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Preface

Low temperature superconductivity was discovered by H. Kammerlingh-Onnes in 1911, at
the University of Leiden. He was awarded the 1913 Nobel Prize in Physics, partly for this
discovery, i.e., that at low enough temperatures, certain metals become perfect conductors
of electricity. In 1933, Meissner and Oschenfeld discovered that a superconductor (SC) is
also a perfect diamagnet, i.e., that the magnetic field vanishes in the bulk of a SC. In 1957,
J. Bardeen, L.N. Cooper and J.R. Schrieffer (BCS) advanced the pairing theory of supercon-
ductivity which gives a quantitative account of many properties of low temperature SCs, and
makes a number of predictions of novel phenomena which have been confirmed in a large
variety of experiments. BCS were awarded the Nobel Prize in 1972 for the pairing theory.
Through intensive experimental research, the maximum Tc was raised to 21◦ K in an alloy
NbGeAl. In 1986, G. Bednorz and K.A. Müller discovered “high temperature superconduc-
tivity” in the layered cuprate La2−x Bax CuO4 at 30◦ K, for which they were awarded the 1987
Nobel Prize in Physics. Tc ∼ 93◦ K was discovered by P. Chu in the ternary compound of
YBaCuO soon there after.

The maximum Tc found to date is in a mercury based cuprate, which has Tc = 133◦ K at
ambient pressure (∼160◦ K under pressure). Through concerted experimental and theoretical
efforts, strong evidence has been adduced that the attractive electron pairing interaction in
HTS cuprates is magnetic in origin.

A lot has happened since 1986. The problem of high temperature superconductivity, and
more generally that of metallic strongly correlated systems, remains a major open problem in
condensed matter physics, and it is the focus of intensive research. As the reader will see
from the many chapters to follow, the authors are meeting these challenges. There have been
incredible advances in materials, in sample quality and in single crystals, in hole and electron
doping, and in the development of sister compounds with lower Tc’s that allow access to the
normal state with available high magnetic fields. Probes for structure and dynamics such as
scanning-tunneling probe spectroscopy, angle resolved photoemission, and neutron scattering
have greatly advanced. High precision resonance and thermodynamic methods, low energy
optical probes, and high pressures have likewise been brought to bear on the problems. The
authors’ statement in the introductory section of Chapter 3 articulates a broad central theme
of this treatise: “This revolution..” (in this case in reference to ARPES) “..and its scientific
impact result from dramatic advances in four essential components: instrumental resolution
and efficiency, sample manipulation, high quality samples and well-matched scientific issues.”
On the theoretical front, the deceptively simple problem of a “doped Mott Insulator,” when
applied to the cuprates, turns out to be only the starting point of what rapidly becomes a huge
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and complex problem. To go beyond BCS, new phenomena need new theories: not only high
Tc, but pairing, interactions, symmetry, pseudogaps, inhomogeneity and stripes, the proximity
of magnetism and superconductivity, sensitivity to impurities, and non-Fermi liquid normal
state properties must all be addressed.

We have selected the title “Handbook of High Temperature Superconductivity” to
describe this treatise since many of the articles go into considerable depth in both experimental
and theoretical methodologies.

The treatise begins in Chapter 1 with Müller’s review of hole-doped cuprates where he
argues that the dynamical coexistence of bipolarons and fermions are essential features of
both the normal and superconducting states. In Chapter 2 Kirtley and Tafuri briefly review the
information obtained from tunneling into conventional superconductors and describe why the
situation is more complicated and interesting in the cuprates. They then describe experimental
methods for making tunneling contacts, the evidence for and implications of d-wave symme-
try, the superconducting gap, the pseudogap, quasiparticle interactions, and other aspects of
high temperature superconductors. In Chapter 3, the technique of angle resolved photoemis-
sion spectroscopy (ARPES) is described in some detail by Zhou, Cuk, Devereaux, Nagaosa,
and Shen, and the impact of ARPES on our understanding of the electronic structure, such as
Fermi surface, gap anisotropy and d-wave character, and pseudogap behavior is reviewed. Of
special importance is their presentation of the latest results on the electron-phonon interaction
in the cuprates. In Chapter 4 Bonn and Hardy review microwave studies of high temper-
ature superconductors, where considerable background and detail is given to the methods
employed. Results on the penetration depth leading to the “superfluid stiffness” parameter,
the surface resistance that yields the microwave conductivity, and a discussion of the role of
superconducting fluctuations are presented. In Chapter 5 Slichter reviews the area of magnetic
resonance (predominantly NMR, but also briefly ESR) in high temperature superconductors.
The spin lattice relaxation time, transverse relaxation time, and the Knight shift are discussed
for both YBCO, LSCO in terms of information gained on the electron spin susceptibility, and
on the pairing state. In Sr doped and undoped LCO, analysis of line widths and shapes yield
information about local (spatial) spin modulations, and spin glass behavior.

Neutron scattering in the cuprates is presented in Chapter 6 by Tranquada in the context
of magnetic excitations and antiferromagnetic correlations for both hole and (briefly) electron
doped systems. The evolution of the spin dynamics with doping, from the antiferromagnetism
of the parent insulators through the universal magnetic excitation spectrum found near optimal
doping, is discussed. The nature of stripe order and its possible relevance are also covered. In
the summary, the nature of magnetic excitations revealed by neutron scattering is discussed in
the context of current theoretical work. In Chapter 7 Orenstein treats optical conductivity and
spatial inhomogeneity in the cuprates, first in an overview of the field. An additional spectral
feature seen in the so-called “terahertz gap” in many cuprates is discussed, and is assigned
to the spatial variation of the superfluid density. It is shown that optical conductivity can
provide critical information about inhomogeneity in the cuprates. In Chapter 8 Geballe and
Koster consider the wide range of superconducting transition temperature (Tc) values in the
cuprates and re-visit the notion that interactions are confined to the CuO2 layers. They provide
evidence that Tc enhancements found in the cuprates that contain charge reservoir layers can
be understood in terms of pairing interactions in the charge reservoir layers, and also propose
linear quasiparticles to account for superconductivity in the one dimensional double chain
cuprates. In Chapter 9, Fisher, Gordon, and Phillips review the thermodynamic properties of
high temperature superconductors. More recent results (mostly specific heat) based on better
samples and new interpretations are featured, and are reported for the energy gap, fluctuation
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effects, vortices, flux-lattice melting, the pseudogap, stripes, and chemical substitutions. Some
attention is also given to experimental methodology.

The various anomalies in the normal state transport properties of cuprates are reviewed
by Hussey in Chapter 10. Experimental work on in-plane and inter-plane electrical trans-
port, Hall effect and Kohler’s rule, thermal transport, and the Nernst-Ettinghausen effect, are
reviewed for materials over a wide range of doping. Despite the wide-range of crystallographic
structures in the different cuprate families, a remarkably generic picture emerges, suggesting
the transport behavior is largely associated with a single CuO4 unit. Theoretical attempts at
explaining this mysterious behavior are also summarized. A comprehensive review of high
pressure effects on elemental, binary, and high Tc superconductors is given by Schilling in
Chapter 11. Hydrostatic, non-hydrostatic, and uniaxial pressure effects are discussed. One
conclusion is that pressure effects seem to point to the structure of the CuO2 planes as the
most important parameter that determines Tc, where “the closer the planes are to being square
and flat, and the smaller their area A, the higher the value of Tc”. The result Tc ∼ A−2 is
considered to be one of the most important results that pressure has yet given us for high tem-
perature superconductors. Future prospects for combining pressure with other simultaneous
measurements to resolve other aspects of the high Tc problem are also discussed. In Chapter
12 Brooks reviews in parallel quasi-one and quasi-two dimensional organic superconductors,
and their close relationship to the Mott Hubbard model. Both conventional and unconven-
tional (p-wave and d-wave) superconducting properties are discussed, and similarities and
differences between organic and cuprate and perovskite systems are described.

In the next three chapters theoretical aspects of high temperature superconductivity are
treated. Scalapino, in Chapter 13, reviews numerical studies of the two-dimensional one-
band Hubbard model which show that this model exhibits the basic phenomena seen in the
cuprates. These show that, at half-filling, the ground state of the system is a Mott-Hubbard
antiferromagnetic insulator. Then, upon doping the system away from half filling a pseudo-
gap can appear and at low temperatures evidence for d-wave pairing and striped phases are
found. The near degeneracy of these phases is also reminiscent of the behavior of the actual
cuprate materials. This chapter concludes with a discussion of what numerical methods tell
us about the momentum, frequency and spin structure of the pairing interaction in this model.
In Chapter 14 Lee reviews previous theoretical work on high temperature superconductivity,
and argues that the one-band Hubbard model in the strong coupling limit (t−J model with
t′) can capture the physics. To make further progress, the treatment involves the constraint
of no-double occupancy and thereby gauge theories. The predicted pseudogap and vortex
structure lead to a description of the phase diagram and the onset of Tc. A number of other
fundamental theoretical issues including RVB, spin liquids, fractionalization and emergent
phenomena are also discussed. Kivelson and Fradkin, in Chapter 15, consider the role of
inhomogeneity for the mechanism of high temperature superconductivity. In reviewing the
field, the authors observe that superconductivity is common, but high temperature supercon-
ductivity is rare and confined to a small subset of materials. They analyze a class of model
inhomogeneous doped Mott insulators, which are shown conclusively to exhibit high tem-
perature superconductivity. Generalizing from this, they propose that an optimal degree (and
form) of inhomogeneity (probably self-organized) is an essential feature of the mechanism.
The relation of this notion to the occurrence of competing orders is clarified. The chapter
contains an interesting appendix on “what defines high temperature superconductivity?”.

We depart from the cuprates in Chapter 16 where Pugh, Saxena and Lonzarich consider
novel quantum states and unconventional forms of superconductivity which may occur on the
border of long range magnetic order in heavy-fermion and related itinerant electron magnetic
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materials. The chapter begins by considering the simplest deviations from the standard low
temperature theory of metals that are observed on the border of long-range ferromagnetic
order in metals where no superconductivity arises. It then describes cases on the border of
antiferromagnetism where superconducting instabilities are prevalent. The effective dimen-
sionality and proximity of density instabilities in some heavy-fermion superconductors are
considered in light of Cooper pair formation. The case of superconductivity on the border
of ferromagnetism is also described. Open questions to our current understanding are high-
lighted and possible future advances are discussed. Some of the materials described in the
chapter have some similarities with high temperature superconductors and these are consid-
ered. An important aspect of this chapter is the description of the next generation of high
pressure and low temperature instrumentation to further advance research in the important
area of magnetic metals, quantum phase transitions and superconductivity.

We think you will find this treatise essential to obtain a global view of high temperature
superconductivity, including the experimental and theoretical methods involved, the materials,
the relationships with heavy-fermion and organic systems, and the many formidable remain-
ing problems and challenges.

J.R. Schrieffer
J.S. Brooks
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1
From Single- to Bipolarons with
Jahn–Teller Character and Metallic
Cluster-Stripes in Hole-Doped Cuprates

K. A. Müller

Experiments, published in the past dozen years, are reviewed which are considered as rele-
vant in hole-doped cuprates in understanding the microscopic pairing mechanism. They range
from those which are wavevector dependent, such as photoemission and inelastic neutron scat-
tering, to those which probe local properties as EXAFS, XANES, muon rotation, and EPR.
Of importance is the time scale which the different techniques probe, also including optical
picosecond excitations. All of them point in a consistent way to the presence of two kinds
of quasiparticles of fermionic and vibronic character. The latter are theoretically derived from
symmetry considerations to be of intersite Jahn–Teller type. Of central importance are also the
substantial oxygen isotope effects observed at the pseudogap temperature T *, at the supercon-
ducting transition temperature Tc and on the London penetration depth λL, all being a function
of hole doping. The former are ascribed to real space bipolaron formation whereas the latter
are quantitatively reproduced by the momentum space analogue, i.e., a two-component model.
From the latter it follows necessarily that the lattice distortions in the vibronic ground state
are of the local Q2 type Jahn–Teller conformation. Finally, the most recent findings are re-
viewed, regarding the agglomeration of bipolarons in forming clusters or stripes with metallic
character, even at very low dopings and temperatures.

1.1. The Original Jahn–Teller Polaron Concept and Its Shortcomings

The concept which led to the discovery of high temperature superconductivity (HTS) in
hole-doped La2CuO4 [1] is Jahn–Teller (JT) polaron. Thomas and his group in Basilea used
the famous Holstein Hamiltonian for a linear molecular chain and calculated with a variational
method the effective mass of the polaron as a function of arbitrary Jahn–Teller coupling [2].
Holstein had only deduced the extreme limiting cases of either an entirely localized and or
a completely extended molecular polaron. The result of the Basilea paper was that the JT
polaron had a very large effective mass and had experimentally not been observed at the time.

The La2CuO4 and the subsequently discovered cuprate superconductors have, when
undoped, all aniferromagnetic (AF) ground states. Consequently, a displaced JT-polaron will
leave behind it a trail of reversed Cu spins in the corresponding CuO2 plane of the cuprates,
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which increases the immobility of the polaron in question. This fact enhanced the skepticism
of the community with respect to the original concept of the author. However, very early
Hirsch pointed out [3] that in the case of bipolaron formation the Cu spins would remain
in the AFM ground state after a bipolaron of any kind had passed by. In the following, the
more recent experiments will be reviewed and commented, which all indicate the presence of
Jahn–Teller bipolarons whose binding energy is substantially reduced upon reaching optimum
doping from the low doping side. At this point, one should also note that in many theories the
electronic repulsion, i.e., the Hubbard U, on the Cu2+ is of the order of 10 eV further adding to
the skepticism regarding the original concept. However, quite early Schrieffer and others [4]
pointed out that in the overdoped regime U is substantially reduced from this value.

1.2. Recent Experiments Probing Delocalized Properties

Three years after the paper of Hirsch [3] appeared, the important one of Alexandrov,
Kabanov and Mott [5] was published in which they introduced the basic equations for the
bulk properties starting from the bipolaron concept. However, the temperature dependence
for the susceptibility they obtained deviated substantially from the measured ones for certain
hole dopings. It was shown by Müller et al. [6] that the addition of a Pauli temperature-
independent term, due to Fermions, yielded good agreement with the data. This meant that
two types of carriers, bipolarons and Fermions, were present simultaneously. A review by
Mihailovic and the author [7] on the occasion of the 10th anniversary of the discovery of the
HTS emphasized the existence of two types of quasiparticles as established by the experi-
mental techniques known at that time: magnetic susceptibility, EXAFS, the Mössbauer effect,
pulsed photoexcitation, NMR/NQR, and far-infrared response. At this point, it is important
to note that right after the HTS discovery, Gor’kov and Sokol [8] supported the view of the
existence of two types of particles, namely those of fermionic and polaronic character. Later
and independently, Enz and Galasiewicz proposed theoretically that only the simultaneous
presence of light and heavy quasiparticles coupled to each other could lead to the observed
high values of Tc [9].

In this paragraph I summarize two more recent experiments carried out with techniques
that yield information on wavevector-dependent properties which support the viewpoint of the
existence of two quasiparticles: photoemission and inelastic neutron scattering.

Angle resolved photoemission (ARPES) data by Lanzara et al. [10] clearly showed a
common feature in different high temperature superconductors, that is the signature of two
types of carriers: The quasiparticle energies vs. (rescaled) wavevector plots in the 	 − π, π
direction of the Brillouin zone for the hole doped Bi2212, Bi2201, and LSCO show a kink,
while NCCO, the electron doped cuprate, does not show any such behavior (Figure 1.1).

The kink appears near 70 meV at a characteristic wavevector in the center of the Bril-
louin zone and separates two different group velocities. They are due to two different quasi-
particles, one of fermionic character, near the Fermi energy EF, and the other of more bosonic
character at larger binding energies. Most recent data of this group [11] agree with this inter-
pretation, since the dispersion near EF does not show any oxygen isotope effect (16O → 18O),
whereas the dispersive part below the kink shows a substantial one, as expected for a polaronic
particle.

Probing the vibronic excitations, inelastic neutron scattering is a sensitive tool in pro-
viding a deeper understanding of the particles present. Egami and collaborators showed that
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x = 0.2, 0.35, 0.6, and 0.93, at T = 10 K [12].

the LO phonon spectra in YBCO and LSCO change significantly with oxygen doping con-
centrations, for example in YBa2Cu3O6+x from x = 0.2 to 0.93 (Figure 1.2) [12].

There is a distinct feature in the dispersion at 60–80 meV that occurs in the Brillouin
zone along the (100) wavevector, as indicated in the figure. The intensity redistribution of the
excitation reflects the change of the ratio of the two types of quasiparticles present. The same
features have also been observed in LSCO [13]. Their determined symmetry will be referred
to in theoretical Section 1.4.

To end this paragraph, it is important to emphasize that the Fermi surface in the Brillouin
zone as detected by photoemission in the bismutates [14] evidences the presence of two kinds
of carriers near EF, one along the 	-M direction, with polaronic, and one along the 	-X
direction with fermionic character.
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1.3. Probing of Local Properties

Due to the polaronic character of the involved quasiparticles, the results from local
probes testing real space properties are of considerable relevance. Typical experiments sensi-
tive to the local structure are EXAFS, XANES, certain inelastic neutron scattering data, EPR,
and NMR/NQR. Important are the time windows which these techniques offer. They range in
decreasing order from 10−13 to 10−6 s from left to right. The one with the narrowest time win-
dow, i.e., the shortest interaction time, yields a nearly “frozen” configuration of the polaron
involved.

Therefore, let us start with the EXAFS experiments performed by the group of Bianconi
in Rome [15]: With EXAFS the local environment, for example around the Cu ion in the CuO2
plane, can be determined on a time scale of 10−13 s. The results are shown in the lower part
of Figure 1.3 for LSCO doped with 0.15% holes.

Their analysis suggested the existence of two types of configurations, one being “LTT”
distorted octahedra and simultaneously tilted by ∼16◦ most likely arising sterically due to the
Cu–O instantaneous elongation. The distortions are reminiscent of a “Q2”-type local mode,

Z

X

2.3

1.96 A

LTO-likeLTT-like

2.4
1.88

D-Stripe U-Stripe

Y
CuO2 plane

W~8 A

A
A

A

L~16 A

q=16±28

Figure 1.3. Stripe formation at T * for La2−x Srx CuO4, x = 0.15. Pictorial view of the distorted CuO6 octahedra
(left side) of the “LTT type” assigned to the distorted (D stripes) of width ≈8 Å and of the undistorted octahedra
(U stripes) of width L≈16 Å. The superlattice of quantum stripes of wavelength λ = L + W is shown in the
upper part [15].
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familiar in the Jahn–Teller effect, a point we will return to later. The other type of configu-
ration was essentially an undistorted octahedron shown on the right hand side in the lower
part of Figure 1.3. From earlier x-ray data, the group proposed that nanodomains are formed.
Different from their interpretation, however, we assign the alternating bands of “stripes” to
charge rich (D) and charge-poor (U) regions. The stripes consist of distorted unit cell D-bands
of width ∼8 Å and undistorted unit cell U-bands of width ∼16 Å, as shown in the upper part
of Figure 1.3. The U regions are locally LTT like, while the D regions have LTO like CuO6
octahedra.

NQR is another important technique to probe the local structure, as used by Imai and
collaborators which yielded comparable tilt angles of the octahedra [16].

Instantaneous lattice inhomogeneities, as discussed above, are associated with the local
octahedral tilts, or more generally, with a pair distribution function (PDFs) of such tilts as
found by the Billinge group [17]. They inferred from neutron diffuse scattering, that for un-
derdoped LSCO, the x = 0.1 data, corresponding to “average 3◦ tilts,” can best be reproduced
by a superposition of heavily (5◦) tilted and untilted (0◦) octahedra. They support qualitatively
the existence of two different types of lattice conformations in terms of stripes as indicated in
Figure 1.3.

Electron paramagnetic resonance (EPR) is a further powerful technique to probe local
properties in condensed matter. An intrinsic EPR line observed on quasilocalized holes in
La2−x Srx CuO4 by the group of Elschner in Darmstadt was analyzed by Kochelaev [18]. The
recorded signal was typical for a paramagnetic center with spin S = 1/2 having axial sym-
metry, i.e., gyromagnetic ratios g⊥ and g‖. The parallel axis was directed perpendicular to the
CuO2 plane.

The model for the analysis of the experimental results was based on the so called three
spin-polaron (TSP), earlier proposed by Emery and Reiter [19]. This polaron is created by
the p-hole on the oxygen atom in the CuO2 plane and two d-holes on the adjacent Cu atoms.
Since these holes are coupled to the isotropic antiferromagnetic exchange interaction, the
ground state of the TSP has spin S = 1/2 in agreement with the observations. At the same time
the temperature dependence of the EPR line width was similar to that found in LSCO doped
by Mn2+ impurities (see Section 1.7). Another experimental evidence for this model was the
temperature dependence of the g-factors: g‖ decreases with decreasing temperature to a rather
unusual value g‖ < 2, and a crossover with g⊥ takes place (see the left panel of Figure 1.4).
Such a behavior was consistent with dynamical Q2-type Jahn–Teller distortions of the TSP
(see Figure 1.4), and its anisotropic effective exchange coupling with the surrounding Cu2+
ions. Later on, the model was found to apply also in the interpretation of the phase separation
observed by EPR (see Section 1.7).

1.4. The Intersite JT-Bipolaron Concept Derived from EXAFS, EPR,
and Neutron Scattering

On the basis of the three experiments mentioned in the above title Kabanov and
Mihailovic [20] proposed the formation of small bipolarons due to the Jahn–Teller distor-
tions created by two holes, which occupy the same orbitals separated from each other by a
distance of the order of a lattice constant.

They suggested a phenomenological interaction with a coupling constant of the form:

g(q) = g0[(q − qc)
2 + 	]−1/2, (1.1)
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Figure 1.4. Right panel: Three-spin magnetic polaron which is regarded as the EPR active center in the CuO2
plane. The Jahn–Teller distorted polaron has two degenerate configurations as indicated by the dashed lines. The
inset shows the corresponding double-well potential with the excited vibronic states (dashed lines) and the ground
state split by tunneling (solid lines) [18]. Left panel: Temperature dependence of the g-factors for two different doping
concentrations. The inset shows the results obtained form model calculations based on the TSP of the right panel.

which is resonant at the wavevector qc. Their group theoretical analysis showed that couplings
between q 	= 0 phonons and the twofold degenerate electron states including spin takes place
(Panel 1) all with the resonant coupling structure of Eq. (1.1).
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Panel 1 Interaction between phonons k 	= 0 and twofold degenerate electronic states (a k 	= 0
Jahn–Teller effect).

By symmetry, there are four coupling terms as shown in Panel 1. In front of each is a
Pauli matrix σi,l reflecting the twofold degeneracy of the state. The first term stems from the
coupling to the breathing mode. The second and third terms are due to the interactions with
the x2–y2 and xy JT modes, and the fourth proportional to the σ2,l matrix is a consequence of
the magnetic interaction. Measurements of the ratios of the g1 and g2 JT coupling constants
vs. the magnetic coupling g3 would clarify the long standing discussions on the importance
of lattice distortions as compared to the magnetic origin of HTS in cuprates (Figure 1.5).
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Figure 1.5. The intersite Jahn–Teller pairing interaction. The Brillouin zone (BZ) of La2−x Srx CuO4 corresponding
to the tetragonal phase with point group D4h is shown below [20].

1.5. Two-Component Scenario

In quantum theory there are always two complementary descriptions of matter, one in
terms of particles, as above, and, on the other hand, one in terms of waves. The latter has
recently been proposed by Bussmann-Holder and Keller [21].

Since the above outlined results and theoretical concepts suggest that the physics of
cuprates are dominated by real space local properties rather than by a momentum space rep-
resentation, as is true for conventional superconductors, a correspondence between both is
difficult to achieve. It can, however, approximately be obtained by considering subspaces
in k-space as the relevant ones, to which charge rich distorted and charge poor undistorted
regimes are ascribed. The distorted charge rich regimes are characterized by strong electron
lattice interactions which form charge-lattice-bound states, i.e., polarons. These are randomly
distributed over the lattice at high temperatures, but the accompanying huge strain fields force
them into a dynamically ordered phase of self-organized stripe segments (Figure 1.6) in an AF

Charge rich with strong
reduction of U due to local
electron-lattice coupling

Figure 1.6. Schematic view of the doping effect and polaron formation within an AF matrix. Inside the polaron
distorted regimes the system exhibits metallic properties since the electron–lattice coupling compensates the U term.
These regions correspond to the D stripes in Figure 1.3, whereas the remaining AF matrix represents the U stripes.
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background. Within the charge rich areas the electron lattice interaction compensates the on-
site Coulomb repulsion [3,22] to create metallic droplets. The considered system is analogous
to a two-component scenario [8, 9] which has been described in detail previously [21, 23].
Here, only the important effects arising from polaron formation, are described. The energy
band dispersions [24] within the two components are assumed to be of the same form,
however, as outlined above, with different k-space weight, namely:

Esp,ch = −2t1(cos kx a + cos kyb)+ 4t2 cos kx a cos kyb
+2t3(cos 2kx a + cos 2kyb)∓ t4(cos kx a − cos kyb)2/4 − µ,

(1.2)

where t1, t2, t3, t4 are nearest, next nearest, third nearest neighbor, and interplanar hopping
integrals, respectively, and a, b are the in-plane lattice constants with a 	= b to account for
the orthorhombic distortion. µ is the chemical potential which controls the number of parti-
cles and is directly proportional to doping [25]. Applying a standard Lang–Firsov decoupling
scheme [26], important renormalization effects on the band energies appear which are: a band
shift proportional to 
*, and an exponential band narrowing by means of which all hopping
integrals are renormalized like:

ti → t̃i = ti exp
[

−γ 2coth
h̄ω

2kT

]

,

where ω is the relevant lattice mode frequency. The effects of these renormalizations are that
isotope effects appear due to the isotope dependence of the polaronic coupling constant γ . Nu-
merical investigations of the two-component system show that the average superconducting
gap Eg is linearly dependent on the superconducting transition temperature Tc in accordance
with experimental results obtained from Andreev reflection spectroscopy [27] (Figure 1.7).

In addition, Tc is enhanced due to the polaronic coupling by more than 30% as compared
to the bare case, and the bell-shaped dependence of Tc on doping is realized as well [23]. The
coupling constants are of intermediate strength, and a collapse of Tc is observed for too large
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Figure 1.7. The average superconducting energy gap Eg as a function of the superconducting transition temperature
Tc. Squares are calculated values with γ = 0.43, 0.63, 0.83 (blue, green, red), respectively, whereas black symbols
are experimental data points for Y1−x Cax Ba2 Cu3O7−δ taken from [27]. The ratio of t2/t1 = 0.3.
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couplings since in this limit localization sets in. Isotope effects are another consequence and
will be discussed in a subsequent section.

1.6. JT-Bipolarons as the Elementary Quasiparticles to Understand
the Phase Diagram and Metallic Clusters or Stripes

We note, that Weisskopf had shown for classical superconductors, that


 ∝ EFλ/ξ0,

where λ is the screening length. This implies that the superconducting gap/temperature ∆ ≈
Tc is large when the coherence length ξ0 is small. Thus a model based on small-pairs can be
one which captures the relevant physics of HTS.

In fact, if pairs are small, then superconductivity can take place through a kind of
percolation, with pair size lp smaller than the coherence length, and larger than the lattice
scale a, as described in the first part of Section 1.4 for the intersite polaron.

a < ξ0 < lp.

The picture that emerges is that of Jahn–Teller induced mesoscopic pairs, which fluctuate and
percolate coherently [28]. A quantitative development of this picture (Figure 1.8) yields:

1. An understanding of the minimum coherence length observed experimentally.
2. The correct percentage of holes for which the onset of cuprate superconductivity

(6%) is observed.
3. The correct percentage of holes to achieve the maximum value of Tc, i.e., T m

c (15%)
and T m

c itself.

From Figure 1.8 one can also visualize that there are extended (multi)-bipolaronic percolated
regions which have metallic character. This, indeed, was confirmed by recent EPR experi-
ments by Shengelaya et al. [29] in the very low doping regime of LSCO, i.e., for less than 6%.

a) b)

Figure 1.8. (a, left panel). The amplitude of the lattice deformation caused by pairs described by the mesosocopic
Jahn–Teller model. The picture corresponds to a “snapshot” at 6% doping at T = 0 K. (b, right panel) The bond
percolation model describing the situation in (a) [28].
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Figure 1.9. (a) EPR signal of La1.97Sr0.03Cu0.98Mn0.02O4 measured at T = 290 K. The fit to a Lorentzian line
shape is represented by the solid line. (b) EPR signal at T = 150 K. The solid line is a fit with a sum of two
Lorentzians represented by dashed lines [29].

Using Mn2+ as probe, two EPR lines with the same resonance frequency are detected, a nar-
row and a broad one. The width of the narrow one is oxygen isotope independent, whereas
the broad one is isotope dependent (see Figure 1.9). We recall that in EPR the derivatives of
the lines are recorded. Furthermore, it was shown that the resonances occur in the bottleneck
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region, where the absorbed microwave energy of the Mn2+ is transmitted to the lattice via the
Cu2+ ions.

The narrow line is assigned to Mn2+ ions located in metallic regions of the sample,
and the broad one to those near single polarons. Upon cooling, the narrow EPR line grows
exponentially in intensity whereas the broad one nearly disappears. The activation energy ∆
deduced from the exponential behavior of the narrow EPR line is 460 (±50)K, independent
of hole doping concentrations between 1% and 6%, the experimental range. The activation en-
ergy is, within experimental error, the same as the one derived from Raman and inelastic neu-
tron scattering experiments for bipolarons. Therefore it is suggestive that bipolaron formation
is the elementary process for the formation of metallic segments. This finding has a macro-
scopic consequence as well, since the EPR intensity follows the same temperature dependence
as the in-plane resistivity anisotropy in LSCO for the same doping range (Figure 1.10). This
same temperature behavior of the microscopic EPR and macroscopic resistivity anisotropy as
shown in Figure 1.9 is astounding. This result suggests that bipolarons are the microscopic
entities responsible for the formation of metallic clusters or stripes, respectively, to which the
observed resistivity anisotropy has been attributed [30]. The bipolaron formation can then be
the origin for the formation of hole-rich regions by attracting additional holes via elastic cou-
pling forces. Because of the high anisotropy of the elastic forces, these regions are expected
to self-organize into dynamical stripe patterns. Therefore, the bipolaron formation energy ∆
can also be regarded as an energy scale for the onset of stripe formation associated with
the pseudogap.

The existence of an essential heterogeneity in cuprate superconductors due to the coex-
istence of two types of quasiparticles became also apparent early via femtosecond experiments
of the Ljubljana group [7]. In these experiments an excitation pulse is followed by a probing
pulse, and the change in reflectivity R is measured as a function of time delay. From the expo-
nential decay the lifetime τR of a quasiparticle (QP) is obtained. Within the bipolaron pairing
picture two QPs recombine to form a bipolaron of size lo. As a consequence, τR is determined
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Figure 1.11. A plot of the escape lengths lo (solid color symbols), lm (open symbols), and ls (black symbols), as a
function of T/Tc for LSCO at different doping levels. In all cases, the length scale is normalized to ξs(0) [31].

by the time which acoustic phonons admit for the bipolaron volume, corresponding in first
approximation to τR = loνs, where νs is the sound velocity. In Figure 1.11 lo normalized by
the coherence length ξo, is plotted vs. T/Tc for various doping levels [31].

From Figure 1.11 one sees that lo in the vicinity of Tc is closely the same as the coher-
ence length ξo, a quite remarkable finding. Furthermore, also the renormalized mean free path
lm is plotted in that figure. One observes an astounding agreement between lo and lm over
the entire temperature range (Tc < T < 300 K) where the data sets overlap. The conclusion
of Mihailovic [31] is: “Upon cooling, bipolarons are formed at kT ∗ = 2∆. They lead to a
charge-inhomogeneous state. These objects form and dissociate according to thermal fluctu-
ations, leading to a state which is dynamically inhomogeneous, in agreement with what has
been outlined at the beginning of this section (Figure 1.8). The dimensions of these objects are
determined by the balance of Coulomb repulsion and lattice attraction as discussed in [19],
and are of the order of: ξo ∼ 1 − 2 nm above Tc. As the temperature is reduced, the density of
pairs starts to coalesce into larger segments, which is reflected by the increasing length scales
observed at low temperatures.” From the EPR data this is even true in the very underdoped
regime where superconductivity is absent. However, for doping concentrations larger than 6%
a phase percolation threshold for the metallic regions is reached, and a macroscopically phase-
coherent state occurs at Tc [20]. There the characteristic length scale becomes comparable to
the superconducting coherence length ξo.

1.7. Substantial Oxygen Isotope Effects

In the past years the onset of a pseudogap at a temperature T * has been reported by
various experiments where the interpretations are quite different from the one just outlined.
They are, in part, based on theories which presuppose a rigid lattice and with a homogeneous
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Figure 1.12. The oxygen isotope effect on the charge-stripe ordering temperature T * in La1.94Sr0.06CuO4 and the
doping dependence of T *. The temperature dependence of the XANES peak intensity ratio R for the 16O and 18O
samples of La1.94Sr0.06CuO4 [32].

charge distributions. On the other hand, if one associates the observed temperature T * as the
one where local distortions begin to form then isotope effects are expected which should be
observable, and lattice sensitive experiments are warranted.

Changes in the local structure are probed by XANES, where an x-ray photon ejects an
electron from a Cu2+ ion, and the electron waves interact with the O2− neighbors. Thus, this
technique is fast, and entirely nonmagnetic. Data plots as presented in a 1999 paper Lanzara
et al. [32] show fluorescence counts vs. photon energy, with peaks related to in plane neigh-
boring oxygen ions of Cu2+ and others corresponding to the La/Sr out of plane ions. The
latter ones can be considered as structurally nearly immobile at T *, thus are used as reference
compared to the peaks stemming from the Cu–O interferences.

The temperature dependence of the XANES peak intensity ratios, Cu–O to Cu–La/Sr,
shows a dip at T * ∼110 K which is associated with stripe formation. Since this technique
probes only oxygen neighbors of the Cu ions, it is a site specific way to investigate effects
of isotopic substitutions. In fact, there is a giant isotope effect, with 16O → 18O substitution
causing a rise of T * to ∼180 K (Figure 1.12). This is, to our knowledge, the largest oxy-
gen isotope effect ever reported in the literature. The dynamics of the bipolarons forming the
stripes (see Section 1.5) are exponentially dependent on the oxygen ion mass due to the po-
laronic character of the quasiparticles. The compound with the heavier mass, i.e., 18O, then
requires a larger thermal energy to dissociate the stripes at T * into single polarons. Several
techniques can be used to investigate T * vs. doping La by Sr, and experiments like XANES,
EPR, and NQR probe widely different time scales (10−13 s, 10−9 s, 10−7 s). Nonetheless,
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Figure 1.13. The doping dependence of the charge-stripe ordering temperature in La2−x (BaSr)x CuO4 system from
NQR, XANES, and recent EPR experiments [32].

the data fall on the same curve below optimum doping at xm, corresponding to T m
c , see

Figure 1.13 [33]. Above this doping level, T * is zero in the NQR data since this technique
is the slowest one and the dynamic distortions average to zero above. However, T * as derived
from the EPR data, with a two orders of magnitude shorter time scale, remained finite above
xm exhibiting nearly the same value as at optimum doping. This excludes the existence of a
quantum critical end point near optimum doping, predicted by a number of theories based on
magnetic interactions, since the existence of such a point requires that T * has to vanish.

A quantitative confirmation of the XANES results in Figure 1.12 are the inelastic time
of flight, neutron scattering measurements by Rubio Temprano et al. [34], in which the line
width of a Ho3+ transition that substitutes for Y3+ was recorded. This work on the isotopic
series HoBa2

nCu4
pO8 where n = 63, 65 and p = 16, 18, reveals a large T * isotope effect for

oxygen (α∗
o = −2.2) and an even larger value for copper (α∗

Cu = −4.9) [34] (Figure 1.14).
Thus both oxygen and copper dynamics play a role in stripe formation of YBCO, on a time
scale of ∼10−12 s, that cannot be accounted for by magnetic interactions.

The oxygen isotope shift reflects the JT coupling, whereas the Cu isotope shift is as-
cribed to the so-called “umbrella” mode in which the Cu motion is present due to the lack
of inversion symmetry at the planar Cu site. This is a consequence of the pyramidal oxygen
coordination of Cu in YBCO. Indeed, subsequent results for Ho in LSCO yielded a compara-
ble oxygen isotope shift for T * as found in YBCO but none for exchanging 63Cu by 65Cu [35].
In LSCO the Cu is octahedrally coordinated and only the quadrupolar JT modes can be ac-
tive, the inversion symmetry precludes an asymmetric “umbrella” motion. In conjunction the
magnitude of Tc of LSCO is about half of the one of YBCO with Tc = 92 K at optimum dop-
ing. Therefore, it is reasonable to assume that the coupling to the umbrella mode in YBCO
is responsible for the Tc enhancement as compared to LSCO, whereas the coupling to the JT
mode accounts for a similar order of magnitude Tc as in LSCO. The former may be assigned
to another bipolaron coupling first proposed by Alexandrov [36].
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Figure 1.14. Temperature dependence of the reduced linewidth observed for both copper (upper panels) and oxygen
(lower panels) isotope substituted HoBa2Cu4O8 [34,35]. The solid line represents the normal state linewidth expected
by the Korringa law.

In order to explore the role of the lattice for superconductivity isotope experiments have
been the standard probe. In HTS, early on, isotope effects on Tc have been reported which
are vanishingly small at optimum doping but increase substantially in the underdoped regime
to even exceed considerably the BCS value in the immediate vicinity to the AF regime [37].
This finding is inconsistent with conventional phonon mediated superconductivity where the
isotope effect should be constant and independent of doping, but suggestive of unconventional
electron lattice interactions. This latter view point has been substantiated by recent pioneer-
ing low-energy muon SR techniques performed by the group of Keller in Zürich [38]. They
measured the muon relaxation time from which they obtained the London penetration depth
λL. The important result of this technique is that the penetration depth carries an isotope ef-
fect, which is neither expected within conventional BCS theory nor within purely electronic
models.

An understanding of both effects can be achieved within the above described two-
component scenario where polaronic band renormalization effects are its primary cause.
Within this scenario, the average superconducting energy gap Eg is isotope dependent and
a linear correlation between the gap isotope effect and the one on Tc is observed. Further-
more, a similar relation is obtained for the isotope effect on the penetration depth, and both
results are compared to each other in Figure 1.15a. The overall agreement is remarkable, even
though in the underdoped regime the isotope effect on the penetration depth seems to saturate
whereas the theoretical results remain linear. This discrepancy is attributed to the fact that
the polaronic coupling is taken to be doping independent and a mean-field approximation is
used. The isotope effect on Tc is calculated within the two-component scenario. Comparison
between experimental data and theory is made in Figure 1.15b. Principally, all four hopping
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Figure 1.15. (a) Relative isotope shift of the average gap (|∆Eg/Eg |) as a function of the relative isotope shift of
the superconducting transition temperature Tc (|∆Tc/Tc|). Squares are calculated values with γ = 0.43, 0.63, 0.83
(blue, green, red), respectively. The dashed red line is a guide to the eye. Black symbols refer to experimental oxygen-
isotope effect data of the zero-temperature in-plane magnetic penetration depth λab(0) and Tc taken from [38]. The
ratio of t2/t1 = 0.3. (b) Oxygen isotope exponent α as a function of Tc/T m

c , where T m
c is the maximum Tc observed

in a given cuprate family. The open black symbols stand for experimental data points taken from [37], whereas the
green full symbols are theoretical ones.

t1

t1

t2

Figure 1.16. The relevant lattice modes which renormalize the hopping integrals t1, t2. The black arrows indicate
the ionic displacements, the small blue circles denote the oxygen ions, and the green arrows stand for the copper
spins.

integrals could contribute equally to an isotope effect. However, the numerical results show so
far that only two hopping integrals, namely t1, t2, are of relevance where t1 yields the wrong
doping dependence of the isotope exponent α, and t2 gives the correct trend (Figure 1.15b).

Most importantly, one can conclude from these results on the relevant lattice dis-
placements which are responsible for the isotope effect. It has been suggested that the
half-breathing mode (Figure 1.16, left panel), which shows substantial anomalies in the su-
perconducting compounds only [12], is the important mode for the pairing mechanism. This
mode is certainly sensitive to doping and to Tc, but, from the above results, can be ruled
out as the origin of the isotope effects, since the half-breathing mode involves only the near-
est neighbor hopping element t1 along <10>, <01>, respectively. The same holds for the
full-breathing mode by the same arguments. Consequently, it can be concluded that the most
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likely candidate to cause the observed effects is the Q2-type Jahn–Teller mode (Figure 1.16,
right panel), which has also been shown to be associated with paramagnetic polaron signals
observed by EPR [18].

The two modes discussed above are shown in Figure 1.16 to illustrate their role on
both hopping integrals t1 and t2. As can be seen, only the Q2-type mode can renormalize t2
pronouncedly, whereas both the half- and full-breathing modes do not.

Finally, it is worth noting that also the isotope effect on the London penetration depth
can consistently be explained within this polaronic picture as has been shown in [21, 23].

1.8. Concluding Remarks

Many theories for cuprate superconductors focus on the strong electronic correlations,
present in the undoped systems. They ignore from the beginning, effects stemming from the
lattice which is taken as a rigid framework. The many experiments which are of quite dis-
tinctive character outlined here, tell a different and new story, especially if the time scale of
a particular experiment is sufficiently short. Furthermore, the observations of substantial and
unconventional oxygen isotope effects have been reviewed. For all of them the vibronic char-
acter of the ground state is manifested in a clear manner. Especially, EPR (the technique used
by the author for more than half a century) was able to contribute at the forefront in high tem-
perature superconductivity research. It points to the Jahn–Teller effect as being of outstanding
relevance for the vibronic character of the ground state. This, however, was the concept which
led to the discovery of the HTS in cuprates [1]. But, instead of single JT polarons, JT intersite
bipolarons have been identified as the relevant quasiparticles responsible for the formation
of metallic clusters and superconductivity in hole-doped cuprates. Both quasiparticles, mani-
fest the heterogeneity which is present in charge, spin, and lattice distortion. This physics is
neither that of a pure bipolaronic superconductor nor a pure fermionic system. The dynami-
cal coexistence of bipolarons and fermions is a prerequisite where their interplay results in a
two-component scenario [8].
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2
Tunneling Measurements of the Cuprate
Superconductors

John Robert Kirtley and Francesco Tafuri

After a very brief description of what has been learned from tunneling measurements in conventional
superconductors, we provide an overview of general concepts relevant to the cuprates. These include
the types of junction structures used, effects due to variable junction transparency from the point con-
tact to the tunneling regimes, proximity effects, Andreev scattering, unconventional pairing symmetry,
and possible broken time reversal symmetry. We describe the various methods used for obtaining tun-
neling junctions in the high-temperature cuprate superconductors. We describe how the unconventional
pairing symmetry of the cuprate superconductors leads to π -rings and 0–π -junctions, and how these
effects have been used to determine that the gap in the cuprates has predominantly dx2−y2 pairing sym-
metry. We then turn to tunneling spectroscopy. The superconducting gap, the pseudogap, and zero bias
conductance peaks are closely interrelated. The superconducting gap and zero bias conductance peaks
can be understood in terms of transport between electrodes with dx2−y2 pairing symmetry through low
and high transmissivity barriers. It is controversial whether the pseudogap represents an order compet-
ing with superconductivity or preformed Cooper pairs. Similarly, there are many indications of broken
time reversal symmetry in tunneling spectroscopy measurements, but not in measurements of π -ring
and 0–π -junctions. Conductivity modulations in atomically resolved scanning tunneling spectroscopy
certainly can arise from quasiparticle interference effects, but there is also evidence for nondispersive
conductivity modulations, expected from stripe models. We describe tunneling evidence for strong cou-
pling effects involving phonon and magnon interactions with the quasiparticles in the superconducting
state.

2.1. Introduction

Tunneling measurements played an important role in the development of our under-
standing of conventional superconductors, providing direct evidence for a gap in the density
of states of a superconductor, [1] high precision measurements of the size, shape, temperature,
and field dependence of this gap, [2] values for the electron–phonon spectral density α2 F(ω),
as well as the renormalized coulomb pseudopotential µ∗. [3–5] These measurements and cal-
culations provided strong evidence for the electron–phonon mechanism for superconductivity
in conventional superconductors. The tunneling of Cooper pairs between conventional super-
conductors [6, 7] demonstrated the macroscopic quantum coherence of the superconducting
state, as well as providing a wealth of fundamental phenomena and applications [8].

J. R. Kirtley • IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
F. Tafuri • Dip. Ingegneria dell’Informazione, Seconda Università di Napoli, Aversa (CE), Italy
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However, tunneling into the cuprate superconductors is much more complex, and
arguably much more interesting, than tunneling into conventional superconductors. Some of
the properties of the cuprate superconductors that make this such a rich topic include:

(1) Unconventional pairing symmetry: There is now overwhelming evidence that the
cuprate superconductors have predominantly dx2−y2 pairing symmetry [9–12]. Some
of the evidence for this symmetry from tunneling measurements will be reviewed
here. The momentum dependent sign changes in the superconducting gap function
associated with this pairing symmetry open the way for many interesting π -SQUID
and 0–π -junction devices. These sign changes also cause zero energy bound states
at tunnel junction interfaces in certain geometries. It is predicted that subdominant
pairing symmetries can appear at surfaces and interfaces of unconventional super-
conductors. The presence of these subdominant components can break time reversal
symmetry, leading to interesting tunneling effects.

(2) Pseudogap behavior: A reduction of the density of states near the Fermi surface
develops well above the superconducting critical temperature in many of the cuprate
superconductors. It is controversial whether this pseudogap is due to preformed pairs
or some competing order, and how the pseudogap is related to the superconducting
gap.

(3) Spatial inhomogeneities: Scanning tunneling measurements show that at least some
cuprate samples have substantial spatial inhomogeneities in their tunneling density
of states. Part of this inhomogeneity may be due to structural inhomogeneities, and
part can be attributed to quasiparticle interferences resulting from scattering from
the normal core of vortices, or impurities. However, there have also been reports
of periodic inhomogeneities that do not have the dispersive properties expected for
quasiparticle interference, and instead may be due to a pinned intrinsic modulation
in the electronic density of states.

The task of describing the field of tunneling in the high temperature superconductors
is daunting. It is impossible to provide a complete survey of this extraordinarily rich topic
here. We therefore intend this chapter to be representative, rather than exhaustive. Just as
for conventional superconductors, it is rare in the high temperature superconductors to have
definitive measurements of both the Cooper pair and quasi-particle tunneling in the same
experiment because of their different energy scales. These energy scale differences are even
more dramatic for HTS than for conventional superconductors. Several excellent reviews of
various aspects of tunneling in the cuprate superconductors have appeared previously [13–23].
We hope to build upon this previous work, and apologize in advance for work that we neglect.

2.2. General Concepts

2.2.1. Types of Junction Structures

A superconducting junction is traditionally thought of as a thin insulating layer (I) sep-
arating a superconductor (S) from a normal metal (N) or another superconductor (S′) (Fig-
ure 2.1a). Fifteen years of activity have clearly demonstrated that high critical temperature
superconductors (HTS) represent a formidable materials science challenge, especially when
dealing with junctions. This is due to the structural complexity of HTS, the ease of oxygen
desorption, the extreme difficulty of growing good barriers, etc. These problems have direct
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Figure 2.1. Different configurations of weak-links: junction with (a) insulating or (b) normal metal barrier, (c)
microbridge, (d) point contact, (e) 001 tilt, (f ) 100 tilt, and (g) 100 twist grain boundary junction.

consequences on the fabrication and physics of Josephson junctions: for instance, the equiv-
alent of the classical trilayer junction structure, which is commonly fabricated with low Tc
superconductors, has not yet been reproduced with HTS.

We extend our definition of a junction by considering more transmissive barriers, which
are often more appropriate for HTS. In doing so we gain in our understanding of the Joseph-
son effect and of other subgap spectroscopic effects. The barrier transparency can be changed
by substituting a N′ layer for the I layer. The resulting S–N′–S′ structure will exhibit the
Josephson effect for thicknesses of the normal layer N′ up to a few microns (Figure 2.1b).
The proximity effect, the mutual influence of a superconductor layer in contact with a nor-
mal metal layer; [24] and Andreev reflection, the microscopic process in which a dissipative
electrical current is converted at a S/N interface into dissipationless supercurrent, [25] enter
the phenomenology of the Josephson effect and can dominate over tunnel effects. In some
regimes, roughly defined through the barrier transparency and characteristic scaling lengths
such as the coherence length ξ , all these effects may coexist. These concepts can be reasonably
extended to barriers composed of semiconductors.

Another way to form a junction is by creating a microrestriction or point contact in a
superconducting thin film (Figure 2.1c, d). For widths of the order of a few times the coherence
length, the microbridge will behave as a Josephson weak-link, i.e., a system characterized by
weak superconductivity [8]. This type of junction depends very critically on the dimensions
of the microbridge and its typical scaling lengths. In the limit of long microbridges, Josephson
behavior disappears. The difficulties encountered in dealing with HTS thin films and interfaces
with HTS motivated intense research toward alternative junction designs which could exploit
the intrinsic properties of HTS. One such property is that boundaries between grains with
different orientations are Josephson weak links. This has lead to the development of a wide
family of grain boundary Josephson junctions [19].

Each HTS grain boundary can be considered as the composition of the three fundamen-
tal operations of tilt around the c-axis (001 tilt) (Figure 2.1e), tilt of the c-axis around the
a- or b-axis (100 tilt) (Figure 2.1f) and twist around the b-axis (100 twist) (Figure 2.1g). In
Figure 2.1e–g the orientation of the left electrode has been fixed, but it can also change. We
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label D–D junctions using the notation dθ1/dθ2 , where θ1 and θ2 are the angles of the antinode
directions of the dx2−y2 pairing wavefunctions with respect to the junction normal on the two
sides of the junction, respectively. Grain boundaries influence the Josephson phenomenol-
ogy in a manner which is still not completely clear and also subject to microstructural bar-
rier imperfections [19, 22]. Nevertheless beautiful and clean experiments have been realized
using grain boundary junctions, demonstrating for instance a prevailing d-wave order para-
meter (OP) symmetry [11] and the feasibility of some simple device concepts. [19]

Finally, successful metallic-like barriers have been reported in the literature. The barrier
can for instance be a Au layer or damaged HTS material; best results have been obtained by
using a LTS as a counterelectrode.

2.2.2. Generalized Junction Conductance

We outline the formulation of the general problem of conductance in a junction. The
classical ohmic scaling law for the conductance of a conductor connected to two reservoirs
(the contacts) is G = σW/L , where W, L, and σ are the width, the length, and the conductivity
of the conductor, respectively. This expression becomes invalid as the dimensions become
smaller. In this case the conductor is called mesoscopic, i.e., at the borderline between the
microscopic and the macroscopic world. It is modeled by a phase-coherent disordered region
connected by ideal leads (without disorder) to two electron reservoirs [26–30].

Two factors have to be taken into account to evaluate conductance in the mesoscopic
regime (1) the interface resistance between the conductor and each electrode, independent of
the length L of the sample and (2) the number of conducting channels (transverse modes) in
the conductor, which are discrete and do not scale with W for small dimensions. The zero
temperature Landauer formula incorporates both factors [26, 27]:

G = (2e2/h)MT , (2.1)

where T represents the average probability that an electron injected from one end of the
conductor will transmit to the other end and M is the number of transverse modes in the
conductor. The net current flowing at any point of the device

I = (2e/h)(µ1 − µ2)MT . (2.2)

At finite temperatures, transport takes place through multiple energy channels in the energy
range µ1 + (a few kBT ) ≥ E ≥ µ2 − (a few kBT) weighted by the energy distributions of the
two leads. Here µ1, µ2, and T are the electrochemical potentials in the electrodes (1) and (2)
and the temperature, respectively.

2.2.3. The Tunnel and Proximity Effects

Keeping in mind the great variety of behaviors of HTS tunnel junctions and weak links,
it is of interest to discuss the transition from the scattering formalism to the tunneling formal-
ism, where most of the original formulation on the Josephson effect and on superconducting
junctions has been developed. The tunneling transfer Hamiltonian formalism can be consid-
ered as, in some respects, a weak coupling version of the scattering formalism. Consider for
the moment a nonsuperconducting contact. In the tunneling limit, Fermi’s golden rule gives
the current I between two bulk electrodes with voltage difference V [28]:

I = 4πe
h

∑

k,q

|Tkq|2[ fk(1 − fq)− fq(1 − fk)]δ(εk − εq − eV ), (2.3)
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where Tk,q are the tunneling matrix elements, which depend on the initial and final state
momenta k,q, f1 and f2 are Fermi functions, and εk and εq are the initial and final state
energies. If we assume that the matrix elements depend only on energy: |Tkq | = M(E) (these
simplifications will be removed in the discussion of “General Features” in Section 2.5.1), and
integrate over momenta at constant energy this equation becomes

I = 4πe
h

∫

[ f1(E)− f2(E)]M(E)2ρ1(E)ρ2(E)dE, (2.4)

where ρ1(E) (ρ2(E)) is the density of states in the electrode 1 (2), respectively [28]. The
change in the current in response to a change in the potential µ2 (keeping µ1 constant) can be
written as:

∂ I
∂µ2

= 4πe
h

[M(E)2ρ1(E)ρ2(E)]E=µ2 . (2.5)

In these expressions we have assumed low temperature and neglected any change in M(E),
ρ1, and ρ2 due to the applied bias. This equation relates the slope of the current–voltage curve
to the density of states in the leads. As is widely known, this allows one to use current–voltage
measurements to deduce the density of states ρ2 in one lead, if the density of states ρ1 in the
other lead is known.

The equivalent expression in the scattering formalism is:

I = 2e
h̄

∫

[ f1(E)− f2(E)]T̄ (E)dE, (2.6)

where the contact transparency T̄ = MT . The expressions (2.4) and (2.6) are consistent if:
T̄ = 2πM(E)2ρ1(E)ρ2(E) [29, 30]. Independently of the details on the structures where the
two expressions can be applied, the similarity between the expressions above qualitatively
suggests the contiguity of the scattering and tunneling formalisms. The scattering formalism
describes all types of interfaces, including highly transmissive situations and the tunneling
limit. When the electrodes are superconductors, new phenomena will occur but the similarities
and analogies between scattering and tunnel approaches will still be relevant.

It is straightforward to understand from the expressions above that in a N–I–S junction,
the tunnel effect allows a direct measurement, through the conductance of the junction, of the
density of states in a S, and therefore of the energy gap [2]. This is shown in Figure 2.2a,
where the conductance G(V ) usually observed in the limit T → 0 in a LTS tunnel junction
is shown schematically. Distinctive features are the peak in G(V ) close to the gap value ∆/e
and zero conductance up to voltages of about ∆. The density of states of more complicated
electrodes, such as the same S in the presence of impurities or backed by a normal metal (S/N
electrode), are still reflected in the G(V ) of the tunnel junction. G(V ) will obviously be quite
different depending on the nature and morphology of the electrodes and of the barrier. We
are particularly interested in pointing out the smearing of the peak structure corresponding
to the gap value ∆/e, and the reduction of ∆, as indicated schematically in Figure 2.2b. The
presence of impurities or of an N layer generally makes lower energy states available. The
density of states in a S/N bilayer is particularly instructive for our aims, since it is tightly
connected to the physics of the proximity effect (PE). This effect plays a crucial role in non-
homogeneous systems as well as in Josephson systems and weak links. The proximity effect
and its microscopic elementary mechanism (Andreev reflection) will subtly enter into many
sections of this review. Here we limit the discussion to an operative definition and give a few
examples of induced effects.
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Figure 2.2. (a) Conductance in an ideal S–I–N junction; in the limit of T → 0 it gives the density of states in S;
(b) conductance in S–I–N in presence of pair-breaking; (c) order parameter spatial profile in a weakly coupled S/N
bilayer γB � 1; (d) conductance for a S/N–I–N junction for a weakly coupled S/N bilayer; (e) order parameter
spatial profile in a strongly coupled S/N bilayer.

The proximity effect describes the mutual influence of a S and a N layer in contact
with each other. N can be replaced by a semiconductor or a ferromagnet with consequent
implications. The S will induce some superconducting properties in N within a distance of
the coherence length ξN = (h̄ D/kBT )1/2 in N (T is the temperature and D is the normal
metal diffusion constant). In addition, the superconducting properties will be weaker in the S
within a length of the order of its coherence length from the interface. This mutual influence
is also controlled by the nature of the interface (barrier transparency,...) and by the boundary
conditions, which again involve the respective coherence lengths and the thickness of the N
and S layers [24, 29, 31].

In the bi-layer considered above, if the S and N layers are weakly coupled (low trans-
mission barrier interface) the order parameter induced in N will be very poorly correlated
to the one in S [31–33]. The profile of the order parameter will have a sharp jump at
the S/N boundary, and the gap induced in N (∆N) will be much lower than the one in S
(∆N �∆S) (Figure 2.2c). In N the density of states will be substantially rescaled to the
induced gap (Figure 2.2d). For strongly coupled S and N layers, the more intense mutual
influence is clearly visible in the OP profile along the bilayer (Figure 2.2e). The ∆N value is
much closer to ∆S [24,31]. The density of states can be also probed at distinct locations [34].
The density of states shows a depression at the Fermi energy over a characteristic energy of
the order of the Thouless energy. When the normal metal is disconnected from any electron
reservoir a true energy gap is expected provided that the system is disordered or chaotic [35].

The properties of S/N bilayers can be properly studied in the “dirty” limit on the basis of
the Usadel equations [36,37]. This approach has the advantage of taking into account a varying
boundary resistance and describing, in some detail, the nature of the prefactor of the exponen-
tial dependence of IC on the ratio L/ξN (L being the barrier thickness). The order parameter
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in a S/N bilayer can be expressed through two dimensionless parameters: γ = ρSξS/(ρNξN)
and γB = RB/(ρNξN), where ρN,S and ξN,S are the normal state resistivities of the junction
materials and their coherence lengths in N and S, respectively, while RB is the specific re-
sistance of the S/N boundary. γB is a measure of the coupling between the two slabs of the
bilayer: the higher the value of the resistance, the weaker the coupling between N and S is.
The tunnel regime at the S/N interface is obtained for γB � 1. Direct information on the spa-
tial variation of the order parameter is given by γ . For γ � 1 (rigid boundary conditions) the
effects on the superconductor due to the proximity of the normal metal are small, in contrast
with the limit γ � 1 (soft boundary conditions). In this case many quasiparticles diffuse from
N to S. Both the parameters γ and γB are related to the carrier concentration NS, due to the
dependence of ρN,S and ξN,S.

The proximity effect also allows a simple understanding of how a supercurrent can flow
in a normal conductor of appropriate dimensions when placed between two superconductors.
We have a supercurrent as long as the two order parameters of each electrode overlap in the
barrier region. This supercurrent has the special attributes of the Josephson effect since it is
related to the phase difference of the electrodes.

This intuitive picture is complementary to the description in terms of Andreev reflec-
tion (AR), extensively discussed in Section 2.2.4. In the latter scenario the multiple Andreev
reflections give rise to discrete energy levels or resonances in the energy gap. These current
carrying states are localized near the junction and decay exponentially into the bulk. AR is
the key mechanism for the superconducting PE. It provides phase correlations in a system of
noninteracting electrons over distances much longer than the microscopic lengths.

2.2.4. Andreev Reflection and Bound States

At the interface between a normal metal and a superconductor, dissipative electri-
cal current is converted into dissipation-less supercurrent. An electron excitation slightly
above the Fermi level in the normal metal is reflected at the interface as a hole excitation
slightly below the Fermi level (see Figure 2.3). The missing charge of 2e is removed as
a Cooper pair. This scattering mechanism is called Andreev reflection (AR) or retroreflec-
tion [25]. This is a branch-crossing process which converts electrons into holes and vice
versa, and therefore changes the net charge in the excitation distribution. The reflected hole
(or electron) has a shift in phase compared to the incoming electron (or hole) wave-function:

SN

h
h

c
e

e2 e1

N SE
D

Figure 2.3. Andreev reflection: energy and spatial representation.
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(b) Density of states in a d-wave superconductor. (c) Density of states in a D–I–N junction with N facing the
node of D.

φhole = φelect + φsuperc + arccos(E/∆) (φelect = φhole − φsuperc + arccos(E/∆)), where ∆
and φsuperc are the gap value and the superconducting phase of the S. The macroscopic phase
of the S and the microscopic phase of the quasiparticles are therefore mixed through Andreev
reflection. The Andreev-reflected holes act as a parallel conduction channel to the initial elec-
tron current, doubling the normal state conductance of the S/N interface for applied voltages
less than the superconducting gap eV <∆ [38, 39]. Blonder, Tinkham, and Klapwijk [38]
(BTK) introduced the dimensionless parameter Z, proportional to the potential barrier at the
interface, to describe the barrier transparency T = 1/(1 + z2), allowing a continuous descrip-
tion from a highly transmissive barrier to the tunnel limit. Conductance for a S/N junction is
displayed in Figure 2.4a for different values of the parameter Z.

The Landauer conductance expression (Eq. 2.1) has been extended to the case of an S–N
interface by Beenakker [40] through scattering matrix theory:

GNS = 2e2

π h̄

N∑

n=1

T 2
n

(2 − Tn)2
. (2.7)

Here the Tns are the transmission eigenvalues of the disordered normal part. The difference
in the behavior of the transmission eigenvalues Tn will lead to different mesoscopic behaviors
of tunnel junctions and metallic weak links. While in tunnel junctions many small Tns are
relevant, in weak links most Tns are close to zero or unity.

An important characteristic of the subgap bound states in d-wave junctions is the exis-
tence of a finite density of states at zero energy (Figure 2.4c). A delta function peak is found
at zero energy, as first predicted by Hu [41]. These zero energy states (ZES), which can be
revealed in differential conductance of a N–I–d-wave junction when N is facing the node of
the d-wave electrode, can be visualized by considering an Andreev bound state created at a
S–I interface.

The basic process is illustrated in Figure 2.5. An electron traveling toward a surface is
reflected back into the d-wave superconductor and is subsequently Andreev reflected into a
hole by the positive pair potential. Then the hole follows the same path backward, reflected at
the surface, and finally Andreev reflected into another electron by the negative pair potential.
Due to the d-wave symmetry, the Andreev reflections connect superconducting gaps with a
phase difference of π , since at one end of the trajectory the positive and on the other the
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Figure 2.5. Andreev bound states along the surface of a d-wave superconductor rotated by 45◦ relative to the
surface.

negative lobe of the d-wave function is involved in the reflection process [41]. The analogy
to the Josephson junction is quite direct. The spontaneous currents are also carried by the
quasiparticles, similar to the SNS case [42, 43]. The surface of the d-wave superconductor
plays the role of the junction interface with barrier transparency T = 1, and the sign change
in the pair potential corresponds to the phase difference φ = π .

The dependence of the ZES has been calculated as a function of interface orientation,
barrier transparency and temperature, and a comprehensive description of effects related to
them has been given by Tanaka and Kashiwaya [44]. As expected, ZES are more relevant for
higher misorientation angles and lower temperatures. The theory can be considered an ex-
tension to S/N contacts involving d-wave superconductors of the original phenomenological
approach by Blonder, Tinkham, and Klapwijk [38] (BTK) and of the subsequent microscopic
advanced version by Arnold [45].

In superconducting quantum point contacts each transport mode contributes one quan-
tized conductance unit to the total conductance and one quantized supercurrent unit to the crit-
ical current, in analogy with normal quantum point contacts. Backscattering processes play
no role in the conductance through quantum point contacts, since the transport through them
is ballistic. The energy separation between the modes becomes very small and the quantum
effects are smeared with increasing point contact width. In the short junction limit (L � ξo)
a stepwise change in the supercurrent and conductance was observed in a mechanically con-
trollable break junction [46]. Similar behavior was also observed in a long junction (L � ξo)
by varying the gate voltage of the split gate in the two-dimensional electron gas (2DEG) of a
S–2DEG–S Josephson junction [47]. The correlation between current and conductance steps
has also been analyzed recently [48].

2.2.5. The Josephson Effect: General Features

The two basic Josephson equations, originally derived for a S1–I–S2 junction with an
insulating barrier, are:

I = Ic sin(φ), (2.8)
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φ̇ = 2eV/h̄, (2.9)

where φ = φ1−φ2 (1 and 2 refer to the left and right electrode, respectively). The microscopic
derivation can be found in [6,8,49]. We have the Josephson effect as long as the macroscopic
wave functions of the two electrodes overlap in the barrier region. Coulomb EC = e2/(2C)
and Josephson EJ = Ic�o/(2πc) energies will be associated with each junction. The behavior
of quantum Josephson junctions, with either a well-defined charge or phase variable, will
depend on the relative magnitude of EC and EJ (phase for EJ � EC, charge for EJ � EC).

The critical current for two generalized d-wave superconductors can be written, on the
basis of general symmetry arguments, in the case of time reversal symmetry, and to lowest
order as [51]:

Ic = (C2,2[cos(2θ1) cos(2θ2)] + S2,2[sin(2θ1) sin(2θ2)] + ...). (2.10)

The first term of expression Eq.(2.10) corresponds to the well known Sigrist–Rice clean limit
formula [50, 52]:

Ic = AS[cos(2θ1)cos(2θ2)]. (2.11)

In the case that S2,2 = −C2,2, the sum of the first two terms leads to the dirty limit expression:

Ic = AS[cos(2θ1 + 2θ2)], (2.12)

when disorder effects and faceting are taken into account. In these expressions a negative su-
percurrent can be translated as a phase shift of π at the junction, but since an arbitrary phase
shift can be added, these π shifts are only meaningful when considered in closed supercon-
ducting loops.

Particular choices of θ1 and θ2 (for instance in 45◦ GB junctions) can also make
the sin(φ) component negligible. Higher order corrections (in particular the second har-
monic) in the current–phase relation may play a more relevant role in these limits: IC0 =
I1 maxϕ {sin ϕ − a sin 2ϕ}. A wide range of issues related to the dependence of the junction
supercurrent on phase have been extensively discussed in the review by Golubov, Kupryanov,
and Ilichev [53].

We complete our discussion of the Josephson effect by presenting the main concepts
behind d-wave induced effects, the presence of bound states, second harmonic in the current–
phase relation, and time reversal symmetry breaking. All these affect the tunneling spectra.
Further details on unusual properties of the Josephson effect associated with unconventional
superconductivity are given in [22].

Andreev Reflection in SNS Junctions

In an S1–N–S2 structure the electron obtains an extra phase of φ1 − φ2 + π (see Fig-
ure 2.6) in each Andreev reflection. The Josephson effect can be reformulated in terms of this
property and of quasiparticle bound states. The spectrum of the elementary excitations of a N
layer in contact with S on both sides is quantized if E < ∆. In particular, the expression of the
bound state energy in a S–N–S one-dimensional system, in the short junction limit L � ξo,
where L is the N thickness and ξo the coherence length, is [42, 43]

E = ±∆o

√

1 − T sin2(φ/2). (2.13)

This quantization implies the presence of a coherent connection between the phases of the
order parameter symmetry in both superconductors. The energy of the junction will depend on
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the relative phase φ, and this dependence remains in force also when the width of the normal
metal layer greatly exceeds the dimension of the Cooper pair [42, 43]. Therefore in multiple
Andreev reflection processes, the electrons/holes cannot escape from the normal metal and
they also do not gain energy, thus generating bound states and the consequent supercurrent.

Andreev levels in Josephson junctions are shown in Figure 2.6. The current can be
obtained via the derivative of the free energy with respect to φ (or similarly through the phase
dispersion of the energy of the Andreev state (dE/dφ)):

IJ = (2π/Φo)(∂F/∂φ), (2.14)

where F is the free energy determined by the Andreev bound states. The Andreev bands E(φ)
have width (dispersion) proportional to the junction transparency T .

The current contribution can also be separated for each 
kF:


JkF = −2e
h

LkF

dF
dφ

∣
∣
∣
∣
kF


kF (2.15)

and, once integrated over all directions, can be decomposed into I⊥, the perpendicular
component passing through the junction (Josephson current), and I||, the component par-
allel to the metal layer. The detailed general expressions can be found in [54, 55]. Higher
order contributions (components carried by the multiple reflection process at the interface)
in the current–phase relation are taken into account. The lowest energy state is given by
I⊥(φ = φo) = 0.
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Figure 2.6. Andreev reflections in S–N–S junctions (a) supercurrent; (b) supercurrent in d-wave junctions.
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We first consider a S–N–D (D is a d-wave superconductor) junction. This simpler
configuration allows the introduction of some basic concepts that will be extended to D–D
junctions. Surprisingly, the component of the current parallel to the surface is not zero for
φo 	= 0 or π . In the total current perpendicular to the interface, all odd harmonics of the gen-
eral expression I (φ) = I1(θ) sin(φ)+ I2(θ) sin(2φ)+· · · cancel, and the Josephson coupling
is reduced. This is because for junctions with angle β between the interface normal and the
d-wave antinode orientation such that 0 < β < π/4, for each bound state that sees the “+”
lobe with phase φd, there is a mirror bound state with orientation −β that sees the “−” lobe of
the OP symmetry with phase φd + π . The leading term in I⊥ is of the order sin(2φ), and the
stable ground state with I⊥ = 0 is at φ = ±π/2. The Josephson current parallel to the inter-
face, however, has contributions from the odd harmonics and the leading order is sin(φ). The
presence of a finite parallel current component in the ground state constitutes a spontaneous
current and is a manifestation of broken time reversal symmetry, since there is a degenerate
state with reversed current (Figure 2.7) [54].

The nature of the Andreev levels changes with the incidence angle θ . For 22.5◦< |θ | <
67.5◦, for instance, mid-gap states are formed at φ=0. Elsewhere no mid-gap states are formed
at φ = 0, and the Andreev levels resemble those formed in a classical Josephson junction

composed of s-wave superconductors (Econv = ∆(0)
√

1 − T (0) sin2(φ/2)). ∆ and T will be
a function of the specific orientation, which will be not indicated in the formulas but can be
inferred from the type of structure [44, 54].
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Figure 2.7. Normalized supercurrent for different angles θ1 and θ2 between the interface normal and the d-wave
antinodes on the two sides of the junction, for temperatures T/Tc = 0.05, a; T/Tc = 0.3, b; and T/Tc = 0.6, c.

Left panel: S–I–D junction; λ0di = 1, where λ0 =
√

2mU0/h̄2, U0 and di are the barrier potential and thickness,
respectively; κ = kF/λ0 = 0.5; with (a) θ2 = 0, (b) θ2 = π/8, (c) θ2 = π/4. Right panel: D–I–D junction with
κ = 0.5; (a) θ2 = 0, λ0di = 0; (b) θ2 = 0, λ0di = 1, θ2 = π/4; (c) θ2 = π/8, λ0di = 1, (d) θ2 = π/4, λ0di = 1.
For a misorientation angle of θ2 = π/4 the contribution of the second harmonic becomes dominant (from Tanaka
and Kashiwaya [44]).
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In D–D junctions the dispersion relation for the Andreev bound states (and the
corresponding angle integrated current–phase relation) is particularly significant for some
specific misorientations, which encompass all practical experimental situations. A compre-
hensive derivation of these expressions with detailed references can be found in the review
by Löfwander, Shumeiko, and Wendin [20]. Here we limit ourselves to some aspects relevant
to experimental results. For a D–D junction with θ1 = π/4, θ2 = π/4 (0-junction with large
IC) and θ1 = π/4, θ2 = −π/4 (π -junction with large IC) orientations the solutions of the
corresponding spectral equations are E± = ±|∆|

√
T cos(φ/2) and E± = ±|∆|

√
T sin(φ/2),

respectively (Figure 2.8).
At zero temperature, only the level below zero energy is populated, while the level

above is empty, and the currents will be jMGS = ekF
h (|∆|

√
T ) sin(φ/2)sgn(cos(φ/2)) in the

first case and π -shifted with respect to the first configuration in the second. If the surface
states at the two sides of the junctions have equal energies, the coupling becomes resonant. In
this resonant case, the splitting of the levels, and as a consequence the width of the Andreev
band, will be particularly large, proportional to T

1/2
, and causes Josephson coupling.

In conclusion this last section summarizes how surfaces may hybridize and form bound
states in superconducting junctions, and Andreev reflection may lead to the formation of zero
energy quasiparticle bound states in d-wave superconductors. The existence of midgap states
enhances the Josephson current at low temperatures.
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Figure 2.8. (a) Andreev band for a D–D junction with θ1 = 0, θ2 = π/4. (b) The angle integrated current–phase
relation and (c) the phase dependence of the surface current density along the junction interfaces calculated for an
injection angle = π/9 and junction transparency T̄ = 0.01 for temperatures T = 0.01Tc and 0.001Tc, respectively
(adapted from Löfwander et al. [20]).
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2.3. Means of Preparing Tunnel Junctions

In contrast with low-temperature superconductors, a clear distinction between tunnel
junctions and structures with direct conduction does not hold for HTS junctions. Except for
a few established cases, such as in scanning tunneling microscopy measurements described
below, the barrier is often intermediate between the tunnel and direct contact limits. We there-
fore will present most of the means for fabricating junctions in high-temperature supercon-
ductors in one section.

2.3.1. Junctions with Single Crystals

The first generation of HTS junctions could not rely on good quality films, and em-
ployed bulk materials as electrodes, either in break junctions, where a bulk piece is broken in
two pieces, possibly at low temperatures; or in point contact junctions, where one electrode is
a sharp tip. This latter technique has been widely employed in the past also for LTS JJs [8,56].
Performances of the very first break and point contact junctions were mostly controlled by the
quality of the single crystals employed, and were always limited by the poor reproducibil-
ity of a natural barrier in intrinsic complex systems such as the HTS. Significant subsequent
achievements were made possible by surface treatment techniques followed by the deposition
of an artificial barrier and a counterelectrode (normal metal or LTS), which avoided the criti-
cal step of the deposition of an artificial barrier. These approaches were successfully applied
to measurements of the energy gap [57] and order parameter symmetry [58–62] in YBCO.

2.3.2. Grain Boundary Junctions

Grain boundary (GB) junctions [19] (a general classification has been given in Figure
2.1e–g) take advantage of a significant reduction of the critical current between two grains
with different orientations, which generates weak coupling and Josephson-like behavior be-
tween the two electrodes. The natural intrinsic barrier avoids problems related to an artificial
barrier. These junctions, despite the limits discussed below, can be considered of good qual-
ity and made several significant experiments possible. Grain boundary critical currents decay
exponentially with increasing misorientation angle, which can be roughly interpreted as due
to an increase of the thickness of the GB barrier with increasing misorientation angle θ . Most
existing data is on YBCO junctions, but similar angular dependencies of the grain boundary
JC have been reported for all other high-Tc materials, [19] including electron doped materials.

The nomenclature used for grain boundary junctions typically distinguishes between
the asymmetric case, where one grain is crystallographically aligned with the boundary (Fig-
ure 2.9a), and the symmetric case, in which the crystallographic misorientations of the two
grains relative to the grain boundary are the same (Figure 2.9b). For example, a 45◦ sym-
metric boundary corresponds to 22.5◦– 22.5◦ misorientations, while an asymmetric boundary
corresponds to 0◦– 45◦. Ninety degree boundaries are particularly relevant limit cases, which
commonly occur in a-axis oriented thin films [63–65].

Bicrystal Junctions

The bicrystal technique, based on the union of two substrates with different crystal
orientations (see Figure 2.9a,b), is the most direct way to create a grain boundary junction
[66–68]. Epitaxial HTS films reproduce the relative orientations of the two substrates. This
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Figure 2.9. Sketch of bicrystal junction in asymmetric (a) and symmetric (b) configuration, and of the grain bound-
ary structures in classical biepitaxial (c) and CeO2 (d)-based out-of-plane biepitaxial junctions. In (d) the two limit
configurations, tilt and twist, are indicated. In (d) the presence of the CeO2 produces an additional 45◦ in-plane
rotation of the YBCO axes with respect to the in-plane directions of the substrate.

is the only way to vary the relative orientations of the electrodes in all possible combinations
[19, 67]. High values of the IC RN parameter have been observed in the less frequently used
c-axis tilt GBs [69].

Bicrystalline substrates of many compounds, including SrTiO3, doped SrTiO3, MgO,
yttria-stabilized zirconia (YSZ), NdGaO3, LaAlO3, silicon, and sapphire have been used
[19, 70, 71]. The other techniques (step, step-edge, and biepitaxial) can overcome the con-
straints imposed by the underlying bi-, tri-, or tetra-crystal substrate, such as where the junc-
tions are placed. Other techniques all employ photolithographic means to define the grain
boundary interfaces. Although they are more flexible in the placement of the junctions for
fundamental studies and more efficient for circuit design, the GBs produced by these other
techniques are limited to particular misorientation angles, and the performances of some of
these junctions may be less reliable.

Biepitaxial Junctions

The biepitaxial technique uses changes of the orientation of HTS films induced by epi-
taxial growth on structured template layers. In the original technique [72], a MgO template
layer on a r -plane sapphire produces an in-plane rotation by 45◦ of a SrTiO3/YBCO bilayer
compared to an identical bilayer grown directly on the sapphire (the grain boundary has a 45◦
tilt around the [001] direction) (Figure 2.9c). This junction makes use of the epitaxial rela-
tionships: SrTiO3 [110] || Al2O3 [1120] and SrTiO3 [100] || MgO [100] || Al2O3 [1110] [73].
Subsequent works employed various materials combinations to induce variations of the in-
plane orientation [74].
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More recently the biepitaxial technique has been extended to novel configurations, in
which one of the electrodes does not grow along the c-axis orientation [75–77]. A specific fea-
ture of these structures is the use of a (110)-oriented MgO or CeO2 (Figure 2.9d) buffer layer,
deposited on (110) SrTiO3 substrates. YBCO grows along the [001] direction on the MgO
and on the CeO2 seed layers, while it grows along the [103]/[013] direction on SrTiO3 sub-
strates. The presence of the CeO2 produces an additional 45◦ in-plane rotation of the YBCO
axes with respect to the in-plane directions of the substrate (Figure 2.9d). As a consequence,
the grain boundaries are the product of two 45◦ rotations, a first one around the c-axis, and
a second one around the b-axis. This configuration produces the desired 45◦ misorientation
between the two electrodes to enhance d-wave order parameter effects.

The biepitaxial grain boundaries have a lower transmission probability than other types
of grain boundaries, and are closer to the tunnel-limit. This is probably the key feature which
lead to the first successful observation of the angular dependence of IC in all HTS junctions
[76] (see Figure 2.25) and later to the first observation of macroscopic quantum tunneling
(MQT) (see Figure 2.29) and energy level quantization in high-Tc Josephson junctions [78].

Step-Edge Junctions

Grain boundaries are also nucleated by growing a HTS film over a suitable step pat-
terned into the substrate [79–84]. The resulting structure will strongly depend on the mor-
phology of the step [83,85]. However, one grain boundary is typically nucleated at the bottom
of the step, and another at its top, and these are in series electrically. The step-edge junctions
can be positioned anywhere on the substrate, being defined by photolithography (in the most
advanced by using an amorphous carbon mask and ion-beam etching or reactive ion-etching).
The step height (200–300 nm) is usually larger than the film thickness; both the step angle
and the material substrate play crucial roles. Better performances are achieved for high step
angles. Various detailed studies on the correlation between YBCO step-edge junction charac-
teristics with microstructure have been carried out [83, 84]. Problems of reproducibility are
severe constraints for the use of these junctions for applications.

Electron Beam Junctions

Josephson junctions are also produced by weakening superconducting properties in
narrow microbridges. Different sources of irradiation (electron beam in particular) [86–89]
have been used. In HTS irradiation causes displacement defects, which act as strong scatter-
ing centers in the Cu–O planes and are primarily oxygen defects for energies of the order
of 100 keV. At higher irradiation energy (>300 keV) Cu defects may be created as well.
Decreasing the carrier concentration (done by removing chain-oxygens for instance at lower
irradiation energies) decreases the doping level, which lowers Tc. The barrier region, which is
the irradiated region, is never exposed to air or broken in this technique.

Focused electron beam irradiation [90, 91] is also used to modify the properties of the
GB Josephson junctions. In this case the situation is further complicated by the presence of
a grain boundary, which acts as a sink for the migration of defects, affecting the kinetics of
their accumulation.

Electron irradiation changes the current–voltage (I –V ) characteristics, and presumably
the barrier as well as the microstructure of the grain boundary by modifying the oxygen con-
tent in the vicinity of such interfaces. These changes can be controlled by varying the electron
dose and partially restored by isothermal annealing of the junctions.
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Other examples of a barrier that can be controllably adjusted “a posteriori” come from
proton and light irradiation [92–95], causing a decrease of IC and increase in RN similarly
to e-beam irradiation. Results have been interpreted in terms of a tunneling barrier height
increasing with fluence. Ion irradiation (1 MeV H+) has been used to remove Andreev bound
states in tunnel YBCO/Pb junctions [96].

2.3.3. Junctions with Artificial Barriers

While grain boundary junctions are only based on thin films, junctions with artificial
barriers have been realized both on thin films and single crystals, as mentioned previously. It
is obvious that junctions based on single crystals have a scientific value only for fundamental
experiments. For instance, the first YBCO (single crystal)–insulator–Pb (Nb) junctions [57–
59] have been promptly replaced by a second generation based on thin-films [97,98]. Barriers
have been fabricated through different methods.

Noble metals and oxide-like materials are the most commonly used barriers. Different
geometries and counterelectrodes are used to take advantage of the various features (longer
coherence length, anisotropy,...). Ramp-type junctions, for instance, allow for the use of well-
established c-axis HTS thin film technology while allowing the main current to flow in the a–b
planes. Optimizing interface resistance has basically driven the research activities on oxide-
barriers. Interface resistance might be due to mismatches in carrier density, lattice constant,
thermal expansion, and dimensionality [99]. This was the impetus for strategies to reduce
lattice mismatch, including matching expansion coefficients in the c-direction (PrBaCuO and
Pr-doped YBCO), increasing the carrier density and driving YBCO into the over-doped region
(Ca-doped YBCO), reducing the carrier concentration by cation substitution on lattice sites
far from the CuO2 planes (YBa2(Cu1−x Cox )3O7−x ), and replacing Cu atoms directly on the
CuO2 plane layers using for example Zn or Ni [99].

Noble Metal Barriers

Au [98, 101–105] and Ag [106] have been used as a barrier for junctions based both on
single crystals and thin films because of their good compatibility with HTS. Various coun-
terelectrodes (both LTS and HTS) and configurations have been used with the high-Tc super-
conducting material as a base electrode. YBCO S–N–S junctions in a step-edge geometry, for
instance, have been fabricated by special inhibiting layers introduced to ensure proper sepa-
ration of the superconducting electrodes, with the final junction conductance through a gold
barrier. Focused ion beam (FIB) has also been used to define narrow trenches where YBCO
films break naturally [107].

Junctions employing a LTS counterelectrode often perform better than those employing
HTS thin films for both electrodes, but have a limited working temperature range. Examples
are YBCO–Au–Nb (ramp-type) [98], YBCO–Ag–Pb [108, 109], YBCO–Au–Pb [110], and
YBCO–Ag–PbIn [111, 112] junctions.

A ramp-edge junction technology has been introduced [98, 100] (Figure 2.10e) that
allows the photolithographic patterning of high quality junctions. In this technique, ramp
edges are produced in [001] oriented, pulse laser deposited YBCO films using photolitho-
graphy and Ar ion etching. The devices are returned to the deposition chamber, etched and
cleaned, and then thin layers of YBCO and Au are deposited by pulsed laser deposition in
situ. The junctions are completed with Nb. This process eliminates a degraded layer of YBCO
next to the Au, improving the junction characteristics. This technology has been used to make
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Figure 2.10. (a) and (b) Step junctions for high α angles, (c) and (d) SNS coplanar junctions; in (c) the barrier is
predeposited or occurs through a suitable substrate while in (d) the normal metal barrier is deposited in a narrow
trench; (e) SNS ramp-edge junction: in improved versions a degraded layer of YBCO next to the Au is eliminated
through suitable surface treatment before in situ deposition of the Au barrier and Nb counterelectrode [98, 100].

junctions with intentional facets that reproduce the unusual magnetic interference patterns
seen in asymmetric 0– 45o grain boundary junctions, and to make very large arrays of π -rings
[98,113,114]. The excellent properties of these junctions will be discussed in various sections
below.

Perovskite and Layered Materials Barriers

Comparative studies between cubic perovskite barrier materials CaRuO3, SrRuO3
[115], and La0.5Sr0.5CoO3 [99], and layered materials such as Y0.7Ca0.3Ba2Cu3O7−x ,
YBa2Cu2.79Co0.21O7−x , and La1.4Sr0.6CuO4 [116] have been carried out in step-edge geom-
etry junctions. Oxygen deficiency/disorder has also been considered as the source of the inter-
face resistance [117]. As a matter of fact for the cubic perovskite barriers, characterized by a
large difference in thermal expansion coefficients with respect to YBCO, higher values of the
normal state resistance have been measured (RN A of the order of 10−8� cm2), as compared
with the layered materials (RN A of the order of 10−10� cm2). Co-doped and Ca-doped YBCO
are significant terms of comparison, being an overdoped (underdoped) version of YBCO with
larger (smaller) carrier density, lower Tc, and smaller (larger) anisotropy than YBCO, respec-
tively. Proximity effects have been shown to occur for both these barriers [16, 99].

PrBaCuO and Pr-doped YBCO based oxides (Y0.3Pr0.7Ba2Cu3O7−x , Y0.6Pr0.4Ba2
Cu3O7−x ) have also been widely employed as a barrier from the early stages in different
geometries [118–122], also as a function of Ga doping [123], with RN A of the order of 10−7–
10−8� cm2 [124]. Barriers are typically varied between 6 and 30 nm producing different
values of JC. The IC RN has been found to scale nearly linearly with barrier thickness, ranging
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from 0.8 to 5 mV. Ga-doped junctions appear to be less sensitive to variations in the barrier
thickness [125].

Additional transport issues can be investigated by exploiting barrier properties. For in-
stance, bulk PBCO is reported to behave like a variable-range hopping conductor, caused
by the relatively high density of localized states, and PBCO barriers may allow the study of
effects of two localized states in an inelastic tunneling process [126, 127]. A-axis YBCO–
PBCO–YBCO junctions (meant to exploit the longer in-plane coherence lengths) have been
also realized on (100) LaSrGaO4 [128] and vicinal (001) LaAlO3–SrAl0.5Ta0.5O3 substrates
[129], with spreads in IC and RN of 11% and 8.8%, respectively. Josephson behavior has been
claimed to occur for barriers 80 nm thick, and coherence lengths of the order of 20 nm have
been found [128].

2.3.4. Interface-Engineered Junctions

Interface-engineered junctions have a thin barrier layer, typically on the ramp edges,
made by damaging the YBCO base electrode surface using ion bombardment [130,132]. Dur-
ing the counterelectrode deposition process the surface is then recrystallized. This technique
has also been applied to produce an all YBCO c-axis trilayer [130–133].

A recent comprehensive study on good quality interface-engineered junctions, with
magnetic modulation of the critical current above 80% and critical current density ranging
from 102 to 106 A/cm2 at T = 4.2 K, suggests that they should be regarded as an array of
microscopic SNS contacts embedded in an insulating barrier with random orientation [133].
This filamentary structure prefers special orientations, inhibiting effects particular to d-wave
pairing symmetry.

2.3.5. Junctions with HTS Rather than YBCO

Although most of the results presented above refer to junctions made with YBCO, other
superconductors have also been used because of their special properties. For instance, Bi
and Ta based compounds, with their large anisotropy, are preferred for intrinsic junctions.
Ca-doped YBCO junctions exploit the over-doping property of this compound [134], while
electron-doped compounds could illuminate novel physical aspects. Most HTS compounds
have dominant d-wave order parameter symmetry; the presence of additional subdominant
components may depend on the material and the interface geometry.

La1.85Sr0.15CuO4-Based Trilayer with One-Unit-Cell-Thick Barrier

The most significant step toward the goal of an all-HTS trilayer with an insulating bar-
rier is the structure composed of La1.85Sr0.15CuO4 (LSCO) electrodes separated by a one-unit-
cell-thick La2CuO4 (LCO) barrier [135]. This achievement can be considered the follow-up
of an intense research activity started years ago on BiSrCaCuO (2212) [136, 137].

Bozovic et al. [138] claimed a “giant” proximity effect in LSCO junctions from ob-
servations of Josephson current for LCO barrier thicknesses ranging from 1 to 15 unit cells
(up to 20 nm), much thicker than the coherence and mean free path lengths. This cannot be
understood using conventional theory. They suggested that the supercurrent was mediated by
resonant tunneling through a series of energy-aligned states within the barrier layer [138].
These experiments used the conversion of the junction from S–N–S to S–I–S through an-
nealing at low temperature in vacuum (which drives LCO insulating leaving LSCO almost
intact) [138].
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A long-range or anomalous proximity effect has also been discussed in other types of
junctions (see for instance the references in [138]) and within the context of a quantum phase
transition between the low carrier-concentration insulating antiferromagnetic phase and the
high carrier concentration metallic and superconducting phase [139].

Electron Doped HTS

Bicrystal junctions are the most common type of junction involving electron-doped
cuprate superconductors. In the electron doped La1.85Sr0.14CuO4 compound [140], barriers
are on average less transmissive than those on YBCO bicrystals, with JC = 6 × 103 A/cm2

at T = 4.2 K, RN A = 5 × 10−8 A/cm2, for a misorientation angle of 24◦; JC = 3 A/cm2 at
T = 4.2 K, RN A = 10−6 A/cm2, for a misorientation angle of 36◦.

The same technology as for YBCO has been used to produce Nd2−x Cex CuO4−y
(NCCO) zig-zag ramp-type junctions. Both optimally doped (x = 0.15) and overdoped
(x = 0.165) samples were prepared with a bilayer of 150 nm (001)-oriented NCCO and
35 SrTiO3 and with 160 nm Nb top electrode. A 12-nm NCCO interlayer and a 12-nm Au
barrier were used as a barrier. In the optimally doped case, JC and IC RN values of 30 A/cm2

and 30 µV at T = 4.2 K, respectively, were achieved. As a consequence the Josephson pene-
tration depth λJ (see section 2.4) was about 65 µm, comparable with the zig-zag facet length.
RN A was about 10−6 �/cm2. Anomalous controllable magnetic patterns were observed, giv-
ing evidence of a predominant d-wave O P symmetry, without any change into s-wave at low
temperatures [141].

Ca and Co Doped YBCO: Insights into the Overdoped Regime

An enhancement of the critical current in bicrystal junctions has been achieved by over-
doping the superconductor [142] and in particular through Ca and Co doped YBCO [143,144].
Ca and Co doped YBCO junctions have given the best results in enhancing JC. JC has been
studied as a function of Ca concentration, giving evidence of optimum doping of x = 0.3 (for
instance for a grain boundary angle of 24◦ JC=7 × 106 A/cm2 at T =4.2 K, about one order of
magnitude higher than the nondoped YBCO case) [143].

Ultra-Thin Films and Superlattices

Bicrystal junctions based on ultra-thin films have been realized. Josephson junctions
composed of only a few superconducting CuO2 planes (six layers in particular) have been
realized by exploiting ultrathin [Ba0.9Nd0.1CuO2+x ]5/[CaCuO2]2/[Ba0.9Nd0.1CuO2+x ]5/
[CaCuO2]2/[Ba0.9Nd0.1CuO2+x ]5 (CBCO) structures (5/2/5/2/5). The CBCO film is only
8 nm thick. The Josephson effect was measured even in junctions 5 mm wide [145].

Intrinsic Stacked Junctions

The strongly anisotropic, layered crystal structure of the cuprates allows intrinsic
stacked junctions, which are fabricated from bulk single crystals (Figure 2.11). The supercur-
rent in these junctions is mostly along the c-axis. Most successful results have been achieved
in Bi2Sr2CaCu2O8 [146] and Tl2Ba2Ca2Cu3O10 single crystals and thin films [147, 148]. In
a-axis oriented YBCO thin films only flux flow behavior has been observed [147].
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Photoresist
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Figure 2.11. An example of intrinsic stacked junctions. The mesas with c-axis transport are defined through
mechanical etching.

Josephson coupling between CuO2 double layers has been proved, and most of the ma-
terials behaved like stacks of S–I–S JJs with effective barriers of the order of the separation
of the CuO2 double layers (1.5 nm) (JC typically 103 a/cm2). The I –V curves exhibited large
hysteresis and multiple branches, indicative of a series connection of highly capacitive junc-
tions. Practical realizations (see Figure 2.11) of intrinsic stacked junctions have been designed
to avoid heating effects in principle [17]. However, at high voltages caution is required when
extracting information from the current–voltage characteristics because of possible unavoid-
able heating problems. Recently macroscopic quantum tunneling has been claimed to occur
in BiSCCO intrinsic junctions [149].

2.4. π -Rings and 0 − π -Junctions

Bulaevskii et al. [150] proposed in 1977 that a superconducting loop including a Joseph-
son junction could have an intrinsic π -phase shift in the absence of an externally applied field
or current. Such a ring is now termed a π -ring. They speculated that such a π -phase shift
could result from spin-flip assisted tunneling within the tunnel junction itself. This process
has not yet been observed experimentally. However, three other mechanisms for introducing
a π -phase shift into a superconducting ring have been demonstrated (1) by taking advantage
of the momentum dependence of the pairing wavefunction in unconventional superconduc-
tors [50, 52, 151, 152], (2) by introducing a π -phase shift by tunneling through ferromagnetic
layers [153–155], and (3) by running supercurrent through two closely spaced electrodes
along the ring [156–158]. In this section we will focus on the first route, using unconven-
tional superconductors, for producing π -rings. Geshkenbein, Larkin, and Barone suggested
using the properties of π -rings to test for unconventional pairing symmetry in the heavy
fermion superconductors [151, 152]. Sigrist and Rice [50, 52, 159] proposed that the para-
magnetic Meissner effect [160–165] which occurred in ceramic samples of Bi2Sr2CaCu2O8
was due to naturally occurring π -rings due to Josephson contacts between the grains, and sug-
gested using a controlled geometry as a test of d-wave superconductivity in the high-Tc cuprate
superconductors.
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The controlled geometries that have been used for observing the effects of an intrin-
sic π -shift in a superconducting ring can be divided into two classes. In the first, the 0–π
junction illustrated in Figure 2.12a, one section of a Josephson junction has an intrinsic π
phase shift relative to the other. For the purposes of discussion we take a geometry in which
the junction normal is in the z-direction, the junction has a width W in the x-direction, and
the junction depth in the y-direction is small compared with the Josephson penetration depth
λJ = √

h̄/2eµ0d jc, where d is the spacing between the superconducting faces making up the
junction, and jc is the Josephson critical current per area of the junction. If the x-dependent
intrinsic phase drop is θ(x), which can take the values 0 or π , the local supercurrent density
across the junction follows the relation js = jc sin(φ+θ), and the quantum mechanical phase
difference across the junction φ(x) follows the Sine–Gordon relation

∂2φ

∂x2 = 1
λ2

J
sin (φ(x)+ θ(x)). (2.16)

Analytical [166–169] and numerical [170–174] solutions of Eq. (2.16) have been published.
In the “short-junction” limit W � λJ, ∂2φ/dx2 → 0, and φ(x) = φ0+2πΦx/(Φ0W ), where
φ0 is a constant and Φ is the total magnetic flux threading the junction in the y-direction. Then
for equal lengths of 0- and π intrinsic phase shifts in the junction the critical current becomes

Ic(Φ) = I0| sin2(πΦ/2Φ0)/(πΦ/2Φ0)|, 0−π junction (2.17)

with a minimum at zero applied flux (solid line in Figure 2.12b). This is to be compared with
the expression for a conventional junction in the short junction limit:

Ic(Φ) = I0| sin(πΦ/Φ0)/(πΦ/Φ0)|, 0−junction (2.18)

which has a maximum at zero applied flux (dashed line in Figure 2.12b). As the width W of
the junction becomes comparable to λJ, the amplitude of the oscillations in the critical current
with applied field becomes smaller [170, 171].

In the opposite limit, in which W � λJ, a 0−π junction spontaneously generates a
Josephson vortex at the intersection between the regions with 0 and π intrinsic phase shift.
This vortex generates Φ0/2 = h/4e (N = 1/2) total flux threading through the junction in
the y-direction. Junctions of intermediate length W ∼ λJ spontaneously generate “semi-
fluxons” with total flux less than Φ0/2 (Figure 2.12) [168, 172–174]. Josephson semifluxons
with higher quantum number (3/2, 5/2, etc.) are in principle allowed, but are energetically
unstable to the formation of an N = 1/2 Josephson vortex at the 0−π intersection, plus integer
Josephson vortices elsewhere in the junction [167, 175].

A second geometry for phase sensitive tests of the pairing symmetry in unconventional
superconductors is the superconducting quantum interference device (SQUID), a supercon-
ducting ring with at least one Josephson junction, with in general an intrinsic phase shift ε
upon circling the ring. Consider a symmetric two-junction SQUID with junction critical cur-
rents Ic, phase drops φ1, φ2 across the two junctions, and total inductance L , with an intrinsic
phase shift of π (Figure 2.12d). The total current IB through the SQUID is

IB = Ic(sin(φ1)+ sin(φ2)). (2.19)

The requirement of a single valued wave function leads to the condition

2πN = π + φ2 − φ1 + β(sinφ1 − sinφ2)+ 2πΦe/Φ0, (2.20)
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Figure 2.12. Two basic geometries and techniques for phase sensitive tests of pairing symmetry in unconventional
superconductors. (a) Depicts a 0–π junction. The junction critical current as a function of field for a symmetric 0–π
junction in the short junction limit (b, solid line) has a minimum at zero field. Also shown is the analogous curve
for a conventional junction (b, dashed line). The spontaneously generated magnetic flux in a symmetric 0–π junction
is plotted in (c) as a function of the total width of the junction W divided by the Josephson penetration depth λJ .
(d) Depicts a two-junction SQUID with an intrinsic π phase shift. The critical current of a symmetric, two-junction
π -SQUID in the limit 2πL I0 � Φ0 (e, solid line), where L is the total SQUID inductance and I0 is the single junction
critical current, is shifted by Φ0/2 relative to that for a 0-SQUID in the same limit (e, dashed line). The spontaneously
generated flux in a symmetric, two-junction π -SQUID is plotted in (f ) as a function of β = 2πL I0/�0.

where N is an integer, β = 2πL Ic/Φ0 and Φe is the externally applied flux through the
SQUID. Plotted as the solid line in Figure 2.12e is the critical current, the maximum allowed
supercurrent, through such a symmetric π -SQUID under the conditions of Eqs. (2.19) and
(2.20). The dashed line in Figure 2.12e is the critical current for a conventional 0-SQUID.
The dependence of the critical current on applied field is shifted by one half-period Φ0/2 for
the π -SQUID relative to that for the 0-SQUID. Asymmetric π -SQUIDs have been considered
in [10, 176].
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Pairing symmetry experiments on the cuprate superconductors using 0–π junctions and
π -SQUIDs have been summarized in [10, 11]. The first such experiments were by Wollman
et al. [58,59]. They made π -rings and 0–π -junctions between single crystals of YBa2CuO7−δ
(YBCO) and Pb, a conventional superconductor. They observed a phase shift of π in the
dependence of the critical currents of their π -SQUIDs on applied flux, relative to that ex-
pected for a conventional SQUID, and they observed a minimum in the critical current of
their 0–π junctions at zero applied field. Brawner and Ott [60] formed π -SQUIDs using Nb
point contacts to single crystals of Nb and also saw phase shifts in the magnetic interference
patterns. Both the Wollman et al. and the Brawner and Ott experiments were in the limits
β � 1 or W � λJ: the spontaneous currents were small.

These early phase sensitive pairing symmetry experiments had characteristics that dif-
fered from the ideal behaviors displayed in Figure 2.12 because of asymmetries in the junc-
tion critical currents, inhomogeneities in the junction critical current densities, and problems
of trapped flux. However, it is now possible to make 0–π junctions and π -rings using the
cuprate superconductors without these complications. An example [177] is shown in Figure
2.13. Here optimally doped YBCO was epitaxially deposited by laser deposition on bi- and
quad-crystals of SrTiO3 in geometries chosen to form 0- (Figure 2.13a–c) and π -SQUIDs
(Figure 2.13d–f) for a predominantly dx2−y2 superconductor. The SQUIDs were designed to
have small β factors, so that asymmetries in the junction critical currents would not result in

(a)

(b)

(c) (f)

(e)

(d)

15
0.4

0.2

0.0

−0.2

−0.4

10 µm 10 µm

0

0 0

0 0

0 π

π

10

5

0

−5

−10

−15

15

10

5

0

−5

−10

−15
−6 −4 −2 0 2 4 6

−80 −60 −40 −20 0 20
H (µT)

H (µT)
−6 −4 −2 0 2 4 6

H (µT)

I c (
µA

)

I c (
µA

)

0.4

0.2

0.0

−0.2

−0.4

I c (
µA

)

I c (
µA

)

40 60 80 −80 −60 −40 −20 0 20
H (µT)

40 60 80

Figure 2.13. Geometry (a,d) and measured critical currents (b,c,e,f) for all high-Tc YBCO 0- (a–c) and π -SQUIDs
(d–f). The 0-SQUID shows a maximum, while the π -SQUID shows a minimum, in the critical current at zero applied
field, as expected for predominantly dx2−y2 pairing symmetry (adapted from Schulz et al. [177]).
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unintentional shifts in the magnetic interference patterns, and relatively large junction areas,
so that stray magnetic fields could be detected from the single junction interference char-
acteristics, which should be symmetric in field in the absence of a stray field. The junction
interference characteristics, the “envelopes” in Figure 2.13 b,e, are quite symmetric, indicat-
ing small stray fields, and the SQUID critical currents have a minimum for the π -SQUID
(Figure 2.13c), and a maximum for the 0-SQUID (Figure 2.13f), as expected if YBCO is a
predominantly dx2−y2 superconductor.

The first experiments to detect the spontaneous flux predicted for π -SQUIDs and 0–π
junctions fabricated from cuprate superconductors were by Tsuei et al. [11]. They formed
π -rings [178] and 0–π junctions [179] using a tricrystal geometry with grain boundary weak
links. This allowed very high junction critical currents, with high β factors and short λJ s,
so that the spontaneous magnetizations were very close to Φ0/2. These spontaneous currents
were imaged with a scanning SQUID microscope [180–183]. Tsuei and Kirtley used tricrys-
tal pairing symmetry tests to infer that the optimally hole doped cuprates YBCO [178, 184],
Tl2Ba2CuO6+δ [185, 186], and Bi2Sr2CaCu2O8+δ [187], and the optimally electron doped
cuprates Nd1.85Ce0.15CuO4−δ and Pr1.85Ce0.15CuO4−δ [188] have predominantly dx2−y2 pair-
ing symmetry, and that this symmetry persists in the hole-doped cuprates over a broad
doping range [175]. They also used a variable sample temperature scanning SQUID micro-
scope [189–191] to image the Josephson vortex at the tricrystal point in optimally doped
YBCO as a function of temperature, and concluded that, within experimental error, it had half
of the superconducting flux quantum of flux from 0.5 K to within a few degrees of Tc [192].
The conclusion of predominantly dx2−y2 pairing symmetry in optimally electron doped super-
conductors was confirmed by Chesca et al. using grain boundary π -SQUID interferometers
fabricated from La2−x Cex CuO4−y [193] and Ariando et al., using Nd1.85Ce0.15CuO4−y /Nb
ramp edge zigzag junctions [141]. Ariando et al. also demonstrated predominantly dx2−y2

pairing symmetry in overdoped Nd1.835Ce0.165CuO4−y /Nb zigzag junctions [141]. The ques-
tion of the pairing symmetry of the electron-doped superconductors will be discussed further
in Section 2.5.4. Mathai et al. [194, 195] made π -SQUIDs between thin films of YBCO and
Pb, also imaging the resultant spontaneous currents with a SQUID microscope. The Mathai
et al., SQUIDs however, had β factors close to 1, so that the spontaneous currents were small.
They used a sensor SQUID bias reversing scheme to distinguish between 0- and π -SQUIDs.
Tricrystal geometries were also used for interferometry phase sensitive pairing symmetry
experiments [196], and to reproduce the magnetometry experiments of Tsuei and Kirtley
[197]. Predominantly d-wave pairing symmetry could also be inferred from the character-
istics of asymmetric 0–45o c-axis grain boundary junctions, which have rapidly alternating
0- and π -junctions due to facetting. Such facetting results in unusual magnetic interference
patterns [198, 199] and spontaneous flux generation in the grain boundaries [200]. The rapid
alternation in sign of the local Josephson critical current due to facetting can result in “splin-
ter” Josephson fluxons with flux a fraction of the conventional flux quantum [201].

Early π -rings and 0–π junctions were made with techniques that would be difficult to
use to place several devices on the same substrate. However, recently a ramp-edge junction
technology has been introduced [98,100] that allows the photolithographic patterning of high
quality junctions.

This technology has been used to make junctions with intentional facets [98] that re-
produce the unusual magnetic interference patterns seen in asymmetric 0–45o grain bound-
ary junctions [198–200], and to make very large arrays of π -rings [113, 114], A particularly
striking example of the spontaneous generation of half-flux quantum vortices in 0–π junc-
tions is displayed in Figure 2.14, which shows scanning SQUID microscope images of such
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(a) (b)

Figure 2.14. Schematics (insets) and scanning SQUID microscope images of facetted YBCO–Nb junctions. There
is an intrinsic π -shift in the superconducting phase normal to the junction interface at each facet corner, which causes
the spontaneous generation of a half-flux quantum vortex . The half-fluxons order strongly antiferromagnetically
for the electrically connected junction (a), but weakly for electrically disconnected junctions (b) (from Hilgenkamp
et al. [114]).

facetted YBCO-Nb junctions [113, 114]. A half-flux quantum vortex is generated at each
facet corner as the sample is cooled through the Nb superconducting transition temperature.
The directions of circulation of the spontaneous supercurrents order strongly antiferromag-
netically when the facet corners are electrically connected (Figure 2.14a), but only weakly
when the facet corners are electrically disconnected (Figure 2.14b). Two-dimensional arrays
of electrically disconnected, photolithographically patterned π -rings show short range anti-
ferromagnetic correlations when cooled in zero field, but do not show ordering beyond a few
lattice spacings [113, 114].

2.5. Tunneling Spectroscopy

2.5.1. Superconducting Gap

General Features

Several earlier reviews of tunneling measurements of the superconducting gap in
the cuprates exist [13–15, 21]. There is now a consensus that the superconducting gap in
many optimally doped high-Tc cuprates at low temperatures and high tunneling resistances
is consistent with predominantly dx2−y2 pairing symmetry. However, the interpretation of
tunneling spectra in the high-Tc superconductors is more complex than for conventional
superconductors. A general expression for quasiparticle tunneling across a normal metal–
insulator–superconductor (NIS) junction at zero temperature in the tunneling (low interface
transmission) limit can be written as [202]:

I = ±2πe
∑

k,q

|Tkq|2[1 ∓ ξk/Ek]δ(ξq − eV ± Ek)θ(|eV | − Ek), (2.21)

where I is the current per junction area, V is the voltage, the ± sign indicates the polarity
of the S relative to the N, and k and q label the wave vectors for S and N, respectively.
The step function θ represents the Fermi function at zero temperature and the δ function
reflects energy conservation (elastic tunneling). Ek and ξk are the quasiparticle and normal
state dispersions in the S electrode, respectively. A free-electron dispersion ξq = h̄2q2/2m
can be assumed for the normal metal. If we set the matrix elements |Tkq|2= a constant, set the



Tunneling Measurements of the Cuprate Superconductors 45

coherence factor 1∓ξk/Ek=1 (electron–hole symmetry), use the standard BCS model relating
the superconductor gap function ∆k to the S electrode dispersions, E2

k = ξ2
k + ∆2

k, and take
∆k = ∆, Eq. (2.21) reduces to the Giaever expression for the normalized conductance [2]

(dI/dV )s
(dI/dV )n

= Ns(eV ), (2.22)

with the BCS quasiparticle density of states given by

Ns(E) = |E |/
√

E2 −∆2. (2.23)

However, modeling of the tunneling conductance in the gap region of the cuprate supercon-
ductors must in general include the effects of unconventional pairing symmetry, band struc-
ture, and energy and momentum dependent matrix elements, and the full expression Eq. (2.21)
should be used.

An example of an early tunneling measurement of the energy gap in YBCO is shown
in Figure 2.15. In these experiments, single crystals of optimally doped YBCO were lightly
etched, after which elemental metals were deposited to complete tunnel junctions. Repro-
ducible results were obtained, with an appreciable apparent density of states at zero bias,
a linear background conductance at high voltages, and a complicated gap structure. Al-
though the linear conductance background was originally interpreted as a density of states
effect [57, 203], it often does not appear (see for example the STM measurements in Figure
2.18) and may in fact be representative of the tunneling process itself. We will discuss the
linear conductance background in Section 2.5.3.
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Figure 2.16. (a) Experimental values of the normalized conductance vs voltages of a planar YBCO–Pb tunnel
junction at different temperatures (10, 50, 82 K) [57]. (b) Computed values of the normalized conductance vs. voltage
at the same temperatures as (a), modeling the cuprate electrode as a weakly coupled superconducting-normal metal
bilayer (from Di Chiara et al. [204]).

