


Notes on Numerical Fluid Mechanics
and Multidisciplinary Design 122

Series Editors

Prof. Dr. Wolfgang Schröder
(General Editor), RWTH Aachen, Lehrstuhl für Strömungslehre und Aerodynamisches
Institut, Wüllnerstr. 5a, 52062 Aachen, Germany
E-mail: office@aia.rwth-aachen.de

Prof. Dr. Ir. Bendiks Jan Boersma
Chair of Energytechnology, Delft University of Technology, Leeghwaterstraat 44,
2628 CA Delft, The Netherlands
E-mail: b.j.boersma@tudelft.nl

Prof. Dr. Kozo Fujii
Space Transportation Research Division, The Institute of Space and Astronautical Science,
3-1-1, Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan
E-mail: fujii@flab.eng.isas.jaxa.jp

Dr. Werner Haase
Höhenkirchener Str. 19d, D-85662 Hohenbrunn, Germany
E-mail: whac@haa.se

Prof. Dr. Michael A. Leschziner
Aeronautics Department, Imperial College of Science Technology and Medicine,
Prince Consort Road, London SW7 2BY, UK
E-mail: mike.leschziner@ic.ac.uk

Prof. Dr. Jacques Periaux
38, Boulevard de Reuilly, F-75012 Paris, France
E-mail: jperiaux@free.fr

Prof. Dr. Sergio Pirozzoli
Dipartimento di Meccanica e Aeronautica, Università di Roma “La Sapienza”,
Via Eudossiana 18, 00184, Roma, Italy
E-mail: sergio.pirozzoli@uniroma1.it

Prof. Dr. Arthur Rizzi
Department of Aeronautics, KTH Royal Institute of Technology, Teknikringen 8,
S-10044 Stockholm, Sweden
E-mail: rizzi@aero.kth.se

Dr. Bernard Roux
L3M - IMT La Jetée, Technopole de Chateau-Gombert, F-13451 Marseille Cedex 20, France
E-mail: broux@l3m.univ-mrs.fr

Prof. Dr. Yurii I. Shokin
Institute of Computational Technologies, Siberian Branch of the Russian Academy
of Sciences, Ac. Lavrentyeva Ave. 6, 630090 Novosibirsk, Russia
E-mail: shokin@ict.nsc.ru

For further volumes:
http://www.springer.com/series/4629



Management and
Minimisation of Uncertainties
and Errors in Numerical
Aerodynamics

Results of the German Collaborative
Project MUNA

Bernhard Eisfeld, Holger Barnewitz,
Willy Fritz, and Frank Thiele (Eds.)

ABC



Editors
Dr. Bernhard Eisfeld
Institute of Aerodynamics and
Flow Technology
German Aerospace Center (DLR)
Braunschweig
Germany

Dipl.-Phys. Holger Barnewitz
Airbus Operations GmbH
Bremen
Germany

Willy Fritz
EADS Deutschland GmbH Cassidian
Manching
Germany

Prof. Dr. Frank Thiele
Institut für Strömungsmechanik
und Technische Akustik
Berlin
Germany

ISSN 1612-2909 e-ISSN 1860-0824
ISBN 978-3-642-36184-5 e-ISBN 978-3-642-36185-2
DOI 10.1007/978-3-642-36185-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012956291

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Continuous development of numerical methods over the last decades together with
increasing available computer power has made Computational Fluid Dynamics
(CFD) a key technology in modern aircraft development. The results obtained over
the last decades give rise to the vision that future aircraft design may almost entirely
rely on numerical simulations. This shift in paradigm will not only dramatically
change the engineering process in itself, but also the requirements on the simulation
data. In particular, safe estimates of the errors and uncertainties of the simulation
results will have to be provided, similar to error bars in experimental data from the
windtunnel.

In order to meet such future needs, the collaborative research project MUNA –
Management and Minimisation of Errors and Uncertainties in Numerical Aerody-
namics – has been initiated within the 4th German Aeronautics Research
Program (Luftfahrtforschungsprogramm). Following the predecessor projects ME-
GAFLOW and MEGADESIGN, altogether 12 partners from industry (Airbus, Cas-
sidian, Eurocopter), research organisations (DLR, Institute of Aerodynamics and
Flow Technology) and universities (RWTH Aachen: Institute of Aerodynamics and
Institute of Computational Analysis of Technical Systems; TU Berlin: Institute of
Fluid Mechanics and Technical Acoustics; TU Braunschweig: Institute of Fluid
Mechanics, Institute of Aircraft Design and Lightweight Structures and Institute
of Scientific Computing; University Stuttgart: Institute of Aerodynamics and Gas-
dynamics; University Trier: Department of Mathematics) have been developing and
applying methods, addressing errors and uncertainties of various kind, typically en-
countered in CFD simulations. For this purpose, the DLR TAU code was provided
as major simulation tool.

In a first step the partners jointly collected possible sources of errors and uncer-
tainties, where the computational grid, turbulence modeling, the numerical accuracy
and geometrical issues in the context of coupled multidisciplinary simulations have
been identified as important. Consequently, the research activities of the first project
phase have been concentrating on the respective areas, which is also reflected by the
organisation of the book.
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In the second phase of the project, stochastic uncertainties, also called aleatory,
have been addressed. Therefore the final part of the book is devoted to various activ-
ities towards efficiently computing statistical output quantities due to uncertainties
in the input parameters, including methods for the robust design under geometrical
uncertainties.

The results of the project have been presented to the public during two Work-
shops held on March 23th and 24th 2010 and on October 25th 2012. The current
book documents the results achieved by the partners.

The editor is indebted to all co-workers of the project, in particular to the mem-
bers of the steering committee, Holger Barnewitz (Airbus), Willy Fritz (Cassidian)
and Prof. Dr. Frank Thiele (TU Berlin), for their contributions and inevitable sup-
port in making MUNA a success. Furthermore the editor wants to thank the general
editor of the Springer series “Notes on Numerical Fluid Mechanics and Multidiscip-
linary Design”, Prof. Dr. W. Schröder, and the staff of the Springer-Verlag for the
opportunity to publish the technical results of the MUNA project.

Finally the funding of the partner activities by the German Ministry of Economics
within the 4th German Aeronautics Research Program is gratefully acknowledged.

Braunschweig Bernhard Eisfeld
November 2012
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Part I
Mesh Generation and Manipulation



Methods and Strategies for the Detection and
Management of Grid Induced Uncertainties in
Numerical Aerodynamics

E. Mazlum and R. Radespiel

Abstract. For the numerical simulation of complex aircraft configurations discret-
isation errors around wings and tailplanes as well as in their wakes are a key source
of computational uncertainties. Both simplifications and uncertainties in the geo-
metry description as well as improper numerical grids have an influence on the pre-
diction of lift and drag coefficients, whereas the error magins are not well known.
For this reason, the Institute of Fluid Mechanics systematically analysed and quan-
tified grid induced uncertainties in the frame of the projekt MUNA. Based on this,
strategies and tools have been developed for error detection and improvement of im-
properly discretised grid regions. For the detection of dicrestization errors, a method
based on the artificial dissipation of central schemes has been developed. Further-
more, two methods have been developed for local grid improvement which follow
two different grid manipulation strategies. These strategies are the local deforma-
tion of grids and the local refinement of hexahedra. The developed methods and
tools have been verified on different test cases.

1 Identification of Sources of Error Induced by Geometry and
Discretisation

The grid developer has many tools at his disposal. These methods range from
manual procedures to fully automated ones, which allow the operator to mesh com-
plex geometries like complete aircraft configurations including wings, tail planes,
flaps and engines, by setting only a few parameters. However, these fully automated
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meshing tools generally offer only very limited control on the exact topology of the
generated grid. To efficiently analyse the uncertainties in the flow solution caused
by the topology of the grid, a grid generation tool is needed which allows the user
to shape the grid freely.

Especially for analysing the wake discretization, a grid generation tool is needed
which gives the operator full control over the grid generation process. A suited grid
generator is Gridgen V15 [1] which is why it was used as the preferred tool in this
work. In Gridgen grids are generated manually by creating "connectors", "domains"
and "blocks". This approach gives many design options for the shape of the grid in
the wake region.

Furthermore, Gridgen allows the generation of hybrid grids. Hybrid grids are a
combination of fully structured hexahedral layers, and semi or fully unstructured
prism or tetrahedral layers, respectively.

1.1 Numerical Method

The 2D airfoil simulations are performed with the Navier-Stokes solver DLR-TAU
[2, 3] using hybrid grids. This flow solver is a finite-volume solver for the Reynolds-
averaged Navier-Stokes equations on hybrid grids. The convective fluxes can be dis-
cretized either with upwind or central schemes, the latter being used in conjunction
with scalar artificial dissipation for the present simulations. Time discretization is
done implicitly using a backward Euler scheme [4] in connection with a LU-SGS
linear solver.

1.2 Analysis in 2D

For the analysis of low speed cases, the airfoil NLF(0)416 by Somers [5] was
chosen. This airfoil is a natural laminar flow airfoil with a very thin trailing edge.
A wide base of experimental data at different flow conditions is available. These
range from Re = 2 · 106, 4 · 106 and 6 · 106 for Ma = 0.1 as well as Ma = 0.2, 0.3
und 0.4 for Re = 6 ·106. This airfoil was chosen because in addition to the original
airfoil with the very thin trailing edge, a version with a blunt trailing edge was also
measured experimentally. The bluntness was generated by attaching a wedge on the
original airfoil. Thus, numerical simulations with different trailing-edge geometries
can be validated using the experimental values.

The subsequent flow solutions were obtained for Re = 4 ·106 at Ma = 0.1, using
the Spalart-Almaras turbulence model [6]. The transition was fixed according to
the locations given in [5]. All versions of the airfoil were discretized using 210
grid points on the upper surface and 150 grid points on the lower surface. Besides
changing the topology of the grid at the wake, the number of grid points along the
trailing edges was also varied. Parts of this study have been published in [7].
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1.3 Uncertainties Induced by Variation of the Trailing-Edge
Geometry

In addition to the original NLF(0)416 trailing-edge geometry, an airfoil with a blunt
trailing edge was used. Following Somers [5], the blunt trailing edge was obtained
by attaching a wedge on the last five percent of the airfoil. With this wedge the trail-
ing edge gets a bluntness of 0.5% of chord length. As a further variant a NLF(0)416
airfoil with a rounded trailing edge was used. This airfoil was derived from the air-
foil with the blunt trailing edge by replacing the corners with radii. The airfoils with
sharp as well as blunt trailing edges were discretized using both c- and o-type topo-
logy. The airfoil with round trailing-edge geometry was only meshed with an o-type
grid since no reasonable c-type discretization was possible. In addition, the grid c-
grid, 4x was derived from the initial c-grid by doubling the number of grid points
in both coordinate directions. Figure 1 depicts the grid topologies for the respect-
ive trailing edge variants. The numerical results obtained on these three grids are
shown in Figure 2. Note that the experimental results on the blunt trailing edge are
not depicted in this figure, since the experiments show no influence of the trailing
edge geometry in this particular case. The blunt trailing edge leads to a higher drag
coefficient in general. Due to the modification of the geometry one gets a difference
of 2.0 drag counts in cd . In the experiments the initial airfoil has a trailing-edge sep-
aration. Because of this a flow pattern similar to the flow around the blunt trailing
edge appears. But in case of the numerical results only attached flow is present for
α = 4◦ to 12◦.

Furthermore, one can observe that the blunt trailing edge yields lower lift coeffi-
cients across the whole α-range. This can be attributed to the decambering effect of
the wedge attached on the airfoil.

(a) Sharp trailing edge (b) Blunt trailing edge (c) Rounded trailing edge

Fig. 1 Trailing-edge geometries
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Fig. 2 Polar curves for different trailing edge geometries

1.4 Uncertainties Induced by the Grid Topology

The intention of this study was to analyse the influence of the grid topology on
the flow solution. For this purpose a set of four grids was generated. Both trailing-
edge variants were discretized in c- and o-shape as shown in Figure 3. Numerical
simulations were conducted at Re = 4 · 106, Ma = 0.1. The angle of attack was
varied from α = 4◦ to 14◦ in steps of two degrees. As closure conditions for the
RANS-equations the turbulence model according to Spalart-Almaras has been used.
For the c-type grids a grid convergence study was conducted. For this purpose two
additional grids were generated by unified coarsening and refinement of the initial
grid. The polar curve in Figure 4 shows the result of this study. It compares the
corresponding solutions on the c- and o-grids. The polar curves reveal that the grid
topology has a significant influence on the aerodynamic coefficients. The variation
of the grid topology for the blunt trailing edge yields a variation of about 4.0 to
7.0 drag counts. For the airfoil with the sharp trailing edge the differences vary
from 2.50 to 5.50 drag counts. In addition, the differences in cl and cd decrease
with growing angle of attack for the blunt trailing-edge case. For the airfoil with the
sharp trailing-edge no such behaviour is visible.

Analysing the flow solution around the trailing edge is advisable to understand
this behaviour. For this purpose Figure 5 shows a detailed plot of the flow solu-
tion around the trailing edge at α = 6◦. Solutions obtained on c- and o- grids are
compared. In addition, the wake velocity profile downstream of the trailing edge
is shown at three slices. As one can see, there are significant differences between
the two solutions. Unlike the o-grid, the c-grid can capture the wake velocity pro-
file and the flow field gradients very well and can preserve them far downstream.
The o-grid shows a strong dissipation of the flow features. This can be attributed to
the coarse wake discretization on this o-grid. The same statements are valid on c-
and o-grids with sharp trailing edges. The variation of topologies mainly shows an



Management of Grid Induced Uncertainties 7

(a) Sharp trailing edge, c-grid (b) Sharp trailing edge, o-grid

(c) Blunt trailing edge, c-grid (d) Blunt trailing edge, o-grid

Fig. 3 Grid topology variants with sharp and blunt trailing edges

effect on cd . The effect on cl is negligible for attached flows and for flows with small
trailing-edge separations.

These results show that meshing trailing edges in o-type topology can be prob-
lematic. In general, o-type grids lead to a quick coarsening of the grid downstream
of the trailing edge. Especially on airfoils with sharp trailing edges, this coarsen-
ing effect is very strong. To reduce this coarsening for o-grids with blunt trailing
edges, the number of grid points at the trailing edge has to be increased, whereas for
sharp airfoils more grid points have to be shifted towards the trailing edge. However,
compared to a c-grid this still does not yield a satisfying solution, since a reasonable
resolution of the flow field downstream the trailing edge cannot be achieved even
after excessively increasing the number of grid points. The finding, that changing
the grid topology has a bigger impact on the flow solution than a change in the
trailing-edge geometry is an important conclusion of this analysis.
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Fig. 4 Influence of different grid topologies and grid resolutions on cl and cd of the
NLF(0)416 airfoil with different trailing edge geometries at Ma = 0.1, Re = 4 ·106

(a) c-grid, blunt trailing edge (b) o-grid, blunt trailing edge

Fig. 5 Flow features of the wake flow field at c- and o-grid, α = 6◦, Ma = 0.1, Re = 4 ·106

1.5 Effects of the Hybrid Border on the Flow Solution

Hybrid grids are widely used in many scientific and industrial applications. Com-
monly, these grids have very thin structured layers. But the effects of the size of the
structured layer on the flow solution and especially on the aerodynamic coefficients
are not well known. Thus, an analysis was conducted for the NLF(0)416 airfoil with
sharp trailing edge and c-type mesh. Four grid variants were generated by vary-
ing the thickness of the structured layer where the reference thickness was derived
from the flat plate boundary layer at Re = 4 · 106, Ma = 0.1. The structured layers
were sized with one, two, four and eight times the size of the reference thickness.
These four grids, named 1x, 2x, 4x and 8x, are shown in Figure 6. To perform a grid
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Fig. 6 Variation of the structured layer dimension for the NLF(0)416 airfoil with sharp trail-
ing edge, c-type grid. The dimension is given in multiple of the corresponding flat plate
boundary layer thickness.

convergence study, two additional grids were generated by unified coarsening and
refinement of the grid 8x. Solutions were obtained for α = 4◦ to 14◦ in steps of two
degrees using the Spalart-Almaras turbulence model. In addition, solutions were
obtained at α = 6◦, 10◦ und 14◦ using the SST-Model [8]. The results are shown
in Figure 7.

The polar curve shows that 8x yields a sufficiently grid converged solution across
the whole range of α . The differences to the next finer grid "8x, fine" are negligible.
The coarse grid "8x, coarse" gives slightly different results at α = 14◦. The polar
curves computed with the SA-turbulence-model show that the effect of the struc-
tured layer thickness on the lift coefficient is small for attached flow (α = 4◦ to
12◦). The difference in the lift coefficient varies from 1.50 to 3.70 lift counts, while
it is increasing with the angle of attack. For α > 12◦, trailing edge separation oc-
curs, so at α = 14◦ the differences in the lift coefficients are not negligible anymore.
As it will be shown later, this is attributed to the poor resolution of the trailing-edge
separation. The differences in the drag coefficients are primarily caused by different
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Fig. 7 Influence of the thickness of the structured layer on the lift and the drag coefficients,
Ma = 0.1, Re = 4 ·106

levels of resolution of the region surrounding the stagnation point and the suction
peak. The thicker the structured layer is, the better it can resolve the flow gradi-
ents in that area. The same conclusions are true for the results obtained with the
SST-model. For attached flow, differences ranging from 1.50 to 2.60 drag counts are
observed. Though, with flow separation at the trailing edge, the SST-model shows a
higher sensitivity to the thickness of the structured layer. Here, cl differs by 3.0 lift
counts, whereas cd differs by 8.20 drag counts. For both turbulence models, the flow
solution is moderately affected by the thickness of the structured layer for attached
flow. In case of separated flow, a significant influence on both cl and cd is observed.
These differences can be mainly ascribed to two effects.

The first effect is the influence of the structured layer thickness on the size and
shape of the trailing edge separation. Figures 8(a)-8(b) show the flow field solution
at the vicinity of the trailing-edge gained with the SA-model. In Figures 8(c)-8(d)
the flow field solution obtained with the SST-model are depicted. The eddy viscos-
ity μt is shown via a contour plot. In addition, a velocity profile in the separation
region is shown. On the grid 1x large parts of the boundary layer as well as parts of
the free shear layer reach into the unstructured part of the grid. On 8x those parts
are completely captured by the structure part. A comparison of the plots reveal that
the production of μt is related to the thickness of the structured layer. Thus, the
thickness of the structured layer has an influence on the size of the trailing edge
separation. Regarding the case with the SST-model, the influence of the structured
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(a) 1x, SA-model (b) 8x, SA-model

(c) 1x, SST-model (d) 8x, SST-model

Fig. 8 Flow condition at the trailing edge of the NLF(0)416 airfoil, α = 14◦, Ma = 0.1,
Re = 4 ·106

layer thickness on μt is even greater and thus the size of the trailing edge separa-
tion is bigger. To further analyse this, the velocity profiles and the rotation rot(v)
at two slices x/c = 0.3 and x/c = 0.9 normal to the airfoil contour are plotted in
Figure 9. At x/c = 0.3 the boundary layer is completely within the structured layer,
on both grids. Velocities and gradients are continuous and show little difference.
At x/c = 0.9, the structured part of grid 1x does not cover the boundary layer, the
flow separation and the free shear layer completely. Here, the velocity profile has
a discontinuity at the hybrid border whereas the velocity gradient shows a kink at
z/c ≈ 0.016. Taking into account that the turbulence equations are solved using the
velocity gradients, the influence of the hybrid border becomes obvious.

The second effect is the difference in cd caused by the erroneous prediction of
the trailing edge separation as well as the poor resolution of the flow gradients at the
vicinity of the suction peak.
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Fig. 9 Plots of the boundary layer velocity curve V = |v| as well as the boundary layer
velocity gradient rot(v) at two slices normal to the airfoil geometry

2 Methods for the Detection of Improperly Discretised Grid
Regions

2.1 Error Indicator Based on the Artificial Dissipation of Central
Convection Schemes

The concept of artificial dissipation was originally developed for Euler solvers used
to compute inviscid flows. Since inviscid flows have no natural damping mechan-
ism, dispersive error terms can cause oscillations in the solution. To damp those os-
cillations and reduce the dispersive error an artificial dissipation is introduced. The
first artificial dissipation model that incorporates a linear combination of second and
fourth order difference dissipation terms was introduced in [9].

For viscous flows, the Navier-Stokes equations provide physical terms that con-
tain natural dissipation effects. However, those dissipative terms are only significant
in the viscous shear layer. They are insignificant in flow regions that show character-
istics of inviscid flows. Thus, in practice, artificial dissipation terms still have to be
introduced for Navier-Stokes computations in order to stabilize the flow in regions
with inviscid behaviour.

The artificial dissipation is added to the internal fluxes across the cell faces by
modifying the governing equations. Considering the flux QF,c

F across a finite volume
face F be

QF,c
F =

1
2
[Fr(i)+Fl(i)] , (1)

the artificial dissipation is introduced by adding the term − 1
2 α̃D to the RHS of

equation (1) which yields
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QF,c
F =

1
2
[Fr(i)+Fl(i)]− 1

2
α̃D.

For Navier-Stokes solutions on highly stretched structured meshes, different scal-
ings of the artificial dissipation term both in streamwise and normal direction within
the region of viscous flow are needed. For unstructurd meshes, directional scaling
is difficult to achieve since no mesh coordinate line exists. In order to obtain an ad-
equate scaling of the dissipation for highly stretched portions of the grid, the strategy
described in [10] is followed. The scaling factor α̃ is given as

α̃ = λ c
F

4ΦF,iΦF, j

ΦF,i +ΦF, j
,

with
λ c

F = |vF ·F|+ a f ·F
being the maximum eigenvalue of the flux jacobian for the face F . The terms

ΦF,i =
√

rF,i and ΦF, j =
√

rF, j

are necessary to avoid excessive local numerical dissipation in cases of meshes with
high-aspect-ratio cells. The term

rF,i =
1
2

max

[
0;
λ c

i −λ c
F

λ c
F

]

relates the size of λ c
F across the Face F to the total eigenvalue λ c

i integrated over the
entire control volume surrounding Pi, where

λ c
i =

n

∑
k=2

|v ·F|+ aF · |F|,

and n is the number of surrounding faces. The corresponding terms λ c
j and rF, j can

be defined analogously.
The artificial dissipative flux across the dual face F corresponding to the edge

connecting Pi and Pj is given by

Di, j = εk(2)
F (Wi −W j)− εk(4)

F

(
∇2Wi −∇2W j

)
, (2)

where W is the vector containing the conservative variables ρ , ρv and ρE . The
amount of artificial dissipation added to the scheme is controlled by the coefficients

εk(2)
F = k(2) max(νi,ν j) · sc2

and
εk(4)

F = k(2) max(0,k(4)− ε(2)F ) · sc4 ,
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where

νi =

∣∣∣∣∣∣∣
∑

jεN(i)
(p j − pi)

∑
jεN(i)

(p j + pi)

∣∣∣∣∣∣∣
represents a shock switch, where sc2 and sc4 contain some anisotropy corrections and
N(i) is the set of neighbours of i. The factors sc2 and sc4 are introduced in order to
avoid a dependency of the dissipation on the number of neighbours. The constants
k(2) and k(4) are generally user defined parameters in the range of 1

4 ≤ k(2) ≤ 1
2

and 1
64 ≤ k(4) ≤ 1

32 . Since the amount of added dissipation is scaled with α̃ ∼ λ c
F

where for |F| → 0, λ c
F goes to zero, grid converged solution are independent of the

dissipation.
In principle this added dissipation has no physical means and thus can be re-

garded as an unphysical term that introduces an error to the solution. For this
reason, the approach presented here regards the added artificial dissipation of central
schemes as a measure for the discretization error. Out of the dissipative fluxes added
to the scheme, the contribution dρE to the energy equation is used as a measure for
the discretization error. This contribution has been chosen due to the fact that all key
flow variables are represented by the energy equation. The amount of added specific
artificial dissipation per cell volume that is being calculated during the evaluation
of fluxes is stored and given out as a separate variable of the flow field solution and
thus can be evaluated during the post processing. The amount of added artificial
dissipation scales with the element face size and it is sensitive to the skewness and
the gradients of the adjacent flow field. It is noted here that a skewed cell has high
added artificial dissipation as this is based on the cell volume.

This error indication method does not give an absolute value for the discretisation
error since the exact solution of the flow problem is unknown. In fact its intention is
to guide the grid developer in deciding where to further improve the grid.

2.2 Application of the Error Indicator

The verification of the error indicator was conducted on six grids. The first four of
them are grids of the NLF(0)416 airfoil with a blunt trailing edge. The grid cBTE
in Figure 10(a) is the reference grid which is of c-type. The grid HK-Grob in Fig-
ure 10(b) is an o-grid with a coarse trailing-edge discretization. The grid HK-Fein
shown in Figure 10(c) has a finer trailing-edge discretization. This was achieved by
increasing the number of grid points along the trailing edge. The grid HK-EV in
Figure 10(d) is a further improved version of the previous grid. The number of grid
points on the trailing edge was further increased and the sharp trailing edge corners
were rounded by the placement of radii. In addition, the structured layer around the
first third of the airfoil was enlarged. The last two grids have sharp trailing edges
and are of c-type. These are the grids 1x and 8x.
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(a) c-grid (cBTE)

(b) o-grid (HK-Grob) with coarse trailing-edge discretisation

(c) o-grid (HK-Fein) with fine trailing-edge discretisation

(d) o-grid (HK-EV) with rounded trailing-edge corners

Fig. 10 Grids for the error indicator tests
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(a) Grid HK-Grob (b) Grid HK-Fein

Fig. 11 Flow condition at the vicinity of the trailing edge at two different levels of grid
resolution

On these six grids, the solution was gained for Re = 4 ·106, Ma = 0.1 for α = 4◦
to 14◦. For turbulence modelling the SST-model was used. For the grid HK-Grob the
flow features at the trailing edge are of primary interest. Therefore the features of the
flow field at α = 14◦ are shown in Figure 11(a). At this angle of attack a trailing edge
separation is present. Velocity profiles downstream of the trailing edge are shown
along two stations with x = const. Due to the o-type grid the resolution in the wake
rapidly coarsens which explains why the velocity gradients vanish correspondingly.
At α = 14◦, HK-Grob deviates by 4.50 lift counts and 12.0 drag counts from the lift
and drag coefficients obtained on cBTE.

In case of HK-Fein, shown in Figure 11(b), the resolution at the trailing edge is
finer which leads to a better resolution of the velocity profiles downstream. To test
the applicability of the error indicator on poorly resolved trailing edges, it was ap-
plied to HK-Grob and HK-Fein. The error indicator outputs are compared in Figures
12(a) to 12(d).

Areas that have a small contribution to the discretization error are of light colour
whereas areas that have a high contribution are dark coloured. Compared to HK-
Grob the grid cBTE has low error values across the whole wake region. The grid
HK-Grob is showing a higher level of indicated error along the wake flow field,
where the error magnitude increases close to the trailing edge. Due to the free shear
layers high gradients at the vicinity of the trailing edge are present. These gradients
are poorly resolved by the present coarse grid. Especially at the sharp trailing-edge
corners the flow physics yield very high gradients which lead to high values of added
artificial dissipation and thus to a high indicated discretization error. As one can see
in Figure 12(c) and 12(d) a slight refinement of the wake region by increasing the
number of grid points along the trailing edge leads to a significant decrease of the
indicated discretization error. However, regions with high error values still persist
especially at the lower sharp corner of the trailing edge. At this corner the slow
trailing edge flow joins the much faster flow of the lower surface. As a consequence,
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(a) o-grid HK-Grob (b) o-grid HK-Grob, details

(c) o-grid HK-Fein (d) o-grid HK-Fein, details

(e) c-grid, cBTE (f) c-grid, cBTE, details

Fig. 12 Error indicator results on test grids

high gradients occur which explain the high indicated error values. Furthermore, the
plots reveal that on both HK-Grob and HK-Fein errors in the unstructured parts of
the wake flow and near the leading edge are indicated. This is also attributed to the
fact, that the unstructured grid can not sufficiently resolve flow gradients.

A close view of the grid at the trailing edge reveals that the corner cells are
highly skewed. This skewness is a trade-off to the sharp trailing edge corners. In
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order to improve the mesh around the corners, the grid HK-EV in Figure 10(d) was
generated.

In Figure 13(a) the output of the error indicator is shown for this improved grid.
Figure 13(b) gives a more detailed depiction of the trailing edge region. Compar-
ing the results for HK-EV and HK-Grob reveals that a significant reduction of the
indicated error could is achieved by this grid generation techniques. This is pointed
out by the output of the error indicator at the corners in Figure 13(c) and 13(d).
In particular the error contribution of the grid at the first third of the airfoil was
reduced by enlarging the hexahedral part of the grid as well as through the improve-
ments made near the trailing edge.

Optimizing the trailing edge discretization yields an improvement of 3.0 lift
counts and 9.0 drag counts, thus reducing deviations in cl and cd to 1.50 lift counts
and 3.0 drag counts, respectively (deviations from HK-Fein to cBTE). Enlarging the
structured layer at the first third of the airfoil yields a further reduction of 2.0 drag
counts.

In Figure 14(a) and 14(b) the results of the error indicator on the grids 1x and 8x
with sharp trailing edge are shown. Like in the previous cases, regions of increased
indicated error are highlighted at the grid region covering the first third of the airfoil.
However, the high indicated errors down- and upstream of the trailing edge are of
particular interest for this case. These errors are mainly caused by the gradients of
the boundary layer and the free shear layer, respectively. Compared to the reference
grid 8x the grid 1x with the thin structured layer has an error of 4.0 lift counts and
8.0 drag counts.

The near-wall velocity profiles as well as the wake velocity profiles are depicted
at seven stations along x. At the left-most station A© the boundary layer is still within
the structured grid part. At the following slices ( B© to D©) the boundary layer is
growing into the unstructured grid part, so the indicated error is growing as well.
The indicated error value has a high magnitude at regions with high gradients ( C© to
E©). In the wake the error values are fading out since the gradients disappear (cf. F©
and G©). On the grid 8x in Figure 14(b), no errors can be observed.

3 Grid Improvement Strategies and Techniques

3.1 Enlargement of the Hexahedra Layer via Grid Manipulation

The task of the first grid manipulation tool is to enlarge the structured layer in or-
der to move the hybrid border out of flow regions with gradients. This is achieved
by moving the grid points that are located along the hybrid border. These points
are moved along wall normal lines of the structured layer. These lines have to be
extrapolated into the unstructured grid region in a way that prevents twisting and
overlapping of these lines. To assure this, a line extrapolation method similar to
those in structured grid generators is used.
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Fig. 13 Error indicator results on HK-EV

In the following the proceedings of the tool are described in more detail. After
loading the grid the tool determines the surface triangles and quadrilaterals as well
as the grid points that shape the hybrid border. Thus a new surface geometry con-
stituted by the surface triangles and quadrilaterals is obtained. Based on this surface
a grid of user-defined thickness is generated via wall-normal extrusion. This extru-
sion is performed according to the methods described in [11] and [12]. To ensure
a consistent extrusion of the wall lines, the marching vectors of the extrusion are
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Fig. 14 Error indicator results on different dimensions of structured layers

smoothed [13] in a way that ensures that the visibility cone condition [12] is not
violated.

The newly generated points form a new surface geometry on which the extrusion
process is repeated. These steps are repeated until a certain number of extrusion lay-
ers have been obtained. The resulting grid points are used to define the extrapolated
wall lines. Along these wall lines, the new coordinates of the corresponding grid
points which shape the hybrid border are moved. To avoid a steep transition from
the undeformed to the deformed region, neighbouring points up to a certain degree
are included in the movement. This transition is based upon a hyperbolic tangent.
After the coordinates of each affected hybrid border grid point have been determ-
ined, the points lying below are redistributed. Thereby, discontinuities in the grid
point distribution along wall lines are prevented. This redistribution is performed via
an area hyperbolic sinus function according to [14]. The coordinates of the affected
grid points are stored in a binary file. The manipulation of the grid is performed by
a modified version of the DLR-TAU-Code’s deformation tool [15] which uses this
binary file.
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Fig. 15 Illustration of the surface mesh as well as the box for selecting the deformation region

To demonstrate the method, the 3D-grid of the DLR-F6-wingtip with 1.2 million
grid points, in Figure 15, is used. Grid lines on the geometry surface are shown by
fading out portions of the volume grid. Furthermore, the box which marks the region
to be deformed is plotted. This box is defined by the four coordinates P1(x,y,z) to
P4(x,y,z). Multiple overlapping boxes can be defined.

The result of the deformation is illustrated in Figure 16(a) by showing the prism
and hexahedral layers. The enlarging effect can clearly be seen. In this case, neigh-
bourings points of fifth grade have been involved to the deformation. This yields
a steep and unsmooth transition from the undeformed to the deformed grid region.
To get a smoother transition the whole manipulation process was rerun with neigh-

(a) Neighbours of 5th grade involved in
point movement

(b) Neighbours of 15th grade involved in
point movement

Fig. 16 Geometry of the deformed hybrid border surface
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(a) Slice through hexahedral layer (b) Slice through prismatic layer

Fig. 17 Slice plane through the deformed grid

bours of 15th being involved. As shown in Figure 16(b), this yields a much smoother
transition.

For better illustration, the prismatic and hexahedral layers are shown at two slice
planes through the volume grid in Figures 17(a) and 17(b). These Figures show that
the transition from the undeformed region to the deformed region is smooth.

In summary, the tool is capable of enlarging the structured layer of a hybrid grid
by moving grid points. The degree of enlargment is closely related to the quality of
the surface elements forming the hybrid border. If a badly shaped surface element is
present at the hybrid border i.e. an element with very high skewness, the ability of
the tool to enlarge the structured layer at that location may be limited. However in
regions with good element quality, very large deformations are possible.

3.1.1 Application and Results

To improve the grid 1x the grid enlargement tool was applied to a portion of the
structured layer surrounding the airfoil and the wake. The initial grid was enlarged
by the factors two, four and six in each case yielding three additional grids. The
resulting grid for an enlargement factor of six is shown in Figure 18(a) and compared
to the initial grid in Figure 18(b). Flow solutions were obtained on these grids. The
results are shown in the polar curves plot in Figure 19. The polar curve shows that
an enlargement by factor two affects the prediction of lift coefficients by about 85%
by reducing the difference to the reference grid 8x from 4.0 lift counts to 0.60 lift
counts. The drag coefficient is affected by a change of about 44% by reducing the
difference to 8x from 9.20 drag counts to 5.10 drag counts.

Further enlarging the structured layer by factor four and more reverses the im-
provment as revealed by the polar curve plot. This has to be attributed to the fact
that a stronger enlargement reduces the effective resolution in the structured layer,
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(a) Grid derived from the initial grid after an enlargement by a factor of six

(b) Initial grid 1x

Fig. 18 Initial grid 1x compared to the grid with enlarged structured layer by a factor of six
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Fig. 19 Effect of the enlargement of structured layers on polar curves
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since the enlargment does not introduce additional points but redistributes present
points over a wider area.

3.2 Local Refinement of Hexahedra to Improve the Wake
Discretisation

3.2.1 Key Features of the Local Hexahedra Refinement Method

To locally refine a hexahedral layer, hanging nodes and faces have to be introduced
into the grid. This means that the grid conformity has to be given up. If a solver
does not handle hanging entities, the grid has to be made conform by decomposing
the hanging relations. This is achieved by decomposing hexahedra facing a hanging
entity into prisms or into pyramids and tetrahedra. For the TAU-Solver this task is
done by the tool make_conform.

As a result, parent hexahedra have to be decomposed into child hexahedra in
order to achieve a local refinement. A parent hexahedron can be decomposed in
either two, four or eight child hexahedra. For a TAU-grid this means that the child
hexahedra are introduced into the grid and the parents are deleted. Thereby, the
hanging relations are introduced.

Due to limitations of make_conform a parent is allowed to faec on up to a
maximum of four child hexahedra. Furthermore, the implementation of this TAU-
tool is limited to 3D grids.

As a result of this, the following procedure was established for the present local
hexahedra refinement tool, called hexfine. Hexahedra destined for refinement by
user-input are marked. The child hexahedra of all marked hexahedra are generated.
These child hexahedra are constituted by the corner points as well as the face and
edge midpoints of the parents. To maintain the smoothness of the grid, the curvatures
of the initial grid have to be reconstructed. For this purpose, the face, edge and
volume midpoints are interpolated via a bicubic or a tricubic spline. The newly
generated children are added to the coordinates and point lists of the grid. The par-
ents are removed. So far the procedure yields a grid with hanging entities which
is not TAU-conform. In case of 3D grids, no further steps are necessary and the

Fig. 20 Schematic illustration of the process to decomposing hanging nodes and faces

make_conform
make_conform
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grid can be stored. Applying make_conform on the stored grid will give a TAU-
conform grid.

In case of 2d grids, the hanging relations have to be decomposed by hexfine itself.
This is done by decomposing hexahedra facing hanging entities into a prism and two
hexahedra (cf. Figure 20). This type of decomposition yields a TAU-conform grid.
Running make_conform is therefore not necessary for 2D grids.

3.2.2 Application of Hexfine and Results

To test the method of local hexahedra refinement a set of two main grids were con-
sidered. The first one is the grid cBTE-v2 (including its coarse and fine derivatives)
shown in Figure 21(a) which is a c-type grid and has 37,871 grid points. The second
grid oBTE shown in Figure 21(b) was derived from cBTE-v2 (including a finer de-
rivative) by remeshing the region around the trailing edge and the wake in o-type.
At the trailing edge a structured block was attached to obtain a structured domain
reaching far into the wake. It has a total number of 30,127 grid points.

During the first run, the structured wake block of oBTE was refined twice. The
result of the refinement is shown in Figure 21(c) in comparison to the initial grid
in Figure 21(b). This local refinement had the aim to increase the number of grid
points in the wake in order to better capture and preserve the flow field gradients.
The quadrilaterals at the trailing-edge surface were not affected by the refinement
(cf. Figure 22(a) and 22(b)). The number of grid points was raised by about 28% to
38,680 grid points. In a second run, oBTE was refined three times. This time, the

(a) Topology of the c-grid wake region (b) Topology of the initial o-grid at the
wake region, oBTE

(c) Topology of the o-grid after refined
twice

(d) Topology of the o-grid after refined
thrice

Fig. 21 Detailed illustration of the grid topologies at the wake region

make_conform
make_conform
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(a) Initial grid (b) First refinement case,
quadrilaterals next to the
wall unaffected

(c) Second refinement case,
quadrilaterals next to the
wall affected

Fig. 22 Comparison of the grid topology at the trailing edge

first refinement affected quadrilaterals up to the wall (cf. Figure 22(c)). The second
and third refinement affected a portion of the grid downstream of the trailing edge.
The resulting wake grid topology is shown in Figure 21(d). In addition, the grid
was refined another three times around the upper corner of the trailing edge with
the intention to better discretise the sharp corner. Flow solutions were obtained on
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(a) Reference c-grid (b) First refinement case,
quadrilaterals next to the
wall unaffected

(c) Second refinement case,
quadrilaterals next to the
wall affected

Fig. 24 Grid topology and flow condition at the upper trailing edge corner

these grids. The resulting polar curves are shown in Figure 23. For α = 6◦, the grid
cBTE-v2, which is regarded as the reference grid, yields a grid converged solution
since the differences in lift and drag to the finer grid are negligible. The coefficients
of oBTE differ by 1.30 lift counts and 10.90 drag counts to the reference grid.

The o-grid with the refined wake reduces the differences to 0.60 lift counts and
2.80 drag counts. This is an improvement of cd by almost 75%. Analyses showed
that refining the wake region a fourth or a fifth time does not yield any appreciable
improvements. This reveals that the errors in the flow solution due to a o-topology
cannot be attributed to a poor wake discretisation alone. In fact, the coarse discret-
isation of sharp corners with o-grids constitutes a further source of error. Analysing
the flow features very close to the trailing edge in Figure 24(a) and 24(b) edge re-
veals, that the way the o-grid discretises the trailing edge is not sufficient to capture
the sharp corner. This leads to very different flow features at the trailing edge. Figure
24(c) shows that the o-grid with refined wake and the additional corner refinement
can capture the sharp corner much better, thus leading to less differences in the
predicted flow features. As a result, the o-grid with the additionally refined upper
corner has a difference of only 0.30 lift counts and 1.40 drag counts (cf. polar curve
in Figure 23). To sum it up, by well-directed local refinement the error in cl could
be reduced from 1.30 to 0.3 lift counts whereas cd could be reduced from 10.90
drag counts to 1.40 drag counts. This is achived by increasing the number of grid
points at about only 19%. In contrast, not even a unified grid refinement by doub-
ling the number of grid points in both coordinate directions, which results in a large
increase of the total number of grid points by 345.0%, does give a comparable
improvement.
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Quantification and Reduction of Numerical
Uncertainties by Improvement of the TAU Grid
Adaptation Tool and Adjoint Methods

Matthias Orlt and Nicolas R. Gauger

Abstract. Within the framework of the project MUNA, several enhancements of the
grid adaptation tool of the DLR TAU Code were prepared, implemented and tested.
Therefore, various quality aspects of the single elements of the computational grid
were investigated and used to modify the adapted grids.

Conditions for the decomposability of the elements are evaluated and used for
a more accurate compliance of the point density with the requirement of the error
indicator in the grid refinement. Geometrical element quality terms for the element
types of the TAU Code are derived from the known mean-ratio element quality meas-
ure for a simplex and used to avoid the worst shaped elements in an adapted grid.

In addition, the TAU adaptation was extended to use the sensors provided by the
adjoint solver of TAU as an error indicator for a goal orientated grid adaptation. The
results are compared to that of a simple differences-based grid adaptation.

Furthermore, the adjoint method was used for the efficient quantification of un-
certainties in the aerodynamic coefficients caused by variations of the parameters of
the SAE and the Wilcox-k-ω turbulence model.

1 Introduction

The goal of any grid adaptation in the solution of partial differential equations is
to achieve the highest possible accuracy with the lowest possible effort. Under the
assumption that the largest local discretization error affects the solution, the best one
can do is to equidistribute the discretization error. So grid adaptation has two main
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Fig. 1 Example of a grid adaptation around an airfoil, showing the initial grid (left) and the
twice adapted grid (right) with different refinement levels and bridging elements between
them

steps. The local discretization error is estimated and then the point density is changed.
In areas with larger local errors the point density is increased and vice versa.

The TAU adaptation [1] is basically a hierarchical grid re- and derefinement using
a special variant of the red-green-method and it works edge orientated. This means
edge indicators are determined as numbers specifying the necessity to be refined or
derefined for each edge. Depending on the available resources, i.e. a target point
number, points are added to or removed from edges. In order to build a new grid
from the new points some elements have to be subdivided and some have to be
recomposed according to subdivided or rejoined edges.

The advantage of this method is, that it is fast compared to a local remeshing
and that it can very accurately fulfill the edge indicator requirements. On the other
hand a lot of elements are not refined completely because some refinements have
to bridge between various refinement levels in order to get a conform adapted grid.
Additionally, the refined area can be very scattered over the grid. This leads to even
more bridging elements or nonregular refinements, see Fig. 1.

In order to preserve the semistructured character of the grid near walls in hybrid
grids, the vertical edges of the prisms or hexahedra in layers are not subdivided. In
areas with chopping, the vertical edges are edges of unstructured elements, too. If
such elements are refined it has to be done nonregularly. Moreover there are some-
times badly shaped elements which cannot be refined at all because even a regular
refinement would lead to elements which cannot be split into positive tetrahedra
parts for the dual computational grid of the TAU solver [11]. Especially large grids
for complex geometries tend to include some of such elements, mostly with non-
planar quadrilaterals.

The problem of refinement restrictions in conjunction with the element shape
around unrefinable edges is addressed in the next Section 2 under the term element
decomposibility. In this topic, the investigation of the geometric conditions for the
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validity of resulting elements enabled for an improvement of the edge refinement
algorithm and led to a better compliance of point distribution with the requirements
of the error indicator in the adapted grids.

In most cases, the element quality in terms of edge length relation and inner
angles of the nonregular bridging refinements is lower than for the corresponding
regular refinement. The following Section 3 deals with the element shape of bridging
refinements under the term of geometrical element quality. Appropriate element
quality measures were derived for the element types used in the TAU Code. After
a second modification, the TAU adaptation got the option to avoid the nonregular
subdivision of badly shaped elements in order to limit the worsening of the element
quality in conjunction with bridging refinements.

The last topic is the use of the results of the adjoint solver as a sensor for the
edge indicator of mesh adaptation. Furthermore, the adjoint method is used for the
efficient quantification of uncertainties in the aerodynamic coefficients caused by
variations of the parameters of the SAE and the Wilcox-k-ω turbulence model. For
a description of the work at the adjoint solver and the possibility to consider parts
of its results as an error estimator we refer to Section 4. The TAU adaptation related
work at this point made the adjoint-based sensor available for the internal edge
indicator and enabled for an adjoint-based adaptation. Some first tests were done
within the project. They are presented and discussed in Section 5.

The three modifications include a better error indication, a more accurate adapt-
ation to the required point density and a check of the geometrical element quality.
Each of them aims at the reduction of the numerical uncertainty.

2 Improvements Using the Decomposability of Elements

According to the red-green-type of refinement and the edge-oriented methods of the
TAU adaptation, a lot of various types of element decompositons are needed for
each element type. The decomposability of a special element means its geometrical
characteristics which determine which subdivisions can be applied to this element.
A special subdivision is applicable to an element if the resulting child elements are
admissible for the TAU solver. Elements are admissible if they can be split into
tetrahedral parts using the midpoints of the element, of the element faces and edges,
see Fig. 2. Each of these tetrahedral parts has to have a positive volume, i. e. has
to be correctly orientated, because the dual control volumes for the TAU solver are
built out of them.

The problem is trivial for tetrahedra. Each tetrahedron with a positive volume
has a mid point decomposition into positive tetrahedral parts. Furthermore, each
refinement of a tetrahedron resulting from subdivision of some of its edges provides
child tetrahedra with positive volume only. So even a very stretched tetrahedron has
the full decomposability quality in this sense. This is not true for the other element
types. Mainly because of nonplanar quadrilateral element faces, the similarity of the
descendants and the initials does not hold as for tetrahedra.
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Fig. 2 Split of a pyram-
idal element into tetrahedral
parts, including the element
midpoint and the face and
edge midpoints (left), and
recombination of the tetra-
hedral parts around a node
to a dual control volume of
the TAU solver (right) �
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Pyramids are not only part of bridging refinements between various hexahedra
refinement levels, they also bridge between hexahedra and tetrahedra of hybrid grids
and at prism sides in case of a varying number of prism layers. Thus pyramids have
the most complicated system of subdivisions in the TAU adaptation, see Fig. 3. That
is why the following consideration is done for the example of pyramids.

The admissibility conditions for the descendants of a special element subdivi-
sion can be expressed in terms of the edge vectors of the initial element. The vector
analysis yields the corresponding conditions for the initial element needed to ful-
fill the decomposability condition for each single subdivision. The results of this
investigation are presented in Tab. 1. The notation used in the formulation of the
decomposability is introduced in Fig. 4.

In order to see how the exact knowledge about the possible refinements is used,
some details of the adaptation algorithm are needed. There are two critical points:
the first one is that most grids have some unrefinable edges, at least for the TAU
adaptation. That can be the vertical edges of hexahedra and prisms of the structured
and semistructured areas for resolving boundary layers. There are badly shaped

Fig. 3 System of pyramid subdivisions that is needed for TAU adaptation including the trivial
(non-)refinement (PY_0_0) and the regular refinement (PY_4_4)
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Fig. 4 Notation of
edges and volume parts
in pyramids
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Notations:
V0=(e01×e03) ·e04 Triple products are
V1= (e01 ×e12) · e14 “local volumes”
V2= (e32 ×e12) · e24 of corners
V3= (e32 ×e03) · e34 in some sense,

V = 1
12 (V0 +V1 +V2 +V3) total volume.

Table 1 Decomposability conditions for pyramids

Level Decomposability conditions Possible refinements

Pyr-F Vi +Vi−1 ≤ 0 for one i = 0,1,2,3 pyramid is not admissible

Pyr-0 Vi +Vi−1 > 0 for all i = 0,1,2,3 PYRA_0_0, PYRA_2X_4,
PYRA_1_2,PYRA_1_4

Pyr-1 3Vi +Vi−1 > 0 und Vi +3Vi−1 > 0
for all i = 0,1,2,3

PYRA_2N_3, PYRA_2N_4,
PYRA_3_4, PYRA_4_4

Pyr-2 2Vi+1−Vi+Vi−1 > 0 and Vi+1−Vi+2Vi−1 > 0
and Vi > 0 for all i = 0,1,2,3

PYRA_0_1, PYRA_0_2O,
PYRA_0_4, PYRA_2O_0

Pyr-3 Vi+1−Vi+Vi−1 > 0 and Vi > 0 for all i = 0,1,2,3 PYRA_2O_2, PYRA_2O_4

elements which cannot be refined at all in some grids for complex geometries. Fur-
thermore, depending on the TAU adaptation version, there are elements which have
no implemented refinement, e. g. hexahedra apart from the boundary layers or hexa-
hedra which cannot uniquely be assigned to one stack up to now.

The second point is that the initial edge refinement by the edge indicator runs
through the grid to some extent. Starting from the initial refinement, additional edges
have to be refined due to the red-green method and in order to preserve the layer
structure at boundaries. Because not all element types have a subdivision case for
each combination of marked edges, additional edges have to be marked in order to
find a valid refinement case.

If this ongoing edge subdivision runs onto an unrefinable edge, the adaptation
will fail with an invalid subdivision state for an element and crash. Earlier versions
of the TAU adaptation used the following method to avoid this situation:

Earlier method:
1. Find unrefinable edges.

2. Mark all edges of a 5 elements deep environment around unrefinable edges
as forbidden for initial subdivision.

3. Do the initial subdivision due to the edge refinement indicator
for allowed edges only.

4. Loop over all elements:
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Subdivide additional edges (including the forbidden and refinable edges)
until a valid refinement state is reached.

The depth of 5 not initially refined elements was needed for stability in applica-
tion examples with repeated adaptation. In this way large parts of the refinable grid
area were excluded from adaptation. The preliminary investigation of the decom-
posability quality enabled the following improvement of the method:

Improved method:
1. Find unrefinable edges.

2. Check the decompositon quality for each element.
3. Loop over all elements:

Mark additional edges as unrefinable until each initial refinement
leads to at least one valid refinement state.

4. Do the initial subdivision due to the edge refinement indicator
for all refinable edges.

5. Loop over all elements:
Subdivide additional edges until a valid refinement state is reached.

The influence of the improved method was tested with a simulation of the flow
around the HIRENASD wing. The initial grid was a SOLAR-grid [8] with 3.12
million points. After the solution was fairly well converged, the grid was adapted
with 50% new points using the adjoint-based error indication and the integral drag
coefficient as the target functional, see contribution Adjoint-Based Error Estimation
and Functional Correction of this volume and Section 5. In case of adaptation to a
target functional, the accuracy of the result for this functional is obviously a criterion
for the performance of the adaptation.

The influence of the various refinement algorithms can be observed in a cut for
y = 0 near the symmetry plane behind the trailing edge, see Fig 5. The adapted
grid resulting from the earlier algorithm has much less points in this area. It can be
supposed that this is due to the five elements deep environment of edges forbidden
for the initial refinement.

A zoom into the grid around the trailing edge actually shows the unrefinable
edges, see Fig. 6. The grid for the boundary layer consists of hexahedra stacks on the
wall. They are depicted as quadrilaterals in the cut planes. But there are two stacks
on the sides of prisms. These prisms are depicted as triangles at the lower corner of
the thick trailing edge in the cut plane in the right side of Figure 5. The prisms alone
would not prevent refining the attached hexahedra stacks. But the prisms form two
chains along the trailing edge perpendicular to the cut plane and at the other end of
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Fig. 5 Comparison of adapted grids, using the old algorithm and a forbidden environment
around unrefinable edges (left), and the improved algorithm, performing a preliminary eval-
uation of the decompsability of the elements

Fig. 6 Zoom into the im-
proved adapted grid of the
test example, a weaker
zoom (left) and a detailed
view showing the prism
chains (triangles in the cut)
along the lower corner of
the trailing edge (right)

the prism chain, at the wing tip, a badly shaped pyramid is attached. Some edges of
this pyramid are vertical edges at the same time.

The old algorithm starts at the unrefinable vertical edges, finds that the bad
shaped pyramid only can be refined at once. Thus the entire pyramid is unrefin-
able. Because the TAU adaptation considers the attached prism chain as a stack, the
corresponding edge stack would also be refined at once. Hence the algorithm which
forbids the environment has to go through the prism chain in one step. Also, the al-
gorithm has to go through the hexahedra stacks at the prism sides in one step. Finally
it propagates into the tetrahedra area, affecting some of the neighbouring hexahedra
stacks. Unfortunately this affects the whole trailing edge. The new algorithm does
not need the five elements deep environment of forbidden edges. Therefore only the
hexahedra stacks at the prisms are forbidden for initial refinement and not addition-
ally the neighbour stacks and tetrahedra around them.

The results for the different adapted grids and the initial grid and for a globally
refined grid as reference result are given in Table 2. The solution on the globally
refined grid is a useful reference value for a solution on a once only locally adapted
grid because the globally refined grid has in each region the best state which any
local refinement could have regarding the resolution and element shapes.

The comparison shows that the drag is evaluated more accurately on the grid
adapted using the improved algorithm. The result of the lift also is approximated
better in comparison to the result on the initial grid. Because the target functional of
the adjoint-based adaptation was the drag, the better adaptation algorithm does not
have to result in a better approximation of the lift coefficient.
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Table 2 Results of the test example

value initial grid adapted (old) adapted (new) global refined

CL 2.783e-1 2.788e-1 2.787e-1 2.789e-1

CD 1.181e-2 1.180e-2 1.179e-2 1.171e-2

3 Modification of Adapted Grids on the Base
of a Geometrical Element Quality

The background of another new option of the TAU adaptation is that the error es-
timation, of advanced adjoint-based methods as well as of simple differences-based
methods, determines a new point density for the initial grid. On the other hand,
the local discretization error depends on the local resolution and probably on the
element shape and alignment. So the ideal grid adaptation would adapt the point
density without changing or at least without worsening the element shape. This is
impossible for a hierarchical conform refinement as the TAU adaptation performs.

The preferable solution was to evaluate the influence of the element shape on the
local deiscretization error and to consider the result when determining the refine-
ment state. However, the attempt to estimate the numerical error by evaluating the
numerical fluxes in the control volume or at least the first derivative of a variable
for the methods used by TAU lead to very complex formulae and a large diversity
of possible element configurations around a point. Because of the low prospect of
success this trial was abandoned. In the mean time, a similar problem seems to be
solved for the two-dimensional case, using symbolic computations [7].

Partial results of the analytical investigations suggest that the local discretization
error is comparatively small for uniform grids. Therefore, it seems to be worthwhile
considering a geometrical element quality [2, 4, 12] for replacing the element shape
related part of the local discretization error. The main problem of this approach
seems to be that the converse argument is not true. Grids or areas with apparently
low element quality may provide good dual grids in terms of rectangularity of dual
edges and faces.

3.1 A Geometric Quality Measure for the Element Types of TAU

The geometrical quality measure has to be defined for all element types used in
TAU, and the choice has to consider the available information and experience about
the relation between element shape and discretization error. The high aspect ratio of
hexahedra or prisms for example is needed to simulate flows with anisotropic char-
acter. The analytic preliminary investigations also confirmed that the aspect ratio of
quadrilaterals does not contribute to the element shape related discretization error
in an otherwise regular grid.
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Without a good reason not to do so the most simple measure is chosen for the
unstructured part. A very simple and well known geometrical quality measure for
simplices is the mean-ratio shape measure, e.g. [4]:

Qtri =
2(λ1λ2)

1/2

λ1 +λ2
=

4
√

3A
a2 + b2 + c2 (1)

Qtetra =
3(λ1λ2λ3)

1/3

λ1 +λ2 +λ3
=

12 3
√

9V 2

∑
0≤i< j≤3

e2
i j

(2)

This is the ratio of the geometric and the arithmetic mean of the eigenvalues λi of the
linear transformation to the regular element. The resulting formulae for triangles (1)
and tetrahedra (2) have a representation in terms of the element area A and the edge
length a, b, c and in terms of the volume V and the edge length ei j, respectively.

Most quadrilateral quality measures suggested in publications are derived from
triangle quality measures such that high aspect ratios mean a low quality, e.g. [9].
So they are not applicable to TAU. Here another approach is tried. Instead of de-
composing the quadrilateral and applying the triangle formula to the pieces, here
the formula is decomposed and the parts interpreted as penalty terms of certain geo-
metrical distortions. The analogue application to quadrilaterals shows how the term
has to be modified to get a useful formula for TAU.

By means of the vector analysis the following representation of the mean-ratio
quality for triangles can be found:

Qtri =
4
√

3A
a2 + b2 + c2 =

√
3 |a| |b+ c| sinφ

a2 + 1
2 a2 + 1

2 |b+ c|2 = sinφ ·

√
|a|2 ·

∣∣∣ b+c√
3

∣∣∣2

1
2

(
|a|2 +

∣∣∣b+c√
3

∣∣∣2
) (3)

This can be considered as a decomposition of the mean-ratio quality into a term
sinφ for the evaluation of distortion and a second term evaluating the stretching of
the triangle. The stretching related term again has a mean ratio structure. It is the
ratio of geometric and arthmetic mean of |a| and | b+c√

3
| which are equal for a regular

triangle. The decomposition into distortion and stretching depends on the choice of
the triangle base side. This does not matter because the triangle formula will not be
changed and the analogue formula for quadrilaterals which has to be changed will
not depend on an arbitrary choice. Figure 7 shows the further proceeding.

The analogue formula considering distortion and stretching in the same way for
quadrilaterals (4) does not include deviations from parallelism. So Q∗

quad can be
considered as quality measure for parallelograms, see Fig. 7, middle part. In order to
get a useful quality measure for TAU, the mean-ratio term evaluating the stretching
is neglected and a term X for evaluation of the nonparallelism is added.



38 M. Orlt and N.R. Gauger

			 			
�

�
�

��

�
�

��

	�
���

���φ
a

bc

b+c
2 ��

�
�
��

�
�
��	� ���

���

φ
a+c

2
b+d

2
a

bd

c

�
�
��

�
�
��

�������

�������

�
�
�
��

��	� ���
���

φ

Fig. 7 Steps of derivation of the geometrical quality measure for quadrilaterals: interpretation
as stretching and distortion (left), construction of the analogue measure for a parallelogram
(mid) and addition of a term to evaluate the deviation from parallelism (right)

Q∗
quad = sinφ ·

√
|a+ c|2 · |b+ d|2

1
2 (|a+ c|2+ |b+ d|2) sinφ =

|(a+ c)× (b+ d)|
|a+ c| · |b+ d| (4)

Qquad = sinφ ·X =
2(|a×(b+d)| · |c×(b+d)| · |(a+c)×b| · |(a+c)×d|)1

4

|a+ c| · |b+ d|
(5)

The choice of the term X is determined by the mean-ratio principle and the defin-
ition of a correct element quality measure. This includes that this measure is zero
for a completely collapsed or otherwise distorted element. A measure is needed to
evaluate elements of the TAU Code in a reasonable way. So an element has to be con-
sidered as completely distorted, if one of its triangle or tetrahedra parts collapses.
The definition of X as the mean ratio, i. e. the ratio of geometric and arithmetic
mean, of the triangle part areas meets both requirements, see Fig. 7, right part. The
resulting quality measure for quadrilaterals Qquad can be expressed by formula (5).

The application of this idea to the three-dimensional case includes a geomet-
rical interpretation and a decomposition of the mean-ratio quality of tetrahedra. In
this calculation the terms describing the base triangle can be replaced by the ana-
logue terms for quadrilaterals, see Fig. 8, upper part. In this way a consistent quality
measure for pyramids is derived. The quadrilateral quality can be generalized to
hexahedra, considering the relation of triangle and tetrahedra quality. An applica-
tion of this step to triangle bases leads to a quality formula for prisms, see Fig. 8,
lower part.

This procedure ensures a kind of consistency between the quality measures of
various element types. In this context consistency means, that similar distortions
applied to elements of various types lead roughly to the same decrease of the ele-
ment quality for both element types, see Fig. 9.

This feature is very valuable for the use in adaptation algorithms. It could be
used in the investigation of element subdivisions. For example, if a hexahedron of
the structured layers is refined to bridging prisms, the prisms roughly inherit the
quality of the parent hexahedron, and their quality is decreased by the horizontal
stretching which was not relevant for the parent hexahedron. This decrease is nearly
independent of the initial quality of the parent.
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Fig. 8 Scheme of derivation
of the quality measures for
the various element types
by starting from simplices
(grey), adding a term for
nonparallelism (lightgrey)
and derivation of the re-
maining (black)
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Fig. 9 Explanation of consistency for quality measures of various element types: similar
distortions of various element types lead to similar decrease of the quality measure

After all the needed calculation, we get the following formulae for the geometric
quality measures of the various element types, equation (6)–(9). Figure 10 provides
the notation of edges used in the equations.
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Fig. 10 Notation of the edges of element types used in the formulae of geometric quality
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Qtetra =
12

√
3 (e01 × e02) · e03(

e2
01 + e2

02 + e2
12 + e2

03 + e2
13 + e2

23

) 3
2

, (6)

Qprism =
3 ·3 1

6

(
V0 ·V1

) 1
6
(

V00 ·V01 ·V02 ·V03 ·V10 · . . . ·V23

) 1
18

2
1
3

(
(e01 + e34)2 +(e02 + e35)2 +(e12 + e45)2

)
·
∣∣∣e03 + e14 + e25

∣∣∣ (7)

with V0 = |e01,e02 + e12,e03 + e14 + e25| , . . .
and V01 = |e01,e02+e12+e35+e45,e03+e14| , . . . ,

Qpyra =
6
√

3
(
|e01,e03+e12,E4| · |e32,e03+e12,E4| · |e01+e32,e03,E4|·

(
2(e01+ e32)2 + 2(e03+e12)2 +E2

4

) 3
2 ·

· · ·

· · ·
·|e01+e32,e12,E4|

) 1
4 ·

(
(e01+e32)

2 +(e03+e12)
2
)

·|e01+e32| · |e03+e12| (8)

with E4 = e04 + e14 + e24 + e34 ,

Qhexa =
8
(
|e01,e03+e12,E2| · |e32,e03+e12,E2| · |e01+e32,e03,E2|·

· · ·

· · · ·|e01+e32,e12,E2| · |e45,e47+e56,E2| · . . . · |E0,e03,e04+e37| · . . .
|E0| · |E1| · |E2| · · ·

· · ·
. . . · |e01,E1,e04+e15| · . . . · |e32+e76,E1,e26|

) 1
24

(9)

with E0 = e01 + e32 + e45 + e76 , E1 = e03 + e12 + e47 + e56

and E2 = e04 + e15 + e26 + e37 .

The incomplete products in equations (7) and (9) go over all the tetrahedra parts of
a prism and a hexahedron, respectively. The expression |x,y,z| = (x× y) · z denotes
the triple product which can be calculated as a determinant of the vector entries.

3.2 Modification of Adapted Grids

The idea of grid modification is to avoid bridging refinements for elements of lower
geometrical quality. The borders between different refinement levels are moved into
elements of a better quality, see Fig. 11.
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Fig. 11 Idea of the grid modification: the initial elements are of various quality (left), the
unmodified adaptation leads to bridging elements of even lower quality (middle), moving the
bridging refinements to better initial elements avoids the worst elements (right)

The bridging refinements, the so called green elements of the red-green-method,
tend to provide children of a lower quality in comparison with the parents and the
corresponding children of a regular refinement. So this method can avoid the worst
elements of an adapted grid.

To explain the problems of the method, some algorithmic details are needed. An
internal edge refinement trial of the TAU adaptation has three main steps. First as
much as possible points are (temporarily) removed. In the second step, the initial
refinement is done depending on the error indicators of edges and the target size of
the grid. Then, points are added iteratively until all elements have a valid subdivision
state as a third step.

The only place for the modification is the third step, because in the second step
the initial borders between refinement levels are determined. Because a bridging re-
finement can not taken back in this step it has to be re-refined to a regular one. So
additional points are needed for the modification. Furthermore, the regular subdivi-
sion of a badly shaped element provides more badly shaped child elements than the
bridging subdivision. Therefore, regarding the pure numbers, the portion of badly
shaped elements could increase though their quality is not worsened in a modified
adaptation.

