25Pijffiffiffiffi

aij
p SHAPE � 1, without limit

SHAPE = 1 when the patch is square and increases without limit as patch
shape becomes more irregular

Landscape shape index
(LSI)

LSI ¼ 0:25Effiffiffi
A

p ; LSI � 1, without limit

E = total length (m) of edge in landscape; includes the entire landscape
boundary and some or all background edge segments
A = total landscape area (m2)
LSI increases without limit as landscape shape becomes more irregular and/or
as the length of edge within the landscape increases

Patch density (PD) PD ¼ N
A ð10; 000Þð100Þ;PD[ 0, constrained by cell size

N = total number of patches in the landscape
A = total landscape area (m2)

Simpson’s evenness
index (SIEI) SIEI ¼ 1�

Pm

i¼1
P2
i

1� 1
mð Þ ; 0 � SIEI � 1

Pi = proportion of the landscape occupied by patch type (class) i
m = number of patch types (classes) present in the landscape, excluding the
landscape border if present
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4.3 Results and Discussion of Urban Sprawl
Assessment for the Tripoli Metropolitan
Area (Libya)

This section presents the results of investigating and
assessing urban sprawl using the applied approaches, and
then discusses these findings in detail with respect to the
study area.

4.3.1 Urbanized Area and Urban Growth

The satellite images were classified into non-built-up and
built-up areas for the four temporal dates. Figure 4.7 shows
the abstracted and simplified visual maps of urban extents at
specific periods for the study area. The classified maps were
assessed using the confusion matrix method. Real ground
reference polygons were compared with the classified output
maps to assess accuracy. The classified maps for 1984, 1996,
2002, and 2010 obtained accuracy values of 91, 93.2, 95.7,
and 94% as well as Kappa coefficient values of 0.89, 0.93,
0.94, and 0.93, respectively. Figure 4.7 shows that the urban
expansions of Tripoli have different signatures. Specifically,
some zones have very dense built-up areas, while wide open
spaces are present between urbanized areas. In some regions,
the edges between urban and nonurban areas are very clear,
whereas the two classes are very near each other in other
areas. The signatures of the urbanization process in each
district differ across periods and behaviors. The infill of the
non-built-up areas between previously urbanized areas,
which leads to an increased compactness level, can also be
observed. Based on the classified images, the study area
demonstrates dispersed growth, especially over the last
decade.

Quantitative measures that sum up the urban growth
properties of the study area are necessary to illustrate dif-
ferent urban patterns, compare districts/zones, and identify
how the districts/zones transform over time. The amount of
built-up areas was used as a primary quantitative measure
and a direct indicator of urban development patterns. The
percentages of built-up areas were computed for each district
and for all classified images as shown in Fig. 4.8.

Figure 4.8 shows the concentration percentages of
built-up areas in each district. A noticeably large concen-
tration rate of built-up areas was observed in Central Tripoli,
Suq Aljumma, Hey Alandalus, and AbuSlim. Central Tripoli
and the adjacent zones particularly had an extremely high
concentration rate. The urban growth rate in these districts
was also lower than that of other districts because of built-up
area saturation. These results indicate the controlled urban
growth in these districts.

The percentages of built-up areas in Tajoura, Janzour,
AinZara, Kaser Ben Ghashir, and Alswany were lower
than 20% in 1984, 1996, and 2002. However, these dis-
tricts had high urban expansion ratios between 2002 and
2010. The percentages of urban areas in these districts
remained lower than 50%, which indicated the higher
availability of urban growth lands in these districts than in
other districts. The urban expansion rates in these districts
almost doubled in 2010, which is highly alarming because
of the high urban growth ratio and clear dispersion growth
patterns. The overall urban expansion rate of the study
area continuously increased, especially over the last decade
during which the growth rate exceeded 40% of the urban
extent in 2002. These findings suggest the urgent need to
control the dispersed urban sprawl by applying a suitable
urban plan and a wise urban policy; otherwise, the situa-
tion will worsen.

The proposed division map of the study area (Fig. 4.6) is
used to calculate the amount of built-up areas in each zone
and to highlight the effect of direction and distance to CBD
on urban expansion quantities in four periods (1984, 1996,
2002, and 2010). The column graphs of the built-up areas in
each zone (Fig. 4.9) can help identify the quantity of
changing built-up areas in each zone. Figure 4.9 provides
clear basic information on the built-up areas in Tripoli and
how these areas change over time in different zones and
directions. Those zones located very near the CBD had very
low urban development, while those zones that included
urban fringes witnessed the highest urban expansion. This
dramatic urban area increase was recorded in 2010. The
increasing distance between CBDs and urban fringes
decreases urban development because a low urban devel-
opment expands in scattered mode. The expansion rate of
urbanized areas increases dramatically along the history of
the study area. Tripoli witnessed a very high urban expan-
sion ratio over the past decade. Given that these findings
reflect the rapid increase of urban expansion, the study area
requires further analysis.

4.3.2 Population and Built-up Area Growth
Rates

Population growth results in the expansion of built-up
areas, that is, the expansion rate of built-up areas is inter-
related to population growth rate. Therefore, urban sprawl
can be determined by assessing both population and
built-up area growth rates. Figure 4.10 illustrates the
growth ratio of built-up areas and population in three
periods. The expansion rate of built-up areas was con-
stantly higher than the population growth rate, which was
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extremely high in the last decade. This finding contradicts
that of Acioly and Davidson (1996), who found that cities
in developing countries were becoming more compact
despite their decreasing population growth rate. In the case

of Tripoli, even if the study area demonstrated a tendency
toward compactness between 1996 and 2002, the
metropolitan area showed a general tendency toward high
dispersion, which is an indicator of higher urban sprawl.

Fig. 4.7 Extent of built-up area
in different years: a 1984, b 1996,
c 2002, and d 2010
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4.3.3 Relationship Between Built-up Area
and Population Proportions

The sprawl of urbanization patterns can be measured and
quantified as the percentage of built-up areas and population

in a zone. District population comprises the non-built-up
lands in the same district. As an indicator of built-up land,
the percentages of built-up areas and population in each
district were related and used as sprawl measures instead of
population data. These percentages were computed by

Fig. 4.7 (continued)
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dividing the amount of built-up areas and population in each
district by the overall built-up area and population of the
Tripoli metropolitan area, respectively. The interchangeable
relationship between urban growth and population was
evaluated by subtracting the population ratio from the
built-up area ratio in each district. Figure 4.11 shows that the
differences range between −1 and 1, where a value of 0
indicates moderate conditions.

Higher positive values indicate a higher built-up area
consumption per capita, which in turn indicates better
environment and urban services. Meanwhile, higher negative
values indicate population crowding, which may produce
negative effects at the social, economic, and urban levels.
Figure 4.11 shows that the Central Tripoli district has a more
compact urban growth pattern than the other districts. Hey
Alandalus, Suq Aljumma, AbuSlim, and Tajoura
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demonstrated high urban land consumption before 1996, but
such consumption decreased thereafter, indicating the
increasing compactness of these districts. In comparison,
AinZara, Kaser Ben Ghashir, Janzour, and Alswani
demonstrated very low urban land consumption between

1984 and 1996, but showed a remarkable increase in their
percentage of built-up areas between 2002 and 2010, thereby
reflecting the gradual increase of the urban sprawl pattern.

Land absorption rate evaluates and measures urban
expansion and sprawl as a process based on the relationship
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between built-up area and population. The land absorption
rate technique applied in this research was based on the
evaluation of changes in built-up area and population data
within a defined period. Land absorption rate was calculated
as follows:

Land absorption rate ¼ A2 � A1

P2 � P1
; ð4:9Þ

where P1 and P2 denote the population for the first and
second periods, and A1 and A2 denote the quantity of
built-up areas for the first and second periods.

Figure 4.12 presents the land absorption rate analysis
results. The Central Tripoli and Suq Aljumma districts
showed a moderate level of urban land absorption rate
across their urban expansion history. In other words, these

districts faced a compacted urban growth process than an
urban sprawl because of their controlled growth and ver-
tical urban expansion. However, the other seven districts
witnessed increasing urban land absorption rates especially
in the last decade, which indicated their rapid uncontrolled
urban expansion (i.e., increase of urban sprawl). These
findings reveal the deteriorating situation of the urban
process in the study area, thereby warranting the attention
of urban planners. Hey Alandalus had a remarkable
urban land absorption rate that reflects high sprawl as an
urban process. However, given that assessing urban
expansion as a pattern may yield different results
(Fig. 4.11), urban growth must be assessed both as a pro-
cess and pattern to obtain a comprehensive understanding
of urban expansion.
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The results in Figs. 4.11 and 4.12 complement each other
and can collectively explain the relationship between
urbanization and population. Evaluating the urban growth
process of the Tripoli metropolitan area (Fig. 4.13) reveals a
large increase in the urban land absorption rates in the study
area between 2002 and 2010, thereby indicating a high
overall sprawl.

4.3.4 Detected and Expected Theoretical Urban
Expansion

The divergence of urban growth for each zone and temporal
period can be easily identified (Fig. 4.14) by subtracting the
calculated theoretical expected urban growth from the
observed growth. Positive values indicate that the actual
growth is higher than expected, while negative values indi-
cate that the actual growth is lower than expected. The
magnitude of the difference also reflects the level of

variance. The observed urban expansion in several zones
(especially at built-up area fringes) significantly deviated
from the expectations, and such deviation remained associ-
ated with urban growth and continued to increase over time.
Higher deviations reflect the freedom and independence of
the urban expansion process, such that a high deviation
indicates that the studied variable is independent from other
similar variables. These findings indicate the occurrence of a
clear urban sprawl in most zones far from the CBD in all
directions, especially between 1996 and 2010.

4.3.5 Intensity of Urban Expansion and Sprawl

Table 4.5 shows that the study area has an expansion
intensity index of 0.66, which is considered moderate urban
expansion speed. However, its UEII increased dramatically
from 0.35 in 1984–1996 to 1.28 in 2002–2010, thereby
indicating an alarming increase in urban sprawl occurrence.
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Figure 4.15 shows that by having the lowest UEIIs, zones
near the CBD have relatively stable expansion rates.
Meanwhile, zones that included built-up area fringes had
very high UEIIs, thereby suggesting their high sprawled
urban expansion. However, the UEIIs in most urban
expansion directions of the study area decreased after
exceeding the urban area fringes, thereby indicating a low
urban expansion.

4.3.6 Shannon’s Entropy of Urban Expansion
Based on District Boundaries

Shannon’s entropy method was applied to identify, quantify,
and measure the occurrence of urban sprawl in the study area
based on the boundaries of its nine districts. Table 4.6 and

Fig. 4.16 show that the entropy values are always higher
than the middle point of loge (n) (i.e., 1.099). A very high
entropy value also was recorded in 2010. Therefore, the
Tripoli metropolitan area has an overall high dispersed urban
expansion or urban sprawl.

Figure 4.17 shows the tendency of the urban expansion
process. The study area experienced a clearly progressing
urban sprawl process, and the positive change of DHn

indicates the increasingly uncontrolled dispersal pattern of
the urbanization process. These findings highlight the
urgent need for sustainable urban growth control and
planned urban management. Moreover, cities in developing
countries do not necessarily become more compact with
decreasing population growth rate.

Instead of predicting the occurrence of urban expansion,
urban planners need to prioritize the measurement of urban

Fig. 4.14 Difference between observed and expected built up area growth (in km2): a in zones within the first direction, b in zones within the
second direction, c in zones within the third direction, d in zones within the fourth direction, and e in zones within the fifth direction
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Fig. 4.14 (continued)
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growth and the identification of urban requirements to be
accomplished in preparation for future urban demands.
Shannon’s entropy model can guide the identification and
measurement of the likely changes that may result from
urban history. This model can also be applied to each
district for a more specific level of research. Given that
different urban growth patterns may result from the varying
intensities of compactness of each district, a single policy
for the entire metropolitan area will not have the same
degree of efficiency as that for each district.

4.3.7 Shannon’s Entropy of Urban Expansion
and Effect of Direction and Distance
to CBD

The relative Shannon’s entropy technique was applied based
on the proposed 51-zone division (Fig. 4.6). The effects of
expansion direction and distance to CBD in the study area
were examined. The analysis results are presented as follows.

Table 4.7 shows that the overall relative entropy values in
all years are much larger than the half-way point (i.e., 0.5).

Table 4.5 Urban expansion
intensity index of time periods

Time period UEII

1984–1996 0.35

1996–2002 0.45

2002–2010 1.28

Fig. 4.15 Variation of UEII and
Degree of freedom in different
growth directions: a in the first
direction, b in the second
direction, c in the third direction,
d in the fourth direction, and e in
the fifth direction
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Table 4.6 Shannon’s entropy
values for different time periods

1984 1996 2002 2010 loge(n) loge/2

Absolute entropy value 1.478 1.628 1.737 1.936 2.197 1.099

Relative entropy value 0.673 0.741 0.791 0.881 – –

Fig. 4.15 (continued)
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Therefore, the urban expansion in Tripoli is sprawling, and
the sprawling trend is increasing. In this case, the general
urban growth process requires further control and a clear
urban planning policy.

To understand and assess the urban sprawl process in
each zone and direction across the history of the study area
(1984–2010), the historical relative entropy values were
subtracted from the recent relative entropy values in each
zone. Higher positive values indicate an increasing urban
sprawl and a highly dispersed urban growth, while higher
negative values indicate a decreasing sprawl and increased
compactness in a zone or crowded urban area. Figure 4.18
clearly shows the variation of relative entropy and spa-
tiotemporal urban sprawl behaviors in the study area. The

change rate of relative entropy values in the first direction
were negative in Zones 1, 2, 3, and 4 across all three periods,
but the opposite situation was observed in Zones 5–11,
which demonstrated positive change rates (i.e., sprawl
increase). The highest sprawl growth rate was clearly
observed between 2002 and 2010, especially in Zones 5–8.
In the second direction, Zones 12–14 became more compact,
while the remaining zones in the second direction witnessed
increased sprawl rates at all times. A dramatic sprawl
increase was also recorded in Zones 15–17. However, in the
third direction, Zones 22 and 23 became more compact
along with time. The other third-direction zones almost had
similar sprawl increase rates between 1996 and 2002, but
Zones 24–27 witnessed a remarkable sprawl increase
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Fig. 4.16 Absolute and relative
Shannon’s entropy values in
different time periods
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Fig. 4.17 Shannon’s entropy
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Table 4.7 Overall relative Shannon’s entropy of study area in different years

Year 1984 1996 2002 2010

Entropy (Hn) 0.74 0.79 0.83 0.90

84 A.A.A. Al-sharif et al.



-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0 1 2 3 4 5 6 7 8 9 10 11 12

1984 to 1996

1996 to 2002

2002 to 2010

(a)

-0.01

-0.005

0

0.005

0.01

0.015

11 12 13 14 15 16 17 18 19 20 21

1984 to 1996

1996 to 2002

2002 to 2010

(b)

Zone 

-0.008

-0.006

-0.004

-0.002

-1E-17

0.002

0.004

0.006

0.008

21 22 23 24 25 26 27 28 29 30 31 32

1984 to 1996

1996 to 2002

2002 to 2010

(c)

Fig. 4.18 Variation of the
sprawl in different growth
directions with the respect to each
zone: a in the first direction, b in
the second direction, c in the third
direction, d in the fourth
direction, and e in the fifth
direction

4 Urban Sprawl Assessment 85



between 2002 and 2010. The urban sprawl trends in the
fourth direction are generally similar to those in the second
and third directions. However, Zones 34–36 showed the
largest entropy value between 1984 and 1996, and this value
gradually decreased in the zones located further away from
the CBD. Nonetheless, the fifth direction demonstrated a
different sprawl tendency than the other four directions.
Specifically, all zones within the fifth direction recorded the
highest urban sprawl rate between 1984 and 1996 except
Zone 44, which was adjacent to the CBD. This rate of sprawl
evidently decreased to its lowest point for Zones 47–51

between 1996 and 2002. From 2002, the change rate of
entropy value increased yet remained lower than the values
recorded between 1984 and 1996. The entire study area
showed a similar urban sprawl trend, but the analysis results
illustrate that CBD-adjacent zones have the lowest relative
entropy change rate, especially between 2002 and 2010.
Therefore, these urban zones have a high compactness.
Given that the urban sprawl rate increases along with
increasing distance from the CBD, zones with high com-
pactness, including the urban fringes, have an extremely
high sprawl increase rate.
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Thereafter, the sprawl rate decreased and reached a very
low value in those zones near the border of the study area.
The effect of direction on the urban sprawl process in Tripoli
slightly differed in the first, second, third, and fourth direc-
tions, and only the fifth direction showed a different fluctu-
ating sprawl change. The sprawl rate reached its highest
value between 1984 and 1996, declined to its lowest value
between 1996 and 2002, and increased again between 2002
and 2010, but remained lower than that recorded during the
first observed period. Therefore, the study area has clearly
experienced a general urban sprawl trend in the majority of
its directions and zones.

However, these urban sprawls differ from one another and
are influenced by sprawl direction and distance from CBD.
This section explained how the relative Shannon’s entropy
model could be implemented to investigate the sprawl of
urbanization in the Tripoli metropolitan area and demon-
strated the relationships among urban sprawl, sprawl direc-
tion, and distance from CBD in different periods to provide
clear and specific spatiotemporal descriptions of such
phenomena.

4.3.8 Degree of Freedom of Urban Expansion

The degree of freedom of the urbanization process was
estimated to offer another perspective toward urban sprawl.
Pearson’s chi-square method assesses the deviation of
actual urban expansion from the planned or expected
growth, with a high deviation indicating the occurrence of
urban sprawl. Table 4.8 shows a high degree of freedom
across all three periods. The study area has an extremely
high overall degree of freedom of 52.41, thereby indicating
a very high difference in its observed and expected urban
expansion. Figure 4.15 shows the varying degrees of free-
dom in each zone, with Zones 46 and 42 demonstrating the
highest and lowest degrees of freedom. A higher degree of
freedom generally suggests the need for consistency in
planning, managing, and controlling urban growth. A zone
with high degrees of freedom may experience an unbal-
anced growth over time, whereas a period with high
degrees of freedom indicates a high inter-zone inconsis-
tency in urban growth. Nonetheless, a high degree of
freedom cannot be directly considered as sprawl, but as
disparity in urban growth.

4.3.9 Landscape Metrics and Urban Sprawl
Detection

Figures 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 show the rapid
urban expansions in the Tripoli metropolitan area between
1984 and 2010. The presence of sprawl was identified and
assessed quantitatively using the different definitions of
urban sprawl and the analysis results from the applied
landscape metrics.

As shown in Figs. 4.19, 4.20, 4.21, 4.22, 4.23 and
4.24, a synoptic analysis of the implemented spatial
metrics offers an overall picture of urban sprawl spatial
patterns. The SIEI measure illustrates that the overall
diversity level of the study area increased between 1984
and 2010, and this same measure clearly increased
between 2002 and 2010. The landscape metrics of PD and
ED increased remarkably in the entire studied landscape.
Such large increases reflect the increasing number and
irregular formations of isolated urban patches as well as
indicate a high urban fragmentation and the increasing
trend of the overall urban sprawl process. However, the
overall LPI metric continuously decreased since 1984,
making this decrease the largest to be recorded in the last
decade (i.e., the largest urban patch in the study area
becomes progressively small) and another indicator of
increased urban sprawl.

The landscape metrics of LSI and SHAPE continuously
increased according to the urban expansion history of the
study area. Such an increase indicates irregularity in the
urban area, that is, Tripoli may be currently facing an
unplanned urban growth. Figures 4.19, 4.20, 4.21, 4.22,
4.23 and 4.24 evaluate the urban sprawl patterns in each
district to identify which district has a higher sprawl level.
The PD analysis results reveal that Central Tripoli has a
decreasing PD with the smallest decrease rate being recorded
between 2002 and 2010, thereby increasing the compactness
of this zone. Hey Alandalus and Janzour also showed
decreasing urban patch densities in 2010, while the other
seven districts showed different behaviors and witnessed
high occurrences of dispersed urban clusters. The LPI
analysis results demonstrated that Central Tripoli manifested
an increased LPI at all times. In 1984, Suq Aljumma and
Hey Alandalus recorded the highest LPI, but such value
declined between 1996 and 2002 and then increased again
after 2002, thereby reflecting the high urban compactness in

Table 4.8 Degree of freedom of
time periods

Time period Degree of freedom (Dt
i)

1984–1996 10.77

1996–2002 5.22

2002–2010 36.43
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these districts. The other districts faced a dramatic decrease
of LPI values. Therefore, the occurrence of urban sprawl is
clear and easily detectable.

ED, LSI, and SHAPE confirm the presence of highly
fragmented complex urban patches in Hey Alandalus,
AbuSlim, Tajoura, AinZara, Janzour, Kaser Ben Ghashir,
and Alswany. These metrics gradually increased between
1984 and 1996, but their trends significantly differed after

1996. The remarkable increase in the ED, LSI, and SHAPE
values indicated deteriorating urban expansion patterns and
uncontrolled sprawl presence. The SIEI measure also
recorded extremely high diversity values in most districts
especially in 2010, except in Central Tripoli, Suq Aljumma,
and Hey Alandalus. This result confirms the findings of
other landscape metrics analyses and can be used as strong
evidence of urban sprawl.
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4.4 Conclusion

This chapter utilized remotely sensed data and GIS to ana-
lyze the urban expansion process and its patterns in Tripoli.
This study focused on the spatial patterns and extents of
urban growth change in the Tripoli metropolitan area from
1984 to 2010, and the findings could be used to direct the
urban plans and urbanization policies for Tripoli. Urban
planners need to measure urban expansions and determine
the urban requirements to be accomplished in preparation for
future urban demands. The identified models can also be
used to guide the identification and measurement of changes
that may result from urban history.

This study successfully highlighted and discovered the
spatiotemporal urban expansions patterns in the Tripoli
metropolitan area. The overall urban development of Tripoli
increased remarkably after 2002 when the growth rate of
urbanized lands exceeded 40% of the existing urban areas.
Some districts, such as Central Tripoli, Suq Aljumma, and
Hey Alandalus, had obvious concentrations of built-up areas
and low growth ratios. However, the urban growth process
in the study area requires a wise urban management plan to
control the urgent demands of urban lands. Given that the
districts of Tripoli had different urban growth ratios and
urban land concentrations, more than one urban develop-
ment policy should be implemented because a single urban
policy for the whole study area will not be as effective as that
for all area districts.

The findings are summarized as follows:

• The advantages and significance of the analytical tools
are based on the combinations of population and built-up
area data for urban expansion evaluations. Such a simple
analysis tool is a very good method for identifying and
measuring urban sprawl.

• The land absorption rate is generally increasing, which
indicates that the urban area growth rate exceeds the
population growth rate. This result signals the occurrence
of urban sprawl. The last decade also witnessed extreme
levels of consumption rate.

• To increase the compactness of the Tripoli metropolitan
area, the quantity of urban lands absorbed by population
increase should be decreased by adopting vertical urban
growth plans.

• The observed urban expansion in most zones of Tripoli
obviously deviated from the expected theoretical urban
growth (especially at built-up area fringe zones). This
outcome reflects the uncontrolled urbanization and the
independence of urban expansion.

• The UEII reflected the probable future direction and
potentials of urban development, and compared the speed
or intensity of urban land use change across different
periods. The intensity and speed of urban growth
increased across the urban history of the study area, and
the intensity remarkably increased after 2002 (i.e., very
rapid growth). The urbanization processes in most
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directions showed inconsistent growth intensities (i.e.,
differences in uncontrolled growth). However, the overall
urban intensity index indicated a moderate urban
expansion process, which serves as a favorable indicator
of the possibility of accommodating and managing
probable future expansions before the occurrence of a
deteriorating situation.

• Urban sprawl was identified and quantified by applying
Shannon’s entropy method to assess Tripoli urban
growth (as a process and a pattern) at different analysis
levels (periods, zones, and directions). The two approa-
ches used in each zone division showed an increased
overall sprawl in the study area in all periods. The
51-zone division approach provided better insights into
the urban expansion process, illustrated the urban sprawl
variation in each direction and zone, and highlighted the
effect of distance to CBD.

• The urban growth in the study area showed an extremely
high overall degree of freedom. The highest level of
freedom was observed between 2002 and 2010. The
varying degrees of freedom across the divided zones
showed the dispersed unbalanced urban growths and
emphasized the need for consistency in planning.

• The assessment landscape metrics quantitatively assessed
the dispersion, aggregation, diversity, complexity, and
shape of urban areas. All the applied metrics demon-
strated clear and uncontrolled fragmented urban pattern
and urban sprawl (i.e., increased number of non-uniform
dispersed small urban patches).

These findings demonstrated the urban dispersion and
sprawl for the Tripoli metropolitan area (i.e., the sprawl
increases with time). Furthermore, these findings show that
cities in developing countries require highly compact
development scenarios to achieve sustainable urban devel-
opment principles.
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5Urban Compactness Assessment

Saleh Abdullahi and Biswajeet Pradhan

5.1 Background

A compact city is well recognized as one of the most sus-
tainable urban forms. However, the most important step in
implementing this objective for a specific urban area is to
evaluate the existing compactness to realize the current sit-
uations of urban form. The concept of compactness is related
to the form and arrangement of urban features in urban areas
such as spatial design and distribution of land use categories
or transportation network. This definition relates urban
compactness only to physical properties of an urban system.
However, urban compactness is also related to human
activities and the living behavior of the local residents of an
urban region. City compactness is evaluated through
self-sufficiency and independence from external forces
(Burton 2002). It can also be defined as a measure for
evaluating the travel behavior of residents of a community to
meet their daily requirements, such as working, shopping,
entertaining, and others. Compactness assessment is useful
in land use planning to calculate land development demands,
site capacity evaluation, and individual site development.
Burton (2002) summarized the advantages of compactness
assessment based on three main reasons:

(1) to assist research on the effects of compactness, and
thus to guide policy;

(2) to enable the measurement of progress toward sus-
tainability; and

(3) to be used as a planning tool.

However, measuring city compactness by assessing not
only various aspects of the compact city but also its rela-
tion to urban sustainability is not an easy task. Therefore,
no standard and comprehensive method is available for this
assessment, and every study evaluates city compactness
based on the objective of the study and data availability.
For instance, measuring urban density and land use

diversity is usually based on the census tracts, which vary
in size and resolution. Therefore, the assessments are not
comprehensive and reliable enough because the results may
differ according to various zoning manners, cell sizes, and
types of input data. In addition, urban areas are evaluated
usually in terms of zonal or district level, and most of the
previous studies evaluate city compactness in a zonal
manner. However, evaluations based on the predefined
zoning are not sufficiently reliable and comprehensive. Any
changes in the boundary of the zones disturb the area of
the zones, which is very important especially in density
evaluations, such as population, build-up, and residential
densities. Furthermore, on the one hand, these changes
affect the ownership of the community facilities and ser-
vices of each zone. Thus, the result varies depending on the
zoning manner. On the other hand, in large-scale regions,
such as countries, urban compactness is generally measured
based on the cellular concept and the concentration of
built-up cells in a specific area, as discussed by Li and Yeh
(2004), who assessed the urban compactness using entropy
and compactness index methods. Mubareka et al. (2011)
introduced a composite index that characterizes urban
expansion patterns to describe the degree of compactness
of European urban lands. In addition, principal component
and cluster analysis were applied to build the composite
index. Thinh et al. (2002) presented a measuring com-
pactness method based on GIS raster analysis and used
gravitation approach for built-up grid surfaces of 500 m
500 m of the study area. Meanwhile, city compactness in
addition to urban built-up density (which is an implication
of physical compactness) consists of other various aspects
related to functional compactness, which reveals valuable
and useful information about the existing condition of cities
(Turskis et al. 2006; Zagorskas et al. 2007). Therefore, the
evaluation of compactness independent of any assumptions
and local guidelines is effective and can be considered as a
flexible and global approach.
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Statistical analysis is the main approach of these studies
in calculating city compactness. Evaluating city compactness
by applying common statistical techniques to measure, for
example, mixed land use development can only indicate the
land use richness of a local neighborhood (Bhat and Gossen
2004; Van Eck and Koomen 2008; Manaugh and Kreider
2013). However, the distribution pattern, which depends on
the adjacency and relationships among various land use
categories, can be evaluated only through spatial and
mapping-based approaches (Abdullahi et al. 2015b).

A compact city is described according to several con-
cepts, such as free-standing, contained, autonomous, mod-
erately sized, and self-contained (Scoffham and Vale 1996;
Burton et al. 2003). However, among various studies, some
identical terms are used in defining a compact city, namely,
urban density, diversity, and intensity. The high density of
compact development refers to the concentration of activities
(such as living, entertainment, and business) and settlements
(such as residential, commercial, and industrial). The high
land use diversity of a compact city refers to the mixture of
several activities and land use in horizontal or vertical
dimensions. On the one hand, this aspect includes the
proximity of various land use types, which are the destina-
tion of local residents’ daily transportation, such as living,
working, educational, recreational, and other locations. On
the other hand, city intensity is the process of achieving
urban compactness related to the proper distribution of
facilities and services, brownfield redevelopment, urban
regeneration, and others. (Abdullahi et al. 2015a).

5.1.1 Urban Density

Density is considered as an important parameter of urban
development. High-density development is widely proven to
be an effective task for achieving urban sustainability (Car-
ruthers 2002; Arifwidodo 2012). For example, Carruthers
and Ulfarsson (2008), Burton (2002), and Regan (2000)
discussed the advantages of high-density development, high
residential density, and high population density, respec-
tively. Urban density has the following measurement
aspects:

(1) Population density: The number of people within a
standard spatial unit is usually referred to as population
density. In general, population density can be measured
by the number of habitants divided by the total area of
region of interest (Lin and Yang 2006). In a more
sophisticated way, population density is measured by
the number of habitants divided by the area of urban
development land or the number of habitants divided
by only the built-up areas of the region of interest
(residential, commercial, and community facilities

without open spaces such as recreational fields), with a
unit of people per hectare. In the case of the evaluation
of population with respect to housing availability, the
number of habitants is divided by the total number of
residential units in the region of interest.

(2) Residential density: Residential density is normally
calculated by the number of residential units divided by
the total built-up land or total residential and com-
mercial land, with a unit of unit per hectare.

(3) Building density: Building density usually is calculated
by the area of floor space divided by the total built-up
land. This quantity has no unit.

(4) Employment density: This quantity is measured by the
number of employees divided by the total built-up land,
with a unit of people per hectare.

Other density measurement tools are available, such as
floor area ratio or construction density (area of building for
all floors divided by area of land parcel) and per capita
spaces, which are normally calculated and considered in
very specific cases. The aforementioned indicators measure
the density of major urban activities and built-up properties.
The numerators represent the volume of activities, and the
denominators represent the available area of land for the
corresponding activities (Lin and Yang 2006). High values
of these indicators indicate high levels of city compactness.
However, in identifying specific values for urban sustain-
ability or compactness, a question is still raised regarding the
appropriate values (Burton 2002).

5.1.2 Land Use Diversity

The measurement of land use diversity is an important
challenge in terms of evaluating and implementing this type
of development to achieve a compact city. Several studies
are conducted on mixed land use measurement and assess-
ment. For instance, Turskis et al. (2006) and Zagorskas et al.
(2007) used Bayes theorem and complex proportional
assessment, respectively, to evaluate the sustainable city
compactness of Kaunas, Lithuania. Mixed land use devel-
opment was assessed by measuring the ratio of (a) popula-
tion and working places, and (b) population and object of
attraction. The distribution level of nonresidential areas
within residential areas was evaluated in this manner. Burton
(2002) measured the land use diversity of 25 English cities
relative to social sustainability with very detailed input data
such as the number of key facilities for every 100 residents,
number of newsagents for every 10,000 residents, variation
in the number of facilities per postcode, and other data.
Hoppenbrouwer and Louw (2005) discussed mixed land use
development through the use of typology concept for the
Eastern Docklands in Amsterdam. This typology entailed
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four aspects: urban functions, dimension, urban scale, and
urban texture. The proposed typology provided a clear view
of mixed land use properties and facilitated systematic
analysis. Song and Knaap (2004) evaluated the effect of
mixed land use development on residential property value
using regression and statistical analyses. Manaugh and
Kreider (2013) proposed a new technique called “land use
interaction” based on the contiguity of different land use
types. However, this technique is sensitive to street networks
spatially located in different land types. In the next step, the
results of this technique are compared with those of land use
diversity measurement through an entropy index. This
technique is commonly used in the biodiversity measure-
ment, ecology, and communication fields. It can be traced
backed to the work of Shannon (2001). However, this
method only focuses on the diversity of land uses without
considering the land’s distribution and proximity, which can
be a drawback in urban planning applications. Song and
Knaap (2004) reviewed different GIS-based quantitative
measures of mixed land use and tested the effectiveness of
such measures according to proximity to residential build-
ings, proportion of nonresidential land, entropy method, and
balance between jobs and population. Bhat and Gossen
(2004) measured land use diversity on the basis of the
weekend recreational-type choice. Only three land use cat-
egories (residential, commercial/industrial, and other types
of land use) were considered in this measurement. Van Eck
and Koomen (2008) evaluated land use diversity using
entropy theorem and Simpson’s diversity index S. This
technique is based on the probability that two different
polygons within a pixel or a zone have different functions.
Musakwa and Van Niekerk (2013) differentiated mixed land
use from land use frequency and reported that mixed land
use is a more reliable indicator for capturing socioeconomic
costs associated with urban sustainability. Song et al. (2013)
examined several common measures of mixed land use, such
as Atkinson index, balance, entropy, and Herfindahl–
Hirschman indices, to identify the measures’ strengths and
weaknesses. However, most of these techniques are appli-
cable only to two land use types.

In summary, regardless of the quantity assessment of land
use categories through the various aforementioned methods,
mixed land use assessment techniques should be capable of
evaluating spatial aspects as well because the distribution
pattern of various land use types and their relations with one
another are important factors as well.

5.1.3 Urban Intensity

Urban intensity deals with the crowd and livability of an
area. This process can be evaluated through the increase in
population density, development, and land use diversity.

Thus, urban intensity can be assessed through the activeness,
availability, proximity, quality, and quantity of each type of
community facility (such as health, educational, public
transportation, point of interests, open space, and recre-
ational facilities as well as job opportunity) with respect to
the characteristics of the local residents and neighborhoods.
Lin and Yang (2006) measured city intensification through
three observed variables: change in residential density (from
1991 to 2001), change in building density, and change in
employment density. Therefore, 10 years of changes in such
variables in terms of measuring density can be considered in
evaluating city compactness and consequently increase the
process of compactness. On the one hand, in evaluating the
local demands, detailed information on the local population
is required. On the other hand, up-to-date information on
existing facilities, such as capacities, locations, and qualities,
should be available. Evaluating the local population
demands based on some local and/or standard guidelines
such as those proposed by De Chiara (1990) is important
(Table 5.1).

5.2 Methodological Process of Urban
Compactness Assessment with Kajang
City (Malaysia) as Case Study

This section presents the methodological process of city
compactness assessment of Kajang City based on main
compact city paradigms for four temporal land use maps of
this city (2004, 2008, 2012, and 2015). Kajang is a city
located in the eastern part of Selangor province in the
southwestern region of Peninsular Malaysia. This city is
located 21 km away from Kuala Lumpur, which is the
capital city of Malaysia, and covers an area of 60 km2.
Moreover, it has a population of 300,000 (2010). The
current population of Kajang has grown rapidly in the past
few years. The eastern part of this region is mainly
occupied by agricultural and forest lands. Agricultural land
is a high-proportion land use category in this region.
Central and peripheral parts of the city are mainly occu-
pied by community facilities and residential buildings.
However, commercial buildings such as shopping malls
have higher growth in the city center than the other cate-
gories. Industrial areas are mainly located in the central
west of the city.

The local planning authority of Kajang (JPBD) has pro-
posed several other strategies in addition to general devel-
opment strategies, especially to increase city compactness.
These strategies consisted of several aspects such as mixed
land use development, building design, housing design,
sense of place, public transportation, neighborhood, and
promotion of walking, cycling, and green environment, as
listed in the following:
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(1) Mixed land use development
• Residents encouraged to live within the workplace
• Concentration of activities in accordance with the

centralized public transport networks (TOD)
• Implementation of a mixed development area and

development of potential/in-fill site
• Building design: variety of activities or functions in

one building, creating an effective vertical mixed
land use

(2) Advantages of public transportation
• Wide range of public transport modes created
• User-friendly public transport system (appropriate

age group)
(3) Housing design

• Various types of residential design according to
location and needs

• Residential types developed to suit the compact city
• Residential district integrated with convenient

transportation facilities
(4) Sense of place

• Safe and active open space
• Commercial development characterized by local

community activities
(5) Cycling and walking neighborhood

• Building design incorporated with
pedestrian-friendly features

• Accessibility of public transport nodes for
pedestrians/cyclists

• Safe network for pedestrians/cyclists and uninter-
rupted access between the neighborhood and the
city center

(6) Green and environment preservation
• Maintenance of green area
• Creation of green corridor and blue part of the

redevelopment potential.

These strategies required several analyses and processing
tools such as site suitability analysis, readiness analysis,
evaluation of land development potential, accessibility
analysis, network analysis, and other methods that can be
accomplished through several GIS mapping and processing
tools. Regardless of those related to planning and design
(such as those in housing and building design, creation and
promotion of walking and cycling environment), others
related to general urban sustainability (such as preservation
of natural and green environment, less car dependency thus
less carbon emission, and promotion of public transporta-
tion) are involved in the discussion in this section.

As previously explained regarding the drawbacks of
zonal assessment, this study evaluated the city compactness
of Kajang City first with the predefined zoning of the district
proposed by the local planning authority and second without
the zonal format. In the second phase, instead of quantifying
the availability of facilities, services, and other statistical
measurements within a specific border, proximity analysis
using Euclidean distance theory was applied. In this manner,

Table 5.1 Minimum population
required for various community
facilities (De Chiara 1990)

Community facility Minimum population Community facility Minimum population

Education Health

Kindergarten 500 Clink 10,000

Primary school 1800 Hospital 100 beds 25,000

Secondary school 5000 Welfare center 25,000

High school 9000 Hospital 225 beds 50,000

University 500,000 Hospital 340 beds 75,000

University (graduate studies) 1,000,000 Hospital 450 beds 100,000

Institutional Recreation

Post office 1200 Local park 3000

Library 500 Play ground 5000

Fire station 10,000 Gym and fitness 10,000

Police station 10,000 Cinema 20,000

Waste management center 10,000 Swimming pool 20,000

Commercial Employment

Super market 2000 Institutional 10,000

Pharmacy 3000 Services 10,000

Bank 5000 Light industry 10,000

Shopping mall 20,000 Heavy industry 50,000

Hotel 25,000 Industrial park 100,000
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the city compactness of every pixel of the study area was
evaluated based on the entire study area. In addition, to
improve most of the compactness assessment studies in the
literature, which were based on only the concentration of
built-up areas, this study evaluated city compactness in two
main phases (Fig. 5.1):

(1) Physical compactness
(2) Functional compactness.

5.2.1 Physical City Compactness

Physical compactness refers to the physical appearance and
spatial configuration of urban areas (built-up areas), deter-
mining whether they areas look clustered or dispersed. In
this assessment, structural metrics measure the physical
composition or configuration of the patch mosaic without
explicit reference to an urban functional process. This per-
spective actually accounts for the shape complexity of cities
without considering the details about functional, activity,
and land use pattern perspectives. In general, concentrated or
clustered areas imply high compactness. By contrast, sprawl
development changes urban landscapes over time by
increasing fragmentation and generating several small urban
patches.

5.2.1.1 Landscape Metrics Measurements
For this purpose, at the first stage, various landscape metrics
were used to measure urban compactness and to investigate
the spatiotemporal trend of urban growth and land use changes
by using the popular FRAGSTATS (McGarigal and Marks
1995) software. Thesemetrics were applied to all four land use
maps (2004, 2008, 2012 and 2015) in two sampling strategies.
The first one was applied with no sampling strategy, and the
second run was performed with predefined zoning districts
proposed by the local planning authority (Fig. 5.2).

The main logic behind these metrics is to compute several
statistics for each patch, land use type (class level), and the
landscape as a whole. Some of these metrics quantify
landscape composition, whereas others quantify landscape
configuration. Thus, understanding each metric in terms of
the aspect of landscape pattern being quantified is especially
important. Patch indices represent small fragmentation in the
landscape regardless of its type and class. Class indices
represent the spatial distribution and pattern within a land-
scape of a single patch type, whereas landscape indices
represent the spatial pattern of the entire landscape mosaic,
considering all patch types simultaneously.

Some of these metrics, which measure clumpiness,
aggregation, complexity, level of dispersion, diversity, and
other attributes, have direct relations to physical compact-
ness and can play effective roles in assessing city compact-
ness (Li et al. 2008). Thus, in addition to the urban metrics
applied in the previous section, several other metrics par-
ticularly suitable for compactness assessment were used in
this process (Table 5.2).

Landscape configuration should be evaluated in terms of
the complexity of patch shapes at different levels. Most of
these shape metrics are based on perimeter–area relation-
ships. Thus, shape index (SHAPE) was used to measure the
complexity of patch shapes compared with a standard shape
(square) of the same size, therefore mitigating the size
dependency of the perimeter–area ratio.

An alternative approach in shape assessment, which has a
closer relation to compactness assessment, is based on the
ratio of the patch area to the area of the smallest circum-
scribing circle. This index measures the overall patch elon-
gation of the study area. A highly convoluted but narrow
patch will have a low related circumscribing circle index
(CIRCLE) because of the relative compactness of the patch,
but a narrow and elongated patch will have a high related
circumscribing square index. This index may be particularly
useful for distinguishing patches that are linear (narrow) and
elongated.

Kajang City compactness 
assessment  

Physical 
compactness 

Shannon's 
Entropy 

Landscape 
metrics 

Functional 
compactness 

Urban
density 

Land use 
diversity 

Urban
intensity 

Fig. 5.1 General flowchart of
city compactness assessment
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Edge (perimeter) metrics explain landscape configuration,
although they are not spatially explicit. Total edge is the
measure of the total perimeter of a patch type in a class or all
patches in a landscape. Thus, edge density was used to
standardize edges to a per unit area to ensure comparability
among patches with varying sizes. In addition, landscape
shape index (LSI) was used to compare a simple geometric
shape with a number of edges and that with no internal
edges.

Number of patches (NP) and patch density (PD) provide
information regarding the subdivision aspects of aggrega-
tion. However, in this case, considering the patch class (land
use type) is very important. Thus, high patch density in a
specific area does not necessarily indicate high compactness.
High built-up patch density implies high compactness. By
contrast, high agricultural field patch density does not imply
city compactness.

Area metrics evaluate landscape composition instead of
configuration. The area of each landscape mosaic is the main
and fundamental information about the landscape. However,
the extension of the patch is also very important, in addition
to the size of a patch. Thus, the radius of gyration metric can
measure the extent of patches. It evaluates the distance that a
patch extends its reach within the landscape. If all other
variables remain constant, then the larger patch has a higher
radius of gyration. Similarly, in holding the area constant,
when the patch causing a high radius of gyration is more
extensive, a less compact composition landscape results.
This metric can be considered as a measure of the average
distance that an organism can move within a patch before
encountering the patch boundary from a random starting

point. This measure provides the ability to distinguish the
distribution of area among patches within the study area.

The compactness of the largest path index evaluates
landscape fragmentation. A regularly shaped landscape with
a few patches gains high CLPI value (Huang et al. 2007).
Compact zones usually have high population and built-up
density and hence low land consumption and fragmented
urban zones. Consequently, a high value of CLPI represents
high city compactness.

Aggregation metrics deal with the tendency of landscape
patch types to be spatially aggregated, that is, occur in large,
aggregated, or contagious distribution. These metrics also
evaluate the landscape texture in terms of dispersion, inter-
spersion, subdivision, and isolation. The main metrics related
to city compactness under the aggregation concept are aggre-
gation index (AI), Euclidean nearest-neighbor distance (ENN),
and proportion of like adjacencies (PLADJ). High aggregation
index values such as PLADJ show aggregated patch typeswith
large and compact shapes (McGarigal and Marks 1995).

Regardless of physical configuration and composition,
the land use diversity of Kajang City can be evaluated
through the FRAGSTATS software. In this measurement,
richness and evenness were the main components of evalu-
ation. Richness refers to number of land use types, thereby
illustrating the compositional components, and evenness
refers to the distribution of areas among different land use
types, therefore illustrating the structure and pattern of
diversity. Several metrics are used for diversity measure-
ments, such as Shannon’s diversity index (SHDI), Simp-
son’s diversity index (SIDI), Shannon’s evenness index
(SHEI), and Simpson’s evenness index (SIEI).

Fig. 5.2 Kajang zoning district
sampling
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5.2.1.2 Shannon’s Entropy
Although the concept of Shannon’s entropy was already
used in the first stage in the case of land use diversity
assessment (in the FRAGSTATS software), in the second
phase, Shannon’s entropy model was used independently for
all four land use maps to evaluate their physical compact-
ness. In fact, because of this model’s capability of spatial
dispersion and concentration measurements, it is widely
used in urban sprawl studies (Ramachandra et al. 2013). This
model is applied to understand the growth and land use
changes of Kajang City, that is, whether city compactness is
increased or decreased. This goal provides an insight into the
development trend in various zones of the city. Thus,
Shannon’s entropy was applied based on Kajang zoning
districts. This application means that the entropy value was
computed based on the built-up areas of each zone. The level
of sprawl and/or compactness is recognized by the entropy
value, which ranges from zero to loge(n). In this calculation,

compact zones are assigned with a value near zero, and
dispersed zones are assigned with a value near loge(n).

5.2.2 Functional City Compactness

Functional compactness can be defined as an attribute that
explicitly measures the landscape pattern in a manner that is
functionally relevant to the organism or process under con-
sideration. Functional metrics require additional parameter-
ization prior to their calculation, such that the same metric
can return multiple values depending on the user’s specifi-
cations, which are more about the availability of facilities,
land use diversity, land use pattern, and others. This section
evaluates the compactness of Kajang City by considering
various details on land use pattern and distribution, urban
densities (population, residential, and built-up), and
self-sufficiency and independence from the outside. This

Table 5.2 Detail information
about landscape metrics used to
assess city compactness of
Kajang City

Landscape metrics Abbreviation Descriptions

Shape index SHAPE SHAPE equals patch perimeter (m) divided by the square root of
patch area (m2), adjusted by a constant to adjust for a square standard
SHAPE ¼ 0:25Pijffiffiffiffi

aij
p SHAPE � 1, without limit

SHAPE = 1 when the patch is square and increases without limit as
patch shape becomes more irregular

Landscape shape
index

LSI LSI ¼ 0:25Effiffiffi
A

p LSI � 1, without limit

E = total length (m) of edge in landscape; includes the entire
landscape boundary and some or all background edge segments
A = total landscape area (m2)

Edge density ED ED = E
A (10,000) ED � 0

E = total length (m) of edge in landscape
A = total landscape area (m2)

Largest patch
index

LPI LPI = MAXðaijÞ
A 100ð Þ; 0 < LPI � 100%

aij = area (m2) of patch ij
A = total landscape area (m2)

Related
circumscribing
circle

CIRCLE CIRCLE = 1� aij
aij

� �
, 0 � CIRCLE � 1 without limit

Patch density PD PD = N
A 10;000ð Þ 100ð Þ; PD > 0, constrained by cell size

N = total number of patches in the landscape
A = total landscape area (m2)

Simpson’s
evenness index

SIEI
SIEI =

1�
Pm

i¼1
P2
i

1� 1
mð Þ , 0 � SIEI � 1

Pi = proportion of the landscape occupied by patch type (class) i
m = number of patch types (classes) present in the landscape,
excluding the landscape border if present

Aggregation index AI AI = gij
maxgij

� �
100ð Þ, 0 � AI � 100

With percent unit

Proportion of like
adjacencies

PLADJ
PLADJ =

Pm

i¼1
gijPm

i¼1

Pm

k¼1
gij

� �
(100), 0 � PLADJ � 100

With percent unit

Radius of gyration GYRATE R2
g ¼ 1

2N2

PN
k¼1ðri � rjÞ2
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kind of functional city compactness assessment is quite new
and is a complex research. In the case of physical com-
pactness assessment, only satellite data may be sufficient in
performing the analysis and obtaining the results. However,
for functional assessments, several layers of data consisting
of very detailed information on land use maps, population
data, road network maps, public transportation facilities, job
availability (in some cases), and other information are
required. In addition, various statistical and other method-
ological processes are required to manipulate and evaluate
this large amount of data and information to assess city
compactness. In fact, no steady and standard approaches are
used in this field, and each study has assessed the city
compactness of a specific region based on the data avail-
ability and the research objective.

In this study, city compactness was evaluated based on
three main indicators (urban density, urban intensity, and
land use diversity) of compact urban development (Fig. 5.1).
Several thematic maps of Kajang City were used to define
these compactness indicators.

• Population data: Population data were used to create a
population density map, which is one of the most
important variables for city compactness.

• Land use map: All four available land use maps were
used:
– To extract various land use types (residential, com-

mercial, industrial, and others)
– To extract the location of various available commu-

nity facilities (health, educational, point of attraction)
– To extract the location of job opportunities (com-

mercial, institutional, industrial, and others)
– To extract the location of existing parks and open

spaces to be used as recreational facilities
– To extract residential areas and create a residential

density map
– To extract built-up areas for building density

assessment
– To evaluate land use diversity of the study area.

• Public transportation facilities map: These data such as
train and bus station locations are required in evaluating
transportation facilities.

• Road network map: These data are needed to evaluate
the role of road networks in city compactness as well as
to perform road density assessment.

As shown in Fig. 5.3, compactness assessment was
implemented for zonal and without zonal bases.

Fig. 5.3 Functional city compactness assessment flowchart
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For zonal basis, all the aspects were evaluated with
respect to the area and properties of each zone, whereas for
the second case, various aspects were evaluated indepen-
dently and with respect to the entire Kajang City area.

5.2.2.1 Urban Density Assessment
As mentioned, determining the best value for various urban
density calculations to achieve better quality of life remains
a challenging issue (Burton 2002). Several values can be
assumed as optimum according to the local situation and the
objective of the studies. For instance, 225–300 is the opti-
mum value of housing density according to earth environ-
mental scientists (Burton 2002). However, because this
study’s main concern is land use pattern and distribution
analysis, and because a strong agreement exists on high
density instead of low density from the point of view of land
conservation, it assumes that higher values of urban densities
are more compact and sustainable than lower densities.

(i) Population density: The available data for population
were for the years 2000 and 2010, with populations of
250,000 and 300,000, respectively. In matching the
population data with land use maps, the annual rate of
population growth per year was assumed according to
the available data. Thus, the population assigned for
each land use map was calculated and used for popu-
lation density analysis.

The evaluation of population density in the case of zonal
basis was calculated according to persons per hectare in
built-up areas, as shown in Eq. 5.1.

Population density of zone i ¼ Population of zone i
Build up area of zone i

ð5:1Þ
In case of density assessment without zoning basis, the

moving-window method using kernel density was applied to
create a raster-based (1 m � 1 m) population density sur-
face. The advantages of this density surface processing
compared with conventional zoning-based computation are
consistency of results, higher accuracy of population distri-
bution impression, and ability of further analytical process-
ing (Adolphson 2010).

(ii) Residential density: Residential areas of Kajang City
mainly consist of single-story, double-story, multistory,
and high-rise buildings. The available land use maps
collected from Kajang planning authority included
information on the number of residential units. For the
zonal density assessment, residential density was cal-
culated in three aspects for all four land use maps:

Residential density of zone i ¼ Number of residential units of zone i
Built up area of zone i

ð5:2Þ

Residential density of City Built�up basedð Þ
¼ Total number of residential units

Total built up area of Kajang
ð5:3Þ

Residential density of City Overallð Þ
¼ Total number of residential units

Total area of Kajang City
: ð5:4Þ

In this manner, the zonal aspect of residential growth can
be assessed, and the total growth of the residential area of
Kajang City can be achieved. In the case without zonal basis,
areas and the number of residential units were used to create
raster-based residential density surface through moving
windows.

(iii) Road density: Road density was also evaluated with
respect to zonal basis for each land use map through
the following equations:

Roaddensity of zone i ¼ Road lenght of zone i

Total area of zone i
ð5:5Þ

Roaddensity Kajang City ¼ Total road lenght of Kajang
Total area of Kajang

ð5:6Þ
In the case without zonal basis, road length was used to

create a raster-based road density surface through moving
windows.

(iv) Building density: Researchers are mainly concerned
with population density when they analyze urban
density. However, building density is also an important
aspect of urban density. In the case of environmental
conservation, the built-up areas destroy agricultural and
forest lands. High built-up and residential densities not
only have benefit of land savings but also reduce
energy consumption as well as increase affordable
housing. For building density assessment, land use
categories such as residential, commercial, industrial,
and some facilities and infrastructures were considered
as the built-up areas. By contrast, open spaces, water
bodies, agricultural and green fields, local parks, and
recreational areas were omitted from analysis. Thus,
building density was calculated based on the following
equations:
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Building density of zone i ¼ Built up area of zone i
Total area of zone i

ð5:7Þ

Building density Kajang City ¼
Total Built up area of Kajang

Total area of Kajang
:

ð5:8Þ

5.2.2.2 Mixed Land Use Measurements
The existence of several land use categories in a neighbor-
hood reduces car dependency and encourages walking and
cycling behavior. Thus, finding the right balance between
residential and nonresidential development is important.
Mixed land use can be considered as horizontal and vertical
development. However, because this study focuses on
neighborhood planning and especially employs land use
pattern analysis, horizontal mixed land use development is
the main research concern. Measuring mixed land use
development is a challenging topic in city compactness
assessment. Although previous studies have measured land
use diversity in individual cities with respect to zonal
properties, no consistent indicators consider the statistical as
well as spatial distribution of various land use types espe-
cially for comparing different regions of interest. Therefore,
the current study proposes a new approach to fulfill these
limitations.

At the initial stage, as two common methods used in this
field, Shannon’s entropy and Simpson’s diversity index are
applied to the study area, and then proximity analysis is
proposed and explained in detail.

(i) Shannon’s entropy: In addition to sprawl development
analysis, Shannon’s entropy has been the most widely
used index for measuring land use diversity especially
in the biodiversity, ecology, and communication fields
(Manaugh and Kreider 2013). In urban application,
entropy can be applied to various scales, such as urban
versus rural levels, or to evaluate mixing among vari-
ous urban land use categories. Thus, in this case, an
entropy index was used to evaluate the land use
diversity of Kajang City:

Entropy ¼ �P
Aij lnAij

� �

lnNj
; ð5:9Þ

where Aij is the percentage of land use i in land use map j,
and Nj is the number of land use categories in land use map
j. After each land use type was extracted separately, the total
area of each land use type and the percentage occupied with
respect to the total study area were calculated. Thereafter,
through the entropy equation, the relative and absolute

entropy for all four land use maps were calculated. Absolute
entropy ranges from zero to ln(m), in which m is the number
of land use categories. Relative entropy ranges from zero to
one. In both cases, zero represents single land use, and ln
(m) and 1 represent mixed land use development. Entropy
and other measures from this family are sensitive to the
distribution of the size of all land uses within a raster cell
(Manaugh and Kreider 2013).
(ii) Simpson’s diversity index: This index is based on the

probability that two random places in a raster cell have
different states or categories. This index is calculated
through following equation:

S ¼ 1�
Xn

i¼1

P2
i ; ð5:10Þ

where Pi is the percentage of the total study area occupied by
each land use category. This index ranges from zero to
1 − (1/m), where m is the number of land use categories.
Through this index, land use diversity can be further mea-
sured as effective function richness 1/(1 − S), which ranges
from 1 to m. Furthermore, the proportionality index can also
be calculated through S/(1 − (1/m)), ranging from zero to
one. Similar to entropy measures, Simpson’s index is sen-
sitive to the distribution of the size of land use types in a grid
cell. Simpson’s index is more sensitive to larger land use
types and less sensitive to smaller types.

These two methods as well as the other mixed land use
measurement approaches are mainly based on the number of
land use categories or land use type richness of the land-
scape, but they do not consider the spatial distribution of
land use types and their relationships.

(iii) Proximity analysis: The main advantage of proxim-
ity analysis is the consideration of a distribution pat-
tern of various land use categories with respect to one
another. Thus, unlike most of the existing methods
evaluating land use diversity only quantitatively,
proximity analysis in addition to quantitative results,
which show the level of diversity, produce a graphical
representation through a raster-based map that shows
the mixed land use pattern of the landscape. Usually,
mixed land use developments are assessed with
respect to the entire landscape or to zonal and regional
bases. These results are not consistent and are not a
fair representation of the entire landscape because
highly mixed development of only a small part of the
region may result in high diversity of the land use of
the entire landscape. Therefore, a raster-based format
of representation provides the ability to evaluate each
small pixel of the landscape because each pixel can
represent one value regarding land use diversity level.
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In addition, raster-based format benefits the user in
case of further analytical processes, especially in
overlaying analysis. However, the proximity analysis
method can also be modified to evaluate land use
diversity based on zonal or whole landscape level.

Similar to Shannon’s Entropy and Simpson’s diversity
index assessment, all land categories were extracted as a
separate layer. The selection of land use to be included in the
process depends on the objective of the study. One may use
only a specific land use type (residential vs. nonresidential)
or all land uses and land covers of the landscape (including
bodies of water). In this study, among all existing land use
types in Kajang City, only five main land uses are included,
which are the daily (or weekly) destinations of the local
residents. Therefore, these land uses affect traffic load and
local transportation (residential, commercial, industrial,
community, and recreational facilities). Through the selec-
tion of these land use types, the land use diversity of a
neighborhood can be measured accurately to achieve sus-
tainable city compactness.

Thereafter, through Euclidean distance theory, proximity
analysis was conducted for each selected land use separately.
This process created a raster-based layer for each land use
type that covers its spatial extent with respect to the corre-
sponding land use polygon in the center. Then, the classi-
fication process was performed to assign every pixel to one
class of proximity (Fig. 5.4). Several classification schemes

are available according to the requirements of the study,
such as manual, equal interval, defined interval, quantile,
natural breaks, and others. However, a standard classifica-
tion for all land use types is important for consistent results.

All classified land use map layers were overlaid to sum-
marize and create an overall proximity result of all land use
types. This process produced a graphical representation with
a raster-based format of the land use diversity level of each
pixel of the landscape. This process was conducted four
times for each land use map of Kajang City (2004, 2008,
2012, and 2015). Finally, the following equation was
developed to evaluate the land use diversity of the entire
landscape:

LDProx: ¼
Xm

i¼n

Pi:Vi; ð5:11Þ

where LDProx is land use diversity using the proximity
concept; Pi is the proportional percentage of the landscape
area (pixels) with corresponding Vi value; and Vi is the level
of proximity of each pixel with respect to other land use
categories, which is assessed from the overlay process that
creates the overall proximity results. Vi ranges from
n (number of the land use categories) to m (number of land
use categories times number of proximity classes). In this
study, the value of n is 5 (representing five land use types:
commercial, recreational, residential, industrial, and com-
munity facilities), and m is 25, which is computed from 5
(number of land use types) � 5 (number of distance clas-
ses). Similarly, LDProx is found in the range of n to m for
each landscape. In this case, the entire landscape (100%)
assigned Vi as n and the rest of Vi as zero; the LDProx value
of landscape was n. This case represented a landscape with
one land use type or a single land use development neigh-
borhood. By contrast, if all landscape pixels obtain a value
of m for Vi, then the LDProx value of landscape is m. This
case represents a highly mixed land use development of a
landscape in which all land use types are distributed at the
proximity of one another properly.

LDProx can be further modified and standardized in the
rage of zero to one through the following equation:

LDProx: ¼
Pm

i¼n Pi � Vi

� �� n

m� n
: ð5:12Þ

In this formula, LDProx is zero if a landscape has a single
land use type or one if a landscape has highly mixed land
uses. These processes were applied for all four available land
use maps of Kajang City.

Finally, the proximity analysis was further modified to
assess the land use diversity on a zonal basis. For this pro-
cess, from raster-based proximity maps, the value of LDProx:

for each zone of Kajang City was calculated separately. In
considering a number of pixels in each zone, a ranking

Fig. 5.4 Proximity analysis, a Euclidean distance analysis, b classified
image (5 as nearest and 1 as farthest)
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process was performed to evaluate and extract the least and
highly mixed land use zones. Evaluation results were stan-
dardized to range from zero as least mixed to one as a highly
mixed developed zone. In this manner, each zone of Kajang
City can be evaluated for land use diversity within the
selected period of time (from 2004 to 2015).

5.2.2.3 Urban Intensity Measurements
For urban intensity measurements, this study emphasized
self-sufficiency from external forces and resources. Thus, the
distribution pattern of community facilities and other
resources of Kajang City as a whole and zonal basis were
evaluated. In conducting this process, we assessed the
availability, proximity, quality, and quantity of various
facilities and resources with respect to the characteristics of
local residents and neighborhoods. The facilities and
resources involved in this process are enumerated as follows:

• Health: clinic, hospital, welfare center, and others
• Education: kindergarten, primary school, secondary

school, high school, university, and others
• Open spaces and recreational facilities: local park, play-

ground, stadium, golf course, swimming pool, and green
and natural environment

• Public transportation facilities: bus and train stations
• Commercial buildings: shopping malls and commercial

services
• Infrastructure and utilities: water supply, electricity, and

waste management centers
• Other resources such as post offices, security, religious

centers, points of attraction, and institutional and indus-
trial use related to job opportunities.

The availability of these facilities and resources were
extracted from land use maps. Information on various public
attraction points, such as megamalls, markets, places of
worship, and others was obtained from a recently developed
specialized plan for the dislocation of these places.

In performing this analysis, the same concept and equa-
tion of proximity analysis were used to evaluate each pixel
of the study area with respect to urban intensity. However, at
this stage, more complex considerations were involved in the
process, and the analysis was not solely based on the
proximity concept. For instance, population data included
detailed information on age, gender, ethnic, religion, and
race. Thus, the required facilities were evaluated based on
these characteristics (De Chiara 1990). Educational facilities
were evaluated by considering the availability and proximity
of kindergarten, primary and secondary schools, and others
with respect to the number of children and young people in
various age groups. Health facilities were assessed according
to the availability of clinics, general hospitals, specialized

hospitals, and welfare centers with respect to the population
especially the number of elderly. The number and types of
places of worship were evaluated according to the number of
people belonging to each religion. The availability and
proximity of public transportation stations, shopping malls,
and recreational facilities were assessed with respect to the
population and location of living and working places.

In addition to population requirements, urban intensity
assessment can be further modified by considering different
weights for each variable (facilities and resources) of land-
scape. This weighting concept is application dependent. For
instance, one may want to prioritize educational facilities, or
health and clinical resources are more important in health
studies. The common approach for these weighting pro-
cesses is multi-criteria decision making (MCDM) using
expert knowledge (Saaty 1980). Therefore, the priority val-
ues can be applied to the urban intensity assessments as
coefficients for each variable (facilities and resources) during
the overlay process of the created proximity layers. This
ability means that after proximity layers are created for all
variables and during the calculation of Vi (level of proximity
of each pixel with respect to selected variables), a predefined
coefficient or weight should be inserted to each proximity
layer to represent the importance level of each variable.
Hence, when the modified Vi is used in the equation, it
already bears the weights or priorities of the variables with
respect to one another. However, to avoid bias in the city
compactness analysis and to go through the detailed pro-
cessing of conventional MCDM, this study assumed con-
stant weights for all variables.

In the case of zonal assessment, all of these evaluations
were conducted with respect to each zone’s properties and
characteristics. Hence, for all four land use maps of Kajang
City (2004, 2008, 2012, and 2015), this process was per-
formed as a whole and with zonal basis. Finally, in stan-
dardizing the value of urban intensity in the range of zero to
one, Eq. 5.12 was used.

5.3 Results and Discussion of Urban
Compactness Assessment for Kajang City

This section illustrates and discusses the results of the city
compactness assessment of Kajang City based on physical
and functional aspects as explained in the previous section.
This assessment provides baseline information and guideli-
nes for analysis and proposes a compact land use pattern.
Unlike other studies, to achieve comprehensive and reliable
results, this study conducted compactness assessment with
and without zonal basis. The zonal basis was conducted on
the predefined zoning of the district proposed by the local
planning authority of Kajang City. In the second phase,
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instead of the assessments quantified within specific borders,
all measurements were based on the total extent of the study
area. In this manner, evaluating the city compactness of
every cell (with any cell size) of Kajang City was feasible.

5.3.1 Physical Compactness

In the case of physical compactness, the physical composi-
tion and spatial configuration of the city (without the details
and functional purposes) were assessed in two main stages:
landscape metric analysis and Shannon’s entropy compact-
ness assessment. In general, in both cases, concentration and
building clusters are considered to result in high
compactness.

5.3.1.1 Landscape Metrics Analysis
Overall, the results of urban metric analysis demonstrated
urban spatial patterns. Several urban metrics were listed to
evaluate landscape structure, composition, and configuration
of the study area. However, a few of them show direct and
effective relation to city compactness.

SHAPE measures the complexity of patch shapes com-
pared with a standard shape (square) of the same size
(Fig. 5.5). A significant irregularity in urban development
can be observed from 2008 to 2012, which shows the
reduction in urban compactness as well. However, a constant
trend occurred during the first and last time periods. In the
case of zonal basis, SHAPE did not present noticeable dif-
ferences among various zones, but because largest shape
index (LSI) was based on the number of edges, this metric
shows more significant differences than others. Urban
growth, especially the conversion of large open spaces and
agricultural areas to small residential and commercial par-
cels, increases the number of edges. Consequently, as shown
in the LSI (zonal) graph, the value of LSI increases (from
2004 to 2015) especially for zones with high growth
potential because of the large amount of open spaces (zone
numbers 4 and 5). Highly developed zones such as 11, 15,
16, and 17 generally have very high LSI value because of
their proximity to the CBD and train station, but undergo
gentle growth during the selected period.

The CIRCLE metric evaluated the overall patch elonga-
tion of the study area. A high value of this metric indicates
low compactness because of the narrow and elongated pat-
tern. The result of this metric illustrates a growth of narrow
and elongated patches from 2008 to 2012, indicating a
decrease in compactness similarly obtained in SHAPE
metrics (Fig. 5.6).

Edge density was applied to evaluate edges in a per unit
area to compare the parcel growth and changes in various
years. The continuous growth of this metric in Kajang City
indicates the growth and changes especially from 2004 to

2012 and constant and gradual changes during the last per-
iod. Undeveloped zones generally have lower values of ED
but higher growth in contrast to developed zones with higher
value of ED but more gentle growth during the 11-year
period (Fig. 5.7).

Radius of gyration was used to measure the compactness
of the study area regarding the extent of patches. More
extensive patches indicate higher radius of gyration and less
compactness. This assessment revealed the average distance
of various land use growth extended within the study area.
Thus, the growth of various land uses, especially the con-
version of large parcels to small parcels, reduces this
extension from 2004 to 2012, as shown in Fig. 5.8. By
contrast, similar to other analyses, insignificant development
growth from 2012 to 2015 stopped the reduction of
GYRATE value during this period. Interestingly, zones with
a longitudinal shape, such as zone numbers 6, 13, and 12,
have high GYRATE, and the zones with a square shape have
low value for this metric. This finding is due to the existence
of linear land use types or parcels such as river in zone 6,
infrastructure line in zone 12, lengthy road in zone 13, and
others. Therefore, the dominance of the small circle- and
square-shaped parcels, such as single-family residential
buildings in a zone, causes a low GYRATE value and in
some cases indicates high compactness.

Largest patch index (LPI) is a measure of the size of the
patches with respect to the total area of study. With a con-
stant area size (Kajang City in 4 year land use maps), the
map with the largest patch has the highest LPI. Residential
and road networks have the largest coverage in Kajang City.
Therefore, the growth of these land use types from 2004 to
2012 caused an increase in LPI during this period (Fig. 5.9).
The reduction of significant development growth in last time
period resulted in a constant LPI value during this time.
However, in the case of zonal basis, zone number 5 with
large agricultural fields had a very high LPI in 2004.
However, because of agricultural conversion to residential
use, this value decreased significantly. The compactness of
the largest path index has an inverse presentation of LPI.
Compact zones with low fragmentations and small parcels
have high LPI.

The PLADJ metric was used to evaluate the study area in
terms of dispersion, interspersion, subdivision, and isolation.
Similar to other metrics, this metric shows that the devel-
opment growth from 2004 to 2012 slightly reduced the
compactness of Kajang City (Fig. 5.10). However, this sit-
uation has changed since 2012, and compactness is
increasing every year. A similar result was observed in the
case of zonal assessment.

Various diversity indices, such as SHDI, SIDI, SHEI, and
SIEI were used to evaluate the land use diversity, evenness,
and richness of Kajang City. All these metrics show a
reduction in variables from 2004 to 2008, a significant
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growth during 2008–2012, and again a slight reduction in
the last time period (Fig. 5.11). In the case of zonal basis, no
significant difference can be observed from various metrics.
However, in zone numbers 4, 5, 6, and 12, because of the
large proportion of open spaces and high potential for new

development growth, an increase in land use diversity can be
noticed. By contrast, because of saturated development in
developed zones, such as 15, 16, and 17, no significant
difference in land use diversity and richness can be observed.
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5.3.1.2 Shannon’s Entropy Analysis
With the capability of spatial dispersion and concentration
assessment, Shannon’s entropy was selected to evaluate
physical city compactness. The first step was to extract the
built-up area of each zone of all available land use maps
(Table 5.3). At this stage, all land uses consisting of build-
ings such as residential, commercial, industrial, and some
community facilities were extracted, and open spaces, local
parks, playgrounds, road networks, bodies of water, and
agricultural fields were omitted from analysis.

Thereafter, according to the given equation of Shannon’s
entropy, the percentage of built-up area in each zone with

respect to the total built-up area of the study area was
evaluated. Next, the natural logarithmic of each reverse
percentage value was calculated. The sum of the products of
these two values is the absolute Shannon’s entropy
(Tables 5.4 and 5.5). The relative entropy value for each
land use map was also calculated based on Ln(18), where 18
is the number of involved zones.

The values of absolute and relative entropy for all
available land use maps are summarized in Table 5.6, and
the trend is shown in Fig. 5.12. Absolute entropy ranges
from 0 to 2.89 [Ln(18)], and relative entropy ranges from
zero to one. In both cases, a value near zero indicates
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Table 5.3 Built-up area of each
zone with respect to each land use
maps (m2)

Zone no. Zone area 2004 2008 2012 2015

1 2,325,979.27 756,376 1,094,408 1,105,887 1,166,005

2 3,435,020.57 1,324,999 1,374,403 1,492,114 1,919,694

3 3,540,824.40 1,986,365 2,083,046 2,005,682 2,009,607

4 4,400,541.10 607,289 825,789 1,384,052 1,460,032

5 4,758,501.54 67,777 217,058 1,599,746 1,735,128

6 3,365,709.71 577,630 985,316 1,166,769 1,166,769

7 3,961,381.07 1,350,321 1,730,100 1,948,818 2,055,010

8 683,832.01 362,280 431,539 396,732 396,732

9 2,423,413.60 1,410,871 1,447,033 1,705,289 1,705,289

10 2,639,943.46 1,914,270 2,002,309 2,068,949 2,069,113

11 4,519,842.86 2,285,209 2,388,225 2,805,926 2,805,926

12 3,639,339.89 1,530,970 1,628,733 1,777,444 1,855,723

13 3,315,233.81 1,784,536 1,749,210 2,199,413 2,205,245

14 1,221,672.72 675,053 698,666 783,517 763,477

15 4,944,197.80 2,399,841 2,642,736 2,852,269 2,852,269

16 3,940,328.57 1,729,385 1,899,801 2,073,160 2,104,777

17 2,716,453.26 980,095 999,783 1,264,633 1,359,098

18 705,482.03 353,992 367,976 346,860 346,860

Total 56,537,697.67 22,097,259 24,566,131 28,977,260 29,976,754

Table 5.4 Shannon’s entropy
calculation for land use map 2004
and 2008

Zone
no.

2004 2008

Proportion of
built-up

Prop. � Ln(1/prop.) Proportion of
built-up

Prop. � Ln(1/prop.)