Some of the properties of the early tunneling measurements, such as excess conductance
at zero bias, and smeared out gap features, can be explained by the influence of proximity
effects in the transport properties [204, 205]. An example is shown in Figure 2.16, which
compares experimental data from [57] with calculations modeling the high critical tempera-
ture electrode as a weakly coupled superconducting–normal metal bilayer.

However, nearly ideal characteristics have been obtained from tunneling into the cup-
rates using a number of different techniques, if the properties expected for tunneling into a
dx2−y2 superconductor are taken into account. For example, Figure 2.17 shows data for point-
contact SIN tunneling into a Tl-2201 single crystal in the c-axis direction [206]. The ex-
perimental data has been normalized by dividing out an estimated normal state conductance
background. The solid line is a fit to the data using an empirical expression for the tunneling
density of states

Ns(E) =
∫

f (θ)
E − iΓ

√
(E − iΓ )2 −∆(θ)2

dθ, (2.24)

where Γ is a lifetime broadening function, ∆(θ) = ∆0 cos(2θ) is the dx2−y2 gap symmetry,
and f (θ) = 1+0.4 cos(4θ) is an empirical function to account for the momentum dependence
of the matrix elements in the c-axis direction. In this fit ∆0 = 25 meV and Γ = 1 meV.
Although this very simple functional form provides a good fit to the data, the same workers
also fit their tunneling data, without normalizing out the normal state conductance, using
models also including the effects of band structure, group velocity, and tunneling direction
[206, 207].
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Figure 2.17. Point-contact SIN tunneling conductance for an optimally doped Tl-2201 single crystal at 4.2 K, nor-
malized to an estimated normal state conductance line (open circles). The solid line is a fit assuming dx2−y2 pairing
symmetry (from Ozyuzer et al. [206]).

A third example (Figure 2.18) is from Hoogenboom et al. [208]. The experimental data
is taken from STM measurements of single crystals of Bi-2212 with various doping levels and
Tcs. The modeling is as follows: Hoogenboom et al. write the tunneling conductance as

dI
dV

∝ −
∫

dω
∑

k,n

|Tk|2 An(k, w) f ′(ω − eV ), (2.25)

where f is the Fermi function and An is the spectral function in the sample, with n labeling
the electronic bands. The spectral function (assumed n independent) is given by

A(k, w) = − 1
π

Im
[

1
ω + iΓ − ξk −�(k, ω)

]

. (2.26)

For the modeling of Figure 2.18, the lifetime broadening Γ =1 meV, and the self-energy
�(k, ω) is that of the conventional dx2−y2 BCS model:

�(k, ω) = |∆k|2
ω + iΓ + ξk

, (2.27)

with ∆k = ∆0(cos kx − cos ky)/2. The doping dependent band bonding (B) and antibonding
(A) dispersions are given by

ξ A,B
k = −2t (cos kx + cos ky)+ 4t ′ cos kx cos ky − 2t ′′(cos 2kx + cos 2ky)

±1
4

t⊥(cos kx − cos ky)
2 +∆ε. (2.28)

Here the interlayer coupling is set by t⊥. The doping dependent parameters t, t ′, t ′′, t⊥, and
∆ε were derived from ARPES measurements. For the modeling of Figure 2.18 the tunneling
matrix elements were taken to be momentum independent (Tk = T0). There is remarkably
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Figure 2.18. STM tunneling data from a series of single crystal Bi-2212 samples with varying doping levels.
The lines are modeling using the conventional BCS model, a d-wave superconducting gap, and an isotropic matrix
element, but with band structure parameters derived from photoemission measurements. The contributions from two
bands (labeled A and B) are shown separately, and their sum should be compared to the experimental data (circles)
(from Hoogenboom et al. [208]).

good agreement between this model and experiment, aside from the sharp peak predicted
by the model at negative voltages derived from the B band, and the lack of an undershoot
just below the gap edge at negative voltages. This second feature, which was modeled by
Hoogenboom et al. including interaction with a bosonic mode at wavevector (π, π) and energy
Ω = 5.4kbTc, will be discussed in more detail in Section 2.5.6.

A number of workers have extended the Blonder, Tinkham, and Klapwijk (BTK) model
[38] (see Section 2.2.4) treatment of transport through superconducting contacts to the case
of unconventional pairing symmetry [41, 209–214]. Hasselbach and Kirtley simply averaged
the BTK expressions over a gap distribution appropriate for the unconventional pairing sym-
metry of URu2Si2 [209]. Hu [41] and Tanaka and Kashiwaya [211, 212] extended the BTK
model to account explicitly for the phases of the propagating charges. Wei et al. [215] further
extended the modeling to sum over a realistic band structure, and to account for the effects
of a directional transmission by including a Gaussian “tunneling cone” factor. They write the
modified BTK expression for the tunneling current as

INS = GNN

∫ ∫

e−k2
t /β

2
d2kt

∫ ∞

−∞
[1 + A(Ek,∆k, Z)− B(Ek,∆k, Z)][ f (Ek − eV )

− f (Ek)]dE, (2.29)
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where A and B are the Andreev-reflection and normal-reflection coefficients, GNN is the
normal-state junction conductance, and β is the tunneling cone width. The generalized BTK
kernel is given by [211, 212]

1 + A − B = 16(1 + |Γ+|2) cos4 θs + 4Z2(1 − |Γ+Γ−|2) cos2 θs

|4 cos2 θs + Z2[1 − Γ+Γ− exp(iφ− − iφ+)]|2 , (2.30)

where

Γ± = E
|∆±| −

√
E2

|∆±|2 − 1, (2.31)

and exp(iφ±) = ∆±/|∆±| represents the phase of the pair potential ∆± = ∆(θs,±) expe-
rienced by an Andreev-reflected electron (or hole) propagating at an angle θs,+ or θs,− =
π − θs,+ relative to the junction normal.

Figure 2.19 shows STM tunneling conductance data into the {110} and {001} faces of
an optimally doped YBCO single crystal, divided by an estimated normal state conductance
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background. To model these data Wei et al. [215] used the same form for the gap as Hoogen-
boom et al. [208], with a somewhat simpler one-band tight-binding structure for the electron
dispersion. They showed that their data could be consistently modelled using a pure dx2−y2

pairing symmetry, for tunneling into various crystalline faces, in both the point-contact and
tunneling limits. They further found that the enhanced conductance overshoots at the gap
edges, and the asymmetry of these overshoots, were the result of the proximity of the Fermi
level to the 2D van Hove singularity [202]. More details on the zero bias conductance peak
often seen in tunneling into the cuprate superconductors will appear in Section 2.5.4.

Temperature Dependence

The BCS weak coupling limit for the ratio 2∆/kBTc is 3.54 for s-wave [25] and 4.3
for dx2−y2 [216] pairing symmetries. The high-Tc superconductors have a value for this ratio
which is typically larger than the weak coupling limits [13–15, 21]. For example, in the work
described above, the tunneling measurements of YBCO by Gurvitch et al. was interpreted in
terms of two gaps of 19 meV and 4–5 meV [57, 203], possibly associated with the ab plane
and c-axis directions, respectively. The larger value gives 2∆/kBTc = 5, although a geometric
mean of the two values gives 2∆/kBTc = 4.1. The measurements of the Tc = 86 K single Tl-
2201 crystals of Ozyuzer et al. [206] gave fit gaps of∆ = 25 meV, implying 2∆0/kBTc = 6.7.
The optimally doped Bi-2212 crystal of Hoogenboom et al. [208] had 2∆/kBTc = 11.1, while
the optimally doped YBCO of Wei et al. had 2∆/kBTc = 7.2–7.5 within the ab planes, and
2∆/kBTc = 4.9 in the c-axis direction. An assessment of the systematic variation of gap size
with critical temperature is complicated by the strong variation of gap size with doping. An
early review [14] found that 2∆/kBTc was roughly proportional to 5.4Tc. However, sample
quality, experimental techniques, and modeling sophistication have all improved with time.
The results of a more recent review by Wei et al. [202] are shown in Figure 2.20. It shows
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Figure 2.20. Plot of 2∆0/kBTc vs. Tc for various (assumed optimally doped) high-Tc cuprates, including the non-
cuprate BKBO for comparison (from Wei et al. [202]).
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that the ratio 2∆/kBTc is close to the BCS value for low Tcs, but increases as Tc gets larger.
Panagopoulos and Xiang [217] argue that the density of states in the node regions of the
d-wave gap function follow a momentum dependence ∆k = ∆0 cos(2θ) that scales with Tc
like 2∆0/kBTc = 4.3 as expected for weak-coupling d-wave superconductivity, but that the
maximum gap value does not follow this scaling, especially for underdoped cuprates. In this
argument thermodynamic measures of the gap, such as penetration depth, and specific heat,
would be sensitive to the low-energy quasiparticle states in the gap region, while spectroscopy
measures, such as angle resolved photoemission and tunneling, would be more sensitive to the
high-gap regions in momentum.

Determination of the temperature dependence (as opposed to the Tc dependence
described above) of the energy gap is complicated in the cuprate superconductors by the pres-
ence of the pseudogap (see Section 2.5.2). A number of workers report that the superconduct-
ing gap has a temperature dependence that is much weaker than BCS, and that the gap closes
by “filling in” states, rather than by a narrowing in energy [21,218,219]. An example is shown
in Figure 2.21. The experimental data is scanning tunneling spectroscopy of a slightly under-
doped Bi-2212 single crystal by Renner et al. [218]. The fits are by Franz and Millis, [220]
using Eq. (2.25) with a tunneling matrix element Mk(ω) ∝ | cos(2θ)|, ∆k = ∆d cos(2θ),
and a spectral function given by Eq. (2.26) (with Γ1 ≡ Γ ) but a self-energy given by Eq.
(3.7) with Γ = 0. Franz and Millis find that the gap is relatively insensitive to tempera-
ture, converting smoothly from a superconducting gap to the pseudogap as the temperature is
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crystal Bi-2212 at selected temperatures. (b) Parameters of the fit as a function of T . W is the width of a Gaussian
distribution of phase fluctuation in their model. Above Tc both ∆d and Γ1 are fixed to their values at 84 K (from
Franz and Millis [220]).
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increased through Tc. However, the single particle scattering rate Γ1 increases dramatically as
the temperature is increased [221]. Franz and Millis attribute this increase to transverse phase
fluctuations of a Kosterlitz–Thouless vortex–antivortex unbinding transition.

The interpretation of a superconducting gap that continuously evolves with increasing
temperature into the pseudogap is supported by the break tunnel junction measurements of
Miyakawa et al. [219] summarized in Figure 2.22.

However, measurements using intrinsic junctions [17, 146–148, 222] indicate that the
superconducting gap and the pseudogap can coexist [223, 224], and that the superconducting
gap closes by narrowing in energy as the temperature approaches Tc, while the pseudogap
persists above Tc, with a value for the gap energy which is very similar to the low-temperature
superconducting gap. An example is shown in Figure 2.23. This figure shows values for the su-
perconducting gap energy determined from the peak voltage νs = 2∆s/e in the conductance–
voltage characteristic, as well as from the spacing δνs between quasiparticle branches, for both
optimally doped and overdoped Bi-2212. Also shown are the peak values of the pseudogap
hump voltage νpg as a function of temperature. Zasadzinski [21] cautions that the intrinsic
junctions have very high current densities, and nonequilibrium phenomena [225] could com-
plicate the interpretation of such data.

The picture of coexisting superconducting gaps and pseudogaps at the same temperature
is supported by scanning tunneling spectroscopy measurements on Bi2Sr2CaCu2O8+δ [226–
229] and Bi2Sr2CuO6+δ [230] single-crystal samples. An example is in Figure 2.24, which
displays a series of tunneling spectra along the line in (b), with regions with low gap and high
gap edge peaks alternating with regions of high gap but broad gap edge peaks. These can be
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Figure 2.23. (a) Dynamic conductance σ(ν), at different temperatures for an optimally doped Bi-2212 single crystal
mesa intrinsic junction. The insert shows structure due to the superconducting gap and the pseudogap coexisting at T =
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Bi-2212 intrinsic junctions: the superconducting peak voltage νs = 2∆s/e, the spacing between quasiparticle branches
δνs, and the pseudogap hump voltage νpg (from Krasnov et al. [223]).

associated with superconducting gap and pseudogap regions, respectively, coexisting in the
sample.

Momentum Dependence

Early attempts to measure the dependence of the critical current of high-Tc-conventional
superconductor junctions on junction angle relative to the cuprate crystalline axes [195, 231]
were hindered by the uncontrolled nature of the junction interfaces. However, recently success
in this area has been reported using two very different junction technologies. Lombardi et al.
[76] have measured the angular dependence of the Josephson critical currents of c-axis tilt
biepitaxial grain boundary YBCO junctions (Figure 2.25). These junctions, which are formed
by the grain boundary between a (001) and a (103) oriented film, have crystalline rotations
about two axes and relatively low interface transmission probabilities. The solid symbols in
Figure 2.25 are normalized critical current densities from junctions with widths of 10 µm
(triangles) and 4 µm (stars), as a function of the angle θ of the junction normal relative to the
a or b axis of the (001) film. In the Sigrist–Rice phenomenological approach, [50] in which
the Josephson current is proportional to the projection of the momentum-dependent energy
gap onto the junction normals, the critical current density is given by

Jc = J0(n2
x − n2

y)L(n
2
x − n2

y)R sin(φ), (2.32)

where J0 is the maximum Josephson current density, and nx , ny are the x, y components of
the junction normals on the two sides of the junction, and a pure dx2−y2 pairing symmetry has
been assumed. In the biepitaxial grain boundary structure of Figure 2.25a, this reduces to

Jc ∼ sin 2θ(2 − cos2 θ)(1 − 3 sin2 θ)/(1 + sin2 θ), (2.33)

which is plotted as the dashed line in Figure 2.25b. The experimental critical current has
minima at approximately 0◦, 35◦, and 90◦, as expected for a dx2−y2 superconductor with this
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Figure 2.24. (a) Series of scanning tunneling dI /dV measurements from an underdoped (Tc = 79 K) Bi-2212
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Tunneling Measurements of the Cuprate Superconductors 55

geometry. Note that the minimum angle of 35◦ is different from 45◦ because of the compound
angle formed by the crystalline axes in this type of grain boundary.

Smilde et al. [232] have used the YBCO–Nb ramp-edge technology of Figure 2.14 to
produce a series of junctions with varying junction normals relative to the a-axis. In this
case the junctions were made with either twinned or untwinned YBCO films [233]. Junctions
made with twinned YBCO films showed the fourfold symmetry, with nodes at 45◦, expected
for a dx2−y2 symmetry (Figure 2.26). Those made with untwinned YBCO showed nodes off-
set by about 5◦, consistent with a small s-wave component to the gap, as expected for this
orthorhombic supercoductor [61, 62, 234]. The measured angular dependence of the critical
currents for YBCO using this ramp-edge junction technology was well fit using an in-plane
gap with 83% dx2−y2 , 13% isotropic s-wave, and 5% anisotropic s-wave pairing symmetry, re-
sulting in a gap amplitude 50% higher in the b (Cu–O chain) direction than in the a-direction.

Measurements of the junction critical currents are insensitive to the orbital component
of the phase of the pairing wavefunction. However, recently two-junction YBCO–Nb rings
were made with the ramp-edge junction technology in the geometry illustrated in the inset to
Figure 2.27 [235]. In these samples one junction angle relative to the YBCO crystalline axes
was held fixed, while the other was changed in 5◦ increments from ring to ring. Therefore
the rings alternated between having, and not having, an intrinsic sign change in the pairing
wavefunctions normal to the two junction interfaces, and these rings alternated between spon-
taneously generating a half-flux quantum worth of flux when cooled in zero field and having
no spontaneous flux. Note that the transition between the presence and absence of spontaneous
flux occurs at angles slightly different from multiples of 45◦. This reflects the orthorhombic
symmetry of YBCO, and is the result of the gap being slightly larger in the b-axis direction,
parallel to the chains, than in the a-axis direction. These results are consistent with those of
Smilde et al., [232] but also show that the pairing wavefunction has sign changes, and there-
fore has predominantly dx2−y2 , as opposed to anisotropic s-wave symmetry. The presence of
spontaneous magnetization of the rings with, to within the precision of the measurements,
either 0 or Φ0/2 = h/4e integrated total flux, confirms that the in-plane pairing wavefunc-
tion in optimally doped YBCO has momentum dependent sign changes, with little, if any,
imaginary component to the gap in any crystalline direction [236, 237].
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Figure 2.27. SQUID microscope images of a series of two-junction SQUID rings made with YBa2Cu3O7−δ /Au/Nb
ramp-type junctions. The inset is a photograph of one of the rings. The YBCO sections had outer diameters and inner
diameters of 130 µm and 30 µm, while the Nb section diameters were 120 µm and 40 µm, respectively. One junction
angle was held fixed at −22.5◦ relative to the YBCO a-axis. The second junction angle was varied in 5◦ intervals from
ring to ring. The SQUID microscope images are labeled with θ = θ2 − 90◦, the angle of the second junction normal
relative to the a-axis. The YBCO films were estimated from x-ray scattering measurements to be 85% untwinned
(from Kirtley et al. [235]).

One would expect the Josephson coupling in the c-axis direction between a two-
dimensional, pure dx2−y2 superconductor and an s-wave superconductor to vanish because of
cancellation of the contributions from the positive and negative antinodes. A finite Josephson
supercurrent is expected if there is some three-dimensional character to the cuprate Fermi
surface [44], or if there is some s-wave admixture. The Josephson tunneling from a su-
perconductor with a real s-wave component, as expected for an orthorhombic supercon-
ductor such as YBCO, is complicated by the presence of twinning. It has been suggested
theoretically [234, 238] and demonstrated experimentally [239] that the dx2−y2 component
is phase-locked, while the s-wave component changes sign, across the twin boundary in a
predominantly dx2−y2 superconductor. This may explain why the Josephson Ic Rn products
for tunneling between a cuprate and a conventional superconductor in the c-axis direction are
often quite low [61, 62, 97, 109].

There have been several measurements of the Josephson critical current density in
Bi2Sr2CaCu2O8+δ bicrystal junctions with varying misorientation (twist) angles φ about the
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c-axis direction. Some of these experiments show a strong dependence of the critical current
on φ [240–244], while others do not [245–248]. The lack of a strong φ dependence has been
taken as evidence for at least a small s-wave component in this material [247–249]. It has
been proposed that strong, local fluctuations could break the fourfold symmetry of an other-
wise tetragonal superconductor [250]. However, both the observation of the half-flux quantum
effect in the appropriate tricrystal geometry [187] and the observation of Ic(H) characteris-
tics indicative of rapid sign changes in the critical currents along the grain boundaries of
asymmetric 0–45◦ bicrystal grain boundaries [251] indicate that Bi2Sr2CaCu2O8+δ has pre-
dominantly dx2−y2 pairing symmetry in the CuO2 planes. Many photoemission experiments
indicate that Bi2Sr2CaCu2O8+δ has a highly anisotropic gap consistent with dx2−y2 pairing
symmetry [252–255]. It has been suggested [251] that the lack of a strong φ dependence in
some c-axis twist bicrystal junctions could be the result of the presence at the interface of a
layer with relatively large s-wave components, either due to intrinsic causes [256] or due to
impurity effects. Such impurities would not be visible in transmission electron microscopy,
which only images columns of atoms.

Further, it is believed [257, 258] that the one-electron interplane hopping in BSCCO
is proportional to (cos kx − cos ky)

2, where kx , ky are the momentum parallel to the in-plane
a, b axes, respectively. Support for this view comes from STM measurements [256]. Scalapino
[259] has suggested that the one-electron interplane hopping in a c-axis twist junction could
take the form

∑

kk′s
(a + b(cos kx − cos ky))(a + b(cos k′

x − cos k′
y))c

†
1ksc2k′s, (2.34)

where c†
ks creates an electron on layer 1 with planar momentum k, with similar primed oper-

ators and momenta referring to electrons on layer 2. Then the pair tunneling Hamiltonian
would have a term proportional to

∑

kk′
a2b2(cos kx − cos ky)(cos k′

x − cos k′
y)c

†
1k↑c†

1−k↓c2−k′↓c2k′↑. (2.35)

This equation has the physical interpretation that the 4s orbitals of the Bi and Cu act as a ball-
and-socket connection between the CuO2 planes which is invariant under a twist rotation.
Equation (2.35) would result in a finite and nearly angle independent Josephson coupling
across c-axis twist junctions if the coefficients a, b were angle independent. A similar micro-
scopic picture was used to derive the separable form required to understand c-axis infrared
conductivity by Hirschfeld, Quinlan, and Scalapino [260].

While it is interesting that some of the c-axis twist experiments show little dependence
of the Josephson current density on twist angle, they cannot carry the same weight as the
in-plane tests described above as tests of pairing symmetry, since the in-plane experiments
vary with macroscopic geometry in the way predicted by simple theory, while the c-axis
twist experiments show no dependence on the parameter of interest: The lack of a twist angle
dependence in some experiments could be the result of factors having nothing to do with the
Cooper pairing symmetry.

Doping Dependence

It is generally agreed that the superconducting gap measured by tunneling spectroscopy
in Bi-2212 increases with decreasing doping below optimal doping [208, 218, 219, 261–263],
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Figure 2.28. Point contact SIN tunneling conductances in Bi2Sr2CaCu2O8+δ for various hole doping levels from
underdoped to overdoped. Data are normalized by a constant value and offset for clarity. The inset shows energy gap
vs. hole doping from SIS and SIN junctions (dots) along with a linear fit (dashed line) to values for T ∗ derived from
Ref. [264] using ∆ = 2.14kB T ∗ (from Miyakawa et al. [219]).

and that the maximum gap scales with the pseudogap temperature T ∗ rather than the super-
conducting critical temperature Tc [218, 219, 262, 263]. Figure 2.28 shows the results from
point-contact tunneling spectroscopy on Bi-2212 for various dopings. For overdoped cuprates
the pseudo- and superconducting gaps converge, and it is believed that the gap scales with Tc.
The gaps become larger, and the gap peaks become smaller and more rounded, as the sam-
ples become more underdoped. The inset in Figure 2.28 plots the measured gap values as a
function of doping, which agree well with the dashed line ∆ = 2.14kBT ∗, where T ∗ is the
pseudogap derived from transport measurements [264]. Yeh et al. [265] report in a study of the
doping dependence of YBCO that the gap ∆ peaks at optimal doping, but the ratio 2∆/kBTc
increases with decreasing doping, although much less strongly than in Bi-2212, from a value
of about 4.3 for strongly overdoped YBCO. Deutscher [263, 266] reports that while the gap
measured for a number of cuprate superconductors from tunneling measurements (∆p) scales
with T ∗ in the underdoped regime, the gap measured from Andreev scattering measurements
(∆c) scales with Tc, and argues that the former is a measure of the single-particle excitation
energy out of the condensed pairs, while the latter is the coherence energy of the macroscopic
quantum condensate of the paired charges. Mourachkine draws similar conclusions for an
under-electron-doped Nd1.85Ce0.15CuO4+δ sample [267].

Although most of the recent tunneling spectroscopy studies indicate predominantly
dx2−y2 pairing symmetry in the optimally doped cuprates, there have been reports of a doping-
induced change in the pairing wavefunction in some cuprates. For example, tunneling spec-
troscopy suggests a significant s-wave component in the pairing wavefunction in overdoped
Y1−x Cax Ba2Cu3O7−δ [265]. Analysis of the zero magnetic field splitting of the zero bias peak
in YBCO as a function of doping indicates a change in symmetry from dx2−y2 to dx2−y2 +idxy
or dx2−y2 + is in overdoped YBa2Cu3O7 [268] and Y1−x Cax Ba2Cu3O7−δ [269] thin films.
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A drop in the scattering rate of uncondensed carriers below 15 K inferred from penetration
depth measurements of Ca-doped YBCO is reported as supporting evidence for a complex
order parameter in strongly overdoped YBCO [270]. This has been cited as evidence for
the existence of a quantum critical point near optimal doping in YBCO. Analysis of Andreev
scattering data from La2−x Srx CuO4 single crystals are best fitted by an anisotropic (extended)
s-wave gap of the form ∆(θ) = ∆0 +∆1 cos(4θ), with a maximum gap value of 15 meV, and
a minimum gap of 5 meV, although the authors state that it is hard to distinguish between the
extended s-wave gap functional form, and an s + d form [271, 272]. Further, Kohen et al. re-
port an is component to the pairing potential inferred from Andreev reflection measurements
on Y1−x Cax Ba2Cu3O7−δ which is enhanced as the contract transparency is increased [273].
They interpret this as a proximity effect between the cuprate superconductor and the normal
metal tip.

However, all of the π -SQUID or 0–π -junction experiments described above indicate
predominantly dx2−y2 pairing symmetry with little, if any, imaginary component to the order
parameter for optimally doped superconductors [11], while tricrystal pairing symmetry tests
provide the same conclusion for several of the cuprates as a function of doping over a wide
doping range [175].

Macroscopic Quantum Effects

The high temperature superconductors, having d-wave pairing symmetry, have many
low energy quasiparticle states. These states could be expected to produce large dissipation
in tunneling measurements, making the high-temperature superconductors unsuitable for the
observation of macroscopic quantum effects. High temperature superconductors also have
the interesting features of unconventional order parameter symmetry and a possible high
sin(2φ) component in the Josephson current–phase relationship. One test of the role of dis-
sipation in high-Tc superconductors is through the study of macroscopic quantum tunneling
(MQT) [274–277] in the escape from the zero-voltage state to the voltage state in the current–
voltage characteristics of Josephson junctions. Very low-dissipation junctions were required
to observe macroscopic quantum tunneling and energy level quantization through resonant
activation in junctions incorporating low-temperature superconductors [278–280].

Bauch et al. reported the first observation of MQT in a d-wave superconductor [78].
They chose for these studies CeO2 based biepitaxial GB junctions in the tilt limit, which had
low average barrier transparency, leading to 90% hysteretic behavior in the current–voltage
characteristic. The escape rate of the superconducting phase φ from a local minimum in the
washboard potential into the running state has been studied as a function of temperature in
analogy with experiments on low-Tc junctions. The dependence of the distribution width σ
of switching current probability distributions on temperature is reported in Figure 2.29. The
measured σ saturates below 50 mK, indicating a crossover from the thermal to the MQT
regime. To rule out the possibility that the saturation of σ is due to any spurious noise or
heating in the measurement setup the switching current the probability distributions were
measured for a reduced critical current (IC0 = 0.78 µA) by applying an external magnetic
field B = 2 mT. The width σ for B = 2 mT and the data for B = 0 mT are shown in the inset
of Figure 2.29. The data in the presence of a magnetic field clearly show a smaller width σ ,
which does not saturate down to the base temperature.

The low average barrier transparency for these junctions strongly reduces dissipation
from nodal quasiparticles, explaining why dissipation mechanisms related to a d-wave junc-
tion do not prevent the observation of MQT. The low dissipation argues that the presence of



60 John Robert Kirtley and Francesco Tafuri

60 60

10

50

40

20

30
14

Ic = 1.40 µA

Ic = 0.78 µA

13

12

10

11

910

0

10 100 1000

200

s 
(n

A
)

400
T bath (mK)

600 800

20 40

T

60

Figure 2.29. Temperature dependence of the width σ of the escape probability distribution from the zero-voltage
to the voltage state for a YBCO biepitaxial Josephson junction at B = 0 T (open circles) and B = 2 mT (full points).
The solid line in the upper left insert shows the calculation for the thermally activated widths on a log-linear scale,
using IC0 = 1.40 µA, C = 1 pF, and R = 80�. The lower right insert displays the low temperature data on an
expanded scale (adapted from Bauch et al. [78]).

low energy quasiparticles does not prevent macroscopic quantum behavior, such as required
for solid-state quantum computers, and may open the way for experiments aimed at demon-
strating coherence in systems taking advantage of the “quiet” configuration offered by the
d-wave symmetry [281].

2.5.2. Pseudogap

There is often in the cuprate high-Tc superconductors a “pseudogap,” a reduction in
the density of states near the Fermi surface, which has properties that distinguish it from the
superconducting gap [282]. The pseudogap does not reduce the tunneling density of states to
zero at the Fermi surface, it tends to be more pronounced for underdoped than for overdoped
cuprates, and it persists in temperature well above the superconducting Tc for strongly under-
doped cuprates. There have been many proposals for the source of the pseudogap behavior,
including spin fluctuations [283, 284], condensation of preformed pairs [218], SO(5) symme-
try [285], spin–charge separation [286], and phase fluctuations of a superconducting state with
finite local pairing amplitude [220,287,288]. Angle resolved photoemission spectroscopy has
shown that the pseudogap in Bi-2212, just like the superconducting gap [252, 253, 255], has
an in-plane momentum dependence consistent with dx2−y2 symmetry [289].

Temperature Dependence

As described in Section 2.5.1, in tunneling measurements, especially in underdoped
cuprates, the superconducting gap evolves continuously into the pseudogap as the temperature



Tunneling Measurements of the Cuprate Superconductors 61

increases [218,219,230,262,290,291], although there is some evidence for coexistence of the
superconducting gap and the pseudogap, possibly associated with spatial inhomogeneities,
[227, 229] at temperatures close to Tc [223, 224].

It has been reported that the pseudogap closing temperature T ∗ is below the supercon-
ducting Tc over much of the doping range in the electron doped superconductors, arguing
against it being an indicator of precursor superconductivity [292, 293].

The pseudogap energy scale does not appear to be strongly temperature dependent. In-
stead the psuedogap seems to close by a gradual filling in of states [218,219,262]. An example
is displayed in Figure 2.30, which shows STM spectra for tunneling into an underdoped single
crystal of Bi-2212. The peaks at the gap edges in the superconducting state disappear at Tc,
but the superconducting dip in the density of states continuously evolves into the pseudogap,
remnants of which persists up to room temperature.

Since the energy scales of the pseudogap and superconducting gap track each other
closely, the pseudogap, like the superconducting gap, increases with doping below optimal
doping in Bi-2212. Kugler et al. [230] report that the pseudogap energy ∆p scales like
2∆/kBT ∗ = 4.3, where it is the pseudogap temperature T ∗, rather than Tc, which reflects
the mean-field critical temperature of the superconductor (see Figure 2.31).
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Figure 2.30. Scanning tunneling microscope spectra measured as a function of temperature on underdoped (Tc =
83 K) Bi-2212. The conductance scale corresponds to the 293 K spectrum, and the other spectra are offset vertically
for clarity (from Renner et al. [218]).
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Magnetic Field Dependence

The high-Tc cuprates have coherence lengths ξ much shorter than their penetration
depths λ. For example, the in-plane coherence length ξab ∼ 3.5 nm [294] for optimally doped
EuBa2Cu3O7−δ , and the in-plane penetration depth λab ∼ 120–160 nm for optimally doped
YBa2Cu3O7−δ [295]. A superconductor with κ ≡ λ/ξ > 1/

√
2 is termed type II. In a type

II superconductor the magnetic field penetrates in a range of magnetic field Hc2 > H > Hc1
in the form of superconducting vortices with quantized flux Φ0 = h/2e [296]. In the
extreme type II limit κ � 1 appropriate for the high-Tc cuprates, Hc1 = Φ0 ln κ/4πλ2 and
Hc2 = Φ2

0/2πξ2 [297]. For the examples given above this corresponds to Hc1 ∼ 0.025–0.04 T
and Hc2 ∼ 27 T. Krasnov et al [298]. report that the peak at the superconducting gap edge in
Bi-2212 disappears in fields parallel to the c-axis direction of Hc2 = 10 T at T = 80 K and
Hc2 = 14 T at T = 72 K, in agreement with previous transport measurements [299], but that
fields of this magnitude have little effect on the pseudogap.

Shibauchi and Krusin-Elbaum [300, 301] have inferred from c-axis interlayer tunnel-
ing measurements in Bi2212 that the pseudogap closes at a critical magnetic field Hpg which
has a temperature dependence quite different from that of the superconducting critical field
Hsc (Figure 2.32b). The low-temperature pseudogap closing field Hpg has Zeeman scaling:
it varies with the pseudogap temperature T ∗ as gµB Hpg ≈ kBT ∗ (Figure 2.32a), where
g=2.0 for fields parallel to the c-axis. Further, the anisotropy of the pseudogap closing fields
H ||ab

pg /H ||c
pg ≈1.35 corresponds to the anisotropy of the g factor in the cuprates. This implies

that there is little orbital frustration. These results would seem to favor the competing order
explanation, as opposed to the preformed pairs explanation, for the origin of the pseudogap.
However, Shibauchi and Krusin-Elbaum conclude that their results mean that, in a preformed
pair scenario, there is little orbital motion of the pairs. This may be the case if the charges
self-organize into microstripes below T ∗ [250, 304]. We will discuss tunneling evidence for
spatial inhomogeneities in the cuprates in Section 2.5.5.

Superconducting vortices have been imaged with scanning tunneling microscopy in
YBCO [305, 306] and Bi-2212 [218, 307–310]. The imaging experiments are complicated
by the very strong vortex pinning in these materials [307], making it difficult to image regular
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vortex lattices or the fourfold vortex core symmetry expected for a superconductor with pre-
dominantly dx2−y2 symmetry [311, 312]. Hoogenboom et al. have found evidence in their
STM images for quantum tunneling of vortices between pinning sites [307]. The pseudogap
spectra measured by STM in the core of superconducting vortices at low temperatures and
high magnetic fields appears very similar to that measured at zero field above Tc, for both
underdoped (Tc = 83.0 K) and overdoped (Tc = 74.3 K) Bi-2212 [305].

The superconducting vortex core acts as a potential well for quasiparticle states, leading
to the formation of localized states [313–315]. Low temperature scanning tunneling spec-
troscopy in the vortex normal cores shows two low voltage resonances in both YBCO [306]
and BSCO [308, 310]. The vortex states decay away from the vortex core center with a decay
length of 2.2 ± 0.3 nm [310]. The discovery of discrete states split away from zero voltage
in the vortex cores is surprising, since one expects the low-energy quasiparticle states in a
vortex to be extended along the nodes of the gap in a d-wave superconductor, resulting in a
broad peak centered at zero voltage [316–318]. Hoogenboom et al. have shown that the vor-
tex core state energies in Bi-2212 depend linearly on the gap and are independent of magnetic
field [308]. This is in contrast to the vortex bound states in a conventional superconductor,
which have energies that are proportional to the square of the gap (E ∝ ∆2/EF) [313]. There
has been a great deal of work attempting to explain the STM spectroscopy measurements of
vortex core states in d-wave superconductors. Franz and Tes̆anović [319, 320] have concen-
trated on the properties of Block waves, as opposed to Landau levels, associated with an array
of vortices. Han et al. [321] have used the t–J model, and Balatsky [322] has invoked the
influence of the magnetic field, to induce an out-of-phase idxy component to the gap, which
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would give a splitting of the core states away from zero energy. Kishine et al. [323] have used
SU(2) slave-boson theory. Berthod et al. [324] have argued that strong correlation effects, cal-
culated using a Cooperon-propagator description of HTS, can produce bound state zero bias
conduction peaks in agreement with experiment. Although there is not a fourfold symmetric
structure to the vortex core observed in scanning tunneling images, there is a fourfold sym-
metry to quasiparticle interference patterns generated by vortices as scattering centers [309].
Such quasiparticle interference effects will be discussed further in Section 2.5.5.

2.5.3. Linear Conduction Background

Often tunneling data on the high-Tc cuprate superconductors show a linearly increas-
ing conductance background for high resistance contacts, while for low resistance contacts
there is a roughly linearly decreasing background [325–327]. Both have been interpreted as
density of states effects, with the inferred density of states either increasing [203, 215], or
decreasing [325] away from the Fermi energy. A strong linear conductance background is ob-
served in a number of tunneling systems [328], and is not necessarily observed in tunneling
into the high-Tc superconductors. See, for example the STM data in Figure 2.18. A num-
ber of other mechanisms for this effect have been proposed, including space–charge limited
currents [329], charging effects [330], resonance tunneling [331], voltage dependent tunnel-
ing matrix elements [14], or tunneling into impurity states [332]. Several proposals share in
common the view that the linear conduction background reflects the dynamics of the tunnel-
ing process itself: Anderson and Zou [333] proposed that the tunneling process excited both
holons and spinons. Integration over one of the degrees of freedom leads to a predicted lin-
ear conductance background. Varma et al. proposed that the linear conductance background
arises from tunneling into the very short lifetime states of a marginal Fermi liquid [334].
Kirtley and Scalapino [328] have proposed that it is due to inelastic tunneling with a broadly
distributed spectral weight F(ω) of inelastic scattering energy losses. In that case the inelastic
contribution to the total tunneling current can be written as:

Ii (V ) ∼
∫ ∞

−∞
dωF(ω)[n(ω)+ 1]

∫ ∞

−∞
dE{ f (E)[1 − f (E + eV − h̄ω)]

− f (E + eV + h̄ω)[1 − f (E)]} +
∫ ∞

0
dωF(ω)n(ω)

∫ ∞

−∞
dE{ f (E)[1 − f (E + eV + h̄ω)] − f (E + eV − h̄ω)[1 − f (E)]}, (2.36)

where n(ω) and f (E) are the usual Bose and Fermi factors. The first term in Eq. (2.36) corre-
sponds to emissions of excitations in the tunneling process, and the second term corresponds
to absorption. Equation (2.36) reduces at zero temperature to

dIi (V )
d(eV )

∼
∫ eV

0
dωF(ω), (2.37)

so that a constant spectral weight F(ω) would give rise to a conductance which rises linearly
with V . Figure 2.33(a) shows tunneling data from a La2−x Srx CuO4–In junction as a func-
tion of temperature. There is no sign of a tunneling gap in this data, presumably because of a
nonsuperconducting surface layer, but there is a large linear conductance background. The the-
oretical curves in Figure 2.33(b) are fits to the data using a spectral weight function derived
from fits to NMR spin-relaxation data for the cuprate superconductors. The contribution to
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the total conductance from inelastic tunneling from a broad spectral distribution has a thermal
broadening of 5.4kBT of the discontinuity in slope at zero voltage, compared with the 3.5kBT
expected for thermal broadening of elastic tunneling features. Experimental data from sev-
eral types of tunnel junctions shows this characteristic 5.4kBT thermal broadening [14, 335].
Analysis of Al–Al oxide–Cr–Pb tunnel junctions, which have a very large linear conductance
background, show that taking the ratio of the tunneling data in the superconducting state, di-
vided by that in the normal state, reduces the amplitudes of the strong coupling Pb phonon
peaks, and that a better procedure is to subtract out a large linear conductance background due
to inelastic tunneling [335].

Kirtley has extended the BTK analysis for the current–voltage characteristics of NS
contacts to the case of inelastic tunneling with a broad distribution of energy losses [336].
This analysis assumed an isotropic s-wave superconducting gap. It would be very interesting
to extend the theory of Wu [41] and Tanaka and Kashiwaya [211, 212] to inelastic scattering
processes. Kirtley finds (see Figure 2.34) that when the elastic and inelastic contributions are
summed, the small barrier height Z behavior of a plateau of width ∆ near zero voltage, fol-
lowed by a linear decrease in the conductance, evolves smoothly into a gap of width ∆ at zero
voltage, followed by a linear increase in conductance for large Z [336]. Grajcar [337] has
extended this analysis to include a finite quasiparticle scattering rate Γ , and find good agree-
ment with experiment on Bi2Sr2CaCu2/Sr2TiO3–Au point contacts with varying thicknesses
of SrTiO3.

2.5.4. Zero-Bias Anomalies

Tunneling measurements of the high-Tc superconductors often show peaks or dips in
conductance centered on zero voltage. Reviews of this topic appear in [18, 20, 23, 338–344].
Many different mechanisms for zero-bias anomalies in tunneling measurements of the high-Tc
cuprates have been proposed, including charging effects in metallic inclusions in the tunneling
barrier [345], electron–electron Coulomb interactions [346], and phase diffusion [347]. Early
investigations in the cuprates [339] focused most often on an exchange-scattering interaction
between tunneling electrons and isolated magnetic spins in the tunneling barrier [348–351],
first described theoretically by Applebaum [352] and Anderson [353]. There are several rea-
sons for doubting this interpretation as the explanation for the zero bias conductance peaks
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(ZBCPs) in many of the tunneling measurements in the cuprates. First, in the Applebaum–
Anderson mechanism the splitting in the energies of the ZBCPs away from zero should be
linear with magnetic field, whereas in tunneling in the ab plane directions into YBCO, the
splitting is nonlinear in field, with an anomalously large g factor [339]. Further, often the
appearance of the ZBCP is correlated with the onset of superconductivity [340], and the tem-
perature dependence is not that expected for the Applebaum–Anderson mechanism [354].
Perhaps the most convincing evidence against the Applebaum–Anderson mechanism is the
anisotropy of the field dependent splitting of the ZBCP: when the magnetic field is applied
parallel to the c-axis there is a strong field dependence, but a much weaker dependence is
observed if the field is applied perpendicular to the c-axis [355, 356].

Figure 2.35 shows the splitting of the ZBCP in magnetic fields applied parallel (a,b)
and perpendicular (c) to the c-axis in (110) oriented films of YBCO [357]. This behavior is
consistent with the interpretation of Hu [41] and Tanaka and Kashiwaya [18,211,212], that the
ZBCP in the cuprates is due to a zero-energy bound state arising from Andreev scattering and
the sign changes accompanying the dx2−y2 pairing symmetry. (see the discussion in “General
Features” in Section 2.5.1.) We will adopt this interpretation for the rest of the present section.

The magnetic field splitting of the ZBCP has been attributed to a Doppler shift in en-
ergy equal to vs · pF cos�, where vs is the superfluid velocity associated with the Meissner
screening currents, pF is the Fermi momentum, and Θ is the angle between the tunneling qua-
siparticle and the sample surface [354, 358, 359]. This provides a natural explanation for the
magnetic field anisotropy, since the Meissner screening currents are much weaker for fields
applied perpendicular to the c-axis than parallel to it. Within this picture, since vs is pro-
portional to applied field, as long as there is little flux penetration into the films, the ZBCP
splitting should be linear in field, saturating at fields of order the thermodynamic critical field
Hc, as observed by Covington et al. [354]. However, sometimes nonzero splittings are seen
even at very small fields [354].
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Figure 2.35. Normalized dynamical conductance dI/dV vs. bias V for increasing (a) and decreasing (b) applied
fields for an YBCO (110)-oriented film (Tc = 88 K, film thickness d = 60 nm) at 4.2 K. Applied fields parallel to
the (001) axis in Tesla: 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 1.8, 2.1, 3.0, 3.5, 5, 6, 7, 11, 13, and 15. (c) Behavior of the
same junction for magnetic field applied perpendicular to the c-axis at fields (in Tesla): 0, 0.5, 1, 2, 4, 8, 12, and 15.5
(from Beck et al. [357]).

An example is shown in Figure 2.36, in which a splitting of the ZBCP is seen even
at zero applied field. Such zero field splitting has been taken as evidence for states with
broken time reversal symmetry (BTRS) in the cuprates [354]. Although there has been a
report of bulk BTRS in the pseudogap state of an underdoped cuprate [360, 361], it is gen-
erally accepted that there is little if any bulk BTRS in the superconducting state in op-
timally doped cuprates [362, 363]. However, there have been many predictions of broken
time reversal symmetry at surfaces and interfaces of cuprate superconductors [55, 364–371].
Fogelström et al [358]. have calculated the phase diagram of a surface induced state, in which
the dominant dx2−y2 pairing symmetry is suppressed by the presence of the surface, allow-
ing a subdominant pairing interaction to coexist with a π/2 relative phase difference at low
temperatures. This phase difference leads to a spontaneous supercurrent, and a surface BTRS
state is achieved at low temperatures. The solid line in Figure 2.36 is the prediction of Fogel-
ström et al. for the magnetic field dependence of the splitting of the ZBCP, assuming that the
subdominant order parameter has is symmetry.

Some caution should be used in interpreting zero field splitting of the zero bias conduc-
tance peak as evidence for the presence or absence of TRSB. For example, Asano et al. have
reported that impurity scattering near the interface also causes splitting of the ZBCP [372].
In addition, Flatté and Byers [373] have shown that good agreement with a number of dif-
ferent tunneling spectra, including ones with an apparently split ZBCP, can be made us-
ing self-consistent calculations of the electronic structure near strongly scattering impurities
(Figure 2.37).

Further, Tanuma et al. have shown that the ZBCP will not be split in the presence of
TRSB unless the transmission coefficients of the junctions are sufficiently small [376]. Note
that neither zero field splitting nor field splitting of the ZBCP is observed in grain bound-
ary junctions [343]. April et al. have shown that the amplitude of the ZBCP decreases in
YBa2Cu3O7−δ/Pb junctions upon ion irradiation, without reducing the junction quality [96].

Caution should also be used in interpreting the absence of a ZBCP as evidence for s-
wave pairing symmetry. Several groups have argued that the presence of the ZBCP in grain
boundary junctions of the hole-doped cuprate superconductors, and the absence of such a peak
in similar junctions in the electron-doped cuprates (although exceptions to this absence have



68 John Robert Kirtley and Francesco Tafuri

0.23

0.21

0.20

3

2

1

0
0 2

P
ea

k 
po

si
tio

n 
(m

V
)

4

H (T)

6

YBCO/Cu

YBCO/Pb

8

−10 −5 0

C
on

du
ct

an
ce

 (
S

)
H = 0.0 T

0.5

2.0
4.0

T=1.5K

Voltage (mV)

5

(a)

(b)

10

0.22
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by closed and open circles, respectively. The theoretical curve for the subdominant order parameter being A1g (s-
wave) is shown as a full line [358]. The remaining symbols represent data from junctions with magnetic scattering
centers in the tunneling barrier (from Covington et al. [354]).

been reported [341]), implies that the latter have s-wave pairing symmetry [342, 343, 377].
Further Biswas et al. [378] and Qazilbash et al. [379] argue that the presence of a ZBCP in
point contact junctions involving underdoped Pr2−x Cex CuO4 and its absence in optimally and
overdoped samples of the same material imply a change in pairing symmetry from d- to s- as a
function of doping. Although the results from various phase insensitive pairing symmetry tests
are mixed, with some indicating s-wave pairing at some doping levels [380–384], and others
indicating d-wave pairing [385–390], the tricrystal experiments of Tsuei et al [188]. in opti-
mally doped samples of both Nd2−x Cex CuO4 and Pr2−x Cex CuO4, the SQUID interference
measurements of Chesca et al. [193] in the electron doped cuprate La2−x Cex CuO4−y , and
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the zig-zap ramp type junction experiments of Ariando et al. [141] in both optimally doped
and overdoped Nd2−x Cex CuO4−y , all show strong evidence for dx2−y2 pairing symmetry. It
has been proposed that some of the features in the transport measurements interpreted to be
consistent with s-wave symmetry could in fact be due to band structure effects [391].

Beck et al. [23, 357] have suggested that the large splitting of the ZBCP for decreasing
fields (Figure 2.35), must be due to some mechanism other than Doppler shifts, because the
barrier to vortex exit is small, and therefore the Meissner screening currents are small for de-
creasing fields. They suggest instead that there is a field induced idxy component of the order
parameter. This view is supported by the H1/2 field dependence of this second contribution to
the splitting, in agreement with theoretical predictions by Laughlin [392].

2.5.5. Atomically Resolved Conductivity Modulation Effects

The cuprate superconductors are derived from parent compounds which are antiferro-
magnetic insulators. Proximity to the Mott insulating state may therefore be important for
many physical properties in these materials [393]. One consequence of this proximity is pos-
sible short-range spatial inhomogeneities. Tunneling measurements have been used to study
three types of inhomogeneities: random fluctuations, inhomogeneities due to quasiparticle
scattering and interference, and stripes.

The doping concentration in the cuprate superconductors is so small, and the coher-
ence length is so short, that even statistical fluctuations in the doping concentration may have
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Figure 2.38. Relationship between the position of the Bi atoms on the crystal surface of Bi-2212, the resonant DOS
structure of an impurity Zn atom, and the positions of the Cu and O atoms in the superconducting plane two layers
below. (a) and (b) are simultaneously acquired 60×60 Å, high-spatial-resolution STM images of the topography and
differential conductance at Vsample = −1.5 mV. The bright center of the scattering resonance in (b) coincides with
the position of the Bi atom marked by an X in (a). (c) A 30×30 Å schematic representation of the square CuO2
lattice, showing its relative orientation to the exposed BiO surface two layers above in (a) (from Pan et al. [404]).

important physical consequences [394]. Although some atomically resolved STM measure-
ments show high spatial homogeneity of the superconducting gap [395], others report very
large fluctuations in the local density of states and gap size, over length scales of a few nm, in
STM measurements of optimally doped Bi2Sr2CaCu2O8+x (Bi-2212) [226–228], as well as
in underdoped Bi-2212 [229] and Bi-2201 [230] (see for example Figure 2.24). These exper-
iments show strong correlations between the integrated local density of states and the energy
gap size, with larger energy gaps being associated with smaller densities of states [227]. In ad-
dition, strong gap inhomogeneities and one-dimensional scattering resonances were reported
from tunneling into the Cu–O chains in Y-123 [396–399].

Strong zero energy quasiparticle scattering resonances, consistent with scattering from
atomic-scale nonmagnetic impurities, have been reported in low temperature STM measure-
ments of Bi-2212 [400, 401]. These resonances arise from virtual or virtual-bound quasipar-
ticle states inside the gap of a d-wave superconductor [402, 403], and their observation for
nonmagnetic scatterers is inconsistent with s-wave superconductivity in the high-Tc cuprates.
Images of individual nonmagnetic zinc impurity atoms in Bi-2212 (Figure 2.38) reveal a
fourfold symmetric quasiparticle cloud, aligned with the nodes of the dx2−y2 superconducting
gap [404]. Scanning tunneling spectroscopy measurements of magnetic Ni atoms in Bi-2212
(Figure 2.39) show two impurity states, one above and one below the Fermi level [405]. These
can be explained as previously spin-degenerate impurity states split by their interaction with
the Ni moment [406]. Surprisingly, for the Ni impurity overall particle–hole symmetry is
observed in the impurity-state spectrum, and the superconducting gap magnitude does not
change as the impurity site is approached, indicating that the Ni atom does not significantly
perturb the superconductivity. This is in contrast to nonmagnetic Zn, which locally destroys
superconductivity [404].

In addition, effects due to weak quasiparticle scattering are also seen. In an isotropic
s-wave superconductor with a circular normal-state Fermi surface, a weak scattering center
will form circular ripples in the local tunneling density of states N (x, ω) due to quasiparticle
interference scattering. However, dx2−y2 -wave superconductors form ripples from a scatter-
ing center which appear as a set of rays whose wavelength and amplitude vary with angular
direction and bias voltage [407–409]. These interference patterns were first noted surrounding
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Figure 2.39. STM data on the impurity state at a single Ni atom in Bi-2212. (a), (b), 35 Å square differential
conductance maps above an Ni atom at (a) +9 mV and (b) −9 mV. (c) A 35 Å square atomic resolution topograph of
the BiO surface obtained simultaneously with the maps. (d) Schematic of the relative position of the Ni atom relative
to the Cu atoms in the invisible CuO2 plane (from Hudson et al. [405]).

vortex cores in Bi-2212 [309], but have also been seen (with smaller amplitudes) using Fourier
transform techniques in zero field [410, 411].

The dispersion in these interference patterns can be well understood considering only
the band structure of the quasiparticle states, and the dx2−y2 symmetry of the superconducting
gap [412]. This is illustrated in Figure 2.40, which compares the scattering wavevectors of
the local maxima in the Fourier transformed local density of states with theory. The derived
angular dependence of the gap is fit by the form ∆(θk) = ∆0[A cos(2θk) + B cos(6θk)],
with ∆0 = 39.3 meV, A = 0.818, and B = 0.182 (solid line in Figure 2.40). There is
some systematic difference between the gap functional form derived from FT-STS and that
from ARPES measurements, but the general agreement is quite good, providing yet another
confirmation of dx2−y2 pairing symmetry in the cuprate superconductors.

It has been proposed that when holes are doped into an antiferromagnetic insulator, they
can form a slowly fluctuating array of metallic, quasi-one-dimensional stripes [250,413–415].
In this view the mechanism of pairing is the generation of a spin gap in spatially confined
Mott-insulating regions near the metallic stripes. In underdoped and optimally doped cuprates
phase coherence occurs at a temperature well below the pairing temperature, while in over-
doped materials pairing and phase coherence occur at the same temperature, as in conven-
tional superconductors. It is well established that static stripe order occurs in La2−x Srx NiO4+δ
and La1.6−x Nd0.4Srx CuO4 [416], but it is more difficult to establish fluctuating stripe order
in the cuprate superconductors [417]. Scanning tunneling microscopy has insufficient time
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resolution to image fluctuating stripes, but it is possible that these stripes may be pinned
by defects. A distinction between quasiparticle interference and pinned stripe effects can be
made by measuring the dispersion of the observed features: quasiparticle interference should
have a strong dependence of wavelength on energy, but stripes should be nondispersive [417].
Several reports of energy-independent modulations of the tunneling density of states in Bi-
2212 have been made [411, 418–420]. There is disagreement on the exact nature of these
modulations, but the peak component is approximately 2π/4a0 ± 25% along the Cu–O chain
directions. It has also been reported that there is a correlation between modulations in the
coherence peak heights and modulations in the low-energy density of states, indicating that
the latter are charge density modulations that interact with superconductivity [419]. Recently
McElroy et al. reported charge modulations in underdoped Bi-2212 that were spatially local-
ized in regions with exceptionally large (pseudo) gaps but no coherence peaks [421, 422]. It
should be noted that the strong breaking of the fourfold rotation symmetry predicted in the
stripe scenario is not observed in any of the STM studies, but this may be due to the presence
of strong disorder [417].

2.5.6. Strong Coupling Effects

One of the early triumphs of superconductive tunneling was the derivation of the
effective electron–phonon coupling function times the phonon density of states α2 F(ω)
(phonon spectral density function) and the Coulomb pseudopotential term µ� from tunnel-
ing data, and their use to correctly infer transition temperatures in conventional supercon-
ductors [3, 5, 423, 424]. There has been much effort to do the same thing with the high-Tc
cuprate superconductors. This effort has concentrated on two types of features: small oscil-
lations in the conductance–voltage characteristics due to electron–phonon interactions, and
a “dip” feature somewhat above the gap energy commonly attributed to electron–magnon
interactions.
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Electron–Phonon

Schrieffer, Wilkins, and Scalapino [424] showed that the tunneling electronic density of
states in a superconductor is given by

Ns(ω)

N (0)
= Re

{ |ω|
[ω2 −∆2(ω)]1/2

}

, (2.38)

where N (0) is the electronic density of states at the Fermi surface unrenormalized by the
electron–phonon interaction. In conventional superconductors at temperatures T � Tc, it is
assumed that Ns(ω)/N (0) ≈ (dI/dV )s/(dI/dV )n|eV =h̄ω. The gap ∆(ω), which is energy
independent in the BCS formulation, has inflections in strong-coupling conventional super-
conductors at energies corresponding to peaks in α2 F(ω). The most commonly used method
for inferring the phonon spectral function from tunneling data was devised by McMillan and
Rowell [3]. It involves inserting an educated guess for the phonon spectral function and the
Coulomb pseudopotential into the normal and pairing self-energy integral equations, calculat-
ing corrections, and iterating to convergence. The procedure produces remarkable agreement
between tunneling, neutron scattering, and first-principles calculations for the phonon spectral
densities for a number of conventional superconductors [5].

Workers have inferred strong coupling between the electrons and phonons from renor-
malization of the tunneling density of states in a number of cuprate superconductors, including
Nd1.85Ce0.15CuO4−y [425–427], La1.85Srx CuO4 [428], Bi-2212 [429–435], and a number of
other layered Bi-cuprates [436]. An example is shown in Figure 2.41, in the electron-doped
superconductor Nd1.85Ce0.15CuO4−y . The solid line is the electron–phonon spectral func-
tion α2 F(ω) inferred from point contact tunnel junctions [425] using a McMillan–Rowell
inversion procedure modified to allow for the effects of a proximity induced layer of reduced
superconductivity on the surface [437]. The inversion procedure gave reasonable values of
µ� ∼ 0.1 and λ ∼ 1, and predicted values for Tc (including only an electron–phonon in-
teraction) in good agreement with experiment. The dot-dashed line in Figure 2.41 is the
phonon density of states determined from neutron scattering measurements [438]. Figure 2.41
illustrates the difficulty in analyzing electron–phonon strong coupling effects in the cuprate

0.04 0.8

0.6

0.4

0.2

0

0.03

0.02

0.01

0
0 10 20

w (meV)

F
(w

)

4030 50 60 70

a
2 F

(w
)

Figure 2.41. The electron–phonon spectral function α2 F(ω) for Nd1.85Ce0.15CuO4−y (solid line), and the phonon
density of states F(ω) from neutron scattering on single crystal Nd2CuO4 (dot-dashed line) (from Tralshawala
et al. [426]).
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superconductors: the phonon densities of states are complex and cover a broad frequency
range, and the tunneling data to date is not very reproducible. Further, Trashawala et al. used
the phonon spectral function α2 F(ω) to calculate the temperature dependence of the normal
state resistivity of Nd1.85Ce0.15CuO4−y , and found that there must be an additional nonphonon
contribution [426, 427].

Electron–Magnon

It was observed quite early [325] that there is a reproducible “dip” above the coher-
ence peak in the tunneling conductance–voltage characteristic in several of the cuprate su-
perconductors. This dip is more pronounced for a bias direction corresponding to removal
of quasiparticles from the cuprate superconductor. For optimally doped superconductors the
position of the dip corresponds to eV ∼ 2∆, and roughly scales with the gap as a function of
doping [440]. This lead to the belief that the dip was due to an electron–electron pairing inter-
action [440]. However, later observations showed that the dip occurs at an energy Ω relative to
the superconducting gap energy that scales as 4.9kBTc with doping, and that the amplitude of
the dip is largest for optimal doping (Figure 2.42) [439]. This lead Zasadzinski et al. [439] to
infer that this dip is due to a resonance spin excitation [441,442]. The peak/dip/hump features
in angle-resolved photoemission spectroscopy near (0, π ) [443–445], and the resonance peak
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below 2∆ in inelastic neutron-scattering data [446, 447] have also been attributed to a spin-
fluctuation mechanism. Hoogenboom et al. [208] have modeled scanning tunneling spectra of
BSCCO including a collective bosonic mode with energy Ω = 5.4kBTc at wave vector (π, π),
consistent with the neutron scattering data, and find good agreement with experiment. These
observations have lent support to the proposal that spin-fluctuations play an important role in
superconductivity in the cuprates [448].

2.6. Conclusions

Tunneling measurements tell us much about the nature of superconductivity in the
cuprate high-Tc superconductors. The pairing wavefunction has predominantly dx2−y2 pairing
symmetry. The sign changes in the pairing wavefunction associated with this pairing sym-
metry lead to spontaneous, persistent supercurrents, even in the absence of externally applied
magnetic fields, in a number of different ring and junction geometries. These sign changes also
lead to zero energy bound states at surfaces and interfaces. The superconducting gap and the
pseudogap coexist in some cuprates at some doping levels and temperatures, but the pseudo-
gap can persist to temperatures well above the superconducting gap. The pseudogap magnetic
closing field varies with the pseudogap temperature with Zeeman scaling gµB Hpg ≈ kBT ∗.
Superconducting quasiparticles couple strongly to both phonons and spin-fluctuations. There
are strong inhomogeneities in the superconducting gap and in the local tunneling density of
states in many cuprates, which become more pronounced with increased underdoping.

However, there are still many unresolved issues that tunneling can address. The most
important is: What is the mechanism for Cooper pairing in the cuprates? Some authors have
argued that analysis of tunneling measurements provide electron–phonon coupling strengths
sufficiently large to explain the high critical temperatures observed. Others argue that the dip
structure observed in tunneling indicates that spin fluctuations must play an important role.
Tunneling spectroscopy observations of zero field splitting of the zero bias conductance peak
indicates the presence of broken time reversal symmetry, but measurements of π -SQUIDs and
0–π junctions shows no evidence for such effects. The evidence for spatially inhomogeneous
tunneling densities of states from impurity resonances and quasiparticle interference effects
is quite strong, but there is also evidence of nondispersive density of states modulations, in-
dicative of stripes.

Much work remains.
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3
Angle-Resolved Photoemission
Spectroscopy on Electronic Structure
and Electron–Phonon Coupling in Cuprate
Superconductors
X. J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, and Z. -X. Shen

3.1. Introduction

In addition to the record high superconducting transition temperature (Tc), high temper-
ature cuprate superconductors [1,2] are characterized by their unusual superconducting prop-
erties below Tc, and anomalous normal state properties above Tc. In the superconducting state,
although it has long been realized that superconductivity still involves Cooper pairs [3], as in
the traditional BCS theory [4–6], the experimentally determined d-wave pairing [7] is different
from the usual s-wave pairing found in conventional superconductors [8,9]. The identification
of the pairing mechanism in cuprate superconductors remains an outstanding issue [10]. The
normal state properties, particularly in the underdoped region, have been found to be at odd
with conventional metals which is usually described by Fermi liquid theory; instead, the nor-
mal state at optimal doping fits better with the marginal Fermi liquid phenomenology [11].
Most notable is the observation of the pseudogap state in the underdoped region above Tc [12].
As in other strongly correlated electron systems, these unusual properties stem from the in-
terplay between electronic, magnetic, lattice, and orbital degrees of freedom. Understanding
the microscopic process involved in these materials and the interaction of electrons with other
entities is essential to understand the mechanism of high temperature superconductivity.

Since the discovery of high-Tc superconductivity in cuprates [1], angle-resolved pho-
toemission spectroscopy (ARPES) has provided key experimental insights in revealing the
electronic structure of high temperature superconductors [13–15]. These include, among
others, the earliest identification of dispersion and a large Fermi surface [16], an anisotropic
superconducting gap suggestive of a d-wave order parameter [17], and an observation of the
pseudogap in underdoped samples [18]. In the mean time, this technique itself has experi-
enced a dramatic improvement in its energy and momentum resolutions, leading to a series
of new discoveries not thought possible only a decade ago. This revolution of the ARPES
technique and its scientific impact result from dramatic advances in four essential compo-
nents: instrumental resolution and efficiency, sample manipulation, high quality samples, and
well-matched scientific issues.
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The purpose of this treatise is to go through the prominent results obtained from
ARPES on cuprate superconductors. Because there have been a number of recent reviews
on the electronic structures of high-Tc materials [13–15], we will mainly present the latest
results not covered previously, with a special attention given on the electron–phonon interac-
tion in cuprate superconductors. What has emerged is rich information about the anomalous
electron–phonon interaction well beyond the traditional views of the subject. It exhibits strong
doping, momentum and phonon symmetry dependence, and shows complex interplay with the
strong electron-electron interaction in these materials.

3.2. Angle-Resolved Photoemission Spectroscopy

3.2.1. Principle

Angle-resolved photoemission spectroscopy is a powerful technique for studying the
electronic structure of materials (Figure 3.1) [19]. The information of interest, i.e., the energy
and momentum of electrons in the material, can be inferred from that of the photoemitted
electrons. This conversion is made possible through two conservation laws involved in the
photoemission process:
(1) Energy conservation: EB = hν − Ekin −Φ
(2) Momentum conservation: K|| = k||+G
where EB represents the binding energy of electrons in the material; hν the photon energy
of incident light; Ekin the kinetic energy of photoemitted electrons; Φ work function; k||
momentum of electrons in the material parallel to sample surface; K|| projected component
of momentum of photoemitted electrons on the sample surface which can be calculated from
the kinetic energy by h̄K|| =

√
2m Ekinsinθ with h̄ being Planck constant; G reciprocal lattice

vector. Therefore, by measuring the intensity of the photoemitted electrons as a function of
the kinetic energy at different emission angles, the electronic structure of the material under
study, i.e., energy and momentum of electrons, can be probed directly [19].

For three-dimensional materials, the electronic structure also relies on k⊥, the momen-
tum perpendicular to the sample surface. Because of the symmetry breaking near the sample
surface, the momentum perpendicular to the sample surface is not conserved. In order to ob-
tain k⊥, one has to consider the inner potential which can be obtained in various ways [19].
For strictly two-dimensional materials or quasi-two-dimensional materials such as the cuprate

X
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Figure 3.1. Schematic of angle-resolved photoemission spectroscopy.
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superconductors discussed in this treatise, to the first approximation, one may treat k⊥ as a
secondary effect. However, one should always be wary about the residual three-dimensionality
in these materials and its effect on photoemission data [20].

The photoemission process can be understood intuitively in terms of a “three step
model” [21]: (1) excitation of the electrons in the bulk by photons, (2) transport of the ex-
cited electrons to the surface, and (3) emission of the photoelectrons into vacuum. Under
the “sudden approximation” (described below), photoemission measures the single-particle
spectral function A(k, ω), weighted by the matrix element M and Fermi function f (ω):
I∼A(k,ω)|M |2f (ω) [22,23]. The matrix element | M |2 term indicates that, besides the energy
and momentum of the initial state and the final state, the measured photoemission intensity
is closely related to some experimental details, such as energy and polarization of incident
light, measurement geometry, and instrumental resolution. The inclusion of the Fermi func-
tion accounts for the fact that the direct photoemission measures only the occupied electronic
states.

The single-particle spectral function A(k,ω) can be written in the following way using
the Nambu−Gorkov formalism

A(k, ω) = −(1/π)ImG11(k, ω), (3.1)

Ĝ(k, ω) = Z(k, ω)ωτ0 + (ε(k)+ χ(k, ω))τ2 + φ(k, ω)τ1

(Z(k, ω)ω)2 − (ε(k)+ χ(k, ω))2 − φ(k, ω)2
, (3.2)

where Z , χ , and φ represent a renormalization due to either electron−electron or
electron−phonon interactions and ε(k) is the bare-band energy. τ0, τ1, τ2 are the matrices
and G11 represents the Pauli electronic charge density channel measured in photoemission. In
the weak coupling case, Z = 1, χ = 0, and φ = ∆, the superconducting gap. The same for-
malism can be extended to the normal state by setting φ = 0. In the normal state, the spectral
function can be written in a more compact way [22, 23], in terms of the real and imaginary
parts of the electron self-energies ReΣ and ImΣ

A(k, ω) = 1
π

|ImΣ(k, ω)|
(ω − ε(k)− ReΣ(k, ω))2 + (ImΣ(k, ω))2

, (3.3)

where ReΣ describes the renormalization of the dispersion and ImΣ describes the lifetime.
In relating the photoemission process in terms of single particle spectral function

A(k, ω), it is helpful to recognize some prominent assumptions involved:

(1) The excited state of the sample (created by the ejection of the photoelectron) does
not relax in the time it takes for the photoelectron to reach the detector. This so-called
“sudden-approximation” allows one to write the final state wave-function in a separable form,
Ψ N

f = Φk
f Ψ N−1

f , where Φk
f denotes the photoelectron and Ψ N−1

f denotes the final state of
the material with N − 1 electrons. If the system is noninteracting, then the final state over-
laps with a single eigenstate of the Hamiltonian describing the N − 1 electrons, revealing the
band structure of the single electron. In the interacting case, the final state can overlap with
all possible eigenstates of the N − 1 system.

(2) In the interacting case, A(k, ω) describes a “quasiparticle” picture in which the in-
teractions of the electrons with lattice motions as well as other electrons can be treated as
a perturbation to the bare band dispersion, ε(k), in the form of a self-energy, Σ(k, ω). The
validity of this picture as well as (1) rests on whether or not the spectra can be understood in
terms of well-defined peaks representing poles in the spectral function.
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(3) The surface is treated no differently from the bulk in this A(k, ω). In reality surface states
are expected and are observed and can lead to confusion in the data interpretation [14]. Surface
termination also affects photoemission process [24].

In addition to the matrix element M, there are other extrinsic effects which contribute to
measured photoemission spectrum, e.g., the contribution from inelastic electron scattering. On
the way to get out from inside the sample, the photoemitted electrons will experience scatter-
ing from other electrons, giving rise to a relatively smooth background in the photoemission
spectrum.

3.2.2. Technique

As shown in Figure 3.1, an ARPES system consists of a light source, chamber and sam-
ple manipulation and characterization systems, and an electron energy analyzer. Figure 3.2 is
an example of a modern ARPES setup with the following primary components:

(1) Light source. Possible light sources for angle-resolved photoemission are X-ray
tubes, gas-discharge lamps, synchrotron radiation source, and VUV lasers. Among them, the
synchrotron radiation source is the most versatile in that it can provide photons with continu-
ously tunable energy, fixed or variable photon polarization, high energy resolution, and high
photon flux. The latest development of the VUV laser is significant as a result of its super-high
energy resolution and super-high photon flux. In addition, the lower photon energy achievable
by the VUV lasers makes the measured electronic structure more bulk-sensitive in certain ma-
terials [25]. However, the strong final state effect may limit its application to certain material
systems.

Light
source

Manipulator Preparation
Chamber

ARPES
Chamber

Sample
Transfer

Characterization
Chamber

Electron Energy
Analyzer

Figure 3.2. A representative ARPES system on Beamline 10.0.1 at the Advanced Light Source, Lawrence Berkeley
National Lab.
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(2) Chambers and sample manipulation and characterization systems. In most of the
photon energy range commonly used (20−100 eV), the escape depth of photoemitted elec-
trons is on the order of 5−20 Å, as shown in Figure 3.3 [26]. This means that photoemission is
a surface-sensitive technique. Therefore, obtaining and retaining a clean surface during mea-
surement is essential to probe the intrinsic electronic properties of the sample. To achieve
this, the ARPES measurement chamber has to be in ultra-high vacuum, typically better than
5×10−11 Torr. A clean surface is usually obtained either by cleaving samples in situ in the
chamber if the samples are cleavable or by sputtering and annealing process if the sample is
hard to cleave. The quality of the surface can be characterized by low energy electron diffrac-
tion (LEED) or other techniques such as scanning tunneling microscopy (STM). The sample
transfer system is responsible for quickly transferring samples from air to UHV chambers
while not damaging the ultra-high vacuum. The manipulator is responsible for controlling the
sample position and orientation, it also holds a cryostat that can change the sample temper-
ature during the measurement. An advanced low temperature cryostat which can control the
sample temperature precisely and has multiple degrees of translation and rotation freedoms is
critical to an ARPES measurement.

(3) Electron energy analyzer. An analyzer measures the intensity of photoemitted elec-
trons as a function of their kinetic energy, i.e., energy distribution curve (EDC), at a given
angle relative to the sample orientation. The dramatic improvement of the ARPES technique
in the last decade is in large part due to the advent of modern electron energy analyzer, in
particular, the Scienta series hemisphere analyzers. The enhancement of the performance lies
in mainly three aspects:

(a) Energy resolution improvement.
The energy resolution of the electron energy analyzer improves steadily over time. The up-
grade of the one-dimensional multichannel detection scheme of the VSW analyzer allows
efficient measurement with ∼20 meV energy resolution. Among others, it enabled the discov-
ery of the d-wave superconducting gap structure [17]. The first introduction of the Scienta
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Figure 3.3. Escape depth of photoemitted electron as a function of kinetic energy [26]. For elements and inorganic
compounds, the escape depth is found to follow the “universal curve” (red solid line).
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Figure 3.4. (a) Ultrahigh-resolution photoemission spectrum of an evaporated gold film measured using Scienta
R4000 analyzer at a temperature of 2.9 K (red circles), together with the Fermi–Dirac function at 2.9 K convolved
by a Gaussian with full width at half maximum of 360 µeV (a blue line). Total energy resolution of 360 µeV was
confirmed from the very good match between the experimental and calculated spectra [25]. The energy resolution
from the VUV laser is estimated to be 260 µeV. (b) Angle mode testing image of Scienta R4000 electron analyzer.
The test was performed using “wire-and-slit” setup, with the angle interval between adjacent slits being 2.5◦. In this
particular angular mode, the analyzer collects emission angle within 30◦ simultaneously.

200 analyzer in the middle 1990s dramatically improved the energy resolution to better than
5 meV. The latest Scienta R4000 analyzer has improved the energy resolution further to better
than 1 meV, as shown in Figure 3.4 [25].

We note that the total experimental energy resolution relies on both the analyzer reso-
lution and the light source resolution. Sample temperature can also cause thermal broadening
which is a limitation in some cases. The necessity of multiple degrees of rotation controls as
well as the exposure of the surface during an ARPES measurement often puts a lower limit on
the sample temperature. In addition, one should be aware of some intrinsic effects associated
with the photoemission process, i.e., space charge effect and mirror charge effect [27]. When
pulsed light is incident on a sample, the photoemitted electrons experience energy redistribu-
tion after escaping from the surface because of the Coulomb interaction between them (space
charge effect) and between photoemitted electrons and the distribution of mirror charges in
the sample (mirror charge effect). These combined Coulomb interaction effects give rise to an
energy shift and a broadening whose magnitude depends on the photon energy, photon flux,
beam spot size, emission angles, etc. For a typical third-generation synchrotron light source,
the energy shift and broadening can be on the order of 10 meV (Figure 3.5) [27]. This value
is comparable to many fundamental physical parameters actively studied by photoemission
spectroscopy and should be taken seriously in interpreting photoemission data and in design-
ing next generation experiments.

(b) Momentum resolution.
The introduction of the angular mode operation in the new Scienta analyzers has also greatly
improved the angular resolution, from a previous ∼ 2◦ to 0.1◦−0.3◦. This improvement of
the momentum resolution allows one to observe detailed structures in the band structure and
Fermi surface, as well as subtle but important many-body effects. As an example, recent
identification of two Fermi surface sheets (so-called “bilayer splitting”) in Bi2Sr2CaCu2O8
(Bi2212) (Figure 3.6) is largely due to such an improvement of momentum resolution [28–30],
combined with the advancement of theoretical calculations [24].
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Figure 3.5. Space charge and mirror charge effects in photoemission [27]. Fermi edge broadening (solid square) and
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Figure 3.6. (a) Experimentally measured Fermi surface in Pb-doped Bi2212 [31]. (b) Calculated Fermi surface of
Bi2212 [24].

(c) Two-dimensional multiple angle detection.
Traditionally, the electron energy analyzer collects one photoemission spectrum, i.e., energy
distribution curve (EDC), at one measurement for each emission angle. Modern electron en-
ergy analyzers collect multiple angles simultaneously. As shown in Figure 3.4b, the latest
Scienta R4000 analyzer can collect photoemitted electrons in the angle range of 30◦ simulta-
neously. Therefore, at one measurement, the raw data thus obtained, shown in Figure 3.7a,
is a two-dimensional image of the photoelectron intensity (represented by false color) as
a function electron kinetic energy and emission angle (and hence momentum). This two-
dimensionality greatly enhances data collection efficiency and provides a convenient way of
analyzing the photoemission data.
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As shown in Figure 3.7, the traditional way to visualize the photoemission data is by
means of so-called energy distribution curves (EDCs), which represent photoelectron intensity
as a function of energy for a given momentum. The 2D image comprising the raw data is then
equivalent to a number of EDCs at different momenta (Figure 3.7b). The peak position at
different momenta will give the energy−momentum dispersion relation determining the real
part of electron self-energy ReΣ . The EDC linewidth determines the quasiparticle lifetime,
or the imaginary part of electron self-energy ImΣ . However, the EDC lineshape is usually
complicated by a background at higher binding energy, the Fermi function cutoff near the
Fermi level, and an undetermined bare band energy which make it difficult to extract the
electron self-energy precisely.

An alternative way to visualize the 2D data is to analyze photoelectron intensity as
a function of momentum for a given electron kinetic energy [32] by means of momentum
distribution curves (MDCs) [33,34]. This approach provides a different way of extracting the
electron self-energy. As shown in Figure 3.7c, the MDCs exhibit well-defined peaks with flat
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Figure 3.7. Illustration of the MDC method for extracting the electron self-energy. (a) Raw photoemission data for
LSCO with x =0.063 (Tc ∼12 K) along the (0,0)−(π ,π ) nodal direction at 20 K [35]. The two-dimensional data
represent the photoelectron intensity (denoted by false color) as a function of energy and momentum. (b) Energy
distribution curves (EDCs) at different momenta. The EDC colored red corresponds to the Fermi momentum kF. (c)
Momentum distribution curves (MDCs) at different binding energies. The MDC colored red corresponds to the Fermi
level. (d) Energy−momentum dispersion relation extracted by the MDC method. The inset shows the MDC width as
a function of energy.
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backgrounds; moreover, they can be fitted by a Lorentzian lineshape. When the bandwidth is
large, the band dispersion εk can be approximated as εk = v0k in the vicinity of the Fermi
level. Under the condition that the electron self-energy shows weak momentum dependence,
A(k,ω) indeed exhibits a Lorentzian lineshape as a function of k for a given binding energy.
By fitting a series of MDCs at different binding energies to obtain the MDC position k̃ and
width Γ (full-width at half maximum, FWHM) (Figure 3.7d) [35], one can extract the electron
self-energy directly as: ReΣ = h̄ω−k̃v0 and ImΣ = Γ v0/2.

It is worthwhile to point out the latest effort in attempting to overcome the surface
sensitivity issue related with photoemission. As seen from Figure 3.3, in the usual photon
energy range used for valence band photoemission, the photoemitted electron escape depth is
on the order on 5−10 Å. Therefore, it is always an issue whether the photoemission results
obtained in this energy range represents the bulk properties. To overcome such a problem,
there have been two approaches by employing either high photon energy or lower photon
energy. As seen from Figure 3.3, when the photon energy is on the order of 1 keV, the electron
escape depth can be increased to ∼20 Å [36]. However, this modest enhancement of the
bulk sensitivity comes at a price of sacrificing both the energy resolution and momentum
resolution. On the other hand, when the photon energy is low, one can see that the electron
escape depth increases dramatically. Note that this “universal” curve is obtained from metals,
whether the same curve can be applied to oxide materials remains unclear yet. In addition
to the potential enhancement of the bulk sensitivity, one may further improve the energy and
momentum resolution by going to lower photon energy.

3.3. Electronic Structures of High Temperature Superconductors

3.3.1. Basic Crystal Structure and Electronic Structure

A common structural feature of all cuprate superconductors is the CuO2 plane
(Figure 3.8a) which is responsible for the low lying electronic structure; the CuO2 planes
are sandwiched between various block layers which serve as charge reservoirs to dope CuO2
planes [37,38]. For the undoped parent compound, such as La2CuO4, the valence of Cu is 2+,
corresponding to 3d9 electronic configuration. Since the Cu2+ is surrounded by four oxygens
in the CuO2 plane and apical oxygen(s) or halogen(s) perpendicular to the plane, the crystal
field splits the otherwise degenerate five d-orbitals, as schematically shown in Figure 3.9 [39].
The four lower energy orbitals, including xy, xz, yz, and 3z2 − r2, are fully occupied, while the

Γ (π,0)

(0,π)

Cu

O

(π,π)

Nodal
region

Antinodal
region

Antinodal
region

a b

Figure 3.8. (a) Schematic of the real-space CuO2 plane. The CuO2 plane consists of copper (pink solid circles) and
oxygen (black open circles). (b) The corresponding Brillouin zone in a reciprocal space. In the first Brillouin zone,
the area near (π /2, π /2) (denoted as red circle) is referred to as nodal region, and the (0,0)−(π ,π ) direction is the
nodal direction (red arrow). The area near (π ,0) and (0,π ) is referred to as the antinodal region (shaded circles). The
blue solid line shows a schematic Fermi surface.



96 X. J. Zhou et al.

orbital with highest energy, x2 − y2, is half-filled. Since the energies of the Cu d-orbitals and
O 2p-orbitals are close, there is a strong hybridization between them. As a result, the topmost
energy level has both Cu dx2−y2 and O 2px,y character.

The same conclusion is also drawn from band structure calculations (Figure 3.10a)
[39]. According to both simple valence counting (Figure 3.9) and band structure calculation
(Figure 3.10a), the undoped parent compound is supposed to be a metal. However, strong
Coulomb interactions between electrons on the same Cu site makes it an antiferromagnetic
insulator with an energy gap of 2 eV [42, 43]. The basic theoretical model for the electronic
structure most relevant to our discussion is the multiband Hubbard Hamiltonian [44, 45] con-
taining d states on Cu sites, p states on O sites, hybridization between Cu−O states, hy-
bridization between O−O states, and Coulomb repulsion terms. In terms of hole notation, i.e.,
starting from the filled-shell configuration (3d10, 2p6) corresponding to a formal valence of
Cu1+ and O2−, the general form of the model can be written as [46]

H =
∑

iσ

εdd+
iσdiσ +

∑

lσ

εp p+
lσ plσ +

∑

<li>σ

tpd p+
lσdiσ + h.c.

+
∑

i

Udni↑ni↓ +
∑

<ll ′>σ
tO−O p+

lσ pl ′σ + h.c.

+
∑

<il>σσ ′
Updnlσniσ ′ +

∑

l

Upnl↑nl↓, (3.4)
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Figure 3.9. Bonding in CuO2 plane [40]. The atomic Cu 3d level is split due to the cubic crystal field into eg and
t2g states. There is a further splitting due to an octahedral crystal field into x2 − y2, 3z2 − r2, xy, and xz, yz states.
For divalent Cu which has nine 3d electrons, the uppermost x2 − y2 level is half filled, while all other levels are
completely filled. There is a strong hybridization of the Cu states, particularly the x2 − y2 states, with the O 2p states
thus forming a half-filled two-dimensional Cu 3dx2−y2 –O 2px,y antibonding dpσ band. The hybridization of the
other 3d levels is smaller and is indicated in figure only by a broadening.
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planes [42]. (c1) Band picture for a half-filled (undoped) CuO2 plane (Fermi liquid). (c2) Charge-transfer insulating
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separated by a charge transfer energy ∆ from the upper Cu 3d band. (c3) and (c4) show rigid charge transfer energy
bands doped with holes and electrons, respectively. (c5) Formation of mid-gap states inside the charge transfer gap.

where the operator d+
iσ creates Cu (3dx2−y2 ) holes at site i , and p+

lσ creates O(2p) holes at
the site l. Ud is the on-site Coulomb repulsion between two holes on a Cu site. The third
term accounts for the direct overlap between Cu−O orbitals. The fifth terms describes direct
hopping between nearest-neighbor oxygens, and Upd in the sixth term is the nearest-neighbor
Coulomb repulsion between holes on Cu and O atoms. Qualitatively, this model gives the
energy diagram in Figure 3.10c.

Simplified versions of model Hamiltonians have also been proposed. Notably among
them are the single-band Hubbard model [47] and t−J model [48]. The t−J Hamiltonian can
be written in the following form [46, 50]

Ht−J = −t
∑

<i j>,σ

(c̃†
iσ c̃ jσ + h.c.)+ J

∑

<i j>

(Si · S j − n̂i↑n̂ j↓/4), (3.5)
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where the operator c̃†
iσ = c†

iσ (1− n̂i−σ ) excludes double occupancy, J = 4t2/U is the antifer-
romagnetic exchange coupling constant, and Si is the spin operator. Since the hopping process
may also involve the second (t

′
) and third (t ′′) nearest neighbors, an extended t−J model, the

t–t ′–t ′′−J model, has also been proposed [51].

3.3.2. Brief Summary of Some Latest ARPES Results

ARPES has provided key information on the electronic structure of high temperature su-
perconductors, including the band structure, Fermi surface, superconducting gap, and pseudo-
gap. These topics are well covered in recent reviews [14, 15] that we will not repeat here.
Instead, we briefly summarize some of the latest developments not included before.

Band structure and Fermi surface: The bilayer splitting of the Fermi surface is well
established in the overdoped Bi2212 [28–30], as shown in Figure 3.6 and also suggested to
exist in underdoped and optimally doped Bi2212 [52–55]. Recent measurements also show
that there is a slight splitting along the (0,0)−(π ,π ) nodal direction [56]. The measurement
on four-layered Ba2Ca3Cu4O8F2 has identified at least two clear Fermi surface sheets [57].

Superconducting gap and pseudogap: Since the first identification of an anisotropic
superconducting gap in Bi2212 [17], subsequent measurements on the superconductors such
as Bi2212 [58–61], Bi2201 [62, 63], Bi2223 [64–66], YBa2Cu3O7−δ [67], LSCO [68] have
established a universal behavior of the anisotropic superconducting gap in these hole-doped
superconductors which is consistent with d-wave pairing symmetry (although it is still an
open question whether the gap form is a simple d-wave-like ∆(k) = ∆0[cos(kx a) – cos(kya)]
or higher harmonics of the expansion should be included). The measurements on electron-
doped superconductors also reveal an anisotropic superconducting gap [69, 70].

One interesting issue is, if a material has multiple Fermi surface sheets, whether the su-
perconducting gap on different Fermi surface sheets is the same. This issue traces back to su-
perconducting SrTiO3 where it was shown from tunneling measurements that different Fermi
surface sheets may show different superconducting gaps [71]. With the dramatic advance-
ment of the ARPES technique, different superconducting gaps on different Fermi surface
sheets have been observed in 2H-NbSe2 [72] and MgB2 [73]. For high-Tc materials, Bi2212
shows two clear FS sheets, but no obvious difference of the superconducting gas has been
resolved [61]. In Ba2Ca3Cu4O8F2, it has been clearly observed that the two Fermi surface
sheets have different superconducting gaps [57].

Time reversal symmetry breaking: It has been proposed theoretically that, by utilizing
circularly polarized light for ARPES, it is possible to probe time-reversal symmetry breaking
that may be associated with the pseudogap state in the underdoped samples [74,75]. Kaminski
et al. first reported the observation of such an effect [76]. However, this observation is not
reproduced by another group [77] and the subject remain controversial [78].

3.4. Electron−Phonon Coupling in High Temperature
Superconductors

The many-body effect refers to interactions of electrons with other entities, such as other
electrons, or collective excitations like phonons, magnons, and so on. It has been recognized
from the very beginning that many-body effects are key to understanding cuprate physics.
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Due to its proximity to the antiferromagnetic Mott insulating state, electron−electron inter-
actions are extensively discussed in the literature [14, 15]. In this treatise, we will mostly
review the recent progress in our understanding of electrons interacting with bosonic modes,
such as phonons. This progress stems from improved sample quality, instrumental resolution,
as well as theoretical development. In a complex system like the cuprates, it is not possible
to isolate various degrees of freedom as the interactions mix them together. We will discuss
the electron−boson interactions in this spirit, and will comment on the interplay between
electron−phonon and electron−electron interactions whenever appropriate. Here by bosonic
modes, we are referring to collective modes with sharp collective energy scale such as the
optical phonons and the famous magnetic resonance mode seen in some cuprates [79–81],
but not the broad excitation spectra such as those from the broad electron/spin excitations as
these issues have been discussed in previous reviews. Furthermore, we believe the effects due
to sharp mode coupling seen in cuprates are caused by phonons rather than the magnetic res-
onance. Our reason for not attributing the observed effect to magnetic resonance will become
apparent from the rest of the manuscript. With more limited data, other groups have taken the
view that the magnetic resonance is the origin of the boson coupling effect. For this reason,
we will focus more on our own results in reviewing the issues of electron−phonon interaction
in cuprates.

The electron−phonon interactions can be characterized into two categories (1) weak
coupling where one can still use the perturbative self-energy approach to describe the qua-
siparticle and its lifetime and mass and (2) Strong coupling and polaron regime where this
picture breaks down.

3.4.1. Brief Survey of Electron−Phonon Coupling in High-Temperature
Superconductors

It is well-known that, in conventional superconductors, electron−phonon (el−ph) cou-
pling is responsible for the formation of Cooper pairs [4]. The discovery of high tempera-
ture superconductivity in cuprates was actually inspired by possible strong electron−phonon
interaction in oxides owing to polaron formation or in mixed-valence systems [1]. How-
ever, shortly after the discovery, a number of experiments lead some people to believe that
electron−phonon coupling may not be relevant to high temperature superconductivity. Among
them are [82]:
(1) High critical transition temperature Tc

So far, the highest Tc achieved is 135 K in HgBa2Ca2Cu3O8 [83] at ambient pressure
and ∼160 K under high pressure [84]. Such a high Tc was not expected in simple materials
using the strongly coupled version of BCS theory or the McMillan equations.
(2) Small isotope effect on Tc.

It was found that the isotope effect in optimally doped samples is rather small, much
less than that expected for strongly coupled phonon-mediated superconductivity [85].
(3) Transport measurement.

The linear resistivity−temperature dependence in optimally doped samples and the lack
of a saturation in resistivity over a wide temperature range have been taken as an evidence of
weak electron−phonon coupling in the cuprate superconductors [86].
(4) d-wave symmetry of the superconducting gap.

It is generally believed that electron−phonon coupling is favorable to s-wave coupling.
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(5) Structural instability.
It is generally believed that sufficiently strong electron−phonon coupling to yield high

Tc will result in structural instability [87].

Although none of these observations can decisively rule out the electron–phonon cou-
pling mechanism in high-Tc superconductors, overall they suggest looking elsewhere. Instead,
strong electron–electron correlation has been proposed to be the mechanism of high-Tc super-
conductivity [88]. This approach is attractive since d-wave pairing is a natural consequence.
Furthermore, the high temperature superconductors evolve from antiferromagnetic insulating
compounds where the electron−electron interactions are strong [8, 9].

However, there is a large body of experimental evidence also showing strong
electron−phonon coupling in high-temperature superconductors [89–91]. Among them are:
(1) Isotope effect.

As seen in Figure 3.11, although at the optimal doping, the oxygen isotope effect on Tc
is indeed small, it gets larger and becomes significant with reduced doping [93]. In particu-
lar, near the “1/8” doping level, the isotope effect in (La2−x Srx )CuO4 and (La2−x Bax )CuO4
is anomalously strong, which is related to the structural instability [94]. Furthermore, the
measurement of an oxygen isotope effect on the in-plane penetration depth also suggests the
importance of lattice vibration for high-Tc superconductivity [95].
(2) Optical spectroscopy and Raman scattering.

Raman scattering [96] and infrared spectroscopy [97] reveal strong electron−phonon
interaction for certain phonon modes. Some typical vibrations related to the in-plane and
apical oxygens are depicted in Figure 3.12. In YBa2Cu3O7−δ , it has been found that, the
B1g phonon, which is related to the out-of-plane, out-of-phase, in-plane oxygen vibrations
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Figure 3.11. Doping dependence of the oxygen isotope effect α0 on Tc in several classes of cuprates [92–94]. The
“1/8 anomaly” data found in LSCO system is highlighted in the shaded region.
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Figure 3.12. Schematic of B1g mode (a), A1g mode (b), half-breathing mode (c), full-breathing mode (d) and apical
oxygen mode (e).

(see Figure 3.12), exhibits a Fano-like lineshape (Figure 3.13) and shows an abrupt soften-
ing upon entering the superconducting state [98–100]. The A1g modes, as found in HgBa2
Ca3Cu4O10 (Hg1234) [101] and in HgBa2Ca2Cu3O8 (Hg1223) [102], exhibit especially
strong superconductivity-induced phonon softening (Figure 3.14). Infrared reflectance mea-
surements on various cuprates found that the frequency of the Cu−O stretching mode in the
CuO2 plane is very sensitive to the distance between copper and oxygen [97].

Figure 3.15 shows Raman data as a function of doping in LSCO [103]. The sharp struc-
tures at high frequency are signals from multiphonon processes, which can only occur if the
electron−phonon interaction is very strong. One can see that this effect is very strong in un-
doped and deeply underdoped regime, and gets weaker with doping increase.
(3) Neutron scattering.

Neutron scattering measurements have provided rich information about electron−
phonon coupling in high temperature superconductors [104–106]. As seen from Figure 3.16a,
the in-plane “half-breathing” mode exhibits strong frequency renormalizations upon doping
along (001) direction [104,107]. In (La1.85Sr0.15)CuO4, it is reported that, at low temperature,
the half-breathing mode shows a discontinuity in dispersion (Figure 3.16b) [108]. In YBCO,
neutron scattering indicates that the softening of the B1g mode upon entering the supercon-
ducting state is not just restricted near q = 0, as indicated by Raman scattering (Figure 3.13),
but can be observed in a large part of the Brillouin zone (Figure 3.17) [106].
(4) Material and structural dependence.

There is a strong material and structural dependence to the high-Tc superconductivity,
as exemplified in Figure 3.18 [109, 110]. Empirically it is found that, for a given homologous
series of materials, the optimal Tc varies with the number of adjacent CuO2 planes, n, in a
unit cell: Tc goes up first with n, reaching a maximum at n = 3, and goes down as n further
increases. For the cuprates with the same number of CuO2 layers, Tc also varies significantly
among different classes. For example, the optimal Tc for one-layered (La2−x Srx )CuO4 is 40 K
while it is 95 K for one-layered HgBa2CuO4. These behaviors are clearly beyond simplified
models that consider CuO2 planes only, such as the t−J model. In fact, such effects were
taken as evidence against theoretical models based on such simple models and in favor of the
interlayer tunneling model [111]. Although the interlayer tunneling model has inconsistencies
with some experiments, the issue that the material dependence cannot be explained by single
band Hubbard and t−J model remains to be true.
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Figure 3.13. Anomalous softening of the B1g phonon when YBCO is cooled below Tc [100]. The inset shows the
fit of a Fano function to the phonon peak at T = 72 K [98].

The above results suggest that the lattice degree of freedom plays an essential role.
However, the role of phonons has not been scrutinized as much, in particular in regard
to the intriguing question of whether high-Tc superconductivity involves a special type of
electron−phonon coupling. In other words, the complexity of electron−phonon interaction
has not been as carefully examined as some of the electronic models. As a result, many
naive arguments are used to argue against electron−phonon coupling as if the conclusions
based on simple metals are applicable here. Recently, a large body of experimental re-
sults from angle-resolved photoemission, as we review below, suggest that electron−phonon
coupling in cuprates is not only strong but shows behaviors distinct from conventional
electron−phonon coupling. In particular, the momentum dependence and the interaction be-
tween electron−phonon interaction and electron−electron interaction are very important.

3.4.2. Electron–Phonon Coupling: Theory

General

Theory of electron−phonon interaction in the presence of strong electron correlation
has not been developed. Given both interactions are important in cuprates, it is difficult a priori
to have a good way to address these issues. In fact, we believe that an important outcome of
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Figure 3.14. Raman spectra of Hg1234 showing a giant superconductivity-induced mode softening across Tc = 123
K [101]. The modes at 240 and 390 cm−1 correspond to A1g out-of-plane, in-phase vibration of oxygens in the CuO2
planes. Upon cooling from room temperature to 4.5 K, the 240 cm−1 A1g mode shows an abrupt drop in frequency
at Tc from 253 to 237 cm−1 and the 390 cm−1 mode drops from 395 to 317 cm−1 [101].

our research is the stimulus to develop such a theory. In the mean time, our strategy is to
separate the problem in different regimes and see to what extent we can develop a heuris-
tic understanding of the experimental data. Such empirical findings can serve as a guide for
comprehensive theory. We now start our discussion with an overview of existing theories of
electron−phonon physics.

The theories of electron−phonon coupling in condensed matter have been developed
rather separately for metals and insulators. In the former case, the dominant energy scale is
the kinetic energy or the Fermi energy εF on order of 1−10 eV, and the phonon frequency
Ω ∼ 1−100 meV is much smaller. The Fermi degeneracy protects the many-body fermion
system from perturbations and only the small energy window near the Fermi surface responds.
Therefore even if the lattice relaxation energy ELR = g2/ω for the localized electron is com-
parable to the kinetic energy εF the el−ph coupling is essentially weak and the perturbative
treatment is justified. The dimensionless coupling constant λ is basically the ratio of ELR/εF,
which ranges λ ∼= 0.1−2 in the usual metals. In the diagrammatic language, the physics de-
scribed above is formulated within the framework of the Fermi liquid theory [112]. The el−el
interaction is taken care of by the formation of the quasiparticle, which is well defined near the
Fermi surface, and the el−ph vertex correction is shown to be smaller by the factor of �/εF
and can be neglected. Therefore the multiphonon excitations are reduced and the single-loop
approximation or at most the self-consistent Born approximation is enough to capture the
physics well, i.e., Migdal−Eliashberg formalism.
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Figure 3.15. A1g two-phonon Raman spectra in LSCO at different dopings. The dark gray area indicates that the
two-phonon peak of the (π ,π ) LO mode is strong and the light gray area indicates that the two-phonon peak of the
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a
b

Figure 3.16. (a) Dispersion of the Cu–O bond-stretching vibrations in the (100)-direction in (La2−x Srx )CuO4
[104]. (b) Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4. A 10 K data are filled circles and room
temperature data are empty squares. Gray shaded circles indicate the frequency of the weak extra branch seen at
10 K [108].
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Figure 3.18. Correlation between calculated range parameter r and observed Tcmax where r is controlled by the
energy of the axial orbital, a hybrid between Cu 4s, apical-oxygen 2pz , and farther orbitals [109]. Filled squares:
single-layer materials and most bonding subband for multilayers. Empty squares: most antibonding subband. Half-
filled squares: nonbonding subband. Dotted lines connect subband values. Bars give kz dispersion of r in primitive
tetragonal materials. For reference for a–m, refer to [109].

When a carrier is put into an insulator, on the other hand, it stays near the bottom of the
quadratic dispersion and its velocity is very small. The kinetic energy is much smaller than
the phonon energy, and the carrier can be dressed by a thick phonon cloud and its effective
mass can be very large. This is called the phonon polaron. Historically the single carrier prob-
lem coupled to the optical phonon through the long range Coulomb interaction, i.e., Fröhlich
polaron, is the first studied model, which is defined in the continuum. When one considers the
tight-binding models, which is more relevant to the Bloch electron, the bandwidth W plays
the role of εF in the above metallic case. Then again we have three energy scales, W , ERL,
and Ω . Compared with the metallic case, the dominance of the kinetic energy is not trivial,
and the competition between the itinerancy and the localization is the key issue in the polaron
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problem, which is controlled by the dimensionless coupling constant λ = ERL/W . Another
dimensionless coupling constant is S = ERL/Ω , which counts the number of phonon quanta
in the phonon cloud around the localized electron. This appears in the overlap integral of the
two-phonon wavefunctions with and without the phonon cloud as:

〈phonon vacuum|phonon cloud〉 ∝ e−S . (3.6)

This factor appears in the weight of the zero-phonon line of the spectral function of the local-
ized electron and S can be regarded as the maximum value for the number of phonons Nph
near the electron. In a generic situation, Nph is controlled by λ, and there are cases where
Nph shows an (almost) discontinuous change from the itinerant undressed large polaron to the
heavily dressed small polaron as λ increases. This is called the self-trapping transition. Here
a remark on the terminology “self-trapping” is in order. Even for the heavy mass polaron, the
ground state is the extended Bloch state over the whole sample and there is no localization.
However, a small amount of disorder can cause the localization. Therefore in the usual situa-
tion, the formation of the small polaron implies the self-trapping, and we use this language to
represent the formation of the thick phonon clouds and huge mass enhancement. In cuprates, it
is still a mystery why the transport properties of the heavily underdoped samples do not show
the strong localization behavior even though the ARPES shows the small polaron formation
as will be discussed in “Polaronic Behavior in Parent Compounds” in Section 3.4.4.

Now the most serious question is what is the picture for the el−ph coupling in cuprates?
The answer seems not so simple, and depends both on the hole-doping concentration, momen-
tum, and energy. The half-filled undoped cuprate is a Mott insulator with antiferromagnetic
ordering, and a single hole doped into it can be regarded as the polaron subjected to the
hole−magnon and hole−phonon interactions. At finite doping, but still in the antiferromag-
netic (AF) order, the small hole pockets are formed and the hole kinetic energy can be still
smaller than the phonon energy. In this case the polaron picture still persists. The main issue
is to what range this continues. One scenario is that once the antiferromagnetic order dis-
appears the metallic Fermi surface is formed and the system enters the Migdal−Eliashberg
regime. However, there are several physical quantities such as the resistivity, Hall coefficient,
optical conductivity, which strongly suggest that the physics still bears a strong characteristics
of doped holes in an insulator rather than a simple metal with large Fermi surface. Therefore
the crossover hole concentration xc between the polaron picture and the Migdal−Eliashberg
picture remains an open issue. Probably, it depends on the momentum/energy of the spectrum.
For example, the electrons have smaller velocity and are more strongly coupled to the phonons
in the antinodal region near (±π, 0), (0,±π), remaining polaronic up to higher doping, while
in the nodal region, the electrons behave more like the conventional metallic ones since the
velocity is large along this direction. Furthermore, the low energy states near the Fermi energy
are well described by Landau’s quasiparticle and Migdal−Eliashberg theory, while the higher
energy states do not change much with doping even at x ∼= 0.1 [113] suggestive of polaronic
behavior. In any event, the dichotomy between the hole doping picture and the metallic (large)
Fermi surface picture is the key issue in the research of high-Tc superconductors.

Weak Coupling—Perturbative and Self-Energy Description

We review first the Migdal−Eliashberg regime, in which the electron−phonon inter-
action results in single-phonon excitations and can be considered as a perturbation to the
bare band dispersion. In this case, dominant features of the mode-coupling behavior can be
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captured using the following form for the self-energy:

Σ̂(k, ω) = T/N
∑

q,ν

g2(k, q)D(q, iν)τ3Ĝ(k − q, iω − iν)τ3, (3.7)

where D(q, ω) = 2Ωq/(ω
2 −Ω2

q ) is the phonon propagator, Ωq is the phonon energy, T is
temperature, N is the number of particles, and τ3 is the Pauli matrix.

In this form of the self-energy, corrections to the electron−phonon vertex, g, are ne-
glected as mentioned above [115]. Furthermore, we assume only one-iteration of the coupled
self-energy and Green’s function equations. In other words, in the equation for the self-energy,
�, we assume bare electron and phonon propagators, G0 and D0. With these assumptions, the
imaginary parts of the functions Z , χ , and φ, denoted as Z2, χ2, and φ2, are:

Z2(k, ω)ω =
∑

q

g2(k, q)(π/2){[δ(ω −Ωq − Ek−q)

+ δ(ω −Ωq + Ek−q)][ f (Ωq − ω)+ n(Ωq)]
+ [−δ(ω +Ωq − Ek−q)− δ(ω +Ωq + Ek−q)][ f (Ωq + ω)+ n(Ωq)]}, (3.8)

χ2(k, ω) =
∑

q

g2(k, q)(πεk−q/2Ek−q){[−δ(ω −Ωq − Ek−q)

+ δ(ω −Ωq + Ek−q)][ f (Ωq − ω)+ n(Ωq)]
+ [δ(ω +Ωq − Ek−q)− δ(ω +Ωq + Ek−q)][ f (Ωq + ω)+ n(Ωq)]}, (3.9)

φ2(k, ω) =
∑

q

g2(k, q)(π∆k−q/2Ek−q){[δ(ω −Ωq − Ek−q)

− δ(ω −Ωq + Ek−q)][ f (Ωq − ω)+ n(Ωq)]
+ [−δ(ω +Ωq − Ek−q)+ δ(ω +Ωq + Ek−q)][ f (Ωq + ω)+ n(Ωq ]}, (3.10)

where f (x), n(x), are the Fermi, Bose distribution functions and Ek is the superconducting
state dispersion, E2

k = ε2
k +∆2

k .
The above equations are essentially those of Eliashberg theory for strongly coupled

superconductors. Although λ can be large (> 1), i.e., “strongly coupled,” the vertex correc-
tions and multiphonon processes are still negligible due to the Fermi degeneracy and small
Ω/EF [116]. To illustrate the essential features of mode coupling, we consider an Einstein
phonon coupled isotropically to a parabolic band. We present this calculation in the spirit of
Engelsberg and Schrieffer, who first calculated the spectral function for an electron−phonon
coupled system [117] and which provided the foundation for the later work by Scalapino,
Schrieffer, and Wilkins [118] in the superconducting state. Figure 3.19 plots −Z2ω + χ2, the
imaginary part of the phonon self-energy, Im �, that represents the renormalization to the
diagonal channel of the electron propagator, or the one in which the charge number density is
subjected to electron−phonon interactions. This part of the self-energy gives a finite lifetime
to the electron, and consequently broadens the peak in the spectra (Im � in A(k, ω) (Eq. 3.3)
is the half-width-at-half-maximum, HWHM of the peak). In the normal state, −Z2ω + χ2
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Figure 3.19. Self-energy for electrons coupled to an Einstein mode with Ω = 35 meV and electron−phonon vertex
g = 0.15 eV [114]. (a1), (b1), and (c1) plots Im� = −Z2ω + χ2 for a normal state electron at 10 K, for a normal
state electron at 100 K, and for an electron in an s-wave superconducting state at 10 K, respectively. (a2), (b2), and
(c2) plots the corresponding real parts, ReΣ , obtained using the Kramers–Kronig relation.

takes the familiar form:

Im Σ(k, ω) = Σq − πg2(k, q)[2n(Ωq)+
f (Ωq + ω)+ f (Ωq − ω)]δ(ω − Ek−q), (3.11)

which when integrated over q becomes:

Im Σ(k, ω) =
∫

dΩα2
k F(Ω)[2n(Ω)+ f (Ω + ω)+ f (Ω − ω)], (3.12)

where α2
k F(Ω), the Eliashberg function, represents the coupling of the electron with Fermi

surface momentum k, to all Ω phonons connecting that electron to other points on the Fermi
surface.

For the normal state electron at 10 K (Figure 3.19a1), there is a sharp onset of the
self-energy that broadens the spectra beyond the mode energy; for the normal state electron
at 100 K (Figure 3.19b1), the onset of the self-energy is much smoother and occurs over
∼50 meV; for the superconducting state electron (Figure 3.19c1), there is a singularity that
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causes a much more abrupt broadening of the spectra at the energy Ω + ∆. The supercon-
ducting state singularity is due to the density of states pile-up at the gap energy; the energy
at which the decay onsets shift by ∆, since below the gap energy there are no states to which
a hole created by photoemission can decay. For each of these imaginary parts of the self-
energy, one can use the Kramers−Kronig transform to obtain the real part of the self-energy,
which renormalizes the peak position (Re Σ in A(k, ω) (Eq. 3.3) changes the position of the
peak in the spectral function). The real self-energies thereby obtained are also plotted in Fig-
ure 3.19a2–c2. In the superconducting state, again there is a singularity that causes a more
abrupt break from the bare-band dispersion at the energy Ω +∆.

For most metals, where the electrons are weakly interacting, and therefore the poles of
the spectral function are well defined, one would expect such a treatment to hold and indeed
it does, as evidenced by several cases including Beryllium [119,120] and Molybdenum [121].
A priori, one might not expect the same to hold in ceramic materials such as the copper-oxides,
where the copper d-wave electrons are localized and subject to strong electron−electron
and electron−phonon interactions. Nonetheless, in the superconducting state of the copper-
oxides at optimal and overdoped regime, one recovers narrow peaks (20−30 meV) of the
spectral function. The above self-energy, then, is able to describe the phenomenology of
the mode-coupling behavior for the superconducting state. The difference between the self-
energy induced for a particular mode and coupling constant in the normal state at T = 100 K
(Figure 3.19) and the superconducting state at T = 10 K (Figure 3.19) also shows the extent
to which one can expect a temperature-dependent mode coupling in the high-Tc cuprates.

To illustrate the salient features of mode coupling on the dispersion, we consider a lin-
ear bare band coupled to an Einstein phonon in the normal state at T = 10 K. The effect of
electron−phonon interaction on the one-electron spectral weight A(k, ω) of a dx2−y2 super-
conductor has been simulated by Sandvik et al. [122]. In Figure 3.20, we show image plots,
EDCs, MDC-derived dispersions, and the MDC-extracted widths for two different coupling
constants (the case of stronger coupling is a factor of five increase in the vertex, g2).

Figure 3.20. Simulated electron−phonon coupling using Einstein model. Spectral function (a1, b1), EDCs (a2,
b2), MDC-derived dispersion (a3, b3), and the MDC-derived width (a4, b4) (imaginary part of self-energy) for two
different couplings (a weak, b five times stronger) to a linear bare band.
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There are three characteristic signatures of mode-coupling behavior evident:
(1) A break up of a single dispersing peak into two branches (Figure 3.20a1, b1)—a

peak that decays as it asymptotically approaches the mode energy (I in Figure 3.20a2, b2),
and a hump that traces out a dispersing band (II in Figure 3.20a2, b2).

(2) In the image plots (Figure 3.20a1, b1), a significant broadening of the spectra beyond
the mode energy is readily apparent. This is also the origin of the broad hump of the dispersing
band seen in the EDCs (Figure 3.20a2, b2) and the step in the extracted widths (or lifetime)
(Figure 3.20a4, b4).

(3) At the mode energy itself, there is a “dip” between the peak and the hump in the
EDCs (Figure 3.20a2, b2) leading to the “peak-dip-hump” structure often discussed in the
literature.

From these generic features of electron−phonon coupling, one could ascertain the mode
energy and coupling strength. Theoretically, the mode energy should be the energy to which
the peak in the EDC curve decays. If there is a well-defined peak that has enough phase space
range to decay, the last point at which it can be measured is the best indication of the mode
energy. Otherwise, estimates can be made from the EDC, MDC-derived dispersions, and the
position of the step in the MDC widths. The coupling strength is indicated by the extent of
the break up of the spectra into a peak and a hump, the sharpness of the “kink” in the MDC-
derived dispersion, and the magnitude of the step in the MDC-derived widths. Quantitative
assessments of the coupling strength, however, require either a full model calculation or an
extraction procedure to invert the phonon density of states coupled to the electronic spectra.