As a first test the triangles of a two-dimensional grid around a RAE-2822 air-
foil are adapted without modification and with a forced regular refinement for all
elements with a quality lower than a limit of 0.98, see Fig. 12.

The quality distributions of the adapted grids have much more elements of lower
quality than the initial grid. These are the elements of bridging subdivisions. The
modified adaptation can avoid the low quality elements of a quality 0.33–0.5 be-
cause they come from bridging subdivisions which become regular ones in the mod-
ified case. The portion of high quality elements with quality 0.98–1.0 decreases in
the modified adapted grid because a lot of them has to be refined nonregularly, tak-
ing the borders of various refinement levels in the modified adapted grid. Because of
both effects the behaviour of the average quality of all elements after modification
cannot be predicted. In this example it is nearly unchanged.

In three-dimensional cases of more complex geometries the element qualities of
the initial grids are usually much broader distributed. That is why these effects are
overlaying for various qualities. So there are quality slots for which some bridging
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Fig. 12 Element quality
distribution of a test: initial
grid (top), unmodified ad-
apted grid (left), modified
adaptation (bottom right),
showing the percentage of
elements in quality intervals
of the length 0.01. The light-
grey bars are oversized to
the tenfold.
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elements are avoided by the modification. But some additional elements from regu-
lar subdivisions fall into the same slot to avoid elements of even worse quality.

The implemented version of the grid modification requires an input parameter
defining the portion of elements which is to be considered for only regular refine-
ment. The TAU adaptation determines the actual quality limit from this portion. In
order to have the same behaviour in various adaptation steps, the portion and the
limit refer to the initial grid. Furthermore, if an element which is considered for
regular refinement has an unrefinable edge, this element is not refined at all.

3.3 Results on Modified Grids

As a more realistic test case, the flow around the DLR-F6 model has been taken.
The initial grid was prepared with the Centaur grid generation tool [3], see Fig. 13.

The simulation was done for Mach number of Ma = 0.75, an angle of attack
of α = 0.00, using the Spalart-Almaras turbulence model in the original version
(SAO). After the simulation on the initial grid was fairly converged, the adaptation
was performed to increase the point number by 50%, using differences of the solu-
tion gradients for refinement indication and using various values of the modification
parameter. The modification parameter defines the portion of elements which is con-
sidered for only regular refinement. In the test series it was increased from a value
of 0, i.e. no modification, to a value of 0.1, the maximum value allowed. Table 3
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Fig. 13 Surface of the initial
grid of the DLR-F6 model
used in the test example
for the modified adaptation,
containing 2.46 million
points, 1.87 million prisms
and 8.66 million tetrahedra

shows the different modification parameter values, the actually inserted percentage
of new points and how much of these new points are inserted by the edge indicator.

Table 3 List of tested modification parameter values, i. e. the portion of elements prepared
for only regular refinement, the actual increase of the adapted grid and the portion of new
points which was inserted by the initial edge refinement (and not by the modification)

modification
parameter

0.000 0.001 0.002 0.005 0.010 0.020 0.050 0.100

new points in % 49.95 50.02 50.10 50.03 50.31 50.26 50.40 50.47

portion of new points
initially inserted in %

100.0 95.26 93.85 90.85 86.66 78.37 49.49 10.60

With an increasing influence of the modification, i. e. with a larger number of
elements considered for regular refinement only, the portion of points inserted by
indicators decreases, because a lot of points are needed for the regular refinement of
badly shaped elements. The table shows that increasing the modification parameter
beyond 0.05 seems to be not a reasonable choice in this example, because the ratio
of points spent for adaptation of the grid resolution and points spent for the quality
manipulation is too small.

The differences of the surface grids for the unmodified case and the case using
the modification parameter 0.01 also show this effect, see Fig. 14. In the modified
case less points are used to refine the area of the shock system. These points are
moved to some badly shaped elements to improve their subdivision. Because these
changes mostly are done locally at places where refinement already occured in the
unmodified case, it is hard to find them in the picture. They are located in the areas
of the wing-body intersection and behind the trailing edge. In these areas probably
the convex or concave geometry forced the grid generation tool to introduce some
elements of lower quality.
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Fig. 14 Influence of modified adaptation on adapted grid: initial grid (left), unmodified ad-
apted grid (middle), adapted grid with modification parameter of 0.01 (right)

The results for the integrated lift and drag coefficents and the residuals after 2000
and 10000 solver iteration steps after the adaptation are listed in the table 4. The
results are compared to the corresponding results on a globally refined grid. The
globally refined grid includes all the refinements that any local adaptation could do,
and the element quality is perfectly preserved because all subdivisions are regular.
So the result on the globally refined grid are the best what a local adaptation is able
to achieve. The grey-shade of the entries indicates if the result is more accurate or
smaller in case of a residual than the corresponding value for the unmodified case.
Black entries are better, grey entries are worse than the value of the unmodified
case. In this example the best results are achieved with a modification parameter of
0.005–0.010.

Another test example was a simulation on a Solar [8] grid for the HiReTT model.
The initial grid has 3.61 million points and consisists of 3.16 million hexahedra,
25675 prisms, 81396 pyramids and 2.27 million tetrahedra. The calculation was

Table 4 Residuals and results of various adaptation modifications for the DLR-F6 model

modif.
param.

Ref. 0.000 0.001 0.002 0.005 0.010 0.020 0.050 0.100

Res. 12k 6.864e-4 7.452e-4 7.185e-4 7.012e-4 5.244e-4 5.616e-4 6.114e-4 8.682e-4

Res. 20k 4.533e-5 4.466e-5 4.507e-5 4.452e-5 4.689e-5 4.627e-5 4.516e-5 5.302e-5

CL 4.581e-1 4.613e-1 4.610e-1 4.606e-1 4.594e-1 4.591e-1 4.597e-1 4.663e-1 4.656e-1

CD 2.665e-2 2.730e-2 2.728e-2 2.728e-2 2.727e-2 2.728e-2 2.727e-2 2.723e-2 2.721e-2
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Table 5 Residuals and results of various adaptation modifications for the HiReTT model

modif.
param.

Initial Global 0.000 0.002 0.005 0.010 0.020

new points in % 102.07 103.28 96.39 100.18 97.28

portion of new p.
initially inserted

71.77 70.93 69.31 66.69 57.93

Res. 4000 8.621e-6 8.775e-6 8.816e-6 8.167e-6 6.601e-6

Res. 6000 1.354e-6 1.339e-6 1.320e-6 1.271e-6 1.128e-5

CL 2.156e-1 2.143e-1 2.146e-1 2.146e-1 2.144e-1 2.145e-1 2.144e-1

CD 1.024e-2 9.941e-3 9.962e-3 9.962e-3 9.962e-3 9.964e-3 9.971e-3

done for a Mach number of Ma = 0.85, an angle of attack of α = 0.00, using the
Spalart-Allmaras turbulence model in the original version. After 3000 solver itera-
tion steps the grid was adapted with 100% new points, using the differences of the
primitive variables as the refinement indicator. Again, the adaptation was applied
using the standard version and various values of the modification parameter.

Table 5 summarizes the results of the adaptation and the following calculation.
In this example the best result is achieved for a modification parameter of 0.005. In
this case the lift coefficient is approximated a little better, and the deviation of the
drag coefficient is not increased.

Some more test calculations for the LANN-wing and the HIRENASD-wing con-
sidering the modified adaptation were done. Summarizing the experiences from all
tests performed until now, the following remarks can be made:

1. The influence of the described adaptation modification on the results of integral
lift and drag coefficients is small compared to the influence of other parameters,
e. g. the number of grid points or the turbulence model.

2. The results are almost never worsened for small values of the modification para-
meter compared to the results using the unmodified adaptation.

3. The results get worse or unpredictable, if the modification parameter approaches
the maximum value of 0.1.

4. The influence of the adaptation modification seems to be larger when introducing
fewer (≈50%) new points than more (≈100%) new points in one adaptation step.

5. The residuals tend to fall faster for larger modifications in the first (1000–2000)
solver steps after adaptation.

6. If the computation converges well, the residuals for smaller grid modification are
often smaller than that for larger grid modification for the converged solution.

The reasons for the unexpected small influence on the results by this adaptation op-
tion may be manifold. One possible explanation is that the element shape is less
important for the local discretization error than the resolution of the considered
examples and grid types. Another interpretation is that the red-green refinement
strategy of the TAU adaptation is well suited for the considered grids, i. e. the loss
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of element quality in bridging refinements does not affect the solution very much.
See Sect. 6 for conclusions regarding the application.

4 Adjoint-Based Error Estimation and Functional Correction

An efficient and consistent way of estimating numerical errors in a functional I(U)
of interest, are the so-called dual weighted residual approaches (DWR). Here, one
weights the numerical error, represented by the residual R(Uh) of the numerical
state solution Uh approximating the exact solution U , by the so-called dual or ad-
joint state. The idea stems from Johnson, Rannacher et al. [6] in the Finite Element
Method (FEM) context. The reason for the weighting of the (local) residual with the
adjoint field vector ψ is, because the adjoint is an influence function (i.e. a Green’s
function) w.r.t. the functional of interest I, for which one has solved the adjoint state
equation

∂ I
∂U

+ψ
 ∂ I
∂U

= 0 . (10)

The adjoint field vector has value zero in areas with no impact on the functional
I(U), and (very) different from zero in areas of (big) impact. This means, that the
adjoint as a weight eliminates local residuals in areas where the error only appears,
and increases it in areas where the errors come from.

Unfortunately, there is a difficulty in transfering the DWR to Finite Volume
Methods (FVM). The reason is, that one would need the exact adjoint solution for
the calculation of the first order error term. Instead, one solves in FEM context the
adjoint problem with higher order test and ansatz functions, and this yields then the
first order error estimate. But in standard FVM, it is not possible to play around with
the order of test and ansatz functions.

One possibility to overcome this difficulty is the repeated extrapolation between
certain mesh levels (e.g. from coarse level H to globally refined level h) as suggested
by Venditty and Darmofal [13] or Pierce and Giles [10]. This approach has been
proved to lead to a good error estimate, given as

Ih(U
H
h )− Ih(Uh)≈

(
ψH

h

)

Rh(U

H
h ) , (11)

but is not handy e. g. in areas of shocks and w.r.t. memory consumption (due to
values needed at globally refined mesh level h).

An alternative idea by Dwight [5] is, to interpret the discretization error R(Uh),
at least for the central Jameson-Schmidt-Turkel scheme available in TAU, as dissip-
ation error. This yields instead of

I(Uh)− I(U)≈ ψ

h R(Uh) (12)
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Fig. 15 Adjoint-based error sensor for lift (left) and drag (right)

to the error estimate

I(Uh)− I(U)≈ ψ

h

(
k(2)

∂R

∂k(2)
+ k(4)

∂R

∂k(4)

)
. (13)

Here, k(2) and k(4) are the scaling coefficients for the dissipation of second and
forth differences, i. e. first and third order. It turns out that this approach is accurate
enough and obviously it is very handy.

This method has been implemented by R. Dwight in the TAU code and has been
used by the authors within the project MUNA.

The right hand side of Equation (13), the global error estimate, is to be under-
stood as the integral or sum of the local error estimates

[
ψ


h

(
k(2)

∂R

∂k(2)
+ k(4)

∂R

∂k(4)

)]
i, j,k

(14)

at cell positions Xi, j,k, and (14) can be used as an indicator or sensor for adjoint-
based (and therefore) goal-oriented mesh adaptation. For the realization and applic-
ation of this local adjoint-based sensor for mesh adaptation in TAU, we refer to
Section 5.

In this Section we first present the validation of the local and global adjoint-based
error estimate. The difficulty in the validation here is, that one should know about
the exact solution to compare with. Therefore, we have chosen an inviscid subsonic
NACA0012 flow case and drag as functional of interest. Then we know, that the
exact (shock less) solution has zero drag. (Only some spurious drag, i. e. numerical
dissipation, remains.)

Figure 15 shows the local sensor (14) for lift and drag. That these sensors, which
are the local error estimates, lead to good global error estimates, can be seen in
Figure 16.

Furthermore, the adjoint method is used for the efficient quantification of uncer-
tainties in the aerodynamic coefficients caused by variations of the model
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Fig. 16 Adjoint-based global error estimation and functional correction for the drag coeffi-
cient on initial and globally refined mesh (NACA0012, Ma = 0.5, α = 1.0◦, inviscid)

parameters of the SAE and the Wilcox-k-ω turbulence model. Compared to finite
differences one is here independent of the number of model parameters w.r.t. the nu-
merical costs. Figures 17 and 18 show a good match of the sensitivities calculated
by the adjoint method as well as by finite differences for lift and drag coefficients,
caused by variations in the model parameters of SAE and Wilcox-k-ω .

5 Error Indication Based on the Adjoint Solution

This section describes the use of the adjoint information as a sensor for the error
indication in the TAU adaptation. The main work was the development and imple-
mentation of the adjoint solver which is described in the contribution Adjoint-Based
Error Estimation and Functional Correction of this volume. The adjoint solver
provides a field variable containing a kind of measure for the local discretization
error weighted with its influence on the target functional, which may be the integral
lift or drag coefficent. This variable serves as an interface to the grid adaptation tool.

The work at the adaptation tool itself which was needed to enable an adjoint-
based adaptation was more of technical nature. Because the provided adjoint in-
formation has to be regarded as a pointwise error indicator and the adaptation tool
works edge orientated, the sum of the sensor variables for the edge points has to be
used as the edge indicator. Similar to the differences-based indicators, a weighted
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Fig. 17 Sensitivity of lift (left) and drag (right) coefficients w.r.t. variations in the model
parameters P of the SAE turbulence model, calculated by adjoint method

Fig. 18 Sensitivity of lift (left) and drag (right) coefficients w.r.t. variations in the model
parameters P of the Wilcox-k-ω turbulence model, calculated by adjoint method

combination of different variables of the adjoint sensor file can be used for error
indication in the TAU adaptation.

The adjoint-based adaptation was tested in a simulation for the HIRENASD-
model. The initial grid was generated with the Solar grid generator [8]. It has 3.12
million points and consists of 2.54 million hexhedra, 20758 prisms, 40430 pyramids
and 3.19 million tetrahedra. The flow was calculated for a Mach number of Ma =
0.8, an angle of attack of α = 1.0◦ using the Spalart-Allmaras turbulence model in
its original version.

After the solution was well converged, the adjoint problem was calculated for the
integral drag coefficient as the target funtional. Using the adjoint sensors on the one
side and the differences of gradients for comparison on the other side, the grid was
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Table 6 Results of simulations using the differences-based and the adjoint-based adaptation

initial grid adapt +50% adapt +100% global +353%

differences- CL 2.783e-1 2.787e-1 2.786e-1 2.789e-1
based CD 1.181e-2 1.188e-2 1.186e-2 1.171e-2

adjoint-based CL 2.783e-1 2.773e-1 2.774e-1 2.789e-1
target: CD CD 1.181e-2 1.175e-2 1.170e-2 1.171e-2

adapted with 50% and 100% new points. Table 6 shows the results of the integral
lift and drag coefficents. These results are compared to the results for the initial grid
and the globally refined grid. As already discussed in Section 2 and Subsection 3.2,
the result on the globally refined grid serves as reference value in case of a locally
adapted calculation.

The differences-based adaptation leads to improved results for the lift coefficient,
but not for the drag coefficient. It seems that the differences are not appropriate for
estimating the local discretization error in this example. Contrary, the adjoint-based
adaptation improves the results for the drag coefficient significantly. Because the
drag coefficient was used as target functional for the adjoint-based adaptation, an
improvement of the lift coefficient result is not expected in this case.

The process was restarted for the example with 50% new points. The results are
documented in Table 7 and the resulting grids of the adjoint-based case are shown
in Fig. 19. The adaptation used re- and de-refinement and the twice adapted grid has
some de-refined grid areas.

The adjoint-based adaptation is significantly more expensive in terms of compu-
tational effort. The differences-based adaptation usually can already be performed
for a not fully converged solution, especially in case of a computation with mul-
tiple adaptations. The resulting grid will not differ very much from that generated
by adaptation for the fully converged solution. Different from that, an adjoint cal-
culation requires a very well converged solution. Additionally, the adjoint solution
needs computational resources comparable to the original solver and nearly an order
of magnitude more memory.

The application of the adjoint-based adaptation requires a careful choice of the
control parameters to get the best effect from the much better, but expensive error

Table 7 Results of a twice adapted simulation using the differences-based and the adjoint-
based adaptation

initial grid adapted +50% 2x adapted +50%

differences- CL 2.783e-1 2.787e-1 2.790e-1
based CD 1.181e-2 1.188e-2 1.190e-2

adjoint-based CL 2.783e-1 2.773e-1 2.780e-1
target: CD CD 1.181e-2 1.175e-2 1.177e-2
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Fig. 19 Grids resulting from
adjoint-based adaptation:
initial grid (top left), once
adapted grid (top right),
twice adapted grid (bottom)

estimation. For example, if the percentage of new points is chosen too small, the
differences-based adaptation might achieve the same result, using much more points
with a similar computational effort. On the other hand, the point number and the
resulting grid should not get near the global refinement. In this case the influence of
a better refinement indicator would be smaller.

Thus, further systematical tests are needed to find a best practice strategy for the
adjoint-based adaptation.

6 Conclusions for the Application

This contribution introduced three development directions of the TAU adaptation
tool followed within the framework of the project MUNA, all aiming for improved
adapted grids enabling for higher accuracy.

The first one, the investigation and use of the element decomposability, see
Sect. 2, improves the edge refinement algorithm of the TAU adaptation. In effect
as much as possible of the grid area is considered for re- or de-refinement, instead
of having larger regions which are unintendedly excluded from adaptation. Under
the assumption that the refinement indicator provides the correct measure for the
necessity to refine edges, this step obviously improves the adapted grids. The bet-
ter accuracy of the resulting solution was demonstrated for an example, using the
adjoint-based error indication.
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The second topic, see Sect. 3, provides an option to avoid some of the elements
with a low geometrical quality introduced by standard adaptation. Because this
feature is not as effective as previously thought and slightly increases the computa-
tional effort, it is switched off as a default. However, the grid modification seems to
be a useful option in some special situations. The idea of avoiding the worst shaped
bridging elements in an adapted grid suggests to try this method in configurations
with some poorly shaped elements in grid regions affecting the global solution. The
stabilizing effect of the grid modification could possibly be used in examples in
which the computation converges very slowly after a grid adaptation or a restart is
comletely impossible. At least the option generates slight grid variations better than
inserting random points. So it is an instrument for further investigation of uncertain-
ties caused by grid variations.

The use of the adjoint solution for an adjoint-based adaptation, see Fig. 5, signi-
ficantly improves the accuracy of the result for the target functional obtained on the
adapted grids for the investigated test examples. Because of the large effort which
is needed for an adjoint-based adapted computation, compared to the conventional
differences-based adaptation, a careful cost-benefit analysis has to be done. Some
more time and additional tests are needed to find out classes of problems and con-
figurations for which one or the other method is preferable.
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Application of Mesh Modifications and Adjoint
Error Estimates

S. Albensoeder

Abstract. Two methods for mesh modification are considered to improve hybrid
meshes for CFD calculations. The first method is an adaptation with new sensors.
The new sensors are based on an adjoint approach to calculate the sensitivity with
respect to a goal function. Here the sensitivity of lift, drag and pitching moment was
calculated with respect to the numerical dissipation terms. The second method is
a local mesh modification of the unstructured part of the hybrid mesh based on an
algebraic quality measure. For an a posteriori improvement the flow properties can
be included to build a new anisotropic metric. Both new methods were applied to
industrial relevant test cases.

1 Introduction

One problem of today computational fluid dynamics (CFD) is the discretization of
the computational domain. Due to the limits of computational resources the discret-
ization of the domain is not fine enough. Therefore the discretization can have a
significant effect to the results.

A common approach to reduce this uncertainty is the adaptive refinement of the
grid where errors occur. In the past several sensors (e.g. gradient based, reconstruc-
tion based) were developed to detect these underresolved regions. A sensor which
computes the sensitivity of a discretization with respect to a specified goal function
was introduced by [13]. The sensor was computed by solving an adjoint problem.
One bottleneck of the method was that the final sensor was computed on the iso-
tropic refined mesh instead of the original mesh. For complex configurations with
a high number of grid points the demands to the computational resources are very
high. In this investigation the sensors of [2] were used. This method computes the
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sensitivity with respect to numerical dissipation terms. By this ansatz the error es-
timation can be done without any mesh refinement step.

Another approach is the improvement of a given mesh by local modifications.
This improvement can be related to improve badly shaped elements and to orientate
elements in the direction of the flow.

The uncertainty due to influences of the mesh generation drives the limitation
that small influences can only be computed on the same or slightly modified mesh.
One example is the deformation of the geometry due to aerodynamic loads. To re-
duce the uncertainty the whole mesh will be deformed to avoid a new meshing.
Unfortunately this deformation can cause inverted elements which foreclose a new
CFD computation. These cells have to be repaired which can also be done by the
introduced local mesh modification.

In the next section the investigated methods are described. In section 3 the meth-
ods were applied to industrially relevant test cases. Finally a conclusion and an
outlook are given.

2 Methods

For this study two different methods were used. The first approach solves an ad-
joint problem to get an error estimate of a functional. This error estimate is used as
sensor for adaptation. The second method is based on the local modification of the
unstructured part of the mesh to increase the quality of the mesh. All computations
were performed with the TAU solver from the DLR (Deutsches Zentrum für Luft-
und Raumfahrt).

2.1 Adjoint Error Estimation Method

The adjoint error estimation method uses a solution of an adjoint problem as sensor
for an adaptation. The sensor is goal-oriented which means that for a specific goal
function (e.g. CL, CD or CMy) the sensitivity on the error of this goal-function is
locally computed. Based on this error estimate the mesh is refined to improve the
results with respect to the specified goal function.

The original sensor of [13] is based on an estimate for the goal function I on a
globally refined mesh

Ih
(
UH

h

)− Ih (Uh)≈
(
ψH

h

)T
R
(
UH

h

)
(1)

by the adjoint ψ times the residuum R of the flow U , where the subscript h means
results on the isotropically refined mesh, the superscript H denotes an extrapolation
from the coarse to the fine mesh. So on the right hand side of (1) the adjoint ψ is
computed on the original mesh and extrapolated to the fine mesh. The flow quantity
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U is extrapolated to the fine mesh. After that the residuum is calculated on the fine
mesh from this extrapolated vector.

To avoid the extrapolotion and the calculation of the residuum on the fine mesh a
new sensor was developed by [2]. The idea of [2] is to assume that the major part of
the discretization error comes from the dissipation error. The error estimate is then
given by

I (Uh)− I (U)≈ ψT
(

k(2)
∂R

∂k(2)
+ k(4)

∂R

∂k(4)

)
. (2)

The corrected value of the goal function is

I (Uh)≈ I (U)+ψT
(

k(2)
∂R

∂k(2)
+ k(4)

∂R

∂k(4)

)
. (3)

The related sensor for the adaptation is the absolute value of the local product

si, j =

∣∣∣∣ψT
i, j

(
k(2)i, j

∂Ri, j

∂k(2)
+ k(4)i, j

∂Ri, j

∂k(4)

)∣∣∣∣ . (4)

2.2 Mesh Manipulation

For optimizing a mesh, a quality measure for its elements has to be defined. Here
the used quality measure based on the so-called mean ratio

qi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
√

3 · Ai

∑3
j=1 l2

i j

for 2D meshes (triangles)

12 · sign(Vi) ·
3
√
(3Vi)

2

∑6
j=1 l2

i j

for 3D meshes (tetrahedron)

, (5)

where Ai is the area, Vi the volume and li j the edge lengths of the element i (see
figure 1a). Basically the measure is a ratio between the volume (3D) or area (2D)
and the edge lengths.

For three-dimensional cases this quality measure was extended to pyramids by
splitting the pyramid into four tetrahedra by introducing a mid point on the basis of
the pyramid (see figure 1b).

The implementation of the mean measure allows to use local anisotropic metrics.
The modified metric can be helpful if more information about the flow e. g. a pre-
liminary solution is available. In this case the orientation of the elements to the local
flow is considered. Due to this new metric the edge lengths, area and volume are
measured in the space of the new metric M . The size functions in the new metric
are then given by
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(a) (b)

Fig. 1 (a) Nomenclature of variables on a tetrahedral element i. (b) Splitting of a pyramid
into four tetrahedrons.

lMi j =
√
(xi − x j)T ·M · (xi − x j), (6)

AM
i =

√
det(M ) ·Ai (for 2D meshes), (7)

VM
i =

√
det(M ) ·Vi (for 3D meshes). (8)

For this study the metric was derived from the Hessian of the local Mach number
Malocal

H =
∂

∂xi∂x j
Malocal . (9)

To get a positive definite metric the Hessian was decomposed to its eigenvalues.

H = R ·
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ ·RT . (10)

The new local metric is then defined by the absolute values of the eigenvalues

M = R ·
⎛
⎝ |λ1| 0 0

0 |λ2| 0
0 0 |λ3|

⎞
⎠ ·RT (11)

To improve the quality of a three-dimensional mesh, four different methods are
implemented to modify the unstructured:

• edge swapping for up to 8 surrounding tetrahedrons [6, 10]
• face swapping [face to edge swap in 10]
• edge collapsing [9]
• combined smoothing [11, 1, 4] with an optimizer for not continuously differen-

tiable goal functions [5, 6, 3]
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(a) (b)

(c) (d)

Fig. 2 Examples for (a) edge swapping, (b) face swapping, (c) edge collapsing and (d) com-
bined smoothing

Each method modifies the mesh locally and acts on tetrahedrons. The combined
smoothing and the edge collapsing were extended to allow modifications on points
connected with pyramids. An example for each method is sketched in figure 2(a)–
(d). For two-dimensional grids only edge swapping and the movement of nodes are
implemented.

For pointwise optimization due to movement of a node, a goal function has to be
defined which combines the quality of surrounding elements Si of a node i. Here the
minimal quality

ḡ(Si) = min
j∈Si

q j (12)

was used as goal function for the optimizer.
A modification of the grid is tried if the geometrical constraints allow a modi-

fication. Additionally the following demands have to be always fulfilled to accept a
modification step:

• the minimal quality is larger than zero (to avoid inverted elements)
• the minimal quality is larger than the global minimal quality
• the goal function has to be improved (in the case of node movement)
• improve the mean quality (and therefore the global quality of the mesh)

3 Results

3.1 Adaptation by an Adjoint Error Estimate

The adjoint error estimate as sensor for adaptation is tested on two configurations.
The first configuration is a clean wing/body configuration of the DLR-F6 geometry
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[8, 12]. The second configuration is the high-lift wing/body configuration TC 217
with deployed flaps and slats. For both configurations the numerical results are com-
pared to wind tunnel measurements.

3.1.1 DLR-F6

This test case was defined for the Third AIAA CFD Drag Prediction Workshop [see
12]. The flow parameters for the DLR-F6 wing/body configuration are Ma ≈ 0.75,
Re ≈ 5 ·106 and Tre f = 322.22. The meshes were taken from the workshop1.

The first test on this configuration is a comparison of a mesh refinement study and
an adaptation series with the new sensors. For the refinement study a computation
on a coarse (NP = 2464385), a medium (NP = 5102446) and a fine (NP = 8535263)
mesh was performed. For all computations the lift is targeted to CL = 0.5 and
the Spalart–Allmaras turbulence model was used. Outgoing from the coarse mesh
the adaptation was repeated five times with the new sensor given in equation (4).
The number of points increases within each adaptation step by 30%. Additional
to the flow computation in each adaptation step the adjoint error estimation was
computed.

The values of the angle of attack α , the drag CD and the pitching moment CMy of

the refinement study are plotted in figure 3(a)–(c) as function of N−2/3
P . The crosses

show the results of the coarse, medium and fine mesh. The circles and squares con-
nected by solid lines are showing the results of the adaptation with the new sensors
for lift and drag, respectively. Signs connected by dotted lines denote values which
are corrected by the adjoint error estimate (3). The results from the refined meshes
show an ambiguous behaviour regarding the convergence for all plotted coefficients.
In contrast the results from the adaptation series converge approximately to distinct
values. The corrections by the adjoint error estimate decrease continuously so that
finally the corrected values converge to the uncorrected values. The values of the
finest meshes of the adaptation series are higher than the values from the finest
mesh, e. g. ΔCD ≈ 10DC.

A comparison with the results given in [12] shows that the results of the refined
and of the adapted meshes are lying in the range of other codes. Additionally [12]
make a statistical analysis of the values for drag. Their estimate for the mean of the
drag is CD = 0.0269, the standard deviation is σ = 0.0006. Here the values of the
adaptation are significantly out of this range.

The experimental results are taken from [7]. The measured values are shown in
figure 3(a)–(c) by a dashed line. For the angle of attack and the pitching moment
the adapted grids are lying closer to these experimental results than the results of
the refined meshes. For the drag the values on the refined meshes are closer to the
experiment.

In the second test a polar is computed. Again the flow conditions are Ma ≈ 0.75,
Re ≈ 5 · 106 and Tre f = 322.22◦K. Instead of a fixed target lift coefficient here the
angle of attack was varied in the range of α = [−5◦,2◦]. The polar is computed on

1 See http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw
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Fig. 3 Angle of attack α (a), drag CD (b) and the pitching moment CMy (c) as function of the
grid points NP for the DLR-F6 model. The lift is kept constant to CL = 0.5. × denotes the
result on the base meshes. ◦ and � connected by a dash-dotted line marks the results of the
adaptation with an adjoint sensor with a sensitivity to lift and drag, respectively. The results
connected with the dotted lines are corrected by the adjoint error estimate. The dashed line
denotes the experimental results taken from [7].

the coarse, medium and fine mesh. To avoid the computation of an adjoint solution
for each angle of attack, four adapted meshes from the previous adaptation series
for lift and drag are used. Here the mesh from the first (ad1) and the third adaptation
(ad3) step with NP ≈ 3.2 ·106 and NP ≈ 5.5 ·106 are chosen, respectively.

In figure 4(a) the lift is plotted as function of the angle of attack α . The results
on the coarse, medium and fine mesh are denoted by ◦, + and ∗. On the coarse and
medium mesh the results are similar. On the fine mesh the slope is lower than on
the coarser meshes. The computed lift on the adapted meshes ad1 for lift and drag
are nearly identical within the line thickness. In comparison to the fine mesh the
lift is shifted by δCL ≈ 1LC. The computed lift on the meshes ad3 show the same
behaviour. Only the shift to the fine mesh is δCL ≈ 2LC.

The lift as function of the drag is plotted in figure 4(b). On the refined mesh
series the drag reduces by the mesh refinement. The strongest variation of the lift
as function of the drag is observable in the region of minimal drag where the curve
of the fine mesh is shifted to the left by δCD ≈ 10DC in comparison to the drag
computed on the coarse mesh. For large angles of attack the reduced drag is nearly
completely compensated by the reduced values of the lift so that the curves of the
refinement series are close together. For the adapted meshes the shift at the minimal
drag is only δCD ≈ 3− 5DC with respect to the results on the coarse mesh. In
contrast to the refined meshes the deviation for large angles of attack are getting
higher by the number of points.

In figure 5 the pitching moment is plotted as function of the lift. The results
for the refined mesh series are ambiguous and no trend is observable. The pitching
moment on the adapted meshes ad1 and ad3 increases by each refinement.
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Fig. 4 (a) Lift CL as function of the angle of attack α and (b) polar of CL as function of CD for
the DLR-F6 model. ◦, + and ∗ denotes the results on the coarse, medium and fine mesh. �
and ♦ marks the results on the first adapted mesh at CL = 0.5 with respect to the lift and drag,
respectively. � and � denotes the results computed on the meshes of the third adaptation step
of figure 3. The solid line denotes the experimental results taken from [7].
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Fig. 5 Pitching moment CMy as function of the lift CL for the DLR-F6 model. The labels are
identical to the labels of figure 4.

The measurements of [7] are plotted in the figures 4 and 5 as a solid line. Like in
the convergence study by trend the lift (angle of attack) and pitching moment of the
adapted meshes fits more to the experimental results than the coefficients computed
on the refined meshes. The measured lift as function of the drag fits more to the
refined meshes.

3.1.2 TC 217

The adaptation sensor based on an adjoint error estimate is also applied to the second
test case of the TC 217 high-lift configuration. The model was a wing/body configur-
ation with deployed slat and flaps. The geometry was previously used in the EURO-
LIFT project. The flow parameters are Ma ≈ 0.18, Re ≈ 1.5 ·107 and Tre f ≈ 114◦K.
All computations are performed with the Spalart–Allmaras turbulence model.

For this configuration the polar was computed on a mesh with NP = 10733766
grid points. Outgoing from this mesh for several angles of attack an adaptation with
the new sensor (4) was performed. Like for the DLR-F6 model the adaptation was
repeated several times. The number of points increases within each adaptation step
by 30%. In contrast to the DLR-F6 test case convergence problems occur on this
configuration, e.g. the convergence was too slow and the computational effort too
high or the adjoint computation diverges. However, for most of the angles of attack
one adaptation iteration was successfully performed. In figure 6 the results of this
first test were plotted. The + shows the result of the computation on the base mesh.
The corresponding experimental values were plotted as solid line. The major differ-
ences are observable in the linear region and near the maximal value of lift CL,max.
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Fig. 6 Lift CL as function of the angle of attack α for the TC-217 model. + and ◦ denote the
results on the base mesh and the corrected values by the adjoint error estimation, respectively.
× and ∗ mark the results of the first adaptation step with a sensor based on lift and drag,
respectively. The � and ♦ are the corrected values. The solid line denotes the experimental
results.

For lower angles of attack the computational results have a step-like shape. On the
other side of the curve the angle of attack and the corresponding lift is too high. The
values of the lift corrected by the adjoint error estimate (� in figure 6) are higher
then the original ones.

Outgoing from these results the mesh was adapted for several angles of attack
α with the adjoint error estimate for lift (× in figure 6) and drag (∗ in figure 6),
respectively. For both sensors an improvement of the linear region is observable. The
step like behaviour vanishes. In the nonlinear region the results (if they are available)
are similar to the results on the base mesh. The corrected values for the adapted grids
are higher than the original values. Unfortunately most of the adjoint computations
fail. Due to this experiment and the high computational effort four adapted meshes
are selected from the linear and the nonlinear region. The four selected meshes are
the meshes adapted by the lift or drag sensor for α = α1 and α = α2 (see figure 6),
respectively. The results are plotted in figure 7. The results on the base mesh are
marked by +. The results of the lift adapted mesh at α1 and α2 are denoted by ◦ and
�, respectively. The results of the drag adapted meshes are denoted by � and ×.

In figure 7(a) the lift is plotted as function of the angle of attack. In the linear
region the values on the adapted meshes are close together. The deviation between
the meshes ad1 CL,α1 and ad1 CD,α1 is δCL ≈ 1LC. The offset between the meshes
ad1 CL,α2 and ad1 CD,α2 is of the same order. The offset between the adapted meshes
and the base mesh is about δCL ≈ 10LC for α � α1. The step like behaviour in
the lift curve at α ≈ α1 vanishes due to the adaptation. In the nonlinear region
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close to maximal lift the results of the adapted meshes diverge from each other. The
results on the meshes which are adapted at α2 show a higher maximal lift coefficient
(δCL ≈ 3LC with respect to the base mesh) and also the angle of attack of maximal
lift is shifted by δα ≈ 1◦ relative to the results on the base mesh. The maximal lift
value on the meshes adapted in the linear region at α1 have a lower value than the
lift on the base mesh. The offset in the position of the maximal lift is δα ≈ 0.5◦.

In figure 7(b) the lift is plotted as function of the drag. Again the results on the
adapted meshes are close together in the linear region. At maximum lift the results
on the meshes adapted at α1 diverge from the values of the meshes adapted at α2.

All computations differ from the experimental results. The slope of CL(α) is
lower for the computational results than in the experiment. The values of maximal
lift are higher than in the experiment. The same holds for CL (CD) in figure 7(b).
However, in the linear range an improvement by the new method is observable due
to the vanishing of the step like behaviour in the linear region. The improvements
for the maximal lift are ambiguous.

3.2 Mesh Manipulation

3.2.1 Repairing of Meshes

Negative elements occur many times by applying a deformation on the mesh, e. g.
for CFD/CSM coupling. The appearance of negative cells permits a CFD compu-
tation on those grids. To avoid a new meshing of the deformed geometry and to
measure effects below the uncertainties of mesh effects the negative cells have to be
repaired. Here the repairing of negative elements was successfully demonstrated on
two configurations. An isotropic metric was chosen to calculate the quality measure.

The first test case was a clean wing/body configuration with horizontal tail
planes. To trim the configuration the horizontal tail plane was deformed. Due to
deformation of the tail plane 83 elements with a negative volume occur (figure 8).
These inverted elements are tetrahedrons and pyramids. By applying the mesh modi-
fication all negative elements vanish.

The second test case was a commercial aircraft including wing, body, nacelle,
pylon, vertical tail plane and flap track fairings in a high-lift configuration (fig-
ure 9a). Due to the applied deformation, 26 tetrahedrons have a negative volume.
These elements are located in the slot between the flap inboards and the wing (fig-
ure 9b). Again, by applying the implemented mesh modification all negative tetra-
hedrons are inverted to valid elements with a positive volume.

In many cases the generation of negative elements can also be prevented by ap-
plying the mesh modification on elements with a low quality before the mesh is
deformed. For example in the previous case of trimming the horizontal tail plane,
negative elements were prevented if the mesh was improved before the deformation
step is performed.
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Fig. 7 (a) Lift CL as function of the angle of attack α for the TC-217 model. (b) Polar for
CL and CD of the TC-217 model. + marks the results computed on the base mesh. ◦ and �
denote the results of the meshes adapted with the adjoint lift sensor for α1 and α2. � and
× show the results for the adapted grids with respect to the drag. The solid line shows the
experimental results.
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(a) (b)

Fig. 8 (a) Negative pyramids and tetrahedrons near by a deformed tail plane. (b) Detail
of (a).

(a) (b)

Fig. 9 (a) Deformed wing in a high-lift configuration. Shown is the original wing and the de-
formed wing. Darker regions have a higher deformation. (b) Detail of (a) with shown negative
elements marked by crosses.

Another application of the mesh modification is the improvement of the quality
of the unstructured part of the mesh when the computation on the mesh diverges.
In figure 10(a) an example is shown where many tetrahedrons have a bad shape. By
applying the mesh modifications the number of badly shaped elements decreases
significantly (figure 10b). The number of tetraherons with a dihedral angle less than
one degree decreases from Nξ<1◦ = 6840 to Nξ<1◦ = 29. The number of tetraherons
with a dihedral angle less than five degree decreases from Nξ<1◦ = 34598 to Nξ<1◦ =
252. Note that after the improvement of the mesh a converged CFD solution could
be achieved.
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(a) (b)

Fig. 10 Mesh with many badly shaped tetrahedral elements before (a) and after (b) the mesh
modification. In both figures elements with a dihedral angle less than one degree are shown.

3.2.2 Mesh Modification with Anisotropic Quality Measures

The mesh modification was applied to the DLR-F6 test case described in sec-
tion 3.1.1 to see the influences on the aerodynamic coefficients. Again a target lift
computation for CL = 0.5 was performed. After the flow computation the coarse,
medium and fine mesh was modified by using a quality measure which uses an an-
isotropic metric. The metric was derived from the Hessian of the local Mach number.
The flow was recomputed on the anisotropic mesh. This procedure was performed
twice.

In figures 11(a)–(c) the angle of attack, the drag and the pitching moment are
plotted as function of the grid points NP. The results computed on the base meshes
are denoted by ×. The results of the first and second mesh modification step is
marked by ◦ and �. The major improvements are observable for the drag on
the coarse mesh, but the differences to the original mesh are relatively small in
comparison to the changes caused by an adaptation with the new sensors. The major
changes are observable in the resolution of the wake. In figure 12 the eddy viscosity
is shown on four different meshes. The eddy viscosity on the coarse and fine base
meshes (figure 12a,c) dissipates in the unstructured part very quickly, where on the
anisotropically modified meshes (figure 12b,d) the wake is more resolved behind
the wing, even on the coarse mesh. The improved wake resolution is observerable
on the whole configuration.

In a second test the mesh modification with an anisotropic quality measure was
applied to the TC-217 configuration (see section 3.1.2). For the test the mesh modi-
fication with the anisotropic quality measure was applied twice to the base mesh for
α = α1. Again the metric was derived from the Hessian of the local Mach number.
The results are presented in figure 13. The + and � denote the results on the original
and the modified mesh, respectively. Due to the mesh modification the lift decreases
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Fig. 11 Angle of attack α (a), drag CD (b) and pitching moment CMy (c) as function of the
grid points NP for the DLR-F6 model. The lift is kept constant to CL = 0.5. × denotes the
result on the base meshes. ◦ and � mark the results on the meshes modified once and twice by
the modification with an anisotropic quality measure, respectively. The dashed line denotes
the experimental results taken from [7].

by δCL ≈ 8LC. The drag increases by δCD ≈ 100DC. The result on the modified
mesh increases the differences to the experimental results.

4 Conclusion

The methods of adjoint error estimates and local mesh modification are applied to
several test cases. The main focus was set on the global aerodynamic coefficients.
Only for the mesh repairing the focus was set on the validity and the computablility
of meshes.

For the adaptation series of the DLR-F6 with the adjoint error estimates no final
conclusion can be given. The numerical values given by [12] are widely spread. The
corresponding experimental data show for some coefficients improvements and for
some not. At least one should note that a comparison of the experimental results for
Re = 3 ·106 measured in the NASA NTF and in the ONERA S2MA facility shows
as well differences especially in the drag [7]. If one projected these differences to
the measurements at Re = 5 ·106 the adapted meshes would show an improvement
for all coefficients.

However, the results of the adaptation series converge for both used sensors to
similar values which are different from the values of the finest mesh. The results
on the meshes which are locally modified to satisfy a quality measure based on an
anisotropic metric are close to the results computed on the original meshes.

For the high-lift configuration the adjoint approach improves the results in the
linear region of the polar. The values of maximal lift are ambiguous and depend on
the used meshes. The deviations of the results on the meshes which are optimized to
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Fig. 12 Eddy viscosity of the wake at η = 0.514 for (a) the base coarse mesh, (b) the aniso-
tropic coarse mesh, (c) the base fine mesh and (d) the anisotropic fine mesh of the DLR-F6
configuration
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Fig. 13 (a) Lift CL as function of the angle of attack α for the TC-217 model. (b) Polar for
CL and CD of the TC-217 model. + marks the results computed on the base mesh. � denotes
the results on the modified meshes. The solid line shows the experimental results.
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an anisotropic quality measure increase. The reason for the strong deviations have
to be analyzed.

The results for the adjoint approach show additionally that the strategy to use
one grid for the whole polar works even if the adaptation was performed only for a
specific angle of attack. This strategy reduces significantly the computational effort
and makes the adjoint approach applicable.

The repairing of meshes was successfully demonstrated for several meshes. This
method is useful if a computation on a mesh due to numerical errors or negative
elements fails and a new mesh generation is not desirable.

5 Outlook

[13] couples the adjoint adaptation with the feature of anisotropy. He demonstrated
that with this mixed approach the convergence of the coefficients is much faster than
with an isotropic mesh adaptation. [13] states that the adjoint approach balances the
inaccuracies which can occur by the anisotropic meshes and uses the positive effects
of anisotropic meshes. This has to be tested with the present methods.

Additionally the introduced error estimation approach of [2] tries to reduce the
error with respect to numerical dissipation terms. The original work of [13] tries
to reduce the error with respect to the discretization itself. A comparison of both
approaches would also be interesting.

Acknowledgements. The author is grateful to R. Heinrich and E. Elsholz for providing the
shown test cases for the mesh repairing.
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Turbulence Modeling



Minimization and Quantification of Errors and
Uncertainties in RANS Modeling

Tobias Schmidt, Charles Mockett, and Frank Thiele

1 Introduction

Owing to their affordable computational cost relative to higher-fidelity approaches
such as large-eddy simulation (LES), statistical turbulence models are currently the
principle workhorse for the simulation of turbulent flows in industrial aerodynamics.
However, significant problems arise from the inherent empricism of such Reynolds-
averaged Navier–Stokes (RANS) approaches. First and foremost, the current state
of the art is that no universally-applicable model is available. Instead, a very large
number of different RANS models exist, with varying degrees of mathematical com-
plexity and with calibration valid for limited classes of flows. This state of affairs
is further compounded by the experience that more complex formulations do not
necessarily deliver better results. For these reasons, the choice of turbulence model
for an engineering simulation has a strong impact on the quality of the results ob-
tained. In addition to this, simulation results using a fixed RANS model show a
strong sensitivity to other aspects of the simulation setup, most notably the grid. For
external aerodynamics applications, the spatial resolution of the thin boundary layer
regions is seen to be particularly important. All these factors lead to a very high
dependency on the decisions made by the engineer in setting up the simulation, and
strong reliance is placed on a combination of best practice guidelines (BPG) and
user experience.

The motivation of this work is therefore the development of a series of extensions
to the TAU flow solver, intended to reduce this user burden and to improve the
quality of simulation results in an industrial environment. The approach taken is
the development of a range of sensors to check important grid design parameters
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and to detect the occurrence of flow phenomena known to be correlated with high
model-dependency. For the grid error sensors, this amounts to the incorporation
of BPG within the software itself. With these sensors in place, the next step is to
attempt to quantify the error introduced. For this, the feasibility of an empirical
approach is assessed, whereby the solution sensitivity to various error mechanisms
is established on simple datum test cases and extrapolated to more complex flows.
The implemented module provides the engineer with enhanced textual and graphical
feedback, drawing attention to possible problems and suggesting appropriate steps
to improve results and minimise such errors.

2 Classification of Errors and Uncertainties

The structuring of this work is based upon the distinction between errors and uncer-
tainties, for which the definitions given in the BPG for industrial CFD published by
ERCOFTAC [1] are adopted.

Errors

The term error is used to refer to problems arising from mis-use of the flow solver or
turbulence model and is distinct from the functionality of the applied model. Errors
hence lead to different predictions for the same flow using the same model and a
prominent example is the use of an insufficiently fine grid. Errors can in theory be
avoided through proper solution setup (i.e. by an experienced user and/or through
adherence to an appropriate set of BPG). Nonetheless, the problem of errors should
not be under-estimated since they are often hard to identify and to avoid, particularly
in complex industrial configurations. Furthermore, advanced knowledge of the flow
solution is required to correctly generate the grid. Examples include the choice of
the skin friction normalised wall-normal cell size at solid boundaries, y+, the wall-
normal expansion ratio of the grid inside the boundary layer, the recommendation
of wall-normal grid cells and the capturing of the complete boundary layer with
prismatic cells.

Uncertainties

In contrast to errors, the term uncertainty is used to refer to loss of predictive ac-
curacy that occurs due to lack of knowledge about the true flow physics. In the
scope of this work, this implies shortcomings of the RANS models in describing
the turbulence. Deviation of an error-free solution with “reality” can hence arise
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due to uncertainties. The varying reliability of different turbulence models for dif-
ferent flow phenomena, e.g. separating/reattaching flows and shock-boundary layer
interaction, is primarily considered. Compared to errors, BPG concerning RANS
modelling uncertainties are more vague in nature and less accessible to a “Boolean”
type of treatment: Simple statements along the lines of “Model A is best for flow
type X” have remained elusive.

3 Development of the Sensors

In order to quantifiy and handle the errors and uncertainties arising, sensors for their
detection were developed and implemented. These sensors scan the boundary layer
and flow field to ascertain the level of adherence to relevant best practice guidelines.
These sensors are developed and calibrated on the basis of a generic test case using a
reference solution with minimal error. A sensitivity study with isolated mechanisms
was carried out first of all, following which the interaction of errors was investigated
for mixed errors. The results were parameterized to give simple expressions for the
error magnitude as a function of the relevant sensor output. The applicability of
these derived functions to more complex test cases is tested.

3.1 Development of the Error Sensors

At the beginning of the investigation the grid convergence study was performed on
the flat plate test case (Re = 2.1e6, Ma = 0.1, u0 = 33m/s) with a fully structured
grid. For this the turbulence model of Spalart–Allmaras with Edward–modification
(SAE) was used, which is the specified standard model in TAU. The grid expansion
ratio near the wall and the wall distance y0 of the wall nearest grid point were varied
until there were no significant changes in the solution. The hereby identified grid
was used as a reference grid and as a basis for the further investigations. For all
investigations eight different turbulence models were applied — two one–equations
models (SAE and Spalart–Allmaras (SAO)), three two–equation models (Wilcox k–
ω , Menter–SST und LEA k–ω) and three EARSM models (Rung RQEVM, Wallin
& Johannson 2D Mean Flows (WJ2D) und Hellsten EARSM k–ω).

3.1.1 Orthogonality in the Boundary Layer

To investigate the influence of the inclination of the grid in the boundary layer the
reference grid (y0 = 1e− 6, y+ = 0.08, ratio = 1.1) were inclined to achieve angle
variations of 0deg to 70deg in 10deg steps. Angles against the flow direction were
tested only between −10deg and −30deg. Here the results show the same influence
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as the angles in the flow direction. Hence the independence of the angle direction is
assumed.

The variation of the inclination in the boundary layer shows with the one–
equation models (SAO and SAE) a massive influence in the results (fig. 2 & 3).
Compared with the results of the reference grid the friction coefficients differ by
more than 100% at an inclination of 60deg (fig. 5). The same behavior is shown in
the drag coefficient cD. This influence is however the result of inaccuracies arising
from the computation of the wall–normal distance d (fig. 4), which is reflected most
strongly in the results of the models with the strongest dependency on d. A lower er-
ror occurs with the models SST and Hellsten EARSM and the error is negliable for
the remaining models. With increasing inclination the calculated wall distance dif-
fers from the correct values. This leads to the demonstrated errors with all turbulence
models that depend on the wall distance. For this simple geometry, the analytically
correct value of d could easily be determined. Replacing the computed d with the
correct value gave results with negliable sensitvity to the grid inclination.

Implementation of the Inclinitation Sensor

For an automatic evaluation by the flow solver of the boundary layer thickness, the
grid stretching ratio and the skewness near the wall, the boundary layer had to been
scanned at every grid point on the surface. For this, the neighboring point furthest
from the wall was detected, starting at each surface point and working in the wall
normal direction. In this manner the entire boundary layer is traversed until the total
pressure reaches 99.9% of the free stream total pressure [2]. The skewness of the
grid is defined as the average deviation from the wall normal vector and the stretch-
ing ratio as the maximum stretching ratio found inside the boundary layer. These
quantities are saved at the respective surface points. From the results of the test
computations for the isolated error mechanisms the magnitude of the expected er-
ror was determined. The friction coefficient at the positions x1...x4 was computed

Fig. 1 Structured grid of the flat plate test–case with 52,000 grid points



Minimization and Quantification of Errors and Uncertainties in RANS Modeling 81

and compared by normalization with the results of the reference grid. The error
factor of c f is therefore given by

c f n =
c f − c f ,re f

c f ,re f
=

c f

c f ,re f
− 1 (1)

and the percentage error as c f n ·100%. This was carried out for all four stream-
wise positions to verify independence of this variable. For the prediction of the
errors in cf the skewness is assumed as constant. The error factor cfn was para-
meterized with a 3rd order polynomial (p(x) = a0 + a1x + a2x2 + a3x3 ) and the
coefficients ai were identified for all investigated models.

3.1.2 Wall Distance y+

Again the reference grid was the basis for the investigations of the normalized wall
distance y+. For this the wall nearest grid point was varied between y+ = 0.07 to
y+ = 7.

In the results (Fig. 6) a high sensitivity to the wall distance y+ is seen, with a
widening of the boundary layer and modification of τw, and hence uτ . Depending
on the model, at y+ ≈ 1 these values achieve differences up to 2.5% compared
to the reference computations. With further variations the differences exceed 25%
quite fast. As the figure 7 shows, the behavior of the error in c f is independent of
the position in the boundary layer. y+ ≥ 7 leads to divergence of the simulations or

Fig. 2 Flat plate — SAE model — graph of u+/y+ with variations of grid inclination in the
boundary layer at x = 1.021 and x = 4.124
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unexpected results. The results shown all apply the default low–Re wall treatment
and the use of wall functions were not examined.

Implementation of the y+ Sensor

For the implementation of the y+–sensor the behavior of the error was parameterized
with a polynomial 3rd order for each turbulence model. The polynomial represents
the difference to the results with the reference grid in %. Because of the low-Re
boundary condition and the lack of error data for y+ ≥ 7, the difference is set to
100% if y+ exceeds the viscous sub-layer.

3.1.3 Maximum Grid Expansion Ratio in the Boundary Layer Resolution

For the investigation of the near wall grid expansion the reference grid is again used
as a basis. The expansion ratio was varied between r = 1.1 up to r = 2.0. Again all
eight turbulence models were applied.

In the results with small variations the influence of the expansion ratio could be
seen clearly. The behavior of the error prediction with different turbulence models
is similar (Fig. 8). With a bigger ratio up to r = 2.0, the differences to the reference
solution lead to 8% in the friction coefficients c f in some cases. Greater values of
the expansion ratio weren’t investigated. To ensure that the error prediction doesn’t
depend on the local streamwise position within the boundary layer, the normalized

Fig. 3 Flat plate — WCX model — graph of u+/y+ with variations of grid inclination in the
boundary layer at x = 1.021 and x = 4.124
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Fig. 4 Computation of the wall distance in TAU with variations of the grid inclination in the
boundary layer in comparision to the correct wall distance z

Fig. 5 Flat plate — influence of the grid inclination on the prediction of the friction coef-
ficient c f , normalized with c f of the reference grid with SAE, SAO, Hellsten EARSM and
Wilcox k–ω model

error factor of friction c f n has been evaluated at several positions. The behaviors of
c f n over r as well as y+ were compared between these locations. As the compar-
ison of the cfn progression reveals, the error predictions are nearly identical at all
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Fig. 6 Flat plate — Hellsten EARSM model — graph of u+/y+ with variations of y+ at
x = 1.021 and x = 4.124

positions. A minimal deviation occurs only at high levels of y+ and r. According to
that c f n can be assumed independent of the stream–wise location in boundary layer.

Implementation of the Expansion Sensor

For the implementation of the sensor for the expansion ratio again the boundary
layer has to be scanned. The identified maximal ratio is assumed as constant at
the related surface grid point. The behavior of the error was parameterized with a
polynomial 3rd order for each turbulence model. This polynomial again represents
the difference to the results with the reference grid in %. The difference is set to
100% if the expansion ratio leaves the investigated range of values.

3.2 Development of the Uncertainty Sensors

As already mentioned, the uncertainties considered are mostly model–related and
can be the result of the specification or weaknesses of the model itself. Reasons
for uncertainties could be a lack of information of the physical background of the
investigated flow problem.
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Fig. 7 Flat plate — influence of the wall distance y+ on the prediction of the friction coef-
ficient c f , normalized with c f of the reference grid with SAE, SAO, Hellsten EARSM,
RQEVM and Wilcox k–ω model

3.2.1 Boundary Layer

For the investigation of the model dependencies on boundary layer development
again the flat plate test–case was applied. The grid is identical as the reference grid
for the error analysis.

The variation of the turbulence model leads to visible differences in the friction
coefficients and boundary layer thickness (fig. 9). Here the results and the experi-
mental data were compared at given positions x. In comparison to the experiment the
simulations show differences in the fully developed boundary layer at x = 4.124m of
up to 26.4% in the boundary layer thickness delta (WCX) and 6.7% in the friction
coefficients c f . The error range of the different models is +/− 12.71% in δ and
+/− 3.58% based on an average value over all models.

Implementation of the Boundary Layer Sensor

For the implementation of this sensor again the boundary layer has to be scanned to
identify their thickness and the number of wall normal grid points. As the investiga-
tions show the choice of the turbulence model itself is an uncertainty. Depending on
the model the boundary layer thickness or the friction is differing to each other. The
greatest problem is the difference in the gradients of the various values especially
the friction coefficient. The reason for this is the calibration of the models and their
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Fig. 8 Flat plate — influence of the grid expansion ratio on the prediction of the friction
coefficient c f , normalized with c f of the reference grid with Menter SST, SAE, SAO, Wallin
& Johansson EARSM, RQEVM and LEA model

different development of the boundary layer. Hence it is impossible to give a correct
prediction for a local error. Despite that the sensor gives feedback to the user about
the boundary layer thickness and the applied grid resolution.

3.2.2 Separation

The quality of the different turbulence models to predict the correct position of a
separation is very variable. This has a great influence on the correct prediction of
the drag and lift coefficients. For the investigation the 2D test–case Onera–A at 13.3
angle of attack was chosen. The test–case has a separation at 89.5% chord-length on
the suction side with Re = 2.1e6 and Ma = 0.15. The grid consists of 530,000 grid
points (fig. 10) and was already tested on grid convergence in the ECARP-project.
The order of convergence of the turbulence models differs slightly, but the results
should also be comparable.

The variation of the turbulence models leads to visible variations in the separ-
ation position and also to different levels in cp and c f (fig. 11 & 12). Compared
to the experiment the deviations are 8.9% in the lift and up to 73.62% in the drag
coefficient (SST). This strong deviation in the drag coefficient is in part due to the
fully–turbulent computations applied: A user–specified transition location is known
to ignore results for this test case. The range of variation in the forces reaches
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Fig. 9 Flat plate — friction coefficient c f with variation of the turbulence model in compar-
ision to the experiment

Fig. 10 Grid of the ONERA–A test–case with 530,000 grid points

+/− 3.56% in the lift, +/− 3.43% in the drag coefficient and +/− 7.69% in the
position of the separation around the average of the numerical results.



88 T. Schmidt, C. Mockett, and F. Thiele

Fig. 11 ONERA–A — pressure coefficient cp in comparision with the eight different turbu-
lence models and the experiment

Table 1 ONERA-A - lift and drag coefficient, position of pressure induced separation com-
pared to experimental results

cL diff. in % cD diff. in % separation
x/c

diff. in %

Experiment 1.5620 0.0208 0.8945
HELL 1.4480 -7.30 0.0356 70.96 0.8906 -0.44
LEA 1.4659 -6.15 0.0347 66.92 0.9228 3.16
RQEVM 1.4234 -8.87 0.0351 68.90 0.8883 -0.70
SAE 1.5275 -2.21 0.0337 62.12 0.8312 -7.08
SAO 1.5119 -3.21 0.0350 68.38 0.8078 -9.69
SST 1.4225 -8.93 0.0361 73.62 0.8268 -7.57
WCX 1.4857 -4.89 0.0352 69.08 0.8976 0.35
WJ2D 1.5081 -3.45 0.0342 64.59 0.9423 5.35

Implementation of the Separation Sensor

As already mentioned the development of the boundary layer with different turbu-
lence models leads to different gradients in the friction coefficients. This implies,
depending on the position and choice of model, a premature or delayed separation.
A constant dependence between model and separation is not identifiable. The user
only gets a feedback about an existing separation effect and the critical areas are
marked as a surface value in the output files. To detect the appearance of separation
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Fig. 12 ONERA–A — friction coefficient c f in comparision with the eight different turbu-
lence models and the experiment

the sensor scans the surface for characteristic points (first order) of separation or reat-
tachment. For this every surface triangle is tested. Every triangle element which con-
tains two zero–crossings along the edges in the wall–tangential velocities includes
a critical point. In the code the velocity at the wall is represented by the components
of c f . These marked elements include hyperbolic points (the beginning or end of a
separation line) or rotation points (a vortex separation). To exclude stagnation areas
a minimal pressure coefficient of cp < 0.5 is assumed.

3.2.3 Shocks

The correct prediction of flows with high pressure gradients, especially at shocks,
also varies with the choice of the turbulence model, both in position and intensity.
This again leads to changing values of lift and drag. For the investigation of this
influence the 2D test–case RAE 2822 case 9 (Re = 6.5e6, Ma = 0.73) with α = 2.8
angle of attack and a shock at 55% chord length was applied. The grid is fully struc-
tured and consists of 200,000 grid points (fig. 13). It has an orthogonal wall resolu-
tion and a highly resolved boundary layer to exclude influences of errors. To achieve
a more universal forecast for the computation of the shock position variations of the
angle of attack (α = [1.0deg,3.2deg]), the Mach number (Ma = [0.72...0.76]) and
Reynolds number (Re = [6.0 ·106...107]) were investigated.

The variation of the turbulence models leads to visible variations in the shock
position and the level of the cp and c f coefficients (fig. 14 & 15). In comparison
to the experiment the lift coefficient differs up to 4.6% and the drag coefficient up
to 8.9% (e.g. Hellsten). The range between the models is +/− 3.33% in the lift,
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Fig. 13 Grid of the RAE 2822 test–case with 200,000 grid points

Fig. 14 RAE 2822 case9 — pressure coefficient cp in comparision with the eight different
turbulence models and the experiment

+/− 7.55% in the drag coefficient and +/− 2.86% in the shock position around
the average of the results. There are obvious dependencies on the choice of the
turbulence model and the shock position correlates very well with the lift coefficient.
The results have shown that in the most investigated test-cases the prediction of
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Fig. 15 RAE 2822 case9 — friction coefficient c f in comparision with the eight different
turbulence models

Table 2 RAE2822 case9 - lift and drag coefficient, shock position compared to experimental
results

cL diff. in % cD diff. in % shock x/c diff. in %

Experiment 0.8030 1.6800E-02 0.5500
HELL 0.7998 -0.40 1.6410E-02 -2.32 0.5500 0.00
LEA 0.8224 2.42 1.7720E-02 5.48 0.5610 2.00
RQEVM 0.8055 0.31 1.7130E-02 1.96 0.5540 0.73
SAE 0.8244 2.67 1.6240E-02 -3.33 0.5640 2.55
SAO 0.8225 2.43 1.7110E-02 1.85 0.5630 2.36
SST 0.7858 -2.14 1.5730E-02 -6.37 0.5430 -1.27
WCX 0.8400 4.61 1.8300E-02 8.93 0.5750 4.55
WJ2D 0.8284 3.16 1.7770E-02 5.77 0.5650 2.73

the shock position correlates with the turbulence model (left-hand side, fig. 16). In
cases where another uncertainty exists, for example a separation bubble, (right-hand
side, fig. 16, divergent progress) there is no exact forecast possible for the model
dependency. Because of the unchanged order of the models a user feedback that
shows only tendency is still possible.



92 T. Schmidt, C. Mockett, and F. Thiele

Fig. 16 RAE 2822 case9 — Position of the compression shock normalized by the position
of the SAE model with variations of Mach number, Reynolds number and angle of attack

Implementation of the Shock Sensor

To detect a compression shock all grid elements were scanned of characteristic phys-
ical values and marked if they exceed a given limit. These values are high pressure
gradients in flow direction and a Mach numbers near 1. By projection of the nor-
malized pressure gradients on the velocity a factor for the relative pressure increase
was achieved and should come to 30%. The deviation of the Mach number from 1
should be less than 5%. These limits can be adjusted in the TAU solver but represent
in all investigated test-cases very good indicators for a shock. The marked areas are
available as an output value in the TAU routines.

4 Application of the Sensors

For the usage of the sensors in the standard parameter files some variables were
added to activate the best practice guidelines, the visual output and warnings.

4.1 Error Sensors

After activation of the best practice output and declaration of the directory contain-
ing the configuration files of the best practice guidelines, the functionality of the
individual sensors can be switched on and off. The configuration files are necessary
to estimate the errors in the friction coefficients depending on the used model. These
files contain a parameterized form of the error function as a polynomial 3rd order
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(p(x) = a0 +a1x+a2x2 +a3x3) and the range of validity of this function. The func-
tion represents the influence of the error on the friction coefficient and is computed
by c f normalized by the friction in the reference grid c f n = c f /c f ,re f . In addition
for all errors a warning is given about the resulting influence on the skin friction
component of the integral force coefficients. For this the drag coefficient was cor-
rected by the resulting error in the friction and integrated along the wall surface. The
computed and the corrected coefficients are compared and the result is written as a
feedback in the flow solver output in %.

The error output and prediction are available for the turbulence models listed in
Section 4.

Grid Inclination

The graphical surface output of the inclination of the grid is given as a average
deviation from the wall normal vector in degree (fig. 17 & 18). Additionally the
differences in the friction c f to the results of the ideal reference grid were written
out as an expected error in % (c f n ·100%).

Fig. 17 RAE 2822 case9 — inclination of the grid in the boundary layer in degree (left),
error in c f caused by the inclination in the boundary layer in % (right)

Fig. 18 ONERA M6, very coarse grid — inclination in the boundary layer in degree
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Wall Distance y+

y+ is a standard surface output value of the flow solver TAU. With that the im-
plemented sensors can calculate the estimated error caused by the wall distance
(fig. 19). This represents the predicted difference to the results of a simulation with
the reference grid and a very small y+ in %.