1 0.03 0.11551295 0.04 0.138600297

2 0.06 0.16873598 0.06 0.161314936

3 0.09 0.216562867 0.08 0.209230914

4 0.03 0.098777889 0.03 0.114048251

5 0.00 0.017749919 0.01 0.041783481

6 0.03 0.095262619 0.04 0.128996115

7 0.06 0.170803872 0.07 0.186854134

8 0.02 0.067395577 0.02 0.070999365

9 0.06 0.175662224 0.06 0.166806299

10 0.09 0.211905414 0.08 0.204343297

11 0.10 0.234650383 0.10 0.226593212

12 0.07 0.184955252 0.07 0.179909281

13 0.08 0.203211595 0.07 0.188135871

14 0.03 0.106568276 0.03 0.10124577

15 0.11 0.241105452 0.11 0.239847395

16 0.08 0.19938821 0.08 0.197946018

17 0.04 0.138186557 0.04 0.130296911

18 0.02 0.066224492 0.01 0.062928358
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compactness, and a value near 2.89 and 1 indicates sprawled
development. Hence, in general, according to these results,
Kajang City physically seems to have low compactness.
Evaluating the trend of entropy value shows that although
very small differences can be seen, in both cases, Kajang
City’s compactness decreased during the selected period. In
subtracting the later time entropy value from the earlier time
(DHn), the tendency of urban growth process can be
achieved. A positive value of DHn in all three cases indicates
the sprawl’s growing process. However, a significant
reduction of this value from 2012 to 2015 indicates changes
in the development pattern, which decreases sprawl growth.

An important issue in urban growth analysis is the mea-
surement of growth and the determination of the urban
requirements to be accomplished in preparation for future
urban demands. Shannon’s entropy model was used to guide
the identification and measurement of the change that is
likely to happen given the tendency of urban history to
persist. Thus, these findings highlighted the necessity of a
sustainable urban form with higher urban density, especially

built-up density, to reduce land consumption and conse-
quently preserve agricultural and green environments.

5.3.2 Functional Compactness

The functional compactness of the study area was assessed
with respect to the actual activities in the neighborhoods and
especially to the planning and development of land use
pattern and distribution. This assessment required detailed
land use maps and the consideration of other variables to
calculate various aspects of compact development with
respect to land use pattern. Functional compactness assess-
ment was conducted based on three main compactness
indicators: urban density, urban intensity, and land use
diversity.

5.3.2.1 Urban Density
In the case of urban density, four main variables were con-
sidered: population, built-up, residential, and road density.

Table 5.5 Shannon’s entropy
calculation for land use map 2012
and 2015

Zone
no.

2012 2015

Proportion of
built-up

Prop. � Ln(1/prop.) Proportion of
built-up

Prop. � Ln(1/prop.)

1 0.04 0.124638291 0.04 0.126292204

2 0.05 0.152743352 0.06 0.175996752

3 0.07 0.184842473 0.07 0.181171344

4 0.05 0.14527214 0.05 0.147186181

5 0.06 0.159916109 0.06 0.164926843

6 0.04 0.129342131 0.04 0.126349459

7 0.07 0.181536202 0.07 0.183732955

8 0.01 0.0587488 0.01 0.057238778

9 0.06 0.16670669 0.06 0.163077392

10 0.07 0.188455711 0.07 0.184521791

11 0.10 0.226081198 0.09 0.221717299

12 0.06 0.171218454 0.06 0.17222998

13 0.08 0.195698022 0.07 0.191974461

14 0.03 0.097623712 0.03 0.093478614

15 0.10 0.228202758 0.10 0.223820547

16 0.07 0.188693812 0.07 0.18650236

17 0.04 0.136675737 0.05 0.140258912

18 0.01 0.05297172 0.01 0.051597902

Table 5.6 Absolute and relative
Shannon’s entropy values for all
land use maps

Shannon’s entropy 2004 2008 2012 2015

Absolute entropy 2.713 2.750 2.789 2.792

Relative entropy 0.939 0.951 0.965 0.966

Time period 2004–2008 2008–2012 2012–2105

DHn 0.012 0.014 0.001
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Table 5.7 shows the population density calculation based on
the built-up area of each zone. Figure 5.2 depicts the zon-
ing districts of Kajang City. Eastern zones (zone numbers
4 and 5) are mainly covered by agricultural fields, and a
smaller built-up area can be observed in these zones. Thus,
although these zones have a small population, they have high
population density. However, through the significant growth
of the built-up area during the selected period (2004 to 2015)
and the slight population growth, the population densities of
these two zones have decreased significantly. The most
populated zones are those near the main train station (KTM

commuter) of Kajang City (zone numbers 11, 15, and 16).
These zones are already saturated with a large population and
many built-up areas. Hence, the population density value also
remained almost constant from 2004 to 2015. Two small
zones located in the northern borders of Kajang City (zone
numbers 8 and 18) also have high population densities
because of several high-rise buildings with large populations.
The proximity of these northern and western zones to other
regions and city centers of Malaysia affects the development
pattern of these zones regardless of the characteristics and
conditions of Kajang City’s development pattern. Industrial
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Table 5.7 Calculation of
population density for each zone
(person/ha)

Zones 2004 2008 2012 2015

No. Area
(ha)

Built-up
area

Density Built-up
area

Density Built-up
area

Density Built-up
area

Density

1 232.60 75.64 131 109.44 97 110.59 104 116.60 103

2 343.50 132.50 20 137.44 21 149.21 21 191.97 17

3 354.08 198.64 103 208.30 105 200.57 118 200.96 123

4 440.05 60.73 106 82.58 84 138.41 54 146.00 54

5 475.85 6.78 191 21.71 64 159.97 10 173.51 9

6 336.57 57.76 104 98.53 65 116.68 60 116.68 63

7 396.14 135.03 263 173.01 221 194.88 210 205.50 209

8 68.38 36.23 217 43.15 196 39.67 228 39.67 240

9 242.34 141.09 84 144.70 88 170.53 80 170.53 84

10 263.99 191.43 95 200.23 98 206.89 101 206.91 107

11 451.98 228.52 81 238.82 83 280.59 76 280.59 80

12 363.93 153.10 14 162.87 14 177.74 13 185.57 14

13 331.52 178.45 39 174.92 43 219.94 36 220.52 38

14 122.17 67.51 76 69.87 79 78.35 75 76.35 80

15 494.42 239.98 175 264.27 171 285.23 169 285.23 177

16 394.03 172.94 250 189.98 244 207.32 239 210.48 247

17 271.65 98.01 217 99.98 228 126.46 193 135.91 188

18 70.55 35.40 274 36.80 283 34.69 322 34.69 337
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zones such as zone numbers 2 and 12 have many industrial
buildings and a small resident population, which resulted in
low population density in these zones and in some cases a
reduction in this value during the selected period. The river
and water bodies and their buffer zones in the central area of
Kajang City (zone number 6) resulted in a small built-up area
in this zone, but development growth caused the reduction of
population density in this zone.

Table 5.8 assessed the total population density based on
the built-up area and total area of Kajang City for each
available land use map. Obviously, because the population
of this region has grown during the 4-year period and the
area of Kajang City is constant, the population density of
this region increases every year. Elaborate and reliable
evaluation can be achieved by calculating the density based
on the built-up area of the region because this assessment
considers the urban structural growth as well. Thus, because
of the significantly higher growth of built-up area than the

population from 2004 to 2015, the population density
decreases every year. However, a slight growth in density
can be observed between 2012 and 2015, which can be due
to the reduced growth in building development.

In addition to the tabular quantitative assessment of
population, Fig. 5.13 illustrates a raster-based map of pop-
ulation density assessment to present the cellular-based
analytical model.

The residential density of Kajang City was evaluated by
calculating the number of residential units with respect to the
built-up area. Thereafter, this assessment was used to pro-
duce a raster-based presentation through kernel density
analysis for all land use maps. Finally, the maps were
classified into three main classes of low (1) to high (3) resi-
dential density to create standardized map layers.

As shown in Fig. 5.14, the area near public transportation
and the zones with saturated development pattern have high
residential density. By contrast, as expected, eastern zones

Table 5.8 Total population
density of Kajang City with
respect to built-up area and total
Kajang City area (person/ha)

2004 2008 2012 2015

Area
(ha)

Population
density

Area
(ha)

Density Area
(ha)

Density Area
(ha)

Density

Based on built-up
area

2210 122 2457 118 2898 107 2998 109

Based on Kajang
City area

5653.7 48 5653.7 52 5653.7 55 5653.7 58

Fig. 5.13 Graphical presentation of population density for four years (person per hectare)
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(agricultural covered areas) and industrial areas (central
west) have very low residential density. Although at first
glance, no significant difference can be observed among the
four land use maps, significant changes can be extracted
through cellular-based investigation.

Road density was calculated based on the length of the
existing road networks with respect to the total area of each
zone and of Kajang City (Table 5.9). In the case of road
density, the size and the development situation of the zones
are the effective factors. Zone numbers 8, 14, and 18, as the
smallest zones, and zone numbers 15, 16, and 17, as the
most populated and developed zones, have very high road
densities. By contrast, zone numbers 4 and 5, as the least
developed zones, have the lowest road densities. Industrial
zones (2 and 12) have short road lengths because of large
parcel size, thereby having low road density value. Similar to
highly developed zones, these zones have slightly grown
from 2004 to 2015. In the case of the whole Kajang City
perspective, this city has grown in road density from 2004 to
2012 and has maintained a constant density value in the last
period. Similar to the findings of the previous section (urban
growth analysis), no significant difference in development
pattern can be observed between 2012 and 2015.

The graphical illustration of road density (Fig. 5.15)
shows that the growth of road development in the eastern
parts and central west of the city can be observed during the

11-year period. However, insignificant differences can be
seen in the south and northwest, which were already
developed properly.

Building density was evaluated by considering the
built-up area with respect to the area of each zone.
Table 5.10 shows the calculation of building density. The
last row of this table shows the total area of Kajang City
(5653.7 ha), the total built-up area for each land use map,
and the corresponding density value.

Similar to other assessments, developed zones (zone
numbers 3, 10, 14, 15, 16, and 18,) have insignificant growth
in the built-up area because of development saturation. By
contrast, significant growth can be observed in undeveloped
zones with large proportions of open spaces. The main
building growth and development of Kajang City happened
from 2008 to 2012 (Fig. 5.16).

These assessments show that in saturated zones, a
reduction of growth in density can be observed because of
the low potential for growth in these areas. Thus, in the case
of land consumption and eventually green environment
preservation objective, focusing on the areas with high
potential for new development and growth is appropriate. In
addition, neighborhoods and zones along the border of the
study area are affected by some external and outside forces
from other regions, whether urban and rural areas, over the
city boundaries. Hence, unlike internal zones, which are

Fig. 5.14 Kernel density analysis for evaluation of residential density of Kajang City
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Table 5.9 Road density
calculation based on area of each
zone (meter/hectare)

Zone Road length (m) Road density (m/ha)

No. Area (ha) 2004 2008 2012 2015 2004 2008 2012 2015

1 232.6 36,012 32,897 37,279 37,249 154.8 141.4 160.2 160.1

2 343.5 24,846 26,524 28,647 28,647 72.33 77.21 83.40 83.40

3 354.0 44,716 42,903 46,384 46,384 126.2 121.1 131.0 131.0

4 440.0 27,015 36,567 50,044 50,044 61.39 83.10 113.7 113.7

5 475.8 14,517 36,690 64,373 64,373 30.51 77.10 135.2 135.2

6 336.5 33,504 21,865 24,516 24,516 99.5 64.9 72.8 72.8

7 396.1 63,449 75,810 72,066 72,066 160.1 191.3 181.9 181.9

8 68.3 14,885 15,211 16,010 16,010 217.6 222.4 234.1 234.1

9 242.3 37,659 36,679 37,910 37,910 155.4 151.3 156.4 156.4

10 263.9 30,012 29,978 32,118 32,118 113.6 113.5 121.6 121.6

11 451.9 75,751 75,776 85,263 85,263 167.6 167.6 188.6 188.6

12 363.9 16,803 38,919 41,417 41,417 46.17 106.9 113.8 113.8

13 331.5 26,433 31,676 44,684 44,684 79.7 95.5 134.7 134.7

14 122.1 27,518 24,537 20,260 20,260 225.2 200.8 165.8 165.8

15 494.4 89,980 88,073 97,343 97,343 181.9 178.1 196.8 196.8

16 394.0 94,823 96,895 100,743 100,743 240.6 245.9 255.6 255.6

17 271.6 52,917 54,992 63,966 63,966 194.8 202.4 235.4 235.

18 70.5 14,489 11,862 13,950 13,950 205.3 168.1 197.7 197.7

Sum 5653.7 725,327 777,849 876,969 876,939 128.2 137.5 155.1 155.1

Fig. 5.15 Kernel density analysis for evaluation of road density of Kajang City
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Table 5.10 Building density
calculation based on area of each
zone (ha/ha)

Zones 2004 2008 2012 2015

No. Area (ha) Built-up Density Built-up Density Built-up Density Built-up Density

1 232.60 75.64 0.325 109.44 0.470 110.59 0.475 116.60 0.501

2 343.50 132.50 0.385 137.44 0.400 149.21 0.434 191.97 0.558

3 354.08 198.64 0.561 208.30 0.588 200.57 0.566 200.96 0.567

4 440.05 60.73 0.138 82.58 0.187 138.41 0.314 146.00 0.331

5 475.85 6.78 0.014 21.71 0.045 159.97 0.336 173.51 0.364

6 336.57 57.76 0.171 98.53 0.292 116.68 0.346 116.68 0.346

7 396.14 135.03 0.340 173.01 0.436 194.88 0.492 205.50 0.518

8 68.38 36.23 0.529 43.15 0.631 39.67 0.580 39.67 0.580

9 242.34 141.09 0.582 144.70 0.597 170.53 0.703 170.53 0.703

10 263.99 191.43 0.725 200.23 0.758 206.89 0.783 206.91 0.783

11 451.98 228.52 0.505 238.82 0.528 280.59 0.620 280.59 0.620

12 363.93 153.10 0.420 162.87 0.447 177.74 0.488 185.57 0.509

13 331.52 178.45 0.538 174.92 0.527 219.94 0.663 220.52 0.665

14 122.17 67.51 0.552 69.87 0.571 78.35 0.641 76.35 0.624

15 494.42 239.98 0.485 264.27 0.534 285.23 0.576 285.23 0.576

16 394.03 172.94 0.438 189.98 0.482 207.32 0.526 210.48 0.534

17 271.65 98.01 0.360 99.98 0.368 126.46 0.465 135.91 0.500

18 70.55 35.40 0.501 36.80 0.521 34.69 0.491 34.69 0.491

Sum 5653.77 2210 39.08 2457 43.451 2898 51.253 2998 53.021

Fig. 5.16 Kernel density analysis for evaluation of building density of Kajang City
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mainly dependent on city characteristics, boundary zones are
affected by other parameters. Therefore, considering these
issues and viewing the study area from wide perspectives are
important.

Finally, creating one output map by aggregating all cre-
ated variables in urban density was required to show the
overall density of the study area. Figure 5.17 shows the
overall density for all available land use maps. These maps
are reclassified into three classes to standardize them when
they are aggregated with other compactness indicators.

5.3.2.2 Mix Land Use Assessment
The evaluation of land use diversity or land use richness is
an important task in compact city modeling and urban sus-
tainability analysis. This study evaluated mixed land use
development using two common methods in this field and
one proposed approach based on proximity and relationship
among various land use categories.

Originally, Shannon’s entropy was the most common
index in measuring land use diversity especially in the bio-
diversity field. In this study, in evaluating the land use
diversity of Kajang City, the proportion of each land use
category that covered the study area was calculated. Shan-
non’s entropy is based on the sum of the natural logarithms
of the land use percentages. Absolute entropy ranges from
zero to Ln(m), where m is the number of land use categories.
A value near zero indicates low land use diversity, and a

value near 2.19 [Ln(9)] refers to high land use diversity. As
shown in Tables 5.11 and 5.12, the value of absolute entropy
for all years is approximately 1.8, which shows that in
general, Kajang City has a high level of land use diversity.

Absolute entropy can be modified to relative entropy and
to change the range of the values from zero to one. Similarly,
zero and one indicate low diversity and high diversity,
respectively. In this case, in all years, relative entropy values
near 1 indicate the high land use richness of Kajang City.
However, as shown in Fig. 5.18, a slight reduction in
diversity was observed from 2004 to 2008, a noticeable
growth was seen from 2008 to 2012, and again a reduction
was observed during the last period.

In addition to Shannon’s entropy, Simpson’s diversity
index was used to confirm the trend of land use diversity of
Kajang City through the frequent and common methods
(Table 5.13). In this method, the percentage of land use
coverage is an important component. In this assessment,
three indices are calculated: Simpson’s diversity, which
ranges from zero to 1 − (1/m) (thus, from 0 to 0.88);
effective function richness, which ranges from zero to
m (thus, from 0 to 9); and proportionality index, which
ranges from zero to one. In all cases, zero is assigned for low
land use diversity, and 0.88, 9, and 1 are assigned for high
land use diversity. Similar to Shannon’s entropy, Simpson’s
diversity index shows that Kajang City has high mixed land
use development. Furthermore, the same trend of increase

Fig. 5.17 The overall urban density of the study area
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Table 5.11 Mixed land use
assessment using Shannon’s
entropy for year 2004 and 2008
land use maps

Land use 2004 2008

Area (m2) Proportion Prop. � Ln
(prop.)

Area (m2) Proportion Prop. � Ln
(prop.)

Agr. 8,820,560 0.16 −0.2897 5,103,330 0.09 −0.2170

Com. 984,740 0.02 −0.0705 1,107,992 0.02 −0.0770

Open 14,443,095 0.26 −0.3485 14,289,551 0.25 −0.3475

Hous. 11,160,288 0.20 −0.3202 12,926,373 0.23 −0.3373

Inds. 4,650,866 0.08 −0.2054 4,847,926 0.09 −0.2105

Infra 915,870 0.02 −0.0667 1,048,338 0.02 −0.0739

Fac. 3,928,078 0.07 −0.1852 3,968,596 0.07 −0.1864

Trans. 11,321,348 0.20 −0.3219 12,932,886 0.23 −0.3373

Water 332,694 0.01 −0.0302 332,545 0.01 −0.0301

Sum 56,557,539 Sum −1.838 56,557,537 Sum −1.817

Absolute entropy 1.838 Absolute entropy 1.817

Relative entropy 0.836 Relative entropy 0.827

Note Agr. agriculture; Com. commercial; Open Open spaces; Hous. housing; Inds. industry; Infra
infrastructure; Fac facility; Tran. transportation

Table 5.12 Mixed land use
assessment using Shannon’s
entropy for year 2012 and 2015
land use maps

Land use 2012 2015

Area (m2) Proportion Perc. � Ln(perc.) Area (m2) Proportion Perc. � Ln(perc.)

Agr. 5,621,719 0.10 −0.2294 4,210,981 0.07 −0.1933

Com. 1,744,100 0.03 −0.1072 1,757,851 0.03 −0.1078

Open 7,951,358 0.14 −0.2758 8,382,406 0.15 −0.2829

Hous. 14,757,211 0.26 −0.3505 15,327,836 0.27 −0.3536

Inds. 5,605,319 0.10 −0.2290 6,002,177 0.11 −0.2380

Infra 1,528,637 0.03 −0.0975 1,529,810 0.03 −0.0976

Fac. 4,530,455 0.08 −0.2022 4,530,455 0.08 −0.2022

Trans. 14,386,034 0.25 −0.3482 14,386,124 0.25 −0.3482

Water 432,858 0.01 −0.0372 432,858 0.01 −0.0372

Sum 56,557,691 Sum −1.877 56,560,498 Sum −1.861

Absolute entropy 1.877 Absolute entropy 1.861

Relative entropy 0.854 Relative entropy 0.847
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and decrease in diversity can be observed in these assess-
ments (Fig. 5.19 and Table 5.13).

Both models of diversity assessments seem to provide
similar results. However, realizing that both methods are
based only on land use richness of the study area without
considering spatial pattern and distribution and the rela-
tionship among various land use types is important. Thus, a
new approach was proposed, in which the spatial patterns
and distribution of various land use types in addition to land
use richness are considered. This process is based on the
proximity analysis among existing land use types. However,
only five main urban land use types that affected local
transportation were selected. Euclidean distance analysis
was applied for these five land use types separately, and each
layer was classified to assign every pixel of the study area to
one class of proximity (1–5, in which 1 means farthest and 5
means nearest). Five classified layers had five classes.
Therefore, the aggregated proximity map assigned all pixels
with proximity values ranging from 5 to 25 (Table 5.14).

The number and percentage of pixels bearing each proximity
value are estimated. Finally, the sum of the products of the
percentage and proximity value for each land use map
indicates the level or degree of land use diversity of that
map. This result also ranges from 5, when 100% of the study
area obtains a value of 5 (minimum proximity value) and 0
for reset, to 25, when 100% of the study area obtains a value
of 25 (maximum proximity value) and 0 for reset. Through
the proposed standardization approach, this assessment can
result in the range of 0 (minimum land use diversity) to 1
(maximum land use diversity).

Tables 5.14 and 5.15 present the quantitative assessment
of this analysis for all land use maps without zoning con-
sideration. Therefore, the produced results are the value for
whole Kajang City. The standardized values of land use
diversity for all land use maps are found in the middle range
(0.5) from 0 to 1, indicating that although Kajang City has a
high value of land use richness, the pattern of the existing
categories (especially those mainly related to human daily

Table 5.13 Mixed land use
assessment using Simpson’s
diversity index for all land use
maps

2004 2008 2012 2015

Land use Proportion Pro.2 Pro. Pro.2 Pro. Pro.2 Pro. Pro.2

Agr. 0.16 0.024 0.09 0.0081 0.10 0.0098 0.07 0.0055

Com. 0.02 0.0003 0.02 0.0003 0.03 0.0009 0.03 0.0009

Open 0.26 0.065 0.25 0.0638 0.14 0.0197 0.15 0.0219

Hous. 0.20 0.038 0.23 0.0522 0.26 0.0680 0.27 0.0734

Inds. 0.08 0.006 0.09 0.0073 0.10 0.0098 0.11 0.0112

Infra 0.02 0.0002 0.02 0.0003 0.03 0.0007 0.03 0.0007

Fac. 0.07 0.004 0.07 0.0049 0.08 0.0064 0.08 0.0064

Trans. 0.20 0.040 0.23 0.0522 0.25 0.0647 0.25 0.0646

Water 0.01 0.00003 0.01 0.00,003 0.01 0.00006 0.01 0.00006

Sum 1.00 0.180 1.00 0.1895 1.00 0.1804 1.00 0.1850

Simpson’s diversity 0.819 0.8104 0.8196 0.8149

Effective function
richness

5.533 5.2760 5.5431 5.4032

Proportionality index 0.9216 0.9117 0.9220 0.9167
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activities) are not well -distributed in the entire city. How-
ever, this value increased slightly during the selected period,
which indicates the good distribution of various land use
types in Kajang City.

Tables 5.14 and 5.15 also show that land use diversity in
2004 and 2008 reached a maximum of 24, but the maximum
value of diversity in 2012 and 2015 reached 25. However,
all years have a constant reduction and almost 0 percentages
for maximum proximity values (near the value of 25).

Figure 5.20 depicts the overall land use diversity trend of
Kajang City during the selected period. As shown in the
percentage–proximity value graph, the percentage of mini-
mum proximity value (the value of 5) decreased from 2008
to 2012 and even became 0 in 2015 (minimum value starts
from 6). In addition, the percentage with middle proximity
values (near the value of 15) increased from 2004 to 2015.
This figure also shows the growth of the standardized LDProx

from 2004 to 2015.
In addition to quantitative assessments, the proximity

analysis method produces a graphical illustration that shows
the overall land use diversity condition in the entire study
area. As shown in Fig. 5.21, the eastern sides, which are
mainly covered by agricultural fields, have a minimum value

of land use diversity (near 5). This condition is changing,
and new developments in these areas increase the level of
mixed developments. The level of diversity value in the
northern parts are decreasing yearly mainly because of the
increase in residential growth in these areas (as shown in the
residential density assessment). Central areas along train
stations always keep a high level of diversity because of the
proximity to the CBD. Among the four land use maps, the
diversity in 2012 looks better distributed and more sustain-
able than others, especially in 2004, which shows a few
mixed land use centers. Notably, the trend of high mixed
land use development is moving from north to south because
of the potential of these areas for the redevelopment of
brownfield sites. The growth of land use diversity values
from 2004 to 2015 can also be noticed in the legends of this
figure.

Finally, as shown in Fig. 5.22, these maps were reclas-
sified into three classes, as performed for overall urban
density maps, to create a standard aggregation process.

Mixed land use development assessment using proximity
analysis was also conducted using zoning format to rank the
land use diversity of the study area on a zonal basis. For this
process, the same proximity values for each pixel of land use

Table 5.14 Land use diversity assessment using proposed proximity analysis for 2004 and 2008

2004 2008

Proximity value No. of cells Proportion Prop. � value Proximity value No. of cells Proportion Prop. � value

5 1,620,920 0.0287 0.14 5 1,709,934 0.0302 0.15

6 1,379,331 0.0244 0.15 6 961,740 0.0170 0.10

7 878,105 0.0155 0.11 7 584,402 0.0103 0.07

8 877,831 0.0155 0.12 8 992,917 0.0176 0.14

9 1,614,007 0.0286 0.26 9 1,586,691 0.0281 0.25

10 1,936,101 0.0343 0.34 10 1,989,770 0.0352 0.35

11 2,494,687 0.0441 0.49 11 2,901,680 0.0513 0.56

12 3,454,480 0.0611 0.73 12 3,336,293 0.0590 0.71

13 3,853,974 0.0682 0.89 13 3,540,586 0.0626 0.81

14 4,161,219 0.0736 1.03 14 3,703,359 0.0655 0.92

15 4,700,199 0.0832 1.25 15 4,522,871 0.0800 1.20

16 5,475,487 0.0969 1.55 16 5,815,099 0.1029 1.65

17 5,907,560 0.1045 1.78 17 6,234,250 0.1103 1.87

18 5,633,348 0.0997 1.79 18 6,069,473 0.1074 1.93

19 5,041,381 0.0892 1.69 19 5,170,999 0.0915 1.74

20 3,638,416 0.0643 1.29 20 3,761,407 0.0665 1.33

21 2,349,010 0.0415 0.87 21 2,276,630 0.0402 0.84

22 1,158,134 0.0204 0.45 22 1,051,611 0.0186 0.41

23 329,949 0.0058 0.13 23 284,922 0.0050 0.12

24 33,505 0.0006 0.01 24 43,009 0.0008 0.02

Sum 56,537,644 1 15.075 Sum 56,537,643 1 15.184

Standardized LDProx 0.504 Standardized LDProx 0.509
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maps were used. Unlike the previous case in which whole
pixels of the study area were considered, this case involved
proximity values calculated for each zone separately. Large
zones obtain higher land use diversity values than small
zones because of the greater number of pixels. Thus, in this
assessment, the result does not reveal the actual level of
mixed development. To avoid this bias in the result, land use
diversity values were calculated based on the area of each
zone, in which the estimated values of diversity were divided
by the number of pixels of the corresponding zones. This
process not only provided a reliable result but also stan-
dardized the values of diversity of the zones.

In addition, similar results can be obtained in considering
the percentage of the amount of pixels bearing a specific
diversity value with respect to the corresponding zone area.
Tables 5.16 and 5.17 show the calculations for each zone of
the land use maps. The first two columns indicate the zone
number and the number of pixels in each zone. The next
column for each land use year shows the total diversity
values obtained from the sum of the diversity values of all
pixels of the corresponding zone. The next column shows
the average diversity values, which are the calculated

diversity values based on the area of each zone. Finally, the
average diversity values are standardized from zero to one,
in which zero means minimum and one indicates maximum
level of diversity condition. By considering the area of each
zone, we can expect that small zones (8, 9, 10, 14, and 18)
obtain high values of diversity. However, in fact, land use
richness and distribution pattern is the main aspect of this
assessment. For instance, zone number 10 has a small area
with moderate land use diversity value. Regardless of the
area considerations, the eastern zones have very low mixed
land use development because of the high coverage of
agricultural fields. However, similar to previous analysis
results, these areas developed slightly during the selected
period. By contrast, highly developed and saturated zones
(3, 9, 11, 15, 16, and 17), especially those located in the
central parts or near the CBD, have high values of diversity
in all land use maps. The western zones of the study area
(Fig. 5.23) encountered a growth in diversity value from
2004 to 2012 and almost a constant situation in the last
period. In general, a very slight reduction in diversity values
from 2012 to 2015 indicates better and more efficient mixed
land use development in 2012.

Table 5.15 Land use diversity assessment using proposed proximity analysis for 2012 and 2015

2012 2015

Proximity value No. of cells Proportion Prop. � Value Proximity value No. of cells Proportion Prop. � Value

5 312,362 0.0055 0.03 6 163 0.0000 0.00

6 755,125 0.0134 0.08 7 465,687 0.0082 0.06

7 890,062 0.0157 0.11 8 1,252,867 0.0222 0.18

8 1,283,098 0.0227 0.18 9 1,978,436 0.0350 0.31

9 2,353,747 0.0416 0.37 10 2,496,131 0.0441 0.44

10 2,073,939 0.0367 0.37 11 2,367,881 0.0419 0.46

11 2,589,843 0.0458 0.50 12 3,611,271 0.0639 0.77

12 3,244,631 0.0574 0.69 13 4,224,172 0.0747 0.97

13 3,922,450 0.0694 0.90 14 5,213,258 0.0922 1.29

14 4,496,600 0.0795 1.11 15 6,217,185 0.1100 1.65

15 5,177,448 0.0916 1.37 16 6,327,274 0.1119 1.79

16 5,649,717 0.0999 1.60 17 6,480,122 0.1146 1.95

17 5,807,342 0.1027 1.75 18 5,659,448 0.1001 1.80

18 5,740,249 0.1015 1.83 19 4,502,222 0.0796 1.51

19 4,944,520 0.0875 1.66 20 2,894,632 0.0512 1.02

20 3,472,511 0.0614 1.23 21 1,635,725 0.0289 0.61

21 2,213,026 0.0391 0.82 22 840,591 0.0149 0.33

22 1,101,154 0.0195 0.43 23 302,112 0.0053 0.12

23 412,311 0.0073 0.17 24 58,285 0.0010 0.02

24 90,018 0.0016 0.04 25 10,213 0.0002 0.00

25 7522 0.00 0.00 Sum 56,537,675 1.00 15.295

Sum 56,537,675 1.00 15.245 Standardized LDProx 0.515

Standardized LDProx 0.512
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Figure 5.23 depicts the graphical presentation of land use
diversity using these assessments. This figure shows the
reduction and growth of mixed development in the northern
and southern parts of the city, respectively. The similarity of
diversity values in 2004 and 2008 (Tables 5.16) can be
observed in this figure as well, resulting in the same color for
all corresponding zones. This figure shows the reduction of
the mixed development in zone number 3 because of the
increase in residential development and in zone number 2
because of industrial growth. Although the growth of
diversity was revealed from previous analysis (without zonal
basis), zone numbers 5 and 10 in this part maintain an almost
constant condition.

A review of the results of zonal and without zonal-based
analyses shows that in the case of zonal basis, although the
method attempted to remove the bias, borders and areas of
the zones affected the results. In addition, non-zonal basis
provided more detailed and accurate results during the
selected period than zonal basis.

5.3.2.3 Urban Intensity Assessment
Urban intensity was evaluated with respect to the availabil-
ity, quality, and proximity of various community facilities
and services, such as health, educational, recreational,

security, and others in Kajang City. Overall, seven variables
with five proximity classes were considered. Thus, as shown
in Tables 5.18 and 5.19, the minimum intensity value is 7,
and the maximum intensity value can reach 35 (7 � 5=35).
Thereafter, the number and percentage of pixels bearing each
intensity value were calculated. Finally, the sum of the
products of percentage and intensity values presents the
urban intensity level for each land use map. The output
values can vary from 7, as the least intensified city, to 35, as
the most intensified city. As shown in Tables 5.18 and 5.19,
all land use maps obtained almost the same value near 20.
However, Fig. 5.24 shows a proper presentation with more
details regarding the proportion of pixels belonging to var-
ious intensity values. This figure reveals that although all
land use maps have constant intensity value in general,
subtle differences have occurred during the selected period.
The development growth from 2008 to 2012 reduced the
number of pixels (from 3 to 1%) with a low intensity value
of 10. However, the development growth from 2012 to 2015
showed a reduced intensity value of 25 near 20 for more than
6% of the pixels of the study area. In addition, the 2004 and
2012 land use maps have the highest and lowest number of
pixels with intensity value of 35, respectively. Through the
standardization of the total intensity value in the range of
0–1, all the land use maps obtained a value near 0.5. All
these quantitative results showed that in general, the recent
development pattern of Kajang City did not improve the
intensification properties of this region.

The graphical illustration of urban intensity assessment
reveals more information on the spatial pattern of the city
intensification condition of Kajang City (Fig. 5.25). In all
land use maps, the most intensified part of the city is near
Kajang main train station (KTM) and a few small centers
near the central and central east parts. However, the trend of
intensification growth in the southern parts of the city during
selected periods can be observed clearly. Similar to other
assessments, agricultural (eastern parts) and industrial areas
have very low intensity values. In addition, because of the
proximity of the northern parts to other regions and cities,
these parts have high intensity values from 2004 to 2012 but
have reduced values in the last period. Finally, these maps
were also classified into three main classes to aggregate with
other compactness indicators in a standard format.

In evaluating urban intensity for zonal-based analysis, the
value of urban intensity for each zone was calculated sepa-
rately. In this part, similar to land use diversity assessment,
the total intensity value for each zone was calculated, and an
average intensity value was evaluated with respect to the
area of the corresponding zone. Tables 5.20 and 5.21 present
these assessments. Similar to the values in the non-zonal
basis, the average intensity values range from 7 to 35. In
these tables, the values range from 11.33 to 27.52 for 2004,
11.14 to 27.44 for 2008, 15.13 to 27.27 for 2012, and 14.75
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Fig. 5.21 Graphical presentation of land use diversity condition of Kajang City

Fig. 5.22 Reclassified land use diversity maps
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Table 5.16 Calculation of land
use diversity using zonal basis for
years 2004 and 2008

Zoning 2004 2008

Zone
no.

No. of
pixels

Total
diversity
values

Average
diversity
value

Standard
diversity
value

Total
diversity
values

Average
diversity
value

Standard
diversity
value

1 2,326,007 32,999,018 14.19 0.75 33,714,063 14.49 0.75

2 3,435,010 49,900,009 14.53 0.77 49,625,469 14.45 0.75

3 3,540,793 66,614,513 18.81 0.99 65,753,063 18.57 0.96

4 4,400,533 58,018,979 13.18 0.69 60,950,742 13.85 0.72

5 4,758,531 35,871,846 7.54 0.40 39,850,738 8.37 0.43

6 3,365,698 55,990,584 16.64 0.88 55,409,128 16.46 0.85

7 3,961,364 74,650,678 18.84 0.99 76,482,357 19.31 1.00

8 683,864 12,578,968 18.39 0.97 12,527,335 18.32 0.95

9 2,423,400 41,383,232 17.08 0.90 42,305,207 17.46 0.90

10 2,639,950 30,914,338 11.71 0.62 30,680,128 11.62 0.60

11 4,519,894 79,355,614 17.56 0.93 78,833,651 17.44 0.90

12 3,639,343 46,204,856 12.70 0.67 47,227,113 12.98 0.67

13 3,315,292 39,306,048 11.86 0.62 39,056,839 11.78 0.61

14 1,221,664 19,389,050 15.87 0.84 19,053,076 15.60 0.81

15 4,944,235 87,064,714 17.61 0.93 86,250,016 17.44 0.90

16 3,940,104 65,486,401 16.62 0.88 65,022,508 16.50 0.85

17 2,716,433 43,033,847 15.84 0.83 43,062,035 15.85 0.82

18 705,560 13,386,617 18.97 1.00 12,558,379 17.80 0.92

Table 5.17 Calculation of land
use diversity using zonal basis for
years 2012 and 2015

Zoning 2012 2015

Zone
no.

No. of
pixels

Total
diversity
values

Average
diversity
value

Standard
diversity
value

Total
diversity
values

Average
diversity
value

Standard
diversity
value

1 2,326,007 37,046,180 15.93 0.85 32,760,443 14.08 0.72

2 3,435,010 44,048,620 12.82 0.68 42,498,078 12.37 0.63

3 3,540,793 54,275,753 15.33 0.82 50,394,125 14.23 0.73

4 4,400,533 53,407,691 12.14 0.65 57,988,973 13.18 0.67

5 4,758,531 58,088,113 12.21 0.65 58,269,929 12.25 0.63

6 3,365,698 47,328,916 14.06 0.75 52,996,910 15.75 0.80

7 3,961,364 69,031,651 17.43 0.93 63,312,623 15.98 0.82

8 683,864 12,842,586 18.78 1.00 11,498,758 16.81 0.86

9 2,423,400 38,006,942 15.68 0.84 38,528,809 15.90 0.81

10 2,639,950 35,471,646 13.44 0.72 36,265,385 13.74 0.70

11 4,519,894 73,458,779 16.25 0.87 72,807,876 16.11 0.82

12 3,639,343 48,910,123 13.44 0.72 52,778,576 14.50 0.74

13 3,315,292 52,118,020 15.72 0.84 52,682,525 15.89 0.81

14 1,221,664 20,567,261 16.84 0.90 18,619,108 15.24 0.78

15 4,944,235 89,044,868 18.01 0.96 96,842,139 19.59 1.00

16 3,940,104 66,107,919 16.78 0.89 66,264,749 16.82 0.86

17 2,716,433 49,908,051 18.37 0.98 49,541,142 18.24 0.93

18 705,560 12,249,024 17.36 0.92 10,689,723 15.15 0.77
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to 27.29 for 2015. The minimum value of urban intensity
increased until 2012 and then decreased in 2015, but no
significant changes can be observed in the maximum value.
In general, the intensity of most of the zones increased from
2004 to 2012, but an inverse situation can be observed in the
last period. Zone number 11 in 2004 and 2008 and zone
number 16 in the last two years are the most intensified
zones. By contrast, zone number 13 in 2004 and 2008, zone
number 12 in 2012, and zone number 2 in the last year are
the least intensified zones.

Figure 5.26 shows that the central zones (from north to
south) near the CBD and main public transportation are the
most intensified zones from 2004 to 2008. However, the
intensity of the northern zones decreased in the last two time
periods, and only the center and southern zones intensified.
The growth of residential areas in zone numbers 3 and 4 and
some parts of zone numbers 2, 7, and 12 disturbed the
balance of the available facilities for local residents, thereby
reducing the intensity values of these zones. We conclude
that the availability of transportation facilities is one of the
main aspects of urban intensity because this facility attracts a
high population. Moreover, more facilities and services will
be automatically provided to the population.

5.4 Evaluation of Trend of Compactness
(ToC) of Kajang City

After the evaluation of all land use maps based on several
compactness indicators (functional compactness, urban
densities, urban intensities, and land use diversity), all the
derived maps from each concept were added using the fol-
lowing equation to extract the overall compactness of
Kajang City:

DoCi ¼
X

UDi þ
X

UIi þLDi ð5:13Þ

where DoCi is the degree of compactness of land use map
i (i = 2004, 2008, 2012, and 2015),

P
UDi is the sum of all

urban density values,
P

UIi is the sum of all urban intensity
values, and LDi is the land use diversity of the corresponding
land use map. The range of DoC depends on the number of
land use categories involved in the process, the number of
urban intensity variables involved in the process, and the
classification schemes of urban density calculations. For
instance, if five land use types (with five proximity classes,
as explained in detail in the section discussing land use
diversity assessment by proximity method), seven urban

Fig. 5.23 Graphical presentation of land use diversity on zonal basis
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intensity variables (with 5 proximity classes), and five
classes are considered for density analysis, then the DoC
ranges from 13 to 65. In avoiding this complexity, using
Eq. 5.13 is better when all three variables are reclassified
properly and then inserted into the equation. In this manner,
a proper range can be obtained in the final DoC value.
However, during analysis, we observed that any type of
classification, especially with the low number of classes,
tends to generalize and reduce the precision and accuracy of
the results. Thus, this study preferred the values of com-
pactness indicators in original format as they resulted from
the analysis. Nevertheless, in considering the results whether
using classified or original format, because the minimum and

maximum values of the obtained results can be estimated
easily, the DoC value can be standardized in the range from
zero to one by Eq. 5.14:

DoCStd ¼ DoCOrg � DoCmin

DoCmax � DoCmin
; ð5:14Þ

where DoCstd is the standardized degree of compactness
ranging from zero to one, DoCorg is the original DoC
obtained from Eq. 5.13, and DoCmin and DoCmax are the
minimum and maximum values of DoC, respectively, which
depend on the number of land use categories, number of
urban intensity variables, and classification schemes of

Table 5.18 Urban intensity
assessment for years 2004 and
2008

2004 2008

Intensity
value

No. of
pixels

Perc. Perc. � value Intensity
value

No. of
pixels

Perc. Perc. � value

7 154,239 0.0027 0.0191 7 170,952 0.003 0.0212

8 946,359 0.0167 0.1339 8 890,312 0.015 0.1260

9 1,705,251 0.0302 0.2715 9 1,509,206 0.026 0.2403

10 1,656,322 0.0293 0.2930 10 1,460,346 0.025 0.2583

11 1,570,460 0.0278 0.3056 11 1,397,996 0.024 0.2720

12 1,340,877 0.0237 0.2846 12 1,292,439 0.022 0.2743

13 1,171,238 0.0207 0.2693 13 1,412,750 0.025 0.3249

14 1,771,205 0.0313 0.4386 14 1,509,135 0.026 0.3737

15 1,733,058 0.0307 0.4598 15 1,435,426 0.025 0.3809

16 2,062,117 0.0365 0.5836 16 2,361,553 0.041 0.6684

17 2,648,479 0.0468 0.7964 17 2,837,114 0.050 0.8532

18 2,458,926 0.0435 0.7829 18 2,516,739 0.044 0.8013

19 2,860,107 0.0506 0.9613 19 2,820,065 0.049 0.9478

20 2,954,778 0.0523 1.0454 20 3,094,296 0.054 1.0947

21 3,264,092 0.0577 1.2125 21 3,614,929 0.063 1.3428

22 3,262,492 0.0577 1.2696 22 3,649,307 0.064 1.4202

23 3,592,930 0.0636 1.4618 23 3,851,785 0.068 1.5671

24 3,448,539 0.0610 1.4640 24 3,318,983 0.058 1.4090

25 3,404,175 0.0602 1.5054 25 3,605,192 0.063 1.5943

26 3,147,155 0.0557 1.4474 26 3,026,454 0.053 1.3919

27 2,728,190 0.0483 1.3030 27 2,727,747 0.048 1.3028

28 2,303,141 0.0407 1.1407 28 2,203,508 0.039 1.0914

29 1,844,676 0.0326 0.9463 29 1,551,145 0.027 0.7957

30 1,239,087 0.0219 0.6576 30 1,159,475 0.020 0.6153

31 952,091 0.0168 0.5221 31 987,877 0.017 0.5417

32 683,094 0.0121 0.3867 32 638,964 0.011 0.3617

33 624,924 0.0111 0.3648 33 614,129 0.010 0.3585

34 662,401 0.0117 0.3984 34 652,056 0.011 0.3922

35 341,359 0.0060 0.2113 35 221,863 0.003 0.1374

Sum 56,531,762 1 20.94 Sum 56,531,743 1 20.96

Standardized value 0.498 Standardized value 0.499
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Table 5.19 Urban intensity
assessment for years 2012 and
2015

2012 2015

Intensity
value

No. of
pixels

Perc. Perc. * value Intensity
value

No. of
pixels

Perc. Perc. * value

7 159,230 0.0028 0.0197 7 94,390 0.0017 0.0117

8 486,520 0.0086 0.0688 8 441,263 0.0078 0.0624

9 855,714 0.0151 0.1362 9 311,288 0.0055 0.0496

10 755,197 0.0134 0.1336 10 673,616 0.0119 0.1191

11 995,587 0.0176 0.1937 11 964,965 0.0171 0.1877

12 1,620,114 0.0287 0.3439 12 1,604,466 0.0284 0.3406

13 1,948,314 0.0345 0.4480 13 1,666,267 0.0295 0.3831

14 2,007,889 0.0355 0.4972 14 2,191,713 0.0388 0.5427

15 2,231,711 0.0395 0.5921 15 2,697,762 0.0477 0.7158

16 2,463,466 0.0436 0.6972 16 3,223,692 0.0570 0.9123

17 2,650,375 0.0469 0.7969 17 3,297,611 0.0583 0.9916

18 3,025,803 0.0535 0.9633 18 3,511,526 0.0621 1.1180

19 3,330,002 0.0589 1.1191 19 3,666,327 0.0648 1.2321

20 3,261,876 0.0577 1.1539 20 3,603,821 0.0637 1.2749

21 3,460,370 0.0612 1.2853 21 3,112,589 0.0551 1.1561

22 3,728,655 0.0660 1.4509 22 3,157,238 0.0558 1.2286

23 3,563,046 0.0630 1.4495 23 2,845,378 0.0503 1.1575

24 3,295,255 0.0583 1.3988 24 3,012,846 0.0533 1.2790

25 3,217,651 0.0569 1.4228 25 2,905,951 0.0514 1.2850

26 2,993,741 0.0530 1.3768 26 2,574,135 0.0455 1.1838

27 2,604,871 0.0461 1.2440 27 2,464,231 0.0436 1.1768

28 2,159,250 0.0382 1.0694 28 2,152,529 0.0381 1.0660

29 1,603,468 0.0284 0.8225 29 1,781,913 0.0315 0.9140

30 1,307,988 0.0231 0.6941 30 1,456,752 0.0258 0.7730

31 1,303,188 0.0231 0.7146 31 883,429 0.0156 0.4844

32 872,192 0.0154 0.4937 32 771,797 0.0137 0.4368

33 453,357 0.0080 0.2646 33 780,072 0.0138 0.4553

34 160,423 0.0028 0.0965 34 485,919 0.0086 0.2922

35 21,502 0.0004 0.0133 35 203,269 0.0036 0.1258

Sum 56,536,755 1 20.96 Sum 56,536,755 1 20.96

Standardized value 0.499 Standardized value 0.498
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Fig. 5.25 Reclassified urban intensity maps

Table 5.20 Calculation of urban
intensity using zonal basis for
years 2004 and 2008

Zoning 2004 2008

Zone
no.

No. of
pixels

Total
intensity
values

Average
intensity
values

Standard
intensity
values

Total
intensity
values

Average
intensity
values

Standard
intensity
values

1 2,326,007 43,069,889 18.52 0.67 41,888,091 18.01 0.66

2 3,435,010 61,228,219 17.82 0.65 59,130,535 17.21 0.63

3 3,540,793 84,815,430 23.95 0.87 82,513,691 23.30 0.85

4 4,400,533 81,818,293 18.59 0.68 82,772,695 18.81 0.69

5 4,758,531 60,399,277 12.69 0.46 66,868,970 14.05 0.51

6 3,365,698 85,865,218 25.51 0.93 85,001,315 25.26 0.92

7 3,961,364 93,085,157 23.50 0.85 94,866,407 23.95 0.87

8 683,864 14,662,368 21.44 0.78 14,390,097 21.04 0.77

9 2,423,400 61,874,806 25.53 0.93 62,046,315 25.60 0.93

10 2,639,950 56,088,283 21.25 0.77 56,138,333 21.26 0.77

11 4,519,894 124,371,838 27.52 1.00 124,042,678 27.44 1.00

12 3,639,343 53,702,271 14.76 0.54 56,420,088 15.50 0.56

13 3,315,292 37,546,213 11.33 0.41 36,942,288 11.14 0.41

14 1,221,664 21,471,467 17.58 0.64 20,775,173 17.01 0.62

15 4,944,235 124,164,341 25.11 0.91 122,239,297 24.72 0.90

16 3,940,104 103,073,397 26.16 0.95 102,327,936 25.97 0.95

17 2,716,433 60,525,852 22.28 0.81 61,094,067 22.49 0.82

18 705,560 15,835,698 22.44 0.82 15,393,758 21.82 0.80
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Table 5.21 Calculation of urban
intensity using zonal basis for
years 2012 and 2015

Zoning 2012 2015

Zone
no.

No. of
pixels

Total
intensity
values

Average
intensity
values

Standard
intensity
values

Total
intensity
values

Average
intensity
values

Standard
intensity
values

1 2,326,007 45,620,593 19.61 0.72 40,929,353 17.60 0.64

2 3,435,010 52,613,128 15.32 0.56 50,683,177 14.75 0.54

3 3,540,793 73,825,646 20.85 0.76 69,936,051 19.75 0.72

4 4,400,533 77,301,126 17.57 0.64 81,716,041 18.57 0.68

5 4,758,531 77,003,014 16.18 0.59 76,374,019 16.05 0.59

6 3,365,698 78,194,127 23.23 0.85 83,854,740 24.91 0.91

7 3,961,364 82,566,959 20.84 0.76 76,428,703 19.29 0.71

8 683,864 15,610,499 22.83 0.84 14,269,472 20.87 0.76

9 2,423,400 61,060,364 25.20 0.92 61,627,164 25.43 0.93

10 2,639,950 56,278,165 21.32 0.78 56,893,748 21.55 0.79

11 4,519,894 118,444,033 26.21 0.96 117,791,025 26.06 0.95

12 3,639,343 55,051,720 15.13 0.55 58,644,273 16.11 0.59

13 3,315,292 54,724,738 16.51 0.61 55,279,563 16.67 0.61

14 1,221,664 23,349,405 19.11 0.70 21,405,533 17.52 0.64

15 4,944,235 125,709,871 25.43 0.93 133,433,648 26.99 0.99

16 3,940,104 107,437,276 27.27 1.00 107,530,150 27.29 1.00

17 2,716,433 65,474,094 24.10 0.88 64,788,790 23.85 0.87

18 705,560 14,766,602 20.93 0.77 13,202,600 18.71 0.69

Fig. 5.26 Graphical presentation of urban intensity on zonal basis
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urban densities calculations, as explained in the preceding
parts of this paper.

After evaluating the DoC for all land use maps, we
extracted and evaluated the ToC. One of the main contri-
butions of this study is to propose the concept of ToC in
urban planning. After numerous studies on urban growth
analysis and change detection in urban behavior, the ToC
provides a clear perspective regarding city compactness and
eventually sustainable urban development. In general, the
ToC reveals the trend of city compactness (degree of com-
pactness) for each pixel of the study area based on a given
period, to show whether each pixel in a specific neighbor-
hood encountered growth and/or decrease in city compact-
ness. ToC provides straightforward and valuable information
for urban planners and decision makers to have good judg-
ment on the existing situation and future trend of urban
growth based on the urban sustainability. Thus, decision
makers are able to propose more effective solutions and
make the best decisions.

The ToC can be evaluated at various scales, whether
regional or country basis, city basis, zonal basis, and finally
pixel basis (according to the pixel size of the system anal-
ysis). After the analysis scale is selected, the assessment
undergoes various aspects of the system regarding location
and effective variables that cause the increase or decrease of
the DoC. These variables mainly arise from city compact-
ness indicators and their various aspects such as urban
densities (built-up, population, and others), urban intensities,
and land use diversity. However, other external factors that
can also affect the DoC of a specific landscape directly or
indirectly can be included in the ToC evaluation. In this
manner, the modeling and simulation of ToC becomes very
useful because they demonstrate actions such as locating a
new shopping mall or providing a new educational facility in
a specific neighborhood, which can affect city compactness.

In general, for a given period, the ToC of a specific
landscape can be evaluated by the following equation:

ToC ¼ DoCðtþ 1Þ � DoCðtÞ ð5:15Þ

where ToC is the trend of city compactness, DoCðtþ 1Þ is the
degree of compactness at a later time, and DoCðtÞ is the
degree of compactness at an earlier time of the landscape.

The result of ToC from this equation is based on the scale
of the analysis (regional, zonal, and cellular). Moreover,
because of the spatial basis of ToC, this result is presented in
a range format. Thus, a visual illustration of the result pro-
vides a clear observation and easy interpretation regarding
the ToC. The spatial basis of ToC or the raster-based pre-
sentation of the results provides the ability to use this
evaluation for further analysis and processing.

Therefore, for this study, the ToC concept was used to
evaluate the trend of compactness of Kajang City for all

pairs of land use maps from 2004 to 2015. Finally, this study
attempted to evaluate the reasons for this trend and to extract
the main causative factors.

5.5 Results and Discussion of ToC

After assessing all land use maps based on compactness
indicators and their variables, we create a map that illustrates
the overall compactness of each available land use
map. These maps were created by aggregating all three
compactness indicators (urban density, urban intensity, and
land use diversity). Uncertainty is always present in dis-
cussing the effect of the classification scheme on the final
results. Therefore, to avoid this issue, we produced the results
twice. First, the overall compactness was produced by the
aggregation of all reclassified maps created from compact-
ness indicators. Second, the overall compactness was pro-
duced by the aggregation of grayscale maps of compactness
indicators. In this manner, the output maps can be evaluated
without the effect of classification processes. These maps can
be aggregated through any kind of weighting technique
(AHP, expert choice, and others) to involve them in the
analysis with different priorities. This method is a simple
weighting process and raises questions about the ranking and
priorities given by the experts. Therefore, it was ignored in
this study. Hence, to generalize and keep the applicability of
the process for other study areas, an equal priority was
assumed for all indicators. Nevertheless, by giving a different
priority for each indicator, various scenarios can be defined
based on the objective of the research and characteristics of
the local neighborhood of interest.

Figure 5.27 illustrates the overall compactness of the
reclassified results of the compactness indicators maps. As
mentioned and presented, each map was reclassified into
three classes: 1 as lowest and 3 as highest value of density,
intensity, and diversity. Therefore, in aggregating these three
maps for each year, the overall compactness maps range
from 3 to 9 in terms of DoC. Figure 5.28 depicts the overall
compactness of Kajang City in the original grayscale format
(without classification). Thus, each pixel has an actual value
calculated from the aggregation of the three compactness
indicators. These assessment results range from 13 to 65
(DoC). However, in the legend of these maps, the stan-
dardized range from zero to one is displayed as well. Eastern
agricultural areas are the most noticeable areas with mini-
mum DoC because of the low number of urban structures
and facilities. However, this region is gradually developing,
and the increase in DoC can be observed during the selected
period. Next, the central west region, which is mainly
occupied by industrial use, can be noticed as a less compact
area. A few people are attracted to live in this area because
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Fig. 5.27 Overall reclassified compactness of Kajang City

Fig. 5.28 Overall compactness maps of Kajang City without classification process
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of the industrial buildings. Thus, few facilities and services
are developed in this area. Consequently, because of the low
population density, residential density, land use diversity,
and urban intensity, this area is assigned as a less compact
area. As shown in the figure, unlike the DoC of the agri-
cultural region, the DoC of the industrial area decreased
from 2004 to 2015 because of the growth of industrial land
use especially through existing brownfield sites. The most
stable compact areas are the central and southern parts of the
city. The availability of the train station is the main role of
compactness in the southern region. This train links Kajang
City to other parts and the city centers of Kuala Lumpur and
neighboring provinces. This accessibility can be the most
attractive point for residential, commercial, recreational, and
community facility uses. Consequently, for most of the
compactness variables (urban density, intensity, and land use
diversity), these areas have high priority and value. As
presented in the figure, a high level of DoC expands through
the east and west of Kajang City during the selected period.
In addition, this area is gradually being distributed from a
mono compact center to several small centers through the
east and west. The legend of this figure shows that the
minimum DoC increased two units from 2008 to 2015, but
the maximum DoC decreased from 64 to 63 in 2012.
However, these maps show that the overall ToC during the
available time periods cannot be extracted. Figure 5.29
depicts the trend of DoC for this period. The DoC value of a
large proportion of the study area decreased from 50 to 40
during 2008 to 2015. However, a slight increase in DoC can
be observed from 2008 to 2012. Tables 5.22 and 5.23 pre-
sent the quantitative calculation of compactness assessment,

which finally shows a unique value of compactness for each
land use map.

In these tables, the percentage of pixels bearing a DoC
value is calculated, and finally the overall DoC for each land
use map is evaluated by the sum of the product of percentage
and DoC value. Although Fig. 5.29 shows that the overall
compactness decreased especially in 2015, the actual DoC of
each map shows that the compactness of Kajang City
increased gradually from 2004 to 2015 (Fig. 5.30).

Figure 5.31 illustrates the spatial location of growth and
loss of compactness from 2004 to 2008, 2008 to 2012, and
2012 to 2015, and the overall changes from 2004 to 2015.
This figure shows that from 2004 to 2008, some points in the
center, one point in the northeast, and one point in the east
(agricultural areas) have significant growth in compactness.
In this period, no significant reduction in compactness was
observed. However, from 2008 to 2012, a substantial
reduction in compactness occurred in the center and northern
region of Kajang City. Interestingly, the growth of com-
pactness is mainly found along borders, north to west to
south, and a few points in the eastern region. Insignificant
changes in compactness level from 2012 to 2015 are mainly
due to the similarity of these two maps and one period being
shorter than the other. Finally, the overall changes from 2004
to 2015 are shown in the lower right map (ToC from 2004 to
2015), which summarizes all the other periods. In general, a
few small points in the west and two large areas in the east of
Kajang City are the main developed areas that experienced
growth in compactness. However, a significantly large area in
the north and center of the city has experienced reduction in
compactness during the recent development patterns.
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Table 5.22 Quantitative
assessment of overall
compactness for years 2004 and
2008

2004 2008

DoC No. of cells Percentage Perc. � DoC DoC No. of cells Percentage Perc. � DoC

14 5831 0.26 0.04 14 6033 0.27 0.04

15 18,130 0.80 0.12 15 18,609 0.82 0.12

16 35,117 1.55 0.25 16 27,950 1.24 0.20

17 18,034 0.80 0.14 17 8590 0.38 0.06

18 22,856 1.01 0.18 18 15,075 0.67 0.12

19 7703 0.34 0.06 19 11,177 0.49 0.09

20 13,240 0.59 0.12 20 11,788 0.52 0.10

21 23,078 1.02 0.21 21 11,171 0.49 0.10

22 23,457 1.04 0.23 22 24,112 1.07 0.23

23 30,921 1.37 0.31 23 32,104 1.42 0.33

24 42,604 1.88 0.45 24 52,065 2.30 0.55

25 40,520 1.79 0.45 25 36,564 1.62 0.40

26 39,423 1.74 0.45 26 48,277 2.14 0.56

27 48,155 2.13 0.58 27 50,336 2.23 0.60

28 48,421 2.14 0.60 28 44,806 1.98 0.55

29 47,795 2.11 0.61 29 45,536 2.01 0.58

30 42,376 1.87 0.56 30 38,292 1.69 0.51

31 40,081 1.77 0.55 31 40,573 1.79 0.56

32 46,077 2.04 0.65 32 46,597 2.06 0.66

33 49,972 2.21 0.73 33 49,413 2.19 0.72

34 51,236 2.27 0.77 34 51,875 2.29 0.78

35 46,149 2.04 0.71 35 45,960 2.03 0.71

36 46,196 2.04 0.74 36 46,756 2.07 0.74

37 51,351 2.27 0.84 37 50,600 2.24 0.83

38 56,360 2.49 0.95 38 56,332 2.49 0.95

39 66,120 2.93 1.14 39 64,466 2.85 1.11

40 68,948 3.05 1.22 40 75,646 3.35 1.34

41 76,596 3.39 1.39 41 82,331 3.64 1.49

42 80,309 3.55 1.49 42 76,951 3.40 1.43

43 79,438 3.51 1.51 43 83,049 3.67 1.58

44 77,572 3.43 1.51 44 86,893 3.84 1.69

45 83,076 3.68 1.65 45 92,855 4.11 1.85

46 87,935 3.89 1.79 46 99,680 4.41 2.03

47 85,601 3.79 1.78 47 96,008 4.25 2.00

48 90,479 4.00 1.92 48 94,066 4.16 2.00

49 85,362 3.78 1.85 49 88,149 3.90 1.91

50 79,692 3.53 1.76 50 79,516 3.52 1.76

51 68,638 3.04 1.55 51 62,992 2.79 1.42

52 63,078 2.79 1.45 52 60,232 2.66 1.39

53 55,356 2.45 1.30 53 60,395 2.67 1.42

54 52,959 2.34 1.27 54 50,683 2.24 1.21

55 43,130 1.91 1.05 55 36,885 1.63 0.90

56 34,437 1.52 0.85 56 31,439 1.39 0.78

(continued)
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Table 5.22 (continued)

2004 2008

DoC No. of cells Percentage Perc. � DoC DoC No. of cells Percentage Perc. � DoC

57 28,887 1.28 0.73 57 23,582 1.04 0.59

58 20,071 0.89 0.52 58 19,113 0.85 0.49

59 16,154 0.71 0.42 59 10,471 0.46 0.27

60 9126 0.40 0.24 60 6362 0.28 0.17

61 6494 0.29 0.18 61 4734 0.21 0.13

62 4021 0.18 0.11 62 2421 0.11 0.07

63 1679 0.07 0.05 63 1026 0.05 0.03

64 110 0.00 0.00 64 7 0.00 0.00

Sum 2,260,351 100 40.04 Sum 2,260,543 100 40.16

Table 5.23 Quantitative
assessment of overall
compactness for years 2012 and
2015

2012 2015

DoC No. of cells Percentage Perc. � DoC DoC No. of cells Percentage Perc. � DoC

15 695 0.03 0.00 16 1260 0.06 0.00

16 8011 0.35 0.06 17 2411 0.11 0.01

17 9842 0.44 0.07 18 2221 0.10 0.01

18 18,682 0.83 0.15 19 14,480 0.64 0.12

19 26,293 1.16 0.22 20 18,420 0.81 0.16

20 24,683 1.09 0.22 21 14,444 0.64 0.13

21 26,422 1.17 0.25 22 27,734 1.23 0.26

22 24,694 1.09 0.24 23 34,157 1.51 0.34

23 25,829 1.14 0.26 24 31,961 1.41 0.33

24 20,956 0.93 0.22 25 36,199 1.60 0.40

25 31,087 1.38 0.34 26 29,175 1.29 0.33

26 32,269 1.43 0.37 27 35,334 1.56 0.42

27 35,826 1.58 0.43 28 36,407 1.61 0.45

28 39,772 1.76 0.49 29 41,573 1.84 0.53

29 42,509 1.88 0.55 30 48,495 2.15 0.64

30 49,766 2.20 0.66 31 57,249 2.53 0.78

31 53,827 2.38 0.74 32 59,857 2.65 0.84

32 53,945 2.39 0.76 33 63,286 2.80 0.92

33 56,384 2.49 0.82 34 69,475 3.07 1.04

34 56,878 2.52 0.86 35 71,347 3.16 1.10

35 62,147 2.75 0.96 36 77,646 3.43 1.23

36 65,141 2.88 1.04 37 90,952 4.02 1.48

37 67,056 2.97 1.10 38 89,302 3.95 1.50

38 64,586 2.86 1.09 39 91,736 4.06 1.58

39 73,925 3.27 1.28 40 92,447 4.09 1.63

40 77,794 3.44 1.38 41 93,155 4.12 1.68

41 84,797 3.75 1.54 42 90,274 3.99 1.67

42 87,753 3.88 1.63 43 84,580 3.74 1.60

43 87,351 3.86 1.66 44 73,076 3.23 1.42

(continued)
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Table 5.23 (continued)

2012 2015

DoC No. of cells Percentage Perc. � DoC DoC No. of cells Percentage Perc. � DoC

44 81,141 3.59 1.58 45 68,359 3.02 1.36

45 81,446 3.60 1.62 46 64,794 2.87 1.31

46 85,945 3.80 1.75 47 67,626 2.99 1.40

47 84,012 3.72 1.75 48 70,732 3.13 1.50

48 85,421 3.78 1.81 49 70,085 3.10 1.51

49 89,022 3.94 1.93 50 64,809 2.87 1.43

50 83,906 3.71 1.86 51 67,778 3.00 1.52

51 78,635 3.48 1.77 52 66,014 2.92 1.51

52 64,199 2.84 1.48 53 54,312 2.40 1.27

53 57,816 2.56 1.36 54 42,399 1.88 1.012

54 50,582 2.24 1.21 55 40,349 1.78 0.98

55 38,217 1.69 0.93 56 32,946 1.46 0.81

56 26,048 1.15 0.65 57 26,947 1.19 0.67

57 18,027 0.80 0.45 58 19,759 0.87 0.50

58 11,946 0.53 0.31 59 13,329 0.59 0.34

59 7527 0.33 0.20 60 7834 0.35 0.20

60 4618 0.20 0.12 61 3015 0.13 0.081

61 2312 0.10 0.06 62 739 0.03 0.02

62 737 0.03 0.02 63 233 0.01 0.00

63 235 0.01 0.01 Sum 2,260,712 100 40.27

Sum 2,260,712 100 40.23
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5.6 Conclusion and Future
Recommendations

For the analysis and modeling of a compact city, the eval-
uation of the existing condition of the study area based on
city compactness is an essential task that should be con-
ducted before any further analysis is performed. For this
purpose, a comprehensive and standard compactness
assessment was performed based on physical and functional
perspectives. Physical compactness considering several
urban metrics analysis and Shannon’s entropy method deals
with the physical composition and spatial configuration of
the city. The analysis of urban indices highlighted the land
use changes and assessed the compactness of the study area
using several physical properties such as size, number of
edges, number of patches (patch density), shape (irregular-
ity, linearity), extension of patches, pattern (dispersion,
interspersion, subdivision, and isolation), and diversity of
various land use categories. The conversion of large agri-
cultural and natural fields to small residential and commer-
cial parcels affects the physical properties of surrounding
neighborhoods and is consequently detected by urban met-
rics analyses. Shannon’s entropy also assigned Kajang City
with a low compactness level in all time periods and
revealed the slight reduction at this level from 2004 to 2015.

However, on the one hand, in the last period, a different
development pattern was observed. On the other hand,
functional compactness was performed by considering
actual activities in the neighborhood as well as the land use
planning and development pattern. This process was con-
ducted based on three compactness indicators, namely,
urban density, urban intensity, and land use diversity. These
indicators evaluated the study area with 1 square meter cell
size to extract highly accurate and precise information on the
compactness condition. In general, the developed or satu-
rated neighborhoods (zones) with high compactness level
have low potential for growth and change. Thus, in the case
of land consumption and eventually green environment
preservation objective, focusing on the areas with high
potential for new development and growth such as the
eastern zones of this case study is better. In addition, unlike
internal zones that are mainly dependent on the city char-
acteristics, the neighborhood zones along the city borders
are normally affected by the other side of the boundaries,
which is either developed or natural environments. Thus,
considering external factors from outside the borders and
analyzing the study area in large perspectives are important.
Furthermore, regarding zoning analysis, non-zonal basis
provides more detailed and accurate results during the
selected period than zonal basis.

Fig. 5.31 Graphical presentation of ToC for four different time periods
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Finally, the ToC of the study area was extracted,
revealing a gradual growth of compactness from 2004 to
2015. ToC provided a clear perspective regarding city
compactness and eventually sustainable urban development.
In addition, ToC provided straightforward and valuable
information for local planning authorities and decision
makers to have better judgment about the existing situation
and future trend of Kajang City growth based on urban
sustainability.

In terms of limitations and future recommendation, this
study selected Kajang City as a small region with a high
potential of land use growth and changes because of its
proximity to three metropolitan cities of Malaysia. Although
we attempted to involve all the effective factors in the
methodological process, neighborhood zones along the city
boundaries are affected by external factors, which are either
developed or natural environment. Thus, considering the
external forces from outside the city boundary is another
important issue that can improve the assessment and mod-
eling of compact cities. This task can be performed by
considering a buffer around the study area boundaries to
consider their characteristics and their effects on the city
border regions.

In addition, although network analysis was used to
assess and extract strategic roads of the city, detailed
information on traffic loads and vehicle miles traveled can
increase the comprehensiveness of compactness assessment
and provide informative vision regarding the negative
effects of extreme compactness of the current and future
situations.

Regarding natural and green environment preservation,
this study mainly focused on the rural environment and the
conservation of agricultural and forest areas. Thus, for future
studies, we suggest concentrating on urban parks and green
spaces within the built-up areas. In fact, identifying the basis
for the creation of urban green corridors network with proper
buffer zones (100, 200, and/or 500 m) is important in
reducing car dependency for leisure accessibility. The
implementation of this process positively affects the pro-
posed compact land use modeling of this study in the allo-
cation of areas for green spaces and residential purposes.

Finally, measuring urban compactness reveals the current
situation of urban forms regarding density, diversity, and
intensity. However, in addition to this knowledge, estimating
the urban capacities is essential in serving the community or
local neighborhood for high compactness. In fact, no stan-
dard threshold exists for various aspects of urban compact-
ness. For instance, various departments and agencies
proposed different population density values suitable for the
urban environment. Thus, we suggest linking urban com-
pactness and urban capacity assessment in various aspects to
identify a baseline and threshold for a compact city to avoid
the negative effects of overly compact neighborhoods.
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6Assessing the Relationship Between City
Compactness and Residential Land Use
Growth

Saleh Abdullahi, Biswajeet Pradhan and Hossein Mojaddadi

6.1 Introduction

Land use change arises from the complex interaction of
various environmental, physical, political, cultural, and other
factors. Land use change models are generally based on the
following four core principles (Lantman et al. 2011;
Abdullahi and Pradhan 2015): historical basis (Kuijpers
et al. 2007), suitability basis (Abdullahi et al. 2014),
neighborhood basis (Li et al. 2008), and actor interaction
basis (Matthews et al. 2007). Several models for land use
change application are based on these core principles, such
as Markov chain, economic-based systems, agent-based
systems, statistical analysis, cellular automata (CA), and
artificial neural network (ANN). The growth and changes of
various urban land use categories affect the surrounding
natural environment or social and economic issues. Thus,
evaluating these consequences has become a topic of interest
in this field, particularly the effects of rapid urbanization and
built-up areas on the natural environment (Burnside et al.
2003; Li and Yeh 2004; Dadhich and Hanaoka 2011). These
urban morphologies are necessary to achieve a sustainable
urban environment. Urban characteristics, such as density,
shape, and size, significantly affect energy consumption and
cause various environmental issues (Alberti et al. 2007;
Petsch et al. 2011; Beatley 2012). Therefore, a compact
urban form is one of the most sustainable urban patterns
(Livingstone and Authority 2003) because of its high urban
density, central area revitalization, land use diversity, natural
environment preservation, and promotion of public trans-
portation facilities (Burton 2000; Burton et al. 2003; Chang
and Sheppard 2013; Abdullahi et al. 2015b).

Although compact urban form is recognized as an attempt
to achieve urban sustainability, few researchers have studied
the reciprocal relationships of compact city indicators of the
surrounding environment. An example is the relationship

between city compactness and land use diversity or urban
density, or the growth and loss of specific land use cate-
gories. Particularly, residential land use growth needs to be
evaluated with respect to various aspects of urban environ-
ment in urban applications (Middel et al. 2011; Xu 2011).
Thus, this chapter attempts to assess the correlation between
residential land use growth and city compactness, that is, the
way by which residential area growth increases or decreases
the degree of city compactness. In the second phase, the
performance and accuracy of two modeling approaches,
machine learning land transformation model (LTM) and
statistical-based weight-of-evidence (WoE), is examined in
predicting the growth of residential land use with respect to
compact urban pattern.

6.2 Data and Methodological Process

Rajang City in Malaysia is a tropical region that consists of an
urban developed area and large portions of forest and agri-
cultural fields (Fig. 6.1). Therefore, the effects of growth and
changes in various land use types can be adequately observed.
The proximity of this city to the major cities of Malaysia has
resulted in recent urban sprawl developments, especially a
significant growth of residential areas (Fig. 6.2). Thus, this
study is conducted to provide a clearer view of these growths
with respect to the city compactness of Rajang City.

The flowchart of the methodological process is shown in
Fig. 6.3. The land use maps for 2008 and 2012 were the
main data used to evaluate the residential growth. Several
other data layers, such as road network, public transporta-
tion, and population, were utilized in addition to land use
maps for the city compactness assessment. All these data
were collected from the local planning authority of Rajang
City.
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6.2.1 Residential Land Use Growth Versus City
Compactness

Cross-tabulation technique was applied on the land use maps
of both years to extract and analyze the growth of residential
areas from 2008 to 2012. Cross-tabulation is a mathematical
matrix that provides unbiased information concerning the
entire area of interest to derive unbiased summary statistics
(Pontius Jr and Millones 2011). This process revealed that
residential land use significantly exhibited the most evident
growth among the urban land uses. Thus, this study focused
on evaluating the effect on and relationship of these growths
with the compactness pattern of Rajang City.