Strong Coupling—Polaron

When the kinetic energy of the particles is less than the phonon energy, the dressing
of the phonon cloud could be large and the el−ph coupling enters into the polaron regime.
A single particle coupled to the phonon is the typical case, on which extensive theoretical
studies have been done. Let g(q) be the coupling constant of the phonon with wavenumber
q to the electrons, and the lattice relaxation energy ELR is estimated as ELR ∼= 〈|g(q)|2〉/Ω .
When this ELR is smaller than the bandwidth, the effective reduction of the el−ph coupling
due to the rapid motion of the electron, i.e., the motional narrowing, occurs and the weight of
the one-phonon side-band is of the order of g(q)/W with the number of the phonon quanta
Nph being estimated as Nph ∼ 〈|g(q)|2〉/W 2 ∼ S(Ω/W )2 where S = ELR/Ω . As the
el−ph coupling constant increases, the polaron state evolves from this weak-coupling large
polaron to the strong-coupling small polaron. This behavior is nonperturbative in nature, and
the theoretical analysis is rather difficult. One useful method is the adiabatic approximation
where the frequency of the phonon is set to be zero while ELR remains finite. In this limit, one
can regard the phonon as a classical lattice displacement, whose Fourier component is denoted
by Qq . Then one can investigate the stability of the weak-coupling large polaron state, i.e.,
zero distortion state in the present approximation, by the perturbative way. Namely the energy
gain second order in g(q) reads

δE = − 1
N

∑

q,Ω

g(q)2

E(q)− E(0)
Qq Q−q (3.13)

with the energy dispersion E(k) of the electron. Here the electron is at the ground state with
the energy E(0) in the unperturbed state. Introducing the index $ characterizing the range of
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the coupling as g(q) ∝ q−$, and considering the smallest possible wavenumber qmin ∝ N−1/d

for the linear sample size L = N 1/d in spatial dimension d, one can see that the index

s = d − 2(1 + $) (3.14)

separates the two different behavior of δE . For s>0, δE for q =qmin goes to zero as N →∞,
which suggests that the weak-coupling state is always locally stable, separated by an energy
barrier from the strong-coupled small polaron state. This means that a discontinuous change
from the weak- to strong-coupling polaron states occurs where the mass becomes so heavy
that the carrier is easily localized by impurities. Namely, the self-trapping transition occurs.
For s < 0, on the other hand, the zero distortion state is always unstable for infinitesimal
g(q) and hence the lowest energy state continues smoothly as the coupling increases, i.e., no
self-trapping transition. The most relevant case of the short range el−ph coupling in two di-
mensions, i.e., d = 2, $ = 0, corresponds to s = 0, and hence is the marginal class. Therefore
whether the self-trapping transition occurs or not is determined by the model of interest, and
is nontrivial.

For the study of the polaron in the intermediate to strong-coupling region, one needs to
invent a reliable theoretical method to calculate the energy, phonon cloud, effective mass, and
the spectral function. Up to very recently, it has been missing but the diagrammatic quantum
Monte Carlo method [123] combined with the stochastic analytic continuation [124] enabled
the “numerically exact” solution to this difficult problem. By this method, the crossover from
the weak- to strong-coupling regions have been analyzed accurately for various models [125,
126]. With this method, the polaron problem in the t−J model has been studied, and detailed
information on the spectral function is now available which can be directly compared with
experimental results. It is found that the self-trapping transition occurs in the two-dimensional
t−J polaron model, and in comparison with experiment, the realistic coupling constant for the
undoped case corresponds to the strong-coupling region. Namely the single hole doped into
the undoped cuprates is self-trapped. Section 3.4.4 gives more details of how the polaron
model relates to such experimentally determinable quantities as the lineshape, dispersion, and
the chemical potential shift with doping.

Now we turn to the ARPES measurements that can be related to the two regimes of
electron−phonon coupling. We will first review the band renormalization effects along the
(0,0)−(π ,π ) nodal direction and near the (π ,0) antinodal region. The weak electron−phonon
coupling picture is useful in accounting for many observations. However, there are exper-
imental indications that defy the conventional electron−phonon coupling picture. Then we
will move on to review the polaron issue which manifests in undoped and heavily underdoped
samples.

3.4.3. Band Renormalization and Quasiparticle Lifetime Effects

El–Ph Coupling Along the (0,0)−(π ,π ) Nodal Direction

The nodal direction denotes the (0,0)−(π ,π ) direction in the Brillouin zone
(Figure 3.8b). The d-wave superconducting gap is zero along this particular direction. As
shown in Figures 3.21 and 3.22a, the energy−momentum dispersion curves from MDC
method exhibit an abrupt slope change (“kink”) near 70 meV. The kink is accompanied by
an accelerated drop in the MDC width at a similar energy scale (Figure 3.22b). The existence
of the kink has been well established as ubiquitous in hole-doped cuprate materials [127–133]:



112 X. J. Zhou et al.

 20 K
 100 K

 20 K
 50 K
 130 K

 0.12
 0.16
 0.21

0.21
0.24

E
ne

rg
y 

(m
eV

)

0.0

–200
11 00

LSCO Bi2201Bi2212a b c

0.0 0.3

Doping, d

0

2

0.0

–200

d e fLSCO Bi2212

–100

–100

 0.07
 0.15
 0.22

k'

l'

d = 0.15 d = 0.16

d

d

d

Figure 3.21. Ubiquitous existence of a kink in the nodal dispersion of various cuprate materials [128]. Top panels
(a, b, c) plot dispersions along (0, 0)–(π ,π ) direction (except for panel b inset, which is off this direction) as a
function of the rescaled momentum k′ for different samples and at different doping levels (δ): (a) LSCO at 20 K, (b)
Bi2212 in superconducting state at 20 K, and (c) Bi2201 in normal state at 30 K. Dotted lines are guides to the eye.
Inset in (b) shows that the kinks in the dispersions off the (0, 0)–(π ,π ) direction sharpen upon moving away from
the nodal direction. The black arrows indicate the position of the kink in the dispersions. Panels (d) and (e) show the
temperature dependence of the dispersions for (d) optimally doped LSCO (x = 0.15) and (e) optimally-doped Bi2212,
respectively. Panel (f) shows the doping dependence of the effective electron−phonon coupling strength λ′ along the
(0, 0)–(π ,π ) direction. Data are shown for LSCO (filled triangles), Nd-doped LSCO (1/8 doping; filled diamonds),
Bi2201 (filled squares), and Bi2212 (filled circles in the first Brillouin zone and unfilled circles in the second zone).
The different shadings represent data obtained in different experimental runs. Shaded area is a guide to the eye.

1. It is present in various hole-doped cuprate materials, including Bi2Sr2CaCu2O8
(Bi2212), Bi2Sr2CuO6 (Bi2201), (La2−x Srx )CuO4 (LSCO) and others. The energy scale (in
the range of 50−70 meV) at which the kink occurs is similar for various systems.

2. It is present both below Tc and above Tc.
3. It is present over an entire doping range (Figure 3.22a). The kink effect is stronger in

the underdoped region and gets weaker with increasing doping.
While there is a consensus on the data, the exact meaning of the data is still under

discussion. The first issue concerns whether the kink in the normal state is related to an energy
scale. Valla et al. argued that the system is quantum critical and thus has no energy scale,
even though a band renormalization is present in the data [33]. Since their data do not show
a sudden change in the scattering rate at the corresponding energy, they attributed the kink
in Bi2212 above Tc to the marginal Fermi liquid (MFL) behavior without an energy scale
[130]. Others believe the existence of energy scale in the normal and superconducting states
has a common origin, i.e., coupling of quasiparticles with low-energy collective excitations
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temperatures (from 20 to 200 K) [135]. A dip in the EDCs can be clearly observed almost for all the temperatures.
The dip position (dotted line) is 60 meV and is roughly temperature independent.

(bosons) [127–129]. The sharp kink structure in dispersion and concomitant existence of a
drop in the scattering rate which is becoming increasingly clear with the improvement of
signal to noise in the data, as exemplified in underdoped LSCO (x = 0.063) in the normal
state (Figure 3.22b) [134], are apparently hard to reconcile with the MFL behavior.

The existence of a well-defined energy scale over an extended temperature range is best
seen in Bi2201 compound [135]. As shown in Figure 3.23, the spectra reveal a “peak-dip-
hump” structure up to temperatures near 130 K, almost ten times the superconducting critical
temperature Tc. Such a “peak-dip-hump” structure is very natural in an electron−phonon
coupled system, but will not be there if there is no energy scale in the problem as argued by
Valla et al. [33].

A further issue concerns the origin of the bosons involved in the coupling, with a
magnetic resonance mode [129, 130] and optical phonons [128] being possible candidates
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considered. The phonon interpretation is based on the fact that the sudden band renormaliza-
tion (or “kink”) effect is seen for different cuprate materials, at different temperatures, and at
a similar energy scale over the entire doping range [128]. For the nodal kink, the phonon con-
sidered in the early work was the half-breathing mode, which shows an anomaly in neutron
experiments [107, 108]. Unlike the phonons, which are similar in all cuprates, the magnetic
resonance (at correct energy) is observed only in certain materials and only below Tc. The
absence of the magnetic mode in LSCO and the appearance of magnetic mode only below Tc
in some cuprate materials are not consistent with its being the cause of the universal presence
of the kink effect. Whether the magnetic resonance can cause any additional effect is still an
active research topic [136, 137].

To test the idea of electron−phonon coupling, an isotope exchange experiment has
been carried out [133]. When exchanging 18O and 16O in Bi2212, a strong isotope effect
has been reported in the nodal dispersions (Figure 3.24). Surprisingly, however, the isotope
effect mainly appears in the high binding energy region above the kink energy; at the lower
binding energy near the Fermi level, the effect is minimal. This is quite different from the
conventional electron−phonon coupling where isotope substitution will result in a small shift
of phonon energy while keeping most of the dispersion intact. The origin of this behavior is
still being investigated.

It is interesting to note in Figure 3.22a that the energy scale of the kink also serves as a
dividing point where the high and low energy dispersions display different doping dependence
[132]. The dispersion in this Figure were obtained by the MDC method. In Figure 3.25a, we
reproduce some of these MDC-extracted dispersions, but we also plot the dispersion extracted
using EDCs by following the EDC peak position. Since the first derivative of the dispersion,
∂E /∂k, corresponds to velocity, the dispersions at high binding energy (−0.1 to −0.25 eV)
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Figure 3.24. Isotope-induced changes of the nodal dispersion [133]. The data were taken on optimally doped
Bi2Sr2CaCu2O8 samples (Tc ∼ 91–92 K) with different oxygen isotopes 16O and 18O at T ∼ 25 K along the nodal
direction. The low energy dispersion is nearly isotope-independent, while the high energy dispersion is isotope-
dependent. The effect is reversible by isotope resubstitution (green). Inset shows the real part of the electron self-
energy, ReΣ , obtained from the dispersion by subtracting a line approximation for the one-electron band Ek , con-
necting two points (one at EF and the other at a 300-meV binding energy) of the 18O dispersion.
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and low binding energy (0 to – 0.05 eV) are fitted by straight lines to quantitatively extract
velocities, as plotted in Figure 3.25b [138].

While nodal data clearly reveal the presence of coupling to collective modes with well-
defined energy scale, there are a couple of peculiar behaviors associated with the doping evo-
lution of the nodal dispersion. One obvious anomaly is the difference of low energy velocity
obtained from MDC and EDC methods (Figure 3.25b). As seen from Figures 3.22a and 3.25b,
the low-energy dispersion and velocity from the MDC method is insensitive to doping over
the entire doping range, giving the so-called “universal nodal Fermi velocity” behavior [132].
Similar behavior was also reported in Bi2212 [130]. However, improved LSCO data where we
can resolve a well-defined quasiparticle peak to extract dispersion using EDC method reveal
a dichotomy in EDC and MDC derived dispersions, particularly for low doping (Figure 3.25),
like x = 0.01 [139]. This discrepancy between EDC and MDC cannot be reconciled within
the conventional el−ph interaction picture, as simulations considering experimental resolu-
tions show.

In terms of conventional electron−phonon coupling, if one considers that the “bare
band” does not change with doping but the electron−phonon coupling strength increases with
decreasing doping, as it is probably the case for LSCO, one would expect that the low en-
ergy dispersion and velocity show strong doping dependence, while the high-energy ones
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methods [138]. The EDC low-energy velocity is obtained by fitting the EDC dispersion linearly in the intermediate
energy range because the data points very close to Fermi level is affected by the Fermi cutoff while the data at higher
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velocities as a function of doping obtained from MDC and EDC dispersions.
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converge. However, one sees that the high-energy velocity is highly doping dependent. More-
over, its trend is anomalous if one takes electron–electron interaction into account. It is known
in cuprates that, with decreasing doping, the electron–electron interaction gets stronger. Ac-
cording to conventional wisdom, this would result in a larger effective mass and smaller ve-
locity. However, the doping dependence of the high-energy velocity is just opposite to this
expectation, as seen from Figure 3.25b.

Therefore, these anomalies indicate a potential deviation from the standard Migdal−
Eliashberg theory and the possibility of a complex interplay between electron−electron and
electron−phonon interactions. As we discuss later, this phenomenon is a hint of polaronic
effect where the traditional analysis fails. Such a polaron effect gets stronger in deeply under-
doped system even along the nodal direction. Under such a condition, one needs to use EDC
derived dispersion when the peaks are resolved.

Multiple Modes in the Electron Self-Energy

In conventional superconductors, the successful extraction of the phonon spectral func-
tion, or the Eliashberg function, α2 F(ω), from electron tunneling data played a decisive role
in cementing the consensus on the phonon-mediated mechanism of superconductivity [140].
For high temperature superconductors, the extraction of the bosonic spectral function can
provide fingerprints for more definitive identification of the nature of bosons involved in the
coupling.

In principle, the ability to directly measure the dispersion, and therefore, the electron
self-energy, would make ARPES the most direct way of extracting the bosonic spectral func-
tion. This is because, in metals, the real part of the electron self-energy Re Σ is related to the
Eliashberg function α2 F(Ω; ε, k̂) by:

ReΣ(k̂, ε; T ) =
∫ ∞

0
dΩα2 F(Ω; ε, k̂)K

(
ε

kT
,

h̄Ω
kT

)

, (3.15)

where

K (y, z) =
∫ ∞

−∞
dx

2z
x2 − z2 f (x + y) , (3.16)

with f (x) being the Fermi distribution function. Such a relation can be extended to any
electron−boson coupling system and the function α2 F(ω) then describes the underlying
bosonic spectral function. We note that the form of Re Σ(k̂, ε; T ) (Eq. 3.15) can be derived
by taking the Kramers–Kronig transformation of Im Σ for the normal state as shown above
(Eq. 3.12). Unfortunately, given that the experimental data inevitably have noise, the tradi-
tional least-square method to invert an integral problem is mathematically unstable.

Very recently, Shi et al. have made an important advance in extracting the Eliashberg
function from ARPES data by employing the maximum entropy method (MEM) and success-
fully applied the method to Be surface states [141]. The MEM approach [141] is advantageous
over the least squares method in that (i) It treats the bosonic spectral function to be extracted
as a probability function and tries to obtain the most probable one, (ii) More importantly, it
is a natural way to incorporate the priori knowledge as a constraint into the fitting process. In
practice, to achieve an unbiased interpretation of data, only a few basic physical constraints to
the bosonic spectral function are imposed: (a) It is positive. (b) It vanishes at the limit ω→0.
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(c) It vanishes above the maximum energy of the self-energy features. As shown in the case
of Be surface state, this method is robust in extracting the Eliasberg function [141].

Initial efforts have been made to extend this approach to underdoped LSCO and evi-
dence for electron coupling to several phonon modes has been revealed [142]. As seen from
Figure 3.26, from both the electron self-energy (Figure 3.26a), and the derivative of their fit-
ted curves (Figure 3.26a), one can identify two dominant features near ∼ 40 and ∼60 meV. In
addition, two addition modes may also be present near ∼25 and ∼75 meV [142]. The multiple
features in Figure 3.26b show marked difference from the magnetic excitation spectra mea-
sured in LSCO which is mostly featureless and doping dependent [143]. In comparison, they
show more resemblance to the phonon density-of-states (DOS), measured from neutron scat-
tering on LSCO (Figure 3.26c) [144], in the sense of the number of modes and their positions.
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This similarity between the extracted fine structure and the measured phonon features favors
phonons as the bosons coupling to the electrons. In this case, in addition to the half-breathing
mode at 70−80 meV that we previously considered strongly coupled to electrons [128], the
present results suggest that several lower energy optical phonons of oxygens are also actively
involved. Particularly we note that the mode at ∼60 meV corresponds to the vibration of
apical oxygens.

We note that, in order to be able to identify fine structure in the electron self-energy, it is
imperative to have both high energy resolution and high statistics [145]. These requirements
have made the experiment highly challenging because of the necessity to compromise between
two conflicting requirements for the synchrotron light source: high energy resolution and high
photon flux. Further improvements in photoemission experiments will likely enable a detailed
understanding of the boson modes coupled to electrons, and provide critical information for
the pairing mechanism.

One would like to extend this method to the superconducting state, in momentum around
the BZ, and to higher temperatures. The superconducting state could, in principle, be achieved
by using the BCS dispersion of the quasiparticles rather than the normal state dispersion
and is currently under study. However, considering the anisotropy of the el−ph coupling
detailed below, the anisotropy of the underlying band structure, and the d-wave supercon-
ducting gap, extending the procedure in momentum may be somewhat more difficult. The
α2 F(ω, ε, k̂) used for the above form of the real part of the self-energy is assumed to be
only weakly dependent on the initial energy ε and momentum k of the electron. But again,
one in principle could begin to consider a different form of the calculated ReΣ and then
apply the MEM method with it instead. Extending the method to higher temperatures, for
example ∼100 K for normal state Bi2212 data, may be, however, a limitation that cannot be
overcome. The method’s strength is in resolving fine structures due to the phonon density of
states. Those fine structures occur predominantly at lower temperatures. At higher tempera-
tures of ∼100 K, the imaginary and real parts of the self energy get broadened on the order
of the phonon energy itself. In that case, two or more neighboring phonons would contribute
to the electronic renormalization at a given energy, both broadening the fine structures in the
data and weakening the resolving power of the method itself. So, while the MEM method
can directly extract fine features from ARPES data in agreement with neutron scattering with-
out implicitly assuming a phonon model, it does not have the freedom to incorporate the
temperature and momentum dependence needed to describe the ARPES data in both super-
conducting and normal states, near the vHS and near the node. Both modeling of the data and
direct extraction, then, are needed, to gain a complete picture of the mode-coupling features
in the data.

El−Ph Coupling Near the (π ,0) Antinodal Region

The antinodal region refers to the (π ,0) region in the Brillouin zone where the d-wave
superconducting gap has a maximum (Figure 3.8b). Recently, a low-energy kink was also
identified near the (π ,0) antinodal region in Bi2212 [54, 129, 146, 147]. This observation was
made possible thanks to the clear resolution of the bilayer splitting [28–30]. As there are two
adjacent CuO2 planes in a unit cell of Bi2212, these give rise to two Fermi surface sheets
from the higher-binding-energy bonding band (B) (thick red curves in Figure 3.27c) and the
lower-binding- energy antibonding band (A) (thick black curves in Figure 3.27c).

Consider a cut along (π ,π ) − (π ,−π ) across (π ,0) in Bi2212, both above Tc (Fig-
ure 3.27a) and below Tc (Figure 3.27b) [54]. Superimposed are the dispersion of the bonding
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in Bi2212.

band determined from the MDC (red lines) and antibonding band from the EDC (black dots).
When the bandwidth is narrow, the applicability of the MDC method in obtaining dispersion
becomes questionable so one has to resort to the traditional EDC method. In the normal state,
the bonding-band dispersion (Figure 3.27a) is nearly linear and featureless in the energy range
of interest. Upon cooling to 10 K (Figure 3.27b), the dispersion, as well as the near-EF spec-
tral weight, is radically changed. In addition to the opening of a superconducting gap, there is
a clear kink in the dispersion around 40 meV.

Gromko et al. [54] reported that the antinodal kink effect appears only in the supercon-
ducting state and gets stronger with decreasing temperature. Their momentum-dependence
measurements show that the kink effect is strong near (π ,0) and weakens dramatically when
the momentum moves away from the (π ,0) point. Excluding the possibility that this is a by-
product of a superconducting-gap opening, they attributed the antinodal kink to the coupling
of electrons to a bosonic excitation, such as a phonon or a collective magnetic excitation.
The prime candidate they considered is the magnetic-resonance mode observed in inelastic
neutron scattering experiments.

The temperature and momentum dependence identified for a range of doping levels has
also led others to attribute the effect to the magnetic resonance [129, 146]. However, there
are some inconsistencies with this interpretation (1) the magnetic resonance has not yet been
observed by neutron scattering in such a heavily doped cuprate and (2) the magnetic reso-
nance has little spectral weight, and may be too weak to cause the effect seen by ARPES.
Furthermore, the electron−phonon coupling in the early tunneling spectra, such as Pb, ap-
peared prominently only in the superconducting state. The linear MDC-derived dispersion in
the normal state of Bi2212 at (π ,0) that Gromko et al. reports [54] is not conclusive enough
proof that the same mode does not couple to the electrons in the normal state. On the other
hand, the clear determination of mode-coupling by Gromko et al. in the antinodal region,
where the gap is maximum, without the complication of bilayer splitting or superstructure,
suggests that the renormalization effects seen by ARPES in the cuprates may indeed by re-
lated to the microscopic mechanism of superconductivity.

Cuk et al. [147] and Devereaux et al. [148] have recently proposed a new interpreta-
tion of the renormalization effects near antinodal region seen in Bi2212. Specifically, the key
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observation that prompted them to rule out the magnetic resonance interpretation is the un-
raveling of the existence of the antinodal kink even in the normal state. This observation was
made possible by utilizing the EDC method because the MDC method is not appropriate when
the assumed linear approximation of the bare band fails near (π ,0) where the band bottom is
close to Fermi level EF. Figure 3.28a1, b1 and c show dispersions in the normal state of an
optimally doped sample which consistently reveal a 40 meV energy scale that has eluded de-
tection previously. Upon entering the superconducting state, the energy scale shifts to 70 meV
consistent with a gap opening of 35−40 meV. This coupling is also found to be more extended
in a Brillouin zone than previously reported [54]. In Figure 3.29, we show data from the opti-
mally doped Bi2212 sample for a large portion of the BZ in the superconducting state [147].
The renormalization occurs at 70 meV throughout the BZ and increases in strength from the
nodal to antinodal points. Similar behaviors are also noted by others [129] (Figure 3.30). The
increase in coupling strength can be seen in the following ways: Near (π ,0), the band breaks
up into two bands (peak and hump) as seen in Figure 3.29a2, a3. For cuts taken in the (0,0)
− (π , π ) direction, the band dispersion is steeper and the effects of mode-coupling, though
significant, are less pronounced.

It is quite natural that phonon modes of different origin and energy preferentially couple
to electrons in certain k-space regions. While the detection of multiple modes in the normal
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state of LSCO [142] suggests that several phonons may be involved, only one has the cor-
rect energy and momentum dependence to understand the prominent signature seen in the
superconducting state. This new interpretation [147] attributes the renormalization seen in the
superconducting state to the “bond-buckling” B1g phonon mode involving the out-of-plane,
out-of-phase motion of the in-plane oxygens. The bond-buckling phonon is observed at 35
meV in the B1g polarization of Raman scattering in an optimally doped sample, the same
channel in which the ∼35−40 meV d-wave superconducting gap shows up [99, 149, 150].
Applying simple symmetry considerations and kinematic constraints, it is found that this B1g
buckling mode involves small momentum transfers and couples strongly to electronic states
near the antinode [148]. In contrast, the in-plane Cu−O breathing modes involve large mo-
mentum transfers and couple strongly to nodal electronic states. Band renormalization ef-
fects are also found to be strongest in the superconducting state near the antinode, in full
agreement with angle-resolved photoemission spectroscopy data (Figure 3.31). The dramatic
temperature dependence stems from a substantial change in the electronic occupation distri-
bution and the opening of the superconducting gap [147, 148]. It is important to note that the
electron−phonon coupling, especially the one with B1g phonon, explains the temperature and
momentum dependence of the self-energy effects that were taken as key evidence to support
the magnetic resonance interpretation of the data. Compounded with the findings that can-
not be explained by the magnetic resonance as discussed earlier, this development makes the
phonon interpretation of the kink effect self-contained.

Anisotropic El−Ph Coupling

The full Migdal−Eliashberg-based calculation consists of a tight-binding band structure
and el−ph coupling to the breathing mode as well as the B1g bond-buckling mode and is
based on an earlier calculation [151]. The electron−phonon coupling vertex g(k, q), where
k represents the initial momentum of the electron and q the momentum of the phonon is
determined on the basis of the oxygen displacements for each mode in the presence of the
underlying band-structure. In the case of the breathing mode, the in-plane displacements of the
oxygen modulate the CuO2 nearest neighbor hopping integral as well as the site energies. In
the case of the bond-buckling mode, one must suppose that the mirror plane symmetry across
the CuO2 plane is broken in order for electrons to couple linearly to phonons. The mirror
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plane symmetry can be broken by the presence of a crystal field perpendicular to the plane,
tilting of the Cu–O octahedral, static in-plane buckling, or may be dynamically generated.

The gB1g (k, q) form factor leads to preferential q ∼ 2kF scattering between the parallel
pieces of Fermi surface in the antinodal region, as shown in Figure 3.32 depicting g(k, k′) for
the buckling mode (where k′ = k−q) for an electron initially at the antinode (kAN; upper-left)
and for an electron initially at the node (kN; bottom-left). This coupling anisotropy partially
accounts for the strong manifestation of electron−phonon coupling in the antinodal region
where one sees a break up into two bands. The breathing mode, in contrast, modulates the
hopping integral and has a form factor, gbr(k, q), that leads to preferential scattering for large
q and couples opposing nodal states. This coupling anisotropy then accounts for the 70 meV
energy scale seen most prominently in a narrow k-space region near the nodal direction in
the normal state of LSCO. Figure 3.32 also shows that the magnitude of the electron−phonon
vertex is largest for an electron initially sitting at the node, kN, that scatters to the opposing
nodal state. For more details on this calculation, see Devereaux et al. [148].

The anisotropy of the mode-coupling in both the superconducting state data and the
calculation is peculiar to the cuprates. Such a strong anisotropy in the electron−phonon
coupling is not traditionally expected. In cuprates, the sources of the anisotropy are (1) an
electron−phonon vertex for the B1g bond-buckling mode and the breathing mode that de-
pends both on the electron momentum k as well as the phonon momentum q. This comes
from a preferential scattering in the Brillouin zone, in which nodal states couple to other
antinodal states and antinodal states to other antinodal states, (2) a strongly anisotropic elec-
tronic band structure characterized by a van Hove Singularity (vHS) at (π , 0). In the antinodal
region and along the (π, 0)–(π, π) direction in which 2kF scattering is preferred, the bands
are narrow, giving rise to a larger electronic density of states near the phonon energy and
therefore a stronger manifestation of electron−phonon coupling, (3) a d-wave superconduct-
ing gap, and (4) a collusion of energy scales in the antinodal region that resonate to enhance
the above effects—the vHS at ∼35 meV in the tight-binding model that best fits the data, the

Figure 3.32. Plots of the electron−phonon coupling | g(k, q) |2 for initial k and scattered k′ = k − q states on
the Fermi surface for the buckling mode (left panels) and breathing mode (right panels) for initial fermion k at an
antinodal (top panels) and nodal (bottom panels) point on the Fermi surface, as indicated by the arrows. The red/blue
color indicates the maximum/minimum of the el−ph coupling vertex in the BZ for each phonon [148].
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maximum d-wave gap at ∼35 meV, and the bond-buckling phonon energy at ∼35 meV. All
these three factors collide to give the anisotropy of the mode-coupling behavior in the super-
conducting and normal states. For a detailed look at how each plays a role in the agreement
with the data, please see Cuk et al. [147]. The coincidence of energy scales, along with the
dominance of the renormalization near the antinode, indicates the potential importance of the
B1g phonon to the pairing mechanism, which is consistent with some theories based on the
B1g phonon [89, 152–154] but remains to be investigated.

The cuprates provide an excellent platform to study anisotropic electron− phonon in-
teraction. In one material, such as optimally doped Bi2212, the effective coupling can span λ
of order ∼1 at the node to 3 at the antinode (Figure 3.33) [147, 148]. In addition to the large
variation of coupling strength, there is a strong variation in the kinematic considerations for
electron−phonon coupling. In the nodal direction, the band bottom is far from the relevant
phonon energy scales. However, at the antinode, the relevant phonon frequencies approach
the bandwidth. Indeed the approximation of Migdal, in which higher order vertex corrections
to the el−ph coupling are neglected due to the smallness of (λ ∗ Ωph/EF), may be breaking
down in the antinodal region. Non-adiabatic effect beyond the Migdal approximation have
been considered and are under continuing study [155].

3.4.4. Polaronic Behavior

Polaronic Behavior in Parent Compounds

The parent compounds of the cuprate superconductors, being antiferromagnetic Mott
insulators, provide an ideal testing ground for investigating the dynamics of one hole in an
antiferromagnetic background. Indeed, many theories have been formed and tested by ARPES
on a number of compounds, among them are Sr2CuO2Cl2 (SCOC) [156–160], Ca2CuO2Cl2
(CCOC) [113,160–163], Nd2CuO4 [164], and La2CuO4 [165–167]. However, several aspects
of the data can only be explained by invoking polaron physics, as we will now discuss.

The ARPES measurements on SCOC [156, 158] and CCOC [113, 162] give essentially
similar results. As seen in Figure 3.34a, b, along the (0,0)−(π ,π ) direction, the lowest en-
ergy feature disperses toward lower binding energy with increasing momentum, reaches its
lowest binding energy position near (π /2,π /2) where it becomes sharpest in its lineshape, and
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top panel) and breathing mode (right bottom panel). The color scale is shown on the right for each phonon. The left
panel shows energy contours for the band structure used [148].
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then suddenly loses intensity after passing (π /2,π /2) and bends back to high binding energy.
This behavior can be more clearly seen in the image plot of Figure 3.35a [162] where the
“band” breaks into two branches. The lowest binding energy feature shows a dispersion of
∼0.35 eV while an additional band at high binding energy (Figure 3.35a) is very close to the
unrenormalized band predicted by band theory [162]. The dispersion of low binding-energy
band along the (0,0)−(π ,π ) direction and other high symmetry directions are shown in Fig-
ure 3.35b by keeping track of the EDC peak position [51]. The total dispersion of the peak is
∼0.35 eV. This is in contrast to the predictions of one-electron band calculations which gives
an occupied band width of ∼1.5 eV and total bandwidth of ∼3.5 eV [168]. Nevertheless, it
is consistent with the calculations from the t–J model where the predicted occupied band-
width is ∼2.2J [50,169]. This indicates that the dynamics of one-hole in an antiferromagnetic
background is renormalized from scale t to scale J .

While the t–J model and experiments show agreement along the (0,0)−(π ,π ) direction,
there are discrepancies along other directions, such as the (0,0)−(π ,0) and
(0,π )−(π /2,π /2)−(π ,0) directions [156]. The later intensive theoretical effort resolved this
issue by incorporating the hopping to the second (t ′) and third (t ′′) nearest-neighbors [170].
More precise calculations of the dispersion in the t−t ′ − t ′′ − J model are performed by using
a self-consistent Born approximation (SCBA) [171]. These calculations show a satisfactory
agreement with experimentally derived dispersion, as shown in Figure 3.35b [51].

However, there remain a few prominent puzzles related to the interpretation of the pho-
toemission data in undoped parent compounds [113]. The first prominent issue is the linewidth
of the peak near (π /2,π /2). As highlighted in Figure 3.36a, the width of the sharpest peak near
(π /2,π /2) is ∼300 meV which is comparable with the entire occupied bandwidth 2J ≈350
meV [113]. This is much broader than that from t–J model calculations and too broad to
be considered as a coherent quasiparticle peak for which the quasiparticle peak is basically
resolution limited, as exemplified by the data on Sr2RuO4 in Figure 3.36a. An early attempt
interpreted this anomalously large linewidth to additional interaction with a nonmagnetic bo-
son bath of excitations, such as phonons [159]. But this interpretation meets with difficulty in
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approximation (SCBA) for the t−t ′−t ′′−J model with t = 0.35 eV, t ′ = -0.12 eV, t ′′ = 0.08 eV and J = 0.14 eV. The
solid lines are obtained by fitting the SCBA data to a dispersion relation given by E0(k) + E1(k), being t′eff = −0.038
eV and t′′eff = 0.022 eV. The dashed line along the (π , 0)–(0,π ) direction represents the spinon dispersion from [172].

explaining little renormalization in the dispersion from this “extra interaction” because dis-
persion and linewidth are closely related. A diagrammatic quantum Monte Carlo study [175]
showed that this problem can be resolved by considering the polaron effect in the t–J model.
Namely the dispersion for the center of mass of the spectral function obeys that of the pure
t–J model, while the lineshape is strongly modified. The details of this will be given below.

Another unresolved issue is the chemical potential µ. For an insulator, µ is not well
defined, and may be pinned by surface defects or impurities and will vary between different
samples. If one considers that the peak A in Figure 3.36a represents a quasiparticle peak, one
would expect the chemical potential to vary anywhere above the top of this valence band.
However, the experimental chemical potential clearly sets a lower bound that is ∼0.45 eV
apart from the peak A (Figure 3.36b) [113]. Shen et al. [113] invented a new method to
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Figure 3.36. (a) Photoemission spectrum of Ca2CuO2Cl2 at k = (π/2,π/2) with fits to a Lorentzian spectral func-
tion (dashed) and Gaussian (red or gray) [113]. A and B denote the peak maximum and the onset of spectral weight,
respectively. Comparison with Fermi-liquid system Sr2RuO4 is shown (thin black). Upper inset shows photoemission
spectra from H2 [173]. (b) Dispersion of A and B along (0,0)–(π ,π ), along with experimental values for the chemical
potential µ (lines).

determine the chemical potential using both the energy of the nonhybridized oxygen orbital
and the detailed line-shape of (Ca2−x Nax )CuO2Cl2(Na−CCOC).

The resolution of these discrepancies between experiment and expectation leads to iden-
tifying polaron physics as responsible for the bulk of the lineshape in underdoped cuprates. In
fact, the photoemission spectra in the underdoped cuprates resemble the Frank−Condon ef-
fect seen in photoemission spectra of molecules such as H2 [173] (inset of Figure 3.36), where
only the “0−0” peak (filled black) represents the H final state with no excited vibrations and
comprises only ∼10% of the total intensity. In the solid state, this “0−0” would correspond to
the quasiparticle or the coherent part of the spectral function, Acoh, whereas the excited states
comprise the incoherent part, Ainc. This behavior is reminiscent of polarons, and such models
have been invoked in systems where strong couplings are present [174]. In this picture, in the
undoped compound, the true QP (B) is hidden within the tail of spectral intensity, with a qua-
siparticle residue Z vanishingly small, while feature A is simply incoherent weight associated
with shake-off excitations.

From the viewpoint of polaron physics, the cuprates offer a unique and first opportu-
nity to compare experimental spectra with theory in detail. The single hole interacts both with
magnons and phonons. The hole−magnon interaction has been successfully analyzed in terms
of the self-consistent Born approximation [171]. The success of the Born approximation
results from a “saturation” effect; namely the single spin 1/2 can flip only once, and hence
magnon clouds do not become large enough to induce the self-trapping transition to the small
polaron. On the other hand, phonon clouds can be larger and larger as the coupling constant g
increases and can lead to a self-trapping transition. The t–J model coupled to phonons in the
polaronic regime has illuminated one-hole dynamics in the parent compound in the following
way [175]. (1) With increasing electron−phonon coupling strength, the spectral function ex-
periences a transition from weak-coupling, to intermediate coupling, and to strong-coupling
regimes. (2) In the strong coupling regime, the spectral function consists a ground state reso-
nance (as indicated by vertical arrows) with vanishing intensity and a broad peak denoted as
“coherent C,” as shown in Figure 3.37a. (3) The broad peak C shows strong momentum de-
pendence while the lowest state is dispersionless. These results are in good correspondence to



128 X. J. Zhou et al.

a
c1.5

1.0
0.5
0.0

-3

−2.6 −2.2 −1.8 −1.4 −1.0

−2.6

−2.4

−2.2

−2.0

−1.8

-2 -1 0 1 2 3 4
1.00

0.50

0.00
0.4

0.4

0.2

0.0

0.0

0.8

S
pe

ct
ra

l f
un

ct
io

n

E
ne

rg
y

Energy w Momentum k

M(0,p) MS(p/2,p/2,)(0,p/2) G(0,0)

c

c

c

l k=(p/2,p/2)

k=(p,0)

k=(0,p/4)

k=(p/4,p/4)

a1

a2

a3

a4

b

Figure 3.37. (a) Calculated hole spectral function in ground state at J/t = 0.3 for different momenta [175]. (a1)
Full energy range for k = (π/2, π/2). (a2)−(a4) Low energy part for different momenta. Slanted arrows show broad
peaks which can be interpreted in ARPES spectra as “coherent” (C) and incoherent (I) part. Vertical arrows indicate
position of ground state resonance which is not seen in the vertical scale of the figure. (b) Dispersion of resonance
energies at J/t = 0.3. Broad resonance (filled circles) and lowest polaron resonance (filled squares) at g = 0.231125;
third broad resonance (open circles) and lowest polaron resonance (open squares) at g = 0.2. The solid curves are
dispersions of a hole in the pure t–J model at J/t = 0.3.

experimental observations. The most surprising result is that the broad resonance has the mo-
mentum dependence of the t–J model without coupling to phonons (shown in Figure 3.37b).
In the Franck−Condon effect for molecules a similar result occurs. The center of the shake-off
band corresponds to the hole motion in the background of the frozen lattice configuration, i.e,
the dispersion of the hole remains that of the noninteracting limit, while the line-width broad-
ens. A more elaborated analytic treatment of the t–J polaron model in the Franck−Condon
approximation [176] successfully reproduced this Monte Carlo results. The calculated spec-
tral function line-shape most consistent with experiment has a λ ∼= 0.9−1.3, well within
the strong-coupling, small-polaron regime. Recent realistic shell model calculation [167] also
concluded λ = 1.2 for La2CuO4.

In La2CuO4, a broad feature near –0.5eV (Figure 3.38) was identified as the lower
Hubbard band [165, 166]. The electron−phonon coupling strength, calculated using a shell
model, puts La2CuO4 in the polaron regime, similar to Ca2CuO2Cl2. In this picture, the
–0.5eV feature corresponds to the phonon side-band while the real quasiparticle residue is
very weak. As shown in Figure 3.38, the calculated spectral function agrees well with the
measured data [167].

Doping Dependence: From Z∼0 Polaron to Finite Z Quasiparticles

We next turn to the question of how the small polaron state evolves as a function of
doping, connecting to the Migdal−Eliashberg regime discussed in Section C. There are two
possible ways to dope the Mott insulator, schematically shown in Figure 3.10c [42, 177] (1)
Upon doping, the chemical potential shifts to the top of the valence band for hole doping
(Figure 3.10c3) or to the bottom of the conduction band for electron doping (Figure 3.10c4).
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(2) The chemical potential is pinned inside the charge transfer gap. Upon doping, new states
will form inside the gap (Figure 3.10c5).

Recent ARPES measurements on lightly doped (La2−x Srx )CuO4 compounds provide a
good window to look into this issue. As shown in Figure 3.39a, e for undoped La2CuO4, the
main feature is the broad peak near –0.5 eV which exhibits weak dispersion [166]. There is
also little spectral weight present near the Fermi level. However, upon only a doping of x =
0.03, the electronic structure undergoes a dramatic change. A new dispersive band near the
Fermi level develops along the (0,0)−(π ,π ) nodal direction (Figure 3.39e, right panel), while
along the (0,0)−(π ,0) direction a saddle band residing –0.2eV below the Fermi level develops.
Even for more lightly doped samples, such as x = 0.01, new states near the Fermi level
are created [139]. Note that, for these lightly doped samples, the original –0.5 eV remains,
although with weakened spectral weight (Figure 3.39d). So, the –0.5 eV peak and the new
dispersive band coexist at doping levels close to the parent compounds.

The systematic evolution of the photoemission spectra near the nodal and antinodal re-
gions with doping in LSCO is shown in Figure 3.40a,b [166]. The nodal quasiparticle weight,
ZQP, integrated over a small energy window near the Fermi level, is shown in Figure 3.40c.
In the underdoped region, it increases with increasing doping nearly linearly, and no abrupt
change occurs near the nonsuperconductor−superconductor transition at x ∼ 0.05.

(Ca2−x Nax )CuO2Cl2 (Na−CCOC) is another ideal system to address the doping evolu-
tion of the electronic structure. The precise measurement of the chemical potential
(Figure 3.41a), in conjunction with the identification of polaron physics in the underdoped
compounds, provides a globally consistent picture of the doping evolution of the cuprates
[113]. Instead of measuring the chemical potential with deep core level spectroscopy (the
usual method) [179], one utilizes orbitals in the valence band at lower energies (Figure 3.41a,b).
The measured chemical shift, 
µ, exhibits a strong doping dependence, ∂µ/∂x = −1.8±0.5
eV/hole, comparable to the band structure estimation (∼–1.3 eV/hole) (Figure 3.41c).

Figure 3.42(a-d) show the doping evolution of the near-EF EDCs plotted relative to µ0
of the undoped sample (determined in Figure 3.41c). With doping, feature A evolves smoothly
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Figure 3.39. Creation of nodal quasiparticles in lightly doped LSCO [166]. ARPES spectra for LSCO with x = 0
and x = 0.03. Panels a and b are EDC’s along the nodal direction (0,0)–(π, π ) in the second Brillouin zone (BZ).
The spectra for x = 0.03 are plotted on an expanded scale in panel c. Panels d and e represent energy dispersions
deduced from the second derivative of the EDC’s.

into a broad, high energy hump with a backfolded dispersion similar to the parent insulator
(symbols), while B shifts downward relative to its position in the undoped compound. Spec-
tral weight increases with doping at B, and a well-defined peak emerges for the x = 0.10
and 0.12 samples, resulting in a coherent, low-energy band. The dispersion of the high-energy
hump (A), tracked using the local maxima or second derivative of the EDCs, shows little
change as a function of doping (Figure 3.41e). The lowest energy excitations (feature B,
–0.05 eV<E<EF), tracked using MDC analysis, evolve with doping in such a way that the
quasiparticle dispersion (vF) and Fermi wave vectors (kF) virtually collapse onto a single
straight line.

Doping Evolution of Fermi Surface: Nodal−Antinodal Dichotomy

So far, we have discussed the doping evolution along the nodal direction, and seen that
a sharply defined quasiparticle peak develops out of the small weight near the chemical po-
tential in the undoped samples. We now discuss the doping evolution in other directions of
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the Brillouin zone. Surprisingly, one finds that the coherent peak near the Fermi level in the
lightly doped samples is confined to the nodal region, and quickly disappears with momentum
around the Brillouin zone. The spectral weight near the Fermi level, confined to the (π /2,π /2)
nodal region, forms a so-called “Fermi arc.” This dichotomy between nodal and antinodal
excitations is shown in Figure 3.43 [134]. For the x = 0.063 sample, which is close to the
nonsuperconductor−superconductor transition and therefore heavily underdoped, the spectral
weight near Fermi level is mainly concentrated near the nodal region (Figure 3.43a). The co-
herent peaks in the EDCs (Figure 3.43c1) near the nodal region disappear as one approaches
the antinodal region, where the EDCs exhibit a step rather than a peak. The LSCO x = 0.09
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sample exhibits similar behavior (Figure 3.43c2). In contrast, for overdoped LSCO such as
x = 0.22 (Figure 3.43c3), sharp peaks are observable along the entire Fermi surface. These
observations indicate that the electrons near the antinodal region experience additional scat-
tering in underdoped samples. Therefore, as shown in Figure 3.44, the “Fermi surface” in
LSCO evolves from the “Fermi arc” in lightly doped samples, to a hole-like Fermi surface in
underdoped samples, and to an electron-like Fermi surface in overdoped samples (x >0.15).

The evolution of electronic structure with doping in (Ca2−x Nax )CuO2Cl2 exhibits
marked resemblance to that in (La2−x Srx )CuO4 [163]. As summarized in Figure 3.45, at
low doping, the quasiparticle weight is again confined to the nodal region and the weight in
the quasiparticle peak, Zqp, increases with increasing doping, consistent with LSCO. In the
Na−CCOC system, recent scanning tunneling microscopy (STM) work has revealed a real
space pattern of 4a0 × 4a0 two-dimensional charge ordering [182]. In momentum space, as
seen from Figure 3.46, strong Fermi surface nesting exists in Na−CCOC with a nesting vec-
tor insensitive to doping close to 2 × π/4 that may account for the broad near-EF spectra in
the antinodal region. In LSCO, neutron scattering has also indicated the existence of dynamic
stripes [183]. These similarities suggest an intrinsic commonality between the low-lying ex-
citations across different cuprate families and may imply a generic microscopic origin for
these essential nodal states irrespective of other ordering tendencies. At very low doping lev-
els, the nodal excitations should entirely dominate the transport properties, consistent with
the high-temperature metallic tendencies observed in very lightly doped cuprates [184]. Thus
any microscopic models of charge ordering must simultaneously explain and incorporate the
existence of coherent nodal states and broad antinodal excitations.

The nodal−antinodal dichotomy of quasiparticle dynamics in the normal state also
exists in Bi2212 [185]. A number of possible mechanisms have been proposed to account
for the antinodal spectral broadening in the normal state. A prime candidate is the (π ,π )
magnetic excitations observed in various cuprates [79–81]. As schematically shown in Fig-
ure 3.43b, this excitation will give rise to “hot spots” on the Fermi surface that can be con-
nected by (π ,π ) momentum transfer. Electrons around these hot spots experience additional
scattering from the (π ,π ) magnetic scattering. The same mechanism has also been proposed
for (Nd2−x Cex )CuO4 for which the spectral broadening is localized to the expected “hot
spot” [186]. However, in LSCO, the same magnetic response, magnetic resonance mode, is
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vector between the antinodal part of the Fermi surface (c) EDCs on Fermi surface for LSCO x = 0.063 (c1), 0.09
(c2), and 0.22 (c3) samples. All samples are measured at ∼20 K. The corresponding momentum position is marked
in the upper inset of each panel. Also included are the spectra at (π ,0) points, colored as blue.

not observed. Instead, incommensurate magnetic peaks are observed at low energy (below
15 meV) [183], which broaden rapidly with increasing energy although the magnetic fluctu-
ation can persist up to 280 meV [187]. Intrigued by the fact that the extra broadening sets
in when the Fermi surface turns from the (π ,0)−(0,π ) diagonal direction to the (0,0)−(π ,0)
or the (0,0)−(0,π ) direction in LSCO sample with x = 0.063 (Figure 3.43b, c), an alternative
mechanism was proposed [134] in which the scattering in question causes a pair of electrons
on two parallel antinodal segments to be scattered to the opposite ones (Figure 3.43b). In the
normal state, this scattering can cause a quasiparticle to decay into two quasiparticles and one
quasihole. The antinodal spectral broadening occurs as a result of the frequent occurrence of
such a decay which renders the normal state quasiparticle ill defined.

Another potential explanation for the broad antinodal features may come from models
based on the polaron picture discussed before [113, 167, 175]. In such a scenario, the strong
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were measured at a temperature of ∼20 K.
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Figure 3.45. Dichotomy between nodal and antinodal excitations in Na–CCOC [163]. (a) Schematic of the low-
lying spectral intensity for (Ca2−x Nax )CuO2Cl2 (x = 0.10). The hatched regions show the nested portions of Fermi
surface, and the Fermi surface angle is defined in the lower right quadrant. (b) EDCs taken at equal increments along
the FS contour from the nodal direction (top) to the antinodal region (bottom) for x = 0.05, 0.10, and 0.12 at a
temperature of 15 K. (c) The doping evolution of the low-lying spectral weight (circles), along with corresponding
data from La2−x Srx CuO4 (squares), with the error bars representing the uncertainty in integrated weight as well as
sample-to-sample variations.

coupling of the electrons to any bosonic excitations would result in Z �1, and spectral weight
is transferred to incoherent, multiboson excitations. An effective anisotropic coupling could
lead to a larger Z (weaker coupling) along the nodal direction and a much smaller, yet still
finite Z , at the antinodes (strong coupling). In this picture, the antinodal polaron effect in
LSCO (Figure 3.43c) [134] is much weaker than Na−CCOC (Figure 3.45b) [163] if one
compares the spectral weight near Fermi level around the antinodal region. Regardless of the
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Figure 3.46. Doping evolution of “Fermi surface” in Na-CCOC [163]. (A – C) The momentum distribution of
spectral weight within a ±10-meV window around EF for x = 0.05, 0.10, and 0.12 in one quadrant of the first
Brillouin zone. Data were taken at 15 K and symmetrized along the (0,0)– (π ,π ) line. The data acquisition range is
shown within the black lines. The FS contours shown in (D – F) were compiled from more than four samples for
each composition with different photon energies and photon polarizations. Data from these samples constitute the
individual points; the best fit is shown as a solid line. The region in which a low-energy peak was typically observed
is marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of intensity at EF±10
meV along the (0,0)–(π ,π ) and (π ,0)–(π ,π ) high-symmetry directions.

microscopic explanation, the broad and nested antinodal FS segments observed by ARPES
are consistent with the propensity for two-dimensional charge ordering in the lightly doped
cuprates seen in STM experiments on Na−CCOC [182] and Bi2212 [188–190]. Furthermore,
an explanation based on an anisotropic coupling (coming from either polaron physics or the
magnetic resonance) may not be sufficient to cause the two-dimensional charge order; it may
be a combination of strong coupling and Fermi surface nesting which ultimately stabilizes the
antinodal charge-ordered state.

3.4.5. Electron–Phonon Coupling and High Temperature Superconductivity

Much of the physics discussed in this review has attributed essential features of the
ARPES data to electron−phonon coupling, and if not to electron−phonon coupling alone,
to electron−phonon coupling in an antiferromagnetic background. The question remains as
to how this electron−phonon coupling can account for high-temperature superconductivity
with d-wave pairing seen in the cuprates. It is often assumed that el−ph coupling leads to
s-wave pairing, and that therefore such a mechanism contradicts with the d-wave symmetry
of the Cooper pairing in the cuprates. Instead, electronic correlations have been thought to be
consistent with d-wave pairing. However, while strong electronic correlations will suppress
the Cooper pair amplitude on the same orbital, and hence induce a d-wave like symmetry,
they do not tell us much about the explicit pairing mechanism. One of the early studies on
possible phononic mechanisms of high Tc superconductivity [154] pointed out that the out-of-
plane displacement of the oxygen, i.e., the buckling mode, combined with antiferromagnetic
correlations, leads to dx2−y2 pairing. Bulut and Scalapino [191] studied the various phonon
modes from the viewpoint of the possible pairing force. They found that the interaction which
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becomes more positive as the momentum transfer increases helps dx2−y2 pairing (the case for
buckling mode, but not the case for the apical oxygen mode or the in-plane breathing mode).

One can understand the nature of the q momentum dependence by considering how
the phonon couples to the electron density. For deformation phonons, the coupling is dipolar
driven and thus small for small q, the case for the breathing modes. This also includes infrared
active phonons. Yet for Raman active modes, which couple via the creation of isotropic and
quadrupolar moments, the coupling is generally strongest for small q. Specifically for the
cuprates, such strong k, q dependencies occur explicitly for c-axis phonons, which include
the Raman active in-phase buckling A1g, out-of-phase buckling B1g and modes involving
the apical oxygen A1g. The k momentum dependence comes from the phonon eigenvectors
as well as the direction of charge-transfer induced by the phonon. For example, for the B1g
phonon the eigenvectors enforce a change of sign when kx and ky are interchanged, a factor
∼ cos(kx a)−cos(kya), while for the apical charge transfer coupling between Cu and the three
oxygen orbitals, a factor ∼[cos(kx a)− cos(kya)]2 emerges.

As discussed by Bulut and Scalapino [191] among others, the q dependence of phonons
can be important to give dx2−y2 pairing. In particular, if the attractive electron−phonon inter-
action falls off for momentum transfers q along the diagonal, then conceptually the interaction
is of the same structure as the magnetic pairing from antiferromagnetic spin fluctuations. This
type of structure occurs for both B1g and A1g c-axis Raman-active phonons, and thus they
contribute to the pairing interaction in the d-wave channel, parameterized by λd

λd = 2
∑

k,k′ dkdk′ | g(k, k − k′) |2 δ(εk)δ(εk′)

Ωph
∑

k δ(εk)d2
k

(3.17)

with the d-wave form factor dk = [cos(kx a) − cos(kya)]/2. However, the A1g phonons pre-
dominantly contribute to the s-pairing channel (replacing dk by 1 in the above equation) in
the absence of any Coulomb interaction, leaving the B1g phonon as the largest contributor to
d-wave pairing, as found in LDA studies [192].

However, Coulomb interactions change this picture. They cannot be neglected since
they are necessary to screen the long-wavelength nature of isotropic charge fluctuations. The
screened electron−phonon interaction ḡ is of the form

ḡ(k, q,Ω) = g(k, q)+ V (q)%g,1(q,Ω)

1 − V (q)%1,1(q,Ω)
, (3.18)

where V (q) = 4πe2/q2 is the 3D Coulomb interaction and %a,b(q,Ω) is the frequency-
dependent polarizability calculated with vertices a, b, respectively. Note if g were indepen-
dent of momentum, then the effective electron−phonon coupling would be screened by the
dielectric function ε(q,Ω) = 1 − V (q)%1,1(q,Ω). Particularly in the limit q → 0 we
recover complete screening and ḡ = 0 for Ω = 0, restating particle number conserva-
tion, while for Ω = Ωph the renormalized coupling is of order Ωph/Ωpl. However, any
fermion k-dependence of the electron−phonon coupling survives screening even at q = 0
as shown by Abrikosov and Genkin [193], and the effective charge vertex in this limit is
ḡ(k, q → 0) = g(k, q → 0) − δg, with δg = 〈g(k, q → 0)〉, and 〈· · · 〉 denotes an average
over the Fermi surface, defined as

〈A〉 =
∑

k A(k)δ(ε(k))
∑

k δ(ε(k))
. (3.19)
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Thus screening removes the constant part of the electron−phonon interaction and can high-
light the d-wave channel. This is important if the bare coupling is highly anisotropic with the
Fermionic momentum k, the case of the apical oxygen coupling.

Moreover, the issue of strong local correlations on electron−phonon interactions has
been recently readdressed by the Hubbard X operator method [90, 194] and quantum Monte
Carlo simulations [195]. Assuming no specific phonon and that phonons couple to the on-site
charge density, i.e., diagonal coupling, these works found enhanced forward scattering (i.e.,
small momentum transfer), while large momentum transfer process were suppressed. There-
fore, dx2−y2 pairing can occur by el−ph coupling. Furthermore, the vertex correction explains
the absence of phonon features in the resistivity, since the transport relaxation rate contains
the factor 1−cos θ (θ : the angle between the initial and final state momenta) which reduces the
contribution for forward scatterings. There has been controversy as to whether the vertex cor-
rection for the off-diagonal el−ph coupling, which modulates the bond, also enhances forward
scattering and suppresses large momentum transfers [110]. The in-plane half-breathing mode,
which modulates the bond, exhibits a sharp softening with doping in neutron scattering [107]
and has been studied in particular. The Zhang−Rice singlet couples to the half-breathing
mode much stronger than estimated in LDA calculations, and the vertex correction leads to an
effective attractive interaction for dx2−y2 pairing [196]. On the other hand, later analysis [197]
has shown that the cancellation of terms reduces the off-diagonal coupling, and the diagonal
coupling dominates even after the vertex correction has been taken into account. In under-
standing the effects of this vertex correction on experimental spectra, one should note that the
correction works differently for phononic and electronic self-energies. The sum rules [198]
conclude that the phononic self-energy is reduced by an additional factor of x (hole concentra-
tion) as compared to the electronic self-energy. Intuitively, the difference between phononic
and electronic self-energies arises because a small number of holes cannot influence phonons
as much as phonons, in which atoms vibrate at every site, can influence a single hole.

In summary, local coulomb repulsion suppresses charge density modulations, which in
turn decreases the strength of the electron−phonon interaction at large momentum transfers.
This has two effects: first, as a consequence the contribution of all phonons to the resistiv-
ity will be reduced by the correlation effect. Second, and more relevant to pairing, small
q phonons will have an accentuating λ for d-wave pairing since the coupling will decrease
faster for large q than without correlations. Thus it appears that Coulomb interactions in gen-
eral can have a dramatic impact on electron−phonon driven dx2−y2 pairing. However, theo-
retical developments are still needed in order to treat the simultaneous importance of strong
correlations and electron−phonon coupling. This is a promising direction for future research.

3.5. Summary

ARPES experiments have been instrumental in identifying the electronic structure,
observing and detailing the electron−phonon mode coupling behavior, and mapping the dop-
ing evolution of the high-Tc cuprates. The spectra evolve from the strongly coupled, po-
laronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in
the optimally and overdoped cuprates. In addition to the marked doping dependence, the
cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasi-
particles along the nodal direction that broaden significantly in the antinodal region of the
underdoped cuprates, an anisotropic electron−phonon coupling vertex for particular modes
identified in the optimal and overdoped compounds, and preferential scattering across the
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two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also
contributes to the pseudogap effect. To the extent that the Migdal−Eliashberg picture ap-
plies, the spectra of the cuprates bear resemblance to that seen in established strongly cou-
pled electron−phonon superconductors such as Pb. On the other hand, the cuprates deviate
from this conventional picture. In the underdoped regime, the carriers are best understood
as small polarons in an antiferromagnetic, highly electron correlated background, while the
doped compounds require an anisotropic electron−phonon vertex to detail the prominent
mode coupling signatures in the superconducting state. Electronic vertex corrections to the
electron−phonon coupling furthermore may enhance, and for certain phonons, determine, the
anisotropy of the electron−phonon coupling. A consistent picture emerges of the cuprates,
combining strong, anisotropic electron−phonon coupling, particular phonon modes that could
give rise to such a coupling, and an electron−electron interaction modifying the el−ph ver-
tex. Such a combination, albeit with further experimental and theoretical effort, may indeed
lead to an understanding of the high-critical transition temperature with d-wave pairing in the
cuprate superconductors.
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4
Microwave Electrodynamics of High
Temperature Superconductors

D. A. Bonn and W. N. Hardy

4.1. Introduction

Measurements of electrodynamics at microwave frequencies play an important and
varied role in the study of superconductivity because they give diverse information on both
the superconducting groundstate and the excitations out of that state. In particular, the imag-
inary part of the microwave conductivity can be used to determine the penetration depth, a
key length scale in the superconducting state that gives access to the superfluid density or,
more correctly, the superfluid phase stiffness. Measurements of the real part of the conductiv-
ity give a wealth of information on dissipation associated with quasiparticle excitations out of
the groundstate. Such measurements figured prominently throughout the history of the study
of s-wave BCS superconductors, starting with the development of the London model of su-
perconducting electrodynamics and the subsequent measurements of the penetration depth.
Later, detailed work on the temperature dependence of the penetration depth and the tempera-
ture and frequency dependence of microwave absorption provided evidence of the energy gap
predicted by BCS theory.

The wealth of information on s-wave BCS superconductors was hard-won over many
years of theory and experiment. One reason for this is the multiple lengthscales in a supercon-
ducting sample; London penetration depth, coherence length, quasiparticle mean free path and
sample dimensions can all come into play. For instance, in the early work on microwave pen-
etration depth in the elements, the possibility that the coherence length can be comparable to,
or larger than, the London penetration depth led to measured values of penetration depth that
differed from the predictions of the London model. Subsequent careful studies as a function
of purity and mean free path clarified this complex situation and ultimately provided access
to the coherence length as well as the penetration depth. Impurities provide further complex-
ity, especially for the microwave absorption which necessarily involves the mechanisms that
scatter quasiparticles and lead to dissipation. A practical payoff for this effort has been the
development of high Q superconducting resonators used in particle accelerators.

The high temperature superconductors have also provided a complex and lengthy chal-
lenge, though for quite different reasons. The foremost difference is that the cuprates have
been found to be d-wave superconductors, with nodes in the superconducting energy gap
that have far-reaching effects on the electrodynamic properties. The presence of nodes in
the gap brings with it a serious complication—many physical properties are more sensitive
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to impurities than is the case for s-wave superconductors where Anderson’s theorem places
serious constraints on the influence of nonmagnetic impurities. Sensitivity to defects is par-
ticularly problematic in these complex quaternary or even pentenary compounds. Nature has
given us an easily disturbed superconducting state in materials that are extremely difficult to
grow in a highly perfect crystalline form.

Another major difference in the cuprates is that the large energy gap associated with
having a high Tc carries with it a very short coherence length. This has the simplifying effect
that the microwave electrodynamics are local under most measurement conditions, but it also
brings in new phenomena by making critical fluctuations much more important than they are
in lower Tc materials. The issue of fluctuations is made even more important by the relatively
low phase stiffness associated with the rather long London penetration depth in the cuprates.
Added to all of these novel features is the extreme anisotropy of these layered materials plus
structural complications such as coupled bilayers of CuO2 in some materials, CuO chain lay-
ers in the YBa2Cu3O6+x family and in YBa2Cu4O8. This leaves a vast parameter space to
explore since a complete experimental picture would require measurements of the microwave
properties in all three crystallographic directions, as a function of temperature, carrier dop-
ing, and purity, in several different compounds. In the following chapter we will review the
progress on this topic achieved over nearly two decades. After an introduction to the pieces of
theory most relevant to microwave measurements, we will introduce the experimental tech-
niques used in the field. Because of the central role that superfluid phase stiffness plays in
the cuprates, a detailed review of microwave measurements of the penetration depth will also
include an overview of other types of penetration depth measurements. Following this is a
review of the present state of understanding of the microwave conductivity of the cuprates
and a separate section on the role of superconducting fluctuations. Throughout this there will
be a bias towards discussion of work on single crystals where the best case has been made for
sample quality. There will be regular reference to thin film results where they help complete
the picture. Recent reviews by Maeda [127], Trunin and Golubov [194], as well as the earlier
review by Trunin [193] should be consulted for complementary treatments of topics found in
this review.

4.2. Electrodynamics of Superconductors

4.2.1. London Theory

At first glance, the fact that the coherence length ξ is typically very short and the pen-
etration depth λ rather long in the high temperature superconductors guarantees that one is
in the London limit λ � ξ where the electrodynamics of the superfluid are local. There are,
however, situations in the cuprates where non-local effects might be observable and these will
be discussed near the end of this section. In most microwave measurement conditions these
effects do not come into play, so a good starting point for discussing the electrodynamics of
the cuprates is the London model.

In the local limit, the current density 
J is related to the local electric field 
E by a
conductivity tensor:


J = σ 
E (4.1)

or equivalently to the local magnetic field 
B
∇x(σ−1 
J ) = −iω 
B. (4.2)
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We will be concerned with the diagonal components of the conductivity tensor σi i and where
needed will denote the three components for a typical orthorhombic cuprate as σa , σb and σc.
For the convention eiωt for the time dependence of 
E , each of the diagonal components of the
conductivity tensor can be written in the form σ = σ1(ω, T )− iσ2(ω, T ).

4.2.2. Surface Impedance Approximation

For local electrodynamics and in situations where the sample surface is flat on the scale
of the penetration depth, the surface impedance Zs suffices to describe the response of the
sample to an applied EM field. In the local limit where Eqs. (4.1) or (4.2) are valid, it follows
directly from Maxwell’s equations that Zs = Rs + iXs, defined by the ratio of the tangential
electric and magnetic fields at the surface of the sample (e.g. Ex/Hy), is given by

Zs(ω) =
(

iµoω

σ1 − iσ2

)1/2

, (4.3)

where Rs is referred to as the surface resistance and Xs the surface reactance. Within the same
local approximation the propagation constant κ is given by

κ = (−iµ0ωσ)
1/2. (4.4)

For this discussion, it is useful to have in mind a simple picture of the T and ω dependence
of the electrodynamics we are likely to encounter. Figure 4.1 gives a schematic view of the
situation for (a) T > Tc, (b) T = 0 and (c) 0 < T < Tc. The curve in (a) can be taken as that
of a Drude metal where

σ1 = ne2

m∗
τ

1 + ω2τ 2 and σ2 = ne2

m∗
ωτ 2

1 + ω2τ 2 , (4.5)

where n/m∗ is the ratio of normal carrier density over effective mass and τ is the current
relaxation time of the charge carriers. The DC conductivity is σDC = ne2τ/m∗. This model is
just meant as an illustration, since for cuprates we know that σ1 falls off more like 1/ω than
1/ω2. In the normal state, the quasiparticle scattering rate 1/τ is generally much greater than
the measuring frequency of microwave techniques (as shown).

At low temperatures, some fraction of the area under σ1(ω, T > Tc) appears as a δ-
function at ω = 0, representing the response of the superfluid condensate. For the âb-plane
response, the remaining area under σ1(ω, T = 0) at microwave to far-infrared frequencies is
relatively small for good quality cuprate samples having low disorder. This corresponds to the
so-called clean limit where the energy scale of the superconducting gap is larger than the qua-
siparticle (qp) scattering rate. Strictly speaking, the language of “clean limit” vs. “dirty limit”
is not entirely appropriate for the high temperature superconductors since the scattering rate is
dominated by inelastic scattering rather than elastic impurity scattering. For instance, there is
a rapid drop in 1/τ as T is lowered below Tc, as discussed in Section 4.4, which suggests that
the materials are in the very clean limit. However, this scattering rate is necessarily strongly
frequency dependent, so that the low scattering seen at microwave frequencies is not a good
guide to the behaviour in the infrared. Still, the relatively small oscillator strength left at low
frequency as T → 0 in good samples, together with the strong screening by the superfluid,
make measurements of σ1(ω, T < Tc) a challenge at microwave, THz, and far infrared fre-
quencies. Add to this the fact that a d-wave superconductor does not have the sharp onset of
absorption seen in σ1(ω) at the gap edge of an s-wave superconductor and one readily sees



148 D. A. Bonn and W. N. Hardy

 

wmicrowave
w

w

w

T > Tc

0 < T < Tc

T = 0

 

s1

s2

s1

s1
 

s2 ~
e2 ns(0)

w  m*

1
=

= 

m0wl2(0)

s2 ~
e2 ns(T )

w  m*

1
m0wl2(T)

wµw

wµw

Figure 4.1. Schematic behaviour of σ1(ω, T ), σ2(ω, T ) for a superconductor.

why measurements of the conductivity proved difficult for spectroscopists trying to discern
the superconducting gap.

As one raises the temperature, σ1(ω > 0, T ) increases as quasiparticles become ther-
mally excited. At the same time, the strength of the δ-function in σ1 at ω = 0 has a corres-
ponding decrease. (The accuracy of this implied sum rule is discussed at the beginning of
Section 4.5.) Thus a measurement of the temperature dependence of the δ-function strength
gives the increase in area under σ1(ω > 0, T ), which is determined by the spectrum
of the quasiparticle excitations. In practice, one is usually measuring the contribution to
σ2(ω, T ) from the δ-function in σ1(ω, T ). If we take the weight of the δ-function to be
(π/2)(e2/m∗)ns(T ) then the contribution to the imaginary part of σ (by Kramers–Kronig) is

σ SF
2 = e2

m∗ ns(T )
1
ω
.
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Figure 4.2. Situation where measurement frequency is too high for measurement of superfluid density.

Here we define the magnetic penetration dep th λ via the imaginary part of σ ,

σ2 = 1
µ0ωλ2(T )

such that the electromagnetic propagation constant κ = [−iµ0ωσ ]1/2 is equal to 1/λ in the
case that σ = σ1 − iσ2 is dominated by σ2. Furthermore, if the measuring frequency is low
enough that σ2 is mainly due to the superfluid response, then

σ2 = e2

m∗ ns(T )
1
ω

= 1
µ0ωλ2(T )

and λ(T ) reduces to the usual London penetration depth λL(T ).
Below frequencies of a few GHz or so, σ2 in the high Tc materials is completely dom-

inated by the response of the superfluid condensate and contributions to σ2 from the nor-
mal fluid are negligible except very close to Tc. However, the normal fluid may contribute at
higher frequencies, depending on the quasiparticle scattering rate. When 1/τ is lower than the
measurement frequency (see Figure 4.2), σ2(ω) approaches (e2/m∗)(ntotal/ω), where ntotal
includes both the superfluid and normal fluid (i.e. a narrow response of the normal fluid near
ω = 0, responds at higher frequencies as a superfluid). One therefore has to interpret Far
IR (and even some mm wave) measurements that do not extend to ω ≈ 0 with care. If 1/τ
is strongly temperature dependent and falls below the minimum measurement frequency as
one lowers the temperature, the superfluid condensate may appear to have very little temper-
ature dependence, even at relatively high temperatures. Here, Far IR measurements are useful
for obtaining ntotal/m∗ at T = 0 but generally not ns/m∗ and certainly not its temperature
dependence. In conjunction with independent “low” frequency measurements, they also give
valuable information on the initial fall of 1/τ .

Of course, there are wide variations in the temperature dependence of 1/τ : in materi-
als doped with Zn or Ni or in most thin films, 1/τ is extrinsic and has a relatively weaker
temperature dependence. On the other hand, in high purity single crystals of YBa2Cu3O6+x ,
1/τ falls to microwave frequencies (≈ 30 GHz = 1 cm−1) for T ≤ 40 K. This is well below
the minimum far IR measurement frequency achievable in single crystal work (20–50 cm−1),
and even millimetre wave measurements have to be carefully scrutinized. Dähne et al. [38]
for example were able to use the frequency dependence of λ in the millimetre wave re-
gion to extract τ . On the other hand, de Vaulchier et al. [40] saw no frequency depen-
dence of λ in their films, up to 500 GHz, presumably due to higher extrinsic scattering
rates.
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Having reviewed the general phenomenology that one will encounter, we return to the
actual task of extracting σ1 and σ2 from physical measurements. We begin with some simple
limits. In the normal state and at low frequencies (ω � 1/τ ), σ1(ω) � σ2(ω) so that Rs =
Xs = √

µ0ω/(2σDC) and κ = (1 − i)
√
µ0ωσDC/2 = (1 − i)/δ where δ is the classical skin

depth, which is typically of order microns at microwave frequencies. For the high temperature
superconductors this may be comparable to one of the sample dimensions and, if so, one
cannot directly use the surface impedance approximation.

In the superconducting state below Tc, the DC resistivity is zero and is represented in
the conductivity spectrum by a δ-function at ω = 0 with an oscillator strength determined by
the superfluid density or, equivalently, the penetration depth. This term in the conductivity is
σ1(ω, T ) = πδ(ω)/µ0λ

2(T ) and, through a Kramers–Kronig relation, gives rise to a dom-
inant term in the imaginary part, σ2(ω, T ) = 1/µ0ωλ

2(T ). Below Tc, one can thus write a
general expression for the conductivity away from ω = 0

σ(ω, T ) = σ ∗(ω, T )− i
1

µ0ωλ2(T )
. (4.6)

The term σ ∗ represents all contributions to the conductivity other than the superfluid
contribution and is mainly real at low frequencies (ωτ � 1 where τ is the transport lifetime).
So at low frequency σ ∗(ω, T ) can be replaced by a purely real σ1(ω, T ) and the imaginary
part of the conductivity is determined by the superfluid term in Eq. (4.6). Except near Tc,
σ2 � σ1 and Eqs. (4.3) and (4.6) yield simple approximations for the surface impedance:

Rs = µ2
0

2
ω2λ3(T )σ1(ω, T ) (4.7)

Xs = µ0ωλ(T ). (4.8)

We see that a measurement of Xs(T ) allows a direct determination of λ(T ) and the
associated quantities ns(T )e2/m∗ = ωσ2(ω, T ) = 1/(µ0λ

2(T )), whereas σ1(ω, T ) can only
be extracted from Rs if values of λ(T ) are also available. It turns out that Xs(T ) is rarely
measured directly, especially on small single crystals, and the typical situation is that λ(T ) is
measured by one or more of a variety of techniques, not necessarily involving microwaves. In
fact, obtaining reliable values of λ(T ), a quantity of intrinsic importance on its own but also
crucial to the analysis of microwave data, has turned out to be a very difficult task for the case
of the cuprate superconductors. In the next section we briefly review the various methods that
have been used. The reader is referred to Hardy et al. [65] for more details.

For completeness, we include a general expression for extracting σ1(ω, t) in the super-
conducting state and right through Tc into the normal state:

σ1 =
⎡

⎢
⎣

⎛

⎝σs

2
±

[
σs

2

4
− σ2σs

] 1
2
⎞

⎠

2

− σ2
2

⎤

⎥
⎦

1/2

, (4.9)

where the + (− ) sign is used for the case σ1 > (<)
√

3σ2 and σs = µ0ω/2Rs
2. This sim-

plifies to Eq. (4.7) when the approximation σ2 � σ1 is made. While the full expression must
be used for quantitative analysis very close to Tc, the approximate version, Eq. (4.7), is much
more convenient and transparent.
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4.2.3. Non-local Electrodynamics

Non-local effects occur when there exist physical correlation lengths that exceed the
penetration lengths of the applied electromagnetic fields, which in the present case are of
order 100–200 nm or more.

For the response of the superfluid, the relevant physical scale is the coherence length
which is much smaller that λ for the cuprates, and in most cases one is safely in the local
limit. However, Kosztin and Leggett [108] show that for B applied parallel to the ĉ-axis of a
clean d-wave superconductor, non-local effects in λ(T ) may appear below a crossover tem-
perature of about 1 K (an effect arising from the coherence length becoming large in the nodal
directions). For the response of the “normal fluid”, the situation is more complicated. For clean
materials at low temperatures one can easily have in-plane quasiparticle mean-free-paths that
are greater than the in-plane penetration depth. Nevertheless, since the transport is strongly
two-dimensional, non-local effects are greatly suppressed for excitation fields applied parallel
to the ab plane: the quasiparticles largely remain within the penetration depth between scatter-
ing events. However, there exist geometries where this condition does not hold. An example
is the case where B is applied parallel to an ac or bc face of a crystal; here the quasiparticles
can exit the field penetration region before a scattering event [166]. To the best of our knowl-
edge, this has not been studied experimentally. In the discussion that follows, we assume local
electrodynamics.

4.2.4. Excitation Spectrum of a d-Wave Superconductor

It is now generally, although not universally, agreed that all of the cuprates have an or-
der parameter with predominately dx2−y2 character, with four nodal lines along the c-direction
of the crystals. The electronic structure is two-dimensional in character, although the degree
of this two-dimensionality varies enormously, both between families and with doping; it can
also be a strong function of the temperature. Furthermore, except for the occurrence of nodes
(not seen in the “old” superconductors) the phenomenology of the superconductivity is con-
ventional in many respects. This is in stark contrast to the normal state, which is anything but
conventional and which has bedevilled the community for almost two decades. The pairing
mechanism is undoubtedly closely tied up with the physics of a doped Mott insulator and
the ensuing strong electron–electron correlations [116], but the details are still the subject of
continuing debate.

One aspect of our own particular view of the superconductivity in the cuprates, which
may be less universally agreed upon, concerns the issue of homogeneity. It is our opinion that
over a wide region of the phase diagram, the superconductivity is intrinsically homogeneous,
by which we mean that the more perfect the samples become, the stronger and more homo-
geneous the superconductivity becomes. Of course, one should not rule out the possibility of
“intrinsic” phenomena such as fluctuating stripes or other competing order, the suppression
of which might strengthen the superconductivity (the suppression of Tc near 1/8 doping is a
case in point [4, 121]).

A superconductor with nodes is particularly susceptible to many kinds of imperfec-
tions. Disorder, short coherence lengths, and the weak screening characteristic of the cuprates
combine to place stringent constraints on the crystallinity of the materials, which must be
considered if one wants to study the intrinsic properties of the superconducting state. The fact
that superconductivity requires doping of the CuO2 planes, generally by dopants that have
some (or total) randomness associated with their positions, further complicates the situation.
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Finally, many of the high temperature superconducting compounds, when grown under typ-
ical conditions tend to have cation disorder that may or may not be amenable to strategies
for their reduction. The effect of cation disorder on the superconductivity has been studied
in considerable detail recently, by Eisaki et al. [45] and Fujita et al. [52], where is it shown
that the reduction of Tc is very sensitive to the details of the disorder, for example, the ionic
radius of the substituted cation. However, in all cases, more disorder is correlated with a larger
reduction in Tc.

In regions of the phase diagram, where Tc varies quickly with doping, it is clear that
any randomness in the doping will lead to large spatial variations in the strength of the super-
conductivity. In an extreme case, near the AFM-SC border for example, some regions will be
inherently antiferromagnetic and other regions superconducting. When proximity effects are
added to the mix, one has a situation where it is extremely difficult to extract the “intrinsic”
physics from measured properties. Microwave measurements typically have neither wavevec-
tor nor spatial resolution, so, as with most bulk probes, one cannot à priori distinguish intrinsic
from extrinsic behaviour: one has to observe how the properties evolve with sample perfec-
tion. In this review much of the focus is on this evolution.

Phenomenological Pairing Model

At present, there is no “theory” of high temperature superconductivity that has the all-
encompassing reach of the BCS theory for conventional superconductors in which the tem-
perature and frequency dependence of the basic physical observables can be calculated from
T = 0 to T = Tc. While some aspects of the superconducting state in the cuprates mir-
ror those of “d-wave BCS” superconductivity (i.e. the BCS solution for a fermionic system
to which some interaction favouring a d-wave ground state has been added), there remain
important differences. For example, Lee and Wen [117] pointed out the essential discon-
nect between the zero temperature superfluid density ρs(0)/m and the temperature depen-
dence of the normal fluid density: (ρn(T )/m) = (ρs(0)/m) − (ρs(T )/m). In BCS theory
these are necessarily tied together and set by the properties of the gap function. For the
cuprates as the hole doping is reduced and one approaches the Mott insulator ρs(0)/m
must, and does, go to zero, whereas ρn(T )/m is less doping dependent. From the experi-
mentalist’s point of view it is still premature to try to fit data to strong- or weak-coupling
BCS, given the lack of a global theory. However, at low temperature, where the excitation
spectrum for the quasiparticles has settled down, it is fruitful to measure quantities such
as normal fluid density, specific heat, thermal and electrical conductivity, etc. to empiri-
cally determine the qp parameters. Hussey [86] summarizes existing experiments relevant
to this task, and in particular, critically examines the self-consistency of various results. In
the present review, we will confine our attention to the superfluid density and the electrical
conductivity σ1.

The basic elements of the phenomenological pairing theory put forward by Lee and
coworkers [116, 117, 210] are as follows. One assumes that the elementary excitations in
the superconducting state are well defined quasiparticles (qp), with dispersion E(k) =
[
(εk − µ)2 +∆k

2]
1
2 , where ∆k = 1

2∆0
(
cos kx a − cos kya

)
is a d-wave gap for an assumed

tetragonal lattice, with lattice parameter a. For εk, a tightbinding approximation is assumed
with εk = 2 t

(
cos kx a + cos kya

)
. There is now considerable evidence that, for the generally

orthorhombic crystals the predominant state is a “distorted” dx2−y2 state where the effect of
orthorhombicity is mainly to make one set of opposing lobes somewhat larger than the other.
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Figure 4.3. Schematic diagram of the single-band tight-binding Fermi surface for a high temperature superconduc-
tor, showing the shift of the co-ordinate system to the nodes. Γ is the centre of the Brillouin zone. The lobes represent
the superconducting gap [86].

This will shift the nodal points (∆(k) = 0) from the 45◦ positions, but there is no evidence to
show this is a large effect in the high temperature superconductors. Also, there is no guarantee
that the gap function has the pure dx2−y2 form where ∆(k) = ∆0 cos 2φ where φ is the az-
imuthal in-plane angle. For low temperature properties, this is inconsequential since only the
slope of ∆ near the node is of importance. The effect of orthorhombicity on the band structure
can be more substantial, but here these complications are ignored.

For calculating low temperature properties, it is convenient and standard to rotate
by 45◦ to a coordinate system (k⊥, k‖) whose origin is centred at one of the nodes with
k⊥ and k‖ the momentum normal and tangential to the Fermi surface, respectively (see
Figure 4.3)

k⊥ = 1√
2
(kx + ky) − |k0|,

k‖ = 1√
2
(kx − ky).

Linearizing the spectrum around one of the four values of k0, one obtains:

εk = h̄νFk⊥,

∆k = h̄ν∆k‖,

where νF is the Fermi velocity associated with dispersion of the qp’s normal to the Fermi
surface (in the nodal region),

νF = ∂εk

∂k
= νFk̂⊥ νF = 2

√
2 t a sin(k0x a)

and ν∆ gives the slope of the gap in the nodal region and is associated with the dispersion of
the qp’s along the Fermi surface:

ν∆ = ∂∆k

∂k
= ν∆k̂‖ ν∆ = 1√

2
∆0a sin(k0x a).
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In the region of the node, the excitation spectrum can thus be written,

E(k) =
(
εk

2 + ∆k
2
) 1

2 = h̄
(
νF

2 k⊥
2 + ν∆

2 k‖
2
) 1

2
.

Adding contributions from the four nodes, one obtains the angle-averaged density of states:

Ns(E) =
(

2

π h̄2

)(
1

νFν∆

)

E

which is linear in E (limit of low E , no impurities). From this, many of the low-energy prop-
erties of the system can be calculated. In particular, the normal fluid density for one CuO2
plane is given by [210]:

ρn

m
= 2 ln 2

π
αFL

2 νF

ν∆
T .

In the first version of the model [117] the qp current was assumed to be given by:

j̇(k) = −e
∂εk

∂k
= −e νk.

Millis et al. [133] pointed out that a Fermi liquid correction should be applied and the qp
current was modified to j (k) = −e αFL νk [210]. This accounts for the αFL

2 factor in the
expression for ρn/m. Results for other quantities are listed by Hussey [86].

The ratio νF/ν∆, sometimes referred to as the Dirac anisotropy ratio αD, is an important
parameter for high temperature superconductors. It is possible to extract αD from the low
temperature universal thermal conductivity κ0/T [188]. Combined with a value of α2

FL αD
from the temperature dependence of the superfluid density via λ(T ), one can find the Fermi
liquid parameters. However, the value of α2

D obtained depends on the absolute magnitude of
[
λ(T )/
T ] / λ3(0). While 
λ(T )/
T is easily measured, the value of λ(0) is not. This
results in relatively large error bars for α2

FL.
Lee and Wen [117] further assume that the full Drude weight of the doped holes appears

in the zero temperature superfluid density so that (ρs(0)/m) = (x/a2m), where x is the hole
doping. In this phenomenological model, motivated by experiment, the wide divergence from
standard BCS results is explicit: ρs(0)/m depends on x while ρn(T )/m does not. This is one
of the central issues that must be addressed by microscopic theories.

Effect of Impurities

The review of Hussey [86] contains a very useful discussion of the self-consistent
T-matrix approximation (SCTMA) that is widely used to treat the effect of impurities in
metals, semiconductors, and superconductors. As pointed out by Hussey, impurity substi-
tution has proven to be a powerful probe in the study of complex many-body systems in
general. For the cuprates studies of Tc suppression, increase of residual in-plane resistivity
ρ0, change in temperature dependence of the penetration depth, impurity-induced effects
in the low-T specific heat and thermal conductivity, electrical conductivity, and impurity
related bound states seen by scanning tunnelling microscopy (STM) have all yielded im-
portant information. For unconventional superconductors, the SCTMA has been studied in
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Figure 4.4. a.) The density of states of a clean d-wave superconductor. b.) The appearance of a bound state
at the Fermi level due to a non-magnetic unitary scatterer. c.) The broadening of the bound state distribution
for a dilute density of non-magnetic impurities, leading to a finite density of states at zero-energy that increases
with increasing impurity concentration. The rounding of the coherence peak in the presence of impurities is not
shown [86].

most detail by Hirschfeld and coworkers (see Nunner and Hirschfeld for references to earlier
work [140]).

For the high temperature superconductors Hirschfeld et al. [75, 76] adopted a gen-
eralized BCS model with a dx2−y2 state. The scattering from a single point impurity at
low temperatures is characterized by c, the cotangent of the s-wave scattering phase shift.
The finite density of scatterers ni , defines a temperature independent elastic scattering rate,
Γ ≡ ni n/(πN0) where n is the electron density and N0 the density of states (DOS) at
the Fermi level. In the normal state limit (∆k → 0) the electrical conductivity reduces to
a Drude form: σ = σ0/[1 + (ΩτN)

2] where σ0 ≡ ne2τN/m with 1/2τN = 	N = 	/(1 + c2)
and Ω is the microwave frequency.

For ∆k 	= 0, the impurities modify the d-wave density of states in such a way that there
is a region of width γ near the Fermi level where the DOS is finite (Figure 4.4 ). For tem-
peratures T ∗ < γ/k � Tc, the so-called “gapless” regime, the superconducting properties
reflect the temperature dependence of their normal state analogues, but scaled according to
the reduced DOS. Above T ∗ one enters the “pure” regime where properties approach those
of a clean d-wave superconductor. In the resonant scattering (unitary) limit where c � 0 , γ

is of order (Γ ∆0)
1
2 (to within logarithmic factors). However, in the Born limit where c � 1,

γ ∼ ∆0 exp [−∆0/ΓN] , which can be extremely small in the weak scattering limit. Because
of the exponential dependence on ∆0/ΓN, the physics of the gapless region may become
inaccessible, even when ΓN is not particularly small.

In the gapless regime, and for h̄ Ω � k T, the conductivity becomes σ1 � σ00
[
1 +

(π2/12)(T/γ )2
]

where σ00 = ne2/[mπ∆0(0)] is the universal limit first derived by Lee
[118]. The lack of dependence of σ00 on impurity concentration is due to the fact that an
increase in impurity density increases the density of quasiparticles, while decreasing the qua-
siparticle lifetime by the same factor.

Durst and Lee [44] later showed that both vertex and Fermi liquid corrections needed
to be applied. (Vertex corrections account for differences in forward vs. backward scattering
amplitudes, and Fermi liquid corrections account for the fact that the superconducting state
emerged from a Fermi liquid with strong electron–electron correlations). They found that ver-
tex corrections modify the electrical conductivity, and Fermi liquid corrections renormalize
both electrical and spin conductivity, while the thermal conductivity maintains its universal
value. If all three could be measured on the same sample, the Fermi liquid and vertex correc-
tions could be independently determined. See [188] for measurements of the universal thermal
conductivity.
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Figure 4.5. Normalized low-T conductivity σ/σ00 vs. the reduced temperature T/Tc in the Born limit [76].

Returning to the temperature and frequency dependence of σ1, Hirschfeld et al. [76]
give for the pure regime,

σ1(Ω) = ne2

m

∫ ∞

−∞

(

− ∂ f
∂ω

) ∣
∣
∣
∣
ω

∆0

∣
∣
∣
∣

τ(ω)

1 + Ω2 τ 2(ω)
dω (4.10)

with 1/τ = −2 Im
∑

0(ω), valid for all scattering strengths. Here
∑

0(ω) is the averaged
self-energy due to impurity scattering in the SCTM approximation. The conductivity thus
takes the form of a sum of Drude lineshapes. However, in an unconventional superconductor
1/τ(ω) will always have a non-trivial dependence on energy, so that σ1(Ω) should never
have a simple Drude form deep in the superconducting state. The observation of approximate
Drude shapes for σ1 in high quality YBa2Cu3O6+x crystals [67] at low temperatures posed
a challenge for theory, and a number of alternatives to simple point scattering were studied,
including the cumulative effect of scattering by a variety of dilute and/or weak scatterers [14],
scattering of qp’s from order parameter “holes” [71] and extended scatterers [44, 140].

Very recently the experiments of Turner et al. [202] on YBa2Cu3O6.5 with highly
ordered oxygen chains clearly show a σ1(ω, T ) for the â crystal direction that exhibits most
of the expected characteristics of Born scattering in a dx2−y2 state at low temperatures. We
note here that for weak (Born) scattering in a dx2−y2 state, 1/τ(ω) � Γ ω/∆0 for, to within
logarithmic corrections, ω � ∆0. Thus in the pure regime, the low frequency value of the
conductivity (Ωτ � 1) becomes σ1 = σ0 � σ00. This is illustrated in Figure 4.5 for various
values of Ω/Tc, for the choice ΓN/Tc = 0.01 [76]. Here the low frequency limit of σ1 will
remain well above the universal limit until extremely low temperatures.

4.3. Experimental Techniques

In this section we will restrict our attention to the linear response of high temperature
superconductors in the region below approximately 100 GHz. Typically (although not always)
one is in a “skin-effect” region where the penetration depth of the microwave magnetic field
is much shorter than any dimension of the crystal. For very practical reasons there is usually
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a distinct separation between the microwave region and the higher frequency regions (far in-
frared, mid-infrared, etc.). First, when the free space wavelength of the EM radiation is com-
parable to the sample size, serious and often insurmountable difficulties arise due to diffraction
effects. This crossover occurs at approximately 90 GHz (= 3 cm−1) when the sample sizes are
of order a few millimetres. Second, below about 30 cm−1 the reflectivity of samples in the
superconducting state become extremely high, >99%, so that the traditional single-reflection
optical methods become problematic. Of course the reflectivity becomes even higher in the
microwave region, but here the techniques of cavity perturbation, which are equivalent to
multiple-reflection methods, more than make up for the increased sample reflectivity.

For the cuprates, where the best materials tend to be small single crystals, one is usu-
ally left with a spectral gap in the region 3–30 cm−1. In cases where high quality large-area
films can be produced with thicknesses much less than the magnetic penetration depth λ,
then one has the option of transmission experiments, using for example femtosecond time-
domain spectroscopy techniques [141]. Orenstein and co-workers [183], as well as others,
have very successfully applied these methods to thin films. However, in general one can-
not bridge the microwave/far-IR spectroscopy gap using thin films, since they almost always
have significantly different properties from bulk single crystals. For example, it is possible to
have YBa2Cu3O6+x thin films with penetration depths significantly larger than those for sin-
gle crystals (factor 2) yet show a linear temperature dependence for 
λ(T ) at low T . This is
not explainable in terms of impurity or defect scattering and one needs something analogous
to the Swiss-cheese model proposed by Nachumi et al. [135] where parts of the sample are
non-superconducting.

We note also that in principle, near-field techniques can also overcome diffraction lim-
itations. Here, one uses an “antenna”, much smaller than the free space wavelength, placed
in close proximity to the sample surface and one gauges the properties of the sample by the
effect on the antenna. The “antenna” could be a needle shaped probe [87,119] or a small hole
in a waveguide [129] or a small hole in a resonant cavity [28]. These techniques are analogous
to STM and allow high spatial resolution or, equivalently, allow the use of smaller samples
for a given microwave frequency. Calibration and other issues tend to prevent these methods
from becoming general spectroscopic techniques, but they are nevertheless extremely useful
in special cases.

Classical optical reflection techniques measure the power reflectivity over a very wide
range of frequencies, and then use various Kramers–Kronig transforms of the data to extract
the desired properties, such as the real and imaginary parts of the conductivity tensor. For âb-
plane properties of single crystals one typically measures the reflectivity of the natural growth
face of the platelet-like crystals, along with gold or lead films evaporated in situ on the crystal
as a reference reflectivity [12, 80, 81]. Here the requirement is a flat face, with dimensions
substantially larger than the longest wavelengths of interest. One can also measure ĉ-axis
properties in the case that the c-dimension is large enough. For microwave techniques, where
the microwave wavelength is much larger than the crystal dimensions, the experimental issues
are very different. For good conductors and superconductors, one generally places the crystal
in regions where the applied electric fields are as small as possible and the applied ac magnetic
field as uniform as possible.1 Here the issues are (1) what are the actual fields at the surface
of the crystal and (2) along what crystal directions do the induced currents flow? In this case
the detailed shape of the crystal and its orientation with respect to the applied B field have
to be taken into account. In these circumstances one should in principle work with ellipsoidal

1 There are some situations where it is preferable to place the sample in the electric field region. For 1D conductors
this is the only option. See Maeda et al. [127] and Peligrad et al. [156].
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shaped samples in order to have reasonably well-controlled demagnetizing effects, but this is
difficult to do with the cuprates and is rarely done. Instead one tends to use limiting forms of
ellipsoids in low demagnetizing-effect geometries (such as thin platelets with the face parallel
to B) or one tries to correct for non-ellipsoidal shapes [161]. Some of the issues will be
discussed in more detail later, but suffice it to say that great care has to be taken to avoid errors.

4.3.1. Penetration Depth Techniques—Single Crystals

Single crystals, thin films, and powders all have their place in the quest to understand
the cuprates. While properties of the best single crystals still seem to be the closest to intrinsic,
such samples are often only available as small platelets. In addition, crystals are grown close
to equilibrium conditions where certain doping regimes cannot be reached, and thin films
or powders are necessary. Thin films are also central to many applications, so that direct
measurements of their properties are essential. The measurement methods are conveniently
classified according to the form of the samples.

Excluded Volume Techniques

In this method, one places the crystal in a small magnetic field and measures the
“effective” volume of the crystal. This can be carried out all the way from DC (using SQUID
magnetometry), to audio frequencies (AC susceptometry) to rf and microwaves (cavity per-
turbation). In the situation where the demagnetizing effects are negligible (i.e. the fields at the
surface of the sample are almost everywhere equal to the applied field), the effective volume is
just the geometrical volume of the crystal minus the volume penetrated by the magnetic field.
As an example, for a thin platelet with the field applied parallel to the broad face, the effective
volume is approximately ab(c − 2λ) where ab is the area of the flat face and c is the thin
dimension. Since single crystals typically have c > 20 µm and λ is of order 100 nm, in order
to extract the absolute value of λ to within 10% from a measurement of the effective volume,
one would have to know the thickness of the crystal to better than 1/1,000. In addition there
are demagnetizing corrections and calibration factors that have to be accurately determined.
A direct attack in this direction is essentially impractical given the small and not perfectly
regular shaped crystals one is dealing with. Therefore one generally has to be content with
a measurement of the temperature dependence of λ: 
λ = λ(T ) − λ(T0) where T0 is some
reference temperature (usually the base temperature of the apparatus). To do this, one needs to
be able to change the temperature of the sample without affecting the calibration factors of the
apparatus and at the same time avoiding (or correcting for) effects of sample holder materials
that have temperature dependent magnetic properties. One arrangement that works extremely
well is the use of a sapphire hot finger in vacuum, pioneered by Sridhar and Kennedy [184]
and by Rubin et al. [168] and widely used. High purity sapphire has a very small magnetic
susceptibility, is an excellent thermal conductor, and has very low microwave loss even up to
mm wave frequencies.

We note here a very clever refinement of the excluded volume technique devised by
Prozorov et al. [162], where the sample is coated with a thin film of a low Tc superconductor
such as aluminium. The low Tc film excludes the magnetic flux until its Tc is reached, where-
upon the film becomes transparent at the 10 MHz measurement frequency. To within an error
of order ±15 nm, determined by the accuracy to which λ and the film thickness are known,
one can extract λ (T ∼ 0) for small crystals. The method requires good quality Al films and
is not immune to the usual demagnetizing problems for 
B ‖ ĉ or ĉ-axis contamination for

B ‖ âb-plane.
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For excluded volume techniques applied to high temperature superconductors, one has
to be extremely careful to ensure that thermal expansion of the sample is not affecting the
measurements. The issue is addressed in [42, 197] and is described in some detail in Hardy
et al. [65]. Trunin [193], also treats this problem, along with other important issues. As an
example, using the thermal expansion data of Kraut et al. [109] one can show that for a crystal
with c = 100 µm, measured in the geometry of the preceding paragraph, errors of order 30%
in 
λ can arise in optimally doped YBa2Cu3O6+x at ∼70K. The effects become proportion-
ally larger for thicker crystals; for very thin crystals, the effects are smaller and corrections
have adequate accuracy.

Now consider the situation where the magnetic field is applied parallel to the ĉ-axis
(perpendicular to the broad face) a geometry used when one wants to restrict the currents to
the ab plane. In this geometry there are large demagnetizing effects, and the fields at the edge
of the sample can be one or two orders of magnitude larger than the applied field. If we ap-
proximate the usual square or rectangular ab plane shape by a circle, then one has a geometry
that has been studied extensively in the literature (see Brandt [22] and references therein).
There are no analytical solutions, and for the case where λ � c � 2a the numerical solutions
are also not available. Prozorov et al. [161] have proposed approximate solutions that appear
to be useful for not too thin crystals. Nefyodov et al. treat the b � a > c geometry (long slab)
in detail and suggest corrections for finite b [137]. There are two issues that arise (1) what
is the relationship between the physical dimensions of the crystal and the measured effective
volume (which, due to demagnetizing effects, is much larger than the physical volume of the
crystal) and (2) what are the thermal expansion effects. It is easy to see that thermal expansion
effects are likely to dominate for this geometry, and given the lack of accurate solutions for
the effective volume, it is generally not possible to correct for thermal effects. An exception
is the Al marker film technique of Prozorov et al. [161] described above.

A number of groups [78, 130, 175, 186] have extracted values of λ(T ) from microwave
cavity perturbation methods by assuming that in the normal metal, the real and imaginary
parts of the surface impedance are equal; this is valid for σ1 � σ2, which is the case when
the quasiparticle scattering rate is much greater that the observing microwave frequency. The
method works as follows: the change in resonant frequency of the measurement cavity as one
varies the sample temperature from T = 0 to T > Tc is, to within a calibration constant, given
by δ(T )−2λ(0) where δ(T ) is the sample skin depth. To within the same calibration constant,
the change in width of the cavity response (change in 1/Q of the cavity), gives δ(T ) directly
(this assumes that in the superconducting state the sample losses are negligible in compari-
son). Comparing the two results gives λ(0). The weak point in the scheme is that one must
neglect or correct for thermal expansion contributions to the frequency shift. For the 
Brf ⊥ c
geometry, the expansion effects are relatively small for very thin crystals, but then one has
to contend with contributions from λc or δc to the frequency shifts (ĉ-axis contributions). On
the other hand, for the 
Brf ‖ c geometry where currents flow only in the ab plane, thermal
expansion effects will dominate the shifts. In either case, the method has to be applied with
extreme care [65]. A further cautionary note: Kusko et al. [112] have found that Rs 	= Xs for
T > Tc in some underdoped samples, a condition that violates the basic assumption of the
method.

Far Infrared Reflectivity: |R|eiθ

If one can measure |R(ω)|2 ≡ power reflectivity over a wide enough frequency range
that one can perform a Kramers–Kronig on |R(ω)| to obtain θ(ω), the Fresnel formula will
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yield σ1 and σ2. The superfluid contributes a δ-function in σ1(ω, T ) at ω = 0 and a component
to σ2 = (µ0ωλ

2)−1 = nse2/m∗ω. If at low frequencies there is a region of frequencies
where the quantity (µoωσ2)

−1/2 tends to a constant, then it is reasonable to assume one is
dealing with a σ1(ω) concentrated near ω = 0. However, as discussed previously, the value
of λ obtained may not be the London penetration depth λL if there are contributions from
σ1(ω) other than the superfluid δ-function. The method has the advantage that it gives absolute
values for λ, and by changing the polarization and the faces one can measure λa , λb and λc
independently.

Another approach is to look for the plasmon associated with the superfluid by which
1/|ε(ω)| peaks at the plasma frequency Ωp = (Ne2/ε0m∗)1/2. Again, any narrow Drude
component in σ1(ω) will be included in Ωp. The method is particularly useful when, by using
grazing incidence with respect to the ab plane, one can pick up the ĉ-axis plasmon [97] in
highly anisotropic materials where other methods to measure λc may be impractical.

Measurement of Internal Field Distribution in Mixed State

In Type II superconductors, with an applied magnetic field H > Hc1 and weak pinning,
a regular lattice of vortices with density B/Φ0 is formed. Away from an isolated vortex the
magnetic field falls to zero with scale length λL. For H � Hc1 the density of vortices is high
enough that the internal field B is relatively uniform, however, ∆B2 is set by 1/λ2 to within
a constant. More generally, the detailed field distribution contains considerable information
beyond the value of λ.

Muon Spin Rotation (µSR) has been applied with great success to the cuprate supercon-
ductors, in many cases giving the first values of λL. The 100% spin-polarized positive muons
are implanted one at a time into the sample, where they quickly thermalize and take up a pre-
ferred interstitial position in the crystalline lattice. The muons decay with an average lifetime
of 2.2 µs with the emission of an energetic positron, emitted preferentially along the direction
of the muon spin. Using a start counter and positional β+ counters, a histogram can be built up
which contains information on the precession of the muon spin. Something closely analogous
to the “free induction decay” in NMR is so obtained, with a corresponding Fourier transform
that gives the distribution of magnetic fields within the sample.

This method has the advantages that it is a bulk measurement (implant distance typically
a few hundred microns), it gives absolute values for λ(T ) and, perhaps most importantly,
it contains additional information. As an example, the shape of the high field part of the
distribution is sensitive to the details of the vortex core and µSR is one of the very few methods
that can measure the coherence length ξ .

It has the disadvantage that rather large (∼0.5 cm2), thick (∼0.3 mm) samples are re-
quired and further, it is difficult to measure λa , λb separately, or to measure λc at all. On the
other hand the method works with ceramics or powders, although it is now clear that some
early measurements on unaligned powders gave misleading results. For example, in 1987
Harshman et al. [68] obtained a temperature dependence of 1/λ2 in a YBa2Cu3O6+x ceramic
that was very flat at low temperatures. This was interpreted as evidence for s-wave supercon-
ductivity. More recent µSR results on single crystal YBa2Cu3O6+x now agree quite well with,
for example, microwave methods. With further refinements, the µSR method can now be used
to measure the field dependence of quantities such as λ and ξ [181].

In principle NMR can give more or less equivalent information to that from µSR. Un-
fortunately, the non-spin 1/2 species in the cuprates have NMR linewidths that are much
too broad for this purpose, and the spin-1/2 species, such as Y, give signals that are generally
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very weak. The technique of β-NMR where nuclear spin-polarized radioactive species are im-
planted is showing great promise [60], and intense radioactive beams are becoming routinely
available. This technique will allow smaller and thinner samples to be used.

Zero-Field Gadolinium ESR

This novel method is based on the zero-field electron spin resonance (ESR) of small
amounts of Gd substituted for Y in YBa2Cu3O6+x (Pereg-Barnea et al. [157]). Using the
broadband bolometric microwave technique developed by Turner et al. [201], it was possible
to measure χ ′′(ω) for the three zero-field transitions of the S = 7/2 3+Gd ion. The integrated
absorption strengths are directly proportional to the number of spins exposed to B1(t), which
in turn is controlled by λ. The method can yield λ(T = 0) for a, b, and c.

4.3.2. Penetration Depth Techniques—Thin Films

Excluded volume techniques are very difficult to apply to films whose lateral dimen-
sions are of order of millimetres but whose thickness is of order 1,000 Å. Here, large demag-
netizing effects become unavoidable and are not usually under control. Even when the field
is applied parallel to the film, a small misorientation of the film, or inhomogeneities in the
applied field will strongly distort the applied field.

Low Frequency Mutual Inductance Techniques

This technique works extremely well for films that are thin enough. It has been used by
several groups [199, 200] usually in a configuration with the primary and secondary coils on
opposite sides of the film. The film starts to screen the applied ac field when t = λ·λ/R where
R = radius of coil and t is the thickness of the film. Thus, substantial screening can occur
for films that are much thinner than the penetration depth λ. Very roughly, Hsec/Hprim =
(1 + Rt/λ2)−1, so that for R = 0.5 cm, t = λ � 150 nm, the film attenuates the drive field by
a factor of 40, 000. It is essential to reduce unwanted direct pickup, and films with diameters
as large as 4′′ have been used to solve this problem [51]. Because of the large attenuation,
one must avoid macroscopic defects in the films. The method is restricted to probing in-plane
currents and in its conventional form does not allow separation of λa and λb (typically, the
films are micro-twinned). This method has the strong advantage of yielding absolute values
of λ with fairly good precision.

Thin Film Resonator Techniques

Here the thin film is itself part of a resonant circuit. For the parallel plate method,
one measures the transverse electromagnetic (TEM) resonance(s) of a face-to-face pair of
films separated by a thin dielectric. This technique was pioneered by Taber et al. [189], and
used by Anlage et al. [6], Ma et al. [126] and others. The fundamental mode corresponds to
the lateral dimension being equal to a half wavelength in the dielectric medium. Very high
resolution is possible, but the method does not normally yield absolute values for λ; thermal
expansion effects may also be important. More generally, any microstrip resonator can be
used to measure 
λ(T ). A variant developed by Andreone et al. [5] which avoids patterning
of the film of interest uses a microstrip ring (YBa2Cu3 O6+x ) with the film of interest (NCCO)
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as the ground plane. While these methods do not generally give absolute values of λ(0), by
fabricating coplanar waveguide resonators of different geometries out of a single thin film,
Valenzuela et al. [207] were able to extract λ(0) by comparing frequency shift data for the
resonators. An accuracy of ± 30 nm was achieved.

Millimetre Wave Transmission

This technique is related to the mutual inductance technique, but can yield considerably
more information such as Rs, the frequency dependence of λ, etc. Here too the transmitted
signal is strongly attenuated by the films: the fields being reduced by the factor λEMt/2πλ2,
where here the free space wavelength of the radiation takes the place of the coil dimension and
we have assumed that t � λ. The reduction can be very large at low temperatures, and leakage
around the film can be difficult to suppress. Also, the dielectric properties of the substrate
have to be measured separately. Phase coherent detection permits direct measurement of σ1
and σ2 and has been used by Dähne et al. [38] and others. In a non-phase coherent setup, de
Vaulchier [40] used light pipe optics with the film electrically sealed to an aperture to obtain
λ(T ) at fixed mm wave frequencies. Feenstra et al. [46] used the frequency dependance of
the transmission of a focussed mm wave beam to account for substrate effects and also to
obtain λ(T ).

Time domain terahertz spectroscopy was first applied by Nuss et al. to superconducting
films [141] and was then taken up by other groups [25, 29, 50, 212]. It expands the available
frequency range to 1,000 GHz or more, and also greatly increases the available power level
for probing non-linear effects. The work of Orenstein’s group on the electrodynamics of the
vortex state [152, 183] and on quasiparticle lifetimes [36, 144], is a striking example of how
powerful the method can be.

Far-Infrared Reflection

This works best for films that are thick enough that reflections from the second surface
can be neglected. With films, one can also work at grazing incidence where the reflectivity is
sensitive to properties in the direction perpendicular to the substrate (usually but not always,
the ĉ-axis). Thus one can detect the ĉ-axis plasmon (1/|ε| → ∞) and so measure ns/m∗ for
the ĉ-direction.

Slow Muon Beam Method

With the development of very slow muon beams, groups at Paul Scherrer Institute have
succeeded in directly measuring the penetration of weak magnetic fields into a superconductor
by varying the muon energy and thus the average muon penetration. For example, the method
has had spectacular success in measuring isotopic effects in λ(0), with stated accuracies of
1%. At present the method requires sample areas of order several cm2 , which rules out its use
for small crystal platelets [95, 96].

4.3.3. Penetration Depth Techniques—Powders

Although powders are not the ideal form for precision measurement of the electro-
dynamics of the cuprates, there are situations where grain-aligned powders are particularly
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useful. One is where good quality single crystals or thin films are not available; the second
is where one wants to study the effect of impurities over a wide range of concentrations. In
this latter case, controlling the impurity concentrations is achieved more easily in powder
samples.

Panagopoulos and coworkers have made extensive use of grain aligned powders. A par-
ticularly good example is their work on HgBa2Ca2Cu3O8+δ [149]. The grains were aligned
by suspending them in epoxy cured in a 7 T magnetic field; the resulting angular distribution
of the ĉ-axis was 1.7◦ FWHM. The penetration depth was extracted from the temperature
dependent magnetization measured in a weak (1–10 G) probe field (DC SQUID or AC sus-
ceptometer). For this excluded volume technique, thermal expansion effects are negligible
because the grains are small. The magnetization is related to the penetration depth via Lon-
don’s model [173], which requires knowledge of the grain size distribution and the assumption
of spherical grains.

4.4. Measurement of Surface Resistance Rs

Here again the methods are conveniently classed according to the type of sample, small
single crystals or thin films. We do not consider powders or ceramic samples since the mea-
sured Rs will be far from the intrinsic values.

4.4.1. Single Crystals

Cavity Perturbation

For small single crystals almost all of the methods amount to some form of cavity per-
turbation, shown schematically in Figure 4.6. Here a small conducting sample is placed in
a microwave resonant cavity. For a good conductor one is usually in the extreme skin ef-
fect region, where the screening currents in the sample flow with a depth that is smaller
than any dimension or radius of curvature of the sample. Except for extreme anisotropy, we

RFin RFout

Figure 4.6. Ellipsoidal metallic or superconducting sample in a resonant cavity.
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need only consider currents parallel to the surface. Now imagine that the conductivity of the
sample is infinite so that the penetration depth is zero and there is no loss. A transmission
curve yields the resonant frequency of the cavity (slightly perturbed by the presence of the
sample), and its quality factor Q0. We express this result as a complex frequency ω̃0 where
eiω̃0t = eiω0t e−(ω0/2Q)t is the free solution for the cavity mode, so that ω̃0 = ω0(1 + i/2Q).
Now we set σ to its actual finite value and remeasure the complex mode frequency. Within
the surface impedance approximation it can be shown that

δω̃ = ω̃ − ω̃0 ∝ i
∫

sample
Zs J 2

s ds, (4.11)

where Js is the surface current density (A/m), which is assumed to be unchanged from the
σ = ∞ value i.e. the EM fields at the surface are unchanged. Thus

δω

ω0
= ω − ω0

ω0
= −K Xs (4.12)

and
δ(1/Q) = 1/Q − 1/Q0 = 2K Rs. (4.13)

All of this requires that δω/ω � 1. The constant K is set by the geometry of the cavity and
sample; in simple geometries K can be calculated. More commonly, K is determined by using
a sample of similar shape with known properties.