Fig. 19 RAE 2822 case9 — wall distance y+ (left), error in c f caused by the wall distance
y+ in % (right)

Grid Expansion Ratio

The graphical output of the maximal grid expansion in the boundary layer is given
as a surface value in the TAU routines. Again the differences in the friction c f to the
results of the ideal reference grid with an expansion ratio of 1.1 were written out as
an expected error in % (fig. 20 & 21).

Fig. 20 RAE 2822 case9 — expansion ratio of the grid in the boundary layer (left), error in
c f caused by the grid expansion ratio near the wall in % (right)

4.2 Uncertainty Sensors

For visualization of the uncertainties the areas of a shock based on Mach number
and pressure gradients, areas of stagnation and surface elements including 1st or-
der critical points of separation and reattachment are marked in the output routines.
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Fig. 21 ONERA M6, very coarse grid — expansion ratio of the grid in the boundary layer

Additionally the number of marked elements, the points in the boundary layers and
the boundary layer thickness were written out as further information.

Boundary Layer

As graphical output the number of grid points in the boundary layer and the bound-
ary layer thickness δ in m is given in the flow solver output.

Separation

As graphical output the surface elements including characteristic points of separa-
tion and reattachment plus both surface and volume elements with stagnation areas
are marked in the flow solver output. Additionally the flow solver can give number
of marked elements as a textual feedback.

Shock

As graphical output the volume elements including the characteristics of a shock are
marked in the flow solver output. Additionally the flow solver can give a tendential
prognosis of the position of the shock depending on the choice of the turbulence
model. This is based on the investigations with the 2D RAE test-case.
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Fig. 22 Flat plate — comparison of the number of points in the boundary layer detected by
the sensor and with the boundary layer defined by 99% of the farfield velocity u99 with the
SAE, Wilcox k–ω and Hellsten EARSM model

Fig. 23 RAE 2822 case9 — characteristic points of flow separation and reattachment after
the shock and near the trailing esge and the stagnation point

5 Applicability on Mixed Errors

To test the applicability of the sensors on mixed errors the test–case RAE 2822 was
examined. In figure 26 the friction coefficients of the test–cases with the separated
and combined errors are compared with the reference test–case. The errors in the
expansion ratio and the wall distance leads to differences in the prediction of the



Minimization and Quantification of Errors and Uncertainties in RANS Modeling 97

Fig. 24 ONERA M6, coarse grid — characteristic points of flow separation and reattachment
and vortex separation at the airfoil tip

Fig. 25 RAE 2822 case9 — identification of the area of a compression shock

friction coefficient c f and in case of the mixed error both errors annul each other.
With correction of the predicted friction by the error function implemented in TAU
the differences are clearly reduced (fig. 27).

6 Industrial Application

To test the sensors on industrial test–cases the generic 3D delta wing VFE–2 and
the 3D airfoil SFB–401 were simulated. The delta wing VFE–2 shows a separa-
tion of a primary vortex on the leading edge with a reattchment on the wing, which
leads to a separation and reattchment of a secondary vortex. On the left-hand side
in the figure 28 the critical points of separation and reattachment are shown (red),
which presents the separation of the primary vortex on the leading edge and the vor-
tex near the trailing edge very well. The separation of the secondary vortex and the
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Fig. 26 RAE 2822 case9 — the errors in the expansion ratio and the wall distance leads to
differences in the prediction of the friction coefficient c f , in case of the mixed error both
errors annul each other

Fig. 27 RAE 2822 case9 — the friction coefficient c f ,corr corrected by the error function
implemented in TAU, the differences are clearly reduced

reattachment of the primary and secondary vortex are not identified. Both are identi-
fiable in the output of the qualitative variable sep for separation structure visualisa-
tion in the same figure on the right-hand side. In figure 29 a detailed illustration of
the critical points of separation with the output variable crit_sep are shown, with
the separation of the primary vortex on the leading edge (left) and same small vor-
tices near the trailing edge (right). The sensors for the inclination and the expansion
ratio are applied on the test–case SFB–401. The results are shown in figure 30.
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7 Field of Application and Its Limits

The analysis and visualization of the boundary layer resolution was developed at
the 2D test–case of the flat plate and successfully transferred to 2 1

2 D and 3D airfoil.
For this the boundary layer edge was identified at 99.9% of the free stream total
pressure. The sensor is only active in this region and interfering effect such as a
shock or separation can reduce the boundary layer and so the active region to only
a few cells. Because of this the analysis in these regions can vary. Also special
test–cases with interacting boundary layers as in high lift configurations are not
tested yet. The error mechanisms were investigated in a large range of variations.
For these the error estimation was parameterized and is provided for the normalized

Fig. 28 VFE–2, coarse grid, WJ2D model — critical points of separation and reattachment
(red) (left) and qualitative separation structure visualisation (right)

Fig. 29 VFE–2, coarse grid, WJ2D model — a detailed illustration of the critical points of
separation with the output variable crit_sep (red), the separation of the primary vortex on
the leading edge (left) and same small vortices near the trailing edge (right).
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Fig. 30 SFB–401, coarse grid, SAE model — illustration of the average grid inclination in
the boundary layer in degree (left) and the maximum expansion ratio in the boundary layer
(right)

wall distance in the range of y+ = [0.01,5], the grid inclination in the range of
α = [0,+/− 70] and the wall normal grid expansion in the range of r = [1.1,2.0].
In the estimations the average inclination angle and the maximum expansion ratio
were assumed as constant and only the greatest possible error is given.
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Sensor Controlled Zonal RANS-LES Method

Benedikt Roidl, Matthias Meinke, and Wolfgang Schröder

Abstract. A sensor was developed to detect aerodynamic regions in the computa-
tional domain of aerodynamic relevant flows where a common RANS simulation
does no longer provide physically reliable results. These regions of the computa-
tional domain were then treated with a higher order turbulence model to suppress the
modeling error being introduced by standard turbulence models inherent to RANS
simulations. The sensor evaluates flow characteristics such as pressure gradients,
Reynolds shear stress, and wall shear stress to detect model susceptible regions and
to decompose the flow domain in RANS and LES regions. The subsequent approx-
imate integration is performed by a zonal RANS/LES approach which combines the
various RANS and LES areas. The sensor and the zonal method are validated by
computing the flow over a flat plate, a shock boundary-layer interaction case and a
transonic flow over an airfoil.

1 Introduction

To efficiently and accurately determine turbulent flows is still one of the major
challenges in computational fluid dynamics. To develop a turbulence model which
on the one hand is simple enough to allow an efficient solution and on the other
hand, is general and susceptible to describe highly intricate flow phenomena sounds
like a contradiction. Numerous classes of turbulence models (algebraic-, one-, two-
equation-, RS-models) have been developed until today since the exact description
of rotational, fully three-dimensional and time dependent flow is highly complex.

The introduction of the Reynolds averaging process to the Navier-Stokes
equations presents the first step of simplification. The complete time-averaged
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equation of the Reynolds stress tensor consists of different terms describing local
and convective parts, production due to the Reynolds stress tensor, dissipation, pres-
sure shear-correlation and diffusion [27]. A closed solution of these transport equa-
tions is not possible since they also consist of unknown correlation functions. Thus,
semi-empirical equations for turbulent closure are employed. Simplifying the com-
plete contracted time averaged balance equation for boundary layers decreases its
complexity since the pressure shear correlation and higher-order terms vanish. This
presents a significant simplification of the transport equations. When the second-
order normal stress contribution in the production terms and the viscosity linked
contributions to the dissipation terms are neglected the final simplified form of the
transport equation for the kinetic energy is derived.

The simplifications mentioned above which are applied in one- and two-equation
turbulence models will not give a physical answer in complex flows independent of
the corresponding discretization level or grid quality. For this reason a higher order
turbulence model has to be employed. It can be stated that by applying turbulence
models - algebraic, one-equation, two-equation or Reynolds stress models - which
include a higher order Boussinesq ansatz - no generally valid trend can be given
concerning the prediction quality of specific flow phenomena such as flow separa-
tion and reattachment in aerodynamic applications. Moreover, the insufficient qual-
ity of the transition prediction constitutes another major uncertainty. A correlation
between the quality of turbulence modeling and the variation of flow parameters
cannot be provided in a general sense.

These general requirements and limitations in turbulence modeling restrict the
applicability of RANS/URANS-methods to simple flow structures. The simulation
of attached airfoil flow gives reliable results on skin friction and and pressure distri-
butions, however, when high frequency transient flow phenomena occur the quality
of the results is questionable. This was the motivation for the development of a
sensor which is capable of detecting flow regions of a RANS simulation, where the
reliability of the quality of the solution cannot be ensured. In these very regions, a
higher order turbulence modeling is necessary leading to the idea of a zonal RANS-
LES approach [9].

The development of this sensor requires an exact knowledge of possible physical
errors in RANS turbulence models. In this study a sensor was developed to identify
the flow regions where RANS simulations produce inaccurate results. These identi-
fied flow regions can be treated by a zonal RANS-LES approach.

The article is organized as follows: In section 2, the numerical methods of the
flow solver, the sensor and synthetic turbulence generation methods (STGM) are
described. Subsequently, in section 3 the results are presented. First, the sensor is
validated for three different flows and the susceptibility to critical parts of the sensor
is discussed. Then, the various STGM are compared for different configurations in
zero-pressure gradient boundary layers. Finally, the fully coupled zonal RANS-LES
approach is compared with corresponding full domain LES and RANS solutions for
two different cases. First, the case where an oblique shock impinging on a compress-
ible turbulent boundary layer of a flat plate, i. e. the classical shock boundary-layer
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interaction problem, is discussed. Second, a transonic flow over an airfoil causing
buffet is considered.

2 Numerical Methods

2.1 Large-Eddy Simulation

The three-dimensional unsteady compressible Navier-Stokes equations are solved
based on a large-eddy simulation (LES) using the MILES (monotone integrated
LES) approach [3]. The vertex-centered finite-volume flow solver is block-structur-
ed. A modified AUSM method is used for the Euler terms [18] which are discretized
to second-order accuracy by an upwind-biased approximation. For the non-Euler
terms a centered approximation of second-order is used. The temporal integration
from time level n to n+1 is done by a second-order accurate explicit 5-stage Runge-
Kutta method, the coefficients of which are optimized for maximum stability. For a
detailed description of the flow solver the reader is referred to Meinke et al. [19].

2.2 Sensor Development

To identify adequate sensor parameters for aerodynamic problems, simple internal
flows at variable pressure gradient were investigated. Especially the experimental
data of Driver and Johnston [5] was used. In the experiment, an axial incompress-
ible flow over a cylinder is subjected to a variable pressure gradient. It is known that
there is a consistent correlation between pressure gradient and local maximum of
main Reynolds stress tensor component. The quality of the prediction of the skin
friction coefficient and 〈u′v′〉max highly depends on the RANS-turbulence model
that is used for that kind of flow. Upstream of the boundary layer separation point
the local quantities c f = τw/

(
0.5ρu2

∞
)

, cp = pw/
(
0.5ρu2

∞
)

and 〈u′v′〉max deviate
from the experimental findings, because the wall bounded boundary layer is in a
non-equilibrium state [5]. Turbulence models such as algebraic, one- and two equa-
tion models do not account for such type of boundary layer flow since for instance
turbulent production and dissipation are no longer in the same order of magnitude.
The thorough investigation of the flow field yielded the main influence parameters
of the sensor; the Clauser-parameter β = δ1/τw

d p
dx , the wall shear stress coefficient

c f , and the local maximum of the main component of the Reynolds shear stress
〈u′v′〉max. Other parameters such as turbulent production and dissipation could not
be used separately because they were not applicable for all kinds of turbulence mod-
els. The value φ of the sensor is computed by applying the following summation:

φ
(
c f ,β ,

〈
u′v′

〉)
= T1

(
c f
)
+T2 (β )+T3

(〈
u′v′

〉)
(1)
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with

T1 = γ1
1

βcrit
β , T2 = γ2

c f + 2c f ,crit

c f ,crit
, T3 = γ3∇

( 〈u′v′〉
u2
∞

)
(2)

where T1,T2 and T3 depend on c f , β and 〈u′v′〉 and their user defined critical values
(c f ,crit and βcrit ). The values of the prefactor γi, that contains reference values being
extracted at a zero pressure gradient location in the flow domain, determine the
priority of each term in Eq. 1. The calibration of the sensor is done via critical
values where the RANS solution is no longer expected to yield reliable solutions.
The sensor in this form should not be applied to flows with highly three-dimensional
boundary layers or strong vortex interactions. An example configuration for three
different flow cases is given in Tab. 1.

2.3 Synthetic Turbulence Generation Methods (STGM)

In this study, the identification of flow regions where RANS should be replaced by
a higher order turbulence model represents the first step for the zonal approach. The
second step is the proper coupling of RANS and LES flow domains. In order to keep
overlapping regions of both computational domains as small as possible, effective
mechanisms for turbulence generation have to be applied in LES inflow regions.
The turbulent intensities coming from the RANS domain are introduced first at the
LES inflow plane via synthetic turbulent eddies (Jarrin et al. [12], Batten et al. [2])
and controlled further downstream by employing control planes according to Spille
and Kaltenbach [24]. The synthetic turbulence generation methods of Jarrin et al.
and Batten et al. were implemented and tested for incompressible and compressible
flows.

Method of Jarrin et al.

The method of Jarrin et al. [12], called synthetic eddy method (SEM), is based on the
considering of turbulence as a superposition of coherent structures. These structures
are generated over the LES inlet plane and are defined by a shape function which
describes the spatial and temporal characteristics of the turbulent structure.

The shape function fσ that has a compact support on [−σ ,σ ] where σ is a length
scale which satisfies the normalization condition

Table 1 Suggested critical and reference Values for three different flow types

- Oblique shock at flat plate Transonic profile flow Subsonic profile flow

c f ,re f 0.002 0.004 0.004
βre f 1 1 1
c f ,crit 0.0001 0.0001 0.0001
βcrit 4 4 4
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1
Δ

∫ Δ/2

−Δ/2
f 2
σ dx = 1 (3)

where Δ defines the extent of the domain. A one component velocity signal can
then be described by the sum of the contribution u(i)(x) of a turbulent spot i to the
velocity field. Let N be the number of prescribed synthetic eddy cores at the inlet and
εi is a random number within the interval from −1 to +1 then the one-dimensional
velocity fluctuation component reads

u′j (x, t) =
1√
N

N

∑
i=1

εi fσ (x− xi) . (4)

The generalization of the one-dimensional procedure to time dependent two-dim-
ensional fluctuations is straight forward.

Turbulent length and time scales are determined by the Reynolds shear stress
component 〈u′v′〉 and the turbulent viscosity νt ; both are extracted from corres-
ponding RANS simulations. In this work, the Spalart-Allmaras turbulence model
[23] was used for the incoming RANS solution. The turbulent time scale can be
written as t = k/ε and the turbulent length scale as L = t Vb with Vb =

√
k where k

and ε stand for the turbulent kinetic energy and turbulent dissipation, respectively.
By applying the experimental correlation of Bradshaw et al. the turbulent kinetic
energy is related to the Reynolds shear stress 〈u′v′〉 and the turbulent viscosity νt

which is available from the RANS solution

∣∣−〈
u′v′

〉∣∣=νt

∣∣∣∣∂u
∂y

∣∣∣∣=a1 k (5)

with a1 =
√

cμ and cμ = 0.09. The turbulent dissipation ε is approximated by the
definition of the eddy viscosity from the k− ε turbulence model (Menter [20])

ε=cμ
k2

νt
. (6)

The final flow field at the inlet is constructed from the resulting vortex field of Eq. 4

ui = ui + ai ju
′
j (7)

where ai j is computed from the prescribed Reynolds stress tensor applying a
Cholesky decomposition.

Method of Batten et al.

The second method was introduced by Batten et al. [2] based on the work of
Smirnov [21] and initially developed by Kraichnan [16]. To create a three-dimen-
sional, unsteady velocity field at the inflow plane of the LES region, velocity com-
ponents are constructed using a sum of sines and cosines with random phases and
amplitudes. The intermediate velocity, vi, reads



106 B. Roidl, M. Meinke, and W. Schröder

vi (x j.t)=

√
2
N

N

∑
n=1

[
pn

i cos d̂n
j x̂

n
j + ωnt̂ + qn

i sin d̂n
j x̂n

j + ωnt̂
]
, (8)

where x̂ are spatial coordinates being normalized by turbulent length- and time
scales. These scales are reconstructed from the incoming RANS solution via Eqs. 5
and 7. The amplitudes of the signal are calculated by

pn
i =εi jkζ n

j dn
k , qn

i =εi jkξ n
j dk

k (9)

where ξ and ζ are equal to N (0,1) and d̂n
j = dn

j V/cn. The wave number dn
i =

N (0,0.5) is elongated by the following relation according to Batten [2]:

cn=

√
3
2

u′lu′m
dn

l dn
m

dn
k dn

k
. (10)

In Eq. 8 the random frequencies ωn are taken from the normal distribution N (1,1).
Like in the method of Jarrin et al. the synthetic turbulent fluctuation field is fi-
nally reconstructed using the Cholesky decomposition. The methods are suitable
in incompressible flows. In compressible flows, however, the velocity fluctuations
are coupled with the density field. Thus, Morkovin’s hypothesis is applied to relate
density and velocity fluctuations by assuming that the pressure fluctuations over the
inflow plane are negligible

ρ ′

ρ
= (γ− 1) M2 u′

ũ
. (11)

Spille-Kaltenbach Control Planes

Synthetic turbulent methods provide a reasonable first estimate of the fluctuating
turbulent velocity field at the LES inlet. Downstream of the inlet, however, many
of the relevant turbulent scales may have been dissipated retarding the transition to
fully turbulent flow. Local control planes which introduce a volumetric forcing term
to the Navier-Stokes equations regulate the turbulent production in the shear stress
budget [24]. As discussed, for example, in the work of Keating et al. [14] or Zhang
et al. [29], local flow events such as bursts and sweeps are enhanced or damped by
the local forcing thus contributing to the Reynolds shear stress 〈u′v′〉

e(y, t) =
〈
u′v′

〉∗
(x0,y) −

〈
u′v′

〉z,t
(x0,y, t) (12)

where 〈u′v′〉∗ is the target Reynolds shear stress at the control plane which is
provided by the RANS solution and 〈u′v′〉z,t is the current Reynolds shear stress
in the LES domain which is averaged over the spanwise direction and time. For the
time average a window function with a time constant equal to ≈ 100δ0/uδ is used.
The force magnitude is given by

f (x0,y,z, t) = r (y, t)
[
u(x0,y,z, t) − 〈u〉z,t] (13)
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with

r (y, t) = αe(y, t) + β
∫ t

0
e
(
y, t ′

)
dt ′ . (14)

The proportional part is the main contributor to the force when the error e in Eq.
12 is high at the beginning of the simulation. Proceeding in time, the integral part
gives the force the necessary response to enhance or damp the local flow events.
The constants α and β were set to 10 and 25 respectively, to ensure on the one
hand, a rapidly decreasing error e and on the other hand, a stable simulation process.
In subsequent sections the STGM of Jarrin et al. combined with the control plane
approach is referred to as ’zonal SEM’ and the STGM of Batten et al. combined
with the control plane approach is referred to as ’zonal Batten’.

3 Results

3.1 Sensor Validation

Three different test cases for sensor calibration are considered in detail in the follow-
ing sections showing the influence of the user defined critical values on the sensor
value φ . The configuration of these simulations is given in Tab. 2.

In Fig. 1 the application of the sensor on a flow case, where a shock wave im-
pinges on a compressible turbulent boundary layer (SWBLI) causing a local flow
separation, is presented. The Spalart-Allmaras turbulence model [23] (referred to
as ’S-A’) was applied for this simulation. Regardless the computational configur-
ation, the sensor value φ exceeds 1 where the flow is separated. Downstream of
the separation the boundary layer returns to an equilibrium state. Depending on the
user defined critical Clauser parameter the suggested corresponding LES domain
is smaller (for βcrit=8) or larger (for βcrit = 2). In section 3, this particular case is
regarded thoroughly using RANS, LES and zonal RANS-LES computations.

Fig. 2 presents the resulting sensor values φ for the upper side of the DRA23032-
profile for two different time steps. The Baldwin-Lomax turbulence model [1] (re-
ferred to as ’B-L’) was applied for this case. The sensor value at time step t0 exceeds
the allowed limit of 1 at 0.55 c where the shock is located. However, the flow does
not separate before passing 0.65 c (not shown here). The high pressure gradient

Table 2 Test cases for Sensor validation

- Transonic airfoil flow Oblique shock on flat plate Subsonic airfoil flow

Re 2.6·106 (reference c) 19000 (reference δ0) 2.1·106 (reference c)
Ma 1 1 1
α 3◦ - 13◦
T-M B-L S-A S-A
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and the rapid decline of c f lead to an increase of φ . Downstream of the shock posi-
tion the sensor value φ does not fall below 1 for more than several percent chord due
to the reason that the boundary layer is locally separated and/or in a non-equilibrium
state. The skin friction coefficient and Clauser parameter are the major contributors
to the sensor value φ . At t0 the shock position is located further upstream which is in
fact the most upstream location of the shock. This shows that the size of the inten-
ded LES domain should be evaluated over a time span of several shock oscillations.
This case is also thoroughly investigated with in section 3.

Figure 3 shows the results of the sensor application on the case of a subsonic
profile at high angles of attack [4] (see Tab. 2 for two different values of c f ,crit ). The
turbulence model of Spalart and Allmaras was used for this case. Due to a laminar
separation bubble at about 0.12 c the sensor value φ is higher than 1 up to 0.20 c. For
a user defined critical c f ,crit of 1·10−4 the sensor predicts the end of the confidence
domain at about 0.75 c which is located upstream of the experimentally determined
separation point of 0.85 c. For c f ,crit = 5·10−4 the sensor value φ exceeds the value
1 at about 0.60 c, thus the proposed LES domain is larger compared to the case
using the lower c f ,crit value. This is due to the more or less equal contribution of c f ,
β and Reynolds shear stress gradient ∇〈u′v′〉 to the sensor value φ (see Eq. 1). This
case was also extensively investigated by Celić and Hirschel [4] where the results
agree with the present RANS simulation. The presented RANS simulation indicates
that all the investigated turbulence models (algebraic, one, two-equation models and
RSM) show an unsatisfying behavior from 0.7 c to the trailing edge due to the steep
decline of c f and the beginning increase of 〈u′v′〉.

These three examples demonstrate that the sensor provides a comprehensible
interpretation about the confidence domain of RANS solutions for different aero-
dynamic flow configurations, i.e., various free stream Mach numbers and Reynolds
numbers. Most shock boundary-layer interaction problems are transient problems
with a time dependent behavior of i.a. c f , β , and 〈u′v′〉. As shown in the transonic
flow case, the extreme positions of the critical sensor values φ at the upper side of
the airfoil are used to span the flow field where the confidence in the RANS solution
is low.

3.2 Validation of STGM

A zero-pressure gradient boundary layer was investigated and compared to reference
solutions using two synthetic turbulence methods, based on the controlled forcing
approach downstream of the inlet. Four simulations were carried out: a full domain
LES (referred to as ’full LES’), a full domain RANS, and two synthetic turbulence-
LES simulations with controlled forcing. All four cases were computed with the
same flow and numerical configuration, M∞ = 0.4, Reδ = 10000. The numerical
details are given in Tab. 3.

The reference full LES was computed using the rescaling method according
to El-Askary et al. [8]. The full domain RANS calculation based on the Spalart-
Allmaras model (referred to as ’RANS S-A’) was performed for comparison
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Table 3 Numerical details for the simulation of turbulent boundary layer at Ma = 0.4 and
Reδ = 10000 for LES and RANS solutions

streamwise x wall normal y spanwise z

Domain size in δ0 15 5 0.7
Grid points 484 65 49
Resolution, wall units Δx+ ≈ 20 Δy+min ≈ 0.8 Δ z+ ≈ 12

purposes and to provide the target data for the synthetic turbulence inlet and for
the control planes. In the zonal simulations the control planes are distributed over a
length of one boundary layer thickness δ0.

Figure 4 (left) compares the evolution of the wall friction coefficient c f for all
four flow cases. The solutions of full LES and full RANS do not differ much re-
garding the wall shear stress for this simple zero-pressure gradient boundary layer.
Thus, the applied rescaling method at this numerical configuration is valid for LES
and RANS simulations and poses no difficulty to match them at the beginning of the
computational domain. Both, the zonal SEM and the zonal Batten approach, show,
despite their fundamental differences in their formulations, a comparable required
length until they converge to the full LES solution. The van Driest velocity profiles
obtained at x/δo = 5 which are presented in Fig. 4 (right) show that both STGM pro-
duce the expected asymptotic near-wall behavior of a turbulent flow, but the results
differ somewhat at the edge of the boundary layer.

Figure 5 depicts the turbulent kinetic energy k and Reynolds shear stress com-
ponent 〈u′v′〉 at two different locations downstream of the inlet. It is shown that
the flow generated by the zonal Batten approach undergoes a slight laminarization
process downstream of the interface but the control planes increase the turbulent
shear stress budget to the full LES level. The turbulent structures generated by the
zonal SEM approach do not dissipate downstream of the inlet but the control planes
introduce a local overshoot of the turbulence level which decreases to the full LES
turbulence level at around 5 x/δ0. By improving the response of the control planes
to the local flow events, the turbulent shear stress level of the full LES could be
reached within one boundary layer thickness δ0.

λ2-contours (Jeong et al. [13]) of both zonal cases and the full LES are visualized
in Fig. 6. It is shown that the structures which are introduced into the domain by the
zonal SEM approach are not dissipating. The structures at the inlet of the case com-
puted with the zonal Batten approach fade away and the control planes downstream
of the inlet have to enhance the locally rare events like turbulent bursts and sweeps
to reach the turbulence level of the full LES computation.

Due to the low Reynolds number for this case it was expected that the ’artificial’
turbulence would dissipate at the beginning of the domain to develop ’physical’
turbulence further downstream after the transition process at about x/δ0 ≈ 10. How-
ever, Figs. 4 (left) and 5 (left) show that when the zonal SEM approach is used the
Reynolds shear stress 〈u′v′〉 does not decrease below the level of the full domain
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x/δ0 = 5 (right)

LES but generates an overshoot of turbulent kinetic energy. The zonal Batten ap-
proach tends to provide a lower Reynolds shear stress level which is to be increased
by the control planes which are located downstream of the inlet. For the follow-
ing computations the zonal SEM approach is used since the quality of the results is
acceptable and it is computationally less expensive than the zonal Batten approach.

A compressible zero-pressure gradient boundary layer (Ma= 2.4, Reδ0
= 52000)

was also investigated to evaluate the efficiency of STGM in compressible flows. A
full LES simulation was used as reference and a full RANS simulation provided
targets for the zonal RANS-LES solution. In this case just the zonal SEM approach
was used and evaluated concerning two different control plane configurations. The
first configuration uses one single control plane (referred to as ’1 c-p’) which is
located at x/δ0 = 0.7. The second configuration applies four control planes (referred
to as ’4 c-p’) which are located between x/δ0 = 0.3 and x/δ0 = 2. Numerical details
are given in Tab. 4.

The downstream evolution of the skin friction coefficient c f is shown in Fig. 7
(left). It seems that the zonal SEM solution with one control plane already con-
verges at about x/δ0 = 1.5 whereas the case with four control planes still regulates



112 B. Roidl, M. Meinke, and W. Schröder

Fig. 6 λ2 structures of a mildly compressible flat plate boundary layer flow computed by
(top) a full LES, (middle) using zonal Batten approach and (bottom) applying the zonal SEM
ansatz

Table 4 Numerical details for the computation of a turbulent boundary layer at Ma = 2.4 and
Reδ = 52000 for LES and RANS solutions

streamwise x wall normal y spanwise z

Domain size in δ0 10 3 0.7
Grid points 140 65 49
Resolution, wall units Δx+ ≈ 20 Δy+min ≈ 0.8 Δ z+ ≈ 12

the shear stress budget. However, Fig. 8 compares the turbulent kinetic energy k and
Reynolds shear stress 〈u′v′〉 at position x/δ0 = 1. A second spurious peak is ex-
hibited at y/δ0 = 0.7 for the zonal SEM simulation with one control plane. This
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distribution of turbulence energy is due to the presence of a low frequency mode
which is introduced at the inlet and may survive at least the first control plane. Touber
et al. [25] observed the same phenomenon when applying synthetic turbulence tech-
niques to compressible boundary layers. This might occur due to the high Reynolds
and Mach numbers used here which stabilizes the outer mode. However, this mode
was not found in subsonic boundary layers. When four control planes are used the
flow already passes two control planes and the spurious peak in the wake region of the
boundary layer at position x/δ0 = 1 is somewhat more damped. At position x/δ0 = 5
both control plane configurations show no trace of this second peak in the turbulent
kinetic energy k. From these results it is suggested to apply more than one control
plane in supersonic boundary layers at high Reynolds numbers to avoid the large
wave length mode introduced by the STGM and thus to keep the transition region
as small as possible. The van Driest velocity profiles obtained at x/δo = 5 in Fig. 7
(right) show that both STGM produce the expected asymptotic near-wall behavior
of a turbulent flow, but the results differ somewhat at the edge of the boundary layer.
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3.3 Oblique Shock on Flat Plate (SWBLI)

In section 3.1 the sensor was tested for an oblique shock impinging the turbulent
boundary layer of a flat plate. This case was investigated experimentally by Dus-
sauge et al. [6] [7] with the corresponding configuration of Reδ1 = 19300, Ma= 2.3,
and an oblique shock angle α = 8◦. In the following three simulations are analyzed:
A full domain RANS simulation with Spalart-Allmaras turbulence modeling was
computed for the sensor application to determine the size of the computational do-
mains for the zonal RANS-LES simulation. For comparison purposes a full LES
was simulated and finally, a fully coupled zonal RANS-LES approach to validate
the zonal concept. The LES domain indicated by the sensor evidenced in Fig. 1 is
slightly extended since the synthetic turbulence generation needs additional space
in the streamwise direction to evolve properly. Figure 9 presents the computational
setup of the fully coupled RANS-LES simulation emphasizing the computational
domains of RANS and LES as well as four control planes downstream of the LES
inlet. The computational set up of the full LES simulation and of the LES part of
the zonal RANS-LES simulation are given in Tab. 5 and Tab. 6, respectively. The
number of grid points for the zonal RANS-LES simulation is more than 50 % lower
compared to the number of points of the full domain LES simulation.

Periodic boundary conditions are used in the spanwise direction and a no-slip,
adiabatic condition is set at the wall. The top boundary uses characteristic boundary
conditions to minimize spurious reflections from the other boundaries. The oblique
shock is introduced at the inlet boundary applying the Rankine-Hugoniot conditions.
The inflow condition of the RANS part uses the rescaling method of El-Askary et
al. [8] while the inflow of the LES was set to the above described zonal SEM ap-
proach. At the LES outflow the condition of König et al. [15] was applied to ensure a
proper transition of the turbulent flow properties from the LES to the RANS domain.

Fig. 9 Computational setup of fully coupled RANS-LES simulation of SWBLI flow case
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Table 5 Numerical details for the full LES simulation for the SWBLI case

streamwise x wall normal y spanwise z

Domain size in δ0 20 6.3 0.6
Grid points (3.9·106) 512 153 50
Resolution, wall units Δx+ ≈ 35 Δy+min ≈ 1.1 Δ z+ ≈ 18

Table 6 Numerical details for the LES domain of the zonal RANS-LES simulation of the
SWBLI case

streamwise x wall normal y spanwise z

Domain size in δ0 20 6.3 0.6
Grid points (1.9·106) 256 153 50
Resolution, wall units Δx+ ≈ 35 Δy+min ≈ 1.1 Δ z+ ≈ 18

A sponge zone at the LES outflow ensures the damping of turbulent fluctuations.
The streamwise evolution of the skin friction coefficient c f is displayed in Fig. 10
(left). First, it is noticeable that the RANS, i.e., full RANS and zonal RANS part,
and the full LES solution differ for this zero-pressure gradient boundary layer. This
difference is caused by different grid resolutions of the full LES and the RANS
domain. For all cases the onset of flow separation is located at about x/δ0 = 4.5.
The experimental results of Dussauge et al. show an increased c f level at the inlet
compared to the full LES and predict the separation point slightly more upstream.
The results of the full LES and the zonal RANS-LES regarding the length of the
separation bubble are in good agreement with the LES results of Garnier et al. [11].
Downstream of the interaction zone the increase of c f is very similar between ex-
periments, full LES and especially the zonal RANS-LES solution where the LES to
RANS transition method of König et al. [15] proved to provide good results. One
can notice that the result quality of time averaged c f of LES and zonal LES is clearly
superior to that obtained by a RANS approach in the same configuration.

Figure 10 (right) compares the van Driest velocity profiles obtained at x/δ0 = 3.3
which is located slightly upstream of the interaction zone. All computations show
the expected asymptotic near wall behavior. However, the logarithmic region of the
full LES computation lies somewhat above the analytic result because the streamwise
grid resolution. The corresponding profile of the zonal RANS-LES solution is located
in between that of the full RANS and that of the full LES as it just passes the control
planes and hence, still contains the shear stress profile of the target RANS values.

In Fig. 11 (left) the comparison of PIV results [6] with the zonal RANS-LES
outcome of the wall-normal velocity fluctuations is given. At position x = 280mm
(x/δ0 = 3.2), which is about two boundary layer thicknesses downstream of the
PIV measurement position, the fluctuations show a higher intensity at the middle
of the boundary layer than the corresponding PIV measurements. This is due to the
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STGM at the inlet which assigns too much energy in the outer part of the boundary
layer. At position x = 340mm (x/δ0 = 9)the high energy fluctuations which were
introduced by the STGM at the inlet in the outer part of the boundary layer did not
survive the interaction region and the fluctuation level decreases below that of the
PIV measurements.

Figure 11 (right) represents a similar comparison for the Reynolds shear stress.
The distribution at x = 260mm (x/δ0 = 1)) shows a good agreement between the
zonal RANS-LES results and the PIV measurements. Downstream of the interac-
tion zone, at x = 340mm (x/δ0 = 9), the results of the zonal RANS-LES agree
again fairly well with the PIV measurements. The λ2-structures at the interaction
zone of the oblique shock and turbulent boundary layer for the full LES and the
zonal RANS-LES simulation are depicted in Fig. 12. Large coherent structures are
formed at the proximity of the impinging shock which transport the maximum of
the turbulent kinetic energy towards the center of the boundary layer. Such turbulent
features are evident in the full LES and the zonal RANS-LES solution.
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Fig. 12 λ2 structures in the shock boundary-layer interaction zone computed by (top) a full
LES and (bottom) a fully coupled zonal RANS-LES

3.4 DRA2303 Transonic Profile

The DRA2303 transonic airfoil [10] was chosen as the aerodynamic reference case
for the buffet phenomenon. Associated with buffet are self-sustained shock wave
oscillations on airfoils at transonic flow. The flow configuration, which was to lie
well within the buffet boundaries, was chosen with Ma = 0.72, Re = 2.6 · 106 and
α = 3◦. For this flow configuration, experimental data is not yet available.

In this work the buffet is computationally targeted with three different simu-
lations: a full domain RANS-simulation based on the Baldwin-Lomax turbulence
model [1], a full domain LES which constitutes the reference solution and a fully
coupled zonal RANS-LES solution. First, the full LES solution of the DRA2303 is
investigated. The RANS simulation, which was also a calibration case for the sensor
in section 3.1, is compared with the reference LES solution. Finally, a fully coupled
zonal RANS-LES solution yielding preliminary results is presented. The numerical
details of the full LES solution and the zonal RANS-LES are given in Tab. 7 and
Tab. 8, respectively. Similar to the SWBLI case the number of required grid points
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Table 7 Numerical details for the full LES simulation

streamwise x wall normal y spanwise z

Domain size in c 20 20 0.021
Grid points (30.4·106 2364 130 99
Resolution, wall units Δx+ ≈ 100 Δy+min ≈ 1.0 Δ z+ ≈ 20

for the zonal RANS-LES simulation contains less than 50 % of the grid points used
in the full domain LES simulation.

The focus of this numerical investigation using a full RANS simulation was on
the evaluation of the reduced frequency ω∗ = ωc/U∞ for the given flow configura-
tion. In Fig. 13 the instantaneous pressure coefficients cp and the average pressure
coefficient fluctuation at the upper side of the airfoil for the full RANS simulation
are shown. At this flow configuration the extension of the horizontal shock move-
ment is about 0.25 c. High level pressure fluctuations are found downstream of the
shock, especially near the trailing edge where the strength of these fluctuations even
exceeds the pressure amplitude of the shock.
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Fig. 13 Fluctuating wall pressure coefficient cp (left) and corresponding rms-values at the
upper side of the profile (right) for a RANS simulation
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In Fig. 14 the lift coefficient is investigated. The shock oscillation is highly peri-
odic indicated by the pronounced peak in Fig. 14 (left). The reduced frequency
shows a value of 1.16 which is about twice as high as it was expected from exper-
iments at higher Reynolds numbers [28] and it is known that the influence of the
Reynolds number on the reduced frequency is small [17]. The amplitude of the lift
coefficient ΔCL is about 0.3 (see Fig. 14, right). It is known from previous numer-
ical investigations [26] that for the DRA2303 case the reduced frequencies of the
RANS simulations were far off the expected values. However, numerical investiga-
tions with RANS on other airfoil types proved to be much more promising and more
successful than for the DRA2303 case [22].

For this reason, a full LES simulation was set up to examine the physical aspects
of buffet without using standard turbulence models. The simulation time for this
configuration was about 40c/U∞ which can be considered as a long term simulation
where effects of initial perturbations or flow developing effects possess no influence
anymore on the solution and a periodic flow behavior determines the result.

In Fig. 15 the instantaneous pressure coefficient cp and the average pressure coef-
ficient fluctuations at the upper side of the profile are presented. Note that the ex-
tension of the horizontal shock oscillation is about 0.07 c. That is much smaller
compared to the outcome of the RANS simulation. The peak in the average pressure
fluctuations is more pronounced (compare Fig. 13, right) and near the trailing edge
the intensity of the fluctuations increases but they never exceed the strength of the
shock. Upstream of the shock the pressure fluctuations are very small compared to
the fluctuations at the shock position and downstream of the shock. The reduced
frequency ω∗ of the lift coefficient oscillation of the full LES solution presented
in Fig. 16 is about 0.74 and thus much lower than the one obtained by the RANS
simulation. Again, the oscillation is highly periodic which is indicated by the peak
in the frequency spectrum. The amplitude of the lift coefficient ΔCL ≈ 0.03 is small
compared to that of the RANS simulation. This finding is due to the smaller ho-
rizontal shock oscillation amplitude and the less pronounced pressure fluctuations
downstream of the shock.

Figure 17 compares the fluctuating pressure intensity at different locations. At
the upper side at 0.25 c the amplitude of the fluctuation is very low, however, a
small distinctive bump is evident at ω∗ ≈ 0.7. Near the shock at 0.55 c a peak oc-
curs at the reduced frequency ω∗ = 0.74 and the distribution of the values is very
similar to that in Fig. 16. Close to the trailing edge at 0.9 c the major peak is still at
ω∗ ≈ 0.73 but the pressure fluctuations at higher reduced frequencies have grown
stronger compared to the position near the shock. This is due to the turbulent shear
layer which is at this flow configuration maximum in size at the trailing edge. Al-
though the pressure fluctuations are averaged in the spanwise direction the pressure
fluctuations at very high reduced frequencies can be related to the turbulent shear
layer. At the lower side of the profile at 0.9 c the intensity level of the fluctuations
is one order of magnitude smaller compared with the corresponding position at the
upper side. However, a distinct peak at ω∗ ≈ 0.73 is visible which is caused by the
direct influence of the oscillating shock at the upper side.
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Fig. 19 λ2 structures of transonic flow around a DRA2303 profile for a full domain LES
simulation

The Reynolds shear stresses of the averaged full LES solution at two different
locations is exhibited in Fig. 18. At 0.4 c the distribution resembles that of a flat
plate boundary layer flow and its turbulent features. Behind the shock, however,
the maxima of all components moves to the center of the boundary layer and the
intensity level of 〈v′v′〉, 〈w′w′〉, and 〈u′v′〉 is much higher compared with the pos-
ition ahead of the shock. Downstream of the shock the intensities of 〈u′u′〉, 〈v′v′〉,
and 〈w′w′〉 are at the same level which indicates that the turbulent structures show
an isotropic behavior compared with the high level of anisotropy of the near-wall
turbulence upstream of the shock.

The λ2-contours [13] are shown in Fig. 19. After the interaction with the shock,
the turbulent boundary layer separates and a shear flow is formed that develops
large coherent structures that convect near the trailing edge. These large structures
are responsible for the high level pressure oscillations at high frequencies near the
trailing edge.

Due to the very different transient behavior regarding buffet and the subsequent
consequences for the boundary layer downstream of the shock location the rms
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Fig. 20 Computational setup of a fully coupled zonal RANS-LES simulation

values of the pressure coefficient fluctuations diverge in the region between 0.4 c
and the trailing edge at the upper side of the airfoil (figs. 13 and 15). Because of the
known drawbacks of RANS simulations (see section 1) a zonal RANS-LES compu-
tation was set up to overcome the turbulence modeling issue at the shock location
and downstream of it. The extent of the LES domain was chosen like in the evalu-
ation of the sensor results which have been discussed in section 3.1. The resulting
computational set up is shown in Fig. 20. Due to the complexity of this particular
case the results can be considered just preliminary.

At the inlet of the LES domain on the upper and lower side of the airfoil, the zonal
SEM approach (see section 2.3) is used to generate synthetic turbulent structures.
Downstream of the inlet four control planes are located between 0.37 c and 0.4 c at
the upper side and between 0.7 c and 0.73 c.

Since pressure waves, caused by the transient shock behavior, travel from the
LES domain to the RANS domain and vice versa the time window where the
solutions are averaged has to be carefully defined. On the one hand, the turbulent
flow properties of the LES solution have to be averaged properly over a sufficiently
large time window before being transferred to the RANS domain. On the other hand,
the amplitude and frequency of the traveling pressure waves caused by the shock
must be captured in a time window which is as small as possible to prevent a signi-
ficant alteration of the pressure wave signal. A time window of the size of 1 c/U∞
was found to satisfy these requirements.

Table 8 Numerical details of the LES domain for the zonal RANS-LES simulation

streamwise x wall normal y spanwise z

Grid points (13.7·106) 1430 97 99
Resolution, wall units Δx+ ≈ 35 Δy+min ≈ 1.0 Δ z+ ≈ 20
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Fig. 22 λ2 structures of transonic flow around a DRA2303 airfoil for a fully coupled zonal
RANS-LES solution

In Fig. 21 the instantaneous pressure coefficients cp are given. The zonal RANS-
LES solution shows a good agreement with the full LES solution concerning shock
position and strength. Downstream of the shock the cp evolution shows minor dis-
crepancies near the trailing edge. However, upstream of the shock the zonal RANS-
LES results agree pretty well with the findings of the full LES. Note the smooth
transition from RANS to LES of the pressure coefficient near the overlapping zones
at approximately 0.37 c (upper side) and 0.7 c (lower side).

The λ2-contours of the instantaneous zonal RANS-LES solution are depicted in
Fig. 22. They show the same features compared to the contours of the full LES
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simulation such as large coherent structures downstream of the shock interaction
zone convecting towards the trailing edge.

4 Conclusion

In this article, a sensor was presented which is capable of detecting flow regions
of RANS simulations, where the intricacy of the flow field requires a higher or-
der turbulence model. This sensor was applied to several flow cases with complex
flow phenomena such as transonic airfoil flow with buffet, or shock wave turbu-
lent boundary-layer interaction. For these specific cases the flow regions, where the
structure of the flow is highly complex, were replaced by LES domains. To couple
the RANS with the LES domain synthetic turbulence generating approaches and
control planes were used which transferred the turbulent intensities of the RANS
solution to the LES domain. Two different STGM were tested and validated for
a subsonic zero pressure gradient boundary layer flow (see section 3). The zonal
SEM approach was found to be superior compared to the zonal Batten approach and
therefore used in subsequent computations.

Different configurations of control planes were tested on a supersonic zero pres-
sure gradient boundary layer flow to evaluate the quality of the transition from the
introduced synthetic turbulent structures to fully turbulent flow.

The case where an oblique shock impinges on a compressible turbulent boundary
layer was numerically investigated and discussed. First, the sensor detected the re-
quired size of the required LES domain by evaluating the corresponding full domain
RANS solution. Second, the RANS domain was coupled with the LES region by the
zonal SEM approach and control planes downstream of the inlet. This constituted
the transition from RANS to LES. The transition from the LES back to the RANS
domain was done by applying the approach of König et al. [15]. The results have
shown that the full domain LES and the zonal RANS-LES provided superior solu-
tions compared to a full domain RANS simulation. The extension of the required
LES domain in the zonal RANS-LES approach was well predicted by the sensor.

Finally, the computational results of the DRA2303 airfoil in a transonic flow con-
figuration were thoroughly discussed. The results of a full domain RANS and full
domain LES were compared and the sensor was applied to the RANS solution. The
resulting LES domain extensions were implemented into a zonal grid. The coupled
zonal RANS-LES approach provided preliminary results and indicates that the qual-
ity of the solution is comparable to that of the full domain LES solution.

These two presented cases have shown that the solution computed by a zonal
RANS-LES simulation agree well with the corresponding full domain LES solu-
tions. However, the computational costs due to the considerable reduction of grid
points were reduced by a factor of 2.
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Numerical Methods



The Application of Iterated Defect Corrections
Based on WENO Reconstruction

Alexander Filimon and Claus-Dieter Munz

Abstract. In this article we apply the procedure of the iterated defect correc-
tion method to the Euler equations as well as to the Navier-Stokes equations. One
building block in the defect correction approach is the lower order basic method,
usually first or second order accurate. This scheme gives a steady solution of low
accuracy as the starting point. The second building block is the WENO reconstruc-
tion step to estimate the local defect. The local defect is put into the original equation
as source on the right hand side with a minus sign. The resulting modified equation
is then again solved with the low order scheme. Due to the source term with the local
defect the order of accuracy is iteratively shifted to the order of the reconstruction.
We show numerical results for several validation test cases and applications.

1 Introduction

Numerical simulations of the equations of fluid mechanics contain unavoidable er-
rors due to several necessary approximations. To analyze these errors is crucial for
the evaluation of the reliability of the numerical results. In the following we fo-
cus ourselves to the discretization errors. This means, that the modeling errors are
excluded and the exact solution of the governing equations is supposed to be the
reference solution of the described physical phenomenon.

The discretization errors can be separated into local and global discretization
errors. By inserting the exact solution into the discretized equations, the local dis-
cretization error, also known as the local defect of a numerical approximation, can
be determined. The more significant global discretization error gives the difference
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between the numerical and the exact solution. In both cases the exact solution is
needed, which makes the error approximation for real applications cumbersome.
A common approach is to run the same problem on several meshes with differ-
ent step size h. A mesh convergence study allow then to compute the so called
experimental convergence rate. Finally, a Richardson extrapolation can be used to
determine the best approximate solution together with an estimation of the global
discretization error. In practical 3D applications with complex geometries, this ap-
proach becomes cumbersome and sometimes even unfeasible because of the high
computational costs. Our approach allows an error approximation for steady prob-
lems on the original mesh by using a polynomial reconstruction within the defect
correction method.

Starting with a steady solution of a first or second order accurate finite volume
scheme, we employ the modified weighted essentially non oscillatory (WENO) re-
construction scheme of Dumbser and Käser [4] for unstructured meshes. The res-
ulting polynomial distribution allows an improved flux computation which can be
applied to estimate the local discretization error. The method of the iterated defect
correction (IDeC) consists of subtracting this local defect as a source term on the
right hand side of the original equations [23, 19]. The now modified equations are
solved with the original method of first or second order accuracy, in the following
also called the basic method or the basic scheme, resulting into a new corrected
steady solution. A further reconstruction of the corrected solution yields a better
estimation of the local defect which is now used in the modified equations. Iterat-
ively applied, the method of the defect correction shifts the order of accuracy of
the basic scheme to the higher order of the used reconstruction. By this approach,
an approximation of the global discretization error up to an accuracy of the higher
order reconstruction is available.

2 The Method of Iterated Defect Correction

The defect correction approach was originally proposed by Zadunaisky ([22], [23])
for the estimation of the global discretization error in ordinary differential equa-
tions. The method was then generalized by Stetter [18] who introduced the iterative
procedure which is applied in this work to partial differential equations. A number
of theoretical investigations were done for ordinary differential equations by Frank
([5], [6]). Further papers of Pereyra ([15], [14]) show a different way of applying
the defect correction method and gives additional analysis of the method. A nice
overview on the defect correction approach can be found in Stetter [19] where he
gives an overview of the different procedures. The proposed iterative defect correc-
tion method in this work is based on the procedure introduced by Stetter in [18] for
ordinary differential equations. As was shown by Frank and Ueberhuber in [7] the
iterated defect correction can also be applied on partial differential equations.
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For the sake of simplicity we describe in the following the employed iterated
defect correction on the example of a scalar one dimensional evolution equation

ut + f (u)x = 0, (1)

keeping in mind that the whole procedure can be extended to multi dimensions
and to diffusion fluxes which additionally depend on ∇u, as it is the case for the
Navier-Stokes equations. As mentioned before, we focus on steady solutions, i.e.,
ut = 0. The time dependence in (1) is used only for the iteration of the approximate
solution to a steady state. Conform with the convention in the cited papers we write
the equation (1) in the abstract form

Lhuh = rh with Lu ≡ ∂ f
∂x

, (2)

where the operator L is the exact linear or nonlinear differential operator and Lh

is the discretized operator with the mesh width parameter h. For Lh we impose a
stable, consistent and fast invertible operator, which is easily achieved by an oper-
ator with a low consistency order of one or two. For the theory of the iterated defect
correction the operator Lh can also be of higher order. For practical calculations it
is more interesting to correct a first or second order accurate method which is often
applied in practice. Equation (2) will be called the basis method with the solution
uh computed by inversion of the operator Lh:

uh = L−1
h rh. (3)

Additionally we need another numerical method for the original problem (1) on the
same mesh, but with a higher consistency order

Shwh = rh. (4)

(4). This higher order discretization will only be used to estimate the local defect
and is applied once per defect iteration in that form. Instead of solving directly the
higher order discrete problem which may need a lot of time and development of the
solution procedure, the modified problem

Lhuh = rh − dh (5)

is solved using the basic method (2). With dh = Shwh − Lhuh the local defect we
apply equation (5) iteratively

Lhu[k+1]
h = rh − d[k+1]

h k = 1,2,3, . . . ,NIDeC (6)

with the defect iteration index k and NIDeC the maximum defect correction iterations,
converging towards the solution wh, the reconstruction polyomial higher order. The
whole defect correction procedure can be formulated in the following step by step
description.
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1. We start with a steady solution

u[0]h = L−1
h r[0]h with r[0]h = rh (7)

of our basic method (2). The approximated solution uh is then reconstructed with
the weighted essentially non oscillatory scheme, which will be described in sec-

tion 3. The reconstruction produces a polynomial distribution w[k]
h of the integral

average in each grid cell.
2. Applying now the operator of higher order consistency Sh to the reconstructed

solution w[k]
h we compute the local defect d[k+1]

h for the next defect correction
iteration k+ 1:

d[k+1]
h = Shw[k]

h − r[k]h = Shw[k]
h −Lhu[k]h , (8)

r[k]h = rh − d[k]
h .

3. This defect is then subtracted as a source term on the right hand side of equation
(2) and the modified equation

Lhu[k+1]
h = rh − d[k+1]

h (9)

= rh −
(

Shw[k]
h −Lhu[k]h

)

is solved with the basic method, applying the inverse operator L−1
h . One gets then

the corrected solution u[k+1]
h after the k-th defect iteration, converging for

Lhu[k+1]
h ≈ Lhu[k]h . (10)

With this convergence criteria, equation (9) reduces to the method higher order
(4), with wh the reconstruction polynomial.

Equation (5) is also called the "neighboring problem" with respect to the original
formulation of the defect correction by Zadunaisky. For the process of iterated defect
correction one must assume that (6) and (2) are neighboring mathematical problems.
Since wh represents a polynomial reconstruction of the basic solution uh on the same
mesh, the defect dh as defined in equation (8) is "small" and so the assumption of
the "neighboring problem" is plausible.

As we use a finite volume scheme for the basic method we can write the modified
equation (5) in a semi discrete form defined on the interval [xi− 1

2
,xi+ 1

2
]x[tn, tn +Δ t]

with ui = uh, being the discrete state in the cell i, as

Δu[k+1]
i =− 1

Δx
R(u[k+1]

i )− 1
Δx

(
R(w[k]

i )−R(u[k]i )
)

︸ ︷︷ ︸
d
[k+1]
h

(11)
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with

R(Qi) =

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f (Qi)xdxdt, (12)

whereas Qi is considered as a placeholder for u[k]i ,u[k+1]
i and w[k]

i . As common for
a finite volume approach the unknown physical flux f (Qi) is replaced by an appro-
priate numerical flux approximation gi+ 1

2
on the cell border of two adjacent cells.

The numerical flux depends only on the states left and right of the cell interface:
gi+ 1

2
= g(Q−

i+ 1
2
,Q+

i+ 1
2
), with Q− defining the state on the interface in the cell itself

and Q+ being the state on the interface in the neighboring cell. If we choose as a
simple example a basic method of first order in time and space, equation (11) yields

Δu[k+1]
i =−Δ t

Δx

(
g(u[k+1],−

i+ 1
2

,u[k+1],+

i+ 1
2

)− g(u[k+1],−
i− 1

2
,u[k+1],+

i− 1
2

)

)
− d[k+1]

h (13)

with

d[k+1]
h =

Δ t
Δx

(
g(w[k],−

i+ 1
2
,w[k],+

i+ 1
2
)− g(w[k],−

i− 1
2
,w[k],+

i− 1
2
)

)
(14)

−Δ t
Δx

(
g(u[k],−

i+ 1
2
,u[k],+

i+ 1
2
)− g(u[k],−

i− 1
2
,u[k],+

i− 1
2
)

)

an approximation of the corrected state u[k+1]
h in the cell i. We point out that the

integral of the higher order fluxes f (w[k]
h ) have to be computed with an appropriate

numerical integration of accuracy higher than the one of the basic method. In the
case of 1D there is no need of such an integration, the interface being the only
integration point. For 2D or 3D discretizations an efficient integration scheme is
necessary. In our case we use Gauss quadrature. This leads to an approximation of
the flux integral in cell i as

∫

∂Ci

g
(

w[k],−
i ,w[k],+

i

)
ndS ≈ ∑

K∈∂Ci

nGP

∑
j=1

ωK
j g

(
w[k],+

i, j ,w[k],−
i, j

)
nKSK , (15)

where nGP and ωK
j denote the number and the weights of the Gauss integration

points j on the interface K, respectively, SK is the length or the surface and nK is the
outward pointing unit normal vector. If the polynomial degree of the reconstruction
is chosen to be p′ > p, with p, being the polynomial degree of the basic method, we
take nGP = p′+1

2 for the 2D case, which is accurate up to a polynomial degree of p′.
In the 3D case we use a rather sub-optimal number nGP = ( p′+1

2 )2 of Gauss points
which is nevertheless accurate up to a polynomial degree p′.
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2.1 IDeC for Inhomogeneous Problems

For inhomogeneous equations the method of iterated defect correction can be ap-
plied in two different ways, which leads both to the same corrected solution but with
different time efficiencies. The difference is even bigger for source terms depending
on the solution itself. In the following work we will present both inhomogeneous
equations with source terms depending only on space and source terms including
the solution itself. To describe the different formulations we take the scalar evolu-
tion equation

ut + f (u)x = s(u). (16)

again in 1D as example with the source term s depending on the solution u. If we
apply the iterated defect correction on this problem as done before, computing the
local defect only in the flux terms, we can write the modified equation (5) as

u[k+1]
t + f (u[k+1])x = s(w)−

(
f (w[k])x − f (u[k])x

)
︸ ︷︷ ︸

d[k+1]

. (17)

The integration of each term is done as shown above what leads to a similar semi
discrete representation of the modified equation (5) with the additional integral

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

s(wi)dxdt,

of the source term s in the cell i. To achieve the consistency order of the reconstruc-
tion in the iterated defect correction procedure with the above formulation (17), it
is important to compute the source term with the high order accuracy. This implies a
reconstruction in each iteration of the basic method and in 2D and 3D an integration
with much more Gauss points than used for the basic scheme of lower order is ne-
cessary. The high computational cost can be reduced by reformulating the problem
in equation (17). Instead of taking only the fluxes into account for the local defect,
we propose to include the source term as well in the definition of the local defect.
This yields

u[k+1]
t + f (u[k+1])x = s(u[k+1])−

[
f (w[k])x − s(w[k])−

(
f (u[k]h )x − s(u[k])

)]
︸ ︷︷ ︸

d[k+1]

, (18)

a new modified equation where the source term in the iteration of the basic scheme
is now integrated with the lower order accuracy whereas the reconstruction of the
source term is only done once per defect iteration to compute the local defect.
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3 WENO Reconstruction on Unstructured Grids

In order to compute the higher order operator for the grid cell C(i) a reconstruction
of the cell averages defined

ū(i) =
1∣∣C(i)

∣∣
∫

C(i)

udV (19)

is done, where
∣∣C(i)

∣∣ is the length, the surface or the volume of the gird cell depend-
ing on the space dimension. To ensure a stable reconstruction even at discontinuit-
ies, a high order Weighted Essentially Non Oscillatory (WENO) reconstruction was
chosen. This method was first introduced by Shu et al. [11, 10] and Osher et al. [13].
For the proposed defect correction method, the modified reconstruction algorithm
by Dumbser et al. [4] is used which ensures a robust method on 2D and 3D unstruc-
tured meshes even with distorted cells [4] eliminating scaling and bad conditioning
problems common to WENO reconstruction technique.

In this approach, the reconstructed polynomial is built by a linear combination
of orthogonal basis functions as given in [3] for triangles in 2D and tetrahedrons in
3D. We write the reconstruction polynomial for the element C(i) as

w(i) (ξ ,η ,ζ ) =
L

∑
l=1

ŵ(i)l
Ψl (ξ ,η ,ζ ) , (20)

with ξ ,η and ζ the coordinates in the reference coordinate system. Unlike the
common WENO reconstructions at discrete cell points, the basis polynomials
are continuously extended over the whole stencil and are then restricted to the
considered element C(i) after having obtained a reconstruction polynomial. The
number of degrees of freedom L being L = 1

2 (M+ 1)(M+ 2) in 2D and L =
1
6 (M+ 1)(M+ 2)(M+ 3) in 3D depends on the polynomial degree M of the basis
functions Ψl . Whereas the basis functions are space dependent, the reconstructed
degrees of freedom ŵ(i)l

depend only on time.
Similar to the finite element framework, the reference space is the unit element

CU . This is a triangle with the canonical coordinates (0,0),(0,1) and (1,0) in 2D and
a tetrahedron with the canonical coordinates (0,0,0),(0,0,1),(0,1,0) and (1,0,0)
in 3D. The transformation from the physical space x−y− z into the reference space
ξ −η − ζ can be done by a linear transformation matrix (see [4]). To perform the
reconstruction, several stencils have to be chosen which is done in the reference
space. There are three groups which are defined as follows:

1. First the central stencil is built by adding successively Neumann neighbors, i.e.
immediate side neighbors of the considered cell C(i), to the stencil until the de-
sired number of cells ne in one stencil is reached. The size of ne will be discussed
later on in this chapter.
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2. The following stencils, three of them in 2D and four in 3D, are chosen out of the
primary sectors. As mentioned before this is done in the reference space ξ ,η ,ζ .
So the primary sectors are spanned by the vectors starting from each vertex of the
unit element CU along the edges intersecting this vertex. Transformed elements
are then successively added to the stencils.

3. As shown by Käser and Iske [12] it is favorable to take one more family of
stencils into account than the two mentioned above. Although this increases the
computational effort it ensures a stable and robust reconstruction in 2D and 3D
configurations for special locations of the discontinuities. Additionally it im-
proves the one sided reconstruction, e.g. at walls. The so-called reverse sectors
are spanned by the negative vectors of each primary sector defined above.

This sums up to ns = 7 and ns = 9 stencils in 2D and 3D which are used for the
reconstruction. At the domain boundaries or for the case that not all stencils could
be filled up due to geometrical reasons, the total number of stencils ns can decrease.

For a conservative reconstruction one must assure that the polynomial distribu-
tion wi in each cell C(i) of the stencil m conserves the integral mean value of the cell
at hand C(is).

1∣∣C(is)

∣∣
∫

C(is)

w(i)(ξ )dV = ū(is) (21)

The evaluation of the conservation condition is carried out in the reference space.
This is done by applying linear transformation matrix with respect to the element
C(i) to each cell in the stencil, where the transformed elements are in the following
denoted by C̃(i). Taking into account that the degrees of freedom ŵ(i) are not space
dependent, the above equation results in

|J|
L

∑
l=1

⎛
⎜⎝

∫

C̃(is)

Ψl(ξ )dξdηdζ

⎞
⎟⎠ ŵ(i)l

= |J| ∣∣C(is)

∣∣ ū(is). (22)

The Jacobian determinant which is introduced due to the transformation appears on
both sides of equation (22), so it cancels out and with it scaling effects are elimin-
ated as well. Furthermore, Abgrall reports in [1] that ill-conditioned reconstruction
matrices are also avoided through this effect.

As the transformation to canonical coordinates is only done for the reconstructed
cell, the integration in equation (22) turns out to be non-trivial. This is not the case if
a second transformation with respect to the reconstructed cell is done additionally.
For more details see [4]. With it, the left hand side of equation (22) can again be
easily integrated using the Gaussian quadrature with an appropriate accuracy. This
yields the following linear system which have to be solved for the reconstructed
degrees of freedom.

A ŵ = ū (23)

For a number ne = L of elements per stencil the matrix A becomes square and easy
invertible, but for realistic meshes this leads to an unstable scheme. So, to ensure the
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robustness of the reconstruction we enlarge the stencils, see also [12]. The number
of the elements per stencil is chosen as ne = 1.5L in 2D and ne = 2L in 3D. In
addition the matrix can contain linear dependent rows due to geometrical reasons.
This means that the reconstruction matrix A may not be invertible. This is avoided
by adding successively new elements to the stencil if one of the singular values
of the matrix becomes zero. The overdetermined system (23) can be solved by an
algorithm of singular value decomposition or, as it is done in our framework, by a
least-squares method with the constraint (21).

The degrees of freedom ŵ(i) are now known, so the polynomials w(i)(ξ ,η ,ζ ) on
each stencil are known and the final nonlinear reconstruction polynomial wW ENO

(i) in
the cell C(i) of degree M is defined by

wWENO
(i) (ξ ,η ,ζ ) =

ns

∑
s=1

ωsw(i)s(ξ ,η ,ζ ) =
ns

∑
s=1

L

∑
l=1

ωsŵ(i)s,l
Ψl(ξ ,η ,ζ ). (24)

Unlike the common ENO (Essentially Non Oscillatory) schemes, where only the
less oscillating polynomial is chosen, all reconstruction polynomials on each stencil
are taken into account by a linear combination as done in eq. (24) with the normal-
ized nonlinear weights ωs

ωs =
ω̃s

ns

∑
r=1

ω̃r

with ω̃s =
λs

(ε+σs)r (25)

according to [11, 17, 4], whereas the non-normalized nonlinear weights ω̃s depend
on the linear weights λs and the oscillation indicators σs.

The parameters ε and r are set in the common range given in the literature [17, 4],
i.e. ε = 10−5 − 10−14 and r = 2− 8. Thereby ε is regarded as a threshold for a
division by zero which does not influence much the stability of the reconstruction
scheme. The parameter r states the sensitivity of the nonlinear weights relative to
the oscillation indicators σs. For bigger r the reconstruction procedure tends to an
ENO behavior, whereas for smaller values the scheme becomes more oscillatory.