The city compactness of Rajang City was evaluated using
both available land use maps. Several compactness assess-
ment studies, such as those by Thinh et al. (2002), Li and
Yeh (2004), Mubareka et al. (2011), employ different
approaches. However, some drawbacks of these studies are
that they neglect the concentration on built-up areas and
assessment of compactness on physical and cellular bases,
especially that of large cell size (for instance 500 m � 500
m), and ignore the functional characteristics and real
behaviors and activities of local residents. The land use
modeling process at these resolutions and pixel sizes is
incapable of identifying subtle information regarding urban
patterns (Houet et al. 2010). Thus, the current study assessed
the urban compactness of the study area based on three main
indicators of the compact city: urban density, intensity, and
land use diversity (Burton 2002).

Urban density was evaluated based on population, resi-
dential, built-up, and road densities, as discussed in detail by
Abdullahi et al. (2015a, b). Land use diversity, as another

main indicator of urban compactness (Gainza and Livert
2013; Gu et al. 2013; Song et al. 2013), has been evaluated
using various approaches, such as those in the studies con-
ducted by Burton (2002), Song and Knaap (2004), Van Eck
and Koomen (2008), Manaugh and Kreider (2013), and
Musakwa and Van Niekerk (2013). However, as explained
by Abdullahi et al. (2015a, b), land use diversity is evaluated
in the current study based on the proximity of main urban
land use categories, such as residential, commercial, indus-
trial, recreational, and community facilities. In this manner,
not only the richness of mixed land use development can be
assessed, but also the distribution pattern of various land use
categories. This process highlights neighborhoods with high
and low land use diversities. The urban intensity of Rajang
City is evaluated based on distribution pattern and the
quality and quantity of community facilities, such as edu-
cational, medical, and recreational, with respect to the
characteristics and demands of local residents (Abdullahi
et al. 2015a).

Thus, the compactness pattern of both land use maps
(2008 and 2012) with fine spatial resolution (5 m � 5 m cell
size) was evaluated based on these three compactness indi-
cators. Next, the trends of growth and loss of compactness
during this 4 year period were extracted. The same process
of compactness assessment was applied to the 2015 land use
map for and the master plan of Rajang City.

For the next phase, a similarity assessment analysis was
performed to evaluate the relationship between the residen-
tial land use growth and city compactness pattern. This
process was conducted using the relative operating
characteristic-based area under the curve (AUC) method
(Pontius and Schneider 2001; Pradhan 2011; Kolb et al.

Fig. 6.1 Rajang city and Peninsular Malaysia
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2013; Chen et al. 2014a, b). This method is capable of
comparing a map of actual change to the maps of modeled
suitability for land cover change. Thus, the trend of the
compactness pattern of the study area was utilized in this
study as the suitability map. In this map, negative values
indicate a decrease in the degree of compactness, whereas
positive values denote an increase. Meanwhile, a residential
growth map was used as the actual change map to assess its
similarity and fitness to the degree of compactness map for
each cell. This assessment ranges from zero to one, where
one indicates a perfect match and fit.

6.2.2 Land Use Change Modeling Using Land
Transformation Model (LTM)

The LTM integrates multi-layer perceptron ANN and geo-
graphic information system using socioeconomic and bio-
logical factors (Zurada 1992; Pijanowski et al. 2002, 2014).
Multi-layer perceptron applies a supervised learning algo-
rithm that computes a function between input–output pairs
without previous knowledge of functional forms. LTM has
been used numerous times to simulate land use change and
urban growth in the literature (Pijanowski et al. 2005, 2014;

Fig. 6.2 The growth of residential area in Rajang City. Photo taken in September 2014
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Tayyebi and Pijanowski 2014). This model uses knowledge
from at least two historical land use maps to train the net-
work. The current study applied this model to assign the
location of residential land use types with the help of land
use maps for 2008 and 2012. In fact, LTM investigates the
previous trend of land use changes and creates functional
relationships to project future land use change and growth.
Both available maps were classified into two classes: one
and zero as residential and nonresidential areas, respectively.
Several urban-related parameters were used as input drivers.
These parameters were applied to represent land use types,
such as residential and industrial, and urban features, such as
roads and water bodies. All these parameters were created in
raster format as either binary or continuous variables.
Euclidean distance analysis was implemented to distance-
based variables. In this manner, their spatial extents were
subsequently covered, and every cell was assigned a distance
class. These parameters were used to define a set of transi-
tion rules to quantify the spatial effects of predictor cells on
land use transitions (Pijanowski et al. 2002).

ANN model trains and tests all input data to create a
network with suitable predictive capacity. The training
process is implemented to adjust the weights for each node
according to the learning algorithm, while testing is con-
ducted to calculate the error rates (Pijanowski et al. 2002).
Therefore, three main phases were included in the process:
(i) designing the network and input from previous data,
(ii) testing the neural network using the full dataset, and
(iii) using the output information of the neural network to
forecast residential growth. Stuttgart’s Neural Network
Simulator (SNNS) was used for the design, training, and
prediction of the ANN (Zell et al. 1994). The neural network
was designed to contain several numbers of inputs depend-
ing on the selected variables and an equal number of hidden

layers and a single output layer as the final prediction. All
input layers were normalized and converted to ASCII
format.

The model was tested after producing the real change
map that indicates the change in land uses from 2008 to
2012. This process was conducted by comparing the cells
changed to residential during the given period with cells that
have the highest probability to change based on the model.
Then, the percent correct metric (PCM) was computed to
assess the reliability of the projected maps. This process was
implemented by considering the proportion of true positive
areas and number of pixels that changed to other categories
during the selected period. The model computes the PCM for
every cycle, and the best results are selected to project the
residential growth. The model normally predicts the same
proportion of the area that actually changed according to
historical trends. Nevertheless, other variables can be inte-
grated into the model at this stage to produce different sce-
narios. This study considers 1.5 and 2 times the proportion
of change (from 2008 to 2012) as two other scenarios of
growth in addition to the same proportion of growth to
determine the appearance of the region by using different
transition rules (Table 6.1). This task increases the com-
prehensiveness of the process because the model is allowed
to project the proportion of residential land use cells
according to the change probability of the cells.

6.2.3 Land Use Change Modeling Using
Weights-of-Evidence (WoE)

In addition to LTM as a machine learning approach,
statistical-based method is also applied to the residential land
use growth projection to evaluate both methods in terms of

Fig. 6.3 The overall
methodological flowchart
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accuracy and performance. Regression approach possesses
higher explanatory power and outperforms ANN, particu-
larly when functional correlations among dependent and
independent parameters are known (Tayyebi et al. 2014).
WoE is a data-driven approach based on Bayes rule in a
log-linear form using prior and posterior probabilities. This
approach is suitable with enough information to estimate the
relative priority of evidential themes by statistical means
(Bohman-Carter 1994). WoE assesses the degree to which
evidence supports the hypothesis and the degree to which the
evidence does not refute the hypothesis (Dempster 1967;
Shafer 1976). This approach conducts an assessment of
combined pieces of evidence from a variety of dependent
variables. This method can estimate uncertainty and involve
evidence from various data sources (Thiam 2005). WoE has
been used in several studies, such as mineral and geological
potential assessment and mapping (Chen et al. 2014a, b),
cliff instability mapping (Zahiri et al. 2006), and natural
disaster management (Tehrany et al. 2014; Youssef et al.
2015). This method has also been used in a few urban
application studies, such as that of Almeida et al. (2003),
Abdullahi et al. (2015a, b), and Abdullahi and Pradhan
(2015). This approach is simple, time effective, and can be
easily integrated with GIS (Dahal et al. 2008). Detailed
descriptions of the theoretical concepts and mathematical
formulation of this method were provided in the studies of
Bonham-Carter (1994), Regmi et al. (2010), and Pradhan
et al. (2010). The model computes the weight of each
independent variable based on the occurrence and nonoc-
currence of the dependent variable within the study area. In
the current study, residential land use growth is the depen-
dent parameter and the other selected effective factors are the
independent parameters (Table 6.2).

The WoE based on the selected evidence can produce the
probability map for the growth of residential areas. The
probability value is computed based on the prior probability
of occurrence and nonoccurrence of residential pixels in
each class of evidence. The transitional probability was
estimated based on the magnitude of transition in each class.
The classification of the evidence was defined according to
type. Proximity analysis was performed on the
distance-based parameters. These distances were then divi-
ded into classes, which include their spatial extents. In the

case of nominal parameters, such as soil and geological
types, each type was considered as one class. The entire base
layer of all pieces of evidence was converted into a grid cell
to assess the growth of residential land use in their classes.

The spatial association of each residential pixel and each
class of evidence was computed by subtracting the natural
logarithm of occurrence and natural logarithm of nonoc-
currence. A positive value indicates a high number of resi-
dential pixels, while a negative value indicates a low number
of residential pixels growing in this class. Finally, the
standardized value, which represents the significance of the
spatial association and measures the relative certainty of the
posterior probability, was estimated based on the variance
and standard deviation of the contrast (Bohman-Carter
1994).

The WoE method can assess and optimize the factor data
sets and select the most effective factors among all available
data sets. This process is important, especially for this
factor-based approach where the priority of independent
variables with respect to dependent variable is important.
This assessment was implemented by observing the rela-
tionships between the dependent variables with respect to
each independent variable. Thus, the existence and changes
(increase or decrease) of residential cells in relation to each
class of parameters were examined in this case.

The WoE model was designed to produce two scenarios
to evaluate its performance and conduct a proper comparison
with the LTM output maps. In the first scenario, all available
pieces of evidence were utilized to produce the residential
growth probability map (Table 6.1). The second scenario
was conducted with factors similar to those utilized in the
LTM model. This scenario was used to make a one-to-one
comparison between the WoE and LTM model output maps.

6.2.4 Land Use Change Model Validation
with Respect to City Compactness

The performances of both LTM and WoE were evaluated
with respect to the actual land use map for 2015 and city
compactness. Similarity assessment was applied between the
projected and actual land use maps for this process.
The AUC approach was used to conduct these assessments

Table 6.1 Different scenarios of both land use change modeling

Model No. Scenarios details Remarks

LTM 1 Projected map with same amount of previous residential growth Modeling based on historical trend

2 Projected map with 1.5 times of previous residential growth Decrease the limitation to evaluate the
performance of the model3 Projected map with 2 times of previous residential growth

WoE 1 Probability map with all available evidences Modeling based on historical trend

2 Probability map with same factors used for LTM model To compare both models
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(Pontius and Schneider 2001; Van Eck and Koomen 2008;
Chen et al. 2014a, b). The results of both models for all
selected scenarios were validated with the actual land use
map for 2015. First, the relationship of the residential growth
in all scenarios was investigated in terms of the city com-
pactness of the reference maps to evaluate the compatibility
of the models with compact development modeling. In the
second phase, the similarity of the residential growth in all
scenarios was assessed using the actual residential land use
of the reference maps to evaluate the land use change
modeling performance of both models.

6.3 Results and Discussion

Extracting the historical trend of residential land use changes
from 2008 to 2012 was essential to evaluate the relationship
between the growth of residential areas and city compactness
(Fig. 6.4). The change detection based on cross-tabulation
analysis indicated the seemingly encompassing effect of
residential land use on almost all types of activities, but
mostly through the open spaces and agricultural fields of
about 102 ha and 345 ha, respectively. The growth of resi-
dential areas through the open spaces or redevelopment of

Table 6.2 WoE and LTM input
parameters

No. WoE Parameters LTM Parameters

1 Residential growth from 2008 to 2012 Residential growth from 2008 to 2012

2 Proximity to residential Proximity to residential

3 Proximity to commercial Proximity to commercial

4 Proximity to industrial Proximity to industrial

5 Proximity to main roads Proximity to main roads

6 Proximity to public transportation Proximity to public transportation

7 Proximity to community facilities Proximity to community facilities

8 Proximity to recreational facilities Proximity to recreational facilities

9 Proximity to infrastructure Proximity to infrastructure

10 Proximity to agricultural fields Proximity to agricultural fields

11 Proximity to river and water bodies Proximity to river and water bodies

12 Proximity to restricted areas Proximity to restricted areas

13 Proximity to flood zones

14 Geological properties

15 Soil properties

Fig. 6.4 Residential growth of
Rajang City from 2008 to 2012
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these areas to any other land use type is acceptable because of
the brownfield redevelopment objectives. Nevertheless, the
destruction of large amounts of agricultural fields and green
environments because of residential growth is not acceptable
and should be avoided as much as possible. Table 6.3 shows
that commercial and industrial land uses also had significant
growths through other land use and land covers.

A large proportion of agricultural fields, several brown-
field sites, and a few commercial land use parcels along the
main road in the north of the city were converted to resi-
dential land use during the 4 year period. This phenomenon
indicates that accessibility and proximity to central business
districts are important factors that control residential land use
growth. In the next phase, this result was compared with the
compactness trend in Rajang City during the same period.

6.3.1 City Compactness Assessment Versus
Residential Growth

The compactness assessment process was performed based on
urban density, intensity, and land use diversity for both
available land use maps. Therefore, based on these three
variables, single land use areas, such as agricultural fields and
industrial areas, were indicated as less compact, whereas areas
covered by a combination of several land use categories, such
as residential, commercial, and facilities, were illustrated as
more compact environments. In fact, such single land use
neighborhoods usually have low population density with
fewer community facilities. These are the main reasons why
these areas were identified as less compact zones. However,
mixed land use neighborhoods attract population, commercial
services, and community facilities, which increase the degree
of compactness of these areas. In Rajang City, the eastern
zoneswere assigned as less compact and central zones because
of agricultural fields and industrial buildings, while the
southern regions were assigned as high compact areas because
of the existence of a main public transportation station
(Fig. 6.5). By investigating the relation of road network and

compactness maps, we observed that the proximity to main
roads increase the degree of compactness, which shows the
importance of road network in city compactness.

Although insignificant changes were observed during the
four-year period, these changes affect the degree of com-
pactness of the city significantly. Figure 6.5 (c) depicts the
changes in the degree of compactness from 2008 to 2012. This
map is produced by subtracting the compactness map of 2008
from that of 2012. Thus, the dark brown color indicates areas
with growth while yellow indicates areas with reduction in the
degree of compactness. The western regions of Rajang City
had compactness growth and the central and eastern regions
lost compactness during the selected period. This result is
caused by the proximity of thewestern parts of the RajangCity
to the other city centers of the province and the existence of
forest areas in the east of this city. Thus, insignificant devel-
opment and changes can be expected in the eastern parts.

Next, the relationship between the trend of compactness
maps and growth of residential areas was investigated.
Although a random relationship between these two phenom-
ena can be observed from the general statistical perspective
(Fig. 6.6a), the curve of residential land use growth leaned
toward positive degrees of compactness (Fig. 6.6b). This
trend indicates that significant amounts of residential growth
areas are located in neighborhoods where their compactness
increased during the selected period. Thus, residential land use
growth is effective in the growth of compactness of the local
neighborhoods. In the next level, residential growth was
compared with each of the three indicators of city compact-
ness. The high residential land use growth substantially
increased urban density, slightly increased land use diversity,
but has no effect on urban intensity.

6.3.2 Land Use Change Modeling Evaluation

To address the next objective, an assessment of the perfor-
mance of the two land use modeling approaches for resi-
dential growth was attempted with respect to city

Table 6.3 Cross-tabulation
between 2008 and 2012 land use
maps

Land use Res. Infra. Fac. Open Agri. Indus. Comm. Growth (A) Total (A–B)

Res. 1277.6 2.2 13.5 102.8 344.5 20.6 20.2 503.9 366.8

Infra. 18.6 115.2 1.2 18.0 7.2 3.6 1.2 49.9 39.3

Faci. 19.3 0.6 423.6 10.6 4.5 0.9 2.0 38.0 8.0

Open 51.4 3.4 8.6 251.2 20.1 5.8 6.0 95.3 -213.8

Agri. 1.3 0.2 0.4 95.3 489.9 8.7 0.4 106.3 -347.5

Indus. 15.6 0.9 0.0 38.0 59.5 491.7 6.0 120.0 75.1

Comm. 30.8 3.2 6.2 44.4 18.0 5.3 74.7 107.9 72.1

Loss (B) 137.0 10.6 29.9 309.0 453.9 44.9 35.8

Res. Residential; Infra. Infrastructure; Fac. Facility; Open Open spaces; Agri. Agriculture; Indus. Industrial;
Comm. Commercial
Bold letters indicate important/significant values
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compactness. Figure 6.7 depicts the results of the three
scenarios proposed by the LTM land use modeling.

Based on the assumption of less limitation for growth (in
case of second and third scenarios), it can be seen that more
agricultural areas are converted to residential in eastern
regions compared to first scenario. Several large brownfield

sites near the industrial areas and many small brownfield
sites in the south were projected to change to residential
areas, especially in the third scenario. More unsuitable areas
are projected to change to residential use as the limitation of
the model decreases. Similarly, the first scenario with more
than 90% PCM value has higher accuracy than the second

Fig. 6.5 City compactness
assessment of; a land use map of
2008, b land use map of 2012;
c the trend of the city
compactness during the 4 year
period
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and third scenarios according to the calculated PCM. The
spatial comparison between these scenarios and the actual
land use map for 2015 indicated that the similarity of resi-
dential maps with respect to compactness decreases slightly
as the proportion of residential growth increases. Thus, more
residential land uses grow in areas with less compactness,
such as agricultural fields or industrial zones (Fig. 6.8a). By
contrast, the similarity of residential growths with respect to
the residential map for 2015 increases as the proportion of
residential growth increases (Fig. 6.8b). Thus, the second
and third scenarios have more similarity with the real
changes despite the lower PCM values. Therefore, the third
scenario generally performed better based on the residential
growth perspective. However, more unsuitable areas (e.g.,
natural environment) are converted to residential areas,
thereby causing unsustainable development, as the growth of
the residential land use increases significantly.

Next, WoE was used as the statistical method based on
the probabilistic concept to create probability of residential
growth maps. The calculated contrast, W+ and W− values,
was computed as weighting for each selected evidence
(parameter) and overlaid to create a probability map for each
scenario for this analysis. A few of these pieces evidence had
high positive influences on residential growth, including
proximity to main roads, public transportation, and recre-
ational facilities (Table 6.4). By contrast, areas near agri-
cultural lands and industrial buildings had an inverse effect
on residential growth. Meanwhile, the middle class of
proximity of some pieces of evidence, such as proximity to
commercial areas, has the highest growth probability. This
means that residential use is normally located neither very
near nor extremely far from these land use/covers. Fig-
ure 6.9 illustrates the probability maps for both explained
scenarios of the WoE method. In general, by the visual

Fig. 6.6 a AUC graph of
residential land use growth versus
compactness trend of Rajang
City. b Comparison graph of
residential land use growth and
compactness trend of Rajang City

6 Assessing the Relationship Between City Compactness … 147



comparison of Figs. 6.7 and 6.9, both models placed the new
residential land uses in the same areas. For instance, no
projected residential growth can be observed in the central
west (industrial zones), east border (agricultural fields), and
northeast areas. No significant differences in the visual

interpretation can be observed between the two scenarios in
terms of the location and distribution of residential growth.
However, the legends of the maps illustrate the intensity of
probability values, which show that a higher number of
variables increase the intensity of the probability values. In

Fig. 6.7 Three LTM modeling
scenarios of residential growth;
a 1 scenario, b 2 scenario and c 3
scenario
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Fig. 6.8 LTM modeling
scenarios evaluation with respect
to year 2015 land use map; a 3
scenarios versus year 2015
compactness map, b 3 scenarios
versus year 2015 residential land
use map

Table 6.4 Summarized
weights-of-evidence for
residential land use growth

Evidence Class C/S(C) Evidence Class C/S(C)

Proximity to residential-2012 Near 363.27 Proximity to community
facilities-2012

Near 51.54

Middle −264.07 Middle 109.01

Far −156.13 Far −177.41

Proximity to
commercial-2012

Near −11.66 Proximity to recreational
facilities-2012

Near 129.38

Middle 45.24 Middle 38.84

Far −35.10 Far −185.97

Proximity to industrial-2012 Near −232.07 Proximity to
infrastructure-2012

Near 39.38

Middle 99.20 Middle 62.97

Far 105.06 Far −109.34

Proximity to main roads-2012 Near 53.76 Proximity to agricultural
fields-2012

Near −132.02

Middle 29.54 Middle 19.97

Far −86.90 Far 100.26

Proximity to public
transportation-2012

Near 62.67 Proximity to river and water
bodies-2012

Near 24.57

Middle −2.57 Middle 73.25

Far −62.48 Far −103.09

Proximity to flood
zones-2012

Near 4.38 Proximity to restricted
areas-2012

Near 56.11

Middle 70.43 Middle 42.42

Far −79.03 Far −104.18

Soil properties-2012 2nT 76.03 Geological properties-2012 Acid −24.40

2Gn 4.35 Quartz 5.19

5H(u) 42.78 Schist −9.26

5H(m) 17.06 Filit 16.16

2Gnt −106.87

5G −78.52
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addition, subtle information and differences, especially in
relation to LTM modeling outputs can be extracted by
quantitatively evaluating these scenarios.

Similar to the three scenarios of the LTM approach, the
probability maps produced by WoE were also compared
with the actual land use map for 2015. Figure 6.10 illustrates
the relationship between the compactness and residential
map for 2015 with respect to each scenario. According to
this figure and Table 6.5, no significant difference can be
observed between the scenarios and compactness

map. However, the relationship between different scenarios
of WoE and the compactness map is higher than that in the
LTM scenarios. This result means that the process of land
use change modeling in WoE has a higher relationship with
city compactness and its indicators than in LTM. On the
contrary, the WoE scenarios have lower similarities with the
real change residential map than the LTM scenarios. This
result indicates the better performance of the LTM technique
for land use change modeling based on the parameters and
assumptions of the present study.

Fig. 6.9 Two WoE modeling
scenarios of residential growth;
a 1 scenario, b 2 scenario
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6.4 Conclusion

Compactness assessment generally examines the sustain-
ability of urban development by utilizing specific indicators.
The evaluation and relation of these indicators and other
urban phenomena, such as growth and loss of various land
use categories, are essential in performing this assessment.
This study quantified the proportion and direction of resi-
dential growth to examine the trend of changes in relation to
compact urban development and to identify how these
changes can influence city compactness. According to these
assessments, the reduction and/or growth in the degree of
compactness during the selected period can be evaluated.
This information is a valuable reference for local planning
authorities to obtain an overall perspective of recent devel-
opment patterns. The relationship between the growth and

city compactness can be investigated by comparing this
assessment with residential or any other land use growth. In
this study, most of the newly developed residential areas
were located in zones where their degrees of compactness
grew. This result indicates the positive effect of residential
growth on city compactness and vice versa. The effects of
residential growth on city compactness can be sufficiently
evaluated in detail by decomposing the city compactness
concept into its indicators further.

Furthermore, this study also examined two land use
change modeling techniques based on computer learning
(LTM) and statistical concept (WoE) by projecting the future
residential land use growth of Rajang City in Malaysia. LTM
generally performs better and more accurately models resi-
dential growth than statistical-based WoE. However, WoE
provides clearer and more informative results that were

Fig. 6.10 WoE modeling
scenarios evaluation with respect
to year 2015 land use map; a 2
scenarios versus year 2015
compactness map, b 2 scenarios
versus year 2015 residential land
use map

Table 6.5 Overall results of
both techniques with respect to
year 2015 land use map

AUC (%) similarity assessment with respect
to year 2015 land use map

Techniques Scenarios Compactness map Residential land use map

LTM 1 74.74 77.12

2 73.49 82.61

3 71.88 84.07

WoE 1 79.30 61.12

2 78.77 61.62
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indirectly interpreted by LTM in the case of functional
relationships among the dependent and independent vari-
ables. In addition, the number of parameters in the LTM
depended on several factors, including type of neural net-
work, number of hidden layers, and number of drivers and
outputs. The results indicate that unsuitable areas are also
converted to residential areas, which causes unsustainable
development, by increasing the growth of residential cells
and decreasing the limitations of LTM. In the compact
development perspective, WoE provides more related and
effective performance and results than LTM.
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7Urban Expansion and Change Detection
Analysis

Saleh Abdullahi and Biswajeet Pradhan

7.1 Introduction

The urbanization process is the key factor in urban growth
and land use change. Unorganized and unexpected urban
expansion causes poor and unplanned land use changes and
consequently results in poor infrastructure and facility pro-
vision. Generally, sprawl development refers to the devel-
opment in which built-up areas have higher growth than the
population in a specific area (Barnes et al. 2001; Soffianian
et al. 2010). Thus, controlling the growth of built-up areas
through green and open spaces is essential to avoid sprawl
development. In this regard, urban expansion and change
detection analysis produce baseline information on the pre-
vious and existing trends of urban growth behavior in vari-
ous urban applications, such as political and historical
processes (Flint 2002), urban crime assessment (Craglia
et al. 2001), land suitability assessment (Abdullahi et al.
2014), estimation of urban population (Zhang 2003), urban
heat island research (Kaveckis and Bechtel 2014), merging
urban ecology and socioeconomics (Zhang et al. 2006), land
use/land cover evaluation (López et al. 2001), urban change
analysis and the modeling of growth (Hu and Lo 2007;
Al-shalabi et al. 2013; Abdullahi and Pradhan 2015).

Urban expansion is evaluated by determining the amount
of built-up areas between two time instances (Bhatta 2009).
In addition to the growth of built-up areas, evaluation of the
amount of changes among various other land use categories
also provides a clear understanding of the urban growth
trend. Thus, the modeling of urban expansion and land use
changes allows the quantification of these changes in urban
environment.

Urban growth and expansion has a direct relationship
with socioeconomic information and population figures.
Growth in population induces the spread of the built-up area.
Therefore, the population in an area is one of the important
metrics in the urban sprawl process. A simple and acceptable
measure to identify and quantify urban sprawl is the pro-
portion of total built-up area to the total population (Sharma
et al. 2012; Sandhya Kiran and Joshi 2013). The built-up

area and population percentages should be computed by
dividing the amount of built-up area and population in every
district by the overall built-up area and population of the
whole study area, respectively. The interchangeable rela-
tionship of urban growth and population can be evaluated by
subtracting the population ratio from the built-up area ratio
in each district. The results will fall in the range of −1 to 1,
where 0 indicates moderate conditions. A positive value
reflects higher built-up area consumption per capita, which,
in turn, indicates better environment and extended urban
services. A negative value indicates population crowding,
which may result in serious negative effect at the social,
economic, and urban levels.

Land absorption rate is another urban expansion and sprawl
assessment method based on the relationship between the
built-up area and population figures (Al-sharif et al. 2013). It
measures the urban sprawl as a process. The land absorption
rate technique is based on the evaluation of changes in the
built-up area and the population data in the defined period. In
addition to the population consideration in urban growth
assessment, the observed expansion should be compared with
the forecasted urban expansion to understand the divergence of
urban growth. The divergence of urban growth in each zone
and each temporal period can be easily identified by subtract-
ing the calculated theoretical expected urban growth from the
observed growth. Positive values confirm more growth than
the expectations,whereas negative values indicate less growth.
The level of variation can also be identifiedby themagnitude of
differences. Higher deviations between the observed urban
expansions in the selected zones reflect the freedom and
independence of the urban expansion process, that is, high
deviation means that the studied variable is independent
from other similar types of variables. However, developing
countries normally have no clear urban plan or wise estima-
tions of urban expansions unlike developed countries.

In the urbanization process, expansion differs per region
and direction because of the policy on urban driving factors
and their spatial effects. Such factors include road network,
population density, slope, and economics. The differences in
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expansions are referred to as the preference of urban growth.
Urban expansion intensity index is another equation to
quantitatively assess and analyze the differences in urban
spatial expansions. This process can recognize the prefer-
ence of urban growth in a certain period (Ren et al. 2013). It
reflects the probable future direction and potentials of urban
expansions and compares the speed or intensity of urban
land use change in different periods. Another statistical
urban growth assessment is Pearson’s chi-square, which
estimates the freedom or degree of variation for the observed
urban growth over the expected urban growth (Almeida et al.
2005; Bhatta et al. 2010). Pearson’s chi-square method can
check the degree of freedom between pairs of variables
selected to describe the same class of land cover change. The
estimation of this index for the urbanization process is
normally used as a supportive analysis tool to provide
another perspective on urban sprawl. Pearson’s chi-square
method assesses the deviation of real urban expansion from
planned or expected growth; a high deviation of urban
growth is considered as a sign of urban sprawl occurrence.
A higher degree of freedom implies the need for consistency
in planning, managing, and controlling urban growth. A high
degree of freedom in a zone is a warning about unbalanced
growth within the zone over time, and high degrees of
freedom in a period implies high interzone inconsistency in
urban growth. However, a high degree of freedom cannot be
considered as a clear sprawl but as a disparity in urban
growth instead. The overall degree of freedom of the study
area can also be calculated by the summation of the degrees
of freedom across all periods or by summing up the degrees
of freedom of all zones. If the lower limit of the chi-square
becomes 0, the observed growth value is exactly equal to the
expected growth value.

The following sections present the urban growth and land
use change analysis of Kajang City (Malaysia) as a case
study based on the historical trends of growth and changes
with respect to the master plan of the city.

7.2 Implementation of Growth and Change
Analysis

Land use change assessments provide a clear understanding
of the built-up growth through various land uses and land
cover categories. These assessments reveal the rates,
amount, and directions of the growth. Thus, significant
growth and/or loss of a specific land use type can be high-
lighted precisely. Cross-tabulation analysis is applied to each
pair of available land use maps of the study area (2004,
2008, 2012, and 2015) to implement this analysis for Kajang
City. This city is located 21 km away from Kuala Lumpur,
the capital city of Malaysia (Fig. 7.1). The eastern parts of
the city are mainly covered by agriculture and forest lands.

Recent rapid urban developments have mushroomed in
Kajang City because of its proximity to three main cities of
Malaysia. Although many abandoned brownfields exist in
the city, most of these new developments have been con-
structed at the outskirts of the agricultural and forest envi-
ronments. Thus, this chapter attempts to assess the growth
and changes of various land use categories with respect to
each other. Next, these growths were evaluated and com-
pared with the master plan of the study area, which was
proposed by the local planning authority.

Cross tabulation is a mathematical matrix that provides
unbiased information concerning the entire area of interest to
derive unbiased summary statistics (Pontius Jr and Millones
2011). This matrix is also known as confusion, error, and
contingency matrices and is a quantitative research method
for analyzing the relationship and interrelation between two
or more variables. For the current study, the matrix provided
unbiased information to quantify the persistence and land
use changes and growth between all land use maps.
Figure 7.2 shows that four land use maps of Kajang City
were collected from the local planning authority in temporal
bases of years 2004, 2008, 2012, 2015, and the master plan
(Figs. 7.3, 7.4, 7.5, 7.6, 7.7).

Generally, n(n − 1) possible land use conversions are
possible, where n is the number of land uses. Thus, 72
possible conversions are expected in the case of nine land
use types. Land conversion is symmetric at the high spatial
resolution used for this study, and changes in both ways can
be observed. Thus, some of the 72 possible land use con-
versions are expected to be observable and a few to be
negligible. For instance, the conversion of water bodies from
and to other land use categories rarely occurs. By contrast,
the growth of residential, commercial, and industrial areas
through agricultural and green spaces is common all around
the world.

All four shapefile land use maps were converted to raster
format with 1 m pixel size to perform the change detection
process. Next, all raster layers were converted to ASCII data
and then imported to IDRISI software to conduct the
cross-tabulation analysis. The input to this process for each
run were two land use maps, for instance, 2004 and 2008 as
older and newer input images, respectively. This process can
produce four types of output: (1) cross-classification image,
(2) full cross-tabulation table, (3) both cross-classification
image and cross-tabulation table, and (4) image similarity/
association data only. The third output type was selected for
this study to obtain both cross-tabulation image and full
cross-tabulation table. Therefore, in addition to the land use
changes in two periods that can be observed visually, all the
quantitative information of different land use changes can be
extracted in a matrix format. In these matrices, the land use
types of the older land use map are arranged in columns
against the land use types of the newer land use map in rows.
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The extra column and row at the end of the matrix represent
the total amount (area in m2) of each land use type in each
column and row. These values show the total change
(growth and loss) of each land use category to and from
other categories. The diagonal line of the matrix shows the
amount of each land use type that remained unchanged
during the given period.

Some statistical values, such as chi-square, degree of
freedom, P-Level, Cramer’s V, Kappa index of agreement
(KIA), and overall Kappa, were calculated for each matrix
(Kuzera and Pontius 2008). Chi-square test was constructed
from a sum of squared errors or through the sample variance.
This test examined independent variables for independency
and determined whether splitting nodes generated a signifi-
cant improvement. Degree of freedom indicates the number
of independent ways by which the variables in the matrix
can move without violating any constraint imposed on them.

This value indicates the number of interactions among all
land use types. P-Level is a function of the observed sample
results that is used for testing the hypothesis. A threshold
value was selected, which is called significance level, before
the test was conducted. A P-level lower or equal to the
threshold indicates inconsistency in the observed data.
Cramer’s V calculated the correlation in the matrix (Almeida
et al. 2005). It was used as a posttest to determine the
strengths of association after chi-square determined the
significance. In fact, chi-square indicated the relationship
among the land use types, but Cramer’s V showed how
important and significant they were. Cramer’s V was in the
range of 0 (minimal association among variables) to 1 (high
association among variables). Two land use maps with sig-
nificant difference and changes in land use types had a low
Cramer’s V value (close to 0) and two land use maps with
insignificant changes had a high Cramer’s V value (close to

Fig. 7.1 The map of Malaysia and Kajang City

Fig. 7.2 Process flow of urban growth and change analysis
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1). This assessment provided valuable information regarding
the growth and changes between two land use maps. The
Kappa index of agreement was calculated for all land use
categories twice, first using the older land use map as the
reference map and second using the newer land use
map. This measurement was originally developed for

accuracy assessment of remotely sensed images. In the
current study, the Kappa index of agreement was used to test
whether the differences between two land use maps were due
to chance or real (dis) agreement. In fact, this index evalu-
ated the degree of agreement between the two land use maps
on a per category basis. This assessment was also in the

Fig. 7.3 Land use map of year
2004

Fig. 7.4 Land use map of year
2008
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range of 0 (total agreement from chance) to 1 (perfect true
agreement). Finally, overall Kappa was calculated, which
discriminated between errors of quantity and errors of
location between two land use maps.

Cross tabulation in addition to matrix showed that areas
of land use changes created another matrix known as

proportional cross tabulation. This matrix determined the
proportional conversion of each land use type, which was
calculated from each area of change with respect to the total
area of analysis.

The amount of built-up area for each temporal land use
map was measured from this quantitative information. This

Fig. 7.5 Land use map of year
2012

Fig. 7.6 Land use map of year
2015
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process for shapefile format was easy to conduct using the
ArcGIS spatial analysis tool. However, the number of pixels
for the output maps of IDRISI software, which are in raster
format and which belong to built-up land use categories, was
multiplied by the cell size, which was 1 m2.

After the land use growth and change evaluation of all
temporal land use maps (2004, 2008, 2012, and 2015), these
development patterns were compared with the master plan of
Kajang City to evaluate whether the current development
patterns were following the master plan or not. Thus, this
process investigated the amount, direction, and reason for
the similarity and dissimilarity of the current development
trend with respect to the master plan. The master plan layer
consisted of one extra class for enterprise zones, which
showed the areas in Kajang City that need to be revitalized
or regenerated to improve the economy and livability of
certain neighborhoods.

7.3 Results of Urban Growth and Change
Analysis

This section demonstrates and discusses the results of urban
growth analysis based on several spatiotemporal land use
maps and the evaluation of various land use change patterns.
As the first and an essential step in most urban planning
applications, change detection was performed using the
cross-tabulation approach to extract the land use change
historical trend of the study area. This process was

conducted for each pair of available land use maps. Cross
tabulation provided two-dimensional tables to show land use
changes of all cells of the study area for each pair of selected
periods. In addition, cross tabulation determined the geo-
graphical distribution of changes throughout the study area.
Cross tabulation was conducted among all available land use
maps to produce a cross-classification image and
cross-tabulation table for each pair of land use maps.

Tables 7.1, 7.2, 7.3 show the quantitative information of
land use changes during selected periods in matrix format.
These tables show the area for each land use type that was
converted to another type. In these tables, the older land use
maps (column) are cross-tabulated with the newer land use
maps (row). The last rows and second to the last columns
(sum) in all tables show the calculated sum of each row and
column, which is the sum of growth and loss for the corre-
sponding land use category. The last columns of all tables
(total loss) are the summarized growth or loss for each land
use category. These values were calculated by subtracting the
value of growth from the loss. Thus, a positive value meant
growth and a negative value indicated loss of the corre-
sponding land use type during the selected period. These
tables show that the land use categories are listed in number
format (agriculture = 1, commercial = 2, open spaces = 3,
housing = 4, industry = 5, infrastructure = 6, community
facility = 7, road network = 8, and water body = 9).

The values in the given tables are the numbers of pixels
of the study area. The given values in the tables are in m2

unit because the process was conducted with 1 m2 pixel size.

Fig. 7.7 Master plan of Kajang
City
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Table 7.1 Cross tabulation of land use map 2004 (column) against 2008 (row) (m2)

1 2 3 4 5 6 7 8 9 Sum (A) Total (A − B)

1 4,479,839 0 572,389 278 41,868 34 356 5544 0 5,100,308 −3,720,252

2 13,341 976,420 114,310 48 32 3 0 3831 0 1,107,985 123,245

3 3,379,430 1402 10,313,110 493,569 6180 22,260 46,037 25,586 0 14,287,574 −155,521

4 321,811 113 1,984,856 10,580,336 220 9383 3895 25,738 0 12,926,352 1,766,064

5 16,328 0 240,742 8 4,589,970 36 0 839 0 4,847,923 197,057

6 28,157 0 153,938 18 77 864,658 5 1485 0 1,048,338 132,468

7 8280 1 92,510 23 0 0 3,867,271 511 0 3,968,596 40,518

8 566,748 6800 971,139 86,003 12,518 19,495 10,513 11,257,536 256 12,931,008 1,609,660

9 0 0 91 0 0 0 0 16 332,438 332,545 −149

Sum (B) 8,820,560 984,740 14,443,095 11,160,288 4,650,866 915,870 3,928,078 11,321,348 332,694

Note Agriculture = 1, commercial = 2, open spaces = 3, housing = 4, industry = 5, infrastructure = 6, community facility = 7, road network = 8 and water
body = 9. Positive value of last column means growth and negative value means loss of land use category

Table 7.2 Cross tabulation of land use map 2008 (column) against 2012 (row) (m2)

1 2 3 4 5 6 7 8 9 Sum (A) Total (A − B)

1 3,165,026 3426 2,047,234 214,850 99,859 2505 7677 80,995 0 5,621,572 518,242

2 42,750 663,906 586,049 276,972 36,316 2563 59,799 75,740 0 1,744,095 636,103

3 444,946 51,677 5,581,021 750,289 598,365 118,098 59,904 346,298 753 7,951,351 −6,338,200

4 612,824 120,515 2,713,650 10,653,226 106,177 10,878 41,576 498,328 27 14,757,201 1,830,828

5 338,067 57,180 1,170,208 148,901 3,704,952 8759 0 177,248 0 5,605,315 757,389

6 67,988 9713 313,279 137,347 33,059 865,759 1981 99,510 0 1,528,636 480,298

7 6730 20,242 547,355 127,217 8680 3625 3,770,909 45,694 0 4,530,452 561,856

8 420,918 181,333 1,309,232 605,781 260,518 36,149 23,719 11,547,620 712 14,385,982 1,453,096

9 4007 0 21,523 11,790 0 1 3031 61,453 331,053 432,858 100,313

Sum (B) 5,103,330 1,107,992 14,289,551 12,926,373 4,847,926 1,048,338 3,968,596 12,932,886 332,545

Table 7.3 Cross tabulation of land use map 2012 (column) against 2015 (row) (m2)

1 2 3 4 5 6 7 8 9 Sum (A) Total (A − B)

1 4,210,981 0 0 0 0 0 0 0 0 4,210,981 −1,410,738

2 0 1,744,100 13,751 0 0 0 0 0 0 1,757,851 13,751

3 876,405 0 7,477,620 130 27,681 0 0 123 0 8,381,959 430,601

4 109,794 0 458,426 14,757,081 0 1 0 68 0 15,325,370 568,159

5 424,539 0 0 0 5,577,638 0 0 0 0 6,002,177 396,858

6 0 0 1173 0 0 1,528,636 0 1 0 1,529,810 1173

7 0 0 0 0 0 0 4,530,455 0 0 4,530,455 0

8 0 0 282 0 0 0 0 14,385,842 0 14,386,124 90

9 0 0 0 0 0 0 0 0 432,858 432,858 0

Sum (B) 5,621,719 1,744,100 7,951,358 14,757,211 5,605,319 1,528,637 4,530,455 14,386,034 432,858
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In general, the result of the cross-tabulation analysis
indicated that residential, transportation, commercial, and
industrial land use types had significant growths compared
with other land use types. Furthermore, the growth of these
three land use types mainly resulted in the reduction of
agricultural fields and open spaces. In most of the periods,
the seemingly encompassing effect of residential land use on
almost all types of activities can be observed. However, this
growth through open spaces and agricultural areas was more
significant. Followed by residential land use, transportation
and industrial were the two other land use categories that had
substantial growth.

With the 1 m2 spatial resolution of the change detection
process, a symmetric and two-way land use conversion was
expected. This condition means that although the land cover
change of water bodies happens rarely, the conversion of
water bodies to other land use types and vice versa can be
observed in this process. Nevertheless, these insignificant
changes are also measured and presented in terms of amount
and frequency. Lower precision and accuracy can be
achieved from this assessment with a coarser spatial reso-
lution process.

Table 7.1 shows the cross tabulation between the land use
maps for 2004 and 2008. Each column of this table shows
that the pixels of the study area belong to one land use
category that was converted to another category indicated by
each row. The first and third columns, which are agricultural
and open spaces, respectively, have higher values than the
other columns, such as commercial (2) and residential (4).
This condition means that the conversions of the open spaces
and agricultural areas to other land uses were higher than
those of the residential and commercial areas. Open spaces
mainly consist of brownfields or abandoned lands, which are
undeveloped because of several reasons. Thus, the changes
of these lands to any other land use category with the aim of
brownfield redevelopment are preferable.

The diagonal values of these tables show the number of
pixels (the area) that remained unchanged during the corre-
sponding period. The diagonal values are higher than the
other values in all the cross-tabulation tables because the
majority of land use types usually remain the same. This
hypothesis can be observed clearly in Table 7.3, which
shows that no significant change occurred in Kajang City
during the period 2012–2015. Thus, most of the values in
this specific table are zero and the maximum values are
placed in diagonal cells, indicating that most of the areas
remained unchanged. Unlike in this period (2012–2015),
Kajang City encountered a large proportion of changes in the
other periods. This can be seen from the higher values in the
tables corresponding to the changes between two land use
types. However, most of the land use types, such as resi-
dential, commercial, agricultural, and open spaces, have
larger proportion of changes than water bodies, which have
less change during selected periods. Water body with class
value of nine in these tables usually has zero or very small
value.

Table 7.4 shows the overall period of land use changes
from the oldest to newest available land use map, that is,
2004–2015. This table presents the same and/or summarized
information of previous tables. For instance, the residential
area had total growths of 176.6, 183.0, and 56.8 ha from
2004 to 2008, from 2008 to 2012, and from 2012 to 2015,
respectively. Thus, the total growth of the residential area
from the oldest to the newest land maps (2004 to 2015) can
be observed in Table 7.4, which is the sum of the growth
rates in the three periods (416.4 ha).

Table 7.5 and Fig. 7.8 present the overall changes
(growth and loss) of each land use type during the selected
periods. Table 7.5 shows that agricultural fields were
reduced by 372 ha from 2004 to 2008, and then increased by
52 ha from 2008 to 2012, and again reduced by 141 ha from
2012 to 2015. Similarly, open spaces decreased from 2004 to

Table 7.4 Cross tabulation of land use map 2004 (column) against 2015 (row) (m2)

1 2 3 4 5 6 7 8 9 Sum (A) Total (A − B)

1 2,846,634 3426 1,108,332 99,939 90,956 2226 7,760 48,522 0 4,207,795 −4,612,765

2 46,234 583,320 752,665 253,339 25,412 1046 58,028 37,807 0 1,757,851 773,111

3 1,556,335 36,073 5,622,998 400,534 530,654 26,626 58,332 149,094 734 8,381,380 −6,061,715

4 1,414,198 119,108 3,589,923 9,594,798 102,577 7080 49,765 446,807 27 15,324,283 4,163,995

5 1,376,475 57,218 717,746 57,014 3,631,480 8735 0 153,508 0 6,002,176 1,351,310

6 179,193 3491 301,225 119,950 26,974 828,368 2036 68,572 0 1,529,809 613,939

7 66,456 14,214 560,914 118,694 8680 3552 3,714,563 43,382 0 4,530,455 602,377

8 1,324,412 167,890 1,769,707 502,110 234,133 38,235 34,563 10,311,994 944 14,383,988 3,062,640

9 4007 0 19,479 13,910 0 1 3031 61,440 330,989 432,857 100,163

Sum (B) 8,820,560 984,740 14,443,095 11,160,288 4,650,866 915,870 3,928,078 11,321,348 332,694
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2012. By contrast, other land use types grew in all selected
periods with different amounts and fluctuations. A slight
change can be observed in the case of water bodies.
A growth of 10 ha, which accounted for the change of pri-
vate water bodies to public and/or the consideration of the
wetlands as water bodies, occurred only from 2008 to 2012.

The low values in the columns representing the period of
2012–2015 indicate the similarity and smaller amount of
changes between these two land use maps. Finally, the last
column provides the summarized amount of changes in the
land use types from the first to the last period (2004–2015)
as explained previously. Proportional matrices were also
produced from this process in addition to the area analysis
by cross tabulation, which determined the proportional
conversion of each land use type (Tables 7.6, 7.7, 7.8, 7.9).

The values of proportional cross tabulation were calculated
based on the area change in the previous trend with respect
to the total area of the analysis. Defining a rectangular
boundary around the current study area was necessary to
perform cross-tabulation analysis. Thus, the total study area
in this process was about 80,548,936 m2 rather than actual
area of Kajang City of 60,000,000 m2. Therefore, all the
land use change values in Tables 7.1, 7.2, 7.3 and 7.4 were
divided based on the value of the rectangular study area
(80,548,936 m2).

The geographical distribution of the land use changes
throughout the study area, which was produced from the
cross-tabulation process, is shown in Figs. 7.9, 7.10, 7.11,
7.12. Many land use changes were expected in these figures
because of the nine land use categories (maximum of 72

Table 7.5 Summarized cross
tabulation during selected time
period (hectare)

Land use category 2004–2008 2008–2012 2012–2015 2004–2015

Agriculture 1 −372 52 −141 −461

Commercial 2 12 64 1 77

Open spaces 3 −15 −634 43 −606

Housing 4 177 183 57 417

Industry 5 20 76 40 135

Infrastructure 6 13 48 0 61

Facility 7 4 56 0 60

Transportation 8 161 145 0 306

Water body 9 0 10 0 10
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changes). Showing all these changes was not possible,
especially in the legend of the maps. In addition, only a few
of these changes were significant in amount and value. Thus,
unlike the cross-tabulation tables that present all the changes,
the legends in these figures show only the main changes.
Land use categories are listed in number format (agricul-
ture = 1, commercial = 2, open spaces = 3, housing = 4,
industry = 5, infrastructure = 6, community facility = 7,
road network = 8, and water body = 9). Therefore, in
Fig. 7.9, the legend can be explained as follows:

• 1–3: conversion of agriculture area to open spaces;
• 1–4: conversion of agriculture area to residential area;
• 3–2: conversion of open spaces to commercial use;
• 3–4: conversion of open spaces to residential area,

and so on.

In addition to the quantitative information provided in
tabular format, these figures provided a better view of the
changes in land use types in the study area. As previously

presented and explained, the east of Kajang City mainly
consists of agricultural and forest lands. The eastern parts
within the border of the city are also occupied by these land
covers. Thus, a large proportion of the agricultural fields
located in the eastern parts were converted to open spaces
(1–3) as shown in Fig. 7.9 (land use changes from 2004 to
2008). These conversions mainly represent the land clear-
ance process for redevelopment of new urban structures.
However, these changes in some cases can be caused by
agricultural phonological processes that appear similar to
land use conversion from agriculture field to underused land.
For instance, this assumption can be confirmed by checking
three parcels in the northeast locations of Kajang City in
both Figs. 7.9 and 7.10 (land use changes from 2004 to 2008
and from 2008 to 2012). These parcels were converted from
agriculture to open space in the first map and from open
space to agriculture in the second map. Some areas changed
from agriculture to open spaces from 2004 to 2008, and then
changed from open spaces to residential area from 2008 to
2012. Another main land use conversion during the period

Table 7.6 Proportional cross tabulation between 2004 and 2008

1 2 3 4 5 6 7 8 9 Sum

1 0.0556 0 0.0071 0 0.0005 0 0 0.0001 0 0.0634

2 0.0002 0.0121 0.0014 0 0 0 0 0 0 0.0138

3 0.042 0 0.128 0.0061 0.0001 0.0003 0.0006 0.0003 0 0.1774

4 0.004 0 0.0246 0.1314 0 0.0001 0 0.0003 0 0.1605

5 0.0002 0 0.003 0 0.057 0 0 0 0 0.0602

6 0.0003 0 0.0019 0 0 0.0107 0 0 0 0.013

7 0.0001 0 0.0011 0 0 0 0.048 0 0 0.0493

8 0.007 0.0001 0.0121 0.0011 0.0002 0.0002 0.0001 0.1398 0 0.1606

9 0 0 0 0 0 0 0 0 0.0041 0.0041

Sum 0.1095 0.0122 0.1793 0.1386 0.0577 0.0114 0.0488 0.1406 0.0041

Table 7.7 Proportional cross tabulation between 2008 and 2012

1 2 3 4 5 6 7 8 9 Sum

1 0.0393 0 0.0254 0.0027 0.0012 0 0.0001 0.001 0 0.0698

2 0.0005 0.0082 0.0073 0.0034 0.0005 0 0.0007 0.0009 0 0.0217

3 0.0055 0.0006 0.0693 0.0093 0.0074 0.0015 0.0007 0.0043 0 0.0987

4 0.0076 0.0015 0.0337 0.1323 0.0013 0.0001 0.0005 0.0062 0 0.1832

5 0.0042 0.0007 0.0145 0.0018 0.046 0.0001 0 0.0022 0 0.0696

6 0.0008 0.0001 0.0039 0.0017 0.0004 0.0107 0 0.0012 0 0.019

7 0.0001 0.0003 0.0068 0.0016 0.0001 0 0.0468 0.0006 0 0.0562

8 0.0052 0.0023 0.0163 0.0075 0.0032 0.0004 0.0003 0.1434 0 0.1786

9 0 0 0.0003 0.0001 0 0 0 0.0008 0.0041 0.0054

Sum 0.0634 0.0138 0.1774 0.1605 0.0602 0.013 0.0493 0.1606 0.0041
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Table 7.8 Proportional cross tabulation between 2012 and 2015

1 2 3 4 5 6 7 8 9 Sum

1 0.0523 0 0 0 0 0 0 0 0 0.0523

2 0 0.0217 0.0002 0 0 0 0 0 0 0.0218

3 0.0109 0 0.0928 0 0.0003 0 0 0 0 0.1041

4 0.0014 0 0.0057 0.1832 0 0 0 0 0 0.1903

5 0.0053 0 0 0 0.0692 0 0 0 0 0.0745

6 0 0 0 0 0 0.019 0 0 0 0.019

7 0 0 0 0 0 0 0.0562 0 0 0.0562

8 0 0 0 0 0 0 0 0.1786 0 0.1786

9 0 0 0 0 0 0 0 0 0.0054 0.0054

Sum 0.0698 0.0217 0.0987 0.1832 0.0696 0.019 0.0562 0.1786 0.0054

Table 7.9 Proportional cross tabulation between 2004 and 2015

1 2 3 4 5 6 7 8 9 Sum

1 0.0353 0 0.0138 0.0012 0.0011 0 0.0001 0.0006 0 0.0523

2 0.0006 0.0072 0.0093 0.0031 0.0003 0 0.0007 0.0005 0 0.0218

3 0.0193 0.0004 0.0698 0.005 0.0066 0.0003 0.0007 0.0019 0 0.1041

4 0.0176 0.0015 0.0446 0.1191 0.0013 0.0001 0.0006 0.0055 0 0.1903

5 0.0171 0.0007 0.0089 0.0007 0.0451 0.0001 0 0.0019 0 0.0745

6 0.0022 0 0.0037 0.0015 0.0003 0.0103 0 0.0009 0 0.019

7 0.0008 0.0002 0.007 0.0015 0.0001 0 0.0461 0.0005 0 0.0562

8 0.0164 0.0021 0.022 0.0062 0.0029 0.0005 0.0004 0.128 0 0.1786

9 0 0 0.0002 0.0002 0 0 0 0.0008 0.0041 0.0054

Sum 0.1095 0.0122 0.1793 0.1386 0.0577 0.0114 0.0488 0.1406 0.0041

Fig. 7.9 Cross tabulation
between years 2004 and 2008
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from 2004 to 2008 is the change from open spaces to resi-
dential use (198.4 ha), which was distributed in the study
area, especially in the central area and along the northern
borders. Furthermore, the conversion of open spaces and
agriculture fields to these land use types can be distinguished
in all illustrated maps easily because of the texture of road

networks. The quantitative outputs also showed that the road
networks had a growth of more than 300 ha from 2004 to
2015 (Fig. 7.12).

The changes in other land uses to commercial and con-
sequently the growth of the commercial area cannot be
observed easily because the area of commercial land use

Fig. 7.10 Cross tabulation
between years 2008 and 2012

Fig. 7.11 Cross tabulation
between years 2012 and 2015
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types in Kajang City is small relative to other land use types.
However, overlaying the road network of the study area and
these land use change maps shows that commercial areas
mainly grew along the major roads and public transportation.

These four cross-tabulation illustration maps show that
the numbers of significant land use changes from 2008 to
2012 and from 2004 to 2015 are higher than others, as
indicated in the figures. Figure 7.11 (land use change from
2012 to 2015) shows only four land use change types. These
variations were dependent on the trend of changes during the
selected period. A large proportion of land use changes, such
as those from 2008 to 2012 or 2004 to 2015, caused a large
number of land use changes, whereas similar land use maps
(or a smaller proportion of changes), such as those in 2012
and 2015, caused a smaller number of land use change types.
This assumption can also be evaluated from the calculation
of the Kappa index. The overall Kappa value in the period
from 2008 to 2012 was about 0.75 and the overall Kappa
value from 2012 to 2015 was 0.97. Thus, the larger simi-
larity between land use maps resulted in a higher Kappa
value and fewer significant changes. By contrast, less simi-
larity resulted in a lower Kappa value and a large amount of
significant changes.

After examining the distribution of land use changes in
the tabular and graphical presentations, the next task was to
observe the relationships between each pair of land use
maps. These assessments were conducted using degree of
freedom, Cramer’s V, KIA, and overall Kappa statistical

approaches. Table 7.10 presents the results of these statisti-
cal tests to evaluate the cross-tabulation process.

These assessments generally revealed the dependency or
similarity of each pair of land use maps. Previous results
showed that among the three successive periods (2004–
2008, 2008–2012, and 2012–2015), Kajang City had the
highest amount of land use changes in 2008–2012. In
addition, the land use maps for 2012 and 2015 had high
similarity, indicating a very low amount of change during
this period. Finally, large differences were expected between
the land use maps for 2004 and 2015 because of the long
period, indicating a large amount of land use change. These
findings can be observed in Table 7.10 as well. The
chi-square values in 2008–2012 and 2004–2015 were lower
than those in the other periods. In addition, the
Cramer’s V and overall Kappa values of these two periods
were lower than those of the other two. The 2012–2015
period had the highest chi-square, Cramer’s V, and overall
Kappa values because of their high similarity in land use
pattern. All periods had constant degrees of freedom because
of the same number of land use types and sampling
assumptions. The KIA was calculated for each land use
category using each pair of old and newer land use maps as
reference and ranged from 0 to 1. Similar to the overall
Kappa value, the KIA values of all the land use categories
from 2012 to 2015 were 1 or near to 1. By contrast, the KIA
values of land use types for 2004 to 2015 were from 0.2 to
0.99. The land use types with large changes during the

Fig. 7.12 Cross tabulation
between years 2004 and 2015
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selected period had low KIA values, such as 0.2 for agri-
cultural and 0.3 for open spaces, and land use types with
very minor changes had high KIA values, such as 0.99 for
water bodies. Thus, these statistical assessments provided an
overall view of the land use change process and relationship
or similarity among the various land use maps and even
among the land use categories.

Table 7.11 presents the overall number of land use types
in each year of the available data. This table provides the
same information obtained by the cross-tabulation process
from another perspective. By subtracting the area of agri-
culture in 2004 (882) from the area in 2015 (421), the value
of −461 is achieved, which is provided in Table 7.5. The
growth of the residential area (1533–1116) during the
selected period (2004–2015) can also be calculated from this
table.

The residential and transportation land uses had the most
significant growth rates during the selected period, followed
by the commercial and industrial land uses, based on the
results of the change detection process for the available
period to assess the historical trend in the study area. Con-
sidering that the growth of some land use types is dependent
on the growth of others is important. For instance, com-
munity facilities are usually provided for the neighborhood
based on the local demand. Thus, the growth of facilities and
services are mainly dependent on the population and/or
residential area of a community. Similarly, transportation
and road network is developed where a proper residential,
commercial, and/or build-up area exist in a neighborhood. In
most cases, construction companies provide suitable road
networks with their corresponding developments (whether
commercial, industrial and/or residential development).

Therefore, some land use types, such as community facility,
infrastructure, and road network, are not developed inde-
pendently. By contrast, residential, commercial, and indus-
trial land uses are growing because of driving factors and
parameters rather than the effects of other land use types.
Industrial growth is mainly based on economic issues and
government policies. Residential growth is not a new
problem and is mainly due to population growth and
migration of people from rural to urban areas (as discussed
in detail in previous chapters). Commercial growth also
depends on local demands, governmental policies, and
economic perspectives.

Cross-tabulation provides suitable measurements, identi-
fication, and illustration of land use change to evaluate the
recent growth and development of a study area. Thus, this
assessment provided a clear understanding of the growth rate
and direction of built-up areas through various land uses and
land cover categories. Finally, this process revealed the
significant growth and/or loss of each land use type to
highlight the unsustainability of the current development
pattern and to propose new alternative scenarios.

Finally, the land use growths in the selected years were
compared with the master plan of the study area, as shown in
Table 7.12. This table indicates that the agricultural area is
completely removed from the Kajang City master plan, but
proper green environment areas are proposed within the city.
Enterprise zones are the areas that have potential to increase
the livability of the city, such as central business district
and/or transit-oriented development.

Most of the land use categories still have capacities to
grow according to the master plan, but this area is still
capable and has growth potential without clearing the

Table 7.11 Total area of each
land use category in selected
years (hectare)

Land use category 2004 2008 2012 2015

Agriculture 1 882 510 562 421

Commercial 2 98 111 174 176

Open spaces 3 1444 1429 795 838

Housing 4 1116 1293 1476 1533

Industry 5 465 485 561 600

Infrastructure 6 92 105 153 153

Facility 7 393 397 453 453

Transportation 8 1132 1293 1439 1439

Water body 9 33 33 43 43

Sum 5656 5656 5656 5656

Table 7.10 Statistical
assessment of cross-tabulation
process

Variables 2004–2008 2008–2012 2012–2015 2004–2015

Degree of freedom 81 81 81 81

Cramer’s V 0.8992 0.736 0.9713 0.7164

Overall Kappa 0.8594 0.7547 0.9711 0.7135
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agricultural fields. The agricultural fields can also be pre-
served by proposing a compact land use pattern with higher
density.

7.4 Conclusion

This study successfully highlighted and discovered the
spatiotemporal urban land use change patterns in the Kajang
City area. In general, this process found significant land use
growths and changes in Kajang City from 2004 to 2012. By
contrast, in the last period (2012–2015), very insignificant
growths and changes occurred in this region because of
several reasons, such as shorter time step, development
saturations, and/or planning policies. In addition, the results
of this analysis indicated that residential, commercial, and
industrial land use types have significant growths compared
with other land use types. Furthermore, the growth of these
three land use types mainly resulted in the reduction of
agricultural fields and open spaces. In most of the periods,
the seemingly encompassing effect of residential land use on
almost all types of activities was observed. However, this
growth through open spaces and agricultural areas was more
significant. Each land use type had different behaviors,
amounts, and directions of growth, which were evaluated
with respect to various land use types and several external
factors in fulfillment of the second objective. Nevertheless, a
comprehensive quantitative assessment was performed for
the first objective to deal with various changes among all
land use categories. This assessment was performed through
several cross-tabulation matrices for each pair of land use
maps: 2004–2008, 2008–2012, 2012–2015, and 2004–2015.
A similar finding from the cross tabulations of the first to the
last period was the increase in the land consumption rate,
which shows the growth of urban areas through natural
environments. Thus, an alternative development pattern is
required to minimize the quantity of urban land consump-
tions based on these assessments.
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8Spatial Land Use Change Modeling Techniques

Abubakr A.A. Al-sharif, Biswajeet Pradhan and Saleh Abdullahi

8.1 Introduction

A proper understanding of the reason, degree, direction, and
consequences of urban growth and expansion is essential for
most urban application projects. Urban growth and land use
changes are the main reasons for environmental, social, and
economic issues, such as hydrological problems, destruction
of forests and agricultural fields, natural and wildlife dis-
turbance, and global warming (Wang 2012). In this regard,
understanding these change behaviors improve environ-
mental sustainability through several actions, such as
managing land use and land cover, overseeing rural devel-
opment, and advancing land use change modeling and pre-
diction (Veldkamp and Lambin 2001; Abdullahi et al. 2015).
Thus, models and simulation techniques are required to deal
with these issues effectively. The utilization of models in
scientific research represents the natural behaviors and
reactions in the real world (Liu 2008). However, the
behaviors of real-world phenomena are very complex and
multidimensional. Some simplifications and predefined
assumptions are required to understand and investigate these
processes. The proposed models should be comprehensive
and applicable enough to support urban growth and create a
better and clearer view of the function of this process. These
models can be used as powerful tools to increase our mental
capabilities and make more informed decisions regarding
land use changes (Costanza and Ruth 1998).

In 1994, the importance of land use change process was
understood through the core project of the International
Geosphere–Biosphere Program (IGBP) and the International
Human Dimensions Program (IHDP) (Verburg et al. 2006;
Veldkamp 2009). This project was proposed to advance and
improve the knowledge on human and biophysical dynamics
of the land use change process and to propose strong models
for future land use prediction (Wang 2012).

Historically, many models were applied to urban appli-
cations after the quantitative revolution in geographical

science from the 1950s to the 1960s, as shown in Fig. 8.1
(Wrigley and Bennett 1981). In the beginning of the nine-
teenth century, Johann Heinrich von Thünen developed a
simple land use and urban growth modeling theory, which
explains how market processes affect and control the spatial
distribution of land use changes and urban growth (Candau
2002; Parker 2015). In 1926, Burgess proposed the con-
centric zone theory, which presents a city as a series of
concentric land use circular zones centered on the central
business district (CBD) (King 1985). In 1933, Walter
Christaller formulated the central place theory, which
explains the size, number, spatial distribution, and hierar-
chical arrangement of cities (King 1985). This theory is also
concerned with the distribution of retail and wholesale
administrative land uses and community facilities. Sector
theory is based on the idea that functional land use regions
expand in wedge-shaped zones radiating outward from the
CBD (Torrens 2000). Multiple nuclei theory is based on the
simple fact that most large cities have various hubs that serve
as centers of agglomerative growth instead of the simple
CBD (Torrens 2000). Finally, bid-rent theory was also based
on the theory of von Thünen and considers several other
urban factors, such as transportation. It assumes that rents
generally tend to decrease correspondingly when trans-
portation costs increase with distance from the markets.

Discovering the behaviors of urban growth and land use
changes historically was possible based on these simple
principles. However, the dynamism and continuous growth
characteristics of urban areas led to the complexity of
modeling these environments. The land use change phe-
nomenon within an urban area is also a complex process
because it is the result of the interaction between various
issues, such as environmental, physical, and political
(Medley et al. 1995). This phenomenon is mainly dependent
on the spatial location, scale, and current state of land use
(Lambin et al. 2001; Lesschen et al. 2005). Understanding
the reasons and rate of land use change is important because
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of their significant effects on the surrounding natural envi-
ronment, air and water quality, local temperature, and urban
economy, as well as other social impacts (Burchell 1996;
Pijanowski et al. 2002; Mellino and Ulgiati 2015). Thus,
models are required to:

• investigate the various issues that cause land use change,
• project the effects of these changes on the environment

and economy, and evaluate the effects of policies and
scenarios on land use growth and development (Pija-
nowski et al. 2002).

In recent years, advanced models provided artificial
environments and used various statistic-, factor-, and
cellular-based concepts to conduct different analyses to
understand and explain urban behaviors. In spite of all
attempts, no clear superior approach toward modeling land
use change and urban growth exists, and no methodology
can answer all questions in these processes (Verburg et al.
2006). The existing models are able to analyze, simulate, and
predict land use changes based on different concepts and
theories. According to the literature, the following four core
principles are the bases of all land use change simulation
models (Koomen and Borsboom-van Beurden 2011);

• Historical bases,
• Suitability bases,
• Neighbourhood bases, and
• Actor interaction bases.

The logic behind historical bases is “the past is the key to
the future.” Therefore, background information can be
helpful in predicting future land use changes, as demon-
strated by Kuijpers-Linde et al. (2007). Suitability bases may
consist of several factors (such as physical, social, and
environmental) of a land parcel to evaluate the allocation for
a specific purpose. For example, site suitability evaluation
for a specific use, such as hospital, and school (Abdullahi

et al. 2014). Therefore, the underlying premise is to achieve
maximum profit and minimize the negative effects. Neigh-
borhood bases deal with the neighborhood interaction of
each cell that affects the transition of one land use to another.
Numerous studies based on this cellular concept, which is
implemented by cellular automata approach, exist (Wu
1998; Kocabas and Dragicevic 2007; Liu 2008). Actor
interaction bases assume that land use change is the result of
the interaction among several actors or agents. This core
principle is one of the promising research tools for land use
change modeling (Matthews et al. 2007).

Verburg et al. (2004a, b), Heistermann et al. (2006) and
Koomen and Stillwell (2007) categorized land use change
simulation models based on six main concepts:

• Markov chain,
• Economic based,
• Agent based modeling (ABM),
• Statistical analysis,
• Cellular automata (CA), and
• Artificial neural network (ANN).

Most of these categories have some factors in common,
but the variety of approaches makes these studies difficult to
compare. On a one-to-one basis, each concept and approach
has its own merits and demerits. However, all these concepts
are always based on the four core principles, as explained,
and their main aim is to explain and translate reality into a
model.

The Markov Chain concept was first proposed by Burn-
ham (1973) and is based on the continuation of historical
trend of development. This concept calculates the probabil-
ity matrix of change of one land use type to another. The
main disadvantage of this model is the lack of spatial bases
of the results (Dadhich and Hanaoka 2011). Therefore,
integration with other spatial-based methods is required
eventually (Koomen and Borsboom-van Beurden 2011).
Although the economy-based model is not exactly a concept,

Fig. 8.1 Historical urban growth
modeling: a Johann Heinrich von
Thünen theory, b concentric zone
theory, c central place theory,
d sector theory, e multiple nuclei
theory and f bid-rent theory (King
1985; Candau 2002)
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it is an important reason for land use changes based on the
suitability principle of land. This concept is based on the von
Thünen theory, which states that the land continues to be
used to produce a commodity as long as its profit is higher
than its transportation costs (Koomen and Borsboom-van
Beurden 2011). A landowner usually seeks to maximize
profits to change the land use type or to sell the land.

An agent-based model of land use change modeling
consists of two main components: a map of the study area
and a model with agents that represent human decisions
(Parker et al. 2003). An agent is a representation of actors
important in the process and can be either a single actor or a
group of actors with their own preferences (Grimm et al.
2006). The preferences of these actors can be determined by
expert knowledge or ANN. A variety of statistical compu-
tations can be derived from land use maps. For example,
logistic regression, frequency ratio, and weights of evidence
techniques can be used to analyze the probability of occur-
rence of dependent variable in each class of independent
variables (Verburg et al. 2004b). The coefficients of each
variable can be calculated from the historical land use
changes and projected for future land use changes. A logit
model using neighborhood interaction, historical change,
and suitability factors is a good example of a statistical
concept. Land use scanner (Hilferink and Rietveld 1999) has
been used to achieve urban sustainability for the Netherlands
as a logit model for land use policy and management
(Beurden et al. 2007; Kuijpers et al. 2007).

The use of ANN in land use change modeling has
increased recently because of the advancement in computing
performance and availability of powerful and flexible soft-
ware (Skapura 1996). ANN is very useful for land use
change modeling because of its self-learning and pattern
recognition abilities (Pijanowski et al. 2002). Another
advantage of ANN is its ability to relate past and future land
use changes and their linkage to suitability maps. In this
manner, a model can train itself to corresponding land use
maps of different years to recognize and reproduce the pat-
tern of land use types (Mas et al. 2004; Pijanowski et al.
2005).

Therefore, appropriate knowledge of land use change
models based on their concepts allows modelers to select the
most appropriate approach for the study area under investi-
gation. More explanations on these common approaches will
be provided in the following sections.

8.2 Statistical-Based Approaches

Several types of statistical information can be extracted from
urban or land use maps. Such information can be based on
the four core principles mentioned (historical, suitability,

neighborhood, and actor interaction) depending on the
research objective. Several land use change models, which
are based on the statistical relationship between different
land use periods, exist to predict future changes. Among
these models, conversion of land use and its effects (CLUE)
(Veldkamp and Fresco 1996), CLUE-S (Verburg et al.
2004a), and GEOMOD (Pontius et al. 2001) are some
well-known examples. Traditional models such as logistic
regression (LR) and Markov chain, with their own merits
and demerits, are widely used in urban applications (López
et al. 2001; Harrell 2015; Malaitham et al. 2015). The
Markov chain model provides two matrices, namely, tran-
sitional probability and transitional area matrices, which are
proven stronger at the descriptive than at the predictive level
(López et al. 2001).

One of the most common statistical analyses can be
performed by the computer program FRAGSTATS by
McGarigal and Marks (1995), which is able to process many
indices related to urban statistics. In urban applications, land
use change modeling, linear regression (Verburg et al.
2004b), probit regression, binomial logit and multinomial
logit models (DeMaris 1992) are some techniques that are
utilized to evaluate the statistical relations of land uses and
consequently projects future changes (Lantman et al. 2011).
For instance, LR analyzes the probability of occurrence,
which is dependent on several variables, of a specific land
use type (Verburg et al. 2004b), such as social and physical
properties. Historical land use maps are used to compute
coefficients for land use changes to predict future patterns.
Wu and Yeh (1997) and Hu and Lo (2007) presented the
ability of the LR model to interpret urban growth based on
probability assessments of land use changes. A logit model
can be based on neighborhood interaction, historical land use
change, soil suitability, spatial location, or combinations of
these. Binary and multinomial logit are based on the same
mathematical concept but use prediction of single land use
and different land use changes, respectively (DeMaris 1992;
Liao 1994). Walsh et al. (2003) used a multinomial approach
to analyze the spatial association of various land use
categories.

The prediction of land use change requires a good
understanding of the actual processes that drive the change
(Riebsame et al. 1994). Although statistic-based models are
easy to build, they lack a theoretical basis to understand and
simulate the actual driving forces of land use change
(Koomen and Stillwell 2007). Statistical models have the
disadvantage of ignoring high spatial and biophysical vari-
ability of land cover types, as well as socioeconomic and
institutional driving forces of change even though these are
suited to simulate the possible changes over a short period of
time (Serneels and Lambin 2001; Koomen and Stillwell
2007).