The key problem with the method is that both δω/ω0 and δ(1/Q) are referenced to the
zero-skin-depth (σ1 = ∞) case, which is not accessible experimentally, and this places limi-
tations on the information that can be extracted. For Rs, this may not be a severe restriction,
if either Rs drops to a very low value at low T , or the sample can be moved. However, for
δω/ω0, neither the T = 0 limit or movement of the sample gets around the fact that there is a
zero order shift in the cavity frequency set by the size and shape of the sample. For single crys-
tals, one almost always uses the hot finger technique referred to earlier [168, 184], where the
sample temperature can be varied independently, or nearly independently, of all other parts of
the apparatus. In addition, the hot finger assembly may, or may not, be moveable. We consider
the two situations in turn.

If the sample position is moveable, then the unperturbed cavity Q can be determined
and, in principle, Rs(T ) obtained directly. The only caveat is that the presence of the sample
slightly changes the current distribution in the cavity walls and therefore Q. The size of such
second-order effects can be estimated using, for example, samples of a superconductor such as
Pb with lower loss. As already discussed in “Excluded Volume Techniques” in Section 4.3.1,
because of thermal expansion effects and calibration inaccuracies, one cannot use the value
of the T ∼ 0 frequency shift to obtain λ(T0).

In the case where the sample position is fixed, one can only obtain values of 
λ(T )
and ∆Rs(T ) = Rs(T )− Rs(T0). Usually this gives more accurate values of 
λ(T ), since the
reproducibility of the sample position is not an issue, although one still has to ensure that the
sample does not move as the temperature of the hot finger is changed.

In the case that Zs is anisotropic, as it is for the high temperature superconductors, the
appropriate integral of Zs × J 2

s has to be carried out. For simple geometries this is readily
done, and by making measurements with different sample orientations with respect to the
cavity fields one can often separate out the various components of Zs. Another possible com-
plication is that the sample may not be in the simple surface impedance regime, for example
in the normal state when the skin depth δ may be larger than one of the sample dimensions.
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In this case more detailed solutions of Maxwell’s equations are required, which are specific
to particular situations and are beyond the scope of the present discussion (see, for example,
Hardy et al. [64], Ning et al. [139], Gough et al. [57]).

We close this section by noting that time domain measurements of Q are generally
more accurate than frequency domain transmission techniques. Here one applies a short pulse
of microwaves at the cavity resonance and measures the exponential ring-down of the power
emitted by the cavity. The advantage of this procedure is that any instability in the cavity
frequency, caused for example by small motions of the hot finger, does not affect the enve-
lope of the free decay. The UBC group has implemented this method for most of its cavity
perturbation measurements, finding improvements by more than an order of magnitude [94].

Broadband Bolometric Spectroscopy

Recently, Turner et al. [201] have developed a bolometric technique that dispenses with
resonant cavities and measures directly the power absorbed by the sample, namely

Pabs = Rs

∫

H2
rfdS. (4.14)

Here the sample is placed near the end of a shorted transmission line, allowing Rs to be
measured as a continuous function of frequency. The key to the success of the method is the
in situ use of a normal metal reference sample that calibrates the absolute rf field strength. So
far, the method has been implemented for the frequency region 0.1–20 GHz and temperature
regime from about 1 to 10 K.

Thin Film Methods

The microwave techniques available for thin films have been reviewed by Klein [101]
and fall into roughly four categories: resonator endplate replacement, dielectrically loaded
resonator, planar resonator, and quasioptical free space resonator or transmission.

In the endplate replacement technique [41, 103], the high Tc sample forms one end-
plate of a cylindrical cavity operating in a TE0np mode. This class of mode is chosen so that,
by symmetry, no current is required to flow between the sample film and the body of the
resonator. In the dielectric resonator technique, a dielectric cylinder (e.g. sapphire) is sand-
wiched between either two high Tc thin films (symmetric resonator [123]) or is placed on top
of a single film (asymmetric version [102]). In the first version, the dielectric cylinder is cho-
sen to have a diameter much less than that of the film, so that the evanescent fields are largely
confined by the high Tc material itself. If the loss in the dielectric is small, a direct measure
of the surface resistance of unpatterned films is obtained. The asymmetric version requires a
shielding cavity; nevertheless, very low values of Rs can be measured [102].

For patterned films, one uses the stripline, microstrip, or coplanar transmission line
resonator, geometries used for practical microwave devices. In the microstrip and stripline
cases, one or two groundplanes are required, respectively, and their losses must be accounted
for. The coplanar geometry [159] has the advantage that the ground planes are not an essential
part of the transmission line, can be placed well away from the fields, and therefore can be
made of normal material. The latter method seems capable of providing absolute values of
λ(T ) as well as accurate values of Rs(T ). It should be noted that in general all of the patterned
transmission line resonators have large currents at the patterned edges and are therefore rather
sensitive to damage produced by the patterning process.
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Free space methods where, for example, the high Tc thin film is part of a semi-confocal
Fabry–Perot resonator [91, 131] are well suited to measurements of Rs at high frequencies
(100 GHz range), and scanning versions have been particularly useful for measurement of
large area thin films. [79]. Dähne et al. [38] used a quasioptical Mach–Zehnder interferometer
to obtain both σ1 and σ2 in the range 100–350 GHz.

4.5. Penetration Depth

There exists a large body of data on the magnetic penetration depth, obtained by a
wide variety of techniques and covering the dependence on cuprate families, crystallographic
directions, and especially the doping systematics (see for example Uemura et al. [203, 204],
Panagopoulos et al. [151], Tallon et al. [192], and references within). A comprehensive review
of this data would take us too far afield from our focus on microwave properties, and in any
case would be much too lengthy. We have chosen to concentrate on results that are of fairly
direct relevance to microwave measurements, or results where microwave measurements have
shed light on important issues. In addition, personal views of what is well established and what
needs further work will be included.

4.5.1. Complementary Roles of λ and Rs

Before beginning the presentation of published results for high temperature supercon-
ductors, it is useful to clarify the complementary roles played by measurements of λ and of Rs.
In the linear response regime, the real and imaginary conductivities, σ1(ω, T ) and σ2(ω, T ),
are related by Kramers–Kronig transforms, so in principle it is only necessary to measure one
of the quantities, for example σ1(ω, T ). As a practical matter, for ω in the microwave region,
σ1 is almost never known over a wide enough frequency range to carry out meaningful KK
transforms. Typically, measurements of λ(T ) gives us the delta-function in σ1 at ω = 0, and
we may have a few values of Rs from which we can extract σ1 at the same few frequencies.
This is very different from the situation in the Far IR and higher frequencies where data can
be taken with as fine a frequency grid as desired and up to very high frequencies. It is helpful,
therefore, that a restricted spectral-weight sum rule likely holds for the frequencies relevant to
the microwave properties. Specifically, if ω′ extends to a few hundred wavenumbers to include
most of the Drude-like conductivity (roughly 10,000 GHz), then

∫ ω′

0
σ1(ω, T ) dω ≈ const. (4.15)

As one cools below Tc, two things happen: the approximate Drude-like σ1(ω, T ) nar-
rows as the inelastic scattering weakens, and at the same time some of the spectral weight
appears as a δ-function at ω = 0 (the superfluid). The possibility also exists that there is ex-
change of spectral weight between this “Drude” region and much higher frequencies. This
spectral weight shift is controlled by the high energy physics and is therefore of fundamen-
tal importance. The establishment of the systematics is currently the subject of major efforts
by several groups [21, 134, 169]. Although at present unanimity on the details has yet to be
achieved, the shift of spectral weight is small, so that for our purposes the low frequency
restricted sum rule is a useful first approximation.

The expectation of an approximate sum rule helps us to fill in our picture of the lower-
frequency electrodynamics where we typically have incomplete information. For example it is
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becoming clear that, depending on the quality of the samples and the particular cuprate family
they belong to, a substantial portion of the “Drude” spectral weight does not condense into the
δ-function at low T . Using the sum rule, one can estimate the effect on the superfluid density
if we can measure Rs at a few strategic frequencies. Alternatively, if we know both λ(0)
and the uncondensed spectral weight then we can get an estimate of the fraction of sample
that is non-conducting or otherwise inactive. It appears that some films, for example, have
reduced superfluid density without the obvious presence of strong scatterers; establishing the
magnitude and location of the missing spectral weight is a useful tool for sorting out this
behaviour.

In a review of microwave properties, the formal significance of a measurement of λ(T )
is that (a) it gives the main part of σ2(ω, T ) that dominates the superconducting electrodynam-
ics in the microwave region and (b) it is also necessary for extracting σ1(ω). Given this key
role in the electrodynamics, together with the fact that our knowledge of σ1(ω, T ) is generally
rather incomplete, it is important to reliably establish the systematics of λ(T ).

A comprehensive review of the existing results would be much too lengthy. We concen-
trate on data that we consider to be representative of the best results available for the various
compounds, and try to cover the main issues of interest. For more details, we refer the reader
to the review by Bonn and Hardy [16].

4.5.2. YBa2Cu3O6+x

The most studied of the cuprates is the least anisotropic (which simplifies measure-
ments of the electrodynamics), and the most homogeneous electronically. On the other hand,
it is orthorhombic with highly conducting CuO chains which, while incidental to the super-
conductivity, interfere with the interpretation of the electrodynamics of the CuO2 planes, the
quantity of central interest. In order to separate chain from non-chain effects one generally
has to work with untwinned crystals.

In Figure 4.7 we show the data of Hardy et al. [64] on twinned YBa2Cu3O6.95
(Tc = 93 K). A 1 GHz superconducting cavity perturbation method was used to obtain
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ab(T ) vs. T for twinned YBa2Cu3O6.95 using microwave values for 
λab(T ) and λab(0) ≈

1400 Å from µSR measurement on similar crystals. The solid line is the weak coupling BCS s-wave prediction (Hardy
et al. [64], [65]).
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λ(T ) = λ(T ) − λ(1.3 K), and λab � 1,400 Å was taken from µSR measurements on
similar crystals. The data deviates substantially from the weak-coupling BCS s-wave result
(solid line) at both low and high temperatures. The linear dependence seen at low temper-
ature is now generally agreed to be the intrinsic behaviour of virtually all high temperature
superconductors, both for single crystals and thin films. Measurements in the region near Tc
where 1/λ2 appears to approach the temperature axis with infinite slope, indicate non-mean-
field behaviour. This latter behaviour is not universally observed for reasons that are not well
understood—see Section 4.7. for further discussion.

Virtually all early measurements on all forms of YBa2Cu3O6+x (ceramics, thin films,
single crystal) and by a variety of techniques, were interpreted in terms of a uniform sin-
gle gap or two-gap BCS ground state. For instance measurements by Klein et al. of λ(T )
in YBa2Cu3O6+x films grown on NdGaO3 and LaAlO3 showed features that suggested the
presence of two gaps, but also exhibited considerable sample dependence [101]. With im-
proved samples and measurement techniques, a consensus emerged that 1 − λ2(0)/λ2(T )
does not show activated behaviour at low T , being predominantly linear up to Tc/3, giv-
ing over to T 2 at lower temperatures, the cross-over temperature depending on the purity
and perfection of the sample [73]. For crystals grown in yttria-stabilized zirconia crucibles
the crossover is in the 1–5 K range, but small concentrations (0.3%) of Zn can raise this
to 30 K.

Using 9.6 GHz cavity perturbation, Mao et al. [130] observed 1 − λab
2 (0)/λab

2 (T )
in single crystals grown in zirconia crucibles to be linear from 4 K to more than 40 K. In
contrast, most thin film data show 1 − λ2(0)/λ2(T ) varying as T 2 over a fairly wide range
of temperatures. For example, the high resolution microstrip resonator data of Anlage and
Wu followed T 2 extremely well over the whole temperature range [8]. Lee et al. [115], using
the low temperature mutual inductance technique on laser ablated films on SrTiO3 (Tc = 88
K), saw a T 2 dependence below 25 K and generally good agreement with the single crystal
results [64] above this temperature. In later work by Ma et al. [125], 
λ(T ) of films from a
variety of sources was measured using the parallel plate resonator technique. They found that
the higher the quality of the film (higher Tc), the narrower the T 2 region and the closer the
match to the UBC single crystal data. Indeed, earlier measurements by Gao et al. [54] on high
quality (Tc = 90 K) commercial film from Conductus, had shown a linear region between 6
and 30 K.

Similar results were obtained by De Vaulchier et al. [40], who used power transmission
in the 120–500 GHz range to measure λ(T ) absolutely. For films with a relatively large value
of λ(0) (3,400 ± 200 Å; Tc = 86 K) 
λ accurately followed T2. For a much higher quality
film (λ0 = 1,570 Å; Tc = 92 K) they observed
λ(T ) ∝ T from 4 to 40 K, with
λ/
T very
close to that for the single twinned single crystal [64]. Collectively, the cited data establish
that the intrinsic low T behaviour of 
λ for optimally doped YBa2Cu3O6+x is close to linear
and the T 2 dependence observed in many films is due to defects.

Dähne et al. [38] used a quasioptical Mach–Zehnder interferometer, to study λ(T ) at
300 GHz in very high quality films (dc-sputtered on (110) NdGaO3) and compared these
results to data at 18.9 GHz measurements on the same films. Below 0.6Tc, they found λ(T )
to be much less temperature dependent at 300 GHz than at 18.9 GHz (Figure 4.8). This was
interpreted as the effect of a quasiparticle scattering rate that was lower than the 300 GHz
measuring frequency, and they extracted 1/2πτ ≈ 170 GHz below 30 K (see discussion in
Section 4.2.2 and, in particular, Figure 4.2). By contrast, in the work of de Vaulchier [40], no
frequency dependence of λ(T ) was seen up to 500 GHz, presumably due to a higher scattering
rate. We note that in the early 1990s Bonn et al. [18] inferred scattering rates in single crystals
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Figure 4.8. Data of Dähne et al. [38] which shows strong frequency dependence of λ(T ) for very clean YBCO
films.
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Figure 4.9. Low T penetration depth for YBa2(Cu1−x Znx )3O6.95 for x = 0 (nominally pure), 0.0015 and 0.003
(Bonn et al. [18], Hardy et al. [65]).

as low as 30 GHz and in recent work in very high quality samples, values as low as 3 GHz
have been reported [202].

The question remains: if the scattering rates in de Vaulchier et al.’s films were so large,
why did not they see 
λ ∝ T 2 instead of T ? In part, this may be explained by the fact that
two defects producing the same quasiparticle scattering rate need not be equally effective in
changing T to T 2 (i.e. in producing states at the fermi energy). For example, Bonn et al. [18]
and Achkir et al. [2] found that Zn impurities were much more effective in producing a change
over to the T 2 dependence than was Ni, although these impurities were about equally effec-
tive as scattering centres (Bonn et al. [18, 222]). Figure 4.9 shows the effect of x = 0.15 and
0.3% Zn on 
λ(T ) for YBa2(Cu1−x Znx )3 O6.95. The addition of 0.7% Ni had less effect than
0.15% Zn. In contrast, Ulm et al. [206] studied the behaviour of both λ(0) and the temperature
dependence of 1/λ2(T ) in films for 2–6% Ni and Zn impurities, and found Ni and Zn to have
about equal effects. They found that ns(0) decreases by a factor of 2 for each percentage of
dopant. This discrepancy is yet to be explained. We also point out that many film results show
a rather large λ(0), (i.e. low superfluid density), yet have a linear temperature dependence of
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λ down to quite low T . This also cannot be explained by simple defect scattering and seems
to suggest inhomogeneous superconductivity: the overall low superfluid density results from
parts of the sample being non- or weakly superconducting.

Numerous complementary measurements have confirmed the linear behaviour of the
penetration depth and superfluid density at temperatures well below Tc. As an example, we
show in Figure 4.10 the quality of µSR results that was achieved by the mid-1990s. The
temperature dependence of 1/λ2

ab from the work of Sonier et al. [181] on single crystals
clearly sees the linear temperature dependence (which agrees quite well with microwave mea-
surements), but in addition shows a non-negligible field dependence. In later work by Sonier
et al. [182] the explicit dependence of λ(0) on applied magnetic field was measured and com-
pared to the theory of Amin et al. [3] which included both non-linear and non-local effects in
the vortex state.

4.5.3. Penetration Depth Anisotropy in YBa2Cu3O6+x

Substantial anisotropies in the normal state electrical conductivities and thermal con-
ductivities have been observed in YBa2Cu3O6+x (see Gagnon et al. and references therein
[53]). Zhang et al. [221] were the first to measure λa(T ) and λb(T ) separately using a combi-
nation of Far IR and microwave techniques. The original microwave measurements were made
at 1 GHz with H ⊥ ĉ on a crystal thin enough that the effect of currents in the ĉ direction could
be ignored. IR measurements on the same crystal gave λa(0) = 1,600 Å and λb(0) = 1,030 Å,
a rather large anisotropy. However, this is not inconsistent with the n/m∗ anisotropy observed
in the normal state conductivities, nor the µSR results of Tallon et al. [191] for λa/λb inferred
from the dependence of µSR relaxation on oxygen content. Later, the technique was refined
to the point where λa(T ), λb(T ), and λc(T ) could be determined absolutely from 1.3 K to
Tc (see Hardy et al. [63], Bonn et al. [17]). This was accomplished by measuring 
λa(T )
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and 
λb(T ) before and after the (approximately square) crystal was cleaved into five or more
bars (Figure 4.11). For H ‖ to the long axis of the bars, the effect of λc is multiplied up by
the number of pieces. A measurement perpendicular to the bars should not be affected to first
order and serves as a control on the procedure.

Figure 4.12 shows the results of this approach, where the Far IR measurements of λi (0)
have been incorporated. Qualitatively, Figure 4.12 shows that λa(T ) and λb(T ) have rather
similar temperature dependencies, which is very strong evidence that it is not the chains that
are causing the linear low temperature dependence. The ĉ-axis behaviour is rather differ-
ent, being much flatter, with a nearly quadratic temperature dependence at low temperatures
that will be discussed in more detail in Section 4.5.6. The extent to which the results de-
pend upon measurements of λ(0) from other techniques will be discussed further in the next
section.

4.5.4. Oxygen Doping Effects

A thorough testing of models of the superconducting state of the cuprates would require
measurements of all three components of the penetration depth across as wide a range of
doping as possible. For this purpose, YBa2Cu3O7−δ is the “cleanest” material in many senses,
however, it is complicated by its strongly conducting chains and, except for δ = 0 or for
oxygen ordered phases such as Ortho-II, it has considerable disorder in the chains. Therefore
it is extremely important to see how the electrodynamics evolve with oxygen deficiency δ and
chain disorder in order to disentangle the effects of chains, planes, and defects. One reassuring
advantage of this system is that it is known that oxygen defects seem to have relatively little
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Figure 4.13. Superfluid density in the a-direction for two oxygen-ordered phases: the Ortho-I phase with nearly
full chains at YBa2Cu3O6.993 (open squares) and the Ortho-II phase with alternating full and empty chains at
YBa2Cu3O6.52 (open circles). The lines indicate the uncertainty in the absolute value stemming from uncertainty
in the measurements of λ (1.2 K).

effect on the ab plane surface resistance (Bonn et al. [19], Fuchs et al. [51]) i.e. the O defects
are weak electronic scatterers.

A serious problem standing in the way of a systematic study of the penetration depth
turns out to be the issue of accurately determining the absolute value of λ(0). It is the au-
thors’ opinion that each technique for measuring this quantity carries with it assumptions and
potential systematic errors, compounded by a significant amount of sample dependence, as
mentioned above in the discussion of thin film measurements vs. single crystal measurements.
Thus, while microwave measurements are very good at accurately determining the tempera-
ture dependence relative to some base temperature 
λ(T ) = λ(T ) − λ(T0), the conversion
of this quantity to a superfluid density or phase stiffness forces a reliance on other techniques.
Figure 4.13 illustrates the extent of this problem by showing the superfluid density in the a-
direction of YBCO at two different dopings [221]. The curves come from combining cavity
perturbation measurements of 
λ(T ) with Gd-ESR measurements of the absolute value of λa
at 1.2 K. The curves bracketing each of the two data sets indicate the serious impact of the
10% uncertainty estimated for the Gd-ESR measurements. The problem is that the 10% uncer-
tainty is more than doubled when squaring λ to get 1/λ2 and if one is interested in the slope of
the superfluid density, the uncertainty is more than tripled to ±33%. Such uncertainties must
be kept in mind when trying to draw conclusions that involve comparison from sample to
sample, or from technique to technique. In particular, a quantitative comparison between the
two dopings shown here is somewhat inconclusive due to the large relative uncertainty in the
magnitudes of the curves. Bonn et al. [17] had previously suggested that the â-axis superfluid
density scales when normalized to λ(0) and Tc and much has been made of the observation
that the slope of the superfluid density’s temperature dependence is doping independent [117].
In the face of the uncertainties shown in Figure 4.13, it is difficult to draw a strong conclusion
as to whether or not this is really the case.

Figure 4.14 shows the most recent set of results for the in-plane superfluid density of
the two best-ordered phases in the YBa2Cu3O6+x system: the Ortho-I phase with nearly
every CuO chain filled at a composition of YBa2Cu3O6.99 (slightly overdoped, Tc = 89),
and the Ortho-II phase with every other CuO chain filled at a composition of YBa2Cu3O6.52
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Figure 4.14. The anisotropic in-plane superfluid density for (a) slightly overdoped YBa2Cu3O6.99 (Tc = 89 K) and
(b) underdoped YBa2Cu3O6.52 (Tc = 59 K). Solid symbols are for currents running in the b̂-direction, open symbols
are for â-axis currents.

(underdoped, Tc = 89). As noted above, these figures make use of values for λ(1.2 K) found
using Gd-ESR and, as is the case with any technique, there is significant uncertainty in the
overall magnitude each of these curves. With this caveat in mind, there are still many con-
clusions that can be drawn from the data. There is certainly large in-plane anisotropy in both
samples due to the presence of the CuO chains. For the fully doped sample with Tc = 89 K,
the results are in accord with the calculations made by Atkinson [10], who considered a realis-
tic model for d-wave superconductivity in a bilayer material (i.e. two quasi-two-dimensional
fermi cylinders) plus proximity effect induced superconductivity on an open fermi surface
arising from quasi-one-dimensional chain band hybridized with the planes. Earlier mod-
els [11] predicted an upturn in the b̂-axis superfluid density as the proximity-induced su-
perconductivity comes into play, but Atkinson showed that this upturn might be suppressed
by the remnant chain defects (slight oxygen deficiency) in this material. A similar story might
hold true for the Ortho-II phase as well, although in that system one would also have to take
into account the folded Brilloiun zone associated with the doubling of the unit cell, something
that might help account for the very large anisotropy shown for in Figure 4.14b.
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Figure 4.15. Temperature dependence of the superfluid fraction for Bi2Sr2CaCu2O8 single crystal, assuming
λab(0) = 2,100 Å. (Lee et al. [120]).

4.5.5. Other Materials

Bi2Sr2CaCu2O8+δ

The Stanford group [126] used cleaved Bi2Sr2CaCu2O8+δ crystals in the parallel plate
method (here H ⊥ ĉ) and obtained a low temperature T 2 dependence for 1/λ2. However, they
concluded this was likely contaminated by ĉ-axis conduction due to the extreme anisotropy.
This strongly 2D behaviour also complicates measurement of λ(T ) by µSR in the vortex state
because the coherence of the vortices from layer to layer is strongly dependent on H and
T [37]. The first study of λab that showed a linear T dependence was that of Jacobs et al. [90]
obtained by microwave cavity perturbation with H ‖ ĉ, for which λ2(0)/λ2(T ) vs. T/Tc was
quite similar to the â-axis data of Zhang et al. [221]. This was followed shortly after by the
results of Lee et al. [120] which are shown in Figure 4.15. The low temperature dependence
is very linear, the overall dependence being rather similar to YBa2Cu3O6+x data, but falling
closer to the weak coupling d-wave result.

Tl2Ba2CaCu2O8

Ma et al. [125] measured 
λab(T ) for two pairs of commercial films (STI, CA) and
fitted the data to bT 2/(T + T ∗) with T ∗ = 25 and 40 K, respectively. For the first pair of
films the overall dependence of λ2(0)/λ2(T ) vs. T/Tc matched the YBa2Cu3O6+x single
crystal data [64] rather well above T ∗. The agreement for the second pair (considered inferior
quality) was less good.

Tl2Ba2CuO6+δ

λab(T ) has been measured for the tetragonal, single layer compound Tl2Ba2CuO6+δ
by Broun et al. using a 35 GHz superconducting cavity technique with H ‖ ĉ [26, 27].
The material is nearly optimally doped, with a Tc of 78 K. Below 20 K, 
λ(T ) ∝ T
with slope of 13 Å/K. This is larger than the corresponding slopes for YBa2Cu3O6+x and
Bi2Sr2CaCu2O8+δ (4.8 and 10.2 Å/K, respectively). Figure 4.16 shows λ2(0)/λ2(T ) vs. T
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Figure 4.16. Temperature dependence of the superfluid fraction for Tl2Ba2CuO6+δ [27] using λab(0) = 1,650 Å
from µSR measurements [26, 27].

with λ(0) = 1,650 Å taken from µSR measurements [205]. It varies linearly with T over al-
most the whole temperature range (i.e. very similar to weak coupling d-wave), with a sudden
downturn within a few degrees of Tc that may be due to fluctuations.

La1−xSrxCuO4

Shibauchi et al. [175] measured both 
λab(T ) and 
λc(T ) of single crystals of
La1−xSrxCuO4 for 0.09 < x < 0.19 using platelets with ĉ ⊥ and ‖ to the face. The large
demagnetization factors were determined from Pb reference samples. They obtained λab(0) =
0.4 µm and λc(0) = 5 µm (values consistent with optical and µSR measurements) by the
method described earlier. The overall T dependence of 1/λ2

ab(T ) follows weak coupling s-
wave BCS, but the resolution was insufficient to rule out a T 2 dependence at low T . 1/λ2

c(T )
is much flatter and the data was fit to a model involving Josephson coupled 2D superconduct-
ing layers (s-wave BCS).

HgBa2Ca2Cu3O8+δ
Panagopoulos et al. [149] were able to measure both λab(T ) and λc(T ) in grain aligned

HgBa2Ca2Cu3O8+δ powders. They found λab(0) and λc(0) = 2,100 and 61,000 Å, respec-
tively, and a temperature dependence of 1/λ2

ab(T ) that fitted rather well to a d-wave model
with 
(0)/kTc = 2.14 (Figure 4.17). On the other hand 1/λ2

c(T ) followed the behaviour of
a Josephson coupled d-wave superconductor [114]. Overall the results again look remarkably
similar to the YBa2Cu3O6+x data.

Electron Doped Thin Films and Single Crystals

The general expectation of theories based on Hubbard-like models is that the pairing
mechanism and ground state symmetry should be the same for both hole- and electron-doped
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samples. It is now well established that the hole-doped cuprates have d-wave symmetry. The
answer regarding the symmetry of the electron-doped cuprates has been slower in coming,
although d-wave symmetry is favoured by the preponderance of recent data.

Early measurements of 
λab(T ) in Nd2−x Cex CuO4−δ by Wu et al. [214], Anlage
et al. [8], and Andreone et al. [5] exhibited no regions that follow T or T 2, and convinc-
ing fits to BCS s-wave were made. Cooper [34] subsequently pointed out that the results were
contaminated by the paramagnetism of the rare-earth ions present in these materials. Subse-
quently, Kokales et al. [106] reported T 2 power law behaviour for 
λab(T ) in single crystals
and thin films of Pr1.85Ce0.15CuO4−δ , where the paramagnetism is much reduced. They also
studied an Nd2−x Cex CuO4−δ single crystal in an improved microwave geometry to reduce
the paramagnetic contamination. Here, above 4 K, a power law region was also observed. At
the same time, Prozorov et al. [160] convincingly showed that Pr1.85Ce0.15CuO4−δ gave a T 2

power law dependence down to 0.4 K; they were also able to quantitatively assess the inter-
fering effect of the Nd magnetism in Nd2−x Cex CuO4−δ . More recently, Snezhko et al. [180]
obtained power law dependencies for Pr1.85Ce0.15CuO4−δ films with x=0.13, 0.15, and 0.17,
the optimally doped sample (x = 0.15, Tc = 20.5 K) giving the first indication of a linear
regime at higher temperature. Given that half-integral flux indicative of d-wave pairing has
been reported in tri-crystal experiments with both Nd2−x Cex CuO4−δ and Pr1.85Ce0.15CuO4−δ
thin films [198], the case for a d-wave ground state appears to be very strong. Recently how-
ever, results obtained by the Ohio state group on electron-doped MBE films suggest a cross-
over from a d-wave to an s-wave state as the doping falls below optimal [178]. In separate
work they found gap-like behaviour with ∆/Tc that was reproduceable over a series of five
optimally doped Pr1.85Ce0.15CuO4−δ films [179]. In later work on Pr1.85Ce0.15CuO4−δ films
on buffered SrTiO3 substrates where the measurements were taken to lower temperatures
(0.5 K), they found a full gap with ∆/Tc = 0.3–1.0 for all dopings [98]. In samples for which
a gap is claimed, all the values of ∆/Tc are small, suggesting non-intrinsic properties. How-
ever, given the quality of the samples and the low temperatures reached, it seems difficult to
come up with a convincing scenario for why this particular experiment does not fit the d-wave
scenario.
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Figure 4.18. Superfluid density in the c-direction for the Ortho-I phase with nearly full chains at the composition
YBa2Cu3O6.993 [83].

4.5.6. ĉ -Axis Penetration Depth

The ĉ-axis results in all of the cuprate families contrast sharply with those found for
the in-plane superfluid density. Although there have been reports of linear temperature de-
pendence in the low temperature behaviour of the ĉ-axis penetration depth (Mao et al. [130],
Nefyodov et al. [137]), these have most likely been artefacts due to the difficulties in separat-
ing in-plane and out-of-plane contributions. For instance, Mao et al. [130] found λ2

c(0)/λ
2
c(T )

dropping much faster (factor 3 or more) than λ2
ab(0)/λ

2
ab(T ), but the use of data from geome-

tries with Hrf ⊥ ĉ and Hrf ‖ ĉ without adequate control over thermal and demagnetizing
effects in a thin plate-like sample, likely produced this anomalous behaviour. The alternative
technique of cleaving a thin plate, as illustrated in Figure 4.11 has now been complemented
by a number of other geometries. In the YBa2Cu3O6+x system, Hosseini et al. polished a
thick crystal into a thin plate with the ĉ-axis lying in the plane of the thin plate [83]. Mea-
surement with Hrf ⊥ ĉ on such a plate is dominated by the ĉ-axis penetration depth, with a
small admixture of in-plane penetration depth. Further thinning of the crystal allows the con-
tributions to be separated. The result of this procedure is shown in Figure 4.18 and is in good
agreement with the earlier results obtained by cleaving a thin crystal. The measurements show
both 3DXY critical behaviour near Tc, discussed further in Section 4.7, and a nearly quadratic
temperature dependence at low temperatures that is ubiquitous across many cuprate families.
(See the review of Maeda et al. [127] for a particularly good discussion of ĉ-axis properties.)

The difference between the T 2 dependence for 1/λ2 in the ĉ-direction, vs. T in the âb
plane, is an interesting and important question. If the superconductor is simply anisotropic
with coherent hopping between the CuO2 planes, then the power laws have to be the same
for all directions [164]. Alternatively, if one has incoherent tunnelling, independent of the in
plane wavevector k‖, then cancellation from the sign change in the (pure tetragonal) d-wave
order parameter would completely suppress any ĉ-axis transport. Thus some dependence of
the hopping on k‖ seems to be required.

Radtke et al. [164] used an incoherent hopping model with a particular choice of inelas-
tic impurity scattering to obtain T 2 for the temperature-dependent part of 1/λ2

c . This Fermi
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liquid based approach also connects the normal state resistivity to 1/λ2
c . They point out that

the “confinement” approach to ĉ-axis coupling, where transport is impeded by some form of
spin–charge separation in the CuO2 layers (see for example, Chakravarty and Anderson [33]
and references therein) give somewhat similar results. However, in the confinement picture the
inelastic scattering is an intrinsic part of the interlayer transport, as opposed to boson-assisted
hopping in the Radtke et al. model. In fact, the requirement of impurities is a worrying feature
of this latter model : 1/λ2

c should be a strong function of sample perfection. We do not believe
this is to be a generic feature of the cuprates, at least for YBCO. Hirschfeld et al. [74] included
both elastic impurity and inelastic spin-fluctuation scattering and obtained 
λc(T ) ∝ T 3 at
low T in the clean limit, crossing over to a T 2 dependence when the system becomes suffi-
ciently dirty. Xiang and Wheatley [217, 218] (see also Xiang et al. [216]) made an important
advance by incorporating the intrinsic k‖ dependence of the interlayer hopping integral ε⊥. For
tetragonal symmetry, LDA band structure calculations show that ε⊥ ∝ (cos kx a − cos kya)2.
This is an intrinsic property of tetragonal high temperature superconductors and the fact that
ε⊥ vanishes at the position of the d-wave nodes has a profound effect on the ĉ-axis transport.
In fact in the clean limit, 1/λ2

c ∝ T 5. One power of T comes from the d-wave DOS and the
other T 4 is from a (cos kx a − cos kya)4 factor in ε2⊥(k‖) which varies as E4 at low E . The
T 5 dependence, the observation of which would give convincing support for the theory of
Xiang and Wheatley, has only been seen in the tetragonal compound HgBa2CuO4+δ [150],
and needs to be confirmed.

For compounds with orthorhombic symmetry, there is no requirement for the hopping
integral to vanish, and in any case the node in the d-wave gap need not coincide with the
minimum in ε⊥. Other T dependencies can then result. We believe that more attention needs
to be paid to the issue of whether the strong k‖ dependence of the hopping is an essential part
of the ĉ-axis electrodynamics or not. Much of the theoretical work completely ignores this
special property of the cuprates.

Most recently, the geometry with Hrf ⊥ ĉ has been used for a sample doped to an oxy-
gen content where oxygen ordering at room temperature can be used to tune the hole doping
of a single sample [84]. The advantage of this doping technique, peculiar to YBa2Cu3O6+x , is
that the doping can be tuned in a single sample, allowing one to avoid systematic errors associ-
ated with comparing measurements on samples with different dimensions. Figure 4.19 shows
the ĉ-axis superfluid density of a very underdoped sample, close to where Tc falls to zero,
with different Tcs corresponding to slight differences in oxygen content and oxygen order-
ing. As with ĉ-axis measurements on YBa2Cu3O6+x and other cuprates, the low temperature
behaviour is not linear, but closer to a quadratic or even slightly higher power of T .

Sheehy and Franz [174] proposed a unified theory of the âb-plane and ĉ-axis penetration
depth based on a d-wave BCS model augmented by a phenomenological charge renormaliza-
tion factor, suggested by Ioffe and Millis [89], that is close to unity near the nodes up to a
cut-off energy Ec, but vanishingly small at higher energies. Sheehy and Franz are able to fit
the ĉ-axis data of Hosseini et al. [84] very well, except near Tc where fluctuation effects start
to become important. The values of Ec derived from the fits are found to vary linearly with
Tc, reaching 10 meV for Tc = 20 K. A missing piece of experimental information is a direct
measure of Tc vs. the doping x for these underdoped samples. Following the work of Liang
et al. [121], where it is proposed that the ĉ-axis lattice parameter can be used as a convenient
and accurate measure of x , the relationship between Tc and x at very low doping should be
experimentally accessible.
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Figure 4.19. Superfluid density in the c-direction for an underdoped sample near Y Ba2Cu3 O6.35 with progressive
alteration of the doping through small changes in oxygen content and oxygen ordering [84].

4.6. Surface Resistance

Surface resistance measurements provide information on low frequency energy dis-
sipation, something complementary to the information on the superfluid that comes from
penetration depth measurements (surface reactance). Dissipation at finite frequency in super-
conductors can come from a number of different sources: direct excitation of quasiparticles,
absorption by thermally excited quasiparticles, the effects of grain boundaries, sample inho-
mogeneity, and other extrinsic loss mechanisms can all come into play and must be disentan-
gled from one another. All of these sources of dissipation involve defects—even the intrinsic
dissipation associated with quasiparticle excitations must invoke scattering mechanisms if
there is to be real absorption from microwave fields. One could say that microwave conduc-
tivity is all about defects. This makes the task of understanding microwave surface resistance
a significant challenge because one is not certain a priori which defects are important in a
given sample. Added to this is the challenge that theoretical work on defects and scattering
in d-wave superconductors is an ongoing pursuit occurring in parallel with the measurements
and is still an area of active debate and calculation.

To simplify the task of studying Rs(T ) as much as possible, one must turn to measure-
ments on single crystals. There was early work on microwave loss in sintered powders [185],
but such measurements mix up the in-plane and out-of-plane properties of these anisotropic
materials and are also likely to be strongly influenced by grain boundaries. There is also a
wealth of microwave measurements on thin films, driven by the potential for microwave ap-
plications such as filters based on the low microwave dissipation that can be achieved at liquid
nitrogen temperatures. These film measurements are likely to be influenced by higher defect
density than in crystals and also have more chance of being affected by grain boundaries. In
principle, the highest quality epitaxial films could exceed the perfection of crystals, but that is
a possibility that has yet to be realized.
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Among the different members of the cuprate family, the YBa2Cu3O6+x system holds a
particularly important place because it is possible to grow crystals with relatively high purity
and very good cation stoichiometry. This is a crucial point because if one is to disentangle the
influence of different types of defects, it is important to start with a sample that has as small
a density and variety of defects as possible. The majority of the cuprates have considerable
cation disorder, either through cation doping as in the case of La2−x Srx CuO4+δ or through
natural cation cross-substitution such as the presence of Cu on the Tl sites in Tl2Ba2CuO8+δ .
The exceptions to this cation defect problem are YBa2Cu3O6+x , YBa2Cu4O8, and oxygen
doped La2CuO4+δ . Of these three, YBa2Cu4O8 is potentially the most perfect because it
has stoichiometric CuO chains as well as good cation stoichiometry. However, this system
has been relatively little studied because of the need to grow crystals under high pressure.
La2CuO4+δ has two staged phases with the extra oxygen δ ordered in the c-direction, but has
not been studied with microwave techniques. The YBa2Cu3O6+x has been the most studied
of these three systems. In addition to its potential for high purity and cation order, it has wide
range of doping available by changing the oxygen content of the CuOx chains and there are
even phases where the chain oxygens form well-ordered superstructures. The negative aspect
of this means of doping is that the chains and their coupling to the CuO2 bilayers potentially
have a complicated influence on the microwave properties.

For the reasons outlined above, the following sections will lean heavily on the extensive
measurements available on YBa2Cu3O6+x and then, where there is data available, compare
them to results on other systems.

4.6.1. YBa2Cu3O6+x âb-Plane

Historically, the field of course did not start out with the cleanest samples possible, nor
were the microwave measurement techniques fine-tuned to the properties of the cuprates. The
first round of cavity perturbation measurements of crystals did not have sufficient sensitivity
to measure the surface resistance much below Tc, but instead focussed attention on Rs(T ) near
Tc. Rubin et al. [168] and Wu et al. [213] both reported surface resistances that dropped farther
and more sharply below Tc than the early measurements on sintered samples. One noteworthy
feature of these early measurements was Rubin et al.’s observation that Rs(T ) dropped very
rapidly in the first few degrees below Tc as shown in Figure 4.20. The behaviour of Rs(T )
just below Tc in any superconductor is strongly affected by the divergence of λ(T ) as Tc is
approached from below. This loss of screening by the superfluid causes Rs(T ) ∝ ω2λ3(T )
to change very rapidly near Tc. However, the behaviour Rs(T ) in the cuprates near Tc is
further influenced by two factors not seen in conventional superconductors. One is the critical
fluctuations near Tc (discussed in Section 4.7), which lead to a faster temperature dependence
of λ(T ) near Tc than occurs in a mean-field BCS superconductor.

The other factor influencing Rs(T ) is the absence of a coherence peak in σ1(T ) below
Tc in the cuprates. In an s-wave BCS superconductor, the superconducting gap opens up below
Tc and as the density of states peaks at the gap edge develop they give rise to a peak in σ1(T )
below Tc. It is referred to as a coherence peak because the BCS coherence factors determine
which physical measurements will show evidence of the peaked density of states. However,
the coherence peak in σ1(T ) is greatly suppressed in a d-wave superconductor. Moreover, for
optimally doped and underdoped cuprates, spectroscopic measurements such as tunnelling
and photoemission indicate that the superconducting gap does not close as Tc is approached—
the transition is different from that of even a d-wave BCS superconductor. The exact behav-
iour of σ1(T ) has led to some controversy because it requires simultaneous measurements of
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Figure 4.20. The in-plane microwave surface resistance Rs of a mosaic of crystals of YBa2Cu3O6.95 measured at
5.95 GHz by Rubin et al. was found to be much lower than that of early sintered ceramics [168]. The rapid drop in
microwave power absorption is caused by the quick onset of superfluid screening in this material.

Figure 4.21. The in-plane microwave surface resistance at 2.95 GHZ of the an early generation of YBa2Cu3O6+x
crystals (left [15]) and the recent generation of high purity crystals grown in BaZrO3 (right [94]) different generations
of YBa2Cu3O6+x crystals.

Rs(T ) and Xs(T ), both of which change very rapidly with T , and because the behaviour is
highly susceptible to inhomogeneity broadening the transition. Holczer et al. [78] and Klein
et al. [104] measured Rs(T ) and Xs(T ) in YBa2Cu3O6+x and Bi2Sr2CaCu2O8+δ in order to
extract σ1(T ). They observed a peak in σ1(T ) near Tc, but it was sharper than a conventional
BCS coherence peak. In addition to the unusual sharpness of this feature, the absence of a
coherence peak in NMR measurements [62] led to the suggestion that this feature in σ1(T )
had another origin. Olson and Koch [142] and Glass and Hall [56] attributed it to a broadened
superconducting transition. As samples have improved, this feature has given way to a sharp
peak in σ1(T ) very close to Tc that can be attributed to superconducting fluctuations. Horbach
et al. [82] first pointed out that fluctuations in the conductivity, which were already apparent
in DC resistivity measurements, would give rise to a sharp peak in σ1(T ) at Tc.

The more dramatic feature to arise as sample quality improved is illustrated in the
sequence of measurements shown in Figure 4.21, beginning with the results from an early
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Figure 4.22. The â-axis microwave conductivity of a high purity YBa2Cu3O6.99 crystal shows a large, frequency
dependent peak caused by the development of long-lived quasiparticles in the superconducting state.

generation of crystals grown rapidly in gold foils. This measurement by Bonn et al. [15]
showed the first hint of a broad peak in Rs(T ), which was subsequently confirmed by mea-
surements at different frequencies and with different crystals by Shibauchi et al. [176], Zhang
et al. [222], Anlage et al. [9], Kitano et al. [100], Mao et al. [130], and Trunin et al. [196]. As
sample purity was improved, first through a shift to growth in yttria-stabilized zirconia, then to
growth in BaZrO3 crucibles, the broad peak in Rs(T ) became more prominent. Paradoxically,
as sample quality improves the microwave loss increases. Since λ(T ) has no such feature, the
peak in Rs(T ) must come from a peak in σ1(T ). As discussed in Section 4.2.2, σ1(T ) can be
extracted from measurements of Rs(T ) provided that one also has measurements of Xs(T ).
Ideally, one wants both quantities measured on the same sample at the same frequency. How-
ever, it is often sufficient to know λ(T ) and then to make a small correction to account for any
screening by the quasiparticle contribution to σ2 [67]. Figure 4.22 shows the results of such an
analysis of â-axis measurements of a high purity crystal of YBa2Cu3O6.99. The sharp spike in
σ1(T ) near 90 K is due to critical fluctuations and marks Tc for this sample. Below this, both
the temperature dependence and frequency dependence can be explained by the development
of very long quasiparticle lifetimes in the superconducting state.

The appearance of frequency dependence in σ1(ω, T ) below 60 K indicates that the
width of the conductivity spectrum has moved to microwave frequencies, more than two
orders of magnitude narrower than the conductivity spectrum in the normal state. The peak in
the temperature dependence occurs because the quasiparticle conductivity spectrum initially
narrows below Tc much faster than it loses oscillator strength as the carriers condense into
the superfluid, causing the conductivity to initially rise with decreasing temperature. Below
about 20 K the spectrum stops narrowing and the declining normal fluid oscillator strength
dominates the temperature dependence, causing it to decline with decreasing temperature.
As a crude phenomenological model, one can fit the conductivity spectra to a Drude model
with two competing temperature dependences, a normal fluid density nn(T ) that declines with
temperature and a lifetime τ(T ) that increases with decreasing temperature. Such a form was
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Figure 4.23. The evolution of the conductivity spectrum with temperature for a thin film of YBa2Cu3O6+x shows
narrowing below Tc in the THz frequency range [141].

loosely justified by Hirschfeld et al. [75, 76] who showed that within a T-matrix model for
point scattering, the conductivity spectrum of thermally excited quasiparticles in a d-wave
superconductor is given by Eq. (4.10) which has a Drude-like form. If τ(ω) were actually
frequency independent, this expression would reduce to the Drude form. The frequency-
independent lifetime of a Drude model is certainly not valid for nodal quasiparticles in a
d-wave superconductor, but a parameterization in terms of quasiparticle density and lifetime
is a useful start.

Figure 4.24 shows the scattering rate 1/τ(T ) derived from a Drude fit to the data of
Figure 4.22. This dramatic temperature dependence has been attributed to a collapse in the
inelastic scattering of quasiparticles below Tc. This picture is supported by several other
measurements sensitive to quasiparticle lifetimes. An early experimental indication of this
narrowing in σ1(ω) was seen in far infrared measurements made just below Tc by Romero
et al. [167]. Behaviour qualitatively similar to the microwave measurements was observed
first in THz measurements on thin films by Nuss et al. [141] and later by Spielman et al. [183].
Figure 4.23 shows measurements on a thin film of YBa2Cu3O6+x that have the same trend
of a peak in the spectrum σ(ω) that narrows rapidly below Tc. Measurements of the tem-
perature dependence of thermal conductivity κ(T ) below Tc also show a pronounced peak
that has been attributed to the development of long quasiparticle lifetimes [163]. There
was some controversy over this since the thermal conductivity could also exhibit a peak
if the phonon damping declines rapidly below Tc, an effect seen in neutron scattering of
phonons in conventional superconductors. However, measurements of the thermal Hall con-
ductivity [110, 111, 219] have provided a means of separating out the electronic contribu-
tion and have shown that the lifetime associated with thermal transport does indeed become
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Figure 4.24. An estimate of the transport scattering rate of quasiparticles can be extracted from Drude fits to the
â-axis microwave conductivity spectrum of a high purity YBa2Cu3O6.99 crystal. The rapid temperature dependence
is either a very high power law or even an exponential temperature dependence [67].

very long below Tc. Studies as a function of Zn-doping in YBa2Cu3O6.95 also support the
view that a rise in quasiparticle lifetime makes a major contribution to thermal conductiv-
ity [74].

There has been some work on modelling the collapse of the scattering rate below Tc in
terms of electron–phonon scattering that is strongly temperature-dependent [47, 195]. How-
ever, the large inelastic scattering rate seen in transport measurements, which is linear in
both temperature and frequency over a very wide range for optimally doped cuprates, argues
against an electron–phonon dominated transport scattering in the normal state. If it is some
form of electron–electron scattering then it is possible that the development of the supercon-
ducting gap suppresses this scattering mechanism below Tc. Hirschfeld et al. [76] attributed
the collapse of inelastic scattering to spin fluctuations gapped by the opening of a d-wave
energy gap. This and related work by Schachinger et al. [171, 172] and Rieck et al. [165]
build a model for the scattering rate that is motivated by measured normal state properties,
particularly the spin susceptibility in the normal state and the normal state DC resistivity. The
essential idea is to tie together the electron–electron interactions as the source of the high
critical temperature, the d-wave pairing state, and the anomalous transport properties. In any
such model where the transport is dominated by electron–electron, or electron-spin fluctua-
tion scattering, the scattering is suppressed as the superconducting gap develops below Tc.
Later, Walker and Smith pointed out that the damping measured in measurements of charge
transport requires Umklapp processes that scatter nodal quasiparticles [209]. The shape of
the Fermi surface and the position of the nodes in the energy gap mean that the nodal quasi-
particles must scatter from excitations far from the nodes in the gap. This in turn means that
the Umklapp processes are strongly suppressed because they involve scattering from parts of
the Fermi surface that are gapped. In support of this notion, Figure 4.24 shows a scattering
rate derived from Drude fits to σ1(ω) like those shown in Figure 4.41. Hosseini et al. [67] fit
the temperature dependence to a high power law, but the data is equally well fit by an expo-
nential as suggested by Walker and Smith. Subsequently, Duffy et al. [43] separated Umklapp
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and normal scattering in the model of scattering by spin fluctuations and were able to recon-
cile the microwave scattering rate with the different temperature dependence seen in thermal
transport [223], which is influenced by both Umklapp and normal scattering processes.

4.6.2. Disorder and Quasiparticle Damping

We have already discussed the strong influence that defects can have on the penetration
depth, and this is doubly true for the microwave surface resistance. Here, defects not only
affect the low temperature asymptotic behaviour, they also directly affect the broad peak in
σ1(T ) by limiting the rapid increase in the quasiparticle lifetime τ below Tc. The increase
in the height of the peak in Rs(T ) and σ1(T ) shown in Figure 4.21 and 4.22 is one indication
that defects control this feature. When the quasiparticle damping 1/τ(T ) drops rapidly below
Tc due to the suppression of inelastic scattering, it eventually runs into a limit controlled by
scattering from defects. In optimally doped YBa2Cu3O6+x this elastic scattering limit causes
σ1(T ) to turn down as the temperature decreases further. Decreases in the defect density as
the purity of YBa2Cu3O6+x improved made this turnaround occur at a lower temperature,
making the peak in σ1(T ) and Rs(T ) larger in size and lower in temperature [94]. The main
point is that if τ really increases by orders of magnitude below Tc, then the conductivity should
become extremely sensitive to low levels of point defects. The first hint of this was an early
thin film study by Lippert et al. [122] where a sample was found to have a somewhat lower
microwave loss after irradiation with oxygen ions.

Studying single crystals, which start from a point of relatively low defect density, pro-
vides a more systematic means of testing impurity effects. The 100-fold or more increase
in τ below Tc suggests a mean free path for the charge carriers in the âb-plane that is on
the surprising scale of hundreds of nanometres for high purity crystals of YBa2Cu3O7−δ . It
should only take impurity concentrations on the order of a few tenths of a percent to sub-
stantially affect this mean free path. For YBa2Cu3O7−δ two of the most studied impurities
are Ni and Zn, since they both can substitute for Cu on the CuO2 planes [23, 24, 128], but
offer the contrast that Ni is magnetic, but Zn is not. Figure 4.25 shows Rs(T ) for a sample of
YBa2Cu3O6.95 grown in yttria-stabilized zirconia (99.9% pure) and for a crystal with 0.75%
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Figure 4.25. The broad peak in Rs(T ) of a nominally pure crystal of YBa2Cu3O6.95 at 34.8 GHz (open boxes) can
be completely eliminated by 0.75% substitution of Ni (open triangles) for Cu [16, 18, 220, 222].
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Figure 4.26. The influence of Zn substitution on Rs(T ) of YBa2Cu3O6.95 at 34.8 GHz. The broad peak at 40 K in
nominally pure samples (squares) is reduced to a plateau at 0.15% (solid triangles) and Rs(T ) becomes completely
monotonic by 0.31% (solid boxes) substitution if Zn for Cu [16, 18, 220, 222].
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Figure 4.27. (a) Left: at 0.75% substitution of Ni for Cu (open triangles) in YBa2Cu3O6.95 the broad peak seen
σ1(T ) for pure samples (open boxes) is almost completely eliminated [16, 18, 220]. (b) Right: low levels of Zn
substitution for Cu in YBa2Cu3O6.95 (nominally pure, open boxes; 0.15%, solid triangles; 0.31%, solid boxes) cause
the peak in σ1(T ) to shrink and shift to higher temperature [16, 18, 220].

substitution of Ni for Cu atoms [18, 222]. At this concentration the broad peak in Rs(T ) is
completely eliminated. Figure 4.26 shows that at very low concentrations Zn substitution re-
duces the peak to a plateau (0.15% substitution) or eliminates it entirely (0.31% substitution).
These low levels of impurities lead to surface resistances that are very similar to the lowest
loss thin films (see reviews by Klein [101], Piel and Muller [158], Newman and Lyons [138]).

Figure 4.27 shows the conductivities extracted from the surface resistance measure-
ments shown in Figures 4.25 and 4.26. Ni substitution at the 0.75% level almost completely
eliminates the peak in σ1(T ). The evolution of the suppression of the peak is seen clearly in
a study of lower concentrations of Zn impurities. At 0.15% the peak is greatly diminished,
though still clearly present in the conductivity. However, at this impurity level, the diminished
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Figure 4.28. At 3.8 GHz, the peak in the surface resistance of a nominally pure crystals (open squares) is not present
in a crystal doped with 0.75% Ni (solid triangles). At 1.4% Ni doping (solid boxes), the overall surface resistance
starts to increase [16, 17].

peak no longer gives rise to a clear peak in Rs(T ). The influence of the λ3(T ) screening
term that comes into the surface resistance contributes a monotonically decreasing factor that
reduces the peak seen in σ1(T ) to a plateau in Rs(T ). At 0.31% Zn doping the peak in σ1(T )
is so diminished that Rs(T ) decreases monotonically with temperature.

Qualitatively, the effects of Zn and Ni impurities support the explanation of the broad
peak in Rs(T ) and σ1(T ) in terms of a scattering rate that increases rapidly below Tc. The
peak in σ1(T ) is diminished and moves up in temperature because the rapidly changing τ(T )
runs into a limit set by impurity scattering. When this limit is reached σ1(T ) and Rs(T )
decrease with temperature, following the decreasing density of thermally activated quasipar-
ticles. These results are for rather low impurity concentrations that affect τ without causing
large changes in either Tc or λ(0). Once sufficient impurities are added that h̄/τ becomes
comparable to kBTc, the materials are no longer in the clean limit and impurities significantly
increase λ(0). Ulm et al. [206] have demonstrated that quite large changes in λ(0) can be
achieved with Ni impurity doping without destroying superconductivity in YBa2Cu3O7−δ .
Also, as noted in the discussion of penetration depth in Section 4.4.2, the penetration depth
can be quite large in thin films, without substantial suppression of Tc, perhaps due to inhomo-
geneity. The effect of an increase in λ can start to influence the microwave surface resistance
rather quickly because Rs(T ) ∝ λ3. For the case of Ni impurities in YBa2Cu3O6.95 the ef-
fect of increased λ is already encountered at 1.4% substitution. Figure 4.28 shows Rs(T ) at
3.8 GHz for a nominally pure sample, and for 0.75 and 1.4% Ni substitution. At 0.75% Ni
impurities suppress the peak in Rs(T ), just as was seen at 34.8 GHz, but at 1.4% substitution
the overall magnitude of Rs(T ) becomes higher again. If one is interested in the practical
problem of minimizing microwave loss there appears to be an optimum impurity concentra-
tion for doing so.

4.6.3. Other Materials—ab -Plane

A number of measurements on relatives of YBa2Cu3O6+x with different rare earths
on the Y site, such as LuBa2Cu3O6+x [30] exhibit a peak in Rs(T ) and σ1(T ), similar to that
shown above for YBa2Cu3O6+x . An unusual example is measurements of GdBa2Cu3O6+x by
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Figure 4.29. The effective conductivity of an optimally doped GdBa2Cu3O6+x crystal is determined by both quasi-
particle conductivity and the susceptibility of the magnetic Gd ions. Despite these fluctuating spins, which also order
at 2.2 K, the underlying quasiparticle conductivity still has a large peak due to long quasiparticle lifetimes [145].

Ormeno et al. [145]. Figure 4.29 shows the “effective conductivity” σ1eff(ω, T ) obtained from
the standard treatment of surface impedance data to extract conductivities. Such a treatment
does not extract the true quasiparticle conductivity because the Gd ions are magnetic and
one would need to change the permittivity µ0 in Eq. (4.3) to µ = µ0(1 + χ ′ + iχ ′′). As a
consequence, the large peak seen near 3 K is associated not with conductivity, but with the
susceptibility of the Gd ions, which go through a Neel transition at 2.2 K. As shown in [145],
Ormeno et al. were able to separate out the magnetic effects and show that the quasiparticle
conductivity is very similar to that of YBa2Cu3O6+x , something quite remarkable since the
Gd ions are sandwiched by the CuO2 bilayer yet their fluctuations and ordering have no impact
on the quasiparticles.

Microwave measurements on other cuprates have progressed more slowly, not only be-
cause of the concerns about sample quality but also because there are technical difficulties
associated with microwave measurements on highly anisotropic materials. Since the major-
ity of microwave measurements on superconductors are performed in microwave magnetic
fields, any one measurement necessarily mixes together the surface impedance of two dif-
ferent directions in an orthorhombic material. YBa2Cu3O6+x is the least anisotropic of the
cuprates, and multiple measurements on samples with different orientations and aspect ra-
tios can be used to extract the Rs and Xs for currents running parallel to each of the three
principle axes. This becomes more difficult as anisotropy increases and the properties of one
direction dominate others. Some materials, especially Bi2Sr2CaCu2O8+δ have the additional
problem of being highly susceptible to cleaving perpendicular to the ĉ-axis, making it difficult
to cut and polish samples. Nevertheless, successful measurements of Rs of single crystals of
Bi2Sr2CaCu2O8+δ were eventually achieved in cavity perturbation measurements that also
simultaneously determined the temperature dependence of the penetration depth 
λ(T ).

Figure 4.30 shows Rs(T ) of Bi2Sr2CaCu2O8+δ at 10 GHz measured by Jacobs et al.
[90]. The linear temperature dependence of Rs(T ) is qualitatively similar to that seen in
Ni-doped YBa2Cu3O6.95, suggesting that these crystals of Bi2Sr2CaCu2O8+δ have a
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Figure 4.30. Rs(T ) of Bi2Sr2CaCu2O8+δ at 10 GHz measured by Jacobs et al. [90]. The monotonic, linear tem-
perature dependence below about 60 K is similar to that seen in Ni-doped YBa2Cu3O6.95 shown in Figure 4.25.

significant level of disorder. The linear temperature dependence can come from two sources,
a linear temperature dependence of λ(T ), σ1(T ), or perhaps both. To first order, the two con-
tributions give

∂Rs

∂T
= µ2

0
2
ω2

(

λ3
0
∂σ1

∂T
+ 3λ2σ0

∂λ

∂T

)

(4.16)

The technical difficulty with separating the contributions is that it depends strongly on the
choice of λ(T = 0) used in the analysis. The uncertainty in λ(T = 0) for Bi2Sr2CaCu2O8+δ
data reported by Jacobs et al. means that the linear temperature dependence of Rs(T ) could
be attributed to a large extent to the linear temperature dependence of λ(T ).

As happened with YBa2Cu3O6.99, frequency dependent measurements provide a less
ambiguous picture. Figure 4.31 shows the surface resistance of Bi2Sr2CaCu2O8+δ measured
at three microwave frequencies by Lee et al. [120]. Although Rs(T ) again does not have the
prominent peak seen in high purity YBa2Cu3O6.99, there is some concave downwards cur-
vature in the lower two frequencies that is qualitatively similar to that seen at some defect
densities in Figures 4.25 and 4.26 for YBa2Cu3O6.95 with light impurity doping. Also, the
slight frequency-dependence apparent in this curvature suggests that the conductivity spec-
trum σ1(ω) is developing structure in the microwave regime. These effects are more apparent
when σ1(ω, T ) is extracted, as shown in Figure 4.32. Like in YBa2Cu3O6.99, σ1(T ) rises sub-
stantially below Tc, suggesting that the quasiparticle scattering time also rises rapidly below
Tc in this material. However, σ(T ) neither rises as high, nor does it develop as strong a fre-
quency dependence as occurs in YBa2Cu3O6.99. It would seem that the width of the peak in
σ1(ω) does not get nearly as narrow, possibly being limited by a higher density of defects.

Another noteworthy feature of the data shown in Figure 4.32 is the residual conductiv-
ity at low temperatures. Quantitatively, the value of σ1 at low frequency and temperature is
comparable to that seen in high purity YBa2Cu3O6.99 (Figure 4.22). The very different look of
the temperature dependence is that σ1(T ) rises much higher in YBa2Cu3O6.99 before falling
to this residual value. The other significant difference is that because σ1(ω) falls off much
more slowly in Bi2Sr2CaCu2O8+δ , there is considerably more oscillator strength remaining at
low frequency and low temperature than is seen in YBa2Cu3O6.99. We will return to this issue
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Figure 4.31. Rs(T ) of Bi2Sr2CaCu2O8+δ at three different microwave frequencies [120].
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Figure 4.32. σ1(ω, T ) of Bi2Sr2CaCu2O8+δ extracted from the Rs(T ) shown in Figure 4.31 [120].

in Section 4.6.4, but note here that THz measurements by Corson et al. [36] also confirm that
there is considerable uncondensed oscillator strength in Bi2Sr2CaCu2O8+δ .

Tl2Ba2CuO6+δ is one other material that possesses a high Tc at optimal doping and
has yielded to microwave measurements. Figure 4.33 shows microwave measurements of
Rs(T ) by Broun et al. [26, 27] that bear a striking quantitative similarity to the results
for Bi2Sr2CaCu2O8+δ . The conductivity extracted from these measurements is shown in
Figure 4.34 and has the familiar rise below Tc suggesting a rapidly increasing quasiparti-
cle scattering time. The rise is not as dramatic as in high purity YBa2Cu3O6.99, but is more
pronounced than it is in Bi2Sr2CaCu2O8+δ . Supporting this comparison is the frequency de-
pendence that develops at low temperatures, less pronounced than YBa2Cu3O6.99, but more
pronounced than Bi2Sr2CaCu2O8+δ . Like Bi2Sr2CaCu2O8+δ , the Tl2Ba2CuO6+δ data has
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Figure 4.33. Rs(T ) of Tl2Ba2CuO6+δ at three different microwave frequencies [27].
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Figure 4.34. Conductivity of Tl2Ba2CuO6+δ at three different microwave frequencies [27] is strikingly similar to
that measured for Bi2Sr2CaCu2O8+δ , though with some indication that it develops a somewhat longer quasiparticle
lifetime at low temperatures.

substantial uncondensed oscillator strength, which is noteworthy because Tl2Ba2CuO6+δ
is a structurally simpler material, possessing single CuO2 layers rather than bilayers, and
having no CuO chains. It does, however, have interstitial oxygen dopants and cation non-
stoichiometry comparable in magnitude to that of Bi2Sr2CaCu2O8+δ , which might explain the
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similarity of the two systems. Another puzzling similarity of the two systems is that although
the height of the peak in σ1(T ) suggests more disorder than in YBa2Cu3O6.99, the temper-
ature at which the peak occurs is quite low, something that differs from the naive argument
made above in Section 4.6.2 that defects should cause the peak to diminish and shift up in
temperature. This puzzle has recently been addressed by Nunner et al. [140] and is discussed
further in the following section.

There have also been Rs measurements of the single-layer cuprates with relatively low
Tcs at optimal doping; the hole doped material La1−x Srx CuO4+δ and the electron-doped ma-
terials Pr1−x Cex CuO4+δ Nd1−x Cex CuO4+δ . As noted in Section 4.5, disorder is a particularly
serious problem in these systems, in part because the means of doping them is to add cation
defects in close proximity to the CuO2 planes. None of these materials exhibits the linear λ(T )
expected for a clean d-wave superconductor and there has been controversy over whether the
behaviour is a power law associated with a dirty d-wave superconductor or exponential tem-
perature dependence expected for an s-wave superconductor. Similarly, the surface resistance
of these materials shows signs of substantial disorder. Figure 4.35 shows the only available
measurements of Rs(T ) in La1.85Sr0.15CuO4+δ , performed by Shibauchi et al. [175]. The re-
sults are qualitatively similar to those for Bi2Sr2CaCu2O8+δ , although the superconducting
transition seems broader. The magnitude of Rs below Tc is somewhat higher, probably be-
cause λ is larger in this material, resulting in weaker superfluid screening.

Figure 4.36 shows the most recent Rs measurements on two of the electron-doped
cuprates [106]. After a concerted effort to improve samples of these materials, one must still
note the very high residual loss in these materials. Rs(T ) falls by less than a factor of 10 at
9.6 GHz, as compared to the drop by a couple of orders of magnitude shown in Figure 4.35
for La1.85Sr0.15CuO4+δ . Although Nd1.85Ce0.15CuO4 has the additional problem that the Nd
moments contribute to the measured surface impedance, the Pr1.85Ce0.15CuO4 measurements
actually have the higher residual loss. It is not at all clear whether or not this residual is in-
trinsic, which makes it nearly impossible to draw any conclusions about σ1(ω, T ). Kokales
et al. [106] demonstrated this by extracting the conductivity with and without subtracting the
residual loss first, as shown in Figure 4.37. The shape of σ1(T ) depends greatly on the treat-
ment of the residual loss—it either rises monotonically or exhibits a peak. If one treats the data
in the same way as all of the Rs(T ) measurements discussed above, without doing any sub-
traction from the raw data, one would conclude that σ1(T ) increases monotonically below Tc.
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Figure 4.35. The surface resistance of La1.85Sr0.15CuO4+δ at 10 GHz has some of the qualitative features seen in
Bi2Sr2CaCu2O8+δ [175].



Microwave Electrodynamics of High Temperature Superconductors 193

0.16

0.12

0.08

0.04

0
0 0.25 0.5

R
s 

(Ω
)

NCCO

PCCO

0.75

T/Tc

1 1.25 1.5

Figure 4.36. The surface resistance of crystals of Nd1.85Ce0.15CuO4 and Pr1.85Ce0.15CuO4 exhibit considerably
more residual loss than the electron-doped materials.
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Figure 4.37. The large residual loss of Nd1.85Ce0.15CuO4 and Pr1.85Ce0.15CuO4 crystals leads to relatively high
uncertainty in how to extract the conductivity. If one subtracts the residual from Rs a peak in σ1(T ) can be generated,
but there is a monotonic increase with decreasing temperature if one treats that data as all other data discussed
above [106].

Qualitatively, this would be a step further down the path from the prominent peak seen in
YBa2Cu3O6.99, through the weaker peaks seen in Tl2Ba2CuO6+δ and Bi2Sr2CaCu2O8+δ , to
a monotonic rise below Tc.

4.6.4. Low Temperature Limit

One of the most unsettled aspects of the microwave loss in the cuprates at the present
time is the behaviour in the low temperature limit. For s-wave superconductors Rs(T ) falls to
zero as T → 0, following an Arrhenius law due to the presence of an energy gap everywhere
on the Fermi surface. In practice there is always some residual loss attributed to extrinsic
effects and in the best measurements the residual is small enough that the exponential temper-
ature dependence is clear. It was in fact common practice to simply subtract the value of the
residual loss from Rs(T ) in order to better show the exponential behaviour on a semi-log plot.
Because of the technological importance of low microwave loss for high Q superconducting
cavities, considerable experimental effort was expended in reducing it and for materials such
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as Nb and Pb, the sensitivity to actually do the measurements was achieved by constructing
an entire resonant cavity out of the material of interest [55]. There is also a body of theoretical
work on mechanisms for the residual losses, such as the impurity phases that plague Nb due
to oxides and hydrides in the surface (see e.g. [61]).

Although it has been tempting to subtract residual loss from Rs(T ) in the cuprates in
order to clarify the temperature dependence, this has turned out to be a questionable practice
because of the possibility of non-zero Rs(T ) at T = 0 in a d-wave superconductor. The first
stimulus on this issue was the work of Lee et al. [118] who showed that impurities in a d-
wave superconductor could generate states at the Fermi energy that were delocalized, giving
rise to a non-zero conductivity at zero temperature. For point scatterers, σ1(T → 0) at low
frequencies is expected to approach a universal limit,

σ00 = e2

π2h̄d
vF

v∆
, (4.17)

where d is the average spacing of the CuO2 [118]. Surprisingly, this residual σ1 is indepen-
dent of the impurity scattering time τ . A simple picture of this is that impurities in a d-wave
superconductor generate low-lying states that give rise to absorption, even at zero tempera-
ture, but also affect the impurity scattering time τimp. This gives two dependencies on impurity
concentration that cancel, leaving a residual conductivity that does not depend on τimp. The
relatively simple prediction, the T → 0 limit, was later shown to need vertex corrections [44]
and Fermi liquid corrections [133]. Away from T = 0, σ1(T ) of a superconductor that has
nodes in its energy gap is expected to have power law temperature dependence at low T ,
rather than the exponentially activated behaviour of a superconductor without nodes in the
gap [76, 77, 105]. The initial deviation from this limit is expected to be quadratic, in contrast
to the linear temperature dependence of the superfluid density.

The challenge then is that one has both intrinsic and extrinsic mechanisms for generat-
ing residual loss at low temperatures and this ambiguity stands in the way of understanding the
low temperature conductivity. A further complication is that the temperature dependent part of
the low temperature σ1(T ) is highly sensitive to the nature of the defects. If the scatterers are
unitary, one expects the low temperature behaviour to be apparent below a temperature and
energy scale γ ∼ √

Γn∆(0), where Γn is the impurity scattering rate in the normal state. Since
∆(0) is large in the cuprates, the low temperature limit should be at easily accessible temper-
atures if the scatterers are unitary, making it possible to observe both σ00 and the quadratic
temperature dependence. However, in the Born limit, the crossover to the T → 0 limiting
behaviour occurs at an exponentially small scale γ ∼ ∆0 exp(−∆0/Γn) and would then be
below the lowest temperatures for experiments performed in helium baths (1.2 or 4.2 K).

In terms of materials parameters that are appropriate for YBa2Cu3O6.95, where thermal
conductivity gives vF/v∆ ∼ 14 [32] and the average plane spacing is 2/11.6 Å, the universal
conductivity limit is σ00 ∼ 3 × 105 Ω−1 m−1, which is about 1/3 of the normal state conduc-
tivity near Tc. Although this seems large, it is not easily measured at microwave frequencies,
because the ω2λ3 screening term in Rs(T )means that this conductivity corresponds to a rather
low microwave loss. For λ = 120 nm Rs(T → 0) ≈ 1.6×10−8 f 2, where Rs is in Ω and f is
the measurement frequency in GHz. The dependence of Rs(T ) on the square of the frequency
must be kept in mind when comparing loss measurements performed at different frequencies.

The first time that the low temperature Rs was measured in single crystals of YBa2
Cu3O7−δ was the early measurements of Rubin et al. [168]. Although their measurements
were performed in a high Q, Nb resonator, the large size of their cylindrical resonator, with a
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TE011 mode at 5.95 GHz, meant that the resolution of Rs(T ) for small crystals was not high,
only about 500 µ�. However, at low temperature they directly measured microwave power
absorption with a bolometric technique and achieved a resolution of 15 µ� at 3 K. The crystals
showed no measurable microwave loss on this scale, but the resolution is still a factor of 10
larger than the estimate of the d-wave limit. Cavity perturbation measurements since then still
have difficulty achieving the resolution that would be needed to see the zero temperature limit
σ00 proposed by Lee et al. Losses in the sample holder and non-perturbative effects tend to
be comparable to, or larger than, the predicted value. Aside from this technical issue, it now
seems to be the case that many defects are not in the unitary limit, with the consequence that
typical measurements down to 1.2 or 4.2 K are not yet in the regime where σ(T ) reaches
its low temperature behaviour. As noted in the discussion of the penetration depth, the one
scatterer that does seem to be unitary is Zn substituted on planar Cu sites and Figure 4.27b
shows the expected T 2 dependence of σ1(T ) at 35 GHz. However, this measurement did not
have the resolution to unambiguously determine the T → 0 limit.

Although cavity perturbation measurements do not typically have the resolution to de-
tect the predicted limit σ00, they do nevertheless resolve a temperature-dependent Rs(T ) down
to 1.2 K that is an order of magnitude larger than the expected loss for a d-wave supercon-
ductor with point scatterers in the low temperature limit. Explaining this loss has been the
subject of intense study. It was suggested in Section 4.6.1 that once the inelastic scattering
has finished its rapid decline below Tc, σ1(T ) is controlled by defect scattering that varies
substantially from material to material. The challenge has been to explain this conductivity,
which is much larger than σ00 and has a temperature dependence different from the T 2 ex-
pected away from the T → 0 limit. One clue in this regard has been a closely related universal
thermal conductivity [59,187]. Taillefer et al. reported observing such a thermal conductivity
that was both independent of impurity concentration at mK temperatures and whose magni-
tude was consistent with the expectations for the universal conductivity [190]. It was sub-
sequently pointed out that the universal charge conductivity might deviate from the thermal
conductivity because of Fermi liquid corrections and vertex corrections [44]. Perhaps more
importantly, the microwave conductivity measurements have not yet been done at the sub-1-
Kelvin temperatures used in the thermal conductivity studies. Unless the point scatterers are
in the unitary limit, the temperature range where one ought to see the universal limit is likely
below the range of the existing microwave measurements. This has been partly confirmed by
Hill et al.’s measurement of the electronic contribution to the thermal conductivity, shown in
Figure 4.38. The zero field electronic thermal conductivity starts from the universal limit at
very low temperatures, but quickly rises with the expected T 2 temperature dependence well
below 1.2 K.

Although the universal conductivity limit has yet to be properly addressed by micro-
wave measurements, there is now a wealth of information on the temperature- and frequency-
dependent conductivity which can be used to test models of defect scattering in a d-wave
superconductor. As far as the measured quantity Rs(T ) is concerned, the most common
temperature dependence seen at microwave frequencies is close to linear in T . For exam-
ple, this can be seen in both early and recent YBa2Cu3O6+x (Figure 4.21), in Ni-doped
YBa2Cu3O6.95 (Figures 4.25 and 4.28), in Bi2Sr2CaCu2O8+δ (Figure 4.30) and in many
thin film experiments [101, 138, 158]. As was pointed out in Eq. (4.16), Rs(T ) can have a
linear temperature dependence coming from the linear temperature dependence of λ(T ), a
linear temperature dependence of σ1(T ), or both. For typical values of the low T conduc-
tivity σ0 ∼ 5 × 106 �−1 m−1, the low T penetration depth λ0 ∼ 150 nm, and a penetration
depth slope ∂λ/∂T ∼ 0.5 nm/K−1 the conductivity would have to have a linear term of order
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Figure 4.38. The electronic contribution to the thermal conductivity of YBa2Cu3O6.99 in zero field (solid squares)
rises from the universal limit with the expected T 2 temperature dependence. This rise below 1 K suggests scatterers
that are neither in the Born or the unitary limit and is also one reason why microwave measurements above 1.2 K fail
to see the universal limit [72].

∂σ1/∂T ∼ 105 ω−1 m−1K−1 to make a competitive contribution to a linear term in Rs(T ). It
appears that Tl2Ba2CuO6+δ and Bi2Sr2CaCu2O8+δ and Ni-doped YBa2Cu3O6.95 are just en-
tering the regime where σ1(T ) has an impact on the temperature dependence of Rs(T ). In this
situation, Lee et al. [120] pointed out that the exact shape of σ1(T ) becomes rather sensitive
to the choice of λ0 used in the analysis of surface impedance measurements. For instance, the
weak peak in σ1(T ) shown in Figure 4.32 can change in height and position if λ0 is altered,
which will have some effect on the low T behaviour inferred for σ1(T ). However, one can still
draw the conclusion that for many materials σ1(T ) rises from a residual value at 1.2 K that is
an order of magnitude larger than the predicted σ00 and that the temperature dependence is
weak and either linear or sublinear in T .

The low temperature behaviour of σ1(T ) is much less ambiguous in YBa2Cu3O6.99 be-
cause the shape of Rs(T ) is controlled much more by σ1(T ) than by λ(T ). One still makes
two observations related to those above—σ1(T ) has a residual value at 1.2 K that is an order
of magnitude higher than σ00 and the temperature dependence is either linear or slightly sub-
linear. There has been considerable theoretical progress over several years in understanding
why the typical behaviour of σ1(T ) seems so different from the initial expectation of a d-wave
superconductor. The problem is that σ1(T ) ∝ T shown in Figure 4.22 and a Drude lineshape
for σ1(ω) suggests a temperature and frequency independent 1/τimp, which is the expectation
in a normal metal, but not the expectation for the reduced phase space available for scattering
nodal quasiparticles in a d-wave superconductor. Figure 4.39 shows the frequency dependence
of 1/τ(ω) expected from a T-matrix treatment of point scattering of nodal quasiparticles, cal-
culated by Hirschfeld et al. [76]. For unitary scattering a resonance develops at ω = 0 which
has been seen experimentally by scanning tunnelling spectroscopy (STS) measurements on
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Zn-doped Bi2Sr2CaCu2O8+δ [39] and which gives rise to a 1/τ(ω) peaked at ω = 0. Away
from unitary scattering, the resonance moves out to finite frequency, as seen in STS on Ni im-
purities, and this moves the peak in 1/τ(ω) to finite frequency. Whatever the phase shift, one
does not expect the ω-independent 1/τ(ω) implied by σ1(ω, T ) in YBa2Cu3O6.99. Berlinsky
et al. [14] quantified this problem by extracting a frequency-dependent quasiparticle self-
energy from the data of Figure 4.22. They found that σ(ω, T ) could be modelled with a
1/τ(ω) that was linear in ω as expected for non-unitary scatterers, but with a large, additive
constant term. The constant term gives the nearly linear behaviour of σ1(T ) and the linear
term gives a slight frequency-dependent change in curvature seen in the data.

We will return to recent improvements on the scattering models, but first will show data
a little closer to the expectations for weak point scatterers. Figure 4.40 shows a detailed view
of the low temperature conductivity spectrum for high purity YBa2Cu3O6.52 in the Ortho-II
ordered state where every other CuO chain is empty. The data have the shape expected for
Born-limit scattering: the peak is cusp-shaped, with a temperature-independent value of σ0,
a temperature dependent width Γ , and a power law frequency dependence slower than ω2.
These features are consequences of measuring in a regime where the temperature is above the
range where one would see the universal conductivity (kBT � γ ), but at low enough temper-
ature that one is only sampling the range where 1/τ(ω) ∝ ω (Figure 4.39). The damping Γ
has a linear temperature dependence as expected for Born scattering, but deviates from this
by tending towards a finite width as T → 0. Put another way, the curves scale as ω/(T + T0)
rather than the ω/T scaling expected for Born scattering. This suggests some residual os-
cillator strength, of order a few percent of the superfluid oscillator strength, that does not
condense, reminiscent of the uncondensed oscillator strength in other materials, though it is
much smaller in magnitude.

Figure 4.41 shows similar broadband data for the â-axis of YBa2Cu3O6.99. Here one
sees a similar cusp-shaped spectrum developing only at the lowest temperatures and σ1(ω)
evolving into more Drude like curves at higher temperature, as was suggested by the fixed
frequency data. The YBa2Cu3O6.52 broadband data seems to be in the regime where 1/τ(ω) ∝
ω for the measured temperatures 1.2–7 K, whereas the YBa2Cu3O6.99 data leaves this regime
above 3 K. This could occur if the scattering lies neither in the Born limit nor the unitary
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limit, in which case the position of the resonance in the density of states and 1/τ(ω) would
depend upon the scattering phase shift and the size of the energy gap ∆0, both of which
could differ between these samples. So, the most obvious step to take in explaining the micro-
wave conductivity is to move away from the simple limits of Born and unitary scattering.
As mentioned above and indicated in Figure 4.38, this move has also been suggested by
measurements of thermal conductivity at low temperatures. Hill et al. [72] resolved the T 2

deviation away from the universal thermal conductivity limit in samples similar to those used
in the microwave measurements above. The crossover temperature dependence suggests that
the crossover energy scale is γ ∼ 0.25 K for these high purity crystals. This crossover is too
low in temperature to be generated by a sensible number of unitary scatterers (it would imply
a mean free path of millimetres) and too high in temperature to be the exponentially small γ
expected for Born scattering.

There have been a number of attempts to explain the microwave conductivity in terms of
scatterers with a phase shift between the Born and unitary limits [58,69,172]. As a recent ex-
ample, Schachinger et al. [170,172] focussed in particular on the YBa2Cu3O6+x spectroscopic
data shown in Figures 4.40 and 4.41 and were able to produce the different spectral shapes
observed. However, they were not able to produce the extra residual spectral weight seen at
1.2 K and thus are also unable to completely reproduce the evolution of the conductivity spec-
tra with temperature. Dwelling on the residual spectral weight at 1.2 K and the temperature
dependence is more than just a matter of sorting out fine details; in most of the cuprates other
than the YBa2Cu3O6+x system there tends to be much larger uncondensed oscillator strength
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at 1.2 K, dominating the microwave and THz properties and presumably other physical proper-
ties as well. This oscillator strength is apparent in Figures 4.32 and 4.34 for the Tl2Ba2CuO6+δ
and Bi2Sr2CaCu2O8+δ systems. In Bi2Sr2CaCu2O8+δ thin films it has been studied in some
detail at THz frequencies [36] and Orenstein has attributed it to a collective mode associated
with inhomogeneity [143], a natural direction to take in light of the mesoscale inhomogeneity
observed in scanning tunnelling spectroscopy measurements on this material.

A related direction taken to explain the microwave conductivity spectra has been to
consider more complex scattering models than the T-matrix treatment of point scatterers. For
instance, a number of authors have taken the direction of considering the local suppression of
the superconducting order parameter around an impurity site, rather than treating impurity ef-
fects as spatially homogeneous [49,70,224]. Most recently, there has been considerable atten-
tion paid to off-plane disorder, rather than point scatterers lying within a CuO2 plane [1,225].
This direction is given experimental backing by the recent correlation found between the lo-
cation of interstitial oxygen dopant atoms and the patchy electronic spectra seen in scanning
tunnelling spectroscopy by McElroy et al. [132]. Nunner et al. [140] have taken an approach
that includes both point scatterers and extended scatterers due to off-plane disorder, in or-
der to try to explain the puzzles and diverse behaviour of the microwave conductivity of the
cuprates. This approach is remarkably successful on several fronts; it comes very close to the
correct temperature and frequency dependence of σ1 in clean, fully-doped YBa2Cu3O6.99
yet is also able to explain the quite different behaviour of Bi2Sr2CaCu2O8+δ . The suc-
cess in modelling the Bi2Sr2CaCu2O8+δ microwave data suggests that this inclusion of
off-plane disorder can account for the apparent large oscillator strength observed at 1.2 K
in that material. While not the same physics as the normal mode in an inhomogeneous
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Figure 4.42. The ĉ-axis microwave conductivity of a sample of YBa2Cu3O6.95 measured at 18 GHz [83].

superconductor suggested by Orenstein, the direction is related. Namely, one needs to con-
sider the real materials and their defects if one is to make sense of comparisons across the
entire cuprate family. This is particularly important in light of the fact that so much of our
understanding of the cuprates in recent years has come from surface sensitive probes (ARPES
and STS) performed on Bi2Sr2CaCu2O8+δ , a material that seems far away from high purity
samples of the YBa2Cu3O6+x system.

4.6.5. Anisotropy

As with the out-of-plane superfluid response, the out-of-plane conductivity has been
studied much less than the in-plane and there are still unresolved issues of differences between
samples and families of compounds. The technical difficulty of isolating the out of plane
response has been tackled in several different ways: by changing the orientation of a single
sample to compare measurements with 
Hrf ‖ ĉ and 
Hrf ⊥ ĉ, by cleaving or polishing a sample
to vary the ĉ-axis contribution (Figure 4.11), and by measuring in a microwave electric field
with 
Erf ‖ ĉ. As discussed in Section 4.5.6, changing the orientation of a thin platelet sample
runs into difficulties with severe changes in demagnetizing factors, leading to difficulty in
separating in-plane and out-of-plane contributions. Mao et al. [130] ran into this difficulty in
ĉ-axis measurements of superfluid density, which showed the linear temperature dependence
seen in-plane, rather than the nearly T 2 seen in most subsequent measurements. Similarly, the
peak they observed in σ1(T ) for ĉ-axis currents might be dismissed as a contribution from the
peak in the in-plane conductivity. However, when Kitano et al. [100] sought to avoid this by
using thick samples with similar demagnetizing factors for different sample orientations, they
also observed a broad peak in σ1(T ) for a sample of YBa2Cu3O6+x near optimal doping. Two
underdoped samples showed conflicting behaviour, one had a peak and one had σ1(T ) falling
rapidly and monotonically below Tc.

Hosseini et al. sought to extract σ1(T ) in the ĉ-direction by cleaving a thin plate, as
illustrated in Figure 4.11. The optimally doped sample in that case showed a precipitous drop
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and then a weak rise at low temperatures [85]. Because of concerns that the process of cleaving
a thin crystal might introduce problems, Hosseini later tried polishing a relatively thick sample
into a thin blade in order to make the ĉ-axis contribution dominate a measurement with 
Hrf ‖ â
[83]. Further thinning of the sample and remeasurement allowed an unambiguous extraction
of the ĉ-axis conductivity, shown in Figure 4.42. The more recent measurement also shows a
rapid drop below Tc, but without the weak rise again at low temperatures, suggesting the latter
is an artefact of the cleaving. The cause of the sample dependence observed by Kitano et al.
and the disagreement with Hosseini et al. is not clear at the present time. One possibility is
that the tunnelling process responsible for ĉ-axis transport is highly sensitive to the details of
the intervening layers, including impurity effects, oxygen content and oxygen order, but more
systematic measurements would be needed to resolve this. Notwithstanding the fine details,
the microwave measurements all show that the conductivity continues to be very anisotropic
in the superconducting state, as illustrated in Figure 4.43. If the hopping matrix element, with
its strong dependence on the in-plane momentum, is indeed a controlling factor in ĉ-axis
transport properties, then this anisotropy to some extent reflects the difference between nodal
quasiparticles and excitations away from the vicinity of the nodes. The in-plane conductivity
is dominated by nodal quasiparticles that can develop exceptionally long transport lifetimes.
However, the anisotropic hopping suppresses the ĉ-axis transport of these nodal quasiparticles.

Xiang and Hardy [215] applied the cold spot scattering model of Ioffe and Millis [88]
to a calculation of σ1 for the ĉ-axis, taking account of the k‖ dependence of the interlayer
hopping integral ε⊥ (cf. section 4.5.6). They obtained a T 3 dependence for σ1c at intermediate
temperatures, which agreed with the Bi2S2CaCu2O8+δ data of Latyshev et al. [113] and the
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early data of Hosseini et al. [85] on YBa2Cu3O6.95. However, the improved experimental data
on YBa2Cu3O6+x (see Figure 4.42) has a weaker T dependence, so that the comparison with
experiment needs to be revisited.

The rest of the cuprates are even more anisotropic than the YBa2Cu3O6+x samples
discussed above, both in their normal state transport properties and in the anisotropy of λ.
Bi2S2CaCu2O8+δ is so anisotropic that quite different microwave techniques must be used,
taking into account that the ĉ-axis properties are close to being those of a dielectric rather than
a conductor, and that the ĉ-axis penetration depth is of order the typical sample size. Kitano
et al. [99] tackled this problem by working with small samples in microwave electric fields
aligned along the ĉ-axis. The behaviour of one such sample is shown in Figure 4.44, where
one notes not only the drop in the microwave conductivity below Tc, but also the very low
value of the conductivity overall.

4.7. Fluctuations

Shortly after the discovery of the high temperature superconductors, it was pointed
out [124] that the region of temperature around Tc where mean-field theories (BCS; Ginzberg–
Landau) break down and fluctuation effects become noticeable, would be substantial. In the
case of conventional superconductors where the coherence lengths are of order hundreds of Å,
the number of Cooper pairs within a coherence volume is enormous and mean field behaviour
is both expected and observed. For the high temperature superconductors ξab and ξc are about
15 and 3 Å, respectively, giving much smaller coherence volumes and correspondingly wider
critical regions.

The universality class for a 3D superconductor with a complex order parameter Ψ =
|Ψ |eiφ is 3D-XY , the same as for liquid 4He, except extremely close to Tc where the charged
nature of the superfluid enters [48]. Fisher et al. estimated the location of the crossover from
mean-field to critical behaviour by setting the GL expression for λ2/ξ equal to the 3D-XY
value. In the critical region with reduced temperature t = (Tc − T )/Tc, for T< Tc, the
crossover value of t , tx is given by
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tx =
[
λ2⊥0
ξ⊥0

πcs

γ&Tc

]2

,

where λ⊥0 is the zero temperature in-plane magnetic penetration depth, ξ⊥0 is the in-plane
coherence length, cs is a universal parameter estimated to be 0.4, γ = (m⊥/mz)

1
2 and &T =

Φ0
2

16π2 T . Taking γ � 0.2, κ = λ⊥0
ξ⊥0

� 100, λ⊥0 � 1,600 Å one obtains tx � 0.2 which
translates to 20 K for Tc = 100 K. Allowing the choice of parameters to vary somewhat,
values of order 10−2 to 10−1 can result. This form of the Ginzberg criterion suggests a rather
wide fluctuation regime. Fisher et al. [48] acknowledge that alternative criteria exist for the
crossover which yield much narrower critical regions. Lobb [124], for example, gave estimates
that varied from 0.1 K for his best estimates of Hc2 and κ , up to 1 K for more speculative
values of these parameters. Experimentally, it appears that the fluctuation regime is wide,
perhaps as much as 10 K for optimally doped YBa2Cu3O6+x , with critical exponents close to
the 3D-XY values. However, this expected behaviour has not been universally observed, and
discrepancies between thin films and single crystals seem to be common.

Early transport and thermodynamic properties in zero applied field were initially treated
in terms of Gaussian fluctuations, but later analyses suggested critical scaling in the 3D-XY
universality class. Later, even clearer indications were observed in specific heat measurements
made in applied magnetic fields. (See for example Overend et al. and references therein [147].)
In these types of experiments the fluctuation signal is usually superposed on a large back-
ground, the substraction of which tends to be problematic. A notable exception was the ther-
mal expansivity study of Pasler et al. [153] where by using the difference in the â- and b̂-axis
expansivity, the background was largely suppressed. For optimally doped YBa2Cu3O6+x
single crystals, critical fluctuations consistent with 3D-XY scaling were observed over the
temperature range |T − Tc| = 10 K , with nearly equal amplitudes above and below Tc .

For the microwave properties, critical fluctuations will contribute to both the real and
imaginary components of σ . We first note that σ1, which is controlled by the non-universal
dynamical critical exponent z, is the more problematic quantity to study. First of all, σ1 quickly
becomes much smaller than σ2 below Tc and increasingly difficult to extract from Rs. We also
note that the fluctuation contribution to σ1 appears above a background conductivity that has
to be subtracted. On the other hand σ2 ∝ 1/λ2 has the advantage that 1/λ2 tends to zero
as T → Tc in a manner determined solely by critical fluctuations, without any background
subtractions required to be made. Note that for most of this discussion we are ignoring the
finite measurement frequency as far as 1/λ2 is concerned, since the data is fit far enough
away from Tc that finite frequency effects are negligible. Later in this section, where the
data of Kamal et al. [93] is examined very close to Tc (Figure 4.47c), the effect of the finite
measuring frequency becomes apparent. For the superfluid density or equivalently 1/λ2 in the
critical region one has

1
λ2 ∝ tν, (4.18)

where ν/2 = 0.333 for 3D-XY vs. 0.5 for mean field. Thus, for mean field behaviour 1/λ2

should approach zero linearly as T − Tc, with a finite slope, whereas for 3D-XY behaviour
the slope should become infinite. In particular 1/λ3, not 1/λ2, should be linear with T − Tc.

Kamal et al. [92] made careful measurement of 
λ(T ) in very high quality optimally
doped YBa2Cu3O6+x crystals using cavity perturbation at 900 MHz. Figure 4.45 compares
1/λ3 vs. 1/λ2 and one sees that 3D-XY behaviour seems to be followed over a rather large
temperature interval, as much as 10 K. Figure 4.46 is a log–log plot of 1/λ(t) vs. reduced
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behaviour consistent with the 3D-XY critical exponent ν/2=0.33.

temperature. A fit to the data gave ν/2 = 0.33 ± 0.01 consistent with 3D-XY scaling. The
uncertainty in the exponent represents the range of values obtained for the range of choices of
Tc. For these types of measurements, one needs to obtain a value of λ(T = 0) from other mea-
surements, and a representative value of 1,400 Å was taken from µSR and Far IR experiments.
Later analysis, allowing λ(T = 0) to vary from 1,300 to 1,500 Å, but fitting over the same
temperature interval, yielded values of ν/2 from 0.343 to 0.355. Data from cavity perturbation
measurements at 22.7 GHz gave values from 0.328 to 0.351.

The recent measurements of λ using zero field ESR of Gd-doped YBa2Cu3O6+x of
Pereg-Barnea et al. [157] suggest that the literature values of λ(T = 0) used by the UBC
group to convert their 
λ(T ) measurements to absolute λ(T ), were probably too high. For
the optimally doped YBa2Cu3O6+x twinned crystal used by Kamal et al., we estimate that
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λab(0) may have been as low as 1,200 Å. This has the effect of decreasing the apparent width
of the fluctuation regime somewhat, but does not shift the values of ν/2 very much. More
recent measurements on highly ordered Ortho-II crystals with Tc = 56 K also showed a wide
fluctuation regime with critical exponents close to 0.33 for 1/λ(T ) [93].

Anlage et al. [7] presented microwave results for both σ1 and σ2 in optimally doped
YBa2Cu3O6+x , reporting a large asymmetry in the width of the fluctuation regime, being
up to 5 K below Tc, but less than 0.6 K above Tc. Their results for λ were consistent with
3D-XY scaling and thus in agreement with the results of Kamal et al. [92]. In contrast, Paget
et al. [148] found 3D-XY behaviour to be absent in their measurements on YBa2Cu3O6+x thin
films, made by a variety of methods; sputtering co-evaporation and pulsed-laser deposition.
They concluded that the critical region, if it existed, was less than 0.5 K and perhaps less than
0.2 K.

This small sampling of the many published results for λ−2 delineates the problem that
existed until the late 1990s with the understanding of fluctuations: specific heat and ther-
mal expansivity seemed to show a wide region of 3D-XY behaviour on both sides of Tc,
some microwave measurements on single crystals agreed on a wide fluctuation region be-
low Tc, whereas most low frequency thin film measurements showed no discernable crit-
ical fluctuation effects. The situation has evolved substantially in the past few years. For
example Osborne et al. [146] report two-coil inductance measurements (10–100 kHz) on
epitaxially grown Bi2212 films, finding static 3D-XY critical exponents in the superfluid
density, and a dynamical critical exponent of z = 2. Most recently, the Stuttgart group
has made extensive 9.5 GHz microwave conductivity measurements on Bi2Sr2CaCu2O8+δ ,
Bi2Sr2Ca2Cu3O10+δ , and YBa2Cu3O6+x thin films, emphasizing the importance of short-
wavelength cutoff effects [154, 177] in the theoretical modelling of the fluctuation conduc-
tivity [155]. The short-wavelength cutoff yields strong effects at higher temperatures above
Tc, and a small but experimentally detectable feature at Tc. Previous microwave studies re-
porting both Gaussian and critical behaviour [7,136,208] did not include such effects in their
analyses, and would have to be revisited.

The most ambitious study of fluctuations in the microwave region is that of Booth
et al. [20] where the rf conductivity of a YBa2Cu3O6+x thin film was measured for T > Tc
over the frequency range 45 MHz–45 GHz. By a scaling analysis they obtained a dynamical
critical exponent z of 2.3–3, larger than the value 2 expected for the “relaxational” version
of the 3D-XY model. The quantity z is non-universal, so this result is of particular interest.
However, their data yielded a static scaling exponent of about 1.0, at odds with the 3D-XY
scaling value of 2/3, and therefore at odds with previous results of the same group on single
crystals where 3D-XY scaling was observed [7].

It is the opinion of the present authors that there remain many unresolved issues, both
theoretical and experimental. First of all, there remains the unsettling variation in the ac-
tual measurements: more attention needs to be paid to the quality and nature of the samples.
In particular, the reasons for the fluctuation behaviour being so sensitive to sample defects
needs to be properly elucidated. As a concrete example of these unresolved issues, we show
in Figures 4.47 and 4.48, data of Kamal et al. [93] for σ1 and σ2 on an optimally doped
YBa2Cu3O6+x crystal of particularly high quality. In Figure 4.47b, c we zoom in on the re-
gion near Tc by first expanding the vertical scale of the data (Figure 4.47b) and then the
horizontal scale (Figure 4.47c).

In Figure 4.48 we compare the fluctuation peak, for the same crystal, but at two different
frequencies (1.14 and 22.7 GHz). One expects the two peaks to occur at the same temperature
and we presume the shift is due to a difference in the thermometer calibration for the two
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Figure 4.47. The real and imaginary parts of σ at 1.1 GHZ shown on three different scales to display the narrowness
of the peak in σ1(T ) near Tc in a single crystal of YBa2Cu3O6.95 [93].

experimental setups. We call attention to the widths of the fluctuation peaks: about 0.07 K
for f = 1.14 GHz and 0.3 K for f = 22.7 GHz. This is to be compared to approximately
10 K for the 9.5 GHz data of Peligrad et al. [155] on Bi2Sr2Ca2Cu3O10+δ , about 0.8 K for the
100 kHz data of Osborne et al. [146] on MBE grown Bi2Sr2CaCu2O8+δ and about 0.9 K for
the 9.6 GHz data of Anlage et al. [7] on an optimally doped YBa2Cu3O6+x crystal. Clearly,
there is a serious lack of universality: the width of the conductivity peaks at 9.5 GHz should be
somewhere intermediate between the 1.14 and 22.7 GHz data rather than being much wider;
the peak for the 100 kHz data should be much narrower than it is.

One might argue that Bi2Sr2CaCu2O8+δ , Bi2Sr2Ca2Cu3O10+δ , and YBa2Cu3O6+x are
different compounds and the non-universal quantities need not be the same. However, one
expects that near Tc the underlying relaxation mechanism for the carriers should be dominated
by the inelastic processes, and therefore similar in magnitude, since the dc resistivities above
Tc for all of these materials are about the same. It is difficult to escape the conclusion that
the observed widths of the conductivity fluctuation peaks in the published literature either
have substantial contributions from a distribution of Tcs or are in fact dominated by them.
One cannot expect the analysis of such data to accurately reflect intrinsic properties. The
Harris criterion [66] by which disorder should not affect critical exponents in a system with
heat capacity exponent α < 0 does not apply to a macroscopic distribution of Tcs.
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While it is not our intention to present a detailed analysis of the Kamal et al. data, there
are some useful comments that can be made, under the reasonable assumption that lower
frequency data will be more affected by a distribution of Tcs (because the intrinsic width of the
fluctuation peak must be smaller). Under this assumption, one can conclude that the intrinsic
width of the fluctuation peak measured at 22.7 GHz is close to the observed width of 0.3 K
(because the 1.14 GHz data gives a substantially narrower peak of 0.07 K). If one evaluates
the ratio σ1(1.14 GHz)/σ1(22.7 GHz) at Tc one obtains a value of about 8.0. From the scaling
result [211] σ1(Tc) ∝ 1/ω(z−1)/z , the data give a high value of 3.3 for the dynamical critical
exponent z. A value closer to the “expected” value of 2 would require the fluctuation peak at
1.14 GHz to be almost a factor 2 smaller than observed. An observed fluctuation peak that is
too high could not be the result of a distribution of Tcs and we conclude that there is fairly
solid evidence that z is not 2, but something greater than 3 and perhaps greater than 3.3. Booth
et al. [20] also reported values greater than 2 (2.35–3).

One surprise in these diverse results on different samples is that there has been no sign
of 2D-XY critical behaviour in these highly anisotropic layered materials. The expectation
in 2D is that when the phase stiffness determined from 1/λ2(T ) falls below a critical value,
a Berezinski–Kosterlitz–Thouless (BKT) transition occurs [13, 107], a transition driven by a
proliferation of vortices and exhibiting a discontinuous drop in phase stiffness at T2D. The
critical phase stiffness at which a superconducting sheet is expected to undergo such a transi-
tion is

d/λ2 = (8πµ0/Φ
2
0 )T2D, (4.19)

where d is the thickness of the superconducting sheet. In the cuprates, evidence of such a
transition has been seen by Zuev et al. [226] in very thin films of YBa2Cu3O6+x as shown in
Figure 4.49. In the thin films they studied, a marked downturn in λ2(T ) occurs in accordance
with Eq. (4.19), but only if one takes the thickness of the superconducting layer to be the
entire thickness of the film, d. For microwave and lower frequency probes, there seems to
be no obvious evidence in the cuprates of such a downturn associated with the layer-spacing
of the CuO2 layers, which would be the expectation if the superconducting transition of bulk
samples was governed by a Berezinski–Kosterlitz–Thouless (BKT) transition due to the nearly
2D nature of the materials. We should note, however, that Corson et al. [35], while looking
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for evidence of preformed pairs and partial phase coherence above Tc, measured σ1 and σ2 at
millimetre wave frequencies (100–600 GHz) and uncovered evidence for BKT behaviour in
underdoped Bi2Sr2CaCu2O8+δ . Their analysis relies on tracking the phase coherence time as
a function of temperature and doping, and is not presented in a way that allows comparison
with fluctuation measurements presented earlier in this section.

These results near Tc raise questions of what level of theory is required to handle the su-
perconducting transition in the high temperature superconductors. They are never going to be
as good a system as liquid 4He in which to study fluctuation effects, because sample inhomo-
geneities will limit the range of reduced temperatures that can be reached and one will likely
have to deal with non-universal behaviour. However, the importance of tackling the problem
extends beyond simply understanding the superconducting transition in the cuprates, since
superconducting fluctuations are thought to play a substantial role throughout the underdoped
side of the cuprate phase diagram [31, 35].
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5
Magnetic Resonance Studies of High
Temperature Superconductors

Charles P. Slichter

Since most magnetic resonance studies of high TC materials have been made by nuclear magnetic reso-
nance (NMR), the article focuses primarily on NMR, with only brief reference to electron-spin resonance
(ESR).

Most atoms in the cuprates have isotopes that can be studied. We review basic NMR theory of the
resonance spectrum, how signals are observed, the theory of spin–lattice relaxation time, T1, problems
of observing NMR in superconductors, the theory of T1 and magnetic shifts in normal state metals, the
theory of NMR in conventional BCS superconductors. The spin Hamiltonian in cuprates is discussed
together with its relationship to one vs. two-component theories of superconductivity.

For YBCO, the arguments are given for a one-component picture and for the existence of a spin
gap. Utilizing a relationship due Moriya, relating NMR T1 to the imaginary part of the electron-spin
susceptibility, the Millis, Monien, and Pines (MMP) theory of T1 is described, as well as its use to
evaluate the parameters of the spin Hamiltonian. The phenomenological form of the temperature depen-
dence of T1 at the Cu, O, and Y sites is given in terms of the spin susceptibility and several parameters.
The transverse relaxation time, T2G, is defined and shown to give information about the real part of
the electron-spin susceptibility. Certain scaling relationships are described and NMR tests of them are
given.

Measurements of the Cu Knight shift in the superconducting state are described, as is their use
to conclude that the spin pairing is singlet. T1 data show that the orbital pairing cannot be s-state but is
well described by d-state.

For LSCO, the situation is more complex. The spectrum is described and explained. Arguments
are presented that the system may require a two-component description. The incommensurate nature
of the peaks reported in neutron diffraction poses problems understanding the T1 data using the con-
ventional MMP analysis. The NMR line shapes and widths give compelling evidence that the charge
density and the local spin susceptibility are spatially modulated over length scales of the order of a few
lattice constants. Studies at high temperatures of Sr-doped and undoped LCO show that in this temper-
ature regime the systems all act much like Heisenberg antiferromagnets. Nuclear quadrupole resonance
studies at low temperatures (room temperature and below) of systems that are thought, from neutron
diffraction, to have stripe ordering, show that they have great similarity to spin glasses.

5.1. Introduction

Nuclear magnetic resonance (NMR) and electron-spin resonance (ESR) have been pow-
erful techniques for the study of condensed matter. For the cuprates, the literature involving
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NMR is more extensive since special techniques are needed to find an ESR signal. The tech-
nique that works is to dope the cuprate with a low concentration of Gd or Mn ions. The
spin-7/2 electrons on Gd give an ESR signal whose properties give indirect information about
the electron spins of the CuO2 planes. Thus, most of this article is focused on NMR. We start
by listing some of the strengths of NMR for study of the cuprates.

Most of the atoms in the cuprates have isotopes that can in principle give rise to NMR
signals: 89Y, 135Ba, 137Ba, 63Cu, 65Cu, 17O, 139La, 207Pb, 203Tl, 205Tl, 209Bi, 151Eu, 153Eu.
Unfortunately, the abundant isotope of O, 16O, does not have a nuclear moment, so stud-
ies of O require enriching the sample with 17O. NMR nuclei are sensitive to magnetic effects
and, if their spins are greater than 1/2, to electrical or charge effects. As a result, NMR can
distinguish between the signals of a given nuclear isotope present at more than one crystal
site. For example, in YBCO, NMR can probe the Cu (or O) atoms in the CuO planes sepa-
rately from the Cu (or O) atoms in the chains, and can distinguish between oxygen atoms in
the plane that form Cu–O bonds parallel vs. perpendicular to the direction of the CuO chains.

Moreover, NMR can study both static and dynamic effects. It can follow how they
change with temperature as well as with how they change with magnetic field strength. Al-
though NMR is a point probe, it is also able to obtain wavevector dependence in some cases,
as we shall see.

Since one needs many nuclei to detect an NMR signal, NMR essentially probes bulk
properties. Since one can easily calibrate the intensity of an NMR signal using a reference
compound, one can tell whether one is observing signals from all the nuclei in the sample or
only a fraction. Such intensity studies have revealed in some cases the probable onset of a
spin-glass state as the temperature is lowered.

Magnetic resonance is a rather specialized topic yet is especially powerful. Many scien-
tists therefore lack the background to read much of the magnetic resonance literature. Accord-
ingly, this paper has a twofold goal (1) to provide a background in magnetic resonance useful
for reading the magnetic resonance literature on high temperature superconductors and (2) to
summarize some of the principal findings about high temperature superconductors obtained
by magnetic resonance. The paper is not an effort to record all of the important work. There
just is not enough space given these two goals. Consequently, much beautiful and important
magnetic resonance work alas will not be found in this review.

5.2. Basic NMR Theory and Experiment

5.2.1. The Resonance Spectrum

The general physical and chemical environment of a nucleus is contained in the para-
meters of the nuclear spin Hamiltonian [1] H .

H = −γnh̄
∑

α=x,y,z

Iα(1 + Kαα)B0α + h
2I (2I − 1)

[
να(3I 2

z − I 2)+ (νxx − νyy)(I 2
x − I 2

y )
]
.

(5.1)

The first term is the Zeeman energy of the nuclear magnetic moment in the applied magnetic
field B and the second term is the interaction of the nuclear electric quadrupole moment with
the electric field gradient.K is the magnetic shift tensor. In this expression we have assumed,
for simplicity, that the principal axes of the shift and field gradient tensors coincide. The pres-
ence of a magnetic shift tensor expresses the displacement in frequency of the NMR resonant
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frequency from the frequency it has in some other substance that is used as a frequency refer-
ence, so values quoted for K will vary with the reference. Likewise, theoretical interpretations
of experimental results also require a theory of the reference. A thorough discussion of such
matters for the cuprates has been made by Renold, Heine, Weber, and Meier [2].

K is customarily decomposed into two terms, K L , called the orbital or chemical shift,
and K S , the spin or Knight shift.

K = K L + K S . (5.2)

The chemical shift arises from electric currents induced in the electron cloud by application
of the applied magnetic field. It is often in the range of several percent for Cu in the cuprates.
Ordinarily one expects the chemical shift to be independent of temperature. The Knight shift
arises from polarization of the electron spins. As we shall see, it is closely related to the
electron-spin susceptibility. Since the electron-spin susceptibility in the high TC materials is
often temperature dependent, so is the Knight shift.

If a strong magnetic field is applied parallel to the z-axis, the energy levels become to a
first approximation:

Em = −γnh̄(1+Kzz)m B0+ h
2I (2I − 1)

νzz(3m2− I (I +1)), m = I, I −1, . . . ,−I. (5.3)

This result is exact if the electric quadrupole interaction is axially symmetric about the
z-direction.

The application of an alternating magnetic field induces transitions in which the m quan-
tum number changes by one, corresponding to angular frequencies

ω = γn(1 + Kzz)B0 + 6ωzz

2I (2I − 1)
k. (5.4)

k changes by integers from −(2I −1)/2 to +(2I −1)/2. Thus for nuclei with spin-3/2 such as
63Cu or 65Cu, k is (−1, 0, 1), whereas for spin-5/2 nucleus such as 17O, k is (−2,−1, 0, 1, 2).