For the weights ωs in (24) suitable oscillation indicators are necessary to ensure
a robust reconstruction. In literature ([10, 12]) this is usually achieved by a scal-
ing with the cell volume. As the reconstruction procedure is done in the reference
coordinate system this is not necessary any more. Due to the definition of the poly-
nomials (20) σs can furthermore be computed in a mesh independent way

σs = (ŵs)
T Σ ŵs (26)

with ŵs, the vector of the degrees of freedom of the polynom on the stencil m and
Σ the universal oscillation matrix defined by
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Σlk =
M

∑
r=1

r

∑
α=0

r−α
∑
β=0

∫
CU

∂ r

∂ξα∂ηβ ∂ζ γ
Ψl(ξ ,η ,ζ ) · ∂ r

∂ξα∂ηβ ∂ζ γ
Ψk(ξ ,η ,ζ )dξdηdζ ,

(27)
whereas γ = r−α−β . As the reconstruction basis functionsΨ are generally given,
the oscillation matrix is neither dependent on the mesh, nor on the problem, i.e. it
can be computed and stored in advance of a computation, considerably increasing
the efficiency of this reconstruction method.

In contrast to the common WENO schemes the linear weights are not used for
the improvement of the accuracy as was shown by Liu, Osher and Chan [13] but
simply defined by

λs =

{
λc

1
if s = 1, i.e. c is the index of the central stencil,
else

(28)

according to Dumbser et al. [4], with λc � 1, which puts a high emphasis on the
central stencil. It was shown in [4] that a choice of λc = 102 − 105 does not show
sensitivities in the results. Nevertheless, lower λc yield better results at discontinu-
ities and larger weights are favorable for smooth solutions.

4 Numerical Results

For the validation of the implemented iterated defect correction method exhaust-
ive studies have been made for 1D, 2D and 3D Euler and Navier-Stokes problems.
All simulations have been carried out with a standard finite volume scheme using
ghost cells to impose boundary conditions. Depending on the test case a first or a
second order basic scheme was used, whereas for the defect correction a polynomial
WENO reconstruction up to 6th order was applied with the standard choice for the
reconstruction parameters shown in section 3. In this section we first show some of
the convergence studies of those validation cases and we end up with application
test cases.

4.1 Convergence Studies

To validate our proposed iterated defect correction method for inhomogeneous prob-
lems we took as a first example in 1D the nonlinear Euler equations where a source
term s(u,A), depending on the solution u and a given geometry A, was added. The
equations in (29) are derived from the homogeneous Euler equations in three di-
mensions with the assumption of a continuous area variation (see also [20]).
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ut +F(u)x = s(u) with s =− 1
A

⎛
⎝ ρuAx

ρu2Ax

u(e+ p)Ax

⎞
⎠ (29)

This gives an approximation of a 2D axi-symmetric nozzle flow with the x-axis as
nozzle symmetry and A(x) as cross-sectional area along the nozzle. In our case we
took a smooth sinus function

A(x) =

⎧⎨
⎩

2,
2− sin4

(
π(x+ 1

2 )
)
,

2,

−1 ≤ x ≤− 1
2

− 1
2 < x < 1

2
1
2 ≤ x ≤ 1

(30)

for the cross-sectional area which is illustrated in the upper left corner of Fig. 1. We
took a subsonic expansion with inflow and outflow pressure p = 1 and an inflow
velocity u = 0.2 with an inflow mass flow ρu = 0.28. We obtain then an inflow
Mach number of Ma = 0.2 which can be introduced into the 1D nozzle theory to
evaluate the exact state at the inflow and outflow section. This is imposed during the
simulations which result into a symmetrical distribution of the state variables (see
Fig. 1). We can clearly see the difference between the first order basic method and
the corrected solution in both amplitude and location of the peak which is expected
to be in the nozzle throat at x = 0. In this case a cubic polynomial reconstruction
was chosen to compute the local defect.

To measure the exact error between the approximated solution uh and the exact
solution ue we use continuous Lp norms

x

M
a(

x,
t-

>
∞

)

-1 -0.5 0 0.5 1

0.2

0.3

0.4

0.5
basic scheme O1
IDeC - O4 reconstruction
exact solution

A

B

-1 0 1
0

1

2

-1 -0.98 -0.96 -0.94 -0.92 -0.90.185

0.19

0.195

0.2

0.205

0.21

B

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.39

0.4

0.41

0.42

0.43

0.44

0.45

A

Fig. 1 Mach number distribution of a axi-symmetric nozzle flow simulated with a first or-
der basic method and corrected by a fourth order polynomial reconstruction for the local
defect
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‖ uh −ue ‖Lp(Ω)=

⎛
⎝∫
Ω

|uh −ue|pdV

⎞
⎠

1/p

, (31)

whereas the L∞-norm gives the maximum absolute error arising in the whole do-
main. We compute the integral with the Gaussian quadrature algorithm with twice
the number of Gauss points compared to the numerical scheme. For the defect cor-
rection it is important to make this analysis with the high order polynomials and,
respectively, with the high order integration and not with the accuracy of the ba-
sic method. Table 1 shows the convergence tables of the nozzle test case for five
successively refined grids. In addition to the fourth order defect reconstruction we
show a convergence table for a first order basic method corrected with a 6th order
reconstruction to determine the local defect.

The validation of the 2D and 3D implementation has been carried out by using
the method of manufactured solutions, i.e. we insert an analytical function

ρe(x) = sin(πx) · sin(πy)+ 2

for the exact density distribution in 2D and respectively

ρe(x) = sin(πx) · sin(πy) · sin(πz)+ 1

in 3D into the Euler equations and solve the inhomogeneous two-, respectively
three-dimensional Euler equations

ut +∇ ·F(u) = s(x). (32)

Table 1 Iterated defect correction based on a first order steady solution with a 4th (up) and
6th (down) order reconstruction, 1D homogeneous grid, convergence rates of the mass flow
variable

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O1 → IDeC with O4 reconstruction
0.080 7.69E-03 2.17E-03 2.64E-03 - - -
0.040 6.34E-04 1.26E-04 1.78E-04 3.6 4.1 3.9
0.020 3.46E-05 6.08E-05 9.69E-05 4.2 4.4 4.2
0.010 2.14E-06 3.19E-06 5.63E-06 4.0 4.3 4.1
0.005 1.35E-07 1.83E-07 3.44E-07 4.0 4.1 4.0

Basic method O1 → IDeC with O6 reconstruction
0.100 8.80E-03 2.22E-03 2.49E-03 - - -
0.067 1.92E-03 2.95E-04 4.19E-04 3.8 5.0 4.4
0.033 6.66E-05 8.94E-06 1.54E-05 4.9 5.0 4.8
0.017 1.54E-06 1.80E-07 3.28E-07 5.4 5.6 5.6
0.008 2.63E-08 3.02E-09 5.58E-09 5.9 5.9 5.9
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The remaining state variables like the velocity and the pressure were set to a constant
value greater zero. For our choice we obtain source terms which in contrast to the
one dimensional analysis depend only on the space

si = π · sin(πx) · cos(πy)+π · cos(πx) · sin(πy) for i = 1...4 (33)

in two dimensions and respectively

si = π · sin(πx) · sin(πy) · cos(πz)+π · sin(πx) · cos(πy) · sin(πz)

+ π · cos(πx) · sin(πy) · sin(πz) for i = 1...4

s5 =
3π
2

· sin(πx) · sin(πy) · cos(πz)+
3π
2

· sin(πx) · cos(πy) · sin(πz)

+
3π
2

· cos(πx) · sin(πy) · sin(πz) (34)

in three dimensions. For the simulations we initialized the domainΩ2D = [0;1]x[0;1]
in 2D and respectively Ω3D = [0;1]3 in 3D with the exact solution and iterated the
basic scheme to a steady state with the exact solution imposed on the boundaries.
The same convergence study as in one dimension based on the Lp-norms was car-
ried out on four successively adapted grids. In all our computations we used fully
unstructured grids with irregular triangles in two dimensions and tetrahedrons in
three dimensions. Each adaptation is performed globally, i.e. we applied the so-
called red-refinement in each cell of the domain per adaptation step. An example of
two adaptation steps is shown for the three dimensional case in Fig. 2.

Again we can see the difference between the solution of the basic method and
the corrected one. This is demonstrated for the two dimensional case for the density
distribution in Fig. 3. We have to mention that for the visualization of the higher
order solutions we subdivide the numerical grid and write out the value of the poly-
nomial distribution at each barycenter center of the subdivided grid. In this way
we can see the Godunov approach of constant values in the cell for the first order
solution (Fig. 3, left) and the continuous fourth order solution with vanishing jumps
between the cells (Fig. 3, right). A quantitative analysis can be done by determining
the convergence rates for the corrected solutions as it was done in the one dimen-
sional case. In Tab. 2 we show the experimental convergence order for the two- and
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Fig. 3 Solution of the first order basic scheme (left) and the corrected solution of an IDeC
with a 4th order polynomial reconstruction for the local defect (right)

three dimensional simulations where we used a first order basic scheme with a cu-
bic polynomial reconstruction for the defect correction. In both cases we reach the
optimal theoretical convergence order of M + 1 when iterated defect correctionis
applied. The convergence rates can approve that with the mesh step size h → 0 the
error tends towards zero with the potential power of M + 1, M being the polyno-
mial degree of the reconstruction basis polynomials Ψ (see chapter 3). However,
nothing can be said about the real simulation time needed by the employed nu-
merical scheme and with it the real gain of using a higher order reconstruction.
Therefore we show in Fig. 4 the L1-norm of the errors for the one and two dimen-
sional computations described above over the total CPU-time in seconds needed

Table 2 Density convergence rates for IDeC with a first order basic scheme and a cubic
polynomial reconstruction on 2D (up) and 3D (down) irregular unstructured grids)

h L∞ L1 L2 OL∞ OL1 OL2

2D Basic scheme O1 → IDeC with O4 reconstruction
0.191 7.55E-02 1.06E-02 1.45E-02 - - -
0.096 5.78E-03 4.68E-04 7.12E-04 3.7 4.5 4.4
0.048 7.07E-04 2.95E-05 4.91E-05 3.0 4.0 3.9
0.024 4.97E-05 1.69E-06 3.17E-06 3.8 4.1 3.9

3D Basic scheme O1 → IDeC with O4 reconstruction
0.182 5.67E-02 9.49E-03 1.22E-02 - - -
0.127 9.69E-03 1.87E-03 2.39E-03 5.0 4.6 4.6
0.068 8.71E-04 1.01E-04 1.32E-04 3.8 4.6 4.6
0.035 8.38E-05 7.09E-06 9.54E-06 3.6 4.1 4.0
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Fig. 4 Convergence rates over total CPU time for first and second order methods compared
to iterated defect correction with higher order reconstruction in 1D (left) and 2D (right)

for a converged iterated defect correction and the basic schemes of first and second
order. The simulations were all performed on one single AMD Athlon 5200+ pro-
cessor with 3GB of RAM. So we can compare directly the computational effort
to reach the same given accuracy of the L1-norm. To give an example, if we want
to reach an error norm of L1 = 10−4 in the one dimensional case (Fig.4, left), we
obtain a speed up of factor 4 comparing a second order scheme with a third order
corrected solution based on a first order basic scheme. The same comparison for the
two dimensional case leads even to a speed up of factor 20 which is due to higher
computational cost for the 2D simulations concerning for example the integration
(Fig.4, right). This results for the speed up are surely dependent on the test case,
nevertheless they give an idea of the potential of higher order schemes. However, in
the one dimensional test case we can see, that the speed up of a higher order scheme
starts to be significant for very low accuracy levels.

A more demanding test case for the stability and the convergence of the iterated
defect correction for the steady nonlinear Euler equations is the Ringleb’s flow [2]. It
is one of the few continuous transonic flows of a blunt obstacle which can be solved
analytically with the Hodograph method in a transformed (V −θ ) plane, with V as
the velocity magnitude and θ the angle of the velocity with respect to x-axis. More
details on the Hodograph method and the analytical solution can be found in [2]. In
our case the flow direction is upwards with the wall boundaries left and right. Their
topology is derived from the analytical solution where the chosen boundaries of our
test case represent two stream lines. The inflow and outflow boundaries are circles
also given by the exact solution. The chosen geometry leans on th article [21].

In spite of being a transonic flow, it is smooth in the whole domain and since
we can compute an exact solution at each grid point there is also a quantitative
analysis possible. In addition the flow is supposed to be irrotational and isentropic.
We performed the simulations on three successively adapted regular triangular grids
imposing the exact solution on every boundary. Starting from the exact solution as
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Fig. 5 One of the used triangular grids, steady solution of the first order basic method
(middle) and defect correction solution with 4th order reconstruction (right)

the initial condition we use a first order scheme as the basic method for the iteration
to a steady solution. In Fig. 5 the middle fine grid is depicted together with the
steady solution of the basic method and the solution corrected with IDeC. We expect
a complete symmetrical solution with a defined circular sonic line. The first order
basic method clearly failures in these flow topologies. There are small instabilities,
nevertheless the method is stable and converges perfectly, which is important for
the method of iterated defect correction. For the defect correction we applied a 4th
order accurate WENO reconstruction with the parameters ne = 2L, r = 6, ε = 10−14

and λc = 105.
With the IDeC we get a good solution which is near to the exact one in spite

of the unsymmetrical solution of the basic method. With this setup we reach the
theoretical convergence order of the reconstruction, proving the possibilities of the
iterated defect correction method. If we compare the absolute error Lp-norms (Tab.
3) of both solutions this means a correction of the basic scheme from one up to four
orders of magnitude for the finest grid.

Beside the nonlinear Euler equations we applied the method of iterated defect
correction on the Navier-Stokes equations as well. Similar to the convergence stud-
ies shown before, we used the method of manufactured solution and solved

ut +∇ ·F(u,∇u) = s(x) (35)

with F(u,∇u) = Fc(u)−Fd(u,∇u), where Fc and Fd denote the convective respect-
ively the diffusive flux. The defect correction formulation in (11) does not change in
the case of solving the Navier-Stokes equation, but is just extended by the diffusive
flux what results in
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Table 3 Convergence rates for the first order basic method (up) and the corrected solution
with 4th order reconstruction (down)

N L∞ L1 L2 OL∞ OL1 OL2

Basic method O1
32 5.55E-02 5.89E-02 3.68E-02 - - -
64 3.56E-02 3.14E-02 2.01E-02 0.9 0.9 0.6
128 2.20E-02 1.64E-02 1.06E-02 0.9 0.9 0.7

Basic method O1 → IDeC with O4 reconstruction
32 4.17E-03 9.55E-04 8.10E-04 - - -
64 3.23E-04 4.10E-05 4.04E-05 3.7 4.5 4.3
128 1.90E-05 2.07E-06 2.04E-06 4.1 4.3 4.3

R(Qi) =

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f c(Qi)xdxdt +

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f d(Qi,(Qi)x)xdxdt (36)

with Qi still acting as a placeholder for u[k]i ,u[k+1]
i and w[k]

i . Similar to the Euler
equations the local defect is now computed for both fluxes, the convective and the
diffusive flux. A high order formulation for the diffusive flux is therefore necessary.
We have chosen the approximation suggested by Gassner et al. in [8]. It enables
a one-step numerical method of high order accuracy in space and time using the
same data as for the convection flux. Based on the idea of Godunov for advection
problems not with constant initial data but with a linear initial distribution, it res-
ults in the so-called diffusive generalized Riemann problem (dGRP). Solving this
Riemann problem yields two parts, the one containing the arithmetic mean value
of the first derivative, whereas the second contains a physically motivated limiting
term composed of the jump in the state of two adjacent cells. In 2D and 3D this
leads to

∫

∂Ci

g
(

w[k]
i ,∇w[k]

i

)
ndS ≈ ∑

K∈∂Ci

nGP

∑
j=1

ωK
j gnK

(
w[k]

i, j ,
(

w[k]
i, j

)
nK

)
SK (37)

with (
w[k]

i, j

)
nK

=
1
2

(
∂
∂n

w[k],+
i, j +

∂
∂n

w[k],−
i, j

)
+η

(
w[k],+

i, j −w[k],−
i, j

)
(38)

a numerical approximation for the diffusion flux, ∂/∂n denoting the derivative in
normal direction. The characteristic length h is taken as twice the distance from
the barycenter of the cell Ci to the barycenter of the edge K of the computed flux.
The integration is again done by Gaussian quadrature with ωK

j the weights on the
edge K using a total number nGP of integration points. The jump in the state of two
neighboring cells is multiplied by the parameter η
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η =
1

h
√

1
2π

(39)

which can also be interpreted as a penalty term for the jump. With the chosen WENO
reconstruction we obtain the derivative directly from the reconstructed polynomial
distribution. However, the theoretical convergence order for this flux is limited to M,
the degree of the reconstruction polynomials, in the case of a finite volume method.
This is due to the fact that we use the first derivation of our polynomials losing hence
one order of accuracy (see also [8]).

As an exact solution for the iterated defect correction applied on the Navier-
Stokes equations simulated in two dimensions we took

ue =

⎛
⎜⎜⎝

sin(πx)sin(πy)+ 4
sin(πx)sin(πy)+ 4
sin(πx)sin(πy)+ 4
(sin(πx)sin(πy)+ 4)2

⎞
⎟⎟⎠ (40)

with u = (ρ ,ρu,ρv,ρe)T denoting the vector of the conservative state. By inserting
(40) into (35) we can again compute the source term s, which is only a function of
the space x. To test the method of iterated defect correction for rather viscous flows
we chose a viscosity μ = 10−1, which results in a very low Reynolds number of
Re = 80. As the temperatures are very low and do not take effect on the viscosity,
we performed these computations with the assumption of a constant μ . The simula-
tions were all carried out on a fully periodic domain Ω = [0;2]x[0;2] with periodic
boundaries on successively adapted regular triangular grids.

As we use the derivative of the polynomial distribution for the flux approxima-
tion we have to take a basis scheme with at least second order of accuracy for the
defect correction. In Tab. 4 we show the convergence rates of the test case above
computed with a second order basis method and corrected by a local defect using
a 4th order reconstruction. Motivated by several assumptions found in the literature
on the numerical error which is supposed to be dominated by the convection part we
could think of dividing the local defect into an convective and a diffusive part. As
both can be computed independent from another we performed the same simulation

Table 4 Convergence rates computed for the pressure for a second order basic method and a
defect correction with 4th order reconstruction

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O2 → IDeC with O4 reconstruction
0.200 2.05E-01 1.95E-01 1.23E-01 - - -
0.100 1.40E-02 1.36E-02 8.63E-03 3.9 3.8 3.8
0.050 8.87E-04 8.84E-04 5.54E-04 4.0 3.9 4.0
0.025 5.81E-05 5.49E-05 3.46E-05 3.9 4.0 4.0
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Table 5 Convergence rates for the second order basic method (up) and the corrected solution
with 4th order reconstruction (down) and a local defect computed only from the convection
flux

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O2
0.200 6.69E-01 6.27E-01 3.99E-01 - - -
0.100 1.78E-01 9.66E-02 1.51E-01 1.9 2.0 2.0
0.050 4.66E-02 3.85E-02 2.44E-02 1.9 2.0 2.0
0.250 1.42E-02 1.04E-02 6.50E-03 1.9 1.9 1.9

Basic method O2 → IDeC with O4 reconstruction
0.200 2.01E-01 1.94E-01 1.22E-01 - - -
0.100 2.15E-02 2.33E-02 1.41E-02 3.2 3.1 3.1
0.050 7.08E-03 8.00E-03 4.77E-03 1.6 1.5 1.6
0.250 2.91E-03 3.70E-03 2.18E-03 1.3 1.1 1.1

as before, with a local defect defined only in the convection flux setting the local
defect of the diffusion to zero.

From the convergence rates in Tab. 5 one can see that for low Reynolds numbers,
i.e. for flows dominated by the viscosity, it is indispensable to compute the local
defect also for the diffusive fluxes to reach the optimal order of convergence. How-
ever, the absolute error norms of the corrected solution are lower than the ones of
the basic method computed with second order accuracy. That means, by taking into
account only the local defect of the convective flux we can not reach the full optimal
convergence order but we obtain a slightly better solution than that computed with
the basic method.

4.2 Application Test Cases

4.2.1 The RAE 2822 Profile

As a first application test case for the method of iterated defect correction we sim-
ulated the flow around the RAE 2822 profile in two dimensions. It is one of the
official test cases of the project MUNA. We solve only the nonlinear Euler equa-
tions for this test case, so the grid we used is fully unstructured and contains about
18.000 elements with a relatively high discretized profile of 180 points per each half
of the profile. The farfield is situated at 40 cord lengths and the profile is simulated
as slip wall with the velocity normal to the wall set to zero. The flow was defined by
the flow conditions of the so-called test case 9 with Ma = 0.73 and an incident angle
α = 2.78

◦
. This yields a transonic flow with a shock on the upper side of the pro-

file (see Fig. 6, right). To compare the solution of the iterated defect correction we
performed the simulation on the same grid with the numerical code of the DLR
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Fig. 6 Fully unstructured grid for the RAE 2822 profile (left) and Mach number distribution
of the corrected solution and a direct solution with the TAU code using a second order TVD
upwind scheme (right)

("Deutsches Zentrum für Luft- und Raumfahrt"), the TAU code, used as standard
code for the project MUNA. The parameters for the TAU code were set to a second
order TVD scheme with a least squares reconstruction and the Roe approximation
for the convective flux.

In the case of iterated defect correction we used a first order basic method and
corrected the steady solution by a local defect reconstructed with the WENO method
described in section 3 using polynomials of degree two. The difference between the
basic method and the corrected solution can be seen for the aerodynamic coeffi-
cients. In Fig. 7 we show the lift and drag coefficients over the number of iterations.
Our iterative method is a rather suboptimal explicit method and so the number of
iterations needed for a steady solution is quite high but does not influence the defect
correction and is not of interest here. When the solution does not change any more
we compute the local defect and solve afterwards the modified equations (5) to ob-
tain a corrected solution which is denoted by the small arrows in Fig. 7. So each
small arrow stands for a defect correction iteration.

We can see that the lift coefficient could already be corrected to the end solution
after just one defect correction, whereas the drag coefficient needs some more defect
correction iterations to converge. In the case of the lift coefficient a correction of
about 11% was obtained and the drag coefficient could be corrected with even 28%
of the first order solution, what corresponds to a total reduction of around 80 drag
counts. The results of the TAU code serve here not only for validation but as a
comparison as well, not having an exact solution for this test case.

In addition to the aerodynamic coefficients we can clearly see that by the iterated
defect correction method with a 3rd order WENO reconstruction the shock is better
resolved than it is with the second order least squares in the TAU code (see Fig. 6,
right). Only if we once adapt the grid globally we are able to reach approximately
the same shock resolution with the second order scheme.
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4.2.2 Laminar Boundary Layer at High Reynolds Number

For the second application we solve the compressible Navier-Stokes equations at a
low Mach number for a classical test case, the flow over a flat plate. We are simu-
lating a laminar boundary layer but for a very high high Reynold number. Ludwig
Prandtl and Blasius, one of his students, made pioneering achievements with their
work on the boundary layer. This ended up in the solution of Prandtl’s boundary
layer approximation equations by Blasius, reducing them to a nonlinear ordinary
differential equation (ODE) of third order for the case of a laminar steady flow.
This ODE can be solved nowadays numerically by a math algebra program with
an arbitrary accuracy. We employed the software Matlab where we solved Blasius’
boundary layer equations (see e.g. [16]) with a four step Runge-Kutta scheme and a
Newton-Raphson iteration method. This serves us as the reference solution for the
iterated defect correction applied on the Navier-Stokes equations.

To point out the abilities of the WENO reconstruction in a reference space used
in our work and the approach of the iterated defect correction we still used a fully
unstructured triangular grid even in the boundary layer. For a finite volume scheme,
this is a quite demanding task where surely some extra fine tuning is necessary to
obtain satisfying results. One of them turned out to be the numerical flux approxim-
ation for which we took the HLLC flux as described in [20]. Our computational do-
main is Ω = [−0.5,2]x[0,0.05] discretized by a total of 5250 triangular elements. In
the interval −0.5 < x < 0 we use a slip wall boundary condition where the velocity
normal to the wall is zero. At x = 0 we impose than a non-slip wall adiabatic bound-
ary condition in the interval 0 < x < 2. The free stream Mach number is Ma∞ = 0.3,
resulting from the free stream flow parallel to the wall with u∞ = 0.3, ρ∞ = 1 and
p∞ = 1/γ . As we use the equation of state for ideal gas the ratio of the specific heats
is γ = 1.4, whereas the Prandtl number is Pr = 1.

Iteration

C
L

0 2500 5000 7500 10000 125000.8

0.85

0.9

0.95

1

1.05

IDeC O3 WENO
TAU
IDeC Iteration

steady solution of first
order basic method

3rd order corrected solution

Iteration

C
D

5000 7500 10000 125000.018

0.02

0.022

0.024

0.026

0.028

0.03

IDeC O3 WENO
TAU
IDeC Iteration

steady state of the first
order basic method

3rd order corrected solution

Fig. 7 Lift (left) and drag (right) coefficient computed with a first order basic method and
a 3rd order defect reconstruction, compared with a second order TAU code solution on the
same grid
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For the chosen high Reynolds number of Re = 106[1/m] we set our viscosity
to μ = 3 · 10−7 making again the assumption of a constant viscosity in the whole
domain. To resolve the flow at high Reynolds numbers, which implies a very thin
boundary layer of δx=1 = 5 ·10−3 in our case, a highly stretched grid in the boundary
layer is necessary. At x = 1 we therefore have cells with an aspect ratio of 1 : 205.
However the chosen spacing at the first cell of y1 = 4 ·10−4 is still quite high com-
pared to setups in the literature which are meant to be solved with a finite volume
method 2nd order TVD method (see e.g. [9]). In addition we use only 8-9 cells to
discretize the boundary layer at x = 1.

The initial condition is given by the free steam conditions and we take a homo-
geneous block profile with the free stream conditions at the inflow. It is important
that mass can escape at the farfield, since due to the boundary layer growth we get
a non-zero velocity outwards. At the outflow we can use simple extrapolation of the
inner state values and impose only the free stream pressure. For the computation we
used a second order basic scheme to obtain a steady solution which we reach after
t = 20 seconds of simulation time. After each steady solution we apply the defect
correction with a 4th order accurate WENO reconstruction again with the paramet-
ers ne = 2L, r = 6, ε = 10−14 and λc = 105. Left in Fig. 8 we see the distribution
of the dimensionless x-velocity u/u∞ in the whole domain for the basic method. In
addition we compare the Blasius solution with the velocity profiles of both u and
v components of the velocity at the position x = 0.7 (see Fig. 9) and with the skin
friction coefficient over the entire plate (see Fig. 8, right). For all comparisons the
corrected numerical solution, here shown after four defect correction iterations, is in
good agreement with the Blasius reference solution. At this point, we have to men-
tion, that using a scheme of higher order with WENO reconstruction is unstable and
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Fig. 8 Flat plate at high Reynolds number Re = 106[1/m] with α = 0
◦

and Ma = 0.3 com-
puted with a 2nd order basic method and corrected using a 4th order WENO reconstruction.
Left we show the distribution of the dimensionless x-velocity u/u∞ in the whole computa-
tional domain and right the skin friction coefficient is depicted over the plate length after four
defect correction iterations.



IDeC Based on WENO Reconstruction 151

η

u/
u ∞

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

basic method O2
IDeC - O4 reconstruction
Blasius solution

2.5 < η < 7

η

v/
u
∞
√R

e x

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

basic method O2
IDeC - O4 reconstruction
Blasius solution
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puted with a 2nd order basic method and corrected using a 4th order WENO reconstruction.
Distribution of the dimensionless x-velocity u/u∞ (left) and of the dimensionless y-velocity
v/u∞

√
Rex (right).

no steady solution can be obtained. The method of iterated defect correction seems
to be stable, as it is based only on a second order scheme, and is nevertheless able
to correct the basic method with the high order accurate defect.

For the u component we can see in the zoom made in the section of the

dimensionless variable 2.5 < η < 7 with η = y/
√

νx
u∞

and the kinematic viscosity

ν = μ/ρ , that we get a smoother distribution by applying the defect
correction. In the case of the dimensionless v component of the velocity v/u∞

√
Rex

with Rex =
√ u∞x

ν the improvement of the solution is considerable. The completely
wrong distribution of the basic method could be corrected to fit quite well with the
reference Blasius solution. Near the wall we nevertheless reach the limits of the re-
construction, which has shown so far that the reconstruction in the reference space
can cope even with these highly stretched elements. The corrected skin friction coef-
ficient (Fig. 8, right) shows also better agreement with the reference solution espe-
cially at the beginning and the end of the plate. The remaining difference is due to
the stagnation point at x = 0 where high gradients occur, causing oscillations. As
can be read in literature the prediction of skin friction coefficients still remain a
difficult issue in the numerical simulation. Similar to [9] we compare therefore the
friction coefficients at the end of the plate at x = 2. The analytical solution can again
be computed by solving the Blasius equations and we get

c f =
0.664√

Rex
with Rex =

ρu∞x
μ

. (41)

With c f (x = 2) = 4.983 · 10−3 the error of the skin friction of the basic method is
of 6.1% and with the iterated defect correction approach it could be corrected to
c f (x = 2) = 4.653 ·10−3 resulting in a remaining error of 0.9% for this case.
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4.3 Conclusion

In this work we applied the method of iterated defect correction to a finite volume
scheme and solved both, the Euler and the Navier-Stokes equations. A steady
solution of lower accuracy, mostly of first or second order, is the starting point for
the method of iterated defect correction. The next step consists of a WENO recon-
struction which is used to evaluate the local defect of the steady solution. If we
modify our equations by putting the local defect on the right hand side as a negative
source term, the low order solution can be iteratively shifted to the accuracy of the
reconstruction. The main advantage of this approach is that the high order scheme
has not to be solved - the high order scheme is only used to calculate an estimation
of the local discretization error. Hence, this approach can be used to increase the
accuracy of an existing code in a straightforward way. It seems that the high order
approximation also inherits some additional stability from the low order solver. Our
results show that the iterated defect correctionin combination with the WENO re-
construction in [4] for unstructured meshes works very well. We did not succeed to
define robust boundary conditions in any case. This seems to be even more subtle
than the definition of high order boundary conditions in general.

We have shown numerical convergence results up to sixth order of accuracy, ap-
plying the method of iterated defect correction starting with a first order steady
solution. By modifying the original approach, a relevant speed up could addition-
ally be achieved for equations with source terms depending on the solution itself.
The scheme remained stable even for the more challenging test case of the transi-
ent Ringleb’s flow. A fourth order accurate solution could be achieved here from
a first order numerical scheme. Convergence studies using the manufactured solu-
tions method have shown that in the case of the Navier-Stokes equations, where a
local defect can be computed separately for the convective and the diffusive fluxes,
it is crucial for flows with low Reynolds numbers to evaluate the local defect for
all fluxes. Neglecting the defect in the convective fluxes still gave better absolute
error norms compared to the low order solution, but the expected high order of the
reconstruction was not reached for our test cases.

A RAE 2822 profile have been computed as an application test case, solving the
Euler equations with a first order basic scheme applying a third order accurate re-
construction to determine the local defect. Compared to the first order solution the
aerodynamic coefficients like lift and drag could be corrected by 11%, respectively
28%. As a second application test case a laminar boundary layer at a high Reynolds
number of Re = 106 was numerically solved using the iterated defect correction.
Better results compared with the second order starting solution could be achieved
applying the defect correction combined with a fourth order reconstruction. For ex-
ample a reduction of the skin friction error at the end of the plate from 6.1% with
the basic scheme to 0.9% was reached in this case.
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Uncertainties of Numerical Structural Models
in the Frame of Aeroelasticity

P. Reich, A. Reim, M. Haupt, and P. Horst

Abstract. Today, numerical methods for structural and aerodynamic problems are
reaching highly versatile and reliable levels. Therefore, the coupling of both do-
mains can be solved at a high standard. On the other side, the accuracy of aeroelastic
analyses depends on the level of precision with which the stiffness properties and,
thus the structural behavior of an aircraft wing structure in means of deformation can
be predicted. The presence of uncertainties within the structural model which is in-
tegrated in the coupled analysis can affect the fidelity of the structural response and,
thus, influence the results of the numeric aerodynamic simulation as well. Invest-
igations carried out by the Institute of Aircraft Design and Lightweight Structures
(IFL) in the frame of the MUNA-project were focused on two types of uncertainties
affecting the accuracy of the static aeroelastic analysis: stochastic uncertainties and
uncertainties due to modeling simplifications. Stochastic uncertainties are caused by
the deviation of actual structural parameters in realized aircraft wings, like Young’s
modulus or wall thicknesses from the original ideal design. This deviations affect
the stiffness of the real structure and, thus the structural and aerodynamic response.
A method to estimate the sensitivity of the wing structure to random input paramet-
ers is presented in the second part. The second class of uncertainties arises from
approximations connected to the idealization of the physical and geometric proper-
ties of the real structure used in finite element (FE) structural models. In the first
part of this work, an overview of modeling effects is given which affect the stiffness
properties of the FE structural models and in turn influence the results of static aer-
oelastic analysis. The coupled analysis is carried out with a high-order panel method
for the aerodynamic domain and a parametric finite element structural model, which
allows a wide variation of material and geometric properties of wing box structure.
This structural model as well as the aerodynamic method and the coupling routines
are presented in the following section.
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1 Finite Element Models and Analysis Methods Used for
Uncertainty Quantification

1.1 Parametric Finite Element Model

A code already developed at the Institute of Aircraft Design and Lightweight Struc-
tures (IFL) is enhanced to generate a finite element model of the structure. It is
based on the parametric description of airplane wing geometry and a layout of the
load-bearing structure [1], [2]. The code is written in Patran Command Language
(PCL) which allows an automated generation of finite element wing models by the
preprocessor MSC Patranő.

A HIRENASD wind tunnel model [3] scaled up to 58 m of span is employed as a
test structure for investigations carried out in the context of the MUNA project. The
wing box structural layout and the arrangement of engines are taken on from the
predecessing project [4] and resemble the wing of an AIRBUS A340 aircraft (see
Fig. 1).

The geometric data are imported from an ASCII input file and are employed
to generate a finite element shell model of the wing. A transonic transport aircraft
design is used with the corresponding weights given in table 1 to evaluate the target
lift for the calculation of aerodynamic and static inertial loads.

Due to a high number of required aeroelastic calculations, especially for the
stochastic analysis presented in the second part of the work, the high order panel
method HISSS is used instead of an Euler or RANS code to calculate the discrete
aerodynamic nodal loads. The lack of accuracy when calculating a load distribution
on the wing surface at higher Mach numbers had to be accepted so that the numeric
costs could be kept reasonable. The finite-element solver NASTRAN was used to
calculate the nodal displacements of the structural model.

The in-house code coupling library ifls [5] was employed to perform the fluid-
structure interaction. The code handles the load and displacement transfer between
non-conform grids by using a three-field approach in combination with Lagrange
multipliers. The structure of the coupling routine allows the interaction between dif-
ferent commercial numerical solvers. The converged angle of attack αEqSt of static
aeroelastic equilibrium was estimated by ifls iteratively for given lift and flow con-
ditions by variation of an overall (geometric) angle of attack αg of the wing.

Table 1 Weights for the transonic transport aircraft design used in this study

Gross weight mTOW to 256

Fuselage and empennage unit structure + payload mRF +mN to 95
Wing structure mW to 35
Total fuel mass mF to 106
Propulsion group mPG to 20
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Fig. 1 HIRENASD wing geometry and structural layout

Nodal loads calculated on the aerodynamic surface were transferred to the nodes
of the structural grid by means of conservative interpolation in the area of the wing
box. In the region of the flap and slat structure the aerodynamic nodal loads were
applied to additionally created auxiliary structural nodes and tied to the wing box
by multi point constraints of RBE3 type.

The static inertial loads including fuel weight, engine loads and the weight of
the flap structure had also to be taken into account to represent realistic loading
conditions. The flap and slat structure were idealized as point masses and connected
to the spar structure by multi point constraints in the same way as the aerodynamic
forces. The masses of the high lift devices were also required for this idealization
and were estimated by handbook methods [6]. Tank loads were also modeled with
point masses and RBE3s. The tank masses were evaluated for each wing bay by
calculation of the volume taken by the fuel for a given degree of refueling.

The static inertial loads including fuel weight, engine loads and the weight of the
flap structure had also to be taken into account to generate realistic load cases. The
flap and slat structure were idealized as point masses and tied to the spar structure
by multi point constraints in the same way as the aerodynamic forces. The masses of
the high lift devices needed for this simplified approach were estimated by handbook
methods [6]. Tank loads were also modeled with point masses and RBE3s. The tank
mass was estimated for each wing bay by calculation of the volume taken by the
fuel for a given degree of refuelling.

The wing box structure was sized with respect to strength criteria and constraints
of buckling stability. Two load cases were selected for the sizing process: a 2,5g
maneuver and the landing impact (see table 1). The strength sizing was carried out
by a fully stressed design using stress distribution computed for limit loads and a
yield-stress criterion. The design against buckling failure was performed by hand-
book methods [7] using maximal allowable stresses for the compression panels
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Table 2 Weights for the transonic transport aircraft design used in this study

2.5g maneuver
Altitude H km 11
Mach number Ma - 0.82
Gross weight mTOW to 256

landing impact
Altitude H km 0
Mach number Ma - 0.2
Gross weight mTOW to 182

Cruise flight (1g)
Altitude H km 11
Mach number Ma - 0.82
Gross weight mTOW to 256

as well as optimum design curves and semi-empirical formulas for estimation of
stiffener spacing and cross-section geometry.

Due to constraints defining the highest permitted elastic deflection of the wing
tip given in [4], the wing box was also sized under consideration of stiffness. For
this additional sizing procedure the contribution of structural members to the wing
deflection was calculated following the pattern of the modified fully utilized design
method (MFUD) proposed by Patnaik et al [8]. For the constrained degree of free-
dom (in this case it is the bending displacement) the sensitivity factors can be cal-
culated for each component of the structure. These factors are defined as dw/dm
where dw is a partial change of displacement and dm is a change of structural mass.
The change of bending deformation and structural mass are evaluated by attach-
ing additional material (by increasing wing thickness or stiffener cross-section) to
each structural member and recalculating the displacement w of the modified struc-
ture subjected to a reference load case. These sensitivity factors are used within the
MFUD-procedure to weigh the increase of wall thickness of the structural members
until the displacement constraint is achieved. This method permits to attach an addi-
tional structural mass only in those areas of the wing box whose stiffness influences
the given deformation at most. The weight of the structure sized with this approach
was estimated to be very close to those obtained by a time-consuming optimization
procedure [8].

1.2 Quantification of Uncertainty

For the quantification of uncertainty affecting the static aeroelastic response differ-
ent structural and aerodynamic output parameters are considered. Evaluation cri-
teria commonly used for characterization of the aeroelastic response are the lift and
drag coefficients for a given angle of attack, natural frequencies, or flutter speed of
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the investigated aircraft. In this study only static aeroelasticity is treated, therefore
the study is concerned with the aerodynamic performance of an aircraft wing un-
der cruise flight conditions (see table 2). For this purpose the converged angle of
attack αEqSt is evaluated iteratively for a given lift. A coupled fluid structure ana-
lysis is performed using derivates of the wing structural model presented in section
1.1 which is affected by different types of uncertainties. For each derivate relative
deviation ΔαEqSt/αEqSt compared to the result obtained for a reference structure
(without modifications) is calculated.

The global values for relative difference to the converged angle of attack
ΔαEqSt/αEqSt presented in this work are influenced not only by the change of struc-
tural parameters, but are dominated by the aerodynamic properties of the wing as
well as by the given flow conditions and aerodynamic method used within the static
aeroelastic analysis. For this reason, the results presented within this work should
be considered as sample values to demonstrate the degree of deviation within aero-
dynamic output parameters for a special test case.

To examine the change within the wing box stiffness the structural response
(without aeroelastic coupling) is calculated for different derivates of the FE test
model subjected to a reference load case. The reference load case is represented
by a pressure distribution and inertia loads obtained for a reference structure un-
der cruise flight conditions. Local values of bending angle w′(y) and twist Θ(y)
are computed along the structural wing span. These "beam-like" deformations are
extracted from the nodal solution of the 3D finite-element model by means of the
method presented by Malcolm and Laird [9]. The procedure employs a least squares
fitting to extract three translational and three rotational section deformations from
the nodal displacements in x-, y- and z-direction for each wing section. This process
is applied to a series of sections along the wing span to calculate the bending and tor-
sion. For the local values of bending and torsional angle the deviations Δw′(y) and
ΔΘ(y) are calculated relative to the deformations obtained for the reference struc-
tural model. The local deviations are related to the maximum reference values of the
corresponding deformation, w′(y)max and Θ(y)max respectively. This approach en-
sures that no singularities can occur due to very small local values within the torsion
deformation.

To estimate the effect of stiffness variation on the wing aerodynamics, a well-
known concept for the elastic angle of attack αel is used. This kinematical term
describes the local change of the geometric angle of attack αg in flight direction
due to elastic deformation of the wing. It affects the load distribution caused by the
flexible structure of lifting surface and thus the overall lift coefficient. Deviations in
torsion and bending stiffness of the wing box cause a change of the lift distribution
over the wing span compared to the reference structure. Under conditions of steady
cruise flight this lift change must be corrected by adapting the angle of attack αg of
the aircraft iteratively until target lift will be achieved and αEqSt = αg.

For swept wings the local angle αel(y) depends on the torsion deformationΘ(y)
as well as on the bending angle w′(y):

αel =Θ cosϕ−w′ sinϕ (1)
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From the kinematical interrelationship in equation (1) follows that for a wing with
positive angle of sweep back ϕ the torsion and bending contributions of the elastic
angle of attack are directed mutually. For this reason, the change of bending angle
due to reduction of bending and shear stiffness of the wing box structure can be
compensated by the change of torsion deformation caused by the reduced torsion
stiffness to a certain degree. For common transonic transport aircraft wing struc-
tures the angle αel is dominated by the bending deformation and for this reason is
negative.

To estimate the effect of the variation of torsion and bending distortions on the
deviation of the elastic angle the propagation of uncertainty is applied on equation
(1). For a local relative deviation Δαel(y)/αel

max in elastic angle of attack a mathem-
atical correlation (2) is the following:

Δαel(y)
αel

max
=

ΔΘ(y)
Θmax

(Θmax

αel
max

)
cosϕ(y) − Δw′(y)

w′
max

(w′
max

αel
max

)
sinϕ(y) (2)

The local values ΔΘ(y)/Θmax and Δw′(y)/w′
max are relative deviations of tor-

sion and bending distortions due to the local change of wing box stiffness caused by
different degrees of modeling simplification. These values are structural parameters
depending on the stiffness properties of the structure. The terms Θmax/αel

max cosϕ
and w′

max/αel
max sinϕ in equation (2) are ratios of the local torsional and bending

angles relative to the maximum value of elastic angle of attack. These values de-
pend on the local sweep back angle ϕ(y) of the wing box reference axis, the load
distribution in chord and span-wise directions (ratio of the distributed moment relat-
ive to the distributed load) as well as on the ratio of the torsion stiffness GJ relative
to the bending stiffness EI.

The local deviations of the elastic angle of attack Δαel(y)/αel
max are related to

the maximum value obtained for the reference FE model in the same manner like
deviations of structural deformations. Since the effect of the deviation of this para-
meter on the geometric angle of attack αg and thus on the local lift distribution
is depending on the magnitude of αel(y) this approach seems to be more suitable
for the objective of the present study than relating this term to the reference local
values as commonly done. The latter method would overestimate the influence of
the deviation Δαel(y) considering local variations of the elastic angle of attack near
the root as well, which have no appreciable effect on the load distribution due to
the very small values of αel(y) within this area.

The distribution of the local deviations ΔΘ(y)/Θmax, Δw′(y)/w′
max and

Δαel(y)/αel
max varies along the wing structural axis, depending on the stiffness and

load distribution of the present wing structure and aerodynamic design. To obtain
global deviation parameters the mean values of these local variations are calculated
in sections using a relation defined exemplary in equation (3) for the bending angle:

[Δw′] =
1
s

∫ s

0

Δw′(y)
w′

max
dy (3)
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where s is the structural span of the wing box. Mean values of twist [ΔΘ ] and
elastic angle of attack [Δαel ] are obtained in the same way. To assess the contri-
bution of the variations of torsional and bending angles to the deviation of elastic
angle of attack, the local values Δw′(y)/w′

max and ΔΘ(y)/Θmax, multiplied with
the parameters’ terms w′

max/αel
max sinϕ and Θmax/αel

max cosϕ from equation (2), are
integrated by means of eq.(3). These "transformed" values [Δw′]tr and [ΔΘ ]tr are
also used within the present work to estimate the effect of variation within struc-
tural stiffness properties caused by modeling or stochastic uncertainties on the load
distribution. The difference between the term [Δαel ] = [ΔΘ ]tr − [Δw′]tr calculated
from the global bending and torsion deformations and the mean value resulting from
integration of the local values Δαel(y)/αel

max directly obtained from the structural
response is between 0.01% and 0.03%.

Because nonlinear behavior of aeroelastic problems is highly depending on the
local flow conditions as well as on local stiffness characteristics of the wing struc-
ture, the change in equilibrium state angle of attack ΔαEqSt/αEqSt cannot be pre-
dicted using a mean value [Δαel ] for a complex structure in a direct way. Never-
theless, as will be shown within the following sections, the parameter [Δαel ] is a
suitable indicator to estimate the deviation tendency of wing aerodynamics due to
the variation within the stiffness properties of the wing.

2 Part I: Model Uncertainties

2.1 Introduction

To obtain a high level of accuracy for a structural model one possible approach is
to reproduce the real structure with a high level of geometric detail. This approach
implies two general drawbacks: it is connected with high modeling effort on the one
hand and requires fine discretization of the wing box geometry on the other hand
(see Fig. 4, on the left hand side), resulting in high model size and numerical costs.
To demonstrate the dimension of complexity connected with a detailed model the
reference structure described in section 1.1 is considered. The FE model has 740
design variables and is realized by 24900 shell and 10700 bar elements having in
total 260000 degrees of freedom.

For coupled aeroelastic analysis, requiring a high number of iterations the min-
imization of the finite element model size could be of high priority. As first ap-
proach to reduce the number of degrees of freedom, reduction techniques are used
to condense a 3D wing box structural model into a 1D-beam stick model. In the
other case, if a parametric FE wing model with variable geometry should be op-
timized, the amount of design variables associated with high level of modeling de-
tail is undesirable. To reduce the number of design variables a simplified structural
model is preferred which is composed only of main components of the wing struc-
ture, like top and bottom covers, ribs and spars, including spar caps. Within such
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simplified models stringer stiffeners are commonly idealized by an additional layer
with orthotropic material properties. The next sections deal with the effect of the
simplifications within the 3D FE models.

2.2 Design of the Wing Structure

The structure of a common transport aircraft wing is composed of the following
components (see fig. 2):

• Spars with spar webs carrying shear load and spar caps which resist tension or
compression normal loads. Generally, the wing box is composed of a front and
rear spar. The rear spar is of special importance for the mounting of movables as
well as for systems integration. As shown in fig. 2, additive components, like a
mid-spar, or a false rear spar can be integrated in the wing structure as well.

• Top and bottom covers which have a contouring as well as a load carrying func-
tion. These components carry both, normal and shear stresses. Along with main
spars, the wing skin forms the box structure of the wing. The skin parts are
stiffened by stringers to prevent buckling failure

• Ribs which can be oriented perpendicular to the wing box axis or parallel to the
aircraft symmetry plane. Ribs are used to keep the aerodynamic shape of the
wing cross-sections under aerodynamic load and for insertion of concentrated
loads in the wing box structure caused by engine mountings or landing gear.

In figure 2 different levels of modeling details for each structural component are
depicted. The stiffening components, like stringers, spar- or rib caps can be realized
by beam elements with defined cross-sections, by rod elements neglecting the bend-
ing stiffness of the stiffener or can be "smeared" over the area of the correspondent
thin-walled structural component. The smeared stiffening component in turn can
be realized as an additional orthotropic material layer, which is reasonable when
modeling the skin-stringer panels or taken into account in the wall thickness of the
thin-walled components what is commonly done by ribs and spars.

In the current study the structural model is realized by shell and bar elements. The
inclusion of element offsets was used as a reference with highest grade of modeling
detail limited to the main stiffening components within the present work.

The different levels of detail, shown in figure 2 are employed within the test wing
model. The idealized FE models are derived from the reference geometry by repla-
cing the built-up structure, realized with shell and bar elements, by a.m. simplified
structural design. To estimate the deviations in the deformation behavior caused by
modeling simplifications the structural response of both the reference and simplified
wing box models is compared for a reference loading. To ensure the comparability
of these results the volume of the wing structure was kept constant for all derivations
with varying grade of the detail.

Uncertainties caused by different levels of approximation are discussed in the
following section. The intent of this overview is not to enable the general prediction
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of the modeling error of the structural and thus of the aeroelastic response resulting
from distinct simplification. Due to the individual design and stiffness properties
of wing structures realized in different aircraft types the contribution of structural
components to the bending, shear, and torsional stiffness as well as to the warp-
ing characteristics varies depending on a given structural design. Instead of that,
a series of calculations is performed to estimate the dimension of the deviations
resulting from different levels of simplification using the parametric finite element
model. The effect of uncertainty on the stiffness properties of the wing structure is
considered only in the frame of static aeroelastic analysis under assumption of lin-
ear elastic structural behavior. Non-linear effects as well as dynamic properties or
effects caused by the usage of non-isotropic materials are not in the objective of the
present work.

2.3 Uncertainties due to Modeling Simplifications

A series of comparing analyses is carried out to estimate the influence of geometrical
details on the accuracy of wing structural response. Global deviation parameters
presented in section 1.2 are used to evaluate at first the change in structural stiffness
components due to modeling approximations and secondly the influence of these
alterations on the static deformation of the wing in flight direction considering the
elastic angle of attack αel . For selected cases a static aeroelastic analysis is carried
out to calculate the deviation of equilibrium state angle of attack and, therefore, to
estimate the impact of altered structural stiffness on the aeroelastic response. To

Fig. 2 Components of the wing box structure
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distinguish the deviations of structural stiffness five integral parameters are listed in
tables 3 and 4 for each modeling effect. These parameters are the integral deviation
of bending and torsional angles [Δw′] and [ΔΘ ] relative to the elastic axis of the
wing, the "transformed" values [Δw′]tr and [ΔΘ ]tr of both angles in flight direction
as well as the global deviation of elastic angle of attack, [Δαel ].

2.3.1 General Simplifications

Effect of the Element Offset

To reproduce the outer mold surface of the real wing structure the shell elements
forming the wing skin must have an offset relative to the nodes of the discretized
geometry. By neglecting the element offset the distance of skin panels relative to
the neutral axis of the wing box will be overestimated. This effect will increase
the moment of inertia of the wing box cross-section following the parallel axis
theorem, which in turn results in higher bending stiffness of the wing structure
compared to the exact solution. The torsional stiffness will also be affected by the in-
creasing distance between the mid-lines of the top and bottom covers in accordance
with the Bredt-Batho formulation. The same effect on the bending stiffness appears
by ignoring the offset distance of beam or rod elements representing the stiffening
structural members. The latter case will be considered separately for each stiffening
component.

To estimate the impact of the modeling simplifications on the deformation beha-
vior of the wing box the structural response is calculated for the idealized and the
reference structural models. The integral values of the deviation in bending angle,
torsion and resulting elastic angle of attack compared to the reference structure are
given in table 3. For the FE wing model without element offset within the top and
bottom covers the bending stiffness increases accordingly to the a.m. effects result-
ing in an approximately 4% smaller bending angle which in turn reduces the local
angle of attack (cp. section 1.2). Torsion deformation is also reduced by 1.7% due to
the higher torsional stiffness having an opposite effect. The change in both degrees
of freedom results in 4.1% smaller elastic angle of attack due to the dominant in-
fluence of the bending stiffness (compare the values [Δw′]tr and [ΔΘ ]tr in table 3).
The sign of the transformed deviation parameter [ΔΘ ]tr changes due to the relation
to the maximum value of elastic angle of attack αel

max.
The converged angle of attack calculated for the more simplified structure shows

a 0.9% smaller value compared to the reference model (see fig. 5). This result cor-
responds with the trend predicted by the negative change of the elastic angle of
attack [Δαel ] given in table 3. Smaller (negative) values of αel(y) along the span
have a reduced effect on the load distribution compared to the reference structure
and, therefore, the target lift can be achieved under smaller angle of attack.
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Table 3 Deviations of bending angle, torsional angle and elastic angle of attack for different
states of modeling simplification

shell elems. without
offset

simplified BCs

rel. glob.
deviation

rel. glob.
deviation:
transf.

rel. glob.
deviation

rel. glob.
deviation:
transf.

[Δw′]/[Δw′]tr/% -3.955 -4.327 -5.446 -5.782
[ΔΘ ]/[ΔΘ ]tr/% -1.699 0.228 -29.534 3.974
[Δαel]/% -4.101 -1.806

Simplified Boundary Conditions

At the root, the wing is mounted to the wing center box and to the main frames
of the fuselage. Despite of high local wing box stiffness, a minimal translational
displacement of the wing skin in span wise direction is possible in the root area. If
this infinitesimal displacement is constrained by restriction of all translational and
rotational degrees of freedom along a root rib curve (see fig. 3, on the right hand
side), a reduction of bending and torsion deformations due to the overestimation of
wing root rigidity can appear. This kind of idealization is used when the structure of
a half wing is realized without the center box. To assure realistic boundary condi-
tions, see figure 3 on the left hand side, the displacement of upper and lower edges
of the root rib, should be constrained only in direction normal to the skin surface
(z-direction). The nodal displacements in spanwise direction (along the y-axis) as
well as nodal rotations have to be constrained only at the symmetry plane of wing
center box.

The effect of higher wing root rigidity has a local character influencing the bend-
ing and torsional deformations in the form of additional (negative) rigid body mo-
tions, resulting in the integral deviation of 5.4% within the bending and approx.

Fig. 3 Realistic and simplified boundary conditions
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30% within the torsional angle. Due to the mutually directed influencing tendencies
of these deformations, the resulting change within the elastic angle of attack is only
1.8% (see table 3). From the transformed values [Δw′]tr and [ΔΘ ]tr in table 3 it can
be seen that the rather high contribution of bending deviation in flight direction is
compensated by the much higher change of the torsional angle.

The results of the coupled aeroelastic analysis confirms with the tendency of the
deviation of elastic angle of attack αel(y) obtained by the structural response. This
moderate tendency of the change of is reflected in the deviation of the equilibrium
state angle of attack ΔαEqSt/αEqSt being only 0.54% (see fig. 5).

2.3.2 Idealization of Stiffened Structural Components

In the following sections, the effects of the different degrees of detail of modeling
are discussed. Several types of stiffener idealization are considered and the effect
of the simplifications on the structural behavior and aerodynamic properties of the
wing is evaluated by calculating structural and static aeroelastic response. The devi-
ations of structural response computed for each case are summarized in a test matrix
(see fig. 4). In the test matrix, different degrees of modeling detail are considered
for stringers, spar caps and rib caps. The levels of modeling detail are represented
by realizing the structural member by beam elements or rod elements, or by homo-
genizing the stiffeners as isotropic or orthotropic layer. The effect of element offset
is also considered for beam and rod elements as well as for the orthotropic material
layer. For the main idealizations, the deviation of converged angle of attack from
the reference case is plotted in figure 6.

Fig. 4 Deviations of structural deformations obtained for different levels of simplified
stiffener modeling
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Effects of Simplified Stringer Modeling

Explicit modeling of stringer stiffened top and bottom covers including property as-
sociation for stiffening members is very time-consuming especially if the stringer
cross-section geometry varies in both chord and span wise directions. Several de-
grees of stringer idealization are considered within the present study. A common
method to avoid the modeling effort is to create a skin-stringer-"laminate" with iso-
tropic skin and orthotropic stringer layers. The benefit of this approach is that only
one parameter is required to realize the skin-stringer-structure. This parameter is the
area ratio of the skin and summarized stringer cross-sections, commonly given in
the literature as 100:50 for thee design of transport aircraft wing structures [7]. The
structural model with stringers smeared as an isotropic layer presents the simplest
approach concerned in the present study.

Homogenizing discrete stringers over the skin area has two opposite effects on
the bending stiffness of the wing box. The first effect is the reduction of the wing
box local moment of inertia by neglecting the bending stiffness of the stringers. The
second effect is the overestimation of the wing bending stiffness caused by neglect-
ing the (offset) distance of the stringer cross-sections relative to the skin surface.
The effect of ignoring the bending stiffness of the stiffeners on the bending and tor-
sional deformation of the wing can be concerned on the basis of deviations obtained
for a FE model with stringers realized with rod elements. For this idealization, the
bending angle is increased by only 0.84% due to lower structural stiffness, resulting
in 0.87% greater angle of attack. The influence of stringer stiffness on the torsional
behavior and in turn on the elastic angle of attack is negligible (see table 4). The
marginal impact of stringer bending stiffness on the deformation behavior results in
change of geometric angle of attack being only 0.19% (see fig. 6).

In contrast to the effect of the stringer-stiffness, the overestimated contribution
of the stringer-cross-sections to the local wing box moments of inertia due to non-
considering the correct offset distance dominates the influence on the bending de-
formation. How can be seen in table 4 for the deviations obtained for FE models
with stringers idealized as isotropic and orthotropic layer without offset, the bending
angle decreases by 3.9− 4%. Because stringers do not contribute to the shear load
resistance of skin panels the stringer idealization as an orthotropic material layer
enables to reproduce the torsional stiffness of the wing box structure in the way that

Fig. 5 Different levels of stringer modeling detail
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is more realistic compared with stringers homogenized as isotropic material. This
trend is demonstrated by the smaller deviation of twist ( [ΔΘ ] = 1.1%) compared to
the simplest model ([ΔΘ ] = 6.3%). One remarkable effect of greater difference of
wing twist is the smaller deviation of elastic angle of attack of the structural model
with stringers idealized as isotropic layer ([Δαel ] = -3.4%) compared with the more
realistic approach ([Δαel ] =−4.1%). The trend predicted by the comparison of the
[Δαel ]-deviation parameters between the both structural models, confirms with the
results of static aeroelastic analysis. The deviation of converged angle of attack for
the skin-stringer compound realized with orthotropic stringer layer is slightly higher
(ΔαEqSt/αEqSt =−0.82%) as for a simpler structure (ΔαEqSt/αEqSt =−0.71%, see
fig. 6).

Effect of Simplified Spar Cap and Rib Cap Modeling

Effects occurs by modeling the spar caps with beam or rod elements with or without
considering element offsets are similar to those discussed in the section above. Due
to smaller cross-section of the spar caps relative to the cross-section of the whole
wing box this effects causes only marginal discrepancies of the bending and tor-
sion angle and thus of the elastic angle of attack. If spar stiffeners are considered
as isotropic layer in the wall thickness of the skin parts the bending stiffness in-
creases causing 0.8% smaller elastic angle of attack. The deviation [Δαel ] that res-
ults from neglecting the element offsets varies between -0.46% and -0.54% (see fig.
4). A static aeroelastic response was calculated for wing structure with spar caps
modeled with bar elements without element offset. The converged angle of attack

Fig. 6 Deviations of equilibrium state angle of attack for different variants of modeling
simplification



Uncertainties of Numerical Structural Models in the Frame of Aeroelasticity 171

αEqSt of this structure is only 0.11% smaller compared to the reference structure.
How can be seen from results in table 4 the influence of rib caps on the bending and
torsional deformation is marginal resulting in deviations of elastic angle of attack
being between 0.02% and 0.2%. Therefore, the influence of these stiffening com-
ponents on the deformation behavior and thus on the aerodynamics of the wing can
be neglected.

2.3.3 Conclusions

Within the first part of the work, a simple method was presented to calculate global
parameters, which enables to estimate the effect of uncertainties of structural mod-
els on the deformation behavior and thus on the aerodynamic properties of the wing
structure. This method was applied to investigate the impact of modeling uncertainty
on the structural and aeroelastic response of the wing of a wide-body transport air-
craft. The results of the study yield a rather good agreement between the deviation
trends of the structure subjected to modeling uncertainty, which are calculated for a
static loading and the discrepancy of aerodynamic properties of the wing obtained
by a coupled analysis. As mentioned above, the elastic angle of attack αel , employed
as evaluation parameter is dominated by the bending deformation of the wing struc-
ture. Since the top and bottom covers have the greatest contribution to the bending
stiffness of the wing, the simplified modeling of stringers has the major effect on the
accuracy of the structural model. The deviations of converged angle of attack αEqSt ,
used as performance criterion to evaluate the accuracy of the coupled analysis varies
between 0.2% and 1.44% for different degrees of modeling detail (see fig. 6).

As shown on the sample of simplified boundary conditions, the higher deviations
of twist and bending angle must not as well produce higher discrepancy of con-
verged angle of attack. In fact the deviations has to be transformed in flight direction
using the interrelationship give in equation (2) to estimate the resulting effect of the
discrepancies within both deformations on the load distribution.

3 Part II: Stochastic Simulations

3.1 Introduction

In the second part, the effects of stochastic uncertainties on the accuracy of static
aeroelastic analysis are investigated. A parametric finite element model (see section
1.1) is used to simulate the scatter of the structural input parameters expressed as
Gaussian standard normal distribution. Coupled aeroelastic analysis is performed
to obtain the deviation of the wing aerodynamics for a discrete distribution of the
stochastic input parameters using a high order panel code. A first order reliab-
ility method is employed to calculate the probability of change of aerodynamic
performance parameters due to the variation of structural stiffness properties. The
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results of the stochastic analyses performed for a simple test case are presented and
demonstrate robust behavior of a coupled aeroelastic system subjected by moder-
ately arbitrary structural parameters.

3.2 First Order Reliability Method

In the present work, the probability of failure Pf of the wing structure is computed.
It describes the probability that the structure does not to comply with the predefined
requirements. Thus, the term failure has to be distinguished from other terms, like
e.g. crash or disaster. Since the coupled fluid-structure analyses are very time con-
suming, the first order reliability method (FORM) was implemented to calculate the
stochastic characteristics of the wing [10]. FORM introduces the reliability index β
to describe the reliability of the structure. The main input to the method is the limit
state function G(X), where X is the vector of stochastic variables that influence the
structure. By definition, the limit state function is positive, if the structure fulfils its
requirements. Negative values are returned, if at least one requirement is violated.

In order to generate unique results for every problem, the vector of stochastic
variables is transformed into a vector of standard normal random variables X. This
leads to a limit state function G(X′) which is analyzed using the FORM routine. The
FORM is a gradient based optimization procedure which calculates the minimum
distance β between the limit state function defined by G(X′) = 0 and the origin of
the standard normal variable space spanned by the normalized stochastic variables.

At the beginning of the FORM algorithm, a βinitial has to be estimated. The bet-
ter the estimation of this initial value factor the fewer iterations are needed in the
algorithm to get the final β . With the βinitial and the limit state function value, all
parameters are defined to start the main iteration of the FORM algorithm consisting
of three main steps: (cp. Haldar, Mahadevan [11])

• Transformation of stochastic variables into standard normal variable space. In
order to get unique results, all non-standard normal variables have to be trans-
formed. For normal variables, a general conversion can be applied, for other
variables, the Method of Rackwitz and Fiessler [12] has to be used.

• Generation of derivatives of the limit state function with respect to the standard
normal variables. The coupled fluid-structure model can not be solved algeb-
raically. Thus, the derivatives have to be estimated by finite differences in the
neighbourhood of the design point.

• Calculation of the direction, where the steepest trend in the limit state function
occurs and estimation of a new design point and the corresponding β value

This iteration is repeated until the limit state function value is zero and the β value
converges. The resulting β value is then transferred to the fitness value calculation
routine of the optimization.
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3.3 Combination of the FORM-Routine with Fluid-Structure
Interaction Code Library

To simulate an impact of variation of structural parameters on the aeroelastic re-
sponse of the wing, the ifls-code-library was embedded into the routines performing
the FORM algorithm. A NASTRAN input file of the finite element wing model was
created with the ability to vary the structural properties during the stochastic pro-
cess. Two input parameters are defined to be altered within the wing box structure:
the thickness t of the thin-walled structural members and the Young’s modulus E of
the material. For stochastic input parameters a normal distribution is assumed. The
shape of the normal distribution and, therefore, the extent of the deviation of the
input parameters are characterized by the coefficient of variation (COV) V = σ/μ .
The COV is defined as a ratio of the standard deviation σ to the mean value μ . For
a random variable with V = 0.1 the probability is 31.7% that the deviation of this
variable exceeds ±10%.

3.3.1 Definition of the Limit State Function

To apply the FORM analysis to the coupled fluid-structure problem a realistic failure
criterion had to be defined to describe the performance of the simulated wing struc-
ture. For this kind of problem the random input is given by a variation of structural
parameters. The change of the converged angle of attack αEqSt of the aeroelastic
equilibrium state (cp. section 1.2) was used to estimate the impact of random input
parameters on the aerodynamic properties of the investigated wing model. The devi-
ation ΔαEqSt/αEqSt can be considered in both positive and negative directions. The
higher values of αEqSt caused by a lower Young’s modulus or by reduction in wall
thickness, respectively, are assessed to be more critical than smaller ones, caused by
a stiffer wing structure.