8 Spatial Land Use Change Modeling Techniques 173



In general, two alternatives can be used to apply multiple
classifications (Tayyebi and Pijanowski 2014). One
approach is to run the model by several binary classifications
that are solved using binary classifiers. In this approach, the
probability of growth for each main land use type is evalu-
ated separately by decomposing the model into several
binary classifications. The change or growth of one class is
normally evaluated with respect to all others for these types
of classifications (One-Versus-All), or all possible mutual
binary classifiers between n available classes can be con-
sidered (All-Versus-All). These processes are lengthy and
difficult to analyze, especially for large numbers of binary
classifiers. This concept can be extended for multiple land
use change as well. Thus, numerous binary classifiers are
used to solve multiple binary classification problems
simultaneously (Tayyebi and Pijanowski 2014).

8.2.1 Frequency Ratio Model

One of the common concepts of statistical analysis is eval-
uating the frequency of occurrence of a phenomenon with
respect to several driving factors (Lee and Pradhan 2006,
2007; Pradhan and Lee 2010; Naghibi et al. 2015). In this
regard, frequency ratio (FR) is a univariate probability-based
approach that is widely applied in natural hazard manage-
ment studies, such as landslide modeling, flood modeling,
and earthquakes, to produce susceptibility maps and identify
and analyze hazard occurrence (Ozdemir and Altural 2013).
FR is based on the observed relationship between one
dependent variable (any phenomenon) and several inde-
pendent variables (driving factors that affect the corre-
sponding phenomenon). Thus, this process shows the
correlation among these variables. In urban application, land
use growth and change occurrence can be evaluated with
respect to several urban-related factors, such as proximity
and population density. This model is simple and its input,
calculation process, and results are clear and understandable
(Lee and Pradhan 2007; Pradhan and Lee 2010). FR pro-
vides a straightforward geospatial assessment technique to
calculate the probability relationship between dependent and
independent factors. In fact, FR is the ratio of the area where
the phenomenon (land use change) occurred to the total area
of interest and the ratio of the land use change occurrence
probability to the nonoccurrence for the selected factors.
Park et al. (2011) applied this model to simulate urban
growth patterns and predict the future probable urban growth
of the entire country. In addition, the overall urban extent for
model calibration and validation processes was used instead
of real net urban expansion.

8.2.2 Weights of Evidence Model

Statistic-based techniques are able to apply and integrate
transitional rules in the evaluation process of land use
change modeling application. In this regard, Weight of
Evidence (WoE) is a well-known statistical method based on
the Bayes theorem of conditional probability. This method is
a global parametric approach that estimates probabilities
from the linear regression of a dependent phenomenon
against independent variables. Tayyebi et al. (2014) stated
that regression models provide better explanatory power and
outperform certain methods, such as ANNs, when the
functional relationships between the dependent and inde-
pendent variables are known.

In general, WoE evaluates the degree to which evidence
supports the hypothesis (for instance land use change
occurrence) and the degree to which the evidence does not
refute the hypothesis (Dempster 1967; Shafer 1976). This
model is applicable when enough information is available to
evaluate the relative importance of evidential themes
through statistical concepts (Bohman-Carter 1994). This
method allows the identification of the influence of spatial
determinants on the analyzed transitions. The WoE can
combine spatial data from several disciplines and sources to
explain and evaluate interaction, support the
decision-making process, and create predictive models
(Almeida et al. 2008).

In urban growth and land use change processes, this
model can detect the reason for a certain land use change
through several variables, which are known as pieces of
evidence in this model. Weights are calculated by evalu-
ating the relation between the land use change occurrence
and values of the evidence. As discussed in the literature,
WoE has been extensively used in a variety of applica-
tions, such as geological and mineral mapping (Gettings
et al. 2004; He et al. 2010; Chen et al. 2014) and natural
disaster management (Pradhan et al. 2010; Althuwaynee
et al. 2012; Bui et al. 2012; Pourghasemi et al. 2013).
However, this approach in urban applications and land use
dynamic modeling has been utilized in few studies, such
as those by Thapa and Murayama (2011), Teixeira et al.
(2009), de Almeida et al. (2003) and Abdullahi and
Pradhan (2015).

Checking the independency among pairs of selected
variables is important in the WoE modeling process
(Almeida et al. 2002). Cramer’s coefficient (V) and joint
information uncertainty (U) are two common methods for
this evaluation. Obtaining values from an area
cross-tabulation between pairs of maps of variables under
analysis is required for both methods.
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8.2.3 Evidential Belief Functions
(Dempster–Shafer) Model

The Dempster–Shafer theory of evidence refers to the gen-
eralization of the Bayesian theorem of subjective probability.
Proposed by Dempster in 1967 and developed by Shafer in
1976, this theory combines beliefs from several sources of
evidence and the relative flexibility to accept uncertainty
(Thiam 2005). The theory predicts how closely the evidence
shows the certainty of a hypothesis rather than guessing at
the possibilities that a hypothesis is correct (Pearl 1990). The
Dempster–Shafer theory has been applied effectively in
many applications using GIS.

In applying the EBF model in the urban expansion
modeling process, a set of urban growth driving factors
C = (Ci, i = 1, 2, 3, …, n) is assumed to comprise mutually
exhaustive and exclusive factors Ci. C is named the frame of
discrimination. The function m: P(C) ! [0, 1] is a simple
probability assignment, where P(C) is the set of whole
subsets of C, including the empty set and the C set itself. The
m function can be considered as a mass function that satisfies
m(Ф) = 0 and

P
AC mðAÞ ¼ 1, where Ф is the empty set and

A can be any subset of C. m(A) estimates the level to which
the evidence supports A and is a belief function Bel(A).

The theory demonstrates four basic EBF functions,
namely, Dis (degree of disbelief), Bel (degree of belief), Pls
(degree of plausibility), and Unc (degree of uncertainty). Dis
represents the belief of the suggestion being untrue based on
given evidence. Bel and Pls provide the upper and lower
bounds, respectively, of the probability for the suggestion
(Awasthi and Chauhan 2011). Unc means ignorance, that is,
the difference between plausibility and the belief. Therefore,
1 – Unc − Bel or Dis = 1 − Pls, and always Dis + Bel +
Unc = 1. For cases of Cij with no urban expansion, that is,
Bel = 0, Dis is reset to 0 even though D 6¼ 0 (Carranza et al.
2008).

8.2.4 Logistic Regression Model

Several researchers have employed various empirical and
theoretical modeling techniques to model, simulate, and
predict urban sprawl or growth and land-use changes. One of
these techniques is an empirical estimation model called the
LR model. According to the literature, LR in urban growth
or sprawl modeling results in a good understanding of the
urbanization process and provides a clear picture of the
weight of independent variables and their respective func-
tions (Hu and Lo 2007; Eyoh et al. 2012).

The LR model enables the integration of demographic
and socioeconomic factors that are not available in many
models. In addition, it considers spatial effects,

autocorrelation, and heterogeneity (Devkota et al. 2013).
However, the model requires caution regarding spatial
autocorrelations that typically exist in spatially referenced
data because such autocorrelations may violate the hypoth-
esis of the LR model (Lin et al. 2011). Understanding and
quantifying the interaction between the driving forces of
land use/cover change in the LR models is a complex and
difficult process, hence the need to overcome the misun-
derstanding and lack of information on driving forces. Cer-
tain drawbacks of the LR restrictions also need to be
considered (Lin et al. 2011). This model is used to demon-
strate and explain the relationship of a number of X inde-
pendent variables to a dichotomous single dependent
variable Y, which represents the occurrence or nonoccur-
rence of an event. LR empirically finds the relationship
between the independent variables and the function of the
probability of an event happening (Kleinbaum and Klein
2010).

The use of LR can yield the coefficients of independent
variables (both continuous and categorical); the dependent
variable is a binary categorical variable with a value of either
1 or 0 and can be computed using the well-known LR
equation (Huang et al. 2009). The LR model is applied in
urban expansion modeling and land use change analysis, as
shown in the literature. It provides the probability of the
existence or nonexistence of each type of land-use/cover in
every location based on driving factors. LR is a powerful
empirical method used when the outcome-dependent vari-
able is dichotomous. Spatial urban expansion is the depen-
dent variable represented in a raster binary map. A value of 1
on the produced probability map indicates the presence of
urban growth, and a value of 0 indicates the absence of
urban growth.

8.3 Agent-Based Models

The agent-based modeling (ABM) approach is based on the
science of artificial intelligence and the object-oriented
technique of modeling the interaction of the individual units
of a system (Parker et al. 2003; Matthews et al. 2007). ABM
consists of various and interrelated agents, which are the
decision-making components identified with a series of rules
or behaviors that allow the agents to acquire information,
process the input, and effect changes in the external envi-
ronment (Arsanjani et al. 2013; Pooyandeh and Marceau
2013). In land change modeling, agents can be land owners,
farmers, collectives, migrants, and management agencies. In
fact, anyone who makes decisions or take actions that cause
change in land use patterns and processes (Brown and Geist
2006; Arsanjani et al. 2013) can be considered an agent. In
urban areas, multi-agent systems are very good tools to
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represent movable entities, such as vehicles and people.
Multi-agent systems have been used to model the relocation
of households (Benenson 1998) and to simulate pedestrian
movement in dense urban environments (Kerridge et al.
2001). In urban land change modeling using ABM, deci-
sions often depend on the physical environment of the agent
(the landscape), but may also depend on what other agents
do (Parker et al. 2003). Compared with top-down models,
such as statistical models, ABM has the following advan-
tages (Brown and Geist 2006):

• ABM can deal with emergent phenomena as character-
istics of complex systems, such as self-organization,
chaos, and adaptation.

• ABM is flexible in terms of designing geospatial models,
which means that ABM can use different levels of
description and aggregation of single, aggregate, or
subgroups of agents. Furthermore, ABM provides a
structure for adjusting the complexity of the agents in
terms of their behaviours.

• ABM describes a system naturally. It represents a natural
behaviour in the description and simulation of agent
behaviours and makes the models close to reality.

However, ABM also has disadvantages in several cases,
such as land change modeling and urban growth modeling
(Crooks et al. 2008).The disadvantages are as follows:

• Although ABM has been integrated with GIS, it does not
have powerful tools to represent patterns of phenomena.

• A number of agents and their attributes interact with one
another and with their environment. Thus, a single run of
an ABM cannot provide any trustworthy information,
and agent computing must be performed through multi-
ple runs that systematically change initial conditions or
parameters to assess the robustness of results.

• Critical issues regarding the validation and calibration of
ABMs hinder the practice of such models.

8.4 Rule-Based Models

Rule-based models enable users to include explicit decision
rules that direct their behavior (Brown et al. 2005; Kloster-
man and Pettit 2005). A well-known example of rule-based
land-use model is the “What If?” model. “What if?” is a
commercial, stand-alone GIS-based software package and a
scenario-based and policy-oriented planning support system
(PSS) used to conduct land suitability analysis, estimate
future land-use demand, and allocate these projected
demands to the most suitable locations (Klosterman 1999).
“What If?” is capable of simulating future land-use patterns

by balancing the supply of and demand for lands suitable for
different uses at different locations. The flexible features of
“What If?” allow the modeler to simulate the consequences
of spatial decisions, which makes it a useful PSS (Geertman
and Stillwell 2004; Koomen et al. 2008).

8.5 Artificial Neural Networks

ANN is a system that consists of several processing nodes
that work in equivalent ways. These processing elements are
defined by the network structure, connection strength, and
processing performance at computing nodes. The develop-
ment of an ANN model requires the description of a learning
paradigm, a learning algorithm, and a network topology
(Fig. 8.2). ANN is different from other commonly used
analytical approaches because it does not depend on specific
functional relationships, does not adopt any assumptions on
data distribution properties, and does not require prior
understanding of variable relationships. These properties
make ANN models powerful modeling techniques for
exploring complex nonlinear problems (Olden and Jackson
2002; Olden et al. 2004; Lakshminarayana and Rao 2010).
ANN applications in geographical sciences include transport
planning (Cheng et al. 2012; Kumar et al. 2013), spatial
interpolation (Merwin et al. 2009), image classification
(Arslan 2009; Sadeghi et al. 2013), transport and land use
interaction (Rodrigue 1997), land cover classification
(Foody 2002), land cover transformation (Pijanowski et al.
2002; Isik et al. 2013), and urban change detection (Tayyebi
and Pijanowski 2014).

In urban development modeling, ANN was integrated
with GIS to predict urban land use change, where GIS was
used to develop the spatial urban driving factors (Pijanowski
et al. 2002). The researchers followed four important steps:
(1) design the network and input historical data, (2) use a
suitable subset of inputs for network training, (3) use the full
data set of the inputs for the neural network testing, and
(4) finally, use the acquired neural network information to
predict future changes. However, among the major limita-
tions of ANN models are their static nature and black box,
which limit the modeling of the urban expansion process.

Fig. 8.2 Schematic illustration of two ANN models, a simple and
complex version
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The land transformation model (LTM), as an ANN-based
model that combines multilayer perceptron (Zurada 1992)
and GIS using socioeconomic and biophysical factors
(Pijanowski et al. 2002, 2014). This model has been used
worldwide to simulate land use changes (Pijanowski et al.
2005, 2014; Tayyebi et al. 2014). Multilayer perceptron uses
a supervised learning algorithm that estimates a function
between input–output pairs without the knowledge of the
functional form (Tayyebi et al. 2014). This model utilizes
information from at least two land use maps in different
periods to train the network. This model determines the
location of specific land use changes by using temporal land
use maps. The actual land use changes are typically observed
from the historical trend and used to establish functional
relationships to extrapolate land use change probabilities for
future prediction. Land use maps should be classified, with a
value of 1 to selected land use and 0 to other categories. For
input drivers, various spatial urban-related variables gener-
ated from a series of base layers should be created and stored
within a GIS environment. These base layers represent land
use categories, such as residential, commercial, agricultural,
and facilities. These base layers can also represent features
of the urban area, such as roads, water bodies, and rivers.
Raster layers should be coded to represent these predictors as
either binary or continuous variables. Input variables are
developed to define a set of spatial transition rules that
quantify the spatial effects of predictor cells on land use
transitions (Pijanowski et al. 2002).

In an ANN model, all input data must be trained and
tested to develop a network with proper predictive capacity.
Training is performed to adjust the weights for each node
according to the learning algorithm, whereas testing is
conducted to calculate error rates (Pijanowski et al. 2002).
Thus, the ANN process is usually conducted in three phases:
(1) designing the network and inputs from historical data,
(2) testing the neural network using the full dataset, and
(3) using the output information of the neural network to
forecast residential growth. Stuttgart’s Neural Network
Simulator (SNNS) can be used for the design, training, and
prediction of the ANN (Zell et al. 1994). The neural network
is designed to contain several numbers of inputs depending
on the selected variables and an equal number of hidden
layers and a single output layer as the final prediction.

8.6 Cellular Automata Model

Cellular automaton (CA) is one of the most common
approaches in urban analysis because of its cellular concept
(Lantman et al. 2011). This model is a dynamic discrete
space and based on time systems. CA models are
individual-based spatial models that are increasingly used to
simulate and forecast the dynamics of natural and
human-made environments. CA is an efficient bottom-up
tool that provides an environment to examine the
decision-making processes in complex urban spatial systems
(O’Sullivan and Torrens 2001; Barredo et al. 2003). Tobler
(1979) was the first person who introduced the use of CA in
geographical aspects. This was further developed by
Couclelis (1985), Batty and Xie (1994) and White and
Engelen (1993). More recently Hagoort and te Utrecht
(2006) presented a detailed overview of the history of CA,
and Norte Pinto and Pais Antunes (2007) also described CA
modeling in various urban applications.

The main logic behind CA modeling for land use changes
is the current state of each cell and its interaction with
neighborhood cells (Fig. 8.3). CA land use change modeling
is also based on historical concept, that is, the trend of
changes in the past has significant effects on future changes.
For example, if a forest area is paved for the construction of
a road to connect the regions on both sides of the forest, the
conversion probability of the forest area to the urban area
increases significantly. CA consists of four main elements:
cell space, cell state, time steps, and transition rules (White
and Engelen 1993). CA models represent space in a matrix
format of regular cells with a state value that develops based
on the transition rules applied at each time step of the sim-
ulation (Marceau and Moreno 2008; Gong et al. 2015).

Transition rules can be derived from expert knowledge or
statistical analysis. Two types of CA modeling exist:
unconstrained and constrained (Li and Yeh 2000). Uncon-
strained is the most “true” CA because it only uses decision
rules to calculate land-use change. In constrained CA, the
amount of land-use change per land use class is limited; the
limit of a certain land-use class is either expert-based or
calculated from historical land use (Koomen and
Borsboom-van Beurden 2011). Dietzel and Clarke (2006)
defined two more types of CA modeling in the case of land

Fig. 8.3 The main components
of cellular automata
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use change processing. The first type deals with an urban
system as a fundamental entity, urban and nonurban units
(Ward et al. 2000; Wu 2002). The second type of CA dis-
aggregates the urban areas into several categories of land
uses within a city. The second model of CA is definitely
more compatible with the research on land use types with
fine resolution.

CA modeling has several advantages with respect to other
modeling approaches. For instance, applying dynamic spa-
tial variable during the iterative looping of CA models leads
to better performance than general urban modeling tech-
niques (Li and Yeh 2002). In addition, more factors or
features can emerge during the simulation process, such as
new aggregate centers (Wu 1998), fractal properties (White
and Engelen 1993), and/or complex global pattern from local
interactions (Batty and Xie 1994) that can be listed as
capabilities of CA modeling. Therefore, the number of CA
modeling studies in this field has been increasing because of
these potential and capabilities.

Although CA modeling has many advantages, some
drawbacks need to be considered. Modern CA models
attempt to establish strong links with the decision-making
process to achieve a more reliable modeling of land use
changes (Koomen and Stillwell 2007). Furthermore, the
determination of parameter values is another concern of CA
modeling. Conventionally, CA models are used to simulate
urban growth from rural to urban land use. CA processing
becomes more complex when several land use types (resi-
dential, commercial, industrial, and so on) are included in the
model (Batty et al. 1999). Another important issue is defining
transition rules and model structures, which are generally
application dependent (Li and Yeh 2002). Therefore, the
calibration of CA models is usually required to ensure the
performance accuracy of the models (Wu 1998; Li and Yeh
2002; Kocabas and Dragicevic 2007). However, calibration
is more difficult in the case of multiple land use changes.
Statistical approach, such as logistic regression, is one type of
calibration method to obtain parameter values for urban
simulation (Wu 1998). The integration of multi-criteria
evaluation (MCE) with CA is another approach for CA cal-
ibration to define more behavior-oriented transition rules for
land use change modeling (Wu 1998). In this manner, sim-
ulation interacts with decision makers to apply priority in the
development process.

The integration of the Markov chain with CA enables
transition cells to change their current status based on the
suitability of changes derived from decision makers and the
probability of changes calculated from Markov analysis,
rather than the deterministic transition rules of conventional
CA models (Koomen and Stillwell 2007; Kamusoko et al.
2009; Arsanjani et al. 2011; Gong et al. 2015). Al-sharif and
Pradhan (2014) applied this integration approach to simulate
urban land use changes and predict the spatial patterns in

Tripoli’s metropolitan areas. Markov chain was used to
predict the land use change quantitatively and then CA was
applied to simulate the dynamic spatial pattern of the
changes explicitly. They assessed the performance of the
CA–Markov integration approach and then used this model
to compute the optimal transition rules and predict future
land use changes. In another paper, Al-sharif and Pradhan
(2015) proposed a hybrid model that integrated CA–Markov
with the chi-squared automatic integration detection decision
tree (CHAID-DT). In addition to the application of CA–
Markov, CHAID-DT model was applied to investigate the
contributions of urban factors, explore their interactions, and
provide future urban probability maps. This integration
significantly improved the capability of cellular-based urban
modeling approaches. Wu (1998) presented a prototype of a
simulation model integrating CA, analytical hierarchy pro-
cess (AHP), and GIS. This integration model was written in
the C programming language and built within ARC/INFO
GIS. Finally, he stated that this combination has several
benefits in terms of decision-making visualization, easier
access to spatial information, and creating a more realistic
definition of transition rules in CA. Al-shalabi et al. (2013)
applied the SLEUTH (slope, land use, exclusion, urban
extent, transportation, and hillshade) model to predict the
shape and direction of spatial urban sprawl from 2004 to
2020 in Sana’a, Yemen. SLEUTH is a type of CA model
that has been widely applied to urban growth modeling and
studies in various parts of the world (Jantz et al. 2004; Leao
et al. 2004; Zeug et al. 2006). Kocabas and Dragicevic
(2007) developed a novel CA model within a GIS envi-
ronment that consists of Bayesian network and influence
diagram. Bayesian network is used to encode the drivers
with the conditional probabilities computed from historical
information. The influence diagram based the decision of
land use conversion on utility theory. The proposed model
was intended to simplify the definition of parameter values,
transition rules, and model structure. Finally, they stated that
the model is able to detect spatiotemporal drivers and gen-
erate various scenarios of land use change.

Almeida et al. (2005) also utilized a statistic-based WoE
model that employs Bayesian conditional probabilities to
compute the transitional probabilities for CA-based land use
change modeling. Li and Yeh (2002) simulated the evolution
of multiple land use changes based on the integration of CA
and neural network. The neural network is used to calculate
conversion probabilities for multiple land uses. The model
involved the iterative looping of the neural network to
simulate gradual land use conversion processes. Wang et al.
(2011) stated that the methodologies for identifying the
dominant factors that drive the landscape dynamics should
be improved. Therefore, they evaluated the potential of
rough set theory (RST) in factor selection for the calibration
of the CA model. RST is a type of data mining and
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knowledge discovery method that can ascertain an optimal
subset of features from an original dataset based on several
factors. They selected a smaller set of factors from 18
original factors by using this approach to assess the con-
version of forest and vegetation to built-up areas. An alter-
native way to control the spatial transition of each cell was
conducted by using a higher level of constraints, such as the
degree of land use change, through a regional level spatial
interaction model (Koomen et al. 2008). Monitoring land
use/cover dynamics (MOLAND) is an example of this type
of CA modeling. In MOLAND, spatial dynamics are esti-
mated by transition rules or weighting techniques that indi-
cate the interaction among neighboring land use categories.

8.7 Decision Tree Models

Decision tree (DT) technique is a popular multidisciplinary
data mining method used to extract many decision rules.
DTs are frequently utilized in decision analysis to identify
and support the ideal strategies to achieve a certain goal (Lee
and Park 2013). DT is a method of hierarchical classification
and logical deductive reasoning that is composed of decision
rules that recursively split the inputs of independent vari-
ables (predictors). It uses these inputs to project the value of
a dependent variable (target) (Cho and Kurup 2011; Pradhan
2013). DT uses conditional techniques to separate complex
sets into a number of simpler sets based on the significance
of the independent variables. This process generates simple
and understandable solutions. Based on a set of independent
attributes, the classification tree (DT) estimates the value of a
discrete target variable with finite classes (Quinlan 1986).
The attributes can be either discrete or continuous variables.
The tree structure is recursive and begins with the entire set
of training cases. At each stage, the ideal informative attri-
bute is considered as the DT root, and data from the current
training set are divided into subsets based on the values of
the selected attributes. Given continuous attributes, DT
branches are generated based on a selected threshold. Given
discrete attributes, each possible attribute value typically
produces a DT branch. The DT building algorithm is applied
repeatedly to the subsets of the training cases in each branch,
and the tree is completed when the stopping criteria are
fulfilled. The end nodes are called leaves and are charac-
terized by consistent class values (Quinlan 2014).

The constructed DT then determines a set of decision
rules that can be employed to forecast a result based on a set
of independent variables (Debeljak and Džeroski 2011). In
the DT, the independent variables need not be related to the
dependent variable (target) in advance because the structure
of the DT model can determine and describe the structural
patterns of data (Saito et al. 2009). Moreover, this technique
can extract acceptable outcomes under imperfect conditions

and reduce model construction time. The DT model also
simplifies data conversion because it can deal directly with
continuous variables (Quinlan 2014).

Figure 8.4 demonstrates the basic DT formation. A DT
consists of three elements: node, condition, and production.
The nodes are categorized into three types: chance, decision,
and end. Figure 8.4 shows that (A) represents a decision
node; (B), (C), and (D) denote chance nodes; and (R) indi-
cates end nodes. End nodes (leaves) correspond to the esti-
mations of a solution to the study case. The descending
arrangement of the DT suggests that independent variables
in the high order of the DT structure are more significant
than the others (Saito et al. 2009).

DTs are advantageous over other numerically oriented
methods, including ANNs, LR, genetic algorithms, and
linear and nonlinear regressions (Kheir et al. 2010) because
they are easily built and interpreted. Furthermore, DTs can
automatically address the interactions among categorical
(nominal) and continuous variables (Althuwaynee et al.
2014). They can identify the most important (decisive)
variables, which are those closer to the top of the tree
structure. These variables generate splits. Moreover, DTs do
not require specific function forms to fit the modeling data,
unlike other modeling methods (e.g., nonlinear regression)
(Kheir et al. 2010). They also indicate the relative weights of
independent variables (predictors) and describe training data
input, whereas bivariate modeling approaches demonstrate
only the relationship between the target variable and a single
predictor variable. However, despite the advantages of DT,
future trends remain difficult to predict.

DT differs from other statistical techniques in that it does
not make any statistical assumptions. Moreover, it accom-
modates different data measurement scales and is computa-
tionally fast (Yeon et al. 2010). However, the DT model is
limited by its susceptibility to noisy data (Zhao and Zhang

Fig. 8.4 Architecture of the decision tree model (Lee and Park 2013)
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2008). DT has been coupled with GIS and has been used to
analyze, classify, understand, and predict spatial data in
various geospatial applications, such as the mapping of
ground subsidence hazards (Lee and Park 2013), landslide
susceptibility (Pradhan 2013; Althuwaynee et al. 2014), and
environmental and ecological assessments (Zhang et al.
2012), as well as the prediction of heavy metal contamina-
tion (Kheir et al. 2010).

Many DT algorithms can be utilized to construct a DT
model, such as C4.5 (Quinlan 2014), CART (Olshen and
Stone 1984), ID3 (Quinlan 1986), QUEST (Loh and Shih
1997), and Decision-Tree-based Chi-squared Automatic
Interaction Detection (CHAID) (Berry and Linoff 1997).
The DT model must be calibrated to avoid model over-
training and confirm that the developed model does not fit
only the training data considered and to achieve reliable
modeling results with these algorithms. However, some
researchers reported that the DT technique can be improved
by combining the DT model with other models, such as
those based on CA (Kim et al. 2006) and LR (Althuwaynee
et al. 2014), in geospatial simulations.

8.8 Validation of Urban Modeling
Techniques

Most land use change models are based on raster-based GIS,
which predicts the future changes of each cell (Pontius and
Schneider 2001). Thus, a method to validate the accuracy
and reliability of these predictive models is necessary. These
validation processes are very important and critical compo-
nents of urban growth and change modeling (Pontius Jr and
Chen 2006). Validation process in this specific field com-
pares the output maps of the modeling approach with real
changes to evaluate their similarity. Thus, such validation
needs another real land use map for future years. The period
between land use maps should be sufficient to compare the
observed and simulated dynamics. Ideally, this duration
should be as long as the period for which future scenario
predictions are made (Verburg et al. 2004b). Validation also
ensures that the structure of the models is properly built in
terms of conceptual and operational aspects and accurately
represents the real world (Henninger et al. 2010). The vali-
dation methods should make a clear distinction between the
quantity of changes and quality of spatial allocation of the
land use changes in the simulation model performance
(Verburg et al. 2004a).

One of the most common validation techniques in this
field is the quantitative-based method called relative oper-
ating characteristic (ROC) (Pontius and Schneider 2001;
Nykänen et al. 2015). ROC is an excellent method to eval-
uate the reliability of the class change occurrence (i.e., urban
expansion) by comparing a probability image that represents

the likelihood of that class occurrence (i.e., the input map)
with a Boolean image that indicates where that class actually
exists in the real map. This technique has been used in many
land use change modeling studies and is accepted as a reli-
able validation approach (Pontius and Schneider 2001; Hu
and Lo 2007; Wang and Mountrakis 2011).

ROC offers a method of statistical analysis that answers
one important question: “How well is the category of interest
concentrated at the locations with relatively high suitability
for that category?” The answer to this question allows the
researcher to answer the general question “How well do the
maps agree in terms of the location of cells in a category?”
while not being forced to answer the question “How well do
the maps agree in terms of the quantity of cells in each
category?” Therefore, ROC is useful when the researcher
aims to see how well the suitability map is produced by the
model that represents the location of a specific class, but
does not have an estimated quantity of the class (Pontius and
Schneider 2001). This method is able to apply any model
that projects a homogenous class or category in each grid
cell. ROC has three main advantages, which are required for
all kinds of land use change validations: (1) using mea-
surements other than percent success assessment, (2) mea-
suring its performance over a variety of scenarios of quantity
of changes, and (3) presenting the validation with figures
that show clearly how high similarity differs from low
similarity (Pontius and Schneider 2001).

In addition to ROC, a frequently used validation method
is the area under the ROC curve, which is commonly known
as AUC (Pontius Jr and Parmentier 2014). AUC can range
from 0 to 1, where a higher AUC value represents a stronger
positive association. AUC is a unit less summary metric that
synthesizes the relationships between the reference Boolean
feature and several diagnoses by the index. However, AUC
and other similar techniques have limitations, such as the
inability to predict probability values, and the goodness of fit
of the model does not provide information on the spatial
distribution of model errors (Lobo et al. 2008; Pontius Jr and
Parmentier 2014). Thus, these limitations should be con-
sidered when applying these validation methods of urban
modeling.

Contingency table is another common method of land use
model validation that is based on two-by-two comparison
between projected and actual land use maps for each land
use category. Moreover, Kappa index of agreement is
commonly applied to analyze the accuracy of classification,
but the confusion matrix is currently the main focus among
the accuracy assessment methods (Foody 2002). Land use
change modeling using the CA and Markov land change
models show that, up to the present, the vast majority of such
models have been validated with the aid of the Kappa index
of agreement (Araya and Cabral 2010; Mitsova et al. 2011;
Thapa and Murayama 2011). The Kappa statistic index
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assesses the validity and reliability of the projected maps in
terms of quantity and location of the changes (Arsanjani
et al. 2011). The Kappa index of agreement is a measure of
proportional accuracy adjusted for chance agreement.
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9Spatial Urban Modeling and Prediction (Tripoli
Metropolis Case Study)

Abubakr A.A. Al-sharif, Biswajeet Pradhan and Saleh Abdullahi

9.1 Introduction

In this chapter, the simulation process of urban growth in the
Tripoli metropolis (Libya) case study will be presented and
explained to understand its patterns and the role of each
urban driving force behind the urbanization process. In the
simulation process, the frequency ratio (FR) model was first
applied based on the real urban expansion rather than on the
entire urbanized area to present the role of classes within
each urban factor and reflect actual urban expansion ten-
dency. Second, the evidential belief function (Dempster–
Shafer) model (EBF) was applied to provide further infor-
mation by generating four maps representing belief, disbe-
lief, uncertainty, and plausibility of predicted future urban
growth. Third, the logistic regression (LR) model was
applied to assess the overall effect of each urban driving
factor, and subsequently combined with a simple growth
ratio equation to present probable future scenarios. Fourth,
the classic CA–Markov chain (MC) model was used to
predict explicit future urban land use in Tripoli in 2020 and
2025. Finally, a novel hybrid model of CHAID–CA–Mar-
kov was proposed based on the advantages and shortcom-
ings of the above mentioned models, and employed to
model, explain, and predict explicit urban growth in 2020
and 2025. The general methodology flowchart of these
processes is illustrated in Fig. 9.1.

9.2 Tripoli Metropolis from the 2nd to 3rd
Generation Urban Plan

Libya lies along Africa’s Mediterranean coast and stretches
deep into the Saharan region. Although most parts of Libya
consist of rocky plains and sandy seas, a narrow band of
fertile lowlands stretches across the vast country’s northern
edge. Nearly three-fourths of Libya’s population is located
within urban areas that occupy only 1.5% of Libya’s land
area on the coast. Among these urban areas is the capital
city, Tripoli. The Tripoli Agglomeration has the largest

concentration of population and economic activities, not
only in the Tripoli region, but also in the entire country. The
area plays a highly important role in the socioeconomic
development of Libya (UPA 2009). The study area is located
along the Mediterranean coast in the northwestern part of
Libya, between longitudes 12° 54′ 04″ E and 13° 26′ 38″ E
and latitudes 32° 36′ 18″ N and 32° 54′ 17″ N. It occupies a
total land area of approximately 1143.73 km2. The Tripoli
metropolitan area includes the districts of Tripoli Center,
Hey Alandlus, Tajoura, Janzur, Kaser Ben Ghashir, Alswani,
Ain Zara, Abuslim, and SuqAjumma (Fig. 9.2).

The traditional planning approach applied in the 2nd
Generation Planning Project from 1980 to 2000 was a
top-down process involving little direct input from the
affected people and institutions. This time, advances in
techniques and thinking in the international context trans-
formed the urban planning process. The call for democratic
planning processes played a huge role in enabling the public
to influence important decisions as part of the planning
process. In Libya, the number of actors in planning
increased, and integrating the sector planning evolved.
Large-scale developers, such as the Housing and Infras-
tructure Corporation, Ministry of Utilities, Roads and
Bridges Authority, and Railway Authority, played a huge
role in influencing the process of development, particularly
through project-based planning.

Preparing the 3rd Generation Tripoli Agglomeration Plan
involved a number of key processes. The strategic frame-
work of the Agglomeration Plans was founded on the
guidelines and recommendations presented in the Tripoli
Agglomeration Report 2009 by UPA. The Agglomeration
Plan also considered the Regional Development Plan for the
Tripoli Region and the Sub-regional Plan for the Tripoli
Sub-region. During the planning process, the problems and
difficulties of implementing the 2nd Generation Agglomer-
ation Plan was evaluated, which provided valuable infor-
mation and data for the planning work. A more detailed
analysis of contemporary conditions conducted in the plan-
ning process was based on statistical and geographical
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information. These data described the size and geographical
distribution of the population, dwellings, social and technical
services, land characteristics, and land use. Existing condi-
tions and trends, including the development possibilities up
to year 2025, were presented and addressed in the 3rd
Generation Plan. As an integral part of the planning process,
consultations were held with representatives from central
and local authorities together with major stakeholders.

With housing as the main requirement in the Tripoli
metropolis, the 2nd Generation Plan remains a valuable
document for the housing issue. The Plan presented the
housing stock picture for 1980 and broke down the housing
stock figures. The total housing stock amounted to 106,000
dwellings, and the housing shortage was estimated to be
50,000 dwellings. Evaluating the situation and suggestions
similar to those in the 2nd Generation Agglomeration Plan

Fig. 9.1 Overall methodology
flowchart
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largely depends on the country’s state of economic growth.
Hence, formulating programs within the framework of the
total economic development is essential, and these programs
should be realistic with regard to the financial ability of the
State. The proposed housing investment exceeded the
resources of the country and would have necessitated an
output of 316,000 dwellings in the Agglomeration during the
planning period, an increase of over 200,000 from 1980.

However, no explanations or suggestions of policies or
programs were forwarded to realize these changes. More-
over, the plans failed to consider the anticipated bottlenecks
of implementing this huge number of housing projects, such
as the shortage of skilled labor and building materials. These
issues have restricted construction activities and led to price
jumps. Thus, the 1980–2000 plans remained incomplete by
year 2006. The government attempted to solve this problem

Fig. 9.2 The location map of
Tripoli metropolitan (Libya)

9 Spatial Urban Modeling and Prediction … 189



by issuing laws stating that “anybody using or renting a
house becomes the owner of that house.” The newly
implemented policy also prevented any person from
obtaining more than one property. Nevertheless, the problem
of severe housing shortage still requires solutions.

In the urban transportation system and road network
context, the Tripoli Agglomeration is the largest generator of
both passenger and goods traffic in the country. The greatest
traffic flow is along the street networks of Tripoli, reaching
4000 vehicles in both directions in 1980. The main settle-
ments in the Agglomeration are connected with paved roads.
No construction of the proposed international roads has been
done, namely, the new motorway (expected to replace the
Coastal Road as an international road on some sections).
However, parts of the 3rd Ring Road were recently designed
and are undergoing construction.

The proposals for the road network in the 2nd Generation
Plan have been implemented to a high degree. The traffic
flow is approximately three times higher today than it was
25 years ago. The currently observed significant change is
the more severe congestion during peak hours, because the
traffic volume has increased beyond the increase in actual
capacity of the road network.

In 1980, the Tripoli Agglomeration had low-quality
infrastructure. For example, the municipal water network
was in poor technical condition. This problem was due to the
extremely small pipe diameters, unsatisfactory technical and
sanitary conditions of water installations, and shallow
pipelines or pipelines with unsatisfactory conduct. The
worsening situation was attributed to illegal connections.
Potable water was in many cases disinfected by gaseous
chlorine.

Another example is the sewage systems, which were
more unusual and only existed in the city of Tripoli. Most of
the sewage was collected in septic tanks or in cesspools.
Sewage treatment plants are in operation in Tripoli. How-
ever, numerous problems are connected with these treatment
plants, most of which are working at reduced capacity. In
other words, the municipal water system does exist for towns
and cities within the Master Plan areas. The concept of
replacing the ground water with treated effluent for agri-
cultural production never materialized.

9.3 Input Data and Preprocessing

The data used for this process are shown in Table 9.1.
The ENVI and ARC/INFO GIS software packages were used
for image processing, generating classified land cover/land
use maps, and spatial analysis and map preparation.

Resampling process was implemented to match the
high-resolution images with low-resolution images. In this
process, pixel sizes of images were unaltered to avoid
changing the precision of the classification process with the
various radiometric spectral and spatial resolutions. Next,
the classification process was applied to separate built-up
(impervious surfaces), non-built-up (agriculture), and
restricted or excluded areas. Then the classified images were
resampled to the same spatial resolution (30 m � 30 m),
with each map containing 1,816,750 cells. Selecting the
pixel size was intended to avoid the decrease in spatial
details of the images. Therefore, resampling was conducted
after the image classification.

For modeling input, thematic raster maps of all variables
were prepared and calculated in the Arc-Info GIS environ-
ment and then presented in raster maps with a grid cell size
of 30 m � 30 m (Fig. 9.3). The independent input data are
as follows:

• Distance to active economy centers,
• Distance to CBD,
• Easting Coordinate,
• Northing Coordinate,
• Slope,
• Restricted areas,
• Distance to nearest urbanized area,
• Population density,
• Distance to educational area,
• Urban area,
• Distance to roads, and
• Distance to coast line

All the prepared data were converted to ASCII and
IDRISI formats for further use in analysis and simulation
using the IBM SPSS Statistics 20, IDRISI Selva, and
FRAGSTATS software.

Table 9.1 Utilized data for
urban growth modeling process

Data Detail

Landsat image 1984 30 m resolution

Landsat image 1996 30 m resolution

Spot 5 image 2002 2.5 m resolution

Spot 5 image 2010 5 m resolution

Roads network Shape file

Population data census –

Digital contour map 5 m interval
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Fig. 9.3 Thematic raster maps of
independent variables: a Distance
to active economy centers,
b Distance to CBD, c Easting
coordinate, d Northing
coordinate, e Slope, f Restricted
areas, g Distance to nearest
urbanized area, h Population
density, i Distance to educational
area, j Urban area, k Distance to
roads, l Distance to coastal area
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9.4 Urban Expansion Modeling
and Prediction

This section presents different modeling methods to simulate
and predict spatiotemporal urban growth and sprawl pat-
terns. The techniques were used to identify and assess the
role of each urban driving factor in the urban expansion
process. The performance of each model was assessed and
analyzed to identify its shortcomings and advantages and
thus achieve optimum simulation. A new statistical method
for urban growth modeling (i.e., EBF) was also presented.
Furthermore, a novel hybrid model was developed to fulfill
one of the research objectives. The proposed model con-
siders the advantages and disadvantages of other applied
models and analyzes the interactions of urban factors as well
as their contributions to urban sprawl to explain and predict
future trends of urban sprawl in the study area.

9.4.1 Frequency Ratio Model

The FR model was used to analyze the spatial effect of the
location of urban growth in each class of the classified urban
expansion driving factors (i.e., the FR model was based on
the recorded associations among allocations of urban
expansions and classified classes of driving factors). In this
process, real urban growth was used for simulation and
validation to reflect real urban expansion behaviors and their

dynamics in metropolitan areas; such approach is another
novelty of this study. The FR of urban growth is the ratio of
the probability of urbanization occurrence to the probability
of a non-occurrence for the given attributes. To produce
future urban growth probability maps, the FR model was
applied using the GIS technique, which spatially represents
the information. FR was computed for all classes of each
urban driving factor. The FR distribution maps were then
summed up to derive the urban growth probability map via
Eqs. 9.1 and 9.2.

FR values lower than 1 indicate a low relationship with
urban growth, whereas values larger than 1 mean a high
correlation with urban expansion. The value of 1 reflects an
average condition:

FRij ¼
NðL\CijÞ

�
NðLÞ

N Cij

� ��
N Cð Þ ; ð9:1Þ

where NðLÞ is the total number of urban growth pixels,
NðCÞ is the total number of pixels in the entire study area,
Cij is the jth class attribute of the urban growth driving
factors, C ¼ Ci; i ¼ 1; 2; 3; . . .. . .. . .nð Þ;N Cij

� �
is the total

number of pixels in class Cij, and NðL\CijÞ is the quantity
of urban growth pixels in Cij.

UrbanGrowth ProbabilityMap ¼
X

FR, ð9:2Þ

where FR is the rating of the range of each urban factor.

Fig. 9.3 (continued)
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9.4.2 Evidential Belief Function (Dempster–
Shafer) Model

Dempster–Shafer theory of evidence refers to the general-
ization of the Bayesian theorem of subjective probability.
Proposed by Dempster in 1967 and developed by Shafer in
1976, this theory combines the beliefs from several sources
of evidence and the relative flexibility to accept uncertainty
(Thiam 2005). The theory predicts how closely the evidence
shows the certainty of a hypothesis rather than predicting the
possible accuracy of a hypothesis (Pearl 1990). Dempster–
Shafer theory has been applied effectively using GIS in
many applications.

In applying the EBF model in the urban expansion
modeling process, a set of urban growth driving factors
C = (C_i, i = 1,2,3,………n) are assumed to comprise
mutually exhaustive and exclusive factors C_i. C is named
the frame of discrimination. A simple probability assignment
is the function m: P(C) ! [0,1], where P(C) is the set of
whole subsets of C, including the empty set and the C set
itself. The m function can be considered a mass function that
satisfies m(Ф) = 0 and

P
AC

mðAÞ ¼ 1, where Ф is the empty

set, and A can be any subset of C. m(A) estimates the level to
which the evidence supports A and is a belief function Bel
(A).

The theory demonstrated four basic EBF functions,
namely, Dis (degree of disbelief), Bel (degree of belief), Pls
(degree of plausibility), and Unc (degree of uncertainty). Dis
represents the belief of false suggestion based on the given
evidence. Bel and Pls provide the upper and lower bounds
respectively of the probability for the suggestion (Awasthi
and Chauhan 2011). Unc means ignorance, that is, the dif-
ference between plausibility and belief. 1—Unc—Bel or
Dis = 1—Pls, and always Dis + Bel + Unc = 1. For cases
of Cij with no urban expansion demonstrating that Bel = 0,
Dis is reset to 0 even though D 6¼ 0 (Carranza et al. 2008).

Overlaying the urban growth map ðLÞ on every thematic
urban driving factor map determined the quantity of pixels
with urban growth and those without for each factor class.
Supposing N Lð Þ is the total number of urban growth pixels
and NðCÞ is the total number of pixels in the entire study
area, Cij is the jth class attribute of the urban growth driving
factors C ¼ ðCi; i ¼ 1; 2; 3; . . .. . .. . .nÞ, N Cij

� �
is the total

number of pixels in class Cij, and NðL\CijÞ is the quantity
of urban growth pixels in Cij. The data-driven estimation of
EBF can be obtained by

Bel Cij

� � ¼ WCijðurban growthÞPn
j¼1 WCijðurban rowthÞ

ð9:3Þ

where

WCij ðurban growthÞ ¼
NðL\CijÞ=NðLÞ

N Cij

� �� N L \Cij

� �� ��½N Cð Þ � N Lð Þ�
ð9:4Þ

Dis Cij

� � ¼ WCij ðnon�urban growthÞPn
j¼1 WCijðnon�urban growthÞ

ð9:5Þ

where

WCijðnon urban growthÞ ¼
½N Cij

� �� N L \Cij

� ���NðLÞ
N Cð Þ � N Lð Þ � N Cij

� �þN L \Cij

� �� ��½N Cð Þ � N Lð Þ� :

ð9:6Þ
The numerator in Eq. 9.4 is the percentage of urban

growth pixels occurring in urban factor class Cij. The
numerator in Eq. 9.6 is the percentage of urban growth
pixels not happening in factor class Cij. The denominator in
Eq. 9.4 is the percentage of nonurban growth pixels in factor
class Cij. The denominator in Eq. 9.6 is the percentage of
nonurban growth pixels in other attributes outside factor
class Cij. Parameter WCij (urban growth) is the weight of Cij

supporting the belief that urban growth is more present than
absent, whereas parameter WCij (nonurban growth) is the
weight of Cij supporting the belief that urban growth is more
nonexistent than existent. When the EBF functions are
computed for each urban growth factor, Dempster’s rule of
combination was applied to obtain the integrated EBF
(Dempster 1967). The formulas for merging the two urban
driving factors C1 and C2 are as follows (Carranza et al.
2005):

BelC1C2 ¼
BelC1BelC2 þBelC1UncC2 þBelC2UncC1

1� BelC1DisC2 � DisC1BelC2

ð9:7Þ

DisC1C2 ¼
DisC1DisC2 þDisC1UncC2 þDisC2UncC1

1� BelC1DisC2 � DisC1BelC2

ð9:8Þ

UncC1C2 ¼
UncC1UncC2

1� BelC1DisC2 � DisC1BelC2

: ð9:9Þ

Thereafter, the remaining urban expansion factors were
sequentially integrated using Eqs. 9.7–9.9. Finally, the
integrated Bel was calculated by Eq. 9.7 and summed up to
obtain the future urban expansion probability map of the
study area. Disbelief, uncertainty, and plausibility maps of
urban expansion were also produced.

9.4.3 Logistic Regression Model

The LR model was used to integrate the demographic and
socioeconomic factors of the study area into the urban
growth modeling process. This model demonstrates and
explains the relationship of a number of Xs independent
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variables to a dichotomous single-dependent variable Y,
which represents the occurrence or non-occurrence of an
event. LR empirically finds the relationship between the
independent variables and the function of the probability of
an event happening (Kleinbaum and Klein 2010). The use of
LR can yield the coefficients of independent variables (both
continuous and categorical); the dependent variable is a
binary categorical variable with a value of either 1 or 0 and
can be computed using the well-known LR equation (Huang
et al. 2009). This method provides the probability of the
existence or nonexistence of each type of land use/cover in
every location based on driving factors. LR is a powerful
empirical method used when the outcome-dependent vari-
able is dichotomous. Spatial urban expansion is the depen-
dent variable represented in a raster binary map. A value of 1
on the produced probability map indicates the presence of
urban growth, and a value of 0 indicates the absence of
urban growth. The probability of urbanization for each cell
in the raster map was produced based on the following LR
equation:

f zð Þ ¼ 1
1þ e�z

P Y ¼ 1jX1;X2; ::. . .::;Xkð Þ ¼ 1=ð1þ e�ðaþ
P

biXiÞÞ;
ð9:10Þ

where Xi is an independent variable representing a driving
factor of the urbanization process, which can be continuous
or categorical by nature; a is the coefficient of the model
formula; P Y ¼ 1jX1;X2; ::. . .::;Xkð Þ is the probability of the
dependent variable Y being 1 given ðX1;X2; ::. . .::;XkÞ, that
is, the probability of a cell being changed to a built-up area
(urbanized); and bi is the coefficient of variable Xi. The

regression coefficient bi reflects the function of independent
explanatory variables. A negative sign indicates that the
variable tends to decrease the possibility of change, and a
positive sign indicates the opposite effect. The choice of
variables conforms to previous urban modeling and simu-
lation studies. These variables reflect socioeconomic factors,
biophysical conditions, and spatial effects (Hu and Lo 2007;
Eyoh et al. 2012).

Figure 9.3 and Table 9.2 indicate the independent vari-
ables used in this study. Figures 9.4, 9.5 and 9.6 show the
dependent variable Y, which represents the urban growth in
1984–2002, 1996–2002, and 2002–2010. In the modeling
process, data from 1984 to 2002 were initially used for
model calibration and, later, to verify the spatial autocorre-
lation of regression results. Validation was conducted using
the actual growth map of 2010, while prediction of future
patterns used data from 2010.

9.4.4 Markov Chain Model

The MC method is a stochastic process system for predicting
one status being changed to another known status (Muller and
Middleton 1994). This model is frequently applied in mod-
eling and simulation, specifically, the changes, dimensions,
and tendencies of urban land use (López et al. 2001; Jianping
et al. 2005; Sang et al. 2011). The Markovian stochastic
process is one in which the state of a system at the second
time can be predicted by the state of the system at the first
time, given the matrix of transition probabilities from each
cover class to every other cover class over a specified time.

The MC method summarizes and analyzes the change in
urban land use and produces probabilities of transition areas
that can be employed to predict and discover possible

Table 9.2 List of variables
included in the modeling

Variable Description Type of
variable

Dependent (Y) 0—no urban expansion;
1—urban expansion

Dichotomous

Independent (X1) Distance to main active economy centers Continuous

Independent (X2) Distance to CBD Continuous

Independent (X3) Easting coordinate Continuous

Independent (X4) Northing coordinate Continuous

Independent (X5) Slope (%) Continuous

Independent (X6) 1—restricted area; 0—non-restricted area Design

Independent (X7) Distance to nearest urbanized area Continuous

Independent (X8) Population density Continuous

Independent (X9) Distance to educational area Continuous

Independent (X10) Distance to roads Continuous

Independent (X11) 1—urbanized area; 0—nonurbanized area Design

Independent (X12) Distance to coastal areas Continuous
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Fig. 9.4 Urban expansion from
1984 to 2002

Fig. 9.5 Urban expansion from
1996 to 2002
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situations of future urban land use changes and urban
expansion patterns. This method is powerful and effective,
with the capacity to predict the quantity of urban land use
changes (Yang et al. 2012). Nevertheless, the model cannot
simulate and model the changes in spatial distributions. The
projection of future land use change quantity can be com-
puted based on a conditional probability formula using the
following equation:

Sðtþ 1Þ ¼ Pij � SðtÞ; ð9:11Þ
where SðtÞ is the state of the system at time t, Sðtþ 1Þ is the
state of the system at time (t + 1), Pij is the matrix of tran-

sition probability in a state: Pij ¼
P11 P12 P1n

P21 P22 P2n

Pn1 Pn2 Pnn

2
4

3
5, and

ð0�Pij\1 and
PN

j¼1 Pij ¼ 1; i; j ¼ 1; 2; . . .::nð ÞÞ.

9.4.5 Cellular Automata Model

Generally, CA models aim to simulate real natural regula-
tions. Land use change modeling using the CA technique is a
preferred method because it provides explicit spatial mod-
eling results based on defined transition rules (White and
Engelen 1993). Moreover, CA model types are suitable for

representing, analyzing, and forecasting geographic pro-
cesses owing to the relationships in a raster grid (Clarke and
Gaydos 1998; Mitsova et al. 2011).

A CA-based model can represent nonlinear, spatial, and
stochastic processes; model and control complex spatially
distributed processes; and provide clear insights into local
behaviors and global patterns of land use/cover change.
Spatial and temporal complexities of land use change can
also be well represented and simulated using a suitable
transition rule in the CA model. However, the most impor-
tant concern in the CA model is defining appropriate tran-
sition rules based on training data that control the model
(Al-shalabi et al. 2013).

The model is affected by neighborhood type, neighbor-
hood size, and cell size parameters. Accordingly, these
parameters should be considered to obtain optimum simu-
lation results. The CA is a practical tool in urban system
simulations because population change and land use change
can be presented together. Cells of the cellular lattice can
likewise be aggregated efficiently with economic and trans-
portation data. Thus, urban areas can be effectively simu-
lated using the proper neighborhoods of cells on the cellular
grid. Theories on the urbanization process can also be
examined on the basis of used spatial models (Mitsova et al.
2011). Time and space are considered discrete units in the
CA model, and space is considered a regular grid (lattice) in

Fig. 9.6 Urban expansion from
2002 to 2010
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two dimensions. The main aspect of the CA model is the
local interactions reflecting the dynamics of the urban sys-
tem evolution (White and Engelen 1993; Wang 2012). CA
models can simulate stochastic, nonlinear, and spatial pro-
cess. Several studies have illustrated that the model can
potentially exhibit an understandable complex spatiotem-
poral process of land use change and urban systems and its
patterns (Batty et al. 1999; Wang 2012).

The major components of CA models include the cells,
cell neighborhoods, and transition rules, such as the cell
being the fundamental element of the automation system and
the cell being organized in a lattice. The transition rule
defining the state of each cell for the coming time step
depends on the current state of that cell and its surrounding
neighborhood cells. Thereafter, a land use change suitability
map is required, and the dynamics should be defined into the
system. The basic expression of the CA model can be
expressed as follows:

Sðt; tþ 1Þ ¼ f ðS tð Þ;NÞ; ð9:12Þ
where S is the state of a discrete cell, t is the time instant,
t + 1 is the coming future time instant, N is the cellular field,
and f is the transition rule of cellular states in local space.

9.4.6 CA–Markov Model

The reliability of land use change modeling methods can be
improved by combining two or more simulation techniques
to integrate the advantages of each model (Qiu and Chen
2008; Yang et al. 2012). The CA–MC model was recently
used to simulate dynamic spatial phenomena and predict
future land use change. The integrated model combines the
MC of land use change quantity prediction and the dynamic
explicit spatial simulation of the CA model. Thus, it can
translate the results of the MC model using a CA function
for spatially explicit outcomes required for urban planning
and design (Guan et al. 2011).

The CA–MC model can be useful for the spatial model-
ing of land use change. Consequently, incorporating GIS and
land use/cover maps derived from RS data with the CA–MC
model can effectively model and simulate spatial and tem-
poral land use change (Kamusoko et al. 2009). Moreover,
the model provides reliable land use change simulation
results and overcomes the lack of socioeconomic, statistical,
and historical data. In the CA–MC modeling process, the
temporal changes of land use classes are directed in the MC
process based on produced transition matrices, whereas the
spatial changes are controlled by transition potential maps,
neighborhood configuration, and local transition rule during
the CA modeling process.

9.4.7 Chi-Squared Automatic Integration
Detection Decision Tree Model

Chi-squared automatic integration detection DT
(CHAID-DT) algorithm is employed to analyze the urban
expansion process, understand the interactions of urban
driving factors, and predict future urban expansion proba-
bility maps. The CHAID-DT algorithm, which was proposed
four decades ago, allows multiple splits of nodes (Kass
1980). The model depends on the chi-square test of associ-
ation analysis (Althuwaynee et al. 2014). CHAID-DT is
built by repetitively splitting variables into two or more child
nodes (multi-way split) and starting with the entire dataset of
variables. The chi-square test examines independent vari-
ables for independency and determines whether splitting
nodes generate a significant improvement. The CHAID-DT
algorithm involves splitting, merging, and stopping; depen-
dent and independent variables fields can be categorical or
continuous, and nodes can be split into two or more nodes at
each level. In the case of categorical data, Eq. 9.13 of the
Pearson chi-square is applicable as follows:

X2 ¼
XJ
j¼1

XI

i¼1

ðnij � mijÞ2
mij

; ð9:13Þ

where

nij ¼
X
n2D

fnIðxn ¼ i \ yn ¼ jÞ;

where nij is the observed cell frequency, and mij is the
estimated expected cell frequency for (xn ¼ i; yn ¼ j) fol-
lowing the independence model. The corresponding p-value
is given by p = Pr (xed [ x2) (Baker and Cousins 1984).

In the case of continuous data, Eq. 9.14 for the F test is
employed. For ordinal data, a likelihood ratio test is con-
sidered (Miner et al. 2009).

F ¼
PI

i¼1

P
n2D wnfnI xn ¼ ið Þ yi � yð Þ2

.
ðI � 1Þ

PI
i¼1

P
n2D wnfnI xn ¼ i

� �
yn � yð Þ2

.
ðNf � 1Þ

:

ð9:14Þ
In addition, p ¼ PrðFðI � 1;Nf � 1Þ[FÞ;
where yi ¼

P
n2D wnfnynI xn¼ið ÞP
n2D wnfnI xn¼ið Þ , y ¼

P
n2D wnfnynIP
n2D wnfn

, Nf ¼
P
n2D

ff ,

and F (I-1, Nf-1) is a random variable following F-dis-
tribution with degrees of freedom I-1 and Nf-1.

The CHAID-DT model chooses the urban driving factor
(predictor) that has the strongest relationship with urban
expansion (dependent variable). The classes of every urban
driving factor are then merged because of the absence of
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significant differences among the said factors and the target
variable (urban expansion). The nodes in the CHAID-DT
correspond to independent variables; every leaf is allocated
to one class (e.g., urban growth/nonurban growth) repre-
senting the most frequent class value. The leaves also hold
the probabilities demonstrating the probability of a target
class occurrence (e.g., occurrence of urban growth). The
urban driving factors with significant influence on urban
expansion are used in the processing, whereas the insignif-
icant factors are dropped by the program. The CHAID-DT
algorithm was applied in a SPSS V.20 platform. Merging
and splitting categories ranged between 0 and 1. In this
work, the value of 0.3 was used to split and merge
parameters.

A simple tree with few nodes was initially created to
easily understand and analyze the interactions of urban
factors. The CHAID-DT was limited to 82 nodes, including
64 terminal nodes (leaves), as shown in the Results section.
However, a larger number of nodes performed better in the
prediction process. The created tree used for prediction has a
total of 57,024 nodes, including 38,249 terminal nodes
(leaves).

In this work, the 1984 data of urban driving factors and
1984–2002 urban growth data were used to build and cali-
brate the CHAID-DT model. Thereafter, the created model
was updated with urban driving factors in 2002; the urban
expansion in 2002–2010 was used to check the model’s
validity. Finally, the model was updated once again with
urban driving factors in 2010 to predict the future urban
transition map. The urban factor of the northing coordinate
was excluded from the inputs because of the high spatial
correlation with the urban factor of distance to the coastal
area. Furthermore, factors of restricted areas, urban extents,
and easting coordinate factors were dropped by the model.

9.4.8 Development of a Novel Hybrid Model
(CHAID–CA–Markov)

The hybrid model developed in this study is based on the
integration of three models, namely, CHAID-DT model, MC
analysis, and CA model. The proposed model considers the
potentials and shortcomings of each model to present a
robust modeling approach stronger than each single model.
The suggested hybrid model is shown in Fig. 9.7.

The first step in the hybrid model is analyzing the urban
driving factors in the study area and assessing the roles and
influences of each factor on the others. Resulting from this
first step, the model drops the unimportant urban factors and
generates the future probability map of urban expansions
and sprawl. The second step is validating the future proba-
bility map of the urbanization process produced by the
CHAID-DT model using the ROC method. The third step is

calculating the future demand of urban lands and estimating
the quantities of land use change by analyzing urban land
use maps in 1984 and 2002 in the MC model. The fourth
step is using the CA model to distribute the estimated
quantity of urban sprawl on the probability surface produced
by the CHAID-DT model to obtain explicit future urban land
use map. The final step is validating the produced explicit
map using the Kappa statistics index to ensure optimum
performance of the model.

9.5 Urban Growth Modeling Validation

The relative operating characteristic (ROC) technique is
used to evaluate the performance of the LR, FR, EBF, and
DT models and assess the resulting probability maps
employed in this study. It measures the relationship between
expected and real spatial changes by calculating the per-
centage of false positives (1-specificity) and true positives
(sensitivity) for a range of thresholds and relating the values
to one another in a chart. The ROC computes the area under
the curve, which varies from 0.5 to 1. A value of 0.5 indi-
cates a random assignment of the probabilities, that is, the
expected agreement is due to chance; whereas a value of 1
indicates a perfect probability assignment, that is, an ideal
spatial agreement exists between the real urban expansion
and the predicted urban probability maps (Pontius and
Schneider 2001; Wang and Mountrakis 2011). Model vali-
dation was conducted by comparing the probability image
maps of future urban expansion produced from the LR, FR,
EBF, and DT models alongside the real urban expansion in
2002–2010 to confirm the model’s capability. The ROC
curve is based on several two-by-two contingency tables
sequentially based on the comparisons between actual and
predicted probability images. Table 9.3 shows the contin-
gency table form, where

• A is the amount of true positive cells, i.e., cells predicted
as urban expansion and in agreement with the actual
image;

• B is the amount of false positive cells, i.e., cells predicted
as urban expansion but in disagreement with the actual
image;

• C is the amount of false negative cells, i.e., cells pre-
dicted as nonurban expansion but in disagreement with
the actual image; and

• D is the amount of true negative cells, i.e., cells predicted
as nonurban expansion and in agreement with the actual
image.

From every contingency table, a single data point (x, y) is
created, where X and Y are the rates of false positives and
true positives, respectively.
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true positive%ð Þ ¼ A= AþCð Þ ð9:15Þ

false positive%ð Þ ¼ B= BþDð Þ: ð9:16Þ
The data points are joined to form the ROC curve from

which the ROC value is computed (Fig. 9.8). The ROC
value is the area under the curve created by the plotted
points.

Apart from ROC, the projected land use maps for 2010
were compared with the actual maps using Kappa index
statistic to check the validity in terms of quantity and loca-
tion, as well as validate both the developed hybrid model
and the produced explicit urban land use maps. Kappa index
of agreement is a measure of proportional accuracy adjusted
for the chance agreement (Pontius et al. 2004; Arsanjani
et al. 2011).

Fig. 9.7 Flowchart of the
proposed hybrid model
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The statistics mainly divided the agreement and dis-
agreement of two comparison data into the following
measures:

• Kappa for no information = K no
• Kappa for location = K location
• Kappa standard = K standard

The algorithm of statistics was conducted through the
VALIDATE module in the Idrisi Selva platform
environment.

9.6 Results and Discussion of Urban Growth
Modeling

This section demonstrates the result and extensively dis-
cusses the findings from the applied GIS modeling tech-
niques and the suggested hybrid model. The chapter also

highlights and discusses the result of model validation, the
accuracy of all predicted maps, and the advantages and
shortcomings of the used models. It deliberates on the novel
hybrid model performance and compares its results to other
models.

9.6.1 Application of EBF and FR Models

The optimum set of urban driving factors for modeling was
determined for both models of bivariate statistical tech-
niques. The included urban independent variables were
slope, distance to active economy centers, distance to CBD,
distance to roads, distance to the nearest urbanized area,
distance to the coastal area, and distance to the educational
area. Table 9.4 illustrates the behaviors of urban expansions,
the variations in EBF and FR values during different periods,
and the relationship of such variations with urbanization
factors. The recorded values of EBF (bel) and FR in
Table 9.4 show the suitability level of urban expansion and
the role of each class within every urban driving factor. The
slope in the study area ranges from 0° to 17°. In this study,
the slopes were classified into seven quantile classes. The
values of EBF (bel) ranged from 0.114 to 0.164 in 1996–
2002 and from 0.093 to 0.195 in 2002–2010. In general, the
EBF (bel) values in each class of slope factor do not have
high differences among them; thus, the role of the slope
factor in the urban expansion of the study area is low.
Furthermore, the outcomes of the FR model ranged from
0.793 to 1.131 in 1996–2002 and from 0.668 to 1.307 in
2002–2010. These results indicate that the slope factor
insignificantly affected the urban growth process in Tripoli,
especially when the low slope domains were saturated with
urban areas. Consequently, the urban area extended to higher
slope domains. Thus, the slopes of all domains in the study
area allowed urban expansion with little variations.

The influence of the factor distance to active economic
centers can clearly be assessed from the EBF (bel) values.
The highest growth occurred in the distance of 0–630 m
from active economic centers in 1996–2002 with an EBF
(bel) value of 0.066, whereas the largest EBF (bel) was

Fig. 9.8 ROC curve

Table 9.3 Two-by-two
contingency table showing the
number of grid cells in an actual
map versus a predicted map

Actual map Total

Urban
expansion
(1)

Nonurban
expansion
(0)

Predicted
probability map

Urban
expansion (1)

A B A + B

Nonurban
expansion (0)

C D C + D

Total A + C B + D A + B + C + D
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Table 9.4 Values of EBF (bel.) and FR models for urban expansion driving factors

Urban
factor

Class EBF (Bel)
(1996–2002)

EBF (Bel)
(2002–2010)

FR
(1996–2002)

FR
(2002–2010)

Slope (o) 0–0.41 0.114 0.093 0.793 0.668

0.41–1.04 0.129 0.095 0.897 0.679

1.04–1.93 0.135 0.124 0.937 0.872

1.93–3.18 0.143 0.145 0.993 1.005

3.18–4.90 0.164 0.172 1.131 1.169

4.90–9.39 0.153 0.195 1.061 1.307

9.34–17.60 0.162 0.176 1.116 1.194

Distance to active economic centers (m) 0–629 0.066 0.072 1.643 1.732

629–1258 0.059 0.075 1.479 1.800

1258–1887 0.045 0.058 1.137 1.458

1887–2516 0.048 0.052 1.201 1.330

2516–3145 0.055 0.051 1.386 1.309

3145–3775 0.050 0.042 1.259 1.103

3775–4404 0.041 0.040 1.031 1.051

4404–5033 0.042 0.037 1.071 0.975

5033–5662 0.047 0.036 1.175 0.944

5662–6291 0.049 0.035 1.227 0.932

6291–6920 0.049 0.040 1.227 1.043

6920–7549 0.043 0.039 1.079 1.025

7549–8178 0.045 0.040 1.124 1.055

8178–8807 0.044 0.047 1.100 1.200

8807–9436 0.040 0.049 1.017 1.255

9436–10,066 0.033 0.046 0.843 1.193

10,066–10,695 0.037 0.047 0.928 1.200

10,695–11,324 0.040 0.043 1.003 1.126

11,324–11,953 0.035 0.040 0.887 1.048

11,953–12,582 0.022 0.021 0.573 0.572

12,582–13,211 0.019 0.017 0.498 0.484

13,211–13,840 0.017 0.016 0.446 0.455

13,840–14,469 0.016 0.014 0.401 0.406

14,469–15,098 0.014 0.009 0.359 0.267

15,098–15,727 0.013 0.011 0.341 0.307

15,727–16,357 0.012 0.009 0.304 0.271

16,357–16,986 0.005 0.005 0.126 0.132

16,986–17,615 0.006 0.003 0.163 0.085

17,615–18,244 0.005 0.002 0.135 0.068

18,244–18,873 0.003 0.001 0.085 0.043

18,873–19,502 0.000 0.001 0.000 0.024

(continued)

9 Spatial Urban Modeling and Prediction … 201



Table 9.4 (continued)

Urban
factor

Class EBF (Bel)
(1996–2002)

EBF (Bel)
(2002–2010)

FR
(1996–2002)

FR
(2002–2010)

Distance to CBD (m) 0–1144 0.005 0.001 0.318 0.038

1144–2288 0.001 0.000 0.057 0.039

2288–3432 0.013 0.001 1.201 0.045

3432–4576 0.011 0.007 0.879 0.522

4576–5719 0.013 0.008 1.033 0.559

5719–6863 0.014 0.015 1.063 1.062

6863–8007 0.021 0.025 1.601 1.715

8007–9151 0.032 0.035 2.457 2.320

9151–10295 0.022 0.037 1.573 2.259

10295–11439 0.023 0.043 1.462 2.336

11439–12583 0.033 0.044 1.893 2.108

12583–13727 0.028 0.046 1.431 1.934

13727–14871 0.032 0.050 1.369 1.752

14871–16014 0.027 0.041 1.033 1.356

16014–17158 0.036 0.050 1.173 1.376

17158–18302 0.042 0.054 1.153 1.250

18302–19446 0.039 0.058 0.942 1.164

19446–20590 0.048 0.049 1.055 0.899

20590–21734 0.051 0.053 0.933 0.808

21734–22878 0.070 0.066 0.959 0.746

22878–24022 0.071 0.057 0.867 0.585

24022–25166 0.074 0.053 0.788 0.482

25487–26595 0.070 0.056 0.581 0.393

26595–27704 0.065 0.040 0.501 0.267

27704–28812 0.060 0.054 0.499 0.381

28812–29920 0.045 0.027 0.478 0.258

29920–31028 0.028 0.015 0.370 0.184

31028–32136 0.013 0.009 0.240 0.147

32136–33244 0.007 0.005 0.241 0.159

33244–34352 0.004 0.002 0.119 0.046

34352–35460 0.000 0.001 0.000 0.009

Distance to roads (m) 0–93 0.152 0.147 1.551 1.404

93–186 0.119 0.150 1.222 1.428

186–279 0.110 0.120 1.130 1.182

279–372 0.100 0.104 1.029 1.037

372–465 0.089 0.078 0.920 0.802

465–557 0.070 0.080 0.731 0.817

557–650 0.056 0.062 0.584 0.651

650–743 0.045 0.045 0.476 0.475

743–836 0.046 0.034 0.482 0.369

836–929 0.043 0.036 0.448 0.385

929–1022 0.033 0.023 0.344 0.250

1022–1115 0.023 0.024 0.238 0.265

(continued)
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Table 9.4 (continued)

Urban
factor

Class EBF (Bel)
(1996–2002)

EBF (Bel)
(2002–2010)

FR
(1996–2002)

FR
(2002–2010)

1115–1208 0.023 0.019 0.240 0.203

1208–1301 0.021 0.016 0.219 0.174

1301–1394 0.017 0.015 0.182 0.170

1394–1486 0.019 0.012 0.204 0.128

1486–1579 0.014 0.008 0.152 0.093

1579–1672 0.012 0.007 0.128 0.077

1672–1765 0.006 0.004 0.060 0.050

1765–1858 0.001 0.009 0.009 0.102

1858–1951 0.003 0.003 0.031 0.039

1951–2044 0.000 0.001 0.000 0.007

2044–2137 0.000 0.001 0.000 0.012

2137–2230 0.000 0.001 0.000 0.010

2230–2323 0.000 0.000 0.000 0.000

2323–2415 0.000 0.000 0.000 0.000

2415–2508 0.000 0.000 0.000 0.000

2,508–2,601 0.000 0.000 0.000 0.000

2601–2694 0.000 0.000 0.000 0.000

2694–2787 0.000 0.000 0.000 0.000

2787–2880 0.000 0.000 0.000 0.000

Distance to urban areas (m) 0–93 0.259 0.371 2.070 1.736

93–185 0.142 0.316 1.165 1.519

185–278 0.106 0.120 0.874 0.641

278–370 0.083 0.063 0.691 0.346

370–463 0.068 0.036 0.566 0.200

463–555 0.059 0.018 0.493 0.102

555–648 0.046 0.012 0.386 0.068

648–740 0.035 0.009 0.293 0.051

740–833 0.033 0.007 0.279 0.042

833–926 0.031 0.011 0.263 0.060

926–1018 0.024 0.007 0.200 0.038

1018–1111 0.024 0.004 0.202 0.025

1111–1203 0.017 0.007 0.142 0.039

1203–1296 0.016 0.004 0.135 0.021

1296–1388 0.010 0.003 0.088 0.017

1388–1481 0.011 0.001 0.089 0.004

1481–1574 0.009 0.001 0.074 0.007

1574–1666 0.008 0.001 0.067 0.005

1666–1759 0.004 0.001 0.035 0.006

1759–1851 0.007 0.004 0.060 0.025

1851–1944 0.004 0.002 0.037 0.009

1944–2036 0.002 0.002 0.015 0.010

2036–2129 0.000 0.000 0.000 0.000

2129–2221 0.000 0.000 0.000 0.000

(continued)
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Table 9.4 (continued)

Urban
factor

Class EBF (Bel)
(1996–2002)

EBF (Bel)
(2002–2010)

FR
(1996–2002)

FR
(2002–2010)

2221–2314 0.000 0.000 0.000 0.000

2314–2407 0.000 0.000 0.000 0.000

2407–2499 0.000 0.000 0.000 0.000

2499–2592 0.000 0.000 0.000 0.000

2592–2684 0.000 0.000 0.000 0.000

2684–2777 0.000 0.000 0.000 0.000

2777–2869 0.000 0.000 0.000 0.000

Distance to educational areas (m) 0–523 0.083 0.099 1.515 1.592

523–1045 0.084 0.119 1.535 1.855

1045–1568 0.069 0.084 1.274 1.386

1568–2090 0.067 0.076 1.228 1.276

2090–2613 0.068 0.070 1.255 1.186

2613–3135 0.066 0.061 1.213 1.050

3135–3658 0.058 0.055 1.073 0.951

3658–4180 0.049 0.050 0.903 0.881

4180–4703 0.047 0.045 0.874 0.797

4703–5225 0.047 0.044 0.871 0.769

5225–5748 0.030 0.033 0.571 0.597

5748–6270 0.025 0.029 0.469 0.524

6270–6793 0.034 0.027 0.643 0.500

6793–7316 0.027 0.026 0.504 0.472

7316–7838 0.033 0.024 0.617 0.434

7838–8361 0.032 0.021 0.599 0.386

8361–8883 0.022 0.015 0.424 0.278

8883–9406 0.023 0.016 0.426 0.297

9406–9928 0.017 0.016 0.324 0.302

9928–10,451 0.020 0.011 0.384 0.212

10,451–10,973 0.020 0.013 0.374 0.241

10,973–11,496 0.018 0.020 0.334 0.365

11,496–12,018 0.017 0.014 0.318 0.263

12,018–12,541 0.011 0.010 0.202 0.194

12,541–13,064 0.012 0.006 0.221 0.115

13,064–13,586 0.003 0.002 0.056 0.037

13,586–14,109 0.005 0.003 0.097 0.048

14,109–14,631 0.004 0.003 0.080 0.049

14,631–15,154 0.007 0.003 0.133 0.055

15,154–15,676 0.001 0.002 0.024 0.031

15,676–16,199 0.002 0.003 0.047 0.050

(continued)
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recorded in the distance range of 630–1260 m in 2002–2010
with an EBF (bel) value of 0.075. However, the distance
range of 0–630 m increased the FR value from 1.643 in the
first period to 1.732 in the second period. This increase
means that this distance range (0–630 m) will be denser with
the built-up area. Accordingly, the suitability level of higher
urbanization expanded to the next class domain, that is, 630–
1260 m with an FR value of 1.800. The urban factor dis-
tance to CBD showed the highest EBF (bel) and FR values
at a distance range of 8000–9150 m in both periods. How-
ever, the decrease in EBF (bel) and FR values in 2002–2010
when compared with the values obtained for 1996–2002

refers to the decrease in urban growth probability in that
class with time increase (i.e., this class range is increasingly
becoming compact). Distance ranges of less than 8000 m
experienced dramatic decreases in urban growth possibility
in 2002–2010 (i.e., these areas became extremely dense).
Simultaneously, the distance range of 8000–19,500 m indi-
cates a remarkable increase in FR and EBF (bel) values,
suggesting that increased urban growth suitability may
indicate uncontrolled growth.