In the absence of an applied magnetic field, one has the case known as pure quadrupole
resonance. Then, if the electric field gradient is axially symmetric, the frequencies become:

ν = 6νzz

4I (2I − 1)
|k| . (5.5)

For a system with spin-3/2, the pure quadrupole frequency is νzz/2.

5.2.2. Exciting a Resonance

Observation of a magnetic resonance signal arises by inducing transitions among the
various energy levels by applying alternating magnetic fields whose frequency matches the
corresponding energy difference. Most NMR studies of high TC materials have employed
pulse methods. The simplest in principle is to apply a single, strong, short radio frequency (rf )
pulse of alternating magnetic field to the sample and then observe the NMR signal that follows
the turnoff of the pulse. That signal is called the free induction signal. Its Fourier transform in
time gives one the absorption spectrum in frequency space. This result is a rigorous result of
theory. This method is commonly used for NMR study of liquids, for example to determine
molecular structures.

As practical matter, the radio frequency pulse disturbs the amplifiers of the detection
system, so the signal amplifiers need a short time to recover before the NMR signal can be
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observed. For liquids, the NMR signals however persist for a long time, so one can wait for
the amplifier recovery before observing the signal.

For solids, the NMR signals have much shorter duration, so amplifier recovery poses
a problem. Signals are usually observed by a two-pulse method that generates so-called spin
echoes. If the first pulse is at time zero, the second at time τ , the NMR echo signal appears at
time 2τ . This method has the advantage that the signal is separated in time from the time of the
strong radio frequency pulses so the amplifiers have recovered by the time of the signal. The
disadvantage of this method is that NMR theory of spin echoes has been solved rigorously
only for special cases.

As one varies the time τ , the amplitude of the echo signal varies, in general falling off
with time. The time dependence may be quite complex, perhaps even exhibiting oscillations.
If the decay form is exponential, the time constant is conventionally denoted as T2. The time
dependence of the free induction signal following a single rf pulse is often determined partly
by magnet inhomogeneity. The tradition is to call this decay time T ∗

2 , a term that only has
precise meaning if one also gives the mathematical form of the decay.

On occasion, the echo envelope is a Gaussian function of time. Then the custom is to
characterize the Gaussian time scale by the symbol T2G. This situation is of importance for
high TC materials.

In general one starts with a system in thermal equilibrium under the action of a static
Hamiltonian H0. The various energy levels, n, are then populated according to the equation

pn = e−En/kBT

Z
, (5.6)

where pn is the probability of occupation of level n and Z is the partition function

Z =
∑

k
e−Ek/kBT . (5.7)

Application of the rf pulses disturbs the system from thermal equilibrium, but during the times
that the pulses are off, the system still obeys the Hamiltonian H0. Description of the system
is then conveniently given in terms of the time dependent density matrix ρ(t) obeying

ρ(t) = e(−iH0t/h̄)ρ(0)e(+iH0t/h̄), (5.8)

where ρ(0) is the value after the end of the most recent pulse.
Experimentally, we observe the magnetization in the absence of the rf magnetic fields.

For example, the transverse magnetization in the x-direction is given by

〈Mx (t)〉 = Tr(γ Ixρ(t)). (5.9)

In thermal equilibrium, the density matrix is diagonal in the representation that diagonal-
izes H0. Only those components of magnetization that are independent of time are nonzero.
Application of the rf pulses creates off diagonal elements of the density matrix. They decay
with time giving rise to the T2 effects described above.

The diagonal elements of ρ give the populations of the energy levels, pn . They are dis-
turbed from thermal equilibrium by the pulses. The recovery to thermal equilibrium requires
an energy transfer between the spin system and the outside world (conventionally called the
lattice). The time needed to achieve thermal equilibrium is conventionally called T1, the spin–
lattice relaxation time.
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In discussing magnetic resonance, there are two viewpoints that are often convenient.
The first is to consider a single spin. Then the situation is described by a Hamiltonian such
as that of Eq. (5.1). There are 2I + 1 energy levels. This viewpoint is useful for determining
the frequencies at which resonance occurs or the behavior of the system while the rf fields are
on. It is used for consideration of T1 processes. The second viewpoint is to include many spin
sites. This approach is needed if one wants to consider the effects of spin–spin coupling. It is
needed if one wants to consider T2 or T2G processes.

5.2.3. Spin–Lattice Relaxation

Turning now to spin–lattice relaxation, we adopt the single spin viewpoint. The recovery
to thermal equilibrium following application of one or more rf pulses is often described by a
set of coupled rate equations among the 2I + 1 energy levels

dpn

dt
=

∑

k

(Wnk pk − Wkn pn), (5.10)

where Wnk is the probability per second of a thermally induced transition from state k to state
n. These have normal mode solutions that are decaying real exponentials solutions. One of
the normal modes is the total population (the sum of the pns). It does not decay. So there
are N−1 exponentials if there are N energy levels. For a spin-1/2 system, there is a single
exponential response. It is called the spin–lattice relaxation time T1. For a spin-3/2 system,
there are three exponentials. One still speaks of a spin–lattice relaxation process but there is
no obvious single time to call T1.

In general, a single pulse applied at a single transition frequency will excite more than
one normal mode of recovery. The magnitude of the rate coefficients Wnk is determined by the
relaxation mechanism. For nuclei, applying the principle of detailed balance, one finds that to
achieve thermal equilibrium

Wnk

Wkn
= e−En/kBT

e−Ek /kBT . (5.11)

For nuclei, the small size of the energy level splittings compared to kBT will make the ratio
essentially unity. In fact, if one defines pn to be the deviation of the population from the
thermal equilibrium value, one can simply set the ratio of Eq. (5.11) to be unity.

As an example, for spin-3/2 one then has

W3/2,1/2 = W1/2,3/2 = W−3/2,−1/2 = W−1/2,−3/2 ≡ W1
W1/2,−1/2 = W−1/2,1/2 ≡ W2.

(5.12)

These equations help one determine the relaxation mechanism. For example, if it arises from
fluctuating magnetic fields

W2 = 4
3

W1. (5.13)

In this circumstance, a single parameter W1 will describe all three exponential time constants,
providing a better description than the term T1. When there are quadrupole splittings, the rf
pulse excites only a single transition. A 90◦ pulse, for example, applied to the central transition
produces a nonzero off-diagonal element of density matrix (ρ1/2 ,−1/2), equalizes the popula-
tions of the +1/2 and −1/2 levels and leaves the populations of the = 3/2 and −3/2 states
unchanged. The resultant distribution is then not one of thermal equilibrium. The off-diagonal
element gives rise to an NMR signal according to Eq. (5.9). It dies out from the T2 processes.
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Thermal relaxation (T1) processes will then change all of the populations to reestablish
thermal equilibrium. We can follow these processes in time by exciting the various transitions
at later times to produce a spin echo signal.

For example, for the case of a spin-3/2 system with relaxation by fluctuating magnetic
fields, a spin echo signal, S(t), following a 90◦ pulse applied to the central transition at time
zero will grow at later times according to the law

S(t)
S(0)

= 1 −
[

0.1 exp
(

2
3

W1(t)
)

+ 0.9 exp(4W1t)
]

. (5.14)

So the data can be examined to see whether a single parameter W1 provides a fit. If it does,
the relaxation mechanism is magnetic fluctuations.

Since the populations are coupled, application of a pulse to any one transition will cause
the population difference between any other pair of levels to be disturbed. Thus a pulse applied
to the 3/2, 1/2 transition will initially change the population of the 1/2 level. It will therefore
immediately affect the signal produced by exciting the 1/2 to −1/2 transition. Although it
will initially leave the populations of the −1/2 and −3/2 levels undisturbed, as time goes on,
these populations will change from thermal equilibrium values before eventually returning to
thermal equilibrium.

5.2.4. Double Resonance

Haase [3] has invented a powerful and useful double resonance method based on these
principles. For example, in optimally doped LSCO, the transition frequencies of the central
transitions of the planar and apical oxygen atoms are close, and thus the resonance lines
overlap and are hard to distinguish from one another. Their quadrupole splittings differ greatly,
however. By applying a pulse to the 3/2 to 1/2 transition of the planar O, he can change the
intensity of its 1/2 to −1/2 spin echo signal, while leaving unchanged that contributed by
the central transition of the apical O. He then employs a so-called add–subtract sequence in
which he first pulses the planar 3/2 to1/2 transition and records the signal from an echo from
the central transition, then allows the system to equilibrate, then records an echo from the
central transition without first pulsing the planar 3/2 to 1/2 transition. He subtracts the second
echo signal from the first echo signal. In this process, the apical oxygen signal vanishes since
it is the same in both cases, whereas the planar O central transition signal remains since it is
different between the two echoes. Thus, he could make precise measurements of the central
transition of the planar oxygen in this manner. He utilized this method to distinguish signals
arising from the two isotopes of Cu.

Another useful technique for studying the spatial dependence of the NMR environment
is spin echo double resonance (SEDOR). In this technique we consider two species that we
label I and S that interact either directly through their nuclear magnetic moments, or indirectly
via their coupling to the valence electrons as in the so-called J coupling of liquid NMR or the
RKKY coupling in solids. We observe the spin echoes of the I -spins. As a result of the cou-
pling, the precession frequency of the I -spins depends on the orientation of the S-spins. Thus,
a 180◦ flip of the S-spins changes the precession frequency of the I -spins. In one particularly
useful embodiment of SEDOR, one uses a 90–180◦ pulse sequence to produce the echoes of
the I -spins. One records the echo amplitude AI (τS) of the I -spins as a function of the time
τS at which one applies a 180◦ pulse to the S-spins. If there were no I –S coupling, AI would
be independent of τS . If one has a spin–spin interaction, HI S of the form
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HI S = ah̄ Iz Sz . (5.15)

then,
AI (τS) = AI (0) cos(aτS). (5.16)

The variation of AI with τS tells one the coupling strength, and the frequency at which one
must excite the S spins tells one the resonance frequency of the S spin that is producing the
SEDOR effect. Note that the S spins can be of the same nuclear species (e.g., both 63Cu), of
the same chemical species but different isotope (as with 63Cu and 65Cu), or different chemical
species (63Cu and 17O). (For the case of two nuclei of the same species, if the strength of
the rf fields is strong enough to cover both their absorption lines, one does not need two
separate rf driving signals since the 180◦ pulse that flips the I spins will also flip the S spins
by 180◦.)

The importance of the SEDOR result is that, since it depends on the existence of
nuclear–nuclear spin–spin coupling, it measures a correlation of NMR environments between
two sites that are near neighbors.

5.2.5. NMR in Superconductors

Observation of NMR signals from samples that are in the superconducting state has
certain special features. Type I superconductors exclude the magnetic field except for a thin
layer at the surface. How then can one do NMR in a superconductor? This problem was first
solved by Hebel and Slichter [4, 5] and independently by Redfield [6] by using a magnetic
field cycling method. The concept is to start with the sample below the zero field supercon-
ducting transition temperature. One then turns on a magnet of sufficient strength to suppress
the superconductivity. The nuclei become polarized in this initial magnetic field. One then
turns off the magnet, cooling the nuclear spins by adiabatic demagnetization while rendering
the sample superconducting. The cold nuclei then warm toward the lattice temperature. After
a time toff, one turns the magnet back on, rendering the sample normal and quickly inspects
the size of the NMR signal. By studying how this signal size varies with toff, one can deduce
the nuclear spin–lattice relaxation time in the superconducting state.

If there is a quadrupole coupling, one could still do a pure quadrupole resonance in the
superconducting state thus avoiding problems with penetration of the static magnetic field into
the sample. However, the rf magnetic fields are still excluded except for the superconducting
skin depth. Such signals have been reported by Hammond and Knight [7] and by Simmons
[8, 9], however the inhomogeneity of the rf field complicates data interpretation.

The discovery of Type II superconductors made possible direct observation of NMR
in the superconducting state. The static magnetic field penetrates the sample by vortices. In
practice, the static field is quite homogeneous, but it does vary spatially, being largest in the
vortex cores. Redfield [10] did the first experiments mapping the field distribution in the mixed
state. The variation in magnetic field as one moves away from the vortex provides a nearly
one-to-one correspondence between NMR frequency and distance from the vortex that has
been useful for studying effects of the supercurrent flow on the density of states [11–13].

5.3. NMR in Normal State Metals

In normal metals, the nucleus interacts via its magnetic moment with the magnetic
moments of the conduction electrons. The polarization of the electron spins in the applied
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field gives rise to a magnetic field at the nucleus that produces the Knight shift. In addi-
tion, the interaction gives rise to scattering of the conduction electrons in which the nucleus
may exchange energy with the conduction electrons, providing the mechanism for the nuclear
spin–lattice relaxation process. The form of the interaction consists of the conventional inter-
action between distant dipoles, plus the Fermi contact interaction, HFermi, that describes the
coupling when the electron orbit penetrates the nucleus:

HFermi = −γeγnh̄2 I · Sδ(re − Rn). (5.17)

When present, the Fermi interaction frequently dominates the conventional dipolar coupling,
and gives rise to a magnetic field at the nucleus, 
H0e,


H0e = 8π
3
γeh̄

∑

k,m
|uk(0)|2mk f (Ek − mkγeh̄ H0), (5.18)

where f is the Fermi function, k the electron wave vector, and mk the eigenvalue of the com-
ponent of electron spin, Szk , along the direction of the applied static field H0. This equation
can be evaluated to give the Knight shift


H0e

H0
= 8π

3
(γeh̄)2

∑

mk

∫

m2
k
∣
∣uk(0)

∣
∣2ρ(Ek)

∂ f (Ek)

∂Ek
dEk

= 8π
3
(γeh̄)2

〈∣
∣uk(0)

∣
∣2
〉

EF
ρ(EF)

/
2 (5.19)

= 8π
3

〈∣
∣uk(0)

∣
∣2
〉

EF
χS,

where χS is the conduction electron-spin susceptibility and where the bracket indicates aver-
aging over the values at the Fermi energy.

To visualize the nuclear spin–lattice relaxation process, one may note that the magnetic
coupling (Eq. (5.17)) produces scattering of the system initially in a state m I mSk to a final
state m I + 1,mS − 1k′. The resulting T1 then obeys the equation

1
T1

= C
{〈∣

∣uk(0)
∣
∣2
〉

EF

}2 ∫

f (E)ρ(E)[1 − f (E −
E)]ρ(E −
E)dE . (5.20)

C is a numerical factor that depends on some spin sums, and where 
E is the difference in
energy between the initial and final nuclear spin states. More generally

1
T1

= C
∫ 〈∣

∣
〈
i
∣
∣V

∣
∣ f

〉∣
∣2
〉

E
f (E)ρ(E)[1 − f (E −
E)]ρ(E −
E)dE, (5.21)

where V is the electro–nuclear interaction and i and f are initial and final electron states. For
a normal metal, this expression reduces to

1
T1

= C
〈∣
∣
〈
i
∣
∣V

∣
∣ f

〉∣
∣2
〉

EF
(ρ(EF))

2kBT . (5.22)

The linear dependence of 1/T1 on T was first enunciated by Heitler and Teller before the
discovery of magnetic resonance [14]. It expresses the fact that only electrons in the tail of
the Fermi distribution can scatter since the energy change on scattering is only derived from
the change in the nuclear Zeeman energy, a quantity much less than kBT .
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Korringa [15] discovered that by combining Eqs. (5.20) and (5.21), one gets the Kor-
ringa relation relating Knight shift to spin–lattice relaxation time:

T1T K 2
S = h̄

4πkB

(
γe

γn

)2

. (5.23)

Equation (5.20) is based on the one electron theory of metals. It includes band structure effects
but not electron–electron coupling. Pines [16] has generalized the formula to include electron–
electron coupling

T1T K 2
S = h̄

4πkB

(
γe

γn

)2 χ S
e

χ S
0

ρ0(EF)

ρ(EF)
, (5.24)

where the subscript “0” refers to the noninteracting electron values, and other values include
the electron–electron coupling.

We call the quantity T1T K 2
S the Korringa product. Note that in the absence of electron–

electron interactions, the Korringa product depends on universal constants that are indepen-
dent of the particular system. Thus it is independent of band structure or other such effects.

If we express the interaction of the nuclear spin I with the electron spins Si as

H =
∑

i

I · Ai · Si (5.25)

an alternate form of the expression for T1 is useful for discussing high TC superconductors.
We discuss it in Section 5.6.3.

5.4. NMR in Conventional BCS Superconductors

NMR measurements of spin–lattice relaxation and Knight shift provided some of the
first verifications of the BCS theory of superconductivity. They are described in Cooper’s
Nobel Lecture [17]. MacLaughlin [18] has published a comprehensive review of NMR studies
prior to high TC.

The first measurements of T1 were made by Hebel and Slichter a few months before
the creation of the BCS theory. They studied 27Al. Thinking in terms of a two fluid picture, a
popular model at that time, they had expected that the relaxation rate would be slower in the
superconducting state. Instead they found that the relaxation rate increased by a factor of two
within about a 15% drop in temperature below TC.

In the classical BCS theory of superconductivity, the electrons form pairs of opposite
spin and momentum, so that the spin pairing is into a spin singlet (S = 0), while the orbital
pairing is also into an L = 0 (orbital s-wave) state. There is a temperature dependent gap,
∆(T ), in the density of states that goes to zero as T approaches TC and levels off near T = 0
at a ∆0 approximately equal to 1.75TC.

Using the BCS theory, with the generous help of its authors, Hebel and Slichter found
that one gets the expression for spin–lattice relaxation in a superconductor by simple modifi-
cation of Eq. (5.21). We introduce the symbol ε to specify the energy of an electron state in
a metal in the normal state, measured with respect to the Fermi energy. Then, below TC, the
energy, E , to occupy such a state becomes

E =
√
ε2 +
(T )2. (5.26)
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The density of states ρS(E) is zero for |E | ≤ 
(T ) and

ρS(E) = ρN (0)
E

√
E2 −
(T )2

(5.27)

for |E | ≥ 
(T ).The scattering matrix V 2
if is replaced by

VSif
2 = V 2

1 + V 2
2

2
, (5.28)

where
V 2

1 = V 2
if

(
1 + 
2

E E ′
)

V 2
2 = V 2

if

2

E E ′ .
(5.29)

The prime distinguishes the final state from the initial state. BCS found that for ultrasonic
absorption, Eq. (5.21) describes things if instead one uses

V 2
Sif = V 2

1 − V 2
2

2
. (5.30)

The change in sign causes the two phenomena to have very different temperature behavior for
temperatures just below TC. As one cools from TC, the ultrasonic absorption rate drops pre-
cipitously whereas the NMR relaxation rate rises rapidly. The existence of the two terms that
either add or subtract signs arises from the pair nature of the BCS wave function. In a conven-
tional one-electron theory, there is only one term so all low energy scattering processes should
have the same T dependence. BCS point out that the contrast between the two temperature
dependences is strong proof of the pairing condition.

At low temperatures, the BCS theory shows that

1
T1

∝ exp(−
0/kBT ). (5.31)

Thus, measurement of the T dependence of 1/T1 near absolute zero gives one the value of
low temperature energy gap.

An expression for the Knight shift was derived by Yosida [19]. Using the relationship,
from Eq. (5.20)

KS = 
H
H0

∝
∫

ρ(E)
∂ f (E)
∂E

dE

with the BCS expressions for density of states and E,one finds the Yosida function, Y0(T/TC).
The most complete test of the BCS predictions have been obtained for T1 by Masuda

and Redfield [20] for Al and for Knight shift by Knight [21].

5.5. The Cuprate Spin Hamiltonian

The key elements found for all the cuprates appear to be the CuO2 planes. We might
think of them as composed of two systems of electrons. The first system is a set of Cu2+ions,
much like (3d)9 atoms with a hole in the x2 − y2 orbitals, where we take the x and y directions
to be along the crystallographic a and b axes, respectively. The second system is the holes in
the oxygen orbitals.
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We might then have Hamiltonians

63 H = 63 HZeeman + 63 I · A · Sd(0)+ 63 HQ (5.32)

and
17 H = 17 HZeeman + 17 I · C p · Sp(0)+ 17 HQ, (5.33)

where Sd(0) and Sp(0) are the on-site electron spins. Making use of the fact that an applied
field H0 produces thermal average magnetizations

〈Md〉 = χd H0〈
Mp

〉 = χp H0
(5.34)

we get for the Knight shifts
63 KS = A

γ63γeh̄2χd , (5.35)

17 KS = C p

γ17γeh̄2χp. (5.36)

As we shall see, the above Hamiltonians omit important contributions arising from transferred
hyperfine couplings that give rise to a shift contribution by the electron spin on one atom to
the magnetic field acting on nuclei of neighboring atoms.

The discovery by Takigawa, Hammel et al. [22] that the powder average Knight shift is
positive, suggested that A alone would not work since for an isolated atom the powder average
shift comes from the presence of core polarization and is expected to be negative. Mila and
Rice [23] proposed the addition of the term Bd(k). From studies of the effect of O doping
on the 89Y NMR shift, Alloul et al. found that the 89Y shift arose from transferred hyperfine
coupling to the Cu magnetization.

Zhang and Rice [24], however, recognized that there would be a strong exchange
coupling between the Cu electron spin and those on its four neighboring O atoms.

They proposed that one O electron spin might pair with the Cu spin to form a spin sin-
glet state (the Zhang–Rice singlet) and that this might be the mobile charge carrier produced
by O doping. Such considerations led to the proposal that the system posses only a single
component, a concept that can be expressed in the nuclear Hamiltonians as follows:

63 H = 63 HZeeman + 63 I ·
(

ASd(0)+ B · ∑

k=nn
Sd(k)

)

+ 63 HQ

17 H = 17 HZeeman + 17 I · C · ∑

k=nn
Sd(k)+ 17 HQ .

(5.37)

For these equations, the Knight shift relations are

63 KSzz = (Azz+4B)
γeγ63h̄2 χd

17 KSzz = 2C
γeγ17h̄2χd ,

(5.38)

where we have defined the z-direction to correspond to the direction of the applied magnetic
field, assumed to lie along one of the principal axes of the hyperfine tensors. We have also
assumed that the two tensors B and C are isotropic.

More general Hamiltonians have been proposed by Curro et al. [25] in their work on
heavy fermion systems:
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63 H = 63 HZeeman+63 I ·A·Sd(0)+63 I ·
(

Bd ·
∑

k=nn

Sd(k)+ Bp ·
∑

l=nn

Sp(l)

)

+63 HQ, (5.39)

17 H = 17 HZeeman + 17 I ·
(

C p · Sp(0)+ Cd ·
∑

k=nn

Sd(k)

)

+ 17 HQ, (5.40)

where Sd(0) is the on-site Cu electron spin and Sd(k) is the Cu electron spin at neighbor site
k, etc.

For this set of equations, the Knight shift formulas are more complicated. Defining

χdd(r, t) = (γeh̄)2
〈
Sd(r, t)Sd(0, 0)

〉

χpp(r, t) = (γeh̄)2
〈
Sp(r, t)Sp(0, 0)

〉

χpd(r, t) = (γeh̄)2
〈
Sp(r, t)Sd(0, 0)

〉 = χdp(r, t)
(5.41)

with
χ = χdd + 2χpd + χpp

〈Sd〉 = (χdd + χdp)H0,
〈
Sp

〉 = (χpd + χpp)H0
(5.42)

for the Knight shifts

63 K = (A+4Bd )

γeγ63h̄2 (χdd + χpd)+ 2Bp

γeγ63h̄2 (χpd + χpp)

17 K = 2Cd
γeγ17h̄2 (χdd + χpd)+ C p

γeγ17h̄2 (χpd + χpp).
(5.43)

Comparing Eq. (5.38) with Eqs. (5.35), (5.36), and (5.43) we see that a simple test for the
one-component system is that the ratio of the O to the Cu Knight shift be independent of
temperature.

5.6. YBCO above TC

By YBCO we mean the family of materials such as YBa2Cu3O6+y (123O6+y) and
YBa2Cu4O 8 (1248).

5.6.1. One or Two Components?

It has been generally agreed in the NMR community that the YBCO materials obey
the “one component” Hamiltonians of Eq. (5.40). The evidence arises from measurements of
the temperature dependence of the Knight shifts. For all the YBCO family 63 Kcc, where the
c-axis is normal to the CuO2 planes, is nearly independent of temperature. The explanation is
believed to be the accidental relationship

Acc + 4B ≈ 0 (5.44)

As a result, measurements of 63 Kcc do not distinguish between the various models. The most
clear-cut test has been given by Takigawa et al. [26] using 123O6.63.

Figure 5.1 shows their data for three 17 K s and 63 Kab (the Cu shift for magnetic field
lying in the plane of the ab axes). As can be seen, by proper normalization at a single tempe-
rature, all the data lie on top of one another over the entire temperature range from 300 K to
temperatures well below TC. Thus, these data fit the single-component equations.
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Figure 5.1. The temperature dependence of the Cu and O Knight shifts, showing that the three 17O shifts and the
63Cu shift all have the same temperature dependence [26].

5.6.2. The Spin Pseudogap

Figure 5.2 shows data from Alloul et al. [27] for 123Ox showing how the temperature
dependence of the Knight shift of 89Y resonance depends on the amount, x , of O doping.
Figure 5.3 shows 63 K data from Takigawa, Hammel, et al. [22] and Fig. 5.12 shows data from
Barrett et al. [28] for 123O7. We discuss the data below TC in Section 5.7. Above TC, 63 Kab is
nearly independent of temperature. Figure 5.4 shows 63 Kab data of Curro et al. for 1248 [29].
These data are much like that of 123O6.63, except they show a maximum at about 500 K.
In conventional metals, the spin susceptibility is independent of temperature. The data for the
O6.63 and the 1248 samples show that the susceptibility falls off at lower temperatures. Several
authors have tried to fit such data with formulas such as

χ(T ) = χ0
1

1 + e
/2T (5.45)

suggested by Tranquada [30] based on neutron scattering experiments. For O6.63, Takigawa
found a good fit with ∆ = 150K . Formulas such as Eq. (5.43) suggest that the magnetic
susceptibility arises from excited states whose occupancy falls with falling temperatures. The
quantity∆ then appears to represent something like an energy gap to a family of excited states.
The phenomena are given the name spin pseudogap. It also shows up for NMR in measure-
ments of the T dependence of T1.

5.6.3. The Spin–Lattice Relaxation Time

The mechanism of spin–lattice relaxation is magnetic fluctuations. This result is well
demonstrated for Cu by data from Pennington et al. [31]. Figure 5.5 shows the recovery of the
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63Cu NMR echo signal following an initial destruction of the population difference between
the various energy levels of the three transitions. A single parameter W1 makes possible the
fit for the time dependence of the three NMR transitions, as described by Eq. (5.14).

Initially, a major mystery was the fact that the Cu and O T1s had very different tempe-
rature dependences. For example, for 123O7, one finds that T1T for O is independent of
temperature as in a conventional metal whereas for the planar Cu it is nearly a linear function
of T [32] (Figure 5.6). The explanation for the different temperature dependence at these
neighboring sites in the crystal was explained by Shastry [33] and independently by Hammel
et al. [34] as being due to the fact that the wavelength dependence of spin fluctuations differs
between the Cu and O sites. Thus, fluctuations in the electron-spin magnetization near the
antiferromagnetic wave vector cancel at the O site but not at the Cu site.
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Figure 5.4. 63 Kab for the stoichiometric material 1248 showing the maximum in Knight shift at about 500 K [29].

Figure 5.5. Recovery of the planar 63Cu signal for the central transition (a) and the upper satellite (b). The data are
fit with a single parameter W1 using the formulas for relaxation from fluctuating magnetic fields [31].

Millis, Monien, and Pines (MMP) proposed a simple theory based on the relationship
due to Moriya [35].

(
1

i T1

)

α

= 2γ 2
i kBT

(γeh̄)2
∑

q,α′ 	=α

∣
∣
∣i Aα′α′

∣
∣
∣
2χ ′′

α′α′(q, ω0)

ω0
, (5.46)

where ω0 is the nuclear precession frequency, Aα′α′ the electron–nuclear hyperfine coupling,
and χ ′′

α′α′ the imaginary part of the electron-spin susceptibility. The concept behind this for-
mula is that the nucleus precessing at angular frequency ω0 produces a magnetic field at the
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Figure 5.6. 63T1T (= T/63W1) vs. temperature for optimally doped YBCO showing its nearly linear temperature
dependence [32].

electrons at this frequency through the hyperfine coupling, leading to energy absorption by
the electron via χ ′′

α′α′ .
Using Eq. (5.37), MMP have

63 Azz(q) = Ac + 2B(cos(qx a)+ cos(qya))
63 Axx (q) = Aab + 2B(cos(qx a)+ cos(qya)).

(5.47)

From Eq. (5.33) we get

∣
∣
∣17 Aαα(q)

∣
∣
∣
2 = 2C2

(

1 + 1
2
[cos(qx a)+ cos(qya)]

)

. (5.48)

These expressions show that the hyperfine coupling acts as a filter in q-space. In particular,
they show that for antiferromagnetic spin fluctuations for which the arguments of the cosine
functions are π , the coupling to the O vanishes, whereas that to the Cu does not.

Barzykin, Pines, and Thelen [36] define the quantities 63 F‖ and 63 F⊥ to simplify
Eq. (5.44).

63 F‖ = |Ax |2 + |Ay |2 (5.49)

and
63 F⊥ = (|Ax |2 + |Ay |2)/2 + |Az |2. (5.50)

Figure 5.7 shows how the F’s vary in q-space.
MMP express the complex susceptibility arising from antiferromagnetic fluctuations

peaking at a point Q in q space as

χAF = αξ2

1 + |Q − q|2 ξ2 − i(ω/ωSF)
, (5.51)

where ξ represents a spatial correlation length for spin fluctuations and ωSF a characteristic
frequency or the inverse of a relaxation time. Making use of the fact that the NMR frequency
is low, they find
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response at the (π, π) point, and the suppression of the O form factor there [36].

χ ′
AF =

[
αξ2

(1+|q−Q|2ξ2)

]

χ ′′
AF =

[
αξ2

(1+|q−Q|2ξ2)2

]
ω/ωSF.

(5.52)

Imai et al. [37] include in addition a correction to correspond to the region near q = 0.

χ ′(q) = χ ′
AF(q)+ χ ′

B

χ ′′(q) = χ ′′
AF(q)+ χ ′

Bω/ΓB.
(5.53)

There are thus four hyperfine coupling constants Aab, Ac, B and C . To determine them we
need four experimental conditions. The first is Eq. (5.44)

Ac + 4B = 0.

For the second, we assume that the correlation length is long so that the spin fluctuations peak
strongly at the antiferromagnetic wave vector. Then, using Eq. (5.46) and (5.47), we find that
the ratio of the Cu T1’s for two orientations of applied magnetic fields, is given by

63 R ≡ T1c

T1ab
=

[

1 + [Ac − 2B]2

[Aab − 2B]2

]

. (5.54)

The third equation used [38] expresses the zero field NMR frequency of the antiferromagnetic
parent compound.

µeff

µe

∣
∣
∣63 Aab − 463 B

∣
∣
∣ = h̄63ωAF, (5.55)

where µe is the free electron-spin magnetic moment and µeff is the effective value for the
antiferromagnetic ground state. Manousakis [39] finds the ratio µeff/µe. to be 0.62. Using
63 R = 3.73 Barzykin, Pines, and Thelen find

B = 3.82 × 10−7 eV, Ac = −4B, Aab = 0.84B.

From the temperature dependence of the Knight shift, they find C = 0.91B.
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on T [40].

We can rather satisfactorily describe the data of various investigators by saying that for
YBCO7

89W1/T = P
17W1/T = Q
63W1/T = R/(T + Tθ ),

(5.56)

where P , Q, R, and Tθ are constants independent of temperature.
For the underdoped materials, T1 (or 1/W1) differs from that of YBCO-7. Figures 5.8

and 5.9 display data of Takigawa [40] showing plots of 63T1Tχ S
0 (T ) and 17T1Tχ S

0 (T ) for the
6.63 material. From these figures, we see that for the underdoped materials, we can replace
these equations with

89W1/T = P ′χ S
0

17W1/T = Q′χ S
0

63W1/T = R′χ S
0 /(T + Tθ ).

(5.57)

Thus, the spin gap effect noted in Knight shift or spin susceptibility appears also in spin–
lattice relaxation. Note that the first set is a special case of the second since the susceptibility
of YBCO-7 is essentially independent of temperature.

From these equations we see that the quantity i T1Tχ S
0 for nuclear species “i” is the

quantity that has a very simple temperature dependence.

5.6.4. Transverse Relaxation and T2G

In conventional metals, the line width δH of the NMR lines are determined by the
magnetic fields produced by the neighboring nuclear spins (δH ≈ γnh̄ I

√
Z/a3 where a is
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the nearest neighbor distance and Z the number of nearest neighbors). This coupling limits
the extent of the spin echo decay envelope. Pennington et al. [41, 42] discovered that for the
123O7, the Cu echo decay rate is much faster. They found that the Cu spin echo envelope was
Gaussian. The echo signal S(t) at time t obeys the relationship.

S(t) = S(0) exp[−(t/T2G)
2/2] (5.58)

Pennington and Slichter showed that T2G arose from an indirect nuclear spin–nuclear spin
coupling via the hyperfine coupling to the Cu electron spins, and could be expressed in terms
of the real part of the static electron-spin susceptibility χ ′(q).

Defining the hyperfine coupling

Gz(r, r1) = ACδr,r1 + B
∑

ρ=nn

δr,r1+ρ (5.59)

then the hyperfine coupling to spin I1z is

Hzz =
∑

Sz(r)Gz(r, r1)Iz(r1) (5.60)

giving us an effective coupling to a second spin at position r2

H12zz = −Iz(r2)

[
∑

r,r ′
Gz(r2, r ′)χ

′(r ′,r)
(γeh̄)2 Gz(r, r2)

]

Iz(r1)

= Iz(r2)az
12 Iz(r1).

(5.61)
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Since

χ ′(r ′, r) =
∑

q

χ ′(q)
N

exp[iq · (r ′ − r)], (5.62)

where N is the number of Cu atoms per unit volume, a12 can be expressed in terms of χ ′(q).
The result is

(1/T2G)
2 =

(
1
8

)∑

j

∣
∣
∣az

1 j

∣
∣
∣
2
. (5.63)

Thelen and Pines have put these results in a convenient form. For the isotope 63Cu, the result
is

(1/T2G)
2 = 0.69

8h̄2

⎡

⎣ 1
N

∑

q

fC (q)4χ ′(q)2 −
{

1
N

∑

q

fC (q)2χ ′(q)
}2

⎤

⎦

fC (q) ≡ Ac + 2B
[
cos(qx a)+ cos(qya)

]
,

(5.64)

where fC(q) is the form factor. The 0.69 factor arises from consideration of the isotopic abun-
dance. The couplings of the x and y components are much smaller. As a result, only zz cou-
plings of the same isotope contribute, and the form of the echo envelope is rather accurately a
Gaussian.

An important conclusion is that measurements of T1 give information about the imagi-
nary part of the electron-spin susceptibility, and measurements of T2G give information about
the real part.

A description of the dependence of the coupling az
1 j on the relative positions of r j − r1

has been given by Haase et al. [43]. They also discuss the dependence of T2G on the correlation
length ξ .

5.6.5. Scaling Relationships

A number of authors [44] have considered the role of scaling in analyzing the NMR
data, expressed in a relationship between the energy scale parameter ωSF and the magnetic
correlation length, ξ .

The scaling is expressed by a relationship between them

ωSF ∝ ξ−z . (5.65)

Assuming that the correlation length is large compared to the lattice constant and assuming
the MMP form for the electron-spin susceptibility, Barzykin and Pines conclude that

63T1T = C1ωSF/α
1/T2G = C2αξ,

(5.66)

where C1 and C2 are two constants. Using B = 3.82×10−7 eV, Ac = −4B, Aab = 0.84B,
they find C1 = 132(s K/eV2) and C2 = 295(eV/s).

Then

T1T
T2G

= C1C2ωSFξ

T1T

T 2
2G

= C1C2
2αωSFξ

2.
(5.67)
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Figure 5.10. 63T1 vs. temperature for 1248 showing the spin gap around 100 K and 63T1T vs. temperature showing
the linear temperature dependence at higher temperatures predicted by scaling theories [28].

Barzykin and Pines have argued that there are two crossover temperatures T ∗ and Tcr(T ∗ <
Tcr) that vary with doping. Below T ∗ one is in the pseudogap region. They propose that
between these temperatures one should find z = 1 characterized by

ωSF ∝ ξ−1. (5.68)

Above Tcr the system exhibits nonuniversal z = 2 mean field behavior, so that

ωSF ∝ 1/ξ2. (5.69)

They argue that Tcr occurs at the temperature, Tmax, where the static susceptibility (and thus
Knight shift) has its maximum. From Figure 5.4, that is 500 K in 1248.

Therefore, for z = 1, T1T/T2G is independent of temperature, while for z = 2, T1T/(T2G)
2

is proportional to α, which they believe is independent of temperature.
Figures 5.10 and 5.11 show data of Curro et al. [28] for 1248 (TC = 81 K). In

Figure 5.11, the upturn in T1T below 160 K is evidence of the spin gap. Note at higher
temperatures, the plot is linear in T , also a prediction from scaling theory.

Figure 5.11 shows the tests of the data using these scaling laws. It appears that the data
fit z = 1 from 160 K to 500 K, then above 500 K have a better fit to z = 2.
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(upper figure) and z = 2 above 500 K [28].

5.7. YBCO Below TC: NMR Evidence About the Pairing State

5.7.1. The Knight Shift

Knight shift measurements are the best evidence that the superconducting state is a
spin singlet. The first Knight shift measurements in the superconducting state were made by
Takigawa, Hammel et al. for 123O7 (Figure 5.3). As we have remarked, they found that the
powder average Knight shift at TC was positive relative to its value at T = 0. The experiments
are complicated by the fact that the Meissner effect screens the metal, making a diamagnetic
correction necessary. This they did from measurements of the magnetization and use of for-
mulas for demagnetizing factors. Barrett et al. [45] (reference 27) avoided these difficulties
by using the 89Y NMR as a probe of the internal field. Their results are shown in Figure 5.12.

Before discussing their method in detail, we remark on some conclusions from their
data. The first is that the shift for applied field along the c-direction (normal to the CuO2
planes) is independent of T over the whole temperature range. The same result is found for
the other YBCO materials. Thus, this component of shift shows no signs of the temperature
dependence of the magnetic susceptibility, leading to the conclusion that it arises solely from
orbital effects, i.e., is a chemical shift only. The explanation requires that Ac + 4B = 0.
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Figure 5.12. 63Cu shift, KL + KS(T ), for optimally doped YBCO for chain(Cu(1)) and plane(Cu(2)) using the
method of Barrett et al. [45].

As pointed out by Pennington et al., the chemical shift can be expressed to a good
approximation as

K L
αα = 2β2

[
∑

n

〈0| Lα |n〉 〈n| Lα/r3 |0〉
En − E0

+ cc

]

. (5.70)

Using reasonable values for the energy levels and the matrix elements one can explain the zero
temperature shifts as being orbital i.e., chemical shifts. If this is the case, the spin susceptibility
at T = 0 vanishes, and the system is in a spin singlet state.

If the system were in a spin triplet state, some components of the Knight shift will not
vanish at T = 0. In particular, if the trace of the spin susceptibility at TC is 3χ0, then at
T = 0, it is 2χ0 [46].

Meier and colleagues have carried out extensive many-electron calculations of the
orbital shifts. They conclude that the orbital shifts need to be corrected for the fact that the
chemical shift reference material, CuO, has a nonnegligible orbital shift, hence recommend
adding 0.15% to all the literature values of the orbital shifts. They also find that so doing
brings theory and experiment into agreement for the aa and bb orbital shifts. However, their
theoretical cc shift is only about 50% of the experimental result. There is as yet no explanation
of this discrepancy.

We now return to an explanation of the experiment of Barrett et al. If Hint is the internal
field, that is the applied field corrected for the demagnetizing effects,

ν63(T ) = γ63
(
1 + 63 KL + 63 KS(T )

)
Hint

ν89(T ) = γ89
(
1 + 89 KL + 89 KS(T )

)
Hint.

(5.71)
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Figure 5.13. Normalized spin susceptibility in the superconducting state determined from 63Cu(2) Knight shift
compared theoretical results of Monien (solid and dashed lines), using strong coupling Yosida functions, based on
(a) isotropic and anisotropic s-wave models and (b) and two d-wave models [45].

Taking the ratio, and utilizing the smallness of the KS we get

ν63(T )
ν89(T )

= γ63

γ89

(
1 + 63 KL + 63 KS(T )− 89 KL + 89 KS(T )

)
. (5.72)

The KLs are found from the value of the frequencies at T = 0, leaving then an equation with
the one unknown 63 KS(T )–89 KS(T ).

There are now two approaches that can be made. The first is to assume 89 KS(T ) is so
small that it can be neglected. The second is to assume that both shifts are proportional to the
spin susceptibility. Then a plot of 63 KS(T )–89 KS(T ) vs. T gives one the correct temperature
dependence of either nuclear Knight shift. Barrett et al. made the latter assumption in their
data plots.

A spin singlet can go with various orbital pairing states (L = 0, 2, 4, etc.). In principle,
the temperature dependence of the spin susceptibility and thus the Knight shift can make the
distinction. For L = 0, the slope of KS(T ) at T = 0 is zero, whereas for a d-wave, there
is linear dependence. Figure 5.13 shows theoretical calculations by Monien to fit the Barrett
data for the L = 0 and L = 2 cases. Unfortunately, the experimental precision is inadequate
for these data to indicate a choice between the two values of L .
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5.7.2. Spin–Lattice Relaxation

The experience with conventional superconductors led experimenters to realize that
measurements of T1 in the superconducting state would be of interest. The first measure-
ments were by Imai et al. [47] and by Kitaoka et al. [48]. Figure 5.14 shows the data of Imai
for 123O7.There are two striking features. There is no sign of a coherence peak just below
TC, and the temperature dependence at lower temperatures obeys a T 3 power law rather than
an exponential in reciprocal temperature. The power law is what one would expect if there
were nodal lines in the energy gap in k-space. Such behavior rules out orbital s-wave pairing.
It suggests orbital d-wave or higher.

Figure 5.15 shows data of Martindale et al. [49] of 63Cu and 17O in 123O7, again illus-
trating the T 3 dependence. Figure 5.16 shows the Cu data plotted in a manner [ln (1/T1) vs.
1/T ] that would yield a straight line at low temperature for an orbital s-state. On this plot, the
slope is a measure of the energy gap needed to excite quasiparticles. Thus, the plot shows that
the apparent gap at low temperatures is less than it is a high temperatures.

In the normal state, the spin–lattice relaxation rate is much faster for applied field par-
allel to the c-axis than for applied field perpendicular to the c-axis. The ratio of these rates
is independent of temperature. Barrett et al. [50] discovered that in the superconducting state
the anisotropy in relaxation rate is strongly temperature dependent. The explanation for the
change in behavior was found by Bulut and Scalapino [51] and later also by Thelen, Pines,
and Lu [52]. The physical cause of the T dependence is the fact that for a dx2−y2 orbital state,
there are nodes along the |kx | = |ky | lines. Figure 5.17 shows a comparison of experiment
with theory.

Figure 5.18 shows the Fermi surface and several spanning vectors. At high tempera-
tures, the spin fluctuations peak at the antiferromagnetic wave vector (π/a, π/a). At low
temperatures, only wave vectors that join points near the nodes can play a role in spin–lattice

Figure 5.14. Spin–lattice relaxation rate, 1/T1, for optimally doped YBCO for planar Cu(2) and chain Cu(1) show-
ing a low temperature power law. The absence of a coherence peak just below TC and the power law rather than an
exponential 1/T dependence rule out the conventional s-wave pairing [47].
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Figure 5.15. NMR T1s of 63Cu(2) and 17O in optimally doped YBCO, measured a low static magnetic field,
showing that both nuclear relaxation rates obey the T 3 law expected for d-wave orbital pairing [49].

Figure 5.16. ln(1/63T1) vs. TC/T for planar Cu in YBCO7 compared (solid line) to the temperature dependence
for a conventional BCS weak coupling, spin-singlet, orbital s-wave pairing with 
(0)/kBTC = 1.75 [49].

relaxation. Thus, the anisotropy measurements show that the nodes lie along the |kx | = |ky |
lines.

A similar effect is found for T2G (see Figure 5.19). The data of Itoh et al. [53] are well
fit by Bulut and Scalapino for an orbital d-wave but not by an orbital s-wave.

5.8. LSCO

5.8.1. The Spectrum

Yoshimura et al. [54] studied Cu NQR in LSCO for x = 0.15, 0.20, and 0.30. For
a single nuclear species of spin-3/2, one expects a single NQR line corresponding to the
transition between the degenerate ±1/2 levels and the degenerate ±3/2 levels Since there



Magnetic Resonance Studies of High Temperature Superconductors 241

6

5

3

4

2

1

0
0 0.2 0.4

(T
1

1 )
ab

 /(
T

1
1 )

c

T/Tc

0.6 0.8 1
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Figure 5.18. Fermi surface for YBCO and several vectors [52].

are two isotopes, 63Cu and 65Cu with very similar properties, we expect to find two lines,
one for each isotope. Yoshimura et al. found that the spectrum consisted of four resonance
lines. For each isotope, one line is much stronger than the other line. They labeled these
the A and B lines, respectively. The relative strength of the B line grew with doping. In
pure La2CuO4, there is only a single line whose frequency is very close to that of the A
line. It was hypothesized that the B line arose from Cu nuclei in which the nearest La site was
occupied by a Sr.
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Figure 5.20. NMR resonances of the upper frequency Cu satellite: (a) conventional NMR showing A and B lines
of both isotopes; (b) double resonance signal that selectively eliminates the 65Cu signal, revealing the A and B lines
of 63Cu [55].

Haase et al. [55, 56] utilized a double resonance method to suppress the signals from
the 65Cu nuclei, making it possible to see the 63Cu spectrum clearly. Their data are shown in
Figure 5.20. The A and B lines are clearly visible. They showed that from the intensity and the
axial symmetry of the B site spectrum that it arose from Cu sites in which a Sr atom replaces
a La atom in the nearest La site as proposed by Yoshimura et al. Hunt et al. [57] grew a crystal
of La1.875Ba.125CuO4 containing only 63Cu and demonstrated the same thing. We show their
figures later in this article in the discussion of low temperature spectra.

The NQR lines of the undoped sample are narrow (a width of 60 kHz), but for a doping
of only x = 0.06, the NQR lines become 2 MHz wide. The width changes little for higher
concentrations. Haase found that the for x = 0.15 the A line has a breadth of 2.3 MHz, the B
line 1.8 MHz. Thus the line broadening is not a simple result of broadening from the Sr sites,
but evidently arises because the presence of the Sr atoms or the doping level they produce,
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initiate a new phenomena that broaden the lines. The A and B sites appear to be very similar
in all NMR properties such as T1 and T2G.

The doping changes the average electric field gradient at the Cu sites as well as the
average electric field gradient. Both increase linearly with doping. Haase and Shushkov have
utilized results from atomic spectroscopy to analyze the NMR quadrupole splitting in terms of
the hole content of the orbitals that are involved. They are able to determine the hole contents
nd and n p on the Cu and O and thus to determine the doping nd + 2n p − 1 as a function of Sr
concentration x . They find that for LSCO almost all the doped holes reside on the O.

5.8.2. One or Two Components

There are several issues with respect to La2−x Srx CuO4 (LSCO) that at this writing are
not resolved. The first is whether this system is a one- or two-component system.

The evidence in favor of a two-component system comes from several sources. John-
ston [58] and Nakano et al. [59] have shown that the spin magnetic susceptibility of LSCO
consists of two terms. The first, χ1(T ), is temperature dependent and reaches a maximum
value, χ1MAX, at a temperature TMAX. They show that χ1(T/TMAX)/χ1MAX obeys a scaling
law with temperature as the doping level is varied. The other term in the susceptibility, χ2(T ),
is temperature independent in the normal state, but varies with doping.

Figure 5.21 shows a plot of 63 K vs. 17 K from Haase [60] for optimally doped LSCO.
For a one-component system this should be a single straight line through the origin accord-
ing to Eq. (5.41). The linear region for large shifts is in the normal state. It is linear but, if
extended, does not go through the origin. Equation (5.39) describes the Knight shifts for a
two-component system. There are three susceptibilities, but they occur in only two ways:

χa = χdd + χpd
χb = χpd + χpp.

(5.73)

Thus if we consider χ1 and χ2 to be linear combinations of χa and χb we can account for
Haase’s data, however at this time we are not able to determine the composition of the linear
combination.
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Figure 5.21. 63 Kab vs. for optimally doped LSCO indicating the possible need for a two-component theory. For a
single-component theory, the data should fall on a single line through the origin [60].
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Walstedt, Shastry, and Cheong [61] have also challenged the one-band model based on
studies of the spin–lattice relaxation time of optimally doped LSCO. They find that 1/17T1T
of the planar oxygens increases with temperature, whereas calculations based on neutron data
predict that it should fall with temperature. On the other hand, 1/17T1T for the planar oxy-
gen is rather well fit, though not perfectly, by theoretical curves based on neutron data. In
another paper, Walstedt, Cheong, Sundstrom, and Greenblatt [62] show that the transfer hy-
perfine coupling constant, C , of the MMP theory is much smaller in the paramagnetic state
of the parent material, the antiferromagnet La2CuO4, than in LSCO although the usual MMP
assumption is that the hyperfine coupling coefficients are nearly the same in all materials. In-
deed, a fundamental number used in determining the size of the hyperfine coupling constants
is the size to the Cu hyperfine coupling in the antiferromagnetic state of the parent compounds
YBa2Cu3O6 and La2CuO4.

Gorkov [63] has analyzed the 63Cu T1 data from a number of cuprates. He finds that
after an appropriate vertical offset, all the 1/63T1 curves collapse onto the same T depen-
dence above their TC and below 300 K. In this region, he argues that the nuclear spin–lattice
relaxation is a sum of two parallel processes.

1
/

63T1 = 1
/

63T1(x)+ 1
/

63T̃1(T ). (5.74)

He conjectures that the doping dependent term is associated with the incommensurate nature
of the neutron scattering peaks. He attributes the temperature dependent term to the crossover
from the local regime to the dynamical regime. Thus one process arises from “stripe-like”
excitations and the other from a “universal” temperature dependent term. So he has a picture
of dynamical phase separation into coexisting metallic and incommensurate magnetic phases.

5.8.3. The Incommensurate State

Indeed the second difficulty with understanding LSCO is related to the fact that the
neutron scattering peaks of LSCO are slightly displaced from the (π/a, π/a) point, whereas
the peaks in YBCO7 occur at (π/a, π/a). As can be seen from Figure 5.7, the form factor
for the planar oxygens vanishes at the (π/a, π/a) point. If instead the fluctuations peak at
a different point, they make a much bigger contribution to the O relaxation rate. Barzykin,
Pines, and Thelen [64] and Zha, Barzykin, and Pines [65] discuss this problem.

For LSCO, the peaks occur at [(π ± δ)/a, π/a] and [π/a, (π ± δ)/a]. For optimally
doped LSCO, δδ = 0.245π.

63 R changes to

63 R = 1
2

[

1 + [Ac − 2B(1 + cos δ)]2

[Aab − 2B(1 + cos δ)]2

]

. (5.75)

The resulting relaxation rate ratio then should change from 3.7 to 4.5. In fact, it then changes to
2.3 according to Haase et al. [66]. The ratio of the Cu to O relaxation rates also changes since
the antiferromagnetic fluctuations now become prominent for the O. In the long correlation
length limit, the Cu/OT1 ratio becomes

63(1/T1)
17(1/T1)

= [Aab − 2B(1 + cos δ)]
2C2(1 − cos δ)

2
. (5.76)
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Figure 5.22. O spin–lattice relaxation (1/T1T ) vs. temperature for optimally doped LSCO, compared to two theo-
retical models: solid line assuming the spin fluctuation peak occurs at the wave vector given by the neutron diffraction
incommensurate peak, the dashed curve assuming the fluctuations peak at the commensurate, (π, π), point [36].

Figure 5.22 from Barzykin, Pines, and Thelen [36] compares various theoretical and experi-
mental results for O spin–lattice relaxation. It is evident that predictions based on the known
degree of incommensurability from neutrons are far from the experimental results.

One possible explanation [67] is that the fluctuations are commensurate spatially
except for regions of phase slip, much like McMillan’s concept of discommensurations [68]
for charge density waves. Independently, Phillips [69] has proposed a similar idea.

5.8.4. Spatial Modulation

Haase et al. [70–72] have discovered that the NMR properties of LSCO are spatially
modulated. The evidence is very clear that the modulation is large and short range, but to date
the exact form has not been established from NMR.

In simple materials such as copper metal or the alkali halides, the width of the central
transition (+1/2 → −1/2) is determined the dipolar interaction between neighboring nuclei,
perhaps augmented by the indirect coupling when it is sufficiently large. For optimally doped
LSCO with a strong applied field (8.3 T) parallel to the c-axis, the 63Cu central transition
width is 1.9 MHz for the A transition and 1.5 MHz for the B transition whereas the nuclear
spin–spin coupling, which can be characterized by 1/T2G, is of the order of 10 kHz [73–75].

Thus nuclear spin–spin coupling cannot explain this width. If the electron-spin suscep-
tibility were nonuniform owing to long range doping variations, the effect would not show up
in the linewidth since Ac+4B = 0. However, if the wavelength of Knight shift variation were
comparable to the lattice constant, such a variation would contribute to line width. This result
led Haase et al. to carry out a spin echo double resonance experiment in which they looked
at the echo at one site while probing the effect of tuning the frequency of a second pulse.
Figure 5.23 shows the data. The solid line is the normal 63Cu spin echo line shape. The filled
circles show the destruction of 63Cu intensity, inspected at various line positions, produced by
an 8 µs 65Cu π pulse (corresponding to a 125 kHz resolving power) applied at the 65Cu line
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Figure 5.23. Comparison of normal 63Cu spin echo line shape (solid curve) with 63Cu line shape obtained at
different 63Cu frequencies by spin echo double resonance in which π-pulses are applied at the center of the 65Cu
line. The fact that the 63Cu line shape is the same in both cases shows that at neighboring sites the Cu spins may have
very different frequencies, showing that the modulation is short wavelength. Data taken at 300 K [70].
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Figure 5.24. 17O lineshapes for optimally doped LSCO, showing the asymmetry about the central transition that
show that Knight shift and electric field gradient are modulated spatially coherently [76].

center, showing that neighboring Cu nuclei are typically far apart in frequency. Therefore, the
modulation is on the scale of the lattice constant.

Oxygen NMR data show that both the electric field gradient and the Knight shift are
modulated and that they are modulated in step (larger Knight shift goes with larger quadrupo-
lar coupling). This result is immediately evident from the 17O spectrum. Figure 5.24 shows
the data of Haase et al. [76] for optimally doped LSCO. The striking feature of the spectrum
is that the resonance lines to the left of the central transition are narrower and higher than
those on the right. If there were only a modulation of the quadrupolar coupling the spectral
pattern would be symmetric about the central transition, the central transition would not be
broadened, the outer two lines would be twice as broad as the inner pair. If only the Knight
shift were broadened, the pattern would be symmetric about the central transition, and all
five lines would have the same width. Haase et al. show that the spectrum can be completely
explained by assuming that for transition n(= 2, 1, 0,−1,−2) the resonance frequency obeys
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Figure 5.25. Temperature dependence of the hole density modulation vs. temperature deduced from 63Cu T1
measurements. Data, from top to bottom, for x = 0.16, 0.115, 0.07, 0.04 [77].

an equation
υn = (1 + K0)+ nυq,0 + (M + n R)h, (5.77)

where h is a parameter that characterizes the modulation and M and R parameters that de-
scribe the effect of modulation of h on the Knight shift and the electric field gradient. If one
assumes that h is distributed with some function f (h), then f gives one the line shape. In this
model, if one knows the shape of any one transition, one can calculate the shape of the other
four. Indeed the data satisfy this condition.

Since the average Knight shift and the average electric field gradient change with dop-
ing, it is logical to interpret these data as saying that there is a spatial variation of the doping.
If one uses this formula to describe the average frequency of the NMR lines (the first moment
of the spectrum), in a field of 8.3 T, R/M = 1. But to fit the line shapes, one finds that
R/M = 2, a result probably of the fact that the modulation is not of infinite wavelength.

Singer et al. [77] have studied 63Cu NQR in LSCO with doping, x , from 0.06 to 0.16.
These samples were grown using isotopically pure 63Cu. They find that the spin–lattice relax-
ation rate varies across the NQR line, but that at a given NQR frequency, the T1 is roughly
the same for all dopings that have absorption at that frequency. They therefore interpret the
data as saying that there is a charge variation within the sample, the size of which they can
estimate from the average change in 1/T1 with doping. Figure 5.25 shows the variation in hole
concentration deduced in this manner.

Figure 5.26 shows their T1 data. Both the A and B lines are evident, as well as the
variation of the B line with doping that gives solid proof that the B site arises from Cu sites
in which the nearest La is replaced by a Sr atom. They describe the situation as arising from
charge patches. In a complex calculation of electric field gradients and NQR line widths,
they argue that they can determine the approximate size of the patches and the charge excess
associated with the patch. They estimate the patch size as being greater than 3 nm.

A quantitative measure of the modulation can be found by calculating the second mo-
ment of the NMR line broadening. We introduce the spin operator σi (for Cu atoms at position
i) that measures the difference between Szi and its spatial average < Szi >. Then, utilizing
Eq. (5.40), we find for the second moments of the apical and planar Os and the planar Cu
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(5.78)

where the central Cu is at position labeled 0 and the neighbors on the +x,−y,−x,−y axes
are labeled 1, 2, 3, 4, respectively.

The ratio of C to A are obtained from comparing the temperature variation of the apical
to the planar 17O knight shifts. Thus, from the apical and planar oxygen second moments, one
can obtain 〈σ0σ1〉

/〈
σ 2

0
〉

. Combining these results with the second moment of the Cu central
transition, one can obtain

[〈
σ1σ2/σ

2
0
〉 + 2

〈
σ1σ3/σ

2
0
〉]

.
Figure 5.27 shows results from Haase et al. for 〈σ0σ1〉

/〈
σ 2

0
〉

for three separate dopings.
The value –1 corresponds to perfect antiferromagnetic order to the shift variations. We see
that even for the optimally doped material (x = 0.15), we approach this limit at low temper-
atures. The x = 0.1 doping has nearly antiferromagnetic lattice modulations even at room
temperatures, whereas the x = 0.2 doping remains rather far from this limit over the entire
temperature range.

5.8.5. The High Temperature Properties

Imai et al have studied 631/T1 [78] and 631/T2G [79] for undoped (Figure 5.28) and Sr
doped La2−x Srx CuO4 (Figure 5.29). Analysis of the results for the undoped parent material
La2CuO4 shows that it is well described by theories for the two-dimensional quantum Heisen-
berg antiferromagnet. The striking result of Figure 5.29 is that at high temperature, the T1s for
all dopings become nearly identical, showing that at high temperature the excitations in these
materials are basically those of the parent antiferromagnet.

5.8.6. The Low Temperature Properties: Wipeout

In 1995, Tranquada et al. [80] showed by neutron scattering that La1.6−x Nd0.4Srx CuO4
for x near to 1/8 exhibits charge stripe order for temperatures below 65 K, followed by spin
stripe order below 50 K. The Nd atoms stabilize the crystal structure into the low temperature
tetragonal (LTT) form and the doping near x = 1/8 was chosen to pin the stripes in a static
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configuration. It is therefore natural to ask whether the existence of such stripes shows up in
NMR studies. Several groups have carried out investigations.

Hunt et al. [81] studied 63Cu NMR in La1.875Ba0.125CuO4, La1.48Nd0.4Sr0.12CuO4,
La1.68Eu0.2Sr0.12CuO4 by NQR. (The Eu atoms differ from the Nd atoms in lacking a per-
manent magnetic moment.) Hunt et al. find dramatic intensity loss (termed “wipeout”) in the
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atures the relaxation behavior is very similar to that of the undoped material, hence is dominated by spin fluctua-
tions [78].

NQR signal on cooling that they associate with the formation of charge stripe because its onset
corresponding to the charge ordering temperature observed by neutrons. They report similar
effects for La2−x Srx CuO4 for x between 1/16th and 1/8th. Evidently, they attribute the signal
loss to electric quadrupole effects although they do not present a detailed mechanism. In a
second paper [82], they point out that fluctuations in the charge stripe order will lead to loss
of the NQR resonance. They also mention that the charge order turns on slow electron-spin
fluctuations that may also reduce the NQR signal intensity.

Curro et al. [83] studied the 63Cu and 139La resonances in La1.8−x Eu0.2Srx CuO4. Since
the La atoms are outside of the CuO2 planes, the coupling of the 139La nuclei is much weaker
than that of the 63Cu nuclei. Consequently, Curro et al. were able to observe the 139La res-
onance even at temperatures where the 63Cu signal was wiped out. From the 139La T1, they
showed that the Cu electron spins were fluctuating with a correlation time τC that obeyed a
law

τC = τ0 exp(Ea/kBT ). (5.79)

where Ea was distributed over a range comparable to its average value of the order of 80 K.
They found that this picture described data for the Eu doped samples with x = 0.15 and
0.015, and for pure LSCO with x = 0.014.

Further insight is obtained by electron-spin resonance (ESR). Kataev et al. [84,85] have
studied LSCO and Eu-doped LSCO by ESR. The technique consists of replacing about 1% of
the La atoms with Gd. The resulting Gd3+ ions have an electron spin of 7/2 and a g-value
of 2. There is an axial electric field splitting giving rise to a Hamiltonian, H , in the presence
of an applied magnetic field H0

H = D
[

S2
z − S(S + 1)/3

]
+ gµB H0 · S,

where D turns out to be about 0.28 cm−1. They observe a strong broadening of the ESR line
at low temperatures (below about 60 K for a sample with x = 0.1) that they attribute to effects
on the Gd T1 of “extremely slow antiferromagnetic dynamics.”

Spin glasses have been studied previously by NMR or NQR. For example, Chen and
Slichter [86] studied the 93Nb NQR resonance in iron-doped 2H-niobium diselenide. The
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The signal is smaller in the temperature range near 35 K owing to the wipeout phenomena, but is recovered at the two
lowest temperatures where the spin fluctuations to a rate less than the NQR linewidth [89].

93Nb spin of 9/2 gives several transitions for the NQR, the highest frequency one being the
9/2 to 7/2 transition at 10 MHz. They found a well-defined minimum in NQR intensity at the
spin glass temperature that they attribute to slowing down of the spin fluctuations.

The classic spin glass system is Cu doped with Mn. From studies at high temperatures
and high magnetic fields, the magnetic resonance of Cu atoms at the sites near to the magnetic
atom [87] for systems of low Mn content, were found. Utilizing these results, Alloul [88]
could predict the resonance frequency of the first neighbor Cu to an Mn atom at zero applied
field and at temperatures well below the spin glass temperature where the orientations of
the Mn magnetic moments were frozen. He successfully observed both the first and fourth
neighbors to the Mn in zero applied magnetic field at 1.25 K. Hunt et al. [89] performed
a similar experiment on La1.875Ba0.125CuO4 in which only the isotope 63Cu was present.
Figure 5.30 shows the Cu NQR signal as a function of temperature (The weak signal labeled
“B” comes from Cu atoms where the nearest La atom has been replaced by a Ba atom). The
signal nearly disappears at 35 K, but returns as one cools near 1 K. Hunt et al. made efforts to
fit the low temperature line shape using several stripe models, but find the best fit comes from
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a simple broad distribution of hyperfine fields. The results of several such model calculations
are shown in Figure 5.31.

Thus, NMR and ESR show that “stripe” phases have many of the characteristics of a
spin glass with spin fluctuations that are slow even on the NMR time scale at low temperatures.

5.9. Brief Review of EPR

Although the Cu2+ ion is a well-known EPR atom (a 3d9 configuration), and was one
of the first studied in the early days of EPR, for example in copper sulfate, initially no EPR
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signal was seen in the cuprate high TC materials. The reason was probably because of the
wide line width. So the alternative approach has been to study the cuprates by doping with
magnetic atoms such as Fe3+ or Mn2+ that might go in the CuO2 planes, or with atoms such
as Gd3+, Fe3+, or Mn2+ that dope between the planes. Of these Gd3+, Fe3+, and Mn2+ are
S-state ions (L = 0), and thus particularly good EPR candidates.

Alekseevski et al. [90] made one of the first successful studies of EPR in a cuprate,
studying the Gd EPR of GdBa2Cu3O6+x for a range of x . Although the Gd is present to
100%, the resonance can be seen although it is 1,000 gauss wide.

Jánossy et al. [91] studied YBa2Cu3O6+x with 0.001 of the Y atoms replaced by Gd. At
such a low concentration, mutual electron spin flips between Gd atoms are unlikely, making
the Gd an effective local probe. Various crystal field lines are resolved and exhibit structure
that reveals the spectra for various local orders of the chain O atoms as x was varied. In
another publication [92] with x = 0.76 (putting the sample in the pseudogap regime) they
showed that the Gd3+ frequency had a shift that displayed the pseudogap, having a tempera-
ture dependence identical to that of the 89Y NMR Knight shift. In another set of experiments,
Kataev et al. [93] studied stripe phenomena in La1.84−x Gd0.01Eu0.15.Srx CuO4, as we have
discussed.

Kochelaev et al. [94] used Mn2+ EPR to study the spin dynamics of Mn2+-doped
LSCO. They found bottle-necked behavior arising evidently because the Mn and Cu elec-
tron systems are strongly coupled by exchange. Shengelaya et al. [95] also studied Mn-doped
LSCO. For lightly doped material (x < 0.06), they found two lines at low temperatures
(T < 50 K), attributing the narrow line to hole-rich, metallic regions and the broad line to
hole-poor antiferromagnetic regions. The narrow line grows exponentially in intensity as the
temperature is lowered with an activation energy of about 460 K. In another paper [96], they
studied the effect of the O isotopic mass in the same material (Mn doped LSCO), changing the
O doping from 16O to 18O. For Sr doping of 0.06, they find that the 18O sample has a somewhat
broader line width at lower temperature than the sample made with 16O. The effect is largest
in the underdoped region and disappears in the overdoped region. They present an elegant
and sophisticated theory involving coupling of lattice distortion modes to the Dzyaloshinky–
Moriya type spin terms. They point out that the relevant modes are Jahn–Teller active
and are considered relevant to possible bipolaron formation. Thus, these experiments may
support an explanation of superconductivity based on the electron–lattice interaction through
the Jahn–Teller effect.
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6
Neutron Scattering Studies
of Antiferromagnetic Correlations
in Cuprates

John M. Tranquada

Neutron scattering studies have provided important information about the momentum and energy
dependence of magnetic excitations in cuprate superconductors. Of particular interest are the recent
indications of a universal magnetic excitation spectrum in hole-doped cuprates. That starting point pro-
vides motivation for reviewing the antiferromagnetic state of the parent insulators, and the destruction
of the ordered state by hole doping. The nature of spin correlations in stripe-ordered phases is discussed,
followed by a description of the doping and temperature dependence of magnetic correlations in super-
conducting cuprates. After describing the impact on the magnetic correlations of perturbations such as
an applied magnetic field or impurity substitution, a brief summary of work on electron-doped cuprates
is given. The chapter concludes with a summary of experimental trends and a discussion of theoretical
perspectives.

6.1. Introduction

Neutron scattering has played a major role in characterizing the nature and strength of
antiferromagnetic interactions and correlations in the cuprates. Following Anderson’s obser-
vation [1] that La2CuO4, the parent compound of the first high-temperature superconductor,
should be a correlated insulator, with moments of neighboring Cu2+ ions antialigned due to
the superexchange interaction, antiferromagnetic order was discovered in a neutron diffrac-
tion study of a polycrystalline sample [2]. When single-crystal samples became available,
inelastic studies of the spin waves determined the strength of the superexchange, J , as well
as weaker interactions, such as the coupling between CuO2 layers. The existence of strong
antiferromagnetic spin correlations above the Néel temperature, TN, has been demonstrated
and explained. Over time, the quality of such characterizations has improved considerably
with gradual evolution in the size and quality of samples and in experimental techniques.

Of course, what we are really interested in understanding are the optimally doped
cuprate superconductors. It took much longer to get a clear picture of the magnetic excita-
tions in these compounds, which should not be surprising given that there is no static mag-
netic order, the magnetic moments are small, and the bandwidth characterizing the magnetic
excitations is quite large. Nevertheless, we are finally at a point where a picture of univer-
sal behavior, for at least two families of cuprates, is beginning to emerge. Thus, it seems
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reasonable to start our story with recent results on the excitation spectrum in superconduct-
ing YBa2Cu3O6+x and La2−x Srx CuO4, and the nature of the spin gap that appears below the
superconducting transition temperature, Tc. (Note that these are hole-doped superconductors,
which is where most of the emphasis will be placed in this chapter.) An important result is
that this spectrum looks quite similar to that measured for La1.875Ba0.125CuO4, a compound
in which Tc is depressed toward zero and ordered charge and spin stripes are observed. The
nature of stripe order and its relevance will be discussed later.

Following the initial discussion of results for the superconductors in Section 6.2, one
can have a better appreciation for the antiferromagnetism of the parent insulators, presented
in Section 6.3. The destruction of antiferromagnetic order by hole doping is discussed in
Section 6.4. In Section 6.5, evidence for stripe order, and for other possible ordered states
competing with superconductivity, is considered. Section 6.6. discusses how the magnetic cor-
relations in superconducting cuprates evolve with hole-doping and with temperature. While
doping tends to destroy antiferromagnetic order, perturbations of the doped state can induce
static order, or modify the dynamics, and these effects are discussed in Section 6.7. A brief
description of work on electron-doped cuprates is given in Section 6.8. The chapter concludes
with a discussion, in Section 6.9, of experimental trends and theoretical perspectives on the
magnetic correlations in the cuprates. It should be noted that there is not space here for a
complete review of neutron studies of cuprates; some earlier reviews and different perspec-
tives appear in [3–8].

Before getting started, it is useful to first establish some notation. A general wave vector
Q = (h, k, l) is specified in units of the reciprocal lattice, (a∗, b∗, c∗) = (2π/a, 2π/b, 2π/c).
The CuO2 planes are approximately square, with a Cu–Cu distance of a ≈ b ∼ 3.8 Å. Anti-
ferromagnetic order of Cu moments (S = 1

2 ) in a single plane causes a doubling of the unit cell
and is characterized by the wave vector QAF = ( 1

2 ,
1
2 , 0), as indicate in Figure 6.1; however,

the relative ordering of the spins along the c-axis can cause the intensities of ( 1
2 ,

1
2 , L) super-

lattice peaks to have a strongly modulated structure factor as a function of L . For the magnetic
excitations, we will generally be interested in their dependence on Q2D = Q − ( 1

2 ,
1
2 , L)

associated with an individual CuO2 plane and ignoring the L dependence.
The magnetic scattering function measured with neutrons can be written as [9, 10]

S(Q, ω) =
∑

α,β

(
δα,β − QαQβ/Q2

)
Sαβ(Q, ω), (6.1)

where

Sαβ(Q, ω) = 1
2π

∫ ∞

−∞
dt e−iωt

∑

r
eiQ·r〈Sα0 (0)S

β
r (t)〉. (6.2)

Here Sβr (t) is the β (= x , y, z) component of the atomic spin at lattice site r and time t and
the angle brackets 〈. . .〉 denote an average over configurations. For inelastic scattering, it is
possible to relate S(Q, ω) to the imaginary part of the dynamical spin susceptibility, χ ′′(Q, ω)
via the fluctuation-dissipation theorem,

S(Q, ω) = χ ′′(Q, ω)
1 − e−h̄ω/kBT . (6.3)

Another useful quantity is the “local” susceptibility χ̃ ′′(ω), defined as

χ̃ ′′(ω) =
∫

dQ2D χ ′′(Q, ω). (6.4)
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Figure 6.1. (a) CuO2 plane, indicating positions of the Cu and O atoms and identifying the lattice parameters,
a and b. (b) Sketch of antiferromagnetic order of Cu moments, with filled (empty) circles representing up (down)
spins. Solid line indicates the chemical unit cell; dashed line denotes the magnetic unit cell. (c) Filled circles: Bragg
peak positions in reciprocal space corresponding to the chemical lattice. Empty circle: magnetic Bragg peak due to
antiferromagnetic order. Dashed line indicates the antiferromagnetic Brillouin zone.

Experimentally, the integral is generally not performed over the entire first Brillouin zone, but
rather over the measured region about QAF.

6.2. Magnetic Excitations in Hole-Doped Superconductors

6.2.1. Dispersion

Most of the neutron scattering studies of cuprate superconductors have focused on two
families: La2−x Srx CuO4 and YBa2Cu3O6+x . The simple reason for this is that these are the
only compounds for which large crystals have been available. For quite some time it appeared
that the magnetic spectra of these two families were distinct. In La2−x Srx CuO4, the distinctive
feature was incommensurate scattering, studied at low energies (<20 meV) [11–13], whereas
for YBa2Cu3O6+x the attention was focused on the commensurate scattering (“41-meV” or
“resonance” peak [14–18]) that grows in intensity (and shifts in energy [19]) as the temper-
ature is cooled below Tc. A resonance peak was also detected in Bi2Sr2CaCu2O8+δ [20–22]
and in Tl2Ba2CuO6+δ [23]. Considerable theoretical attention has been directed towards the
resonance peak and its significance (e.g., see [24–26]). The fact that no strongly temperature-
dependent excitation at QAF was ever observed in La2−x Srx CuO4 raised questions about the
role of magnetic excitations in cuprate superconductivity.

While considerable emphasis has been placed on the resonance peak, it has been clear
for quite some time that normal-state magnetic excitations in under-doped YBa2Cu3O6+x ex-
tend over a large energy range [30, 31], comparable to that in the antiferromagnetic parent
compound [32, 33]. The first clear signature that the excitations below the resonance are in-
commensurate, similar to the low-energy excitations in La2−x Srx CuO4 [11,13], was obtained
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by Mook et al. [70] for YBa2Cu3O6.6. That these incommensurate excitations disperse in-
wards toward the resonance energy was demonstrated in YBa2Cu3O6.7 by Arai et al. [35]
and in YBa2Cu3O6.85 by Bourges et al. [36]. More recent measurements have established a
common picture of the dispersion [27, 28, 37–39].

A schematic of the measured dispersion is shown in Figure 6.2, with the energy nor-
malized to that of the commensurate excitations, Er . (Note that the distribution of intensity
is not intended to accurately reflect experiment, especially in the superconducting state.) The
figure also indicates the Q dependence of magnetic scattering at fixed excitation energies. For
E < Er , measurements on crystallographically twinned crystals indicate a fourfold inten-
sity pattern, with maxima at incommensurate wave vectors displaced from QAF along [100]
and [010] directions. For E > Er , Hayden et al. [27] infer for their YBa2Cu3O6.6 sample a
fourfold structure that is rotated by 45◦ compared to low energies, whereas Stock et al. [28]
find an isotropic ring of scattering for YBa2Cu3O6.5. (These differences are minor compared
to the overall level of agreement.) The spectrum with a finite spin gap is applicable to mea-
surements below Tc; the gap fills in above Tc, where it also becomes difficult to resolve any
incommensurate features.

Figure 6.3 shows a direct comparison of measurements on La2−x Srx CuO4 [40] and
under-doped YBa2Cu3O6+x [27, 28], with energy scaled by the superexchange energy, J
(see Table 6.1 in Section 6.3). Also included in the figure are results for La2−x Bax CuO4 with
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Figure 6.2. Schematic plots intended to represent neutron scattering measurements of χ ′′(Q, ω) in superconducting
YBa2Cu3O6+x at T � Tc. Panels (a), (b), and (c) represent the distribution of scattering in reciprocal space about
QAF at relative energies indicated by the dashed lines in (d), for a twinned sample. (d) χ ′′ along Q = (h, 1

2 , L)
as a function of energy (normalized to the saddle-point energy, which is doping dependent). (a-d) modeled after
[27,28]. (e) Anisotropic distribution of scattering inferred for a detwinned, single-domain sample of YBa2Cu3O6.85,
after [29].
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Figure 6.3. Comparison of measured dispersions along Q2D = (0.5+h, 0.5) in La2−x Srx CuO4 with x = 0.10 (up
triangles) and 0.16 (down triangles) from Christensen et al. [40], in La1.875Ba0.125CuO4 (filled circles) from [42],
and in YBa2Cu3O6+x with x = 0.5 (squares) from Stock et al. [28] and 0.6 (diamonds) from Hayden et al. [27].
The energy has been scaled by the superexchange energy J for the appropriate parent insulator as given in Table 6.1.
For YBa2Cu3O6.6, the data at higher energies were fit along the [1,1] direction; the doubled symbols with bars
indicate two different ways of interpolating the results for the [1,0] direction. The upwardly dispersing dashed curve
corresponds to the result of Barnes and Riera [45] for a two-leg spin ladder, with an effective superexchange of ∼ 2

3 J ;
the downward curve is a guide to the eye.

x = 1
8 [41, 42], a compound of interest because of the occurrence of charge and spin stripe

order [43] (to be discussed later) and a strongly suppressed Tc. At the lowest energies, the spin
excitations rise out of incommensurate magnetic (two-dimensional) Bragg peaks. Besides the
presence of Bragg peaks, the magnetic scattering differs from that of YBa2Cu3O6+x in the
absence of a spin gap. The results for optimally doped La2−x Srx CuO4, with x = 0.16, inter-
polate between these cases, exhibiting the same inward dispersion of the excitations towards
QAF (measured up to 40 meV) and a spin gap of intermediate magnitude in the superconduct-
ing state [40]. The degree of similarity among the results shown in Figure 6.3 is striking, and
suggests that the magnetic excitation spectrum may be universal in the cuprates [40, 44].

For optimally doped YBa2Cu3O6+x , the measured dispersive excitations are restricted
to a narrower energy window, as shown in Figure 6.4. Nevertheless, excitations are observed to
disperse both downward and upward from Er , and the qualitative similarity with dispersions
at lower doping is obvious.

Anisotropy of the magnetic scattering as a function of Q2D can be measured in specially
detwinned samples of YBa2Cu3O6+x , as the crystal structure has an anisotropy associated
with the orientation of the CuO chains. (Note that it is a major experimental challenge to
detwin samples of sufficient volume to allow a successful inelastic neutron scattering study.)
An initial study of a partially detwinned sample of YBa2Cu3O6.6 by Mook et al. [46] demon-
strated that, for the incommensurate scattering at an energy corresponding to 70% of the sad-
dle point, the intensity is quite anisotropic, with maxima along the a∗ direction (perpendicular
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Figure 6.4. Comparison of measured dispersions along Q2D = (0.5 + h, 0.5 + h) in the superconducting state of
YBa2Cu3O6+x with x = 0.6 (diamonds) from Hayden et al. [27] and 0.85 (squares) from Pailhès et al. [37]. The solid
lines represent the model dispersion (and variation in dispersion) compatible with measurements on YBa2Cu3O6.95
from Reznik et al. [38].

to the orientation of the CuO chains). A recent study of an array of highly detwinned crys-
tals of YBa2Cu3O6.85 by Hinkov et al. [29] found substantial anisotropy in the peak scattered
intensity for an energy of 85% of the saddle point, but also demonstrated that scattered inten-
sity at that energy forms a circle about QAF [see Figure 6.2(e)]. Measurements on a partially
detwinned sample of YBa2Cu3O6.5 by Stock et al. [28, 47] suggest a strong anisotropy in the
scattered intensity at 0.36Er , but essentially perfect isotropy for E > Er .

6.2.2. Spin Gap and “Resonance” Peak

For optimally doped cuprates, the most dramatic change in the magnetic scattering with
temperature is the opening of a spin gap, with redistribution of spectral weight from below to
above the gap. A clear example of this has been presented recently by Christensen et al. [40]
for La2−x Srx CuO4 with x = 0.16; their results are shown in Figure 6.5. For the energy range
shown, the scattering is incommensurate in Q, with the dispersion indicated in Figure 6.3. In
the normal state, the amplitude of χ ′′ heads to zero only at ω = 0; in the superconducting
state, weight is removed from below a spin gap energy of 
s ≈ 8 meV, and shifted to energies
just above 
s. This is apparent both for the plot of the peak amplitude of χ ′′ in Figure 6.5(a),
and for the Q-integrated χ ′′ in (b); within the experimental uncertainty, the spectral weight
below 40 meV is conserved on cooling through Tc [40]. Another important feature of the spin
gap is that its magnitude is independent of Q [48]. This is of particular interest because it is
inconsistent with a weak-coupling prediction of χ ′′ for a d-wave superconductor, assuming
that the spin response comes from quasiparticles [49].

The behavior is similar near optimal doping in YBa2Cu3O6+x [17, 36–38], with the
difference being that the spin gap energy of ∼33 meV is much closer to Er = 41 meV. The
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Figure 6.5. (a) The fitted peak intensity of χ ′′(Qδ, ω) (where Qδ is the peak position) for La2−x Srx CuO4 with
x = 0.16. (b) The local susceptibility, χ̃ ′′(ω). Filled symbols: T < Tc; open symbols: T > Tc. Results are a
combination of data from time-of-flight measurements (squares) and triple-axis measurements (diamonds). Lines are
guides to the eye. From Christensen et al. [40].

strongest intensity enhancement below Tc occurs at Er , where χ ′′ is peaked at QAF; however,
there is also enhanced intensity at energies a bit below and above Er , where χ ′′ is incommen-
surate [36, 37]. The spin gap 
s decreases and broadens with underdoping, so that the region
over which χ ′′ ≈ 0 is no more than a few meV for YBa2Cu3O6.5 [30, 39, 47].

Besides the temperature dependence, there is also a similar behavior of the enhanced in-
tensity for these two cuprate families in response to an applied magnetic field. As the cuprates
are type-II superconductors with a very small lower critical field, an applied magnetic field
can enter a sample as an array of vortices. Dai et al. [50] showed that application of a mag-
netic field of 6.8 T along the c-axis of YBa2Cu3O6.6 at T � Tc caused a reduction of the
intensity at Er by ∼ 30%. A study of La2−x Srx CuO4 with x = 0.18 found that application of
a 10-T field along the c-axis caused a reduction of the intensity maximum at 9 meV of about
25% (with an increase in Q width) and a shift of some weight into the spin gap [51]. The
field-induced increase of weight within the spin gap of La2−x Srx CuO4 (x = 0.163) was first
observed by Lake et al. [52].

By focusing on 
s rather than Er , it is possible to identify a correlation between mag-
netic excitations and Tc that applies to a variety of cuprates. Fig. 6.6 shows a plot of Tc as a
function of the spin-gap energy for several different cuprates near optimal doping. This trend
makes clear that the magnetic excitations are quite sensitive to the superconductivity, but, by
itself, it does not resolve the issues of whether or how magnetic correlations may be involved
in the pairing mechanism.

6.2.3. Discussion

From the results presented above, it now appears that there may be a universal magnetic
excitation spectrum for the cuprates. On entering the superconducting state, a gap in the mag-
netic spectrum develops, with spectral weight redistributed from below to above the gap. The
magnitude of the spin gap is correlated with Tc.
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A long-standing question concerns the role of magnetic excitations in the mechanism
of high-temperature superconductivity, and some varying perspectives are presented in later
chapters of this book. An underlying issue concerns the nature of the magnetic excitations
themselves. Given that La2−x Srx CuO4 and YBa2Cu3O6+x exhibit antiferromagnetically or-
dered phases when the hole-doping of the CuO2 planes goes to zero, one approach is to
look for a connection between the magnetic correlations in the superconducting and in the
correlated-insulator phases. On the other hand, the magnetic response of common metallic
systems (such as chromium) is tied to the low-energy excitations of electrons from filled
to empty states, across the Fermi surface. This motivates attempts to interpret the magnetic
excitations in terms of electron–hole excitations. It is not clear that these contrasting ap-
proaches can be reconciled with one another [53], but, in any case, there are presently no
consensual criteria for selecting one approach over another.

An experimentalist’s approach is to consider the correlations in the superconducting
cuprates in the context of related systems. Thus, in the following sections we consider exper-
imental results for antiferromagnetic cuprates, other doped transition-metal-oxide systems,
perturbations to the superconducting phase, and the doping dependence of the magnetic cor-
relations in the superconductors. A comparison of theoretical approaches is better discussed
within the full context of experimental results.

6.3. Antiferromagnetism in the Parent Insulators

6.3.1. Antiferromagnetic Order

In the parent insulators, the magnetic moments of the copper atoms order in a 3D Néel
structure. Powder neutron diffraction studies first demonstrated this for La2CuO4 [2], and
later for YBa2Cu3O6+x [54]. The magnetic moments tend to lie nearly parallel to the CuO2
planes. The details of the magnetic structures are tied to the crystal structures, so we will have
to consider these briefly.

The crystal structure of La2CuO4 is presented in Figure 6.7. The CuO2 planes are
stacked in a body-centered fashion, so that the unit cell contains two layers. Below 550 K
each CuO6 octahedron rotates about a [110] axis of the high-temperature tetragonal cell.
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Figure 6.7. Left: crystal structure of La2CuO4. Arrows indicate orientation of magnetic moments on Cu sites in the
antiferromagnetic state. From Lee et al. [55]. Right: Magnetic structure of YBa2Cu3O6. Circles: Cu atoms; lines:
paths bridged by oxygen. Filled and empty circles represent Cu2+ sites with opposite spin orientations; hatched
circles denote nonmagnetic Cu1+ sites. After Tranquada et al. [56].

Neighboring octahedra within a plane rotate in opposite directions, causing a doubling of
the unit cell volume and a change to orthorhombic symmetry, with the aO and bO axes ro-
tated by 45◦ with respect to the Cu–O bond directions. In the orthorhombic coordinates, the
octahedral tilts are along the bO direction (but bO > aO, contrary to naive expectations).

In the antiferromagnetic phase of La2CuO4, the spins point along the bO-axis, and they
have the stacking sequence shown in Figure 6.7 [2,57]. As the octahedral tilts break the tetrag-
onal symmetry of the planes, they allow spin–orbit effects, in the form of Dzyalozhinsky–
Moriya (DM) antisymmetric exchange, to cause a slight canting of the spins along the c-axis.
This canting is in opposite directions for neighboring planes, resulting in no bulk moment,
but a modest magnetic field can flip the spins in half of the planes, yielding a weakly fer-
romagnetic state [58]. The tendency to cant in the paramagnetic state above TN leads to
a ferromagnetic-like susceptibility at high temperatures and a cusp at TN [59]. Studies of
quasi-1D cuprates have made it clear that the DM (and additional) interactions are quite com-
mon [60]; however, the tetragonal CuO2 planes of other layered cuprate antiferromagnets
cause the effects of the DM interaction to cancel out, so that there is no canting [61, 62].

In the early diffraction studies, the La2CuO4 powder samples contained some excess
oxygen and the first crystals had contamination from flux or the crucible, thus resulting in
a reduced ordering temperature. (It is now known that excess oxygen, in sufficient quantity,
can segregate to form superconducting phases [63].) It was eventually found that by properly
annealing a crystal one can obtain a sample with TN = 325 K [64]. The ordered magnetic mo-
ment is also sensitive to impurity effects. In a study of single crystals with different annealing
treatments, Yamada et al. [65] found that the ordered moment is correlated with TN, with a
maximum Cu moment of 0.60(5) µB [apparently determined from the intensity of the (100)
magnetic reflection alone].
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Table 6.1. Compilation of some neutron scattering results for a number of layered cuprate
antiferromagnets. mCu is the average ordered moment per Cu atom at T � TN. The superexchange

energy J corresponds to the value obtained from the spin wave velocity after correction for the
quantum-renormalization factor Zc = 1.18. For crystal symmetry, O = orthorhombic, T = tetragonal.

Compound TN mCu J Crystal Layers Refs.
(K) (µB) (meV) symmetry per cell

La2CuO4 325(2) 0.60(5) 146(4) O 1 [64, 65, 68]
Sr2CuO2Cl2 256(2) 0.34(4) 125(6) T 1 [69–71]
Ca2CuO2Cl2 247(5) 0.25(10) T 1 [72]
Nd2CuO4 276(1) 0.46(5) 155(3) T 1 [73–76]
Pr2CuO4 284(1) 0.40(2) 130(13) T 1 [73, 77]
YBa2Cu3O6.1 410(1) 0.55(3) 106(7) T 2 [32, 78]
TlBa2YCu2O7 >350 0.52(8) T 2 [79]
Ca0.85Sr0.15CuO2 537(5) 0.51(5) T ∞ [80]

The magnetic coupling between layers in La2CuO4 is quite weak because each Cu sees
two up spins and two down spins at nearly the same distance in a neighboring layer. The
small orthorhombic distortion of the lattice removes any true frustration, resulting in a small
but finite coupling. There are, however, several other cuprate antiferromagnets with a similar
centered stacking of layers, but with tetragonal symmetry (see Table 6.1). Yildirim et al. [66]
showed that the long-range order (including spin directions) can be understood when one takes
into account zero-point spin fluctuations, together with the proper exchange anisotropies [67].

The parent compounds of the electron-doped superconductors, Nd2CuO4 and Pr2CuO4,
have somewhat more complicated magnetic structures. Nd moments and induced moments on
Pr couple to the order in the CuO2 planes, resulting in noncollinear magnetic structures and
spin reorientation transitions as a function of temperature; these are described in the review
by Lynn and Skanthakumar [75]. The magnetic structures and transitions have been explained
by Sachidanandam et al. [81] by taking account of the single-ion anisotropy and crystal-field
effects for the rare-earth ions. Further discussion is given by Petitgrand et al. [82].

The crystal structure of YBa2Cu3O6+x contains pairs of CuO2 layers (bilayers). There
is also a third layer of Cu atoms, but in YBa2Cu3O6 these are nonmagnetic Cu1+ ions. (Added
oxygen goes into this layer, forming the CuO chains of YBa2Cu3O7.) The magnetic structure
of YBa2Cu3O6 is indicated in Figure 6.7. Because of the relative antiferromagnetic ordering
of the bilayers, together with a spacing that is not determined by symmetry, there is a structure
factor for the magnetic Bragg peaks that depends on Qz . This structure factor also affects the
spin-wave intensities, as will be discussed.

It is not possible to determine the spin direction from zero-field diffraction measure-
ments due to the tetragonal symmetry of the lattice and inevitable twinning of the magnetic
domains. Nevertheless, Burlet et al. [83] were able to determine the spin direction by studying
the impact of a magnetic field applied along a [1,−1, 0] direction of a YBa2Cu3O6.05 single
crystal. They found that in zero field, the spins must lie along [100] or [010] directions (par-
allel to the Cu–O bonds), and that the applied field rotates them toward [110]. This result has
been confirmed by electron-spin resonance studies of YBa2Cu3O6+x with a small amount of
Gd substituted for Y [84].

A complication in studies of magnetic order involving some of the first crystals of
YBa2Cu3O6+x arose from inadvertent partial substitution of Al ions onto the Cu(1) (“chain”)
site. The Al presumably came from the use of crucibles made of Al2O3. Kadowaki et al [85],
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performing one of the first single-crystal diffraction studies on a YBa2Cu3O6+x sample with
TN of 405 K, found that below 40 K a new set of superlattice peaks appeared, indicating a
doubling of the magnetic unit cell along the c-axis. It was later demonstrated convincingly,
by comparing pure and Al-doped crystals, that the low-temperature doubling of the magnetic
period only occurs in crystals with Al [78,86]. A model explaining how the presence of Al on
Cu chain sites can change the magnetic order was developed by Andersen and Uimin [87].

To evaluate the ordered magnetic moment, it is necessary to have knowledge of the
magnetic form factor. In all of the early studies of antiferromagnetic order in cuprates it was
assumed that the spin-density on a Cu ion is spherical; however, this assumption is far from
being correct. The magnetic moment results from the half-filled 3dx2−y2 orbital, which de-
viates substantially from sphericity. The proper, anisotropic form factor was identified by
Shamoto et al. [88] and shown to give an improved description of magnetic Bragg intensities
for YBa2Cu3O6.15. An even better measurement of magnetic Bragg peaks was done on a small
crystal of YBa2Cu3O6.10 by Casalta et al. [78]. They obtained a Cu moment of 0.55(3)µB.
Use of the proper form factor is important for properly evaluating the magnetic moment, as
there is always a gap between Q = 0 (where the magnitude of the form factor is defined to
be 1) and the Q value of the first magnetic Bragg peak. It does not appear that anyone has
gone back to reevaluate the magnetic diffraction data on other cuprates, such as La2CuO4 or
Sr2CuO2Cl2 using the anisotropic form factor.

The maximum observed Cu moments are consistent with a large reduction due to zero-
point spin fluctuations as predicted by spin-wave theory. The moment m is equal to g〈S〉µB,
where a typical value of the gyromagnetic ratio g is 2.1. Without zero-point fluctuations,
one would expect m ≈ 1.1µB. Linear spin-wave theory predicts 〈S〉 = 0.303 [89], giving
m ≈ 0.64µB, a bit more than the largest observed moments. Further reductions can occur due
to hybridization effects [90, 91].

The ordered moments of the oxy-chlorides listed in Table 6.1 seem surprisingly small.
While this might be due to hybridization effects, it is interesting to note that there is a
correlation between mCu and TN for the first five antiferromagnets in the table, which all
share a similar body-centered stacking of the CuO2 planes. The correlation is illustrated in
Figure 6.8. The ratio TN/J is expected to be sensitive to the interlayer exchange J ′ [92], and
J ′ varies substantially among these compounds; however, I am not aware of any predicted de-
pendence of mCu on J ′. A correlation between mCu and TN/J has been reported for quasi-1D
antiferromagnets, but such a correlation is expected in that case [93].

6.3.2. Spin Waves

The starting point for considering magnetic interactions in the cuprates is the
Heisenberg hamiltonian

H = J
∑

〈i, j〉
Si · S j , (6.5)

where 〈i, j〉 denotes all nearest-neighbor pairs, each included once. This hamiltonian can be
derived in second-order perturbation from a Hubbard model for a single, half-filled band of
electrons. Such a model includes a nearest-neighbor hopping energy t and the Coulomb re-
pulsion energy U for two electrons on the same site; in terms of these parameters, J = 4t2/U
[94]. Spin-wave theory can be applied to the Heisenberg hamiltonian to calculate the disper-
sion of spin fluctuations about QAF [95]. At low energies the spin waves disperse linearly with
q = Q − QAF (see Figure 6.9), having a velocity c = √

8SZc Ja/h̄, where Zc ≈ 1.18 [96]
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Figure 6.8. Ordered magnetic moment per Cu atom vs. TN for the first five compounds in Table 6.1, all of which
have a similar body-centered stacking of CuO2 layers.

is a quantum-renormalization factor. Thus, by measuring the spin-wave velocity, one can
determine J .

Spin-wave measurements have been performed for a number of cuprates, and some
results for J are listed in Table 6.1. (Complementary measurements of J can be obtained
by two-magnon Raman scattering [97].) To calculate the values of J from spectroscopically
determined parameters, one must consider at least a three-band Hubbard model [98]. Recent
ab initio cluster calculations [99, 100] have been able to achieve reasonable agreement with
experiment. While the magnitude of J in layered cuprates is rather large, it is not extreme; a
value of J = 226(12)meV has been measured for Cu–O chains in SrCuO2 [101].

To describe the experimental dispersion curves in greater detail, one must add more
terms to the spin hamiltonian. For example, in a tour de force experiment, Coldea et al. [68]
have measured the dispersion of spin waves in La2CuO4 along high-symmetry directions
of the 2D Brillouin zone, as shown in Figure 6.9. The observed dispersion along the zone
boundary, between ( 1

2 ,0) and ( 3
4 , 1

4 ), is not predicted by the simple Heisenberg model. To
describe this, they consider the additional terms that appear when the perturbation expansion
for the single-band Hubbard model is extended to fourth order. The most important new term
involves four-spin cyclic exchange about a plaquette of four Cu sites [102–104]. Coldea and
coworkers were able to fit the data quite well with the added parameters (see lines through
data points in Figure 6.9a), obtaining, at 10 K, J = 146(4) meV and a cyclic exchange energy
Jc = 61(8)meV [68]. (Superexchange terms coupling sites separated by two hops are finite
but negligible.)

If, instead of expanding to higher order, one extends the Hubbard model to include
hopping between next-nearest-neighbor Cu sites, one can calculate a superexchange term J ′
between next-nearest neighbors that is on the order of 10% of J [105, 106]. It turns out,
however, that fitting the measured dispersion with only J and J ′ requires that J ′ correspond
to a ferromagnetic interaction [68], which is inconsistent with the model predictions.

In YBa2Cu3O6+x , the effective exchange coupling between Cu moments in nearest-
neighbor layers is substantial. Its effect is to split the spin waves into acoustic and optic
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Figure 6.9. (a) Spin-wave dispersion in La2CuO4 along high-symmetry directions in the 2D Brillouin zone, as
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(b) Spin-wave intensity vs. wave vector. Line is prediction of linear spin-wave theory. From Coldea et al. [68].

branches, having odd and even symmetry, respectively, with respect to the bilayers. The
structure factors for these excitations are [107]

gac = sin(πzl), (6.6)
gop = cos(πzl), (6.7)

where z = dCu−Cu/c is the relative spacing between Cu moments along the c-axis within a
bilayer (dCu−Cu ≈ 3.285 Å [108]); the intensity of the spin-wave scattering is proportional to
g2. An example of the intensity modulation due to the acoustic-mode structure factor in the
antiferromagnetic state is indicated by the filled circles in Figure 6.10.

The energy gap for the optical magnons has been measured to be approximately 70 meV
[32, 33]. Experimental results for the spin wave dispersion and the spectral weight are shown
in Figure 6.11. The magnitude of the gap indicates that the intrabilayer exchange is 11(2) meV
[32, 33].
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At low energies, there are other terms that need to be considered. There need to be
anisotropies, with associated spin-wave gaps, in order to fix the spin direction; however, an
atom with S = 1

2 cannot have single-ion anisotropy. Instead, the anisotropy is associated with
the nearest-neighbor superexchange interaction. Consider a pair of nearest-neighbor spins, Si
and S j , within a CuO2 plane, with each site having tetragonal symmetry. The Heisenberg
Hamiltonian for this pair can be written

Hpair = J‖S‖
i S‖

j + J⊥S⊥
i S⊥

j + Jz Sz
i Sz

j , (6.8)



Neutron Scattering Studies 271

where ‖ and ⊥ denote directions parallel and perpendicular to the bond within the plane,
and z is the out-of-plane direction. Yildirim et al. [67] showed that the anisotropy can be
explained by taking into account both the spin–orbit and Coulomb exchange interactions.
To discuss the anisotropies, it is convenient to define the quantities 
J ≡ Jav − Jz , where
Jav ≡ (J‖ + J⊥)/2, and δ Jin ≡ J‖ − J⊥ [66]. For the cuprates, Jav � 
J > δ Jin > 0. The
out-of-plane anisotropy, αXY = 
J/Jav, causes the spins to lie, on average, in the x–y plane,
and results in a spin-wave gap for out-of-plane fluctuations. The in-plane anisotropy δ Jin/Jav,
contributing through the quantum zero-point energy [66, 109], tends to favor alignment of
the spins parallel to a bond direction, and causes the in-plane spin-wave mode to have a
gap. The effective coupling between planes (which can involve contributions from several
interactions [66]) leads to (weak) dispersion along Qz .

For stoichiometric La2CuO4, the out-of-plane spin gap is 5.5(5) meV, corresponding to
αXY = 1.5 × 10−4 [110]. The in-plane gap of 2.8(5) meV has a contribution from anisotropic
exchange of the Dzyaloshinsky–Moriya type [111, 112], as well as from δ Jin. No dispersion
along Qz has been reported.

For antiferromagnetic YBa2Cu3O6+x , an out-of-plane gap of about 5 meV has been
observed [107, 113, 114], indicating an easy-plane anisotropy similar to that in La2CuO4.
No in-plane gap has been resolved; however, the in-plane mode shows a dispersion of about
3 meV along Qz [107, 113, 114]. The latter dispersion is controlled by the effective exchange
between Cu moments in neighboring bilayers through the nonmagnetic Cu(1) sites, which is
on the order of 10−4J .

6.3.3. Spin Dynamics at T > TN

That strong 2D spin correlations survive in the CuO2 planes for T > TN initially came
as a surprise [115]. Such behavior was certainly uncommon at that point. Detailed studies have
since been performed measuring the instantaneous spin correlation length ξ as a function
of temperature in La2CuO4 [116] and in Sr2CuO2Cl2 [70, 117]. The correlation length is
obtained using an experimental trick to integrate the inelastic scattering over excitation energy,
and using the formula

S(q2D) =
∫

dω S(q2D, ω) = S(0)
1 + q2

2Dξ
2
. (6.9)

Here, q2D is the momentum-transfer component parallel to the planes, and the scattering is
assumed to be independent of momentum transfer perpendicular to the planes. (The experi-
mental energy integration is imperfect, but, by proper choice of incident neutron energy, does
capture most of the critical scattering.)

To theoretically analyze the behavior of the correlation length, Chakravarty, Halperin,
and Nelson [118] evaluated the 2D quantum nonlinear σ model using renormalization group
techniques; their results were later extended to a higher-order approximation by Hasenfratz
and Niedermayer [119]. The essential result is that

ξ/a ∼ e2πρs/T , (6.10)

where the spin stiffness ρs is proportional to J (see [116] for a thorough discussion). The
experimental results are in excellent agreement with theory, with essentially no adjustable
parameters. The unusual feature of ξ(T ) is the exponential, rather than algebraic, dependence
on temperature; nevertheless, note that it is consistent with achieving long-range order at
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T = 0. The robustness of the experimentally observed spin correlations is due to the large
value of J , comparable to 1,500 K, and the weak interlayer exchange, J ′. The 3D ordering
temperature can be estimated as [120]

kTN ≈ J ′
(

m
m0

)2 (
ξ

a

)2

, (6.11)

where m/m0 = 0.6 is the reduction of the ordered moment due to quantum fluctuations.
Because of the small J ′, the correlation length can reach the order of 100a before ordering
occurs [116].

Although Sr2CuO2Cl2 has essentially the same structure as La2CuO4, its tetragonal
symmetry leads one to expect, classically, that the net interlayer exchange should be zero;
however, an analysis by Yildirim et al. [66] has shown that a finite interaction of appropriate
size results when quantum zero-point energy is taken into account. Because of its relatively
low TN of 257 K, it has been possible to detect in Sr2CuO2Cl2 a crossover to XY-like behavior
about 30 K above TN, as reported in a 35Cl NMR study [121]. This behavior results from the
small easy-plane exchange anisotropy common to the layered cuprates [122]. Using neutrons
to study the same material, it was possible to show that the characteristic fluctuation rate in
the paramagnetic state follows the behavior 	 = ω0 ∼ ξ−z with z = 1.0(1) [123], consistent
with dynamic scaling theory for the 2D Heisenberg antiferromagnet [124].

There has been less work done on the paramagnetic phase of YBa2Cu3O6+x , as the
inelastic structure factor, Eq. (6.6), complicates the experimental trick for energy integration.
There are also complications to studying YBa2Cu3O6+x samples at elevated temperatures, as
oxygen can easily diffuse into and out of crystals as one heats much above room temperature.
In any case, Figure 6.10 shows that the bilayers remain correlated at T > TN [107].

6.4. Destruction of Antiferromagnetic Order by Hole Doping

The long-range antiferromagnetic order of La2CuO4 is completely destroyed when 2%
of Sr (measured relative to Cu concentration) is doped into the system [125]. Adding holes
effectively reduces the number of Cu spins, so one might consider whether the reduction
of order is due to dilution of the magnetic lattice. For comparison, an extensive study of
magnetic dilution has been performed by Vajk et al. [126] on La2Cu1−z(Zn,Mg)zO4, where Cu
is substituted by nonmagnetic Zn and/or Mg. They found that long-range antiferromagnetic
order was lost at the classical 2D percolation limit of z ≈ 41%. Thus, holes destroy magnetic
order an order of magnitude more rapidly than does simple magnetic dilution.

The reduction of the Néel temperature at small but finite doping is accompanied by a
strong depression of the antiferromagnetic Bragg intensities, together with an anomalous loss
of intensity at T < 30 K [127]. Matsuda et al. [127] showed recently that the latter behavior
is correlated with the onset of incommensurate magnetic diffuse scattering below 30 K. In
tetragonal coordinates, this scattering is peaked at ( 1

2 ,
1
2 , 0)± 1√

2
(ε, ε, 0). To be more accurate,

it is necessary to note that the crystal structure is actually orthorhombic, with the unit-cell axes
rotated by 45◦; the magnetic modulation is uniquely oriented along the b∗

O direction (see inset
of Figure 6.12c).

The doping dependence of the transition temperature, ordered moments, and incom-
mensurability are shown in Figure 6.12. The facts that (a) the volume fraction of the
incommensurate phase grows with x for x ≤ 0.02 (inset of Figure 6.12b) and (b) the
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Figure 6.12. Results for lightly doped La2−x Srx CuO4. (a) Magnetic transition temperatures for commensurate (tri-
angles) and incommensurate (circles) order vs. hole concentration. (b) Commensurate ordered moment at T = 30 K
and incommensurate frozen moment at T = 4 K vs. hole concentration. Inset shows estimated volume fraction of
incommensurate phase. (c) Variation of the incommensurability ε vs. hole concentration; δ = ε/

√
2. Solid and bro-

ken lines correspond to ε = x and δ = x , respectively. Inset shows the positions of the incommensurate superlattice
peaks in reciprocal space. From Matsuda et al. [127], including results from [128–131].

incommensurability does not change for x ≤ 0.02 strongly suggest that an electronic phase
separation occurs [127]. Thus, it appears that commensurate antiferromagnetic order is not
compatible with hole doping. The disordered potential due to the Sr dopants may be responsi-
ble for the finite range of doping over which the Néel state appears to survive. The diagonally
modulated, incommensurate spin-density-wave phase induced by doping survives up to the
onset of superconductivity at x ≈ 0.06 [131], and it corresponds to what was originally char-
acterized as the “spin-glass” phase, based on bulk susceptibility studies [132, 133].

Further evidence for electronic phase separation comes from studies of oxygen-doped
La2CuO4+δ (for a review, see [134]). The oxygen interstitials are mobile, in contrast to the
quenched disorder of Sr substitution, and so they can move to screen discrete electronic
phases. For δ < 0.06, a temperature-dependent phase separation is observed between an
oxygen-poor antiferromagnetic phase and an oxygen-rich superconducting phase [135, 136];
further miscibility gaps are observed between superconducting phases at higher oxygen con-
tent [63]. A sample with δ ≈ 0.05 and quenched disorder (due to electrochemical oxygenation
in molten salt) exhibited reduced Néel and superconducting transition temperatures [137]. The
interesting feature in this case was the observation of a decrease in the antiferromagnetic order
with the onset of the superconductivity, suggesting a competition between the two phases.

In YBa2Cu3O6+x the situation is somewhat more complicated, as the doping of the
planes is coupled to the tetragonal–orthorhombic (T–O) transition [138–140] that occurs in
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the vicinity of x = 0.3–0.4, depending on the degree of annealing. In the tetragonal phase,
an isolated oxygen atom entering the “chain” layer simply converts neighboring Cu(1) sites
from Cu1+ to Cu2+; holes are created when chain segments form [54, 141]. The transfer of
holes from the chains to the planes must be screened by displacements in the Ba–O layer that
sits between, and a large jump in this screening occurs at the T–O transition [138–140]. Thus,
one tends to find a discontinuous jump from a very small planar hole density in the antifer-
romagnetic phase just below the T–O transition to a significant density (∼0.05 holes/Cu) just
above.

Antiferromagnetic order has been observed throughout the tetragonal phase of
YBa2Cu3O6+x , with TN decreasing rapidly as the T–O transition (at x ≈ 0.4) is approached
[54,142]. A study of a set of carefully annealed powder samples, for which the T–O transition
occurred at x ≈ 0.2, indicated antiferromagnetic order in the orthorhombic phase at x = 0.22
and 0.24 with TN = 50(15) and 20(10) K, respectively. For tetragonal crystals with x ∼ 0.3, a
drop in the antiferromagnetic Bragg intensity has been observed below ≈ 30 K [107, 142]; as
the Bragg intensity decreased, an increase in diffuse intensity along the 2D antiferromagnetic
rod (with an acoustic bilayer structure factor) was found. This latter behavior might be related
to the apparent phase separation in La2−x Srx CuO4 with x < 0.02 [127] discussed above.

The best study of a single-crystal sample just on the orthorhombic side of the T–O
boundary is on YBa2Cu3O6.35, a sample with Tc = 18 K [143]. Quasielastic diffuse scattering
is observed at the antiferromagnetic superlattice positions. The peak intensity of this central
mode grows on cooling below ∼30 K, but the energy width decreases below Tc. These results
indicate there is no coexistence of long-range antiferromagnetic order in the superconducting
phase. The spin–spin correlation length is short (∼8 unit cells), suggesting segregation of
hole-poor and hole-rich regions [143].