The probability of deviation of equilibrium state angle of attack is investigated
for different values of ΔαEqSt/αEqSt varying between 0.4% and 1.0%. Each value
corresponds to a limit state function in the normal variable space, which is defined
as:

G(X′) = ΔαEqSt − ΔαEqSt,req (4)

The term ΔαEqSt,req defines the highest permitted deviation of the converged
angle of attack. For a discrete limit state function and a distribution of random para-
meters (characterized by the coefficient of variance) the FORM algorithm calculates
a combination of these parameters for which the reliability index β becomes min-
imum. For the inversion of the argument, the probability of the aeroelastic response
represented by the limit state function becomes maximal.

An exemplary problem for two random variables X ′
1 and X ′

1 with two limit state
functions G1(X′)) and G2(X′) is depicted in fig. 7. Corresponding to the definition
of the reliability index β the probability of G1(X′) is higher then of G2(X′) because
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of the smaller distance β between the curve and the origin of the standard normal
space.

3.4 Sensitivity Analysis by a Global Variation in Structural
Parameters

The variation of the wall thickness and Young’s modulus causes a deviation of stiff-
ness qualities of the wing structure. Due to manipulation of structural properties the
tendency of the wing is affected to exceed its shape under a certain load. The object-
ive of the parameter study was to estimate the impact of parameter variation within
the main structural components on the structural behavior as well as on the static
aeroelastic response.

The alteration of structural parameters of skin, spars, or ribs influences the tor-
sion and bending distortions in different ways. Reduction of the wall thickness as
well as of the Young’s modulus in the skin parts has the highest effect on the bend-
ing and shear stiffness of the wing reducing the bending moment of inertia and shear
coefficient of a local wing box cross-section. The torsional stiffness is also affected,
depending on the ratio of wing box height to depth and thickness ratio of the skin
to spar webs. Reduction of structural parameters in the spar webs influences mainly
the torsional and shear stiffness having only a secondary effect on the bending mo-
ment of inertia. Due to the low contribution of the ribs to the bending and torsional

Fig. 7 Random input parameter distribution and limit state functions in the normal variable
space
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stiffness of the wing box structure the variation of the input parameters in this struc-
tural member has only a marginal effect on the deformation behavior of the wing.

A parameter study is carried out to estimate the sensitivity of the structural and
thus of the static aeroelastic response relative to the components of the wing struc-
ture affected by uncertain input parameters. The influence of each component is
estimated by changing successively the wall thickness and Young’s modulus of the
skin, spar webs and ribs. To avoid local effects both input parameters are varied sim-
ultaneously by ±10% along the wing span. A structural and an aeroelastic response
of a modified structure are determined for a reference loading corresponding to the
1g load case. From the structural response, the global deviations [ΔΘ ], [Δw′] and
[Δαel ] of torsion deformation, bending angle and elastic angle of attack including
the components [ΔΘtr] and [Δw′

tr ] are calculated. An alteration ΔαEqSt/αEqSt of the
converged angle of attack is obtained from the results of coupled analysis by com-
parison with the reference structure. The results for the global deviations are given
in tables 4 and 5.

The wing box investigated in the parameter study which structural properties are
varied separately and in the same manner does not represent a real wing. An actual
wing structure is assembled of many different parts of which the dimensions and
material properties vary independently from each other. The intent of this simple

Table 4 Deviations of bending angle, twist and elastic angle of attack caused by reduction of
skin thickness by 10%

skin spars ribs

rel. glob.
deviation

rel. glob.
deviation:
transf.

rel. glob.
deviation

rel. glob.
deviation:
transf.

rel. glob.
deviation

rel. glob.
deviation:
transf.

[Δw′]/[Δw′]tr/% 5.720 6.585 0.249 0.280 0.066 0.077
[ΔΘ ]/[ΔΘ ]tr/% 5.735 -1.172 -0.473 0.098 -0.306 0.063
[Δαel]/% 5.412 0.377 0.140

Table 5 Deviations of bending angle, twist and elastic angle of attack caused by reduction of
Young’s modulus by 10%

skin spars ribs

rel. glob.
deviation

rel. glob.
deviation:
transf.

rel. glob.
deviation

rel. glob.
deviation:
transf.

rel. glob.
deviation

rel. glob.
deviation:
transf.

[Δw′]/[Δw′]tr/% 5.745 6.621 0.447 0.508 0.062 0.070
[ΔΘ ]/[ΔΘ ]tr/% 5.568 -1.138 -0.234 0.049 -0.279 0.058
[Δαel]/% 5.483 0.556 0.128
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approach is only to estimate the main trend of the deviation of the output paramet-
ers depending on the component of the structure in which the variation of input
parameter occurs.

To estimate the tendency of change of the equilibrium state angle of attack αEqSt

caused by the input variation of structural components a static aeroelastic response
is calculated for each modified structural model already described. The relative de-
viation of this angle is plotted in fig. 8 for each model derivate. The results show
a good agreement with the tendencies obtained from the simple deformation study
(see tables 4 and 5). The contribution of deviation of both deformation components
to ΔαEqSt/αEqSt is somehow different for the variation of structural parameters in
spar webs and rib surfaces. The change of the torsion angle is negative with respect
to the sign convention showing therefore a stiffer torsional behavior. This tendency
is due to the skewed root rib of a swept wing which influences the warping moment
of inertia and, thus, the torsional behavior of the wing box.

A variation of the structural parameters shows the highest effect on the struc-
ture’s stiffness and therewith on the change of the angle of attack in the skin areas
as expected. The results of the structural response show that, in spite of a rather
high ratio of the torsion angle to the elastic angle of attack, the latter is still domin-
ated by the angle of bending deformation. The almost identical values obtained for
ΔαEqSt/αEqSt by variation of both parameters of the skin parts should be treated as
a special case taking into account the global character of the applied variations.

Fig. 8 Random input parameter distribution and limit state functions in the normal variable
space
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3.5 Results of the FORM Analysis

Within the stochastic analysis, the impact of random input parameters on the static
aeroelastic response of the transport aircraft wing is investigated. Based on the res-
ults of the sensitivity analysis the analysis is performed at first only for skin areas
due to the crucial impact on the wing aerodynamics. The wing structure is divided
into four areas in which the input parameters were independently varied. The divi-
sion of the areas is given in table 6 as a function of the span co-ordinate.

In each area, the structural parameters were varied simultaneously in the top
and bottom skin parts. By this simplification, the number of random variables X′

i
decreased to a total of four that in turn led to significant reduction of numerical
expenditure.

The Gaussian normal distribution for random input parameters is assumed (see
section 3.2). To estimate the coefficient of variance for the thickness distribution
manufacturing data sheets for maximum thickness deviation were analyzed. Fol-
lowing this analysis, a coefficient of variance, which lies between 0.02 and 0.04,
seems to be realistic, but the results were calculated until the COV = 0.05 showed
the effect of greater scatter within the input parameters. For the variation of the
Young’s modulus, the same coefficients are used to guarantee the comparability of
the results.

The allowed relative deviation ΔαEqSt/αEqSt of the converged angle of attack
compared to the reference structure is analyzed in the range between 0.4% and
1.0% for different coefficients of variation. Each value of this deviation defines a
limit state function G(X′). For a given value of G(X′) the FORM routine calculates
a combination of random variables for which the reliability index converges. With
regard to the investigated problem a combination of relative deviations of the struc-
tural input parameters in each area was found for which the probability of a given
deviation of the angle of attack becomes a maximum.

The results of the variation in the wall thickness and the Young’s modulus in skin
areas are presented in figures 9 and 10. In the diagrams a probability of failure is
plotted for a series of limit state functions over the coefficient of variance V . Due to
almost linear correlation between the reliability index and limit state functions for
a given COV, some curves could be extrapolated from the calculated results. These
curves are plotted by dashed lines. For each limit state function the probability of
the failure arises with the scatter in the input parameter expressed by V . The lower

Table 6 Areas of parameter variation

Area ηi η0

1 0.0 0.22
2 0.22 0.44
3 0.44 0.72
4 0.72 1.0
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the allowed difference of the angle of attack expressed by a failure function is the
higher is the probability to violate the requirements.

In the diagrams a probability of failure is plotted for a series of limit state func-
tions over the coefficient of variance V . Due to almost linear correlation between
the reliability index and limit state functions for a given V , some curves could be
extrapolated from the calculated results. These curves are plotted by dashed lines
in fig. 5 and 6. For the investigated coefficients of variance the results for a relative
deviation of an angle of attack of 1.5% were calculated for the local variation in the
skin thickness of 10% and more. This degree of variation within the wing structure
seems not very realistic to be considered further. For each limit state function the
probability of the failure arises with the scatter in the input parameter expressed by
V. The lower the allowed difference in the angle of attack, expressed by a failure
function the higher is the probability to violate the requirements.

The comparison of the results for variation of skin thicknesses and Young’s mod-
ulus shows very similar probability curves for both input parameters. The probabil-
ity of failure obtained for the variation of Young’s modulus is somewhat smaller as
for a variation of skin thicknesses. This tendency shows a good agreement with the
predictions made within the sensibility study carried out in section 3.4.

From the results of the stochastic analysis depicted in figures 9 and 10 it can
be seen that the probability of higher deviations (<1%) of the global aerodynamic
properties of the wing still are very small even for a higher variance of structural
parameters. This demonstrates a high robustness of the coupled fluid structure sys-
tem affected by the considered type of uncertainty.

Fig. 9 Probability of deviation of angle of attack caused by variation of skin thickness for
different performance criteria
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Fig. 10 Probability of deviation of angle of attack caused by variation of Youngt’s modulus
for different performance criteria

3.6 Conclusions

In the present work, the influence of random structural parameters on the aerody-
namic performance of a metallic test wing structure is investigated. The investiga-
tions demonstrate the suitability of the FORM analysis to handle some classes of
stochastic uncertainties affecting the aeroelastic response of a wing structure. Due
to the gradient based optimization procedure, which forms the basis of the FORM
the main requirement to the investigated problem is the existence of only one min-
imum solution for the reliability index β . To handle problems which violate this
requirement as there are the uncertainties of fibre orientation angles of composite
materials, other stochastic analysis methods like Latin hypercube sampling should
be used instead of the FORM.

To reduce the numeric costs of stochastic simulation some simplifications had to
be made within the analysis process. The influence of the weight reduction on the
target lift caused by reduction of the wall thicknesses was neglected. The simultan-
eous variation of structural parameters of the top and bottom skin in only four areas
represents a highly simplified test case compared to the real structure (cp. the re-
marks in section 3.4). Considering these simplifications, the results obtained in the
present work should represent a conservative trend.

The variation of the input parameters of top and bottom skin parts as well as of
spar webs for a higher number of independent areas of variation is a part of actual
work as well as the consideration of weight reduction for the target lift. Another
effect which could be considered is the tendency of the skin areas to buckle if the
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local bending stiffness of the panes is reduced by a variation of structural parameters
having a significant influence on the aerodynamic drag.
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A Comparison of Fluid/Structure Coupling
Methods for Reduced Structural Models

Georg Wellmer, Lars Reimer, Horst Flister, Marek Behr, and Josef Ballmann

Abstract. In this paper, the realisation and testing of spatial coupling methods for
aeroelastic simulations with partitioned algorithms is presented. The investigated
methods for spatial coupling—the transfer of loads and deformations between the
wetted surface and the structural model—are the method of Finite Interpolation Ele-
ments and two other, newly-implemented interpolation methods. All three are suit-
able for reduced structural models, and the geometries of the wetted surface and the
structural model do not have to coincide. The aeroelastic simulation tool employed
and the theoretical background of the spatial coupling schemes are outlined. Differ-
ent measures for the quality of the spatial coupling are derived and applied to test
cases of increasing complexity. The influence of user-defined coupling parameters
on the deformation projection is assessed. Based on these results and on practical
considerations, the available coupling methods are compared and conclusions are
drawn regarding their applicability.

1 Introduction

The civilian aircraft industry faces the necessity to reduce aircraft fuel consumption
while increasing flight safety levels and maintaining passenger comfort. Further-
more, competition on the aircraft market forces manufacturers to accelerate design
cycles and to reduce the costs of the actual development. This twofold pressure has
brought about the widespread adoption of numerical prediction methods during all
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stages of the design process. Computational Fluid Dynamics (CFD) for the numer-
ical prediction of the flow field about aircraft configurations are of special interest
to the industry. These methods have matured to a point where they are not merely
complementing costly wind tunnel test campaigns, but actually partially supplanting
them. Simultaneously, improvements in structural analysis methods such as Com-
putational Structural Dynamics (CSD) and in material sciences have led to lighter
aircraft frames with greater inherent elasticity. Aeroelastic coupling effects now def-
initely have to be considered in the design process and thus also have to be captured
by the numerical prediction methods, i.e. by Computational Aeroelasticity (CAE)
solvers. A code package for the simulation of the interaction between aerodynamic,
elastic and inertial forces has been developed at LFM/CATS over the last decade.
Work was initiated at LFM within the framework of the Collaborative Research
Centre 401 (SFB 401) [3, 28] and continued at CATS, in the course of the collabor-
ative research project MUNA, amongst others.

In order for CAE to gain the same acceptance in the aerospace community as
that already enjoyed by CFD, its solutions must prove to be trustworthy. Engin-
eers require the numerical predictions design decisions are based on to have a de-
pendable accuracy, which can be evaluated in two different manners: First of all,
by comparison with experimental results the error incurred by the whole coupled
algorithm can be estimated. It can then be used as a measure of confidence for nu-
merical predictions regarding comparable configurations. Validation against steady
and unsteady wind tunnel data has been carried out continuously at LFM/CATS,
most recently in the project “High Reynolds Number Aero-Structural Dynam-
ics” (HIRENASD) [4, 24]. This approach has the downside that without extensive
parameter studies the cause of deviations—potentially each of the single-field

Fig. 1 General concept of the ACM and its data exchange with the CFD and CSD solvers
(taken from [28])
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solvers or their mutual interaction—cannot be easily determined. Besides, it must
not be forgotten that also measurements inevitably have an error. In the second ap-
proach error sources are identified and examined individually, at least as far as such
a separation is possible. Regarding aeroelastic coupling, it has to be demonstrated
that associated sources of error do not significantly impair the accuracy of the over-
all coupled solution. This method often is feasible for model test cases only, and the
findings have to be scrutinised before being applied to real-world problems. Dur-
ing the MUNA project both outlined investigation methods have been applied at
LFM/CATS with regard to steady aeroelastic simulations and their associated error
sources.

This paper will take the following outline: First the coupling methodology in
general and the algorithm developed at LFM/CATS in particular are delineated,
as well as the available spatial coupling methods. The potential error sources are
defined and their influence is quantified for model problems. Next, the assessment
is repeated for actual coupled flow simulations. Based on the results, the available
methods for spatial coupling are compared and a set of recommendations is derived.

2 Coupling Methodology

All algorithms for the simulation of fluid-structure interaction problems fall into
one of two major categories: Monolithic algorithms solve the equations governing
the flow field and those governing the structural deformation simultaneously as a
single set of equations [7, 21]. Partitioned algorithms employ dedicated solvers for
each field which are coupled via a suitable interface. The monolithic method en-
sures that the mutually dependent solutions in each field are always on the same
time level, which eliminates the issue of synchronising individual solvers for a con-
servative solution. In practise, though, this method has one significant disadvantage,
which has limited its acceptance: A monolithic coupled solver generally has to be
developed completely from scratch, whereas with a partitioned approach one can
employ pre-existing single-field solvers and benefit from the developments of spe-
cialised research groups. Ideally, the necessary coupling interface should be suf-
ficiently modular to allow the replacement of a single-field solver either with an
updated version or with an entirely different implementation. The aeroelastic code
package conceived at LFM/CATS, henceforth denoted as “Aeroelastic Coupling
Module” (ACM) [9, 24, 25], is based on this rationale. The ACM allows the modu-
lar coupling of arbitrary flow and structural solvers with only minor code changes.
Both steady simulations with a staggered (Block-Gauss-Seidel) algorithm and un-
steady simulations with weak and strong temporal coupling schemes are possible.
Pursuant to the partitioned approach followed here, the ACM serves as the interface
between the dedicated single-field solvers for the flow field and for the structural
deformation, as is shown in Fig. 1. The ACM carries out the synchronisation of the
solvers by initiating iteratively their respective calls.
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Apart from the synchronisation of the single-field solvers, the ACM also per-
forms the spatial coupling, i.e. the projection of loads from the wetted surface to
the structure and in reverse direction the projection of the structural deformations to
the wetted surface. The projection methods available are tailored to reduced struc-
tural models. These are beneficial especially during unsteady simulations because
of their smaller number of degrees of freedom and thus lower requirements of com-
putational resources. With reduced structural models the geometries of the wetted
surface and of the structural model coincide only in parts or not at all. This is es-
pecially true for beam models which do not even share the same dimensionality as
the wetted surface. Also with more detailed models like shell models, in many cases
one does not want to represent the complete structure. When modelling a wing, of-
ten only the wing box is taken into consideration. The high lift devices and other
components which do not contribute significantly to the overall structural stiffness
are disregarded. In both examples there are “gaps” between the wetted surface and
the structural model which have to be bridged by the projection algorithm.

Because of these gaps between wetted surface and structure, forces have to be
projected from the wetted surface to the structure instead of surface stresses. Latter
do not possess an effective direction required in this case. As to increase the mod-
ularity of the ACM, the aerodynamic surface forces are calculated already inside
the flow solver and passed on to the ACM. They should be derived in a consistent
manner from the discrete distribution of surface stresses [12]. The ACM receives a
cloud of load incidence points with associated force vectors and returns a cloud of
surface coordinates representing the deformed wetted surface. Thus, the ACM can
be coupled with structured and unstructured flow solvers alike since it is independ-
ent of the manner in which points are associated with surface cells. As a side note,
the number of the load incidence points and their position in the undeformed wet-
ted surface do not have to be identical with the surface points defining the wetted
surface.

To summarise above statements, the aeroelastic coupling with the ACM com-
prises three steps:

1. From the pressure and surface stress distribution on the wetted surface, discrete
force vectors are determined by the flow solver.

2. These surface forces are projected from the wetted surface to the nodes of the
structural model.

3. The structural deformations resulting from the projected load distribution are
projected back onto the wetted surface.

Each of these steps may contribute to the total error of the coupled simulation
scheme. The second and third ones are closely related, though: The projection of
(generalised) forces from the wetted surface to the structure can conveniently be ex-
pressed as a matrix-vector product with a force projection matrix PF , and likewise
the projection of (generalised) deformations can be expressed with a deformation
projection matrix PU :

FCSD = PF FCFD and uCFD = PU uCSD (1)



A Comparison of CFD/CSD Coupling Methods 185

The conservativity of the projection method is assured if PU = PT
F , which can be

shown via the principle of virtual work [12]:

δWCFD = FT
CFD δuCFD δWCSD = FT

CSD δuCSD

= FT
CFDPU δuCSD = (PF FCFD)

T δuCSD

= FT
CFDPT

F δuCSD

(2)

Consequently, the same projection method has to be used during the projection of
forces as during the projection of deformations.

A fourth step, external to the ACM, involves the deformation of the CFD volume
mesh in order to accommodate the deformed wetted surface. Mesh deformation
methods generally depend on the formulation of the flow solver employed, and their
associated error sources are not investigated here.

2.1 Flow Solver

To date, the ACM has been coupled with three Reynolds-Averaged Navier-Stokes
(RANS) Finite-Volume flow solvers: FLOWer [18, 19], TAU (recent developments
are highlighted in a number of papers in this volume) and QUADFLOW [3]. In this
paper, results obtained with FLOWer and with TAU are presented. The development
of both solvers was initiated and led by the DLR. Further enhancement of the struc-
tured solver for multi-block topologies—FLOWer— may not be actively promoted
anymore, but with that solver the greatest amount of experience has been gained
in conjunction with the ACM, and the coupling can be regarded as well-validated
against experiments. The effort to couple the ACM with the hybrid-unstructured
solver TAU began during the previous project MEGADESIGN [20] and, for the
steady branch, has been completed during MUNA. The interfaces of both flow solv-
ers with the ACM provide the same functionality, but their implementation is quite
different. FLOWer simply calls the ACM as a Fortran subroutine. The loads and load
incidence points and the coordinates of the deformed wetted surface are exchanged
via the subroutine parameter field. The communication between TAU and ACM
used to be realised by files written on hard disk, but is now carried out completely
in-memory. The solution is controlled through a script written in the object-oriented
scripting language Python [26]. TAU and its components already have Python in-
terfaces and are suitably wrapped during compilation. The ACM has to be provided
as a shared object file. Specific Python interface classes contain the methods and
attributes needed to perform the aeroelastic coupling. In each coupling step, the
ACM’s Python interface reads the loads and load incidence points from TAU’s C
data stream and passes them on to the ACM. In the reverse direction at the end of
a coupling iteration, the interface receives the coordinates of the deformed wetted
surface from the ACM and writes these to the data stream. All the while the interface
has to ensure that the fields are passed on correctly between the individual software
components written either in C, Fortran or Python.
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For an investigation of the actual projection process it may not be relevant
whether or not the loads on the wetted surface result from a flow simulation. In
certain cases a user-defined load distribution may be imposed instead. This is pos-
sible with the stand-alone version of the ACM. Obviously, conclusions drawn in
this manner can only regard the projection algorithm as such and not the coupled
solution process as a whole.

2.2 Structural Solver

For the computation of the structural deformation, the in-house structural solver
“Finite Element Analysis for Aeroelasticity” (FEAFA) is employed. It is a Finite
Element (FE) code based on a physically and geometrically linearised formulation,
so it is limited to small strains and linear-elastic material behaviour. Over recent
years, it has been expanded to offer a range of element types comparable to com-
mercial CSD code packages which includes volume and shell elements, spring ele-
ments, point masses and multi-freedom constraints. The mainstay for aeroelastic
simulations is the multi-axial Timoshenko beam element [8, 9]. Its formulation al-
lows for distinct cross-sectional positions of the centre of mass, the shear centre and
the centre of bending. Thereby structural coupling between bending and torsional
motion can be captured. The consideration of shear deformation in the Timoshenko
formulations assures a physically-reasonable wave propagation through the struc-
ture, which is important for unsteady simulations. With very few degrees of freedom
and thus at low computational cost, such reduced structural models are capable of
accurately rendering the elastic and inertial properties of slender structures such as
transport aircraft wings. This is not only a significant advantage for unsteady sim-
ulations, but also for steady design optimisation tasks, as has been demonstrated in
the MEGADESIGN [20] project. During steady simulations, the structural deform-
ation is either obtained by direct solution of the linear system of equations resulting
from the FE discretisation or by superposition of pre-calculated modes.

2.3 Flow Grid Deformation

For the volume mesh deformation of structured FLOWer meshes, the Multiblock
Grid Deformation Tool (MUGRIDO) [8, 16] was developed at LFM. This tool mod-
els the block boundaries of the volume mesh and selected additional mesh lines
as massless Timoshenko beams. The deflections of the surface nodes relative to
the undeformed configuration are imposed as boundary conditions and the struc-
tural problem is solved. Finally, the positions of the remaining mesh points inside
of the blocks are calculated with transfinite interpolation. MUGRIDO is not suit-
able for unstructured TAU meshes. TAU offers two mesh deformation algorithms;
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best suited for aeroelastic simulations with complex configurations is the weighted
volume spline interpolation algorithm [15]. A further description can be found in the
paper by Barnewitz in this volume. Since this method does not require any informa-
tion regarding the connectivity between volume mesh points, it is equally applicable
to structured meshes.

3 Spatial Coupling

The analyses presented in the paper at hand concentrate on error sources in spa-
tial coupling, and so the description of the projection methods shall be afforded a
separate section here. To begin with, an overview of projection methods suitable
for reduced structural models is given. The existing projection method based on Fi-
nite Interpolation Elements (FIE) is explained. Then the newly-implemented Global
Spline-Based (GSB) and Moving Least-Squares (MLS) methods are presented in
detail.

In order to be valid from the physical point of view, any projection scheme has
to be conservative with the following two criteria: First of all, the total force and
moment vectors must be preserved during the projection. Secondly, during steady
simulations the elastic strain energy of the structure must be identical to the work
performed by the aerodynamic loads on the wetted surface, as implied by Eq. (2).
During unsteady simulations also the instantaneous power exchanged over the coup-
ling surface must be the same on both sides. From the flow solver and the volume
mesh deformation code, further numerical requirements arise affecting the projec-
tion of deformations from the structure back to the wetted surface: The resulting
deformed surface mesh should be contiguous in particular at intersections between
the surface meshes of distinct assemblies, for instance between fuselage and wing.
The deformed surface mesh should be smooth in order to assure good convergence
of the flow solution. One final demand is of a more practical nature: With reduced
structural models, any projection scheme has to make some kind of assumption for
the transfer of forces and deformations over the gap between wetted surface and
structure. This assumption should not be far removed from the load paths actu-
ally to be expected, i.e. some measure of locality should be preserved during the
projection.

Initially, only one projection algorithm was available inside the ACM: The Fi-
nite Interpolation Element (FIE) method [5, 8, 9, 25] is an uncomplicated method
that uses the shape functions of the structural model to divide aerodynamic surface
loads among the nodes of the closest structural element. During the first phase of
MUNA, a number of alternative projection methods was reviewed for inclusion in
the ACM. Many published methods are only adequate for configurations where the
wetted surface and the surface of the structural model coincide up to the discret-
isation error [10, 17, 22, 29]. On account of the requirements set forth for reduced
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structural models such methods were excluded. Prospective methods included the
Infinite-Plate Spline (IPS) method [14], the Constant-Volume-Tetrahedron (CVT)
method [2, 13] and the inverse Boundary Element Method (BEM) [11]. These
were extensively compared by Sadeghi et al. [27]. The GSB method [6] and the
MLS method [23] constitute further alternatives suitable for reduced structural
models.

With the IPS method, only the deflections normal to the wing plan form are in-
terpolated from the structure to the wetted surface using splines as interpolation
functions. This limits the method to (almost) planar configurations. With the CVT
method, tetrahedra are spanned between the points on the wetted surface and the
nodes of the closest structural element. Both the natural coordinates of the projec-
tion point inside the element and the volume of the tetrahedron are kept constant
for all deformation states, defining the projection. As will become evident further
down, the CVT method can be regarded as an extension of the FIE method. The
BEM method is the projection method which is most firmly footed on physical con-
siderations instead of geometrical neighbourhood relations: The gap between wetted
surface and structure is modelled as an elastic continuum, and the deformation of
the structure is expressed in terms of surface deflections through the BEM. This
relation then has to be inverted with the minimisation of the elastic strain energy
of the continuum as an additional constraint. Of all methods presented so far this is
the most demanding. Furthermore, it requires the connectivity of the wetted surface,
which currently is not transmitted from the flow solver to the ACM. The GSB and
MLS methods both determine a function approximation to the nodal displacement
distribution and evaluate it at the surface points. The two methods differ primarily
in their choice of interpolation functions. They do not interfere with the modular
structure of the ACM, offer the required generality, are independent of the dimen-
sionality of the structural model and involve only a moderate implementation effort.
Also, there is a significant implementation overlap between them, for which reason
both were selected for inclusion in the ACM.

3.1 Finite Interpolation Element Method

The FIE projection method, also known as inverse isoparametric mapping, uses the
shape functions of the FE structural model to interpolate loads and deformations
between the points on the wetted surface and the nodes of the structural model.
This results in an efficient algorithm which only requires the evaluation of algebraic
expressions. The FIE method is briefly demonstrated here in conjunction with beam
models. For a more elaborate description extended to structural models consisting
of volume and shell elements the reader may refer to Reimer et al. [25].

The FIE method is based on purely geometrical considerations. In the first step,
the closest structural element for a given point on the wetted surface is sought. In-
side this element the projection point is determined. For a beam model this point
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Fig. 2 Load and deformation projection with FIE on beam elements. left: Projection of
aerodynamic forces from the wetted surface to the structure. right: Projection of deformations
from the structure back to the wetted surface.

generally creates a perpendicular connection between surface point and beam axis,
as depicted on the left of Fig. 2. The aerodynamic surface load FCFD is shifted
along the distance vector d to the projection point P and an equivalent offset mo-
ment MP = d×FCFD is introduced. With the shape functions of the element and the
natural coordinate of the projection point rP the force and the moment are divided
among the element’s nodes. The closest elements and natural coordinates of the
projection points are determined only once before the first coupling step and then
reused. During the deformation projection shown on the right of Fig. 2 the corres-
ponding steps are carried out in opposite order: The rotational deformation ϕP and
the translational deformation uP at the projection point are interpolated from the
nodal values with the element shape functions. The deflection of the surface point
consists of uP and a rotational contribution ϕP ×d. Even if the projection point on
the undeformed beam axis created a perpendicular connection between beam axis
and surface point, due to shear this may not be the case in the deformed configura-
tion, represented by the dashed line in Fig. 2.

The methodology applied for structural models comprising shell or volume ele-
ments, which have two-dimensional projection surfaces, is the same in principle.
A more involved algorithm is required to find the projection point on the closest
element face. Interpolation in intersection regions has not been realised yet, so that
with such structural models the FIE method in the ACM can be applied only to con-
figurations with one assembly. The CVT method can be seen as a variant of the FIE
method in which the length of the distance vector is no longer kept constant, but
adapted according to the deformational change of the area of the projection face.
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Fig. 3 Regions in which a straightforward application of the FIE method will lead to undesir-
able results.

3.2 Additional Interpolation Schemes for FIE

For structural models with a single straight beam axis, the FIE method is a logical
extension of beam theory. The projection algorithm assures that during deformation
sections through the wetted surface that were perpendicular to the beam axis in the
undeformed configuration preserve their shape. If however a structure consists of
several angled beam segments, possibly part of different assemblies such as a wing
and fuselage, a straightforward application of the described algorithm can lead to a
non-smooth or non-contiguous deformed wetted surface.

With configurations comprising more than one assembly, any projection between
surface components and structural model parts not physically connected must be
avoided. This is exemplified in Fig. 3 for a high-lift device. The structural elements
closest to surface points along the trailing edge actually belong to the flap. Projec-
tions based solely on shortest distance lead to a physically impossible transfer of
loads and deformations over the flap gap. This is prevented by explicitly assigning
structural elements to surface segments of the individual assemblies. In a prepar-
atory step all collinear beam elements of each assembly are combined in element
groups. Each assembly’s surface segment is given a unique identifier. In the ACM’s
input data set, the element groups are then either assigned to surface segments or ex-
cluded from the projection algorithm. In the current example, the flap track elements
should be excluded because they have no wetted surface segments as counterparts
for mapping.

However, the strict application of this explicit assigning can make the wetted
surface come apart at intersections between assemblies: Due to their projection on
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elements of different element groups, those neighbouring surface points which are
part of different assemblies can experience incompatible deflections. The two sur-
face segments necessarily contiguous in the undeformed configuration are no longer
so after the deformation projection. The resulting defective mesh is not suitable any
more for flow computations. This problem is resolved by means of an interpolation
algorithm, which is exemplified by the wing-fuselage joint shown in the left image
of Fig. 4. First, all seam curves between adjacent surface segments are detected. For
a surface point belonging e.g. to the main wing, the projection is carried out onto
the directly assigned element groups of the wing, giving a “direct” deflection udir

CFD.
Next, the projection is repeated for the element groups assigned to the neighbouring
fuselage surface, which gives an “indirect” deflection uindir

CFD. The weighted average
of the two contributions is taken:

uCFD =
1

1+wa
udir

CFD +
wa

1+wa
uindir

CFD with wa = w

(
a

alimit

)
. (3)

The distance a of the surface point from the seam curve normalised with the user-
supplied width of the intersection region alimit determines the interpolation weight.
The weighting function w is a high-order polynomial. The interpolation assures a
smooth deformed wetted surface where neighbouring points on opposite sides of a
seam curve have compatible deflections. A comparable algorithm has been realised
by Badcock et al. [2] inside the CVT method.

In the concave region enclosed by the beam kink valid projections on multiple
beam elements are possible. If for each surface point projection on the closest ele-
ment is applied exclusively, some adjacent surface points will be paired with projec-
tion points far apart from each other. Their differing deformation values will result
in creases in the wetted surface, which are neither physically justified nor favourable
for the flow solver. This problem has to be resolved with an additional interpolation
algorithm, which is explained along the beam model with two kinks shown on the
right of Fig. 4: For a given surface point, a projection is determined onto each ele-
ment group. For each one, the surface point deflection uCFD, i resulting from the
structural deformation at the given projection point Pi is calculated and two inter-
polation weights are assigned. The first interpolation weight wβ is a function of the
deviation β of the projection angles from a right angle. The second interpolation
weight wd is defined by the ratio of distances of the projection points to the surface
point:

wβ , i = w

(
βi

βlimit

)
, wd, i = w

(
di/dmin

dlimit

)
(4)

βlimit and dlimit are user-defined parameters which determine the extent of the in-
terpolation region. The final surface point deflection is then interpolated from all
considered projection results:

uCFD =∑
i

wtot, i uCFD, i with wtot, i =
wβ , i wd, i

∑
j

wβ , j wd, j
(5)
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Fig. 4 left: Blending in the vicinity of intersections between surface segments of differ-
ent assemblies, here at the wing-fuselage joint. right: Interpolation regions with non-unique
mapping near kinks of the beam axis.

All interpolations have to be applied in the same manner also during the load pro-
jection as otherwise the conservativity would be violated (cf. Eq. (2)).

3.3 Global Spline-Based Interpolation (GSB)

As alternatives to the existing FIE scheme, in the project MUNA, the spatial coup-
ling schemes GSB and MLS were implemented in the ACM. They are closely
related, as both cast the problem of projecting loads or deformations as an inter-
polation problem: For a set of N points in space x̄n with dependent values f (x̄n) one
seeks to find a functional approximation to f based on a suitable choice of interpol-
ation functions. In this sense, the distribution of dependent values is the deformation
u provided at the structural nodes. Its functional approximation is then evaluated at
a second set of M points x̂m, which are the points of the CFD surface mesh. The two
projection methods differ in their choice of interpolation functions which dictates
the solution process.

The GSB method was originally published by Beckert and Wendland [6]. The
authors approximate the deformation on the whole domain with a global low-order
polynomial with Q monomials. The monomial vectors are either

m = (1, x, y, z)T or m = (1, x, y, z, x2, y2, z2, xy, yz, zx)T . (6)

Superimposed are local contributions φ(x) that consist of radial basis functions
(RBF). At a given coordinate, the interpolation function is

s(x) = mT (x)β +
Nδ

∑
n=1

α(x̄n)φ(x, x̄n) . (7)
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The coefficients α(x̄n) of the local RBF contributions and the coefficient vectors
βββ of the global polynomial are calculated simultaneously for all Nδ support points
with a weighted least-squares algorithm. The dependent values at the interpolation
support points are reproduced exactly. The RBFs with compact support constructed
by Wendland [30] serve as weighting functions. The C2-continuous Wendland-RBF
with a support radius δ is provided here as an example:

φ(x, x̄n) = (1− x̃)4
+ (4 x̃+ 1) with x̃ =

1
δ
‖x− x̄n‖2 . (8)

The index + marks that the factor (1− x̃)4 is set to zero for values of x̃ > 1, whereby
the compact support is realised. The functional approximation to the deformation
distribution can be obtained from the linear system of equations

[
[φ (x̄i, x̄ j)]

[
mT (x̄i)

]
[m(x̄ j)] 0

]
︸ ︷︷ ︸

=C

{{αi}
βββ

}
=

{{
uλ (x̄ j)

}
0

}
, 1 ≤ i, j ≤ Nδ , (9)

which has to be solved for each Cartesian displacement component λ = x, y, z.
(Here, scalar quantities that are combined to a vector are put in braces. Brackets
denote that scalars or vectors that are assembled to form a matrix.) This process
would have to be repeated in each coupling step; instead the inverse of the coeffi-
cients matrix C is determined. The functional approximation can now be evaluated
at the surface points, which yields the final projection matrix P:

{{
uλ (x̂ j)

}
0

}
=

[
[φ (x̂i, x̄ j)]

[
mT (x̂i)

] ]
C−1︸ ︷︷ ︸

P

{ {uλ (x̄i)}
0

}
,

1 ≤ i ≤ Nδ 1 ≤ j ≤ nCFD .

(10)

In the GSB method the support radius δ has to be the same all over the computa-
tional domain, or else the interpolation scheme will not be consistent. In general,
the number of support points Nδ will differ from one CFD surface node to the next.
The user has to define a minimum required number of support points and the projec-
tion scheme searches the domain for the smallest radius δ that contains this number.
Because of the global contribution to the interpolation function the resulting pro-
jection matrix is dense. Its definition here (and in the MLS method) differs from
the definition in Eq. (2) in that here the deformations or forces are projected one
spatial component λ at a time. The GSB method is largely identical to the volume
mesh deformation method presented by Barnewitz in this volume. The main differ-
ence lies in the choice of weighting functions and the compact support of the local
contributions to the interpolation function.
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3.4 Moving-Least-Squares Interpolation (MLS)

The MLS interpolation method was first applied to spatial coupling in aeroelasticity
by Quaranta et al. [23]. It exclusively uses low-order polynomials

s(x) = mT (x)ααα (11)

to approximate the spatial deformation distribution u(x̄). At each CFD surface point
x̂, a new set of Q polynomial coefficients ααα(x̂) is computed with a moving least-
squares fit. The Nδ closest support points x̄n provide a compact support; their influ-
ence relative to the CFD surface point is weighted with Wendland RBF (8). For each
surface point x̂ and its Nδ support points inside the support radius δ a functional

I(x̂, x̄n) =

∫
Ωδ

φ(x̂, x̄n)
(
mT (x̄n)ααα(x̂)− uλ (x̄n)

)2
dΩ(x̄n) (12)

has to be minimised for the coefficients ααα(x̂). The discrete form of this functional
is reduced to the normal equation through a variation of coefficients δααα:

[
[m(x̄n)]Φ(x̂, x̄n) [m(x̄n)]

T
]

︸ ︷︷ ︸
=A

ααα(x̂) =
[
[m(x̄n)]Φ(x̂, x̄n)

]
︸ ︷︷ ︸

=B

{uλ (x̄n)} (13)

Herein, Φ(x̂, x̄n) = E {φ(x̂, x̄n)} is the diagonal matrix of RBF weighting factors.
Inserting the interpolation function (11) yields

uλ (x̂) = mT (x̂)A−1B︸ ︷︷ ︸
=P(x̂)

{uλ (x̄n)} . (14)

The row matrix P(x̂) describes the projection between a single surface point x̂ and
the Nδ support points inside the support radius. Other than in the GSB method, in
the MLS method the projection matrix is built row by row for each surface point
separately. The final projection matrix P is assembled from the M row matrices of
all surface points. For each surface point a Q×Q-matrix A has to be set up and
inverted. Its condition number and thus its invertability depends on the number of
support points and their spatial arrangement. Practical experience has revealed that
the regularisation of the linear systems of equations (13) by left multiplication of
[m(x̄n)] is highly detrimental to its condition number. A more accurate and robust
numerical solution can be achieved if instead for each surface point the Nδ overde-
termined systems of equations

Φ(x̂, x̄n) [m(x̄n)]
T [ααα∗(x̄n)] = Φ(x̂, x̄n) (15)

are solved with QR decomposition, yielding Nδ tuples of polynomial coefficients
ααα∗(x̄n) for unit deflections u∗λ (x̄n) at the individual support points. The final row
entry to the projection matrix then is
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P(x̂) = mT (x̂) [ααα∗(x̄n)] . (16)

Because the interpolation function (11) has only local support, the projection mat-
rix is sparse, greatly reducing memory requirements in comparison with the GSB
method.

Investigations using configurations with multiple components revealed that even
with these new projection methods explicitly based on interpolation schemes addi-
tional interpolation in intersection regions between assemblies cannot be avoided.
If the whole configuration is treated as a single assembly during the projection, the
resulting deformed wetted surface is contiguous, but extremely distorted. (With the
GSB method, its global polynomial term in the interpolation function can even result
in an unfeasible propagation of deformations to assemblies not directly connected,
e.g. from the main wing to the empennage.)

For the MLS scheme, an additional interpolation in intersection regions has been
implemented that works in a similar fashion as the interpolation of the FIE method
(3): For a surface point situated in an intersection region, as depicted on the left of
Fig. 4, a row entry to the projection matrix Pk(x̂) is built for the element groups dir-
ectly assigned. Further entries are built with the structures of each adjacent surface
segment. The resulting K row entries are assigned normalised weights wk according
to the surface point’s distance a to the intersection curve. Weighted averaging yields
the final entry to the projection matrix for the given surface point:

P(x̂) =
K

∑
k=1

wk(x̂, alimit)Pk(x̂) with
K

∑
k=1

wk(x̂, alimit) = 1 . (17)

This interpolation algorithm exploits the fact that the MLS method builds the pro-
jection matrix one surface point at a time. In the GSB method, the projection matrix
is created for all points simultaneously. To realise a comparable interpolation, for
each assembly a projection matrix would have to be built which relates the points
of its surface segment to all neighbouring structures. Only then the average can be
taken with suitable weights assigned to the row entry of each surface point. Be-
cause of the high memory requirements of just a single projection matrix result-
ing from the GSB method, comparable interpolation has not been implemented in
the ACM.

3.5 Insertion of Additional Support Points

The solution accuracy and the robustness of the MLS projection algorithm im-
proves with increasing number of support points, but only if these offer sufficient
information density in all spatial directions. Moreover, with higher number of sup-
port points necessarily also the support radius becomes larger; hence the desirable
locality of the projection diminishes. These two problems can be alleviated by us-
ing an idea also put forward by Quaranta et al. [23]: It is not the actual nodes of the
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Fig. 5 left: Arrangement of the “fishbones” generated for a beam model. The structural
nodes are represented by squares, the edge midpoints by diamonds and the additional support
points by circles. Here the radius rFB is fixed to a value approximately half the average chord
length. The number of additional support points per edge midpoint nFB is set to five, which
is the recommended value for beam models. right: Arrangement of the additional support
points after alignment with the wetted surface.

structural model that are taken as supports for the interpolation. Instead, the
midpoints of the beam elements, or respectively the edge midpoints of higher-
dimensional elements are used. Surrounding these points, additional supports are in-
serted circumferentially, as shown in the left image of Fig. 5. Quaranta et al. coined
the term “fishbones” for this arrangement. The additional support points not only as-
sure adequate information distribution in all spatial directions, but also allow for the
simple projection of rotational deformational components at the structural nodes:
The rotations are interpolated to the edge midpoints and result in a translation of
the additional support points according to their radius rFB. During the converse pro-
jection of loads from the wetted surface to the structure the forces projected to the
additional support points are combined at the edge midpoints and corresponding off-
set moments are introduced. The loads at the edge midpoints are then split between
the adjacent structural nodes.

The GSB and MLS projection methods were further enhanced by enabling an
automatic alignment of the additional support points with the wetted surface, as
shown on the right of Fig. 5. To this end, the information which surface points are
in the vicinity of each edge midpoint is required. Therefore, in a preparatory step
the mapping of supporting edge midpoints to surface points is inverted. The shape
of the surface section normal to a given edge is approximated as an ellipse. The
additional support points are then inserted along its circumference with equiangu-
lar spacing. Special attention is needed when the wetted surface does not cover the
whole circumference, like along the fuselage of a half-model suspended in the sym-
metry plane.



A Comparison of CFD/CSD Coupling Methods 197

4 Error Sources in Spatial Coupling

In this section, the investigation of error sources in the spatial coupling by means
of model problems shall be detailed. Tracing the steps outlined in Section 2, sev-
eral potential sources of error were identified and looked into during the project
MUNA. Three of these investigations are presented here: The influence of the mesh
spacing of the structural and surface mesh is determined as well as the effect of the
deformation mapping on the shape of the deformed wetted surface. For all three
available spatial coupling methods, parameter studies were carried out to ascertain
the importance of the user-defined projection parameters.

4.1 CFD Mesh Spacing and Load Distribution

When discretising the solution domains of the flow problem and of the structural
problem before a coupled aeroelastic simulation, one would prefer to choose the
grid spacings only considering the requirements of the single-field solvers and the
desired solution accuracy. Especially one would like to avoid having to match up
the discretisations at the coupling surface, which might not be possible at all when
reduced structural models are used. Therefore the question arises as to how the
choice of mesh spacings of the structural model and of the subsets of the CFD
volume mesh representing the wetted surface influence the projection results. The
influence on the load projection is most conveniently analysed by regarding the
calculation of the consistent nodal loads on the wetted surface together with their
projection on the structure.

4.1.1 One-Dimensional Test Setup

First investigations were carried out with one-dimensional test configurations loosely
following an approach laid out by Jaiman et al. [17]: The one-dimensional fluid
mesh and the structural mesh are colinear, but feature non-matching discretisations.
An analytical pressure distribution is applied to the fluid mesh. The equivalent con-
sistent nodal loads are then projected on the structural nodes. Furthermore, a refer-
ence load distribution can be obtained by calculating the nodal loads consistent with
the pressure distribution directly at the structural nodes. The reference loads can
then be used to calculate a relative error εF of the projected loads. In the first three
diagrams of Fig. 6, the analytical pressure distribution is plotted over the length of
the one-dimensional domain together with the forces acting on the fluid nodes and
on the structural nodes. The fluid mesh is discretised with an increasing number of
elements nCFD, whereas the number of elements on the structural side is kept con-
stant at nCSD = 20. In this example, linear shape functions are used for both the cal-
culation of the consistent nodal forces and for their projection with the FIE method.
With the coarser CFD meshes the distribution of the projected forces on the struc-
tural nodes is highly irregular. Parameter studies indicate that the mesh spacings on
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Fig. 6 Influence of the mesh ratio on the load distribution on a one-dimensional test con-
figuration. top left, top right and bottom left: Consistent nodal forces on the fluid nodes and
projected forces on the structural nodes for fluid meshes with 9, 13 and 17 elements. The
number of structural elements is kept at nCSD = 20. bottom right: Relative error εF plotted
over the mesh ratio γ .

both sides have to be fairly similar in order to achieve a sufficiently regular load dis-
tribution. The graph on the bottom right of Fig. 6 underscores this result. It shows
the relative error plotted over the mesh ratio γ = 1−nCSD/nCFD

1+nCSD/nCFD
. Values from -1 to 0

imply a fluid mesh coarser than the structural mesh, and values between 0 and 1 a
finer one. For negative values of γ the error is high, and only approaching γ = 0 it
decreases to an acceptable level. In this example, for γ = 0 the structural nodes and
the fluid nodes are placed at the same coordinates and the relative error becomes
zero (not shown in the logarithmic diagram).

4.1.2 Beam Model Test Setup

While these studies revealed first clues of the influence of the structural and CFD
surface mesh spacings, the test configuration is very abstract and the conclusions
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Fig. 7 Influence of the CFD mesh resolution on the structural load distribution. top left:
Definition of the fictitious pressure field imposed on the wing. top right: Nodal forces in flap-
wise direction resulting from the pressure distributions on the coarsest and the finest surface
mesh and the projection with FIE. These loads are juxtaposed with those obtained by exact
integration of the pressure distribution. bottom left: RMS error of the nodal forces in flap-wise
direction for the three projection methods. bottom right: Nodal forces in flap-wise direction
resulting from the pressure distributions on the finest surface mesh and projection with MLS
and with GSB.

may not be transferable to real-world problems. Further test configurations were
created for use together with the stand-alone version of the ACM which are based
on the wetted surface of the HIRENASD wing [4]. The resolution of the wetted sur-
face was varied again to quantify its effect on the structural load distribution. Four
refinement levels with 2268, 8227, 31245 and 107703 nodes were realised by ex-
tracting different multigrid levels from a structured FLOWer mesh. Certainly, with
an actual flow solver any change of the mesh alters the flow solution. Because this
problem is specific to the single-field solver and not to the spatial coupling method,
a fictitious pressure distribution was again employed here. It is defined in terms of
the rotated planform coordinates (x̂, ẑ) shown on the top left of Fig. 7. The ẑ-axis
is chosen to connect the quarter-chord points at root and tip. The pressure distri-
bution describes a quarter cosine wave along the ẑ-axis and half a sine wave along
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Fig. 8 Influence of the CFD mesh resolution on the structural deformation. left: RMS er-
ror of the flapwise bending deflections resulting from the different load distributions. right:
Comparison of the actual bending deflections and the distributed error for the case with the
highest deflection error (FIE, nCFD = 103307) and the lowest (GSB, nCFD = 8227).

the perpendicular coordinate direction x̂. In the shaded areas the fictitious pressure
distribution is zero. It is applied with opposite signs to both surfaces of the wing to
produce a net positive bending moment in flap-wise direction. From the exact integ-
ration of the pressure distribution a line load along the ẑ-axis is obtained. If a beam
stick model has parallel orientation, the line load can be divided consistently among
the structural nodes to obtain a reference load distribution. This serves to define an
error incurred by each projection scheme in dependence of the surface mesh resol-
ution. Moreover, with the reference load distribution the structural deformation is
computed and compared to those of the projected loads. As a measure for the error
the root mean square (RMS) of the nodal forces in flap-wise direction, normalised
by the total force in flap-wise direction, is used:

εF =

√
1

nCSD

nCSD

∑
i=1

(
Fy, i −Fy, i,exact

Fy, tot

)2

with Fy, tot =
nCSD

∑
i=1

Fy, i,exact . (18)

This is plotted in the bottom left image of Fig. 7 and different trends are apparent for
the projection schemes. FIE exhibits a strong reduction in the error when the surface
mesh resolution is increased, whereas the error with GSB remains almost constant.
MLS ranges in between. In contrast to the FIE method the MLS and GSB methods
are not able to capture the discontinuous onset of the pressure distribution near the
root because they rely on finite support radii. Even with the finest surface mesh the
load distribution at the root remains smeared out. Over the remaining span the MLS
method approximates the exact loads well, whereas with the GSB method there are
still large discrepancies, as can be seen from the bottom right diagrams of Fig. 7. In
the left image of Fig. 8 the resulting bending deflections in flap-wise directions are
compared by means of the RMS differences of the nodal deflections normalised by
the tip deflection
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εu =

√
1

nCSD

nCSD

∑
i=1

(
uy, i − uy, i,exact

uy, tip

)2

. (19)

It should be noted that because of their different normalisation the error values εu

and εF cannot be directly compared.
For the investigated straight beam model, the differences in the load distribution

do not translate in large differences in deformations. This is documented in the right
diagram by a comparison of the bending deflections and their deviations from the
reference distribution for the cases with the highest and the lowest total deflection
error. The deformed structural models are almost identical because in all projection
methods the redistribution of the bending forces along the beam axis is compensated
by offset moments.

As the structural model is straight and the configuration comprises only a single
assembly, no interpolation parameters come into play with the FIE method (cf.
Chap. 3.2). For both the MLS and the GSB method, eight edge midpoints were
set as supports, with nFB = 5 additional support points each. The radius of the sup-
port points was chosen as rFB = 0.15 m, which is approximately half the mean chord
length. Quadratic polynomials were used for the global contribution to the interpol-
ation function of the GSB method and for the local interpolation functions of the
MLS method.

4.1.3 Shell Model Test Setup

With the beam model test configuration, the different interpolation schemes and sur-
face mesh resolutions do not produce profound local load incidence effects or major
differences in the global deformation. A third test setup was investigated which
bears more resemblance to a real-world configuration. The wetted surface is the
HIRENASD wing scaled to a half-span of 29 m. The structural model is a shell
model kindly supplied by the Institute of Aircraft Design and Lightweight Structures
(IFL) of the Technical University of Braunschweig. It is akin to a modern transport
aircraft wing box and has been dimensioned to real-world design loads. As such it
has a realistic ratio of local sheet flexibility to total cantilever flexibility. The model
is depicted in the left image of Fig. 9; a detailed description can be found in the
contribution of Reich et al. in this volume. Also in this test case on wetted surfaces
with varying resolutions a fictitious pressure distribution was applied. However, it
cannot be exactly integrated here and thus no reference load or deformation distri-
bution is available. In the right image of Fig. 9, the loads projected on the structure
with the MLS method are depicted for the coarsest and the finest surface mesh.
With decreasing number of points on the wetted surface, the absolute values of the
aerodynamic surface loads increase due to the larger area of each individual sur-
face cell. At least for the structured CFD meshes used here, simultaneously a con-
centration of the surface loads occurs. Potentially both can cause local load in-
cidence effects, i.e. local “bumps” on the shell model which are then projected
back to the wetted surface and might locally alter the flow field. The bumps are a
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Fig. 9 left: Planform of the scaled HIRENASD wing and structural shell model created at
the Technical University of Braunschweig. right: Comparison of the force vectors resulting
from the fictitious pressure distribution on the coarsest and on the finest wetted surface and
projection with MLS.

result of the mismatch between the structural and fluid meshes; if forces rather than
surface strains are projected, any such appearance must be examined: does it repres-
ent a valid structural deformation or is it merely an artifact of the spatial coupling
method.

In Fig. 10 the deviations in load and deformation distributions are compared for
the FIE and MLS projection and the four investigated surface meshes. No results
were obtained with the GSB method owing to the high numerical effort brought
about by the inversion of the RBF weights matrix C in Eq. (10). The data plotted in
Fig. 10 are not be understood as absolute projection errors. The reference values do
not result from exact solution, which is not available. Here, the results obtained for
the surface mesh with 107703 points and the FIE method were chosen, this however
does not implicitly make them the “correct” values.

In the top left diagram there is an inherent deviation visible between the load
distributions obtained with the projection methods which does not decrease signi-
ficantly with increasing mesh resolution. The deviations in the deformation distri-
bution, though, are strongly dependant on the mesh resolution rather than on the
projection method, as can be seen from the top right diagram. This effect can once
again be attributed to the offset moments which partially compensate the differences
between the load distributions. A distributed deformational deviation was extracted
along a line in span-wise direction and is shown in the bottom left image of Fig. 10.
The graphs for the coarsest surface mesh and projection with FIE and MLS are
virtually identical. They exhibit the mentioned bumps, but also a global bending
deflection higher than in the reference case. The bumps are in the order of tenths
of a per cent of the total bending deflection, which for this model equates to local
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Fig. 10 top left: RMS deviations of the forces in flap-wise bending direction according to
Eq. (18). In all plots shown in this panel the finest wetted surface with 107703 nodes and FIE
projection provides the reference values. top right: RMS deviations of the flap-wise bending
deflections according to Eq. (19). bottom left: Local deviations of the bending deflection
in flap-wise direction for the coarsest surface mesh and projection with MLS and FIE. The
deflections are extracted along the length of the suction side of the wing box. Additionally
the deviations with the finest surface mesh and MLS projection are shown. bottom right:
Comparison of sections through the wetted surface at the spanwise position η = 0.84.

differences in the contour of several millimetres. The difference in global deflection
is in the order of one per cent. The deviations between the projection methods for
the finest mesh level are also plotted. They are close to zero all along the span. For
a rough assessment of the influence of the differing structural deformations on the
shape of the wetted surface, in the bottom right image two sections through the wet-
ted surface at the spanwise position η = 0.84 are superimposed, which is where the
distinct peak in the deviations is visible in the bottom left image. This comparison is
slightly marred by the fact that the respective projection methods are applied twice,
first for the loads and again for the deflections. Nonetheless, both the difference in
global deflection and a bump on the suction side are apparent for the coarsest wetted
surface. It can be concluded that with thin-walled structural shell models and coarse
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CFD meshes load incidence effects can indeed have an influence on results, but it
is seen to diminish rapidly with the finer CFD meshes. Even though such coarse
meshes are not regularly used for standard steady simulations, they still play a role
in unsteady simulations and in design, where accuracy is sacrificed for the sake of
solution speed. For instance during the preceding project MEGADESIGN [20], a
design case was investigated using a volume CFD mesh with approximately 170000
points; 4425 points thereof made up the surface mesh.

4.2 Influence of Projection Parameters

The spatial coupling methods available in the ACM all base the transfer of loads and
deformations on geometric neighbourhood relations between the wetted surface and
the structure. For this, the methods require different additional interpolation para-
meters. As explained in Chap. 3.2, the FIE method for beam elements has three
additional interpolation parameters: The weighting parameters βlimit and dlimit ap-
ply for projections of surface points in the vicinity of kinks of the beam model.
The width of the intersection region alimit has to be defined if assemblies border on
each other. For shell and volume models, the FIE method currently does not call
on interpolation parameters. Once it has been extended to configurations with mul-
tiple assemblies, alimit also will come into play. The GSB and the MLS methods
are derived from general interpolation algorithms. They require the definition of the
(minimum) number of supports Nδ or NM , the number of additional support points
per edge midpoint nFB, their radius rFB, the polynomial degree of the interpolation
functions (7) or (11) and the type of RBF function φ . The MLS method is also
suitable for configurations with multiple assemblies and thus again alimit has to be
provided. None of these parameters is directly based on physical considerations, so
the optimal values are not obvious.

All interpolation parameters of the FIE method required for beam models shall be
examined here, whereas for the MLS and GSB methods only a selection is presented
in detail. As became clear from the results presented in Chap. 4.1.2, distinct load dis-
tributions can result in identical deformation distributions. Therefore, the influence
of the projection parameters is evaluated via the deformation projection. In order to
have identical input data for all cases, no aerodynamic loads are imposed on the wet-
ted surface. Instead, a force distribution is applied directly to the structural nodes.
The structural deformations then become independent of the projection method. The
differences in the shape of the wetted surface can consequently be attributed solely
to the deformation projection. Also in this investigation exact reference solution is
not available, and as in the previous chapter the deviations should not be interpreted
as absolute errors.
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Fig. 11 top left: Planform of the HIRENASD wing and its structural beam model. The
model support is outside the pane at z = −0.609 m. The dummy fuselage is not physically
connected to the wing. It is also represented as a component in the beam model, but its nodes
are all clamped. top right: RMS deviations of the wetted surface deflections relative to those
obtained with the default settings. The parameters βlimit and dlimit are varied and alimit is
kept constant at 0.1 m. bottom left: RMS deviations of the wetted surface deflections relative
to those obtained with the default settings. alimit is varied, while the remaining parameters
are kept constant at βlimit = 0.08rad and dlimit = 1.2. bottom right: Distributed values of the
normalised deflection difference |Δuy/uy, tip| for the four parameter combinations marked in
the top right and bottom left diagrams.

4.2.1 Interpolation Parameters of the FIE Method for Beam Models

The interpolation parameters of the FIE method are the angular limit of the interpol-
ation area in the vicinity of beam kinks βlimit, the limit ratio of projection distances
in the vicinity of beam kinks dlimit, and the width of the intersection region between
assemblies alimit. They are varied and their respective influence on the shape of the
deformed wetted surface is assessed. The test case is the HIRENASD configura-
tion with a dummy fuselage, which constitutes a second assembly next to the wing.
The CFD surface mesh sketched in the top left of Fig. 11 has 46919 points and the
structural beam model has 654 nodes. These components are subjected to forces
and moments which resulted from a previous aeroelastic simulation. These are kept
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constant during the parameter study. The deformed wetted surface acting as a ref-
erence for the deviations was obtained with the default settings of the ACM, which
are βlimit = 0.08rad, dlimit = 1.2 and alimit = 0.1 m. This last value amounts to ap-
proximately 8% of the model half-span of 1.29 m. As the parameters dlimit and βlimit

both relate to the interpolation in the vicinity of kinks, these parameters are studied
together. The RMS deviation of the surface point coordinates εS is determined by
analogy to εu as defined in Eq. (19). Also in this case only the differences in the
flap-wise deflection are considered.

In the top right diagram of Fig. 11 the RMS deviations of the normalised de-
flection are plotted over the investigated parameter combinations. Whereas the
minimum valid values of βlimit and dlimit are defined inside the ACM, the upper
values were chosen arbitrarily. The choice of dlimit has a more profound effect on
the shape of the wetted surface than βlimit. There is a weak interdependence visible
between the two parameters. The indication of a global RMS value is somewhat
misleading here, as both parameters lead to highly localised deviations. This can be
seen in the bottom right image. The distributed values are displayed as bars over
the configuration’s planform for combinations of the maximum and the default set-
tings of βlimit and dlimit. Distinct peaks close to the leading edge are apparent for
the maximum value of dlimit, whereas for the maximum value of βlimit there are dif-
ferences visible in the wedge-shaped areas of non-unique projection mentioned in
Chap. 3.2. The choice of the width of the intersection region between fuselage and
wing not only has a more widespread influence. It also produces deviations an order
of magnitude higher and it thus gives far higher RMS errors. To put the given norm-
alised distributed values into perspective: Assuming a bending deflection of 5% of
the model half-span of 1.29 m, the peak deviation for parameter combination 3© is
less than 0.5 mm, but for setting 4© with alimit = 1.0 m it exceeds 3 mm.

4.2.2 Interpolation Parameters of the MLS and GSB Methods

The newly-implemented projection methods MLS and GSB have more control para-
meters than the FIE method. Only the (minimum) number of supporting edge mid-
points NM , the polynomial order of the interpolation functions and the radius of
the additional support points rFB are examined here. The results for the remaining
parameters are briefly summarised beforehand. As reference for the deviations the
deformed wetted surface obtained by application of the FIE projection with default
parameter settings is used.

The number of additional support points to be generated around each edge mid-
point nFB depends on the type of structural model. In previous extensive tests,
nFB = 5 was determined as the recommended number for beam models. With lower
numbers reliable solutions could neither be obtained with the MLS method nor with
the GSB method. Then again, greater numbers do not yield noticeable improvements
in robustness or accuracy. With structural models consisting of higher-dimensional
elements, the number of additional support points generally can be reduced. For
shell models nFB = 2 is often sufficient. For volume models, additional support
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points are likely to be omitted. The choice of the RBF has only very small influ-
ence on the solution both in the MLS and the GSB method. Wendland RBFs with
different orders of smoothness have been tried out as well as other RBF with com-
pact support, like Euclid’s hat functions or the Thin Plate Spline, with hardly any
effect on the wetted surface. Because the mechanism to perform the interpolation
in intersection regions between assemblies in the MLS method is very similar to
the mechanism in the FIE method, the same effects on the wetted surface can be
expected from variations of alimit.

The configuration used here is similar to the one presented in the previous section
in Fig. 11, but without the dummy fuselage. It comprises only one component and
thus allows direct comparison between GSB and MLS. The surface mesh has 31245
points. The structural model with 654 nodes and the applied load distribution are
the same as before.

4.2.3 Interpolation Parameters of the GSB Method

In the top left image of Fig. 12, the RMS deviations in the flap-wise bending deflec-
tion are plotted over the minimum number of supporting edge midpoints NM,min.
The radius of the additional support points was fixed at rFB = 0.15 m. In the GSB
method the actual number of support points differs all over the wetted surface, as
was explained on page 193. The support points of a given surface point are all the
edge midpoints and additional support points within the support radius δ . The de-
formed wetted surface used here as a reference was obtained with the FIE method
and its default parameter settings. The deviations do not seem to be influenced by
the number of support points. The RMS values hover at 1.7% for linear global inter-
polation functions and at 0.12% for quadratic ones. Yet the wetted surfaces obtained
with MLS are not completely identical, as is documented in the bottom left diagram.
It shows the RMS deviation relative to the deformed surface resulting from the GSB
method with NM,min = 8. These deviations, however, are at least one order of mag-
nitude smaller than those relative to the FIE reference case.