The modeling results of the two applied bivariate models
show that urban growth increased gradually as time pro-
gressed and with the increase in distance from roads. Earlier

Table 9.4 (continued)

Urban
factor

Class EBF (Bel)
(1996–2002)

EBF (Bel)
(2002–2010)

FR
(1996–2002)

FR
(2002–2010)

Distance to coast (m) 0–852 0.021 0.044 4.173 2.916

852–1825 0.045 0.069 3.397 2.681

1825–2799 0.058 0.074 3.171 2.591

2799–3773 0.059 0.062 2.369 2.026

3773–4746 0.053 0.058 1.933 1.730

4746–5842 0.059 0.067 1.592 1.599

5842–6815 0.051 0.071 0.972 1.271

6815–7789 0.054 0.074 0.601 1.074

7789–8762 0.054 0.062 0.482 0.901

8762–9858 0.049 0.051 0.539 0.842

9858–10,831 0.042 0.043 0.483 0.736

10,831–11,805 0.031 0.034 0.373 0.585

11,805–12,778 0.026 0.029 0.298 0.487

12,778–13,874 0.027 0.030 0.207 0.445

13,874–14,847 0.027 0.027 0.212 0.420

14,847–15,821 0.029 0.024 0.233 0.400

15,821–16,794 0.027 0.022 0.177 0.350

16,794–17,890 0.031 0.019 0.209 0.333

17,890–18,863 0.023 0.016 0.151 0.259

18,863–19,837 0.029 0.017 0.167 0.283

19,837–20,810 0.032 0.020 0.268 0.375

20,810–21,784 0.022 0.013 0.272 0.293

21,784–22,758 0.022 0.009 0.134 0.179

22,758–23,731 0.022 0.011 0.235 0.261

23,731–24,705 0.024 0.013 0.169 0.240

24,705–25,678 0.016 0.009 0.096 0.156

25,678–26,652 0.014 0.008 0.079 0.139

26,652–27,625 0.012 0.009 0.069 0.143

27,625–28,599 0.016 0.006 0.085 0.117

28,599–29,573 0.016 0.006 0.115 0.130

29,573–31,033 0.010 0.005 0.057 0.084
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urban expansions tended to occur near roads, whereas urban
areas expanded away from roads as time progressed. The
general trend of EBF (bel) and FR values for the urban factor
distance to built-up areas demonstrates that the probability
of urban expansion increases with the decrease in distance to
urbanized areas in all periods. The factor distance to edu-
cational areas showed behavior nearly similar to that of the
distance to roads factor. In the case of compact urban classes
nearer educational areas, growth will occur in the next
domains. However, the most probable class of urban growth
is in the distance range of 500–1000 m from educational
areas. The last considered urban factor, distance to coast,
indicated that the highest values of EBF (bel) were recorded
in the fourth and sixth classes in 1996–2000, whereas the
highest EBF (bel) values were in the third and eighth classes
in 2002–2010. These results reflect different behaviors of
spatiotemporal urban expansion.

However, the FR model showed a different urban growth
behavior. The highest FR values were recorded in both
periods in the first class (i.e., in distances below 852 m).
A significant finding is that the FR value decreased from
4.173 in the first period to 2.916 in the second period.
Therefore, future urban expansion will happen in the next
classes rather than in the first class.

Finally, urban growth probability maps were produced
from the applied methodological process. Thereafter, the

restricted areas and last built-up area extents were excluded
to produce the future maps (Figs. 9.9 and 9.10). As an
advantage of the EBF model, the plausibility, disbelief, and
uncertainty maps of urban expansion were produced to
provide additional information regarding the probable
occurrences of urban expansions in the study area, as shown
in Figs. 9.11, 9.12 and 9.13.

9.6.2 Application of the LR Model

Table 9.5 lists the modeling results of the urban sprawl
behavior. The LR model checks the multi-collinearity, which
verifies the correlation of independent variables. The mod-
eling results demonstrate the tolerance and variance inflation
factor (VIF) that examines the multi-collinearity. The toler-
ance value ranges from 0.141 to 0.956, and the VIF
(1/tolerance) varies from 1.046 to 7.069. A widely used
standard provides that VIF should not exceed 10. In this
study, the VIF value of the urban factor distance to coast
exceeded 10, thereby compelling the model to drop the
factor. The results shown in Table 9.5 reflect the highly
effective model as per the multi-collinearity assessment
(Menard 2012).

The model illustrates that urban growth was affected by
the main active economic centers. This finding reflects the

Fig. 9.9 Predicted urban growth
probability map using the FR
model
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Fig. 9.10 Predicted urban
growth probability map (bel.
map) using the EBF model

Fig. 9.11 Disbelief map of
urban expansion
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Fig. 9.12 Uncertainty map of
urban expansion

Fig. 9.13 Plausibility map of
urban expansion
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polycentric aspect of the study area. The distance to the main
active economic center (X1) has a coefficient that is equal to
−1.563 and an odds ratio of 0.210. This result indicates that
the odds of the urbanization process in the area nearer the
active economic center are 1/0.210, that is, 4.76 times as
large as that of an area 1 km further away from the main
active economic centers. The model results also show that
the distance to CBD (X2) has an odds ratio equal to 0.151,
which means the probability of urban development of the
area closer to the CBD is equal to 6.622 times the odds of the
area further away by 1 km from the CBD. The easting
coordinate variable (X3) has a coefficient of −0.169 and an
odds ratio of 0.844, demonstrating that the urban sprawl is
dissimilar in the east and west directions because urban
expansion to the east direction is more probable. The nor-
thing coordinate variable (X4) has a coefficient of −1.983 and
an odds ratio of 0.138 or 1/7.246. The odds ratio indicates
that increasing the distance by 1 km in the south direction
decreases the urban expansion odds by 7.246. The proba-
bility of urban expansion in a lower slope area is greater than
that of the urbanization in an area with a higher slope degree.
This finding is a reasonable effect of the slope variable (X5).
The restricted area variable (X6) and the urbanized area
variable (X11) have the highest, albeit negative, coefficients.
The odds ratio of the two variables is 0, which means that
the probability of urban development in those areas is nearly
0. These areas are either restricted or controlled against the
urbanization process or have been previously urbanized. The
urbanization process and urban sprawl tend to occur in areas
nearer the urbanized clusters. The variable distance to the
nearest urbanized area (X7) has a coefficient of −4.576,
which means that increasing the distance from the urban area
decreases the probability of urbanization. The odds ratio is
equal to 0.010, which shows that the probability of urban
expansion in an area near an urbanized location will be 100
times greater than the probability of urban expansion in an
area further away by 1 km. Urban expansion tends to occur

in an area having an increment in population density (X8).
The odds ratio result is 4.737, which is more than 1, that is,
the probability of urban expansion in some areas will
increase 4.737 times with the unit increment in population
density. The significance and function of distance to the
educational areas variable (X9) are shown by the modeling
output with an odds ratio value of 0.250 or 1/4. Thus, the
probability of urban development in an area nearer the
educational area is estimated to be four times the probability
of urbanization in an area further away by 1 km. For the
variable distance to roads (X10), the model demonstrates that
roads significantly affect urban development, and that the
odds ratio of distance to roads variable (X10) is 0.014 or
1/71.428. This odds ratio reflects the strong influence of
roads on urban spatial patterns, because roads cause the strip
and ribbon urban expansion patterns.

9.6.3 Urban Expansion Probability Map
Produced by the LR Model

Producing an urbanization probability map required using
and applying the coefficients of the LR model in Eq. 9.10.
Temporal dynamics was considered for improved model
performance. The thematic raster maps of the independent
variables distance to nearest urbanized area (X7), population
density (X8), distance to educational area (X9), distance to
roads (X10), and urbanized area (X11) were updated using
2010 data, whereas the other independent variables remained
unchanged. Figure 9.14 illustrates the predicted urban
expansion probability map. The dark red color indicates a
higher probability of urban expansion, whereas the dark blue
color specifies the lowest probability of urbanization. The
trend of future urban expansion process patterns is based on
the future probability map (Fig. 9.14). Urban development
will probably occur near roads and existing urbanized areas,
particularly those areas associated with population growth.

Table 9.5 Estimated coefficients
of the implemented logistic
regression model

Variable Coefficient (bi) Odds ratio Tolerance VIF

Independent (X1) −1.563 0.210 0.230 4.351

Independent (X2) −1.889 0.151 0.180 5.563

Independent (X3) −0.169 0.844 0.760 1.315

Independent (X4) −1.983 0.138 0.269 3.719

Independent (X5) −3.004 0.050 0.925 1.082

Independent (X6) −19.188 0.000 0.956 1.046

Independent (X7) −4.576 0.010 0.399 2.505

Independent (X8) 1.555 4.737 0.495 2.019

Independent (X9) −1.386 0.250 0.141 7.069

Independent (X10) −4.305 0.014 0.785 1.274

Independent (X11) −21.415 0.000 0.730 1.370

Constant 0.850 – – –

9 Spatial Urban Modeling and Prediction … 209



9.6.4 Urban Spatial Patterns in the Future
Based on the LR Model

Identifying the location of the expected urban expansion is
possible based on the urbanization probability map produced
by the LR model. Thus, generating several maps can
demonstrate future urban distribution patterns based on the
current demand for land for urban use. The equation below
is used to estimate future urbanization patterns (Campbell
et al. 2008). This equation requires determining the size of
the existing urbanized area, the anticipated future popula-
tion, and the growth ratio, which is equal to the ratio of
urbanized land to population growth:

Afuture ¼ Aexisting þR
Pfuture � Pexisting
� �

Pexisting

	 

; ð9:17Þ

where Afuture is the future area of urbanized land; Aexisting is
the existing area of urbanized land; R is the growth ratio,
which is equal to the ratio of change in urbanized land/ratio
of population growth; Pfuture is the expected population in
the future; and Pexisting is the existing population.

The population and its growth rate data were obtained
from the General Authority of Information, Libya. The
population growth rate was 1.41% per year. The ratio of the
urbanized area growth was 8.57% per year, calculated based

on situations in 2002 and 2010. Thus, the growth ratio was
approximately 6.

Forecasting the future population requires assuming an
insignificant change in the population growth rate (Campbell
et al. 2008). Various scenarios were also considered to
predict the area of urbanized land for 2020 and 2025. The
first scenario used the calculated growth ratio of 6, the
second scenario assumed a decrease of 5 in the growth ratio,
and the third scenario assumed an increase of 7 in the growth
ratio. The rationale behind the different scenarios is the
instability of economic, social, and political conditions.
Urban planning policies were also unclear. Thus, different
scenarios were expected to provide different perspectives to
manage unexpected and uncontrolled urban growth.
Table 9.6 summarizes the size of the predicted urbanized
area (km2) in the future.

Future spatial patterns were determined by allocating the
estimated size of the urban area to the urban probability
map. The increase in urbanized land was calculated by
comparing the estimated area to the 2010 base year
map. Subsequently, the increased urbanized area was con-
verted to a number of cells. The number of predicted
urbanized cells was allocated to the predicted probability
map, starting from the highest probability cells to the lowest
until the total area was equal to the estimated future area.
The generated future urban spatial patterns are presented in
Figs. 9.15 and 9.16.

Fig. 9.14 Urbanization
probability map of Tripoli in the
future using the LR model
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9.6.5 Land Use Change and Transition
Probability Matrices Using the MC
Model

The produced land use maps of 1984, 2002, 1996, and 2010
(Fig. 9.17a–d) were used to calculate the urban expansions
occurring in the same time periods. The results of land use
change analysis presented in Table 9.7 illustrate the land use
change history and amount of change in each land use class.
Studying these outcomes leads to knowledge regarding land
use change rhythm, land use change behaviors, and change
speed, all of which are extremely helpful to urban planners
and decision-makers. However, in the time period 1984–
1996, approximately 3.86 km2 of agricultural areas were
changed annually to built-up areas. Furthermore, the annual
loss of agricultural areas increased from 3.86 to 5.18 km2 in
2002. Unfortunately, the annual loss rate of fertile lands
jumped dramatically and reached 13.97 km2 annually in
2002–2010, and the total amount of increase in urban areas
in 1984–2010 was over 189 km2. This increase is considered
extremely high in such a short time. However, this
remarkable rate of land use change (agriculture area to
built-up areas) raises various questions regarding urban
growth patterns, driving forces of urban growth process,
urban policies, and sustainable environmental regulations
implemented in the study area. The transition probability
matrices were calculated using MC analysis, as shown in
Table 9.8. These transition probability matrices indicate the
future probable percentages of land use change in 1984–
1996, 1996–2002, and 2002–2010. However, as shown in
Table 9.8, the probability of future change in agriculture
lands to urban areas in 1984–1996 is 17%; this probability of
change increased reasonably to 18.6% in 2002. In the last
decade, the possibility of change to urban area jumped
remarkably from 18.6 to 28.13%. However, the future
change of built-up areas to agricultural areas had a proba-
bility of 18.68%, which was still lower than 28.13%. The
large difference between these probabilities reflects the
alarming dramatic decrease in fertile lands in Tripoli. Rapid
urban growth and large consumption of urban lands were
also observed along the study area’s history. The analysis of
results and a review of the classified maps further show that
the metropolis of Tripoli is facing rapid urban sprawl instead
of a normal urban growth; such phenomenon requires further
analysis and simulation.

9.6.6 Future Spatial Land Use Change
Prediction Using the CA–MC Model

The MC model was applied using 2002 and 2010 maps as
inputs to quantify future land use changes, and the matrix of
transition areas was estimated as output. The calculated
transition area matrix records the total area expected to
change from agricultural to urban land according to the time
units. The quantities of land use change in the past and
future in Tripoli are presented in Table 9.7.

The CA–MC model was applied to perform valid pre-
diction of future land use patterns and calculate land use state
in 2010. Various iteration numbers (i.e., number of optimum
iterations) were used in the land use change map prediction
to achieve the best performance of the used model. For
model calibration, the projected land use map in 2010 was
compared with the actual map using Kappa index statistic to
check the validity in terms of quantity and location.
Figure 9.18 shows the variation of the Kappa index with the
change in iteration numbers. This figure shows that the
optimum performance of the model was achieved at four
iterations while predicting land use in 2010 with the Kappa
standard index of 0.8584, Kappa location index of 0.886,
and Kappa no index of 0.881. The model likewise predicted
land use in 2002 and achieved simulation success with the
Kappa standard index of 0.8502, Kappa location index of
0.9614, and Kappa no index of 0.88.

These validation results demonstrate very good agree-
ment between the actual and projected maps. Through val-
idation, the optimal transition rules for the model can be
calculated using determined iteration numbers that can be
used to predict land use maps in 2020 and 2025. The future
land use maps in 2020 and 2025 were simulated based on the
successful modeling of land use in 2010. The transition
potential maps and transition area matrices of 2002–2010
future patterns of land use were predicted through the 2010
land use as base map, as shown in Fig. 9.17e, f. The classic
CA–MC model simulations predicted that agricultural lands
in the Tripoli metropolitan area will decrease from 829.26 to
647.49 km2 in 2020 and to 606.99 km2 in 2025 (Table 9.7).
Unfortunately, this change in farm lands will be due to
uncontrolled urban expansion. The simulated future scenar-
ios of land use change show the growing pressure of rapid
urban growth associated with important socioeconomic and
environmental implications.

Table 9.6 Predicted demand of
urban land use in the future (km2)

Year 2020 2025

Growth ratio 5 471 568

6 509 626

7 548 685
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Fig. 9.15 Predicted urban
patterns in 2020 with various
growth ratios: a at 1:5, b at 1:6,
and c at 1:7
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Fig. 9.16 Predicted urban
patterns in 2025 with different
growth ratio scenarios: a at 1:5,
b at 1:6, and c at 1:7
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Fig. 9.17 Predicted land use
maps in different years using the
CA–Markov chain model:
a 1984, b 1996, c 2002, d 2010,
e 2020, and f 2025
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Fig. 9.17 (continued)
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Table 9.7 Amount of land use
changes (km2)

Agriculture area Built-up area Restricted area

1984 1018.47 86.40 38.89

1996 972.10 132.77 38.89

2002 941.05 163.82 38.89

2010 829.26 275.61 38.89

2020 (Predicted) 647.46 457.93 38.89

2025 (Predicted) 606.96 498.47 38.89

Annual change
(1984–2002)

−4.30 4.30 0

Annual change
(2002–2010)

−13.97 13.97 0

Annual change
(2010–2020)

−18.18 18.18 0

Annual change
(2020–2025)

−8.10 8.10 0

Total change up to 2010 −189.21 189.21 0

Total change up to 2025 −411.51 411.51 0

Table 9.8 Transition probability
matrices of different time periods:
1984–1996, 1996–2002, and
2002–2010

Agriculture area Built-up area Restricted area

1984–1996 Agriculture
area

0.8296 0.1704 0.0000

Built-up area 0.1582 0.8418 0.0000

Restricted area 0.0750 0.0750 0.8500

1996–2002 Agriculture
area

0.8140 0.1860 0.0000

Built-up area 0.0750 0.8500 0.0750

Restricted area 0.0750 0.0750 0.8500

2002–2010 Agriculture
area

0.7187 0.2813 0.0000

Built-up area 0.1868 0.8132 0.0000

Restricted area 0.0750 0.0750 0.8500
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Fig. 9.18 Kappa index values
versus number of iterations (for
CA–Markov chain model)
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9.6.7 Driving Factors of Urban Expansion
and Their Interactions

The CHAID-DT model demonstrated that the factor distance
to coast line is the most important in determining urban
expansion in the study area, followed by distance to CBD,
population density in each district, distance to roads, dis-
tance to built-up area, slope, and distance to active economic
centers. Distance to educational areas had the least effect on
the urbanization of Tripoli. The model classified the urban
driving factors into various classes based on the history of
urban expansion behavior and demonstrated how urban
factors interact to determine the probabilities of future urban
growth. The percentages in blue represent the tree leaves,
that is, the probabilities of urban expansion. Distance to
coastal area is at the top of the tree because it is the most
effective urban driving force and is classified into 10 classes.
Each of the 10 classes represents a different likelihood of
urban expansion occurrence.

As per the CHAID tree results illustrated below, the
probability of urban growth is approximately 0.84 when the
distance to coastal area is less than or equal to 0.071. This
probability changes as a result of the interactions between
distance to CBD and distance to coast line. In this case,
distances to CBD were classified as follows: less than or
equal to 0.225, 0.225–0.375, 0.375–0.442, 0.442–0.502,

0.502–0.620, and greater than 0.620. The model results
demonstrated that if the distance to coastal area is less than
or equal to 0.071, the probabilities of urbanization occur-
rence in these six classes are 92, 90.8, 88.6, 87, 78, and 63%,
respectively.

Similarly, other scenarios of interaction between urban
factors can be described in different levels, in a presentation
appropriate for urban planners and decision-makers.
Nonetheless, numerous situations regarding urban growth in
the study area are identified by examining the tree flowchart
in the next page.

The third branch of CHAID-DT indicates that the prob-
ability of urban growth in the entire study area generally
decreases when distance to coastal areas increases. However,
the effects of population density and distance to active
economic centers on this branch revealed that when distance
to coast line ranged from 0.120 to 0.159 and population
density is less than or equal to 0.156, growth probability
increases when distance to active economic centers is less
than or equal to 0.217. Nonetheless, distance to active eco-
nomic centers became negligible when the population den-
sity was greater than 0.217. The possibility of urban
expansion increases significantly rather than decreases, that
is, expansion occurs at a distance from the economic centers.
This situation indicates that the increase in population
induced urban sprawl and unplanned urban development.

Fig. 9.19 Predicted urban
expansion probability map using
the CHAID-DT model
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Urbanization probability is highest when distance to
active economic centers exceeds 0.241 and when distance to
coastal line varies from 0.159 to 0.200. This outcome sug-
gests that expansion occurs at the fringes of urban areas and
denotes possible urban sprawl. The influences of distances to
educational areas and CBD are combined when the factor
distance to coast ranged from 0.200 to 0.251. In this case,
the probability of growth was highest when the distance to
educational areas was over 0.221 and when distance to CBD
extended from 0.442 to 0.674.

In the sixth branch of the tree, the effect of the
slope factor was low. The possibility of urban expansion

increased with the increases in distance to CBD and
population growth (i.e., unplanned growth). This result
suggests that a wise urban policy must be urgently
developed for the study area to manage the urbanization
process and accommodate the population increase in
these regions. However, the last four branches of the tree
model illustrate the declining probability of urban
growth, although urban expansion may occur at nearby
roads and built-up areas. Figure 9.19 shows the pre-
dicted probability map of urban expansion using the
CHAID-DT model, and the analysis results are illustrated
as follows:

0) Urban expansion
1) Distance to coastal area < 0.071 [84%]

Distance to CBD< 0.225 [92%]
Distance to CBD > 0.225 and < 0.375 [90.8%]
Distance to CBD > 0.375 and < 0.442 [88.6%]
Distance to CBD > 0.442 and < 0.502 [87%] 
Distance to CBD > 0.502 and < 0.620 [78%]
Distance to CBD > 0.620 [63%]

2) Distance to coastal area > 0.071 and < 0.120 [85%]
Population density < 0.156 [85%]

Distance to roads < 0.147 [81%]
Distance to built up area < 0.028 [83%]
Distance to built up area > 0.028 [79%]

Distance to roads > 0.147 [72%]
Population density > 0.156 and < 0.157 [72%]
Population density > 0.157 and < 0.334 [92%]

Distance to CBD < 0.225 [93%]
Distance to CBD > 0.225 [91%] 

Population density > 0.334 [92%]
Distance to CBD< 0.304 [95%]
Distance to CBD> 0.304 [90%]

3) Distance to coastal area > 0.120 and < 0.159 [81%]
Population density < 0.156 [77%]

Distance to active economic centers < 0.217 [83%]
Distance to active economic centers > 0.217 [67%]

Population density > 0.156 and < 0.157 [71%]
Population density > 0.157 and < 0.194 [85%]
Population density > 0.194 and < 0.334 [84%]
Population density > 0.334[91%]

4) Distance to coastal area > 0.159 and < 0.200[75%]
Distance to active economic centers < 0.217 [71%]
Distance to active economic centers > 0.217 and < 0.324 [70%]

Population density < 0.157 [65%]
Population density > 0.157 [74%]

Distance to active economic centers > 0.324 and < 0.372 [75%]
Distance to active economic centers > 0.372 and < 0.421 [77%]
Distance to active economic centers > 0.421 and < 0.478 [83%]
Distance to active economic centers > 0.478 [81%]
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5) Distance to coastal area > 0.200 and < 0.251 [67%]
Distance to CBD < 0.225 [68%]
Distance to CBD > 0.225 and < 0.304 [70%]
Distance to CBD > 0.304 and < 0.375 [55%]
Distance to CBD > 0.375 and <0.442 [62%]
Distance to CBD > 0.442 and < 0.674 [76%]

Distance to educational areas < 0.221 [65%]
Distance to educational areas > 0.221 [82%]

Distance to CBD > 0.674 [47%]
6) Distance to coastal area > 0.251 and < 0.309 [56%]

Distance to CBD <0.304 [58%]
Slope < 0.021 [65%]
Slope > 0.021 [52%]

Distance to CBD > 0.304 and < 0.442 [43%]
Distance to CBD > 0.442 and < 0.502 [68%]
Distance to CBD > 0.502 and < 0.562 [77%]
Distance to CBD > 0.562 [54%]

Population density < 0.001 [30%]
Population density > 0.001 [63%]

7) Distance to coastal area > 0.309 and < 0.382[40%]
Distance to educational areas < 0.165 [29%]
Distance to educational areas > 0.165 and < 0.221 [40%]
Distance to educational areas > 0.221 and < 0.288 [38%]
Distance to educational areas > 0.288 and < 0.382 [48%]

Population density < 0.089 [57%]
Population density > 0.089 [35%]

Distance to educational areas > 0.382 [46%]
Distance to roads < 0.147 [50%]
Distance to roads > 0.147 [42%]

8) Distance to coastal area > 0.382 and < 0.469 [27%]
  Distance to CBD < 0.442 [17%]

Distance to active economic centers < 0.544 [14%]
Distance to active economic centers > 0.544 [42%]

Distance to CBD > 0.442 and < 0.502 [36%]
Distance to CBD > 0.502 and < 0.562 [16%]
Distance to CBD > 0.562 and < 0.620 [29%]
Distance to CBD > 0.620 and < 0.674 [31%]
Distance to CBD > 0.674 and <0.748 [32%]
Distance to CBD > 0.748 [33%]

9) Distance to coastal area > 0.469 and < 0.582 [23%]
Distance to active economic centers <0.142[1%]
Distance to active economic centers > 0.142 and < 0.217[7%]
Distance to active economic centers > 0.217 and < 0.273 [11%]
Distance to active economic centers > 0.273 and <0.544 [21%]

Distance to built up area < 0.071 [23%]
Distance to built up area > 0.071 [19%]

Distance to active economic centers > 0.544 [35%]
Distance to CBD < 0.620 [27%]
Distance to CBD > 0.620 [42%]

10) Distance to coastal area > 0.582 [40%]
Distance to active economic centers < 0.273 [6%]
Distance to active economic centers > 0.273 and < 0.421 [12%]
Distance to active economic centers > 0.421 and < 0.544 [15%]
Distance to active economic centers > 0.544 and < 0.653 [18%]
Distance to active economic centers > 0.653 [32%]

Distance to roads < 0.313 [30%]
Distance to roads > 0.313 [33%] 
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9.6.8 Prediction of Urban Spatial Patterns Using
the Hybrid Model

The explicit location of urban development can be deter-
mined based on the urban expansion probability map pro-
duced by the CHAID-DT model (Fig. 9.19). This figure
exhibits the predicted map of future urban transitions as the
first input of the proposed model. The dark blue area indi-
cates a low probability of urban growth, whereas the dark
red area corresponds to a high probability of urban growth.
However, the produced map presents only probable areas of
urban expansions rather than exact points of expansion.
Furthermore, the MC model cannot estimate change location
(i.e., it is not spatially explicit). Accordingly, the amount of
future urban expansion as calculated by the MC model is
considered as another hybrid model input. However, the CA
model can spatially allocate the predicted quantity of land
use change over the predicted probability map. Therefore,
Figs. 9.20 and 9.21 depict the predicted maps of explicit
urban growth in 2020 and 2025 on basis of the integration of
the three models.

9.7 Hybrid Model Validation and Future
Land Use Change Prediction

In this study, the predicted urban expansion probability map
was validated by comparing it with known real urban
expansions using the ROC technique, which is considered as
dependable in land use/cover change modeling studies. ROC
measures the relationship among real and expected changes.
In the ROC curve, model sensitivity (true positive) is plotted
against 1-specificity (false positive). High sensitivity means
large amounts of correct predictions, whereas high speci-
ficity means large amounts of false positives. The predicted
urban growth probability maps produced by the models were
compared against the net real urban growth in 2002–2010.
The validation results using the ROC method showed
accuracy levels of 84.4, 83.2, and 86% for the FR, EBF, and
LR models, respectively. The proposed CHAID-DT model
validation results indicated 94.9% prediction accuracy
(Fig. 9.22) and reflected very acceptable reliability and good
performance of the used model in such spatial applications.

Fig. 9.20 Predicted urban land
use in 2020 using the hybrid
model
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For the proposed hybrid model validation, the projected
explicit urban land use map must be compared with the
actual map. In this study, the well-known Kappa statistic
index of agreement was used to check the hybrid model
validity in terms of quantity and location. The developed
hybrid model was initially applied to predict urban land use

change in 2010. The urban land use change map was pre-
dicted using various iteration numbers (i.e., to obtain an
optimum iteration number and ensure model reliability) to
achieve the best performance of the proposed model. The
best performance of the hybrid model in predicting urban
land use in 2010 was achieved at 600 iterations. The

Fig. 9.21 Predicted urban land
use in 2025 using the hybrid
model
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achieved Kappa standard index was 0.8941, Kappa location
index was 0.9227, and Kappa no index was 0.9110.

These validation results demonstrate very good agree-
ment between the actual and the projected map. The devel-
oped model in this research achieved an accuracy rate higher
than that recorded before for the same study area using the
classic CA–MC model.

9.8 Conclusion

This chapter generally focused on the spatial patterns and
extents of urban growth change in the Tripoli metropolitan
area from 1984 to 2010 to assist in directing prospect urban
plans and urbanization policies for Tripoli. The most
important issues for urban planners include measuring urban
expansions and determining the urban requirements to be
accomplished in preparation for future urban demands,
instead of waiting to see whether or not urban expansion will
occur. The models presented and used in this study can be
employed to guide the identification and measurement of the
change likely to happen if the tendency of urban history
persists. The analysis resulted in many figures to help
understand and assess urban sprawl and growth in the Tri-
poli metropolis. Results further confirmed that the proposed
models, remotely sensed data, and GIS are significantly
practical for identifying urban growth/sprawl patterns and
their general trends in the future.

Specifically, the importance levels and contribution of the
urban driving forces of the urban development process were
investigated at different levels. The interactions of these
factors that design and lead the spatiotemporal patterns of
urban sprawl were analyzed and clarified. The role of the
urban driving factor was assessed using two applied
bivariate models (FR and EBF). The modeling results
demonstrate that both applied models can be used to analyze
the urban expansion process and urban driving forces.
Moreover, each individually analyzed urban causative factor
provided superior understanding regarding the role of each
single class within the considered factor. The models are
simple but powerful in assessing the relationship between
urban growth occurrences and their spatial factors. However,
FR and EBF could not include the effects of other urban
spatial factors within the same analysis time and could not
consider or assess the interactions of urban factors.

The functions of spatial urban driving factors and their
overall level of significance in the urban expansion process
in the capital of Libya were analyzed using the LR model.
Results revealed the quantitative relationships between
urban sprawl and causative factors, as well as distinguished
the effectiveness of variables and their functions in urban

expansion. The LR model collectively assessed all urban
factors and implicitly considered the effect of urban variables
on one another. Such model found the best relation among
the factors to explain the urbanization process. However, LR
merely provided an overall assessment for each urban
development variable; the model could not explain how the
urban variables interacted. These details are extremely crit-
ical in understanding the urban situation and supporting
urban planners.

The CHAID-DT model demonstrated the overall impor-
tance levels for all factors driving urban expansions in the
study area. Each urban variable was also categorized into
classes based on urban expansion occurrence in the study
area. The classified urban driving factors provided additional
detailed descriptions regarding the studied urban system and
the behavior history. The CHAID-DT model successfully
explained in detail how the urban factors interacted to pro-
duce future probabilities of urban growth. The CHAID-DT
model also explicitly presented different situations leading to
urban growth occurrence and showed how urban factors
affect one another. The applied CHAID-DT model is highly
advantageous in such studies because it overcomes the
shortcomings of statistical methods, such as FR, EBF, and
LR models. The advantages of the CHAID-DT model allow
the identification of further effective conditions on the urban
development process.

The urbanization process was modeled by several mod-
els, and future probable trends of urban developments in the
studied area were predicted and presented in high-accuracy
maps. The FR model resulted in a more accurate urban
probability map based on the ROC validation technique.
The EBF model favorably provided four maps, each offering
additional spatial information and assessments regarding the
urban expansion process. The multivariate LR model was
employed to show the expected location of the possible
future urban expansion. This model displayed greater accu-
racy than the bivariate models.

The main limitations of the abovementioned models
include temporal determination of change and change
quantification within an acceptable limit. The CA–MC
model combining the CA and MC models effectively sim-
ulated and estimated the land use changes in the Tripoli
metropolis. One advantage of the applied CA–MC model is
that the model requires limited data to simulate and predict
any future land use change explicitly (i.e., minimum of two
land use maps in different dates). However, the model’s
disadvantage lies in its inability to analyze and include urban
land use change driving factors, such as biophysical and
socioeconomic factors, which are extremely important in
managing, guiding, and controlling current urban situations
as well as in predicting future trends.
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The proposed modeling approach overcomes the
restraints of the abovementioned models. The suggested
model is capable of including, analyzing, and discovering
various urban variables causing urban expansion and sprawl,
such as socioeconomic and environmental variables. The
hybrid model also estimates the quantity and place of urban
growth. The two validation steps of the hybrid model ensure
the accuracy of provided results. Furthermore, the validation
results of the hybrid model demonstrated better performance
than those of the other employed models in this research.

Finally, this study presented an exhaustive assessment of
the urban development status in the studied area. The
obtained results can be used by the national decision-maker
and planner to recognize the past, present, and future of
urban expansion in order to prepare, plan, and gear up for
future demands.
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10Compact City Modeling (Case Study
of Kajang City, Malaysia)

Saleh Abdullahi and Biswajeet Pradhan

10.1 Introduction

This chapter presents the methodological processes of
land-use change modeling to simulate and predict future
spatiotemporal urban growth and land-use changes. These
processes were conducted to identify and assess the various
aspects of land-use change modeling, especially regarding
statistical (factor analysis) and cellular-based concepts.
A hybrid land-use modeling approach based on applied
modeling techniques was also developed to create a com-
prehensive projection of the future development pattern in
two scenarios. The first scenario (business-as-usual scenario)
is based on several urban-related factors and interaction
among various land-use categories through a historical trend
of land-use change and growth. In this scenario,
weights-of-evidence (WoE) and MC were used to evaluate
and create growth probability maps of various land-use types
in Kajang City. Next, the results were integrated to the CA
model to facilitate the application of contiguity filters and
project future land-use maps based on the neighborhood
concept. In the second scenario (compact land-use scenario),
the proposed land-use modeling approach and evaluation of
degree of compactness (DoC) and trend of compactness
(ToC) were considered in proposing and implementing a
compact land-use scenario using the city intensification
process. The performance of each integrated modeling
technique was validated during the analysis to confirm their
accuracy and propose an optimum simulation approach. The
proposed model considers the advantages and disadvantages
of the existing models and analyzes the interactions of urban
factors as well as their interaction among various land-use
categories. Kajang City is selected as the case study because
its proximity to the three main cities of Malaysia has resulted
in rapid urbanization and sprawl developments in recent
years. Furthermore, the availability of a large proportion of
natural environments in this region presented an adequate
observation of the effects of urban growth. The analyses and

modeling approaches used in this study can be employed to
guide the identification and measurements of the changes
and growth likely to happen in urban areas. The output maps
and results can likewise be helpful for town planning in
order to design compact and eventually sustainable urban
areas.

10.2 Kajang City

Kajang is a city in the eastern part of Selangor Province and
the southwestern region of Peninsular Malaysia. This city is
located 21 km away from Kuala Lumpur, the capital city of
Malaysia (Fig. 10.1) and covers a 60 km2 area with a pop-
ulation of 300,000 as of 2010. The current population of
Kajang has grown rapidly in the past few years.

The eastern part of this region is mainly occupied by
agricultural and forest lands. Agricultural land has a high
proportion of land-use categories in this region. The central
and border parts of the city are mainly occupied by com-
munity facilities and residential buildings. However, com-
mercial buildings, such as shopping malls, have higher
growth in the city center than in other categories. Industrial
areas are mainly located in the central west of the city.

The proximity of this region to the three main cities of
Malaysia (Kuala Lumpur, Putrajaya, and Seremben) has
increased the urbanization rate, especially of rural develop-
ments. This proximity also means that Kajang City is well
connected to major highways and expressways. As of 2004,
a few townships have been developed in the periphery of
Kajang, such as Taman Prima Saujana, Sungai Chua, and
Taman Kajang Perdana. Lately, several high-end develop-
ments have mushroomed in Kajang, such as Twin Palms, Sri
Banyan, Country Heights, Jade Hills, and Prima Paramount.
The center of Kajang is the bustling Old Town, where all the
roads meet. Most of the colonial era buildings were con-
structed around the 1920s–1930s. The architecture of these
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shop houses combines traditional Malay, Chinese, and
European designs. The ground floor is used mostly for
commercial activities and the upper floor is for the family
living quarters.

Although many available abandoned plots and brown-
field (BF) sites are located within the municipality, improper
planning and development force most of the current growth
and developments to occur at the outskirts and go through
rural environments. This phenomenon consequently
destroys valuable forest and agricultural fields. An increas-
ing proportion of BFs and unorganized agricultural lands in
the central parts is another consequence of these
developments.

The Kajang local authority has several development
strategies related to various aspects of the city, as presented
in Table 10.1. Planning the fast developing region of Kajang
City provides a good opportunity for urban planners and
managers to incorporate the ideas of urban sustainability.
Moreover, this study can evaluate urban compactness as an
input for further compact development analysis and model-
ing to enhance the sustainability of the region. The city’s
location near the border of the urban developed lands (east
part of Selangor Province) also consists of numerous
built-up areas and a large proportion of forest and agricul-
tural fields. Accordingly, the effects of growth and changes
of various land-use categories can be adequately observed,
particularly on the natural environments. Finally, this study
seeks to provide the local planning authority with informa-
tion regarding the degradation of the natural environment
and the possible solutions toward compact urban
development.

Apart from these general development strategies, the
local planning authority of Kajang (Jabatan Perancangan
Bandar Dan Desa Negeri Selangor, JPBD) has specifically
proposed other strategies to increase city compactness.
These strategies consist of several aspects, such as mixed
land-use development, building design, housing design,
sense of place, public transportation, neighborhood, and the
promotion of walking, cycling, and green environment
(Table 10.2).

These strategies required several analyses and processing
tools, such as site suitability analysis, readiness analysis,
evaluation of land development potential, accessibility
analysis, and network analysis, all of which can be carried
out via GIS mapping and processing tools. Regardless of
those related to planning and design (e.g., in housing and
building design, creating and promoting walking and cycling
environment), other strategies related to general urban sus-
tainability (e.g., preservation of natural and green environ-
ment, less car dependency resulting in less carbon emission,
promotion of public transportation) are involved in the
processing of this section.

10.3 Data Used

The data utilized in this study were collected from different
sources (Table 10.3). Conventional urban data collection is
generally expensive and time consuming. In recent decades,
the coupling of GIS and remote sensing has been widely
applied in urban application, especially in data collection
and processing. The capability to deal with several

Fig. 10.1 The location of the study area (Kajang City)
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Table 10.1 General development strategies of Kajang City to achieve more sustainable environment (Hassan et al. 2013)

Aspects Development strategies

Land use and development – Decrease the working, living and business uses in the central areas
– Increase the linkages within the city
– Properly distribution of the community facilities and services in the city
– Consolidate the development and enhance the green environment of various parts of the city

Landscape and biodiversity – Reserved forest conservation
– Replant forest at abandoned fields
– Increase development of recreation gardens in the town and homes

Security and safety – Ensure a safe and healthy living environment that can cater for the need for all groups of people including the
disabled, the disadvantaged and the aged

– Ensure sufficient and well distributed police stations, police posts, and neighborhood watch centers
– Place the closed-circuit television (CCTV) at the high rate crime activities areas
– Increase the level of awareness of the local residence to help other in case of difficult situations
– Build overhead bridge for pedestrians

Renewable energy – Build the planted forest at vacant land
– Protect the forest at Hulu Langat District and Hulu Semenyih District area
– Every resident are encourage to do landscape at yard of their house
– Turn off the light if no one in room and when not needed
– Use compact fluorescent light bulbs to replace the lamp because these bulbs can produce same amount of
light but using quarter of electricity only

Integrating transport and
development

– Ensure the accessibility to train stations which is the main mode of transportation of the Kuala Lumpur
– Providing traffic guards in front of the school during peak hours for safety of children
– Provision of proper bus stations in the city to increase the level of services

Development accessibility – Redirecting the movement pattern of using the private transport to public transport
– Improving the quality and extending the public transportation services
– Improving the traffic management system by implementing the smart systems
– Reduce and increase the parking locations and parking charges
– Improve accessibility for disabled people

Urban design principles – Preservation of major corridors that relatives to the buildings
– Implementation of the suitable landscape, soft scape street furniture and signage
– Increase the quality of street lighting to create safeness
– Support flexible development for mixed land use including entertainment, offices, commercials, educational,
etc.

– Installation of fountains, sculptures, water gardens and special lighting that can be contribute to the Kajang
life and make experience more meaningful

Table 10.2 City compactness strategies of Kajang City

Aspect Criteria

Mixed land use development – Encourage residents to live within the workplace
– Concentration of activities in line with the centralized public transport networks (TOD)
– Implemented a mixed development area and development of potential/in-fill site
– Building design: variety of activities/functions in one building creating an effective vertical mixed land
use

Advantages of public
transportation

– Create a wide range of public transport modes
– User-friendly public transport system (appropriate age group)

Housing design – Various types of residential design according to location and needs
– Residential types are developed to suit the compact city
– Residence district, integrated with transport convenience lay

Sense of place – Safe and active open space
– Characterized commercial development to local community activities

Cycling and walking
neighborhood

– Building design incorporates pedestrian-friendly features
– Accessibility of public transport nodes for pedestrian/cycling
– Safe network of pedestrian/cycling, and uninterrupted between the neighborhood and the city center

Environment preservation – The green area is maintained
– Create green corridor and blue part of the redevelopment potential
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geospatial analyses, such as hydrological, interpolation,
neighborhood, density, zonal, surface, and so on, is one of
the main advantages of GIS, especially when faced with
urban spatial issues.

All the data collected from the local planning authority of
Kajang City (JPBD) were in shapefile layer format. There-
fore, preparing and managing these data layers were con-
ducted using ArcCatalog 10.0 software.

(1) Land use map: The detailed distribution map of vari-
ous land uses and land covers is the most essential
input for urban application projects. Land cover gen-
erally refers to the physical cover of the earth surface,
such as soil, vegetation, water, and man-made. Land
use refers to the activities performed on or the utiliza-
tion purpose of a specific land, such as recreation,
residence, agriculture, and so forth. Land-use and land
cover maps can be used to extract the development
trends on the landscape. Therefore, these layers provide
fundamental information for evaluation, analysis,
modeling, and predictions of the natural and man-made
behaviors of the earth surface. Four land-use maps of
Kajang City were in temporal basis for the years 2004,
2008, 2012, and 2015. The master plan of Kajang City
was also collected and utilized to ensure that the per-
formance of the proposed model is compatible with
local policy and decisions. The land-use maps of
Kajang consist of nine categories, namely, residential,
commercial, industrial, community facilities, infras-
tructure, agriculture, green and open spaces, trans-
portation, and water bodies. The master plan layer
consists of one extra class, named enterprise zones,
which shows the area in Kajang City requiring revi-
talization or regeneration to improve the economy and
livability of the neighborhood (Fig. 10.2).

(2) Road network: Road network is an important variable
for all types of urban applications, especially urban
planning and development. All the urban land uses
(residential, commercial, recreation, institutional, etc.)
are connected to one another through various links by
road or street networks. In addition, most of the com-
munity facilities, public transportation nodes (train,
bus, and taxi stations), public attractions, commercial
buildings, and institutional and governmental offices
are located on the main roads. Therefore, living close
to the main roads encourages local residents to use
public transportation, walk, and cycle instead of using
private vehicles. The road network map of Kajang City
included several layers, namely, highways, streets, and
dead-end alleys. Accordingly, network analysis was
performed to extract strategic roads linking the main
and populated city centers (Fig. 10.3).

(3) Public attraction points: Next to working places,
public attraction points or points of interest (POIs),
such as mega malls, markets, and places of worship, are
generally the second most important destinations for
community residences. Therefore, considering these
places in the analysis and modeling of an urban area is
extremely important. Specifically, proximity to these
locations and/or proper distribution of these land uses
within the municipality has several advantages
regarding sustainable environment aspects. Information
about this layer for Kajang City was obtained from
recently developed specialized plans of dislocation of
these places.

(4) Public transportation facility: Public transportation
facility is a shared movement facility of local passen-
gers that is available for the general public. This facility
is one of the essential necessities of urban areas and
normally consists of several modes, such as taxi, bus,
and train (Domencich and McFadden 1975). Proper
planning and designing of the transportation network in
a community have several advantages. Such argument
is supported by the urban sustainability perspective
transit-oriented development (TOD) as one the most
common concepts to achieve more sustainable neigh-
borhoods (Kang 2012). TOD refers to the high mixed
land-use area with available proper public transporta-
tion modes and stations. Hence, the distribution of
various land-use categories of urban areas in the plan-
ning and development stage is extremely important
because living close to public transportation nodes is
one of the main solutions to induce residents to use
these facilities for daily commuting. The public trans-
portation facilities of Kajang City consist of taxis,
buses, and trains (KTM and MRT). KTM (Keretapi

Table 10.3 Utilized data in this study

Raw data Scale/format

1. Land use map 2004
2. Land use map 2008
3. Land use map 2012
4. Land use map 2015
5. Master plan
6. Road network

1:5000

7. POI (points of interest)
8. Public transportation (bus, train, taxi)

Point data

9. Soil map 1:100,000

10. Geological maps 1:63,360

11. River and flood maps Polygon data

12. Population map 2000
13. Population map 2010
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Fig. 10.2 Land use map of
Kajang City; 2004, 2008, 2012,
2015 and Master plan of Kajang
City
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Tanah Melayu) commuter is one of the main trans-
portation train systems in Malaysia, with one station in
Kajang City (south-central), while the proposed MRT
(Mass Rapid Transit) has several stations in central
parts of the city. The public transportation facilities of
Kajang are well developed in the central and south-
eastern parts of the city. In the western part, limited
development can be observed (Fig. 10.4).

(5) Hazardous map (Flood zones): Urban planning and
development is a complex and long-term project.
Therefore, the presence of natural hazards is the most
important factor requiring consideration in the analysis.
In Kajang City, the main risks mostly arise from flood
zones located in the city center (Fig. 10.5). On the basis

of the local council report, these zones should be buf-
fered according to the severity of the hazard.

(6) Population map: Population analysis is one of the
fundamental information required in urban studies.
High and low population (or population density) is the
main properties that characterize the sprawling devel-
opment and/or social sustainability of a neighborhood.
Numerous studies on the relation of population density
and urban sustainability have been conducted, as
explained in the Literature Review section. The popu-
lation data collected for this study include detailed
information (e.g., age, gender, ethnicity, and religion)
regarding the local residents of Kajang City
(JPBD-Department of Statistics). The population

Fig. 10.2 (continued)
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density map was derived from the population map
based on persons per hectare for each census block.

(7) Soil and geological maps: The physical characteristics
of the site to measure the stability of land surface are
extremely important for urban projects. Thus, soil and

geological maps of Kajang City were included in the
analysis (collected from the Department of Drainage
and Irrigation and Department of Geoscience and
Mineral Resources respectively). Various soil types are
presented in the study area. The soil can be classified

Fig. 10.3 Road networks of
Kajang City

Fig. 10.4 Public transportation
facility and main road network of
Kajang City
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into two main categories and three subcategories based
on the homogeneity in terms of chemical composition
and soil materials. According to the geological map,
nearly all of the Kajang area (98%) is covered by acid,
a non-differentiated granitoid, and various rocks, such
as schist, slate, limestone, conglomerates, chert, and
sandstone (Fig. 10.6).

After several digitized layers from the local planning
authority (JPBD) were collected, a GIS database was pre-
pared to retrieve, manage, analyze, and display the available
data properly. Urban growth and changes of the study area
were evaluated for available temporal land-use maps (2004,
2008, 2012, and 2015). Next, land-use change modeling was
proposed to project future urban patterns (for 2026) in two
scenarios (business as usual and compact land-use form).

10.4 Land Use Change Modeling
and Prediction

10.4.1 Frequency Ratio Model

This study utilized the FR model to analyze the spatial effect
of various factors on land-use changes. This model recorded
the association among allocations of land-use change
occurrence and classified the format of factors. This analysis
can produce probability maps of land-use change occurrence
and provide useful information for future trend of changes.

At the initial stage, all available data were used to derive
several related factors affecting land-use change occurrence.
The selection of important factors was conducted through a
comprehensive literature review on land-use change and
urban growth modeling studies (Table 10.4). Apart from
these urban-related factors, evaluated city compactness
indicators, such as urban density, intensity, and land-use
diversity, were also included in the list of factors.

After selecting the driving factors, classifying them based
on standard classification schemes available in the ArcGIS
software is important. Accordingly, FR was used to evaluate
the frequency of land-use change occurrence in each class of
selected factors. Each factor was classified into the appro-
priate range or type. Proximity analysis was applied to
distance-based factors, such as proximity to train and bus
stations, proximity to community facilities, and so on. To
generalize and standardize the analysis, these distances were
divided into three classes, namely, (i) near, (ii) middle, and
(iii) far, which cover their spatial extent and with every cell
in a distance class. However, the classification of distances
can be additionally complicated according to the research
objective. For ordinal format factors, such as urban densities
and land-use diversity (evaluated from previous sections),
three classes were also considered as “high,” “moderate,”
and “low” densities or diversity. In the case of nominal
factors, such as soil and geology type, each type of these
factors was used as one class. The entire layer of selected
factors was converted to a raster-based format to assess the
land-use growth and changes in their classes, thereby

Fig. 10.5 Flood zone map
of the Kajang City
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revealing the direct or indirect relation of land-use distri-
bution patterns with respect to selected factors, especially the
proximity and ordinal-based factors. The frequency of
occurrence was calculated using the ratio of the area of each
land-use type to the total area of each factor, with a value of
1 as the average value. A value higher than 1 denoted pos-
itive correlation, whereas a value less than 1 indicated
negative correlation (Pradhan and Lee 2010; Abdullahi and
Pradhan 2015).

10.4.2 Weights-of-Evidence Model

The WoE model combined urban-related and physical fac-
tors with the derived variables from compactness assess-
ment. WoE was used to evaluate the existence of each
land-use type in relation to some selected variables, and then
create a probability of growth map for that corresponding
land use. The evaluation was based on the weighting process
estimated from the measured association between land-use

Fig. 10.6 a Soil and
b geological properties of Kajang
City
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changes and values on the selected variables maps. The WoE
can also be used to select the most important factors among
all factors having direct effects on land-use change
occurrence.

The FR process is actually the initial step of WoE. Hence,
the same set of urban-related and city compactness factors
C = (Ci, i = 1, 2, 3, …, n) were utilized to produce proba-
bility of growth maps depicting the integrated influence of
proximity and other factors. The selected factors (commonly
known as evidences in the WoE model) comprised bio-
physical and human variables that spatially analyze the
location of the existing land-use changes and predict the
future trend. The WoE model critically assumes that
the selected evidences are spatially independent. An inde-
pendency test was conducted using Cramer’s coefficient
(V) among pairs of evidences (Bohman-Carter 1994). If the
estimated V value of all pairs is lower than the empirical
threshold, then the evidences are spatially independent.
Considering that the present study does not aim to evaluate
the evidences affecting land-use changes and/or extract the
most effective evidences, all the selected factors were
included as evidence in the process to achieve the results

based on all involved factors, regardless of their priority.
However, as mentioned before, one of the advantages of the
FR model is to reveal the behavior of land-use changes with
respect to each class of evidences. Accordingly, estimating
the direct or indirect influence and/or lack of influence
behavior of the evidences becomes possible.

The list of evidences was divided into two categories,
namely, constant evidences and non-constant evidences.
Constant evidences do not change during the selected period
and thereby do not depend on the year of each land-use map
(2004, 2008, 2012, and 2015); examples of such evidences
are proximity to water bodies, soil, and geological proper-
ties, and flood zone. In contrast, non-constant evidences
change during the selected period and thereby depend on
land-use maps; examples of these changing indications are
proximity to residential, commercial, and industrial zones,
among others; land uses, road density, and proximity, resi-
dential density, building density, and land-use diversity
(Table 10.5).

The quantity of pixels of the corresponding land-use type
in each class of evidences was observed and determined
through overlaying the land-use maps representing each

Table 10.4 Available raw data
and derived factors

Raw data Details Derived factors

Land use maps Various land use types – Proximity to various land use types
– Land use diversity
– Built-up density
– Residential density

POI map Location of public attraction
points

– Proximity to various points of
interests

Road network Highways, roads, streets, etc. – Proximity to strategic roads
– Road density

Population map Age, gender, ethnic etc. – Population density map

Public transportation
maps

Train, bus – Proximity to train and bus stations

Soil map Soil properties – Soil categories

Geological map Geological properties – Geological categories

Flood map Location of flood zones – Proximity to flood zones

Table 10.5 Constant and
non-constant evidences

No. Constant evidences No. Non-constant evidences

1 Proximity to public transportation stations 1 Proximity to residential

2 Proximity to water bodies 2 Proximity to commercial

3 Proximity to prison and cemetery 3 Proximity to industrial

4 Proximity to flood zones 4 Proximity to main road network

5 Geological type 5 Proximity to facilities

6 Soil type 6 Proximity to recreation

7 Proximity to infrastructure

8 Proximity to agriculture

9 Urban density

10 Land use diversity
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land-use type, on every produced layer of the selected fac-
tors (evidences). For these determined number of pixels N(L)
containing the occurrence of a specific land-use type (resi-
dential) and the total number of pixels of the study area
(Kajang City), N(C), the prior probability of the residential
occurrence in general is expressed by the following:

P Lð Þ ¼ N Lð Þ
N Cð Þ ð10:1Þ

When the involved evidences, C = (Ci, i = 1, 2, 3, …, n),
are considered, if the number of pixels of residential land use
in a specific evidence is N L\Cð Þ, then the probability of
residential growth can be expressed by the conditional
probabilities (Bohman-Carter 1994);

P LjCð Þ ¼ P L\Cð Þ
P Cð Þ ¼ P Lð ÞP CjLð Þ

P Cð Þ ð10:2Þ

Apart from calculating the occurrence of land use in
evidence class Cij, WoE evaluates the nonoccurrence of land
use in the same class of evidence. Then, the natural loga-
rithm of both values (occurrence and nonoccurrence) was
calculated. These values are the weights to support the
occurrence and nonoccurrence of land-use type with respect
to each class of evidences. The subtraction value of these
weights represents the spatial association of each land-use
pixel and each class of evidences. The variance of both
weights and standard deviation are calculated. Finally, the
standardized value representing the significance of the spa-
tial association and measuring the relative certainty of the
posterior probability was computed.

The estimated probability value for each land-use cate-
gory with respect to evidences should be presented in a
raster-based map format. Hence, the classified factor layers
were reclassified with the new values obtained from the
WoE model. Finally, by integrating and summing up all
reclassified evidences for one specific land-use type (resi-
dential), the probability of growth of that corresponding land
use can be visually presented. However, the obtained map is
a continuous layer with several classes, thereby requiring a
proper and clear illustration of the output to apply an
appropriate classification scheme.

10.4.3 Markov Chain Model

The main difference between the MC model and the utilized
statistical models (FR and WoE) is that the input of the MC
method only includes two successive land-use maps (e.g.,
2004 and 2008) with several separated land-use classes.
Thus, no other factors are involved in the processing. Inte-
grating factor-based and cellular-based techniques to pro-
duce probability of growth maps was one of the advantages

of this study to propose a strong land-use change modeling
approach. MC produces two transition matrices, namely,
transitional probability matrix and transitional area matrix.
The transitional probability matrix estimates the probability
of changes of each land-use type to other type. The transi-
tional area matrix estimates the number of pixels expected to
change from one land-use type to another over the next time
period. In both matrices, the rows represent the earlier
land-use maps, and the columns represent the later land-use
maps.

The model analyzed land-use changes from earlier (2004)
and later (2008) land-use maps, summarized the results in
two matrices, and predicted and discovered the future
changes and growth. Apart from transitional matrices, the
Markov model produces a set of conditional probability
images, which illustrate the probability that each land-use
category would be found at each place in the future trend.
However, the model cannot spatially simulate and model the
changes, and its results lack spatial dependency.

10.4.4 Cellular Automata Model

One of the main advantages of the CA model is its spatial
dependency. Hence, CA was integrated with the MC model
to overcome the lack of spatial dependency. Land-use
growth and change modeling by CA analysis provides
explicit spatial outputs based on predefined transitional
rules. The cellular basis of CA models provides the ability to
represent, analyze, and project geographic systems. CA is
suitable for this study because of its capability to represent
spatial and stochastic processes, model and control complex
spatially distributed urban activities, and provide a clear
understanding of the behavior of land-use patterns. Unlike
the statistical factor-based analyses (FR and WoE), which
control the model by considering the driving forces (evi-
dences), the CA model is affected by surrounding neigh-
borhood properties, size, and state. These parameters were
considered during the analysis to obtain optimum projection
outputs. Given the temporal basis of the available data and
the objective of the study, CA was also used to represent and
simulate the spatial temporal complexities of land-use
changes because of its ability. Time and space are discrete
units in CA, and space is considered a regular grid in two
dimensions. Local interactions within the 2-D space of the
CA system illustrate the dynamics in the landscape pattern.
During land-use change modeling, CA can involve popula-
tion, economic, and transportation data, which are extremely
important for this study.

However, the main concern in CA modeling lies in
defining the transitional rule that controls the behavior of the
system, which in the current study is to control the land-use
change behavior. The transitional rules defining the state of
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each cell for the next time period depend on the current state
of the cell, surrounding environment, and some external
suitability maps that require integration into the system. The
general expression for CA can be shown as follows (Li and
Yeh 2000);

Stþ 1 ¼ f ðSt;NÞ; ð10:3Þ
where S is the state of a cell, t is the earlier time instant, t + 1
is the later time instant (future time), N is the cellular field,
and f is the transition rule of cellular states in local space.
However, apart from neighborhood interaction, the evolution
of urban areas depends on a series of complex factors based
on local, regional, and global scales. The neighborhood
interaction cannot solely deal with urban structure and
environmental problems. Some effective factors and con-
straints require utilization and integration into CA modeling
to control the simulation and improve modeling accuracy. In
fact, a CA model that does not consider external factors and
constraints is known as a state-based CA. In this standard
and/or conventional CA, the state is used as the main attri-
bute to describe the development pattern. In this model, the
neighborhood-developed cells increase the probability of
development of the central cell. At the initial stage of
land-use change modeling, this state-based model was run
on two land-use maps to observe the land-use growth
modeling based only on cellular aspects.

In the next stages, to conduct additional sophisticated
modeling, the concept of development probability and
development suitability were included and integrated into
the CA. This model considers a relation between the states
with higher suitability or higher probability of growth (Li
and Yeh 2000);

Stþ 1 x; yf g ¼ f Pt
s x; yf g� � ð10:4Þ

Pt
s x; yf g ¼ f DSts x; yf g� � ð10:5Þ

where S x; yf g is the current state of the cell at the location
x; yf g, Ps x; yf g is the probability of transition to the state

S at the same location, DSs x; yf g is the suitability of con-
version to state S, and f is the transition function.

As mentioned earlier, in the cellular-based phase of the
study, CA was integrated into the MC to combine their
advantages and overcome their shortcomings. This integra-
tion approach combines the quantitative aspects of land-use
change occurrence of the MC model with the spatial
dynamic simulation aspect of the CA model. Accordingly,
the quantitative information achieved from the Markov
model can be translated by CA spatial dynamic capabilities
required to analyze and predict urban growth and land-use
changes. Merging these two models is a common integration
approach in urban applications to simulate dynamic land-use
change behavior and project future trends. Applying this

integration within the GIS environment provides a strong
and effective modeling approach to simulate spatial and
temporal land-use changes. However, the importance of
statistical concept and factor analysis cannot be ignored.
Thus, in this study, these effective concepts using the WoE
model were included in the analytical process.

In CA modeling, a 5 � 5 contiguity filter
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, were used to develop a spatially

explicit contiguity weighting factor to change the cell’s
current land-use type on the basis of its neighborhood
interactions, including the neighborhood effects in the
modeling. This process will ensure that the lack of spatial
distribution of the MC model is addressed, and that land-use
change occurs based on neighborhood effects and is not
entirely random.

10.4.5 Development of a Compact City
Land-Use Modeling Approach

After the Kajang City compactness (DoC of each pixel) and
its trend of compactness (ToC, as explained in the Urban
Compactness Assessment chapter) were evaluated, the
obtained results were integrated into the proposed hybrid
land-use change modeling to calibrate the approach and
produce a more compact land-use pattern.

City intensification is one of the main approaches to
increase city compactness. Similar to mixed land-use
development, city intensification has several advantages
with respect to environmental, economic, and social sus-
tainability. This process can be carried out in various scales,
from urban infill development to the creation of entirely new
developments. The current study focuses on the first process
and attempts to improve and intensify the existing pattern
through brownfield redevelopment (BR). BF sites are
abandoned or underused properties that require redevelop-
ment or reuse because of the real or suspected presence of
substances, pollutants, or contaminants (Collins 2002; Oliver
et al. 2005). Proper BR planning can have implications for
all the three approaches of urban intensification. For exam-
ple, a new residential building for a specific BF site will
increase building and residential density and may increase
population density by receiving a significant amount of
population. Any type of community facility proposed in
abandoned lands can improve the urban intensity of the local
neighborhood. Finally, any land-use categories other than
the existing surrounding categories can increase land-use
diversity of the local neighborhood and eventually intensify
the corresponding city.
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A BR within urban areas can be serviced by existing
infrastructures and utilities, whereas rural development
requires essential provision of these systems. However, a BR
requires a comprehensive effort to resolve and negotiate
among several stakeholders with different interests (Gross
2010). Such complex issues have resulted in the continuing
abandonment of most BFs. Several processes are available to
conduct BR, such as risk assessment, policy analysis, opti-
mization of remediation, remediation cost assessment, urban
planning and site prioritization, and so forth (Schädler et al.
2011). Considering that the current study mainly deals with
land-use analysis and modeling, the BR process was also
conducted through an approach based on the land-use
change modeling technique. The flowchart of the proposed
compact land-use change modeling is shown in Fig. 10.7.

Land-use maps of 2004 and 2008 were utilized to create
the probability of growth map for the main land-use types
using the WoE model. These probability maps were vali-
dated by an actual land-use map of year 2012. The same

process was implemented to create probability of growth
maps using land-use maps of 2008 and 2012. Similarly,
these maps were validated using the actual land-use map of
2015 (due to the lack of land-use map of 2016). After val-
idating all probability maps, these results were integrated
into the CA model to facilitate the application of a contiguity
filter and consequently obtain the growth projection for 2012
and 2016. The process of validation was performed one
more time for projected land-use maps of 2012 and 2016 to
compare with actual land-use maps of 2012 and 2015
respectively.

After confirming the performance accuracy and reliability
of the model, this process was conducted on land-use maps
of 2004 and 2015 to project the land-use map for 2026. This
modeling process can be called a “business-as-usual” sce-
nario because it is based on the historical trend and current
development pattern. However, achieving compact urban
development requires proposing and conducting an alterna-
tive scenario, namely, a “compact land-use” modeling

Fig. 10.7 Detail flowchart of the
proposed land use change
modeling process. Blue input
data, orange modeling process,
green output maps, red final
products
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scenario. In this scenario, the results of compact city
assessments (DoC and ToC) were integrated into the
land-use modeling processes (Abdullahi et al. 2015a, b). The
aim was to increase the DoC of those areas with low com-
pact land-use pattern. One of the most feasible and
cost-effective tasks in this process is to redevelop the
existing BF sites (Abdullahi and Pradhan 2015). Hence, the
BR process was also coupled with the land-use modeling
process to achieve a more compact and sustainable land-use
map.

The BR process was started by extracting the existing BF
sites of land-use map of 2015. All open spaces, such as the
buffer zone around rivers and highways; recreational fields,
such as playgrounds; and natural landscapes, were excluded
from the analysis. Evaluating the BF sites required the uti-
lization of site indicators and criteria presented by Thomas
(2002), such as existing and previous land use/cover,
physical properties (soil and geological characteristics),
neighborhood characteristics (neighborhood land-use types,
availability of community facilities, recreational facilities,
commercial and service buildings, etc.), proximity to trans-
portations, and air and water quality. The list of siting
guidelines and metrics applied for BF assessments has a
greater number of items. However, some parameters (e.g.,
air and water quality) are useless to consider in case studies,
such as the current study, as the BF sites in this study are
located inside the urban areas; hence, no differences exist in
air and water quality. Furthermore, other parameters, such as
proximity to telecommunications, level of contaminations,
and so on, are beyond the scope of this study. Hence, those
parameters related to the objectives of this study were
included in the analysis. For this process, gaining a wider
perspective regarding the existing BF sites required the
production of a proximity map to BF sites using the Eucli-
dean distance tool. The neighborhood area of each BF site
was investigated and evaluated with respect to neighborhood
land-use categories, availability of community and recre-
ational facilities, and commercial and service buildings,
through overlaying this proximity map and land-use map of
2015. Apart from this evaluation, the growth probability
maps created from the WoE modeling and master plan of the
study area were utilized to propose the most beneficial
land-use type for each BF site. Hence, the proposed land-use
type was based on the local neighborhood demand to
increase the compactness and, eventually, the sustainability
of local environments.

Cellular automata land-use modeling approach was cali-
brated using these integrated processes to produce a more
compact urban form. The modified CA model can produce a
much better alternative rather than the current development
pattern because of less land consumption, provision of
required facilities, and concentration of development within
the city borders.

10.5 Validation of Land-Use Change
Modeling Process

In urban applications, especially in the field of land-use
growth and change modeling, knowing the prediction
accuracy and reliability of the model is essential. In this
regard, quantitatively evaluating the degree of similarity
between model outputs and reality provides a good perfor-
mance assessment. In recent literature (Pontius and Schnei-
der 2001; Van Eck and Koomen 2008; Chen et al. 2014),
relative operating characteristic (ROC), error map and con-
tingency matrix, and the Kappa statistic index are the com-
mon terminologies used to validate urban growth and change
modeling processes.

The present study validates the performance of proposed
land-use change modeling process in two stages. At the first
stage, the area under the ROC curve (AUC) was utilized to
evaluate the probability of growth maps created from the
WoE model with actual land-use maps. In the second stage,
a contingency table was calculated to evaluate the projected
maps created from integrating CA and WoE.

The ROC validation technique measures the relationship
between the projected and actual spatial changes by com-
puting the percentage of false positive and true positive for a
range of thresholds and relating the values to one another in
a chart. The AUC is calculated as the area under the ROC
curve and ranges from 0.5 to 1 (Pradhan et al. 2010). A value
near 0.5 indicates a random relationship between input
maps, while a value near 1 indicates a high relationship
between the input maps, which is an ideal spatial agreement
between modeled and actual land-use maps. In this process,
the ordered pixel values according to the modeling process
(which in this case is a probability value) were classified into
100 classes and set on an x-axis. The calculated index values
were set in descending order on a y-axis. Hence, for this
study, AUC validation was conducted by comparing the
probability of growth maps produced from the WoE model
for each land-use category. Probability maps created from
land-use maps of 2004 and 2008 for year 2012 were com-
pared with the actual land-use map of 2012, and probability
maps created from land-use maps of 2008 and 2012 for year
2016 were compared with the actual land-use map of 2015.
This process evaluates how well the evidences can be used
to perform probability analysis. Accordingly, the model
performance accuracy was evaluated, and the capability of
the model was confirmed. To run AUC, the calculated
probability of growth values of all pixels in the study area
was sorted in a descending order. These ordered values were
divided into 100 classes with accumulated 1% intervals.

In the second stage, the projected land-use maps pro-
duced from the proposed land-use change modeling inte-
gration approach was evaluated with respect to reality
(reference map) by calculating the contingency table and
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illustration. The contingency table is based on a two-by-two
comparison between projected and actual land-use maps for
each land-use category. This table summarizes the results for
cases where each pixel is a homogenous land-use category
(Table 10.6).

From every contingency table, a single data point can be
created, where X and Y are the rate of false positive and true
positive respectively:

• True positive % = TP/(TP + FN)
• False positive % = FP/(FP + TN)

However, this presentation of the contingency table is for
coarse spatial scale analysis using the binary modeling
process, where growth/non-growth or change/non-change of
pixels is the main consideration. In the current study, given
the high spatial resolution of data, the modeling process
went through a more detailed analysis by considering several
land-use category changes. Hence, the contingency table
was expanded to evaluate all changes among every land-use
type. Furthermore, final accuracy of the model was evaluated
by the proportion of correct, which can be calculated by TP/
(TP + FP + FN + TN) or the number of correctly modeled
pixels divided by the total number of pixels (Pontius et al.
2001).

Apart from the contingency table, Kappa statistic index
was calculated to assess the validity and reliability of the
projected maps in terms of quantity and location of the
changes. Kappa index of agreement is a measure of pro-
portional accuracy adjusted for chance agreement (Arsanjani
et al. 2011).

10.6 Results and Discussion of Compact
Land-Use Modeling for Kajang City

10.6.1 Growth Probability Maps Using
Weights-of-Evidence

This section presents and discusses the results of land-use
change modeling and simulation of Kajang City on the basis
of the previous land-use patterns. In brief, the process was
started by selecting and evaluating several effective factors
related to urban growth analysis. The FR method as an initial
stage of the WoE model was used to conduct this process.
FR evaluated the spatial effects of these selected factors on
land-use change occurrence. Next, WoE evaluated the
nonoccurrence of land-use changes with respect to the
selected factors. Hence, using both analyses, WoE produces
the probability of growth maps for selected land-use cate-
gories. The analysis was focused on the growth of three
main land-use categories for each time period. Tables 10.7
and 10.8 respectively present an example of FR and WoE
processes to show the details regarding the calculations of
probability values.