A possibly related response to doping is observed in the bilayer system La2−x
(Sr,Ca)x CaCu2O6+δ . Studies of crystals with x = 0.1–0.2 reveal commensurate short-range
antiferromagnetic order that survives to temperatures > 100 K [144, 145], despite evidence
from optical conductivity measurements for a substantial hole density in the CuO2 planes
[146]. Thus, there seems to be a local phase separation between hole-rich regions and antifer-
romagnetic clusters having an in-plane diameter on the order of 10 lattice spacings.

6.5. Stripe Order and Other Competing States

6.5.1. Charge and Spin Stripe Order in Nickelates

To understand cuprates, it seems sensible to consider the behavior of closely related
model systems. One such system is La2−x Srx NiO4+δ , a material that is isostructural with
La2−x Srx CuO4. It is obtained by replacing S = 1

2 Cu2+ ions (Z = 29) with S = 1 Ni2+
ions (Z = 28). One might consider the nickelates to be uninteresting as they are neither
superconducting nor metallic (for x < 0.9) [147, 148]; however, the insulating behavior is
inconsistent with the predictions of band theory, and it is important to understand why.

Pure La2NiO4 is an antiferromagnetic insulator [155] that is easily doped with excess
oxygen, as well as by Sr substitution for La [134]. Doping the NiO2 planes with holes reduces
TN more gradually than in the cuprates [156]. It is necessary to dope to a hole concentration
of nh = x + 2δ ∼ 0.2 before the commensurate antiferromagnetic order is replaced by stripe
order [151,152,156]. Figure 6.13a shows a schematic of diagonal stripe order appropriate for
nh ≈ 1/4. The charge stripes, with a hole filling of one per Ni site, act as antiphase domain



Neutron Scattering Studies 275

(a)

0

50

100

150

200

250

300

350
La2−xSrxNiO4+d

T
em

pe
ra

tu
re

 (
K

)

TCO

TSO

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6
nh = x + 2d

e = nh

In
co

m
m

en
su

ra
bi

lit
y,

 e

1/4
3/11 2/7

1/3
4/11

2/5
5/11(4/9)

e = (m+n)/(4m+3n)

ε = (m+n)/(3m+2n)

5/12

5/18
3/11

(b)

(c)

Figure 6.13. (a) Cartoon of diagonal stripe order in an NiO2 plane (only Ni sites indicated) for nh ≈ 1/4. Magnetic
unit cell is indicated by double lines, shaded circles indicate charge stripes with a hole density of one per Ni site.
(b) Transition temperatures for charge order, Tco (squares), and spin order, Tso (circles), measured by neutron dif-
fraction. Open diamonds: transition temperatures from transport measurements [149]. (c) Incommensurability vs. nh.
Circles (crosses) results at low temperature (high temperature, near Tso). Fraction labels are approximate long-period
commensurabilities. (b) and (c) from Yoshizawa et al. [150], including results from [151–154].

walls for the magnetic order, so that the magnetic period is twice that of the charge order. The
nature of the stripe order has been deduced from the positions and intensities of the superlat-
tice peaks [134,157]. The characteristic wave vector for spin order is qso = QAF ± 1√

2
(ε, ε, 0)

and that for charge order is qco = 1√
2
(2ε, 2ε, 0) + (0, 0, 1). When the symmetry of the aver-

age lattice does not pick a unique orientation, modulations rotated by 90◦ will also be present
in separate domains. The fact that diagonal stripe order has a unique modulation direction
within each domain has been confirmed by electron diffraction [158]. Evidence for significant
charge modulation has also been provided by nuclear magnetic resonance studies [159, 160].
The charge-ordering transition is always observed to occur at a higher temperature than the
spin ordering, as shown in Figure 6.13b, with the highest ordering temperatures occurring for
x = 1/3 [149, 161].

The magnetic incommensurability ε is inversely proportional to the period of the mag-
netic modulation. It increases steadily with doping, as shown in Figure 6.13c, staying close
to the line ε = nh, indicating that the hole-density within the charge stripes remains roughly
constant but the stripe spacing decreases with doping. For a given sample, the incommensura-
bility changes with temperature, tending toward ε = 1/3 as T → Tco [162]. In a sample with
ordered oxygen interstitials, ε has been observed to pass through lock-in plateaus on warming,
indicating a significant coupling to the lattice [154].
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The impact of hole-doping on the magnetic interactions has been determined from mea-
surements of the spin-wave dispersions for crystals with x ≈ 1/3 [163–165]. Analysis shows
that the superexchange J within an antiferromagnetic region is 27.5(4) meV [165], which is
only a modest reduction compared to J = 31(1)meV in undoped La2NiO4 [166]. The effec-
tive coupling across a charge stripe is found to be ≈ 0.5J , a surprisingly large value. In the
spin-wave modeling, it was assumed that there is no magnetic contribution from the charge
stripes; however, it is not obvious that this is a correct assumption. Combining an S = 1

2
hole with an S = 1 Ni ion should leave at least an S = 1

2 per Ni site in a domain wall. Re-
cently, Boothroyd et al. [167] have discovered quasi-1D magnetic scattering that disperses up
to about 10 meV and becomes very weak above 100 K. This appears to correspond to the spin
excitations of the charge stripes.

Inelastic neutron scattering measurements at T > Tco indicate that incommensurate spin
fluctuations survive in the disordered state [163, 168], implying the existence of fluctuating
stripes. This result is consistent with optical conductivity studies [169, 170] which show that
while the dc conductivity approaches that of a metal above room temperature, the dynamic
conductivity in the disordered state never shows the response of a conventional metal.

The overall message here is that a system very close to the cuprates shows a strong
tendency for charge and spin to order in a manner that preserves the strong superexchange in-
teraction of the undoped parent compound. It is certainly true that Ni2+ has S = 1 while Cu2+
has S = 1

2 , and this can have a significant impact on the strength of the charge localization in
the stripe-ordered nickelates [171]; however, the size of the spin cannot, on its own, explain
why conventional band theory breaks down for the nickelates. The electronic inhomogeneity
observed in the nickelates suggests that similarly unusual behavior might be expected in the
cuprates.

6.5.2. Stripes in Cuprates

Static charge and spin stripe orders have only been observed in a couple of cuprates,
La2−x Bax CuO4 [41, 172] and La1.6−x Nd0.4Srx CuO4 [43, 173] to be specific. The charac-
teristic 2D wave vector for spin order is qso = QAF ± (ε, 0) and that for charge order
is qco = (2ε, 0). A cartoon of stripe order consistent with these wave vectors is shown in
Figure 6.14(a); the inferred charge density within the charge stripes is approximately one hole
for every two sites along the length of a stripe. The magnetic unit cell is twice as long as that
for charge order. It should be noted that the phase of the stripe order with respect to the lattice
has not been determined experimentally, so that it could be either bond-centered, as shown, or
site-centered.

(a) (b)

Figure 6.14. Cartoons of equivalent domains of (a) vertical and (b) horizontal bond-centered stripe order within
a CuO2 plane (only Cu sites shown). Note that the magnetic period is twice that of the charge period. The charge
density along a stripe is one hole for every two sites in length.
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In a square lattice, the domains of vertical and horizontal stripes shown in Figure 6.14
are equivalent; however, each breaks the rotational symmetry of the square lattice. In fact, sta-
tic stripe order has only been observed in compounds in which the average crystal structure for
each CuO2 plane exhibits a compatible reduction to rectangular symmetry. This is the case for
the low-temperature-tetragonal (LTT) symmetry (space group P42/ncm) of La2−x Bax CuO4
and La1.6−x Nd0.4Srx CuO4 [174], where orthogonal Cu–O bonds are inequivalent within each
plane, but the special direction rotates by 90◦ from one layer to the next. Because planes of
each orientation are equally represented in the LTT phase, both stripe domains are equally
represented. The correlation between lattice symmetry and stripe ordering is especially clear
in studies of the system La1.875Ba0.125−x Srx CuO4 by Fujita and coworkers [175–177].

When diffraction peaks from orthogonal stripe domains are present simultaneously, one
might ask whether the diffraction pattern is also consistent with a checkerboard structure (a
superposition of orthogonal stripe domains in the same layer) [178]. There are a number of
arguments against a checkerboard interpretation. (1) The observed sensitivity of charge and
spin ordering to lattice symmetry would have no obvious explanation for a checkerboard
structure, with its four-fold symmetry. (2) For a pattern of crossed stripes, the positions of
the magnetic peaks should rotate by 45◦ with respect to the charge-order peaks. One would
also expect to see additional charge-order peaks in the [110] direction. Tests for both of these
possibilities have come out negative [179]. It is possible to imagine other two-dimensional
patterns that are consistent with the observed diffraction peaks [178]; however, the physical
justification for the relationship between the spin and charge modulation becomes unclear in
such models. (3) The intensity of the charge-order scattering is strongly modulated along Qz ,
with maxima at l = n ± 1

2 , where n is an integer. This behavior is straightforwardly explained
in terms of unidirectional stripe order tied to local lattice symmetry, with Coulomb repulsion
between stripes in equivalent (next-nearest-neighbor) layers [180]. For a checkerboard pat-
tern, one would expect correlations between nearest-neighbor layers, which would give a Qz
dependence inconsistent with experiment.

There has also been a report of stripe-like charge order and incommensurate spin fluc-
tuations in a YBa2Cu3O6+x sample with a nominal x = 0.35 [181]. The superconducting
transition for this sample, having a midpoint at 39 K and a width of 10 K, is a bit high to
be consistent with the nominal oxygen content [143]; this may indicate some inhomogeneity
of oxygen content in the very large melt-grown crystal that was studied. Weak superlattice
peaks attributed to charge order corresponding to vertical stripes with 2ε = 0.127 retain finite
intensity at room temperature. The difference in magnetic scattering at 10 K relative to 100 K
shows a spectrum very similar to that in Figure 6.3, with Er ≈ 23 meV and ε ≈ 0.06. While
these experimental results are quite intriguing, it would be desirable to confirm them on an-
other sample. In any case, it is interesting to note that a recent muon spin rotation (µSR) study
by Sanna et al. [182] identified local magnetic order at low temperatures in YBa2Cu3O6+x
with x ≤ 0.39, and coexistence with superconductivity for x ≥ 0.37.

Elastic incommensurate scattering consistent with stripe order has been observed in
stage-4 La2CuO4+δ with Tc = 42 K, although charge order has not been detected [55].
An interesting question is whether static stripe order coexists homogeneously with high-
temperature superconductivity in this sample. The fact that the four-layer staging of the oxy-
gen interstitials creates two inequivalent types of CuO2 layers suggests the possibility that
the order parameters for stripe order and superconductivity might have their maxima in dif-
ferent sets of layers. A µSR study of the same material found that only about 40% of the
muons detected a local, static magnetic field [183]. While it was argued that the best fit to the
time dependence of the zero-field muon spectra was obtained with an inhomogeneous island
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model, the data may also be compatible with a model of inhomogeneity perpendicular to the
planes.

Beyond static order, we can consider the excitations of a stripe-ordered system. It has
already been noted in Section 6.2.1 that the magnetic excitations of La1.875Ba0.125CuO4 at
low temperature exhibit a similar dispersion to good superconductors without stripe order. The
overall spectrum is only partially consistent with initial predictions of linear spin-wave theory
for a stripe-ordered system [184–186]; however, it is reasonably reproduced by calculations
that consider weakly coupled two-leg spin ladders (of the type suggested by Figure 6.14)
[187–189] or that treat both spin– and electron–hole excitations of a stripe-ordered ground
state [190].

The temperature dependence of the magnetic scattering at low energies (≤10 meV) has
been reported by Fujita et al. [41]; Figure 6.15 shows some of the results. On the left, one can
see that, in the stripe-ordered state (T = 8 and 30 K), the Q-integrated dynamic susceptibility
is independent of frequency and temperature. Such behavior is consistent with expectations
for spin waves. In the disordered phase (65 K and above), χ̃ ′′(ω) heads linearly to zero at
zero frequency; however, at 10 meV the decrease with temperature is relatively slow. The
temperature dependence of χ̃ ′′(ω) at 3 and 6 meV is shown in more detail on the right side, in
panel (a). There is a rapid drop above Tco at 3 meV, but the change at 6 meV is more gradual.
There is a substantial increase in Q width of the incommensurate peaks at the transition,
as shown in (b). Interestingly, there is also a significant drop in incommensurability at the

0 5 1510

T=30 K

T=65 K

T=100 K

T=8 K(a)

(b)

(c)

(d)

T=200 K(e)

0

0.5

1.0

w (meV)

La1.875Ba0.125CuO4

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

χ~
" (
w

) 
(a

rb
. u

ni
t)

0

0.5

1.0

(b)

(c)

(a)

Td2
Tco

0

0.02

0.04

0

0.5

1.0

0.08

0.10

0.12

0 100 200
0

k 
(r

.l.
u.

)
c'

' (
ar

b.
 u

ni
t)

e 
(r

.l.
u.

)

Temperature (K)

La1.875Ba0.125CuO4

3meV
6meV

~

Figure 6.15. Results for low-energy inelastic magnetic scattering in La1.875Ba0.125CuO4. Left: local susceptibility,
χ̃ ′′(ω), as a function of h̄ω for temperatures below (a) and (b) and above (c)–(e) the charge-ordering temperature,
Tco. Right: temperature dependence, for h̄ω = 3 and 6 meV, of (a) local susceptibility, (b) κ , half-width in Q of the
incommensurate peaks, (c) incommensurability ε. Vertical lines denote Tco and Td2, the transition to the LTT phase.
The dashed lines are guides to the eye. From Fujita et al. [41].



Neutron Scattering Studies 279

transition, shown in (c), with a continuing decrease at higher temperatures. Similar results for
La1.6−x Nd0.4Srx CuO4 with x = 0.12 were obtained by Ito et al. [191]. The jump in ε on
cooling through Tco may be related to commensurability effects in the stripe-ordered state.

The results in the disordered state (T > 60 K) of La1.875Ba0.125CuO4 look similar to
those found in the normal state of La2−x Srx CuO4 [12]. The continuous variation of the mag-
netic scattering through the transition suggests that the nature of the underlying electronic
correlations is the same on both sides of the transition. The simplest conclusion seems to be
that dynamic stripes are present in the disordered state of La1.875Ba0.125CuO4 and in the nor-
mal state of La2−x Srx CuO4. The similarity of the magnetic spectrum to that in YBa2Cu3O6+x
(see Figure 6.3) then suggests that dynamic stripes may be common to under- and optimally
doped cuprates.

6.5.3. Spin-Density-Wave Order in Chromium

Chromium and its alloys represent another system that has been proposed as a model
for understanding the magnetic excitations in superconducting cuprates [192]. Pure Cr has
a body-centered-cubic structure and exhibits antiferromagnetic order that is slightly incom-
mensurate [193]. Overhauser and Arrott [194] first proposed that the order was due to a spin-
density-wave instability of the conduction electrons. Lomer [195] later showed that the am-
plitude of the SDW order could be understood in terms of approximate nesting of separate
electron and hole Fermi surfaces. The ordering can be modified by adjusting the Fermi en-
ergy through small substitutions of neighboring 3d elements. For example, adding electrons
through substitution of less than a percent of Mn is enough to drive the ordering wave vector to
commensurability, whereas reducing the electron density with V causes the incommensurate
ordering temperature to head to zero at a concentration of about 3.5% [192].

The magnetic excitations in pure Cr have a very large spin-wave velocity [196, 197],
similar to the situation for cuprates. The results seem to be qualitatively consistent with calcu-
lations based on Fermi-surface nesting [198,199]. A study of paramagnetic Cr0.95V0.05 at low
temperature [200] has revealed incommensurate excitations at low energy that broaden with
increasing energy. χ ′′ has a peak at about 100 meV, but remains substantial up to at least 400
meV. A comparison of the magnitude of the experimental χ ′′ with ab initio calculations [201]
indicates a substantial exchange enhancement over the bare Lindhard susceptibility [200].

Given that Cr is cubic, there are three equivalent and orthogonal nesting wave vectors.
Within an ordered domain, the ordering wave vector consists of just one of these three possi-
bilities. Along with the SDW order, there is also a weak CDW order that appears. A neutron
diffraction study showed that the intensity of the CDW peaks scales as the square of the in-
tensity of the SDW peaks, indicating that the CDW is a secondary order parameter and that
the ordering transition is driven by the magnetic ordering [202]. It is natural to compare this
behavior with that found in stripe ordered cuprates. The behavior in the latter is different,
with the charge order peaks appearing at a higher temperature than those for spin order in
La1.6−x Nd0.4Srx CuO4 with x = 0.12 [203]. That result indicates that either charge ordering
alone, or a combination of charge and spin energies, drive the initial ordering [204], so that
stripe order is distinct from SDW order.

There are certainly some similarities between the magnetic excitations of Cr alloys and
those of optimally doped cuprates. The fact that the magnetism in Cr and its alloys is caused
by Fermi-surface nesting has led many people to assume that a similar mechanism might
explain the excitations of superconducting cuprates, as discussed elsewhere in this book. Some
arguments against such an approach have been presented in Section VI of [205].
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6.5.4. Other Proposed Types of Competing Order

New types of order beyond spin-density waves or stripes has been proposed for cuprates.
One is d-density-wave (DDW) order, which has been introduced by Chakravarty et al. [206]
to explain the d-wave-like pseudogap seen by photoemission experiments on underdoped
cuprates. (A related model of a staggered-flux phase was proposed by Wen and Lee [207]
with a similar motivation; however, their model does not have static order.) The model of
DDW order involves local currents that rotate in opposite directions about neighboring pla-
quettes within the CuO2 planes. The orbital currents should induce weak, staggered mag-
netic moments oriented along the c-axis. Because of the large size of the current path in real
space, the magnetic form factor should fall off very rapidly with Q2D in reciprocal space.
Mook et al. [208] have done extensive measurements in search of the proposed signal in
YBa2Cu3O6+x with several values of x . The measurements are complicated by the fact that
large crystals are required to achieve the necessary sensitivity, while the largest crystals avail-
able are contaminated by a significant amount of Y2BaCuO5. Stock et al. [209] studied a
crystal of YBa2Cu3O6.5 with unpolarized neutrons, and concluded that no ordered moment
could be seen to a sensitivity of ∼0.003µB. Using polarized neutrons, Mook et al. [210] have
seen, in the spin-flip channel, a weak peak at QAF on top of a large background. Without
giving an error bar, they suggest that the associated moment might be 0.0025µB. They con-
cluded that “the present results provide indications that orbital current phases are not ruled
out” [210].

Varma [211] has proposed a different model of ordered orbital currents, in which the
currents flow between a single Cu ion and its four coplanar O neighbors. This state breaks
time-reversal and rotational symmetry but not translational symmetry. Thus, magnetic scat-
tering from the c-axis-oriented orbital moments should be superimposed on nuclear Bragg
scattering from the crystal lattice. Information on the nature of the orbital currents is con-
tained in a strongly Q-dependent structure factor. The only practical way to detect such
a small magnetic signal on top of the strong nuclear peaks would be with polarized neu-
trons. Lee et al. [212] performed extensive polarized-beam studies on La2−x Srx CuO4 and
YBa2Cu3O6+x single crystals. They found no positive evidence for the proposed magnetic
moments, with a sensitivity of 0.01µB in the case of 3D order, and 0.1µB in the case of quasi-
2D order. Simon and Varma [213] have since proposed a second pattern of orbital currents that
would have a different magnetic structure factor from the original version. Positive results in
YBa2Cu3O6+x corresponding to this second pattern have recently been reported by Fauqué
et al. [214].

6.6. Variation of Magnetic Correlations with Doping and Temperature
in Cuprates

6.6.1. Magnetic Incommensurability vs. Hole Doping

The doping dependence of the low-energy magnetic excitations in superconducting
La2−x Srx CuO4 has been studied in considerable detail [13, 131]. In particular, the Q depen-
dence has been characterized. We already saw in Section 6.4 that the destruction of antifer-
romagnetic order by hole doping leads to diagonal spin stripes. As shown in Figure 6.16(a),
the magnetic incommensurability ε grows roughly linearly with x across the “spin-glass”
regime. (The results in this region are from elastic scattering.) At x ≈ 0.055, there is an in-
sulator to superconductor transition, and along with that is a rotation of the incommensurate
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Figure 6.16. Variation of the magnetic incommensurability ε [as defined in the insets of (a)] for (a) lightly doped
La2−x Srx CuO4, and (b) La2−x Srx CuO4 with and without Nd-codoping. In (a) the filled (open) symbols correspond
to diagonal (bond-parallel, or vertical) spin stripes. Adapted From Fujita et al. [131]. In (b), open circles are from
measurements of excitations at E ∼ 3 meV and T ≈ Tc in La2−x Srx CuO4 from Yamada et al. [13]; filled squares
are from elastic scattering on La1.6−x Nd0.4Srx CuO4 from Ichikawa et al. [173].

peaks (as shown in the insets), indicating a shift from diagonal to vertical (or bond-parallel)
stripes [131]. The rotation of the stripes is not as sharply defined as is the onset of the
superconductivity—there is a more gradual evolution of the distribution of stripe orientations
as indicated by the measured peak widths, especially around the circle of radius ε centered on
QAF. Interestingly, the magnitude of ε continues its linear x dependence through the onset of
superconductivity.

In the superconducting phase, ε continues to grow with doping up to x ∼ 1/8, beyond
which it seems to saturate, as indicated by the circles [13] in Figure 6.16(b). Interestingly, the
same trend in incommensurability is found for static stripe order in Nd-doped La2−x Srx CuO4
[173], as indicated by the filled squares in the same figure. The differences in wave vector for
a given x may reflect a change in the hole density of the charge stripes when they become
statically ordered in the anisotropic lattice potential of the LTT phase.

While low-energy incommensurate scattering is also observed in overdoped
La2−x Srx CuO4, Wakimoto et al. [215] have found that the magnitude of χ ′′, measured at
E ∼ 6 meV, drops rapidly for x > 0.25, becoming negligible by x = 0.30. The decrease in
the magnitude of χ ′′ is correlated with the fall off in Tc. Interestingly, these results suggest
that the superconductivity weakens as magnetic correlations disappear.

In YBa2Cu3O6+x , the incommensurability of the magnetic excitations at E < Er is
resolvable only for T � Tc. The presence of a substantial spin gap in the superconducting
state, together with the dispersion of the magnetic excitations, makes it difficult to
compare directly the results for YBa2Cu3O6+x with the behavior of La2−x Srx CuO4 shown in
Figure 6.16(b). Dai et al. [17] have determined ε at energies just above the spin gap; the results
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for YBa2Cu3O6+x are represented by circles and squares in Figure 6.17. For comparison, the
triangles indicate the effective incommensurabilities found at energies of 20 and 30 meV in
La2−x Srx CuO4 with x = 0.10 and 0.16 [40] and in La1.875Ba0.125CuO4 [42]. The trends in
the two different cuprate families seem to be similar when one accounts for the dispersion.
(Comparable behavior in YBa2Cu3O6+x and La2−x Srx CuO4 was also noted by Balatsky and
Bourges [216].)

6.6.2. Doping Dependence of Energy Scales

The doping dependence of Er in YBa2Cu3O6+x and Bi2Sr2CaCu2O8+δ has received
considerable attention. In optimally-doped and slightly under-doped YBa2Cu3O6+x , the scat-
tering at Er (for T < Tc) is relatively strong and narrow in Q and ω. Of course, when the
intensity is integrated over Q and ω one finds that it corresponds to a small fraction of the
total expected sum-rule weight [26]; it is also a small fraction of the total spectral weight that
is actually measured (which is much reduced from that predicted by the sum rule [90]).

Figure 6.18(a) presents a summary, from Sidis et al. [18], of experimental results for
Er from neutron scattering and for twice the superconducting gap maximum, 2
m, from
other techniques. For these materials, the resonance energy is found to scale with Tc and fall
below 2
m. Unfortunately, a major deviation from these trends occurs in La2−x Srx CuO4 [see
Figure 6.18(b)], where Er tends to be larger than 2
m, and any constant of proportionality
between Er and kTc is considerably larger than the value of ∼5 found for YBa2Cu3O6+x .

As discussed in Section 6.2.2, there may be a more general correlation between the spin-
gap energy and Tc. Figure 6.19 shows the variation of the spin-gap energy with Tc for a range
of dopings in YBa2Cu3O6+x as obtained by Dai et al. [17]. The correlation seen there looks
very much like that shown in Figure 6.6 for different cuprate families at optimum doping. For
La2−x Srx CuO4, a true spin gap is not observed for x < 0.14 [221], and this might have a
connection with the rapid disappearance of the spin gap in YBa2Cu3O6+x for x < 0.5 [17].
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Figure 6.18. (a) Summary of results for the resonance energy Er from neutron scattering measurements on
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6.6.3. Temperature-Dependent Effects

A detailed study of the thermal evolution of the magnetic excitations (E ≤ 15 meV) in
La1.86Sr0.14CuO4 was reported by Aeppli et al. [12]. Fitting the Q dependence of the incom-
mensurate scattering with a lorentzian-squared peak shape, they found that κ , the Q-width as
a function of both frequency and temperature, can be described fairly well by the formula

κ2 = κ2
0 + 1

a2

[(
kT
E0

)2

+
(

h̄ω
E0

)2
]

, (6.12)

where κ0 = 0.034 Å−1, a is the lattice parameter, and E0 = 47 meV. For T ≥ Tc, the
low-frequency limit of χ ′′(Qδ, ω)/ω (where Qδ is a peak position) varies with temperature
essentially as 1/T 2. They argued that these behaviors are consistent with proximity to a
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quantum critical point, and that the type of ordered state that is being approached at low
temperature is the stripe-ordered state.

In a study of La2−x Srx CuO4 crystals at somewhat higher doping (x = 0.15, 0.18, and
0.20), Lee et al. [222] found evidence for a spin pseudogap at T ≥ Tc. The pseudogap (with
a hump above it) was similar in energy to the spin gap that appears at T < Tc and was most
distinct in the x = 0.18 sample, where the effect is still evident at 80 K but absent at 150 K.

For YBa2Cu3O6+x , the studies of temperature dependence have largely concentrated
on the scattering near Er . For fully oxygenated YBa2Cu3O7, the intensity at Er appears fairly
abruptly at, or slightly below, Tc and grows with decreasing temperature, with essentially
no shift in Er [16, 31]. For underdoped samples, the intensity at Er begins to grow below
temperatures T ∗ > Tc, with the enhancement at Tc decreasing with underdoping [31, 36, 47].

6.7. Effects of Perturbations on Magnetic Correlations

6.7.1. Magnetic Field

An important initial study of the impact of an applied magnetic field on magnetic corre-
lations in a cuprate superconductor was done by Dai et al. [50] on YBa2Cu3O6.6 (Tc = 63 K).
They showed that applying a 6.8-T field along the c-axis caused a 30% reduction in the low-
temperature intensity of the resonance peak (at 34 meV). The lost weight presumably is shifted
to other parts of phase space, but it was not directly detected. (Applying the field parallel to the
CuO2 planes has negligible effect.) In an earlier study on YBa2Cu3O7, Bourges et al. [223]
applied an 11.5 T field and found that the resonance peak broadened in energy but did not
seem to change its peak intensity. The difference in response from YBa2Cu3O6.6 is likely due
to the difference in Hc2, which is about five times larger in YBa2Cu3O7 [224].

A series of studies on La2−x Srx CuO4 samples with various dopings have now been per-
formed [51,52,225,226], and a schematic summary of the results is presented in Figure 6.20.
For samples with lower doping (x = 0.10 [226] and 0.12 [225]) there is a small elastic,

0.1 0.15 0.2
0

5

10

15

20

x

M
ag

ne
tic

 fi
el

d 
 (

T
)

La2−xSrxCuO4

Figure 6.20. Schematic summary of neutron scattering experiments on La2−x Srx CuO4 in a magnetic field at
T � Tc. Solid bars indicate observations of elastic, incommensurate peaks; width indicates variation of peak intensity
with field. Experiments on x = 0.10, 0.12, 0.144, 0.163, and 0.18 from [226], [225], [232], [52], and [51]. The solid
curve suggests the shape of a boundary between a state with spin-density-wave order and superconductivity on the
left and superconductivity alone on the right, as first proposed by Demler et al. [227].
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incommensurate, magnetic peak intensity in zero field that is substantially enhanced by appli-
cation of a c-axis magnetic field. The growth of the intensity with field is consistent with

I ∼ (H/Hc2) ln(Hc2/H), (6.13)

where Hc2 is the upper critical field for superconductivity [226]. This behavior was predicted
by Demler et al. [227] using a model of coexisting but competing phases of superconductivity
and spin-density-wave (SDW) order. In their model, local reduction of the superconducting
order parameter by magnetic vortices results in an average increase in the SDW order. (For an
alternative approach, in which the competing order is restricted to “halo” regions centered on
vortex cores, see, e.g., [228].) Interestingly, the spin–spin correlation length for the induced
signal is >400 Å, which is at least 20 times greater than the radius of a vortex core [226]. Very
similar results have been obtained on oxygen-doped La2CuO4 [229,230]. There is an obvious
parallel with the charge-related “checkerboard” pattern observed at vortices in superconduct-
ing Bi2Sr2CaCu2O8+δ by scanning tunneling microscopy [231].

For La2−x Srx CuO4 crystals with x = 0.163 [52] and 0.18 [51] there is no field-induced
static order (at least for the range of fields studied). Instead, the field moves spectral weight
into the spin gap. The study on x = 0.18 indicated that the increase in weight in the gap is
accompanied by a decrease in the intensity peak above the gap [51], the latter result being
comparable to the effect seen in YBa2Cu3O6.6 [50]. For x = 0.163, an enhancement of the
incommensurate scattering was observed below 10 K for h̄ω = 2.5 meV.

For an intermediate doping concentration of x = 0.144, Khaykovich et al. [232] have
recently shown that, although no elastic magnetic peaks are seen at zero field, a static SDW
does appear for H > Hc ∼ 3 T. Such behavior was predicted by the model of competing
phases of Demler et al. [227], and a boundary between phases with and without SDW order,
based on that model, is indicated by the solid curve in Figure 6.20.

Although evidence for field-induced charge-stripe order in La2−x Srx CuO4 has not yet
been reported, it seems likely that the SDW order observed is the same as the stripe phase
found in La1.875Ba0.125CuO4 [41] and La1.6−x Nd0.4Srx CuO4 [173]. Consistent with this sce-
nario, it has been shown that an applied magnetic field has no impact on the Cu magnetic order
or the charge order in the stripe-ordered phase of La1.6−x Nd0.4Srx CuO4 with x = 0.15 [233];
however, the field did effect the ordering of the Nd “spectator” moments.

Returning to La2−x Srx CuO4 with x < 0.13, it has been argued in the case of x = 0.10
that the zero-field elastic magnetic peak intensity observed at low temperature is extrinsic
[226]. This issue deserves a short digression. It is certainly true that crystals of lesser quality
can yield elastic scattering at or near the expected positions of the incommensurate magnetic
peaks; in some cases, this scattering has little temperature dependence. Of course, just because
spurious signals can occur does not mean that all signals are spurious. Let us shift our attention
for a moment to x = 0.12, where the low-temperature, zero-field intensity is somewhat larger
[234]. A muon-spin-relaxation (µSR) study [183] on a crystal of good quality has shown that
the magnetic order is not uniform in the sample—at low temperature, only ∼20% of the muons
see a static local hyperfine field. Further relevant information comes from electron diffraction
studies. The well-known low-temperature orthorhombic (LTO) phase tends to exhibit twin
domains. Horibe, Inoue, and Koyama [235] have taken dark-field images using a Bragg peak
forbidden in the LTO structure but allowed in the LTT structure, the phase that pins stripes in
La1.875Ba0.125CuO4 and La1.6−x Nd0.4Srx CuO4. They find bright lines corresponding to the
twin boundaries, indicating that the structure of the twin boundaries is different from the LTO
phase but similar to the LTT. (Similar behavior has been studied in La2−x Bax CuO4 [236].)
The twin boundaries are only a few nanometers wide; however, given that magnetic vortices
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can pin spin stripes with a substantial correlation length, and we will see next that Zn dopants
can also pin spin stripes, it seems likely that LTT-like twin boundaries should be able to pin
stripe order with a significant correlation length. Thus, the low-temperature magnetic peaks
found in La2−x Srx CuO4 with x = 0.12 [234] are likely due to stripes pinned at twinned
boundaries, giving order in only a small volume fraction, consistent with µSR [183]. Taking
into account the fact that stripe order is observed in La1.6−x Nd0.4Srx CuO4 for a substantial
range of x (but with strongest ordering at x = 0.12) [173], it seems reasonable to expect
a small volume fraction of stripe order pinned at twin boundaries in La2−x Srx CuO4 with
x = 0.10. Is this order extrinsic? Are twin boundaries extrinsic? This may be a matter of
semantics. In any case, I would argue that the low-temperature zero-field peaks measured in
good crystals reflect real materials physics of the pure compound.

6.7.2. Zn Substitution

The effects of Zn substitution for Cu are quite similar to those caused by an applied
magnetic field. For La2−x Srx CuO4 with x = 0.15, substituting about 1% or less Zn causes the
appearance of excitations within the spin gap of the Zn-free compound [237,238]. Substitution
of 1.7% Zn is sufficient to induce weak elastic magnetic peaks. For x = 0.12, where weak
elastic magnetic peaks are present without Zn, substitution of Zn increases the peak intensity,
but also increases the Q-widths of the peaks [179, 239]. Wakimoto et al. [240] have recently
found that Zn-substitution into overdoped samples (x > 0.2) significantly enhances the low-
energy (<10 meV) inelastic magnetic scattering.

In YBa2Cu3O6+x , Zn substitution causes weight to shift from Er into the spin gap
[241, 242]. While it causes some increase in the Q-width of the scattering at Er [243], it
does not make a significant change in the Q dependence of the (unresolved) incommensurate
scattering at lower energies [242]. Muon-spin rotation studies indicate that Zn-doping reduces
the superfluid density proportional to the Zn concentration [244], and this provides another
parallel with the properties of the magnetic vortex state.

6.7.3. Li-Doping

An alternative way to dope holes into the CuO2 planes is to substitute Li1+ for Cu2+.
In this case, the holes are introduced at the expense of a strong local Coulomb potential
that one might expect to localize the holes. Surprisingly, the magnetic phase diagram of
La2Cu1−x Lix O4 is rather similar to that for La2−x Srx CuO4 with x < 0.06 [245]. In parti-
cular, the long-range Néel order is destroyed with ∼0.03% Li. The nature of the magnetic
correlations in the paramagnetic phase is different from that in La2−x Srx CuO4 in that the
inelastic magnetic scattering remains commensurate [246]. Studies of the spin dynamics indi-
cate ω/T scaling at high temperatures, but large deviations from such behavior occur at low
temperature [247].

6.8. Electron-Doped Cuprates

Electron-doped cuprates are very interesting because of their similarities and differ-
ences from the hole-doped materials; however, considerably less has been done in the way
of neutron scattering on the electron-doped materials, due in part to challenges in growing
crystals of suitable size and quality. Initial work focused on the systems Nd2−x Cex CuO4 and
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Pr2−x Cex CuO4. A striking difference from hole doping is the fact that the Néel temperature
is only gradually reduced by electron-doping. This was first demonstrated in a µSR study
of Nd2−x Cex CuO4 [248], where it was found that the antiferromagnetic order only disap-
pears at x ≈ 0.14 where superconductivity first appears. The magnetic order was soon con-
firmed by neutron diffraction measurements on single crystals of Pr2−x Cex CuO4 [249] and
Nd2−x Cex CuO4 [250].

A complication with these materials is that to obtain the superconducting phase, one
must remove a small amount of oxygen from the as-grown samples. The challenge of the
reduction process is to obtain a uniform oxygen concentration in the final sample. This is
more easily done in powders and thin films than in large crystals. As-grown crystals with
x as large as 0.18 are antiferromagnetic [251, 252]. Reducing single crystals can result in
superconductivity; however, it is challenging to completely eliminate the antiferromagnetic
phase [251]. In trying to get a pure superconducting phase, the reducing conditions can
sometimes cause a crystal to undergo partial decomposition, yielding impurity phases such
as (Nd,Ce)2O3 [253, 254].

The effective strength of the spin–spin coupling has been probed through measurements
of the spin correlation length as a function of temperature in the paramagnetic phase. The
magnitude of the spin stiffness is clearly observed to decrease with doping [249, 251, 252].
Mang et al. [252] have shown that this behavior is consistent with that found in numerical
simulations of a randomly site-diluted 2D antiferromagnet. In the model calculations, the
superexchange energy is held constant, and the reduction in spin stiffness is due purely to the
introduction of a finite concentration of nonmagnetic sites. To get quantitative agreement, it
is necessary to allow for the concentration of nonmagnetic sites in the model to be about 20%
greater than the Ce concentration in the samples.

Yamada and coworkers [255] were able to prepare crystals of Nd1.85Ce0.15CuO4 with
sufficient quality that it was possible to study the low-energy magnetic excitations associated
with the superconducting phase. They found commensurate antiferromagnetic fluctuations. In
a crystal with Tc = 25 K, they found that a spin-gap of approximately 4 meV developed in the
superconducting state. Commensurate elastic scattering, with an in-plane correlation length
of 150 Å, was also present for temperatures below ∼60 K; however, the growth of the elastic
intensity did not change on crossing the superconducting Tc.

While the magnetic excitations are commensurate and incompatible with stripe corre-
lations, there are, nevertheless, other measurements that suggest electronic inhomogeneity.
Henggeler et al. [256] used the crystal-field excitations of the Pr ions in Pr2−x Cex CuO4 as a
probe of the local environment. They found evidence for several distinct local environments,
and argued that doped regions reached the percolation limit at x ≈ 0.14, at the phase boundary
for superconductivity. Recent NMR studies have also found evidence of electronic inhomo-
geneity [257, 258].

Motivated by the observation of magnetic-field-induced magnetic superlattice peaks in
hole-doped cuprates (Section 6.7.1), there has been a series of experiments looking at the ef-
fect on electron-doped cuprates of a field applied along the c axis. An initial study [259] on
Nd2−x Cex CuO4 with x = 0.14 and Tc ∼ 25 K found that applying a field as large as 10 T
had no effect on the intensity of an antiferromagnetic Bragg peak for temperatures down to
15 K. Shortly after that came a report [260] of large field-induced enhancements of antifer-
romagnetic Bragg intensities, as well as new field-induced peaks of the type (1/2, 0, 0), in a
crystal of Nd2−x Cex CuO4 with x = 0.15 and Tc = 25 K. It was soon pointed out that the
new (1/2, 0, 0) peaks, as well as most of the effects at antiferromagnetic reflections, could be
explained by the magnetic response of the (Nd,Ce)2O3 impurity phase [253, 254]. There now
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seems to be a consensus that this is the proper explanation [261, 262]; however, a modest
field-induced intensity enhancement has been seen at (1/2, 1/2, 3) that is not explained by the
impurity-phase model [261].

In an attempt to clarify the situation, Fujita et al. [263] turned to another electron-doped
superconductor, Pr1−x LaCex CuO4. This compound also has to be reduced to obtain super-
conductivity, and reduced crystals exhibit a (Pr,Ce)2O3 impurity phase; however, the Pr in
the impurity phase should not be magnetic. They found a weak field-induced enhancement
of an antiferrromagnetic peak intensity for a crystal with x = 0.11 (Tc = 26 K), but no ef-
fect for x = 0.15 (Tc = 16 K). The induced Cu moment for x = 0.11 at a temperature of
3 K and a field of 5 T is ∼10−4µB. Dai and coworkers [264, 265] have studied crystals of
Pr0.88LaCe0.12CuO4−δ in which they have tuned the superconductivity by adjusting δ. They
have emphasized the coexistence of the superconductivity with both 3D and quasi-2D antifer-
romagnetic order [264]. They report a very slight enhancement of the quasi-2D antiferromag-
netic signal for a c-axis magnetic field [265].

6.9. Discussion

6.9.1. Summary of Experimental Trends in Hole-Doped Cuprates

There are a number of trends in hole-doped cuprates that one can identify from
the results presented in this chapter. To begin with, the undoped parent compounds are
Mott–Hubbard (or, more properly, charge-transfer) insulators that exhibit Néel order due to
antiferromagnetic superexchange interactions between nearest-neighbor atoms. The magnitude
of J is material dependent, varying between roughly 100 and 150 meV.

Doping the CuO2 planes with holes destroys the Néel order; in fact, the presence of
holes seems to be incompatible with long-range antiferromagnetic order. The observed re-
sponses to hole doping indicate that some sort of phase separation is common. In some
cases, stripe modulations are found, and in others, finite clusters of antiferromagnetic order
survive.

In under- and optimally doped cuprate superconductors, the magnetic spectrum has an
hour-glass-like shape, with an energy scale comparable to the superexchange energy of the
parent insulators. The strength of the magnetic scattering, when integrated over momentum
and energy, decreases gradually as one increases the hole concentration from zero to optimal
doping. A spin gap appears in the superconducting state (at least for optimal doping), with
spectral weight from below the spin gap being pushed above it. The magnitude of the spin gap
correlates with Tc.

Underdoped cuprates with a small or negligible spin gap are very sensitive to perturba-
tions. Substituting nonmagnetic Zn for Cu or applying a magnetic field perpendicular to the
planes tends to induce elastic incommensurate magnetic peaks at low temperature. For sam-
ples with larger spin gaps, the perturbations shift spectral weight from higher energy into the
spin gap. Breaking the equivalence between orthogonal Cu–O bonds within a CuO2 plane can
result in charge-stripe order, in addition to the elastic magnetic peaks.

The magnetic correlations within the CuO2 planes are clearly quite sensitive to hole
doping and superconductivity. While their coexistence with a metallic normal state is one of
the striking characteristics of the cuprates, their connection to the mechanism of hole-pairing
remains a matter of theoretical speculation.
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6.9.2. Theoretical Interpretations

The nature and relevance of antiferromagnetic correlations has been a major theme of
much of the theoretical work on cuprate superconductors. While some theoretical concepts
are discussed in more detail in other chapters of this book, it seems appropriate to briefly
review some of them here.

Given that techniques for handling strongly-correlated hole-doped antiferromagnets
continue to be in the development stage, some researchers choose to rely on a conventional
weak-coupling approach to describing magnetic metals. This might be appropriate if one
imagines starting out in the very over-doped regime, where Fermi-liquid theory might be
applicable, and then works downward towards optimum doping. The magnetic susceptibil-
ity can be calculated in terms of electrons being excited across the Fermi level from filled to
empty states. Interactions between quasiparticles due to Coulomb or exchange interactions are
assumed to enhance the susceptibility near QAF, and this is handled using the random-phase
approximation (RPA). In the superconducting state, one takes into account the superconduct-
ing gap 
 with d-wave symmetry. The gapping of states carves holes into the continuum of
electron–hole excitations. The RPA enhancement can then pull resonant excitations down into
the region below 2
 [266–268]. With this approach, it has been possible, with suitable adjust-
ment of the interaction parameter, to calculate dispersing features in χ ′′ that resemble those
measured in the superconducting state of optimally doped YBa2Cu3O6+x [269–271].

The RPA approach runs into difficulties when one considers La2−x Srx CuO4,
La2−x Bax CuO4, and underdoped YBa2Cu3O6+x . It predicts that the magnetic excitations
should be highly over damped at energies greater than 2
; however, there is no obvious
change in the experimental spectra at E > 2
 in these materials. Furthermore, the dispersive
features in La1.875Ba0.125CuO4 are observed in the normal state. Even if one tries to invoke a
d-wave pseudogap, the energy scale is likely to be too small, as indicated by Figure 6.18(b).
It is also unclear how one would rationalize, from a Fermi-liquid perspective, the observation
that the energy scale of the magnetic excitations is of order J , as superexchange is an effective
interaction between local moments in a correlated insulator, and has no direct connection to
interactions between quasiparticles [53].

The fact that superexchange seems to remain relevant in the superconducting phase sug-
gests that it may be profitable to approach the problem from the perspective of doped antiferro-
magnets. The resonating-valence-bond model was one of the first such attempts [1,272,273].
The model is based on the assumption that the undoped system is a quantum spin liquid. In
such a state, all Cu spins would be paired into singlets in a manner such that the singlet–
triplet spectrum is gapless. When a hole is introduced, one singlet is destroyed, yielding a free
spinon; all other Cu spins still couple in singlet states. In such a picture, one would expect
that the singlet–triplet excitations would dominate the magnetic excitation spectrum mea-
sured with neutrons; surprisingly, there has been little effort to make specific theoretical pre-
dictions of this spectrum for comparison with experiment. Instead, the analysis has been done
in terms of particle–hole excitations of spinons [268]. An alternative treatment has been given
in [274]. Again, while these calculations bear some resemblance to the experimental results
for YBa2Cu3O6+x , there are challenges to describing La2−x Srx CuO4 and La2−x Bax CuO4.

Another alternative is a spiral spin-density wave, as has been proposed several times
[275–278]. A spiral state would be compatible with the incommensurate antiferromagnetic
excitations at low energy [275,277], and can also be used to model the full magnetic spectrum
[278]. A look at the experimental record shows that a spiral phase cannot be the whole story.
In the case of La1.875Ba0.125CuO4 and La1.6−x Nd0.4Srx CuO4, where static magnetic order
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is observed, charge order is also found [279]. When there is charge order present, it follows
that the spin-density modulation must have a collinear component in which the magnitude
of the local moments is modulated [204]. There could also be a spiral component, but it is
not essential. Furthermore, if holes simply cause a local rotation of the spin direction, then it
is unclear why the ordering temperature of the Néel phase is so rapidly reduced by a small
density of holes.

Given that stripe order is observed in certain cuprates (Section 6.5.2) and that the mag-
netic excitations of the stripe-ordered phase are consistent with the universal spectrum of good
superconductors (Figure 6.3), the simplest picture that is compatible with all of the data is to
assume that charge stripes (dynamic ones in the case of the superconducting samples) are a
common feature of the cuprates, at least on the underdoped side of the phase diagram. There
is certainly plenty of theoretical motivation for stripes [205, 280–283], and a number of cal-
culations based on a stripe model provide a reasonable description of the universal magnetic
spectrum [187–190], especially when one allows for stripe fluctuations [284]. The relevance
of charge inhomogeneity to the superconducting mechanism is discussed in the chapter by
Kivelson and Fradkin [285].

One suprising experimental observation is the minimal amount of damping of the mag-
netic excitations in underdoped cuprates, especially in the normal state. One would expect
the continuum of electron–hole excitations to cause significant damping [90]. Could it be that
the antiphase relationship of spin correlations across a charge stripe acts to separate the spin
and charge excitations in a manner similar to that in a one-dimensional system [286, 287]?
With over doping, there is evidence that regions of conventional electronic excitations become
more significant. This is also the regime where magnetic excitations become weak. Could it be
that the interaction of conventional electron–hole excitations with stripe-like patches causes
a strong damping of the spin excitations? There is clearly plenty of work left to properly
understand the cuprates.
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180. M. v. Zimmermann, A. Vigliante, T. Niemöller, N. Ichikawa, T. Frello, S. Uchida, N. H. Andersen, J. Madsen,

P. Wochner, J. M. Tranquada, et al., Europhys. Lett. 41, 629 (1998).
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7
Optical Conductivity and Spatial
Inhomogeneity in Cuprate
Superconductors

J. Orenstein

We present an overview of the microwave and millimeter wave response of cuprate superconductors,
emphasizing two basic types of low-frequency optical conductivity, σ(ω), that these materials exhibit.
The first type, exemplified by ultra-pure and stoichiometric YBa2Cu3O7−δ (YBCO) single crystals, is
well described by a single component originating from the Drude response of thermal quasiparticles. In
other cuprate systems that have been studied σ(ω) has an additional component beyond the quasiparticle
contribution, also centered at ω = 0. The existence of this peak has not been widely appreciated because
most of its spectral weight lies in the “terahertz gap” between microwave and infrared regimes. After re-
viewing the evidence for this spectral feature in a wide variety of cuprate compounds, we trace its origin
to quenched spatial variation in the superfluid density, ρs. We show that the trends in optical conductiv-
ity as a function of hole carrier concentration in a series of Bi2Sr2Ca1−yDyyCu2O8+δ (BSCCO) thin
films can be understood by adding a component generated by spatial inhomogeneity to the quasiparticle
Drude peak. We conclude by discussing the role of optical conductivity measurements in investigating
the existence, origin, and importance of inhomogeneity in cuprate superconductors.

7.1. Introduction

7.1.1. Optical Conductivity of Superconductors

The dynamical conductivity, σ(q, ω), is the linear response function that relates current
density to electric field. The q → 0 limit of σ(q, ω) is referred to as the optical conductivity,
or σ(ω), because it describes the response of the medium to electromagnetic waves with
wavelength much longer than the characteristic length scales of condensed electronic systems.
The real part of the optical conductivity, σ1(ω), describes the dissipation of electromagnetic
energy in the medium, while the imaginary part, σ2(ω), describes screening of the applied
field.

Measurement of σ(ω) in a superconductor is a powerful method for probing the dynam-
ics of quasiparticle excitations and the size of the energy gap. According to BCS theory, there
are three dissipative processes that determine σ1(ω) in a superconductor: superfluid acceler-
ation, pair creation, and quasiparticle scattering. The first is the work required to accelerate
electrons to achieve the Meissner screening current. This contribution appears as a δ-function
at zero frequency in σ1(ω), whose spectral weight is the superfluid density, ρs. The latter
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two contributions appear above zero frequency. In pair creation, electromagnetic energy is
dissipated when a photon excites a pair of quasiparticles out of the BCS vacuum; in quasipar-
ticle scattering the photon promotes a quasiparticle, already excited out of the vacuum due to
thermal excitation, to a higher energy state.

7.1.2. Optical Conductivity and the Cuprates

Some special properties of the high-Tc cuprate superconductors make the study of
σ(ω, T ) particularly valuable in these materials. Because the gap is large, even relatively
poor samples are in the clean limit where the scattering rate is smaller than the gap frequency,
or 1/τ � ∆. As a consequence the spectral weight associated with pair creation is very small
and the contribution from quasiparticle scattering can be clearly resolved. Furthermore, σ(ω)
associated with quasiparticle scattering can be quite accurately modeled by the Drude re-
sponse of a dilute gas of weakly interacting particles [1]. This is not true of BCS s-wave
superconductors, where the density of states singularity at the gap energy and the coherence
factors strongly affect the conductivity spectra [2]. In d-wave superconductors, these influ-
ences are considerably weakened because there is a broad range of gap values extending from
zero to the maximum gap, ∆0.

The combination of clean-limit dynamics and d-wave density of states suggests that a
simple two-fluid model (TFM) is applicable to σ(ω, T ) in the cuprates. Because pair creation
has vanishingly small spectral weight, the total conductivity should comprise only two compo-
nents: the condensate δ-function and a Drude-like peak associated with thermal quasiparticles.
The spectral weight of these two components are the normal and superfluid densities, or ρn
and ρs, respectively. The conductivity sum rule requires ρn(T ) + ρs(T ) to be independent
of T .

The TFM does indeed provide an excellent overall description of the microwave prop-
erties of optimally-doped YBa2Cu3O7−δ (YBCO) single crystals [3], particularly for temper-
ature, T , above a few K. By fitting σ(ω, T ) using the TFM, ρs(T ), ρn(T ), and 1/τ(T ), are
determined [4]. However, the microwave properties of all other cuprate systems have turned
out to be very different [5–9], showing clear indications of much greater disorder than YBCO.
Even more significant is the fact that σ(ω) in these systems is inconsistent with the “dirty d-
wave” picture [10], which provides a mean-field description of the effects of disorder on the
conductivity.

According to the dirty d-wave picture, the quasiparticle spectrum is sensitive to disorder
below a characteristic energy scale, E∗ (or temperature scale, T ∗ ≡ E∗/kB). For E < E∗ the
density of states approaches a nonzero value, N (0), at the chemical potential, while remaining
linear in E above E∗. The existence of states at the chemical potential affects the low T
properties of ρn and the quasiparticle conductivity. Instead of vanishing linearly with T , as
expected for a clean d-wave superconductor, ρn(T ) → αT ∗ + O(T 2) as T → 0, where α
is the temperature coefficient of ρn(T ) in the clean-limit. The residual quasiparticle spectral
weight gives rise to conductivity that approaches a “universal” value σd = (vF/v
)σQ/π

2 at
low T (where σQ ≡ e2/h̄d and d is the interplanar separation) [11, 12].

The dirty d-wave picture implies a correlation between the low T behaviors of ρs and
ρn that is not observed in measurements on cuprates other than YBCO. In this article, we trace
the inconsistency to the mean-field aspect of dirty d-wave, i.e., the assumption that disorder
generates a nonzero N (0) that is spatially homogeneous. Instead we argue that the density of
states at the chemical potential, N (0), and therefore both ρn and ρs, vary with position in the
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medium [13]. This form of inhomogeneity changes qualitatively the nature of the optical prop-
erties, essentially by invalidating the selection rule that forbids coupling of the longitudinal
excitations of the order parameter to σ(ω). The plausibility of an explanation for anomalies
in σ1(ω, T ) based on spatial inhomogeneity has been strengthened by scanning tunneling
microscopy (STM) measurements [14, 15]. The STM experiments demonstrate that the local
density of states (LDOS) of Bi2Sr2CaCu2O8+δ (BSCCO) varies in space, with spatial fluctu-
ations that have a minimum wavelength of ∼50 Å. The variations in LDOS suggest quenched
inhomogeneity in local carrier concentration, x , and therefore in the local ρs.

The purpose of this article is to describe what can be learned from microwave and
millimeter-wave (terahertz) spectra of cuprate superconductors whose σ(ω, T ) cannot be
described by a mean-field picture of disorder. The presentation is organized as follows. In
Section 7.2 we compare the YBCO microwave data with results obtained on other optimally
doped cuprates, highlighting qualitative differences in σ(ω, T ). Section 7.3 presents a sur-
vey of (some previously unpublished) THz spectra, as measured in films of BSCCO with
hole concentration varying from under to overdoped. These results help to clarify the nature
of the difference in low-frequency conductivity between YBCO crystals and other cuprates.
We show that a second Lorentzian peak, in addition to the quasiparticle Drude response, is
needed to describe the observed σ(ω, T ) in this latter class of materials. The weight of this
peak increases with decreasing T in proportion to the superfluid density, distinguishing it
from the quasiparticle contribution to σ(ω, T ). In Section 7.4 we discuss the origin of the
additional component, suggesting that the proportionality to ρs implies a connection to quan-
tum phase fluctuations of the superconducting order parameter. We argue that the spectral
weight displaced from the condensate by quantum phase fluctuations is strongly enhanced in
the presence of quenched spatial inhomogeneity in ρs. Through a simple model, we show that
the spectrum of the displaced spectral weight depends on the spatial correlation of ρn and
ρs variations in the the medium. Specifically, the spectrum shifts from the plasma frequency
to near zero frequency as the correlation varies from positive (such that regions of large ρs
have large ρn) to negative (regions with large ρs have small ρn). In the last part of Section 7.4
we compare the theoretical modeling with the measured σ(ω, T ). Finally, in Section 7.5 we
discuss the relevance of the low-frequency optical conductivity to the debate over the origin
and role of inhomogeneity in the cuprates, and indicate directions for future research.

7.2. Low Frequency Optical Conductivity in the Cuprates

7.2.1. YBCO Single Crystals: Success of the Two-Fluid Model

Detailed microwave studies of σ(ω, T ) in high quality YBCO single crystals have been
performed by the UBC group. Up to date reviews of this research have been provided by Bonn
and Hardy (this volume) and by Maeda et al. [5]. Two sets of measurements exemplify the
behavior of these materials. Figure 7.1 shows σ1 of an optimally doped crystal as a function
of T for several representative frequencies that range from 1 to 75 GHz [3]. Figure 7.2 shows
data obtained using an experimental technique that enables continuous scan of frequency [17].
Here σ1(ω) is displayed for temperatures in the range from 1 to 9 K, also for an optimally
doped sample.

The main features of the microwave conductivity in YBCO are in excellent agreement
with the predictions of the TFM of a d-wave superconductor in the clean limit. For our
purposes, the essential feature of the data is the T -dependence of the normal fluid spectral
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Figure 7.1. σ1 vs. temperature for various frequencies in the microwave (GHz) range of the spectrum, as measured
on a high-purity, optimally doped YBCO single crystal. From [3].

weight, which is depicted in the inset to Figure 7.2. As we will be discussing conductivity
weight throughout this article, it is useful to settle on one consistent system of units through-
out. The conductivity spectral weight is the integral of σ1(ω) over ω. In the MKS system
we can express spectral weight as the square of a plasma frequency through the relation,
ω2

p = (2/πε0)
∫
σ1dω. Since for typical spectral weights we encounter, ω2

p expressed in s−2

is cumbersome, we suggest defining one spectral weight unit (SWU) as 1030 s−2. A super-
fluid condensate with 1 SWU corresponds to a London penetration depth of 300 nm. The
London length in optimally doped YBCO (parallel to the a-axis) is approximately 150 nm,
corresponding to 4 SWU.

According to the dirty d-wave model, the quasiparticle spectral weight that remains
uncondensed is constrained by the relation ρn(0) � αT ∗, where T ∗ is the T below which
the increase of ρs(T ) is no longer linear. As indicated in the Figure 7.2 inset, ρs(T ) remains
linear in this sample down to at least 1.3 K. Therefore, T ∗ can be no larger than 1 K and,
taking α = 0.02 SWU/K, dirty d-wave predicts that ρn(0) < 0.02 SWU. Referring to the
solid symbols in the inset, we see that ρn(0) calculated by direct numerical integration of
the measured σ1(ω) indeed satisfies this condition, extrapolating to less than 0.01 SWU as
T → 0. The maximum residual spectral weight is less than 0.25% of the condensate at
T = 0.

As the residual spectral weight is so small, the conductivity at all temperatures above
a few K satisfies the relation, ρn(T ) + ρs(T ) = ρs(0). The above expression for the normal
fluid spectral weight, together with a Drude conductivity spectrum,

σ1(ω, T ) = ρn(T )τ (T )
1 + ω2τ 2(T )

, (7.1)

is sufficient to capture all the remarkable features of the quasiparticle conductivity seen in
Figure 7.1 (1) the large peak in σ1(T ) that occurs at temperatures below Tc, (2) the crossover
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Figure 7.2. Main panel: σ1 vs. frequency for several temperatures in the range 1.3–9.0 K, as measured on a high-
purity, optimally doped YBCO single crystal. The solid lines show the best fit to the data obtained using the Drude
model for the quasiparticle conductivity. Inset: The temperature dependence of the quasiparticle spectral weight as
determined from numerical integration of the measured σ1 and as inferred from the penetration depth. From [17].

of the peak T fromω-dependent toω-independent behavior with decreasing frequency, and (3)
the collapse of σ1(T ) at all frequencies to a single curve at high T [4]. According to Eq. (7.1),
σ1 approaches a frequency-independent value, ρnτ , in the high T regime where ωτ(T ) � 1,
thus explaining (3). The increase in σ1 with decreasing T in this regime indicates that τ
increases faster than ρn decreases. This is the evidence for the famous “collapse” of the qua-
siparticle scattering rate upon entering the superconducting state [18, 19], an observation that
plays a crucial role in theories of high-Tc superconductivity. Regarding features (1) and (2),
Eq. (7.1) predicts that σ1(T )will start to decrease when τ begins to exceed ω−1. This accounts
for a frequency-dependent peak T . However, as the measurement frequency is made lower, it
will eventually become smaller than the low T limit of 1/τ determined by elastic scattering.
In this regime, σ1(T ) peaks when the increase of τ can longer overcome the decrease of ρn
with decreasing T . The frequency scale at which the peak becomes T -independent (∼10 GHz
in YBCO), provides an estimate of the elastic scattering rate. Note that an elastic scattering
rate of 2π × 10 GHz, together with a Fermi velocity of ∼2.5 × 107 cm s−1, corresponds to
mean-free-path in the neighborhood of several microns.

7.2.2. The BSCCO System: Failure of the Two-Fluid Description

In the BSCCO family of superconductors, σ(ω, T ) has been studied in nearly as much
detail as in YBCO crystals [5]. Figure 7.3 shows an example of microwave data on an opti-
mally doped BSCCO crystal [6] presented in the same format as Figure 7.1. The differences
are quite striking, especially considering that the BSCCO and YBCO samples have almost
the same Tc. In BSCCO, σ1(T ) is independent of ω in the same range of frequency where
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Figure 7.3. σ1 vs. temperature for various frequencies in the GHz range, as measured in an optimally doped BSCCO
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σ1(T ) in YBCO depends very strongly on ω. This contrast immediately suggests that 1/τ is
significantly larger in BSCCO as a result of increased disorder. However, despite the evidence
for increased disorder, ρs(T ) increases linearly with decreasing T (see Figure 7.4) to at least
5 K [6, 7].

Based on these results, we can say that σ(ω, T ) in BSCCO does not satisfy the condi-
tions for internal consistency required by the dirty d-wave picture. From ρs(T ) we see that T ∗
cannot be greater than ∼3 K. Using the same value of α as in YBCO, dirty d-wave predicts
an upper bound on ρn(0) of 0.06 SWU. However, this is much smaller than the uncondensed
quasiparticle spectral weight inferred directly from

∫
σ1(ω)dω. As σ1 is ω-independent up to

35 GHz, the characteristic roll-off frequency of the Drude peak cannot be less than ∼100 GHz,
placing a lower bound on ρn(0) of ∼0.45 SWU. Thus, this BSCCO sample is highly ordered
based on ρs(T ), but highly disordered based on ρn(T ).

THz spectroscopy performed on BSCCO films captures the frequency dependence of
σ1 that takes place above the range of microwave spectroscopy [20, 21]. In Figure 7.5 we
show σ1(ω, T ) vs. T for an MBE-grown, slightly sub-optimally doped BSCCO thin film, for
a series of representative frequencies from 150 GHz to 800 GHz. The lowest frequency THz
data are quite similar to the highest frequency microwave data. Only above 150 GHz does
σ1 begin to change. These data prove that the essential frequency dependence of σ1(T ) in
BSCCO occurs at frequencies almost two orders of magnitude larger than in YBCO single
crystals. Using these data, a more rigorous lower bound on ρn(0) of 0.6 SWU is obtained by
numerical integration of σ1 up to 1 THz. The uncondensed spectral weight in this sample is
more than a factor of 60 larger than in the UBC-grown YBCO single crystals, and represents
30% of ρs(0).
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Figure 7.5. σ1 vs. temperature for various frequencies in the THz range, as measured in a slightly underdoped
BSCCO thin film with Tc = 85 K.

That ρn(0) is comparable to ρs(0) may be surprising to many readers. The more familiar
picture of the optical conductivity in BSCCO comes from measurements of IR reflectivity, R,
on bulk single crystals [22], an example of which is shown in Figure 7.6. Kramers–Kronig
analysis of R(ω) provides an extremely accurate measurement of σ(ω) over a wide range
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Figure 7.6. Upper panel: Reflectance as measured on an optimally doped BSCCO crystal as a function of frequency
(in wavenumbers) at the temperatures indicated in the legend. Lower panel: Real part of optical conductivity as
obtained by Kramers–Kronig transformation of the reflectance. From [22].

of frequency. However, the Kramers–Kronig analysis becomes unreliable when R becomes
too close to unity, typically for frequencies below ∼100 cm−1, or roughly 3 THz. As a result,
IR reflection measurements are not sensitive to the low-frequency component of σ(ω) that is
seen in microwave and THz spectroscopy. We note that this component, which approaches
6 × 106 �−1 m−1 as ω → 0, is a factor of 30 larger than the value of the conductivity at the
low-frequency limit of IR reflectivity measurements.

A plot of σ1 as a function of frequency from 0.01 to 100 THz, shown in Figure 7.7,
presents a more complete picture of the low T optical conductivity of optimally doped
BSCCO. The broad-band spectrum was assembled from microwave [6], terahertz [20], and
infrared [22] data. For reference, the value of the universal d-wave conductivity is shown as
a triangle symbol on the left-hand axis. Considering that the plot is a composite of data ob-
tained from three different techniques (and three different samples), the continuity of σ1(ω) is
remarkable. The composite plot clearly demonstrates that the low T conductivity is dominated
by a component centered at ω = 0, with width ∼300 GHz.

For comparison, we show (in Figure 7.8) a composite of optical conductivity data
as measured in optimally doped YBCO crystals (open symbols). The YBCO spectrum is
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Figure 7.7. Composite plot of σ1 at T ≤ 10 K as a function of frequency in THz. The spectrum is assembled
from microwave [6], terahertz [20], and infrared [22] data. At low T the conductivity is dominated by a component
centered at ω = 0, with width �300 GHz, whose magnitude as ω → 0 is much greater than the “universal d-wave
conductivity” (triangle). The dashed line shows a Drude spectrum for scattering rate (2π)×3×1011 s−1 and plasma
frequency 1.1 × 1015 s−1, corresponding to 1.2 SWU in the units defined in the text.

assembled from microwave [3, 17] and infrared [23] data. The composite spectrum high-
lights several interesting features of the optical conductivity in YBCO. The conductivity in
the low ω, T limit is comparable to that of optimal BSCCO and is larger than the universal
d-wave value by a factor of approximately 20. In YBCO, the uncondensed spectral weight
in the microwave region is much smaller than in BSCCO because the characteristic cutoff
frequency is ∼3 GHz, compared with ∼300 GHz in BSCCO. However, we cannot conclude
with certainty that the total uncondensed spectral weight in YBCO is small because, despite
intense study of this material, there is a large regime of frequency (0.08–3.0 THz) in which
σ(ω) has not been measured. Moreover, a linear extrapolation of the power law decay of
σ(ω) in the microwave regime to higher frequency far underestimates the conductivity at the
low frequency limit of the infrared data. For purposes of illustration we have indicated (as
a dashed line) one possible behavior of the conductivity in the THz regime. If the conduc-
tivity did indeed plateau near the universal d-wave value, the uncondensed spectral weight
would be ∼0.2–0.3 SWU, which is still less than 10% of the condensate spectral weight in
this material. Of course, the conductivity could, instead, exhibit a deep valley or large peak in
the unmeasured frequency range.

7.2.3. Additional Examples

BSCCO is not the only example of a cuprate superconductor in which as much as one-
third of the quasiparticle spectral weight remains uncondensed as T → 0. Another example is
optimally doped La1−x Srx CuO (LSCO), whose σ(ω) in the THz frequency regime has been
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Figure 7.9. σ1 vs. temperature for various frequencies in the THz range, as measured in an optimally doped thin
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reported by Pronin et al. [8] (Figure 7.9). These authors analyze their data using a Drude model
for the quasiparticle conductivity in which ρn(T ) + ρs(T ) is constrained to be constant, but
not necessarily equal to ρs(0), thus allowing for the possibility of uncondensed quasiparticle
spectral weight. From this analysis they conclude that ρn(0) is four times larger than ρs(0).
The total spectral weight, ∼2 SWU, is nearly the same in LSCO as in BSCCO. However,
the condensed portion in LSCO is only 0.4 SWU, which corresponds to a London length of
400 nm. Thus we see that the larger London length in LSCO, which is well known from other
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Figure 7.10. Upper panel: Dynamical penetration depth (proportional to (ωσ2)
−1/2 as a function of temperature

for several frequencies in the THz regime. Upper panel inset: Penetration depth at low temperature plotted on a linear
scale. Diamonds indicate extrapolation to zero frequency. Lower panel: σ1 as a function of temperature for the same
frequencies indicated in the upper panel. Lower panel inset: Positions of σ1 peaks in frequency–temperature plane.
From [25].

measurements [24], is not a consequence of smaller low-energy spectral weight, but rather
results from the fact that only a small fraction of the low-energy spectral weight actually
condenses to form the superfluid.

Another example of a system with a large residual spectral weight is YBCO in thin
film form. The lower panel of Figure 7.10 shows σ1(T ) in the THz regime for an optimally
doped YBCO thin film [25]. These data show clearly the presence of uncondensed spectral
weight in the T → 0 limit. It is straightforward to estimate that ρn(0) � 1 SWU, which is
approximately one-third of the spectral weight that condenses. These results demonstrate that
nearly compete condensation is not a general property of the YBCO system, but rather it is a
unique property of ultra-pure, stoichiometric YBCO single crystals.

7.3. Optical Conductivity vs. Hole Concentration in BSCCO

7.3.1. Systematics of the Conductivity Anomaly

In this section we review THz conductivity measurements performed on a set of BSCCO
films (which includes the optimally doped film discussed in Section 7.2) with varying hole
concentration, x [20, 21, 26, 27]. The trends in σ(ω, T ) with x clarify the nature of the un-
condensed spectral weight. The data suggest strongly that an additional contribution to σ1(ω),
beyond the Drude response of quasiparticles, is required to understand the optical conductivity
of the majority of cuprate samples.
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to σ2, is essentially linear with from low T to Tc.

The Tcs of the films range from 51 K (underdoped) to 75 K (overdoped). The real and
imaginary parts of σ(ω, T ) for each sample are presented, in the left and right-hand panels,
respectively, in Figures 7.11, 7.12, and 7.13. To illustrate the trend most clearly, we first com-
pare σ(ω, T ) in the end members of the series, the most underdoped (Figure 7.11) and the
most overdoped (Figure 7.13). In the overdoped sample σ1(ω, T ) is similar to that in the near-
optimally doped sample discussed in Section 7.2. The peak in σ1(T ) moves systematically to
lower T with decreasing ω. However, σ1 does not approach zero below the peak T ; a sub-
stantial amount of spectral weight remains uncondensed in the limit that T → 0. The THz
conductivity of the most underdoped sample is markedly different, in that σ1(T ) peaks just
below Tc, independent of frequency. Moreover, spectral weight decreases at low T as expected
for a clean d-wave superconductor. The σ1 spectra for the intermediate sample (Tc = 71 K)
follows the trend in that the low T dissipation, while clearly visible in the 100 GHz data, is
much smaller than in the more heavily doped samples.

We next discuss why the Drude conductivity of superconducting quasiparticles is in-
sufficient to model the σ(ω, T ) observed in this set of BSCCO films. There are three basic
reasons:

1. The single component Drude spectrum cannot describe the ω and T dependence of
σ . A robust prediction of any single component model is that σ1(T ) for all ω merge
as T → Tc (as seen in the YBCO single crystal data). This prediction does not
depend on a specific choice of frequency dependence for the quasiparticle peak, such
as Lorentzian. It is seen in all single-component models because the initial increase
in σ(T ) with decreasing T requires ωτ � 1 near Tc. In this limit σ1 → σ(0, T ),
which is, of course, independent of ω. As is most clear in the spectra in the optimal
and overdoped BSCCO films, σ1(T ) at different ω fans out immediately below Tc, a
feature which is at odds with the single component picture.
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Figure 7.12. Left panel: σ1 and right panel: σ2 at the THz range frequencies indicated in the legend, as measured on
an underdoped BSCCO thin film with Tc = 71 K. The behavior of σ1 is intermediate between that of very underdoped
and optimal samples in that the residual conductivity is apparent only at the lowest measurement frequency.
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Figure 7.13. Left panel: σ1 and right panel: σ2 at the THz range frequencies indicated in the legend, as measured on
an overdoped BSCCO thin film with Tc = 75 K. Here the residual conductivity is even larger than in the optimal sam-
ple, demonstrating clearly the trend that the spectral weight that remains uncondensed as T → 0 is a monotonically
increasing function of the hole concentration.

2. Forcing a single component fit yields frequency dependent ρn and τ . A useful
perspective on “fitting” optical conductivity data is to recognize that the real and
imaginary parts of σ(ω) constitute two independent observables at each frequency
(although they are nonlocally related through Kramers–Kronig relations). Therefore,
if the two free parameters, ρn and τ , are allowed to vary with ω, any σ(ω) can be as-
cribed to a single component. In a sense, this is fitting the data to an infinite number
of parameters. The test, of course, is whether ρn(ω) and τ(ω) turn out to be physi-
cally reasonable. When this fitting procedure is performed on the THz data, ρn(ω) is
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found to increase by more than a factor of three from 0.8 to 0.2 THz, implying a large
low-frequency renormalization of the quasiparticle mass. This seems highly unlikely
in that (1) a single value of m∗ is sufficient to describe σ(ω) in the UBC crystals and
(2) ARPES yields a single value for the renormalized Fermi velocity, independent of
ω and T [28].

3. In many samples the single component description requires ρn(T ) to vary as ρn(0)+
αT . There is no way to understand, in a mean-field picture of disorder, how ρn(T )
be singular as T → 0 in the presence of a large N (0).

7.3.2. Quantitative Modeling of σ(ω, T )

Below, we describe a model for σ1(ω, T ) in BSCCO thin films that allows a quantitative
description of the optical conductivity with a minimum of free parameters. The model posits
the presence of two components of the conductivity (in addition to the condensate δ-function).
The first component, which describes the entire microwave conductivity in YBCO, comes
from the quasiparticles that eventually enter the condensate as T → 0. The second component
does not vanish in the low T limit, and indeed its spectral weight actually increases with
decreasing T . Later, we will associate this component with fluctuations of the condensate
phase.

To model the first component we assume the same Drude spectrum for the quasiparti-
cle conductivity that could account for the entire σ(ω, T ) in the case of YBCO. The spectral
weight of this component is the normal fluid density that ultimately forms the condensate,
which is given by ρs(0) − ρs(T ). We note that ρn(T ) thus defined is not a free parameter,
but is determined directly from measurements of σ2(ω, T ). The only free parameter intro-
duced by this component is τ(T ). The measured σ1(T ) at any one ω completely determines
τ(T ) and hence the predictions of the Drude model for all ω and T in the superconduct-
ing state. Figure 7.14 shows the Drude component at several frequencies, together with the
data at a measurement frequency of 200 GHz. τ(T ) has been determined from σ1(T ) mea-
sured at 800 GHz, near the upper limit of the experimental range. Note that the choice of τ(T )
that describes the data at 800 GHz completely fails at 200 GHz.

As a first step in modeling the additional component of the conductivity, one can
compute the spectral weight left over after subtracting the Drude conductivity shown in
Figure 7.14. When this subtraction is performed, it is found that the spectral weight of the
remainder increases as T is lowered. Furthermore, the spectral weight increases in fixed pro-
portion to the growth of the superfluid density ρs(T ). In view of the connection to the super-
fluid density, we refer hereafter to this contribution to σ(ω) as the “collective” component.

Including the collective contribution yields the following parameterization of the
conductivity,

σ1(ω, T ) = ρnτ

1 + ω2τ 2 + κρs/Γcm

1 + ω2/Γ 2
cm
. (7.2)

In the above formula, the first term is the Drude contribution from condensing quasiparticles
and the second term is another Lorentzian peak which models the collective mode. The lat-
ter introduces only two additional, T -independent parameters: κ is the fraction of ρs(0) that
remains uncondensed at T = 0, and Γcm is width of the uncondensed contribution.

The formulation described above provides a remarkably good description of the optical
conductivity for all the samples. The comparison of the model with the measured conductiv-
ity for the optimal sample is illustrated in Figure 7.15 [20]. The collective mode parameters
are κ = 0.30 and Γcm = 1.5 THz. The T -dependence of 1/τ that provides the best fit to the
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Figure 7.14. Illustration of the difficulty of modeling the measured σ1(ω, T )with the Drude conductivity of thermal
quasiparticles (Eq. (7.1)). Solid lines: Plots of Eq. (7.1) at several frequencies from 200 to 800 GHz, with ρn(T )
extracted from the measured σ2 and τ(T ) chosen to fit σ1(T ) as measured at 800 GHz. Solid symbols: σ1(T ) at 200
GHz as measured on a optimally doped BSCCO thin film.

0 50 100

0.0

0.5

1.0

1.5

2.0

0

6

12

1/
t q 

p
(T

H
z)

0 50 100
Temperature (K)

s
1

( µ
Ω

 
m

   
)

−1
−1

Figure 7.15. Comparison of the 2 + 1 fluid model (Eq. (7.2)) with σ1 as measured on an optimally doped BSCCO
thin film. Left panel: Difference between the measured σ1(T ) and quasiparticle Drude contribution (first term of
Eq. (7.2)), plotted at 0.2, 0.36, and 0.64 THz as squares, circles, and triangles, respectively. The dashed lines are the
collective mode conductivity (second term of Eq. (7.2)). Lower right panel: The difference between the measured
conductivity and the best fit using Eq. (7.2) is plotted on the same scale as the left panel, and can be attributed to
thermal phase fluctuations that occur in the neighborhood of Tc. Upper right panel: The quasiparticle scattering rate
1/τ , as determined from the best fit to Eq. (7.2), plotted vs. temperature with the T scale given by the panel below.

condensing quasiparticle contribution is shown in the upper right-hand panel of Figure 7.15.
The left-hand panel shows the result of subtracting the quasiparticle contribution, as mod-
eled by the first term of Eq. (7.2) from the measured conductivity. Clearly, what remains in-
creases monotonically with decreasing T over the entire range of measurement frequency. The
dashed lines indicate the values of the second term in Eq. (7.2). Finally the lower right-hand
panel shows the remainder when both terms of Eq. (7.2) are subtracted from the measured
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G

Figure 7.16. The two parameters, κ and Γ , that describe the collective mode conductivity as a function of hole con-
centration, δ. Squares: κ , the spectral weight of the collective mode expressed as a fraction of the condensate spectral
weight, increases monotonically with hole concentration. Circles: Γ , the width of the collective mode conductivity,
decreases with increasing hole concentration.

conductivity, illustrating that the model describes the data very well except for the peak near
Tc that results from thermally driven superconducting fluctuations [26].

One of the main benefits of the modeling is that it facilitates comparison of the data from
one sample to another. Figure 7.16 shows the variation in κ and Γcm across the measured range
of hole concentration. Note that κ increases rapidly with increasing concentration, reaching
almost 0.5 for the overdoped sample. The spectral weight of the collective mode contribution
to σ1 increases even more rapidly than does κ because ρs itself increases monotonically with
x . Figure 7.17 illustrates that ρs increases monotonically over the measured range of hole
concentration, despite the fact that Tc decreases beyond optimal doping.

7.4. Collective Mode Contribution to Optical Conductivity

7.4.1. Origin of the Collective Contribution

In Section 7.3 we showed that the optical conductivity of a set of BSCCO films could be
modeled by adding to the Drude conductivity of quasiparticles a component whose spectral
weight tracks ρs(T ) as T varies. The proportionality to ρs(T ) suggests a connection to current
fluctuations of the condensate. However, thermal fluctuations are clearly ruled out because
they decrease with decreasing T . Likewise, the quantum phase fluctuation conductivity of a
spatially homogeneous superconductor, which is ∼σQ ∼ 3 × 105 Ω−1 cm−1 [29], is far too
small to account for the observed conductivity.

A calculation performed by Doniach and Inui [30] suggests the conditions under which
the conductivity that arises from quantum phase fluctuations can become large. The supercur-
rent density arising from fluctuations of the order parameter phase is given by 
Js = ρs∇φ.
This relationship implies that phase-fluctuation currents at wavevector q vanish in the q → 0
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Figure 7.17. Superfluid density as a function of temperature for representative under, optimal, and overdoped
BSCCO thin films. The superfluid density per Cu–O bilayer is expressed as an effective phase stiffness tempera-
ture through the relation kBTθ ≡ h̄ωG2(ω)/GQ, where G2 is the imaginary part of the conductance per layer and
GQ is the conductance quantum.

limit, and therefore make no contribution to the optical conductivity. The lowest order con-
tribution to σ(ω, q → 0) arises from combined amplitude and phase fluctuations with equal
but opposite wavevector, resulting in a q = 0 supercurrent. The fact that the current is sec-
ond order in fluctuations of the order parameter leads to a small value for the conductivity.
However, an implication of the Doniach and Inui calculation is that the phase fluctuation con-
ductivity could be enhanced by quenched disorder, as static variations of the order parameter
amplitude allow phase fluctuations of all wavevectors to contribute in first order to the optical
conductivity.

Another argument supporting the above conclusion is the following: consider a system
of clean-limit BCS superconductor islands connected by weak links with coupling J . If the is-
lands were infinite then superfluid density would equal the entire normal state spectral weight.
However, in the granular system the phase stiffness is limited by the weak links, leading to
a condensate spectral weight that is only ∼J . In the limit that J is small, virtually the en-
tire low-frequency spectral weight does not contribute to the superfluid density, i.e., remains
uncondensed as T → 0.

Barabash and Stroud [31] demonstrated that the general arguments above apply to disor-
dered superconducting systems by considering a Josephson junction network with quenched
variation δ J about the mean coupling J̄ . They showed that the global phase stiffness J is less
than J̄ (by 〈δ J 2〉/ J̄ ) because the phase varies more rapidly in regions where the stiffness is
below the average value. The connection to optical conductivity is as follows. The spectral
weight of the condensate δ-function is proportional to J , which is then less than total spec-
tral weight of condensate current fluctuations, proportional to J̄ . Thus inhomogeneity of the
superfluid density must displace spectral weight ∼〈δ J 2〉/ J̄ from the δ-function to nonzero
frequency. The fraction of spectral weight removed from the condensate (the parameter we
have previously defined as κ) is therefore to be identified with 〈δ J 2〉/ J̄ 2. We note that if J
varies, for example with T , in such as fashion as the relative variation 〈√δ J 2〉/ J̄ remains the
same, then the fraction of the condensate weight that is displaced will also be constant.
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7.4.2. Optical Conductivity in the Presence of Inhomogeneity

We have seen that, in the presence of static inhomogeneity, quantum phase fluctuations
contribute substantially to the optical conductivity. To determine whether quenched inhomo-
geneity in ρs is responsible for the anomalies in σ(ω, T ) discussed previously, we need to
consider where in ω-space the spectral weight removed from the condensate will reappear.
Conventional wisdom has it that, in a granular superconductor, the conductivity will appear
at the natural oscillation frequency of the order parameter phase, which is the Josephson
plasma frequency, ωs. In optimal cuprates this is a very large frequency, that is ωs/2π ∼√

SWU·150 THz, whereas the anomalous dissipation is found below ∼1 THz. Inhomogeneity
can only explain the anomalous σ(ω) in the cuprates if the displaced spectral weight actually
appears at frequencies much smaller than ωs.

With further reflection it is clear that the shifting of all spectral weight to ωs is a pecu-
liar feature of a “single-fluid” model, i.e., a superconductor with zero quasiparticle density.
Consider first a disordered superconductor in which the superfluid density varies with position
as 〈ρs〉 + δρs(
r) and ρn = 0. According to previous arguments, spectral weight 〈δρ2

s 〉/〈ρs〉
is removed from the condensate as a result of the disorder. In the neighborhood of ωs this
medium is simply a disordered conductor, and will have strong absorption bands related to
the Mie absorption of small metallic particles. Therefore it is reasonable that the spectral
weight removed from the condensate reappears at ωs. Next, consider a system with the same
distribution of superfluid density, but with nonzero normal fluid density distributed such that
δρn(
r) = −δρn(
r). Although this system is disordered at the frequency of superconducting
correlations, it is optically homogeneous near the Josephson plasma frequency (the fractional
variation in optical conductivity near ωs is ∼1/(ωpτ)

2). Clearly for this system the spectral
weight that is shifted from the condensate cannot appear near ωs.

The difference in the two “Gendanken samples” described above is the number of fluid
components (or collective degrees of freedom). The superfluid-only sample has one collective
(phase) mode which lies near the plasma frequency. On the other hand, the two-fluid medium
has collective modes in which the super and normal components are either co- or counterprop-
agating. The counterpropagating mode will have ∇ · 
J � 0 and therefore have an acoustic
rather than plasmonic spectrum. We may expect that this mode will be overdamped due to
the dissipation associated with the normal currents and therefore manifest as a Drude-like
contribution to the optical conductivity. In Section 7.4.3. we present a model calculation [32]
of the optical conductivity of a two-fluid system with quenched spatial inhomogeneity which
supports the qualitative predictions discussed above.

7.4.3. Extended Two-Fluid Model

To treat the conductivity in the presence of inhomogeneity we apply the extended two-
fluid phenomenology developed by Pethick and Smith [33] and Kadin and Goldman [34].
This approach successfully describes quenched inhomogeneity at the normal–superconductor
interface and fluctuating inhomogeneity, as in the Carlson–Goldman oscillations [35]. In the
extended two-fluid model the superfluid is accelerated by gradients of the chemical potential
as well as electric fields, that is,


̇Js = ρs

[ 
E − ∇(µs/e)
]
. (7.3)

The chemical potential has the subscript “s” because in a superconductor µ is the energy
per electron required to add a pair to the condensate. The corresponding equation for the
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normal fluid current requires solving the Boltzmann equation for the quasiparticle distribution
function. However, for frequencies less than 1/τ the distribution function is the equilibrium
distribution shifted by the “quasiparticle chemical potential” or µn. If the normal fluid is in
local equilibrium with the condensate, µn = µs, which differs from “global” equilibrium
where µn = 0. In the low-frequency regime the constitutive relation for the normal fluid has
the simple form:


̇Jn = ρn

[ 
E − ∇(µn/e)
]

− 
Jn/τ. (7.4)

A closed system of equations requires continuity relations. The total charge of the supercon-
ductor separates naturally into a normal component, Qn, that depends on both the coherence
factors and the distribution function,

Qn ≡
∑

k

qk fk, (7.5)

where q2
k ≡ u2

k − v2
k , and a superfluid component that depends only on coherence factors,

Qs ≡
∑

k

2ev2
k = 2eNFµs. (7.6)

Under conditions for which µn can be defined, the normal fluid charge is given by,

Qn = 2NFλ(µs − µn), (7.7)

where NF is the normal state density of states at the Fermi level. The parameter λ relates the
normal fluid charge to the shift of µn away from local equilibrium.

In a superconducting medium the normal and superfluid charge are not separately con-
served. Interconversion of normal and superconducting charge occurs through two types of
processes. In the first process, Qn changes as quasiparticles recombine or scatter. In the sec-
ond, the quasiparticle charge changes even if fk remains constant. In this process, Qn varies
because the quasiparticle excitation spectrum, and consequently the effective charge, adjusts
to the local value of µs. Continuity equations that include both types of exchange between the
two fluids are:

Q̇n,s + ∇ · 
Jn,s = (−,+)(Qn

τQ
− λQ̇s), (7.8)

where τQ is the rate of conversion of normal charge into superfluid charge due to scattering
and recombination processes. The above system of equations is closed by ∇ · 
E = Q/ε0.

To see how quenched inhomogeneity affects the optical conductivity, we consider the
simplest possible model: a static one-dimensional sinusoidal variation in normal and super-
fluid density. We assume that the densities of the two components vary as ρs,n(x) = 〈ρs,n〉 +
Re{ρsq,nqeiqx }, where 〈ρ〉 is the average density and ρq is the amplitude of the inhomogeneity
at wavevector q. Because the medium is inhomogeneous, a uniform applied field generates a
field at q. Solving the extended two-fluid equations to lowest order in ρnq,sq , we obtain,

Eq

E0
= − ρsq + ρnq F

ω2
s − ω2(1 − λ)+ (ω2

n − iωλ/τ)F
, (7.9)

where,

F ≡ ω(ω + i/τ ∗
Q)− v2

s q2/(1 − λ)

(ω + i/τ)(ω + i/τ ∗
Q)− v2

nq2/λ
, (7.10)

and ω2
s,n ≡ ρs,n/ε0 + v2

s,nq2, v2
s,n ≡ ρs,n/2NFe2, and τ ∗

Q ≡ τQ(1 − λ).
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The uniform current density in response to these fields is given by J0 = σ0 E0 +σq E−q ,
where σ0 is the uniform two-fluid conductivity and σq is the conductivity that varies with
wavevector q. In the two-fluid model these are given by,

σ0,q = iρs,sq

ω
+ iρn,nq

ω + i/τ
. (7.11)

The effective conductivity of the medium, σ = σ1 + iσ2, is the ratio of the uniform current
density to the uniform field, so that, σ = σ0 + σq E−q/E0. The second term in this equation
is the change in the optical conductivity due to inhomogeneity, or 
σ .

The extra term in the conductivity is particularly simple if ρn = 0, in which case,


σ2 = −ρsq

ω

ρsq

ω2
s − ω2 . (7.12)

Equation (7.12) shows that the inhomogeneity in the superfluid density indeed removes spec-
tral weight ρ2

sq/ρs from the condensate δ-function, in agreement with the results of [31]. In
the absence of a normal fluid component the spectral weight reappears in a δ-function at the
Josephson plasma frequency.

We next assume that ρn 	= 0, and describe how this assumption affects 
σ(ω). We
focus on the behavior of 
σ when the normal fluid density fluctuations are either per-
fectly correlated or anticorrelated with those of the superfluid density. We take for two-
fluid parameters values that are suggested by the terahertz and microwave experiments:
(ρs/ε0)

1/2 = 1,000 THz, (ρn/ε0)
1/2 = 800 THz, and τ−1 = τ−1

Q = 3 THz. If we make
the reasonable approximation of neglecting BCS coherence factors for the quasiparticle states
introduced by disorder, then λ = N (0)/NF.

We begin with the case where the density fluctuations are perfectly anticorrelated, so
that ρsq = −ρnq and the total fluid density is uniform throughout the medium. Figure 7.18
shows 
σ1(ω) with (ρsq/ε0)

1/2 = 100 THz, for several values of vsqτ . 
σ1(ω) is positive
and centered at ω = 0 rather than ωs. The spectra depend strongly on vsqτ . For vsqτ �1,

σ1 has a Drude-like spectrum. As vsqτ increases beyond unity, the spectral weight drops
and a peak near the Carlson–Goldman frequency vsq appears in the spectrum.
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Figure 7.18. 
σ1 as a function of frequency (ω/2π ) for anticorrelated variations in ρs and ρn. Spectral weight
decreases for increasing vsqτ : 0.25, 0.5, 1.0, and 2.0. The same curves are shown in a normalized plot in the inset.
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Figure 7.19. Comparison of the spectral weight displaced from the condensate by the quenched variation in ρs and
the spectral weight that appears in 
σ1 at low frequency.

The key issue is the fraction of the displaced condensate spectral weight that appears in
the low-frequency peak, as opposed to frequencies near ωs. In Figure 7.19 we compare the re-
duction in condensate weight with the increase in dissipation at low frequency. The change
in condensate spectral weight was evaluated from the limω→0(π/2)ω
σ2(ω). The low-
frequency spectral weight was obtained by numerically computing the integral of 
σ1 with
respect to ω from 0 to 100 THz. Figure 7.19 shows these two quantities, normalized to ρ2

sq/ρs,
as a function of vsqτ . They are equal in magnitude but opposite in sign, which shows that all
of the spectral weight removed from the condensate appears at low frequency and none ap-
pears at ωs. Moreover, the decrease of condensate spectral weight coincides exactly with the
prediction of Barabash et al. [31] as vsqτ → 0, but vanishes for vsqτ � 1.

The results presented above are a straightforward consequence of the anticorrelation of
the density fluctuations. There is no dissipation near ωs because the response of the medium
is homogeneous at high frequencies. The anomalous dissipation appears instead at low fre-
quency where the conductivity has strong spatial variations. σ is smaller in the regions that
are superfluid poor and normal fluid rich. E will be larger in such regions, which is precisely
equivalent to more rapid order parameter phase variation in regions of low stiffness. Thus
the additional low-frequency dissipation arises ultimately from an amplification of E in re-
gions with greater than average ρn. Finally, the dynamical inhomogeneity disappears when
q � (vsτ)

−1 because the normal and superfluid response again become indistinguishable in
this regime.

We are now prepared to understand the sharp difference in 
σ if the super and nor-
mal fluid density waves are positively correlated. Figure 7.20 shows 
σ1(ω) calculated with
identical parameters as in Figure 7.1, except that ρsq = ρnq . The change in conductivity is
negative, and the spectra are nearly independent of q in contrast to the strongly q dependent
and positive change generated when ρsq = −ρnq . The reduction in conductivity is exactly
as expected from the previous arguments: now regions of large E coincide with normal fluid
poor regions and the dissipation is attenuated. The spectra are nearly independent of q be-
cause the dynamical inhomogeneity does not tend to zero when the normal and superfluid
response become indistinguishable. The spectral weight is displaced equally from the conden-
sate and the normal fluid, and weight 2ρ2

sq/ρs shifts to very high frequency. Finally, although
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Figure 7.20. 
σ1 vs. frequency for the same parameters as Figure 7.1, except variations in ρs and ρn are positively
correlated.

the sensitivity of the conductivity spectrum to correlations in ρs and ρn are demonstrated for a
sinusoidal distribution, the essential predictions of the above model are supported by theories
that treat random spatial variations in the fluid densities [36, 37].

7.4.4. Comparison of Model and Experiment

In this section, we describe how the behavior of the optical conductivity in disordered
cuprate superconductors can be readily understood in the context of the model described
above. The three essential features to be explained are:

1. Many cuprates exhibit uncondensed spectral weight at low T , suggestive of a large
density of states at the chemical potential, while ρs(T ) remains linear to very low T ,
apparently inconsistent with large N (0).
Point (1) is difficult to explain in a mean-field picture of a disordered d-wave su-
perconductor because large N (0) implies that as T → 0 the superfluid density has
the asymptotic form, ρs(T ) = ρs(0) − BT 2. However, it is consistent with an inho-
mogeneous form of disorder in which regions of clean superconductor coexist with
metallic regions that provide the large N (0). Uemura has proposed superconduc-
tor/normal metal coexistence in cuprate superconductors on the basis of muon spin
resonance data as well as analogies to liquid 3He [38]. Such metallic regions need
not have ρs = 0 as superconductivity could be induced by the proximity effect.

2. The anomalous spectral weight appears at low frequency and, in a given sample, is
proportional to ρs(T ).
Point (2) follows if the local values of ρs(
r) and ρn(
r) are negatively correlated, such
that regions with large ρs have small ρn and vice versa.

3. The magnitude of the low-frequency spectral weight grows monotonically as samples
evolve from under to overdoped.
Point (3) is consistent with the picture of inhomogeneity implied by the LDOS mea-
surements in BSCCO crystals [14, 15]. These experiments reveal a distribution of
electronic properties that suggests variation in local hole concentration, x . As sam-
ples evolve from under to overdoped the mean of the distribution, x̄ , shifts toward
larger values. Eventually the distribution in x should span the d-wave superconductor
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(dSC)/normal metal phase boundary, with coexistence of super and normal patches
an inevitable consequence. Note that the model also explains why the uncondensed
spectral weight in underdoped samples appears to be small, despite the fact that the
fractional variation in the local ρs should be just as large as in optimal or overdoped
samples. In these samples the “weak links,” or regions with smaller ρs, are not metal-
lic. If anything their ρn is also smaller, so that the fluid densities are positively, rather
than negatively correlated. As we saw in the previous section, in this case the order
parameter phase fluctuations are not screened and the characteristic absorption ap-
pears near the plasma frequency. Indeed, this offers a possible explanation for the
anomalous mid-IR absorption observed in underdoped cuprates.

7.5. Summary and Outlook

7.5.1. Summary

We have presented an overview of the microwave and millimeter wave properties of
cuprate superconductors, illustrating the two types of low-frequency optical conductivity that
these materials exhibit. The first type, exemplified by ultra-pure and stoichiometric YBCO
single crystals, is well described by a single component originating from the Drude response
of thermal quasiparticles. In other cuprate systems that have been studied σ(ω) has an ad-
ditional component beyond the quasiparticle contribution, also centered at ω = 0, with a
typical width of ∼300 GHz. The existence of this peak has not been widely appreciated be-
cause its spectral weight lies in the gap between microwave and infrared regimes where most
measurements of optical conductivity are performed. However, when microwave, terahertz,
and infrared data are assembled in a composite plot, the presence of a Drude-like peak that
spans these three ranges is clearly revealed. We also presented an analogous plot of the opti-
cal conductivity of ultra-pure single crystalline YBCO, in which no terahertz measurements
have been performed. This composite plot reveals that the microwave conductivity does not
extrapolate smoothly to the infrared conductivity, hinting at the possible presence of structure
in the unmeasured region of the spectrum.

We showed that the extra component of σ(ω) is a collective mode that appears in the
q = 0 response function when the order parameter amplitude, |Ψ |, and the density of states at
the chemical potential, N (0), vary with position in the medium. Such variation in microscopic
parameters leads to a macroscopic description in terms of spatially varying super and normal
fluid densities. A simple model of one-dimensional sinusoidal variation in ρs and ρn showed
that the characteristic frequency of the collective mode depended strongly on the spatial cor-
relation of the fluid density variations. The collective mode spectral weight appears at the low
frequencies seen in experiments when the spatial variations are anticorrelated, such that the
total fluid density is roughly constant in the medium. Finally, we showed that the frequency,
temperature, and doping dependence of the optical conductivity in a series of BSCCO thin
films could be understood to arise from the combination of a quasiparticle Drude peak and the
collective mode described above.

7.5.2. Outlook and Directions of Future Research

The existence, origin, and ultimate importance of inhomogeneity are central questions
facing researchers seeking to understand high-Tc superconductivity in the cuprates (see the ar-
ticle by Kivelson and Fradkin in this volume). The existence of strong quenched variation in
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the superconducting order parameter remains an area of controversy. It has been argued that
the spatial variations seen directly by STM spectroscopy are confined to the surface of the
samples that have been studied [39]. Measurements of specific heat, NMR Knight shift, and
fluctuations near Tc are claimed to be inconsistent with the large amplitude fluctuations seen
in STM. Most relevant to optical conductivity measurements is the claim that the specific heat
varies as T 2 at low temperature, with no indication of a component linear in T that could be
identified with a nonzero N (0) in the superconducting state. However, this conclusion is con-
tradicted by other measurements which indicate that the linear coefficient of the specific heat,
γ , does not vanish even in “high-quality” single crystalline samples [40]. Indeed the quanti-
tative modeling of the low temperature specific heat in the cuprates is complicated, involving
possible contributions from normal electrons, d-wave quasiparticles, paramagnetic centers,
and phonons, all of which vanish as T → 0 (see the article by Phillips in this volume). When
compared to the specific heat, the optical conductivity is a much more direct probe of N (0).
Not only are there fewer possible contributors, but N (0) appears directly as a component of
the spectral weight that tends to a nonzero value as T → 0.

If we interpret the combination of σ(ω) and STM data as solid evidence for the exis-
tence of bulk inhomogeneity in cuprate superconductors, its origin becomes the central ques-
tion. This question can be framed in terms of intrinsic vs. extrinsic mechanisms, although
from certain perspectives the distinction is not always clear. Extrinsic inhomogeneity is that
component arising from spatial variation in the defects or chemical dopants that shift the
carrier concentration away from the half-filled Mott insulating state. Intrinsic inhomogeneity
occurs when CDW and/or SDW states compete with d-wave superconducting order. In the ab-
sence of disorder, intrinsic inhomogeneity is expected to vary with time, although potentially
at low-frequency scales. However, the presence of chemical or structural disorder could cause
quenching of low-frequency variations, generating static spatial inhomogeneity.

The crucial test for intrinsic inhomogeneity is “universality.” If the spatial variations
arise intrinsically from the physics of competing interactions, then they should appear in all
the cuprate families of compounds. As a test for universality, measurements of low-frequency
optical conductivity as a function of carrier concentration in more cuprate systems would be
quite useful. Of special interest would be the La2−x Srx CuO4 system, where quenched stripe-
like inhomogeneities are observed by neutron scattering [41] and large values of uncondensed
spectral weight have already been reported for optimally doped samples [8].

In connection with universality, characterization of the ultra-pure and highly ordered
YBCO system must been given special consideration. In mathematics, a single counter exam-
ple is sufficient to disprove a conjecture. In the field of high-Tc superconductivity it is difficult
to apply such rigorous logic, since experimental “truth” often changes over time. However, it
seems clear that the most stringent test for intrinsic inhomogeneity would be to detect it, albeit
in fluctuating form, in the cleanest of high-Tc materials. To date, interpretation of optical con-
ductivity in the YBCO crystal system has not required invoking strong spatial inhomogeneity.
The microwave conductivity is consistent with weak elastic scattering, while the infrared con-
ductivity appears to involve Holstein-like coupling to a bosonic spectrum with energies in
the 40 meV region, associated either with phonons or spin fluctuations [42]. However, the
composite broadband spectra presented in Figure 7.8 show that characterization of the optical
conductivity in YBCO is not complete. The missing range of the spectrum is the region above
carrier scattering rates but below the gap frequency, where intrinsic fluctuations may occur.
Future measurements that fill this information gap in YBCO, and extend our knowledge in
other cuprate systems, will be of great value in assessing the origin and role of inhomogeneity
in high-Tc superconductors.
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8
What Tc can Teach About
Superconductivity

T. H. Geballe and G. Koster

We compare the Tcs found in different families of optimally doped high-Tc cuprates and find, contrary
generally accepted lore, that pairing is not exclusively in the CuO2 layers. Evidence for additional pair-
ing interactions, that occur outside the CuO2 layers, is found in two different classes of cuprates, namely
the charge reservoir and the chain-layer cuprates. The additional pairing in these layers suppresses fluc-
tuations and hence enhances Tc. Tcs higher than 100 K, are found in the cuprates containing charge
reservoir layers with cations of Tl, Bi, or Hg that are known to be negative-U ions. Comparisons with
other cuprates that have the same sequence of optimally doped CuO2 layers, but have lower Tcs, show
that Tc is increased by factors of two or more upon insertion of the charge reservoir layer(s). The Tl
ion has been shown to be an electronic pairing center in the model system (Pb,Tl)Te and data in the
literature that suggest it behaves similarly in the cuprates. A number of other puzzling results that are
found in the Hg, Tl, and Bi cuprates can be understood in terms of negative-U ion pairing centers in the
charge reservoir layers. There is also evidence for additional pairing in the chain-layer cuprates. Super-
conductivity that originates in the double “zigzag” Cu chains layers that has been recently demonstrated
in NMR studies of Pr-247 leads to the suggestion of a linear, charge 1, diamagnetic quasiparticle formed
from a charge-transfer exciton and a hole. Other properties of the chain-layer cuprates that are difficult
to explain using models in which the pairing is solely confined to the CuO2 layers can be understood
if supplementary pairing in the chain layers is included. Finally, we speculate that these same linear
quasiparticles can exist in the two-dimensional CuO2 layers as well. It is possible that these particles
will propagate chiefly in either the x- or y-direction and be appropriate candidates for fluctuating stripes
and for d-wave superconductivity.

8.1. Introduction

The transition into the superconducting state reflects the totality of all the underlying
microscopic interactions in the system. As such, paying attention to the occurrence of Tc
throughout the Periodic Table of the Elements and its magnitude as a function of controlled
external parameters such as pressure, composition, strain, dimension, and defects, is the most
general approach for gaining an understanding of superconductivity. Discovering supercon-
ductors has been a fruitful enterprise for opening new fields of physics ever since Kamerlingh
Onnes discovered back in 1911 that Hg loses all of its resistance abruptly just below 4.2 K [1].
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For more than four decades superconductors were uncommon and poorly understood labora-
tory curiosities; there was no basis for predicting their occurrence and little connection with
normal state properties. Hans Meissner found the barely metallic compound CuS to be su-
perconducting whereas elemental Cu was not [2]. The rare and unpredictable occurrence of
superconductivity, and the lack of an underlying microscopic theory, led Enrico Fermi at the
University of Chicago around 1950 to encourage two young colleagues, John Hulm and Bernd
Matthias, to undertake a search for new superconductors. They soon found a number of new
intermetallic alloys and compounds [3] and extended the work of Meissner, who in the 1930s
had also found superconducting intermetallic borides [4]. In the same time period a parallel
program was carried out in Russia by Alekseevskii and coworkers [5]. Whether there are still
more bulk superconductors with novel properties remaining to be discovered is, of course, im-
possible to predict; but since there are now opportunities for synthesizing entirely new classes
of materials and structures beyond equilibrium phases, made possible by advances using thin
film deposition and characterization techniques, there is good reason to believe that higher Tcs
will be found.

The Periodic Table was a valuable guide for predicting new superconductors particularly
when Matthias noted that there is an amazingly simple dependence (known as Matthias’ Rule
[6]) of the magnitude of Tc upon the average number of valence electrons per atom in elements
and also in intermetallic compounds—i.e., Tc is related simply to the electron density [7]. As
a consequence of this “rule,” superconductivity changed from being rare to being common.
As the database increased, refinements were incorporated; superconductivity was found to be
favored in specific structures [8], in particular in the A15 structure (also referred to as beta
tungsten). This structure had the highest known Tcs up until 1986 as well as other unexpected
low temperature instabilities. It contains an unusual arrangement of nonintersecting chains of
closely spaced metal transition metal atoms that impose features on the Fermi surface [9]. The
discovery of the superconductivity of V3Si [10] and Nb3Sn [11] had a great impact, surpassed
in impact only by the discovery of cuprate superconductivity by Bednorz and Mueller more
than three decades later, and led the way to new concepts in physics and a new high field–high
current technology. The discovery of A15 superconductivity in Nb3Sn illustrates the fact that
in searching for new superconductors, even though it may be a high-risk endeavor, can have
major consequences well beyond the original scope of the work [12]. In our opinion there is
still much to be gained by continuing the research for new superconductors.

Little is known about the limits of superconductivity in the cuprates today. In this chap-
ter we interpret the wide variation in Tc that is found in different cuprate structures in terms
of plausible intuitive models that are interesting in their own right, and might be of value in
guiding paths to even higher Tcs.

8.2. Cuprate Superconductivity

There is nothing to compare with the impact made by the discovery of High Temperature
Superconductivity in the cuprates [13]. After two decades of intensive research there is no
accepted theory nor is there consensus as to the superconducting pairing mechanism [14].
The cuprate charge carriers are highly correlated electronic systems that have sometimes been
designated as “bad metals” [15] because Fermi-liquid theory is inadequate for treating the
normal state properties.

Our aim in this chapter is modest. We start from the insulating side using a simple ionic
model because we believe it provides a reliable way of gaining an intuitive understanding.
The ionic model has long been used successfully for modeling insulating oxides and for
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understanding their magnetic properties. It is a limiting case of very strong correlation and
thus has credibility as an initial approximation for the nearly insulating cuprate supercon-
ductors. In the Born approximation, the large attractive Madelung energy is balanced by the
repulsive overlap energy. We have found it useful, following Moyzhes and Suprun et al. [16]
to modify the Born’s equation by using the high-frequency dielectric constant to account for
the electronic polarizability of near neighbor ions and the low-frequency dielectric constant
to account for the ionic polarizability of more distant ions. This modification leads to a sta-
tistically significant classification of a large number of oxides, and predictions as to their
stability, metallicity, and instability to within about 1 eV [17]. The modified Born equation is
a simplified representation of the local density approximation (LDA) [18].

8.2.1. Pairing and Tcs in the Cuprates

All the cuprates with high Tcs contain two-dimensional layers of CuO2 that upon suffi-
cient doping become superconducting fluctuations. Tc is found to increase when the number
of CuO2 layers per unit cell increases from n = 1 to 3. This is not surprising because the
close spacing of the n layers within the unit cell can be expected by quantum tunneling [19]
to stabilize the three-dimensional fluctuations. The decrease in Tc with further increases in
n is discussed later. However focusing exclusively on the CuO2 layers cannot explain some
significant variations in Tc that are found in structures that have the same sequences of CuO2
layers but have different intervening layers, and that is the subject we address here.

The Cu Ion

Before proceeding to discuss the cuprates we recall some facts that make the Cu ion
unique. In the vapor phase Cu2+ has the highest third ionization potential of the transition
metals. This large energy is retained in the condensed state as is evident from the electrode
potentials of ions in aqueous solution [20]. Electrode potentials provide rough estimates of
the relative ionic energies in crystalline oxides because in both the aqueous and crystalline
environments the cations are coordinated by oxygen ions. The standard electrode potential
for charge transfer Cu3+ + e− = Cu2+, E(0) = +2.4 eV is very high. It follows that in
cuprates the doped holes will reside mainly on oxygen sites (in contrast to other transition
metal oxides where the cations are oxidized upon hole doping). On the other hand, the stan-
dard electrode potential for the reaction Cu2+ + e− = Cu1+ is quite low, E(0) = −0.15 eV,
showing that Cu2+ can easily coexist with Cu1+. Consequently in the condensed state Cu1+
and Cu2+ are close in energy which translates in the Hubbard model to a moderate U that
splits a half-filled narrow band due to the on-site coulomb (Hubbard U ) repulsion. Of course
in the crystalline cuprates, the crystal field states, the band, exchange, and correlation energies
must be included. But the ionic energies are the largest so we can assume without further cal-
culations that Cu3+ (d8 configuration) does not play a significant role in the dynamics of the
cuprates with the consequence that the cuprates are “charge transfer insulators” rather than
Mott insulators [21].