The top right image of Fig. 12 shows the influence of the radius of the additional
support points. Eight fixed radii are investigated as well as the alignment of the
additional support points with the wetted surface. The number of supporting edge
midpoints is NM,min = 8; the reference wetted surface as before resulted from the
FIE method. The better the spatial arrangement of the additional support points ap-
proximates the wetted surface, the lower the average deviations come to be. For both
linear and quadratic global contributions to the interpolation function the smallest
RMS values are achieved with an alignment of the additional support points. Next
best is rFB = 0.15 m, which is approximately half the mean chord length. Between
rFB = 0.276 m and rFB = 0.474 m a marked increase in deviations occurs. This is be-
cause rFB becomes larger than the fixed support radius δ , and the additional support
points cease to come into play. Case 4© in the bottom right image shows the distri-
bution of the normalised deviations. These increase over the length of the span and
values of |Δuy/uy, tip|> 2 are reached at the tip. Cases 1© and 2© highlight a general
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Fig. 12 RMS deviations of the wetted surface deflections of the GSB method relative to those
obtained with the FIE method and its default parameter settings for the projection parameters.
top left: Variation of the minimum number of supporting edge midpoints between NM = 2 and
NM = 64 with rFB = 0.15 m. top right: Variation of the radius of the additional support points
between rFB = 0.0267 m and rFB = 1.5 m with NM = 8. bottom left: Variation of the minimum
number of supporting edge midpoints between NM = 2 and NM = 64. In this diagram the
deflected surface obtained with GSB and NM = 8 is the reference for the deviations. These
are determined separately for linear and quadratic global contributions to the interpolation
function. bottom right: Distributed values of the normalised deflection difference |Δuy/uy, tip|
for the four parameter combinations marked in the top diagrams. Note the different scales for
each case.

problem of the GSB method: The deformation distribution is generally not approx-
imated well by the global polynomial contribution to the interpolation function, not
even by a quadratic one. This is to be compensated by the local RBF contributions
of the edge midpoints and of the additional support points. The deviations become
large in regions of the wetted surface far-off the support points, for instance at the
leading and trailing edges. Consequently, case 3© with alignment of the additional
support points with the wetted surface reveals significant improvement over cases
with fixed values of rFB.
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Ahrem et al. [1] propose breaking down the configuration into sections and ap-
plying the GSB method on each one by itself. The projection results are smoothly
interpolated by a partition of unity algorithm. In each section a different fit for the
global polynomial contribution is obtained which results in a better approximation
of the wetted surface. Simultaneously the memory requirements and the numerical
effort are reduced. The downside is the introduction of yet another interpolation
scheme, and this approach has not been included in the ACM.

4.2.4 Interpolation Parameters of the MLS Method

The parameter variations presented for the GSB method were repeated with the
MLS method. In the top left image of Fig. 13 the RMS deviations are shown in
dependence of the number of support midpoints NM . As before the reference de-
formed wetted surface is provided by the FIE method with default parameter set-
tings. In the MLS method, during selection of support points an edge midpoint is
always considered jointly with its surrounding additional support points. Hence the
total number of support points of a given surface point is always a fixed multiple
of the supporting edge midpoints Nδ = (nFB + 1)×NM, at least outside of intersec-
tion regions. For two edge midpoints the MLS projection with quadratic interpola-
tion functions fails; the resulting deformed wetted surface is completely distorted.
Even with the numerically more robust formulation (15) the MLS method requires
a minimum number of support points which should be at least twice the number
of monomials Q. With four or more supporting edge midpoints the MLS method
results in only small deviations relative to the FIE method. Neither with linear nor
with quadratic interpolation functions does the deviation exceed 10−4. In the inset
of the top left diagram, a typical distribution of the normalised deflection differences
|Δuy/uy, tip| is given. These are present all over the wing. The finite support radius
of the MLS method slightly smears the deformation during projection as compared
to the FIE method’s. This represents a systematic discrepancy largely independent
of the choice of MLS parameters. There are minor differences between the res-
ulting wetted surface, though, as can be seen from the top right diagram. Here, the
deformed wetted surface obtained with MLS for NM = 8 and rFB = 0.15 m is the ref-
erence. The different approximation orders of the interpolation functions are weakly
reflected in the RMS values, as is the number of support points.

In the bottom images of Fig. 13 the influence of the radii of the additional sup-
port points is examined. The bottom left diagram underscores the systematic dis-
crepancy between FIE and MLS which goes completely unaffected by the choice
of rFB. Again the smeared projection of deformations with MLS is apparent in the
inset. The largest deviations occur in the region of the beam kink, where the shape
of the surface deformed with FIE also depends on the choice of projection para-
meters (see cases 1© to 3© in Fig. 11). In the bottom right diagram of Fig. 13, the
deformed wetted surface obtained with MLS and NM = 8 and rFB = 0.15 m is again
the reference. For all contemplated parameter settings the deviations are very small.
The systematic discrepancy between the results for linear and quadratic interpola-
tion functions is due to the single peak at the leading edge wing root visible in the
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Fig. 13 RMS deviations of the wetted surface deflections of the MLS method. top left:
Variation of the minimum number of supporting edge midpoints between NM = 2 and NM =
64 with rFB = 0.15 m. The deflected surface obtained with FIE and default parameter settings
is the reference for the deviations. top right: Variation of the minimum number of supporting
edge midpoints between NM = 2 and NM = 64. The deflected surface obtained with MLS
and NM = 8 and rFB = 0.15 m is the reference for the deviations. bottom left: Variation of the
radius of the additional support points between rFB = 0.0267 m and rFB = 1.5 m with NM = 8.
The deflected surface obtained with FIE and default parameter settings is the reference for
the deviations. bottom right: Variation of the radius of the additional support points between
rFB = 0.0267 m and rFB = 1.5 m with NM = 8. The deflected surface obtained with MLS and
NM = 8 and rFB = 0.15 m is the reference for the deviations.

inset of the bottom right image. This peak can be traced to the lack of additional
support points in its vicinity, as can be identified in Fig. 5.

4.2.5 Comparison of the Projection Methods

The projection methods FIE, GSB and MLS were applied to similar configurations
and at least a tentative comparison of their relative merits is possible. The projec-
tion mechanism of the FIE method is completely in line with beam theory in regions
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Table 1 Memory consumption and execution time of the ACM with the available projection
methods. Runs were carried out on a single 3.0 GHz Intel Xeon processor. The memory
requirements include the storage of the system matrices and the solver workspace.

Configuration HIRENASD wing with
31245 surface points, beam
model with 653 structural
elements

Scaled HIRENASD wing with
31245 surface points, shell
model with 9352 structural ele-
ments

Projection method FIE MLS GSB FIE MLS

Duration of first coupling
iteration [s]

3.40 3.47 258.84 204.88 86.29

Duration of subsequent
coupling iterations [s]

0.06 0.05 1.45 0.86 0.80

Peak total memory
requirement [MByte]

38.8 135.0 1617.6 1727.1 1740.3

where the beam axis is straight and does not have intersections. For the investigated
test configuration, this region is the outboard part of the wing. In the vicinity of the
beam kink the choice of the projection parameters βlimit and dlimit has a moderate in-
fluence on the local shape of the deformed wetted surface. Correct or optimal values
for either are hard to ascertain, and the default values are the results of experience.
Approximate values for the width of the intersection region alimit can be determ-
ined by common sense, but the choice has a more profound effect on the shape of
the wetted surface. While not shown here, fundamentally the same behaviour re-
garding alimit can be expected for the MLS method. This method has the advantage
that the number of support points nδ and the radius of the additional support points
rFB can be varied over a large range with only marginal effects on the shape of the
deformed wetted surface, independently of the polynomial order of the interpola-
tion function. Compared to the FIE results the deformation distributions are slightly
smeared during projection. Further differences to the FIE results are visible in the
vicinity of kinks where the FIE method does not present a valid absolute reference
either. Finally, the GSB method exhibits the strongest dependency on the choice of
projection parameters. A high polynomial order of the global contribution to the in-
terpolation function is beneficial, as it should already represent the deformation field
as well as possible. The local RBF contributions have to make up for the difference
between the supplied deformation distribution and its global approximation, so that
the placement and number of supports bear a special importance.

From the user perspective, any projection method should not only be robust and
deliver accurate results, but also have low computational resource requirements.
The FIE method needs the least memory because in the implementation used in
the ACM it does not store the projection matrix explicitly. The MLS method does
so, but the resulting matrix is sparse. Discounting additional entries due to inter-
polation in intersection regions, the number of non-zero entries is nCFD × Nδ =
nCFD×NM ×(nFB+1). With the GSB method though, the projection matrix is dense
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and the number of non-zero entries is the product of nCFD and the total number of
support points. It is also the method associated with the greatest numerical effort. In
Table 1, typical run-times and peak total memory requirements are summarised for
the test cases treated in Chapters 4.1.3 and 4.2. With the shell model, the memory
requirements are dominated by the structural system and preconditioning matrices.
The overhead for the explicit storage of the projection matrix of the MLS method is
not significant, as opposed to the beam model test case.

5 Coupled Simulations

In order to assess the influence of the projection method on the actual coupled solu-
tion, steady aeroelastic simulations were performed with the ACM in conjunction
with the flow solvers FLOWer and TAU. Two different configurations were used.
The scaled HIRENASD wing with the structural shell model depicted in Fig. 9 is
representative for a real-world transport aircraft wing. The flow conditions were
chosen according to a test case defined in the project MEGADESIGN [20] for the
optimisation of an aircraft cruise configuration. The flight speed is Ma = 0.82 at
standard atmospheric conditions in 11 km altitude. These amount to a Reynolds
number of Re = 43.2× 106 and a loading factor of q/E = 0.144× 10−6. This value
is the ratio of the free-stream dynamic pressure and Young’s modulus of the struc-
ture and is a dimensionless number that characterises aeroelastic coupling effects.
The second test configuration employed is the HIRENASD wing in its original size
and the beam structural model displayed in Fig. 11 representing the structure of
the actual wind tunnel model. Results are shown here for the conditions of the
experimental polar 250 [4]: Ma = 0.80, Re = 23.5× 106 and q/E = 0.48× 10−6.
In both test cases, the dummy fuselage was not taken into consideration. Identical
CFD meshes were scaled to match both configurations. The block-structured mesh
for FLOWer is the volume mesh from which the already-presented wetted surface
with 31245 points was extracted and has about 2.8 million points. The hybrid-
unstructured mesh for TAU has 12.6 million points and a wetted surface with 188983
points. Only results obtained with the FIE and MLS methods are compared.

In Fig. 14, the results for the transport aircraft wing configuration are presented.
With the MLS method, quadratic interpolation functions were used with nFB = 2
and NM = 67. In the top diagrams, the lift coefficients and the flap-wise bending
deflections at the wing tip are plotted over the angle of attack. For both magnitudes
the same observation can be made: The projection methods deliver very similar dis-
tributions with the same flow solver, but between the results of FLOWer and TAU
there is a difference of around 15%. In the bottom left diagram the relative errors in
lift and deflection are given. The influence of the projection method is singled out;
the deviations between the flow solvers are not shown. The relative error in the tip
deflection |Δuy, tip/uy, tip| is greater than the values obtained in the previous tests (see
Fig. 12). During actual coupled simulations the differences between the projection
methods affect the structural load distribution as well as the shape of the deformed
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Fig. 14 Results of aeroelastic simulations for the scaled HIRENASD wing and the IFL
structural shell model at Ma = 0.82, Re = 43.2×106, q/E = 0.144×10−6 and 0◦ ≤ α ≤ 5◦.
Computations were carried out with FLOWer and TAU coupled with the ACM. FIE and MLS
were used as projection methods. In all examples the LEA k −ω turbulence model and a
central differences discretisation in space were applied. top left: Lift polars. top right: Flap-
wise tip bending deflections. bottom left: Relative errors in lift coefficients and in bending
deflections between the projection methods. The comparisons are only carried out between
the distributions obtained with the same flow solver. bottom right: Lift polars disregarding
aeroelastic deformation superimposed on those obtained with MLS. In a departure from the
previously shown results, these were obtained with the scaled HIRENASD wing with dummy
fuselage.

wetted surface and then feed back to the aerodynamic load distribution of the next
coupling iteration. The deviations are still inside engineering limits, though, ranging
between one per cent and one per mil. In the bottom right diagram, the lift distribu-
tions obtained by “pure” CFD disregarding aeroelastic deformations are addition-
ally provided. Already here the differences are apparent between the flow solvers
(These results were obtained for the scaled HIRENASD wing with dummy fuselage,
hence the lift coefficients considering aeroelastic deformation are slightly higher
than in the top left diagram). In Fig. 15, local pressure distributions at the spanwise
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positions η = 0.55 and η = 0.83 are picked out for an angle of attack of α = 3◦.
In the undeformed configuration TAU predicts a shock position further downstream
than FLOWer by about 5% of the local chord length. The higher structural bend-
ing moment must then lead to an aeroelastic equilibrium configuration with larger
deformations. The differences between the flow solvers are thus aggravated by the
aeroelastic coupling. This test case is entirely generic and there are no experimental
data that would allow an evaluation of these differences.

An extensive experimental data base is available for the HIRENASD configura-
tion. Here the same tendencies as with the previous configuration are to be observed,
as can be gleaned from Fig. 16. The deformation distributions and the lift polars
also coincide well for the projection methods, but there are significant differences
between the results of the flow solvers. Measured lift coefficients are superimposed
with the simulation results, but do not give a clear direction. Fig. 17 contains cal-
culated and measured pressure distributions for the two highest angles of attack
α = 2◦ and α = 3◦ at the spanwise stations η = 0.32, η = 0.59 and η = 0.80. The
local pressure coefficients by the MLS method and by the FIE method with identical
flow solvers coincide excellently, but significant differences between the flow solv-
ers persist. The higher global lift coefficients achieved with TAU are reflected in the
higher suction plateaus and shock positions further downstream. For the current test
case, predictions with TAU appear in better agreement with the experiments than
the FLOWer results, at least at the inboard sections. At η = 0.80 neither solver cor-
rectly captures the gradient at the downstream end of the plateau and its height is
overestimated using TAU. Admittedly, the presented simulations do not capture the
aerodynamic influence of the dummy fuselage on the flow field about the wing.

The differences between the results of FLOWer and TAU are presumably caused
by the flow meshes or the numerical parameters used at CATS, and are not related to

Fig. 15 Pressure distributions obtained with FLOWer and TAU without consideration of
aeroelastic deformation at two spanwise stations of the scaled HIRENASD wing with dummy
fuselage. Inflow conditions are Ma = 0.82, Re = 43.2×106 and α = 3◦.
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Fig. 16 Results of aeroelastic simulations for the HIRENASD wing with a structural beam
model at Ma = 0.80, Re = 23.5×106, q/E = 0.48×10−6 and 0◦ ≤ α ≤ 3◦. left: Lift polars.
right: Flap-wise tip bending deflections.

the aeroelastic coupling. Further efforts to narrow down the cause of the differences
remain to be made, but are outside the scope of the current paper.

6 Conclusion

In this paper, the spatial coupling methods for reduced structural models in the ACM
were examined. The existing method for the projection of loads and deformations
between the wetted surface and the structure based on FIE was outlined together
with the interpolation schemes additionally required for beam models. The altern-
ative methods MLS and GSB and their implementation in the ACM were explained
in detail. For the individual steps of the spatial coupling procedure potential error
sources were identified. Several test configurations of increasing complexity were
used to investigate the importance of the mesh resolutions of the wetted surface
and of the structure on the structural load distribution and the resulting deformation
field. Only for thin-walled structural models, a significant influence was detected. It
manifests itself as local “bumps” on the structure and, after deformation projection,
also on the wetted surface. The projection parameters of the FIE, MLS and GSB
methods were investigated; their effect on the shape of the deformed wetted sur-
face was determined with two variants of the HIRENASD configuration with and
without dummy fuselage and a structural beam model. With the FIE method, only
localised effects were apparent in the vicinity of kinks of the beam axis and intersec-
tions between assemblies. Here, additional interpolation schemes assure a smooth
and contiguous deformed wetted surface. Otherwise, FIE does not rely on interpol-
ation parameters. With MLS and GSB, interpolations are not acting locally, but the
projection as a whole is cast as a spatial interpolation problem. (Yet in practice,
local interpolations cannot be foregone completely, as without projection results are
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Fig. 17 Measured and computed chordwise pressure distributions for the HIRENASD wing
with a structural beam model at Ma = 0.80, Re = 23.5×106 and q/E = 0.48×10−6.

unsatisfactory in intersection regions between assemblies.) The MLS method ex-
hibited a low overall dependency on the choice of projection parameters. With the
GSB method, the shape of the deformed wetted surface was significantly influenced
by the position and number of interpolation support points. By means of coupled
simulations with the ACM, and either FLOWer or TAU as flow solvers, the practical
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applicability of the MLS method was shown. The differences between the lift po-
lars, deformation distributions and local pressure distributions obtained with MLS
and with FIE and identical flow solvers were small. However, in the results achieved
with identical projection methods but different flow solvers, significant differences
were apparent. These were linked to the flow solvers, respective the input data used,
and not to the aeroelastic coupling procedure. Ongoing work on the spatial coupling
in the ACM concerns the extension of the FIE method for volume and shell elements
to configurations comprising multiple assemblies.
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Improved Mesh Deformation

Holger Barnewitz and Bernd Stickan

Abstract. An improved, robust, error reducing CFD-mesh deformation module for
the parallel simulation environment FlowSimulator is presented. The mesh deform-
ation method is based on radial basis function interpolation for the surface- and
volume- mesh nodes combined with a group-weighting and displacement-blending
approach. Since the latter weighting and blending approaches are based on given
wall distances to the group surfaces, another module for the wall distance compu-
tation is introduced. Due to performance reasons, the number of input data loca-
tions (base points) used for the radial basis function interpolation must be limited.
Therefore, methods have been developed to reduce the number of base points while
keeping the interpolation error as low as possible. Furthermore, the modules have
been parallelized for usage in multi-node high performance computing clusters. Fi-
nally, the capability of a multidisciplinary, parallel application is demonstrated in
FlowSimulator with reduced errors and uncertainties.

1 Introduction

Airbus strategy to essentially move much more towards simulation makes it indis-
pensable to know about any uncertainties and deficiencies in the predictive capabil-
ities used for aerodynamic development. Knowing about error bands, their quantity
and having in hand some means to manage and minimize their influence on the
predicted results could tremendously help in the development process, reliable op-
timization of the product, shortening of development time and cost.
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The MUNA project is an essential brick within the Airbus strategy of flight phy-
sics/aerodynamics focusing on providing adequate tools for numerical qualification
of aerodynamic design during concept phase. Respectively qualified CFD is expec-
ted to form the single basis for judgement of aerodynamic status before entering
concentrated high level wind tunnel testing – to be ready for next new aircraft de-
velopment. In addition, MUNA is contributing to support aerodynamic data process
change towards "more simulation, less testing".

The contribution described in the following sections focuses on CFD mesh de-
formation used in the context of numerical aerodynamic shape optimization and
shape design including static wing deformation. Major topics are:

• New mesh deformation module "FSDeformation" with advanced methods and
integration into FlowSimulator [1]

• Geometry parametrization with a link between CAD (CATIA V5) and mesh
deformation

• Use of mesh deformation for aerodynamic shape optimization
• Application of mesh deformation in a CFD/CSM coupled iterative process
• Combining shape design and CFD/CSM coupling in a multi-disciplinary optim-

ization

A typical multi-disciplinary optimization (MDO) process chain for shape optimiza-
tion of a wing including the static deformation is shown in Fig. 1. An essential brick
is the mesh deformation tool which is applied to:

1. reflect the changed shape design generated by a parametric CAD model,
2. deform the wing according to aerodynamic (and other) forces.

Fig. 1 Multi-disciplinary optimization chain for wing shape and structure weight
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The advantage of using mesh deformation for unstructured grids is manifold:

• It avoids the problem of numerical noise for the calculated aerodynamic coeffi-
cients which might occur if new meshes are created for slightly changed geomet-
ries. This "noise" is caused by the change of mesh topology. Mesh deformation
conserves the topology and small geometry variations produce small mesh de-
formations in a continuous way.

• A so-called restart capability of the flow solver allows to start from a flow solu-
tion calculated beforehand to save computing time.

• Usually, deformation of an unstructured CFD mesh is faster than re-generating a
new mesh, and thus also saves computing time.

Mesh deformation plays a key role in aerodynamic shape optimization, since any
adjustment of the model geometry has an impact on the 3D CFD-mesh. Because
CFD-simulations usually rely on spatial discretization based on volume-meshes,
these have to be updated if a CAD surface changes its location or its shape. The
costs for the generation of new meshes should be as low as possible but should
also produce usable grids even for large local changes in the model geometry. There
are several possible ways to update the mesh, e.g. the complete re-meshing of the
complete grid or the deformation of an existing grid.

For unstructured meshes, re-meshing would certainly change the topology of the
mesh. Since the discretization in 3D space is generally not dense enough to pro-
duce a mesh-independent flow solution, the newly generated mesh would produce
a slightly different flow field not caused by the geometry change. This leads, espe-
cially in the case of shape optimization, to noise in the aerodynamic coefficients,
which often significantly disturbs the shape optimizer. Furthermore, the computa-
tional cost for re-meshing of unstructured grids is very high. Hence, mesh deforma-
tion is an essential tool in this area of computational fluid dynamics:

• the topology of the mesh remains unchanged and
• small geometry variations correspond to small changes of the numerically de-

termined aerodynamic flow field.

2 CFD Mesh Deformation Module

The deformation module "FSDeformation" has been developed for the simulation
environment FlowSimulator [1]. It is based on an implementation of the mesh-
deformation module presented in [6] using the radial basis function (RBF) inter-
polation approach. This approach is extended by the feature of specifying groups
of different boundaries with separate interpolation functions and a blending func-
tion, which restricts the deformation to a specified zone around these boundaries.
Both features are controlled by the distances ddd of the mesh nodes to the group target
boundaries. The distances are calculated by the wall distance module (section 3).

More details about the deformation module, for example concerning parallel per-
formance and interpolation quality, can be found in [10].
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2.1 Radial Basis Functions in Mesh Deformation

Deformation methods based on RBF-interpolation are independent of the volume
mesh and flow solver type, because the algorithm is working on completely arbit-
rary clouds of points without using any connectivity information. Additionally, for
the mesh updates of consecutive optimization steps or an unsteady aeroelastic sim-
ulation, only a matrix-vector multiplication is necessary for each mesh node. The
computationally most expensive part is to compute the interpolation matrix for this
multiplication. It can be calculated once in the beginning of the entire simulation and
remains unchanged, since it only depends on the base points, but not on the deform-
ation vectors. Consequently, the method can be perfectly parallelized (using MPI
and partitioned grids), because each process has to apply the interpolation matrix
only to its own grid nodes. But it is also clear that the dimension of the interpolation
matrix highly influences the overall speed of the algorithm.

2.1.1 Multivariate Interpolation Using Radial Basis Functions

The radial basis functions approach is a well-established interpolation method for
gridded and scattered data, whereas the most natural context for function approxim-
ation is given for scattered data [5, p. 99], [4, p. 4]. In the field of computational fluid
dynamics (CFD) it is often used for coupling CFD-grids to finite element structure
grids.

The input data in d dimensions consist of data locations xxxi, merged into the data-
set

X = {xxx1,xxx2, ...,xxxn} ∈R
d , (1)

and the corresponding function values

fi = f (xxxi) ∈ R, i = 1, ...,n. (2)

The data locations xxxi are called centers or "base points".
The goal is to interpolate the function values between the base points by an ap-

proximant s : Rd →R to satisfy the condition

s|X = f |X . (3)

In this specific case s is a linear combination of shifted radially symmetric basis
functions φ . Radially symmetric means that the value of φ (·) depends only on the
distance of the argument to the origin, hence it is often written φ (‖ · ‖). The distance
norm is usually the Euclidean norm (with d = 3)

‖xxx‖2 =

√√√√ d

∑
i=1

x2
i . (4)
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s(xxx) has the general form

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖) . (5)

Setting s(xxxi) equal to fi for all i ∈ {1, ..,n} leads to the linear system

Ayyy = bbb (6)

with

A = (φ (‖xxx j − xxxk‖))( j,k)=1,..,n , yyy = (αi)i=1,..,n , bbb = ( fi)i=1,..,n . (7)

A unique interpolant is usually (for most φ ) guaranteed, if the base points are all
distinct and there are at least two of them [3, p. 6]. An example for a radial basis
function could be φ (‖xxx‖) = ‖xxx‖2 log‖xxx‖, which is called "thin plate spline".

An important attribute of this interpolation method is the possibility to expand
the approach of equation (5) by adding a polynomial to the definition without losing
the uniqueness of the coefficients. For function values fi, which show a polynomial
character, the appended polynomial improves the interpolation quality. The only
restriction is that the polynomial must have a degree m ≥ 1 and is non-zero at all
base points. This leads to:

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖)+ p(xxx). (8)

The coefficients can be computed by solving

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖)+ p(xxx) = fi (9a)

0 =
n

∑
i=1

αiq(xxxi) ∀ q : deg(q)≤ deg(p) (9b)

The extra equation (9b) takes up the extra degrees of freedom given by the poly-
nomial coefficients, to allow a unique interpolant. The uniqueness can be guaran-
teed, if φ is "conditionally positive definite". It is referred to [5, p. 101] for more
details to the theory of this topic.

Again, the requirements on X are not very strong. For a linear polynomial, X
must only contain four base points, which do not lie on a plane. Furthermore, if the
function values fi at the base points were generated by a linear function, they would
be reproduced exactly by the linear polynomial. [4, p. 5]

In the following the dimension is set to d = 3 in this document. Since xxx =
(xx,xy,xz), the polynomial is linear and can be written as

p(xxx) = β0 +β1xx +β2xy +β3xz = βββT
(

1
xxx

)
. (10)
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So equations (9) can be abstracted to matrix notations

Hyyy = bbb, (11)

with

A = (φ (‖xxx j − xxxi‖))( j,i)=1,..,n ∈ R
n×n, (12)

P =

((
1
xxxk

)
k=1,..,n

)
∈ R

4×n, (13)

H =

(
0 P

PT A

)
∈R

(n+4)×(n+4), (14)

yyy =

(
βββ
ααα

)
=

(
(βi)i=1,..,4
(αi)i=1,..,n

)
∈ R

n+4 and (15)

bbb =

(
0
fff

)
=

(
0

( fi)i=1,..,n

)
∈R

n+4. (16)

Solving (11) provides in bbb the coefficients to use (8) for the interpolation of arbitrary
points. The matrix H will be called "interpolation matrix" below, although it is only
used to calculate the interpolation coefficients.

The module presented is not independent of cell connectivity, since wall dis-
tances of the nodes to certain boundary groups are used. The algorithm to com-
pute the wall distances relies on connectivity information to determine neighboring
nodes. But, it is important to note that the base points xxxs,i, i = 1, ..,ns do not need
any connectivity information.

Solutions for the indicated performance factor "interpolation matrix size", which
directly depends on the number of used input deformation vectors, will be shown
in section 4. That section contains different methods to reduce the number of base
points and deformation vectors.

The basic interpolation functions of the module are taken from DLR’s flow solver
TAU. They have been applied successfully at DLR and Airbus to many test cases.

2.2 Algorithm

The interpolation algorithm is based on a group-weighting and a deformation-
blending approach.

A group-weighting approach is used to allow the independent movement of dif-
ferent model parts/boundaries in the grid. Otherwise the deformations of different
boundaries could influence each other and unintentional surface deformation would
be the result. Separating the interpolation by group protects the shape of the different
bodies. Therefore, the interpolation matrix Hg of each group g has to be computed
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and applied to the grid nodes separately. Finally, the deformation result for each grid
point is calculated by a weighted average of each group-deformation result.

The deformation-blending approach supports the protection of boundary layer
cells and the usage of radial basis functions φ(‖x‖) with limits φ(‖x‖) → ∞ for
‖x‖ → ∞. These radial basis functions, which increase with increasing distance to
the base point of a deforming body, need to be restricted farther away from the sur-
face of this body. Otherwise local deformations would influence the whole mesh.
Additionally, the added polynomial of the interpolation approach (8) would deform
the whole volume mesh as well. Consequently, this approach that is implemented to
recover linear deformations exactly, cannot be used without the blending of deform-
ation values.

Hence, the notations are expanded by an elevated group index g for ng groups.
As input data there are ng

s base points xxxg
s,i ∈ R

3 for each group g merged into the
datasets

Xg
s =

{
xxxg

s,1,xxx
g
s,2, ...,xxx

g
s,ng

s

}
for g = 1, ..,ng. (17)

The function values that are going to be interpolated, are the deformation vectors

Δxxxg
s,i = Δxxx

(
xxxg

s,i

)
=

⎛
⎝Δxg,x

s,i
Δxg,y

s,i
Δxg,z

s,i

⎞
⎠ ∈R

3 for i = 1, ...,ng
s , g = 1, ..,ng, (18)

which could be used to compute the displaced coordinates xxxg
new,i of the base points:

xxxg
new,i = xxxg

s,i +Δxxxg
s,i for i = 1, ...,ng

s , g = 1, ..,ng. (19)

But the aim of the deformation module is to update the mesh nodes and not the base
points.

A difference to the function values fi in equation (2) to the function values Δxxxg
s,i

is their dimension. Section 2.1.1 only deals with one-dimensional function values
while in this case the function values are three-dimensional. Therefore each coordin-
ate of the mesh nodes has to be interpolated separately. It is advantageous that the
interpolation matrix Hg in (11) has to be computed only once for each boundary
group instead of computing it for each dimension separately, since the matrix de-
pends only on the base points xxxs,i and the chosen radial basis function φ . So the
interpolation matrices Hg for each group can be stated as:

Hg = H (Xg
s ,φ) . (20)

For each dimension k ∈ {x,y,z} the interpolation coefficients αααg,k =
(
αg,k

i

)
i=1,..,ng

s

and βββ g,k =
(
β g,k

i

)
i=1,..,4

can be calculated by inverting equation (11):

(
βββ g,k

αααg,k

)
= (Hg)−1

(
000(

Δxxxg,k
s,i

)
i=1,..,ng

s

)
. (21)
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The actual interpolation algorithm calculates the deformations of the grid nodes

dddxxxv,i =
(

dxx
v,i dxy

v,i dxz
v,i

)T
(22)

for the volume mesh grid nodes xxxv,i by using the distance dg
i to the nearest surface

of group g. For every coordinate k ∈ {x,y,z} the governing equations are:

dxg,k
v,i =

ng
s

∑
j=1

αg,k
j φ (‖xxxv,i − xxxs, j‖)+

(
βββ g,k

)T
(

1
xxxv,i

)
, g = 1, ..,ng (23)

blend(dg
i ,g) =

⎧⎪⎨
⎪⎩

0 : dg
i > RZWg

1 : dg
i < RFWg

RZWg−dg
i

RZWg−RFWg : else
(24)

weight(dg
i ) =

1√
max{dg

i ,ε}
(25)

dxk
v,i =

∑ng
g=1 blend(dg

i ,g) ·weight(dg
i ) ·dxg,k

v,i

∑ng
g=1 weight(dg

i )
(26)

Two new functions have been introduced: the blending function blend(·) and the
weighting function weight(·). The weighting function averages the individual group
deformations. Because its limit for di → 0 is infinity, it needs a cut-off value 1/

√
ε

for numerical reasons.
The blending function is sketched in figure 2. With its group-parameters RZWg

(Radius Zero Weight) and RFWg (Radius Full Weight) it is controlling the deform-
ation of the grid nodes. If a grid node is close to a boundary of group g with a
distance less than RFWg, it will move approximately like the boundary. This func-
tionality can be used to conserve the sensitive boundary layer part of a grid. Farther
away from the boundary with a distance dg

i > RZWg the deformation is zero.

Fig. 2 Blending function for grid node deformation computation, including the parameter
radius full weight (RFW) and radius zero weight (RZW)



Improved Mesh Deformation 227

(a) Overall view (b) Zoom view

Fig. 3 2d test case, wing including flap and slat. Each of the 3 parts is an independent deform-
ation group and only the flap has input values unequal to zero (undeformed: black, deformed:
grey)

An example for independently deforming groups can be seen in figure 3. It shows
that the surface mesh of the rigid main wing body is not affected by the deformation
of the nearby moving flap. The radius zero weight can be recognized in figure 3(a),
too.

The algorithm is also described shortly in [6]. This paper also provides test cases
showing the usefulness of the presented group-weighting approach and the quality
conserving capability of the methodology.

Several different boundary type dependent algorithms have been developed to
simplify the usage of standard cases often applied to CFD meshes for aircrafts:

• Standard Boundary Type. This is handled as described above. Deformation vec-
tors have to be provided for this surface type.

• No-Normal-Movement Boundary Type. All surface points on this boundary are
allowed to slide on the surface. The movement in surface normal direction is
suppressed. It’s used for example for symmetry planes.

• Far-field Boundary Type. Here the deformation is set to zero.
• Attached Group Boundary Type. This treatment conserves the shape of an at-

tached device, e.g. an engine mounted on a deforming wing.

3 Wall Distance Module

The mesh deformation module presented in section 2 uses the distance of the grid
points to the closest group boundary for the weighting of groups and for the blend-
ing of deformations. The wall distances control the influence of different boundary
groups on the deformation of a specific volume grid node.
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There are different approaches for the computation of wall distances, for example
based on partial differential equations, as seen in [11], based on a clever merging
of the boundary points [13], or just a naive brute force algorithm, which compares
each boundary node with every volume mesh node. The presented method, which
was adopted from DLR’s TAU preprocessor, uses another algorithm. In TAU the
wall distance is used for the application of certain turbulence models. The method
is, like the mesh deformation module, embedded into an independent module for
the simulation environment FlowSimulator.

The algorithm uses an advancing frontier approach. Every grid node n gets an
additional parameter xxxnear[n], which saves the coordinates of the currently nearest
boundary node. Then in every iteration step, each node compares the distance to its
xxxnear-entry with the xxxnear values of its neighboring nodes and where required updates
the xxxnear-value with a better value from a neighbor. Since the boundary nodes have
the correct solution directly at the beginning, the solution for xxxnear for each node
moves into the field node by node.

This so-called advancing front algorithm makes it possible that for certain (struc-
tured) grids it would take only a few iteration steps to advance the correct solution
for xxxnear into the interior of the grid.

4 Base Point Reduction Methods

The number of base points ns has a major influence on the performance of the radial
basis function interpolation algorithm. The needed (direct) matrix inversion depends
on the third power of ns and the interpolation of the grid points depends linearly
on the base point number. If the tool is used for the coupling of a structural finite
elements (FEM) grid to a computational fluid dynamics grid, the number of input
base points will be equal to the number of surface grid nodes of the FEM-grid. The
common number of surface nodes of these grids is way too large to use them all
for the RBF grid deformation and still having satisfactory runtime results. So the
reduction of the base points is indispensable for the mesh deformation module.

The reduction of the base points is not the only way to increase the efficiency
of radial basis function interpolation methods. Other possibilities are, for example,
multilevel approaches combined with base point reduction [9] or partition of unity
approaches like in [12]. The multilevel approach uses a base point set hierarchy
to start the interpolation at a coarse level and then refining it progressively. The
partition of unity approach breaks the large problem down to several small ones by
partitioning the base points into neighbor sets.

A useful attribute of the radial basis function interpolation approach is that no
connectivity information of the input base points is needed. To conserve this char-
acteristic the reduction algorithms do not use connectivity information as well.
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Fig. 4 Equidistant reduction snapshot during iteration step

4.1 Equidistant Reduction Method

The TAU deformation module also contains this method to reduce the number of
base points. It tries to select the base points Xs spatial-evenly distributed from the
point set Xinp. This is managed by iteratively finding the right minimal distance
dmin to possible neighboring base points, to get as close as possible to the maximal
number of desired base points ns,max. Neighbors with a distances less than dmin are
rejected during this process. Due to performance issues, it is using an octree data
structure to find the neighbors closer than dmin to a specified base point. Figure 4
sketches one iteration step of the algorithm.

The result is having evenly distributed base points. But choosing the base points
like this does not take into account the deformation vectors Δxinp,i or interpolation
errors.

4.2 Weighted Distances

This approach is similar to the equidistant reduction approach of section 4.1. The
idea is to modify the distances between two input sites xinp,i and xinp,j by a weighting
factor wi, j. The consequence would be an increased point density in areas of higher
weights.

The distance di, j between two points xi and x j with associated weights wi and wj

is calculated by

di, j =
wi +wj

2
‖xi − x j‖2. (27)

The disadvantage of this approach is that the octree data structure of section 4.1 can-
not be used any more. Instead a simple list data structure has to be used. Searching
for neighbors of one node will therefore include to check the distance to all input
sites Xinp.
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4.2.1 Weighting by the Difference to the Local Average Deformation

This weighting approach takes the deformation vectors Δxinp,i into account directly.
It uses a function FindNeighbours(xxx,X ,ΔX ,d), which returns subsets of

Xnb =
{

xnb,1,xnb,2, ...,xnb,nnb

}
(28)

and
ΔXnb =

{
Δxnb,1,Δxnb,2, ...,Δxnb,nnb

}
(29)

of cardinality nnb with points of distance less than d to xxx. In this case the distances
are not weighted yet. The weights for the input point xinp,i are then calculated by

(Xnb,ΔXnb) = FindNeighbours
(
xinp,i,Xinp,ΔXinp,d

)
(30)

Δxnb =
∑nnb

i=1 ‖Δxnb,i‖2

nnb
(31)

wi =

∣∣Δxnb −‖Δxinp,i‖2
∣∣

∑
ninp
i=1

∣∣Δxnb −‖Δxinp,i‖2
∣∣ (32)

The idea is to develop an expression that favors the base points, the absolute de-
formation value of which is different to the average deformation value Δxnb of its
neighbors. Another thought is that the nodes at the outer tips of a deforming body
will get a higher weight, since at the tip the deformations reach usually their max-
imum and consequently differ strongly from the neighborhood mean. An approach
which only takes the gradient into account would not result in a higher weight for
the outer base points, because the deformation gradient would not have a peak at
an outer base point. An example to illustrate this idea can be seen in figure 5. This
simplified example shows why the approach leads to higher weights for the base
points on the tip, the deformation vectors of which should not be neglected in the
final base point set. It shows a tip body with a slight rotational deformation. The
deformation vector with the largest value is on the tip of the body. The equidistant
reduction algorithm from section 4.1 could easily fail to select the maximum de-
formation vectors. Because of the higher weight values at the tip this would happen
less likely with the new algorithm.

This example shows a disadvantage of the algorithm as well. If the gradient of the
deformation vectors is constant in a certain area, the weights will tend to zero. This
will lead to a very low base point density in the next step. To get a lower border for
the density, the final reduction method is combined with the equidistant reduction
method. First a fraction fracequi of the desired ns,max base points is chosen by the
equidistant algorithm, then the remaining base points and deformation vectors are
selected with the weighted distance approach.
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Fig. 5 Schematic example for weights wi of the upper base points with their deformation
vectors

4.2.2 Weighting by Interpolation Error

The algorithm presented in this section is combining the approach of the weighted
distance reduction with the interpolation error calculated for the input data locations.
In this case, the distance weights

W =
{

w1,w2, ...,winp
}

(33)

are equal to the error of interpolated deformation vectors Δ X̃inp.
The basic scheme of the algorithm looks like:

• Select start base point set Xs with corresponding deformation vectors ΔXs by
equidistant reduction

• Do nEWSteps times:

– Interpolate deformations at input points Xinp, by using the sets Xs and ΔXs, to
get the deformation vectors Δ X̃inp

– Calculate weights wi by comparing ΔXinp to Δ X̃inp

– Add further base points and deformation vectors by weighted distance reduc-
tion to Xs and ΔXs, respectively.

The type of greedy algorithm, which recalculates the exact interpolation error in
each step, is also proposed in [2, p.9].

To interpolate the input points Xinp in each step, a new interpolation matrix Hk has
to be created from the already chosen base points Xs and inverted in every iteration
step. Then the error can be calculated by interpolating the deformation vectors ΔXs

of these base points to the input set Xinp to get the interpolated data set

Δ X̃inp =
{
Δ x̃xxinp,1,Δ x̃xxinp,2, ...,Δ x̃xxinp,ninp

}
(34)
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and taking the pairwise difference to the input deformation vector set ΔXinp to com-
pute the weights

wi = ‖Δ x̃xxinp,i −Δxinp,i‖2, i = 1,2, ...,ninp. (35)

4.3 Error Correction

The error correction algorithm was originally presented in [2, p. 7]. The algorithm
tries to correct the ααα-interpolation coefficient vector locally. Therefore, unlike the
previous methods, it is not using the interpolation approach including a polynomial
(9), but instead the basic approach without an added polynomial (5):

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖) . (36)

Furthermore, the coefficients αi are not calculated by inverting the interpolation
matrix A, but instead by correcting them during the iterations continuously. In each
step the interpolation error ei, i = 1, ..,ninp of all deformation vectors

Δ X̃ =
{
Δ x̃xx1,Δ x̃xx2, ...,Δ x̃xxninp

}
(37)

at the data sites
Xinp =

{
xxxinp,1,xxxinp,2, ...,xxxinp,ninp

}
(38)

is recalculated. The coefficients

ααα = (αi)i=1,..,ninp
(39)

and the deformation vectors Δ x̃xxi are adjusted locally by the radial basis function
belonging to the base point with the largest interpolation error eiworst = ‖dΔxxxiworst‖2.
The correction of αiworst is performed by

Δαiworst =
1

φ(0)
dΔx̃xxiworst , (40)

which is used to update the interpolation values of all base points by

Δ x̃xxi = Δ x̃xxi +Δαiworstφ (‖xxxi − xxxiworst‖2) (41)

In every step in equation (41) the error eiworst at of the deformation Δ x̃xxiworst is
changed to zero, since
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Δ x̃xxiworst = Δ x̃xxiworst +
φ(‖xxxiworst − xxxiworst‖2)

φ(0)
dΔx̃xxiworst

= Δ x̃xxiworst +Δxxxiworst −Δ x̃xxiworst = Δxxxiworst . (42)

But the corrections for the deformation vectors Δ x̃xxi, which are located inside the
impact area of the base point xxxiworst , are not necessarily decreasing the interpola-
tion error. Hence, if ns,max > ninp base points should be selected, the algorithm will
run infinitely without reducing the interpolation error to zero. Additionally, the al-
gorithm "tends to show a degree of self limiting behavior in terms of how many
points it uses ([...]), often returning to correct a previously identified point rather
than introducing a new one" [2, p. 8].

The paper [2] uses the algorithm above to approximate the coefficients αi of
equation (36), but also recommends not to use these coefficients. Instead the selected
base points in Xs should be used for exact interpolation, which uses the inversion
of the interpolation matrix as seen in section 2.1.1. The algorithm implemented
into the deformation module presented in this document uses this recommendation
and, secondly, instead of the interpolation approach (36) the approach including a
polynomial as seen in equation (8) for the interpolation matrix creation.

Because the results were still not satisfactory, this approach has been combined
with an initial equidistant reduction step to choose fracequi ·ns,max base points by the
algorithm presented in section 4.1.

A big disadvantage of the algorithm is that it only works with radial basis func-
tions φ (r) with the maximal value for r = 0, so radial basis functions with local
influence range.

Fig. 6 Half model test case
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5 Interpolation Quality Comparison

The different reduction algorithms in section 4.1 to 4.3 select different base point
sets Xs from the input data site set Xiiinnnppp. This section is comparing the resulting
interpolation errors in a test case.

Therefore the extremely deformed half model airplane, as seen in figure 6 is
used. The input base points Xinp and their deformation vectorsΔXinp were calculated
with a structural loads program. The tool generates for each surface grid node a
deformation vector, so the cardinality of Xinp and ΔXinp is quite large with a value
of ninp = 137,136 for the wing without engine only.

Figure 7 shows the interpolation error ei for the bottom surface of the wing,
because it used to show higher interpolation errors. The settings for the interpolation
and base point reduction can be seen in table 1.

Because the structural loads tool gives an deformation output for every surface
grid node, the interpolation error for the surface nodes eee = (ei)i=1,..,ninp

can be cal-

culated by taking the differences between the calculated interpolations Δ x̃xxi and the
input deformations Δxxxi:

ei = ‖Δ x̃xxi −Δxxxi‖2. (43)

The picture 7(a) clearly shows that the base points, chosen by the equidistant
reduction method, are not satisfactory in the outer wing part. The outer 30 percent of
the wing show strongly increased error values. This result has motivated to improve
the base point selection process. The other reduction algorithms show a strongly
improved interpolation error in this part of the wing, too. The mean absolute error eee
of each test case for the actual 2000 base point setting, and additionally for another
test series with only 1000 base points is given in table 2. Furthermore, this table
contains the variance Var (eee) and the maximal error max

i
(ei).

The table confirms the impression of the given plots: All new methods choose
base points resulting in a significantly lower interpolation error. Furthermore, the
variance Var(·) indicates that less fluctuations in the error can be expected. The
maximum error is lowered by up to 92 percent.

Figure 8 shows how the base points are chosen by the different algorithms. The
equidistant reduction algorithm (7(a)) distributes the base points nicely over the
whole domain. Taking a closer look, the decreased density of points in the thin parts
of the wing, like the trailing edge and the tip, can be recognized.

Table 1 Test settings

Reduction method Parameter RBF φ
Equidistant reduction -

Local average weighting fracequi = 0.5, dmin = dmax/10 Wendland’s C0,
Error weighting fracequi = 0.5, nEWSteps = 3 impact radius r = 20.0
Error correction fracequi = 0.5



Improved Mesh Deformation 235

(a) Equidistant Reduction (b) Local Average Weighting

(c) Error Weighting (d) Error Correction

Fig. 7 Interpolation error of wing, lower surface view, 2000 base points, color table: absolute
interpolation error in m

Table 2 Test results interpolation error eee = (ei)i=1,..,ninp

(a) 1000 base points

Reduction method eee [m] Var (eee) [m2] max
i
(ei) [m]

Equidistant reduction 5.30E-03 8.52E-02 1.24E-04
Local average weighting 1.56E-03 3.87E-02 3.83E-06

Error weighting 1.52E-03 1.10E-02 3.00E-06
Error correction 1.40E-03 8.99E-03 1.19E-06

(b) 2000 base points

Reduction method eee [m] Var (eee) [m2] max
i
(ei) [m]

Equidistant reduction 2.33E-03 2.52E-05 4.99E-02
Local average weighting 8.60E-04 1.92E-06 1.91E-02

Error weighting 6.86E-04 6.20E-07 7.92E-03
Error correction 7.38E-04 4.55E-07 3.83E-03
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(a) Equidistant Reduction (b) Local Average Weighting

(c) Error Weighting (d) Error Correction

Fig. 8 2000 base points selected by different reduction algorithms

The new methods have all used the equidistant reduction algorithm in the first
step for half of their base points. The remaining half has been selected differently,
besides all algorithms concentrate the selected points in the outer wing part.

The local average method (8(b)) is the most extreme example for this behavior.
Because the deformations are increasing with a parabolic character, the weights used
to be more significant in the outer part. Supplementary, the more narrow getting
wing supports this behavior, because the neighborhood of a certain point would
contain more points of the side closer to the fuselage then from the outer side, which
influences the local mean deformation.

The two remaining approaches based on the interpolation error are choosing their
base points similarly. A difference between the error based greedy algorithms is that
the error weighting algorithm is distributing the points more numerous in areas far
away from the outer wing. The error correction algorithm has selected most points
in the tip area.
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The results show the best point selection for the error weighting and error cor-
rection method. But one has to keep in mind that error correction is only working
with radial basis functions with limited influence range, while error weighting has
the larger computational costs (7 times larger than error correction).

6 Applications

6.1 Wing Shape Design

To accurately compare the aerodynamic coefficients (e.g. drag) between small
changes of the aerodynamic shape of a wing, it is necessary to be as independent
from the CFD mesh as possible. Otherwise, difficulties arise to distinguish between
grid discretization effects ("numerical noise" due to change of grid topology) and
geometric effects. Nowadays in industrial context a 3D unstructured CFD mesh is
not made in a way to obtain a mesh independent CFD solution.

However, mesh deformation conserves the grid topology and small geometry
variations produce small mesh deformations in a continuous way. Utilizing this,
comparisons of aerodynamic coefficients are better possible and thus uncertainties
otherwise introduced by changes of grid topology are minimized. Mesh deformation
with FSDeformation was here successfully applied to a shape design change for a
wing-tip (figure 9).

The discrete deformation field was obtained from the parametric CAD model
(CATIA V5) using a two-stage process (first the treatment of curves and then sur-
faces). In a predictor step, the deformation field is determined by subtracting points
on discretized corresponding CAD curves. This gives an initial surface deforma-
tion which may not be accurate on the inner region of surface panels apart from the
bounding curves.

Fig. 9 Wing tip shape design example
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(a) Parametric CAD geometry (b) Discrete deformation field calculated
from parametric CAD

Fig. 10 Wing tip design with deformation obtained from a parametric CAD geometry

In the corrector step surface points are projected to the new CAD geometry. The
projection vectors together with the displacement vectors of the discretized curves
then builds the final discrete deformation field (figure 10(b)). It serves as input for
the new tool FSDeformation to accurately move all points of the CFD grid corres-
ponding to the parametric change of the CAD geometry.

6.2 Multi-disciplinary Wing Optimization–SFB-401-Wing

The task given was to optimize a wing with respect to aerodynamics, structures, and
performance under considerations of static aeroelastic effects. The study involves
the sizing of the wing box skins and spars to obtain minimum weight fulfilling static
aero-elastic requirements (details in [7, p. 287]).

The considered MDO process chain for shape optimization of a wing including
the static deformation is shown schematically in Fig. 1. The objective function is:

Obj =WA/C ×CD/CL, (44)

where WA/C is the total weight of the aircraft, CD is the overall aerodynamic drag
coefficient, and CL is the aerodynamic lift coefficient. The objective, thrust, is equi-
valent to the total aerodynamic drag force in stationary horizontal flight, which
should be minimized.

A CATIA V5 parametric model of the wing is controlled by the optimizer using
an external CATIA-DesignTable, where all relevant shape parameters for the wing
are listed. The shape of airfoils at four predefined wing sections (root, kink1, kink2,
and tip section) can be changed parametrically to control the thickness, camber, and
twist distribution of the wing. The wing planform is fixed.

Two structure design parameters control the relative thickness change of the wing
front and rear spars in combination with the upper and lower sheet thicknesses of the
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(a) Step 1, no deformation (b) Step 10, aeroelastic equilibrium

Fig. 11 Undeformed and deformed wing with pressure coefficient distribution and CFD mesh
for the CFD/CSM coupled iterative process.

wing box. The stiffness and the weight of the wing are depending on these structure
parameters.

Mesh deformation is a crucial component here. On the one hand, the change in
geometry shape design through the parametric CAD model (CATIA V5) is treated
by mesh deformation, on the other hand, the deformation of the wing structure de-
pending on the aerodynamic forces (in addition to other forces such as fuel weight,
engines, etc.) is also covered by applying mesh deformation. The CFD/CSM coup-
ling is displayed in figure 11.

The individual components of the process chain were used in the parallel, in-
memory FlowSimulator environment [1], so that a time-consuming and data intens-
ive exchange of files was not required. Compared to the former methods, which
used file exchange, significant time savings of around 50 percent have been ob-
tained. This a major step forward in an industrial context together with the accuracy
improvements and reductions of uncertainties.

In figure 12(a) and 12(b) the results of the optimization are presented. Shown
is the original geometry in the aeroelastic equilibrium and the optimized geometry
with a significantly different twist distribution and bending.

Figure 13 shows the convergence of the required thrust during the optimiza-
tion process using a gradient free Downhill Simplex optimizer [8]. After around
80 design changes the optimum has been reached nearly.

6.3 Application to Complex Configuration

It was found that FSDeformation in the parallel FlowSimulator environment could
be applied successfully to very complex, industrially relevant problems. An example
for a coupled CFD/CSM application for an complete aircraft in high-lift configura-
tion with deflected flaps and slats is shown in Fig. 14.
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(a) Side view to check change of bend and
twist. Lower wing: optimized, Upper wing:
initial

(b) Top view to check change of pres-
sure coefficient distribution. Left: optimized,
Right: initial

Fig. 12 Clean wing CFD-CSM optimization

Fig. 13 Clean wing CFD-CSM optimization. Convergence of the required thrust in horizontal
stationary flight during the optimization process.

7 Summary

This work has presented a mesh deformation module for the parallel simulation
environment FlowSimulator. The module is based on the radial basis function inter-
polation approach.
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Fig. 14 Complex high-lift configuration for a CFD/CSM coupled simulation applying the
new tool FSDeformation. Shown is the deformed and non-deformed geometry (see wing tip)
due to a different aerodynamic load case.

The application fields of mesh deformation is manifold (unsteady simulations,
shape optimization and aeroelasticity). In a next step, radial basis function inter-
polation and the mesh deformation module and its algorithm have been introduced.
The module combines the radial basis function interpolation approach with a group-
weighting and deformation-blending feature. This allows to move different surface
groups/bodies independently from each other. Furthermore, the deformation blend-
ing provides an improved protection of boundary layer cells and allows the usage
of unbounded radial basis functions and the extension of the radial basis function
interpolation approach by a polynomial.

The group-weighting and deformation-blending uses the wall distance of the
volume mesh nodes to the group boundaries. Hence a wall distance computation
module has been implemented. It uses an advancing-front algorithm for the distance
computation.

Additionally, the deformation module was extended with new deformation group
features. These features allow to define deformation groups without creating base
points and deformation vectors for this group. The features support far-field bound-
aries, symmetry planes or the rigid attachment of a boundary group to another
boundary group.

Because the computational cost of the interpolation algorithm depends on the
number of interpolation base points, the module offers four different methods for
the reduction of the input base points. The first method uses an octree data-structure
to select equidistant base points. The remaining three methods use in the first step
this method as well. But in the second step they either use weighted distances for
a modified equidistant reduction function, or they correct the interpolation error
locally by selecting base points individually. The two weighted distance reduction
methods use the difference to the mean deformation of the neighboring nodes or
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the interpolation error of the base points not selected for the weight computation.
All the different methods have been compared in terms of performance and inter-
polation error. Here the locally operating error correction method has shown very
good results in performance/interpolation error efficiency. But the method is limited
to locally supported radial basis functions. Because the radial basis function Euc-
lid’s Hat, which tends to infinity for an increasing input argument, has produced
the lowest interpolation error, the interpolation error weighting method is the best
advice.

The wall distance module and the deformation module have been parallelized
with MPI. The theoretically perfect speedup of the interpolation method may only
be affected by unbalanced node distributions over the parallel MPI processes.

The creation of the module FSDeformation by Airbus and its integration into the
parallel FlowSimulator software environment has helped to reduce the uncertainties
that occur in small geometry changes, which typically occur at aerodynamic shape
design. Numerical shape optimization of components by using the improved grid
deformation technique for unstructured grids has improved, reducing uncertainties
related to mesh dependencies of the numerically obtained flow solutions.

Finally, applications for the deformation module in cooperation with the flow
solver TAU and a structure module has been demonstrated. It has shown that the
deformation module can play a key position in future computation chains using the
simulation environment FlowSimulator with a perfect speedup for the mesh deform-
ation method. Additionally, the example has illustrated that the coupling of different
programs by using FlowSimulator can minimize intensive and time-consuming file
input/output operations, due to the fact that both tools use the same main memory
address space. The computational time and hence the cost of an optimization has
been reduced considerably.
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Statistical Analysis of Parameter Variations
Using the Taguchi Method

A. Wolf, D. Henes, S. Bogdanski, Th. Lutz, and E. Krämer

Abstract. This project is part of the MUNA-project. It deals with the investigations
of uncertainties of a CFD-Simulation caused by variation of numerical parameters,
inflow conditions and geometrical parameters. To evaluate the influence of different
parameters on the results of an experiment or simulation usually a full parameter
analysis must be performed. A full parameter analysis requires a high number of
simulations, rising with the number of parameters, which are investigated. In this
study the Taguchi method, which is based on DoE (Design of Experiments) meth-
ods and well known for the optimization of production cycles, is applied. It reduces
the number of required simulations dramatically and therefore also the costs. In
this article the basics of the Taguchi Method are explained and a summary of the
ANOVA-analysis, is given. The ANOVA analysis is used for the analysis of the
results obtained by the Taguchi method. It delivers the relative influences of each
investigated parameter and also the influence of interaction among different para-
meters can be obtained. The effect of the parameter variations on the CFD result is
shown for two- and three dimensional simulations. Numerical, geometrical and also
inflow conditions are investigated.

1 Introduction

The aim of this project is to investigate the uncertainties in CFD-results if differ-
ent numerical (i.e numerical diffusion) and geometrical (i.e. trailing edge thickness)
parameters are varied. Most of the settings used for CFD simulations are based
on experience and it is unknown how the result behaves if these parameters are
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changed. On the other hand there are also natural variations like fluctuating inflow
conditions and production inaccuracies. Their effect is unknown as well. To eval-
uate the influence of all these parameters, usually a full parameter analysis must
be performed. As such an analysis requires several thousand simulations, the Tagu-
chi method is introduced in this article, which requires a much lower number of
simulations. The Taguchi method enables to investigate the relative influence of dif-
ferent parameters on the CFD result by systematical variation of these parameters. It
also enables to investigate the effect of the interactions between two parameters. It
could be shown that in some cases the strongest influences on the CFD results stem
from such interaction effects. In the first part of this article the Taguchi Method is
explained and the results of the simulations are presented in the second part. The
parameters are arranged in different groups depending whether they are numerical
based, geometrical based or belong to inflow conditions. As test case the RAE2822
is chosen. The inflow conditions are taken from [1].

2 The Taguchi-Method

Subsequently the basic ideas of the Taguchi method are summarized. For more in-
formation it is referred to [2] to [6].

The Taguchi Method is based on the DoE-Method (Design of Experiments). DoE
is a statistical method for quality management, usually used for the optimization of
production cycles by determining the influence of chosen parameters on the quality
of the final product. The aim of the DoE to is reduce the number of experiments
needed to evaluate the influences of the parameters to a minimum in comparison
to a full parameter variation. Especially the method developed by Gen’ichi Taguchi
(born 1924) using orthogonal arrays for the experiment setup needs only a minimum
of numbers of experiments [2]. The number of experiments required for a full para-
meter analysis rises exponential with the number of investigated parameters and the
number of levels. If the influences of 4 parameters with 3 levels each should be
investigated 34 = 81 experiments would be necessary. In the case of 13 parameters
with 3 levels 2197 experiments should be done. The Taguchi method needs for these
cases only 9 and 27 experiments respectively. This results in a much shorter simu-
lation time and less required resources. Another advantage of the Taguchi-Method
is the possibility to evaluate also the effects of interactions between the parameters.

In the present investigations the Taguchi method is applied to assess the impact of
different parameter settings on the results of CFD simulations. These results can be
the calculated lift or the different drag portions (viscous drag and pressure drag). It
enables to investigate several numerical and geometrical parameters in a very short
time with an acceptable number of CFD analyses.
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Fig. 1 L9-Taguchi-Matrix

2.1 Orthogonal Arrays

The simulation procedure is described by orthogonal arrays called Taguchi matrices.
Such an array is based on the number of variables and their interactions (columns)
plus the number of levels which yield the number of lines. Usually a pre-defined
matrix is chosen, but it is also possible to design a new matrix or to adapt an existing
matrix. In Figure 1 a L9 matrix is shown, which is suitable for the evaluation of the
influence of 4 parameters with 3 levels each. The first column shows the number
of the simulation. The following 4 columns (A-D) describe the settings for the 4
parameters. The results of the 9 simulations are recorded in the last column. The
matrix describes the setting for each parameter. For example in simulation number
4 the parameter A is set to level 2, parameter B to level 1, parameter C to level 2 and
parameter D is set to level 3. Several pre-defined matrices exist, shown in Figure 2
for different numbers of parameters and levels.

A modification of these matrices is possible. For example, the number of levels
of a chosen parameter can be increased or reduced. But it has to be kept in mind that
the sum of the degrees of freedom for all columns is not higher than the degree of
freedom of the whole matrix. The degree of freedom of one column is equal to the
number of levels minus 1 while the degree of freedom of the matrix is the number
of simulations minus 1.

After all simulations have been done, the influence of each parameter is determ-
ined by an statistical ANOVA-Analysis (Analysis of Variances).

2.2 ANOVA-Analysis

With the ANOVA analysis (Analysis of Variances) the influence of each parameter
and interaction on the result of the simulation is obtained. In this section a short
summary of this statistical method is given. Thereby the variable y is the result of
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Fig. 2 Overview about pre-defined Taguchi matrices

the CFD simulation, n is the number of simulations and f is the degree of freedom.
First of all the mean square error is determined by

SQm =
(∑yi)

2

n
=CF . (1)

The degree of freedom of the mean square values is

fSQm = n− (n− 1) (2)

In the next step the total error square sum is determined.

SQtotal = (∑yi)
2 −CF . (3)

It has the degree of freedom

fSQtotal = n− fSQm . (4)

In the next equation the mean square error of the variance is calculated

SQA =
(∑yA1)

2

nA1
+

(∑yA2)
2

nA2
+

(∑yA3)
2

nA3
−CF , (5)

exemplarily shown for a parameter A with 3 levels. The results of the simulations
with the same level for parameter A are summed, squared and divided by the number
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of simulations with the same level of parameter A. Then the sum of the mean square
values CF is subtracted. The degree of freedom is

fSQA = nLevels − fSQm , (6)

where nLevels are the number of levels of parameter A. The squared variances of the
interactions are calculated by

SQAxB =
(∑y(AxB)i)

2

n(AxB)i
−CF − SQA− SQB , (7)

shown exemplarily for parameter A and B. The results of the simulations where
the level combination of parameter A and B is the same are summed, squared and
divided by the number of results with the same level combination. Then the sum
of the mean square values and the mean square errors of parameter A and B are
subtracted.

In the next step the estimation variances of each parameter are estimated by

VA =
SQA

fA
, (8)

again shown for parameter A. Then the evaluation of the critical Fi can be performed.

FA =
VA

VF
. (9)

This value shown here for the parameter A is compared to the so called Fisher
values. The Fisher value is a reference value used for the determination of the dif-
ferences of variances with a certain probability of confidence. Reference values are
given in so called Fisher tables depending on the probability of confidence. If the
calculated Fisher value is larger than the value given by the Fisher table, the null
hypothesis will be rejected. It is assumed that the differences from the total mean
value are not random (null hypothesis). Therefore the alternative hypothesis is valid.
If the null hypothesis is rejected, it can be assumed that an influence of the tested
parameter is existent. For the percental influence of each parameter the adjusted
error square sum must be determined first.

SQ′
A = SQA − fAVF (10)

Dividing this value by the squared variances and multiplying it with 100. the per-
centage influence of the parameter (here shown for parameter A) on the results of
the simulation is obtained.

pA =
SQ′

A

SQA
·100 (11)
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2.3 Parameter Interaction

The influence of possible interactions between two parameters can be captured by
the Taguchi Method as well. For each interaction one (for parameters with 2 levels)
or two (for parameters with more than 2 levels) columns must be reserved in the
orthogonal array. This increases the number of required columns and also the num-
ber of simulations. Thus the advantage of requiring less simulations than a standard
parameter variation is reduced. But on the other hand, the influence of interactions
between the investigated parameters can be evaluated. This won’t be possible if a
normal parameter simulation is used. For several pre-defined Taguchi matrices so-
called interaction-matrices are published. They describe which columns are reserved
for which parameter interaction. The interaction-matrix for the L8 Matrix is shown
in Figure 3. For example column 3 must be reserved to examine the interaction
between the parameters number 1 and 2. The parameters originally stored in these
columns would move to column 4 if no other interactions are investigated.

2.4 Error Determination

For each analysis the error can be calculated. During the investigations carried out
at the IAG it was recognized that this error is very large if one or more simulations
did not converge. This is obvious since the deviation caused by the non-convergence
is usually larger than the deviation caused by the small parameter variations of the
Taguchi analysis. Thus the convergence of every simulation is crucial and absolutely
necessary for a reliable quantification of the parameter influences and interactions.
The error that occurred can be evaluated similar to the influences in the ANOVA
analysis.

Fig. 3 L8-Interaction-Matrix
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SQF = SQtotal −
nparameters

∑
i=1

SQi−
ninteractions

∑
j=1

SQ j (12)

The degree of freedom of the error term is calculated as follows,

fF = ftotal −
nparameters

∑
i=1

fi −
ninteractions

∑
j=1

f j (13)

If the degree of freedom is non-zero, the error variance can be determined.

VF =
SQF

fF
, (14)

The degree of freedom becomes zero if all columns of the Taguchi matrix are oc-
cupied with parameters. In this case an error determination as shown above is not
possible. Instead the so-called pooling-method must be used. This method takes
the parameters with the smallest influences to determine an error term. Following
equation describes this method exemplarily for two parameters C and D.

VF2 =
SQC+D

fC+D
, (15)

In [2] it is mentioned that at least half of the degrees of freedom ftotal should be used
for this method to determine the error of the investigation. In the present investiga-
tion all runs except run 1 are performed with Taguchi matrices which are not fully
packed with parameters. Therefore usually the first error determination method is
used.

3 Simulation Setup

To investigate the influence of different numerical parameters, steady and unsteady
RANS simulations are performed. The TAU code developed by the DLR is used
for all simulations. Test object is the RAE 2822 airfoil. The inflow conditions are
chosen according to the known Case 9 [1].