The examples evaluate the growth of commercial
land-use type with respect to proximity to road network for
the time period of 2004–2008. The value of C was calculated
by subtracting W+ (natural logarithm of occurrence) and W−
(natural logarithm of nonoccurrence). This value represents
the spatial association of each land-use pixel and each class
of factors. A positive value represents a higher number of
specific land-use pixels occurring in this class. In contrast, a
negative value represents a lesser number of land-use pixels

Table 10.6 Two-by-two contingency table showing the proportion of pixels in actual and modelled maps

Reality Total

Change Non-change

Model Change True positive (TP) False positive (FP) TP + FP

Non-change False negative (FN) True negative (TN) FN + TN

Total TP + FN FP + TN TP + FP + FN + TN

True positive (TP) is the amount of pixels modeled to change and be changed in reality
True negative (TN) is the amount of pixels modeled to stay unchanged (remain as they are) and not be changed in reality
False positive (FP) is the amount of pixels modeled to change but not be changed in reality; and
False negative (FN) is the amount of pixels modeled to stay unchanged but be changed in reality

Table 10.7 Frequency ratio of occurrence and nonoccurrence of commercial use with respect to road networks

Factor Class Deposit occurrences (+) Non-deposit occurrences (−)

No. cell % of
cell

No. deposit % of
deposit

FR No. cell % of
cell

No. deposit % of
deposit

FR

Proximity to road
network

Near 18,480,314 32.69 767,133 66.78 2.04 38,057,361 67.31 381,530 33.22 0.49

Middle 19,211,873 33.98 315,325 27.45 0.81 37,325,802 66.02 833,338 72.55 1.10

Far 18,845,488 33.33 66,205 5.76 0.17 37,692,187 66.67 1,082,458 94.24 1.41

Sum 56,537,675 100 1,148,663 100 113,075,350

Bold letters indicate the important factors
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occurring in this class. S2(W+) and S2(W−) are variances of
W+ and W− respectively, and S(C) is the standard deviation
of the contrast. Finally, C/S(C) is the standardized value of
C, which represents the significance of the spatial associa-
tion and measures the relative certainty of the posterior
probability. The probability value of land-use growth for
every cell of the study area is calculated by considering the

prior probability of occurrence and nonoccurrence of
land-use type in each class of selected factors.

Tables 10.9, 10.10 and 10.11 present the results of FR
and WoE for residential, commercial, and industrial
land-uses, respectively, for each time period. The majority of
the factors can be regarded as distance-based factors, and the
FR and WoE values are calculated for each class of these

Table 10.8 WoE calculation for commercial land use growth with respect to road networks

Factor Class FR
(occurrence)

FR
(non-occurrence)

W+ W− C S2(W+) S2(W−) S(C) C/S(C)

Proximity to road
network

Near 2.04 0.49 0.71 −0.71 1.42 0.00000136 0.000003 0.002 709.66

Middle 0.81 1.10 −0.21 0.09 −0.31 0.00000322 0.000001 0.002 −145.82

Far 0.17 1.41 −1.75 0.35 −2.10 0.00001516 0.000001 0.004 −523.48

Bold letters indicate the important factors

Table 10.9 Frequency ratio and
weights-of-evidence calculation
results for residential growth

Residential land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Proximity to housing Near 2.57 2700.92 2.40 2433.19 3.55 2900.11

Middle 0.37 −1478.47 0.44 −1411.81 0.04 −1835.02

Far 0.12 −1710.81 0.29 −1648.14 0.06 −1760.94

Proximity to
commercial

Near 1.33 683.28 1.18 403.05 1.08 174.68

Middle 1.10 217.41 1.09 215.69 1.14 321.30

Far 0.59 −944.23 0.73 −647.96 0.78 −517.00

Proximity to
industrial

Near 0.73 −599.47 0.66 −795.27 0.52 −1148.43

Middle 1.38 815.17 1.30 673.47 1.20 451.20

Far 0.88 −277.58 1.02 53.47 1.27 596.85

Proximity to road
network

Near 1.08 172.23 0.94 −128.66 0.83 −393.30

Middle 1.27 600.20 1.20 464.27 1.14 311.82

Far 0.64 −817.31 0.85 −360.80 1.03 62.89

Proximity to facility Near 1.35 736.57 1.21 467.06 1.21 457.57

Middle 1.11 253.61 1.11 249.71 1.22 498.85

Far 0.55 −1044.79 0.69 −752.38 0.58 −1028.37

Proximity to
recreation

Near 1.04 81.93 1.06 142.60 1.30 665.63

Middle 0.88 −271.43 1.01 32.38 1.00 8.91

Far 1.08 185.17 0.93 −176.19 0.70 −729.82

Proximity to
infrastructure

Near 1.18 398.13 1.07 150.46 1.14 322.03

Middle 1.12 260.72 1.06 129.30 1.13 291.22

Far 0.70 −682.92 0.88 −283.07 0.73 −642.91

Proximity to
agriculture

Near 0.56 −996.04 0.68 −760.60 0.74 −616.72

Middle 1.01 16.19 0.98 −51.19 1.11 243.32

Far 1.43 900.52 1.34 743.45 1.15 338.68

Land use diversity Low
(single)

0.49 −1303.88 0.61 −1005.50 0.43 −1524.74

Middle 1.10 235.10 1.07 184.98 1.14 362.64

High
(mixed)

1.73 1123.48 1.53 855.28 1.75 1157.54

(continued)
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factors. The proximity to existing land-use types is one of
the effective factors for growth of each land-use type. The
maximum probability value of WoE for residential land-use
is in the near class of proximity to residential area. The same
conditions are valid for commercial and industrial growths,
which mainly depend on the proximity to commercial and
industrial areas respectively. In contrast, as distance increa-
ses from existing land-use type (e.g., third class of residential
land-use), the probability of growth for the same land-use
type (residential use) substantially decreases. Different
land-use types affect the growth of other land uses as well.
For example, residential and industrial areas tend to be far
from each other as commonly expected. The near classes of
proximity to industrial areas have negative probability value
for residential growth. Similarly, as the distance from
industrial areas to residential areas decreases, the probability

of growth for industrial use significantly decreases. These
effects are constant in all time periods. However, commercial
land use has no direct influence on other categories. To
illustrate, proximity to commercial area increases the prob-
ability of growth for residential land use. However, the
middle class of residential proximity has the highest value of
probability of growth for commercial land use. Similarly, the
middle class of industrial proximity possesses higher prob-
ability value for commercial growth. However, the farthest
distance from the commercial area has the highest value or
probability for industrial growth. Therefore, commercial
land-use type is mainly affected by other parameters, such as
road and public transportation proximity.

Few important factors directly affect the growth of resi-
dential, commercial, and industrial land uses. The middle
class of road proximity has a high probability of residential

Table 10.9 (continued)

Residential land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Urban density Low
(density)

0.28 −1481.52 0.51 −1087.37 0.55 −1005.10

Middle 1.35 793.96 1.24 575.07 1.21 503.06

High
(density)

1.26 564.85 1.17 379.78 1.17 377.22

Proximity to public
transportation

Near 1.20 437.10 1.15 339.15 1.13 289.05

Middle 1.07 155.29 1.09 207.42 1.10 228.93

Far 0.73 −613.55 0.76 −567.92 0.78 −538.17

Proximity to water
body

Near 1.20 429.00 1.13 282.81 1.11 239.16

Middle 1.15 318.69 1.16 367.72 1.16 360.93

Far 0.66 −778.17 0.72 −681.05 0.74 −628.45

Proximity to
restricted area

Near 1.10 215.03 1.20 440.34 1.19 425.68

Middle 1.14 301.41 1.05 107.21 1.05 105.24

Far 0.77 −533.78 0.76 −573.27 0.77 −556.78

Proximity to flood
zone

Near 1.19 404.19 1.08 188.50 1.06 146.68

Middle 1.06 134.72 1.14 318.09 1.14 311.17

Far 0.76 −556.99 0.78 −526.34 0.80 −475.70

Geological types Acid 0.87 −372.22 0.91 −270.96 0.91 −243.57

Quartz 0.87 −38.18 1.10 29.08 1.06 17.59

Schist 0.72 −61.72 0.70 −70.82 0.67 −78.08

Filit 1.13 474.23 1.09 318.49 1.09 280.51

Soil types T-A-LA 1.30 260.93 1.45 391.71 1.43 372.57

M-S 0.99 −23.19 0.97 −52.34 0.99 −17.55

U-L 1.29 743.07 1.18 467.27 1.14 365.07

M-L 1.22 139.46 0.94 −39.58 1.06 42.05

R-J 0.40 −1046.75 0.63 −677.06 0.68 −600.57

S-L 0.00 −29.52 0.00 #NUM! 0.00 #NUM!

Bold letters indicate the important factors
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Table 10.10 Frequency ratio
and weights-of-evidence
calculation results for commercial
growth

Commercial land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Proximity to housing Near 0.28 –479.83 0.58 –362.83 0.00 #NUM!

Middle 2.25 840.01 1.56 541.58 1.56 578.14

Far 0.36 –442.58 0.77 –207.93 1.15 143.82

Proximity to
commercial

Near 3.03 761.83 2.05 885.46 3.06 669.36

Middle 0.08 –510.70 0.22 –648.64 0.02 –471.47

Far 0.00 #NUM! 0.77 –217.00 0.00 –313.43

Proximity to
industrial

Near 0.84 –118.86 0.80 –180.42 0.59 –369.49

Middle 1.34 253.96 1.44 408.66 1.32 296.09

Far 0.82 –139.06 0.75 –237.41 1.08 73.70

Proximity to road
network

Near 2.04 709.66 1.49 440.88 1.40 366.40

Middle 0.81 –145.82 1.13 125.84 1.14 134.85

Far 0.17 –523.48 0.39 –544.39 0.46 –489.05

Proximity to facility Near 1.76 530.18 1.36 327.13 1.29 264.09

Middle 1.00 1.23 0.84 –149.48 0.96 –33.78

Far 0.27 –497.25 0.81 –177.52 0.76 –229.12

Proximity to
recreation

Near 0.97 –20.66 0.82 –166.38 1.15 137.84

Middle 1.35 260.66 1.26 238.67 1.17 156.50

Far 0.68 −240.90 0.92 −74.14 0.68 −293.08

Proximity to
infrastructure

Near 1.25 182.27 1.05 48.63 1.00 3.84

Middle 1.10 73.70 1.03 24.17 1.12 111.06

Far 0.66 –253.04 0.92 –72.13 0.88 –115.11

Proximity to
agriculture

Near 0.38 –435.41 0.78 –199.68 0.75 –232.67

Middle 0.69 –234.96 0.74 –249.07 1.25 230.66

Far 1.93 651.84 1.48 441.08 1.00 –0.12

Land use diversity Low
(single)

0.10 –575.85 0.77 –239.43 0.51 –504.89

Middle 1.15 126.72 0.87 –143.13 1.52 537.28

High
(mixed)

2.33 699.04 1.64 437.70 0.94 –39.86

Urban density Low
(density)

0.11 –479.60 0.41 –486.00 0.40 –490.27

Middle 1.08 63.41 1.26 255.37 1.25 246.30

High
(density)

1.70 505.29 1.25 228.45 1.26 242.31

Proximity to public
transportation

Near 1.61 439.26 1.38 349.98 1.37 341.44

Middle 1.07 55.47 0.85 –141.00 0.87 –125.28

Far 0.33 –469.36 0.77 –211.60 0.77 –218.41

Proximity to water
body

Near 1.63 452.26 1.30 279.07 1.29 270.71

Middle 0.96 –27.24 1.11 99.78 1.12 114.47

Far 0.42 –416.67 0.60 –373.66 0.59 –379.58

Proximity to
restricted area

Near 1.14 103.24 0.99 –8.00 1.01 7.54

Middle 1.42 311.55 1.09 82.48 1.08 74.25

Far 0.44 –402.86 0.92 –74.89 0.91 –82.06

(continued)
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Table 10.10 (continued)

Commercial land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Proximity to flood
zone

Near 1.49 354.29 1.22 204.96 1.21 196.34

Middle 0.76 –177.73 0.83 –154.57 0.83 –160.98

Far 0.76 –180.25 0.95 –50.42 0.96 –35.28

Geological types Acid 1.04 42.40 0.63 –470.23 0.64 –458.30

Quartz 2.00 92.46 1.60 69.70 1.59 68.50

Schist 0.00 #NUM! 0.22 –62.88 0.22 –63.22

Filit 0.95 –50.07 1.37 466.75 1.35 455.05

Soil types T-A-LA 1.20 59.85 0.77 –86.62 0.76 –89.29

M-S 0.39 –327.86 1.14 98.69 1.13 92.60

U-L 1.59 514.23 1.37 410.15 1.36 399.70

M-L 0.72 –59.31 0.29 –179.42 0.29 –180.61

R-J 0.54 –252.96 0.44 –379.02 0.47 –359.78

S-L 0.00 #NUM! 0.00 #NUM! 0.00 #NUM!

Bold letters indicate the important factors

Table 10.11 Frequency ratio
and weights-of-evidence
calculation results for industrial
growth

Industrial land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Proximity to
Housing

Near 0.04 –881.21 0.10 –1085.65 0.00 #NUM!

Middle 1.07 106.23 0.79 –359.45 0.41 –1068.34

Far 1.89 1215.14 2.09 1552.90 2.52 2035.41

Proximity to
commercial

Near 0.54 –655.84 0.53 –726.81 0.50 –802.85

Middle 1.10 151.63 1.07 112.92 1.13 212.97

Far 1.33 493.13 1.38 602.47 1.36 578.11

Proximity to
industrial

Near 3.07 819.86 2.60 2012.03 3.04 832.73

Middle 0.01 –642.12 0.07 –1097.10 0.01 –658.09

Far 0.00 #NUM! 0.39 –941.69 0.00 #NUM!

Proximity to road
network

Near 0.85 –218.87 0.79 –331.38 0.87 –219.94

Middle 1.17 256.81 1.03 56.63 1.17 279.54

Far 0.97 –42.42 1.17 269.17 0.96 –64.55

Proximity to facility Near 0.25 –1004.87 0.31 –1022.94 0.20 –1154.55

Middle 0.98 –35.52 0.83 –272.17 0.78 –367.16

Far 1.74 1061.69 1.83 1258.34 1.99 1507.02

Proximity to
recreation

Near 0.74 –386.34 0.62 –599.04 0.21 –1166.70

Middle 1.31 455.74 0.91 –139.90 0.68 –537.18

Far 0.95 –78.32 1.46 715.94 2.11 1649.83

Proximity to
infrastructure

Near 1.07 101.10 0.92 –124.59 0.79 –341.68

Middle 1.17 247.49 1.04 70.14 1.02 28.94

Far 0.77 –349.23 1.03 52.55 1.19 306.33

Proximity to
agriculture

Near 0.78 –333.11 1.38 587.29 1.06 102.37

Middle 1.70 1016.00 1.28 444.17 1.03 46.49

Far 0.51 –726.52 0.34 –1002.09 0.91 –149.24

(continued)
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and industrial growths. However, in the case of industrial
growth from 2008 to 2012, the farthest class was the more
suitable area for industrial growth. Hence, the areas nearest
to the main road networks appear to be the best location for
commercial use.

In the case of community facilities, proximity to these
locations is clearly expected to have a higher probability of
growth for residential use and negative probability of growth
for industrial use. In this case, proximity to facilities has the
same effects for residential and commercial land uses.
Nearly the same effect can be seen for the proximity to

recreational facilities with respect to residential and indus-
trial growths. However, the middle class of recreational
proximity has a higher probability of commercial growth.
Considering that infrastructures are well distributed in
Kajang City and are extremely important for all types of
developments, proximity to these utilities increases the
probability of growth for all three land-use types. However,
from 2008 to 2015, areas far from these utilities had higher
probability of growth for industrial land use. This finding is
due to the growth of industrial areas through agricultural
fields, where only few utilities are generally provided. This

Table 10.11 (continued)

Industrial land use growth 2004–2008 2008–2012 2012–2015

Factor Class FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

Land use diversity Low
(single)

1.40 672.66 1.53 900.49 1.74 1286.90

Middle 0.79 –352.60 0.76 –448.23 0.66 –637.74

High
(mixed)

0.65 –396.33 0.54 –555.88 0.30 –822.20

Urban density Low
(density)

1.70 912.49 1.79 1096.34 1.91 1282.99

Middle 0.75 –403.05 0.72 –483.26 0.66 –602.52

High
(density)

0.67 –503.79 0.61 –619.26 0.57 –703.70

Proximity to public
transportation

Near 0.81 –279.09 0.66 –535.63 0.62 –622.42

Middle 1.00 7.09 0.74 –411.55 0.72 –459.43

Far 1.18 268.06 1.59 907.80 1.65 1029.98

Proximity to water
body

Near 0.98 –34.91 0.84 –247.89 0.79 –346.58

Middle 1.08 116.08 0.81 –309.39 0.80 –326.81

Far 0.95 –81.50 1.34 543.59 1.40 652.96

Proximity to
restricted area

Near 0.18 –1056.40 0.28 –1057.79 0.26 –1112.10

Middle 0.60 –602.45 0.80 –325.15 0.73 –444.14

Far 2.20 1602.78 1.91 1348.24 1.99 1500.02

Proximity to flood
zone

Near 1.30 439.12 1.02 33.91 0.95 –74.91

Middle 0.62 –565.93 0.49 –804.89 0.59 –671.33

Far 1.08 125.09 1.49 760.50 1.45 727.70

Geological types Acid 0.90 –210.51 1.14 304.75 1.21 466.01

Quartz 0.00 #NUM! 0.00 #NUM! 0.00 #NUM!

Schist 2.09 142.10 1.77 108.95 1.65 95.95

Filit 1.11 223.59 0.87 –284.90 0.80 –444.46

Soil types T-A-LA 0.09 –446.40 0.10 –482.50 0.10 –496.71

M-S 1.93 990.78 1.52 605.19 1.41 492.59

U-L 0.93 –132.13 0.82 –354.26 0.76 –472.27

M-L 1.73 297.09 1.57 252.50 1.47 214.50

R-J 0.46 –593.01 0.74 −309.28 1.01 8.53

S-L 0.00 #NUM! 4.18 760.86 3.90 724.40

Bold letters indicate the important factors
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growth can also be observed in 2008–2012 and in 2012–
2015 in the near class of agricultural proximity factor, which
has a higher value of probability of industrial growth. In
contrast, as distance increases from agricultural fields, the
probability of residential and commercial growths signifi-
cantly increases. Interestingly, city compactness indicators
have straightforward effects on the growth of these three
land-use categories. Higher urban density and land-use
diversity increase the growth of residential and commercial
land use. In contrast, given that industrial areas are mainly
located in single land-use and lower urban density envi-
ronments, they have inverse results compared with the other
two land-use types.

Similar to community facilities, public transportation also
has the same effect on the growth of residential, commercial,
and industrial land uses; proximity to these facilities
increases the probability of growth for residential and
commercial land uses and reduces the probability of growth
for industrial land use.

Unlike other factors, water bodies, restricted areas (e.g.,
prisons, cemeteries, etc.), flood zones, soil, and geological
types failed to provide understandable and acceptable effects
with respect to the growth of selected land-use types. Owing
to the improper amount and distribution of these factors and
their classes, the results seem to be random and stochastic.
However, implementing FR and WoE analyses on all factors
provide a clearer view regarding the spatial influence of
these factors with respect to the growth and changes of
various land-use types.

All the calculated WoE values were standardized in the
range of 1 as the least probability to 5 as the highest prob-
ability of growth. Next, these standardized values were
applied to each class of factors. Furthermore, by aggregating
all factors with respect to each land-use type, a projected
probability of growth map for that corresponding land-use
type was created. The FR and, consequently, the WoE model
were applied for all the three time steps, namely, 2004–2008
to create the probability of growth map for 2012, 2008–2012
for 2016, and 2012–2015 for 2018, based on all derived
factors for residential, commercial, and industrial land-use
types. However, only the probability of growth for years
2012 and 2016 could be validated using the actual land-use
map of 2012 and 2015. Hence, after validating each land-use
growth probability map with the actual future land-use map
and by considering all factors, less accuracy and similarity
were achieved among actual and modeled land-use maps.
After evaluating probability maps with the actual land-use
maps, an optimized list of factors was extracted from all
available derived factors. Among all the factors, only eight
were considered the most effective factors for land-use
change, specifically for this study area. Other factors were
ignored from further processing because of data redundancy
and/or random effects. These eight factors are as follows:

proximity to residential, commercial, industrial, agricultural
areas, including proximity to road network, public trans-
portation, community facilities, and infrastructures.

Figures 10.8, 10.9 and 10.10 show the probability maps
of residential, commercial, and industrial growth for all three
time steps: 2004–2008 to create the probability map for
2012, 2008–2012 for 2016, and 2012–2015 for 2018. In
general, central parts of Kajang City are found to have a
higher probability of growth for residential and commercial
uses, while the eastern and western sides have a higher
probability of growth for industrial land use. However,
residential areas have broader extensions compared with the
commercial areas. The areas with higher probability of
growth for commercial land use are mainly located along the
main roads in the central parts and passing the main public
transportation of Kajang City (southern parts). In contrast,
residential growth has a higher probability in wider exten-
sions mainly located in the central parts. Industrial land use
has a higher probability of growth in the eastern regions,
which are mainly covered by agricultural fields, and western
parts near existing industrial buildings and open spaces.
Note that unlike residential and commercial areas with
nearly the same patterns for all the projected maps (2012,
2016, and 2018), industrial land use has a different growth
pattern in 2016. The effects of road network mainly cause
this different pattern. This effect can be noticed from
Table 10.11 in factor no. 4 proximity to road network. For
this factor, in the 2004–2008 and 2012–2015 time periods,
only the middle class has a positive probability value. This
exclusive limitation to the middle class consequently high-
lighted the roads in different colors in both time periods. In
contrast, in the 2008–2012 time period, only the near class
has a negative value. Hence, the effects of road network are
not significantly visible.

The legends of these maps (Figs. 10.8, 10.9 and 10.10)
are in the range of high, with a value of 40, and low, with a
value of 8. As mentioned before, only eight factors were
selected out of the 16 factors as the most important ones. All
the WoE values were standardized into five classes as well.
Hence, after aggregating all reclassified WoE maps, the
areas with minimum probability of growth were assigned a
value of 8; in contrast, the areas with the maximum proba-
bility of growth were assigned a value of 40. In general, the
main differences among the probability maps (for each
separate land-use type) for different time steps (2004–2008,
2008–2012, and 2012–2015) are the change in probability
value, which can be observed from the intensity of colors in
each of the three maps. For example, the increase in prob-
ability of growth for residential land use can be observed in
the eastern parts during 2012–2018. The yellow color of this
area in the first map gradually changes to green in the 2018
map. The same condition in the same area is happening for
commercial land-use growth. However, in the case of
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industrial growth, 2016 has the highest intensity of growth
(blue color) with respect to other land probability maps.

The predicted probability of growth maps of years 2012
and 2016 was validated by comparing these with actual
land-use maps of 2012 and 2015 respectively using the area

under the ROC curve. This validation technique measures
the relationship and fitness among the real and projected
maps. Figures 10.11 and 10.12 show the AUC graphs for
both probability maps. In both graphs, industrial and com-
mercial land uses have the highest and lowest accuracies

Fig. 10.8 Residential land use
growth probability maps for years
2012, 2016 and 2018
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respectively. This finding is attributed to the small propor-
tion of commercial areas rather than other factors, as well as
the dependency on the additional number of variables and
parameters. In contrast, industrial land use has a larger
proportion than commercial land use, but mainly depends on
the proximity to existing industrial areas. In both graphs, all
land-use categories have high and acceptable similarities

with actual land-use maps, indicating the reliability of the
WoE land-use change modeling process.

After confirming the WoE performance accuracy to create
the future probability of growth maps, this process was
conducted to create the probability of growth maps for the
next 11 years around 2026 based on the 2004–2015 time
period. Table 10.12 presents the FR and WoE calculation

Fig. 10.9 Commercial land use
growth probability maps for years
2012, 2016 and 2018
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results for this time period on the basis of the most effective
selected factors. Similar to previous time steps, all the WoE
values were standardized in the range of 1 as minimum and 5
as maximum probability of growth values.

Figure 10.13 depicts the probability maps for residential,
commercial, and industrial land-use growth for 2026. Sim-
ilar to previous probability maps, residential growth has a
wider extension in central parts, and commercial growth is

Fig. 10.10 Industrial land use
growth probability maps for years
2012, 2016 and 2018
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mainly along the main roads. Furthermore, industrial land
use has higher probability of growth in the eastern and
western parts far from the central business districts of Kajang
City.

10.6.2 Projected Land-Use Maps Using CA_WoE
(Business-as-Usual Scenario)

Similar to WoE, the MC model evaluated the probability of
changes among various land-use types, but without consid-
ering any driving forces. MC predicted land-use changes
based on historical information and stochastic concept. This
model produced two matrices for each time period: transi-
tional area matrix, which shows the number of pixels
expected to change to other land-use category; and transi-
tional probability matrix, which shows the probability of
changes to other land-use category. Transitional probability
matrices were calculated using cross-tabulation of two
land-use maps adjusted by proportional error. Transitional

area matrices were calculated by multiplying each column in
transitional probability matrices by the number of cells of the
corresponding land-use in later land-use maps. Tables 10.13,
10.14, 10.15, 10.16, 10.17 and 10.18 present these matrices
for the time periods 2004–2008, 2008–2012 and 2012–2015,
respectively. Similar to cross-tabulation matrices, these
matrices have rows representing the earlier land-use maps
and columns representing later land-use maps. Next, this
process was conducted to produce the transitional proba-
bility and area matrices for 2026 using the time period of
2004–2015 (Tables 10.19 and 10.20).

The MC model produced valuable quantitative informa-
tion regarding the future changes of the study area; however,
in the case of graphical illustration, the output maps failed to
present a proper spatial location of land-use changes because
of the lack of spatial dependency of this model. Hence, the
produced matrices were used for further modeling process
by integrating CA and WoE. Accordingly, land-use change
occurrence was based on related evidences (the effects of
selected factors and neighborhood conditions) and not
entirely random. The spatial dependency and cellular basis
of CA modeling and factor analysis of WoE provided a
strong and reliable methodological approach to project
future land-use growth and changes.

To run the CA_WoE integration approach, all the
land-use growth probability maps produced from WoE
modeling and other land-use type maps were merged and
inserted into the CA modeling. This process calibrated the
CA by integrating the influences of the driving forces to
land-use change processing. CA_WoE was run three times:
(1) for the 2004–2008 time step to project the land-use map
for 2012 and validate the actual land-use map for 2012;
(2) for the 2008–2012 time step to project the land-use map
for 2016 and validate the actual land-use map for 2015; and
finally (3) for the 2004–2015 time step to project the
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Fig. 10.11 AUC validation for
growth probability map of 2012
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land-use map for 2026. For each time step, the matrices
produced from the MC model were also integrated to control
the amount of changes and use the probability of changes
from one land-use category to the other. Accordingly, CA
reweighted each land-use growth map in each pass as a
result of the contiguity filter on each current land-use type.
Once reweighted, the revised suitability map was then run
through the model to allocate 1/11 (1/11 for 2004–2015; 1/4
for 2004–2008, and 1/4 for 2008–2012) of the required land
in the first run, 2/11 in the second run, and so on, until the
full allocation of land for each land-use class is achieved. At
the end of each run, all land-use types are masked, and the
contiguity filter runs for them. Then, this result was multi-
plied to each land-use growth map to create input for the
new run. Notably, the transitional area matrix created from
the MC model aims to control how much land can be allo-
cated to each land-use type over the future land-use maps.
Figures 10.14 and 10.15 respectively illustrate the projected
maps of years 2012 and 2016 using the CA_WoE integration
approach.

The probability maps for various land-use types helped
CA to define the transitional rules for land-use changes.
Clearly, proximity to the same land-use types controlled the
model more significantly than the other factors. This strong
effect was expected because of the neighborhood effect of
the CA model and the proximity factors from the growth
probability maps. The growth of industrial buildings through
agricultural fields and open spaces existing in their neigh-
borhood can be observed in the central west areas from 2004
onwards. Residential land use also faced the same condi-
tions. All the new residential areas are around or are linked
to previous residential land uses. A considerable conversion
of agricultural and open spaces to residential use can be
observed in the entire study area. However, in the case of
commercial land use, proximity to road has a higher influ-
ence than the proximity to existing commercial areas. Hence,
in the case of land-use categories with small proportion,
other parameters seem to play more effectively than the
proximity to the same land-use type. In fact, open spaces
with potential to change and located near the main roads and

Table 10.12 Frequency ratio
and weights-of-evidence
calculation results for 2004–2015
time periods

No. Factor Class Residential Commercial Industrial

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

FR C/S
(C) (WoE)

1 Proximity to
Housing

Near 2.05 2009.06 0.61 –354.62 0.06 –1086.60

Middle 0.59 –1036.66 1.57 542.88 0.97 –52.28

Far 0.40 –1429.68 0.77 –211.37 1.97 1436.76

2 Proximity to
Commercial

Near 1.17 372.52 2.04 872.15 0.53 –740.06

Middle 1.11 260.46 0.28 –627.72 1.05 88.99

Far 0.73 –661.25 0.75 –238.93 1.39 631.39

3 Proximity to
industrial

Near 0.67 –790.82 0.81 –177.26 2.63 2088.13

Middle 1.26 595.05 1.49 457.79 0.08 –1150.42

Far 1.06 129.53 0.69 –290.96 0.36 –1021.50

4 Proximity to
road network

Near 1.01 14.11 1.55 493.91 0.86 –233.38

Middle 1.19 440.13 0.99 –9.15 1.06 92.00

Far 0.80 –482.08 0.47 –478.79 1.08 138.32

5 Proximity to
facility

Near 1.24 517.97 1.35 317.80 0.27 –1099.45

Middle 1.11 256.62 0.81 –181.89 0.89 –179.13

Far 0.66 –821.74 0.86 –135.44 1.81 1264.27

6 Proximity to
public
transportation

Near 1.13 289.05 1.38 343.99 0.62 –618.68

Middle 1.10 228.93 0.86 –134.61 0.71 –475.07

Far 0.78 –538.17 0.77 –211.63 1.66 1042.95

7 Proximity to
infrastructure

Near 1.06 134.46 0.96 –39.45 0.97 –48.00

Middle 1.11 241.13 1.06 54.02 0.97 –53.83

Far 0.84 –386.07 0.98 –14.63 1.06 101.01

8 Proximity to
agriculture

Near 0.78 –522.47 0.60 –363.93 1.32 515.83

Middle 0.96 –104.69 0.93 –63.28 1.28 452.98

Far 1.26 586.75 1.46 423.28 0.40 –957.03

Bold letters indicate the important factors
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Fig. 10.13 Projected probability
of growth maps for year 2026
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Table 10.13 Transitional area matrix for 2004–2008 (m2)

Class 1 2 3 4 5 6 7 8 9

1 88,093 355 90,381 8593 436 750 223 15,137 0

2 0 37,285 1147 149 0 0 0 5651 0

3 31,132 6196 346,764 108,075 13,100 8365 5016 52,875 5

4 43 4 85,561 416,768 0 0 4 14,771 0

5 21,447 13 3101 102 162,669 64 0 6521 0

6 12 0 3592 1509 4 33,604 0 3178 0

7 170 0 19,578 1683 0 11 132,819 4452 0

8 7096 4408 31947 33,041 1000 2001 563 437,241 31

9 0 0 0 0 0 0 0 1998 11,268

Note 1 = Agriculture, 2 = Commercial, 3 = Open spaces, 4 = Housing, 5 = Industry, 6 = Infrastructure, 7 = Community facility, 8 = Road network and 9 = Water body
Bold letters indicate the important factors

Table 10.14 Transitional probability matrix for 2004–2008

Class 1 2 3 4 5 6 7 8 9

1 0.4319 0.0017 0.4431 0.0421 0.0021 0.0037 0.0011 0.0742 0

2 0 0.8429 0.0259 0.0034 0 0 0 0.1278 0

3 0.0545 0.0108 0.6067 0.1891 0.0229 0.0146 0.0088 0.0925 0

4 0.0001 0 0.1654 0.8059 0 0 0 0.0286 0

5 0.1106 0.0001 0.016 0.0005 0.8389 0.0003 0 0.0336 0

6 0.0003 0 0.0857 0.036 0.0001 0.802 0 0.0759 0

7 0.0011 0 0.1234 0.0106 0 0.0001 0.8368 0.0281 0

8 0.0137 0.0085 0.0618 0.0639 0.0019 0.0039 0.0011 0.8452 0.0001

9 0 0 0 0 0 0 0 0.1506 0.8494

Bold letters indicate the important factors

Table 10.15 Transitional area matrix for 2008–2012 (m2)

Class 1 2 3 4 5 6 7 8 9

1 118,478 2335 24,369 33,687 18,507 3716 370 23,089 218

2 264 35,453 3994 9260 4422 759 1573 13,948 0

3 49,929 14,310 105,641 66,146 28,543 7646 13,363 31,989 526

4 16727 21,524 58,263 413,686 11,645 10,725 9867 47,102 914

5 6855 2475 41,115 7317 145,648 2251 584 17,961 0

6 256 251 11,815 1098 869 42,838 361 3590 0

7 1376 10,491 10,544 7382 0 344 146,349 4154 556

8 8071 7623 34,693 50,042 17,723 9922 4591 436,751 6109

9 0 0 1284 89 0 0 0 1284 14,609

Bold letters indicate the important factors

Table 10.16 Transitional probability matrix for 2008–2012

Class 1 2 3 4 5 6 7 8 9

1 0.5271 0.0104 0.1084 0.1499 0.0823 0.0165 0.0016 0.1027 0.001

2 0.0038 0.5088 0.0573 0.1329 0.0635 0.0109 0.0226 0.2002 0

3 0.157 0.045 0.3321 0.2079 0.0897 0.024 0.042 0.1006 0.0017

4 0.0283 0.0365 0.0987 0.7006 0.0197 0.0182 0.0167 0.0798 0.0015

5 0.0306 0.011 0.1834 0.0326 0.6496 0.01 0.0026 0.0801 0

6 0.0042 0.0041 0.1934 0.018 0.0142 0.7014 0.0059 0.0588 0

7 0.0076 0.0579 0.0582 0.0407 0 0.0019 0.8077 0.0229 0.0031

8 0.014 0.0132 0.0603 0.0869 0.0308 0.0172 0.008 0.7589 0.0106

9 0 0 0.0744 0.0051 0 0 0 0.0744 0.8462

Bold letters indicate the important factors
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Table 10.17 Transitional area matrix for 2012–2015 (m2)

Class 1 2 3 4 5 6 7 8 9

1 107,189 0 38,012 4767 18,393 0 0 0 0

2 1317 59,685 1317 1317 1317 1317 1317 1317 1317

3 0 1934 268,086 65,117 0 167 0 36 0

4 0 0 91,979 521,183 0 0 0 0 0

5 0 0 37,012 0 203,056 0 0 0 0

6 1146 1146 1146 1146 1146 51,956 1146 1146 1146

7 3397 3397 3397 3397 3397 3397 154,017 3397 3397

8 0 0 69,067 17,267 0 0 0 489,199 0

9 324 324 324 324 324 324 324 324 14,675

Bold letters indicate the important factors

Table 10.18 Transitional probability matrix for 2012–2015

Class 1 2 3 4 5 6 7 8 9

1 0.6367 0 0.2258 0.0283 0.1092 0 0 0 0

2 0.0187 0.85 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187

3 0 0.0058 0.7994 0.1942 0 0.0005 0 0.0001 0

4 0 0 0.15 0.85 0 0 0 0 0

5 0 0 0.1542 0 0.8458 0 0 0 0

6 0.0187 0.0187 0.0187 0.0187 0.0187 0.85 0.0187 0.0187 0.0187

7 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.85 0.0187 0.0187

8 0 0 0.12 0.03 0 0 0 0.85 0

9 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.85

Bold letters indicate the important factors

Table 10.19 Transitional area matrix for 2004–2015 (m2)

Class 1 2 3 4 5 6 7 8 9

1 46,182 945 31,840 28,944 28,141 3659 1360 27,089 81

2 298 35,322 3143 10,337 4993 313 1250 14,561 0

3 28,159 19,125 110,979 91,275 18,247 7666 14,261 45,110 496

4 10,546 26,689 42,217 448,168 6099 12,668 12,509 52,760 1459

5 7190 2004 42,018 8137 159,345 2119 673 18,581 0

6 361 164 4370 1211 1391 46,932 585 6109 0

7 1312 9602 9726 8323 0 341 145,647 5721 525

8 6220 4966 19,088 57,760 19,664 8800 5599 445,501 7857

9 0 0 1073 80 0 0 0 1511 14,601

Bold letters indicate the important factors

Table 10.20 Transitional probability matrix for 2004–2015

Class 1 2 3 4 5 6 7 8 9

1 0.2745 0.0056 0.1893 0.172 0.1673 0.0218 0.0081 0.161 0.0005

2 0.0042 0.503 0.0448 0.1472 0.0711 0.0045 0.0178 0.2074 0

3 0.084 0.057 0.331 0.2722 0.0544 0.0229 0.0425 0.1345 0.0015

4 0.0172 0.0435 0.0689 0.731 0.0099 0.0207 0.0204 0.0861 0.0024

5 0.03 0.0083 0.175 0.0339 0.6637 0.0088 0.0028 0.0774 0

6 0.0059 0.0027 0.0715 0.0198 0.0228 0.7678 0.0096 0.1 0

7 0.0072 0.053 0.0537 0.0459 0 0.0019 0.8038 0.0316 0.0029

8 0.0108 0.0086 0.0332 0.1004 0.0342 0.0153 0.0097 0.7742 0.0137

9 0 0 0.0622 0.0046 0 0 0 0.0875 0.8457

Bold letters indicate the important factors
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public transportation stations are the main targets for growth
of residential and commercial land-use types. Hence, apart
from the proximity to the same land-use types, accessibility
either by road network or public transportation is the con-
trolling factor in land-use growth and changes. Another
possible significant change is the conversion of agricultural
land use into open spaces in the entire city, especially in
agricultural environments located in the eastern regions. This
conversion is mainly a land clearance process required for
any type of new developments and/or different types of
phonological and maintenance processes of agricultural

fields. From the output maps, the main flow of changes in
this study area can be observed as consisting of the con-
version of agricultural fields into open spaces, and from open
spaces into other land-use categories, such as residential,
commercial, industrial, and transportation.

In the projected map of 2016 (Fig. 10.15), the growth of
commercial area along the road network is more visible than
that of the previous year.

Additionally, the growth of industrial areas through
agriculture fields in central west can be clearly observed.
Both projected maps were validated with the actual land-use

Fig. 10.14 Projected land use
map for year 2012 using
CA_WoE aggregation approach

Fig. 10.15 Projected land use
map for year 2016 using
CA_WoE aggregation approach
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maps of 2012 and 2015. This process was conducted using a
contingency table based on two-by-two comparisons of
projected and actual land-use maps (Tables 10.21 and
10.22). The diagonal values of these two tables are the areas
modeled to change to one specific land-use type and are
actually changed to that land-use type. Hence, the accuracies
of both maps were calculated by the sum of diagonal values
divided by the total area of Kajang City.

Correct proportion for 2012modelledmap ¼ 3907
5654

¼ 70%

Correct proportion for 2016modelledmap ¼ 5165
5654

¼ 91%

The projected map of the second time period (2008–
2012) produced better results than that of the first time

period (2004–2008). As shown in Tables 10.21 and 10.22,
the last columns show the total areas of each land-use type in
projected maps. The last rows of tables also present the total
areas of each land-use type in actual land-use maps. These
columns and rows are extracted from each map and pre-
sented in a separate table for a better view and judgment
regarding these projected maps (Table 10.23).

The following differences were extracted from
Table 10.23 between projected and actual land-use maps of
year 2012:

• Open spaces changed significantly more into other
land-use types than predicted;

• Agricultural loss was less than predicted;
• Industrial and commercial land-use growths were more

than predicted; and

Table 10.21 Contingency table between projected land use map and actual land use map of 2012 (Hectare)

Land use Actual (2012) Total

1 2 3 4 5 6 7 8 9

Agric. Comm. Open House Industry Infra Facility Road Water

Model (2012) 1 302.795 4.2675 43.315 57.41 31.17 6.625 0.7 40.85 0.1325 487.265

2 1.9475 68.3175 9.9275 13.9075 5.9775 1.0475 3.4625 22.675 0.09 127.3525

3 184.0075 51.335 499.6375 236.7775 105.555 29.5125 46.1325 123.1125 1.8575 1277.928

4 46.1925 32.215 119.8025 1089.958 19.73 18.5725 23.16 136.4875 1.8825 1488

5 16.9825 3.9875 67.045 12.3825 378.01 3.4975 0.8575 29.0425 0.0775 511.8825

6 0.4 0.2375 11.7125 1.06 0.9925 82.445 0.29 3.73 0 100.8675

7 0.7725 5.79 5.915 3.825 0 0.28 373.1475 2.605 0.32 392.655

8 8.68 7.9975 37.4225 60.465 18.9725 10.64 5.2225 1079.855 6.13 1235.385

9 0 0 0.3825 0.005 0 0 0 0.075 32.6725 33.135

Total 561.7775 174.1475 795.16 1475.79 560.4075 152.62 452.9725 1438.433 43.1625 5654.47

Note 1 = Agriculture, 2 = Commercial, 3 = Open spaces, 4 = Housing, 5 = Industry, 6 = Infrastructure, 7 = Community facility, 8 = Road network and 9 = Water body
Bold letters indicate the important factors

Table 10.22 Contingency table between projected land use map of 2016 and actual land use map of 2015 (Hectare)

Land use Actual (2015) Total

1 2 3 4 5 6 7 8 9

Agric. Comm. Open House Industry Infra Facility Trans Water

Model (2016) 1 347.02 0.015 79.8975 9.6225 34.295 0 0 0.1525 0.0375 471.04

2 4.9825 167.9725 28.26 30.265 1.6075 0.1575 23.3125 4.845 0 261.4025

3 0.105 1.36 648.135 43.455 0 0.1175 0 0.0975 0.04 693.31

4 45.8925 0.045 58.8425 1434.345 2.995 0.685 4.625 36.4625 0.055 1583.948

5 22.8875 6.0875 23.1825 14.1075 561.1875 0.5425 0 11.1 0 639.095

6 0.0025 0 0 0 0 151.305 0 0 0 151.3075

7 0.0125 0 0 0 0 0 425.055 0 0.0025 425.07

8 0 0.055 0.03 0.9625 0.085 0 0 1386.108 0 1387.24

9 0 0.01 0 0.1475 0 0 0 0.0675 43.0275 43.2525

Total 420.9025 175.545 838.3475 1532.905 600.17 152.8075 452.9925 1438.833 43.1625 5655.665

Bold letters indicate the important factors
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• Infrastructures, facilities, and transportation had grown
more than predicted.

These results mainly explain the lower accuracy for 2012
land-use prediction. Despite the one-year difference between
the projected map 2016 and the actual land use 2015, this
time period contrastingly has a higher accuracy for the
projected map.

Apart from the contingency tables, projected maps were
validated using the Kappa statistic index of agreement val-
idation (Table 10.24). Similarly, from this assessment, the
fitness of the projected probability map of 2016 has a higher
accuracy with the actual land-use map 2015 than the pro-
jected probability map of 2012 with the actual land-use
map 2012.

The growths and changes in other land-use types (other
than residential, commercial, and industrial) seemed to be
higher during 2004–2008 than in 2008–2012 and onwards.
These growths were likewise more complex and dependent
on an additional number of factors. However, after the
optimization process in factor analysis, a higher accuracy
could be achieved for the next time period (2008–2012 for
the 2016 projection).

After confirmation regarding the model performance
accuracy, the process was conducted again for the longer
time period, that is, 2004–2015, to project the land-use map
for 2026. Figure 10.16 depicts the projected map for 2026
based on the business-as-usual scenario. A significant
growth of commercial land use along the main roads,

especially near the train station (central areas of Kajang City)
can be clearly seen. Industrial land use has grown in the
vicinity of previous industrial buildings. The loss of agri-
cultural fields in central west areas caused by the growth of
industrial land use can be observed. In the north east of the
study area, a gradual growth of industrial buildings is also
noted. The same condition occurred for residential land use,
which has growth near the existing residential area in the
entire city.

The density and land-use diversity of the entire study area
are increased, especially in the central regions. However,
several open spaces still exist within the city. Confirming
that these areas are abandoned land can enable a proper BR
process to increase the compactness of the projected map.

The compactness of the projected map was evaluated
using a similar DoC assessment based on urban density,
intensity, and land-use diversity. Figures 10.17 and 10.18
depict the three compactness indicators and overall com-
pactness maps of the projected land-use map of year 2026
respectively. The growth in urban density in the east and
central west can be observed with respect to previous density
maps. The intensity of the city center near the central busi-
ness district has higher growth than the other regions;
however, the growth through the eastern and western parts
can also be noticed. Finally, land-use diversity of the study
area also faced marginal growth during the 11 years’ time
period.

Visually, the overall compactness of the projected map is
highly similar to the compactness map of 2012, with a fine

Table 10.23 The comparison of
land use areas for actual and
projected land use maps (Hectare)

Land use
type

Projected
map of 2012

Actual
map 2012

Percentage
of Error

Projected
map of
2016

Actual
map of
2015

Percentage
of error

Agriculture 486.49938 562.1719 13.46 480.83 421.0981 14.18

Comm. 125.98022 174.41 27.77 257.5394 175.7851 46.51

Open 1283.1347 795.1358 61.37 704.7783 838.2406 15.92

Residential 1471.5896 1475.721 0.28 1560.539 1532.784 1.81

Industry 506.39061 560.5319 9.66 629.6502 600.2177 4.90

Infra 99.760198 152.8637 34.74 153.5961 152.981 0.40

Facility 390.98393 453.0455 13.70 421.601 453.0455 6.94

Transport 1259.2806 1438.603 12.47 1400.83 1438.612 2.63

Water 32.766378 43.2858 24.30 46.95813 43.2858 8.48

Sum 5656.39 5655.77 5656.32 5656.05

Table 10.24 Kappa statistic
index of agreement for validation
of probability maps of 2012 and
2016

Kappa measurements 2012 2016

Kappa for no information Kno 0.7496 0.9203

Kappa for location Klocation 0.7875 0.9487

Kappa standard Kstandard 0.7264 0.9129
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distribution of compact centers in the entire city. However, a
significant growth of compactness can be observed in the
northern and southern regions, given that even small
development changes (a single land-use change) can affect
the compactness pattern of the neighborhood. For example,
the conversion of a recreational field into residential land use
in the residential neighborhood significantly reduces the
DoC. Thus, expecting the growth of compactness by
development growth during a specific time period is irra-
tional. This finding can possibly explain the lower DoC in
the northern east region of the study area in 2026 with
respect to previous compactness maps. Figure 10.19 and
Table 10.25 present the overall compactness of the projected
map in quantitative perspectives. From Fig. 10.19, the
amount of pixels with a high DoC value (near 50) can be
seen to have increased to over 5% in 2026. Thus, a higher
distribution of centers with high DoC value can be seen in
this map. As shown in Table 10.25, the overall DoC value of
the entire study area has a small reduction, which proved that
the land-use growth of Kajang City requires an alternative
development pattern.

10.6.3 Compact City Land Use Modeling
Approach

In this study, the BR process was chosen as the most feasible
and cost-effective approach to increase the DoC or compact
pattern of Kajang City. First, existing BF sites were

extracted from all open spaces to exclude the buffer zones of
recreational and useful natural spaces. Figure 10.20 illus-
trates the spatial location of the existing BF sites and all
other open spaces.

In general, small BF sites and open spaces are located in
the south and south eastern parts near the dense residential
and commercial areas, where the compactness pattern is
higher than in the other regions. In contrast, BF sites with
larger areas are located in the east, west, and central west near
the industrial and agricultural fields or less compact regions.

Overlaying the compactness map of year 2026 with the
BF sites of year 2015 reveals that, most of the BF sites are
located in areas with lower DoC value (Fig. 10.21). Hence, a
proper land-use type for these BF sites based on local
neighborhood demands was proposed to increase the com-
pactness pattern of the study area. Proper land-use categories
were proposed for each BF site for land-use map 2015
through the analysis and evaluation of the proximity of
existing various land-use types, requirements of different
community facilities for each neighborhood, master plan,
and probability of growth maps (produced from the WoE
modeling). Next, using the new land-use map of 2015, the
CA_WoE integration land-use modeling approach was run
one more time to project a more compact land-use map. This
study mainly aimed to evaluate the BR process as a city
intensification approach, whether this process will increase
the city compactness or not. Figure 10.22 illustrates the
projected land-use map according to the proposed compact
land-use modeling approach.

Fig. 10.16 Projected land use
map for year 2026 using
CA_WoE aggregation approach
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Hence, after running the land-use modeling process one
more time, the projected map was assessed with respect to
city compactness. Figure 10.23 depicts the overall com-
pactness of the projected land-use map based on the compact
land-use form scenario. At first glance, a slight difference

can be noticed between this map and the projected map
based on the business-as-usual scenario. However, through
subtle investigation (especially quantitative assessment), the
second scenario can be observed to have a higher degree of
compactness. The degree of compactness of BF sites shown

Fig. 10.17 City compactness
indicators for projected map of
year 2026 (business-as-usual
scenario)
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Fig. 10.18 Overall city
compactness for projected map of
year 2026 (business-as-usual
scenario)
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Fig. 10.19 Graphical
presentation of compactness
value of year 2026 (business as
usual scenario) with respect to
area percentage

Table 10.25 Quantitative
assessment of overall
compactness for year 2026 land
use map

DoC No. of cells Percentage Perc. � DoC

14 161 0.01 0.00

16 626 0.03 0.00

17 7493 0.33 0.06

18 9813 0.43 0.08

19 21,322 0.94 0.18

20 27,039 1.20 0.24

22 23,187 1.03 0.22

23 22,741 1.01 0.23

24 21,937 0.97 0.23

25 29,283 1.30 0.33

26 41,762 1.85 0.49

28 62,237 2.75 0.76

29 63,821 2.82 0.81

(continued)
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Fig. 10.20 Existing BF sites of
Kajang City (2015)

Table 10.25 (continued)

DoC No. of cells Percentage Perc. � DoC

30 60,079 2.66 0.80

31 66,485 2.94 0.92

32 66,317 2.94 0.95

34 70,258 3.11 1.04

35 83,315 3.69 1.28

36 77,510 3.43 1.23

37 86,281 3.82 1.42

38 93,074 4.12 1.58

40 102,028 4.52 1.79

41 108,145 4.79 1.95

42 119,198 5.28 2.22

43 128,531 5.69 2.46

44 132,013 5.84 2.59

46 130,036 5.76 2.62

47 131,198 5.81 2.72

48 117,306 5.19 2.49

49 100,731 4.46 2.19

50 80,516 3.56 1.80

52 62,429 2.76 1.43

53 47,582 2.11 1.11

54 30,701 1.36 0.73

55 18,029 0.80 0.44

56 10,536 0.47 0.26

58 3991 0.18 0.10

59 1485 0.07 0.04

60 256 0.01 0.01

61 6 0.00 0.00

62 10 0.00 0.00

Sum 2,259,468 100 39.82
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in Fig. 10.21 is also higher in this scenario, given that these
areas now have higher building density (in some cases,
residential density as well), higher urban intensity, and
land-use diversity rather than the previous time. Fig-
ure 10.24 illustrates the percentage of area bearing various
degrees of compactness value for both scenarios. Obviously,
the compact land-use form scenario has a higher proportion
of area, as it has a higher DoC value with respect to the

business-as-usual scenario. Finally, Table 10.26 shows the
quantitative assessments of city compactness for the second
scenario. This scenario has a higher overall DoC value with
respect to the business-as-usual scenario, and even higher
than the other historical land-use maps (2004, 2008, 2012,
and 2015). Hence, through a proper BR as a city intensifi-
cation process, the compactness and, eventually, the urban
sustainability of a region can be improved.

Fig. 10.21 The spatial relation
of BF sites with compactness map
(projected map of year 2026)

Fig. 10.22 Projected compact
land use map for year 2026 using
CA_WoE aggregation approach
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Fig. 10.23 Overall city
compactness for projected map of
year 2026 (compact land use form
scenario)
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Fig. 10.24 Graphical
presentation of compactness
value of year 2026
(business-as-usual vs. compact
land use map scenarios) with
respect to area percentage

Table 10.26 Quantitative
assessment of overall
compactness for year 2026 land
use map for compact land use
map

DoC No. of cells Percentage Perc. � DoC

17 43 0.00 0.00

18 494 0.02 0.00

19 905 0.04 0.01

20 1566 0.07 0.01

21 2879 0.13 0.03

22 3567 0.16 0.03

23 4607 0.20 0.05

24 5835 0.26 0.06

25 9358 0.41 0.10

26 11,060 0.49 0.13

27 13,521 0.60 0.16

28 14,825 0.66 0.18

29 18,121 0.80 0.23

30 22,352 0.99 0.30

31 33,243 1.47 0.46

(continued)
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10.7 Conclusion and Future
Recommendations

In recent decades, one of the most important issues for urban
planners and scientists is achieving the objectives of sus-
tainable urban development. Various aspects of sustainable
urban development environmental protection (especially
agricultural and forest conservations) are dominant in trop-
ical countries, such as Malaysia. Developing cities and
towns (comprising huge agricultural and natural spaces with

a high potential for growth due to their proximity to large
metropolitan cities) require regulation to avoid large hori-
zontal urban expansion and destruction of valuable natural
and agricultural fields. Hence, proposing various develop-
ment scenarios based on objectives of urban sustainability is
highly important to avoid negative consequences of sprawl
urban development. In this regard, one of the most promis-
ing and widely accepted solutions for this purpose is
developing urban areas in a more compact form, with high
density built-up, mixed land-use development, and

Table 10.26 (continued)

DoC No. of cells Percentage Perc. � DoC

32 36,430 1.61 0.52

33 44,442 1.97 0.65

34 49,810 2.20 0.75

35 55,909 2.47 0.87

36 60,598 2.68 0.97

37 67,912 3.00 1.11

38 69,368 3.07 1.17

39 72,776 3.22 1.26

40 83,355 3.69 1.48

41 89,115 3.94 1.62

42 94,373 4.18 1.75

43 103,065 4.56 1.96

44 107,236 4.74 2.09

45 129,868 5.75 2.59

46 132,582 5.87 2.70

47 142,542 6.31 2.96

48 133,727 5.92 2.84

49 119,940 5.31 2.60

50 113,235 5.01 2.50

51 92,171 4.08 2.08

52 78,245 3.46 1.80

53 59,707 2.64 1.40

54 49,484 2.19 1.18

55 33,839 1.50 0.82

56 27,494 1.22 0.68

57 20,264 0.90 0.51

58 19,406 0.86 0.50

59 13,914 0.62 0.36

60 7917 0.35 0.21

61 5826 0.26 0.16

62 2647 0.12 0.07

63 838 0.04 0.02

Sum 2,260,411 100 43.92
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intensified neighborhoods. Apart from the environmental
perspectives, a compact city increases the quality of life of
the local residents, as in the case of social perspectives.

This study utilized geospatial data within the GIS envi-
ronment to analyze the urban growth process and its pattern
with respect to the compact city paradigm. This study
focused on the spatial pattern, growth, and changes of urban
land-use types of Kajang City from 2004 to 2015, which can
be useful in evaluating the city compactness of urban plans
and urbanization policies for Kajang City. The analyses and
modeling approaches used in this study can be employed to
guide the identification and measurements of the changes
and growths likely to happen in urban areas. The analysis
produced several figures and tables to understand and assess
urban land-use growths and changes in Kajang City. Results
also confirmed that the proposed modeling approaches,
geospatial data, statistical techniques, and GIS are highly
practical in identifying future urban growth and land-use
change patterns and their general trends.

This study specifically proposed a land-use change
modeling approach by combining the WoE model with the
CA framework to predict future spatial patterns. Using this
innovative integration modeling approach enabled the
simultaneous application of the following two aspects of
urban land-use changes: self-organization as a consequence
of neighborhood effects, and external driving forces affecting
land-use changes. Integrating the surrounding environment
effects using the CA model and external driving forces was
considered by using the WoE model. This integration model
provided detailed information on land-use change patterns,
such as the effectiveness of various related factors or influ-
ence of various land-use categories.

Through validation techniques, the resultant maps from
the model were verified to fall into reasonable accuracies.
The output probability maps for the main land-use types
(residential, commercial, and industrial) revealed that some
land-use category growths are mainly affected by the prox-
imity to the same land-use or the distance from other
land-use categories. New residential buildings tend to be
developed near the existing residential area and be far from
existing industrial buildings. Similar conditions are generally
happening for industrial land-use types. In contrast, the
growth of other categories, such as commercial land use, is
mainly affected by the accessibility of the sites. Hence,
proximity to main roads and public transportation control the
growth of such land-use types. Along with these neighbor-
hood land-use effects, the linkages among different factors
and each land-use types were also precisely investigated.

The WoE allowed us to identify the influence of spatial
determinants on the analyzed transitions. As a regression
analysis, WoE provided better explanatory power and out-
performed some methods, such as ANNs. Furthermore, in
the case of functional relationships among the dependent and

independents variables, WoE provided clearer and more
informative results. The direct or indirect relationships of
land-use types were revealed with respect to selected factors,
especially proximity- and ordinal-based factors. For exam-
ple, residential growth is directly linked to the proximity to
community facilities. Higher proximity to facilities increases
the growth of residential land use. In contrast, residential
growth has an inverse relation to agricultural fields. Higher
proximity to agricultural environment reduces the probabil-
ity of residential growth. Hence, implementing the WoE
analysis on all factors provides a clearer view regarding the
spatial influence of these factors with respect to growth and
changes of the different land-use types.

Apart from WoE, utilizing the MC model controlled how
much land-use types can be allocated to other types over
future land-use maps based on a historical trend. The growth
of other land-use types (with their probability of growth not
analyzed using WoE, such as infrastructure, facilities, etc.)
was high during the initial years (2004–2008). When urban
developments of the study area were saturated, these
land-use growths were also significantly reduced after 2008.
Thus, an insignificant growth of these land-use categories
was observed in the final projected map.

As a second scenario, a compact land-use pattern mod-
eling approach was proposed by combining the land-use
modeling process used in the previous objective and the
concept of urban intensification. This task was done to
increase the city compactness level of the study area by
redeveloping the existing BF sites. The DoC and ToC
evaluations indicated the compactness characteristics of the
various parts of Kajang City. The local planning authority
can evaluate the study area using these compactness maps
and propose different scenarios and solutions to increase the
compactness pattern of the various parts of the city. Rede-
veloping and revitalizing the existing BF sites are considered
the most time- and cost-effective approach to deal with this
issue. In fact, developing an integrated modeling approach
for compact land-use modeling aimed to evaluate the BR
process, whether or not it increases the city compactness of
local neighborhoods, is an effective task. Regardless of the
results, considering that even a negligible development
change (single parcel land-use change) can affect the com-
pactness pattern of the neighborhood is extremely important.
For example, although converting open spaces into resi-
dential land use within a residential neighborhood increases
the urban density, it generally reduces the degree of com-
pactness significantly. This finding is attributed to the
decrease in land-use diversity and urban intensity. Hence,
expecting an increase in compactness level by any type of
development implementation is illogical. Furthermore, an
extremely high level of compactness pattern means a region
without any agricultural and forest areas with several nega-
tive impacts of extremely high urban density. Hence, a DoC

264 S. Abdullahi and B. Pradhan



value of over 50% of the total range is an acceptable pattern
of urban development, which can be gradually improved by
various proper development scenarios based on urban sus-
tainability perspectives.

Some limitations remain within the analyzed and pro-
posed approaches, mainly relying on the physical aspect of
land-use categories and their interaction among one another
and the external driving forces. Although the master plan of
the study area was utilized in the prediction modeling stages,
political issues are important aspects of urban growth and the
changes mainly proposed and implemented by the govern-
ment. Hence, refining these modeling approaches and
implementing the assessment on the basis of the updated
strategies and policies could extend the applicability and
reliability of these approaches to achieve sustainable urban
development. This study analyzed the probability of growth
of the three main land-use types (residential, commercial,
and industrial), which are commonly developed by private
agencies. However, considering the growth of all land-use
types (road network, infrastructures, and community facili-
ties) improves the reliability of the projected maps and
increases the accuracy of the modeling approaches.

Although these challenges exist, this study has shown
promising approaches for city compactness assessment,
namely, business-as-usual and compact land-use pattern
modeling for researchers aiming to study compact urban
development as an effective task to achieve sustainable
urban development.
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11City Intensification Process Using Brownfields
Land Use Change Modeling

Saleh Abdullahi and Biswajeet Pradhan

11.1 Background

Brownfields are abandoned or underused properties that
should be redeveloped or reused because of the real or
suspected presence of hazardous substances, pollutants, or
containment (Collins 2002; Oliver et al. 2005). Rapid urban
growth and economic restructuring has led to increase in
number of brownfields in urban region. Redevelopment of
existing brownfields is one of the important objectives to
enhance the sustainable urban development theory (Nijkamp
et al. 2002; De Sousa 2008) and reduce urban sprawl (Nuissl
and Schroeter-Schlaack 2009). However, a brownfield
redevelopment needs a comprehensive effort to resolve and
negotiate among several stakeholders with different interests
(Bardos 2003; Gross 2010). In addition, this task is com-
plicated by environmental contamination such as heavy
metal, mineral oil, and hydrocarbon (Bleicher and Gross
2010). These complexities have caused many brownfields
remain undeveloped, especially in developing countries. De
Sousa (2008) had estimated that total number of contami-
nated sites in the USA, Canada, and European Union is
about 450,000; 30,000, and 250,000, respectively. That is
why most of researches regarding brownfield redevelopment
in 1970s and 1980s were related to contamination and pol-
lution caused by these sites. However, in the 1990s after
publication of Brundtland Report in 1987, other aspects such
as economic, environment, and social which were the main
principles of sustainable development were also involved in
brownfield redevelopment research objectives. The rede-
velopment of these abandoned land according sustainable
development principles become the main action of the
governments in order to reduce land consumption and rural
and natural destruction. Thus, since 1990s, several research
projects such as CABERNET, RESCUE, and SMART-e
have been proposed and implemented for this objective. The
main goal of these projects was to develop policies for
sustainable brownfield development and remediation.
However, scientists and urban planners realized that it is
insufficient to only consider policies and technologies, and

more complex and decision-making process is required in
this field. For instance, Bleicher and Gross (2010) presented
and discussed about the megasite management system based
on SAFIRA II Program as shown in Fig. 11.1. This support
system guides the decision makers in the development of
efficient remediation strategies for the future use to con-
taminated site.

On the other hand, according to the literature, there is a
variety of approaches for various aspects of brownfield
redevelopment such as risk assessment (Carlon et al. 2008),
policy analysis (Linkov et al. 2006), optimization of reme-
diation (Bürger et al. 2007), remediation cost assessment
(Kaufman et al. 2005), general success factors for brownfield
redevelopment (Lange and McNeil 2004), infrastructure
redevelopment (Attoh-Okine and Gibbons 2001), urban
planning, and site prioritization under budget constraints
(Alvarez-Guerra et al. 2009), etc. (Schädler et al. 2011).
Hence, strong approaches are required to integrate these
aspects and manage complexities of information and results
(Bardos et al. 2000; Agostini et al. 2007).

Land use change modeling is important for various urban
planning and management issues. It is a suitable approach to
deal with redevelopment and revitalization of existing
brownfields. Modeling of land use changes not only improve
and select various land development scenarios, but also to
evaluate the impact of development alternatives. For exam-
ple, proper analysis and prediction of urban growth may
prevent many social and environmental problems caused by
the urban sprawl (Hayek et al. 2011), suburbanization pro-
cess (Helbich and Leitner 2009) and unorganized land
developments. The main environmental problems that can be
prevented are encroachment on valuable agricultural, forest,
and natural areas. In addition, land use change modeling can
help local planning authorities to provide better community
facilities and services to sustain developments (Hathout
2002). In fact, most of the urban development scenarios are
an act to achieve urban sustainability. Compact development,
transit-oriented development, and smart city are good
examples of development scenarios that are based on
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sustainable development principles (Livingstone and Rogers
2003). One of the environmental perspectives of compact
urban development is to emphasize on containment of rural
developments and revitalization of central areas (Jenks et al.
1996; Lin and Yang 2006). The rationale behind this concept
is to try redeveloping existing brownfields inside the cities
instead of growing built up areas through rural environments.
Cho et al. (2011) attempted to solve this problem by evalu-
ating the hypothesis that land value tax contained rural area
development and encouraged compact and development
closer to and within built up areas. Rall and Haase (2011)
assessed the brownfield revitalization program of the City of
Leipzig in the context of urban sustainability. The assessment
was performed through a triangular integrated evaluation
method combined with site surveys and interviews, as well as
expert knowledge. However, these assessments and analyses
can be improved significantly by modeling the land use
changes in order to predict and propose a proper land use
types for each brownfield site. Schädler et al. (2012) descri-
bed and proposed a framework which integrates a GIS-based
identification of areas to be remediated, an estimation of
associated clean-up costs, and an assessment of the planned
future land use’s contribution to sustainable urban develop-
ment. Furthermore, Schädler et al. (2013) proposed a scheme
to transfer the evaluation of site-specific sets of sustainability
indicators into automated quantitative and spatially explicit
assessments, which can be integrated into multidisciplinary
spatial optimization algorithms. On the other hand, the main
aim of their study was to gain a site-specific understanding of
sustainable land use planning, and of the potential advantages
that mixed land use development may have over uniform use
with only one single land use type for a brownfield site.

However, the current chapter attempts to deal with brown-
field redevelopment based on compact development para-
digms through land use change modeling to achieve more
sustainability environment.

11.2 Land Use Change Modeling

According to the literature, following four core principles are
the bases of all land use change simulation models; historical
evidence based, suitability bases, neighborhood bases, and
actor interaction bases (Verburg et al. 2004a). The logic
behind historical evidence based is that, “past is the key for
future.” Therefore, background information can be helpful in
predicting future land use change as demonstrated by
Kuijpers-Linde et al. (2007). Suitability bases may consist of
several factors in a land parcel in order to evaluate for an
allocation of specific purpose (Abdullahi et al. 2014a).
Therefore, the underlying premise is to achieve maximum
profit and minimize liability. Neighborhood bases deal with
neighborhood interaction cells that affect the transition of
one land use to another (Li et al. 2008). Actor interaction
bases assume that land use change is the result of an inter-
action of several actors or agents. The agents can be one or a
group of factors. This core principle is a promising research
tool for land use change modeling (Matthews et al. 2007;
Jjumba and Dragićević 2012).

There are a few main concepts of land use changes such
as Markov chains, economic-based concept, agent-based
systems, statistical analysis, cellular automata, and artificial
neural networks. The Markov chain concept is based on a
continuation of historical trend of development. This con-
cept calculates a probability matrix of changes of one land
use type to another. The main disadvantage of this model is
the lack of spatial bases of results therefore additional
assumptions are required for allocation (Verburg et al.
2004a; Al-sharif and Pradhan 2014). The economic-based
concept is also an important reason for land use changes and
is mainly based on the suitability of a land, although the core
principle of continuation of historical development can also
be included. In general, economic-based is not exactly a
concept, however, cannot be left out of the list of concepts of
land use change (van Schrojenstein Lantman et al. 2011).
More recent applications of economic-based have been
reported by Nelson and Hellerstein (1997) and Walker
(2004) which all use as the based theory to explain tropical
deforestation. An agent-based systems of land use change
modeling which is based on the core principle of actor
interaction, consists of two main components: a map of a
study area and a model with agents that represent human
decision-making (Parker et al. 2003). An agent is a

Fig. 11.1 The megasite management system of the SAFIRA II
Program (modified after Bleicher and Gross 2010)
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representation of actors important in the process with their
own preferences (Grimm et al. 2006). These preferences can
be defined by expert knowledge, using questionnaires, or
using artificial neural networks technique (van Schrojenstein
Lantman et al. 2011).

Various kinds of statistical computation can be derived
from land use maps. For example, logistic regression, fre-
quency ratio, and weights-of-evidence techniques can be
used to analyze the probability of occurrence of a dependent
variable on each class of independent variables (Verburg
et al. 2004a). The coefficients of each variable can be cal-
culated from historical land use changes. Furthermore, they
can be projected for future land use changes. Other statistical
modeling approaches such as logit modeling in the planning
and policy environment are also so common like land use
scanner (Hilferink and Rietveld 1999), which has been used
in producing sustainability outlooks for the Netherlands
(Kuijpers et al. 2007). The Cellular Automata (CA) is the
most well-known techniques in modeling of land use
changes (White and Engelen 1993). The main logic behind
CA modeling for land use changes is the current state of
each cell and its interaction with neighborhood cells.
Therefore, this model is based on core principles of historical
trend and neighborhood interaction. However, CA does not
necessarily consider the relationship and interaction among
the related parameters. Thus, usually, the CA is integrated
with other techniques such as Markov Chain (Al-sharif and
Pradhan 2014), Fuzzy Theory (Al-Ahmadi et al. 2009), etc.,
to increase the strength of the modeling. The use of artificial
neural networks (ANN) has increased significantly due to
advances in computing performance and flexibility of soft-
ware (Skapura 1996). The pattern recognition capability
(Pijanowski et al. 2002), that makes a relationship between
past and future land use and suitability maps (Verburg et al.
2004b), are important parameters that can emphasize the
strength of ANN models in land use change modeling. The
first to apply ANNs to a computer simulation model was
Pijanowski et al. (2002). The model trains itself on a dataset
and the corresponding land use maps of different years
enabling it to recognize and reproduce the pattern of land use
categories (Mas et al. 2004; Pijanowski et al. 2005).
Appropriate knowledge about the land use change modeling
based on their concepts allows modelers to select the most
appropriate model for area of investigation.

Land use change modeling requires availability of rich
spatial data, spatial analysis tools, and displaying capability
to illustrate the output maps. Geographic information system
(GIS) and remote sensing are the most useful tools to support
modeling. GIS can provide a proper environment to store,
manage, analyze, manipulate, and display spatial data asso-
ciated with the models. In addition, GIS can aid modelers to

define and create spatial variables for the models (Openshaw
and Clarke 1996), predict land use changes based on several
independent spatial variables (Mertens and Lambin 2000),
and evaluate predicted changes in a spatial pattern. However,
some capability of GIS is also questioned regarding the
extent and type of GIS used in the planning practice (Olaf-
sson and Skov-Petersen 2014). Hence, updated knowledge
regarding the performance and limitation of GIS, as well as
integration with other models, will improve the strength of
the analysis. There are numerous studies on land use change
modeling using integration of GIS technology (Li and Yeh
2002; Pijanowski et al. 2002; Verburg et al. 2004a). For
instance, Thomas (2002) stated that to assess land use mod-
eling performance with respect to the redevelopment of
brownfields, accessibility of information such as land capa-
bility, environmental concerns, public preferences, etc., for
both governmental agencies and decision makers are
required. He discussed a GIS-based decision support system
to provide access to geospatial data in various scales for
better understanding of the brownfields redevelopment issue.

Although several applications of global parametric models
have been used in land use change modeling (Tayyebi et al.
2014), very few urban related studies have considered city
compactness as an objective of the land use change modeling
process to achieve urban sustainability. The lack of this
application specifically for brownfields redevelopment
planning is the motivation to investigate the potential and
capability of this integration modeling for existing brown-
fields of Kajang City, Malaysia. In addition, the current study
is an attempt to analyze the urban land use changes and
spatial patterns of the study area in a quantitative manner.
This will benefit Malaysian case studies as these effects are
usually explained without quantitative perspectives in the
country (Nourqolipour et al. 2014). Therefore, the main
objective is to integrate the land use change modeling con-
cept with the brownfield redevelopment plan on the bases of
city compactness paradigms. Specifically, this chapter illus-
trates how statistical-based weights-of-evidence (WoE) ap-
proach within GIS aids in the understanding of the process of
land use changes. WoE was used to measure the extent and
direction of various land use growth based on temporal
datasets for the year 2008 and 2012. In addition, the model
was utilized to apply and evaluate the driving forces
responsible for the change of land use types in a compact
pattern. One benefit of using the model is the ability to extract
and utilize the most effective factors from all the selected
factors before evaluating the probability of land use growth.

By integrating WoE process with brownfield redevelop-
ment strategy, one of the environmental objectives of compact
development can be fulfilled. Hence, this study initially pre-
dicts land use changes of Kajang City using the probability of
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growth of each land use according to compact development
evidences. Consequently, the extent and direction of each land
use types were projected. After validating the process, the
created probability maps and the master plan of the study
region was used to assess the existing brownfields land use
types. It should be mentioned that due to utilization of the
standard and common urban related parameters as well as
statistical-based methodology, this process can be easily
replicated in other international cities for implementing
brownfields redevelopment strategies.

11.3 Study Area

The proposed modeling approach was used to predicting the
multiple land use changes for Kajang City, Malaysia (3° 00ʹ
19″N, 101° 46ʹ 42″E). The study area is located 21 km from
Kuala Lumpur, the capital city of Malaysia (Fig. 11.2).
According to the 2010 census data, the city has population of
246,618, with an estimated population growth of 9% per
annum. The study area covers approximately 60 km2. The
west parts of the city are mainly covered by agriculture and
forest lands. Recent urban sprawl developments have
mushroomed Kajang City because of its proximity to three
main cities of Malaysia. Although there are many abandoned
and brownfields in the city (Fig. 11.3), most of these new
developments have been constructed at the outskirts of the
agricultural and forest lands. For this reason, the present
research attempts to assess the brownfields land use changes
according to the city compactness paradigm to make Kajang
City more environmentally sustainable.