In the undoped parent compounds the CuO2 layers are insulating antiferromagnets
containing Cu2+ ions. The Cu is in a d9 state; two of the four electrons needed for charge
neutrality in the CuO2 layer come from other layers such as the La layers in La-214. The over-
lap of the half-filled Cu (x2 − y2) d-levels results in a narrow band that, when U is greater
than the band width, splits into the upper and lower (Hubbard) bands [22]. In this chapter
we restrict the discussion to the doping of holes in the CuO2 layers that can be achieved by
substitution of a cation with a lower valence (e.g., Sr for La), or by cation valence reduction
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Table 8.1. Variation in Tc

CuO2/c n = 1 n = 2 n = 3

Tc (K) Separations (Å) Tc (K) Separations (Å) Tc (K) Separations (Å)

LSCO-214 40 6.6 – – – –
Hg-12(n−1)n 98 9.5 127 9.5 134 9.5
Tl-12(n−1)n – – 103 – 133 –
Tl-22(n−1)n 95 11.5 118 11.5 125 11.5
Bi-22(n−1)n 38 – 96 – 120 –
Y123 (6 GPa) – – 95 7.9 – –
Y124 (6 GPa) – – 105 9.8 – –

(e.g., Tl3+ to Tl1+), or by the addition of negative oxygen ions. Upon hole doping, the charge
resides mainly on the oxygen site and the antiferromagnetism is rapidly destroyed. Concentra-
tions >0.05 holes per Cu become superconducting [23]. A dome-shaped curve [24] is found
for all the cuprates. It is commonly assumed that the dome shape is universal with the maxi-
mum Tc found at an optimum doping concentration p = 0.16 holes/Cu. However, it is obvious
that the three-dimensional superconducting condensation measured by Tc depends upon cou-
pling between the layers and, as we argue below the coupling is not universal, and therefore
we should not expect there to be a single concentration for which Tc becomes optimum. Thus
the results of Karppinen that Tc of Bi-2212 occurs for p = 0.12 (see below) should not be
surprising [25]. However we believe that the comparison of the optimum Tcs in the differ-
ent families of cuprates, Table 8.1, is meaningful. Tc increases across the rows for n = 1, 2, 3
(and decreases for n > 3) for reasons that will be discussed later. What concerns us here are
the differences in the Tcs of optimally doped cuprates that have the same number, n, of CuO2
layers in the unit cell (the columns in Table 8.1). In order to account for these strong variations
in Tc it is necessary to assume either that the superconductivity of those with the higher Tcs is
enhanced, or that the superconductivity in the CuO2 layers of the cuprates with the lower Tcs
is depressed, or, that both effects are present.

Many mechanisms are known to depress Tc, including the competition with other
kinds of long-range order, local site disorder, and structural deformation (e.g., layer buck-
ling). Competition with commensurate or nearly commensurate density waves causes large
decreases in Tc compared to charge reservoir cuprates. For example, large dip in Tc for
x = 1/8 in (La1−x ,Srx )2CuO4, or its complete destruction in (Nd1−x ,Srx )2CuO4 [26], and
(La1−x ,Bax )2CuO4 [27] at the same 1/8 doping level. However, there has been no evidence
for competitive ordering in optimally doped (La1−x ,Srx )2CuO4 that can account for the
∼50 K reduction in Tc. Disorder is also known to depress Tc but again in smaller magni-
tudes than needed. The Tcs of the Bi-cuprates are somewhat lower than in the corresponding
Hg and Tl cuprates (Table 8.1). It is possible that the Bi cuprates are more disordered or that
the negative-U Bi ions are somewhat less effective pairing centers. Typically there are excess
Bi3+ that replace Sr2+ next to the apical oxygen. When that disorder is replaced by a less
intrusive disorder by substituting Y3+ for Ca2+ between the CuO2 layers, Eisaki et al. [28]
found that Tc increases from 90 to 96 K.

8.3. Interactions Beyond the CuO2 Layers

We first present plausible evidence that interactions outside the CuO2 layers must be
taken into account. We examine Tcs in two classes of cuprates (i) The first consists of
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the charge reservoir layer cuprates from which we infer that there is an electronic pair-
ing mechanism involving the negative-U center ions and (ii) the second has layers con-
sisting of quasi-one-dimensional double-chains of CuO (sometimes described as “zigzag”
chains) in which pairing is found. In the next sections we consider structural, compositional,
pressure-dependent transport, and Nuclear Magnetic Resonance/Nuclear Quadrapole Reso-
nance (NMR/NQR) data in the literature that collectively provide persuasive evidence for the
enhancement hypothesis in both the charge reservoir and chain-layer cuprates.

8.3.1. Pairing Centers in the Charge Reservoir Layer Cuprates

The charge reservoir layer cuprates contain additional layers of the oxides of the ions
of Tl, Bi that are well known in aqueous solution and in solids as well to have unstable para-
magnetic 6s1 configurations that disproportionate to form diamagnetic ions with 6s0 and 6s2

configurations. Hg exists in solution as a two-center diamagnetic ion that exchanges charges
in units of two just as the Tl and Bi ions do.

In solids the ionic picture must of course be modified but, as already noted, the ionic
energies found in aqueous solution are large and useful initial approximations for insula-
ting oxides. The three heavy Hg, Tl, and Bi ions in the cuprates that have the highest Tcs
(>100 K) are in the so-called charge reservoir layers, separated from the CuO2 layers by the
apical oxygen ions in the alkaline earth-oxide layers. The charge reservoir layers are so named
because of their ability to dope the CuO2 layers. We propose that they have the additional
important function of providing negative-U pairing centers and it is more accurate to call them
negative-U charge reservoir layers. The Tc of Hg-1223 under pressure reaches the highest
recorded Tc ∼ 160 K [29]. Comparison with other cuprates that do not contain negative-U
center ions provides convincing evidence that the negative-U ion layers, directly or indirectly,
are responsible for enhancement of Tc. Our interpretation is that the enhancement is due to
interactions with the charge reservoir layers as we now show.

In the well-known 214 family of cuprates (based upon La2CuO4) Tc reaches a
Tc,max ∼ 40 K when the CuO2 layer is optimally doped with Sr; Tcs above 50 K can be
reached in strained epitaxial thin films when the doping occurs with the insertion of oxygen
interstitials to form the staged compound La2CuO4+x [30], and up to 45 K in oxygen doped
samples, but there is no evidence for higher Tcs.

What must be addressed is the mechanism by which the Tc of the “optimally” doped
214 compound is increased to >90 K by inserting charge reservoir layers containing ions of
Tl, Hg, or Bi and oxygen. As can be seen in the Table 8.1 the 6.6 Å distance between the CuO2
layers in the 214 compound is increased by another 5 Å by the insertion of TlO layers between
them, a change that by itself would be expected to decrease Tc.

In our model the pairing induced by the negative-U ions enhances Tc. We have con-
sidered the possibilities that either a given negative-U ion acts as a resonant pair tunnel-
ing center, or that clusters of negative-U ions become coherent with CuO2 layer, or that the
negative-U ion layer itself develops an independent 2D order that subsequently becomes co-
herent with the CuO2. We are not aware of any experiment that might distinguish them, how-
ever theoretical considerations [31] rule out the likelihood that of there being independent two-
dimensional order parameters. It is our opinion that the most likely case is the intermediate
one where clusters of fluctuating negative-U ions form and then utilize the most favorable
sites to become coherent with the adjacent CuO2 layers. This latter possibility gains support
in the theoretical model of a structure consisting of negative-U centers in the barrier of a
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Josephson-junction [32]. An interesting prediction of that model is that there will be a strong
enhancement of Ic R, the product of the critical current and the normal resistance in the
c-direction.

8.3.2. Negative-U Center Electronic Pairing in a Model System

Anderson [33] introduced the concept of a negative-U center to explain the failure to
observe Electron paramagnetic resonance (EPR) signals in chalcogenide glasses and simulta-
neously the pinning of the Fermi energy. He noted that the lattice relaxation around a localized
electron could overcome the repulsive coulomb (Hubbard U ) energy of adding a second elec-
tron, and thus result in an effective negative-U . A further analysis by Moyzhes and Suprun
showed that in PbTe doped with valence skipping ions the electronic response (i.e., the po-
larization) of the surrounding medium can over compensate the coulomb repulsion. The re-
laxation of the polarization charge, set by the high-frequency dielectric constant in PbTe, is
large, ∼30. In the model (Pb,Tl)Te system experiments support an electronic superconducting
pairing mechanism as we now briefly discuss.

PbTe in which ∼1% of the +2 Pb is replaced by Tl has long been a good model sys-
tem for studying negative-U center induced superconductivity [34]. Recent investigations by
Matsushita et al. [35] and by Schmalian et al. [36] have illuminated the role of Tl ions. For low
concentrations <0.3% Tl acts like a shallow acceptor forming Tl1+ as evidenced by the Hall
constant that shows one hole is doped into the valence band per added Tl ion. Above ∼0.5%,
however, the Hall constant becomes more nearly independent of the doping; the Fermi level
is pinned as a result of disproportionation reaction: 2Tl2+(6s1) → Tl1+(6s2)+ Tl3+(6s0).

The near degeneracy of the 1+ and 3+ states is suggested by a systematic study of the
temperature and field dependence of the resisitivity. The data can be fit by the charge-Kondo
model that requires that the two charge states of Tl ions be degenerate within ∼kBTc. Kondo-
like behavior and Tc set in at nearly the same concentration where the Hall effect indicates the
Fermi level is pinned. The superconducting transition is driven by the gain in energy when
the pairing on the different Tl ions becomes coherent presumably by interacting through the
valence band states.

The lesson taken from the above (Pb,Tl)Te investigations is that for pairing to occur in
the charge reservoir layers of the cuprates, the negative-U ion configurations of at least some
of the centers must be nearly degenerate (within kBT ) in energy. If the doping from the charge
reservoir layers is achieved by a change of valence of the negative-U ion, the Fermi level is
automatically pinned and the condition for degeneracy is assured. A possible approach for
discovering new superconductors is to identify structures in which the negative-U ions can be
incorporated. Potential negative-U ions are listed by Koster et al. The difficult step is to find
those systems where the chemical potential can be adjusted so as to bring the two levels into
degeneracy. In terms of the Emery–Kivelson model [37] optimal doping is determined by the
intersection of the pair amplitude which decreases as a function of doping and the superfluid
density which increases, see Figure 8.1. For the cuprates 214 the optimal density occurs at
0.16 and Tc = 40 K. Assuming the optimum is at 0.16, for all cuprates as is frequently done,
the doubling of Tc,optimum would require both the stiffness and the pair amplitude to change
accordingly. However, the introduction of pairing centers in layers between the CuO2 layers
will mostly suppress fluctuations and consequently will shift the occurrence of Tc,optimum to a
lower superfluid density as shown schematically in Figure 8.1. In fact, experimental evidence
shows that Tc,optimum for the Bi-2212 does occur near the 1/8 concentration rather than at 0.16,
as discussed below.
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Figure 8.1. A schematic phase diagram (Tc vs. superfluid density p) that illustrates the enhancement of Tc due to the
insertion of charge reservoir layers that contain pairing centers. Thin dotted curve, the pairing amplitude (mean field);
dotted curves Tθ1 and Tθ2, the phase ordering temperature without and with the charge reservoir layers, respectively;
blue solid curve, Tc of 214; red dash-dot curve, suggested Tc curve Tc of 2212. As a consequence of the suppression
of fluctuations the model of Kivelson and Fradkin (Figure 8.4 in Kivelson’s chapter in this book) would predict that
popt should shift to the left (lower superfluid density). The results of Karppinen et al. [25] are taken as evidence for
this shift.

Thallium Cuprates

The Tcs of ceramic samples of the (Cu,Tl)-1223 and Tl-1223 cuprates as prepared are
∼100 K and increase monotonically up to 133 K upon annealing temperatures up to 550 ◦C
in vacuum [39]. The 4f 7/2 core level of the Tl ion in the TlO charge reservoir layers in the
as prepared samples are rather broad [38] and are centered around the peak of Tl3+ found in
the Tl2O3 reference compound. Terada et al. found upon annealing, along with the 33 degree
increase in Tc, the core level peak shift to midway between the peaks found for the +1 and +3
reference states. It is our interpretation that the shift is due to an increased presence of Tl1+
(as we have argued above the Tl2+ paramagnetic configuration is at higher energy); however,
the spectra have not been fully analyzed [39, 40].

Mercury Cuprates

The mercury cuprates are interesting for several reasons beyond having the highest
known Tc > 160 K found in the Hg-1223 compound under pressure. The homologous se-
ries HgBa2Can−1CunO2n+2+δ has been synthesized [41] all the way from n = 1 to n = 7
with Tc for the optimally doped samples rising from 97 K for n = 1 to a maximum at n = 3
and then falling at a decreasing rate with further increase in n until Tc = 80 K for n = 7.

The increase from n = 1 to n = 3 is common to all the cuprates (Table 8.1) and
follows from the coupling of the layers by quantum tunneling [42]. The maximum observed
for n = 3 and subsequent decrease with higher n can be understood from NMR investiga-
tions that show that the CuO2 layers are not uniformly doped [43]. In n = 5 that have been
optimally doped by annealing in oxygen the inner layers are antiferromagnetic, TN = 60 K
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with ∼0.35µB/Cu [44] while the outer layers are superconducting with a Tc = 108 K. The
robust persistence of the superconductivity as evidenced by a negative curvature of the de-
pendence of Tc upon n for n > 3 would be difficult to understand if the superconducting
interactions were confined to the single outer CuO2 layers, see Figure 8.2.

Mukada et al. [45] found that for an n = 5 underdoped sample, the three inner layers
are antiferromagnetic, (TN = 290 K with 0.68µB/Cu) while the two outer layers are both
antiferromagnetic (1µB/Cu) and superconducting, Tc = 72 K. In a somewhat comparable
structure, but one without negative-U centers, Bozovic et al. [46] found that an isolated, 1
unit cell thick film (two CuO2 layers) of optimally doped (La1−x ,Srx )2CuO4 (sandwiched
between antiferromagnetic films of undoped La2CuO4 by sharp interfaces) have Tcs of only
30 K. The much higher Tcs ∼ 80 K found for the n > 5 Hg cuprates that have single layers of
doped CuO2 interfaced on one side with AFM layers and on the other with BaO–HgO layers
make it plausible that the latter layers are contributing to the pairing.

The possibility has been raised that the Tcs in the Hg cuprates are unusually high be-
cause the layers are flat (O–Cu–O bonds are 180◦), rather than buckled that is known to be

m

m

m

m

m

m

Figure 8.2. The crystal structure of Hg-1245 (a = 3.850 Å, c = 22.126 Å) [104]. The Outer Planes (OP) undergo
the SC transition at Tc = 108 K, whereas the three underdoped Inner Planes (IPs) do an AF transition below TN ∼
60 K with the respective Cu moments of ∼0.30µB and 0.37µB at IP and IP∗ (after Kotekawa et al.).
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detrimental to Tc [47,48]. However, these explanations are at odds with the neutron diffraction
data for Hg-1212 where under pressures of ∼100 kbar the CuO2 layers become buckled to the
same extent found in the 214 cuprate while the apical oxygen moves closer to the planes, and
the Tc increases (Figure 8.3). As noted by Jorgensen [49] if the buckling could be prevented
Tc should be even higher. While to date only the Hg-1212 diffraction patterns have been stud-
ied under pressure it seems likely that the buckling under pressure will occur in all the Hg
cuprates because the pressure dependence of Tc scales for the n = 1, 2, and 3 as shown in
Figure 8.3.

The reason dTc/dP is constant= 2.0 K/GPa from low doping levels to optimum doping
[50], as shown in Figure 8.4, certainly does not follow from models that assume the changes
are due to charge transfer. Such models would reasonably expect to find a steadily decreasing
pressure coefficient from low to optimal doping. However, the behavior is not inconsistent
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Figure 8.3. Tc0 vs. P for Hg-1223, Hg-1212, and Hg-1201; Inset Tc0(P)− Tc0(P = 0) for these three compounds.
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with a negative-U model because pressure should increase the overlap of the pairing centers
in the HgO layers with the CuO2 layers. Raman data suggest that the overlap is through the
apical oxygen ions [51, 52].

The HgO–BaO layers are highly disordered. There are a large number of oxygen vacan-
cies in the HgO layers. X-ray Absorption Fine Structure (XAFS) measurements of the Hg–Hg
distances are of such poor quality that they cannot be modeled [53]. Consequently, the nega-
tive U -ion is probably a more complex entity than the idealized two center ion. In the model
(Pb,Tl)Te system it is estimated that only a few percent of the Tl negative U ions are pairing
centers [35], thus it is not unreasonable that substitution of a substantial concentration of Re
or Cu cations substituted for Hg layers has little effect on Tc. Experiments to determine the
Hg valency such as has been done for the Tl cuprates (see above) would be helpful. For this
purpose better and larger Hg cuprate single crystals are becoming available [54].

The Bismuth Cuprates

The bismuth cuprates have Tcs that are somewhat lower than the corresponding Hg
and Tl cuprates (Table 8.1). This suggests that either the Bi negative-U centers are not such
effective pairing centers or that their enhancement is counteracted by a competing effect. Dis-
order is not an unreasonable possibility because there is known to be considerable antisite
disorder and excess Bi on the Sr sites [55]. Perhaps even more important is the incommen-
surate superstructure found in the BiO layers [56, 57] that causes displacements throughout
the unit cell including large amplitude waves of CuO buckling along the a-axis. The inho-
mogeneous images observed by STM [58, 59] are also evidence of disorder although it is not
obvious how much of the observed disorder may be due to the surface layer reconstruction
because the tunneling must be through the orbitals extending from the surface.

The investigation of Karppinen et al. that utilizes independent electrochemical and spec-
troscopic means of analysis [25], and finds them to be in agreement, has two significant
findings [61]. First, half of the charge introduced by substituting Sr for Y on sites between
the two CuO2 layers in Bi-2212 ends up in the nonadjacent BiO layers. The second is that
the Tc,optimum for Bi-2212 occurs when the carrier concentration in the CuO2 layers is 0.12
(see Figure 8.5). This is most significant because it is near the same 1/8 concentration where,
it is well known from experiments on cuprates that do not contain charge reservoir layers,
that Tc is depressed or nonexistent because charge ordering and static stripe formation com-
pete successfully with superconductivity [60] nor, as mentioned above, the Emery–Kivelson
model predicts that the intersection of the pairing amplitude the phase fluctuations curves, and
Tc,optimum will occur at lower doping levels (as sketched in Figure 8.1).

8.3.3. The Chain-Layer Cuprates

Many investigations have been carried out in the single and double chain cuprates that
lead to the conclusion that the chain layers support pairing. We now consider three different
chain-layer cuprate structures that are comparable insofar as their layering sequence is con-
cerned, but differ in the structure of the chain layers themselves. The chain layers consist of
either single CuO chains, or double (“zigzag”) CuO chains, or a combination of alternating
single and double layers as shown in Figure 8.6 [62]. In all three structures the quasi-one-
dimensional chains are separated from the blocks of n = 2 CuO2-(Y,Pr)-CuO2 layers by lay-
ers of BaO. Evidence given below suggests that the chains that run in the b-direction interact
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Figure 8.5. The relationship between Tc and the CuO2-plane hole concentration, p(CuO2), in the
Bi2Sr2(Y1−x Cax )Cu2O8−d system. Note that, p(CuO2) is taken as an average of the values determined for the
CuO2-plane hole concentration by coulometric redox analysis and by CuL3−edge XANES spectroscopy. The actual
cation doping level is two times p(CuO2). The threshold hole concentration for the appearance of superconductivity
is seen at p(CuO2) = 0.06 (taken from Karppinen et al. [25]).

Figure 8.6. Structure of Pr2Ba4Cu7O15−d (Pr247). Pr247 consists of the Pr123 unit (“1-2-3”) and the Pr124 unit
(“1-2-4”). In addition to two CuO2 planes, the “1-2-3” (“1-2-4”) contains a single chain (a double chain). The Cu
atoms in the double chain do not form a “ladder” structure but a “zigzag” chain (taken from Sasaki et al. [62]).

with each other in the a-direction indirectly via the CuO2 layers. An important difference is
that the oxygen ion concentration in the single 123 chain layers is variable whereas in the 124
(both the 124 and 248 notations are used interchangeably in the literature and we do likewise)
it is fixed. This permits doping over a wide range in the CuO2 layers of the 123 cuprates, but
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not in the 124 cuprates. In the nonstoichiometric 123 cuprates the vacancy diffusion leads to
various kinds of short- and long-range ordered structures [63], whereas the 124 cuprates are
stoichiometric and the diffusion is very much slower. Doping on the CuO2 layers of course is
possible by cation substitution on the Y site.

Evidence from Nuclear Quadrupole Resonance in the Double Chains

The NQR investigation of Sasaki et al. [62] provides direct evidence that the super-
conductivity discovered by Matsukawa et al. [64] in Pr-247, originates in the double chains
layers. As can be seen in Figure 8.6, the 247 structure is composed of alternating Pr-123 and
Pr-124 units. Neither of the units by themselves has been found to be superconducting and,
as initially prepared by sintering Pr-247, also is not superconducting. However, it becomes
superconducting with zero resistance at T ∼ 10 K when annealed in vacuum at 400 K [64].
The NQR Cu resonances associated with the four different Cu sites in the Pr-247 structure are
well resolved allowing them to be followed separately [62]. The CuO2 layers order antiferro-
magnetically around 280 K (see Figure 8.7b) as they do in Pr-123 and Pr-124. The relaxation
data observed in the Pr-247 samples provide the evidence that the superconductivity resides
in the double chain layers, as can be seen in Figure 8.7a. Near Tc the temperature dependence
of the nuclear relaxation rate of the double chain Cu nuclei changes markedly due to a gap
opening in density of the electronic states. This can hardly be coincidental, and must be due
to the super-conductivity.

While ∼10 K may not be “high temperature” in comparison with other cuprates it is
very high when compared with other comparable 1D systems such as the polymer (SN)x [65].

Figure 8.7. (a) Temperature dependence of 1/T1 of the double-chain in Pr-247. Above Tc, the T1 process exhibited
a single-exponential time evolution, which yields a unique value of T1. Below Tc, the T1 process was reproduced by
a biexponential function with two time constants, T1S and T1 L , indicating 20% of the chain copper nuclei belong to
the superconducting phase. (b) Shows the antiferromagnetic magnetization of the two different copper oxide planes
in the 247 unit cell (taken from Sasaki et al. [62]).
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The fact that it originates in a cuprate where the CuO2 layers are insulating and antiferro-
magnetic [78] is significant; and leads us to suggest the existence of the linear diamagnetic
quasiparticles discussed below.

At this time we offer no explanation for how the annealing turns on the superconductiv-
ity other than an indirect effect from the reduced single chain. The temperature dependence
of the resistivity before and after annealing gives evidence for transport by parallel chain and
plane conduction paths. The annealing increases the room temperature resistance presumably
due to the single chains becoming insulating. Upon cooling there is a striking increase in the
conductivity of the annealed sample that culminates in the superconducting transition. Com-
parable annealing experiments of the Pr-124 double chain cuprates show no such effects. In
order to account for the 1D transport and superconductivity we suggest the formations of a
linear diamagnetic bound exciton-hole (eh) quasiparticle (Figure 8.8c) that is discussed below.

Evidence from Anisotropy

The CuO chains running in the b-crystal direction are directly or indirectly responsible
for the considerable planar anisotropies observed in dc and optical conductivities in the normal
states of Y-123 and Y-124, and in their penetration depths in the superconducting state. Basov
et al. [66] found from far infrared data that the planar anisotropies, in agreement with transport
data, are large and temperature independent. At room temperature σb/σa = 1.8 [67] in the Y-
123 and in the Y-124 it is even larger ∼3 [68]. Corresponding penetration depth measurements
find rather interestingly that the anisotropy of the superfluid densities is almost the same. If it is
assumed that the anisotropy is simply due to the orthorhombicity of the CuO2 layers, then why
is it greater in the 124 when the 124 is less orthorhombic? If it is attributed to a proximity-
induced superfluid density on layers and metallic CuO chains [69] then it fails to predict
the observed wide temperature range over which the anisotropy is temperature independent.
However, the experiments are consistent with models that assume intrinsic pairing occurs in
the chain layers.

a)

b)

c)

d)

e)

Figure 8.8. Projection of the CuO2 layer. Open circles, ions with filled shells, either d10 or p6; closed circles, ions,
with 1 hole in outer shell (a) charge transfer excition; (b) doped hole on oxygen; (c) bound exciton-hole; (d) extended
bound exciton-hole; (e) high-energy (Vpp) configuration of the bound exciton-hole (after Kivelson et al. [92]).
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Evidence from Pressure

Superconducting pairing in the double chains is a likely explanation for why the Tcs of
Y-124 rise above those in the single chain Y-123 as the pressure is raised. The stoichiometric
double chain Y-124O15 cuprates are underdoped, Tc = 80 K at atmospheric pressure, whereas
Tc for the nonstoichiometric optimally doped Y-123O6.93 is 93 K. However, Tc for Y-124O15
rises to 108 K at 6 GPa [70] exceeding the Tc of optimally doped Y-123 at any pressure, a
result that does not follow from any proximity effect theory. The abnormally large increase in
Tc of the Y-124 with pressure might in some part be due to additional charge transfer; however
charge transfer does not explain the abnormally large anisotropic strain dependence, of Tc of
the Y-124 as is evident from the following. Strain dependence in the a-direction (when the
chain–chain planar distance is reduced) [71, 72] is much larger than in the c-direction (when
the layer spacing is reduced and that should affect charge transfer) suggesting that chain–
chain coupling plays a key role. Evidence from Zn doping discussed below indicates that the
coupling is made through the CuO2 layers.

Evidence from Cation Substitution in the n = 2 of CuO2 Layers

If the reasonable assumption is made that substituting Pr for Y between the CuO2 layers
has the same effect in 123 and 124, then there is further evidence for pairing on the double
chains. For instance, (Y0.4Pr0.6)123 is not superconducting while the same composition in the
124 has Tc ∼ 50 K, a result that is difficult to explain by any proximity effect [73].

Zn is known to dope in the CuO2 planes and destroys Tc rapidly in all the cuprates [74].
In the Y123 and Y124 cuprates Tc decreases rapidly and roughly at the same rate with Zn
substitution. This alone might suggest that all the superconductivity is in the CuO2 layers, but
such an interpretation is not viable in the light of other evidence such as the large dTc/da men-
tioned above [75]. Evidence we now cite suggests that the double chains interact with each
other by coupling with each other indirectly through the CuO2 planes. In nonsuperconducting
Pr-124 the b-axis (chain direction) shows good metallic conductivity, the a-axis resistivity
peaks around 140 K. The planar transport anisotropy is 1,000 at 4 K [76]. The results can
be modeled by parallel paths of the conducting chains and the semiconducting CuO2 planes.
Upon doping with Zn the material becomes insulating along the a-axis while the b-axis con-
tinues to show metallic behavior [77]. The disappearance of the Fermi level as found in an
ARPES investigation [78] is explained by the increased one dimensionality of the double
chains. They presumably become more decoupled when the coherence via the CuO2 layers is
destroyed by the Zn, and a competitive 1D instability such as a charge density wave becomes
the ground state. The coupling between the chain layers and the CuO2 layers is likely to be
through the apical oxygen for which there is independent evidence. More complete literature
references are given in the chapter by Valo and Leskela [79].

8.3.4. Other Chain Layer Compounds

The Ladder Compound

A comparable double “zigzag” CuO chain arrangement to that found in the 124 cuprates
is found in Sr14−x Cax−12Cu24O41 (14-12-24-41) which undergoes a broad superconducting
transition (Tc ∼ 10 K) under pressure [80]. The structure contains alternating layers of single
chain Sr2CuO3 and double chain SrCuO2 layers. The double chains are separated in each
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SrCuO2 layer by the rungs of two-leg ladders. There is evidence that the superconductivity
originates in the SrCuO2 layers that is due to charge transfer from the single to the double
chain layers [81].

A theoretical model predicted the superconductivity in the 14-12-24-41 structure prior
to discovery [82] by assuming that the pairing occurs in the two-leg ladders and confirming
experimental evidence has been found [83]. In this model the spins of the double chain cop-
pers are assumed to be connected by ferromagnetic superexchange via the oxygen px and py
orbitals. The fact, that the same double chain configuration in the Pr-247 cuprate becomes su-
perconducting rather than ferromagnetic, shows that subtle differences in coupling or doping
can result in major changes in the ordering of quasi-one-dimensional systems.

Finite Chain Lengths

Infrared studies show that there is no anisotropy in the single chain cuprates for oxy-
gen concentrations <6.65 per unit cell, or equivalently for chain lengths <15–20 Å for which
Tc ∼ 60 K [84]. The authors show that for higher doping when the chain length fragments
exceed 20 Å there is a marked change in properties. The electromagnetic response in the
normal state becomes coherent and quasi-one-dimensional. Correspondingly the superfluid
density in the b-direction grows rapidly while in the a-direction it remains flat. As pointed
out above, proximity effect models have difficulty in accounting for the identical temperature
dependences over a wide temperature range in the a- and b-direction. Strain-dependent mea-
surements in the single chain cuprates are ambiguous because the oxygen mobility allows for
different oxygen ordering on the chains [85].

8.4. Superconductivity Originating in the CuO2 Layers

We speculate that the linear spinless charge 1 quasiparticles that can explain the su-
perconductivity of the Pr-247 quasi-one-dimensional double chains may equally well exist
in the CuO2 layers of all the cuprates. In the limit of negligible oxygen–oxygen near neigh-
bor hopping (tpp) such a quasiparticle model leads naturally to fluctuating stripes and d-wave
superconductivity. These considerations lead to the prediction that if a two-dimensional CuO
layer (i.e., a structure where the vacant sites in the CuO2 layer are filled with Cu) could be syn-
thesized and properly doped it could have double the number of quasiparticles than presently
known cuprates [86].

Low-energy charge-transfer excitations involve the transfer of electrons from the
highest-lying oxygen level to the upper Hubbard band. They are estimated to be ≤2 eV for
La2CuO4 in the antiferromagnetic state at low temperatures [87], and in the same energy
range HgBa2CuO4, and likely all the high Tc cuprates. There is also considerable subgap
structure. The lowest peak at ∼0.4 eV is in reasonable agreement with an ionic estimate of the
lowest energy charge-transfer exciton taken to be the gap energy less the screened interaction
between the bound charges giving an energy Eex = Eg − q2/εr . Here, q is the absolute value
of the charges, r is their separation, and ε is the dielectric response. Putting Eg = 2 eV and
r = 2 Å and making the reasonable assumption that for the short distance, ε = ε∞ = 5,
gives Eex + 0.5 eV. Some of the subgap structure may also be due to multimagnon/phonon
processes [88].

Upon doping the bands broaden and the gap edge is lowered. In fact RIXS data [89]
suggest that the spectral weight of the lowest lying exciton in the undoped compound is trans-
ferred to the continuum intensity below the gap. In our model this occurs when the charge
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transfer exciton combines with the doped hole to form a bound exciton-hole (eh) quasiparticle.
The various ionic configurations to be considered in the CuO2 layers are shown in Figure 8.8.

For reasons given earlier, doped holes mainly reside on the oxygen sites (see Fig-
ure 8.8b). In the ionic model the low-energy singlet forms when the hole is attracted to the
polarization cloud of the lowest lying charge transfer exciton (Figure 8.8a) resulting in a new
quasiparticle that we call an eh (exciton–hole) particle (Figure 8.8c). The eh particle is a
linear charge-one spin-zero quasiparticle with an electrostatic energy E = Eex − [(q2/εr)−
(q2/2εr)] = +0.5 − 0.72 eV = −0.2 eV. The well-known Zhang–Rice (ZR) singlet is an
alternate configuration that places the doped hole in a symmetrical molecular orbital, the oxy-
gen ions surrounding a given Cu ion [90], and is stabilized by exchange energy [91]. However,
the eh-singlet is stabilized by Coulombic energy [78] and more importantly is a favorable con-
figuration for stripe formation. A bent configuration rather than linear configuration would
also have higher energy due to interaction Vpp, between the oxygen ions, (Figure 8.8e) [92].

In the limit tpp = 0 the electron dynamics are purely one dimensional as depicted in Fig-
ure 8.8c. Cluster calculations, however, suggest that tpp/tpd is in the range of 0.3 [93] raising
some question about the validity of one-dimensional transport. The eh particle (Figure 8.8d)
will be dressed; in fact the extended version of the eh-particle (Figure 8.8e), in which tpp/tpd
should be close to zero, has an even lower coulombic energy [94]. At the higher temperatures,
however, entropy will favor the eh particle.

The ionic version of the phase diagram in Figure 8.1, is qualitatively consistent with
generally accepted phase diagrams [95] except that we have allowed for enhancement of Tc
by negative U charge reservoirs layers.

In the underdoped region below some not-well-defined-temperature T ∗, well above Tc,
anomalies are observed in various phenomena such as Knight-shifts, spin–lattice relaxation
[96], transport, and a reduction of the effective magnetic moments of the charge carriers.
These are interpreted as crossover phenomena that we ascribe to the formation of the eh
particles that coexist with the paramagnetic doped holes. As the temperature decreases further
the concentration of eh particles increases to the extent that the superconducting fluctuations
observed by Ong and coworkers [97], occur, still well above Tc. The quasi-one-dimensionality
of the eh-particles leads to fluctuating stripes and charge–spin separation [98]. In this model
there is no necessity to postulate separate regions of (01) and (10) domains because of the d-
wave symmetry that insures opposite phase relation for stripes in the (01) and (10) directions
at the Cu crossing points. There would be no corresponding increase in kinetic energy because
of the nodes in the dx2−y2 wave functions at the crossing points. However, there are neutron
data that indicate at least in some cases that the spin domains in the two directions are not
congruent [99].

It is of interest to consider the properties of a layer in which the number of Cu sites
is doubled by filling the vacant sites in the CuO2 layer so as to form a cubic CuO structure.
Such a structure upon doping should have twice the superfluid density. Real space images
of naturally occurring monoclinic CuO (known as tenorite) show evidence of spin–charge
separation, and anisotropic transport that is consistent with stripe formation [100].

Finally, as in all models the 3d superconducting transition occurs when the tempera-
ture is lowered to Tc and the 2D fluctuations condense [101]. While d-wave symmetry
is favored in the CuO2 layers, a small s-wave component must exist in the chain-layer
cuprates, a consequence of orthorhombicity, and is also likely because of disorder in all
cuprates. Once a small s-component exists there is no restriction as to how large it can grow
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in the regions between the CuO2 layers. Hence to first order there is no symmetry restriction
preventing the negative-U ions or ion clusters coupling with the CuO2 layers and enhancing
Tc [102, 103].

8.5. Summary

We have considered large amounts of data from the vast number of experiments con-
cerning cuprate superconductors that have been reported over the past decade. Contrary to the
commonly made assumption that interactions are confined to the CuO2 planes we conclude
that they are insufficient to explain the striking differences in Tcs that are found. We sug-
gest that the Tcs found in the charge reservoir cuprates are enhanced due to superconducting
pairing interactions involving the negative-U ions Hg, Tl, and Bi. A striking example is the
doubling of Tc (from ∼45 to >90 K) found when an HgO layer is inserted into the unit cell of
the 214 cuprates. Attempts to attribute this difference in Tc to effects that depress the Tcs of
the 214 cuprates are ruled out by the pressure dependence experiments that further favor our
model and by other considerations as well. The collective sum of the data we have considered
and interpreted makes an impressive case for the importance of negative-U pairing centers.

The superconductivity found in the double chain 247 cuprates provides convincing evi-
dence that pairing occurs outside the CuO2 layers and originates in the one-dimensional chain
layers. In order to account for this superconductivity and the normal state properties we hy-
pothesize a linear diamagnetic (eh) quasiparticle that is stabilized by coulombic interactions.
We speculate that this (eh) quasiparticle can exist in the CuO2 layers of all the cuprates and
that it offers a consistent basis for understanding the complex phase diagram of the under-
doped to optimally doped cuprates.
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High-Tc Superconductors:
Thermodynamic Properties

R. A. Fisher, J. E. Gordon, and N. E. Phillips

Thermodynamic properties, primarily the specific heat, of the high-Tc cuprate superconductors are re-
viewed. This topic was covered in a number of reviews that appeared in the early years of research
on these materials. Here the emphasis is on more recent experimental results, including many measure-
ments in magnetic fields, and on features related to phenomena that have been recognized more recently.
Calorimetric evidence bearing on the symmetry of the order parameter, the nature of the transition at Tc,
the effects of chemical substitutions, fluctuation effects, the melting of the vortex lattice, the existence
of a pseudogap, and effects that appear to be related to stripe formation are discussed. Brief summaries
of the different experimental techniques, with evaluations of their strengths and weaknesses, and of the
problems and uncertainties that arise in analyses of the data are included.

9.1. Introduction

9.1.1. Scope and Organization of the Review

We review the thermodynamic properties of the high-Tc cuprate superconductors (HTS),
primarily the specific heat. Measurements of the specific heat have made a substantial con-
tribution to the understanding of the HTS, but the pace of the research has abated in recent
years, making this an appropriate time for a review. It must be recognized, however, that the
interpretation of many of the measurements has been limited by the quality of the samples
that were available, and recent improvements in sample quality suggest that some of the still
open questions will be answered in the future by new measurements on better samples.

There have been a number of reviews of the properties of HTS, e.g., Junod [1]; Atake
[2]; Phillips, Fisher, and Gordon [3]; Fisher, Gordon, and Phillips [4]; Greene and Bagley [5];
and Malozemoff [6], references to several of which will be made here for early results. In this
review the emphasis is on features that were not known at the time of the earlier reviews, or
for which there have been significant advances in the results or their interpretation subsequent
to those reviews: evidence for lines of nodes in the energy gap (Section 9.2.2); thermal effects
associated with stripes (Section 9.4); fluctuation effects and the nature of the transition at Tc
(Section 9.5); vortex-lattice melting (Section 9.6); the pseudogap (Section 9.7). New results
on the effects of chemical substitutions, which are relevant to some of the other properties,
are also included (Section 9.3).

R. A. Fisher, N. E. Phillips • Department of Chemistry, University of California at Berkeley and Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA
J. E. Gordon • Physics Department, Amherst College, Amherst, MA 01002, USA
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Section 9.1.2 includes an overview of the structures and nomenclature for the HTS, rep-
resentative values for the important characteristic parameters, and a generic phase diagram.
The origin of the substantial uncertainties in the critical fields, as determined by magnetiza-
tion measurements, and in parameters derived from them, is described briefly in Section 9.1.3,
but the reader is referred to an earlier review [6] for the details. The component contributions
to the specific heat and the expressions for their temperature and magnetic field dependences,
which are used in analyses of experimental data, are outlined in “Specific Heat: Component
Contributions; Field and Temperature Dependences; Nomenclature” in Section 9.1.4. Some
understanding of the experimental techniques, and their shortcomings and limitations is rel-
evant to the evaluation of the results, and this is taken up in “Specific Heat: Experimental
Techniques” in Section 9.1.4. Some more general problems, and limitations associated with
the specific-heat data, are mentioned in “Specific Heat: Problems and Uncertainties in Analy-
sis of Data” in Section 9.1.4.

9.1.2. Cuprate Superconductors: Occurrence; Structures; Nomenclature;
Phase Diagram; Characteristic Parameters

The HTS are derived from antiferromagnetic Mott insulators by doping, either with
holes (the more common case) or electrons. They occur in anisotropic layered perovskite
structures, which have strong 2D character. They do not occur in the cubic perovskite,
CaTiO3 structure, although there are other superconductors with this structure, SrTiO3 [7],
Ba(Pb,Bi)O3 [8], and (Ba,K)BiO3 [9]. The cubic perovskite structure consists of a 3D
network of vertex-sharing O octahedra with metal ions at their centers and in interstitial po-
sitions. The first cuprate superconductor [10], a La–Ba–Cu–O compound, has a layered per-
ovskite, K2 Ni F4 structure. That structure is illustrated, for (La2−x Srx )CuO4 (LSCO), which
is hole doped by substitution of Sr on La sites, in Figure 9.1. The apical O atoms are not
shared by adjacent octahedra in the c-direction, leaving a quasi-2D structure of CuO2 sheets
with Cu and O in a square-planar configuration in the ab plane. The CuO2 sheets are sepa-
rated by square-planar (La,Sr)O sheets that include the apical O atoms of the octahedra. The
electron-doped superconductors, (Nd,Ce)CuO4 and (Nd,Sr,Ce)CuO4 have similar structures
but with displacements of the apical O atoms to other positions. In other cuprate supercon-
ductors some of the apical O atoms are missing (an example is shown in Figure 9.2) but
the infinitely extended CuO2 planes, in which the superconductivity is thought to originate,
remain.

The structure of YBa2Cu3O6+x , 0 ≤ x ≤ 1, (YBCO) is shown in Figure 9.2, for the fully
oxygenated, x = 1, structure. The O content on the CuO chains is variable, and hole doping
of the antiferromagnetic insulator, with x = 0, is obtained by increasing x . This structure, and
those of other cuprates, can be thought of as comprising “conducting blocks” of CuO2 planes,
terminated by “spacing” or “capping” layers (the BaO planes containing the apical oxygens
in YBCO), “insulating layers” between the conducting blocks (the CuO chains in YBCO),
and “separating” layers between the CuO2 planes within a block (the Y layer in YBCO).
Particularly for the Tl, Bi, and Hg cuprates, the different structures are often distinguished by
a four-number label. The four numbers represent both the relative numbers of the different
metal ions and the numbers of planes of each type, in which those ions are contained: The
first number is the number of insulating layers between conducting blocks; the second, always
two, is the number of capping layers on a conducting block; the fourth is the number of CuO2
planes in a block, n; the third is the number of separating layers between CuO2 planes in a
block, n–1. In this scheme, Bi-2223 is Bi2Sr2Ca2Cu3O10, with two insulating layers of BiO,
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Figure 9.1. The structure of (La2−x Srx )CuO4. The atoms in each plane of one unit cell are shown at the left of the
plane. For clarity, the O atoms are shown at about one third size relative to the other atoms.

Figure 9.2. The structure of YBa2Cu3O7. The atoms in each plane of one unit cell are shown at the left of the plane.
Cu is present in the CuO “chains” and the CuO2 “planes.” For clarity, the O atoms are shown at about one third size
relative to the other atoms.

two capping layers consisting of Sr and apical oxygens, two layers of Ca separating three
CuO2 planes, the central one of which is without apical O atoms. Table 9.1 gives abbreviations
commonly used for some of the cuprate superconductors and maximum values of the critical
temperature (Tc) for each series.

Figure 9.3 is a generic phase diagram, temperature vs. doping level, for the HTS. On
the hole-doped side, at low temperatures, increasing the concentration of holes brings about
a transition from an antiferromagnetic insulator to a metal. Superconductivity occurs in a
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Table 9.1. Cuprate Superconductors: Nomenclature; Tc

Abbreviation Formula Tc (maximum) (K)
LMCO; M = C, S, B (La2−x Mx )CuO4; M = Ca, Sr, Ba ∼ 20, ∼ 36, ∼ 34, respectively
YBCO YBa2Cu3O6+x ; 0 ≤ x ≤ 1 95 (x = 0.89)
RBCO RBa2Cu3O6+x ; R = rare earth ∼ 90 for most R
Bi-2223 Bi2Sr2Ca2Cu3O6

a 110
BSCCO Any member of the above series
Tl-2223 Tl2Ba2Ca2Cu3O10

a 125
TBCCO Any member of the above series
Hg-1223 HgBa2Ca2Cu3O8

a 133
HBCCO Any member of the above series
aThe formula given is for the member of the series with the highest Tc. See the text for an explanation
of the 4-digit labeling scheme.

x
0 Hole dopingElectron doping

AFAF SCSC

TN T *TN

Tc

Tc

Pseudogap

NonFermi liquid

Fermi liquid

T

 →←

Figure 9.3. Generic phase diagram for the cuprate superconductors, showing antiferromagnetic (AF) and supercon-
ducting (SC) regions. See text for further explanation.

limited range of doping, with Tc increasing from zero in the “underdoped” region, peaking in
the “optimally” doped region, and going to zero again in the “overdoped” region. The Neel
temperature (TN) decreases with increasing hole concentration; there is a region of reduced
density of low-energy excitations, the “pseudogap” region, below the crossover line at the
pseudogap temperature (T *); regions of both Fermi-liquid and nonFermi-liquid behavior have
been recognized. The region of “stripe” phases, with spin and charge ordering, which occurs
in the underdoped range of hole concentration is not well defined and not shown. Related fea-
tures occur on the electron-doped side of the phase diagram, which has been less thoroughly
studied.

The values of many of the parameters that are important for characterizing the HTS
and understanding their properties are generally not well known. The most reliable values are
those for YBCO, which has been studied most intensively. Table 9.2 gives selected values for
a number of these parameters for optimally doped samples of YBCO. It includes values for the
0-K upper, lower, and thermodynamic critical fields, Bc2(0), Bc1(0), and Bc(0), respectively,
the coherence length (ξ ), the penetration depth (λ), and the Ginzberg–Landau parameter
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Table 9.2. Characteristic parameters for optimally doped YBCO. The anisotropy ratio,
γ = ξab/ξc = λc/λab = Bc1⊥/Bc1‖ = Bc2⊥,/Bc2‖, is approximately 3. Bc(0) was calculated from

Bc(0) = [Bc1(0)Bc2(0)/ ln κ]1/2. (Note: ‖ and ⊥ refer to the c-axis.)

Parameter Value Reference
Tc(K) 95 [11]

γn(mJ K−2 mol−1) 16a See footnote
Bc1‖(0)(G) 180 [12]
Bc1⊥(0)(G) 530 [12]
Bc2‖(0)(T) 40 [13]
Bc2⊥(0)(T) 110 [13]
Bc‖(0)(G) 5,800 [12–14]
Bc⊥(0)(G) 7,100 [12–14]
ξc (Å) 8 [14]
ξab (Å) 25 [14]
λc (Å) 4,500 [12]
λab (Å) 1,300 [12]

κc = λc/ξc 560 [12, 14]
κab = λab/ξab 52 [12, 14]

See Handbook of Superconductivity, ed. C.P. Poole (Academic, London, 2000) for a comprehensive
listing of parameters for the HTS.
aAn average value of γn from: Ref. 3 [16]; Ref. 15 [15]; Ref. 16 [18].

(κ = λ/ξ ), for directions ‖ c-axis and in the ab plane, i.e., ⊥ c-axis. (Note that the symbol
λ is also used for the electron–phonon interaction parameter, in “Specific Heat: Component
Contributions; Field and Temperature Dependences; Nomenclature” in Section 9.1.4.) The
values of these parameters are reasonably representative of those reported for the other HTS.
The short coherence length has a direct effect on the properties of the vortex cores, including
their contribution to the specific heat in the mixed state, and the resulting values of κ make
the HTS extreme type-II superconductors.

Although ξ and λ are functions of the temperature, in Table 9.2 and throughout this
chapter, we use the symbols ξ and λ for the low-temperature (T � Tc) values, which are
often represented by ξ (0) or ξ0 and λ(0) or λ0. It is primarily the low-temperature values that
are of interest here. At low temperatures, in the clean limit, the BCS, Ginzberg–Landau, and
Pippard coherence lengths are essentially the same.

9.1.3. Magnetic Properties; Critical-Field Measurements

Measurements of the magnetic moment (M) as a function of temperature and magnetic
field (B) are a primary source of information on Bc1 and Bc2, the closely related quantities
ξ and λ, and the anisotropies of all of these parameters. In addition to being of practical im-
portance, knowledge of the values of these parameters is essential to an understanding of the
HTS at a microscopic level. The earliest measurements of the magnetization [17,18] revealed
the irreversibility line in the B–T phase diagram, which is associated with the “melting” of
the vortex lattice (see Section 9.6), a phenomenon that has not been observed in conventional
superconductors. They also gave indications of the time-dependent pinning effects and the dif-
ference between measurements on field-cooled and zero-field-cooled samples that complicate
measurements of Bc2.
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There are substantial difficulties in determining both Bc1 and Bc2 from measurements
of M : In principle, Bc1 appears as a small change in slope of M vs. B. Its detection would
at least require very high precision in the measurements, but there are additional problems of
rounding of the feature by pinning, sample-shape effects, and inhomogeneity of the sample.
The measurement of the temperature derivative of Bc2 at Tc and extrapolation to T = 0 by
the WHH relation [19] does not give reliable values of Bc2(0). Consequently, determination
of Bc2(T) over the temperature range of interest requires measurements in very high fields,
obtainable only with pulsed techniques with their attendant problems (see, e.g., [13]). There
are also the usual problems with nonequilibrium effects. An early review of the magnetic
properties of the HTS [6] describes these problems, and emphasizes the uncertainties in the
derived parameters.

9.1.4. Specific-Heat Measurements

Specific Heat: Component Contributions; Field and Temperature
Dependences; Nomenclature

There are four contributions to the specific heat (C): the lattice, or phonon, contribution
(Clat); the conduction-electron contribution (Ce); a “magnetic” contribution (Cmag), asso-
ciated with paramagnetic centers; a hyperfine contribution (Chyp), associated with nuclear
moments:

C = Clat + Ce + Cmag + Chyp. (9.1)

In general, but with the exception of Clat, which is assumed to be magnetic-field independent,
the values depend on B, and the value of B is introduced in parentheses when appropriate.
For Ce an additional subscript, s, m, or n, is added, when useful, to distinguish values in the
superconducting, mixed, and normal states, respectively.

At low temperatures, and in the harmonic-lattice approximation, Clat can be expanded
in a series in odd powers of T ,

Clat = B3T 3 + B5T 5 + B7T 7 + · · · . (9.2)

The 0-K Debye temperature, Θ0 = (12π4 R/5B3)
1/3, is usually calculated using the value of

B3 for 1 g atom because Clat approaches the Dulong–Petit limit for that amount of material,
but that value does not have the simple relation to the low-frequency acoustic phonons implied
by the Debye model. At high temperatures, in the same approximation, Clat can be expanded
in a series in T −2. Dilatation and anharmonic effects produce additional, T -proportional terms
in Clat, which are important at high temperatures.

In the normal state, the conduction-electron specific heat is usually approximated by a
“linear” (T -proportional) term,

Cen = γnT, (9.3)

with γn a constant that is proportional to the electron density of states (EDOS) at the Fermi
level. However, γn includes a factor, 1 + λ, that represents an enhancement of the EDOS by
the electron–phonon interaction (λ). In principle, λ, and therefore γn, is temperature depen-
dent. With increasing temperature, λ is expected to increase from its 0-K value, go through a
shallow maximum, and then drop to low values, with the changes taking place at temperatures
related to the relevant phonon frequencies. There is no really satisfying experimental evidence
for the associated temperature dependence of γn because of the difficulty in separating it at
high temperatures from the T -proportional contributions arising from anharmonic effects and
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dilation in Clat. Although the theoretically predicted T dependence of γn is generally believed
to be real, it has been ignored in essentially all analyses of specific-heat data on the HTS. This
is probably not a serious error at temperatures below ∼ 10 K, but the difference between the
high- and low-T values are probably important in relation to measurements that extend over
wide temperature intervals, such as those that show evidence of the pseudogap. For example,
for YBCO, λ may be of the order of 0.5 at 10 K and below, but less than 10% of that in the
vicinity of 100 K and above.

For a “conventional” BCS superconductor, with an isotropic energy gap, Ces is an ap-
proximately exponential function of temperature

Ces = aγnTcexp(−bTc/T ), (9.4)

where a and b are weakly temperature dependent parameters. For the HTS, a number of recent
measurements give a T 2 term in the low-T limit

Ces = αT 2, (9.5)

which is associated with line nodes in the energy gap. In addition, even in zero field, most
samples show a “residual” linear term (Cer), a normal-state-like contribution to C

Cer = γrT . (9.6)

The paramagnetic centers that contribute to Cmag are associated with chemical impurities,
other defects, or, in the case of chemical substitutions on the Cu sites, the moments of the
substituent ions or moments they induce on neighboring Cu sites. In zero applied field these
moments are ordered by the internal interactions. For sufficiently low concentrations the order
develops below 1 K, and in the vicinity of 1 K and above Cmag appears as an “upturn” in C/T ,
which can be represented by empirical expressions of the form

Cmag(0) = Σ AnT −n, (9.7)

with n = 2, 3, . . . . In applied fields of a few T or more, the paramagnetic centers order
under the influence of the applied field, at temperatures above 1 K. If the concentration is
sufficiently low the internal interactions are unimportant, and Cmag is well represented by a
Schottky anomaly. There are examples in which the specific-heat anomaly corresponds, in
both temperature and field dependence, to a two-level Schottky anomaly for the moments in
the applied field,

CSch(B) = Rz2ez/(ez + 1)2, (9.8)

where z = 2gSµB B/kBT , S is the spin, and g is the spectroscopic splitting factor. In other
cases the anomaly is broadened by the internal interactions, and appears as a “Schottky-like”
anomaly.

The hyperfine contribution arises from the interaction of nuclear magnetic moments
with magnetic fields or nuclear quadrupole moments with internal electric field gradients.
For the HTS the relevant magnetic field is usually the external applied field, but in principle
internal hyperfine fields produced by ordered electronic magnetic moments could contribute.
For the temperature range of interest here, only the first-order term in the high-temperature
expansion of a Schottky anomaly is important, and Chyp is well approximated as

Chyp(B) = D(B)/T 2. (9.9)
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In the absence of quadrupole moments and internal hyperfine fields, D(B) ∝ B2 with B the
applied field, and D(B)/B2 is determined by the nuclear moments. However, the full contri-
bution to C is generally not observed, apparently because the nuclear-spin relaxation time (T1)
in parts of the sample is so long that those nuclei do not contribute. T1 is expected to be long at
low temperatures in the superconducting state, and the fraction of the theoretical value of the
coefficient D(B) that is found experimentally tends to be larger in samples with large values
of γr, for which the “volume fraction of superconductivity” is smaller (see Section 9.2.1).

Specific Heat: Experimental Techniques

The specific heat has been measured by a number of techniques that differ with respect
to precision and susceptibility to sources of error. The accuracy also depends on details of
the implementation, e.g., the accuracy of the temperature scale. A display of the experimental
data often gives a measure of the precision of the measurements. However, some techniques
are more prone to errors associated with internal equilibrium times, which may not be obvi-
ous in the data. In cases in which this is a possibility, it is important to take the differences
in the techniques into account when evaluating experimental data, particularly discrepancies
between different results.

The heat-pulse technique is the most precise, and, other factors being equal, the most
accurate. Ideally, the temperature of a thermally isolated sample is measured, a pulse of energy
is introduced, and the temperature is remeasured after equilibrium is attained. An important
advantage of this method is that problems with internal equilibrium times are evident, and
can be taken into account. The most serious disadvantage is that large samples are required:
measurements have been made only on large polycrystalline samples, which are more likely
to be inhomogeneous, than small single crystals.

In the continuous-heating method, the sample is heated continuously with a known
power, a correction is made for the “background” heat leak, and the specific heat is calculated
from the time derivative of the temperature. The heat capacity is obtained as an essentially
continuous function of temperature, but errors associated with internal equilibrium times,
which are most likely at low temperatures, may go undetected. There are several ingenious
adaptations of this technique to differential measurements. One [20], which gives the differ-
ence in the specific heats of a sample and a reference sample with high precision, has been
used to separate Ce from Clat. In another [21], which has been used to study vortex-lattice
melting in YBCO, the sample and the reference sample are loosely coupled to a tempera-
ture controlled bath that is heated continuously. The temperature difference between the
sample and the reference gives the latent heat at a first-order transition with high precision.

Most specific-heat measurements on small samples at low temperatures have been made
by relaxation calorimetry [22]: The sample is connected to a precisely controlled, constant-
temperature bath by a weak thermal link. Starting from the bath temperature, the sample is
heated at constant power until equilibrium is obtained at a temperature above the bath temper-
ature, the power is switched off, and the sample returns to the bath temperature. The specific
heat is calculated from the time derivative of the temperature and the conductance of the ther-
mal link, which is measured separately. Usually the increase in sample temperature is of the
order of T/20 or less, and the time dependence of the temperature is a simple exponential, but
in measurements by the Geneva group [23], the temperature is approximately doubled, and a
point-by-point analysis of the temperature/time data is necessary. The major shortcoming of
this technique is error associated with internal relaxation times in the vicinity of a few kelvin
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and below. The problem is illustrated by data on a YBCO sample with magnetic impuri-
ties [24], and was subsequently noted by the same group in connection with measurements on
another material [23]. The YBCO data cannot be fitted by the usual expressions for a specific
heat that includes contributions from magnetic impurities [25], and was originally interpreted
in terms of a concentration of magnetic impurities that increased with increasing field [24].
Below 5 K or so, the region in which magnetic impurities contribute to the specific heat, in-
ternal relaxation times tend to increase with decreasing temperature. Depending on the time
constant in the measuring system, the results may give underestimates of the concentration
of magnetic impurities and errors in the other contributions to the specific heat. The effect of
long nuclear spin relaxation time is usually different: The full value of Chyp is rarely observed,
even in heat-pulse measurements, but T1 for the nuclei that do not contribute is evidently so
long relative to the time constant of the measurements that the derived values for the other
contributions to C are usually not affected. However, in one exceptional case [15] a small
effect was noticed.

The physical arrangement for ac calorimetry [26] is essentially the same as for relax-
ation calorimetry, but the sample is heated continuously by ac power. With an appropriate
choice of frequency, which is determined by the sample-to-bath and internal relaxation times,
there is an ac response in the sample temperature that is proportional to 1/C . As applied to
measurements on HTS, the method usually gives only relative values of C . However, it can
give exceptionally high precision, and has been used very successfully to study transitions in
the vortex lattice.

Specific Heat: Problems and Uncertainties in Analysis of Data

The high values of Bc2 for the HTS preclude low-temperature measurements in the
normal state. The clean separation of Clat and Cen, and the unambiguous determination of γn
that are possible for many conventional superconductors, cannot be made. The reported values
of γn are estimates, based on various indirect methods. Because Tc is so high Clat � Ces at
Tc, and the specific-heat anomaly is only a few percent of C , as illustrated in Figure 9.4. The
separation of Clat and Ces, which is necessary, e.g., for identifying a fluctuation contribution,
requires an arbitrary assumption about Clat with a consequent uncertainty in Ces.

Sample purity is also a substantial problem. The three-component phase diagrams that
govern the preparation of the HTS compounds ensure the existence of competing phases. A
number of Y and Ba compounds are troublesome, particularly because YBCO is the most
intensively studied HTS. Among them are several forms of BaCuO2+x , one that contains
paramagnetic centers, which contribute to the low-temperature upturn in C/T , and another
that contributes to the residual linear term, γrT . The upturn, which is also illustrated in
Figure 9.4, constitutes a significant obstacle to accurate determinations of the more interesting
low-temperature contributions to C .

9.2. Low-Temperature Specific Heat

The contributions to the specific heat at low temperatures that are of most interest are
γrT and Ce(B). The residual, zero-field linear term γrT , is largely an impurity effect, but there
are theoretical predictions of an intrinsic contribution of this form. Ce(B) gives evidence of
the presence of line nodes in the energy gap. The problem of separating these contributions
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from Clat, Cmag, and Chyp is illustrated in Figure 9.5, which shows all five contributions for
a polycrystalline sample of YBCO that has a relatively low concentration of paramagnetic
centers. Most measurements on YBCO have been made on samples with substantially larger
Cmag, and the difficulty of separating γrT and Ce(B) from the other contributions is corres-
pondingly greater. Ce(B) and γrT are significant fractions of C only in a narrow window of
temperature between regions in which C is dominated by Chyp and Cmag or Clat. The sepa-
ration of the components represented in Figure 9.5 was based on a simultaneous (global) fit
to data for eight magnetic fields in the range 0.8–12 K [27]. Figure 9.6 shows the experimen-
tal data for the same sample, and gives an impression of the precision with which Ce(B) is
determined.

9.2.1. Zero-Field “Linear” Term

At the time of the earliest specific-heat measurements there was a high level of interest in
the zero-field linear term because an early version of Anderson’s RVB theory [28] predicted
a specific-heat contribution of this form. More recently, a BCS to Bose–Einstein crossover
model for the pairing in the underdoped, pseudogap region of the phase diagram [29] sug-
gested the existence of a term with approximately this form. This theoretical result makes the
linear term in underdoped samples of particular interest. However, impurity-related contribu-
tions to γr make the identification of any intrinsic effect extremely difficult.

There are a number of possible impurity-related contributions to γr: Pair breaking by
magnetic scattering centers produces “gapless” superconductivity, with a nonzero γr, and ac-
companying reductions in both Tc and the discontinuity in specific heat at Tc, 
C(Tc). Ex-
amples of this effect in HTS are described in Sections 9.3.2 and 9.3.3 Because essentially all
samples contain paramagnetic centers, apparently associated with chemical impurities or other
defects, a pair-breaking contribution to γr of this type is a general possibility. For a number of
YBCO samples, substantial reductions in the values of
C(Tc) and other parameters that mea-
sure the magnitude of the specific-heat anomaly at Tc, are correlated with increases in γr, but
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with no reduction in Tc [30]. This suggests a different mechanism for a contribution to γr: the
suppression of superconductivity by impurities or other defects, and the existence of normal
material in regions of the order of the coherence volume in size. The short coherence length is
consistent with the local suppression of superconductivity by defects on the scale of a lattice
parameter. The correlations among these properties were described in terms of the “volume
fraction of superconductivity.” Measurements of the superfluid density by µSR techniques
also suggested a microscopic phase separation into normal and superconducting regions, and
the term “Swiss cheese” was suggested [31]. Both the Swiss cheese and pair-breaking mech-
anisms produce a nonzero γr, but the microscopic interpretations, and the effects on Tc, are
different. Apparently, both are at work in the HTS. Nonmagnetic scattering centers are also
pair breaking for a d-wave order parameter, and, in the case of resonant scattering, their ef-
fect on Tc is relatively weak [32]. Resonant scattering by nonmagnetic impurities produces a
residual EDOS that can be recognized in the T dependence of the penetration depth [32], and
which could be another contribution to γr that is not associated with substantial reductions
in Tc. Ba-containing impurity phases can also contribute to γr (see, e.g., [3] and references
therein), a particular problem in the case of YBCO, even in the case of “single crystals.”

The difficulty in separating these impurity-related contributions to γr from intrinsic ef-
fects is illustrated by the differing conclusions reached by the authors of this review in col-
laborations with other colleagues: The conclusions were based on correlations of the con-
centrations of paramagnetic centers in the superconducting material and in impurity phases
with component contributions to γr for a series of YBCO samples. For the original series
it was concluded that there was no measurable contribution to γr that was not associated
with paramagnetic centers [33]; however, with the inclusion of several additional samples,
and the omission of two Zn-substituted samples, it was concluded [30] that there was an
intrinsic contribution of 2 mJ K−2mol−1. While there is certainly a general increase in γr
with increasing concentrations of paramagnetic centers, more recent information on the na-
ture of paramagnetic centers in YBCO [11] shows that the separation of paramagnetic centers
into the two types was an over simplification, and that neither analysis was valid. For one
polycrystalline YBCO sample with a particularly low concentration of paramagnetic cen-
ters (the sample represented in Figures 9.4–9.9) γr ∼ 3 mJ K−2 mol−1, for both optimally
and slightly overdoped O concentrations [27]. For the same sample slightly underdoped,
γr ∼ 4 mJ K−2 mol−1, but the concentration of spin-1/2 paramagnetic centers is also higher, so
the increase in γr is not necessarily an intrinsic effect. Detwinning an optimally doped YBCO
single crystal reduced γr from 3.2 to 2.2 mJ K−2 mol−1, and, in contrast with the results for a
polycrystalline sample mentioned above, increasing the O content into the overdoped region,
reduced γr to 1.2 mJ K−2 mol−1 [34]. For another high quality, overdoped YBCO single crys-
tal, γr = 2.4 mJ K−2 mol−1 [15]. For YBCO, the lowest values of γr reported are of the order
of 2 mJ K−2 mol−1, and the effect of doping level is not clear.

For LSCO the values of γr are generally lower than for YBCO, no doubt in part due to
the absence of a contribution from the Ba compounds present as impurities in the YBCO sam-
ples. Nevertheless, zero values have not been reported. For two optimally doped (x = 0.15),
polycrystalline (La2−x Srx )CuO4 samples, the values of γr, 0.44 and 1.23 mJ K−2 mol−1, are
among the lowest reported [35]. For a series of single-crystal samples, γr ∼ 2 mJ K−2 mol−1,
for the overdoped and optimally doped samples, but rises sharply in the underdoped region, to
∼ 4 mJ K−2 mol−1 for x = 0.069, with no evidence of an impurity effect that might account
for the increase [36].

For BSCCO, Clat is substantially greater than for YBCO or LSCO, and for many sam-
ples Cmag, the low-temperature upturns in zero field, are also large. These contributions to C
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complicate the determination of the linear term. When they are properly taken into account,
however, the preponderance of measurements give γr = 0, to within the experimental uncer-
tainty (see, e.g., [3]). As for LSCO, the absence of Ba compounds as impurities is undoubt-
edly a factor that favors low values of γr, but it does not explain why zero values are found
for BSCCO and not for LSCO. Most of these measurements have been made on optimally
doped samples, but γr = 0 has been reported [37] for one underdoped sample of Bi-2201,
with Tc = 12.5 K.

There have been relatively few specific-heat measurements on TBCCO. Most of them
give high values of γr, presumably associated with Ba-containing impurities, but zero values
have been reported [38–40].

In general, there is no persuasive evidence for an intrinsic linear term in the HTS. The
nonzero values of γr are probably associated with impurities or imperfections of one kind or
another. The one possible exception, which is of particular interest because it occurs in the
underdoped region, is for Bi-2201 [37].

9.2.2. Evidence for Line Nodes in the Energy Gap

It is widely believed that the superconducting-state electron pairing in the cuprates is
d-wave, but this conclusion has been questioned (see, e.g., [41–45]). Specific-heat measure-
ments have given evidence of the line nodes in the energy gap that are expected for d-wave
pairing, and support that scenario. However, the specific-heat, and other measurements of
the EDOS such as the Knight shift and the nuclear-spin relaxation time, do not distinguish
between a d-wave order parameter, which changes sign, and extreme anisotropy of the en-
ergy gap that might have a different origin. The uncertainty about the origin of the line nodes
notwithstanding, the specific-heat results are of interest because the specific heat is a bulk
property, while the measurements that give the phase of the order parameter may be affected
by abnormalities associated with the surfaces (see, e.g., [43]).

For a “fully gapped” superconductor, i.e., with an essentially isotropic gap, Ces is given
by the exponential BCS expression, Eq. (9.4). For line nodes in the gap, it is expected on
quite general grounds that Ces = αT 2 in the low-T limit, with α determined by the shape
of the node, and α ∼ γn/Tc. For a “conventional” type-II superconductor, normal-state-like
excitations within the vortex cores give a mixed-state specific heat Cem(B) ∝ BT , where the
proportionality to B reflects the number of vortices [46, 47]. For the cuprates, the extremely
small value of ξ increases the quantum confinement energy of quasiparticles in the vortex
cores, as ξ−2, making this contribution to the EDOS and to Cem negligible. However, in the
presence of line nodes, a Doppler shift of the quasiparticle spectrum in the outer regions of
the vortices gives rise to a B1/2T contribution to the EDOS, and Cem(B) = βB1/2T , where
β = kγn Bc2

−1/2 and k is an undetermined parameter of order unity [48]. More generally, in
the case of line nodes and very short ξ , there is a crossover between regions of different B
and T dependences at the value zc ∼ B−1/2

c2 Tc of the parameter z ≡ B−1/2T . In the limit
B = 0, Ces = αT 2; for intermediate B, Cem(B) is the sum of a B-independent T 2 term
and a T -independent B-proportional term; for high B, z < zc, Cem(B) = AB1/2T [49].
These relations are consistent with a scaling relation derived for a d-wave superconductor,
Cem(B)/B1/2T = F(B−1/2T ), where F is an undetermined scaling function [50–52].

The αT 2 and βB1/2T terms were first identified in a Stanford/UBC collaboration [53]
in data obtained on a single crystal of YBCO. The identification was based on a “global” fit,
in which data for six fields, 0–8 T, temperatures from 2.5 to 7 K, were fitted simultaneously,
with Clat constrained to be independent of B, and with specific B and T dependences assumed
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for Cmag. Data obtained at LBNL on a polycrystalline YBCO sample, 0.4–10 K, 0–7 T, when
fitted without constraints on the B and T dependences of Cmag, but otherwise in the same
way, gave similar results [54]. However, in both cases fitting the zero-field data alone gave
negative values of α, leaving a question about the reality of the T 2 term [55]. The problem
is illustrated in Figure 9.5, which emphasizes the narrow range of temperature in which the
T 2 term is a substantial fraction of the total. Evidently, the small magnitude of the T 2 term,
the interdependence of the six or so parameters required to fit the zero-field data, and the
approximate nature of the fitting expression for Cmag(0) conspire to give a spurious value of
α: using the in-field data to fix the B-independent parameters in Clat and γr gives a more
nearly correct value. Later measurements on a YBCO sample with a lower concentration of
paramagnetic impurities gave somewhat more persuasive evidence of the T 2 term in the zero-
field data [27]. The T 2 term for that sample is shown as the B = 0 data in Figure 9.6. However,
perhaps the most persuasive evidence of the reality of the T 2 term is in LSCO data [35]. The
T 2 term has also been reported by other groups in both YBCO [15] and LSCO [56–58].
The substantially different values of α reported are probably more a reflection of various
uncertainties in the data and the analyses than systematic trends with, e.g., doping.

The βB1/2T term has also been identified in experimental data for both YBCO (see,
e.g., [15, 27, 34]) and LSCO (see, e.g., [35, 36, 56]). In one paper the Geneva group presented
results for YBCO that contradicted the earlier reports of a B1/2T dependence, which they
suggested were spurious results associated with paramagnetic centers [59]. However, in a
later paper [15] they reported data on an exceptionally high-quality single crystal that did
show an approximate B1/2T dependence, and called attention to an error in the earlier paper
that explained the discrepancy. The results for a YBCO sample are illustrated in Figures 9.6
and 9.7: Figure 9.6 shows the determination of the γ (B) term in Cem(B) and the crossover
between the T 2 and B1/2T dependences; Figure 9.7 shows the B1/2 dependence of γ (B).
Since Bc2 is anisotropic, β depends on the direction of the field, and this has to be taken into
account in comparisons among values of β. For a polycrystalline sample the effective mass
model can be used to calculate the appropriate average of Bc2 (see, e.g., [54]). Given the
substantial uncertainties in k, γn, and the values of Bc2, most of the experimental values of β
are in satisfactory agreement with theory.
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The suggestion that the βB1/2T term is unique to the HTS and not found in conven-
tional superconductors has been questioned on the basis of V3Si data [60] that show a similar
negative curvature of γ (B). However, those measurements were made on a zero-field-cooled
sample, and at fields near Bc1. The observed negative curvature is mainly a consequence of
nonequilibrium effects associated with pinning as the flux enters the sample, but some of
it may arise from vortex–vortex interactions which are expected to make a contribution to
Cem(B) for fields near Bc1 [47]. Since the measurements on the HTS that give the βB1/2T
term are made on field-cooled samples, and at fields substantially greater than Bc1, the V3Si
data are not really relevant. Nevertheless, this suggestion that the usual interpretation of the
B1/2T in the HTS may not be valid has been widely cited. Furthermore, the B dependence of
Cem(B) for conventional type-II superconductors has not been well defined, in part because
many of the relevant measurements have been made on A15 compounds in which irreversible
effects are important, and the measurements have been made in fields not much greater than
Bc1. In that context, recent measurements on HfV2 [61], which are free of both of those short-
comings, and which show γ (B) ∝ B, to 14 T, are relevant.

Data that correspond to the βB1/2T term necessarily satisfy the predicted scaling law,
in the low-T, high-B, z = 0 limit. Such data have frequently been plotted as Cem(B)/B1/2T
vs. z = B−1/2T to demonstrate the validity of the scaling law, but in most cases they do not
extend beyond the crossover at zc, and do not constitute a general test of the scaling relation.
Data that do extend from close to the z = 0 limit to beyond zc, albeit with limited precision,
are shown in Figure 9.8. With a reasonable allowance for the uncertainty in Cem(B), they
suggest that the scaling relation is valid up to z ∼ 1.5zc. Figure 9.9 shows the same data
plotted in a different way that illustrates the interpolation of the scaling relation to the other
limit, z = ∞.

In principle, the dependence of Cem(B) on the direction of a field applied in the ab plane
would determine the location of the gap nodes, which could be compared with expectations
for a d-wave order parameter [62]. However, the anisotropy, which may be small, has not
been detected in two measurements on YBCO that were designed for the purpose [15, 34].
The negative results may be associated with the orthorhombic structure and twinning.
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Overall, the specific-heat data are in quite satisfactory agreement with theoretical ex-
pectations for line nodes in the energy gap and a short coherence length: The field depen-
dence of the mixed-state specific heat is qualitatively different from that of conventional
superconductors, and the superconducting-state specific heat shows a continuum of low-
energy excitations. More precise tests of the scaling relation in the z > zc region, and more
conclusive searches for the anisotropy of Cem(B) with the field in the ab plane would be
of interest.

9.3. Chemical Substitutions

The defect-perovskite structures of the HTS tolerate a variety of elemental substitutions.
The effects of these substitutions furnish information about the nature and origin of the super-
conductivity. The substitutions naturally fall into two groups: substitutions on the La or Y site;
substitutions on the Cu sites. There are useful reviews of rare-earth substitutions on the La and
Y sites by Markert, Dalichaouch, and Maple [63], Gschneidner, Eyring, and Maple [64], and
one dedicated to Pr substitutions by Radousky [65]; and of substitutions on the Cu sites by
Green and Bagley [5]. These reviews include references to early work, which are not always
repeated here. In the following sections we examine the consequences of elemental substitu-
tions, with emphasis on their effects on magnetic properties and the specific heat. Rare-earth
substitutions on the Y and La sites are reviewed in Section 9.3.1, and an overview of the
effects of substitutions on the Cu sites is given in Section 9.3.2. Zn substitutions on the Cu
sites, which have a particularly dramatic effect in suppressing the superconductivity, have
been studied intensively, and some of this work is considered in more detail in Section 9.3.3.
Following the identification of stripe phases in LBCO and (La,Nd)SCO there was renewed
interest in substitutions for Cu in these materials as an approach to understanding the stripes,
and some of the relevant specific-heat measurements are discussed in Section 9.4.
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9.3.1. Rare-Earth Substitutions on the Y and La Sites

Lanthanum and all the rare earths except Ce, Pr, and Tb (and radioactive Pm, with a half
life of 19 h, which has not been investigated) can be fully substituted for Y in YBCO with re-
tention of the orthorhombic structure, bulk superconductivity with Tc ∼ 90 K, and similar
specific-heat anomalies in the vicinity of Tc. In the case of the larger ions, and in particular
La, there is a tendency to substitute for Ba2+ because of a close match of ionic radii, and
special synthetic procedures are required (see, e.g., [66]). Under the strongly oxidizing con-
ditions normally used for synthesis, Ce and Tb assume their 4+ valence states and different,
nonsuperconducting structures are the stable form. However, a laser-ablation procedure [67]
was devised that makes possible the synthesis of films with the partial replacement of Y by Ce
(30%) or Tb (50%) without phase separation. The partially substituted (Y1−yTby)BCO is also
a superconductor with Tc ∼ 90 K. Since magnetic moments usually suppress the transition to
a spin-singlet superconducting state, and the electron pairing in the HTS is generally believed
to be spin singlet, the lack of an effect of these substitutions was unexpected. Evidently, the
interaction of the highly localized 4f electrons with the adjacent CuO2 planes is too weak to
have a significant pair-breaking effect.

When substituted on the Y site in YBCO, the same R3+ ions exhibit their usual mag-
netic moments, crystal electric field (CEF) splitting, and cooperative magnetic ordering. The
observed ordering temperatures vary from 0.17 K for HoBCO to 2.25 K for GdBCO. Neutron
diffraction shows that Nd, Sm, Gd, Dy, and Er order antiferromagnetically while the others,
with no magnetic ordering for T ≥ 0.45 K, have specific-heat contributions that are related
to the CEF splitting. Not surprisingly, the specific heat associated with the antiferromagnetic
ordering is well fitted by an anisotropic two-dimensional Ising model. While there is little
effect of the substitutions on the superconductivity, there is an indication that the antiferro-
magnetic ordering involves a weak coupling to the superconducting electron system on the
adjacent CuO2 planes: The Néel temperatures (TN), which are of a magnitude associated with
dipole-dipole coupling, are influenced by oxygen stoichiometry.

Fully substituted PrBCO, with the Pr on the Y sites, is generally thought to be an insula-
tor. Although there are reports of single-crystal PrBCO with 90-K superconductivity [68, 69]
it has been suggested that in such cases some of the Pr is on the Ba sites [70]. For the par-
tially substituted (Y1−yPry)BCO [65] and (Y1−yCey)BCO [67], Tc decreases with increasing
y. This is qualitatively similar to what is expected for magnetic pair breaking, but with im-
portant differences. Among the mechanisms that have been suggested to explain the behavior
of Pr substituted YBCO the three that have received the most attention are (1) hole filling in
the CuO2 planes caused by the presence of 4+ rare-earth ions [65]; (2) hybridization of Pr
4f–O 2p orbitals [71–73]; (3) replacement of Ba by Pr that causes a localization of holes in the
CuO2 planes [69]. However, there is a report of specific heats for (Y1−yPry)BCO that show
a depression of Tc with no x-ray evidence of Pr in the BaO layers [65]. Similar mechanisms
have been suggested to explain the Tc depressions for the Ce substitutions in YBCO [67].

Rare-earth ions Pr, Nd, Sm, Eu, and Gd, which have ionic radii not too different from
that of La, can be partially substituted on the La site in LMCO with retention of the struc-
ture and superconductivity. (Effects of Nd substitution in LSCO that are related to structural
transitions and stripe formation, and consequent changes in Tc, are particularly unusual and
are covered in Section 9.4.) The effect of these substitutions is strikingly different from that
of substitutions for Y in YBCO. Tc for [(La2−y−x Ry)Mx ]CuO4 decreases with increasing y
and increasing atomic number. The effect on Tc of pair breaking by magnetic moments in
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conventional superconductors is correlated with the size of the magnetic moment [74]. No
such correlation is found for R substitutions in (La,R)MCO, and the effect is much smaller
than would be expected on the basis of comparisons with conventional superconductors. There
is a correlation with the unit-cell volume and with the Cu–O bond length in the CuO2 planes,
which decrease regularly with increasing rare-earth atomic number, essentially as expected
on the basis of the ionic radii, but the correlation is opposite in sign to that expected from
the positive pressure dependence of Tc. However, the effects on Tc, from the substitution of
R for La, can be understood completely on the basis of variations in carrier concentrations
associated with changes in the basicity of the rare-earth ions. An extensive investigation of
phase stability, Tc, and carrier concentrations in [(La2−y−x Ry)Srx ]CuO4 provides the basis
for this explanation [75].

The effect of Pr substitution in LMCO is exceptional, as it is in YBCO, but the nature
of the exceptional behavior is different. Up to the solubility limit, y ∼ 0.8, there is essentially
no reduction in charge carrier concentration or Tc, which undoubtedly reflects the small mis-
match in ionic sizes [71]. This result supports the theory that the suppression of Tc observed
in (Y1−yPry)Ba2Cu3O7 is caused by hybridization of Pr 4f–O–2p electrons with the conduc-
tion band in the CuO2 planes—because of a coincidental match in energies—that leads to a
reduction in charge-carrier concentration [71, 76]. For [(La1.85−yPry)Sr0.15]CuO4 there is no
such energy match and no suppression of Tc occurs.

9.3.2. General Effects of Substitutions on the Cu Sites

The substitution of other elements (A) for Cu in both YBa2(Cu1−yAy)3O6+x and
(La2−x Mx )(Cu1−yAy)O4 can have pronounced effects on the superconductivity. These ef-
fects on the superconductivity are in marked contrast to those of substitutions for Y in YBCO,
which, in general, are small. The larger effects are understandable since the substitutions are
on the sites most directly associated with the superconductivity (the CuO2 planes), or, for
YBCO, those that constitute the charge reservoir (the CuO chains), and any disruption of the
Cu–O bonding in the planes and/or the oxygen content in the chains would be expected to
affect the superconductivity.

For YBCO the interpretation of the effects of substitutions is complicated by the ex-
istence of two Cu sites that have different roles in the superconductivity, and there is dis-
agreement in the placement and amount of the substituents incorporated on the lattice (see,
e.g., [5]). All of the substituents for Cu have a limited solubility range, but these limits have
generally not been precisely defined. In all probability, the synthesis conditions play an impor-
tant role in the locations and concentrations of the substituted elements. For YBCO, elements
with a 2+ valence are generally thought to substitute predominantly on the CuO2 planes and
those with a 3+ valence mainly on the chain sites. However, use of differential anomalous
x-ray scattering [77] shows that, for the samples studied, Ni and Zn are nearly randomly dis-
tributed over chain and plane sites while Fe and Co substitute preferentially on the chains for
low y, but for higher y there is some substitution on the planes. It has been reported [78] that
for A = Ni, Zn, Fe, Co, and Al the orthorhombic distortion in YBCO decreases with increas-
ing y; the oxygen content changes very little for small y, but exceeds 7 when y is large; and
Tc decreases for increasing y.

Measurements of both magnetization and specific heat have shown a number of effects
of substitutions on the Cu sites that are common to YBCO and LMCO, and similar for dif-
ferent substituents. Magnetization studies [78–87] on Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, and
Al substitutions have shown decreases in the Meissner fraction and Tc. An exception is the
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substitution of Au for Cu in YBCO that produces a small increase in Tc [88]. The measure-
ments also show that substitution of either magnetic or nonmagnetic ions on the CuO2 planes
produces magnetic moments, as is evidenced by the appearance of a significant Curie term in
the susceptibility. The nonmagnetic ions, e.g., Zn, produce magnetic moments on the neigh-
boring Cu sites (see Section 9.3.3).

Specific-heat measurements at low temperatures have been reported for YBCO with
substitutions of: Cr [89], Fe [90–95], Ni [96], Zn [89, 92, 97–100], Al [101], and Co [102].
Near Tc specific-heat measurements have been made for: Cr [89], Fe [95], Co [102], Ni [96],
and Zn [89,97,98]. In general, the specific-heat measurements show, in addition to the reduc-
tion in Tc, a decrease in 
C(Tc), and an increase in the residual, low-T , γrT term. For any
substituted ions on the plane sites, and for magnetic ions on the chain sites, there is an increase
in Cmag, a low-T upturn in C/T for B = 0, and the appearance of Schottky-like anomalies
for B > 0. Both the upturns and anomalies indicate the presence of paramagnetic centers.
These effects, and the reduction in the Meissner fraction, can all be understood as being as-
sociated with the paramagnetic centers and other defects introduced by the substitution and
a consequent reduction in the “volume fraction of superconductivity” or pair breaking (see
Section 9.2.1).

The magnetic properties of overdoped samples of (La2−x Srx )(Cu1−yZny)O4 have been
measured [103] using magnetic susceptibility and neutron scattering. They showed that, as
in YBCO, each Zn induces magnetic moments in the CuO2 planes corresponding to 1.2µB.
They also found that for y = 0 and x ≥ 0.22 each additional Sr2+ produces a paramagnetic
moment of 0.5µB that has a similar, but smaller, effect on Tc.

Magnetization and specific-heat measurements have been reported [104] on single-
phase (from x-ray analysis), polycrystalline (Bi1.8Pb0.2)Sr2Ca(Cu1−yAy)2O8+x for y = 0
(γr = 0) and A = Zn (y = 0.02, 0.04) and Co (y = 0.02, 0.03, 0.04, 0.06, 0.08) from 2 K
to well above Tc. For Co concentrations of 0.06 and 0.08 an impurity phase of Sr2Bi2CuO6
is detected at a level of ∼6%. Substitution of Zn for Cu has no effect on the Curie con-
stant above Tc although Tc decreases monotonically. While the addition of Zn decreases Tc,
surprisingly, neither γr nor 
C(Tc)/Tc are affected. In view of the effect of Zn substitution
in YBCO and LMCO it is difficult to understand its behavior in (Bi,Pb)SCCO unless Zn is
not substituting into the CuO2 planes. Substitution of Co for Cu has a much greater effect
than Zn. Above Tc the Curie constant increases (attributed to the paramagnetic Co ions), Tc
shifts to lower temperatures, 
C(Tc)/Tc is attenuated, and γr increases as y increases. For
y ≥ 0.04, γr ∼ 18 mJ K−2 mol−1, which is taken as γn in the normal state since the Curie
constant continues to increase as y increases showing that a solubility limit has not been
reached. These results are attributed to gapless superconductivity induced by the magnetic
Co ion substitution for Cu. They also suggest that no CDW/SDW stripe phases have been
destroyed.

The effect of Cr substitutions on Cmag is illustrated in Figure 9.10, which shows the 7-T
specific-heat anomalies for three samples of YBa2(Cu1−yCry)3O7, which evolved from the
low-temperature upturns in zero field [89]. The samples were all prepared in the same way,
with the amounts of Cr introduced corresponding to the nominal values of y = 0, 0.0050,
and 0.0133, and intended to produce 3y moles Cr moments/mole sample. Cmag(7) is well
represented by S = 1/2, g = 2 Schottky anomalies for all three samples. However, the num-
bers of moles of magnetic moments/mole YBCO, as deduced from the fits, are, respectively,
n = 0.0035, 0.0075, and 0.015. The 0.33% magnetic impurities in the “pure YBCO” sample
were not unusual for the time, and illustrate the problems with the preparation of pure sam-
ples. The fact that n is substantially less than 3y for the other two samples shows that only a
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fraction of the Cr appeared in the YBa2(Cu1−yCry)3O7 and illustrates both the problems with
the preparation of substituted samples and the interpretation of the results.

9.3.3. Effects of Zn Substitution on the Cu Sites

Substitution of 10% nonmagnetic Zn for Cu on the CuO2 planes depresses the super-
conductivity to Tc < 3 K [80], surprisingly, a much greater effect, ion-for-ion, than that of
magnetic ions. However, susceptibility measurements [98] have shown that Zn substitution
produces Cu2+ moments, and NMR measurements are interpreted as showing the presence
of magnetic moments on the four Cu ions adjacent to the Zn ion [105–107]. In addition,
magnetic-susceptibility and resistivity data have been interpreted [108] as showing that every
Zn ion induces the formation of four 0.32µB magnetic moments on the near-neighbor Cu sites,
which are coupled ferromagnetically. Presumably the decrease in Tc is produced by pair break-
ing by potential scattering at the nonmagnetic Zn sites or by magnetic scattering at the mag-
netic Cu sites. Other studies on YBa2(Cu1−yCry)3O7 have shown that for y > 0.05 there is in-
complete incorporation of the Zn [109,110], and that ZnO, Y2BaCuO5, and Ba(Cu1−yZny)O2
are formed as impurities [109].

Figure 9.11 shows the specific heat for three YBa2(Cu1−yZny)3O7 samples, y = 0,
0.01, and 0.05, as C/T vs. T [89]. The contributions associated with paramagnetic centers
are the low-T upturns in C/T for B = 0, which become Schottky-like anomalies in 7 T. The
small low-T upturns in the 7-T data are hyperfine contributions. For B = 0 the specific heats
are fitted with good precision by Eqs. (9.2), (9.6), and (9.7), for Clat,Cer = γrT , and Cmag(0).
Both γr and the zero-field, low-T upturns increase as y is increased. This is a case in which
the interactions between the paramagnetic centers are sufficiently strong that Cmag(7) cannot
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be fitted with a simple Schottky anomaly, but has the form of a “Schottky-like” anomaly, as
shown in the inset. These results, and this interpretation, are typical of data for YBCO samples
with paramagnetic centers.

Zero-field specific-heat data on Zn-substituted YBCO by Loram et al. [97], which are
similar to those of Kim et al. [89] and also to a third set of data by Roth et al. [100], ex-
tend to higher Zn concentrations. They were scanned from Figure 2 of [97] and are plotted
together with the data of [89] as C/T vs. T 2 in Figure 9.12. With reasonable allowance
for sample-to-sample differences, the two sets of data are in good agreement. The similarity
of the data from [89] and [97] is emphasized in Figure 9.13, which shows the values of γr
and ΘD obtained by analysis of the two data sets. With increasing y the trend in ΘD indi-
cates a slight stiffening of the lattice while γr increases substantially. A surprising feature of
Figure 9.13 is that γr increases linearly with y, reaching 40 mJ K−2 mol−1, 2.5 times the esti-
mated γn = 16 mJ K−2 mol−1 for pure YBCO given in Table 9.1, with no indication of satura-
tion. (There are a number of other estimates of γn that fall in the range 14–20 mJ K−2 mol−1

(see, e.g., [3]). The implication is that the pair-breaking effect of the magnetic centers in-
creases the EDOS to a value that exceeds that for the normal state.
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Loram et al. [97] propose a different analysis and interpretation of their data that avoids
this result, but which is implausible in other ways. In their analysis the low-T upturns and
some of the increase in the γrT term are part of an “intrinsic,” but y-proportional, mag-
netic contribution. In that interpretation of the data the maximum value of γr, at y = 0.1,
is ∼ 19.5 mJ K−2 mol−1, which is close to their estimate of γn = 18 mJ K−2 mol−1. (That
result constitutes one step in reaching their conclusions about the pseudogap, which are dis-
cussed in Section 9.7.) However, the similarity to the Kim et al. [89] data, for which the 7-T
measurements make an unambiguous separation of the paramagnetic-center and EDOS con-
tributions, the abundance of evidence of paramagnetic centers in Zn-substituted samples, and
the regular increase in the linear term that is evident both in Figure 9.12, and in Figure 2 of
their paper [97], are persuasive evidence that their interpretation is incorrect, and that γr in the
Zn substituted samples exceeds the apparent value of γn.

The high value of γr in Zn substituted samples has to be understood in the context of
NMR and NQR data [105–107] that show very little increase in the EDOS for Zn substitu-
tions. The possibility that impurity phases are responsible can be ruled out: Stoichiometric
BaCuO2 and BaCuO2+x (where x is small) have very different specific heats [111, 112]. The
specific heat of BaCuO2 could be interpreted as linear in T over a limited temperature range,
but, under the strongly oxidizing conditions of YBCO synthesis, the most probable form is
BaCuO2+x whose specific heats have Schottky-like anomalies and no pseudolinear contribu-
tions [111, 112]. The Ba(Cu1−yZny)O2+x impurity phase—whose specific heat has not been
determined—might have a large, pseudolinear component, but it seems improbable. Even if
the impurity phase was BaCuO2 it would need to be present as ∼ 20% of the y = 0.1 sample
to account for the excess EDOS, which seems unrealistic. In addition, the “intrinsic” magnetic
contribution to the specific heat that appears in the interpretation of Loram et al. [97] has no
resemblance to that of any of these impurity phases.

The existence of localized holes, or CDW/SDW stripes in YBCO, and their destruction
by Zn substitution is perhaps the most plausible explanation of the discrepancy between the
maximum value of γr and the apparent value of γn. There is evidence for stripe phases in
YBCO, and it has been shown that substitution of Zn for Cu in LBCO and (La,Nd)SCO de-
stroys localized holes and increases the EDOS (see Section 9.4). It seems reasonable to expect
that this increase in the EDOS would also take place for Zn-substituted YBCO. This suppo-
sition is supported by Hall-effect measurements [109,113,114] on YBa2(Cu1−yZny)3O7 that
show carrier concentration increases with increasing y at low temperatures. Such an increase
in the EDOS with Zn substitutions would be a low-temperature effect occurring only in the
temperature region in which the stripes or localized holes exist, and would not be seen in the
normal-state NMR and NQR measurements [105–107]. Similar effects on the EDOS of Zn
substitution on the Cu sites in LSCO are discussed in Section 9.4.

9.4. Stripes

The “stripe phase” in HTS is a state in which the charges and spins associated with
the holes in the CuO2 planes that promote superconductivity are spatially separated and form
“stripes” of ordered charge-density waves (CDW) and spin-density waves (SDW). Stripe-
phase formation causes a decrease in the EDOS. It is believed that these collective stripe
modes are coupled to the lattice and can occur only for certain geometries. Stripe phases were
predicted theoretically and were experimentally verified [115] using neutron-scattering data
on single crystals of (La2−x Bax )CuO4. In recent years they have been intensively investigated
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and many theorists believe stripes could hold the key to an understanding of superconductivity
in the HTS. For detailed discussions of stripe phases see reviews by Carlson, Emery, Kivelson,
and Orgard [116]; Kastner and Birgeneau [117]; Tallon, Benseman, Williams, and Loram
[118]; and Wilson [119].

While it is thought that all CuO2 planes in the cuprates can support the CDW/SDW
stripe phases, much of the research has been on the lanthanide-based HTS. Many investiga-
tions, by a number of techniques (including specific heat), have concentrated on
(La2−x Bax )CuO4 and [(La2−y−x Ndy)Srx ]CuO4 where stripe phases are unequivocally iden-
tified. Recently, investigations have been extended to the other HTS (see, e.g., [116]). For
example (1) Neutron-scattering measurements on YBCO have detected both spin and charge
fluctuations consistent with dynamic-stripe phases [120–123]. (2) Thermal-conductivity mea-
surements [124] on YBCO, Hg-1201, Hg-1212, and Hg-1223 show the formation of domains
of localized holes in the CuO2 planes near a hole concentration of 1/8, which can be inter-
preted as a CDW. (3) NMR and NQR measurements [125, 126] also show the presence of
domains of localized holes in the CuO2 planes of LCO and LSCO.

LBCO has a number of lattice structures. On cooling it undergoes a transition from high-
temperature tetragonal (HTT), to low-temperature orthorhombic (LTO), to a nonequilibrium
coexistence with a low-temperature tetragonal (LTT) phase in the superconducting region of
the phase diagram [127–129]. The ratios of the LTT to LTO phases are dependent on x and
T . In the region of the mostly LTT phase, for x = 1/8, the CDW/SDW phase forms robustly,
which leads to a strong suppression of Tc [130,131]. For x > 1/8 superconductivity is restored
and it is believed that the CDW/SDW phases coexist with “free” superconducting holes in the
CuO2 planes [116–119]. Figure 9.14 is a schematic phase diagram for (La2−x Bax )CuO4 and
[(La2−y−x ,Ndy)Srx ]CuO4.

Neutron-scattering and x-ray measurements do not detect an LTT phase in samples
of (La2−x Srx )CuO4, but there is a weak minimum in Tc at x ∼ 1/8 [130, 131]. A partial
substitution of Nd for La in LSCO, [(La2−y−x Ndy)Srx ]CuO4, causes the LTT phase to form
with a resulting strong suppression of Tc for x = 1/8 [132] (see Figure 9.14). This result
provides convincing evidence in support of coupling between the lattice and the CDW/SDW
and their formation dependence on the lattice geometry.

The transition of polycrystalline LBCO from the LTO to the LTT phase near 70 K was
mapped by specific-heat measurements for various x [133]. Another specific-heat measure-
ment [134] on (La2−x Bax )CuO4 with x = 0.12 also shows an anomaly centered on 70 K, in
agreement with neutron-scattering and x-ray data [127–129] for the LTO to LTT transition.
The anomaly was suppressed in a magnetic field of 7 T. Two other field-independent anom-
alies were observed in the region of 100 K, which have not been detected by other means.
For x = 0.09 and 0.15, where the amount of LTT phase is diminished [127], no detectable
anomaly or field dependence were observed in the 70 K region although those in the 100 K
region persisted.

In those same experiments [134] an (La2−x Srx )CuO4 sample with x = 0.09 was
superconducting with Tc = 30 K and had a field-dependent anomaly centered on 70 K,
which was very similar to that observed for (La2−x Bx )CuO4 with x = 0.12. (Samples of
(La2−x Srx )CuO4 with x = 0.12 and 0.15 did not show the anomaly.) Neutron-scattering and
x-ray data do not detect any anomalies in this temperature region for any x .

Specific-heat measurements have been reported for polycrystalline samples of
[(La1.85−yNdy)Sr0.125]CuO4 with y = 0.4 and 0.8 [135]. Both samples show y-dependent
anomalies spanning the 60–90 K temperature region shown in Figure 9.15. These anomalies
are associated with the y-dependent transition from the LTO to the LTT phase [130, 131].
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In the transition from the LTO to LTT structure an intermediate precursor phase has been
detected, which is also tetragonal with Pccn symmetry [130, 131]. In Figure 9.15 this transi-
tion is observed for y = 0.4, but not for y = 0.8, suggesting that the Pccn phase does not
form for that Nd composition. The entropy (
SLTT) and heat content (
HLTT) changes for
the first-order transitions are given in the figure. Figure 9.16 shows an anomaly near 30 K for
y = 0.4 and 0.8 and B = 0 that is independent of magnetic field to 7 T, which is proba-
bly associated with the formation of the CDW/SDW phases. The entropy (
SCDW) and heat
content (
HCDW) changes for the transitions are given in the figure. (A third sample with
y = 0.6—not shown—gave results very similar to those for y = 0.8.) Specific-heat measure-
ments have also been reported for a polycrystalline sample of [(La1.85−yNdy)Sr0.15]CuO4
with 0.12 ≤ y ≤ 0.7 that show y-dependent anomalies in the LTO to LTT transition temper-
ature range [136].

Specific heats have been measured [137] for [(La1.6−x Nd0.4)Srx ](Cu1−yZny)O4 from
2 to 300 K. At 15 and 100 K the ratio [(C − Clat)/15]/[(C − Clat)/100] and Tc vs. x for
y = 0 have significant minima at x ∼ 1/8, which is interpreted by the authors as showing
the formation of the CDW/SDW stripe phases and the suppression of superconductivity. The
addition of Zn for a given x reduces Tc, increases γr and the EDOS, and, for x = 1/8,
suppresses the stripe phase.
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Figure 9.15. The specific heat of (La,Nd)SCO in the vicinity of the LTO to LTT structural transition. The curves,
which define a specific-heat anomaly, are polynominal fits to the lattice specific heat above and below the transition.
Entropy and heat content changes for the broadened, first-order LTO to LTT transitions are tabulated in the figure.
For y = 0.4, but not 0.8, there is a “double transition” that is a consequence of the precursor high-temperature phase
with Pccn symmetry. (Data are from Wright et al. [135].)

Specific-heat measurements [138] were used to evaluate γn for (La2−x Bax )CuO4 in the
range 0 ≤ x ≤ 0.24. The sample for x = 1/8 was nonsuperconducting and had a large
reduction in γn compared to other nonsuperconducting samples with x 	= 1/8. This drastic
reduction in the EDOS was interpreted as confirmation of the formation of a CDW phase at
x = 1/8.

A determination of γn by an analysis of magnetization and specific-heat measurements
was used to assess the effect of substitution of other ions for Cu in the CuO2 planes for
nonsuperconducting (La1.875Ba0.125)(Cu1−yAy)O4 (A = Zn and Ni) [139,140]. When y = 0
the superconductivity is strongly suppressed as a result of the formation of a CDW/SDW stripe
phase with γr = 3.5 mJ K−2 mol−1. As y is increased, for the Zn-substituted samples, there is
a monotonic increase in γr for y ≤ 0.06, to 12 mJ K−2 mol−1 for y > 0.06. An interpretation
of this result attributes it to the destruction of the SDW stripes when nonmagnetic Zn (S = 0)
replaces magnetic Cu (S = 1/2) and disrupts the Cu–Cu exchange interaction producing
paramagnetic centers. In turn, this causes a destruction of the CDW stripes with the freeing of
holes and an increase of the EDOS. On the other hand, substitution of magnetic Ni (S = 1) for
Cu causes a different behavior. Initially γr increases with y with a slope similar to that for the
Zn substitution, but for y = 0.02 it reaches a constant value of 6.5 mJ K−2 mol−1, which is
approximately half that of the corresponding Zn-substituted sample. The interpretation [139]
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is that for x ≤ 0.02, SDW stripes containing Ni (S = 1) at their center are distorted (bulge),
but are not destroyed. However, they do not connect smoothly with non-Ni containing SDW
stripes, which causes spin fluctuations in the boundary region. Holes are freed from the CDW
stripes in the neighborhood of these spin fluctuations and γr increases. However, above the
critical concentration of y = 0.02 the hole production ceases and the CDW stripes are “bent”
around the Ni sites in the distorted Ni-containing SDW stripes. A “meandering” CDW stripe
phase is formed in contrast to the “straight” CDW phase for y = 0. This type of charge-
ordered phase has been proposed theoretically [141]. In summary, γr for y = 0 represents an
EDOS related to the nonsuperconducting phase that is not part of the ordered CDW/SDW;
and, for y > 0, as the CDW/SDW stripe phase is gradually suppressed, the freed holes add to
this EDOS.

Measurements of the specific heat of (La1.85Sr0.15)(Cu1−yZny)O4 [142] showed that γr
increased and Tc and 
C(Tc) decreased with increasing y, with superconductivity vanishing
for y = 0.025. For these samples x-ray analysis showed that the Zn is substituted randomly
in the CuO2 planes. Similar specific-heat measurements [57] were made on polycrystalline
samples of (La2−x Srx )(Cu1−yZny)O4 for 0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 0.05. The samples were
single phase with small γr for y = 0, attesting the absence of appreciable normal material.
For normal (La2−x Srx )(Cu1−yZny)O4 samples, as x increases from zero there is an increase
in γn to a maximum at x ∼ 0.1, a decrease to a minimum (but not zero) at x ∼ 0.13, an
increase to another maximum at x ∼ 0.23, and a decrease as x increases to 0.3, the limit
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of the substitution. For a given x in the range x > 0.16 there is a monotonic, nonlinear
increase in γr with increasing y, with a plateau at y = ycr, which increases with increasing
x . When x < 0.16 there is a linear increase of γr with increasing y similar to that found for
Zn substituted YBCO. It was assumed that γn for x < 0.16 is the linearly extrapolated value
at y = 0 of γr, which implies that the EDOS increases with increasing Zn concentration.
For x > 0.16 it was assumed that γn is the value for y > ycr. Neutron-scattering and x-
ray data show no CDW/SDW formations in LSCO, but the minimum at x ∼ 0.13 for the
non-superconducting samples could be interpreted as indicating CDW/SDW fluctuations (see,
e.g., [116]). Likewise, for superconducting samples of fixed x , it is plausible that fluctuating
CDW/SDW phases [143] are progressively destroyed as y increases with an accompanying
increase in the EDOS, which is in addition to the increases associated with pair-breaking by
Cu2+ moments. The plateau in γr at ycr for x > 0.16 can be understood to occur when the
fluctuating CDW/SDW have been completely suppressed. The value of γn for y = 0 would be
less than γr at ycr. This result is similar to that for Zn-substituted YBCO (see Section 9.3.3).

Measurements of magnetization (2 ≤ T ≤ 550 K) and specific-heat (2 ≤ T ≤ 7 K)
have been reported [144] for polycrystalline samples of (La2−x Srx )(Cu1−yAy)O4 (A = Zn
or Ni) for 0.1 ≤ x ≤ 0.25 and 0 ≤ y ≤ 0.05. The samples were single phase with small
values of γr in the superconducting state for y = 0. As Zn concentrations increase there
are increases in the Curie term above Tc as a result of the formation of localized Cu2+ ions
adjacent to the Zn, as in YBCO. The specific-heats for the Zn-substituted samples are very
similar to those of [57]. However, for Ni substitutions with y < ycr (where ycr is dependent
on x) there is no increase in the Curie term, but for y > ycr such a term appears. The au-
thors explain this by postulating that for y < ycr Ni substitutes as nonmagnetic Ni3+, which
reduces the hole concentration in the CuO2 planes. For y > ycr Ni is substituted as mag-
netic Ni2+ with a resulting Curie term. For the Ni-substituted samples the decreases in Tc
and increases in γr are much less than for the Zn-substituted samples with comparable values
of y. Unlike the case of the Zn-substituted samples the values of γr increase linearly with y
for all x .

9.5. Specific-Heat Anomaly at Tc: Fluctuations; BCS Transition, BEC

As a consequence of the short coherence length, fluctuation effects in the zero-field
specific heat near Tc, which have not been observed for conventional bulk superconductors,
are readily apparent for the HTS. However, there have been ambiguities as to whether the
fluctuations are 2D or 3D, and Gaussian or critical. For the in-field measurements there is
also the question of the applicability of several scaling relations. These issues are addressed
in Section 9.5.1. There is also another, possibly more fundamental, question related to the
specific-heat anomaly at Tc: Does the variation in the shape of the anomaly with doping level
reflect a change from a BCS transition to one that is a variant of a Bose–Einstein condensation
(BEC)? Evidence relevant to this question is discussed in Section 9.5.2.

9.5.1. Gaussian and Critical Fluctuations:

This section contains references to only a few of the many relevant publications on
the fluctuation contribution to the specific heat. More references to early measurements can
be found in other reviews: Junod [1]; Phillips, Fisher, and Gordon [3]; and Salamon [145].
References to more recent work can be found in several other papers [146–150].
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The discussion of fluctuation effects is in three parts: The specific-heat anomaly at Tc is
better defined in YBCO and the RBCO compounds than in other HTS, and in “Fluctuations:
Optimally Doped Samples in Zero Field” we focus our attention on measurements on YBCO
and DyBCO, near optimal doping (x ∼ 0.92), and in zero field. We extend the discussion to
in-field measurements in “Fluctuations: Optimally Doped Samples in Field” and to over- and
under-doped samples more generally in “Fluctuations: Under- and Over-Doped Samples”.

Fluctuations: Optimally-Doped Samples in Zero Field

Ginzburg–Landau (GL) theory [151] can successfully explain the mean-field character
of the phase transition in a BCS superconductor and can also predict how the transition will be
affected when fluctuation effects are small enough to be described by a Gaussian approxima-
tion. However, when T is sufficiently close to Tc, that is, when the sample is in the “critical” re-
gion, renormalization group (RG) theory [152] rather than GL theory must be used to describe
the fluctuations. The temperature regions in which the two kinds of fluctuations are expected
to be comparable in size to the mean-field discontinuity 
Ce(Tc) are expressed in terms of the
Ginzburg criterion [153] and the less-well known Brout criterion [154]. The two criteria can
be expressed in terms of the reduced temperature t ≡ (T/Tc −1). By these criteria the critical
region for a 3D superconductor lies within the interval |t | < tG ≡ [kB/π
Ce(Tc)ξ

3]2/32,
where ξ = (ξaξbξc)

1/3 is the GL coherence length of the superconducting order parameter at
T = 0, and 
Ce(Tc) is expressed in units of energy density K −1. Gaussian fluctuations [155]
can be expected in the wider reduced interval 1 � tB > |t | > tG, where tB ∼ (tG)1/2. The sig-
nature of a fluctuation contribution to the specific-heat anomaly near Tc is positive curvature
of Ce/T just below Tc coupled with a “tail” just above. There is considerable evidence that
superconductivity in the HTS is characterized by strong coupling, which increases 
Ce(Tc)
and also produces positive curvature below Tc. Therefore, the possibility of strong coupling
introduces further uncertainty, in addition to that associated with separating the lattice contri-
bution, into the analysis of the specific-heat data near Tc.

The strong dependence of both tB and tG on ξ makes it clear that the coherence length
is the determining factor in whether or not fluctuation effects will be measurable. In the case
of a typical type-I superconductor, for example Sn, with 
Ce(Tc) ∼ 1 mJ cm−3 K−1 and
ξ ∼ 2, 000 Å, tG ∼ 10−14 and tB ∼ 10−7 [156]. The Brout criterion tells us that even
a Gaussian fluctuation contribution to Ce would be unobservable unless it was possible to
make specific-heat measurements within an interval about Tc of ∼ 1 µK or less. It is not
surprising that near Tc the specific-heat anomaly of conventional superconductors is well de-
scribed by standard mean-field theory. Conversely, in the case of HTS, such as YBCO, with

Ce(Tc) ∼ 30 mJ cm−3 K−1, ξ ∼ 10 Å and Tc ∼ 90 K [156], tG and tB are ∼ 0.0015 and
0.04, respectively. The Ginzburg and Brout criteria lead to the expectation that Gaussian fluc-
tuations should be evident over an interval of ∼ 5 K about Tc, while critical fluctuations should
be evident within the much narrower interval of ∼ 0.1 K about Tc.

A detailed calculation [157, 158] shows that for s-wave pairing the zero-field Gaussian
fluctuation contribution, Cf, to Ce can be written:

Cf
± = A±(kB/16πξd)|t |−α, (9.10)

where α = (4−d)/2, where d = the dimensionality of the system, and A+ = 2 and A− = 2d/2

for t > 0 and t < 0, respectively. Early measurements of Cf in the case of YBCO [159] were
consistent with α = 1/2, as expected for a three-dimensional system, but with neither the
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predicted values of A+ and A− nor their ratio A+/A− . Similar results have been obtained on
YBCO by a number of other groups (see, e.g., [3] for references to some of the early results).
The zero-field C/T data for a single crystal of optimally doped DyBCO [160] are shown in
Figure 9.17. The curve through the data is a least-squares fit assuming C to be the sum of a
3D Gaussian fluctuation term, Cf, a mean-field step below Tc of the form 
Ce = hT (1 + gt),
and a quadratic lattice term. While the fit is quite good except close to Tc, the authors’ in-field
measurements cast doubt on the validity of the assumption that the fluctuation contribution is
3D Gaussian.

In the critical region Cf is predicted to be of the form:

Cf
± = + (A±/α)|t |−α, (9.11)

where the “critical exponent” α and the coefficients A± are constants [161] that depend upon
the “universality class” (3D XY, Ising, etc.). The value of α is close to, but not equal to, zero.
For very small values of α , the term |t |−α in Eq. (9.11) can be replaced by (1 − αln|t|).