Ma∞ = 0.73, T = 288.15K, Re = 6.5e+6, α = 2.80◦

The following section gives a summary of the performed investigations and their
results. As mentioned above the Taguchi method allows to evaluate also the influ-
ence of the interactions between the parameters. Therefore, the different parameters
are partitioned into several groups. Each group contained physically or numerically
related parameters.
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For the steady simulations (Run 1 till 5) the influences of each particular para-
meter on the results for the lift coefficient Cl , total drag coefficient Cd , pressure drag
coefficient Cd p and viscous drag coefficient Cdv are investigated.

In case of the unsteady simulation the influence on the averaged lift and drag
coefficients Clmean and Cdmean , their amplitudes ClA and CdA as well as their RMS
values Clrms and Clrms is shown. Additionally, the influence on the buffet frequency
is described.

All simulations are performed with the TAU-version 2008.1.1 and the meshes
are all generated with GridGEN 15.11. The mesh generation is script based and all
meshes are structured (C-mesh). For the mesh variation (Run 1 and 3) several differ-
ent meshes are generated, each with another resolution, y+ value and grid resolution
at leading and trailing edge. The mesh resolution is based on the number of points
along the airfoil surface (upper and lower side).

No. of grid points:
19580 with 128 grid points on the airfoil surface,
79476 with 256 grid points on the airfoil surface,
320228 with 512 grid points on the airfoil surface,

Figure 4 shows the leading edge region of the finest mesh with 512 points along the
airfoil surface. The TAU settings are chosen as follows:
k2-dissipation factor: 0.5
k4-dissipation factor: 64
CFL number: 1.5
Turbulence Model: Menter-SST

Fig. 4 Leading edge region of the finest mesh
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4 Results

Run 1: Mesh resolution, Boundary layer resolution

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: y+, Number of grid points on the airfoil surface,

mesh resolution leading edge, mesh resolution trailing edge

In the first case the influences of different grid parameters, including the y+ value,
number of grid points on the airfoil surface, which determines the overall mesh
resolution, as well as the local grid resolution at leading (LE) and trailing edge (TE)
are evaluated. The last two mentioned properties are defined by the distance of the
points on the airfoil surface. The mesh resolution at leading and trailing edge is
set to coarse, medium and fine. The total value for each level depends on the total
number of grid points on the surface. Defining the resolution at leading and trailing
edge this way, guarantees meshes which are similar to each other. Table 1 gives an
overview of the resulting total values, given in per mille of the chord length. The
y+ value determines the height of the first cell row at the airfoil surface. The values
for the three levels are 0.5, 1 and 2. Figure 5 shows the influences of the varied
parameters on the coefficients for drag and lift given in percent. The influences of
the interactions are shown as well. pAxC for examples denotes the influence of the
interaction between parameters A and C. The error occurred during the ANOVA-
analysis is given by pF . This value does not represent the influence of the error on
the CFD result. It is just an indication for the certainty of the evaluated parameter
influences. In this study only interactions with the y+ parameter are investigated.
The reason is that four parameters are examined at once, and that there is no suitable
Taguchi Matrix which includes four parameters and all their interactions. In Figure 5
it is shown that the influence of the number of grid points on the airfoils surface
prevails in comparison to the other parameters. Especially for the results of lift, total
drag and pressure drag. In case of the viscous drag also the y+ value shows some
significant impact. This is due to the fact that this parameter effects the resolution
of the boundary layer. The mesh resolution at trailing and leading edge shows only
a small contribution. No interaction between the y+ value and the other parameters
is detected.

Table 1 Total value of the grid point distance at leading and trailing edge for different mesh
resolutions, given in per mille

Level 512 256 128

1-rough 1 2 4
2-middle 0.5 1 2

3-fine 0.25 0.5 1
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Fig. 5 Results of run 1. A = y+, B = number of grid points on airfoil’s surface, C = mesh
resolution TE, D = mesh resolution LE

Run 2: Inflow conditions

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Reynolds number, Mach number, angle of attack

For the investigation on the inflow conditions the Reynolds number is varied by +/-
3 · 105, the Mach number by +/- 0.001 and the angle of attack by +/-0.01◦. In this
study the fine mesh with 512 grid points on the surface of the airfoil is chosen. The
ANOVA analysis yields a large impact of the Reynolds number and the angle of
attack on the lift coefficient Cl as it can be seen in Figure 6. This result is compre-
hensible especially for the angle of attack. But it is also known that the lift increases
with a rising Reynolds number. In transonic region the Mach number has a large
influence on the total drag values because the pressure drag which is also mainly
influenced by the Mach number has a large share in the total drag. The viscous drag,
however, is only influenced by the Reynolds number. But it has only a low impact
on the total drag.
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Fig. 6 Results of run 2. A = Reynolds number, B = Mach number, C = angle of attack

Run 3: Turbulence modeling (a)

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Mesh resolution, CFL-number, numerical diffusion

In this case the mesh resolution at leading and trailing edge is set to the medium
value. The levels of the CFL number are set to 1.5, 3.25 and 5. The numerical dif-
fusion terms are changed simultaneously. Their levels are (1/32; 1.00), (1/64; 0.50)
and (1/128; 0.25) for k2 and k4 respectively. This study is done for several turbu-
lence models like Menter-SST, Spalart Allmaras with Edwards correction (SAE),
Linear Algebraic Stress Model (LEA) and for the Reynolds Stress Model (RSM).
The results are very similar for all turbulence models. Therefore, only the result for
the SAE model is exemplified in Figure 7. The analysis shows that the mesh res-
olution has a main impact on all results again. The CFL number has no influence.
This behaviour agrees well with the theory as long as all simulations are converged
like in the present case. The influence of the numerical diffusion is also very small,
but the interaction between the mesh resolution and the numerical diffusion shows
a larger influence on the results. This is reasonable as the mesh has also a damping
effect on the solution if it is too coarse. Since in this study only three parameters
are investigated, the evaluation of all interaction effects is possible by using a L27

Matrix.
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Fig. 7 Results of run 3. A = number of points on airfoil’s surface, B = CFL-number, C =
Diffusion terms

Run 4: Turbulence modeling (b)

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Turbulence model, CFL-number, numerical diffusion

This is based on the results of run 3, which was performed for several turbulence
models (Menter-SST, SAE, LEA). By rearranging the performed simulations, it is
possible to replace the mesh resolution parameter by the turbulence model. A new
ANOVA analysis shows that in this case the influence of the turbulence model out-
balances all other parameters. This is not surprising because it is known that the
turbulence model has a large impact on the CFD result, and the other parameters are
not varied to such an extent to compete with the turbulence model.

Run 5: Geometry

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Trailing edge thickness, number of geometry-defining points,

bump height

The three levels of the trailing edge thickness are 0%, 0.5% and 1% of the chord
length. The number of points defining the contour of the airfoil are set to 100, 200
and 400. Finally a sinus function is superposed with the leading edge contour to
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Fig. 8 Results of run 5. A = number of geometry-defining points, B = Trailing edge thickness,
C = Bump height.

simulate bump-shaped disturbances in the leading edge region. These bumps rep-
resent the uncertainty in fabrication process. The amplitude levels of these bumps
are set to 1 · 10−4, 2 · 10−4 and 3 · 10−4 times the chord length. For the simulation
the mesh with 256 points on the airfoil’s surface is chosen. The trailing edge is dis-
cretized with 56 cells and 110 cells for a trailing edge height of 0.5% and 1% chord.
The results show that the number of points has no influence. This is due to the fact
that even 100 points are still sufficient to describe the airfoil’s contour nicely. The
coefficients for lift, total drag and pressure drag are mainly affected by the trail-
ing edge thickness while the viscous drag is influenced by the bump height. The
bump height has an impact on the pressure distribution along the airfoil’s surface.
The acceleration and deceleration along the wavy surface changes the load on the
boundary layer which affects the viscous drag.

Run 6: Unsteady simulation

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: CFL-number, Number of inner iterations, Δ t

To get unsteady flow characteristics, the angle of attack is increased to 5◦. For this
angle of incidence buffet effects occur, i. e. that the shock on the upper surface starts
to move with a distinct frequency. Therefore also the force coefficients fluctuate. In
case of an unsteady simulation not only the mean force coefficients but also their
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Fig. 9 Results of run 6. A = unsteady physical time step size; B = Number of inner iteration;
C = CFL-number.

amplitudes, rms-values and frequencies can be analyzed. The CFL number is set to
3.4, 1.7 and 0.8 for the coarse multigrid and to 10, 5 and 2.5 for the fine multigrid.
The ratio tchar to Δ t is defined to 20, 40 and 80. Where tchar = U∞/c is the time
the air needs to flow over the airfoil. The levels for the number of inner iterations
are 50, 100 and 200. Looking at the results plotted in Figure 9 it must be said first
that the CFL number has a larger impact on several results. As mentioned before
this should not be the case if all simulations are converged. But in this study the
inner iterations of some unsteady simulations are not converged. This explains the
recognized influence of the CFL number. Furthermore, the unsteady physical time
step size Δ t/tchar has an influence on the mean values of the force coefficients and
the frequency but not on the unsteady parts of the force coefficients, the rms-value
and the amplitude. The unsteady physical time step size has also an indirect effect on
all parameters through the interaction with the number of iterations. This interaction
often has the strongest influence of all parameters. All other interaction effects can
be neglected. The number of inner iterations has a direct influence on the frequency
and the mean values.

Run 7: Robustness test

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Reynolds number, Mach number, angle of attack
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The study for the inflow conditions is repeated, but the variation of the parameters
is increased to three times the value as in run 2. The Mach number is now varied by
+/-0.003, the angle of attack by +/-0.03◦ and the Reynolds number is varied by +/-
9 ·105. This study provides almost exactly the same results as run 2. This confirms
the robustness of the Taguchi Method that shows that the obtained results are also
valid for larger (or smaller) parameter variations.

Run 8: 3D Simulation

Taguchi Matrix: L27

No. of levels: 3 for each parameter
Parameters: Reynolds number, Mach number, angle of attack

Finally the Taguchi Method is used for the analysis of 3D simulations of the generic
SFB-401 wing. Geometry and mesh are provided by the DLR. The mesh has 9.5
million points. The boundary layer is resolved with 80 layers in wall normal direc-
tion. The boundary conditions are chosen to Ma = 0.8, Re = 23.5 ·106 and angle of
attack of 1◦. For the 3D simulation a Taguchi analysis of these boundary conditions
is performed as it is already done for the RAE 2822 2D-airfoil shown before (Run
2). The variation of the Mach number is 0.001 and the angle of attack is varied by
0.01◦. These variations are the same like in the investigation of the 2D-airfoil since
the total values of these parameters are similar for the 3D and the 2D case. The
Reynolds number is varied stronger than before as the Reynolds number of the 3D
SFB-401 case is much higher than for the 2D test case. Therefore, it is varied by +/-
1 ·106 instead of +/-3 ·105. For the simulations the SAO turbulence model is used.
The dissipation factors are set to 0.5 and 64 for k2 and k4 respectively. Figure 10
shows a cut through the mesh at η=0.77.

The cp distribution is shown in Figure 11. Inboard a shock appears due to super-
sonic flow at x/c=0.6 for η=0.23. Further outboard at η=0.77 no shock is observed.
These results are extracted from the simulation with Ma=0.799, Re=22.5 · 106 and
angle of attack α=1.01◦. The ANOVA analysis yielded results comparable to the
2D case but shows up also some differences (see Figure 12). The viscous drag is
again mainly affected by the Reynolds number. Mach number and angle of attack
have no influence. Looking on the pressure drag it can be recognized that the Mach
number has the largest influence followed by the angle of attack which has some
small contribution. The influence of the angle of attack is increased compared to
the 2D airfoil as it has some impact on the induced drag which is a pressure drag
as well and occurs only for lift producing 3D geometries. The results for the total
drag show some differences to the 2D case. The impact of the Reynolds number is
much higher for the 3D case. This can be explained by the larger contribution of the
viscous drag to the total drag compared to the 2D case. For the 3D case the viscous
drag is of the same size as the pressure drag while for the 2D case the pressure drag
was twice the viscous drag. Therefore, the Reynolds number has a larger impact on
the total drag for the 3D case. However, the influence of the Reynolds number on the
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Fig. 10 Mesh of the SFB-401 wing. Cut at η=0.77

lift coefficient is smaller than in case of the 2D airfoil. This can be explained by the
larger Reynolds number which is four times higher than for the 2D case. Therefore,
the influence of the viscous forces on the lift will be smaller than for the 2D case.
The higher contribution of the viscous drag to the total drag, mentioned before, is
rather explained by a different geometry than by a different Reynolds number.

5 TAU Implementation

To automatize the procedure and to reduce the required effort it was decided to
implement the Taguchi method into the TAU Code by using Python scripts. The
new script, which was published with the TAU 2012 release supports the user dur-
ing the selection of the Taguchi Matrix, its modification and in the consideration
of interactions. Several parameters can be chosen from a given list, which can be
extended at any time. After defining parameteres and their levels para files (TAU
control file), job files (to start the simulation on the high performance computer)
and required folders are setup automatically for all required simulations based on
the informations from the chosen Taguchi-Matrix. The simulations can be either
started in serial mode as one ”big” job or in parallel mode. The second approach
needs to be used if the parameters to be investigated include changes in the meshes
or turbulence models. Both can not be changed during a running TAU job. To sup-
port the user in this case a text file is written out to give information which mesh or
turbulence model needs to be used in which simulation. When all simulations have
been successfully finished the results can be examined using the ANOVA analysis.
This step is automatized by a script as well. The script takes the Taguchi Matrix,
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Fig. 11 Cp distribution of the SFB-401 wing. Cut at η=0.77 and 0.23

searches for the required TAU output files and reads in the results defined by the
user before. Finally, the results of the ANOVA analysis are stored in a solution file,
which can be easily read by Excel or other vizualisation tools. Validation of the pro-
gram showed perfect agreement with the manual analysis and the required time is
massively reduced as the hole setup for the TAU simulations is automatized. Still
some knowledge about the Taguchi-Method is required. Therefore, a detailed users
guide is added to the scripts including a detailed description of the Taguchi-Method
and several examples.

6 Summary and Conclusion

In the described studies CFD settings are systematically varied by using a minimum
number of simulations to quantify the relative impact of several numerical and geo-
metrical parameters on the CFD result. The Taguchi method is applied to reduce
the number of simulations in comparison to a full parameter variation. Statistical
analysis (ANOVA) gave informations about the relative parameter influence on the
CFD results like lift and drag. It also gives information on interactions between dif-
ferent parameters and their influence on the result. During the studies steady and
unsteady test cases are performed and in both cases the results reflect long lasting
experiences in CFD simulation. It is also shown that the results achieved by the
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Fig. 12 Results of run 8. A = Reynolds number, B = Mach number, C = angle of attack

Taguchi method are robust to stronger variations of all parameters. This makes the
results more generally valid, at least as long as the parameters are not varied too
strongly. Therefore, the performed study shows that the Taguchi method is a suit-
able systematic method to check the accuracy of CFD simulations. To reduce the
effort even more the Taguchi-Method was implemented into the TAU code via Py-
thon scripts. The scripts support the user during the selection of the Taguchi matrix
and setup automatically all necessary TAU input files and folders.
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Numerical Methods for Uncertainty
Quantification and Bayesian Update in
Aerodynamics

Alexander Litvinenko and Hermann G. Matthies

Abstract. In this work we research the propagation of uncertainties in parameters
and airfoil geometry to the solution. Typical examples of uncertain parameters are
the angle of attack and the Mach number. The discretisation techniques which we
used here are the Karhunen-Loève and the polynomial chaos expansions. To integ-
rate high-dimensional integrals in probabilistic space we used Monte Carlo simula-
tions and collocation methods on sparse grids. To reduce storage requirement and
computing time, we demonstrate an algorithm for data compression, based on a low-
rank approximation of realisations of random fields. This low-rank approximation
allows us an efficient postprocessing (e.g. computation of the mean value, variance,
etc) with a linear complexity and with drastically reduced memory requirements.
Finally, we demonstrate how to compute the Bayesian update for updating a priori
probability density function of uncertain parameters. The Bayesian update is also
used for incorporation of measurements into the model.

1 Introduction

Nowadays, the trend of numerical mathematics is often trying to resolve inexact
mathematical models by very exact deterministic numerical methods. The reason
of this inexactness is that almost each mathematical model of a real world situation
contains uncertainties in the coefficients, right-hand side, boundary conditions, ini-
tial data as well as in the computational geometry. All these uncertainties can affect
the solution dramatically, which is, in its turn, also uncertain. The information of the
interest is usually not the whole set of realisations of the solutions (too much data),
but some other stochastic information: cumulative distribution function, probability
density function, mean value, variance, quantiles, exceedance probability etc.
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During the last few years, one can see an increasing interest in numerical methods
for solving stochastic computational fluid dynamic (CFD) problems [3, 8, 17, 19,
24, 26]. In this work we consider an example from aerodynamics, described by
a system of Navier-Stokes equations with a k-w turbulence model. Uncertainties
in parameters such as the angle of attack α and Mach number are modelled by
random variables, uncertainties in the shape of the airfoil are modelled by a random
field [14, 12]. Uncertain output fields such as pressure, density, velocity, turbulence
kinetic energy are modelled by random fields as well. The lift, drag and moments
will be random variables.

We assume that there is a solver which is able to solve the deterministic (without
uncertainties) Navier-Stokes problem. In this work we used the TAU code (de-
veloped in DLR) with k-w turbulence model [4]. We also assume that spatial discret-
isation of the airfoil is given. Our job is the appropriate modelling of uncertainties
and developing stochastic/statistical numerical techniques for further quantification
of uncertainties. At the same time, due to the high complexity of the deterministic
solver, we are allowed to use only non-intrusive stochastic methods such as Monte
Carlo or collocation methods. So, we are interested in methods which do not require
changes in the deterministic code.

The rest of the paper is structured as follows. In Section 3 we describe the prob-
lem and discretisation techniques, such as the Karhunen-Loève expansion (KLE)
[16] and polynomial chaos expansion (PCE) of Wiener [25]. In Section 2.1 we ex-
plain how we model uncertainties in the parameters angle of attack and Mach num-
ber. Uncertainty in the airfoil geometry is described in Section 2.2. The low-rank
response surface is presented in Section 4. To avoid large memory requirements
and to reduce computing time, low-rank techniques for representation of input and
output data (solution) were developed in Section 5. Section 7 is devoted to the nu-
merical results, where we demonstrate the influence of uncertainties in the angle of
attack α , in the Mach number Ma and in the airfoil geometry on the solution - drag,
lift, pressure and absolute friction coefficients. The strongly reduced memory re-
quirement for storage stochastic realisations of the solution is demonstrated as well.
In Section 6 we demonstrate how to use the Bayesian update (BU) for improving the
statistical description of the random airfoil geometry. Section 7 is devoted to other
numerical experiments.

2 Statistical Modelling of Uncertainties

The problem to consider in this work is the stationary system of Navier-Stokes equa-
tions with uncertain coefficients and parameters:

v(x,ω) ·∇v(x,ω)− 1
Re∇

2v(x,ω)+∇p(x,ω) = g(x) x ∈ G , ω ∈Ω
∇ · v(x,ω) = 0

(1)
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Fig. 1 Two random vectors v1 and v2 model free-stream turbulence, u and u
′

old and new
free stream velocities, α and α ′

old and new angles of attack

with some initial and boundary conditions. Here v is velocity, p pressure and g the
right-hand side, the computational domain G is RAE-2822 airfoil with some area
around. Examples of uncertain parameters are the angle of attack α and the Mach
number Ma. Uncertainty in the airfoil geometry is modelled via random field (see
Section 7).

2.1 Modelling of Uncertainties in Parameters

We assume that the free-stream turbulence in the atmosphere randomly and simul-
taneously changes the velocity vector or, what is equivalent the Mach number Eq. 4
and the angle of attack Eq. 3. One should not mix this kind of turbulence with the
turbulence in the boundary layer reasoned by friction. It is assumed that turbulence
vortices in the atmosphere are comparable with the size of the airplane. The free-
stream turbulence in the atmosphere is modelled by two additionally axes-parallel
velocity vectors v1 := v1(θ1) and v2 := v2(θ2) (Fig. 1), which have Gaussian distri-
bution [13]. We model the free-stream turbulence via two random vectors (in 3D it
will be three vectors) v1 and v2 which change α and Ma (see Fig. 1):

v1 =
σθ1√

2
and v2 =

σθ2√
2
,

where θ1 and θ2 are two Gaussian random variables with zero mean and unit vari-
ance, σ := Iu∞, I the mean turbulence intensity and u∞ the undisturbed free stream
velocity beyond the boundary layer. This mean turbulence intensity is often used
for characterising turbulence in a wind tunnel. For instance, I = 0.001 means low
turbulence, I= 0.002 middle and I= 0.005 high turbulence.
Denoting

θ :=
√
θ 2

1 +θ 2
2 , v :=

√
v2

1 + v2
2, β := arctg

v2

v1
and z :=

Iθ√
2
, (2)

and performing easy geometrical computations, obtain the new angle of attack and
the new Mach number:
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Fig. 2 (left) The difference Δρ := |ρ−ρ| between the deterministic density ρ := ρ(α,Ma)
and the mean density ρ . (right) The same is for the pressure Δ p := |p− p|. Here ρ ∈ (0.5,1.2)
and p ∈ (0.7,1.3).

α
′
(θ1,θ2) = arctg

sinα+ zsinβ
cosα− zcosβ

, (3)

Ma
′
(θ1,θ2) = Ma

√
1+

I2θ 2

2
−
√

2Iθ cos(β +α). (4)

Further we study how uncertainties in α and Ma spread into the solution. We note
that uncertainties in α and in Ma can be modelled in a different way (see e.g.

[23], [27]). >From the construction one can see that Ma
′

:= E(Ma
′
(θ1,θ2)) and

α ′ := E(α ′
(θ1,θ2)) are equal to the deterministic values Ma and α , here E(·) is

the mathematical expectation. In Fig. 2 (left) we compare the deterministic dens-
ity ρ(α,Ma) with the ρ := E(ρ(α ′

(θ1,θ2),Ma
′
(θ1,θ2))) for the Case 9 (α = 2.79,

Ma := 0.734). In Fig. 2 (right) we do the same comparison for the deterministic
pressure. One can see a large difference in the shock position. This large difference
motivates us to model uncertainty in α and in Ma.

2.2 Modelling of Uncertainties in the Airfoil Geometry

We model uncertainties in the geometry of RAE-2822 airfoil via random boundary
perturbations:

∂Gε (ω) = {x+ εκ(x,ω)n(x) : x ∈ ∂G }, (5)

where n(x) is the normal vector in a point x, κ(x,ω) a random field, G the computa-
tional geometry and ε � 1. We assume that the covariance function is of Gaussian
type

covκ(κ1,κ2) = σ2 · exp(−d2), d =
√
|x1 − x2|2/l2

1 + |z1 − z2|2/l2
2 ,
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Table 1 Statistics obtained for uncertainties in the airfoil geometry. We used the Gaussian
covariance function, PCE of order P = 1 with M = 3 random variables and the sparse Gauss-
Hermite grid with nq = 25 points.

mean st. dev. σ σ /mean
CL 0.8552 0.0049 0.0058
CD 0.0183 0.00012 0.0065

where κ1 = κ((x1,0,z1),ω), κ2 = ((x2,0,z2),ω) are two random variables in points
(x1,0,z1) and (x2,0,z2). For numerical simulations we take the covariance lengths
l1 = |maxi(xi)−mini(xi)|/10 and l2 = |maxi(zi)−mini(zi)|/10, standard deviation
σ = 10−3, m = 3 the number of KLE terms (see Eq. 6), the stochastic dimension
M = 3 and the number of sparse Gauss-Hermite points (in 3D) for computing PCE
coefficients in (Eq. 8) nq = 25. In [13] one can see 21 random realisations of RAE-
2822 airfoil.

Table 1 demonstrates the surprisingly small uncertainties (the last column) in the
lift and in the drag — 0.58% and 0.65% correspondingly. A possible explanation
can be small uncertain perturbations in the airfoil geometry.

3 Discretisation Techniques

In the following, (Ω ,B,P) denotes a probability space, where Ω is the set of ele-
mentary events, B is the σ -algebra of events and P is the probability measure. The
symbol ω always specifies an elementary event ω ∈Ω .

The random field κ(x,ω) needs to be discretised both in the stochastic and in the
spatial dimensions. One of the main tools here is the Karhunen-Loève expansion
(KLE) [16]. By definition, KLE of a random field κ(x,ω) is the following series
[16]

κ(x,ω) = κ(x)+
∞

∑
�=1

√
λ�φ�(x)ξ�(ω), (6)

where ξ�(ω) are uncorrelated random variables and κ(x) is the mean value of
κ(x,ω), λ� and φ� are the eigenvalues and the eigenvectors of problem

Tφ� = λ�φ�, φ� ∈ L2(G ), � ∈ N, (7)

and operator T is defined like follows

T : L2(G )→ L2(G ), (Tφ)(x) :=
∫

G
covκ(x,y)φ(y)dy,

where covκ is a given covariance function. Throwing away all unimportant terms
in KLE, one obtains the truncated KLE, which is a sparse representation of the
random field κ(x,ω). Each random variable ξ� can be approximated in a set of
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new independent Gaussian random variables (polynomial chaos expansions (PCE)
of Wiener [7, 25]), e.g.

ξ�(ω) = ∑
β∈J

ξ (β )
� Hβ (θ (ω)),

where θ (ω) = (θ1(ω),θ2(ω), ...), ξ (β )
� are coefficients, Hβ are multivariate Hermite

polynomials, β ∈ J is a multiindex, J := {β |β = (β1, ...,β j, ...), β j ∈ N0} is a
multi-index set [18].

For the purpose of actual computation, truncate the polynomial chaos expansion
after finitely many terms, e.g.

β ∈ JM,P := {β ∈ J | γ(β )≤ M, |β | ≤ P}, γ(β ) := max{ j ∈ N |β j > 0}.

Since Hermite polynomials are orthogonal, the coefficients ξ (β )
� can be computed

by projection

ξ (β )
� =

1
β !

∫
Θ

Hβ (θ )ξ�(θ )P(dθ ).

This multidimensional integral over Θ can be computed approximately, for ex-
ample, on a sparse Gauss-Hermite grid with nq grid points

ξ (β )
� ≈ 1

β !

nq

∑
i=1

Hβ (θ i)ξ�(θ i)wi, (8)

where weights wi and points θ i are defined from sparse Gauss-Hermite integration
rule. After a finite element discretisation (see [10] for more details) the discrete
eigenvalue problem (7) looks like

MCMφ � = λ h
� Mφ �, Ci j = covκ(xi,y j). (9)

Here the mass matrix M is stored in a usual data sparse format and the dense mat-
rix C ∈ R

n×n (requires O(n2) units of memory) is approximated in the sparse H -
matrix format [10] (requires only O(n logn) units of memory) or in the Kronecker
low-rank tensor format [9]. To compute m eigenvalues (m � n) and corresponding
eigenvectors we apply the Lanczos eigenvalue solver [11, 22].

4 Low-Rank Response Surface

To compute statistics of the random (uncertain) solution (error-bars, quantiles, cu-
mulative density function, etc) accurate enough, one needs a large sample size.
Monte Carlo simulations are expensive. To decrease the computational costs we
compute a, so-called, response surface — (multivariate) polynomial (see Eq. 10).
The idea [13] is to construct a good response surface from few samples and then
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to use the residual for its improvement. A motivation for this idea comes from the
fact that in many software packages for solving engineering and physical problems
it is impossible or very difficult to change the code, but it is possible to access the
residual. Later on the computed response surface is used for very fast generation of
a large sample.

Let v(x,θ) be the solution ( or a functional of the solution). It can be pressure,
density, velocity, lift, drag etc. v(x,θ ) can be approximated in a set of new independ-
ent Gaussian random variables (truncated polynomial chaos expansions of Wiener
[25])

v(x,θ (ω))≈ ∑
β∈JM,P

vβ (x)Hβ (θ ) = [...vβ (x)...][...Hβ (θ )...]T , (10)

where coefficients vβ (x) are computed as follows

vβ (x) =
1
β !

∫
Θ

Hβ (θ )v(x,θ )P(dθ )≈
1
β !

nq

∑
i=1

Hβ (θ i)v(x,θ i)wi, (11)

The PCE representation in Eq. 10 was used to compute the mean and the variance of
the pressure (see Fig. 3) for the Case 1 (α = 1.93 and Ma = 0.676, no shock). PCE
coefficients are computed by the sparse Gauss Hermite grid with nq = 281 nodes.
Here the multidimensional integral overΘ is computed approximately, for example,
on a sparse Gauss-Hermite grid [6, 2].

Fig. 4 demonstrates the mean of density and mean of pressure, computed again
as in Eq. 10 for the Case 9 (α = 2.79 and Ma = 0.734, with shock).

Fig. 5 demonstrates the variance of density and variance of pressure, computed
via Monte Carlo methods for the Case 9. One can see the largest uncertainty in the
shock position.

Fig. 3 (left) The mean pressure in Case 1; (right) The variance of the pressure in Case 1.
Both are computed by the sparse Gauss Hermite grid with nq = 281 nodes.
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Fig. 4 (left) The mean density; (right) the mean pressure computed by PCE in the Case 9
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Fig. 5 (left) The variance of the density; (right) The variance of the pressure computed by
MC in the Case 9.

Using the rank-k approximation of [v(x,θ 1), ...,v(x,θ nq)], obtain

vβ (x) =
1
β !

[v(x,θ1), ...,v(x,θ nq)] · [Hβ (θ 1)w1, ...,Hβ (θ nq)wnq ]
T ≈ ABT cβ , (12)

where A ∈ R
n×k, B ∈ R

nq×k, k � min{n,nq} and
vector cβ := 1

β ! [Hβ (θ 1)w1, ...,Hβ (θ nq)wnq ]
T . The matrix of all PCE coefficients

will be
[...vβ (x)...] = ABT [...cβ ...], β ∈ JM,P. (13)

Taking Eq. 10 and Eq. 13, obtain the final formula for the low-rank response
surface

v(x,θ (ω))≈ ABT [...cβ ...][...Hβ (θ )...]T . (14)
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4.1 Update of the Low-Rank Response Surface via Computing the
Residual

In real-world applications, the deterministic solver is very complicated and it is dif-
ficult or even impossible to change it, but one can often print out the norm of the
residual. Assume that we already approximated the unknown solution by a response
surface. Our response surface is approximation via multivariate Hermite polynomi-
als like in Eq. 14, where coefficients are computed like in Eq. 13 with quadrature
points θ i, i = 1..nq. The following algorithm updates the given response surface.

Algorithm: (Update of the response surface)

1. Take the next point θ nq+1 and evaluate the response surface Eq. 14 in this point.
Let u(x,θ nq+1) be the obtained predicted solution.

2. Compute the norm of the residual ‖r‖ of the deterministic problem (e.g. evaluate
one iteration). If ‖r‖ is small then there is no need to solve the expensive de-
terministic problem in θ nq+1, otherwise (if ‖r‖ is large) solve the deterministic
problem and recompute A, BT and cβ in Eq. 12.

3. Go to item (1).

In the best case we never solve the deterministic problem again. In the worst case
we must solve the deterministic problem for each θ nq+i, i = 1,2, ... To test this al-
gorithm we computed the solution in Case 1 with 10000 TAU iterations (is usual
number of iterations). Then, first, we computed the solution with the response sur-
face (as described above) and, second, corrected it with 1000 TAU iterations. Then
we compared both solutions and observed only a very small difference. Thus, the
response surface reduced the number of needed iterations from 10000 to 1000. We
note that the solution in Case 1 is smooth and there is no shock.

We tested this Algorithm also in the Case 9 (solution with a shock) and it failed.
We pre-computed the solution by two different response surfaces (of order P = 2
and P = 4). Both response surfaces failed to produce a good result. For instance,
we observed not only one shock, but many smaller shocks. Then we observed an
increasing range of e.g. pressure (range (−6;5) in contrast to (0.5,1.3)). It is similar
when one tries to approximate a step function by a polynomial — the amplitude of
oscillations grows up. Another negative effect which we observed during further
iterating the solution, obtained from the response surface, was that the deterministic
solver (TAU) produces “nan” after few iterations. A possible reason is that some
important solution values, obtained from the response surface, are out of the physical
range (e.g. negative density) and are non-realistic.

Thus, we can come to the conclusion that if the solution is smooth (e.g. as in Case
1) then response surface produces a good starting value. Otherwise, if the solution
has a shock, the response surface produces a very poor approximation and further
iterations do not help.

The computed solution u(x,θ nq+1) can be used to update the response surface,
i.e. to recompute the matrices A, B and [...cβ ...] and PCE coefficients (Eq. 13).
Please note that this update works only in the case of the usage of embedded sparse
grids or (Q)MC in Eq. 11.
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5 Data Compression

A large number of stochastic realisations of random fields requires a large amount of
memory and powerful computational resources. To decrease memory requirements
and computing time we offer to use a low-rank approximation for all realisations of
the solution [13]. This low-rank approximation allows us an effective postprocessing
(computation of the mean value, variance, exceedance probability) with drastically
reduced memory requirements (see Table 4). For each new realisation only the cor-
responding low-rank update will be computed (see, e.g. [1]). This can be practical
when, e.g. the results of many thousands Monte Carlo simulations should be com-
puted and stored. Let vi ∈ R

n, i = 1..Z, be the solution vector (already centred),
where Z is a number of stochastic realisations of the solution. Let us build from all
these vectors the matrix W = (v1, ...,vZ) ∈ R

n×Z and consider the factorisation

W = ABT , where A ∈ R
n×k and B ∈R

Z×k. (15)

We say that matrix W is a rank-k matrix if the representation in Eq. 15 is given.
We denote the class of all rank-k matrices for which factors A and BT in Eq. 15 exist
by R(k,n,Z). If W ∈R(k,n,Z) we say that W has a low-rank representation. The
first aim is to compute a rank-k approximation Wk of W, such that

‖W−Wk‖< ε, k � min{n,Z}.

The second aim is to compute an update for the approximation Wk with a linear
complexity for every new coming vector vZ+1. Below in Section 5.1 we present the
algorithm which performs this.

To get the reduced singular value decomposition we omit all singular values,
which are smaller than a given level ε or, alternative variant, we leave a fixed number
of largest singular values. After truncation we speak about reduced singular value
decomposition (denoted by rSVD) Wk = UkΣkVk

T , where Uk ∈ R
n×k contains the

first k columns of U, Vk ∈ R
Z×k contains the first k columns of V and Σk ∈ R

k×k

contains the k-biggest singular values of Σ .
The computation of such basic statistics as the mean value, the variance, the ex-

ceedance probability can be done with a linear complexity. The following examples
illustrate computation of the mean value and the variance.

Let us take A := UkΣk and BT := VT
k ∈ R

k×Z . Denote the j-th row of matrix A
by a j ∈ R

k and the i-th column of matrix BT by bi ∈ R
k. It is evident, that if W is

given explicitly, one can compute the mean value and the variance just keeping in
memory 2 vectors - the mean (variance) and the current value. Below we show how
to compute the mean and the variance if only A and B are given.

1. One can compute the mean solution v ∈ R
n as follows

v =
1
Z

Z

∑
i=1

vi =
1
Z

Z

∑
i=1

A ·bi = Ab, (16)



Numerical Methods for UQ and BU in Aerodynamics 275

Table 2 Rank-k approximation errors of the mean and of the variance of density in Case 1.

rank k 5 20
maxx|ρ(x)−ρk(x)| 1.7e-6 4.2e-10
maxx|var(ρ)(x)−var(ρ)k(x)| 6.7e-5 2.3e-8

The computational complexity is O(k(Z + n)), in contrast to O(nZ)) for usual
dense data format. As a demonstration we compute the mean.

2. One can compute the variance of the solution var(v) ∈ R
n by the computing the

covariance matrix and taking its diagonal. First, one computes the centred matrix

Wc := W− v1T , where v = W ·1/Z, and 1 = (1, ...,1)T ∈ R
Z. (17)

Computing Wc costs O(k2(n+Z)) (addition and truncation of rank-k matrices).
By definition, the covariance matrix is C = 1

Z−1 WcWT
c . The reduced singular

value decomposition of Wc is (Wc)k = UkΣkVT
k , Uk ∈ R

n×k, Σk ∈ R
k×k and

Vk ∈ R
Z×k can be computed via the QR algorithm [5, 13]. Now, the covariance

matrix can be written like

C =
1

Z − 1
(Wc)k(Wc)

T
k ≈ 1

Z − 1
UkΣkΣT

k UT
k . (18)

The variance of the solution vector (i.e. the diagonal of the covariance matrix C
can be computed with the complexity O(k2(Z + n)).

Table 2 demonstrates the rank-5 and rank-20 approximations of the mean and of
the variance of density. One can see that both rank-k approximation errors are very
small, much smaller than e.g. the discretisation error or Monte Carlo error (by com-
puting the mean value).

Lemma 0.1. Let ‖W−Wk‖2 ≤ ε , and uk be a rank-k approximation of the mean u.
Then a) ‖u−uk‖ ≤ ε√

Ns
, b) ‖Wc − (Wc)k‖ ≤ ε , c) ‖C−Ck‖ ≤ 1

Ns−1ε
2.

Proof: Since u = 1
Ns

W1 and uk =
1

Ns
Wk1, then

‖u−uk‖2 =
1
Ns

‖(W−Wk)1‖2 ≤ 1
Ns

‖(W−Wk)‖2 · ‖1‖2 ≤ ε√
Ns

.

Let I ∈ R
Ns×Ns be the identity matrix, then

‖Wc − (Wc)k‖2 ≤ ‖W−Wk‖2 · ‖I− 1
Ns

·1 ·1T‖2 ≤ ε, and

‖C−Ck‖2 ≤ 1
Ns − 1

‖WcWT
c − (Wc)k(Wc)

T
k ‖2

=
1

Ns − 1
‖UΣΣT UT −UkΣkΣT

k UT
k ‖ ≤

1
Ns − 1

ε2.
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5.1 Concatenation of Two Low-Rank Matrices

Let A and B such that Wk = ABT be given. Suppose also that matrix W
′ ∈ R

n×m

contains new m solution vectors. For a small m, computing the factors C ∈R
n×k and

D ∈ R
m×k such that W

′ ≈ CDT is not expensive. Now our purpose is to compute
with a linear complexity the rank-k approximation of Wnew := [WW′]∈R

n×(Z+m).
To do this, we build two concatenated matrices Anew := [AC]∈R

n×2k and BT
new =

blockdiag[BT DT ] ∈ R
2k×(Z+m). Note that the difficulty now is that matrices Anew

and Bnew have rank 2k. The rank k approximation of the new matrix Wnew is done
with a linear complexity O((n+Z)k2 + k3) (for details see [13]).

6 Bayesian Update of the Uncertain Airfoil Geometry

We assume that the airfoil geometry contains random deformations (e.g. dents). A
possible reason, for example, can be the influence of external forces. First our task
is to parametrize all such deformations for all given airfoils. We offer to use random
fields κ(x,ω), where ω is a vector of random parameters (see Section 2.2). The
problem is that the probability density function of ω is unknown. We assume it a
priori as Gaussian. If we could measure all given airfoils (from different airplains)
then we could build a good parametrization model, but everything we can do is to
measure airfoils only in a few points. This is our knowledge. The question now
is how to incorporate this knowledge to our parametrization model? We can do this
by using the Bayesian update. The Algorithm is described in [21, 20].

In Fig. 6 (left) you may see:

Fig. 6 (left) The truth airfoil (is in reality unknown), a priori (is our initial assumption) and
a posteriori (the measurements are taken into account) airfoils. (right) Detailed RAE-2822
airfoil picture in interval [0.05, 0.35].
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• The initial airfoil (dashed line). Is in real life, as a whole, unknown. One can
measure it only in a few points.

• A priori realization (dash-dot line). One realization computed from the a priori
model without any knowledge (without measurements). Usually does not coin-
cide with the truth. Can be far away from the truth.

• A posteriori realization (solid line) is computed via the Bayesian update (see
details of the Algorithm in [21, 20]) from the a posteriory model which takes
into account the real data measured in the 8 measurement points (8 stars). Since
large deformations are not allowed, all three curves are very similar. The detailed
picture (in interval [0.05, 0.35]) is shown in Fig. 6 (right). One can see that the
solid line (a posteriori model) is much closer to the measurement point (denoted
by stars) than to the dash-dot line (a priori model).

7 Numerics

We demonstrate the influence of uncertainties in the angle of attack, the Mach num-
ber and the airfoil geometry on the solution (the pressure, density, lift, drag, lift
and absolute skin friction coefficients). As an example we consider two-dimensional
RAE-2822 airfoil. The deterministic solver is the TAU code with the k-w turbulence
model. To quantify uncertainties we used the collocation method computed in nodes
of sparse Gauss-Hermite grid. The Hermite polynomials are of order P = {1,2,4}
with M random variables (see Eq. 10).

The last column in Tables 3 on the left and on the right shows the measure of
uncertainty σ/mean. It shows that 7.1% and 0.4% of uncertainties in α and in Ma
correspondingly result in 4.4% and 16.3% (Table 3, on the right) of uncertainties in
the lift CL and drag CD. For the comparison of different sparse grids see [13, 15].

In Fig. 7 we compare the cumulative distribution and density functions for the lift
and drag coefficients, obtained via PCE and via 6300 Monte Carlo simulations. The
response surface is PCE of order 1. There are 106 MC evaluations of the response
surface. We see three very similar graphics. Thus, one can make the conclusion that
the sparse Gauss-Hermite grid with a small number of points, e.g. nq = 13, produces
similar to MC results.

In Fig. 8 we compare the mean values computed by collocation and Monte Carlo
methods for the Case 1. The collocation points are 281 nodes of two-dimensional

Table 3 Uncertainties in the input parameters (α(θ1,θ2) and Ma(θ1,θ2)) and in the solution
(CL and CD). PCE of order 1 and sparse Gauss-Hermite grid with 137 points.

mean st. dev. σ σ /mean
α 2.8 0.2 0.071
Ma 0.73 0.0026 0.004

=⇒
mean st. dev. σ σ /mean

CL 0.85 0.0373 0.044
CD 0.0187 0.00305 0.163
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Fig. 7 Probability density functions (first row), cumulative distribution functions (second
row) of CL (left) and CD (right). PCE is of order 1 with two random variables. Three graphics
computed with 6360 MC simulations, nq = 13 and nq = 29 collocation points.

Fig. 8 (left) ‖ρMC −ρSGH‖ and (right) ‖pMC − pSGH‖. pSGH was computed from the
sparse Gauss Hermite grid with 281 nodes. ρSGH ∈ (0.65,1.2), pSGH ∈ (0.7,1.3). Case 1.

sparse Gauss Hermite grid. One can see that the difference is very small compared
to the corresponding physical values ρSGH and pSGH.
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Fig. 9 3σ error bars in each point of the RAE-2822 airfoil surface for the pressure coefficient
cp (left) and friction coefficient cf (right).

The graphics in Fig. 9 demonstrate 3σ error bars, σ the standard deviation, for
the pressure cp and absolute skin friction cf coefficients in each surface point of
the RAE-2822 airfoil. The data are obtained from 645 realisation of the solution.
One can see that the largest uncertainty occurs at the shock (x ≈ 0.6). A possible
explanation is that the shock position is expected to change slightly with varying
parameters α and Ma.

In Table 4 one can see relative errors of the rank-k approximations (in the
Frobenius norm). Five solution matrices contain pressure, density, turbulence kin-
etic energy (tke), turbulence omega (to) and eddy viscosity (ev) in the whole com-
putational domain with 260000 dofs. Additionally, one can also see much smaller
memory requirement (dense matrix format costs 1.25GB). The column 7 shows
the computing time required for the SVD-update (the Algorithm described in Sec-
tion 5.1) and the the column 8 time required for the full SVD of the global matrix
∈R

260000×600 correspondingly. A possible explanation for the large computing time
for the full SVD is the lack of memory and expensive swapping of data.

Table 4 Relative errors and computational requirements of rank-k approximations of the
solution matrices ∈R

260000×600. Memory required for the storage of each matrix in the dense
matrix format is 1.25 GB.

rank k pressure density tke to ev time, sec time, sec memory
update full SVD MB

10 1.9e-2 1.9e-2 4.0e-3 1.4e-3 1.4e-3 107 1537 21
20 1.4e-2 1.3e-2 5.9e-3 3.3e-4 4.1e-4 150 2084 42
50 5.3e-3 5.1e-3 1.5e-4 9.1e-5 7.7e-5 228 8236 104
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Table 5 Rank-k approximation errors of the variance of pressure and of the variance of dens-
ity in Case 9

rank k 5 30
maxx|var(p)(x)−var(p)k(x)| 5.3e-3 1.6e-4
maxx|var(ρ)(x)−var(ρk)(x)| 3.5e-3 8.8e-5

In Table 5 we provide the rank k = {5,30} approximation errors (in the max-
imum norm) of the variance of the pressure and of the density (compare with
Fig. 5). The variances var(p)k(x) and var(ρk)(x) were computed from the matrix
W ∈ R

65568×1521 as described in Section 5.
Further, we consider Case 1 (α = 1.93 and Ma= 0.676, no shock). Fig. 10 shows

relative errors (for the Case 1) in the Frobenius and the maximum norms for pressure
and density computed in 10 points of a two-dimensional sparse Gauss-Hermite grid.
These relative errors compare the solution which we obtain after 10000 TAU itera-
tions without any start value with the solution which we obtain after only 2000 TAU
iterations with start values taken from the response surface (multivariate Hermite
polynomials with M = 2 variables and of order P = 2). One can see that the errors
are very small (of order 10−3), i. e. the response surface produces a good approxim-
ation. We note that 10 chosen points are lying in a small neighbourhood of the point
α = 1.93 and Ma = 0.676.

Fig. 10 Relative errors (Case 1) in the Frobenius and the maximum norms for the pressure
and density
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Efficient Quantification of Aerodynamic
Uncertainties Using Gradient-Employing
Surrogate Methods

Dishi Liu

Abstract. Uncertainty quantification (UQ) in aerodynamic simulations is hindered
by the high computational cost of CFD models. With gradient information obtained
efficiently by using an adjoint solver, gradient-employing surrogate methods are
promising in speeding up the UQ process. To investigate the efficiency of UQ meth-
ods we apply gradient-enhanced radial basis functions, gradient-enhanced point-
collocation polynomial chaos, gradient-enhanced Kriging and quasi-Monte Carlo
(QMC) quadrature to a test case where the geometry of an RAE2822 airfoil is per-
turbed by a Gaussian random field parameterized by 10 independent variables. The
four methods are compared in their efficiency in estimating some statistics and the
probability distribution of the uncertain lift and drag coefficients. The results show
that with the same computational effort the gradient-employing surrogate methods
achieve better accuracy than the QMC does.

1 Introduction

In aerodynamic simulations it is beneficial to consider uncertainties in the inputs,
the formulation and the numerical error of the CFD model. In this work our concern
is confined to the uncertainties in the model’s input and probabilistic approaches
for uncertainty quantification (UQ) for CFD models. The uncertainties in the input
propagates to the system response quantities (SRQ) through the model. Minor un-
certainties can have an amplified impact in some instances and lead to occurrences
of rare catastrophic events. Quantifying the uncertainties associated with the SRQ
enhances the reliability of the simulations and enables robust design optimization.
Most often this UQ process is done in a probabilistic framework in which the input
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uncertainties are represented by random variables, and the consequent uncertainties
in the SRQ are quantified by determining its probability distribution or statistical
moments.

However, uncertainties in the input, especially those spatially or temporally dis-
tributed, like geometric uncertainties, often generate a large number of variables.
The “curse of dimensionality” prohibits the use of tensor-product quadratures. In
[16] and [21] sparse grid quadratures were employed in aerodynamic UQ problems
due to uncertain airfoil geometry. Nevertheless, if the number of variables is lar-
ger than 10 even sparse grid methods suffer limitations in applicability [17]. The
high computational cost of CFD models also makes the traditional sampling meth-
ods such as Monte-Carlo and its variance-reduced variants (e.g. Latin Hypercube
method) not efficient due to their slower error convergence rate.

Surrogate methods are gaining more attention in UQ as they provide approxim-
ations of the CFD model which are much cheaper to evaluate while maintaining a
reasonable accuracy so that the UQ can be performed on the basis of a large number
of samples evaluated on the surrogate model. E.g. [12] shows a Kriging surrogate
method better than plain Monte Carlo and Latin Hypercube methods in estimating
the mean value of a bivariate Rosenbrock function. A comparative study of surrog-
ate methods that are not employing gradients [23] shows Kriging is more accurate
than radial basis functions and multivariate polynomial in approximating some 10-
variate test functions.

Gradient-employing also give an edge to surrogate methods if the gradients are
obtained at a relatively lower cost than that of the SRQ, which is the case when
an adjoint CFD solver [5] is used and the number of SRQ is less than the number
of variables. It should be noted that the gradient information cannot be effectively
utilized by the UQ methods based on direct sampling of the CFD model. A naive
augmentation of samples by finite difference brings no benefit because the augment-
ing samples are not statistically independent of the original ones.

Different sampling schemes are adopted by surrogate methods, majorly of two
groups: “on-grid” sampling and scattered sampling. The former is used in some
methods based on polynomial approximations, e.g. stochastic collocation methods
[2], and affected by the “curse of dimensionality” if the number of variables is large.
The latter is more robust since it admits an arbitrary number of samples and arbitrary
sample sites. This flexibility not only makes it tolerate sample failures (due to, e.g.
poor convergence, as often observed in CFD models), but also makes an incorpor-
ation of pre-existing or additional samples possible and enables run-time adaptive
sampling.

In this work we apply three gradient-employing surrogate methods, i.e. gradient-
enhanced radial basis functions (GERBF), gradient-enhanced point-collocation
polynomial chaos (GEPC) and gradient-enhanced Kriging (GEK) [13], and for the
purpose of comparison, also the quasi-Monte Carlo quadrature, to a UQ test case
where an RAE2822 airfoil is subject to random geometric perturbations, and we
compare their efficiency in estimating some statistics and probability distribution
of the resulting uncertain lift and drag coefficients. The number of CFD model
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evaluations is kept small (≤ 200) in this numerical comparison to make it relev-
ant to large-scale industrial applications.

2 Test Case

The test case we use in this work is a CFD model of the inviscid flow around a
2-dimensional RAE2822 airfoil at a Mach number of 0.73 and an angle of attack of
2.0 degrees. The source of uncertainty is the randomly perturbed airfoil geometry,
i.e., the lower and upper surfaces of the airfoil’s 2D section (as shown by the solid
line in the right part of Figure 1) are each assumed to be subject to a Gaussian
random perturbation in the direction normal to the surface. Let pppl and pppu denotes
the original lower and upper surface respectively, the perturbed surfaces are

ppp′l = pppl + nnn ·θl(x)

ppp′u = pppu + nnn ·θu(x)

with x ∈ [0,1]. nnn is the local normal vector of the surface, θ (x) is a zero-mean
Gaussian variable with standard deviations σ(x), i.e.

θl(x),θu(x)∼ N(0,σ(x))

in which

σ(x) = 0.01 ·Zmax · x(1− x) ·β (2,2)/1.5

with Zmax the maximum half-thickness of the airfoil, and β the Beta function. This
setting makes the σ(x) have its maximum (one percent of Zmax ) at x = 0.5 and being
zero at the two ends of the airfoil.

It is assumed that the random deformation is spatially correlated by a Gaussian
type correlation function, i.e.

cov[θl(x1),θl(x2)] = σ(x1)σ(x2)exp

(
− (x1 − x2)

2

�2

)

= C(x1,x2)

with �= 0.2. The same also applies to θu(x).
For the purpose of numerical computation, the correlated random fields θl(x)

and θu(x) need to be represented in terms of uncorrelated random variables. This is
furnished by Karhunen-Loève expansions (KLE) [1], e.g. for θl ,

θl(x) =
∞

∑
i=1

√
λi ξiΦi(x)

where ξi are independent standard Gaussian variables. λi andΦi(x) are the eigenval-
ues and the eigenfunctions of C(x1,x2), i.e., the solutions of the following integral
equation,
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∫ 1

0
C(x1,x2)Φi(x1)dx1 = λiΦi(x2) ∀ i = 1,2, . . .

For practical problems the KLE needs to be truncated so that only a relatively small
number of terms is kept, e.g. an approximation with κ terms:

θl(x)≈
κ

∑
i=1

√
λi ξiΦi(x)

By taking κ = 5, θl(x) is parameterized by 5 independent standard Gaussian vari-
ables. Applying the same approximation to θu(x),

θu(x)≈
2κ

∑
i=κ+1

√
λi ξiΦi(x)

we express the randomly perturbed airfoil surface as a function of 10 such variables.
This KLE representation is optimal in the sense that it retains the original geometric
variance to the maximum degree compared to any other linear-form representation
with the same number of variables [1]. Figure 1 shows three examples of random
perturbation in the upper and lower surface together with the corresponding per-
turbed RAE2822 airfoil geometry.

In this test case, the CFD model takes the input variables ξξξ = {ξ1, · · · ,ξ10} and
yields the lift and drag coefficients, C� and Cd , of the randomly perturbed airfoil.
Hereafter, the model is denoted as f (ξξξ ) in this paper. We compare the efficiency of
the candidate methods in estimating some target statistics, i.e. the means (μ�,μd),
the standard deviations (σ�,σd) of C� and Cd , and the exceedance probabilities P�, j =
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Fig. 1 Three examples of random perturbation in upper and lower surface (left) and three
examples of the randomly perturbed airfoil geometry, with the perturbations ten-times exag-
gerated (right)
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Pro{C� < μ�− j ·σ�} and Pd, j = Pro{Cd > μd + j ·σd} with j = 2,3. The accuracy
of the statistics is judged by comparing with reference statistics obtained by a QMC
integration with a large sample number (N = 2× 105).

3 Methods

Four methods are applied to the test case. They include three surrogate methods,
i.e. gradient-enhanced radial basis functions (GERBF), gradient-enhanced Kriging
(GEK) and gradient-enhanced point-collocation polynomial chaos (GEPC), and one
direct integration method, i.e. quasi-Monte Carlo (QMC) quadrature. An introduc-
tion of them is made in this section.

Since the gradients of the SRQ with respect to all the ten variables are computed
by an adjoint solver at an additional cost of approximately one evaluation of the
CFD model, to account for this additional cost we introduce the term elapsed time-
penalized sample number M by making M = 2N for the three gradient-employing
methods and M = N for QMC, with N the number of evaluations of the CFD model.
Compared to the cost of evaluating the CFD model the computational overhead of
constructing surrogates is negligible, so in the efficiency comparison we use M as
the measure of computational cost.

In the aspect of design of experiment, the study in [23] shows surrogate models
based on samples with relatively high degree of uniformity (using Latin Hyper-cube
sampling) are more accurate than those based on samples of lower degree of uni-
formity (using plain Monte-Carlo sampling). For all the four methods in this work
we adopt the QMC sampling scheme [7] because it achieves even higher degree of
sample uniformity than Latin Hyper-cube sampling.

We use the DLR-TAU code [10] to solve the CFD model. The geometry per-
turbation is implemented by using a mesh deformation tool based on radial basis
functions incorporated in the DLR-TAU code as described in [14].

3.1 Quasi-Monte Carlo Quadrature

Quasi-Monte Carlo (QMC) quadrature [7] samples at a low discrepancy set of points
generated by deterministic number-theoretic formulas. The “discrepancy” here is
a measurement of how much the distribution of this set of points deviates from
the underlying pdf. A low discrepancy set of points achieves a higher degree of
uniformity with respect to a given pdf than a pseudo-random set of points does.
So QMC is usually much more efficient than a Monte Carlo quadrature. The error
bound of QMC is of order O(N−1(logN)d) in which d is the number of variables. In
many cases this is quite a loose upper bound of the error, i.e. QMC often performs
better than that.
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A variety of low discrepancy point sets exist, e.g. Van der Corput, Halton, Sobol,
Hammersley and Niederreiter point set. The last one is used in this work as it is
considered the most efficient when d is large [19]. The point set is generated by
the program from [4]. The statistics of the SRQ are directly computed from the
samples.

3.2 Gradient-Enhanced Radial Basis Functions

The radial basis function (RBF) method [6] approximates an unknown function by a
weighted linear combination of radial basis functions each being radially symmetric
about a center. An RBF approximation takes the form

f̂ (ξξξ ) =
N

∑
i=1

wi φi(‖ξξξ − ξξξ 〈i〉‖)

where φi are radial basis functions, ‖ · ‖ denotes the Euclidean norm, and ξξξ 〈i〉 are
the N sample points each taken as the center of a radial basis function. Making
f̂ (ξξξ ) interpolate the N samples leads to N linear equations. The coefficients wi are
determined by solving this linear system.

Denoting the Euclidean distance from the center as r, popular types of φ(r)
include

√
r2 + a2 (multiquadric), 1/

√
r2 + a2 (inverse multiquadric), exp(−a2r2)

(Gaussian) and r2 ln(ar) (thin plate spline), in which a is a parameter to be fine-tuned
for a particular set of samples. Gradient-employing versions of RBF were proposed
in [11, 20] where first-order derivatives of the SRQ are exploited and second-order
derivatives of RBF are involved in the system.

In this work we propose a different gradient-employing RBF method that in-
volves only the first-order derivative of RBF, termed gradient-enhanced RBF
(GERBF). To accommodate the gradient informations of the SRQ, this method in-
troduces additional RBF that are centered at non-sampled points, i.e. an GERBF
approximation is

f̂ (ξξξ ) =
K

∑
i=1

wi φi(‖ξξξ − ξξξ 〈i〉‖), with N < K ≤ N(1+ d)

The ξξξ 〈i〉 with i ≤ N are sampled points, those with i > N are non-sampled points
which can be chosen randomly as long as none of them duplicates the sampled ones.
The coefficients www = {w0,w1, · · · ,wK}T are determined by solving the following
system,

ΦΦΦwww = fff
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in which

ΦΦΦ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(ξξξ 〈1〉) Φ2(ξξξ 〈1〉) · · · ΦK(ξξξ 〈1〉)
...

...
. . .

...
Φ1(ξξξ 〈N〉) Φ2(ξξξ 〈N〉) · · · ΦK(ξξξ 〈N〉)

Φ(1)
1 (ξξξ 〈1〉) Φ(1)

2 (ξξξ 〈1〉) · · · Φ(1)
K (ξξξ 〈1〉)

...
...

. . .
...

Φ(1)
1 (ξξξ 〈N〉) Φ(1)

2 (ξξξ 〈N〉) · · · Φ(1)
K (ξξξ 〈N〉)

...
...

. . .
...

Φ(d)
1 (ξξξ 〈1〉) Φ(d)

2 (ξξξ 〈1〉) · · · Φ(d)
K (ξξξ 〈1〉)

...
...

. . .
...

Φ(d)
1 (ξξξ 〈N〉) Φ(d)

2 (ξξξ 〈N〉) · · · Φ(d)
K (ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ξξξ 〈1〉)
...

f (ξξξ 〈N〉)

f (1)(ξξξ 〈1〉)
...

f (1)(ξξξ 〈N〉)
...

f (d)(ξξξ 〈1〉)
...

f (d)(ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Φ( j)
i = ∂Φi/∂ξ j, f ( j) = ∂ f/∂ξ j . We chose K = N

2 (1+d) in this work, which
results in an over-determined system that is solved by a Least Squares method.

A numerical comparison of the accuracy of the aforementioned four types of
RBF in approximating this CFD model f (ξξξ ) was made by the author. The result
favors the inverse multiquadric RBF which is therefore used in this work for the
comparison with other UQ methods. The internal parameter a is fine-tuned by a
leave-one-out error minimizing procedure as in [3].

For this UQ job we first establish a GERBF surrogate model of f (ξξξ ) based on
QMC samples of the CFD model, and integrate for the target statistics and pdf by a
large number (105) of QMC samples on the surrogate model.

3.3 Gradient-Enhanced Kriging Method

Kriging [9] approximates f (ξξξ ) by a weighted linear combination of samples, i.e.

f̂ (ξξξ ) = γ(ξξξ )+
N

∑
i=1

wi(ξξξ 〈i〉) f (ξξξ 〈i〉)

where f (ξξξ 〈i〉) are N samples of the SRQ. γ and wi are determined by minimizing
the variance of the error e = f − f̂ with the assumptions that the expectation of e
is zero and that f (ξξξ ) honors a spatial correlation model. We use direct gradient-
enhanced Kriging (GEK) [8] that incorporates gradient information as secondary
samples by an extended spatial correlation model that accommodates gradients. We
implement GEK using the Surrogate-Modeling for Aero-Data Toolbox (SMART)
[13] developed at DLR, opting for ordinary Kriging and a correlation model of
spline type which is considered the most efficient in similar situations in [17]. The
internal parameters of the correlation model are fine-tuned to fit the sampled data
by a maximum likelihood estimation [24].
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For this UQ job we first establish a GEK surrogate model of f (ξξξ ) based on QMC
samples of the CFD model, and integrate for the target statistics and pdf by a large
number (105) of QMC samples on the surrogate model.

3.4 Gradient-Enhanced Point-Collocation Polynomial Chaos
Method

According to Wiener [22], f (ξξξ ) can be approximated by a truncated polynomial
chaos expansion (PCE)

f̂ (ξξξ ) =
K

∑
i=0

ciΨi(ξξξ ) (1)

whereΨi is Hermite polynomial chaos (PC) to which a detailed description can be
found in, e.g. [18]. The total number of terms is K = (p+ d)!/(p!d!) with p the
order of PC.

To determine the coefficients ci we use a point-collocation method similar to
the one used in [15], the difference being that we utilize gradient information. In
this gradient-enhanced point-collocation polynomial chaos (GEPC) method the ccc =
{c0,c1, · · · ,cK}T is determined by solving the following system,

ΨΨΨccc = fff

with ΨΨΨ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ0(ξξξ 〈1〉) Ψ1(ξξξ 〈1〉) · · · ΨK(ξξξ 〈1〉)
...

...
. . .

...
Ψ0(ξξξ 〈N〉) Ψ1(ξξξ 〈N〉) · · · ΨK(ξξξ 〈N〉)

Ψ (1)
0 (ξξξ 〈1〉) Ψ (1)

1 (ξξξ 〈1〉) · · · Ψ (1)
K (ξξξ 〈1〉)

...
...

. . .
...

Ψ (1)
0 (ξξξ 〈N〉) Ψ (1)

1 (ξξξ 〈N〉) · · · Ψ (1)
K (ξξξ 〈N〉)

...
...

. . .
...

Ψ (d)
0 (ξξξ 〈1〉) Ψ (d)

1 (ξξξ 〈1〉) · · · Ψ (d)
K (ξξξ 〈1〉)

...
...

. . .
...

Ψ (d)
0 (ξξξ 〈N〉) Ψ (d)

1 (ξξξ 〈N〉) · · · Ψ (d)
K (ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ξξξ 〈1〉)
...

f (ξξξ 〈N〉)

f (1)(ξξξ 〈1〉)
...

f (1)(ξξξ 〈N〉)
...

f (d)(ξξξ 〈1〉)
...

f (d)(ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whereΨ (k)
i = ∂Ψi/∂ξk, f (k) = ∂ f/∂ξk, and ξξξ 〈i〉 = {ξ1,ξ2, · · · ,ξd}i with i= 1, · · · ,N

denote the sample points. The K is chosen to be half of the number of available “con-
ditions”, N(1+d), for the best performance according to [15]. This over-determined
system is solved by a Least Squares method.

For this UQ job we first establish a GEPC surrogate model of f (ξξξ ) based on
QMC samples of the CFD model, and compute the mean and the variance of f (ξξξ )
directly from the coefficients,
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μ = c0 , σ2 =
K

∑
i=1

(ci)
2 ·E[Ψ2

i (ξξξ )] (2)

The exceedance probabilities and pdf are integrated by a large number (105) of
QMC samples on the surrogate model.

4 Results and Discussion

The results of the efficiency comparison are shown in Figure 2 to 5. Figure 2 and 3
show the errors of the four methods in estimating the target statistics of C� and Cd . It
is observed there that the three gradient-employing surrogate methods, GEK, GEPC
and GERBF are more efficient than the QMC method since the former three reduce
their errors faster with an increasing cost measure M. Figure 4 and 5 depict the
estimated pdf of C� and Cd obtained by the four methods, comparing with the refer-
ence pdf. There we see that for the same computational cost, the surrogate methods
yield much more accurate pdf’s. This is consistent with their relative performance
in estimating the statistics.
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Fig. 3 Error in estimating mean, standard deviation (upper row) and exceedance probabilities
(lower row) of Cd

One of the reasons for the relatively better performance of the surrogate methods
is that they utilize more information with the same computational cost M, i.e. they
use (1+ d)M

2 conditions (SRQ samples and gradients) while a direct integration
method like QMC uses M conditions (SRQ samples only). This advantage is due
to the cheaper cost of obtaining gradients by an adjoint solver in the case that the
number of SRQ’s is smaller than the number of variables d, and is expected to
increase with an increasing number of variables, d.