11.4 Data and Methodology

In the first stage, a contextualized definition of the compact
urban development and its indicators was needed. Generally,
in a large scale study area, urban compactness is measured
based on the cellular bases and the concentration of the built

up cells in a specific area as in the study conducted by Li and
Yeh (2004) which assesses the urban compactness using
entropy and compactness index methods. Due to availability
of several urban detail layers, the current study performed a
compactness assessment in more accurate and detail bases.
There are three main city compactness indicators: urban
density, land use diversity, and urban intensity (Burton
2002; Abdullahi et al. 2014b). Each of these indicators is
divided into several parameters according to the availability
of data and the objective of the research. In addition to city
compactness indicators, other related urban parameters that
are important for land use changes and some physical
properties of the sites were included in the analysis, as
shown in Table 11.1. The overall methodology flowchart of
the process is shown in Fig. 11.4.

Most of the data, such as the land use map of year 2008
and 2012, the road network, the soil map, etc., were col-
lected from the local planning authority of Kajang City.
Other layers were also extracted or created from existing
layers. It was essential to select the most important param-
eters among others, which have a significant effect on the
land use conversion for the specific study area. Therefore, an
optimization process was applied to select the most effective
parameters. This process was performed by the frequency
ratio (FR) approach, which is the initial step of running the
weights-of-evidence technique (Pradhan et al. 2010; Pour-
ghasemi et al. 2013).

The FR model has the ability to examine the existence and
changes (the increase or decrease) of land use types with
respect to each class of all parameters. In this manner, the
effectiveness of each parameter could be assessed by investi-
gating the trend of land use changes based on their classes.
This process also assessed the spatial dependency of the fac-
tors. The classification of the parameters was defined
according to their types. For instance, a proximity analysiswas
performed for the distance-based parameters. Then these
distances were divided into classes, which include their spatial
extent. Every cell are in a distance class: “near” to, “middle”,
and “far” from land uses or points of interest. For ordinal

Fig. 11.2 The map of Malaysia,
Kajang city
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Fig. 11.3 An abandoned land in
Kajang; RGB photo (Taken by
Author) and satellite image
(Google Earth)

Table 11.1 Land use change
modeling parameters

No Parameters Categories

1 Population density City compactness

2 Built up density City compactness

3 Residential density City compactness

4 Land use diversity City compactness

5 Proximity to public transportation facilities Site-specific/City compactness

6 Proximity to recreation facilities Site-specific/City compactness

7 Proximity to community facilities Site-specific/City compactness

8 Proximity to infrastructure Site-specific/City compactness

9 Proximity to road networks Site-specific/City compactness

10 Proximity to same land use types Site-specific

11 Distance from agricultural fields Site-specific

12 Soil and geology properties Physical properties

13 Distance from flood zones Physical properties
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parameters, such as the land use diversity and urban popula-
tion, “high”, “moderate”, and “low” mixed or density were
applied respectively. In the case of nominal parameters such as
soil types or geology types, each type was used as one class.

The entire base layer of all factors was converted into a
grid cell to assess the growth of each land use type in their
classes. For instance, the proximity to industrial land use
causes a reduction in existence of residential land use cells. In
contrast, in areas near to recreational facilities, more number
of residential cells can be observed. However, various geo-
logical types do not have any significant effect on existence
or absence of residential cells. Hence, the proximity to
industrial and recreational facilities selected as important
parameters. Moreover, geological characteristic assumed as
not an effective factor, hence were removed from the process.

As previously mentioned, historical evidence bases are
one of the core principles of land use change modeling. In
order to investigate the trend of the land use changes during
a four year period, a cross-tabulation analysis of land use
maps was performed between the years 2008 and 2012.
A cross-tabulation enabled the observation of the significant
growth of the main land use types. This process is a math-
ematical matrix, which gives unbiased information con-
cerning the entire area of interest, to derive unbiased
summary statistics (Pontius and Millones 2011). For this
case study, the matrix gave unbiased information concerning
the relationship between the land use maps of 2008 and
2012. It showed that only three main land use types (resi-
dential, commercial and industrial) were growing and
changing significantly than others. New-build gentrification
literature also proved that the land use change process is
mainly from pre-industrial or brownfields to residential,
commercial, or institutional uses (Davidson and Lees 2005;
Sabri et al. 2012). Furthermore, the growth of these three
land use types resulted in the reduction of agricultural fields.
Hence, it is decided to focus on residential, commercial, and

industrial land use types, to evaluate and project their growth
through other land use types.

For the proposed land use change modeling, Bayesian
theorem was applied, with an update of prior probabilities
through the weights-of-evidence (WoE) approach
(Bonham-Carter 1994; Pradhan et al. 2010). Dempster–Shafer
theory of evidence developed byDempster (1967) and then by
Shafer (1976) is a spatial integration model with mathematical
representations (Carranza 2009; Althuwaynee et al. 2012).

The selected parameters from the optimization process
were utilized as evidence in order to evaluate the probability
of growth for each main land use type. The WoE allowed the
ability to assess and combine evidences according to varia-
tion of the land use changes. The advantage of this theory is
its flexibility to compute uncertainty and to combine evi-
dences from different sources of data (Thiam 2005; Bui et al.
2012). The model created an opportunity to analyze land use
changes according to the city compactness paradigm. In
general, WoE evaluates the degree to which evidences sup-
port the hypothesis, in this case the land use change occur-
rence, and the degree to which those evidences do not refute
the hypothesis (Dempster 1967; Shafer 1976). The WoE has
been widely applied in the literature in a variety of applica-
tions such as geological mapping (Chen et al. 2013), and
natural disaster management (Althuwaynee et al. 2012; Bui
et al. 2012; Pourghasemi et al. 2013). However, a few studies
have utilized this approach in urban applications such as land
use dynamic modeling by Maria de Almeida et al. (2003) and
mixed land use development probability mapping by
Abdullahi et al. (2015). As an example, the WoE of resi-
dential land use growth with respect to the proximity to the
road is shown in Table 11.2. The value of C was calculated
by subtracting W+ (natural logarithm of occurrence) and W−
(natural logarithm of non-occurrence). This value represents
the spatial association of each land use pixel and each class of
evidence. A positive value represents a higher number of
specific land use pixels occurring in this class. In contrast, a
negative value represents a lesser number of land use pixels
occurring in this class. S2(W+) and S2(W−) are variances of
W+ and W−, respectively, and S(C) is the standard deviation
of the contrast. Finally, C/S(C) is the standardized value of C
which represents the significance of the spatial association
and measures the relative certainty of the posterior proba-
bility (Bonham-Carter 1994).

Further detailed description of the mathematical formu-
lation is available in Maria de Almeida et al. (2003), Pradhan
et al. (2010) and Regmi et al. (2010). The probability value
of the land use growth for every cell of the study area is
calculated by considering the prior probability of occurrence

Fig. 11.4 Proposed brownfield redevelopment methodological
flowchart
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and non-occurrence of land use types in each class of evi-
dence. The majority of the evidences are distance-based or
accessibility. Hence, assessing the weights across the dif-
ferent distance ranges is possible. The other two evidences
were the main city compactness characteristics and charac-
terized in ordinal bases. The transitional probability was
computed according to the proportion of the observed tran-
sition in each predefined class of evidences.

The output of this process is the three land use growth
probability maps which show the probability of each land use
growth according to the selected evidences separately. Each
map was later classified into three classes: areas with very
high, moderate, and low probability of growth of a specified
land use type. Finally, all three maps as first scenario which
was equal priority scenario were aggregated with the same

weights. The first scenario was to illustrate the overall view of
the study area regarding the growth of each single land use
types, as well as mixture of them. The other scenarios were
defined according to the master plan of the study area, where
each land use growthmap had different priority values. Hence,
the site potential and suitability, the local demands of the
neighborhood, and the local planning and development policy
can assist to assign a proper priority to each land use type.

The next step was to extract the existing brownfields of
Kajang City. For this process, the site indicators and criteria as
listed in study conducted by Thomas (2002) were tested. All
open spaces such as the buffer zone around rivers and high-
ways, recreational play grounds, and natural landscapes were
excluded from the analysis. As shown in Fig. 11.5,most of the
small brownfield sites are located in the center, south, and

Table 11.2 Weights-of-evidence for residential land use growth with respect to proximity to road, proximity to public transportation and facilities
and population density evidences

Factor Class No. cells No. deposit FR W+ W- C S2(W+) S2(W−) S(C) C/S(C)

Proximity to road Near 745,948 215,086 1.08 0.08 −0.04 0.12 0.000007 0.000004 0.0032 38.23

Middle 752,993 209,126 1.04 0.04 −0.02 0.07 0.000007 0.000004 0.0032 20.49

Far 762,663 176,854 0.87 −0.14 0.06 −0.20 0.000007 0.000004 0.0033 −59.78

Total 2,261,604 601,066

Proximity to public
transportation

Near 736,018 215,086 1.10 0.09 −0.05 0.14 0.000007 0.000004 0.0032 44.33

Middle 769,543 209,126 1.02 0.02 −0.01 0.03 0.000007 0.000004 0.0032 10.43

Far 756,043 176,854 0.88 −0.13 0.06 −0.19 0.000007 0.000004 0.0033 −55.82

Total 2,261,604 601,066

Proximity to public facility Near 723,298 243,621 1.27 0.24 −0.13 0.37 0.000006 0.000004 0.0032 114.96

Middle 769,661 240,939 1.18 0.16 −0.10 0.26 0.000006 0.000004 0.0032 80.78

Far 768,645 116,506 0.57 −0.56 0.20 −0.76 0.000010 0.000003 0.0036 −207.46

Total 2,261,604 601,066

Population density Low 668,052 111,643 0.63 −0.46 0.14 −0.61 0.000011 0.000003 0.0037 −162.34

Middle 832,707 265,225 1.20 0.18 −0.12 0.30 0.000006 0.000005 0.0032 93.32

High 760,845 224,198 1.11 0.11 −0.06 0.16 0.000006 0.000004 0.0032 50.51

Total 2,261,604 601,066

Bold letters indicate the significant/important values

Fig. 11.5 Existing brownfields of Kajang city
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southeast. They are near dense residential and commercial
areas or compact regions. In contrast, brownfields with larger
area are located in the east, west, and central west near to
industrial and agricultural fields or less compact regions.

11.5 Results and Discussion

In the first step to understand the current trend of land use
change of the study area, a cross-tabulation process was run
between the land use map of year 2008 and 2012. This
process revealed that residential land use attempts to capture
almost all types of activities. However, this growth is more
noticeable through open spaces and agricultural fields. In
fact, the growth in main land use types through brownfields
and abandoned land is desirable. However, loss of 345 ha of
agricultural fields in 4 years only from residential land use
development is an unsustainable problem that should be
avoided. Unfortunately, loss of agricultural fields can be
seen from the growth of commercial and industrial land use
as well. By running a cross-tabulation process, the total
growth and total loss of each land use types were computed.
Residential, commercial, and industrial land use had growth
values of 367, 72, and 75 ha, respectively, during four years
period. Moreover, in overall Kajang City has lost more than
348 ha area of its agricultural fields in same period.

After evaluation of the land use growth with respect to all
selected parameters, it was noticed that some of them do not
have influence on these growths. Therefore, by running the
optimization process, the most effective factors as shown in
Table 11.3 were extracted. Residential and industrial land
use types apparently are more similar in factor effectiveness

rather than commercial land use. However, it should be
noted that most the factors have an inverse relationship with
these two land use types: the proximity to community and
recreational facilities, the population density, and the land
use diversity. In contrast, commercial and residential land
uses have a direct relationship in case of the most factors.

The probability value of land use growth (C/S(C) value) for
every cell of study area was calculated considering the prior
probability of occurrence and non-occurrence of land use
types in each class of evidences. A summarized
weights-of-evidence calculation for each land use growth is
given in Table 11.4.

A majority of evidences were based on distance or
accessibility and it was possible to examine the probability
of growth of land use types across the different distance
classes. On Table 11.4 and as shown in Fig. 11.6, the
probability of growth for each land use types is higher in
close proximity to the same land use types. In contrast, the
residential and industrial land uses tend to keep distances
from each other. In general, proximity to recreational and
community facilities offer advantages for the housing
environment. In this specific case study, the proximity
caused positive probability values for residential and neg-
ative values for industrial land use growth. This confirms
the inverse relationship of the residential and industrial land
uses theory.

Accessibility to main roads and public transportation
facilities is another important characteristic of site suitability.
Having proper accessibility is a positive factor for most of
new developments. However in Kajang City, most of the
industrial land uses are located near agricultural fields or
rural areas, which not much urban development is observed.

Table 11.3 Most effective parameters for land change modeling

Important factors Land use type

Proximity to residential Residential, commercial, industrial

Proximity to commercial Residential, commercial, industrial

Proximity to industrial Residential, commercial, industrial

Proximity to roads Residential, commercial, industrial

Proximity to public transportation Residential, commercial, industrial

Proximity to community facilities Residential, industrial

Proximity to recreational facilities Residential, industrial

Proximity to infrastructure Residential, industrial

Proximity to agricultural fields Residential, commercial, industrial

Population density Residential, commercial, industrial

Land use diversity Residential, commercial, industrial
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This issue can be seen from the proximity to agricultural
fields as well. Consequently, in the case of industrial land
use, negative values are for classes near to main roads and
public transportation facilities.

Population and land use diversity evaluation were in the
range of high and low population and single to mixed land
use, respectively. These two compactness-based evidences
revealed straightforward effects on the land use growth.
Higher population and higher land use diversity resulted
positive values of C/S(C) for residential and commercial

land uses. In contrast, the area in single land use and lower
population density has a higher probability for industrial
land use growth.

Land use growth map for residential, commercial, and
industrial are given in Fig. 11.6, respectively. The white
areas are constraint areas such as transportation, flood zone,
and water bodies, which have been removed from the
analysis.

For the validation of land use change simulation, it is
desirable to quantitatively evaluate the degree of fitness or

Table 11.4 Summarized weights-of-evidence for main three land use growths

Factors Class C/S(C) C/S(C) C/S(C)

Residential Commercial Industrial

Proximity to residential Near 364 −14 −365

Middle −264 41 330

Far −156 −45 126

Proximity to roads Near 53 167 −137

Middle 29 −88 −40

Far −86 −89 172

Proximity to recreational facilities Near 129 – −225

Middle 42 – −85

Far −188 – 300

Population density Low −158 −99 251

Moderate 112 40 −114

High 18 60 −142

Proximity to commercial Near 14 198 −163

Middle 60 −131 −6

Far −77 −70 159

Proximity to public transportation Near 63 117 −172

Middle −3 −99 −6

Far −62 −17 174

Proximity to infrastructure Near 40 – −70

Middle 60 – 30

Far −105 – 37

Land use diversity Low −79 −120 216

Moderate 74 73 −76

High 2 56 −156

Proximity to industrial Near −206 −60 380

Middle 108 65 −241

Far 76 −6 −166

Proximity to community facilities Near 72 – −222

Middle 88 – −75

Far −174 – 287

Proximity to agricultural fields Near −132 −42 2

Middle 21 6 75

Far 100 36 −78
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similarity between the projected land use and the actual land
use map. This similarity assessment was performed using the
relative operating characteristic (ROC) based area under
curve (AUC) to evaluate the probability of growth maps
created by WoE approach (Pontius and Schneider 2001; Van
Eck and Koomen 2008; Chen et al. 2013). To run AUC,
WoE was applied on the land use map of 2008 in order to
create the main land use (residential, commercial and
industrial) probability of growth for the future. Subse-
quently, the similarity of these three maps was assessed by
the actual residential, commercial and industrial land use of
year 2012. In this manner, the process determined how well

the method and parameters produced the land use growth
map. The AUC of 50% indicates random results. The AUC
of residential, commercial and industrial land use were
gained as 77.4, 78, and 67%, respectively. Lower AUC
value of industrial land use indicated that industrial land use
growth is more depend on economical perspectives rather
than physical or proximity to same land use type parameters.

After the aggregation of land use growth maps as the first
scenario (equal priority), with the brownfields map, from a
total area of brownfields (2,908,550 m2), 400,000 m2 was
assigned as the single land use growth (Fig. 11.7 and
Table 11.5). The rest of them were projected for mixture of
two or three land use types.

Single land use developments are assigned to brownfields
located in an area with high probability of growth for only
one land use type. For instance, as shown in Fig. 11.6, the
central west of Kajang City is only suitable for the industrial
land use type. Therefore, most of the brownfields located in
these areas were automatically assigned as a single land use
development for industrial purposes. However, according to
Fig. 11.6a, b, most of the commercial land use growth are
suitable for residential as well. Residential–commercial
mixed land use area covered more than one third of whole
city (1,107,877). This large area could be expected due to the
high similarity of the C/S(C) value and the direct relationship
of residential and commercial land use with respect to all
evidences. These areas can be developed in vertical mixed
use, which means the basement floors are for commercial use
and upper floors for housing purposes. In addition, significant
differences of the C/S(C) values of commercial and industrial
caused only 136,000 m2 area to become a mixture of these
two land use types. Areas with mixture of residential–in-
dustrial are mainly located in the borders of these land use
types. It should be mentioned that the industrial use which
assigned for these areas are mainly light industry. The rest of
the area was assigned as a mixture of all three land use types.
Considering the size, potential, and suitability of these
locations, these brownfields can serve the neighborhood as
mixed land use development. Further scenarios can be
defined by consideration of local expert knowledge in order
to give different priority values for each land use type.

11.6 Conclusion

Rapid urban growth has resulted in intensive loss of natural and
valuable agricultural lands especially in fast growing regions.
Therefore, the simulation or projection of the future urban
growth and land use changes provide very beneficial informa-
tion for local planners and decisionmakers.However, like other
urban related issues, land use changemodeling is often difficult

Fig. 11.6 a Residential, b commercial and c industrial land use growth
map from WoE model
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to simulate due to its complexities, uncertainties, and several
numbers of involved parameters and/or stakeholders. These
difficulties need to be dealt with multidisciplinary geospatial
techniques and other systematic procedures.

This chapter illustrates the application of GIS-based WoE
for modeling the brownfields land use changes. The future
land use type of each existing brownfield could be identified.
This projection can be in single land use or a mixture of two
or more land use types depending on brownfield properties,
potential, and surrounding environment conditions. The
model process was based on the trend and historical land use
changes of the study area. Furthermore, the projected land
use changes were based on city compactness paradigms such

as urban density, urban intensity, and land use diversity in
order to develop the city according to sustainable develop-
ment theory. Several other urban related factors were
involved in the analysis as well. However, the results show
that one of the main controlling factors for these changes
was based on spatial autocorrelation of land use types.

The WoE model is a statistical-based model. Hence, the
parameters were evaluated statistically instead of subjective
choice of weighing technique by expert knowledge, which is
the main source of uncertainty. For this reason, it can be
concluded that the model revealed reliable and promising
results for brownfields land use change modeling. The final
outputs provide valuable land use growth maps and

Fig. 11.7 Projected land use
types for existing brownfields

Table 11.5 Projected land use types for existing brownfields

Land use diversity Land use type Area (m2)

Single land use development Residential 140,222.3

Commercial 0

Industrial 258,892.5

Total 399,114.8

Mixed land use development Residential–commercial 1,107,877.2

Residential–industrial 625,962.9

Commercial–industrial 136,064.8

Residential, commercial, industrial 639,531.7

Total 2,509,436.6

Total 2,908,551.4
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information about the future of existing brownfields of the
city. Redeveloping and revitalizing these areas according to
compact development concept will make Kajang City
environmentally more sustainable.
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12Extraction and Modeling of Urban Sprawl
Development in Karbala City Using VHR
Satellite Imagery

Amer D. Salman Aal-shamkhi, Hossein Mojaddadi, Biswajeet Pradhan
and Saleh Abdullahi

12.1 Background

Currently, half of the world’s population lives in urban areas.
The rate is expected to significantly increase by the middle
of the present century. Unfortunately, this rapid urban
expansion has been strongly associated with poverty and
slum growth. The increasing concentration of urban popu-
lation in slum areas generally indicates increasing urban
poverty. This process is recognized as the urbanization of
poverty. According to new estimates reported by
UN-HABITAT, over 200 million people in the developing
countries are expected to be lifted out of slum conditions
between the year 2000 and 2010. However, in the course of
the same years, the number of slum residents is estimated to
increase by six million every year. Based on these trends, the
world’s slum population will continue to grow if no proper
action is taken in the coming years (UN 2009). Proper urban
planning and development activities for improving the living
conditions worldwide depend on the use of strong and
comprehensive spatial data (Mason and Fraser 1998); such
data can be obtained by remote sensing (RS) technology
(Hofmann 2001; Bhatta 2010; Bhatta et al. 2010). Given that
traditional methods are costly and time consuming, alterna-
tive approaches, such as sophisticated techniques, must be
used to extract information from remotely sensed data.

Mapping and monitoring of unorganized urban expansion
are important concerns for many national and international
initiatives. Monitoring settlements is beneficial in acquiring
information on various phenomena, such as illegal immi-
gration, and is important in the current political agenda.
Mapping and monitoring techniques are widely applied and
particularly relevant for developing countries. Usually, no
real subdivision of the land is performed, and sprawl
developments are characterized by rapid, unstructured, and
unplanned developments. Spatial technology may assist in
analyzing the patterns of these settlements by forecasting
their possible changes and providing information on the way

to improve the living conditions in these areas from their
present status. However, for its effective application in
unorganized urban settlement, spatial technology must pro-
vide low cost data acquisition and processing. The tech-
nology must also be as automated as possible to achieve fast
and reliable results, simple to use, and largely based on
tested routines and algorithms. Field survey and visual
interpretation of satellite data are traditionally used to pro-
duce reliable information. Nevertheless, these methods are
manually operated and require considerable expertise. Apart
from the operator skill bias, these methods are time con-
suming and cannot cope with the rapid development. In
general, remote sensing and geographic information system
are useful tools for providing input data and proper envi-
ronment for analysis and visualization of various urban
applications (Bhatta 2009, 2010; Al-sharif et al. 2013;
Abdullahi et al. 2014; Abdullahi et al. 2015), especially in
monitoring of urban sprawl development (Shekhar 2012;
Hegazy and Kaloop 2015). In recent decades, several high
spatial resolution satellite data, such as IKONOS (1999),
EROS (2000), QuickBird (2001), SPOT-5 (2002), ALOS
(2006), and GeoEye-1 (2008), have been applied in various
aspects. These satellite data are recommended for various
mapping applications because they can clearly identify many
details and other elements of phenomena. Urban geogra-
phers have recognized the potential of satellite data for urban
applications, including updating of maps, extraction of urban
features (e.g., road networks and other engineering and
social infrastructure), generation of urban models, and land
use mapping. For the purpose of the current study, the
challenge lies in obtaining appropriate methods to reliably
detect and monitor the spatial behavior of unorganized set-
tlements (Lemma et al. 2006). In an ideal case, these
methods can be applied without expert knowledge and
human interaction. In practice, ease of use and the degree of
automation for information extraction from RS imagery
depend on the data and phenomena to be extracted from the
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image. In this context, unorganized settlements show a rel-
atively high inner structural heterogeneity. Consequently,
describing patterns in image becomes difficult, thereby
hampering the generation of an automated and easy-to-use
detection process.

Considerable research on the effects of urban sprawl
development and expansion on environmental, social, and
economic aspects (Squires 2002; Grant 2006; Abdullahi et al.
2015; Dadi et al. 2016) clearly indicates the necessity for
serious monitoring and controlling of urban growth through
proper policies and strategies. Therefore, analysis, modeling,
and prediction of land use change and growth are essential
tasks and provide the necessary baseline information and
environment for dealing with the resulting complex problems
(Li and Yeh 2002). Land use changes can be modeled and
predicted using several approaches, such as Markov chain
(Koomen and Borsboom-van Beurden 2011), agent-based
modeling (Parker et al. 2003; Grimm et al. 2006), statistical
approaches (Verburg et al. 2004; Abdullahi and Pradhan
2015), artificial neural network (Pijanowski et al. 2002,
2014) and cellular automata (Li and Yeh 2000; Li et al.
2008). Among these approaches, cellular automata (CA) is
the most widely applied in this field because of basing on the
neighborhood interaction of surrounding cells that affect the
transition and conversion of land use types. Integrating this
model with other approaches, such as ANN, multi-criteria
decision analysis, Bayes rule, and Markov chain, can provide
a strong and comprehensive methodological approach for
modeling and predicting future land use pattern.

This study dealt with the common problems of urban
sprawl development and the expansion of Karbala City
(Iraq) through four main objectives: (1) to develop rule sets
in object-based classification for extracting land covers of
the study area, including unorganized built-up area; (2) to
detect and analyze land use changes in 2002, 2007, and
2013, particularly on urban growth based on the structural
plan of Karbala; (3) to predict the future pattern of land use
growth and changes using the CA method for the year 2024;
and (4) to extract and count the houses in a part of the study
area using eCognition segmentation-based methods and
produce a map of unorganized settlements. This study can
assist in comprehensively understanding urban pattern and
behavior for effective decision making and urban planning
and overcoming the present problems and limitations on
sprawl development.

12.2 Study Area

The surrounding regions (northern and eastern parts) of
Karbala City in Iraq are selected as the study area. The study
area is an important part of Karbala City for future

development. This area covers approximately 62 km2 and is
located between 32.37–32.35 N and 44.2–44.4 E
(Fig. 12.1). This area is fertile and includes agricultural land
and orchards rich with palms, citrus, and various fruit trees.
Karbala is an important province in Iraq and is 100 km away
from the capital city (Baghdad). The entire area of Karbala is
5228 km2. This province is one of the holy cities in Iraq and
has an estimated population of 1,013,500 in 2008.

Karbala has experienced a steady growth over the last two
decades. Although urban growth is perceived as necessary
for a sustainable economy, uncontrolled or sprawling urban
growth results in various problems. Urban sprawl not only
rapidly consumes the precious rural land resources at the
outskirt of the city, but also results in landscape alteration,
environmental pollution, traffic congestion, infrastructure
pressure, rising taxes, and neighborhood conflicts. Unfortu-
nately, urban growth prediction at the regional level in the
entire Karbala City has not been conducted. Without infor-
mation generated from reliable predictions, discussions or
debates on these issues will remain at a superficial level.

Iraq has been subjected to harsh conditions of interna-
tional and internal wars. These conditions have significantly
affected the economic situation of the country. Conse-
quently, the quality of life has been seriously affected,
resulting in deterioration of agriculture and industrial sectors
and difficulty in residential development for poor citizens.
These issues have increased rural–urban migration for job
opportunities to fulfil people’s basic needs. However, the
high cost of buying or renting existing houses has stimulated
the growth and expansion of improper and unorganized
residential environments around the city centers. After the
US-led war against Iraq and the fall of the previous gov-
ernment, the local owners of orchard fields near the city
centers began to divide their vast lands into small residential
parcels. They then sold these portions to poor families
without obtaining proper approval from the local planning
authorities. The most recent war in Iraq has resulted in a
substantial wave of internal and external displacement along
with increased sectarian violence and ethnic tension. The
subsequent conflict has exacerbated conditions within the
nation and further increased displacement. Karbala Province
received a large number of these displaced families after the
deterioration of the security situation in Baghdad. Therefore,
proposing a robust technique for modeling land use changes
and extracting urban sprawl development is highly required
for Karbala City and other cities in Iraq.

12.3 Data and Methodology

The methodological processes of this study (Fig. 12.2) are
listed below.
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Fig. 12.1 Location of study area (Karbala city)
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• Image processing and analysis
i. Pre-processing: to correct the geometric, radiomet-

ric, and atmospheric errors.
ii. Processing: to subset the images and apply the

image classification method and change detection in
three scenarios.

iii. Post-processing: to produce a map, layout the
results, and check accuracy assessment.

• Land use change modeling: to predict the future growth
and change pattern.

• Counting the unorganized houses inside a subset of the
study area using object-based image analysis (OBIA) and
eCognition segmentation method.

Table 12.1 and Fig. 12.3 show the image processing
steps (QuickBird image). Three very high spatial resolution
images (0.6 m) were utilized. These images provided
detailed information of the location and distribution of roads,
buildings, orchards, and other structures. They contained the

ground information and the spatial location of developments
in 2002, 2007, and 2013 of all centers and outskirts of
Karbala City in Iraq.

In addition to these satellite images, the following set of
ancillary datasets was utilized to improve the accuracy and
reliability of the process:

• Structural plan of the city,
• Population Data, and
• GCPs Ground Control point Points 106 points during

two weeks.

The structural plan of Karbala City was collected from
the ministry of municipalities. This plan was approved in
2006 by the prime minister of Iraq. Population data were
used to evaluate the urban growth with population and
socioeconomic factors. Table 12.2 presents the total
population in Iraq and Karbala City in 2002, 2007, and
2013.

Fig. 12.2 Overall methodological process
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12.3.1 Image Preprocessing and Classification

Prior to data analysis, initial processing on the raw data, such
as radiometric, atmospheric, and geometric correction, was

performed to correct all the distortion and errors attributed to
the characteristics of the imaging system and conditions. In
addition, the cloud-covered area was corrected through two
steps: the spectral range of the cloud was analyzed using the

Table 12.1 Characteristics of Quickbird images (2002, 2007, and 2013)

Spatial resolution Panchromatic Multispectral

0.6 m GSD 2.4 m GSD

Spectral range 445–900 nm (blue) 450–520 nm
(green) 520–600 nm
(red) 630–690 nm
(near IR) 760–900 nm

Fig. 12.3 Study area overlapped
on Quickbird image (2013)

Table 12.2 Population data
of Karbala

No. Year Population (Iraq) Population (Karbala)

1 2002 34,208,000 755,995

2 2007 25,565,000 1,013,254

3 2013 29,682,000 1,663,500
(1,113,500 original + 550,000 displaced)

Source the statistical center of Karbala
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image histogram first, and then a threshold was applied to
extract the cloud-covered area and results were further
refined by manual editing. The resulting image used for the
processing was cloud free. Moreover, the image was com-
pared with the closest image available (2009) to extract the
cloud-covered area and replace it with the included features
from the 2009 image.

Numerous image processing and analysis techniques have
been developed to aid the interpretation of RS images and
extract as much information as possible from the images.
The choice of specific techniques or algorithms depends on
the goals of each individual project. For the current study,
several procedures commonly used in analyzing and inter-
preting Quickbird images were examined for extracting and
monitoring much information on the sprawl development in
Karbala City. The rule-based algorithm of the
object-oriented classification method was applied on three
available images (2002, 2007, and 2013). This algorithm is
reported as the best method for this purpose because its
spectral and spatial properties are more accurately than those
of the pixel-based algorithm. Regarding the occurrences of
settlement areas in RS data, pixel-based approach on a
high-resolution image cannot represent the heterogeneity of
complex urban environments. Hence, sophisticated method
and data for slum analysis must be used. Using
multi-resolution segmentation, initial objects were created
according to texture, geometry, and contextual characteris-
tics of the image objects and were classified into slum and
non-slum areas.

OBIA is being developed recently contrary to traditional
pixel-based image analysis. Pixel-based image analysis is
based on the information in each pixel, whereas OBIA is based
on information from a set of similar pixels called objects
(Hamedianfar and Shafri 2015). More specifically, image
objects are groups of pixels that are similar to one another
based on a measure of spectral properties (i.e., color, size,
shape, and texture) and a context from a neighborhood sur-
rounding the pixels. In the present study, the image pixelswere
grouped on the basis of the spectral and spatial characteristics.
This process requires a set of parameters, such as scale, shape,
and compactness, which need to be specified for the process.
Using this classification process, seven land covers (road,
slough, water body, agriculture, built-up, orchard, and
wasteland) were extracted from the utilized images.

Common accuracy measurements (overall accuracy and
kappa coefficient) were implemented to evaluate the classi-
fication process. These measurements require training data
from the field or other reliable sources, such as reference
maps from agencies. The training data used in the current
study were from the field and were collected by GCPs in 106
samples. These data were equally distributed to all classes
together with other important locations from Google Earth.

12.3.2 Land Use Change Analysis and Modeling

Change detection analysis was implemented on classified
images to describe and quantify differences between images
of the same scene at different times. For this purpose, cross
tabulation process was applied to individually extract con-
version among various land use categories in the period from
2002 to 2013. The classified images of the three dates were
used to calculate the area of different land covers and
observe the changes that occurred in the span of the data. By
comparing the three classified images, the unorganized set-
tlements and number of houses in the study area were
extracted and calculated.

Markov chain module was used to analyze the pair of
land cover images. As a result, transition probability, tran-
sition area matrices, and a set of conditional probability
images were produced. The transition probability matrix
records the probability that each land cover category will
change to every other category. The transition area matrix
records the number of pixels that are expected to change
from each land cover type to another over the specified
number of time units. In these matrices, the rows represent
the older land cover categories and the columns represent the
newer categories. The conditional probability images report
the probability that each land cover type will be found at
each pixel after the specified number of time units. In the
present study, these images were calculated as later projec-
tions of the two input land cover images. The output con-
ditional probability images can be used as direct input for
specification of the prior probabilities in maximum likeli-
hood classification of remotely sensed imagery. On the basis
of these outputs, a CA model was designed in this study for
urban growth modeling to simulate the process of urban-
ization in a hypothetical region. This model comprises a set
of rules that describe the spatial interaction of cells and a set
of parameters that indicate different urban forms. Further-
more, different results of the model can be evaluated
throughout by fractal analysis and the estimation of the
fractal dimension. A significant connection was observed
between the parameters of the model and the value of the
fractal dimension. Several important factors were applied
into the model to aid its feasibility in examining real urban
patterns, such as landscape constraints, transportation net-
works, protected areas, and physical geographies (Apostolos
2010).

The design of the CA algorithm comprises defining the
transition rules that control the urban growth, calibrating
these rules, and evaluating the results for prediction purpose.
Defining the transition rules is the most important phase in
CA model design because these rules translate the effect of
input data on the urban process simulation. Therefore, an
accurate and realistic definition of the rules must be realized.
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In this study, transitional rules were designed as a function
of land use effect on the urban process, growth constraints,
and population density. The transition rules were defined
over the 3 � 3 neighborhood of a pixel to minimize the
number of input variables to the model. The rules identify
the necessary neighborhood for the tested cell to remain the
same or change to another land use category. The growth
constraints must reflect the conservation strategy adopted in
the study area for certain land uses. For example, conser-
vation of certain species of natural resources can be con-
sidered through these rules (Alkheder et al. 2006). Thus, the
process was applied for land use maps of years 2002, 2007,
and 2013 to project the future land use map for the year
2024.

12.3.3 Counting of Unorganized Houses Using
OBIA

The process of counting unorganized houses starts from
selecting a subset of the original image to show the effi-
ciency of the developed method. First, the image was seg-
mented using the trial and error approach and with the
following parameters: scale = 10, shape = 0.9, and com-
pactness = 0.5. The segmentation was classified using the
supervised OBIA method with the spectral and spatial fea-
tures. The result of the classification was then converted to
ArcGIS data for further analysis. In ArcGIS, the houses were
first extracted using the selection by attribute and SQL
structure. The filtering was then applied to the area of the
segments for counting, thereby generating several logical
segments representing houses. In this step, the rule “Area
>40 AND Area <500” was used. Using this rule, the original
houses were filtered and the final segments were exported
into a new dataset. Using the new dataset, the houses were
counted on the basis of the number of segments left. The
final map was produced by selection and preparation of the
final houses as segments (Fig. 12.4).

12.4 Results and Discussion

12.4.1 Rule Sets Development for Land Use
Classification

A set of rule sets were developed in ENVI software using the
trial and error approach combined with the knowledge of the
authors regarding the study area. The rules were developed
to classify the satellite images into seven land covers iden-
tified using the Anderson scheme (Table 12.3).

Using the rule sets developed in this study, the satellite
images were classified into seven classes (Fig. 12.5). The
built-up areas were mostly clustered in the city center and

the surrounding areas were mostly covered by agriculture
and orchards. The sprawl developments were clearly
observed within orchard areas. This finding is attributed to
that the farmers started dividing their farms into small pat-
ches from 40 to 500 m2. In the 2007 image and classification
map, the built-up areas were expanded toward the south of
the study area of approximately 2.24 km2. In 2013, the
built-up areas were distributed mainly in the center, north,
and southeast of the city. In addition, the built-up areas were
expanded toward the southeast and north of the study area of
approximately 6.5 km2. In 2013, the percentage of the
agriculture and orchard classes was reduced because of the
expansion of built-up areas. In other words, the government
also expanded the development from the center toward all
other directions. In addition, owners of orchards kept on
dividing their lands into unorganized houses and selling
these portions to poor citizens and displaced people.

In 2002, the study area was mostly covered by orchards
and agriculture areas containing palm dates and other sea-
sonal crops (covering more than 80%). The other compo-
nents of built-up areas and other classes are shown in
Table 12.4. This table shows the areas in square meters as
determined from the land classification map of 2002, 2007,
and 2013. The observed areas of built-up land cover class
were 6,794,506.8, 9,038,500.2, and 15,521,743 m2 in 2002,
2007, and 2013, respectively. The built-up areas included
the proper development by the government and unorganized
houses developed by local citizens. In addition, the spatial
distribution of the organized development was found clus-
tered in the city center. However, the unorganized houses
were distributed in the green lands around the city center.

One of the important topics in RS and image classifica-
tion is the accuracy assessment. In this study, the accuracy of
the land cover classification was determined using four
common accuracy measures (overall, kappa, and user and
producer accuracy). The results of the accuracy assessment
are shown in Table 12.5. The table shows that the overall

Fig. 12.4 Methodological flowchart for extraction of unorganized
houses
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accuracies of the land classification map for the year 2002,
2007, and 2013 were 83.77, 84.62, and 80.51%, respec-
tively. Meanwhile, the user accuracies of the built-up areas
were 79.39, 83.56, and 80.79% for the three land use maps.

The area of organized housing development was exclu-
ded from the original land cover map to check the distri-
bution and area of the classes without the organized houses,
especially the sprawl development. Most of the houses
observed in built-up areas were significantly distributed in
the green land compared with the organized houses.
Therefore, the expansion of the houses in Karbala City is

insufficient and strategic planning is necessary for further
development to aid in better planning and managing of the
city in the future. Figure 12.5b, d, and f show the land cover
classification map excluding the proper housing develop-
ment in 2002, 2007, and 2013.

The surface areas of land covers without city illustrations
are shown in Table 12.6. This table shows the areas in
square meters as determined from the land classification map
for the three land use maps. The areas of built-up land cover
class were 4,806,455, 6,324,836, and 11,556,451 m2 for
2002, 2007, and 2013, respectively. The built-up areas only

Table 12.3 Rules of each class
in rule-based classification
approach

Class Rules Description

1 Road If avgband_1 <330 AND
avgband_4 >374 AND Length � 33

Roads have low values of NDVI, low
reflectance in the blue band but a high
reflectance in the NIR band

2 Orchard If avgband_3 <360.4 AND
tx_range >28.2 AND avgband_4 >2.4

Orchards have high values of NDVI and
highly textured

3 Built-up If avgband_1 <355.1 AND
tx_range >15.5 AND
tx_variance <167.9 AND
avgband_4 >242.8 AND Area >50

Built-up areas have low values of NDVI
and low reflectance in the blue band. The
texture variance is small, but the range is
big. Most buildings are higher than
2.8 m

4 Water
bodies

If tx_range <12.4 AND
avgband_4 < 460.3

Water has low values of NDVI, low
reflectance in the NIR band and a small
texture range

5 Agriculture If avgband_3 >420 AND
avgband_1 >310.6 AND
avgband_2 <480

Land has low values of NDVI and high
reflectance in blue and almost NIR bands

6 Wasteland If tx_range <13.5 AND
avgband_4 <460

Wasteland has high values of NDVI, but
not highly textured

7 Slough If avgband_4 >420 AND
avgband_1 <360 tx_mean >245.6

Slough and wetland have high
reflectance in the NIR band, but low
reflectance in the other bands. They are
highly textured

Table 12.4 Area of each class
of land cover

ID Class 2002 2007 2013

1 Road 2,322,735.48 2,481,872.04 3,218,462

2 Slough 1,374,043.68 2,090,996.64 1,406,288

3 Water Body 1,200,949.56 1,206,203.04 988,364.2

4 Agriculture 16,695,924.2 10,956,547.8 13,213,710

5 Built-up Area 6,794,506.8 9,038,500.2 15,521,743

6 Orchard 33,696,323.3 36,308,532.24 27,735,324

7 Wasteland 390,343.32 390,346.92 394,275.2

Total 62,474,826.4 62,472,998.88 62,478,166

Table 12.5 Accuracy
assessment for classification of all
three land covers

Land use map Overall accuracy (%) Kappa coefficient

2002 83.77 0.79

2007 84.62 0.80

2013 80.51 0.75
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Fig. 12.5 Land use classification map for years 2002, 2007 and 2013; and unstructured land use maps (unorganized urban development) for
corresponding classified images
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included sprawl housing development. In addition, the spa-
tial distribution of the unorganized houses was distributed in
the green lands around the city center. The growth of these
unplanned built-up areas in the farmlands and the reduced
orchards was roughly the same as that of the organized
built-up areas. This phenomenon is attributed to the
approximately the same percentage of agriculture and
orchards in the study area in both years.

12.4.2 Change Detection and Analysis

The trend of land use change and urban growth of the study
area from 2002 to 2013 were analyzed to achieve the second
objective. The analysis was based on thematic change maps,
which show the conversion of various land cover classes into
other classes. In the 2002–2007 analysis, 1,383,356.52 m2

from the agricultural field were converted into built-up areas.
This conversion indicates that orchards were converted into
built-up areas (as shown before in the area of the classes in
three years). The agriculture areas were also converted,
which were most likely transformed into sprawl develop-
ment. Most of these transformations occurred in the south-
east and south parts of the study area. The other
transformations among the classes are shown in Table 12.7.

The 2007–2013 change map shows that the expansion of
built-up areas increased from 2007 to 2013 by exactly
4,904,657.28 m2 (from the agriculture class). The conver-
sion of 2,115,230.04 m2 of orchards into built-up areas
shows a substantial expansion of built-up areas, indicating
the growth of sprawl development in the study area. The
other transformations among other classes are presented in
Table 12.8

The spatial distribution of land cover change shows that
the expansion of built-up areas was generally toward the
southeast and northwest of the study area. Most of the
sprawl urban growth and expansion occurred toward and
close to the central parts. Significant numbers of orchard
areas were converted to agriculture and built-up areas from
2007 to 2013. The analysis of long-term change detection

from 2002 to 2013 (Table 12.9) shows that 2,289,665 m2 of
orchard and 1,245,898 m2 of agriculture were converted into
built-up areas, and most of the built-up areas were unorga-
nized development. This expansion mostly occurred toward
the center, northwest, and southeast of the city.

By specifically performing change detection analysis on
sprawl development, nearly 531 ha of observed orchards
were replaced by built-up areas, followed by 443 ha of
agricultural lands converted to housing areas. Moreover,
653 ha of orchard areas were replaced by agricultural lands.
However, wasteland slough and water bodies did not show
any substantial changes during these years.

12.4.3 Land Use Prediction Analysis

CA_MARKOV is usually used in modeling and predicting
future land use change and growth. This method is a com-
bination of CA, Markov chain, multi-criteria, and
multi-objective land allocation. The land cover of the study
area of the year 2024 was predicted using this integrated
approach. This prediction was conducted to analyze the
future trend of built-up area expansion in the study area,
especially the unorganized and sprawl development. The
land cover map of the year 2024 is presented in Fig. 12.6.
This map shows the spatial distribution of the seven land
classes for 11 years, from 2013 to 2024. The prediction was
generated on the basis of the analysis of the land covers of
the years 2002 and 2013.

The prediction of land cover of the year 2024 shows that
agriculture and orchard classes will be reduced by 22.8 and
3.3 km2. Meanwhile, the built-up area will be significantly
increased by 5.31 km2 from 2013 to 2024. This analysis
indicates that the city will lose considerable orchard lands
and most of the transformations will occur to the built-up
class. Therefore, strategic planning and comprehensive
management are required to avoid these conversions.

With regard to area comparison of land cover classes for
the selected period of time, Table 12.10 and Fig. 12.7
illustrate the growth and loss in the areas of all the classes.

Table 12.6 Area of each class of
land covers 2002 in m2 ID Class 2002 2007 2013

1 Road 1,495,122 1,502,163 1,881,840

2 Slough 1,374,044 2,090,997 1,406,288

3 Water body 1,200,040 1,187,180 943,501

4 Agriculture 16,646,498 10,109,991 12,949,531

5 Built-up 4,806,455 6,324,836 11,556,451

6 Orchard 32,291,047 35,605,549 25,844,092

7 Wasteland 390,343.3 390,346.9 394,275.2

Total 58,203,549 57,211,062 54,975,979
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Figure 12.7 clearly shows that most transformations and
changes occurred in agriculture, orchard, and built-up clas-
ses. As discussed earlier, the main conversion is the growth
of built-up areas from orchard fields. This analysis also
confirms that the expansion of the sprawl development is
annually increasing in the city.

12.4.4 Counting the Unorganized Residential
Buildings

On the basis of the image segmentation analysis, a step was
further applied to count the number of unorganized resi-
dential buildings in a subset selected from the study area.

Table 12.7 Change detection analysis between 2002 and 2007 (m2)

2002

Road Slough Water body Agriculture Built-up Orchard Wasteland Total

2007 Road 2255947 0 15700.32 36622.8 37977.84 111874.32 0 2481801.5

Slough 0 1373310 442.08 445054.68 36023.04 234574.56 346.32 2090996.6

Water body 14962.68 262.44 1161933.12 3307.68 1618.2 12405.6 0 1205973

Agriculture 10781.28 15.48 5662.44 5247970.2 983356.52 4301472.96 0 10956296

Built-up 21741.84 19.8 3599.28 3259065.96 4663033.64 2780222.04 0 9038161.4

Orchard 12695.76 45 10152.36 7665167.52 1065648.92 26241102 0 36304292

Wasteland 0 349.92 0 0 0 0 389997 390346.92

Total 2322735 1374044 1200949.56 16665923.52 6794506.8 33696322.56 390343.32

Table 12.8 Change detection analysis between 2007 and 2013 (m2)

2007

Road Slough Water Agric. Built-up Orchard Wasteland Total

2013 Road 2170825.2 3.6 249324.5 177068.5 295888.32 318048.12 0 3218462

Slough 0 1401570.36 552.6 5.04 3.24 12.96 4121.28 1406288

Water 58757.76 1986.12 856323 19741.68 24913.08 24213.6 0 988364.2

Agriculture 34494.12 293962.68 23296.32 3319155 1394705.04 7842802.68 0 13213709

Built-up 126042.84 224265.6 38919.6 3811339 6104657.28 6397741.8 0 15521743

Orchard 72924.48 160915.32 27263.88 3626787 1215230.04 21717690.12 0 27735204

Wasteland 0.36 8049.6 0 25.56 60.84 33.48 386225.64 394395.5

Total 2481801.48 2090996.64 1205973 10956296 9038161.44 36304295.04 390346.92

Table 12.9 Change detection analysis between 2002 and 2013 (m2)

2002

Road Slough Water body Agriculture Built-up Orchard Wasteland Total

2013 Road 2051690 0 243383.8 358689.2 180643.3 357718.3 0 3218462

Slough 0 951319.4 600.84 335339.3 35510.4 78885.72 4048.2 1406288

Water body 52091.28 1682.28 869104.1 16444.08 4646.16 36606.96 0 988364.2

Agriculture 30286.8 169414.2 20536.2 5027251 945898 6715347 0 13213709

Built-up 109921 130855 35922.24 4901886 4236170 7291858 0 15521743

Orchard 66079.44 112389.1 23833.8 6022176 1389665 19209284 0 27735204

Wasteland 0 7980.12 0 9.36 41.76 69.12 386295.1 394395.5

Total 2322735 1374044 1200950 16665924 6794507 33696323 390343.3

12 Extraction and Modeling of Urban Sprawl Development … 291



Fig. 12.6 Projected land use
map for year 2024 using
CA_Markov

Table 12.10 Comparison
between land covers during the
22 years (2002–2024)

Class 2002 2007 2013 2024

Road 2,322,735.48 2,481,872 3,218,462 3,459,505.3

Slough 1,374,043.68 2,090,997 1,406,288 1,410,465.8

Water Body 1,200,949.56 1,206,203 988,364.2 999,835

Agriculture 16,695,924.24 10,956,548 13,213,710 10,933,905.8

Built-up Area 6,794,506.8 9,038,500 15,521,743 20,840,306.8

Orchard 33,696,323.28 36,308,532 27,735,324 24,437,469.3

Wasteland 390,343.32 390,346.9 394,275.2 390,345.8

Total 62,474,826.36 62,472,999 62,478,166 62,471,833.5
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Fig. 12.7 Surface areas of land
cover classes in different times
(2002, 2007, 2013, and 2024)
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The step of segmentation grouped the pixels of the image
and created segments from these groups. The segments were
then converted to vectors in ArcGIS software (Fig. 12.8).
The conditional rule of “40< AREA AND AREA <500” was
applied to extract unorganized houses. The lower limit of
40 m2 was selected because this area is the minimum pos-
sible area that can be sold by the owners. The upper limit of
500 m2 was selected because this area is the largest area
used to build a house. Given that the remainder of this area
may be used for agricultural purposes, the owners normally
divide their land parcels to less than 500 m2. In addition,
selling these lands for the built-up is much costly than
selling them as agriculture fields.

According to the rules and conditions of selling agricul-
tural lands for housing, a filter was designed to improve the

result of house counting from image segmentation. The filter
is a structure of SQL language that can be used in ArcGIS
software by applying the selection by attribute tool.

The image segmentation and designed filter were applied
on the 2013 satellite image to count the number of houses in
a subsetted image. The results of this application are pre-
sented in Fig. 12.9. This figure shows the houses in red color
generated by the image segmentation process in the eCog-
nition software. After the application of the filter, the houses
were extracted individually (right-hand side of the figure).

Figure 12.9 also shows the image segments before and
after the filtering process. The map in Fig. 12.10 shows the
difference between image segments before and after the fil-
tering process. The importance of the designed filter for
house counting is also reflected in the map.

Fig. 12.8 Subset from the study
area shows the segmentation of
unorganized housing
development

Fig. 12.9 Results of detected
unorganized houses before and
after filtering
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Fig. 12.10 Result of detected
unorganized houses of both
before and after filtering
combined together

Fig. 12.11 Detected houses as
points created from the polygons
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The vector format of the housing layer was converted to a
point format to count the number of points that are similar to
the number of unorganized houses in the subset of the study
area (Fig. 12.11). The result of the house extraction process
shows that the number of houses in the subset selected from
the study area was 2,217 in the year 2013.

12.5 Conclusion

The growth of unorganized housing development commonly
known as urban sprawl development creates several prob-
lems in various social, environmental, and economic aspects.
Particularly, unorganized housing expansion has inappro-
priate infrastructure and utilities, thereby destroying valuable
green and natural environments and creating several envi-
ronmental issues attributed to lack of proper sewerage and
waste management system. Thus, monitoring and controlling
unorganized expansions is essentially important for gov-
ernments and local authorities to avoid these issues and
problems. Using RS technology and its related methodolo-
gies and approaches in extracting information from remotely
sensed data provides strong assistance to the authorities in
controlling and managing urban growth and expansion.

The environmental degradation in several cities of Iraq
was a result of internal and external wars. Particularly, the
war in 2003 has forced people to migrate to safe cities, such
as Karbala, to live and protect themselves from the terrorism
threats. These situations have increased the conversion of
agricultural fields to informal residential buildings in Kar-
bala City. In addition, the local government could not con-
trol the sprawl development and expansion because of
internal and external wars; therefore, this phenomenon has
significantly increased in recent years.

This study aimed to extract, analyze the changes, and
predict the urban expansion in Karbala City, Iraq. The most
effective classification approach (rule-based object-oriented
technique) for land cover classification was used to extract
various land cover classes from high spatial resolution
imagery. In general, the accuracy assessment process indi-
cates that uniform land covers, such as water bodies and
wastelands, were extracted with high accuracy. Meanwhile,
built-up areas attributed to several distinction properties,
such as geometrical shape and format, could be extracted by
defining proper rules. In terms of the second objective, this
study successfully highlighted and discovered the spa-
tiotemporal change pattern of urban land cover in Karbala
City. The process shows a significant growth of built-up
areas in the orchard and agricultural fields. In addition, the
projected map for the year 2024 provides valuable infor-
mation on the future land cover growth and changes, espe-
cially the expansion rate and direction of sprawl
development. This information can aid the local government

in controlling and managing these growths and additional
provisions of proper infrastructures and facilities. Thus, this
process provides a future vision of urban pattern for the
government. The information provided by this study also
provides beneficial ideas to the decision makers and warns
them regarding the consequences of sprawl development in
Karbala City. The results indicate that, if the current rate of
the trend of land cover change continues, then Karbala City
will soon suffer from lack of green environments and
orchard fields.
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13Application of GIS and RS in Urban Growth
Analysis and Modeling

Saleh Abdullahi and Biswajeet Pradhan

13.1 Introduction

Modeling of complex systems involves spatial and geo-
graphic aspects, such as urban areas. Such modeling requires
approaches with capabilities of spatial and geographical
analyses. Understanding urban growth patterns, urban
dynamic aspects, and their relationships is the most impor-
tant objective in this field. In addition, comprehensive data
and information regarding historical and current urban pat-
terns and processes are necessary for predicting future
growth and changes. Critical issues regarding the spatial
organization of urban areas, such as location, reason, time of
developments, and positive and negative consequences must
be addressed properly (Koomen and Borsboom-van Beurden
2011). Answering all these issues can help in preparing an
appropriate urban development, thereby achieving sustain-
able development. Hence, professional data collection, data
management, and data processing tools are necessary to deal
with these complexities (Koomen and Borsboom-van
Beurden 2011). Specifically, modeling and simulation of
land use change require the availability of rich spatial data,
spatial analysis tools, and displaying capability to illustrate
output maps (Bhatta 2010; Bhatta et al. 2010b). Geographic
information system (GIS) and remote sensing (RS) are the
most beneficial tools to support these models; a general
flowchart of their application in modeling process is shown
in Fig. 13.1 (Basse et al. 2016; Karteris et al. 2016). Forster
(1984) reported that the recent improvements in RS and GIS
technologies provide a unique perspective on the processes
of urban expansion and urban land use change.

Complex urban information systems incorporate tradi-
tional data (e.g., reports and analog maps), digital data (e.g.,
attribute databases, digital maps, and RS imageries), and
ground measurements. Therefore, the integration of these
sources of data in a proper environment (such asGIS) provides
improved analysis methods, thereby resulting in enhanced
urban area management and good urban planning. However,
integrated approaches are inefficiently used in urban man-
agement and planning in developing countries because of

deficient data, communication, and interaction among citi-
zens, politicians, and planners (Bhatta et al. 2010a).

In the past decades, GIS techniques and remotely sensed
data have been extensively employed for urban monitoring
(to understand the urban development processes), urban
modeling (to simulate the urban land use/land cover changes
and urban sprawl), measuring (to analyze and assess the
urban systems), and mapping (to highlight and understand
the spatial urban patterns). The spatial patterns and physical
expression of urban development and sprawl on the land-
scape can be investigated, detected, analyzed, and mapped
by adopting GIS technology and RS data (Kumar et al. 2007;
Bhatta et al. 2010b). Using multiagent evaluations and
decision support systems available within the GIS enables
scholars to assess geospatial and RS datasets (Parker et al.
2003; Bhatta 2010) and predict the prospects using the
historical and current datasets. These systems are effectively
applied to analyze, detect, and model the dynamics of urban
expansions (Dadhich and Hanaoka 2011; Al-shalabi et al.
2013; Arsanjani et al. 2013).

13.2 Remote Sensing in Urban Application

RS technologies can reasonably and cost-effectively pro-
vides spatial data with the desired coverage. RS is a suitable
source and data collection method for supporting and
improving urban-related studies (Donnay et al. 2003; Dad-
hich and Hanaoka 2011; Wakode et al. 2014). This tech-
nology can be used to collect various essential data, such as
detailed temporal and spatial information of land use pat-
terns, infrastructures, and urban morphologies, and effective
factors of the changes and population growth (Bhatta 2010).
The information extracted from remotely sensed data is
extremely beneficial for modeling, managing, and describing
the urban environment (Longley et al. 2003; Al-shalabi et al.
2013). Remotely sensed data are powerful tools for mea-
suring and detecting several elements related to the urban
morphology of metropolises, such as density, amount,
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textural form, shape, and diffusion of built-up areas (Bhatta
2010). Moreover, RS data are particularly important in urban
areas that face rapid land use changes and when updating
information using traditional mapping and surveying
approaches is time consuming and tedious. Monitoring of
urban expansion can identify and determine the amount,
location, and type of land conversion (Arsanjani et al. 2011;
Guan et al. 2011). RS techniques are also effective for
extracting and investing the interaction between urban
environments and people (Hu and Lo 2007).

Advances in land surface mapping using RS techniques
have contributed to the generation of significantly detailed
urban maps, thereby providing detailed understanding on
urban change dynamics (Wilson et al. 2003; Chen et al.
2014). In summary, applying RS in urban analysis is
advantageous because of its capability to obtain temporal
datasets in a large coverage and short time, and conduct
digital analysis and processing within GIS environment
(Bhatta 2009; Bhatta et al. 2010b). Compared with other
techniques, RS of urban environments, particularly with
space-borne platforms, is a fairly modern topic for geogra-
phers and the RS community. Space-borne satellite data are
primarily valuable for developing countries because tradi-
tional urban survey methods are time consuming and costly.
The reliance on using remotely sensed data in urban studies
is gradually increasing. In addition, continuous advance-
ments in software, hardware, and RS technologies have
increased the demand and application of remotely sensed
data in urban analysis.

Many sources of remotely sensed data are available in
various scales, capabilities, efficiencies, and resolutions.
Remotely sensed data are mainly selected and characterized
on the basis of four resolutions, namely, spectral, temporal,
radiometric, and spatial resolutions (Jensen 2009). Spectral
resolution defines the intensity of interaction between elec-
tromagnetic radiation and surface features; temporal reso-
lution refers to the length of time a satellite takes to complete
one entire orbit cycle; radiometric resolution refers to the
capability to discriminate slight differences in energy; spatial
resolution of the sensor refers to the size of the smallest
possible feature that can be detected (Jensen 2009). In the
context of urban analysis, spatial and spectral resolutions are

important and effective because the RS technology in these
areas is challenged by spatial and spectral heterogeneities
(Herold et al. 2004; Jensen and Im 2007; Eyoh et al. 2012).
Hence, sensors with high spatial resolution, such as Quick
Bird, IKONOS, and World View 2 and 3, and sensors with
high spectral resolution (hyperspectral sensors), such as
Hyperion, AVIRIS, and MERIS, have attracted considerable
attention among urban scientists. However, urban growth
and development perspectives in spatial resolution play a
more important role than those in spectral resolution (Jensen
2009; Bhatta 2010).

Apart from RS technology resolutions, the type of sensors
in data capturing (active or passive) also affects the capa-
bility and applicability of remotely sensed data. Passive
sensors use the sun as the source of energy and radiation.
The energy of the sun is either reflected as for visible
wavelength or absorbed and then reemitted as for thermal
infrared wavelengths. Notably, passive sensors can only be
used to detect energy when the naturally occurring energy is
available (Jensen 2009). Meanwhile, active sensors provide
their own source for illumination. These sensors emit radi-
ation, which is directed toward the target (surface features)
to be investigated. They also detect and record the reflected
radiation from the target. Contrary to optical RS, radar
imagery can capture images and obtain measurements
regardless of the time of day or season (Jensen 2009).
Specifically, synthetic aperture radar (SAR) data are partic-
ularly suited for updating urban structure extraction because
these data can pass through cloud cover and acquire data on
every satellite pass (Abdullahi et al. 2015a). Di- and trihedral
corner reflectors in an urban environment are other important
features of radar data collection, thereby creating more
bright areas than non-urban areas (Esch and Roth 2004). In
addition, the built-up area can be accurately highlighted in
SAR imagery because of the backscatter of radar wave,
which is largely determined by the physical properties of
surface objects, such as shape and surface roughness (Hen-
derson and Xia 1997). Considerable research has been
conducted on the application of radar imagery in urban
studies, such as detection and extraction of urban settlement
and growth detection, by various classification analyses
(Fatone et al. 2001; Corr et al. 2003; Stasolla and Gamba
2008; Esch et al. 2010).

Many techniques have been developed and adopted to
preprocess, interpret, and extract information from remotely
sensed data for urban analysis (Jensen 2009; Bhatta 2010).
However, the selection of available techniques is based on
the application and objective of the research. For example,
multitemporal RS data are particularly essential for mea-
suring the structural differences of urban land use/land cover
pattern (Liu and Phinn 2003). The information extracted
from multitemporal data is beneficial to avoid the cumulative

Fig. 13.1 Conceptual application of GIS and RS in modeling process
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and irreversible effects of urban development (Yuan 2008)
and support the optimization of urban service allocation
(Barnsley and Barr 1996). Land use/land cover data gener-
ated from RS approaches are also important for devising
sustainable urban development and environmental planning
strategies (Alphan 2003; Jensen and Im 2007).

RS techniques have also been applied in a wide range of
urban applications and decision making. Particularly, several
urban planning studies have been conducted using RS
images, especially in urban change modeling, urban expan-
sion analysis, and urban land use/cover assessment.

13.2.1 Application of RADAR Imagery
in Building Extraction

The total amount of urban areas covers an insignificant
percentage of the Earth’s land surface; however, these
man-made regions represent the most complex and
multidimensional-based environments for various evalua-
tion, analysis, and modeling objectives (Henderson and Xia
1997). The continuous growth of urban areas has strength-
ened these complexities and enhanced the necessity of
powerful tools and approaches for regular updating of
information in urban-related fields. This information is
necessary for scientists, planners, resource managers, and
conservationists to plan for sustainable environments
(Dewan and Yamaguchi 2009; Abdullahi et al. 2015b). The
availability of accurate and up-to-date information regarding
urban pattern is necessary to achieve this ultimate goal.
Specifically, understanding the growth and changes in dif-
ferent land use and land covers are the main interests of
urban planners and scientists (Rimal 2011; Abdullahi and
Pradhan 2015). In addition, identifying the existence, size,
density, pattern, and distribution of various urban features,
such as buildings and roads, provides valuable information
for analysis and modeling in urban-related applications. On
this basis, remote sensed data have been extensively utilized
for extracting and monitoring urban land use and land cover
changes. Among all RS technologies, optical sensors have
received most of the attention in this field and thus offered
the most widely used approaches (Goodman and Ustin 2007;
Roberts et al. 2008; Tehrany et al. 2014). Unlike optical
sensors, SAR is well suited for urban detection and analysis
especially in tropical regions because of its several advan-
tages, such as cloud cover penetration (Grey et al. 2003;
Jebur et al. 2014; Abdullahi et al. 2015a). Optical sensors
measure the reflectance based on molecular resonances of
surface materials, whereas radar sensors evaluate the phys-
ical characteristics (such as surface roughness and dielectric
constant) of surface objects from backscattering (Henderson
and Xia 1997). SAR technology has several other applica-
tions in the studies of agriculture, forestry, soil, oceans,

geomorphology, and particularly in distinguishing among
different land cover categories (Dell’Acqua and Gamba
2003; Tison et al. 2004; Bonci et al. 2006; Gamba et al.
2007).

SAR imagery has also been applied in urban studies,
especially in settlement detection (Henderson and Xia 1997;
Stasolla and Gamba 2008; Esch et al. 2010), urban changes
mapping (Grey et al. 2003), and urban classification (Lom-
bardo et al. 2001; Corr et al. 2003; Esch and Roth 2004).
SAR technology is applied in this field to mainly detect
urban structures and features and investigate their interaction
with radar signals. The intensity and quality of SAR
backscattering from urban areas generally depends on radar
system properties, feature characteristics, and other envi-
ronmental factors. For example, building size and orientation
properties strongly affect the backscatter of radar wave
because of its relationship with the azimuth angle of the
sensors (Grey et al. 2003).

In recent years, several models have been developed to
describe the interaction between radar signals and urban
objects for improving the knowledge and interpretation of
SAR images (Delliere et al. 2007; Franceschetti et al. 2007).
Although the proposed models have provided certain bene-
fits, most practical knowledge regarding SAR imagery
properties is based on empirical observation. Speckle is a
challenging issue in SAR imagery because it reduces the
capability of SAR data in various applications, such as
image classification, change detection, biomass estimation,
and interpretation by degradation in appearance, quality, and
recorded power of backscattering (Ali et al. 2008; Lee and
Pottier 2009). Hence, speckle effects must be considered
prior to processing and analyzing SAR images for precise
applications, especially pixel-based analyses. The effects of
this noise can be reduced mainly by the use of image fil-
tering coupled with edge and texture preservation (Domg
and Milne 2001; Xiao et al. 2003). However, selecting the
ideal filter to reduce speckles for all SAR image data is a
challenging process; hence, the selection is usually an
application-dependent task.

Speckle is a grainy “salt and pepper” appearance in radar
images and is attributed to random constructive and
destructive interference from the multiple scattering returns.
Given its effect on visual interpretation, speckle must be
reduced prior to any analysis and interpretation. Adaptive
filters such as Lee, enhanced Lee, Frost, enhanced Frost,
Kuan, and Gamma filters are the most common approaches
for reducing speckle while preserving the high-frequency
features (Esch and Roth 2004).

Texture refers to the spatial variation of image tone as a
function of scale. To be considered as a distinct textural area,
the gray levels within the areamust bemore homogeneous as a
unit than the areas with different textures. ENVI software
provides various textural filters based on occurrence and
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cooccurrence measures, such as data range, mean, variance,
and entropy homogeneity. Cooccurrence is amatrix of relative
frequencies in which pixel values occur in two neighboring
processing windows separated by a specified distance and
direction. Cooccurrence shows the number of occurrences of
the relationship between a pixel and its specified neighbor.

Texture property is one of the image interpretation ele-
ments and is an important factor recognized by the human
visual system for recognizing features or area of interests in
an image. Texture analysis is important for pixel and
segment-based classification schemes, especially in SAR
images with noise, such as speckle (Ulaby et al. 1986). In
addition to texture properties, some of the other important
elements of image interpretation in this field are context,
edges, and tonal variation. This process can be compared to
computer processing, in which only tonal information is
often used. Texture filters are often included in the process
of image classification to create computer interpretation of
images similar to man-made interpretations, thereby
improving the classification accuracy (Jensen 2009). Among
the various approaches applied for image texture analysis,
GLCM-based methods are the most common approaches for
remotely sensed images (Kandaswamy et al. 2005).

Radar technologies, such as ENVISAT, ALOS PALSAR,
RADARSAT, TerraSAR-X, and TanDEM-X, provide
effective and useful images for land cover classification
analysis. Classification of these images into a thematic map
is a complex and challenging process and depends on several
parameters, such as landscape heterogeneity, sensor selec-
tion, and adopted analysis and classification techniques
(Mishra et al. 2011). Image classification of SAR images is
traditionally based on a pixel-based concept. The classifi-
cation accuracy of SAR images has been enhanced by
integrating texture information (Dekker 2003; Dell’Acqua
et al. 2006). These classifications are mainly in binary format
between the two classes of the urban and non-urban envi-
ronment. In addition, supervised and unsupervised classifi-
cation techniques have been widely examined
(Gomez-Chova et al. 2006; He et al. 2006; Chamundeeswari
et al. 2007). Nevertheless, recent studies have concentrated
on object-based techniques because of their utilization of
geometrical, textural, and contextual properties of the
objects in the classification procedure (Abdullahi et al.
2015a). This process segments the images into various
objects containing similar pixels. Object-based classifiers
typically incorporate spatial and spectral information. Con-
trary to pixel-based approaches that consider spectral and
textural information only, the object-based approaches
incorporate shape characteristics and neighborhood relations
to the classification in addition to the abovementioned
information (Shackelford and Davis 2003; Ban and Hu
2007). These tasks assist in extracting urban settlements by
applying spectral, geometrical, and textural characteristics

along with other information of the surrounding area (Esch
et al. 2010). Object-based classifications also produce
homogenous products with high detail and accurate mapping
(Ban and Hu 2007).

Pixel-based and object-based classification techniques
differ mainly in image segmentation process, which refers to
assigning image pixels (homogeneous pixels) into different
classes. Image segmentation groups the identical pixels of
remotely sensed images into classes by matching the infor-
mational properties of user interest through comparing pixels
to one another and those of known identity (Perumal and
Bhaskaran 2010). In this process, the image is divided into
unclassified “object primitives.” Accordingly, various image
objects are created for further analysis. This process is based
on various properties of surface features, such as shape, size,
color, and pixel topology, which are controlled by the
parameters defined by the analysts. The selected and defined
parameters indicate the effects of spectral and spatial prop-
erties of the image layers on the shape and size of the image
objects. The analysts edit the parameters on the basis of the
objective of the research and data quality and resolution. The
multiscale image segmentation process is usually known as
region-based segmentation because it is a bottom-up region
merging approach. This process assumes each pixel as an
object first and then starts to merge the initial objects for the
purpose of creating large objects according to their similarity
and homogeneity in terms of color and shape properties. In
addition, a merging cost is assigned to each merging stage.
Pixel-based and object-based classification methods have
been compared in several studies (Wei et al. 2010; Duro
et al. 2012; Tehrany et al. 2014). For instance, Abdullahi
et al. (2015a, b) compared pixel-based and object-based
classification methods for building extraction to assess city
compactness (Fig. 13.2). Notably, object-based classifica-
tion approaches perform better than object-based ones
because of their inherent properties.

In summary, radar images are particularly difficult to
interpret because of various properties and complexities of
the active sensor performance, data collection, and interac-
tion with the Earth’s surface. However, useful results and
information can be extracted from these images especially
from urban environments by applying various techniques and
models. Notably, the implementation of fully polarimetric,
interferometric, and ancillary data can increase the accuracy
and improve the information extraction performance. These
ancillary data can help resolve confusion and inaccuracies by
defining additional features of the study area, such as shape
and size. Contrary to extracting other classes, such as vege-
tation and water, building extraction is more difficult because
of its several categories, including single or multi-story
buildings, various rooftop materials, interaction with sur-
rounding vegetation covers, and effects of look direction
during data collection. Hence, the integration of other
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information, especially from more than one look direction,
can significantly increase the performance accuracy.

13.3 GIS in Urban Planning
and Development Application

GIS can provide a proper environment for storing, managing,
analyzing, manipulating, and displaying spatial data corre-
sponding to the applied models. GIS has developed parallel
to the advancement of other data capturing and analysis
technologies for spatial data processing. GIS can provide a
consistent visualization environment for displaying the input
data and outputs of the models; this feature is beneficial in
various applications (Weng 2001). Apart from its data pro-
cessing capability, GIS also provides functional tools for
problem solving and decision making. GIS can assist mod-
elers in defining and creating spatial variables for the models
(Openshaw and Clarke 1996), predicting land use changes
based on several independent spatial variables (Mertens and
Lambin 2000), and evaluate predicted changes in spatial
pattern (de Koning et al. 1999). Simulation of growth patterns
can also be conducted in a GIS environment using several
kinds of constraints (Yeh and Li 1998). The evolution of RS
and GIS and digital computing technologies has provided
powerful tools to deal with very complex mathematical urban
models. GIS can be employed to model urban expansion with
a high level of spatial accuracy (Xie et al. 2005).

GIS is a digital map-based technology that provides a
database management system to store, analyze, and display
geographical-based information. GIS can manipulate spatial
data from digitizing to editing and processing raw data. GIS
comprises five main components, which are as shown in
Fig. 13.3.

• Hardware: The hardware includes computers, such as
PCs and workstation, operating systems, and additional
equipment, including monitors, digitizers, and scanners.

• Software: The software includes the source code and user
interface. The code may be written in C++, Visual Basic,
or Python.

• People: GIS professionals define the purpose and
objectives and provide the reason and justification for
using GIS.

• Data: Data and information are the initial input for pro-
cessing and analyzing the objectives, and are mainly
obtained using RS and traditional in situ data collection.

• Methods/Infrastructure: The infrastructure refers to the
necessary physical, organizational, administrative, and
cultural environments that support GIS operations. The
infrastructure includes requisite skills, suitable methods,
data standards, data clearinghouses, and general organi-
zational patterns.

The critical function of GIS is, by design, the analysis of
spatial data. GIS is not a new invention because geographic
information processing has already been applied in various
disciplines. Particularly, natural resource specialists and
environmental scientists have been actively processing
graphical data and promoting their techniques since the
1960s. At present, generic GIS is distinguished from the
previous geoprocessing because of its use of computer
automation to integrate geographic data processing tools in a
friendly and comprehensive environment. The advent of
sophisticated computer techniques has proliferated along
with the multidisciplinary application of geoprocessing
methodologies, thereby providing data integration capabili-
ties that are logistically impossible.

Fig. 13.2 RADAR image processing flowchart for building extraction
(Abdullahi et al. 2015a, b)

GIS 

People 

Software 

Hardware Data

Method 

Fig. 13.3 Five main components of GIS
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The basic data type in a GIS reflects traditional data found
on a map. GIS technology uses the following two types of
data:

• Spatial data, which describe the absolute and relative
location of geographic features; and

• Attribute data, which describe the characteristics of the
spatial features that can be quantitative or qualitative in
nature. Attribute data are often referred to as tabular data.

GIS is an ideal tool for analyzing and solving multiple
criteria problems because of its characteristics as follows:

• GIS database combines spatial and nonspatial information;
• GIS has ideal data viewing capabilities, thereby allowing

efficient and effective visual examinations of solutions;
• GIS allows users to interactively modify solutions to

perform sensitivity analysis; and
• GIS, by definition, must contain spatial query and ana-

lytical capabilities, such as area measurement, distance
measurement, overlay capabilities, and corridor analysis.

Using GIS in urban studies has numerous advantages.
GIS is a database management system that provides data
mapping operations for viewing geographical information
and data retrieval operations for map inquiries (Almeida
et al. 2005). These functions allow planners and urban
analysts to communicate, display, and manage information
effectively (Weng 2001). These GIS functions are aug-
mented by methods of data modeling (e.g., data conversion
routines and cartographic analysis), which can improve land
use and transportation analysis (Stanilov 2003). However,
regardless of its significant benefits, the urban analyst cannot
avoid the complexities, nuances, and subtle interactions
intrinsic in the spatial data usually used in urban studies with
GIS alone (Paez et al. 2001). Although GIS is a beneficial
tool in decision support technologies, it is not a decision
support system by itself and cannot handle multiple decision
factors (Turskis et al. 2006). Predictive models have been
implemented within GIS environment to analyze and project
various future development scenarios and land use conver-
sion (Wu 1998; Li and Yeh 2002; Pijanowski et al. 2002;
Verburg et al. 2004). However, simulating these changes is a
challenging process. GIS also cannot fulfill all the require-
ments of these simulations because of the localized,
dynamic, and complex nature of the modeling. Therefore,
GIS is integrated with other techniques to provide a strong
simulation approach. Cellular automata (CA), multicriteria
decision making (MCDM), and statistical-based approaches
are examples of models integrated to GIS.

The rapid advancement of GIS improves the application
of CA in urban modeling. Cell-based GIS provides a bene-
ficial tool, including analysis and assessments in

urban-related projects. Integrating CA and GIS can over-
come several drawbacks and requirements in urban systems
because of the combined capabilities, such as fast iterative
computation of CA and the beneficial information provided
by GIS in defining transition rules (Li and Yeh 2000). In
addition, CA can serve as an analytical engine to provide a
flexible framework for the programming and running of
dynamic spatial models. With this integration, various
development scenarios can be proposed and evaluated to
achieve sustainable urban development. These GIS scenarios
can go beyond theoretic constructs and become realistic by
considering real-world data, factors, and constraints in their
modeling. The heterogeneity of the geographical spaces can
be easily investigated by developing spatial difference
equations in the context of GIS (Batty and Longley 1994).
CA models can be developed and processed in a GIS
environment using stored data and information in GIS
database and available analytical tools in GIS for geospatial
data. In addition to GIS, RS data can benefit CA modeling in
defining constraints of sustainable urban development
modeling (Li and Yeh 2000). Moreover, temporal data
captured and prepared by RS technology can be used to
calibrate the neighborhood functions of CA modeling. RS
provides beneficial data regarding land use and land covers
as input to CA modeling. Therefore, the integration of RS
data for CA modeling within GIS environments can signif-
icantly enhance the capability of dynamic spatial modeling
of urban growth applications.

13.3.1 GIS in Urban Land Use Site Selection
Process

Site suitability analysis is the process of determining the
fitness of a provided tract of land for a defined use and is a
fundamental processing in urban planning and design
(Steiner et al. 2000). In other words, site suitability analysis
is the process of determining whether the available lands are
suitable for a few specific requirements and determining the
suitability level. Establishing and integrating appropriate
suitability factors related to location, development activities,
socioeconomic, and environmental aspects are the essential
requirements of suitability analysis. These techniques assist
planners, landscape architects, and local decision makers in
analyzing the factor interactions in various ways. In pro-
cessing a certain development, integrating these factors can
assist in possibly identifying the most and least suitable sites
for desired proposals. If the location and proposed devel-
opment are known, then the potential conflicts can be
qualitatively determined.

In case of site suitability for a specific purpose, such as
site selection for a hospital in an urban environment, the
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selection of an optimum site can be influenced by the
uncertainty inherent in describing and ranking available
alternatives based on effective criteria. These criteria include
physical, socioeconomic, and environmental quality and
amenities. In the site suitability example, the following cri-
teria must be defined: positive and negative effects of the
new hospital on its surrounding area and positive and neg-
ative effects of the environment on the new hospital during
either the construction phase or the operation phase. The
necessary in situ or remotely sensed data for meeting all
criteria must be carefully collected and managed and orga-
nized in a GIS environment. Criteria are selected to evaluate
potentials of the existing hospitals and support decisions
regarding the location of the additional hospitals in various
zones. The criteria must be selected according to literature,
planning guidelines, and government regulations of the
study area. For example, the effect of a new hospital as a
new resource on the local community can be divided into
long-term and short-term effects. Short-term effect includes
the construction phase, while long-term effect includes the
operation phase. All developments have an environmental
effect during the construction phase, such as increased heavy
traffic (noise and pollution), building noise, antisocial
aspects of building (dust), and potential disruption to local
services (short-term cutting off of utilities, including water,
gas, and electricity). For the most part, these effects are
considered in conditions attached to planning consent for the
eventual option. All developments during the operation
phase can also result in positive or negative effects. For
example, the positive economic effects a new hospital as a
new resource in a community include providing local jobs
and staff spending money in local shops. Meanwhile, the
negative environmental effects include overspill parking on
residential roads and the effect of people, staff, patient,
ambulances, and visitors traveling to the site.

Site selection process in the urban area considers the
following objectives:

• Technical aspects,
• Environmental issues,
• Social aspects,
• Economic issues,
• Biological aspects,
• Physical aspects.

Under these objectives, several criteria can be identified:

• Population density,
• Land use/land cover,
• Distance from existing resources,
• Distance from highways or intersections,

• Land cost,
• Land area,
• Travel time,
• Distance from polluted areas,
• Distance from rivers and canals,
• Distant to main roads,
• Safety aspect.

These criteria have different effects on the suitability of
the location for a new resource or development. Some of
these criteria are effects of the new resource on the envi-
ronment, while others are the effect of the environment on
the new resource. For example, the development of a hos-
pital can negatively affect its surrounding area, and a pol-
luted environment can negatively affect a hospital as a new
resource. Therefore, a city planner must consider the mutual
relationship between the effects of the environment and new
resource on each other.

Several main points are qualitatively and quantitatively
assessed in site selection, and the degree of fitness is iden-
tified to propose the following requirements:

• The degree to which the site supports the function
requirement and capabilities of human beings;

• The degree to which the site is suitable for construction
of the proposed project, in terms of materials, workers,
time, and money;

• The degree to which the site fulfills the requirements with
regard to form and capacity of space; and

• The degree to which the site has access to main resour-
ces, such as human and natural resources.

Given that most of the related issues and data in site
selection and suitability process are based on geographical
information, GIS allows for the consideration and combi-
nation of these data and variables to deal with the modeling
process. GIS can apply various data regarding geology,
topography, land use/land cover, demography, natural
resources, and transportation networks.

Using GIS in site suitability analysis and urban planning
process is advantageous because GIS can develop alternative
scenarios of urban development. GIS techniques and meth-
ods can be used to assist in developing and designing a
growth management plan for urban areas. GIS can also
analyze existing zoning and land use plan and discuss future
projection build-out scenario in accordance with existing
plans and regulations. Alternative development scenarios
and 3D visualizations can be developed and comprehen-
sively compared. Such comparison can be conducted by
collecting, compiling, and editing database developments
and maps for all the base layers and identified constraint
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layers for any future development of townships, such as
unbuildable parcels, agricultural district, airport zones, and
floodplains. The areas suitable for development are assigned
a value of one, while the areas unsuitable for development
are assigned a value of zero. Each of these layers is assigned
a specific weight first and then combined using the raster
calculator. The weighting stage is a complex mathematical
calculation based on the decision-making process.

Decision making is the study of identifying and choosing
alternatives based on the value and preferences of the deci-
sion makers. Making a decision implies that alternative
choices are available for consideration. Decision making
requires identifying as many of these alternatives as possible
and choosing the one that best fits with the goals, desires,
aims, and values. Most high equity decision problems have
strong spatial connotations, and geography is an inherent
component of these problems because of the spatial
arrangement of infrastructure, population density, settle-
ments, and patterns of the physical world. Thus, geography
cannot be ignored in finding solutions to such problems.

Spatial decision making faces the following decision
complexities:

• Spatial nature and temporal development of phenomena
and process;

• Complex multidimension and heterogeneous data
describing decision situations;

• Large or extremely large datasets that include data in
numerical, map, image, text, and other forms;

• Substantial number of available alternatives or a need to
generate decision alternatives “on the fly” according to
the changing situation;

• Multiple participants with different and often conflicting
interests; and

• Multiple categories of knowledge involved, including
expert and layman knowledge.

Spatial decision support is the computational or infor-
mation assistance for making well-informed decisions
regarding problems with a geographic or spatial component.
This support assists with the development, evaluation, and
selection of proper policies, plans, projects, scenarios,
interventions, or solution strategies.

GIS can provide the following tools for assisting in the
decision-making process:

• Maps/display as means of visualizing the problem,
• Overlay as means of defining relationships, and
• Modeling as means of predicting outcomes.

Although GIS is a beneficial tool for spatial analysis
issues, whether the GIS decision support capabilities are

sufficient is unclear (Jankowski 2006). In fact, GIS is a
decision support system and not a decision-making system.
GIS can provide certain tools for assisting in the
decision-making process. GIS approaches are incapable of
processing multiple criteria and conflicting objectives (Car-
ver 1991). GIS approaches are also limited in integrating
geographical information with subjective values/priorities
imposed by the decision maker (Malczewski 1999).

In making a good decision, the following requirements
must be provided:

• Knowledge and foresight,
• Insight and intelligence, and
• Expertise and others.

Although GIS does not provide the preceding require-
ments, this system can fulfill the important role in decision
making by providing decision support. Therefore, integrat-
ing different techniques with GIS is required to increase the
analysis capability in site suitability process. One of the
main techniques integrated to GIS is MCDM. For the last
three decades, the integrated GIS and MCDM technique has
been used in solving site selection problems.

Decision analysis is a set of systematic procedures for
analyzing complex decision problems. These procedures
include dividing the decision problems into small and highly
understandable components, analyzing each component, and
logically integrating the components to produce a mean-
ingful solution. MCDM incorporates an explicit statement of
preferences of decision makers. Such preferences are pre-
sented by various quantities, weighting schemes, constraints,
goals, utilities, and other parameters. These preferences
analyze and support decision through formal analysis of
alternative options, attributes, evaluation criteria, goals or
objectives, and constraints. However, they assume homo-
geneity within the study area. Such assumption is unrealistic
for site selection problems.

In the MCDM approach, the decision maker must define
the criterion preferences. MCDM problems frequently
involve criteria of varying importance to decision makers,
thereby resulting in policies, established hierarchies, cause–
effect relationships, and subjective preferences. Preferences
are expressions of the values of the decision maker. In the
MCDM context, preference represents the varying degrees
of importance assigned to criteria.

A weight is a numeric value assigned to an evaluation
criterion that indicates its importance relative to other criteria
in the decision situation. The criterion with a large the
weight is considered the most important. The weights are
usually normalized such that their sum for all n-criteria
considered in a given decision situation equals 1. Different
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weighting techniques are available, such as ranking proce-
dures, rating, and pair-wise comparison.

Any spatial decision problem can be structured into the
following three major phases (Fig. 13.4):

• Intelligence, which examines the existence of a problem
or opportunity for change;

• Design, which determines the alternatives; and
• Choice, which decides the best alternative.

The framework for spatial multicriteria decision analysis
is provided in Fig. 13.5.

Problem Definition: The decision problem is the difference
between the desired and existing state of the real world. This
stage involves searching the decision environment for con-
ditions, processing, and examining the raw data to identify
the problems. The GIS capability for storage, management,
manipulation, and analysis are used in this stage, thereby
providing a major support.

Evaluation Criteria: This stage involves specifying a
comprehensive set of objectives that reflect all concerns
relevant to the decision problem and determines the
achievement of those objectives defined as attributes. GIS
data handling and analyzing capabilities are used to generate
inputs for spatial decision-making analysis.

Criterion Weights: Weight is the value assigned to an
evaluation criterion that indicates its importance relative to
other criteria under consideration.

Decision Rules: The criterion map layers and weightings
must be integrated to provide an overall assessment. This
task is accomplished by an appropriate decision rule or
aggregation function.

Sensitivity Analysis: In real-world situation, analysis must
be made to investigate whether the preliminary conclusion is
robust or not. Sensitivity analysis aims to identify the effect
of the changes in the inputs, such as geographical data and
the preferences of the decision maker on the outputs. If the

changes insignificantly affect the outputs, then the ranking is
assumed as robust and satisfactory.

The choice of the MCDM method is important because it
has a significant effect on the outcome. The characteristics and
properties of the MCDMmethod must be compatible with the
specific nature of the decision problem (Laaribi et al. 1996).

Among various MCDM methods, analytical hierarchy
process (AHP) is common used in site selection process. The
pair-wise comparison technique is developed by Thomas
Saaty in the 1970s and 1980s in the context of the MCDM
method called AHP (Saaty 1980), This technique represents
a theoretically based approach to computing weights repre-
senting the relative importance of criteria. Weights are not
directly assigned; however, they represent a “best fit” set of
weights derived from the eigenvector of the square recip-
rocal matrix used to compare all possible pairs of criteria.

The technique comprises using pairs of criteria Ci and Cj

and asking the two following questions:

(1) Which criterion is more important, Ci or Cj?
(2) How much/How many more times is said criterion

more important relative to the lesser important crite-
rion? Typically answered as “about the same” or
“strongly more important” and subsequently scored on
a one to nine scale (Table 13.1).

Answers to these two questions are used to generate the
cell values in a square matrix A, where i is a row and j is a
column. Since each factor is of equal importance to itself, the
diagonal in A matrix is filled with 1s. If Ci (row element) and
Cj (column element) are if equal importance, then aij (the
value in the matrix A at the intersection of row i and column j)Fig. 13.4 Three phase of decision-making process (Malczewski 1999)

Fig. 13.5 Framework for spatial multicriteria decision analysis (Mal-
czewski 1999)
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equals 1; if Cj is more important than Ci, then aij is set equal
to the importance score and will be >1; finally, if Ci is more
important than Cj, then aij is set equal to the reciprocal of the
importance score (i.e., 1/score) and will be <1. The structure
of the matrix A can be presented as follows: C1, C2, C3, Cn;

A ¼ aij
� � ¼

C1

C2

C3

..

.

Cn

1 a12 a13 . . . a1n
1=a12 1 . . . . . . a2n
1=a13 . . . 1 . . . . . .
1=a14 . . . . . . 1 . . .
1=a1n 1=a2n . . . . . . 1

2

66664

3

77775

where A is the reciprocal and square pair-wise comparison
matrix. aij = 1, and aji = 1/aij, i, j = 1, 2, 3, …, n. In matrix
A, the problem becomes one of assigning to the n elements,
C1, C2, C3, … Cn, a set of numerical weights W1, W2, …, Wn

that reflect the recorded judgments. If A is a consistency
matrix, the relation between weights Wi and judgments aij
are simply given by Wi/Wj = aij (for i, j = 1, 2, …, n) and
C1, C2, C3, … Cn

A ¼

C1

C2

C3

..

.

Cn

W1=W1 W1=W2
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. ..

.
W1=Wn
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. ..

.
W2=Wn
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. ..
.
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.

..

. ..
.

. . . 1 ..
.

Wn=W1 Wn=W2 . . . . . . Wn=Wn

2

666666664

3

777777775

The consistency test is one of the essential features of the
AHP method and aims to eliminate the possible inconsis-
tency presented in the weights by computing the consistency
level of each matrix (Saaty 2000). The degree of consistency
achieved in the ratings is determined by a CR, which induces
the probability of the matrix ratings randomly generated
because individual judgment can never be perfectly agreed.
The rule of thumb is that a CR less than or equal to 0.10
indicates an acceptable reciprocal matrix A, while ratios over
0.10 indicate that the matrix must be revised.

Contrary to ranking and rating, pair-wise comparison has
a solid theoretical foundation based on ratio-scale judgments

regarding pairs of criteria and the properties of the theoret-
ical matrix of pair-wise comparisons. This technique has the
disadvantage of the need to conduct numerous judgments
when the numbers of criteria are large.

Using these techniques in site suitability analysis can
result in a model for evaluating the suitable location for a
specific purpose, such as building sites to support the deci-
sion making in locating additional housing areas. Owing to
the complexity of the site selection process, integrating
several decision support tools, such as high spatial resolution
remotely sensed data and GIS and multicriteria analysis
using AHP, is essential in this process. This integration can
benefit urban planners and decision makers. GIS is used
based on a set of criteria derived from the spatial aspects,
environment, policies, and national and local physical plan.

The normal AHP technique of Saaty can be used to form
main criterion factors and subcriterion factors. The basic
assumption is that the weightings derived from the hierar-
chical comparison in normal AHP can be influenced by the
preferences provided to a particular criterion factor. There-
fore, a sensitivity test is performed on the criterion prefer-
ences and is evaluated based on various preference factors
thought to influence weightings. Separate hierarchical
pair-wise comparisons of main criterion factors are per-
formed for each preference to analyze the sensitivity of the
weights obtained. The pair-wise comparisons of criteria and
subcriterion factors are independently performed and similar
judgments are provided for all the preferences. Definite to
very strong preferences are provided to the factor in their
pair-wise comparison to reflect the preferences toward a
certain factor. Then, the consistency ratio must be analyzed to
verify the reliability of the judgment of the decision maker.

Site selection analysis can be performed through GIS
spatial analysis and 3-D analysis using ArcView or ArcMap
Model Builder. Models are represented as sets of spatial
processes, such as buffer, classification, and reclassification
and overlay techniques. Each of the input themes is assigned
a weight influence based on its importance first, and then the
result is successively multiplied by each of the constraints.
Next, the GIS overlay process is used to combine the factors

Table 13.1 Pair-wise
comparison matrix (Saaty 1980)

Intensity of importance Definition

1 Equal importance

2 Equal to moderate importance

3 Moderate importance

4 Moderate to strong importance

5 Strong importance

6 Strong to very strong importance

7 Very strong importance

8 Very to extremely strong importance

9 Extremely importance
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and constraints in the form of a weighting overlay process.
Finally, the result is summed up to produce a suitability
map.

Performing site selection process using site screening
method and AHP demonstrates how evaluation criteria, such
as physical, socioeconomical, technical, environmental, and
their regulatory subcriteria can be introduced into an over
layer technique to screen limited appropriate zones in the
area. Utilizing an MCDM method is recommended for
hierarchy computations of the process to find the optimal
site among the primarily screened site. Using the introduced
method, an accurate sitting procedure for urban and envi-
ronmental planning in an area can be enabled. As a result,
several suitable zones can be screened in the area and the
most suitable site can be chosen as the optimal site for
locating the proposed facility or development using AHP.

AHP is an efficient method for solving multiobjective
decision-making problems and can be used to locate the
optimal site among primarily selected zones. As the alter-
natives in hierarchy process, the sites are screened in the first
phase to satisfy all involved considerations and the stan-
dards are utilized. Integrating GIS and AHP for site suit-
ability process can provide the correct solution to assist the
decision maker in determining appropriate values for
physical suitability criteria.

In conclusion, the integration and improvements in GIS
and RS technology provide a unique perspective on urban
expansion and land use change process (Forster 1984). The
information collected from remotely sensed data within a
GIS environment are extremely beneficial to modeling,
managing, and describing urban growth behavior (Longley
et al. 2003; Al-shalabi et al. 2013). Moreover, the capability
of GIS to be integrated with other evaluation and decision
support systems enables urban planners to assess geospatial
and remotely sensed datasets (Parker et al. 2003; Bhatta
2010; Chen et al. 2014) and predict and model future pat-
terns by considering historical and current datasets.

13.4 GIS in Urban Planning
from the Malaysian Perspective

In recent decades, GIS has been used in many countries for
several applications, such as disaster monitoring and urban
growth management in China, business application through
the Integrated Land Use System in Singapore, preparing
development plan including the framework of future land
use in Calcutta, tourism planning in Canada, and studying
the environmental effect of tourism on fragile reefs in the
Cayman Islands (Selamat et al. 2012).

Historically, Malaysian governments have used old and
traditional approaches (such as blueprint) of preparation and
monitoring for urban growth and development (Samat

2006). However, given their several drawbacks, such as
difficulties in monitoring uncontrolled urban growth, com-
plexity, and time-consuming process (Yusoff et al. 2010),
these approaches are replaced by GIS, RS, and other
advanced techniques to deal with geographical-based data
and issues in urban applications. The advance growth in
information technology development has improved and
increased the application of GIS in urban planning in this
country. GIS was first used in Malaysia in the 1980s using
the digital cadastral database and the National Topographic
Database developed by the Department of Survey and
Mapping (Selamat et al. 2012).

GIS has also been applied in the following applications:

• Education: GIS provides an attractive environment and
further develops the creative, critical, and innovative
thinking of student (Lateh and Muniandy 2011);

• Medicine: GIS has been used in mapping the distribution
of health facilities and dengue disease in affected areas.
Moreover, GIS has been used in the research on dengue
fever in Bandar Baru Bangi and Kajang and in health
care database (Shaharudin et al. 2002);

• Geology: GIS has been used to generate digital elevation
models stored in the geologicalmap to produce 3D-shaped
display in the Klang Valley (Abd Manap et al. 2009);

• Crime analysis: GIS has emerged as decision support
system in crime prevention projects. GIS allows the
integration of crime information systems with spatial
data and assists in the production of accurate and
high-quality maps that clearly show the locations of
different kinds of crimes as crime spots (Suryavanshi
2001);

• Health studies: GIS has been used to determine geographic
accessibility for various hospitals for patients, determine
geographic access to pharmacies for the community, and
describe the geographic pattern of specific illness or
accidents based on emergency department reports. GIS
can also be used as a decision support tool to allocate
health services such that they are geographically accessi-
ble to the population they intend to serve. Determining the
distance is typically performed with a “buffering” opera-
tion in the GIS, wherein buffers at various straight-line
distances from a particular point are generated. However,
the method is not the most effective in measuring actual
travel distance or travel time. Therefore, network analysis
is usually better because of its sophisticated basis related to
urban road network behavior.

GIS is used by the local planning authorities of Malaysia
to improve the planning system, particularly in controlling
the development in the area of jurisdiction, creating and
developing geospatial and urban-related database, running
and analyzing the proposed planning scenarios, and
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evaluating the consequences (Yaakup 2004). Samat (2006)
believed that Malaysia is a rapidly developing country, and
this rapid growth results in high land consumption rate.
Accordingly, strong and powerful land use management
systems, such as GIS, are needed to control and monitor the
utilization of land resources and prevent conversion of
valuable green and natural environments to urban land uses.
GIS provides a proper data management and retrieval system
related to land resources and a mechanism that can be used
to implement the planning function involving the daily
administrative management operations. Zaini (2007) used
GIS in preserving historical heritage buildings in Taiping,
Perak because of its capability to manipulate data and pro-
duce various development scenarios required by the local
planning agencies in monitoring the development of Taip-
ing. Abdullahi and Pradhan (2015) used a GIS environment
to propose a brownfield land use change model based on the
compact city paradigm. Abdullahi et al. (2015a, b) analyzed
and evaluated mixed land use development of Kajang City

as an objective to achieve sustainable urban development
using GIS database and analytical tools.

One of the important roles of GIS at the national level is
site selection projects for various purposes, such as com-
munity facilities (medical, educational, and transportation),
government buildings, and developing entirely new cities
(Putrajaya and Cyberjaya). Given that various parameters,
including social, environmental, and physical parameters,
must be considered in site selection analysis, the capability
of GIS in integrating various data sources with different
formats and scales is beneficial in this analytical process
(Abdullahi et al. 2014). Thus, GIS is applicable in a wide
range of land management, land use planning, and suitabil-
ity, including the interpretation and formulation of land use
policy (Selamat et al. 2012). Several areas and divisions
need GIS for management and performing processes for
urban applications, such as Corporate Plan, National Phys-
ical Development Plan, Regional Planning, Legal and Reg-
ulatory Planning, Legal Unit, National Land Use

Table 13.2 Development of
geographical information system
from 1980 to present (Selamat
et al. 2012)

Period Application

1980s • Digital Cadastral Database (DCDB)
• National Topographic Database
• Geographic Distribution Information System (GDIS) for gas Malaysia

1990s • Penang Geographic Information System (PEGIS)
• Department of Agriculture
• Sabah Agriculture Department
• Computerized Planning Information System (Melaka City Council)
• Forest Department of Sarawak
• National Infrastructure for Land Information System (NaLIS)
• Department of Survey and Mapping (JUPEM)
• Malaysian Center for Remote Sensing (MACRES)
• Geological Survey Department
• Valuation and Property Services Department
• Public Work Department
• Economic Planning Unit

2000s and
onward

• MACRES Ground Remote Sensing System (MGRS)
• Posse 2, Vehicle Satellite-Tracking System
• MiniLBS Application Suite in B200 Handheld Communicator
• Satellite Image Map (SIM)
• National Geospatial Data Network (myGDI)
• Kajang GIS
• Safe City Monitoring System (SCMS)
• Commercial Vehicle Licensing Board (LPKP)
• Melaka Structure Plan
• Planning Information System for Johor Bharu Tengah Municipal Council
(SIMAP-MPJBT)

• GIS Database Development for Nalis System of Alor Gajah Municipal Council
• Planning Information Application Process for Batu Pahat Municipal Council
• Development Control System for Planning of DBKL
• GIS System for Taiping Landscape Master Plan
• GIS System for Cameron Highland Landscape Master Plan
• Impervious Surface Estimation Model for Housing Estate/Subdivisions Using GIS
and Remote Sensing

• Land Use Monitoring System, Selangor
• Integrated Land Use, Landscape and Building Design Guidelines as Flood Mitigation
Tools

• Integrated GIS Database Development for Ministry of Federal Territories and Urban
Well-Being and etc.
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Information, Internal Audit Unit, and the Division of
Research and Development. Table 13.2 lists the various
applications and stages of GIS utilization in the town plan-
ning field in Malaysia.

The utilization of GIS in these governmental and
urban-related tasks has obtained good level of improvements
and achievements, such as (1) AGISwlk of GIS for Klang
Valley Region; (2) GIS9, which is the Negeri Sembilan
planning system and acts as a manual system to monitor the
structure plan document; and (3) PEGIS, which is an appli-
cation of GIS to Penang which plays a key role in providing
information to the Economic Planning Unit of Penang
(Selamat et al. 2012). The integration of GIS has provided a
tool that can contribute to a clear understanding of real
planning problems and prescriptive planning scenarios for
enhancing the quality of urban planning and management.
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14Quantifying Spatiotemporal Urban Sprawl
Patterns in the City of Tripoli Metropolis
(Libya) Over the Past Four Decades Using
Satellite Data Sets

Abubakr A.A. Al-sharif and Biswajeet Pradhan

14.1 Introduction

Worldwide urban population was approximately 3% of the
total population in the 1800s, reached nearly 30% in the
1950s, and became 50% by the end of the last century. The
United Nations (UN) estimated that 60% of global inhabi-
tants would be living in urbanized areas by 2025 (Al-sharif
and Pradhan 2013b). In addition, urbanization is accelerating
worldwide. Uncontrolled urbanization induces significant
effects on ecosystems and landscapes in metropolis cities
and neighboring areas (Xian et al. 2007; Li et al. 2010).
Moreover, rapid population increase has profoundly affected
socioeconomics in urban growth centers in developing
countries (Kong et al. 2012). In such countries, where the
most rapid urban expansions are occurring, urban policies
and plans are frequently weaker than those in developed
countries. The reasons behind this situation include lack of
expertise, the absence of holistic environmental considera-
tions, and the need for the integration of urban scientific
manners in the decision-making process (Li et al. 2010).
However, urban expansion is a permanent phenomenon that
includes transformations in large areas of land cover that are
associated with progressive population density. Sponta-
neously urbanizing landscapes lead to unbalanced urban
population density, unplanned infrastructure, and a signifi-
cant lack of basic necessity facilities (Ramachandra et al.
2012b; Sun et al. 2013).

The phenomenon of urban sprawl occurs in a variety of
forms that are strongly connected with geographical, eco-
nomic, and institutional contexts, and can be defined in
many different ways. In recent years, urban sprawl detection
has been conducted using maps and satellite images from
different periods (Bhatti and Tripathi 2014). The main spatial
indicator in sprawl investigation is the overall total built-up
area and time series analysis of such indicator (Verbeek et al.
2014). In several developing countries, urban expansion
process has different drivers and appears in different guises.

Hence, the characteristics of considered regions must be
accounted for when studying and investigating urban sprawl
(Epsteln et al. 2002; Jaeger et al. 2010). Landscape changes
associated with urbanization, mainly urban sprawl, contin-
ued to remain significant over the past five decades and its
significance is expected to continue over the next decades.
The spatial landscape indices are valid in assessing and
measuring different landscape changes and patterns with
various ecological meanings (Tang et al. 2006). Interest in
using landscape metric techniques to analyze urban envi-
ronments has grown in recent years. Remotely sensed data,
such as satellite systems data, is a valuable resource for
mapping urban areas. It provides a comprehensive and
synoptic view, which, in the case of large study area, is not
possible through field survey. Another important benefit of
using remote sensing data is the availability of temporal
records that help in understanding and mapping urban
sprawl over time periods (Bhatti and Tripathi 2014;
Abdullahi et al. 2015a). As reported, combining remote
sensing and spatial metrics is a good step for improving the
analysis and modeling of urban growth and land-use change,
leading to an improved understanding and representation of
urban dynamics and contributing to the development of
alternative concepts of urban spatial structure and change
(Su et al. 2010). However, rapid urbanization leads to hap-
hazardly dispersed urban development in city fringes that
can be considered as sprawl. Hence, urban sprawl phe-
nomena are scattered and uncontrolled suburban expansions
that deplete resources as a consequence of considerable
land-use change (conversion of green lands, water bodies,
parks, etc.) (Zhang et al. 2015). Nevertheless, the term
“urban sprawl” has no clear consistent definition yet among
urban researchers, that is, this term has different definitions
(Siedentop 2005; Zhang et al. 2014). According to Pumain
(2004), urban sprawl is the spatial expansion of urbanized
settlements into countryside areas along with the decon-
centration of urban functions. Other researchers consider the
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dominance of low-density urban settlements as urban sprawl
(Taubenböck et al. 2009a). Meanwhile, a number of urban
activists defined urban sprawl as the transformation of pre-
viously monocentric and compacted cities into dispersed,
discontinuous, and fragmented polycentric urban patterns
(Bhatta 2010; Abdullahi et al. 2015b). Another definition of
urban sprawl is urban fragmented developments that con-
tradict the objectives and concepts of spatial urban plans
(Al-sharif and Pradhan 2013a). Urban sprawl can also mean
large imponderables between population increase and spatial
urban expansion (Brueckner 2001). Urban sprawl typically
occurs in suburban areas, but not all suburban growths
can be regarded as urban sprawl (Yue et al. 2012). More-
over, urban sprawl processes entail the expansion of
urbanized areas from a city center toward the fringes of the
city. These small, scattered urban pockets in the outskirts of
a city typically need basic amenities such as electricity,
treated water, and sanitation facilities (Ramachandra et al.
2012b). From another perspective, urban sprawl occurs if
land-use rate is faster than population increase (Fulton et al.
2001). Correspondingly, some researchers reported that
unlimited “leapfrog” urban expansions with low density can
also be considered as urban sprawl (Burchell et al. 2005;
Yue et al. 2012). In general, the common pattern of the
urban sprawl process is that progressively urban landscapes
become geometrically fragmented and complex
(Ramachandra et al. 2012b). However, without a universal
description of urban sprawl, modeling, and quantifying it is
difficult. Hence, the urban sprawl phenomenon should be
analyzed from multidimensional perspectives (Taubenböck
et al. 2009a).

Monitoring urban changes by mapping landscapes at a
temporal scale enhances planning sustainability (Al-sharif
et al. 2013). However, the dynamicity of landscape diversity
resulting from the urban expansion process has not been
satisfactorily discussed within the context of urban areas
(Yeh and Huang 2009; Abdullahi et al. 2015a; Abdullahi
and Pradhan 2016). Moreover, the urban landscape is
dynamic and constantly changing as a result of urban
development. Consequently, studying and analyzing spatial
change in urban landscape patterns at a single temporal point
cannot identify the real dynamics behind urban landscape
transformation (Xian et al. 2007; Bagan and Yamagata
2015). Thus, using historical spatiotemporal data to analyze
and visualize urban expansions is helpful in identifying
suitable and probable areas of intense urban growth and
sprawl (Alsharif and Pradhan 2013a). One important means
to address urbanization problems and their side effects is by
analyzing the urban sprawl process and by applying appro-
priate urban strategies that facilitate sustainable urban
development (Jaeger et al. 2010; Kong et al. 2012).
In this context, socioeconomic measures, such as the number
of commercial establishments, employment opportunity,

population growth, and so on, are used to detect and identify
urban sprawl indirectly (Brueckner 2000; Ramachandra
et al. 2012a). Nevertheless, these measurement techniques
cannot efficiently identify the spatial impacts of urban sprawl
(Ramachandra et al. 2012a). Some researchers have reported
that urban sprawl can be characterized by considering vari-
ous indicators, such as density, accessibility, growth,
decentralization, socioeconomic, open space, cost of open
space, aesthetic, etc. (Bhatta 2010). Developing quantitative
techniques to identify urban growth/sprawl patterns is cru-
cial to assist regional and local urban planners in addressing
and understanding issues attributed to urban sprawl (Sun
et al. 2013). From this perspective, accessibility of spatial
remotely sensed data at numerous time intervals supports
identifying and monitoring rapid land-use changes (Chen
et al. 2000; Epsteln et al. 2002; Dietzel et al. 2005). Fur-
thermore, remote sensing images can easily explain the
quantitative physical spatial formation of urban environ-
ments. By combining geographic information system
(GIS) data, satellite imageries, digital datasets, and spatial
metrics, the landscape patterns can be conveniently descri-
bed, analyzed, and estimated (Herold et al. 2003; Yeh and
Huang 2009; Sun et al. 2013). Recent advances in landscape
ecology discipline provide helpful tools in monitoring,
modeling, quantifying, and predicting urban growth (Sud-
hira et al. 2004; Kong et al. 2012). Landscape metrics are
generally used in ecological studies (Li et al. 2005; Peng
et al. 2010); however, landscape metrics have been recently
extended and used in urban studies to improve understand-
ing on different urban forms and the urbanization process at
a landscape level (Peng et al. 2010; Kong et al. 2012).

Dietzel et al. (2005) and Herold et al. (2003) demon-
strated that landscape metrics can be used to trace the spa-
tiotemporal trends of landscape patterns. Landscape metrics
can effectively categorize and quantify complex landscapes;
thus, these metrics can be used to determine many spatial
properties that are not directly observable (Ramachandra
et al. 2012b). Several studies used spatial landscape metrics
to study dynamic patterns, as well as socioeconomic and
political factors that underlie urbanization (Schneider et al.
2005). Landscape metrics can be considered as reliable
approaches to quantify urban spatial patterns, as well as to
detect and provide in-depth information on urban sprawl.

The main objectives of this study are to assess, investi-
gate, and measure quantitatively the spatiotemporal patterns
of urban sprawl in the Tripoli metropolitan area using a
series of landscape metrics. This work investigates the urban
sprawl patterns of Tripoli metropolitan city and its districts
in different temporal points, which gives good guidance to
urban planner and decision maker. This study highlights
different behaviors of urban expansions, which are helpful
for further researches and deeper understanding of various
urban sprawl patterns.
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14.2 Study Area

Tripoli is the capital of Libya, as well as the political,
financial, and commercial center of the country. Tripoli City
is thousands of years old. It is located along the Mediter-
ranean coast in the northwestern part of Libya between lat-
itudes (32° 36ʹ 18ʺ N and 32° 54ʹ 17ʺ N) and longitudes (12°
54ʹ 04ʺ E and 13° 26ʹ 38ʺ E). Tripoli covers an area of
approximately 1143.73 km2, with a population of more than
1.3 million. This city is divided into nine districts, namely,
Central Tripoli, Suq Aljumma, Hey Alandalus, Abuslim,
Tajoura, Ainzara, Janzour, Kaser Ben Ghashir, and Alswany
(Fig. 14.1).

The Tripoli metropolitan area has become economically
active, particularly during the last decade after international
sanctions were lifted. Despite the presence of government
urban plans, urban growth, and development are sponta-
neous, uncontrolled, and haphazard. Implementing plans
was affected by corruption, political situations, and eco-
nomic conditions, thus resulting in urban sprawl becoming
primarily dependent on citizen trend regardless of plans in
most situations.

The major results of rapid and uncontrolled urban
expansions in the study area are the conversion of fertile and
green lands, the destruction of environmental reserve areas,
and the formation of illegal spontaneous settlements that
generate socioeconomic and physical problems.

14.3 Data Description and Methods

Four satellite images were used in this study (Table 14.1).
Landsat satellite images and SPOT 5 image from 2002 were
obtained from the Biruni Remote Sensing Center, Libya.
A SPOT 5 image from 2010 was also obtained from the
Libyan Center for Remote Sensing and Space Science.
Available data are limited, and there was no access to ima-
geries for the same periods.

Numerous techniques have been developed to analyze,
process, and extract information from remotely sensed data.
Selecting specific algorithms or methods that will be
employed depends on the objectives of the study (Zhang
et al. 2015). ARC/INFO GIS software package was used for
image processing, classified land cover map generation,
spatial analysis, and map preparation.

The images used were collected as standard products, and
were then radiometrically and geometrically corrected. The
standards used by the agencies that provided the images are
different, thus resulting in misregistration and low accuracy
of images co-alignment. To resolve this problem, images
were rectified and geo referenced during the preprocessing
step, such that the high accuracy of the overlay was matched.

In this study, the images used had different spatial reso-
lutions. The simple approach used to fix this problem was to
resample high-resolution images to match them with
low-resolution imageries.

Subsequently, a maximum likelihood supervised classi-
fication method was applied on the images during the clas-
sification process phase. All images were classified by
selecting samples (polygons) as training areas to present
different classes (2). This work focused on urban land cover
and urban expansion; consequently, classification was per-
formed by considering only two important classes: nonurban
area and urban area; such classification is considered to be
sufficient (Bhatta 2009).

Fig. 14.1 Study area location map

Table 14.1 List of used satellite imageries

Sensor type Acquisition year Spatial resolution (m)

LANDSAT–TM Sep. 1984 30

LANDSAT–TM Aug. 1996 30

SPOT 5 Oct. 2002 2.5

SPOT 5 Aug. 2010 5
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As a final step in data preparation, all maps were clipped
with the study area boundary vector map and resampled to a
grid size of 30 m � 30 m. Figure 14.2 demonstrates the
overall steps flow chart. All the prepared data were con-
verted to ASCII formats to be further used in analysis using
the FRAGSTATS software.

14.4 Analyzing Urban Sprawl Using
Landscape Metrics

During the last three decades, many landscape metrics have
been developed, tested, and used to analyze landscape
structure and composition (Peng et al. 2010). In general, the
urban sprawl process changes and modifies landscape
compositions over time by increasing landscape fragmenta-
tion and generating small urban patches. In this study, six
landscape metrics were applied to investigate and analyze

the spatiotemporal patterns of urban sprawl in the study area
and each individual district, as well as to assess sprawl from
different perspectives. The applied landscape metrics can
measure clumpiness, aggregation, complexity, and level of
dispersion of urban class in the landscape of the study area.
The metrics used are: 1-edge density (ED) to report edge
length per unit area basis that facilitates comparison among
landscapes of varying size. ED = 0 when there is no class
(urban) edge in the landscape; 2-largest patch index (LPI) to
quantify the percentage of total landscape area comprised by
the largest patch. As such, it is a simple measure of domi-
nance (i.e., it equals the percentage of the landscape com-
prised by the largest patch), LPI approaches 0 when the
largest patch of the corresponding patch type is increasingly
small. LPI = 100 when the entire landscape consists of a
single patch of the corresponding patch type; that is, when
the largest patch comprises 100% of the landscape; 3-shape
index (SHAPE) to measure the complexity of patch shape
compared to a standard shape (square) of the same size;
4-landscape shape index (LSI) to provide a standardized
measure of edge density that adjusts for the size of the
landscape. Because it is standardized, it has a direct inter-
pretation, in contrast to total edge, for example, that is only
meaningfully relative to the size of the landscape; 5-patch
density (PD) is a limited, but fundamental aspect of land-
scape pattern. PD has the same basic utility as number of
patches as an index, except that it expresses number of
patches on a per unit area basis that facilitates comparisons
among landscapes of varying size. PD is ultimately con-
strained by the grain size of the raster image, because the
maximum PD is attained when every cell is a separate patch.
Therefore, ultimately cell size will determine the maximum
number of patches per unit area. Large PD reflects high
dispersed urban patterns; 6-Simpson’s evenness index (SIEI)
expresses such that an even distribution of area among patch
types results in maximum evenness. As such, evenness is
the complement of dominance, the higher SIEI means
higher diverse distribution of considered urban landscape
(Taubenböck et al. 2009). To perform urban landscape
analysis, the statistical package FRAGSTATS version 4
(McGarigal et al. 2002) was employed to calculate all the
aforementioned landscape quantitative measures.

14.5 Results

The classification of the multi-temporal satellites images into
nonurban area and urban area has resulted in abstracted and
simplified representation of study area as shown in Fig. 14.3.
The four classified maps demonstrate the spatiotemporal
patterns of urban expansions in the study area (La Rosa and
Wiesmann 2013). The classified maps were assessed using
the confusion matrix method. Real ground reference

Fig. 14.2 Overall methodology flow chart
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polygons were compared with the classified output maps to
assess the accuracy. Overall accuracy values of 91, 93.2,
95.7, and 94% and Kappa coefficients values of 0.89, 0.93,
0.94, and 0.93 were achieved for the classified maps for the
years 1984, 1996, 2002, and 2010, respectively. In Fig. 14.3,
dispersed rapid urban expansions in the Tripoli metropolis
over the period of 1984 to 2010 are easily noted. However, it
is significant to analyze and assess these urban growth maps
with suitable statistical evidences to identify and describe the
different urban development patterns that have happened in
the study area. This will allow comparing and understanding
the different urban patterns over time quantitatively. The
aforementioned spatial landscape metrics were used to
assess and compute only the spatiotemporal trends of urban
areas. According to different definitions of urban sprawl and
the analysis results collected from applied landscape metrics,

the presence of sprawl was identified and assessed
quantitatively.

The results of the synoptic analysis of the imple-
mented spatial metrics provided an overall demonstration
of urban sprawl spatiotemporal patterns (Figs. 14.4, 14.5,
14.6, 14.7, 14.8, and 14.9). The SIEI measure illustrated
that the overall diversity level of the study area increased
between 1984 and 2010. The increase rate of the SIEI
measure was most obvious from 2002 to 2010. The SIEI
index has decreased dramatically in central Tripoli region
after 1984 and became very low in 2010. This finding
reflect the low diversity of the landscape in this district,
i.e., almost whole landscape was urbanized in such zone.
This high urban compactness is because of that the
Central Tripoli district includes the central business of
district (CBD) of the study area.

Fig. 14.3 Built-up area extent in different years; a 1984; b 1996; c; 2002; d 2010
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The districts of Hey Alandalus and Suq Aljumma showed
gradual decrease of SIEI in the last decade; that means the
both regions are going to be condensed with built-up areas.
In contrast, the other six districts showed different behavior
and had high increased SIEI values; i.e. one can say these six
areas have speedy urban expansion. The landscape metrics
of PD and ED increased remarkably in the entire study
landscape. Such large increases reflect the increase in iso-
lated urban patches and the irregular formations of these
patches. The highest increase of PD (i.e., increase of urban
patches) in overall study area was from 1996 to 2002; the PD

was increased further in 2010. However, districts of Central
Tripoli, Hey Alandalus and Janzour showed decreased level
of PD (i.e., decreasing in urban dispersion) in the last dec-
ade. On the other hand, the other districts encountered high
PD levels after 1996 (i.e., the presence of urban leapfrog
dispersed patterns). The spatial patterns of urban areas in
overall study area in 1984 were more regular than other
recent time periods based on ED measure. In 2010 the ED
value was the greatest which reflects the very high irregular
and complex urban expansions. By reading the analysis

Fig. 14.4 Variation of SIEI measure in different time periods (without
unit)

Fig. 14.5 Variation of PD measure in different time periods (Number
per 100 ha)

Fig. 14.6 Variation of ED measure in different time periods (m/ha)

Fig. 14.7 Variation of LPI measure in different time periods (%)

Fig. 14.8 Variation of LSI measure in different time periods (without
unit)

Fig. 14.9 Variation of SHAPE measure in different time periods
(without unit)
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findings of ED measure for each individual zone, one can
note that only two districts of Central Tripoli and Suq
Aljumma showed decreased ED levels (i.e., more regular
and dense urban patterns) with time progress. On the other
hand, the all other districts had increased irregular rate of
urban growth. These findings indicate high urban fragmen-
tation as well as increasing overall urban sprawl process.
However, the overall LPI metric has decreased since 1984,
which is the largest decrease recorded in the last decade, that
is, the largest urban patch in the study area has become
increasingly small. This situation is another sign of uncon-
trolled and fragmented urban sprawl increase. However,
after 1996 only the districts of Hey Alandalus, Central Tri-
poli, and Suq Aljumma had increased LPI values, this result
confirms that coastal zones that near to CBD in study area
have lower sprawl rates. The findings of the LPI investiga-
tion revealed that the Central Tripoli district presented an
increase in LPI at all times. Meanwhile, the largest LPI in
Suq Aljumma and Hey Alandalus occurred in 1984, and
then, LPI declined from 1996 to 2002. After 2002, however,
LPI increased to reflect the growing urban compactness of
these districts. By contrast, the other six districts increas-
ingly faced formations of smaller urban patches (i.e., dis-
persed expansions), and exhibited dramatic degradations in
LPI values. Therefore, the occurrence of urban sprawl is
obvious and easily detectable.

The analysis findings showed that LSI and SHAPE are
increasing continuously based on the urban expansion his-
tory of the study area. Such increases indicate that the urban
area aspect progressively has become irregular. Hence, we
can consider that Tripoli is experiencing unplanned urban
growth. The outcomes of ED, LSI, and SHAPE analyses
confirmed the presence of highly fragmented complex urban
patches in the districts of Hey Alandalus, Abuslim, Tajoura,
Ainzara, Janzour, Kaser Ben Ghashir, and Alswany. The
increase rate of these metrics was gradual from 1984 to
1996, but the trend of the three measures changed entirely
after 1996. The remarkable increases in ED, LSI, and
SHAPE values are noticeable; this indicating deteriorated
urban expansion patterns and the presence of uncontrolled
sprawl. Moreover, the SIEI measures exhibited highly
diverse values in most districts, particularly in 2010, except
in Central Tripoli, Suq Aljumma, and Hey Alandalus. This
result confirmed the findings of the analyses of the other
landscape metrics, and thus, can be considered as a strong
evidence of urban sprawl.

14.6 Discussions

Since, understanding the socioeconomic and environmental
consequences of urban expansion require quantifying the
spatiotemporal patterns of urban landscapes, this study has

illustrated that the spatiotemporal patterns of urban sprawl
can be investigated and quantified using a combination of
spatial landscape metrics. The study used a combined anal-
ysis of both the spatial and temporal changes of landscape
pattern in response to urban expansion process. Thus, the
results of this study can adequately address several important
points such as overall urban sprawl presence, districts that
contributed significantly to sprawl occurrence, and variation
of sprawl over the time periods.

In the study area, an extensive urban sprawl occurred
between 2002 and 2010. Another important trend of the
recent urban growth process in Tripoli is the decline of urban
densities, with most districts exhibiting a trend toward
scattered low densities. The general pattern of urban
expansions in Tripoli was that of an increasingly urbanized
landscape becoming geometrically complex, spatially dis-
persed, and fragmented. Hence, when the degree of urban
sprawl is high, both the density and shape complexity of
urban patches will increase, whereas the size of the urban
patches will decrease. Thus, further studies are necessary to
confirm these findings.

The findings of the study demonstrated that urban
expansions in the Tripoli metropolitan area have resulted in
dramatic increases in PD, ED, LSI, SHAPE, and SIEI, and a
sharp decrease in LPI. Consequently, the change rates of
applied metrics indicate that the intensity of landscape
changes increased because of rapid urban sprawl. In districts
such as Central Tripoli and Suq Aljumma, the rapid urban
expansion caused dramatic alterations in the landscape pat-
terns; however, the rate of urbanization process gradually
slowed down because of the lack of space for development.
Hence, the degree of landscape diversity and fragmentation
gradually decreased when urban land-use types became
dominant. The infill of urban developments can help reduce
PD and increase LPI in the city, enabling it to achieve the
goal of a compact form of urban development and decrease
the degree of fragmentation. The regions near CBD were
assumed to already have been developed to almost its full
capacity at the beginning of the time period investigated;
hence, less urban expansions in landscape pattern occurred.

By contrast, the districts further away from CBD,
including the urban fringes are places where the most rapid
transformation of the landscape occurred because of the
urban sprawl. Therefore, the old urban center gradually
became stabilized whereas the urban fringes experienced the
most rapid transformation of landscape patterns. In other
words, a highly urbanized landscape is more homogenous
and better connected than a rapidly urbanizing landscape.

However, based on results of the analysis and considering
the continuous development policy from the local govern-
ment and citizens, we predict that rapid urban sprawl will
create significant environmental impacts in the coming
years. This study showed that landscape metric analysis does
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not necessarily have to rely on complex mathematical
computation; rather, easy to calculate and comprehensible
metrics can provide important information on urban land-
scape patterns. The advantage of landscape metric analysis
includes quantification of complex landscape into numerical
indices, which can serve as criteria to evaluate different
planning scenarios. Understanding how urban land use is
expanded is more complex than simply mapping the urban
cover. Measures such as PD, ED, LSI, SHAPE, SIEI, and
LPI can quantitatively evaluate and compare urban sprawl to
assist in the decision-making process. Moreover, as this
study has demonstrated, using the landscape metrics at dis-
tricts level can help in identifying areas with the most
intensive urban development pressure.

14.7 Conclusion

This study investigated urban sprawl and its spatial patterns
in the Tripoli metropolis area from 1984 to 2010. The spatial
landscape metrics have assessed the dispersion, aggregation,
diversity, complexity, and shape of urban areas to measure
quantitatively urban sprawl in the study area from different
perspectives. The analysis results of all applied metrics
demonstrated a generally clear and uncontrolled urban dis-
persion pattern and urban sprawl in Tripoli City. Sprawl is
increasing continuously as time progresses. Nevertheless,
only two districts, namely, Central Tripoli and Suq
Aljumma, exhibited non-sprawling urban growth during the
last two decades. Furthermore, the outcomes illustrated that
Hey Alandalus experienced a clear sprawl but would be
more compact in the future based on landscape metrics
results. All the metrics results indicated that all the other
zones in Tripoli are experiencing extremely high sprawl
levels, which reflect rapid urban expansions and the absence
of clear and effective urban policies. The techniques used in
this work can provide guidance in recognizing and assessing
changes that are likely to occur if the trends exhibited in
urban history persist. Finally, this research offers good
insight into the urban expansion behaviors of the study area.
The findings of the study can be useful in directing
prospective urban plans and urbanization policies in Tripoli.
Moreover monitoring and assessing effects of urban sprawl
and its patterns provides important information and knowl-
edge that support urban planning and establishing regional
development policy. Wise urban land management legisla-
tion and clear strategy implementation should be adopted to
protect fertile lands from being converted to unplanned
built-up lands. However, this study has only examined the
historical records of urban landscape changes. Therefore,
analytical techniques need to be developed which can pre-
dict urban future trends and monitor sprawl changes.
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15Effect of Urban Expansion on Land Surface
Temperature in Putrajaya City, Malaysia

Marziyeh Zahabi and Biswajeet Pradhan

15.1 Introduction

In recent years, changes in land use (LU), climate, economic,
and population have been observed owing to high urban-
ization range (IPCC 2007). With the rapid growth of
urbanization and urban warming, climatologists have
focused on the phenomenon called urban heat island
(UHI) (Tran et al. 2006; Peng et al. 2011; Fujibe 2011).
The UHI effect is the difference in solar radiation reflectivity
(albedo), and thermal conductivity and thermal storage
capacity between surfaces that are classified as rural and
urban environments (Mitchell 2011).

Among different causative factors related to atmospheric
UHI, the difference in land surface temperature (LST) de-
pending on land cover (LC) type is the most fundamental
(Landsberg 1981; Voogt and Oke 2003).

Urban climatology studies mostly require accurate spatial
information to monitor the occurring changes (Voogt and
Oke 2003; Weng 2009). Remote sensing technologies can
obtain practical and modern data over large areas. Further-
more, such technologies can provide remarkable information
when integrated with various methodologies, such as image
classification, statistical analysis, and change detection.
Applying remote sensing systems in urban climatology
studies is advantageous because of their multispectral and
multi-temporal capabilities and ease of integrating their data
with geographic information systems (GISs) (Quattrochi and
Luvall 1999; Weng et al. 2004; Weng 2009).

Concerning temporal and spatial resolution, a high tem-
poral resolution is an advantage in the climatologic studies
of UHIs (Tran et al. 2006). Climatologic studies investigate
issues with a long data record; however, these studies have
disadvantage of poor spatial resolution. Remote sensing
views have been utilized for detecting the environmental
change and analyzing UHI characteristics. UHI studies
extensively use remotely sensed thermal infrared (TIR) im-
ages (Gallo et al. 1993; Roth et al. 1989; Streutker 2003)

because these images have high spatial coverage and can
provide information of the urban canopy layer.

LST is the critical component of the atmospheric UHI and
can be observed using satellite or aerial remote sensing
technology. Voogt and Oke (2003) proposed that the urban
LST heating pattern observed by remote sensing is the
“surface UHI” or SUHI. This phenomenon is an indicator of
the energy stored by natural and built surfaces that are
radiated to the surrounding air, thereby affecting the tem-
perature of the lower atmosphere.

In this study, remote sensing techniques were utilized to
retrieve LST using Landsat Thematic Mapper (TM) and
Enhanced TM Plus (ETM+) satellite imagery. LST can be an
appropriate indicator to demonstrate the thermal changes
within LC changes. Zonal statistics techniques, as a method
of GIS, were also utilized to achieve mean LST for each LC
type in 2002 and 2009. Beneficial information for studying
the urban LC change effects in Putrajaya City was obtained
from the combined results of LC analysis and mean LST.
The results show that the urban growth in Putrajaya City
results in the increase in mean LST during the study period.
This observation verifies the positive correlation between
normalized difference built-up index (NDBI) and LST and
the negative relationship between normalized difference
vegetation index (NDVI) and LST.

15.2 Previous Studies on RS-Based UHI

Remote sensing data related to LST, vegetation indicator,
and other surface factors have been used to characterize UHI
phenomenon (Gallo and Owen 1999; Gallo et al. 1993;
Weng et al. 2004). Hence, relations between LST and other
factors and indices have been investigated in numerous
studies. Weng (2001) investigated the direct effect of urban
development on the increase in LST using GIS and remote
sensing methods. Tehrany et al. (2013) explored LST
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variation and its relation with LC changes in Klang Valley in
Malaysia. In addition, Zhou et al. (2014) evaluated the
effects of LU/LC variables on LST across seasons using
Landsat images acquired from various seasons.

NDVI is the main index of urban climate and has been
investigated in the recent thermal studies. Xian and Crane
(2006) and Huang et al. (2005) only performed correlation
between changes in LST and LU/LC types caused by human
activities. They also documented the effect of vegetation
cover type and NDVI. Bokaie et al. (2016) estimated the
mean temperature of LST over different LU/LC classes in
Tehran City and used NDVI to study the distribution of
vegetation spaces in the region. Gallo et al. (1993) analyzed
the influence of NDVI on surface temperature over rural and
urban areas, and their results show a direct relation between
LST and NDVI.

Buyantuyev and Wu (2010) concluded that pavements
and vegetation covers are the main factors for surface
temperature variation. Thus, NDBI has been utilized to
represent LC changes attributed to rapid urbanization
(Xiong et al. 2012; Rinner and Hussain 2011). Weng
et al. (2004) found a positive correlation between LST and
impervious surface whereas a negative correlation between
LST and vegetation LC class. Ma et al. (2016) demon-
strated the influence of impervious surface on LST during
various seasons in China to emphasize the importance of
urban climatology. According to UHI research findings,
LST is susceptible to other factors such as density and
soil moisture (Weng 2009; Mallick et al. 2008). Subse-
quently, Sun et al. (2012) examined the influence of other
indices, such as NDWI and normalized difference barren
index, on LST. Ogashawara and Bastos (2012) observed a

negative correlation between LST and NDWI. Literature
review shows that UHI studies can be established by
examining the relationship between different indices and
temperature.

15.3 Study Area

The study area is situated in Putrajaya, Malaysia
(2° 56′ 35.14″N and 101° 41′ 57.74″E); Putrajaya is a
planned city and is the federal administrative center of
Malaysia located at 25 km south of Kuala Lumpur
(Fig. 15.1). The total area of this city is approximately
49 km2 and its population is 67,964 in 2010. Malaysia has
faced rapid urbanization growth during these periods. With
this regard, Putrajaya is observed with 100% level in
urbanization compared with other states for the period of
2000–2010.

Recently, the highest recorded temperature is 39 °C for
this city, while the lowest recorded temperature is 21 °C.

15.4 Data Used

Two scenes of Landsat ETM+ and TM images acquired on
February 11, 2002 and January 22, 2009 were effectively
used to recognize the spatial distribution characteristics of
surface temperature. NDVI was assigned to vegetation
presence while NDBI was assigned to the built-up area in
Putrajaya, Malaysia. Thermal bands of TM and ETM+ were
analyzed in terms of surface temperatures. The relationship
between LC types and temperature patterns in the city was

Fig. 15.1 Map of the study area
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then determined by comparing the LC classification image
and the surface temperature images.

15.5 Methodology

Various remote sensing data processing methods, such as
image classification, LST retrieval, and NDVI and NDBI
retrieval, were used to perform this research. The method-
ology comprised three main parts: data collection and pre-
processing, data processing, and data analysis (Fig. 15.2).

15.5.1 Data Preprocessing

Data preprocessing is a notable step of satellite imagery
processing and analysis and has an effect on all further steps
and the final result quality (Bobrinskaya 2012). The purpose
of image preprocessing is to restore proper image data from
distorted raw data. The principal steps of this part include
radiometric correction, geometric correction, and image
registration. Usually, the responsible company for satellite
data distribution applies several of these stages before
handing the data to the user (Lillesand et al. 2007).

In this study, the Landsat ETM+ and TM images were
collected under a clear atmospheric situation. The images
were preprocessed by the USGS to rectify any geometric or
radiometric distortions of the image to a level of 1G or 1T
product. The USGS further rectified the images to the
WGS1984 datum and Universal Transverse Mercator zone
29°N coordinate system (Landsat Project Science Office
2001; USGS 2010b). Original scenes of regions covering the
case city and subsets from these original scenes were
acquired.

15.5.2 Image Classification

The main purpose of image classification process is to
automatically classify all pixels in an image into LU/LC
classes or patterns. Digital classification is categorized
into supervised and unsupervised classification. The main
classifiers include minimum distance to mean classifier,
parallelepiped classifier, and maximum likelihood classi-
fier (MLC). Compared with other supervised methods,
MLC is the most generally used supervised method and
can provide better results (Foody et al. 1992).

In this study, images of two years (2002 and 2009) were
classified using ENVI 4.8 program into five LC classes:
(1) vegetation, (2) urban area, (3) water, (4) asphalt, and
(5) bare area. These classes were chosen because the city has
shown a dramatic increase in urban expansion in recent
years.

15.5.3 List of Retrieval of Remote Sensing Data

LST is the principal factor that specifies surface radiation
and energy exchange (Xiao et al. 2008). In this study, LST
was derived from ETM+ band 61 (10.4–12.5 lm) and TM
thermal band 6 with spatial resolutions of 60 and 120 m,
respectively.

The DNs were converted to spectral radiance first
and then the surface temperature was computed under
the assumption of uniform emissivity (Ahmed et al. 2013).
The calculation was implemented using the following
equation:

T ¼ k2
ln k1�e

CVR þ 1
� � ; ð15:1Þ

where T = the degree in Kelvin (−273.15 °C); CVR = the
cell value as radiance; E = emissivity (typically 0.95);
K1 = 666.09 and 607.76 in mW cm−2 sr−1 lm−1 for Land-
sat ETM+ and TM, respectively; and K2 = 1282.71
and 1260.56 in Kelvin for Landsat ETM+ and TM,
respectively.

Fig. 15.2 Methodology used in the study

15 Effect of Urban Expansion on Land Surface Temperature … 325



The resulting images were then classified into differ-
ent classes of temperature using density slicing. The classes
of temperature were 291–295, 296–300, 301–305,
and >305 K.

15.5.4 Retrieval of NDVI

NDVI is one of the most widely used vegetation indices for
demonstrating vegetation information (Lu et al. 2009).
Vegetation information can be obtained by ratio calculation
between the near-infrared (NIR) band and the red (R) band;
this ratio is the main idea of NDVI (Lu et al. 2009). Equa-
tion 15.2 was used to calculate the NDVI.

NDVI ¼ NIR� R

NIRþR
ð15:2Þ

Classification was performed on the NDVI images
obtained in 2002 and 2009 using density slice on ENVI 4.8.
Each NDVI image was divided into five classes by 0.15
intervals (>−0.3, −0.3 to −0.15, −0.15 to 0, 0 to 0.15,
and >0.15).

15.5.5 Retrieval of NDBI

NDBI is one of the widely applied indices for reinforcing
building information and extracting built-up land from urban
areas (Lu et al. 2009). Moreover, NDBI is a reflectance of
urban building and is higher in the fifth band than the fourth

band; therefore, NDBI can be computed by the equation
below

NDBI ¼ MIR� NIR
MIRþNIR

: ð15:3Þ

The index was developed on the basis of the unique
spectral response of built-up lands, that is, a higher reflec-
tance in middle infrared wavelength range than in NIR
wavelength range. However, this response is not always true
(Xu 2007).

The same NDVI procedure was applied on extracted
NDBI values. Six classes were assigned to each NDBI by
0.1 intervals using density slice on ENVI 4.8 (>−0.2, −0.2 to
−0.1, −0.1 to 0, 0 to 0.1, 0.1 to 0.2, and >0.2).

15.6 Results and Discussion

15.6.1 Land Cover Classification Results

Five LC classification results were acquired from Landsat
images (Fig. 15.3). Therefore, according to the classifi-
cation of the 2002 image (with overall accuracy classi-
fication of 92.16% and Kappa value of 0.88) and the
2009 image (with overall accuracy classification of
90.41% and Kappa value of 0.87), urban area increases
by 15.86 km2 and shows a slight increase in water area
and asphalt cover. Inversely, vegetation cover declines by
5 km2 and bare area dramatically decreases by 12.64 km2

(Fig. 15.4).

Fig. 15.3 Maximum likelihood
classification results
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The statistical results indicate that the urbanization trend
in Putrajaya region has increased throughout the period of
9 years.

15.6.2 Relationship Between LST and Land
Cover Types

The specific LST themes are related to the thermal charac-
teristics of the LC types. To study the effect of urbanization
on the local thermal environment, the changes in tempera-
ture over LU/LC must be investigated. As shown in
Fig. 15.5, most areas of the 2002 image are observed in
yellow and green colors, which indicate significantly low
mean temperature. Inversely, most areas of the 2009 image
are observed in red color, which indicates significantly high
mean temperature.

The mean of temperature over each class was derived
using zonal statistics from GIS operation to better analyze
the LST changes in each LC type during the study period.
The results of GIS zonal statistics are shown in Fig. 15.6.

Over the study period of 2002–2009, urban area shows
the highest mean surface temperature, followed by asphalt
which is still considered a part of the urban area. Bare area
and vegetation exhibit the lowest degree of mean tempera-
ture in 2002 (295.17 and 295.63 °K); however, a significant
increase in mean temperature is observed for both LCs in
2009 (300.66 °K over bare area and 299.15 °K over vege-
tation). The results show the occurrence of an ascending
trend of mean temperature for all LC types, except water
during the study period.

Urbanization growth in Putrajaya has engendered the
enhancement of mean temperature in this city. The increased
warming is attributed to the decrease in vegetation coverage
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Fig. 15.4 Changes of each land
cover area from 2002 to 2009

Fig. 15.5 Landsat thermal
classification related to the period
from 2002 to 2009
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and the replacement of bare area with urban and asphalt
areas.

However, diversities in LST values show the effects of
LC changes on the thermal environment. With regard to UHI
expansion in the period from 2002 to 2009, substantial cover
changes in urban area and major satellite towns intensify the
regional UHI effect.

15.6.3 Relationship Between LST and NDVI

The urban thermal environment is closely associated with
the decline in surface transpiration caused by a decrease in
vegetation coverage. Based on previous studies, NDVI can
be an indicator of the representative vegetation cover and
land surface radiance temperature (Xiong et al. 2012)

Figure 15.7 provides the visual presentation of different
NDVI ranges over different LC types in the period from

2002 to 2009. In this study, NDVI and LST show a close
correlation in several LC categories, particularly in vege-
tated areas for both years. NDVI values were queried out
by 0.15 intervals for each year, and then mean of tem-
perature over each range was calculated by zonal statistics.
Generally, urban areas show smaller NDVI values than
those of nonurban areas. A consistent decrease in the
NDVI value as the mean LST increases is also observed.
Essentially, an increase in urban growth results in a
decreased NDVI.

The negative NDVI ranges (<−0.3, −0.3 to −0.15, and
−0.15 to 0) indicate a high mean temperature for the year
2002. These ranges correspond to the urban area, asphalt,
and water. The highest values (0–0.15 and >0.15) are
expressed by the vegetated area, and the mean temperature
of this area is lower than that of the non-vegetated area
(Fig. 15.8).

The same results are derived for mean temperature
over each NDVI intervals in 2009. In particular, the
mean temperature significantly declines over the vegetated
area by positive and highest ranges compared with that of
the non-vegetated area by the negative interval. The
results in Fig. 15.9 represent the lowest mean tempera-
ture of 297.73 °K at >0.15, followed by 298.02 °K at
0–0.15.

According to the obtained results and illustrated charts of
mean temperature changes over different NDVI ranges for
each year (Figs. 15.8 and 15.9), the inverse relationship
between LST and NDVI is obviously inferable in Putrajaya
City in 2002 and 2009. Thus, the obtained results are in good
agreement with those reported in the literature. Specifically,
the presence of vegetation cover effects reduces the surface
temperature.

Water
Vegetation Bare 

Area
Asphalt

Urban
  Area

Mean/2002 297.35 295.63 295.17 300.9 302.93

Mean/2009 296.59 299.15 300.66 302.69 306.76

288
290
292
294
296
298
300
302
304
306
308

L
ST

 (
K

) 

Fig. 15.6 Change of mean temperature over each LC type in the
period of 2002–2009

Fig. 15.7 Visual representation
of classified NDVI in the period
from 2002 to 2009
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15.6.4 Relationship Between LST and NDBI

NDBI is a good determinant of urban development for a
specific region of interest, thereby providing new approaches
for future research on UHI effects (Xiong et al. 2012; Chen
et al. 2006; Liu and Zhang 2011). NDBI images of Putrajaya
City related to 2002 and 2009 were analyzed in this study to
achieve correlation between LST and NDBI during these
years.

NDBI images were classified into six ranges using den-
sity slice method to obtain the relationship between LST and
NDBI. The equal interval between ranges (divided by 0.1
intervals) was considered. Thereafter, mean temperature
degrees over each interval were determined using zonal
statistics in ArcGIS.

The analyses of NDBI in both years demonstrate that the
negative ranges are assigned to the nonurban areas, such as
vegetation and water, and the positive ranges display
built-up areas, including asphalts and buildings.

As shown in Fig. 15.10, distinguishing between bare
areas and built-up areas (in red and orange colors) in 2002
was difficult with NDBI because of their similar reflectance
in the TM/Landsat five bands. Thus, the bare area was
represented as built-up area. The negative ranges allocated to
nonurban area present lower mean temperatures that those of
the built-up area. The highest mean temperature degrees are
dedicated to ranges of 0.1–0.2 by 300.71 °K and >0.2 by
301.09 °K.

Fig. 15.8 Changes of mean temperature over NDVI intervals in 2002

Fig. 15.9 Changes of mean temperature over NDVI intervals in 2009

Fig. 15.10 Visual representation
of NDBI classified image in 2002
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These results demonstrate that the LST displays a positive
relationship with NDBI during 2002 in Putrajaya. As shown
in Fig. 15.11, the positive ranges exhibit higher temperature
degrees than those of the negative intervals.

The same analysis in 2002 was performed for NDBI
image from 2009. During this year, positive intervals
demonstrate built-up areas similar to 2002. These areas are
represented by red and orange colors. Most vegetation
covers are located in the range of −0.1 to 0 represented by
green color.

Figure 15.12 displays various mean temperatures over
equal intervals of NDBI in 2009. The highest mean tem-
perature degrees are allocated to the highest values of NDBI.
This finding indicates an uptrend in NDBI ranges from
negative to positive and high values. The highest mean
temperature is assigned to >0.2 by 306.49 °K after the
interval between 0.1 and 0.2 by 302.15 °K. The latter is
considered as the highest temperature compared with other
NDBI intervals during 2009.

Based on the analysis of NDBI results in 2009, an
obvious direct relationship between LST and NDBI exists.
Hence, the mean temperature enhances whereas the NDBI
value increases because of the high values of NDBI

associated to the built-up area with high degrees of
temperature.

Although LST and NDBI show a direct relationship in
Putrajaya during both years, the uptrend temperature in the
built-up area in 2009 is contrary to that in 2002. This finding
proves that urban expansion directly correlates with tem-
perature. Thus, UHI has an ascending trend in urban growth
in Putrajaya during these years.

15.7 Conclusion

This research investigated the relationship of LC classes
and LSTs and the effects of urban expansion on LST
changes. Putrajaya City was the chosen study area.
According to the results, the temperature of the urban area
approximately increases by 3.8 °K. Within the Putrajaya
City, LST and NDVI share a noticeable inverse relation-
ship. This result is attributed to that increasing vegetation
abundance can generally reduce surface temperatures that
cause severe UHI. In addition, NDBI reveals a direct
relationship with LST, indicating that increasing urbaniza-
tion (an increase of buildings and impervious surface, such
as asphalt) in this city directly correlates with rising tem-
perature. However, a high accuracy for NDBI must be
considered in future studies because of similar reflectance;
therefore, NDBI is mixed with the bare area. In recent
years, increasing LST in Putrajaya has become a significant
factor related to UHI, thereby accelerating the growth of
the UHI phenomenon. This trend will rise along with urban
expansion in this urbanized city.

The research findings can be beneficial for urban decision
makers and urban ecological planning in Putrajaya with
regard to clarifying which types of performance may be the
most advantageous.
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