Although it seems that GEK and GERBF perform better than the other surrogate
methods in estimating statistics of C� and Cd respectively, it may not be appropriate
to base a general conclusion on that. In Figure 4 and 5 we see the three surrogate
methods have similar accuracy in their estimated pdf of C� and Cd .

The efficiency of GEK or GERBF is sensitive to the choice of the covariance
model or the radial basis function and also to the value of the internal paramet-
ers, and excelling configurations of them are problem- and data-dependent. In this
work, different techniques are used for the optimization of the internal parameters,
i.e., maximum likelihood optimization for GEK and leave-one-out error minimiz-
ation for GERBF. This may also influence their relative efficiency, possibly differ-
ently in the C� and Cd cases. Due to the complex nature of comparative efficiency of



Uncertainty Quantification with Gradient-Employing Surrogate Methods 293

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by QMC, M=20

 

 

reference pdf
pdf by QMC

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by QMC, M=50

 

 

reference pdf
pdf by QMC

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GEK, M=20

 

 

reference pdf
pdf by GEK
10 * error

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GEK, M=50

 

 

reference pdf
pdf by GEK
10 * error

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GEPC, M=20

 

 

reference pdf
pdf by GEPC
10 * error

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GEPC, M=50

 

 

reference pdf
pdf by GEPC
10 * error

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GERBF, M=20

 

 

reference pdf
pdf by GERBF
10 * error

0.79 0.8 0.81 0.82 0.83 0.84
0

20

40

60

80

C
L

pd
f

pdf of C
l
 by GERBF, M=50

 

 

reference pdf
pdf by GERBF
10 * error

Fig. 4 Estimated pdf (in dash line) of C� by QMC (1st row), GEK (2nd row), GEPC (3rd
row) and GERBF(4th row) at M = 20 (left) and M = 50 (right), dotted line shows the 10-
times scaled up error of the estimated pdf

surrogate methods with different configurations and internal optimization tech-
niques and different target SRQ, here we do not try to draw a conclusion on this
issue.
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Fig. 5 Estimated pdf (in dash line) of Cd by QMC (1st row), GEK (2nd row), GEPC (3rd
row) and GERBF(4th row) at M = 20 (left) and M = 50 (right), dotted line shows the 10-
times scaled up error of the estimated pdf

In the estimation of the statistics of C� we see GEPC is not always reducing its
error with an increasing M. This might be ascribed to the fact that the number of
polynomial chaos (PC) terms is not truncated according to the order of PC, but to
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an arbitrary number which is half of the number of available conditions. A set of PC
terms that is “incomplete” for a particular order might not lead to more accurate ap-
proximations than a set with less number of terms but “complete” for a lower order.
Nevertheless, GEPC has a favored property that we have no burden of choosing the
best-fitting configuration for it.

5 Summary

Gradient-employing surrogate methods have an advantage in handling aerodynamic
uncertainty quantification (UQ) problems in the cases that an adjoint solver is used
and the number of system response quantities (SRQ) is smaller than the number
of variables so that the gradients of SRQ can be obtained at a reduced cost. These
methods construct surrogates of the CFD model so that the statistics of an uncertain
SRQ can be integrated on the surrogates models.

For investigating the efficiency of the different UQ methods we set up a test
case where the geometry of an RAE2822 airfoil is perturbed by a Gaussian random
field which is parameterized by 10 independent variables. Three surrogate meth-
ods, gradient-enhanced radial basis functions, gradient-enhanced point-collocation
polynomial chaos and gradient-enhanced Kriging, together with a direct integration
method, quasi-Monte Carlo (QMC) quadrature, are applied to the test case and com-
pared in their efficiency in estimating some statistics and probability distribution of
the uncertain lift and drag coefficients. The results show that with the same com-
putational effort the gradient-employing surrogate methods achieve better accuracy
than the QMC does.
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Abstract. Recently, optimization has become an integral part of the aerodynamic
design process chain. However, because of uncertainties with respect to the flight
conditions and geometry uncertainties, a design optimized by a traditional design
optimization method seeking only optimality may not achieve its expected perform-
ance. Robust optimization deals with optimal designs, which are robust with re-
spect to small (or even large) perturbations of the optimization setpoint conditions.
That means, the optimal designs computed should still be good designs, even if the
input parameters for the optimization problem formulation are changed by a non-
negligible amount. Thus even more experimental or numerical effort can be saved.
In this paper, we aim at an improvement of existing simulation and optimization
technology, developed in the German collaborative effort MEGADESIGN1, so that
numerical uncertainties are identified, quantized and included in the overall optim-
ization procedure, thus making robust design in this sense possible. We introduce
two robust formulations of the aerodynamic optimization problem which we numer-
ically compare in a 2d testcase under uncertain flight conditions. Beside the scalar
valued uncertainties we consider the shape itself as an uncertainty source and apply
a Karhunen-Loève expansion to approximate the infinite-dimensional probability
space. To overcome the curse of dimensionality an adaptively refined sparse grid is
used in order to compute statistics of the solution.
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1 Introduction

Uncertainties pose problems for the reliability of numerical computations and their
results in all technical contexts one can think of. They have the potential to render
worthless even highly sophisticated numerical approaches, since their conclusions
do not realize in practice due to unavoidable variations in problem data. The proper
treatment of these uncertainties within a numerical context is a very important chal-
lenge. This paper is devoted to the enhancement of highly efficient optimal design
techniques developed in the framework of MEGADESIGN by a robustness com-
ponent, which tries to make the optimal design generated a still good design, if the
setting of a specific design point is varied.

2 Aleatory Uncertainties in Aerodynamic Design

Aleatory uncertainties arises because of natural, unpredictable variations of the
boundary conditions. Additional knowledge cannot reduce aleatory uncertainties,
but it may be useful in getting a better characterization of the variability. In order to
formulate the robust design optimization problem, we analyze the boundary condi-
tions and input parameters identifying the uncertainties which cannot be avoided at
all before constructing an aircraft [39].

In the following, we distinguish two types of uncertainties: uncertainties with
respect to the flight conditions and geometrical uncertainties.

The main characteristics of the macroscopic flight conditions are angle of incid-
ence, the velocity (Mach number) of the plane, the density of air and the Reynolds
number. The uncertainty of these parameters mostly results from atmospheric turbu-
lences which can occur during a flight. Gusts causes changes of the velocity in the
range of ±10 m

s . Measurements of the changes in the angle of attack and the density
are not published so far, so they are assumed to be less than 10% of the setpoint. The
variations of the Reynolds number will only effect the simulation, if the Reynolds
number is in the range of 12− 15 ·106, that means this uncertain parameter has not
to be taken into account in our testcases.

On the other hand, we consider the shape itself as an uncertainty source. The real
shape may vary from the planned shape due to manufacturing tolerances, temporary
factors like icing e.g. or fatigue of material. Since there are so many factors hav-
ing effects on the shape, this uncertainty has to be considered in the optimization
problem in order to produce a design which is robust to small perturbations of the
shape itself. In the literature, there can be found only a few papers on this topic
investigating the influence of variations of the profile (cf. [17], [32]).
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2.1 Mathematical Description of the Uncertainties

Since we want to avoid a parametrization of the uncertainties which would lead
to a reduction of the space of realizations, we choose a stochastic approach in or-
der to include the uncertainties in the optimization problem. Furthermore, this ap-
proach allows to adapt the robust optimization to new information of the uncertain
parameter, e.g. if new measurements are available, so that a general framework of
robust aerodynamic design can be developed.

The proper treatment of the uncertainties within a numerical context is a very im-
portant challenge, since the simulation and also optimization under uncertainties is a
fast growing field of research. Again, we distinguish between the uncertainties with
respect to the flight conditions, the scalar-valued uncertainties, and the geometrical
uncertainties, the function-valued uncertainties.

2.1.1 Scalar-Valued Uncertainties

The scalar-valued uncertainties, e.g. the Mach number, are modeled as real-valued,
continuous random variables

s : Ω →R, (1)

defined on a given probability space (Ω ,Y,P). They are characterized by a given
probability density function

ϕtruncated : R→R+. (2)

We assume (mainly due to lack of statistical data) a truncated normal distribution
of the perturbations ensuring that the realizations lie in between the given bounds.
Furthermore, the mean value of the random variable corresponds with the value of
the deterministic model. These assumptions are widely used in order to describe
uncertainties in CFD (cf. [32]). Nevertheless, the model need to be adapted to meas-
urements, if available.

2.1.2 Function-Valued Uncertainties

The geometrical uncertainties also depend on the geometry itself, so they are
modeled as a Gaussian random field

ψ : Γ ×Ω → R, (3)

defined on a probability space (Ω ,Y,P) and on the shape of the airfoil Γ . In each
point x of the shapeΓ , the uncertainty is described by a normally distributed random
variable ψ(x, ·) : Ω → R. Additionally, the second order statistics, the mean value
and the covariance function, are given to fully describe the random field. According
to the scalar-valued uncertainties, the mean value of the random field ψ is equal to
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0, since we expect no perturbations and the squared exponential covariance function
describes the interaction between the random variables on the shape:

E(ψ (x,ζ )) = ψ0 (x) = 0 ∀x ∈ Γ (4)

Cov(x,y) = b2 · exp
(
−‖x−y‖2

l2

)
∀x,y ∈ Γ (5)

The parameter l determines how quickly the covariance falls off and b controls the
magnitude of the bumps. A squared exponential covariance function is chosen, since
the resulting perturbed geometry is smooth due to the smoothness of the random
field.

Then, a perturbed geometry is given as

v(x,ζ ) = x+ψ (x,ζ ) ·n(x) ∀x ∈ Γ ,ζ ∈Ω (6)

where n is the unit vector in x normal to the profile Γ . As we need to compute
statistics of the flow depending on the uncertainty in our optimization algorithm, we
have to approximate and discretize the probability spaces. In the next chapter, we
will introduce the Karhunen-Loève-Expansion which provides an approximation
of the random field ψ for the numerical evaluation of such statistics and efficient
discretization techniques of the probability space.

2.2 Karhunen-Loève-Expansion

The Karhunen-Loève-Expansion, also known as Proper Orthogonal Decomposition,
represents the random field as a infinite linear combination of orthogonal functions
chosen as the eigenfunctions of the covariance function [23], [31]. The Karhunen-
Loève-Expansion of the Gaussian random field ψ is given as:

ψ (x,ζ ) = ψ0 (x)+
∞

∑
i=1

√
λizi (x)Yi (ζ ) (7)

=
∞

∑
i=1

√
λizi (x)Yi (ζ ) x ∈ Γ ,ζ ∈Ω (8)

where λ1 ≥ λ2 ≥ . . .≥ λi ≥ . . .≥ 0 and zi are the eigenvalues and eigenfunctions of
the covariance function Cov which is symmetric and positive definite by definition.
The deterministic eigenfunctions zi are obtained from the spectral decomposition of
the covariance function via solution of

∫
Γ

Cov(x,y) zi (y)dy = λizi (x) . (9)

Having the eigenpairs, the uncorrelated Gaussian random variables Yi in equation
(8) can be expressed as
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Yi (ζ ) =
1√
λi

∫
Γ
ψ (x,ζ ) zi (x)dx j = 1,2, . . . (10)

with zero mean and unit variance, i.e. E(Yi) = 0 and E(YiYj) = δi j for j = 1,2, . . .
[5]. In the special case of a Gaussian random field, uncorrelated random variables
are independent as well, which is an important property we will need later on for
the sparse grid.

Truncating now the Karhunen-Loève-Expansion after a finite number of terms,
we obtain the approximation of the random field ψ

ψd (x,ζ ) =
d

∑
i=1

√
λizi (x)Yi (ζ ) x ∈ Γ ,ζ ∈Ω . (11)

The corresponding covariance function is given by

Covd (x,y) =
d

∑
i=1

λizi (x)zi (y) . (12)

In [15], it is shown that the eigenfunction basis {zi} is optimal in the sense that the
mean square error resulting from the truncation after the dth term is minimized.

The following approximation error representation is then obtained by Mercer’s
theorem [34]

lim
d→∞

{
sup
Γ

∫
Ω

(ψ−ψd)
2 dP (ζ )

}
= lim

d→∞

{
sup
Γ

(
∞

∑
j=d+1

λ jz
2
j

)}
= 0. (13)

So, ψd may provide a suitable approximation of ψ , if the eigenvalues decay suffi-
ciently fast and d is large enough [5]. If one assumes a Gaussian covariance func-
tion (cf. (5)), the eigenvalues will exponentially decay towards zero. The proof of
this behaviour of the eigenvalues can be found e.g. [11]. This paper also provides
a fast algorithm based on a kernel independent fast multipole method to compute
the Karhunen-Loève approximation. Another approach to solve the large eigenvalue
problem arising from the Karhunen-Loève-Expansion can be found in [25]. They in-
troduce a Krylov subspace method with a sparse matrix approximation using sparse
hierarchical matrix techniques to solve it.

3 Robust Shape Optimization Problem

The usual single setpoint aerodynamic shape optimization problem can be described
in the following rather abstract form
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min
y,p

f (y, p) (14)

s.t. c(y, p) = 0 (15)

h(y, p)≥ 0 (16)

We think of equation (15) as the discretized outer flow equation around, e.g., an
airfoil described by geometry parameter p ∈ R

np . The vector y is the state vec-
tor (velocities, pressure,...) of the flow model (15) and we assume that (15) can
be solved uniquely for y for all reasonable geometries p. The objective in (14)
f : (y, p) �→ f (y, p) ∈ R typically is the drag to be minimized. The restriction (16)
typically denotes lift or pitching moment requirements. To make the discussion here
simpler, we assume a scalar valued restriction, i.e., h(y, p) ∈ R. The generalization
of the discussions below to more than one restriction is straight forward. In con-
trast to previous papers on robust aerodynamic optimization, we treat the angle of
attack as an fixed parameter which is not adjusted to reach the required lift (cf. e.g.
Ref.[29], Ref.[21], Ref.[36] ).

The general deterministic problem formulation (14-16) is influenced by stochastic
perturbations. We assume that there are uncertain disturbances involved in the form
of real-valued random variables s : Ω → R (or random vectors) associated with a
probability measure P with Lebesgue density ϕ : R→ R

+
0 such that the expected

value of s can be written as

E(s) =
∫
Ω

s(ζ )dP(ζ ) =
∫
R

xϕ(x)dx

and the expected value of any function g : R→R is written as

E(g(s)) =
∫
Ω

g(s(ζ ))dP(ζ ) =
∫
R

g(x)ϕ(x)dx

The dependence can arise in all aspects, i.e., a naive stochastic variant might be
rewritten as

min
y,p

f (y, p,s) (17)

s.t. c(y, p,s) = 0 (18)

h(y, p,s)≥ 0 (19)

This formulation still treats the uncertain parameter as an additional fixed para-
meter. The optimal solution should be stable with respect to stochastic variations in
s. The literature can be classified in the following ideal classes: min-max formula-
tion, semi-infinite formulation and chance constraints.
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3.1 Min-Max Formulations

The min-max formulation aims at the worst-case scenario.

min
y,p

max
ζ∈Ω

f (y, p,s(ζ )) (20)

s.t. c(y, p,s(ζ )) = 0 , ∀ζ ∈Ω (21)

h(y, p,s(ζ )) ≥ 0 , ∀ζ ∈Ω (22)

The min-max formulation is obviously independent of the stochastic measure P
and thus needs only the realizations of the random variable s as input. If the probab-
ility density function of the uncertain parameter is not available, this approach could
potentially be an attractive strategy. Otherwise, this formulaion will ignore problem
specific information, if it is at hand and will lead to overly conservative designs. We
do not treat this formulation furthermore in this paper.

3.2 Semi-infinite Formulations

The semi-infinite reformulation aims at optimizing the average objective function
but maintaining the feasibility with respect to the constraints everywhere. Thus, it
aims at an average optimal and always feasible robust solution. The ideal formula-
tion is of the form

min
y,p

∫
Ω

f (y, p,s(ζ ))dP(ζ ) (23)

s.t. c(y, p,s(ζ )) = 0 , ∀ζ ∈Ω (24)

h(y, p,s(ζ )) ≥ 0 , ∀ζ ∈Ω (25)

This definition of robustness can also be found in Ref.[21] and in Ref.[30] . Semi-
infinite optimization problems have been treated directly so far only for rather small
and weakly nonlinear problems, e.g. Ref.[10]. For the numerical treatment of com-
plicated design tasks, one has to approximate the integral in the objective (23). Con-
sidering scalar-valued uncertainties, we assume a truncated normal distribution, that
means in the multivariate case s ∼ 1

const N(ν,C) · 1R, R ⊂ R
d with expected value

vector ν , Covariance C and indicator function 1R(x) =

{
1, if x ∈ R

0, if x /∈ R
.

The integral in (23) can be efficiently evaluated by a Gaussian quadrature for
small stochastic dimensions, where the quadrature points {si}N

i=1 are the roots of a
polynomial belonging to a class of orthogonal polynomials. Due to the exponen-
tial growth of the effort with increasing dimension, the full tensor product Gaussian
quadrature rule should be replaced in the higher dimensional case by Smolyak type
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algorithms which use a recursive contribution of lower-order tensor products to es-
timate the integral We will discuss this method in the next section. Therefore, we
can reformulate problem (23-25) in an approximate fashion in the form of a multiple
set-point problem for the set-points {si}N

i=1:

min
yi ,p

N

∑
i=1

f (yi, p,si)ωi (26)

s.t. c(yi, p,si) = 0 , ∀i ∈ {1, . . . ,N} (27)

h(yi, p,si)≥ 0 , ∀i ∈ {1, . . . ,N}. (28)

where ωi denote the quadrature weights. We will investigate this formulation later
on.

3.3 Chance Constraint Formulations

Chance constraints leave some flexibility with respect to the inequality restrictions
(cf. Ref. [37]) . The inequality restrictions are only required to hold with a certain
probability P0

min
y,p

∫
Ω

f (y, p,s(ζ ))dP(ζ ) (29)

s.t. c(y, p,s(ζ )) = 0 , ∀ζ ∈Ω (30)

P({ζ |h(y, p,s(ζ )) ≥ 0})≥ P0 (31)

So far, chance constraints are used mainly for weakly nonlinear optimization prob-
lems Ref.[22, 20] . In the context of structural optimization (which is typically a
bilinear problem), this formulation is also called reliability-based design optimiza-
tion. For more complex problems, we need again some simplification. In Ref.[38]
this is performed by applying a Taylor series expansion about a nominal set-point
s0 := E(s), which is assumed to be equal to the expected value of the random vector
s. Suppressing further arguments (y, p) for the moment, the Taylor approximation of
2nd order of f in (29) gives

f̂ (s) := f (s0)+
∂ f (s0)

∂ s
(s− s0)+

1
2
(s− s0)


∂ 2 f (s0)

∂ s2 (s− s0)

Integrating this, we observe

E( f )
.
=

∫
Ω

f̂ (s)dP(ζ ) = f (s0)+
1
2

k

∑
i=1

∂ 2 f (s0)

∂ s2
i

Var(si)
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where Var(si) is the variance of the ith component of s. Obviously, a first order
Taylor series approximation would not give any influence of the stochastic inform-
ation, which is the reason, why we use an approximation of second order for the
objective. In order to deal with the probabilistic chance constraint (31), we also
have to approximate its probability distribution. Since the uncertainties are all as-
sumed to be Gaussian and truncated Gaussian, respectively, we use a first order
Taylor approximation of the inequality constraint, since we know that this is again
Gaussian and truncated Gaussian distributed (unlike the second order approxima-
tion) (cp. Ref.[17] )

ĥ(s) := h(s0)+
∂h(s0)

∂ s
(s− s0) ∼ 1

const
N
(
h(s0),σ2

h

) ·1Rh

where we assume for simplicity that h is scalar valued.
Now we can put the Taylor approximations together and achieve a deterministic

optimization problem. Since the flow model (30) depends also on the uncertainties
s, we should be aware that the derivatives with respect to s mean total derivatives.
We express this by reducing the problem in writing y = y(p,s) via (30).

min
p

f (y(p,s0),s0)+
1
2

k

∑
i=1

∂ 2 f (y(p,s0),s0)

∂ s2
i

Var(si) (32)

s.t. P({ζ | ĥ(y(p,s(ζ )),s(ζ )) ≥ 0})≥ P0 (33)

For the computation of the total derivatives we can introduce a sensitivity equation
as in Ref.[43] .

As an example, again we look at the case that s is scalar valued, i.e.

s ∼ 1
consts

N(ν,σ2) · 1[l,u], where consts =
u∫
l

1√
2πσ2 exp

(
− (x−ν)2

2σ2

)
dx is the scaling

factor to normalize the density function. Hence, we obtain the distribution of the
probabilistic constraint

ĥ(s) ∼ 1
constĥ

N

(
h(s0),(

∂h(s0)

∂ s
)2σ2

)
·1[ ∂h(s0)

∂ s l+h(s0),
∂h(s0)
∂ s u+h(s0)

]

where constĥ =
1√

2π( ∂h(s0)
∂ s )2σ2

∂h(s0)
∂ s u+h(s0)∫

∂h(s0)
∂ s l+h(s0)

exp

(
− (x−h(s0))2

2( ∂h(s0)
∂ s )2σ2

)
dx.

Finally, the following equivalent representations of the chance constraint

P({ζ | ĥ(y(p,s(ζ )),s(ζ )) ≥ 0})≥ P0

⇐⇒ P({ζ | ĥ(y(p,s(ζ )),s(ζ )) ≤ 0})≤ 1−P0
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lead to the deterministic optimization problem

min
p

f (y(p,s0),s0)+
1
2
∂ 2 f (y(p,s0),s0)

∂ s2 Var(s) (34)

s.t.
1

constĥ

√
2π( ∂h(s0)

∂ s )2σ2

0∫

∂h(s0)
∂ s l+h(s0)

exp

(
− (x− h(s0))2

2( ∂h(s0)
∂ s )2σ2

)
dx ≤ 1−P0

(35)

The propagation of the input data uncertainties is estimated by the combination of
a Second Order Second Moment (SOSM) method and first order Taylor series ap-
proximation presented for example in Ref.[38]. Since there is no closed form solu-
tion for the integral, the chance constraint is evaluated by a numerical quadrature
formula.

Considering geometry uncertainties, a high amount of computational effort
arises due to the high dimensionality of the resulting robust optimization problem.
In the following, we will introduce two techniques in order to reduce the complex-
ity of the problem: a goal oriented choice of the Karhunen-Loève basis reducing the
dimension of the probability space and (adaptive) sparse grid methods in order to
efficiently evaluate the high dimensional integrals.

4 Reduction of the Dimension of the Probability Space Using a
Goal-Oriented Karhunen-Loève Basis

The evaluation of the objective function in the robust optimization problem (23)
requires the computation of the mean, i.e. the computation of the integral of the
random field with respect to its probability measure. Applying the introduced
Karhunen-Loève-Approximation, the objective function can be written as the fol-
lowing d-dimensional integral

E( f (y, p,ψ (x,ζ ))) =
∫
Ω
· · ·

∫
Ω
( f (y, p,ψ (x,Y1(ζ ), . . . ,Yd(ζ )))dγ1 (ζ ) · · ·dγ1 (ζ )

(36)

where dγ1 (ζ ) is the one-dimensional Gaussian measure. So, one term more in the
truncated Karhunen-Loève expansion to increase the approximation accuracy res-
ults in an integral of one-dimension higher. In order to reduce the computational
effort, the orthogonal basis functions {zi} will be chosen goal-oriented, i.e. the indi-
vidual impact of the eigenvectors on the target functional will be taken into account.
This method is well established in the model reduction methods of dynamic sys-
tems and the adaptive mesh refinement (cf. [1]). The idea is to develop an error
indicator for the individual eigenvectors reflecting the influence on the drag. The in-
troduced error analysis of the Karhunen-Loève-Expansion in section 2.2 only gives
the approximation error of the random field ψ , but not of the function of interest
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f (y, p,ψ). We propose to use sensitivity information to capture the local sensitivit-
ies of the drag with respect to the eigenvectors

ηi :=
d f
dzi

=−λ
 ∂c
∂ zi

+
∂ f
∂ zi

, ∀i = 1, . . . ,d (37)

where λ solves the adjoint equation. The adjoint equation is independent of i, hence
it has to be solved only once and the indicator ηi is numerically cheap to evaluate.
Now, the reduced basis {ẑi} can be automatically selected, the eigenvector zi with a
large value ηi have to be kept in the reduced basis, whereas a small value indicates
that the basis vector can be rejected from the basis.

5 Adaptive Sparse Grid for High-Dimensional Integration

The mean value of the robust optimization problem depending on the current design
vector is required in each iteration of the optimization algorithm. Since we can-
not solve this integral analytically, we have to approximate it in appropriate, effi-
cient way. Several possibilities can be found in the literature, the most common are:
Monte-Carlo simulation, respectively general sampling methods, full tensor grid in-
terpolation and sparse grid interpolation. Their efficiency depends on the dimension
d of the probability space Ωd and on the properties of the integrand f (y, p,ψd).
Each of these methods provides an approximation EN of the mean value E( f ) by
evaluating the function f (y, p,ψd) in N integration points ψ1

d , · · · ,ψN
d and summing

the results f (yi, p,ψ i
d) multiplied with the weights ω1, · · · ,ωN up

EN =
N

∑
i=1

ωi · f (yi, p,ψ i
d) (38)

The sampling methods randomly select realizations of the uncertainties in the given
probability space and take some kind of average of the function values at these
points which converges to the exact value of the integral due to the law of large
numbers. The advantage of this approach consists of the straightforward implement-
ation, the algorithm only needs the underlying integration space as input and func-
tion evaluations at the randomly selected points. But on the other hand, the expected
convergence rate O(N− 1

2 ) requires a large number of function evaluations to ensure
a given error tolerance. In our application, one function evaluation is very expensive
since the solution of the flow equation, Euler or Navier Stokes equation, is needed.
So, the sampling methods, even the improved methods which use additional inform-
ation in order to select the realizations, are not an appropriate choice in our case to
compute the mean value in our optimization problem.

Another possibility obtaining the objective value is the full tensor grid quadrat-
ure derived from the full tensor product of the one-dimensional interpolation for-
mulas. Constructing the multi-dimensional interpolation, we first consider the fol-
lowing one-dimensional interpolation formula in order to approximate a function
h : [−1,1]→R:
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Qi(h) =
N

∑
j=1

h(Y i
j ) ·ai

j (39)

with the set of interpolation points Xi = {Y i
j |Y i

j ∈ [−1,1], j = 1,2, . . . ,mi} , mi is the
number of elements of the set Xi and ai

j ≡ a j(Y i
j ) are the interpolation functions.

(Qi1 ⊗·· ·⊗Qid )( f ) =
m1

∑
j1=1

· · ·
md

∑
jd=1

f (Y i1
j1
, . . . ,Y id

jd
) · (ai1

j1
⊗·· ·⊗ aid

jd
) (40)

This generalization of the one dimensional formula to the full tensor interpolation
(40) provides an approximation of f : [−1,1]d →R by evaluating the function f on
the regular mesh Xi1 ×·· ·×Xid . Considering the difference formulas defined by

Δ i := Qi+1 −Qi (41)

Q0 := 0 (42)

(40) can be reformulated as

(Qi1 ⊗·· ·⊗Qid )( f ) = ∑
i1,...,id≤k

(
Δ i1 ⊗·· ·⊗Δ id

)
( f ) (43)

The mean value is then derived from the following equation:

EN( f ) =
m1

∑
j1=1

· · ·
md

∑
jd=1

f (Y i1
j1
, . . . ,Y id

jd
) ·

∫
[−1,1]d

(ai1
j1
⊗·· ·⊗ aid

jd
)(Y)dY (44)

The approximation error for functions with bounded derivatives up to order r has
a behaviour of O(N− r

d ) [8]. Thus, due to the exponential growth of the effort with
increasing dimension, this method is not suitable for high stochastic dimensions,
which is the case in our application. To circumvent this curse of dimensionality,
we apply a sparse grid method in order to preserve the accuracy of the tensor grid
quadrature, but avoiding the exponential growth of interpolation nodes.

The underlying idea of sparse grids was originally found by the Russian math-
ematician Smolyak [40]. The sparse interpolant is given as [33]:

S(k,d)( f ) = ∑
k−d+1≤|i|≤k

(−1)k−|i| ·
(

d− 1
k−|i|

)
· (Qi1 ⊗·· ·⊗Qid )( f ) (45)

with k ≥ d, i ∈ N
d multi-index and |i| = ∑d

j=1 i j. The index i j indicates the order
in the jth dimension, so the algorithm combines only those one-dimensional quad-
rature formulas whose indices fullfill the constraint that the total sum across all
dimensions is greater or equal than k − 1+ d and smaller or equal than k. Using
incremental interpolation formulas Δ i, (45) can be transformed to
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S (k,d)( f ) = ∑
|i|≤k

(
Δ i1 ⊗·· ·⊗Δ id

)
( f )

= S (k− 1,d)( f )+ ∑
|i|=k

(
Δ i1 ⊗·· ·⊗Δ id

)
( f )

with Δ i = Qi+1 −Qi, Q0 ≡ 0 and S(d− 1,d)≡ 0. The collection of all the interpol-
ation points

H (k,d) =
⋃

k−d+1≤|i|≤k

(
Xi1 ×·· ·×Xid

)
(46)

is called a sparse grid of level k.
The derivation of the sparse grid suggests the use of nested interpolation func-

tions due to the recursive construction. In the literature, the most popular choice
of the collocation points is the Clenshaw-Curtis grid at the non-equidistant ex-
trema of the Chebyshev polynomials and the underlying interpolation formula is
the Chebyshev-Gauss-Lobatto formula.

5.1 Adaptive Sparse Grid

Since the function evaluations are very expensive in our application, we introduce in
this section an adaptive sparse grid strategy in order to further reduce the number of
grid points but conserving the approximation quality. The presented isotropic Smo-
lyak algorithm is effective for problems whose input data uniformly depend on all
dimensions. But the convergence rate deteriorates for highly anisotropic problems,
such as those appearing when the input random variables come from a Karhunen-
Loève-Expansion as in our application [9]. The reduction of computational effort
can be achieved by using spatially adaptive or dimension-adaptive refinement [33],
[14]. In order to develop adaptive schemes during the cubature process, the inter-
polation error can be used as an adaptivity indicator. Therefore, nested cubature
formulas are useful since they allow the error evaluation based on the difference of
two subsequent formulas. Due to the fact that in our application the mean value is
computed by the sparse grid interpolation, this target value is also used as an error
indicator for the adaptivity. The dimension-adaptive quadrature method tries to find
important dimensions and adaptively refines in this with respect to given error es-
timators. This leads to an approach which is based on generalized sparse grid index
sets [14]. This strategy allows to employ every nested interpolation formulas, so it
can be chosen problem dependent, e.g. in our application depending on the distribu-
tion of the random variables. On the other hand, the locally refined sparse grid gives
more flexibility in the adaptive procedure, but requires equidistant support nodes. In
the following, we will discuss both strategies and compare the resulting sparse grids
in the numerical results later on.
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5.1.1 Locally Refined Adaptive Sparse Grid

Below, we introduce a locally adaptive hierarchical sparse grid approach using
piecewise multilinear hierarchical basis functions following closely [27], [33]. Due
to the straightforward implementation of the refinement, we choose the linear hat
functions as interpolation basis functions which are also well established in the ad-
aptive mesh refinement. The support nodes of the one-dimensional basis function
are given by

Y i
j =

{
0 for j = 1,mi = 1

2 · j−1
mi−1 − 1 for j = 1, . . . ,mi,mi > 1

(47)

with

mi =

{
1, for i = 1

2i−1 + 1 for i > 1
(48)

Hence, the interpolation formulas are defined by

ai
j (Y ) =

{
1− 1

2 (mi − 1) ·
∣∣∣Y −Y i

j

∣∣∣ , if
∣∣∣Y −Y i

j

∣∣∣< 2
mi−1

0, otherwise.
(49)

The discussed univariate nodal basis functions (49) are now transformed into mul-
tivariate hierarchical basis functions which are fundamental for the adaptive sparse
grid. Considering once again the difference formula

Δ i(h) = Qi+1(h)−Qi(h) (50)

with

Qi(h) = ∑
Y i

j∈Gi

ai
j ·h

(
Y i

j

)
(51)

we obtain due to the fact that the support nodes are nested (e.g. Gi ⊂ Gi+1) and
accordingly Qi−1 (h) = Qi

(
Qi−1 (h)

)
the following representation of (50)

Δ i(h) = ∑
Y i

j∈Gi

ai
j ·h

(
Y i

j

)− ∑
Yi

j∈Gi

ai
j ·Qi−1 (h)

(
Y i

j

)
(52)

= ∑
Y i

j∈Gi

ai
j ·
(
h
(
Y i

j

)−Qi−1 (h)
(
Y i

j

))
(53)

= ∑
Y i

j∈Gi
Δ

ai
j ·
(
h(Y i

j )−Qi−1 (h)
(
Y i

j

))
(54)

since h(Y i
j)−Qi−1(h)(Y i

j ) = 0, ∀Y i
j ∈ Gi−1. Renumbering the elements in Gi

Δ =

Gi \Gi−1, with mΔ
i = #Gi

Δ = mi −mi−1, leads to
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Δ i(h) =
mΔ

i

∑
j=1

ai
j ·
(
h(Y i

j )−Qi−1(h)(Y i
j )
)
. (55)

We define wi
j = h(Y i

j)−Qi−1 (h)
(

Y i
j

)
as the 1D hierarchical surplus [6] which is

the difference between the current and previous interpolation level. If the 1D Grid of
level k interpolates the function h exactly, wk

j is equal to zero for all j. So, this value
can be used as an error indicator for each inserted grid point, since the hierarchical
surpluses tend to zero as the level k tends to infinity (for continuous functions).
Considering now again the multi-dimensional case, we obtain the sparse grid (46)
in hierarchical form applying the derived formula of Δ i.

S (k,d) ( f ) = S (k− 1,d)( f )+ ∑
|i|=k

(
Δ i1 ⊗·· ·⊗Δ id

)
( f ) (56)

= S (k− 1,d)( f )+ΔS (k,d) ( f ) (57)

with

ΔS (k,d)( f ) = ∑
|i|=k

∑
j∈Bi

(
ai1

j1
⊗·· ·⊗ aid

jd

)
︸ ︷︷ ︸

ai
j

·

·
(

f
(

Y i1
j1
, . . . ,Y id

jd

)
− S (k− 1,d)( f )

(
Y i1

j1
, . . . ,Y id

jd

))
︸ ︷︷ ︸

wi
j

(58)

where Bi := {j ∈ N
N : Y il

jl
∈ Gik

Δ for jl = 1, . . . ,mil
Δ ,k = 1, . . . ,d} is a new set of

multi-indices consistent with the multivariate hierarchical basis {ai
j : j ∈ Bl, l ≤ i}.

Thus, the objective function in our application can be approximated by the fol-
lowing rather abstract expression:

f (p,ψd(ζ )) = ∑
|i|≤k

∑
j∈Bi

wi
j (p) ·ai

j (ζ ) (59)

The mean value of the objective function can be then computed as:

EN ( f (p)) = ∑
|i|≤k

∑
j∈Bi

wi
j (p) ·

∫
Ω

ai
j (ψd (ζ ))dP (ζ ) (60)

where
∫ 1

−1
ai

j (Y ))dY =

⎧⎪⎨
⎪⎩

1 · l, if i = 1,
1
2 · l, if i = 2,

21−i · l, otherwise.

(61)

where l denotes the length of the given 1D interval, that means in our example l = 2.
Instead of using the hierarchical surplus wi

j as an error indicator for the adaptivity
(cf. [27], [33]), we suggest to adapt the grid checking the following expression:
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w̃i
j := wi

j ·
∫
Ω

ai
j (ψd (ζ ))dP (ζ ) (62)

Since it is not necessary to exactly interpolate the drag depending on the uncertainty
in the optimization loop in our application, the introduced adaptivity indicator w̃i

j

only measures the difference between the value of the mean inserting a new point Y i
j

of the current level of interpolation and the corresponding value of the mean at the
previous interpolation level. The resulting algorithm in order to construct the sparse
grid which is then used for the optimization slightly differs from [27], [33] due to
the modification in the adaptivity indicator.

5.1.2 Dimension Adaptive Sparse Grid

The main advantage of the dimension adaptive refinement strategy is the fact that
one can use problem dependent quadrature formulas in order to construct the adapt-
ive sparse grid. In our application, the objective function, the drag, is multiplied by
the Gaussian density function, so that Gaussian Hermite polynomials are optimal
with respect to the weighting function.

First, a generalization of sparse grids will be introduced which allows to weight
the dimensions according to their importance on the target functional. The idea of
generalized sparse grids and especially dimension adaptive sparse grid can be found
in [14], [12], [7] and [26]. The original sparse grid of order k combines all the
incremental functions which sum up to order k, that means only those indices are
considered which are contained in the unit simplex |i| ≤ k. [14] and [13] suggest to
allow a more general index set which can be then adaptively chosen with respect to
the importance of each dimension.

An index set I is called admissible if ∀i ∈ I

i− e j ∈ I, ∀1 ≤ j ≤ d,k j > 1,

where e j ∈ R
d is the jth unit vector. The generalized index set I contains for an

index i all indices which have smaller entries in one or more dimensions. Due to
this fact, the incremental sparse grid formula (46) is still well defined for the new
index sets and is given as

S (k,d) ( f ) =∑
i∈I

(
Δ i1 ⊗·· ·⊗Δ id

)
( f ) . (63)

The generalized definition of sparse grids includes the original sparse grid and the
full tensor grid definition (cf. (46), (43)). Further, equation (63) particularly leaves
more flexibility to the choice of the grids and therefore allows to handle anisotropic
problems which emphasize the following example of an admissible index set in R

2:

I = {
(

1
1

)
,

(
2
1

)
,

(
3
1

)
,

(
4
1

)
,

(
5
1

)
,

(
1
2

)
}.
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This example of an admissible index set i shows the feasibility of an refinement in
only one dimension (here in the first dimension) which is the required feature for
the adaptivity.

If a priori knowledge of the underlying function is available, an admissible in-
dex set with respect to the additional information can be chosen. Since this is not
the case in our application, an algorithm is introduced in the following which auto-
matically computes an admissible index set in a dimension adaptive way (cf. [14],
[13]). Therefor, we start with the coarsest sparse grid, that means I = {(0, . . . ,0)}
and successively add new indices such that

• the new index set remains admissible
• the approximation error is reduced.

For the second point, an error indicator is needed. Taking a look at the difference
formula (63), the term

Δ i =
(
Δ i1 ⊗·· ·⊗Δ id

)
( f ) (64)

indicates the reduction in the approximated integral for each new added index. [14]
suggests to further involve the number of function evaluations to avoid an too early
stopping. Since equation (64) shows good results in our application, we directly use
Δi as an error indicator for the adaptivity.

As mentioned before, the main advantage of the dimension adaptive refinement is
the fact that the quadrature formulas can be chosen problem dependent. Considering
geometry uncertainties in the robust optimization, the Karhunen-Loéve expansion
leads to the following objective function

E( f (y, p,ψ (x,ζ ))) .
=

∫
Ω
· · ·

∫
Ω
( f (y, p,ψd (x,Y1(ζ ), . . . ,Yd(ζ )))dϕ1 (ζ ) · · ·dϕ1 (ζ ) ,

so that the Gauß-Hermite formulas are an appropriate choice for the quadrature. The
one dimensional Hermite polynomials are orthogonal polynomials over (−∞,∞)
with the weight function ω(x) = exp(−x2). The Gauß-Hermite quadrature belongs
to the class of Gaußformulas which are constructed by choosing both the points and
the weights with the goal to exactly integrate as many polynomials as possible. The
Gaußformulas achieve the polynomial exactness of 2n−1 where n is the number of
abscissas of the quadrature rule. In GaußHermite quadrature the integral of the form∫ ∞
−∞ f (x)exp(−x2)dx is approximated by

∫ ∞

−∞
f (x)exp(−x2)dx ≈

m

∑
i=1

ωi f (xi) (65)

where the abscissas xi are zeros of the mth Hermite polynomial and the ωi are the
corresponding weights. The Hermite polynomials are defined as

Hn(x) = (−1)n exp(x2)
dn

dxn exp(−x2) (66)
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and the weights

ωi =
2n−1n!

√
π

n2Hn−1(xi)2 . (67)

The Gauß-Hermite quadrature formulas are weakly nested, that means the rules of
odd order all include the abscissa 0. Since the nesting is a favorable feature con-
structing the sparse grid, this property will be taken into account. For the numerical
results, we will use the Gauß-Hermite quadrature formulas of order 1,3,7,15 to
construct the dimension adaptive sparse grid.

6 One-Shot Aerodynamic Shape Optimization and Its Coupling
to Robust Design

Novel one-shot aerodynamic shape optimization in the form (14-16) have been in-
troduced in [19, 18] . They have the potential of fast convergence in only a small
multiple of cpu-time compared to on flow simulation. These methods are based on
approximate reduced SQP iterations in order to generate a stationary point satisfying
the first order KKT optimality conditions.

In this context, a full SQP-approach reads as

⎡
⎢⎢⎣

Lyy Lyp h
x c
x
Lpy Lpp h
p c
p
hx hp 0 0
cx cp 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝
Δy
Δ p
Δμ
Δλ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
−L 


y

−L 

p

−h
−c

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

yk+1

pk+1

μk+1

λ k+1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

yk

pk

μk

λ k

⎞
⎟⎟⎠+ τ ·

⎛
⎜⎜⎝
Δy
Δ p
Δμ
Δλ

⎞
⎟⎟⎠
(68)

The symbol L denotes the Lagrangian function. We assume that the lift constraint
h is active at the solution, which is the reason that we formulate is rather as an equal-
ity condition in the single setpoint case. The approach (68) is not implementable in
general, because one usually starts out with a flow solver for c(y, p) = 0 and seeks
a modular coupling with an optimization approach, which does not necessitate to
change the whole code structure, as would be the case with formulation (68). A
modular but nevertheless efficient alternative is an approximate reduced SQP ap-
proach as justified in [16] .

⎡
⎢⎢⎣

0 0 0 A

0 B γ c
p
0 γ
 0 0
A cp 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝
Δy
Δ p
Δμ
Δλ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
−L 


y

−L 

p

−h
−c

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

yk+1

pk+1

μk+1

λ k+1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

yk

pk

μk

λ k

⎞
⎟⎟⎠+ τ ·

⎛
⎜⎜⎝
Δy
Δ p
Δμ
Δλ

⎞
⎟⎟⎠ (69)

where
γ = h
p + c
pα , such that A
α =−h
x

The matrix A denotes an appropriate approximation of the system matrix cx, which
is used in the iterative forward solver. An algorithmic version of this modular for-
mulation is given by the following steps
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(1)generate λ k by performing N iterations of an adjoint solver with right hand side
f
y (yk, pk) starting in λ k

(2)generate αk by performing N iterations of an adjoint solver with right hand side
h
y (yk, pk) starting in αk

(3)compute approximate reduced gradients

g = f
p + c
p λ
k+1 , γ = h
p + c
p α

k+1

(4)generate Bk+1 as an approximation of the (consistent) reduced Hessian
(5)solve the QP [

B γ
γ
 0

](
Δ p
μk+1

)
=

(−g
−h

)

(6)update pk+1 = pk +Δ p
(7)compute the corresponding geometry and adjust the computational mesh
(8)generate yk+1 by performing N iterations of the forward state solver starting from

an interpolation of yk at the new mesh.

This highly modular algorithmic approach is not an exact transcription of equation
(69), but is shown in [16] to be asymptotically equivalent and to converge to the
same solution. The overall algorithmic effort for this algorithm is typically in the
range of factor 7 to 10 compared to a forward stationary simulation.

Now we generalize this algorithmic framework to the semi-infinite problem for-
mulation (23-25). Numerical approaches to this problem class have already been
proposed in [2, 3, 4].

For the sake of simplicity, we restricted the formulation to a problem with two
set-points coupled via the objective, which is a weighted sum of all set-point object-
ives (weights: ω1,ω2), and via the free optimization variables p, which are the same
for all set-points. The generalization to more setpoints (i.e., the adaptive sparse grid
points below) is then obvious. The lift constraint is formulated for the smallest value
smin of all grid points. The corresponding Lagrangian in our example is

L (y1,y2, p,λ1,λ2) =
2

∑
i=1

ωi fi(yi, p,si)+
2

∑
i=1

λ

i ci(yi, p,si)+ μh(ymin, p,smin) (70)

The approximate reduced SQP method above applied to this case can be written in
the following form

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 A

1 0

0 0 0 0 0 A

2

0 0 B γ1 c
1,p c
2,p
0 0 γ1 0 0 0

A1 0 c1,p 0 0 0
0 A2 c2,p 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

Δy1

Δy2

Δ p
Δμ
Δλ1

Δλ2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−L 

y1

−L 

y2

−L 

p

−h
−c1

−c2

⎞
⎟⎟⎟⎟⎟⎟⎠

(71)
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We notice that the linear sub-problems involving matrices A

i are to be solved inde-

pendently, and therefore trivially in parallel. The information from all these parallel
adjoint problems is collected in the reduced gradient

g =
2

∑
i=1

ωi f
p +
2

∑
i=1

c
p λi

Next, the solution of optimization step
[

B γ1

γ
1 0

](
Δ p
μk+1

)
=

(−g
−h

)

is distributed to all approximate linearized forward problems

AiΔyi + ci,pΔ p =−ci ,

which can then again be performed in parallel.

7 Numerical Results

The numerical results include a numerical comparison of the introduced robust for-
mulations considering the optimization of a transonic RAE2822 profile under scalar-
valued uncertainties. Further, the optimal aerodynamic shape under geometrical un-
certainties is computed in a 2d Euler and Navier-Stokes testcase comparing the ad-
aptive refinement strategies of sparse grids. The last section shows the influence of
shape uncertainties on the quantities of interest in the 3d testcase SFB-401.

7.1 Numerical Comparison of the Introduced Robust
Formulations

We investigate the shape optimization of a RAE2822 profile in transonic Euler flow,
by the use of the CFD software FLOWer provided by DLR within a one-shot frame-
work. The block-structured FLOWer code solves the three-dimensional compress-
ible Reynolds-averaged Navier-Stokes equation in integral form and provides dif-
ferent turbulence models. The equations are solved by a finite-volume method with
second order upwind or central space discretization. The discrete equations are in-
tegrated explicitly by multistage Runge-Kutta schemes, using local time stepping
and multigrid acceleration. In our example, the space is discretized by a 133×33
grid, see Fig. 1. For parametrization, the airfoil is decomposed into thickness and
camber distribution. Then, only the camber of the airfoil is parametrized by 21
Hicks-Henne functions and the thickness is not changed during the optimization
process.
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Fig. 1 Grid for the RAE2822 airfoil: the total geometrical plane and zoom around the airfoil

In this section, we consider the Mach number as an uncertain parameter. The
Mach number is assumed to be in the range of [0.7,0.76]. Under the assumption
of truncated normally distributed parameter, we obtain the density function shown
below in the Fig. 2.

At first, we perform numerical comparisons between a single set-point prob-
lem formulation at the setpoint s0 = 0.73Mach with the robust formulations in
sections 3.2 and 3.3. In particular, we compare four formulations: (1) non-robust
optimization at the Mach number 0.73 (fixed Mach number 0.73), (2) semi-infinite
formulation of equations (26-28), (3) chance constraint formulation of equations
(34, 35) and (4) non-robust optimization at the Mach number 0.73 (fixed Mach
number 0.73) but maintaining feasibility over the whole range of perturbations.

The following figures show evaluations of the objective (drag), Fig. 3, in these
cases as well as the constraint (lift), Fig. 4.

We state the following observations: The semi-infinite robust formulation has
a better lift to drag ratio than the chance constraint formulation, in particular in
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Fig. 3 Comparison of drag
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Fig. 4 Comparison of lift constraint

the region above the set-point 0.73, due to the fact that the semi-infinite formula-
tion shows a higher lift over the whole range of variations (cf. Fig. 4) and for the
greater part a better drag performance than the chance constraint (cf. Fig. 3). Com-
paring the robust formulations and the single-set point solution which is feasible
over the whole range of variations, the robust solutions leads to a higher drag at
the nominal point, but we can observe that the semi-infinite formulation will lead
to the best distribution if the Mach number deviates from the set-point. The result-
ing shapes are shown in Fig. 5. Summing the results up, it can be stated that the
semi-infinite formulations leads to a robust solution which gives a little bit higher
drag at the nominal point but a better performance over the whole range of vari-
ations. Since the semi-infinite formulation seems to be favorable in our application,
the following numerical results considering geometrical uncertainties are based on
this formulation.
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Fig. 5 Resulting shapes of the robust optimization

7.2 Numerical Results Considering Geometrical Uncertainties
(Testcase RAE2822)

In this section, we present the numerical results of robust optimization under shape
uncertainties of a RAE2822 profile in Euler and Navier-Stokes flow. Since the robust
optimization problem is solved within a one-shot framework, we use the flow solver
TAU provided by DLR which allows the computation of gradients by the adjoint
approach in the Euler and Navier-Stokes case. The TAU Code is a CFD software
package for the prediction of viscous and inviscid flows about complex geometries
from the low subsonic to the hypersonic flow regime employing hybrid unstructured
grids. In the Euler case, the profile is described by 129 surface grid points and in the
Navier-Stokes case, by 192 surface grid points. Again, the airfoil is parametrized
by 21 Hicks-Henne functions. The geometry uncertainties are characterized by a
Gaussian random field and the following second order statistics

E(ψ (x,ζ )) = 0 ∀x ∈ Γ (72)

Cov(x,y) = (0.005)2 · exp
(
−‖x−y‖2

(0.1)2

)
∀x,y ∈ Γ . (73)

One realization of the random field and the resulting perturbed geometry is shown
in Fig. 6 and Fig. 7. Representing the random field for the numerical treatment
ψ in a finite number of independent random variables using the Karhunen-Loève-
Expansion, one has to solve the eigenvalue problem (9). In our two-dimensional
testcase, the discretization of the profile leads to a matrix of size (129× 129) and
(192× 192) in the Navier-Stokes case, so the eigenvalues and eigenvectors can be
computed by common methods. The distribution of the eigenvalues of the given ran-
dom field (72-73) is shown in the next Fig. 8. As stated before, the eigenvalues ex-
ponentially converge towards 0. For the first numerical results, we have considered
only the first four eigenvalues and eigenvectors to represent the random field ψ of
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Fig. 6 One realization of the random field ψ: perturbations on the upper side of the profile
(above) and on the lower side (below)

Fig. 7 Resulting perturbed geometry compared with the original shape (dashed line)

perturbations. The corresponding eigenvectors are shown in Fig. 9 Using the trun-
cated Karhunen-Loève representation, the mean value of the drag is then computed
by

E( f (y, p,ψ4 (x,ω))) =

∫
Ω

∫
Ω

∫
Ω

∫
Ω
( f (y, p,

4

∑
i=1

√
λizi (x)Yi (ζ ))dγ1 (ζ ) · · ·dγ1 (ζ )

(74)

The random variables Yi are uncorrelated and therefore independent, so one has
to approximate a four-dimensional integral in the optimization problem. To further
reduce the computational effort, we investigate the influence of the individual eigen-
vectors in order to reject those eigenvectors from the reduced basis which have no
impact on the target functional. Since the following results are problem dependent,
we will now distinguish the Euler and Navier-Stokes case.
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Fig. 9 First four eigenvectors of the given random field ψ

7.2.1 Euler Flow

As Fig. 10 shows, the third eigenvector has no impact on the objective function,
hence it can be rejected from the Karhunen-Loève basis and the dimension of the
integral is reduced. This behaviour is also reflected by the introduced indicator.
Consequently, the mean value is given by

E

(
f (y, p,ψreduced

4 (x,ζ ))
)
=

=
∫
Ω

∫
Ω

∫
Ω
( f (y, p,

4

∑
i=1
i �=3

√
λizi (x)Yi (ζ ))dγ1 (ζ )dγ1 (ζ )dγ1 (ζ )

(75)
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Fig. 10 Drag performance of the first four eigenvectors on the target functional

If one approximate the expected value (75) using a full tensor grid interpolation
(40), 729 grid points will be needed to reach the error tolerance of 3 · 10−4. The
resulting full grid is shown in Fig. 11. Since we want to compare the efficiency
of the different introduced methods, we have chosen multilinear hierarchical basis
function as ansatzfunctions for the sparse and full tensor grid. The sparse grid
method can reduce the computational effort by a factor of 10 maintaining the same
approximation quality. The corresponding grid is depicted in Fig. 12. As Fig. 12

Fig. 11 Full tensor grid with 729 grid points
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Fig. 12 Sparse grid with 69 grid points and locally refined sparse grid with 52 grid points

shows, the number of grid points can again be reduced from 69 grid points to 52
grid points, i.e. a reduction of 17 flow simulations in each iteration is reached us-
ing a local refinement strategy. Since the optimization requires the evaluation of the
mean value in each iteration, this reduction by factor 15 compared with the full grid
takes place in each step of the optimization algorithm and hence significantly speed
up the whole algorithm. The construction of the adaptive sparse grid although needs
some additional function evaluations in order to compute the adaptivity indicator,
but this amount of computational effort occurs outside the optimization loop, i.e.
these costs are negligible.

Beside the local refinement strategy, a dimension adaptive sparse grid was in-
troduced in section 5.1. The main advantage of this approach lies in the possibility
to choose the underlying quadrature formulas problem dependent. As discussed be-
fore, Gauß-Hermite formulas are used. Due to the higher accuracy of Gauß-Hermite

Fig. 13 Full tensor grid with 343 grid points
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Fig. 14 Sparse grid with 37 grid points and dimension adaptive sparse grid with 21 grid
points

quadrature formulas, an error tolerance of 10−5 is required. An usual sparse grid
can reduce the number of grid points from 343 to 37, again almost a factor of
10. The dimension adaptive strategy results in a grid with 21 points (cf. Fig. 14).
The comparison of the two refinement strategies shows that the use of problem
dependent quadrature formulas can significantly reduce the size of the grid and in-
crease the approximation quality at the same time. Hence, the objective function in
the semi-infinite formulation is approximated by the dimension adaptive grid with
21 grid points. the next two Fig. 15, 16 compare the results of the robust optimization
and of the single setpoint optimization, i.e. without considering any uncertainties in
the optimization.
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Fig. 15 Drag performance of the 21 perturbed geometries
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Fig. 16 Lift performance of the 21 perturbed geometries

The drag and lift performance is plotted against the 21 perturbed geometries and
the dashed line in Fig. 15 indicates the mean value of the drag. The robust optim-
ization improves the mean value of the target functional and also leads at the same
time to a better lift performance over the whole range of perturbations, whereas the
single setpoint optimization is infeasible in more than the half of the considered
grid points. Summing it all up, it can be said that the robust optimization leads to a
better lift to drag ratio than the single setpoint optimization and the resulting profile
is more robust against small perturbations of the shape itself. Last, we will compare
the different resulting shape in Fig. 17.
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Fig. 17 Comparison of the optimized shapes
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Although we have assumed only small perturbations of the shape itself (cf.
Fig. 7), the difference between the robust shape and the single setpoint is well
recognizable.

7.2.2 Navier-Stokes Flow

As in the Euler case, we investigate the influence of the individual eigenvector of
the Karhunen-Loève expansion on the target functional depicted in Fig. 18 Since
the third eigenvector has no impact on the target functional, the mean value is ap-
proximated using the first, second and fourth basis vector (cf. (75)). If the same
error tolerance 3 · 10−4 as in the previous testcase is required, a full grid of 4913
grid points based on multilinear ansatzfunctions has to be used in order to compute
the objective function. A reduction factor of 28 can be achieved by a sparse grid
approach which is further improved by a local refinement strategy. The resulting
adaptive grid consists of 99 grid points.

Since the computational effort in the Navier-Stokes case is much higher than in
the Euler testcase, the number of grid points need to be further reduced in order to
make a robust optimization possible. The use of Gauß-Hermite quadrature formulas
results in the same full grid and sparse grid shown in Fig. 13 and Fig. 14 as in
the Euler testcase fullfilling the error tolerance 3 · 10−4. The dimension adaptive
approach leads to the following grid 21.
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Fig. 18 Drag performance of the first four eigenvectors on the target functional
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Fig. 19 Full tensor grid with 4913 grid points

Fig. 20 Sparse grid with 177 grid points and locally refined sparse grid with 99 grid points

Fig. 21 Dimension adaptive sparse grid with 15 grid points (Navier-Stokes flow)
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Fig. 22 Dimension adaptive sparse grid with 17 grid points (Navier-Stokes flow)

The linearity of the drag depending on the first eigenvector (cf. 18) is recognized
by the dimension adaptive algorithm, so that this dimension is not further refined.
Since the linear behaviour might change during the optimization, we add two points
ensuring that the first eigenvector is taken into account during the optimization, see
Fig. 22. Fig. 23 and 24 illustrate the drag and lift performance of the 17 perturbed
geometries of the single setpoint and robust optimization.

The mean value of the drag in the robust case is a little bit higher than the mean
value of the single setpoint optimization (5 drag counts) which can be attributed
to the lift constraints. The robust optimization is feasible over the whole range of
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Fig. 23 Drag performance of the 17 perturbed geometries (Navier-Stokes)
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Fig. 24 Lift performance of the 17 perturbed geometries (Navier-Stokes)

perturbations as required, whereas the single setpoint optimization cannot reach the
target lift in more than 60 % of the realizations. Hence, we can state that the semi-
infinite optimizations leads to a better lift to drag ratio as in the Euler case. The
resulting shapes are depicted in Fig. 25. The difference between the robust shape
and the single setpoint optimized shape is smaller than in the Euler case, indicating
that the profile is more sensitive to changes of the shape.
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Fig. 25 Comparison of the optimized shapes (Navier-Stokes)
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7.3 Numerical Study of the Influence of Geometrical
Uncertainties (Testcase SFB-401)

The influence of geometrical uncertainties on flow parameters is investigated con-
sidering the 3d testcase SFB-401 (Navier-Stokes flow). A detailed overview and in-
troduction to uncertainty quantification methods can be found in [42], [35], [24]. We
will concentrate in the following on a Polynomial Chaos approach which expands
the solution nonlinearly depending on the random variable s or random vector re-
spectively, in a series of orthogonal polynomials with respect to the distribution of
the random input vector

f (y, p,s(ζ )) =
∞

∑
i=1

αi(y, p) ·Φi (s(ζ )) (76)

with Φi orthogonal polynomials, αi(y, p) deterministic coefficient functions. For a
detailed discussion of the method, we refer to [41]. The basic idea of Polynomial
Chaos representing the stochastic output of a differential equation with random input
data is to reformulate the SDE replacing the solution and the right hand side of the
PDE by a Polynomial Chaos expansion. Given a stochastic differential equation of
the form

L (x, t,ζ ;u) = g(x, t,ζ ), x ∈ G, t ∈ [0,T ],ζ ∈Ω (77)

where u = u(x, t,ζ ) is the solution and g(x, t,ζ ) is the right hand side. The operator
L can be nonlinear and appropriate initial and boundary conditions are assumed.
Replacing pointwise the solution u = u(x, t,ζ ) of equation (77) by the Polynomial
Chaos expansion leads to

u(x, t,ζ ) .
=

M

∑
k=1

uk(x, t)Φk(s(ζ )) (78)

where uk(x, t) are the deterministic Polynomial Chaos coefficients which need to be
determined. Furthermore, the right hand side g(x, t,ζ ) will be also expanded by a
Polynomial Chaos expansion

g(x, t,ζ ) =
M

∑
k=1

gk(x, t)Φk(s(ζ )) (79)

and the deterministic coefficients are given by

gk(x, t) =
< g(x, t, ·)Φk >

<Φ2
k >

. (80)

In the literature, two different classes of methods determining the unknown coeffi-
cients uk(x, t) are proposed: non-intrusive and intrusive Polynomial Chaos. As the
intrusive methods require a modification of the existing code solving the determin-
istic PDE (if the Operator L is nonlinear), this drawback of the method force us
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Fig. 26 Grid for the SFB-401 testcase: cut of the grid at y=0.5 and surface of the wing

to consider non-intrusive Polynomial Chaos methods which allow to use the flow
solver as a black-box. The unknown coefficients are given by

uk(x, t) =
< u(x, t, ·)Φk >

<Φ2
k >

(81)

=
1

<Φ2
k >

∫
Rd

u(x, t,ν)Φk(ν) fX (ν)dν, x ∈ G, t ∈ [0,T ], (82)

k = 1, . . . ,M.

whereas the integral of equation (82) is approximated by a sparse grid approach.
In the 3d testcase, the space is discretized by 2506637 grid points, where

the surface is described by 80903 points. The grid generated with Centaur con-
sists of 1636589 tetraeders, 4363281 prisms and 170706 surfacetriangles, 5427
surfacequadrilaterals, see Fig. 26. The geometrical uncertainties are assumed to oc-
cur on the upper side of the wing, the perturbed region is depicted in Fig. 27. The
perturbations are modeled as a Gaussian random field with the following second
order statistics

Fig. 27 Perturbed region of the SFB-401 profile
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Fig. 28 Projection in 2d of the SFB-401 profile

E(ψ (x,ζ )) = 0 ∀x ∈ Γ (83)

Cov(x,y) = (0.0016)2 · exp
(
−‖x−y‖2

(0.06)2

)
∀x,y ∈ Γ . (84)

In order to take the curvature of the wing into account computing the norm in (84),
the selected area is transformed into 2d approximating the distance by a polygon
path on the surface. The projection is depicted in Fig. 28 Due to the problem size,
an iterative eigensolver BLOPEX (cf. [28]) is used in order to solve the eigenvalue
problem arising from the Karhunen-Loève expansion. The resulting eigenvalue dis-
tribution of the first 50 eigenvalues is shown in Fig. 29.

We consider the first 15 eigenvalues and eigenvectors to represent the random
field, as an example the first, 8th and 15th eigenvectors and resulting perturbed
shapes are depicted in Fig. 30.

In order to approximate statistics of the flow solution depending on the con-
sidered perturbations, the drag, the lift and the pressure coefficient cp are expanded
into the first 16 multidimensional Hermite polynomials. In the next two figures (Fig.
31, Fig. 32), the drag and the lift of each perturbed shape and the corresponding
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Fig. 29 Distribution of the first 50 eigenvalues of the given random field ψ
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Fig. 30 First, 8th and 15th eigenvectors and resulting perturbed shapes

mean values are illustrated. As Fig. 31 indicates, the geometry uncertainties have a
large impact on the target functional. The standard deviation from the mean value
is equal to 1.65 drag counts, and the mean value is 6.55 drag counts higher than
the nominal, unperturbed geometry. The comparison between the cp distribution of
the unperturbed geometry and the cp distribution of the mean value shows that an

Fig. 31 Drag performance and mean value of the perturbed 3d shapes
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Fig. 32 Lift performance and mean value of the perturbed 3d shapes

additional shock on the upper side of the shape occurs due to the uncertainties in
the geometry (cf. Fig. 34). Fig. 33 emphasizes the influence of the perturbations
showing the variance of the cp distribution.

8 Conclusions

Robust design is an important task to make aerodynamic shape optimization relev-
ant for practical use. It is also highly challenging because the resulting optimiza-

Fig. 33 Variance of the cp distribution
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Fig. 34 Comparison between the cp distribution of the unperturbed geometry (above) and
the cp distribution of the mean value (below)

tion tasks become much more complex than in the usual single set-point case. The
comparison of the two robust optimization formulations shows that the discretized
semi-infinite formulation seems to be of advantage in a numerical test case close to a
real configuration. In the case of the geometric uncertainty, the approximation of the
random field describing the perturbations of the geometry leads to a very high di-
mensional optimization task. The dimension of the probability space was efficiently
reduced by a goal-oriented choice of the Karhunen-Loève basis. Furthermore, ad-
aptive Sparse Grid techniques and one-shot methods have been successfully gener-
alized to the semi-infinite formulation of the shape optimization problem in order to
reduce the amount of computational effort in the resulting robust optimization. The
numerical results show that even small deviations from the planned geometry have
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a significant effect on the drag and lift coefficient, so that geometry uncertainties
have to be taken into account in the aerodynamic design optimization problem to
ensure a robust solution. The introduced methods can significantly reduce the costs
of the robust optimization, so that robust design becomes numerically tractable in
the aerodynamical framework.
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