The Brout and Ginzburg criteria are useful guidelines, but are not inviolable rules for
distinguishing the regions of Gaussian and critical fluctuations. For example, it has been sug-
gested [162] that for type-II superconductors the boundaries of the critical region exceed
the value of tG as defined above. Moreover, there is disagreement as to the nature of the
“crossover” from Gaussian to critical fluctuations. Precisely because there is doubt as to the
width of the critical region, as well as to the form of the fluctuation term in any crossover
region, it is useful to compare the predictions of Eqs. (9.10) and (9.11) with experimental re-
sults. It has been found by a number of groups (see, e.g., the review by Junod et al. [147]
for references) that for optimally doped YBCO and DyBCO single crystals the specific heat
is well represented by the predictions of the 3D XY model [152, 161], a model that has been
found to provide a very good fit to the λ-transition of liquid 4He [163]. In Figure 9.18, the C/T
data shown in Figure 9.17 are fitted with the 3D XY model. A mean-field step and a quadratic
lattice specific heat are again assumed and the critical exponent α is taken as −0.013, the
value obtained from the fit to the 4He data [163]. The fit to the DyBCO data [160] shown
in Figure 9.18 yields A+/A− = 1.029 ± 0.013, in reasonable agreement with the value of
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Figure 9.17. Specific-heat data for DyBaCu3O6+x , shown as the “wavy” curve, and a Gaussian-fluctuation fit to the
zero-field data (Figure 7 from Garfield et al. [160]). The uppermost solid curve is the sum of the contributions from
Gaussian fluctuations, a mean-field step below Tc (see text), and a quadratic representation of the lattice contribution.
(Note: Ctot in the figure is replaced by C in the text).
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1.058 ± 0.004 found for 4He [163]. Thermal-expansion measurements on optimally doped
YBCO [164] gave similar results. This technique has the advantage over specific-heat mea-
surements in that the data analysis does not require correction for a large lattice component of
the specific heat.

Fluctuations: Optimally Doped Samples in Field

On the basis of Figures 9.17 and 9.18 alone it would be difficult to choose between the
Gaussian and critical representations of the zero-field data. However, in-field specific-heat
results on the optimally doped RBCO HTS are better fitted by the critical representation, with
the 3D XY model, than by the Gaussian representation. Fairly general arguments [165] were
used to show that the field and temperature dependence of Cf can be written:

Cf = C0 − Bα/2ν f (x), (9.12)

where C0 = 0 for t > 0 and a constant for t < 0, x = t/B1/2ν, α is the specific-heat
exponent, and ν is the coherence-length exponent, e.g., ξ(t) = ξ/tν . In Eq. (9.12) it is the
scaled temperature, x , rather than the reduced temperature, t , that appears. A simplified form
of Eq. (9.12) has been used [160, 166], namely:

[C(0, T )− C(B, T )]Bα/2ν = f (x), (9.13)

where, in the case of the 3D XY model, ν = 0.669, and where it is assumed [163] that
α = −0.013, the experimental value obtained for 4He. Equation (9.13) has the advantage,
in principle, of allowing a test of the scaling prediction without making any assumptions
about the lattice specific heat, Clat, except that it is independent of B. In practice, because of
uncertainties about the true value of Tc, the authors found it preferable to use fitted values (see
Figure 9.18) rather than the measured values of C(0, T ) in Eq. (9.11). The results are shown
in Figure 9.19. As this figure shows, the agreement is quite good.

The suitability of the 3D XY model for describing the critical behavior of optimally
doped RBCO has been verified by a number of groups (see, e.g., [147, 148] for references).
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Figure 9.18. Specific heat of DyBaCu3O6+x (Figure 4 from Garfield et al. [160]). The solid curve is from a critical-
fluctuation fit to the same data shown in Figure 9.17 plus a quadratic representation of the lattice contribution. (Note:
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Some authors have tested the 3D XY scaling predictions by examining how the derivatives of
C vary with both field and temperature. Others have examined the scaling predictions as they
apply to the field dependence of the magnetization. In addition, some groups have tested the
applicability of another scaling approach, that of “Lowest-Landau-Level” (LLL) scaling (see,
e.g., [167] for references). While there is disagreement among investigators as to the range of
B for which one or the other scaling procedure is superior, it has been pointed out [168] that,
providing one assumes Bc2(T ) to vary as |t |4/3 rather than as |t |, then both 3D XY and LLL
scaling provide a valid description of the specific heat and magnetization for magnetic fields
between 1 and 16 T.

Fluctuations: Under- and Over-Doped Samples

The height of the specific-heat anomaly in the optimally and slightly over-doped RBCO
superconductors can be as large as 3–4% of C . In the case of the under-doped superconducting
RBCO the height is generally smaller, while the anomalies in the La, Tl, Bi, and Hg HTS
rarely exceed ∼1.5% of C . Measurements on Pb-stabilized Bi-2212 [169] and on Bi-2212
[170] were reported to be consistent with 2D, rather than 3D, Gaussian fluctuations, since Cf
was found to vary as |t |−1 rather than as |t |−1/2. The specific-heat data for Tl-2201 [171,172],
Hg-1201 [173,174], and Hg-1223 [175,176] all show anomalies similar to the anomaly of Bi-
2212 that will be discussed below.

9.5.2. BCS to BEC

The Geneva Group [147, 148] has surveyed a series of superconducting anomalies.
Figure 9.20a–f (Figure 1 from [147]) is a sequence of plots of 
C(B, T )/T vs. T for a
number of superconductors. The first plot in the sequence (Figure 9.20a) is for the BCS-like
superconductor Nb77Zr23 and 
C(B, T ) = Cs(B, T ) − Cn. The rest of the plots are for
HTS and 
C(B, T ) = C(B, T ) − C(B0, T ) where in all but one plot B0 = 14 T. The ad-
vantage of using 
C(B, T ) rather than C(B, T ) as the plot variable is that Clat is virtually
eliminated by the subtraction. The sequence of plots (b–f) are arranged in such a way that
the specific-heat anomalies about Tc change from being BCS-like (e.g., a sharp change in



High-Tc Superconductors: Thermodynamic Properties 377

−10

0

10

20

0 5 10 15

T (K)

(C
s−

C
n)

/T
  [

m
J 

K
 −2

 g 
at

]

B = 0

10 T

B = 0, 1, 2, 3, 4, 4.8, 6, 7.2, 10 T

(a)

−0.002

0

0.002

0.004

0.006

70 75 80 85 90 95

T (K)

[C
(T

,B
)−

C
(T

,1
4 

T
)]

/T
  [

J/
K

2 
g 

at
)]

B = 0

14 T

B = 0, 1, 2, 4, 8, 14 T

(b)

−0.002

0

0.002

0.004

0.006

75 80 85 90 95 100

T (K)

[C
(T

,B
)−

C
(T

,1
4 

T
)]

/T
  [

(J
 K

 −2
 g 

at
)]

B = 0, 0.5, 1, 2, 4, 8, 14T
B = 0

14 T

(c)

−0.002

0

0.002

0.004

0.006

0.008

45 50 55 60 65 70

T (K)

[C
(T

,B
)−

C
(T

,7
 T

)]
 / 

C
(T

,7
 T

)
B = 0

3 T

B = 0, 0.2, 0.5, 1, 2, 3 T

(d)

−0.0003

0

0.0003

0.0006

0.0009

0.0012

0.0015

75 80 85 90 95 100

T (K)

[C
(T

,B
)−

C
(T

,1
4 

T
)]

/T
  [

(J
 K

 −2
 g 

at
)]

B = 0

14 T

B = 0, 0.5, 1, 2, 4, 8, 14 T
(e)

−0.0002

0

0.0002

0.0004

0.0006

0.0008

95 100 105 110 115 120
T (K)

[C
(T

,B
)−

C
(T

,1
4 

T
)]

/T
  (

J/
K

2 
g 

at
)

B = 0, 2, 5, 14 T B = 0

14 T

(f)

Figure 9.20. Specific heats near Tc for various superconductors showing their evolution with magnetic field (Fig-
ure 1a–f from Junod et al. [147]). (a) Nb77Zr23, (b) YBa2Cu3O7, (c) YBa2Cu3O6.92, (d) YBa2Cu3O6.6, (e)
Bi2.12Sr1.9Cu1.96O8, (Bi-2212), (f) Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10(Bi-2223).


C(B, T )/T at Tc) in the first figure, to being virtually symmetric about Tc in the last. It is
also the case that as this symmetry of the specific-heat anomaly increases, the temperature at
which the anomaly is a maximum, Tmax(B), becomes less and less dependent upon B. In this
sequence the over-doped YBCO is more BCS-like than the optimally doped sample, which,
in turn is more BCS-like and less symmetric than the under-doped YBCO. The plot for Bi-
2212 (Figure 9.20e) is very nearly symmetric and Tmax(B) has only a weak T dependence.
The final plot in the sequence (Figure 9.20f) is for Bi-2223. Here the anomaly is essentially
symmetric about Tc, and Tmax(B) is virtually independent of B. The HTS part of the sequence
thus proceeds from the BCS-like over-doped YBCO, to 3D-XY-like optimally doped YBCO,
to under-doped YBCO, which shows evidence of a pseudogap in the EDOS (see Section 9.7)
and has a more symmetric anomaly than the more heavily doped YBCO samples. The last
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Figure 9.21. Fits of the specific heat of Bi-2212 shown in Figure 9.20e (Figure 3c,d from Junod et al. [147]). (a)
Gaussian fluctuation fit with A+/A− = 1, α = −0.67, (b) 3D BEC fit. (See text for details.)

two plots in the sequence, those for the BSCCO compounds, have anomalies that are similar
to those predicted for the Bose-Einstein condensation of an ideal Bose gas. Figure 9.21a,b
(from Figure 3 in Ref. [147]) demonstrates that the zero-field specific-heat results for the
Bi-2212 sample can be represented almost equally well by Eq. (9.11) with A+/A− = 1, and
α = −0.67 and by a 3D BEC fit. The authors caution, however, that the fit obtained from
Eq. (9.11) deviates from the predictions of the 3D XY model since the exponent α does not
satisfy the requirement that |α| � 1. They conclude that among the HTS there is a crossover
from BCS-like to BEC-like behavior with the 3D XY character of optimally doped YBCO
representing an intermediate case.

The suggestion that there could exist a continuum of superconducting characteris-
tics that range from BCS-like to BEC-like behavior was proposed a number of years ago
[177–179]. It was argued that the BCS ground-state wave function could become BEC-like
providing the attractive pairing interactions (U < 0) were sufficiently strong. Because the
coherence length, ξ , decreases with increasing |U | it is natural to think that this suggestion
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might be applicable to HTS, for which ξ ∼ 10 Å. It was suggested [180] that a useful mea-
sure of |U | is (kFξ)

−1, where kF is the k vector at the Fermi level. For weak coupling (BCS),
kFξ � 1, whereas kFξ ∼ 1 for optimally doped YBCO [147]. In this picture the crossover
from BCS-like to BEC-like behavior occurs in the region 2π ≥ kFξ ≥ 1/π, a region where
the chemical potential, µ, changes sign from positive (characteristic of Fermions) to negative
(characteristic of Bosons). (For a critique of [180], see [181].) A possible T = 0 plot of µ
vs. |U | contains three regions: the weak-coupled BCS region, the pseudogap (PG) region, and
the BEC region [149]. The chemical potential has an essentially constant, positive value in the
BCS region. Within the PG region the chemical potential decreases from this constant value to
0 at the boundary between the PG and BEC regions. This boundary corresponds to the value
of |U | for which there is no longer a Fermi surface. In the BEC region the chemical potential
has µ ≤ 0.

In this BCS/BEC scenario the PG region is one where, for temperatures such that Tc ≤
T ≤ T ∗, the normal state is neither the usual Fermi-liquid normal state nor a pure Bosonic
state. Rather, it is a state comprising two kinds of excitations, Fermions and a collection of
tightly bound, incoherent, “preformed” Fermion pairs (“Bosons”). For T > T ∗ the thermal
energy is sufficient to break these Fermion pairs. T ∗ is a function of doping and increases as
the doping decreases, whereas Tc decreases with decreasing doping (except when the doping
is close to the optimal value) [149, 182]. In the view taken in [149], the reduced EDOS at the
Fermi level in under-doped samples (the pseudogap) is thus correlated with the existence of
these incoherent pairs. The Fermion excitations undergo something similar to a BCS transition
at Tc. The incoherent Bosonic excitations achieve phase coherence as T → 0 by condensing
into a zero-momentum state (they undergo something like a Bose–Einstein condensation).
It is not surprising that the shape of the superconducting transition at Tc might reflect the
shape of the specific-heat peak associated with BEC, but it is surprising that the shape of the
specific-heat anomaly in Bi-2212 appears to resemble so closely the BEC peak. It has been
pointed out [150, 183] that the zero-field anomalies in Hg-1223, Tl-2201, and Bi-2212 bear a
strong resemblance to this BEC peak. Furthermore, it is calculated how the shape of the BEC
peak is affected if the chemical potential of a Bose gas depends upon magnetic field as well as
temperature. The calculation is compared with Hg-1223 data [176] and reasonable agreement
is found with the observed suppression of the specific-heat anomaly by a magnetic field. It
also predicts [150, 183] that Tmax(B), the temperature for which the specific-heat anomaly
has its maximum, will be virtually independent of B, as is, in fact, observed in the 1223,
2201, and 2212 compounds.

There are alternate models for the way in which tightly bound Fermion pairs might be
formed, for example, the bipolaron model [150, 184]. For a fuller discussion of the possible
relevance of BEC to the HTS see the articles in the book edited by Griffin et al. [185]. The
model of tightly bound, preformed Fermion pairs and their relationship to the pseudogap is
by no means universally accepted, nor is it consistent with all of the experimental observa-
tions of the pseudogap [182,186,187]. The high-resolution, thermal-expansion measurements
on YBCO [187, 188] have been interpreted as showing that the superconducting transitions
of both optimally doped and under-doped YBCO can be accounted for by an anisotropic 3D
XY model. In this picture increased anisotropy tends to decrease both Tc and 
Ces(Tc) and
also to shift more of the area under the anomaly above Tc, thereby increasing the symmetry
of the anomaly about Tc (see Figure 9.20). In their reply [188] to a comment [189] the au-
thors interpret their data as showing that incoherent Cooper pairs in the HTS begin to form at
temperatures well above Tc (but below T ∗), and they associate these preformed Cooper pairs
with the formation of the pseudogap. As they point out, it is not necessary that the onset of
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superconductivity at Tc coincide with the onset of pairing. For example, in 4He the superflu-
idity exists only below Tλ although the Bosons are clearly present at higher temperatures. The
anisotropic 3D XY model is regarded [187] as being applicable to the BSCCO HTS as well as
to YBCO. The model predicts that in the case of Bi-2212, for example, the specific-heat peak
would consist of a broad 2D fluctuation term capped by a very narrow 3D XY divergence at
Tc. Specific-heat measurements have been made on microgram-sized crystals of Bi-2223, but
so far the divergence has not been observed [190].

There are a number of alternate proposals for explaining the thermodynamic properties
of the HTS. Discussion of some of them can be found in recent reviews of the properties
of the HTS. (see, e.g., Carlson, Emery, Kivelson, and Orgad [116]; Yeh [191]; Norman and
Pépin [192].)

9.6. Vortex-Lattice Melting

9.6.1. Introduction; Early Measurements on YBCO

In the mixed (or vortex) state a magnetic field penetrates a superconductor in an array
of “vortices”, the Abrikosov “vortex lattice” [193], which can be a “solid” of pinned vor-
tices or a “liquid” in which the vortices are fluid, with the two phases separated by a “melt-
ing/freezing” phase boundary, Bm(T ). For conventional superconductors the fluid phase is
confined to a very narrow region close to Bc2(T ), the melting has not been observed, and it
has not been possible to study the fluid phase. In the HTS, because of the higher values of
Tc, lower dimensionality, and smaller coherence lengths, the fluid phase exists over a wide
region of the B–T phase diagram, as first shown by magnetization measurements (see Sec-
tion 9.1.3). Bm(T ) is well separated from the fluctuation-dominated crossover to the normal
phase at Bc2(T ), and the melting of the vortex lattice is observable. There is an excellent re-
view of these features of the phase diagram by Blatter, Feigel’man, Geshkenbein, Larkin, and
Vinokur [194].

Theory predicts a first-order transition for the melting in “clean” materials [195, 196],
but if the material contains a large number of defects, grain boundaries, or twins that cause
disorder of the vortex lattice, a second-order transition can occur [167,197–199]. The physics
of the vortex phase is complicated by the importance of disorder, which grows with magnetic
field and the concurrent number of vortices. Moderate disorder can change the vortex lattice
to a topologically ordered “Bragg Glass” phase in low magnetic fields that retains the ability
to melt to a fluid at higher fields [200]. When there is more extensive disorder a glass phase
forms for which no thermodynamic transition to a liquid can occur. Furthermore, the nature
of the transition may change from first to second order at a critical point Bcp(T ) on the Bm(T )
melting curve. Both types of transition, depending on the degree of pinning in the sample, and
other features in the vortex-state phase diagram have been seen experimentally.

A calorimetric measurement of a latent heat (L), L = T
S, or a discontinuity in
specific heat (
C) provides the most direct proof of a first- or second-order transition, but
such measurements are difficult because the thermal effects are small (∼ 1% of C), and they
require a very high sensitivity. YBCO has proved to be an ideal substance for observation
of the thermal signatures that are associated with the solid-to-fluid transitions. Prior to any
calorimetric measurements, however, features that were consistent with the expected transi-
tions had been seen in other measurements on YBCO, resistivity [201–203] and magneti-
zation [204, 205]; and on BSCCO, magnetization [206, 207], muon-spin rotation [208], and
neutron-diffraction [209].
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Calorimetric measurements were first considered seriously by Schilling and Jeandupeux
[21], who recognized that the expected value of L for YBCO should be measurable, and de-
veloped special apparatus for the purpose. The technique, a modified differential thermal-
analysis method (see “Specific Heat: Experimental Techniques” in Section 9.1.4), allows an
unambiguous distinction to be made between a latent heat and other thermal effects associated
with higher-order transitions, such as second order. Since the twinned YBCO crystal available
for their measurements did not show the signature feature of a first-order transition in the re-
sistivity, their negative result, the absence of a measurable latent heat [21], was not a surprise.
However, their measurements proved the effectiveness of the technique, established a new
standard of precision for measurements of the specific-heat anomaly at Tc, and set an upper
limit to L , for that crystal, an order of magnitude below the values expected for the first-order
transition. The first calorimetric measurements to show any thermal effect at Bm(T ) were
made by Schilling and Jeandupeux with other colleagues, using that technique on a different
twinned single crystal of YBCO [210]. They showed clearly resolved “steps” in C/T , i.e.,

C , as expected for a second-order transition.

The first calorimetric measurements to show the predicted first-order transition from the
vortex-solid to the vortex-fluid were made by Schilling et al. [211], again with the differential
technique, on an untwinned single crystal of YBCO with Tc = 92 K. That crystal, made at
Argonne National Laboratory, was similar to others that had shown evidence of first-order
melting in magnetization and resistivity measurements. The measurements were made with
B ‖ c-axis, to a maximum B = 9 T, and gave L ≈ 0.45kBT per vortex per superconduct-
ing layer. Thermodynamic consistency was verified by comparison with discontinuities in
magnetization, 
M , measured on the same crystal, with the Clapeyron equation. The results
for 
S and 
M are in satisfactory agreement with a calculation that takes into account the
temperature dependence of the Landau parameters [212, 213].

Soon after the measurements of 
C and 
S by Schilling and colleagues, similar re-
sults, obtained with an adiabatic continuous-heating method (see “Specific Heat: Experimen-
tal Techniques” in Section 9.1.4), were reported by the Geneva group [214–218]. Roulin
et al. [214] reported measurements on a twinned YBCO crystal with B ‖ c-axis that showed
steps in C for B ≤ 8 T. A comparison of 
C and M data with an Ehrenfest relation suggested
a reversible thermodynamic second-order transition. On the basis of that result, and several
other considerations, including the absence of hysteresis in their measurements and in others,
and a comparison with unpublished Grenoble measurements that also showed no latent heat,
they concluded that the observed second-order step constitutes the thermal signature of the
melting of a vortex solid. However, later measurements, on a twinned crystal with weaker
pinning, did show a latent heat, L ≈ 0.6kBT , but only for B ≥ 6 T , where there were no
M data for comparison [215, 218]. For B ≤ 6 T , where there was no measurable latent heat,
values of 
M suggested a latent heat an order of magnitude greater than that observed for
B ≥ 6 T, showing that, in this case, the transition was not thermodynamically reversible.

9.6.2. Other Measurements on YBCO

The results of specific-heat measurements for B ≤ 9 T on the sample used by Schilling
et al. [211], including measurements with different orientations of the magnetic field, were re-
ported in more detail in later papers [219–221]. For B ‖ c-axis, they are shown in Figure 9.22.
For B ≥ 0.75 T , there are sharp peaks in C/T , which give the values of 
S for a thermody-
namic first-order melting transition [211]; for B ≥ 0.25 T, there are discontinuities in C/T ,
which give the values 
C for the transition. The specific heat of the fluid is larger than the
solid, as is usually the case, but 
C was thought to be ∼100 times larger than expected for
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Figure 9.22. Specific heat of an untwinned single crystal of YBCO (Tc = 92 K) with H ‖ c-axis showing the first
thermally detected, first-order, flux-lattice melting (data are from Schilling et al. [219]). The small, sharp anomalies,
with magnitudes ∼ 0.8% of C/T , the thermal signatures of the first-order transitions, give 
S and the latent heat
of melting. In the inset, [C(H)− C(0)]/T shows the steps in C/T associated with the discontinuity in specific heat
more clearly. The features associated with the transition are a maximum at ∼ 6 T, but a transition is still observed for
H = 0.25 T. (H in the figure, and here in the caption, is B in the text.)

the additional fluctuations for the translational degrees of freedom in the liquid phase. How-
ever, the theory [212, 213] that accounts for the values of 
S and 
M is also in satisfactory
agreement with the values of 
C .

Measurements on the same sample [211] were repeated and extended to B = 18 T, but
only for B ‖ c-axis, in a collaboration with a group at the National High Magnetic Field
Laboratory at Los Alamos National Laboratory [222]. Below 9 T, there was excellent agree-
ment between the two sets of measurements. The latent heat, which had been essentially
constant for B ≤ 9 T, decreased at higher B and went to zero at a critical field Bcp, with
12 ≤ Bcp ≤ 13 T. The results clearly established that the existence of a transition from first-
order to second-order melting at Bcp. For B > Bcp no anomalies were detected in tempera-
ture scans at constant B, which was probably because of insufficient instrumental resolution.
Sweeps of B, from 0 to 18 T to 0, at fixed T were made to establish the nature of the transi-
tion to the fluid phase in both the reversible and irreversible regions of the phase diagram. In
the temperature region of the phase diagram where B crossed the melting curve at B < Bcp
the scans were reversible. At lower temperatures, in the glassy region of the phase diagram,
where the crossings were at B > Bcp, the scans were not reversible, i.e., “jumps” occurred in
the T vs. B curves for increasing B, as though flux were increasing in “bundles” instead of
smoothly varying. The resulting scatter in the data may also have been caused by one vortex
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configuration suddenly “jumping” into another as the vortex density was increased. The jumps
were not observed for scans where B crossed into the irreversible glassy region from above.

For B ≤ 9 T, measurements were made on the same sample with B ‖ a-axis as
well as for B ‖ c-axis, and with B at intermediate angles of 30, 60, and 75◦ with the c-
axis [219–221]. Both the melting curves, Bm(T ), and the entropies of melting for B ‖ c-
axis and B ‖ a-axis scale with an anisotropy ratio γ = (mc/mab)

1/2 = 7.76, where
mc and mab are the charge-carrier effective masses. The Bm(T ) curves could be empiri-
cally fitted with the scaling relation Bm(T, 0) = Bm(T, 0)[1 − T/Tc]n for B ‖ c-axis, and
Bm(T ) = γ Bm(T, 0)[1−T/Tc]n for B ‖ a–axis, where n = 1.26, γ = 7.71, Bm(0) = 91.5 T,
and Tc = 91.97 K. The fitted value of n is not very different from the 4/3 for 3D XY scal-
ing. An excellent fit to the data for all angles was obtained using the scaling relationship
Bm(T,Θ) = Bm(T, 0){γ /[sin2(Θ)+ γ 2 cos2(Θ)]1/2}. The value for γ is sample dependent;
but the angular scaling rules apply generally.

Junod et al. [223] report on a number of specific-heat measurements made by the Geneva
and Grenoble groups. Both twinned and untwinned single crystals of YBa2Cu3O6+x (x =
0.95–1) were investigated for 0 ≤ B ≤ 23 T, with B ‖ c-axis, and B⊥c-axis. They conclude
that, depending on flux-pinning and disorder, two processes can occur at the Bm(T ) curve,
second-order melting of a vortex glass or first-order melting of a vortex lattice. They identified
Bcp, a tricritical point on the Bm(T ) curve at which there is a crossover from vortex-lattice
melting (first-order transition) to vortex-glass melting (second-order transition); and Bend(x),
the field at which the steps associated with the vortex-glass melting vanish. For B < Bcp they
found that the data could be fitted with the 3D XY model, to Bm(T, x) = f Bm(0, x)[1 −
T/Tc(x)]4/3, where f = 1 or γ for B ‖ c-axis or B ⊥ c-axis, respectively. This result is
similar to that reported by Schilling et al. [219–221].

The effect on specific heat of the variation of the oxygen content of the chains in
YBa2Cu3O6+x for x = 0.94, 0.96, and 1 was investigated [217] for high-purity, twinned
single crystals with 0 ≤ B ≤ 16 T for B ‖ c-axis. It was reported that L(x), the slope
of Bm(T, x), and Bcp(x) increase with x ; and, the γ (x) anisotropy decreases and Bend(x)
vanishes for x = 1.

The most complete and detailed vortex-state phase diagram for YBCO is provided by
specific-heat measurements, by the ac technique (see “Specific Heat: Experimental Tech-
niques” in Section 9.1.4), and magnetization measurements in magnetic fields to 26 T. The
magnetization data showed the relation of the melting line to the irreversibility line, and al-
lowed a correlation to be made between the change in the melting at the critical point and
disorder in the solid phase that produces a vortex “glass,” for which the melting is second
order. The measurements were made by the Grenoble group on a naturally untwinned single
crystal with Tc = 92 K from Argonne National Laboratory. This crystal is not the one studied
by Schilling et al. [211, 219–221], but its properties were similar. The results of the measure-
ments are reported in papers by Bouquet et al. [224,225] and Marcenat et al. [226]. Figure 9.23
shows the evolution of C and 
S with increasing B, and Figure 9.24 shows the B–T phase
diagram for the vortex state. There is a critical point, at B = Bcp, on the melting line, where
the melting changes from first order to second order. In this case Bcp = 10.5 T. Examples of
the specific heats in both regions are shown in Figure 9.23, and the phase diagram derived
from them is shown in Figure 9.24. For B < Bcp the specific heats are characterized by sharp
peaks superimposed on steps corresponding, respectively, to the latent heats for a first-order
transition and the difference in specific heats between the solid and fluid. The transition is hys-
teretic, as is frequently observed for a first-order transition. For B ≤ 5 T the features in C and
M are as expected for a thermodynamic first-order melting of a disorder-free lattice. Within
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Figure 9.23. 
S and discontinuities in [C(H)− C(0)]/T , at Hm and Hx (constructed from data shown in Figure 2
from Bouquet et al. [225]). (a) Specific-heat data for representative fields from 1 to 26 T. (b) and (c) Specific-heat data
on an expanded temperature scale for additional fields in the vicinity of the critical point and for low H , respectively.
The data have been shifted vertically to bring them into coincidence at low T . (d) Discontinuities in entropy, 
S, in
units of kB per vortex per CuO2 layer, at Hm as measured directly (closed circles) and calculated from 
M and the
Clapeyron equation (open circles). (H in the figure, and here in the caption, is B in the text.)

that range of field the melting obeys the 3D XY scaling relation, Tm = Tc[1−(B/B0)
3/4] with

Tc = 92.3 K and B0 = 100.3 T, and the values of 
S measured directly and those that are
derived from 
M using the Clapeyron equation, dBm/dT = −
S/
M , are in good agree-
ment. Although the transition remains first order for 5 ≤ B ≤ Bcp, the melting is irreversible,
and there are deviations from the 3D XY scaling relation that increase with increasing B.
Above Bcp the lattice is glass like and transforms irreversibly into a fluid at B∗(T ) as shown
by magnetization measurements, but with no distinguishable feature in the specific heat. (As
noted above, irreversibility was also observed in a similar crystal in this region by Schilling
et al. [222] in sweeps of B at constant T .) There is a reversible, thermodynamic, second-order
transition from this fluid phase to a second fluid phase at Bx (T ). The transition is marked by
a step in the specific heat with no hysteresis. The unusual behavior at Bx (T ) was predicted
theoretically on general duality arguments [227, 228] and by modeling using computer sim-
ulations [229]. The transition is unusual in that it is the high-T phase, with unbound vortex
loops threading the fluid, for which the order parameter is finite. Theoretical calculations of
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Figure 9.24. Phase diagram for the vortex state in the vicinity of Tc (Figure 9.1 from Bouquet et al. [225]): (a)
as H vs. T ; (b) on an expanded scale as deviations in T from a 3D XY scaling relation, the dotted line in both
(a) and (b), which represents the line of first-order melting for H ≤ 5 T . Hm is the curve of first-order melting de-
fined by discontinuities in entropy (open circles). Hx is the phase boundary between the two fluid phases defined
by discontinuities in specific heat (filled circles). Hft represents the maxima of the “fishtail” in the magnetiza-
tion loops and indicates the region in which the lattice-glass transition occurs. H* is a curve below which irre-
versibility is important and is defined by the points where the magnetization loops close. CP is the critical point
that marks the crossover from first- to second-order melting. (H in the figure, and here in the caption, is B in the
text.)


C and 
S for the first-order transition and Bcp [230] are in approximate agreement with the
experimental values.

High-resolution magnetic-torque (τ ) measurements [231] on an untwinned single crys-
tal of YBCO were used to show that the first-order vortex melting near Tc persists well
within the fluctuation region and is detectable to within T/Tc = 0.995. A transverse ac
magnetic field was used to “shake” the vortices and produce rapid depinning, which dra-
matically extends the reversible domain in the B–T phase diagram [231, 232]. A theory by
Brandt and Mikitik [233] explains the effectiveness of the technique. The same technique
was used to measure M as a function of B for different orientations of B to the crystal
axes [234]. The torque experienced by an untwinned single crystal of YBCO for 0 < B ≤ 7 T,
below Tc = 93.3 K, was determined as a function of the angle, Θ , between B and the c-
axis of the crystal. The measurements allowed the evaluation of M(B,Θ) and the discon-
tinuity in M , 
M(B,Θ), at Bm(T,Θ). Thermodynamic relationships were used to show
that 
M is always parallel to M . From the measured (∂τ/∂B)T it was possible to extract
the differences in the reduced specific heat, 
C/T , between the vortex-fluid and vortex-
solid phases, which compared well with the corresponding thermal data. The melting curves
Bm(T,Θ) scale very well according to the scaling rules for anisotropic superconductors up
to T/Tc = 0.99 (see, e.g., [219, 221]). These measurements were made on a third crystal
from Argonne National Laboratory, smaller than, but otherwise similar to, the two mentioned
above.

High-resolution dilatometry was used to measure the thermal expansion of a naturally
untwinned single-crystal of YBCO [235]. Distinct discontinuities in the thermal expansion
are observed at the vortex-lattice melting transition. These results demonstrate that there is
coupling between the crystal lattice and vortex lattice. Furthermore, they explain why Tc is so
strongly dependent on pressure.
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9.6.3. Measurements on Other HTS

Specific-heat measurements have been used to study vortex-lattice melting in a number
of RBCO: Specific-heat measurements on a high-purity, twinned, single crystal of DyBa2×
Cu3O7 for 0 ≤ B ≤ 16 T and B ‖ c-axis showed first-order-like transitions for 6 ≤ B ≤ 16 T
on the Bm(T ) melting curve [236]. The measured characteristics for the vortex-lattice melt-
ing closely matched those of YBCO. The Geneva group has reported magnetization and
specific-heat measurements for EuBa2Cu3O7 and DyBa2Cu3O7 [237] and single-crystal
NdBa2Cu3O7 [238] that showed vortex-lattice melting similar to that observed in YBCO.
Vortex-lattice melting was observed in specific-heat measurements on an untwinned sin-
gle crystal of NdBa2Cu3O7 that were essentially the same as YBCO, but with a somewhat
larger anisotropy [239]. Vortex-lattice melting in single crystal DyBa2Cu3O6+x was also ob-
served [161] in specific-heat measurements in fields to 8 T.

Steps were observed in M(B, T ) near Tc for single crystals of (La2−x Srx )CuO4 (0.092 ≤
x ≤ 0.154), consistent with first-order vortex-lattice melting [240, 241], and in single-crystal
(Hg0.8Cu0.2)Ba2CuO4 [242].

Specific-heat measurements on naturally untwinned, single-crystal Y2Ba4Cu8O16 near
Tc for 0 ≤ B ≤ 14 T and B parallel to either the c- or b-axes, show a broadened step for
both orientations that is consistent with a second-order transition from a vortex glass to a
fluid [243]. The average anisotropy ratio, <γ>= Bm ‖ b-axis/Bm ‖ c-axis was 9. For both
directions Bm(T ) was fitted with the empirical relation Bm(T ) = Bm(0)(1 − T/Tc)

n with
n = 1.32 (4/3 to within experimental accuracy) that suggests 3D XY scaling. The values
of the other fitted parameters were 78.0 K for Tc, 28 T for Bm(0) ‖ c-axis, and 252 T for
Bm(0) ‖ b-axis. The results for the specific-heat measurements were similar to those obtained
with magnetic-torque measurements [244, 245].

Thermal effects associated with vortex-lattice melting in BSCCO, which are expected to
be two orders of magnitude smaller than in YBCO, have not been observed. However, in a very
impressive series of measurements, vortex-lattice melting in single-crystal Bi2Sr2CaCu2O8
has been extensively studied with magnetization measurements by a group at The Supercon-
ductivity Laboratory, Weizmann Institute of Science, and their collaborators [207, 246–255].
(See also their web page, which provides references and very impressive motion pict-
ures of the vortex lattice during solidification/melting, at http://www.weizmann.ac.il/home/
fnsup/research.html.) The measurements are made using very sensitive Hall sensor arrays,
which can detect the minute differences in magnetization between the fluid and solid phases.
Through use of the transverse ac magnetic field technique, pioneered by Willemin et al.
[231, 232], they were able to de-pin the vortices and eliminate hysteresis loops in crossing
the irreversibility line. The second-order transition becomes a first-order transition when this
technique is used, and the tricritical point vanishes. The effects of oxygen content, point de-
fects, and columnar defects (produced by radiation) on the vortex-lattice melting were also
studied. Apart from the magnitudes of the thermodynamic effects, the results are similar to
those found for RBCO.

9.7. Calorimetric Evidence for the Pseudogap

The experimental evidence for a pseudogap in the normal-state EDOS of under-doped
HTS is reviewed by Timusk and Statt [186]. They report that the first evidence came from
NMR measurements [256, 257] on two YBa2Cu3O6+x samples, a slightly over-doped sam-
ple (x = 0.97) and an under-doped sample (x = 0.64). The first paper [256] reported
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marked differences between the two samples in the temperature dependence of the 63Cu spin-
relaxation parameter, 1/T1T , as the samples were cooled through Tc. The second paper [257]
reported that the 63Cu Knight shift for the x = 0.97 sample is essentially constant above Tc
and then decreases markedly just below Tc, while the data for x = 0.64 decrease gradually
with T both above and below Tc. The results from both sets of measurements were interpreted
as indicating the under-doped sample was characterized by a gap in its EDOS above Tc in
addition to the usual gap associated with the superconductivity that opens at Tc. Since 1989,
numerous other NMR measurements have been made on YBa2Cu3O6+x as well as on other
HTS (see, e.g., [186] for references). Most of these results confirm the existence of a pseudo-
gap in under-doped samples, although there are differences among authors as to the relation
between this pseudogap and the superconducting gap.

In addition to NMR, there are a number of other experimental techniques that have been
used to study the pseudogap: ARPES, tunneling spectroscopy, transport properties, electric
Raman scattering, magnetic nuclear scattering, and specific heats. All of the calorimetric re-
sults that provide support for the existence of a pseudogap in the HTS were obtained by Loram
and his coworkers. Although this group has reported measurements on several HTS, their first,
and most widely quoted results [16], were obtained on YBa2Cu3O6+x with 0 ≤ x ≤ 0.97.
Moreover, it is only in the case of these measurements that the authors have presented a rela-
tively detailed discussion of the complex experimental and analytic procedures used to obtain
their results. Therefore, in the following, we shall concentrate on those measurements.

Loram and his collaborators use a differential calorimeter [20] in which they can mea-
sure both δC ≡ Cx−Cr and Rx ≡ Cx/Cr, where Cr is the heat capacity of a reference sample,
Cx is the heat capacity of the sample of interest, and Rx ≈ 1. It is claimed [20] that with this
calorimeter it is possible to measure Rx with a precision of 0.01% and δC with a precision of
1%. The reference sample is chosen to have a lattice specific heat similar to that of the sample
of interest. Therefore, a large part of the lattice contribution cancels in δC , which is one of
the quantities measured. The electron contribution, the quantity of interest in connection with
the pseudogap, is obtained from δC by making corrections for the differences in the magnetic
and lattice contributions to the specific heats of the sample and the reference sample. The
results for YBCO, for 1.6 ≤ T ≤ 300 K, were obtained in two steps: In one paper [97] the
specific heats of a series of Zn-substituted YBa2(Cu1−yZny)3O6+x samples (0 ≤ y ≤ 0.10,
x = 0.97), including. A fully oxygenated, unsubstituted sample (y = 0, x = 0.97), were com-
pared with that of a reference sample with y = 0.07 and x = 0.97. It was concluded that
γn was independent of both y and temperature, and the electron specific heat of the y = 0,
x = 0.97 sample was determined. Although the qualitative features of the evidence for the
pseudogap at T ≥ 100 K are to a significant degree independent of these results, they are
discussed in Section 9.7.1. In a second paper [16] a series of Zn-free YBa2Cu3O6+x samples
were compared with the same Zn-substituted reference sample, (y = 0.07, x = 0.97), to
obtain the electron contribution to the specific heat as a function of x and T . These results and
the conclusions for the pseudogap and are discussed in Section 9.7.2.

9.7.1. Determination of the Electron Specific Heat of YBa2Cu3O6.97

To facilitate comparison with the papers of Loram and colleagues, we use their notation
here and in the following section. In that notation γ is used fairly generally for C/T , where C
can be the total specific heat or one of the component contributions, and γ is a temperature-
dependent quantity. For their fully oxygenated sample of YBa2Cu3O6+x , x = 0.97, but,
for notational convenience, we refer to this as the x = 1 sample. It is the variation of
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γx(T ) ≡ Cex/T , where Cex is Ce for the sample with (6 + x) O atoms, with x and T that
provides evidence for the pseudogap.

The electron contribution to the specific heat of the Zn-free, fully oxygenated sample
was obtained by making corrections to the total specific heat for the lattice and magnetic
contributions, which were deduced from the y-dependence of the differences in specific heats
of the Zn substituted samples. As noted in Section 9.3.3, the Loram group attributed a part
of the electron contribution to the specific heat of the Zn-substituted samples to a magnetic
contribution, which they combined with an approximately y-proportional “upturn” to obtain
an “intrinsic,” but y-dependent, Cmag [97]. Our analysis of their data [97] in Section 9.3.3
indicates that as the level of Zn substitution increases γr becomes considerably larger than
the expected γn. Their “raw data” for δC suggest that for low T the T -proportional term in
C increases with increasing Zn content (see Figure 4 of [97]) and that for T ≥ 100 K it
decreases with increasing Zn content (see Figures 3 and 4 of [97]). However, these trends in
the T -proportional term were attributed to changes in Clat with Zn content. The changes in Clat
were said to be in qualitative agreement with changes in the phonon spectrum deduced from
neutron-scattering data, but as recognized elsewhere in the same paper, neutron data do not
define the phonon spectrum to the accuracy that would make the comparison meaningful. The
conclusion that γn is independent of Zn content and independent of T is a direct consequence
of the conclusions about Cmag, γr, and Clat, which are not well supported by the experimental
data.

9.7.2. Use of the Differential Method to Obtain the Conduction-Electron
Specific Heat of YBa2Cu3O6+x—A Simplified Discussion

The evidence for the pseudogap was obtained by comparing the specific heats of a
series of samples of YBa2Cu3O6+x , with different O contents, x , with that of the reference
sample [16]. The total specific heat, Cx, can be written Cx = Cx

′ + γxT , where Cx
′ is the

non-electronic contribution to Cx. Cx
′ is essentially the lattice contribution except at quite

low temperatures, a temperature region in which a magnetic contribution, Cmag, cannot be
ignored (see Sections 9.3.1 and 9.7.1). In the case of x = 0, C0

′ is assumed to have no
electronic contribution, i.e., C0

′ = C0. While the Cx
′s are all measured in terms of Cr, it is

the Cx
′s referred to C0 that are of interest. In particular, we can write:

(Cx − C0) = Cr(Rx − R0) = (Cx
′ − C0)+ γxT, (9.14)

and
(C1 − C0) = Cr(R1 − R0) = (C1

′ − C0)+ γ1T . (9.15)

The first term on the right side of the second equality in Eqs. (9.14) and (9.15) involves (except
at low temperatures) only the differences in phonon terms. It is assumed by the Loram group
that these differences are simply related to one another. That is, it is assumed that:

(Cx
′ − C0) = x(C1

′ − C0) = x(C1 − γ1T − C0). (9.16)

From Eqs. (9.14), (9.15), and (9.16) it follows that:

(Cx − C0)− (C1 − C0) = x(C1 − C0)− xγ1T + γxT . (9.17)

Therefore:
γx = xγ1 + (Cr/T )[(Rx − R0)− x(R1 − R0)]. (9.18)
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Figure 9.25. Temperature-dependent electronic specific heat coefficient, γ = Ce/T , for YBa2Cu3O6+x (from
Loram et al. [16, 258], Figure 4 from [16]) showing the evolution of the pseudogap as a function of x . The dashed
lines indicate γ for nonsuperconducting samples. (Note: γ is referred to as γx in the text). For a discussion of how γ

was obtained, through the use of differential calorimetry, see the text, Loram [20], and Loram et al. [16, 97].

We see from Eq. (9.18) that γx differs from γ1 by a term that depends upon R0, R1,
and Rx (all known with high precision), and Cr, the reference sample heat capacity that is
common to all the measurements. Therefore, the values of (γx − xγ1)T/Cr can be calculated
with considerable precision, and if γ1 is known the numerical values of γx can be determined.
Figure 9.25 (from [17]) shows the value of γ1 derived in [97], as discussed in Section 9.7.1,
and the γx derived with the use of Eq. (9.18). The curve for γ1 is essentially constant, at tem-
peratures above ∼100 K (except for the high-temperature “tail” of the fluctuation contribution
to γx—see Section 9.5). The spacing of the γx curves relative to γ1 in this higher-temperature
region is due primarily to the first term on the right-hand side of Eq. (9.18), but it is the second
term on the right-hand side of Eq. (9.18) that determines the deviations from constancy in γx
above ∼100 K. In particular, it is this second term that is responsible for the positive slopes ev-
ident in the γx curve for the smaller values of x . These positive slopes correspond to decreases
in the normal-state EDOS with decreasing T , and, therefore, to the existence of a pseudogap.
The positive slopes are due primarily to the values of (Cr/T )[(Rx − R0)− x(R1 − R0)] and
only secondarily to the value of γ1. That is, the evidence for a pseudogap provided by the
calorimetric data does not depend critically upon γ1, and is, at least qualitatively, not subject
to the reservations about the value of γ1 expressed in Section 9.7.1. However, the values of
the EDOS represented by the γx at T ≤ 100 K are subject to the uncertainty about the T
independence of γ1 in that region, and a possible, or even probable, T dependence of γ1.

The procedure used in [16] to obtain γx from their measurements is considerably more
complicated than the one we have used to obtain Eq. (9.18). However, we believe the two
procedures are essentially equivalent. Both rely on Eq. (9.16), that is, on the assumption that
there exists a simple relationship among the lattice specific heats of the various samples of
YBa2Cu3O6+x . This assumption is reasonable and is not inconsistent with neutron-scattering
results. Nevertheless, its primary justification lies in the consistency between inferences drawn
from Figure 9.25 and determinations of the pseudogap made by other experimental techniques
(see, e.g., [186]).
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Figure 9.26. Entropy divided by temperature for YBa2Cu3O6+x for 0.16 ≤ x ≤ 0.97 (from Loram et al. [258],
Figure 4). The dashed lines indicate S/T for nonsuperconducting samples.

9.7.3. Other Specific-Heat Results and Their Interpretation

It was pointed out [16] that the changes in the normal-state EDOS will affect entropies
both above and below Tc. Figure 9.26 (taken from [258]) is a plot of S/T vs. T (where S
is the electronic entropy) for YBa2Cu3O6+x . The close resemblance of this plot to a plot of
magnetic susceptibility vs. T leads the authors to conclude that the normal-state quasiparticles
behave like a normal Fermi liquid [259]. A more complete comparison of the entropy and
susceptibility data for YBa2Cu3O6+x can be found in [260].

Later specific-heat measurements made by Loram and his coworkers on other HTS (see,
e.g., [182] for discussions and references) are similar to those reported for YBa2Cu3O6+x .
Many of their conclusions are widely quoted, and, as has been noted, are consistent with
other measurements pertaining to the pseudogap. Still, the normal state of the HTS is not well
understood. Except for the pioneering work of Loram and his collaborators, there are few ac-
curate determinations of the electronic specific heat above Tc. It is important that their efforts
be supplemented by those of other experimental groups. It is unlikely that such measurements
can be made without the use of differential calorimetric techniques. The measurements are
difficult, but the difficulties involved in interpreting the differential results could be reduced
by the use of reference samples that have little or no electronic contribution to C .
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10
Normal State Transport Properties

N. E. Hussey

In this chapter, we summarize the normal state transport properties of high-Tc cuprates with particular
emphasis on systematics with doping. Despite some remarkably generic trends, the experimental situa-
tion is found to be dogged with complexity, some of which challenge existing paradigms. The leading
theoretical proposals, both Fermi-liquid and non-Fermi-liquid based, are examined, and their relative
merits and pitfalls reviewed. In the discussion section, we compare transport data with data from other
experimental probes and seek ways to merge the two into a coherent description of the normal state.

10.1. Introduction

Just as in conventional superconductors, where the scattering processes that dominate
the electrical resistivity provide an important clue to the dominant pairing interaction (via the
strength of the electron–phonon coupling), so an understanding of the normal state transport
properties of high-Tc cuprates (HTC) is regarded as a key step towards the elucidation of the
pairing mechanism for high temperature superconductivity. Whilst this remains the ultimate
goal, normal state transport in HTC has emerged as a field in its own right and one of the
most challenging (and controversial) topics in modern solid state physics. The ubiquitous T -
linear resistivity at optimal doping, extending over a very wide temperature range, the strong
T -dependence of the Hall coefficient RH, the violation of Kohler’s rule and the divergence
of the resistivity anisotropy are but some of the striking anomalies which have puzzled the
community over the past two decades and inspired theorists to develop radical new concepts
in many-body theory.

Anderson, for example, boldly extended the ideas of Luttinger liquid theory, with its
associated phenomenon of spin–charge separation, into 2D [1], and later Varma and cowork-
ers introduced marginal Fermi-liquid (MFL) phenomenology based on the hypothesis of scale
invariance (quantum criticality) [2] and a logarithmically vanishing quasiparticle (qp) weight
at the Fermi surface (FS) to explain the emerging physical picture. Such ideas have had a
profound influence on the field over the last 20 years and a significant proportion of the ex-
perimental data has been compared at some point to the predictions of these non-FL theories.
Currently though, these ideas are still only phenomenological in nature and while a full micro-
scopic model for interacting electrons in 2D remains elusive, others consider the abandonment
of FL theory to be a little premature. In such a climate, models upholding Landau’s qp con-
cept but invoking specific scattering mechanisms [3–6] to explain the observed anomalous
behavior still thrive.
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At the time of writing, most theories can be said to remain relevant and it is clearly
beyond the scope of this brief article to consider all of these in detail. Instead, I will strive for
more modest goals; to summarize the debate, to highlight experimental data that shed light on
the main issues and to examine critically (some of) the major theoretical interpretations. In
the main, I will focus on more recent experimental papers as most of the early work has been
well documented in previous review articles [7, 8]. With so many papers written on the topic,
I must apologize at the outset for omitting a vast quantity of high quality work which has
helped to shape our understanding of the HTC problem. I have decided, for example, against
discussing the effects of superconducting fluctuations on the normal state resistivity as there
exists already an excellent review article on this topic [9], whilst my discussion of the thermal
transport is somewhat limited by space restrictions.

In Sections 10.2 and 10.3, I outline the systematics of the (zero-field) in- and out-of-
plane resistivities, respectively, while in Section 10.4, I review the galvanometric phenomena
of HTC, specifically the Hall effect and magnetoresistance (MR). The effects of impurities
on the transport behavior are covered in Section 10.5 and the thermal transport properties are
briefly reviewed in Section 10.6. Discussion and summary follow in Section 10.7. Through-
out, I will discuss experimental data with reference to the predictions of Boltzmann transport
theory applied to a quasi-2D FL (for a derivation of the main transport coefficients see the
Appendix in [10]). While some readers may feel uncomfortable with this approach, it should
be appreciated that the majority of non-FL models, including those of Anderson and Varma,
have also used the Boltzmann transport equation in some heuristic form to illustrate their
phenomenology.

10.2. Evolution of the In-Plane Resistivity with Doping

10.2.1. Introduction

The in-plane resistivity ρab(T ) or ρ||(T ) of hole-doped (p-type) HTC shows a very sys-
tematic evolution with doping that is summarized in Figure 10.1a, where representative data
for underdoped (UD), optimally doped (OP) and overdoped (OD) cuprates are shown [11].
(Electron-doped cuprates will be dealt with separately below). In the UD cuprates, ρab(T )
varies approximately linearly with temperature at high T , but as the temperature is low-
ered, ρab(T ) deviates downward from linearity, suggestive of a reduction in scattering or a
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crossover to a higher power T -dependence. OP cuprates on the other hand are characterized
by a T -linear resistivity that survives for all T > Tc, whilst on the OD side, ρab(T ) contains
a significant supralinear contribution.

Ando et al. recently proposed a novel means of portraying this evolution of ρab(T ) with
doping. The so-called resistivity curvature mapping (RCM) technique maps the second deriv-
ative of the resistivity d2ρab/dT 2 onto the T –p phase diagram [12]. Figure 10.1b shows a rep-
resentative RCM for the single-layered cuprate Bi2Sr2−yLayCuO6+δ . Similar plots were also
obtained for YBa2Cu3O7−δ and La2−x Srx CuO4 confirming the remarkable generality of the
transport behavior across the phase diagram. S-shaped resistivity on the UD side is manifest
by the crossover from sublinear (negative derivative, shaded blue) to linear (d2ρab/dT 2 = 0,
shaded white) and finally to supralinear (positive derivative, shaded red). The vertical white
line around x = 0.16 confirms the robust linearity of ρab(T ) at optimal doping. At higher dop-
ing, the RCM is predominantly red indicating the development of a supralinear T -dependence
on the OD side. With this overall picture in mind, let us now consider each region of the phase
diagram in turn, beginning with optimal doping.

10.2.2. Optimally Doped Cuprates

Despite the large variations in (optimal) Tc and in the crystallography of individual
cuprate families, T -linear resistivity is a universal feature at optimal doping, confirming that
it is intrinsic to the CuO2 planes. Moreover, as summarized in Table 10.1, the value of ρab
at T = 300 K normalized to a single CuO2 plane is largely independent of the chemical
composition of the charge transfer layers. The values themselves are large when compared
with conventional superconductors. Given that the dc resistivity (conductivity) depends on
both the normal state plasma frequency Ω2

pn (= ne2/ε0m* in a Drude picture, where n is
the carrier density and m* the effective mass) and the transport scattering rate 1/τtr = Γ ,
it has proved extremely difficult to conclude whether these high values are due to a small
coherent spectral weight, i.e., a small number of carriers with long lifetimes, or a large number
of heavily damped qp’s. This problem is tied inextricably to the interpretation of in-plane
optical conductivity σab(ω) in HTC. Normally one extracts Ωpn from the optical sum rule
by integrating the spectral weight up to some cut-off frequency of order the (renormalized)
bandwidth, which in OP cuprates is ∼1–1.5 eV. It is still not clear, however, whether one
should interpret σab(ω) in HTC in terms of a generalized, single component model (with a ω-
dependent Γ ) or a two-component model comprising a narrow Drude response (with a small
constant Γ ) and an incoherent Lorentzian mode centered around the mid-infrared.

A simple yet appealing empirical scaling relation was recently established by Homes
et al. between the superfluid density ρs and the value of the dc conductivity σab(0) at T = Tc,
namely ρs = 120σab(0)Tc, with ρs = (Ωps)

2, the square of superfluid plasma frequency,

Table 10.1. ρ||(300 K), normalized ρ||(300 K) and ρ⊥/ρ||(T = Tc) values for some OP cuprates

Compound ρ||(T = 300 K)(µ� cm) ρ||/layer (300 K) (µ� cm) ρ⊥/ρ||(T = Tc)
YBa2Cu3O6.95 290 [12] 580 30 [13]
La1.83Sr0.17CuO4 420 [12] 420 300 [14]
Bi2Sr1.61La0.39CuO6 500 [12] 500 >106 [15]
Bi2Sr2CaCu2O8+δ 280 [16] 560 105 [16]
Tl2Ba2CuO6 450 [17] 450 2000 [18]



402 N. E. Hussey

Figure 10.2. Simulated σab (ω) above (blue lines) and below (black lines) Tc for various Γ (Tc). For all curves, 2
∆0 = 300 cm−1 and the normal state spectral weight is conserved.

expressed in units of cm−1 and σab(0) in �−1 cm−1 [19]. The beauty of Homes’ law is
that it allows one to estimate the magnitude of Γ without prior knowledge of Ωpn. Writ-
ing h̄Γ = βkBTc, σab(0) = ε0Ωpn

2τ and converting to SI units, Homes’ law reduces to
βν = β(Ωps/Ωpn)

2 = 24,000πh/µ0kB∼3. The key factor is the ratio ν = (Ωps/Ωpn)
2,

the fraction of the total spectral weight at Tc that is condensed into the δ-function at ω = 0.
The blue lines in Figure 10.2 represent typical normal state Drude peaks for different (ω-
independent) Γ (Tc) values. In this illustration, the spectral weight

∫ ωc
0 σ(ω)dω is assumed

to be conserved below a cutoff ωc = 10,000 cm−1 corresponding to the effective bandwidth.
The black lines are σab(ω) below Tc assuming d-wave symmetry and a fixed gap size of
2∆0 = 300 cm−1. According to the Ferrell–Glover–Tinkham sum rule, ρs is equal to this
“missing” spectral weight, the majority of which comes from ω ≤ 2∆0. Thus ν is given by
the fraction of the total spectral weight at Tc that is contained within ω ≤ 2∆0, which in turn
depends on Γ (Tc).

Although ν decreases as β increases, the product βν turns out to be a sensitive function
of Γ (Tc). Thus Homes’ law places considerable constraint on Γ (Tc). Indeed, the equality
βν = 3 is only found for Γ (Tc)∼ 2∆0 (= 4.5kBTc), i.e., when the (angle-averaged) scatter-
ing rate in OP cuprates at Tc is of order the pairing strength. Given that there is significant
anisotropy in Γ , being largest along (π, 0) (see below), scattering near these so-called “hot
spots” must be even larger than this. It appears then that the resistivity is high in OP HTC
because Γ is high [20], and not because the number of mobile carriers is small. One should
bear in mind, however, that this analysis relies on the validity of the one-component model,
and it is not clear whether such considerations can be applied to UD cuprates, where the case
for a two-component picture is much stronger.

After their high Tc, the ubiquitous T -linear resistivity at optimal doping is perhaps the
single most striking property of cuprates and it was apparent from the very beginning that
such linearity, extending over an anomalously broad temperature range, would be difficult
to reconcile within a conventional picture based on electron–phonon (e–ph) coupling [21].
Before discussing possible origins for this T -linear resistivity, however, it is worth perhaps
examining the robustness of the linearity itself, or at least its true extent in temperature.

The long-held view that the linear ρab(T ) observed in OP HTC is the intrinsic T -
dependence for all T > 0 is based primarily on the observation in 1990 of a linear ρab(T ) in
single crystal Bi2Sr2CuO6+δ extending from Tc = 10 to 700 K [22]. More recent results, how-
ever, question the universality of this result. Figure 10.3a, for example, shows ρab(T ) data for
the La-doped Bi2Sr2CuO6+δ family in zero field (solid lines) and B = 60T (solid symbols)
[23]. For OP Bi2Sr2−yLayCuO6+δ (x = 0.39), the T -linear ρab(T ) (highlighted in green and
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giving a small intercept at T = 0 K) crosses over to a higher power T-dependence below
around 80 K eventually extrapolating to a higher residual value. This behavior is repeated in
OP La1.83Sr0.17CuO4 [14] for which ρab(T ) ∝ T over a wide temperature range [21, 24]. In
both cases, it is most likely that the T -linear resistivity survives to lower T due to an effec-
tive cancellation of two effects; an upward deviation from linearity due to a crossover to the
higher power term and a downturn due to the onset of fluctuation effects above Tc. (Indeed,
paraconductivity contributions are clearly seen in the RCM plot for Bi2Sr2−yLayCuO6+δ in
Figure 10.1b.) A higher power T -dependence as T → 0 can also be inferred from the fact
that in some of the cleaner cuprates, such as YBa2Cu3O6.95 [12] and Tl2Ba2CuO6 [17], the
slope of the T -linear resistivity extrapolates to a negative intercept.

This crossover to a supralinear T -dependence with lowering T in the hole-doped
cuprates contrasts markedly with what has been observed in some of the n-type analogs.
Figure 10.3b for example shows ρab(T ) data (along with RH(T ) data) for an OP Pr1.83
Ce0.17CuO4 thin film [25]. Here, one can identify a T -linear resistivity surviving to the lowest
temperatures (40 mK), which develops upward curvature only at higher T . A more recent dop-
ing dependent study has revealed that the limiting low-T form of ρab(T ) could be expressed
as ρab(T ) = ρ0 + AT β with β tending to unity 1 at a critical doping level xc = 0.165, sug-
gestive of a quantum critical point [26]. Whilst these data are striking evidence for an intrinsic
T -linear resistivity in n-type cuprates down to T = 0, it should be noted that the T -linear
regime coincides with an RH that is changing sharply with temperature over the same range.
Whether such T -linearity persists in the p-type cuprates, where RH is constant in the low-
T limit [27], is not yet clear—it may simply be a question of hitting the right doping level.
One important distinction, however, between p- and n-type cuprates is the extent in doping of
long-range antiferromagnetic (AFM) order. In n-type cuprates, antiferromagnetism vanishes
at x = 0.15, close to where this linearity is observed, while in the hope-doped analogs, it is
suppressed for x ≤ 0.02, i.e., well before optimal doping.

With uncertainty surrounding the temperature range of validity of the T -linear resis-
tivity, at least in OP p-type cuprates, one cannot dismiss the possible role of e–ph scatter-
ing in HTC. According to the Bloch–Grüneisen formula, the e–ph interaction gives rise to a
T -linear scattering rate above T ∼ ΘD/4, ΘD being the Debye temperature, which typically
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for HTC ∼ 350 K. At elevated temperatures, 1/τtr is related to the e–ph coupling constant
λe−ph via h̄/τtr = 2πkBTcλe−ph. Taking our cue from Homes’ law (h̄/τtr ∼ 4.5kBTc), and at-
tributing the entire ρab(T ) to e–ph scattering, one obtains λe−ph ∼ 0.7. While this is a large
value, it is not unfeasibly so. Nevertheless, several other features of the in-plane conductivity
appear inconsistent with a picture of dominant e–ph scattering.

Firstly, as illustrated in Figure 10.1b, the T -linear resistivity is observed only in a nar-
row composition range near optimal doping; the sharp crossover to supralinear resistivity on
the OD side being more suggestive of electron correlation effects than phonons. Secondly, the
absence of resistivity saturation in OP La2−x Srx CuO4 up to 1000 K argues against a dom-
inant e–ph mechanism [21, 24]. Thirdly, the frequency dependence of 1/τtr, extracted from
extended Drude analysis of the in-plane optical conductivity, is inconsistent with an electron–
boson scattering response due to phonons [32]. In particular, Γ (ω) does not saturate at fre-
quencies corresponding to typical phonon energies in HTC. Finally, it has proved extremely
problematic to explain the quadratic T -dependence of the inverse Hall angle cot θH(T ) (see
below) in a scenario based solely on e–ph scattering.

Thus it seems that an alternative origin for the T -linear resistivity is required, possibly
beyond the realms of FL theory. When discussing deviations from FL behavior, however, one
should be careful to distinguish between behavior which is incompatible with predictions for
a purely isotropic FS and that which violates the basic assumptions upon which FL theory is
founded. In the majority of cuprates, the FS itself displays fourfold cylindrical asymmetry, the
Fermi velocity νF can vary by as much as a factor of 2 around the FS due to the proximity of
the saddle point near (π, 0) and experimental data from a range of probes show evidence for
strong anisotropy in 1/τtr which may also vary with T . These collective features have been
exploited in a variety of models, such as the nearly AFM-FL model [4], nested FL theory [28]
and the van Hove scenario [29], to generate a T -linear resistivity down T = 0. In each case,
however, a careful consideration of all scattering around the FS has led to the conclusion that
these singular scattering processes must eventually be short-circuited and that ρab(T ) will
always vary as T 2 at the lowest T [30, 31]. Whilst this does not conflict with resistivity data
in the hole-doped cuprates, data for Pr2−x Cex CuO4 appear difficult to reconcile within any
such FL framework. At this point, we leave further discussion of the T -linear resistivity until
Section 10.4.4 where it will be discussed in relation to the magnetotransport data.

10.2.3. Underdoped Cuprates

It is now well established that the UD HTC are characterized by the presence of a
pseudogap Eg in the normal-state excitation spectrum [33]. This pseudogap has been observed
by a variety of transport, thermodynamic and spectroscopic probes [34] and is found to affect
many normal-state properties in an unusual and complex way that can best be interpreted as
a reduction in the effective single particle density of states. Its origin remains hotly disputed,
however, with the community evenly divided as to whether the pseudogap is a signature of
precursor superconductivity (e.g., phase fluctuations) or is an independent state that competes
with superconductivity for spectral weight.

As was discussed above, ρab(T ) of UD cuprates shows marked deviations from the
high-T T -linear behavior below a characteristic T *, well above Tc, the value of which de-
creases with increasing p in a manner similar to Eg(p). As is shown in Figure 10.4a, where
ρab(T ) for different cuprates with similar p values have been scaled according their values
at Tc, there appears to be a close correlation between the form of ρab(T ) and T/T * [35].
In the Y-based cuprates, this change of slope was initially interpreted as a “kink” in ρab(T )
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at T = T * associated with the removal of the spin scattering channel within the plane in
the pseudogap state [36, 37]. Others attribute the reduction in ρab(T ) to the onset of phase
fluctuations [38] or charge ordering phenomena [5]. Plots of the derivative dρab/dT showed,
however, that ρab(T ) in fact first deviates from linearity at a much higher T [39]. Moreover,
in the vicinity of T *, there is no additional feature in dρab/dT ; the change of slope is a very
gradual, continuous process with no evidence of a phase transition below T *. In the more
anisotropic cuprates such as La2−x Srx CuO4 [40] and Bi2Sr2CaCu2O8+δ [41], it has proven
difficult to distinguish between deviations from linearity due to genuine pseudogap effects
and those due to paraconductivity fluctuations near Tc.

The transport properties of UD p-type cuprates have been studied extensively in recent
years by Ando and coworkers, and a number of significant features have emerged. Firstly,
ρab(T ) in “untwinned” lightly doped La2−x Srx CuO4 and YBa2Cu3O7−δ exhibits marked in-
plane aniostropy suggestive of some sort of self-organization of the charge carriers [42], pos-
sibly related to dynamical stripe formation. Secondly, transport measurements on UD cuprates
in pulsed high magnetic fields have established that ρab(T ) follows an anomalous ln(1/T ) de-
pendence below Tc, the origin of which is at yet unknown [14, 23]. Significantly, localization
sets in for kFl values one order of magnitude higher than the universal 2D conductivity limit
(kFl = 1) [14, 23]. This contrasts markedly with Zn doping which induces a metal/insulator
crossover at kFl = 1 in the usual way [43]. Recent high-field measurements [44] on n-type
films also suggest that the upturn may be correlated with the onset of spin scattering processes,
though this has yet to be confirmed in p-type cuprates.

Finally and perhaps most surprisingly, ρab(T ) shows metallic behavior (at least at high
T ) for only a few percent of doped holes [45]. Moreover, as illustrated in Figure 10.4b for
La2−x Srx CuO4, the inverse mobility (defined as µ−1 = 2exρab/V where V is the unit cell
volume) is found to be largely insensitive to doping, varying only by a factor of 3 between
x = 0.01 and 0.17. This variation in mobility becomes even less when one assumes the more
usual definition of mobility (µ−1 = ρab/RH). Indeed, such analysis gives µ−1(x = 0.17) >
µ−1(x = 0.02) at T = 300 K! Such a surprising result may be reconciled with data from
angle-resolved photoemission (ARPES) that show the development in low-doped cuprates of
Fermi arcs at (π, π) with relatively long-lived qp’s [46]. At optimal doping, the full FS weight
is effectively recovered and significant scattering at the hot spots near (π, 0) begins to reduce
the overall carrier mobility.
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At high T, ρab(T ) of UD cuprates attains very high values of order several m�cm, well
above the expected Mott–Ioffe–Regel (MIR) limit for coherent metallic transport. This mys-
terious behavior is observed in a number of other strongly correlated systems. Gunnarsson
and Calandra attributed the high resistivities in HTC to a marked reduction in the spectral
weight due to the strong Coulomb repulsion on the Cu–O sublattice [47]. According to this
model, ρab(T ) eventually saturates at high T once 1/τtr of the mobile carriers becomes com-
parable to the bandwidth. Whilst there is evidence for a tendency toward saturation in UD
La2−x Srx CuO4 [24], optical conductivity data on the same compounds suggest that a fun-
damental crossover in the charge dynamics occurs well before any saturation threshold is
reached [48, 49]. Above a certain crossover temperature (∼300 K), spectral weight becomes
suppressed at very low ω and is transferred to energies above the bandwidth. This gradual
removal of spectral weight at low frequencies effectively induces an additional contribution
to the resistivity in UD cuprates; thus the positive slope of ρab(T ) cannot be simply a contin-
uation of the low T metallic state whose T -dependence is governed solely by the scattering
rate.

10.2.4. Overdoped Cuprates

In the OD region of the phase diagram, ρab(T ) exhibits a T -dependence that can be
modeled either as a single power law ρab(T ) = ρ0+αT n with n varying gradually from n = 1
at optimal doping to n = 2 for Tc = 0 [18], or by a three-component polynomial fit ρab(T ) =
ρ0 + αT + AT 2 with the relative weightings of both contributions changing smoothly with
doping. Intriguingly, Mackenzie et al. measured ρab(T ) of heavily OD Tl2Ba2CuO6+δ down
to 0.1 K, suppressing Tc(= 15 K) with a large magnetic field, and still found evidence for a
finite T -linear term surviving into the T = 0 limit [11]. Whether this linear term is intrinsic
to the normal state (implying a non-FL response or at the very least, the presence of a very
low energy scale in the transport properties) or due to some anomalous form of flux-flow
resistivity is unclear at present. In heavily OD, nonsuperconducting La1.7Sr0.3CuO4, the low-
T resistivity in zero-field is found to be purely quadratic up to T = 50 K [50]. This suggests
that conventional FL behavior is only achieved as one approaches the nonsuperconducting
solubility limit, though significantly quantum oscillations, the classic signature of a FL, have
never been observed conclusively in any cuprate. Finally, the observation of T 2 resistivity in
La1.7Sr0.3CuO4, coupled with Matthiessen’s rule scaling [50], implies that the role of e–ph
scattering remains negligible (at least in the transport properties) right out to the heavily OD
side of the phase diagram.

10.3. The Out-of-Plane Transport

10.3.1. Introduction

Due to their layered structure, charge transport in HTC is strongly 2D in character and
a substantial anisotropy exists between the in- and out-of-plane resistivities. Although the is-
sue of interlayer coherence in low dimensional metals has been explored at length in recent
years it is still poorly understood. The key quantity is the interplane transfer integral or hop-
ping rate t⊥. Once t⊥ becomes comparable to other perturbations, such as the temperature or
the intraplane (intrachain) scattering rate, interlayer hopping is rendered incoherent. When
this happens, a number of distinct mechanisms for charge transfer may take over (for an ex-
cellent overview of this field, the reader is referred to the article by Cooper and Gray [7]).
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Figure 10.5. (a) ρc(T ) data for La2−x Srx CuO4 at various doping levels [55]. (b) ρc(T ) of OP YBa2Cu3O6.95 [13].
Its band structure, projected onto the ab-plane, is shown in the inset.

Illustrative examples of this behavior in oxides are quasi-2D Sr2RuO4 [51] and quasi-1D
PrBa2Cu4O8 [52], both of which develop a highly anisotropic 3D FL ground state with in-
terlayer (chain) resistivities that are metallic and vary as T 2. Above a certain temperature
Tcoh (∼30–60 K), ρ⊥(T ) starts to deviate from its limiting low-T quadratic form, reaches a
maximum around 100–120 K then becomes thermally activated. In both systems, Tcoh is found
to correlate well with (averaged) values of t⊥ estimated via independent means [53,54]. These
text-book examples in isostructural compounds make the anomalous behavior of the c-axis
resistivity in HTC all the more remarkable.

Figure 10.5a shows the evolution of ρc(T ) in La2−x Srx CuO4 for various x [55]. The
doping induced changes are much more pronounced than for ρab(T ), with ρc(T ) changing
from metallic on the OD side to nonmetallic below x < 0.14. Let us now explore the behavior
across the phase diagram, beginning as with the previous section with optimal doping.

10.3.2. Optimal Doped Cuprates

In contrast to ρab(T ), where generic behavior is observed, c-axis transport in HTC at
optimal doping is very material specific. As indicated in Table 10.1, the resistive anisotropy
ρc/ρab can vary between 30 in OP YBa2Cu3O7−δ to over 106 in Bi2Sr2CuO6, though no
correlation exists between anisotropy and Tc. Moreover, in OP Bi2Sr2−yLayCuO6, ρc(T ) is
insulating down to at least 1 K [56], in La1.83Sr0.17CuO4, it is essentially constant below 200 K
(Figure 10.5a), whilst in YBa2Cu3O6.95, ρc(T ) remains metallic down to Tc (Figure 10.5b).

According to Boltzmann theory ρc/ρab = 1/ 2 (vF/v⊥)2, where v⊥ is the maximum
c-axis velocity component. The experimentally observed ρc/ρab values in OP cuprates are
striking in that they are typically one order of magnitude higher than band structure predic-
tions and vary strongly with T . Within a conventional band picture, this distinct behavior of
ρc(T ) and ρab(T ) can arise only if the two quantities are controlled by different parts of the
FS exhibiting different scattering rates [6]. (The interplane coupling t⊥ can also be signifi-
cantly renormalized (t⊥∗ = t⊥2/∆ where ∆ is a large energy scale such as the charge transfer
gap) due, for example, to strong intralayer dephasing [57].) Band structure calculations for
YBa2Cu3O7−δ [58], reproduced in Figure 10.5b, predict that t⊥ is highly anisotropic within
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the CuO2 plane, with minima for momenta parallel to (π, π) and maxima near the zone cen-
ters. This implies that c-axis transport could be dominated by carriers near (π, 0). If ρab(T )
is controlled conversely by carriers near (π, π) having a much smaller scattering rate, then
the anomalous behavior of ρc(T ) and ρab(T ) may be understood. Such a scenario has indeed
been inferred from c-axis ellipsometry measurements on Ca-substituted YBa2Cu3O6.95 [59].
In non-FL approaches, the ground state inherently drives t⊥ to zero [60] leading to charge
confinement in the planes. The insulating character of ρc(T ) in Bi2Sr2−yLayCuO6 in partic-
ular is viewed as strong evidence for such a picture, with t⊥ driven to zero by strong electron
correlations within the ab-plane.

In OP La2−x Srx CuO4, ρc(T ) varies linearly with T above 200 K, i.e., above the orth-
orhombic to tetragonal phase transition. Pressure studies of ρc(T ) revealed that this T -linear
behavior in the tetragonal (HTT) phase is determined predominantly by the effects of thermal
expansion along the c-axis [61] and the constant volume ρc(T ) is in fact essentially constant
for all T < 300 K, in agreement with optical conductivity data [62]. Moreover for x = 0.15,
the longitudinal c-axis MR (i.e., with B||c) is larger than the transverse (orbital) MR at all
T > Tc [55, 63] suggestive of incoherent interlayer charge transfer with Γab >> t⊥.

In YBa2Cu3O6.95, ρc (300 K)∼ 5m�cm, i.e., one order of magnitude lower than is typ-
ically observed in OP cuprates [13, 64]. As illustrated in Figure 10.5b, however, ρc(T ) shows
significant curvature and a large residual resistivity, in contrast to ρab(T ) which is linear with
a zero or negative intercept. The distinct behavior of the in- and out-of-plane charge dynamics
has been confirmed also by optical spectroscopy [65]. While the anisotropic band structure
picture described above offers a possible explanation for these discrepancies, anisotropic c-
axis MR measurements on YBa2Cu3O6.95 show no evidence of an orbital contribution to the
c-axis MR for fields applied parallel to the CuO chains (and so only sensitive to the Lorentz
force on the in-plane carriers). This suggests that the chains are primarily responsible for
coherent c-axis transport in YBa2Cu3O6.95 and that those regions of the CuO2 plane states
not hybridized with the chains remain effectively 2D, even in the absence of a normal state
gap [13]. In short, there is little evidence to suggest that interplane transport is coherent in
any OP cuprate.

10.3.3. Underdoped Cuprates

In most UD cuprates, such as La2−x Srx CuO4 (x = 0.09) in Figure 10.5a, ρc(T ) shows
insulating behavior at all T . This is confirmed by c-axis optical conductivity σc(ω) measure-
ments that show c-axis spectral weight gradually becoming suppressed below a certain energy
scale with decreasing temperature [66]. A correlation between the c-axis conductivity and the
normal state pseudogap has been inferred from a number of studies. In UD YBa2Cu3O6+x
for example, the onset of an insulating ρc(T ) corresponds well to the crossover temperature
where ρab(T ) starts to deviate from linearity [67]. It has been proposed that spin singlet RVB
formation blocks the out-of-plane transport, since the singlet pair has to be broken up in order
for qp’s to propagate from layer to layer, leading to a diverging ρc(T ) in the UD region at low
T [68]. In tandem with the nonmetallic ρc(T ), an almost isotropic negative MR is commonly
observed, suggesting that the spin degrees of freedom are indeed involved in blocking the
out-of-plane transport [56, 69]. More recent detailed transport measurements in UD, highly
anisotropic Bi2Sr2−yLayCuO6 meanwhile have indicated the temperature and doping evolu-
tion of ρc(T ) is a complicated combination of pseudogap effects, charge confinement and
localization [15].
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One material that bucks the trend in UD cuprates is YBa2Cu4O8, a stoichiometric
cuprate containing alternating stacks of CuO2 bilayers and CuO double chain units ori-
ented along the crystallographic b-axis. In YBa2Cu4O8 ρc(T ) displays a crossover from T -
independent behavior at high T to metallic behavior below 150 K [39]. It has been shown [70],
however, that like in YBa2Cu3O7, the metallicity of the c-axis in YBa2Cu4O8 is due primarily
to the emergence of three-dimensionality in the double chain unit, rather than the CuO2 planes
themselves.

10.3.4. Overdoped Cuprates

In heavily OD cuprates, ρc/ρab(T ) eventually becomes T -independent [18,50,71], im-
plying the formation of coherent c-axis motion and the development of a 3D electronic ground
state. Such an observation by itself, however, is not proof of interlayer coherence [72], and in
OD Tl2Ba2CuO6+δ , where ρcρab ∼ 1000 [18], the corresponding lc values appear too small
to be consistent with phase-coherent (Bloch-wave) interlayer transport. Nonetheless, the re-
cent observation [73] of angular MR oscillations (AMRO) in Tl2Ba2CuO6+δ provides strong
evidence of coherent c-axis transport on the OD side. AMRO are maxima in ρc which oc-
cur in a fixed magnetic field whenever ν⊥, averaged over many trajectories on the FS, is
zero [74]. Figure 10.6a shows polar AMRO data obtained on an OD Tl2Ba2CuO6+δ crystal
having Tc = 20 K for a variety of azimuthal angles φ relative to the Cu–O–Cu bond direction.

Although the observation of polar AMRO by itself does not implicitly require interlayer
coherence [75], analysis of the AMRO data in Tl2Ba2CuO6+δ reveals very fine details in the
c-axis warping which can only result from coherent hopping. This highly anisotropic t⊥(φ),
reproduced in Figure 10.6b, is found to contain zeros (nodes) along eight specific symmetry
lines of the body-centered-tetragonal Brillouin zone and qualitatively is similar to the pro-
jections shown in Figure 10.5b for YBa2Cu3O7−δ [63]. As discussed above, these minima
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are consistent with band structure calculations which recognize the role of oxygen bonding
and of virtual Cu 4s orbitals in c-axis conduction [76] and form an integral part of FL-based
models invoked to explain discrepancies between the in- and out-of-plane charge response in
both the normal [6, 77] and superconducting states [78]. More significantly, this observation
appears to confirm the transition from the highly 2D physics around optimal doping to a more
conventional 3D ground state on the OD side.

10.4. The Anomalous Hall Coefficient and Violation of Kohler’s Rule

10.4.1. Introduction

Given that they are, for the most part, single band metals, the anomalous T -dependence
of the Hall coefficient in HTC is arguably the most striking and least understood of all their
normal state transport properties. Unlike the resistivity, the behavior of RH(T ) is not so spe-
cific to a particular region of the phase diagram. Thus, in contrast to the previous two sections,
we will discuss first the absolute magnitude of RH(p) across the phase diagram and then con-
sider its T -dependence. At the end of this section, we will critically examine some of the
leading models proposed to explain the combined behavior of ρab(T ) and cotϑH(T ) and fin-
ish by describing the transverse in-plane MR whose behavior is strongly coupled with that of
cotϑH(T ).

10.4.2. Magnitude of RH

As is shown in Figure 10.7 for La2−x Srx CuO4, RH of hole-doped cuprates varies
markedly with both p and T [79]. According to band structure calculations, hybridization
of the Cu-3dx2-y2 and O-2px,y σ ∗ orbitals leads to a “large” FS containing (1 − p) elec-
trons/Cu ion centered around the X points in the Brillouin zone. In the UD region, however,
the carrier density nH at low T , estimated from the Drude relation RH = 1/nHe, approaches
the “chemical” hole concentration p deduced from the formal valence of Cu2+p [80–82]. The
observed scaling of RH with p thus appears to suggest a violation of the Luttinger sum rule
and either the presence of a “small” Fermi pocket containing p holes or a Fermi arc with
an active (ungapped) arc length proportional to p. The latter possibility is supported by re-
cent ARPES data on La2−x Srx CuO4 [46] and Ca2−x Nax CuO2Cl2 [83]. It should be noted,
however, that this simple Drude relation for RH is based on the so-called isotropic-l approx-
imation. A striking example of the breakdown of the isotropic-l approximation is La-doped
Sr2RuO4 [84]. La doping for Sr introduces disorder between the RuO2 planes, and whilst it
has a negligible effect on the de Haas–van Alphen frequencies (and hence the FS volume), it
induces both a magnitude and a sign change in the zero-temperature Hall coefficient RH(0).
Similarly, in the cuprates, out-of-plane disorder is believed to induce significant anisotropy in
the impurity scattering channel [85], so its effect on RH(0) may be nontrivial.

Due to the strong T -dependence of RH(T ) and their high Tc values, it is difficult to
estimate the true carrier concentration in OP cuprates. Recent high-field Hall measurements
on the low-Tc cuprate Bi2Sr2−yLayCuO6, however, have allowed the determination of RH(0)
across the entire doping range [27]. A marked drop in RH(0) is observed near optimal dop-
ing that is associated with a marked change in the FS geometry, perhaps due to a quantum
phase transition. Again though, the possible role of out-of-plane defects on the low-T Hall
coefficient has yet to be fully taken into account.
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Figure 10.7. RH(T ) for UD (left panel) and OD (right panel) La2−x Srx CuO4 [79].

On increasing the hole concentration beyond optimal doping, RH shows a rapid de-
crease such that nH becomes much larger than p. In the OD normal metal phase realized
in La2−x Srx CuO4, the magnitude of RH actually changes sign from positive to negative to-
wards x = 0.3 [79]. This crossover is consistent with ARPES measurements which support a
fundamental change in the FS topology in La2−x Srx CuO4 at high x [86].

At high T , RH values in HTC agree roughly with standard LDA band structure pre-
dictions. Thus there appears to be a crossover from the high-T band-like regime to a low-T
anomalous regime. The crossover temperature TRH systematically increases with decreasing
hole concentration [79, 87]. A close correlation has been pointed out between TRH and the
onset temperature of AFM correlations Tx , defined as a temperature where the uniform sus-
ceptibility starts showing a rapid decrease, thereby implying a possible link between the AFM
spin correlations and the unusual behavior of RH(T ) [79, 87].

10.4.3. The Inverse Hall Angle cot ϑH(T )

In marked contrast to the T -linear resistivity (at optimal doping), cotϑH(T ) in HTC
typically shows a quadratic T -dependence over a broad temperature range. This is illustrated
in Figure 10.8, which shows ρab(T ) and cotϑH(T ) data for OP Tl2Ba2CuO6+δ [17]. This
implicit “separation of lifetimes” is a classic hallmark of the cuprates, and has led theorists
to develop a number of radical ideas beyond conventional FL theory. The prevailing view is
that RH(T ) ∼ 1/T at optimal doping, and the corresponding inverse Hall angle cotϑH(T ) =
A+ BT 2. As is often the case, however, the reality is significantly more complicated than that
and no single theory has yet to succeed in explaining the emerging empirical picture.

Firstly, close inspection of the data in Figure 10.8 reveals different low-T (extrapo-
lated) intercepts between the T -linear resistivity (small, negative) and quadratic cotϑH(T )
(large, positive). Given that Tl2Ba2CuO6+δ is believed to be a single band cuprate, this differ-
ence is unusual and warrants closer attention. Similar differences in the extrapolated residuals
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are observed in both La2−x Srx CuO4 and Bi2−yLaySr2CuO6+δ , though it was shown in Sec-
tion 10.2. that in these compounds, ρab(T ) deviates upwards from linearity at very low T to
give comparable intercepts in both quantities. Only YBa2Cu3O7−δ is exceptional in that the
intercept A remains small [88]. These observations fundamentally challenge the robustness of
this separation of lifetimes, particularly in the low-T limit.

Secondly, whilst the T 2 dependence of cotϑH holds for a wide range of doping in most
cuprates, it is not the case for the Bi-based cuprates Bi2Sr2CaCu2O8 and Bi2Sr2−yLayCuO6+δ .
In these systems, the power exponent of cotϑH is closer to 1.75 than 2 [89, 90]. Detailed
transport studies of both crystalline and thin film samples of Bi2Sr2CaCu2O8 and Bi2Sr2−y
LayCuO6+δ have shown in fact that cotϑH(T ) ∼ A + BT α with α steadily decreasing from
α∼ 2 to α ∼ 1.6–1.7 as one moves from the UD to the OD regime [89, 90]. This variable
power law behavior in cotϑH(T ) (shown in Figure 10.9a) reveals a high level of complexity
in the phenomenology of normal state transport in HTC that has yet to be properly addressed.

10.4.4. Theoretical Modeling of ρabT and RH(T) in Cuprates

The origin of the strong T -dependence of RH and its large magnitude at low doping
have been the subjects of intense debate within the community. In a simple Drude picture, the
sharp rise in RH(T ) suggests a loss of carriers with decreasing temperature, due perhaps, to
the opening of the pseudogap. From this perspective, the nonmonotonic RH(T ) observed in
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most cuprates at low doping would be interpreted as a repopulation of states. However, this
conclusion is not supported by magnetic susceptibility or specific heat data. In a conventional
metal, a strong T -dependence of RH can also arise due to multiple band effects. While this
is evident in the electron-doped cuprates (e.g., 25) and other multiple band quasi-2D metals
such as Sr2RuO4 [91], it is unlikely to be applicable to the majority of hole-doped cuprates
where the transport is dominated by a single band.

Attempts to explain the anomalous behavior of ρab(T ) and RH(T ) in cuprates within a
FL scenario have centered around the assumption of a (single) transport scattering rate whose
magnitude varies around the in-plane FS. The origin of this approach can be attributed to Ong,
who showed that in a 2D metal with an anisotropic l(k), σxy is determined by the area (curl)
swept out by l(k) as it is traced around the FS [92] (Ong referred to this as the “Stokes area”).
Thus, anisotropy in l(k), in addition to the local FS curvature, plays a fundamental role in
determining both the magnitude and sign of the Hall voltage in 2D metals and cot ϑH(T ) will
accordingly be dominated by those regions of the FS where the curvature is greatest and the
scattering is weakest.

In-plane anisotropy in 1/τtr has been attributed to anisotropic e–e (Umklapp) scatter-
ing [10] as well as to coupling to a singular bosonic mode; be it spin fluctuations [3,4], charge
fluctuations [5] or d-wave superconducting fluctuations [6]. Generating a clear “separation of
lifetimes” within these single lifetime scenarios, however, has proved very difficult, requir-
ing as it does a very subtle balancing act between different regions in k-space with distinct
T -dependences.

Given this reliance on detail, other more exotic models, based on non-FL physics, have
gained prominence within the community; most notably the two-lifetime picture of Ander-
son [1] and the MFL phenomenology of Varma and coworkers [2]. In the two-lifetime ap-
proach, scattering processes involving momentum transfer perpendicular and parallel to the
FS are governed by independent transport and Hall scattering rates 1/τtr and 1/τH with differ-
ent T -dependences. The former dominates the resistivity, while the latter is introduced into
the (heuristic) Boltzmann equation in the following way:

σ
(n)
i j = e3

4π3h̄

∫

νi

((

−τH[vk × B] ∂
∂k

)n

v jτtr

(

−∂ f0

∂ε

))

d3k (10.1)

In conventional FL’s of course, τtr is equal to τH. Allowing τH to be independent of τtr, the in-
verse Hall angle can now be written as cot ϑH = σxx/σxy ∝ 1/τH. Thus the different behavior
of ρab(T ) and cotϑH(T ) reflects the different T dependencies of 1/τtr and 1/τH. The enhance-
ment of RH then comes from the fact that τH becomes larger than τtr at low T . This model
received strong support from Hall measurements on Zn-doped YBa2Cu3O7−δ (reproduced in
Fig. 10.9b) that showed cotϑH = A + BT 2 to be robust to Zn doping with B remaining
constant and A increasing in proportion to the Zn concentration [88], suggesting that the T 2

(inverse) Hall angle is a well defined fundamental quantity representing 1/τH. Later measure-
ments on Co-doped YBa2Cu3O7−δ [3] together with MR measurements on YBa2Cu3O7−δ
and La2−x Srx CuO4 [93] appeared to affirm the robustness of 1/τH.

The MFL hypothesis argues that optimum Tc lies in proximity to a quantum critical
point and as a result, qp weight vanishes logarithmically at the FS with the corresponding
imaginary part of the self-energy governed simply by the temperature scale [2]. In contrast to
the two-lifetime picture, MFL theory assumes a single T -linear scattering rate but introduces
an unconventional expansion in the magnetotransport response. The Hall angle, for exam-
ple, is given by the square of the transport lifetime [85], an idea that has received empirical
support from very recent infrared optical Hall angle studies [94]. In order to account for the
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observed magnetotransport behavior in cuprates, Varma and Abrahams introduced anisotropy
into their MFL phenomenology via the (elastic) impurity scattering rate by assuming small
angle scattering off impurities located away from the CuO2 plane [85]. Whilst this hypothesis
seems consistent with certain ARPES measurements [95], the legitimacy of the expansion in
small scattering angle used in [85] has been subsequently challenged [96, 97]. Moreover, al-
though the predictions of MFL theory appear compatible with the empirical situation in OP
cuprates, their applicability to the rest of the cuprate phase diagram is less tangible. In partic-
ular, the gradual convergence of the T -dependencies of ρab(T ) and cotϑH(T ) in OD cuprates
sits uncomfortably with the idea of ϑH scaling with the square of the transport lifetime.

Evidence for anisotropy in the transport scattering rate in HTC came initially from an-
gular dependent studies of the c-axis MR 
ρc/ρc in OD Tl2Ba2CuO6+δ [98]. On rotating
B within the basal plane, 
ρc/ρc was found to exhibit fourfold anisotropy with an amplitude
that scaled as B4 in accordance with Boltzmann transport analysis for an anisotropic quasi-2D
FS. The ratio of the amplitude of these fourfold oscillations to the size of the higher order B4

term in the isotropic MR showed a significant T -dependence from 30 to 150 K (the temper-
ature range of the experiment) that corresponded to an increasing anisotropy of the in-plane
scattering rate with increasing T . This basal plane anisotropy in the scattering rate was later
confirmed by ARPES [95] where ill-defined qp states (in the normal state) at the so-called
“antinodal” points at (π, 0) coexist with sharp qp peaks along (π, π). The anisotropy of the
broadening of the qp self-energy was found to weaken steadily with overdoping [99].

More recent polar AMRO measurements in OD Tl2201 have revealed new details of the
form of this anisotropy [100]. By incorporating basal-plane anisotropy in ωcτ into the AMRO
analysis, Abdel-Jawad et al. were able to extract the full T - and k-dependence of lab in 15 K
T2201 between 4 and 60 K. The T -dependence of the anisotropy was attributed in full to
the scattering rate, and from the resulting fits, the authors were able to conclude that the
scattering rate contained two components, an isotropic T 2 scattering rate (presumably due to
electron–electron scattering) and an anisotropic T -linear component (of unknown origin) that
was maximal along (π, 0). Significantly, this form of the scattering rate was able to explain in
a self-consistent fashion the T -dependencies of ρab(T ) and RH(T ) over the same temperature
range.

Finally the doping variation of the form of cotϑH(T ) = A + BT α(1.65 ≤ α ≤ 2)
[87,88] has proved difficult to explain within either the two lifetime picture or MFL phenom-
enology. Indeed, such a gradual weakening of the T -dependence is best understood in pictures
based of single anisotropic Γ (k) whose anisotropy decreases with increasing doping. As the
anisotropy in Γ (k) is reduced, other regions of the FS away from the nodes, where Γ (k) is
larger and the T -dependence is weaker, begin to contribute to σxy .

The overall experimental situation then tends to support models in which anisotropy in
l(k), in conjunction with the FS curvature [92], is responsible for the T -dependence of RH(T ).
The origin of the anisotropic scattering term, as revealed by polar AMRO [100], however, is
not known at present and intriguingly, none of the current models of anisotropic scattering
assume this particular form for Γ (k).

10.4.5. In-Plane Magnetoresistance

According to Boltzmann transport theory, the in-plane transverse MR 
ρab/ρab ∝
(Ωcτtr)

2 where Ωc is the cyclotron frequency. Thus the product 
ρab · ρab (= 
ρab/ρab ·
(ρab)

2) is independent of τtr and a plot of 
ρab/ρab vs. (H/ρab)
2 is expected to fall on a

straight line with a slope that is independent of T (provided the carrier concentration remains
constant). This relation, known as Kohler’s rule, is obeyed in a large number of standard
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Figure 10.10. (a) Kohler plot for underdoped YBa2Cu3O6.6 [93]. (b) Temperature dependence of the orbital part
of the MR in YBa2Cu3O6.6, optimally doped YBa2Cu3O7 and La1.85Sr0.15CuO4 [93].

metals. In HTC, however, Kohler’s rule is strongly violated. Figure 10.10a shows a typical
Kohler plot for UD YBa2Cu3O6.6 [93]. Instead of the data collapsing onto a single curve, there
is a marked increase in the slope with decreasing temperature. Remarkably, this progression
continues up to 350 K (see inset).

This T -dependence of the MR was quantitatively explained by modifying Kohler’s rule
to incorporate the two scattering lifetime scenario of Anderson [93]. Using (10.1), one obtains
a modified Kohler’s rule such that 
ρab/ρab ∝ (ΩcτH)

2 ∝ 1/(A + BT 2)2 and consequently
(
ρab/ρab)/ tan2 ϑH becomes constant. This is illustrated in Figure 10.10b for YBa2Cu3O6.6,
OP YBa2Cu3O7 and La1.85Sr0.15CuO4 [93]. Similar scaling has also been reported even in
OD Tl2Ba2CuO6+δ [98]. Indeed, only in OD nonsuperconducting La2−x Srx CuO4, where the
Hall and transverse rates appear to merge, is conventional Kohler’s scaling seemingly recov-
ered [63].

Whilst the two lifetime model of Anderson and coworkers has been successful in re-
producing the experimental situation in OP cuprates, it does not appear to be consistent with
ARPES results and is yet to explain the evolution of the transport phenomena across the
full HTC phase diagram. Within a single (anisotropic) lifetime approach, such marked sep-
aration in the T -dependence of the different conductivity coefficients is possible though it
requires a very subtle balancing of parameters around the FS. In the “cold spots” model of
Ioffe and Millis for example, the phenomenological scattering rate contains two terms, an
isotropic FL scattering rate 1/τFL ∼ T 2 and a T -independent scattering rate 1/τ0 that is large
everywhere except the nodal directions [6]. Whilst this model correctly explains the T -linear
resistivity and quadratic Hall angle, the anisotropy required to separate the transport and Hall
lifetimes gives an orbital MR that is one order of magnitude too large and has an additional
T -dependence [8]. This discrepancy can be removed by the introduction of a “shunt” scat-
tering rate maximum Γmax, compatible with the MIR limit, which acts to reduce the overall
effective anisotropy [10]. A modified Kohler’s rule of the correct magnitude is then repro-
duced but again its success relies heavily on a subtle balancing of anisotropies in the elastic
and inelastic channels. As discussed above, in the MFL picture small angle impurity scattering
is introduced as an additional ingredient to induce anisotropy in the scattering rate. Expansion
of the scattering term then leads to a Hall scattering rate 1/τH ∼ 1/τtr

2 [85]. It has been
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argued, however, that the conditions that lead to this separation in lifetimes do not reproduce
the violation of Kohler’s rule [97]. Thus none of the leading proposals have yet to stand up to
close scrutiny with the full complement of experimental data.

Finally, in analyzing the normal state orbital MR, one should be careful to take into
account fully the contributions to the orbital MR from paraconductivity terms. In highly
anisotropic Bi2Sr2CaCu2O8+δ [101] for example, apparent Kohler’s law violation can be at-
tributed almost entirely to superconducting fluctuations persisting up to room temperature,
though it is unlikely that fluctuation effects are omnipresent in cuprates of significantly lower
anisotropy. Again we refer the reader to [9] for a review of fluctuation effects in HTC and
other superconductors.

10.5. Impurity Studies

The effects of disorder have been widely studied in HTC for a number of reasons, the
destruction of superconductivity being the most obvious one. The interplay between the spin
and charge degrees of freedom, particularly in the pseudogap regime, can also be investi-
gated by studying the influence of impurities and/or disorder on the transport behavior in UD
cuprates. Point defects such as Zn impurities produce a strong suppression of Tc. They are
also believed to act as qp scatterers at the unitary limit [43]. Electron irradiation has also
proved a powerful tool for studying disorder effects in HTC [102]. Electron irradiation of the
correct fluence introduces point defects into the CuO2 plane and indeed, comparative studies
on YBa2Cu3O7 show the effects of irradiation and Zn substitution to be very similar [103].

In OP cuprates, Zn substitution lead to upturns in ρab(T ) at low T once supercon-
ductivity has been destroyed (though for YBa2Cu3−yZnyO7−δ , this assumption relies on
extrapolation) [42]. Moreover, the onset of localization appears to be correlated with the ef-
fective sheet resistance exceeding the universal value h/4e2 ∼ 6.5 k� per layer. According to
some groups [104, 105], the same criterion applies equally to UD YBa2Cu3−yZnyO7−δ and
La2−x Srx Cu1−yZnyO4. This conclusion, however, relies on zero-field data in which the lim-
iting low-T behavior is often obscured by the onset of superconductivity. By applying a large
magnetic field to suppress Tc further, Ando and Segawa revealed that the onset of localization
in UD YBa2Cu3−x Znx O7−δ actually begins at significantly lower resistivities correspond-
ing to kFl ∼ 7 [106]. This lower threshold is similar to that seen in “pure” (i.e., undoped)
La2−x Srx CuO4 and Bi2Sr2−yLayCuO6+δ [14, 23] where anomalous ln(1/T ) resistivities set
in for kFl ≤ 10. It has been suggested that this peculiar form of localization is induced by
some sort of spin scattering [44], or in the case of La2−x Srx CuO4, the tendency towards spin
freezing on the UD side [107]. Note that in OD cuprates, Tc is suppressed well before the
localization limit has been reached [43], most likely owing to the collapse on the OD side of
the superconducting pairing strength.

Results from specific heat [33], NMR [108] and other probes suggest that Zn substitu-
tion leads to a gradual disruption of the pseudogap in UD cuprates and a concomitant “filling-
in” of the gaps within the spin and charge excitation spectra. How exactly this manifests itself
in the transport though is still unclear. Measurements on thin film samples suggested that
the anomalous curvature in ρab(T ), thought to be associated with a steady reduction in the
spin-scattering channel below T *, is completely overridden by Zn substitution [105]. Simi-
lar conclusions have also been drawn from an extended Drude analysis of optical measure-
ments on Zn-doped YBa2Cu4O8 [109]. This is in marked contrast, however, with anisotropic
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transport measurements carried out on YBa2Cu3O7−δ single crystals which failed to show
any significant effect on either ρab(T ) or ρc(T ) [103].

Finally, let us discuss briefly Matthiessen’s rule in HTC. In the majority of cases,
Matthiessen’s rule is found to hold, even for significant levels of disorder. At low doping,
the change in residual resistivity ρ0 is found to be consistent with unitary scattering in the
s-wave channel, provided the carrier number is taken to be that of the chemical doping p,
rather than 1 − p to be expected from band structure calculations [42]. At higher doping lev-
els, however, the unitary limit becomes obeyed for n ∼ 1 − p, as illustrated in Figure 10.11.
A phase shift comparable with that expected of unitary scattering (δ = π/2) was confirmed
by scanning tunneling microscopy (STM) measurements on Zn-doped Bi2Sr2CaCu2O8 [110],
suggesting this picture is robust. Measurements by Ong’s group on Zn-doped YBa2Cu3O7−δ
at optimal doping [94] showed that cot ϑH (T ) (= A + BT 2) is robust also to Zn substitution,
the addition of Zn simply increasing A whilst keeping B constant. As discussed above, this
was viewed as strong evidence for Anderson’s two lifetime picture.

10.6. Thermal Transport

10.6.1. Introduction

Thermal transport properties of HTC, such as thermal conductivity κ and thermoelec-
tric power S, have been less studied relative to the electrical transport coefficients due firstly
to the difficulty of performing accurate measurements, and secondly, the problem of inter-
pretating the ensuing results. Their interpretation is compounded of course by the additional
contribution to κ(T ) from heat carrying phonons and the effect of the phonon drag mechanism
on S(T ). Nevertheless, some notable results have been obtained and the advent of high-field
thermal transport measurements has opened up a new vista on the physics of HTC, particu-
larly in the low-doped and highly doped regions where the upper critical fields are sufficiently
small to facilitate the exploration of thermal properties in the low-T limit. Particularly striking
results in this area include violation of the Wiedemann–Franz (WF) law [111], the remark-
able growth of the thermal Hall effect below Tc [112] and the anomalous Nernst effect first
reported by Ong’s group [113].
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10.6.2. Thermoelectric Power

According to the simple Boltzmann picture, the Seebeck coefficient S is governed both
by the transport scattering rate (via its energy dependence) and the thermodynamic mass.
Separating the effects of these two contributions can prove difficult and it is common prac-
tice to apply certain simplifying assumptions that may obscure some of the intrinsic physics
especially in relation to the pseudogap.

Whilst the interpretation of S(T ) may be difficult, its systematic behavior in the HTC
has been well documented. In particular, a remarkable universal correlation was found early
on between the room temperature value of S and the doping level [114]. This has been used
subsequently to determine the doping concentration in a wide range of materials where deter-
mination of the hole concentration is ambiguous. Whilst this relation is not found to hold in
Bi2Sr2−yLayCuO6+δ [115], its applicability to other HTC appears robust.

In UD cuprates, S(T ) has a large positive value and traces out a broad maximum whose
peak temperature decreases with increasing doping. At optimal doping, S(T ) remains positive
but has a negative linear slope, i.e., S(T ) = β − αT . In some ways, S(T ) resembles RH(T )
at optimal doping. As doping increases further, β continues to decrease whilst α remains
relatively doping independent. Thus in the most overdoped samples, S(T ) is negative at all
T > Tc. Perhaps understandably, there have been few attempts to explain the phenomenology
of S(T ) in HTC though a simple picture involving anisotropic (spin-fluctuation dominated)
scattering on a large FS has been shown to give a good account of both the form of S(T ) and
its doping dependence [116].

10.6.3. Thermal Conductivity

The normal state in-plane thermal conductivity κab of HTC is dominated by the phonon
contribution. Typical estimates of the electronic contribution are of order 10–20% of the total
near T = Tc. The most striking feature of the thermal conductivity in HTC is the rapid
increase in κab(T ) below Tc which peaks typically around Tc/2 (for a review, see Uher [7]).
The origin of this rapid increase was in dispute for many years, with early reports attributing
the enhancement to a rise in the dominant phonon peak [7]. However, later measurements
of the thermal Hall effect, which senses only the electronic contribution [112], revealed a
1,000-fold increase in the qp mean-free-path in high-purity YBa2Cu3O6.99 below Tc [117].
Such a dramatic enhancement of the qp lifetime would more than compensate for the loss
of uncondensed carriers below Tc and thus appeared to confirm the electronic origin of the
peak in κab(T ) [118]. (While it might be argued that this marked decrease in scattering is a
signature that ρ0 in YBa2Cu3O6.99 is negligible, as one might expect from extrapolating the
T -linear ρab(T ) down to 0 K, it should be recalled that below Tc the phase space available for
scattering is significantly reduced due to the (d-wave) symmetry of the order parameter and
confinement of qp’s to the nodal regions.)

The WF law, equating the electrical and thermal conductivities in a metal, is often re-
garded as a key signature of a FL, for which the electrical current transported by the qp’s
has a one-to-one correspondence with the heat current. The WF law can only be rigorously
examined in the low-T region where the electronic (fermionic) and phononic (bosonic) contri-
butions to κab(T ) have well-defined separate T -dependences. The first test of the WF law was
carried out on Pr2−x Cex CuO4 in the presence of a large magnetic field sufficient to destroy
superconductivity [111]. Remarkably, the linear (electronic) coefficient of κab(T ) appeared
to vanish in the low-T limit, suggesting a complete breakdown of FL theory in the normal
state of a cuprate. It now appears, however, that this suppression of κab/T at very low T is an
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experimental artifact due to decoupling of the electronic and phononic thermal baths [119].
Indeed, other measurements carried out on OP Bi2Sr2CuO6 [120] and OD cuprates [50, 121]
seem to confirm the WF prediction, at least within the experimental error.

10.6.4. Nernst–Ettinghausen Effect

In 2000, Ong and his coworkers discovered a large Nernst–Ettinghausen effect (here-
after labeled the Nernst effect) that extended to well above Tc in UD La2−x Srx CuO4 [113].
The Nernst effect is the transverse voltage generated in the presence of perpendicular mag-
netic field by a longitudinal thermal gradient. The effect is known to be small in conventional
metals due to the Sondheimer cancellation. Whilst a large Nernst signal can appear under
certain circumstances (compensated bands [122], the presence of hidden order [123] or inter-
ference between itinerant and localized carriers [124]), the overall empirical situation appears
to support the presence of short-lived vortices (superconducting phase fluctuations) above Tc
but well inside the pseudogap state. The link between the pseudogap and the superconduc-
tivity in HTC is not yet clear though since the Nernst signal appears at significantly lower
temperatures to T *. How this impacts on the other normal state transport remains to be seen
though claims of significant paraconductivity in ρab(T ) below T * in UD cuprates [125] have
also implied the presence of short-lived superconducting fluctuations well above Tc.

10.7. Discussion and Summary

If nothing else, the comparison between experiment and theory in Section 10.4.4 should
have served to highlight the difficulties inherent in identifying the correct description of the
normal state transport properties in HTC. One of the major problems lies with the standard
Boltzmann approach itself. Given that essentially all possible manipulations of the Boltzmann
equation have been exhausted in the search for the correct phenomenology of HTC, it is
tempting to discard this approach altogether in favor of more rigorous treatments, such as
the Kubo formulism with its associated current–current correlation function. This would fail,
however, to acknowledge just how much insight has been gained from applying the Boltzmann
equation, in all its manifestations, to the cuprate problem. Moreover, it is not clear whether
the Kubo formulism would be able to capture the low-energy physics of HTC where so much
of the action takes place.

The second major problem concerns the fact that transport coefficients are averaged
quantities whilst the HTC materials themselves are characterized by intrinsic real-space in-
homogeneity and momentum-space anisotropy, both in- and out-of-plane. Developments in
the field may therefore come indirectly from other nontransport probes such as ARPES with
k-space resolution, or now with the advent of Fourier mapping [126], from real-space probes
such as STM. Ultimately though, reconciliation of results from other experimental probes with
the dc transport data will remain the imperative. Indeed, it has been one of the chief goals of
the ARPES community to understand the transport phenomena of HTC from their k-space re-
solved measurements of the self-energy. It is equally important to recognize the difference(s),
however, in the quantities determined by these probes when making such comparisons; dc
and optical conductivities are angle-averaged bulk probes of the two-particle charge response,
whilst ARPES is a angle-resolved surface probe of the single-particle electronic response.

The imaginary self-energy ImΣ is a measure of the qp relaxation rate or decay of the qp
excitation and in the most naı̈ve picture, 2Im Σ = h̄/τtr. Re Σ , the real part of the self-energy
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Figure 10.12. Static electron relaxation rates T0(T ) of Bi2Sr2CaCu2O8 at various doping levels as determined
for B1g (red) and B2g (green) symmetries from Raman scattering. The insets show the regions of the Fermi surface
sensitive to the different symmetries indicated. Dashed lines are Pab(T ) data [129].

is a measure of the renormalization of the single particle energy dispersion and is related to
the qp mass enhancement. At the time of writing, there is little consensus within the ARPES
community to permit a thorough comparison with the transport properties to be made. The
dominant energy dependence of the normal state scattering rate at the nodes, for example, as
extracted from the width of momentum distribution curves, is claimed to be either linear [94]
or quadratic [127] in energy in OP cuprates or in some cases, to show a kink corresponding to
coupling to some bosonic mode [128].

As argued in Section 10.3, the influence of phonons on the normal state transport in HTC
is minimal. This contrasts markedly with claims that the ARPES results show strong e–ph
coupling in HTC across the entire doping range [128]. One way to reconcile this troubling
ambiguity is to recall that ARPES measures the qp lifetime that is affected by all scattering
events, whilst charge transport is dominated by large-angle scattering. (Note that κ(T ) is
also sensitive to both.) Whilst e–ph scattering involves only small q-transfer at low energies,
e–e (Umklapp) and spin-fluctuation scattering are, by their nature, much more effective at
perturbing a transport current. Thus the e–ph interaction may be conspicuous to ARPES, but
it is effectively transparent to an applied electric current.

Electronic Raman scattering is also a two-particle response function, but unlike dc and
optical conductivity, it does have some k-resolution. Regions in k-space can be selected by
changing the polarization of the incident and scattered photons and the slope of the spectra at
ω = 0 is equal to the k-resolved dc conductivity. Indeed, recent results have again highlighted
significant anisotropy in the transport scattering rate, and one that decreases with increasing
doping, and for the most part, with increasing T [129]. As shown in Figure 10.12, within the
B1g channel (susceptible to the charge response around (π , 0)), the dc scattering rate Γ0(T ) is
larger and almost T -independent in three different families of cuprates. Conversely, in the B2g
channel (associated with the charge response along the nodal directions), Γ0(T ) has a linear
or supralinear T -dependence, consistent with ρab(T ) (see figure). This striking difference in
the magnitudes and T -dependencies in the two regions of k-space is intriguing and deserves
further attention.

Clearly, the combination of ARPES, AMRO and Raman paint a consistent picture of
strong basal plane anisotropy in the scattering rate (both transport and qp) in HTC intensifying
with decreasing doping. As discussed in Section 10.4., such a T -dependent anisotropy will
give rise to a T -dependent Hall effect within a quasi-2D FL picture. Given the proximity to the
AFM insulator at half-filling, spin fluctuations are the obvious candidate, although theoretical
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calculations of the scattering rate based on existing susceptibility data are inconclusive as
regards both the magnitude and the T -dependence of ρab(T ). In particular, in the OD regime
where the magnetic response is particularly weak, the scattering rate appears to remain high
[50]. Indeed, one of the challenges for FL-based models is the absolute magnitude of the
scattering. (Recall from Section 10.2 that the scattering rate in cuprates deduced from Homes’
law is significantly larger than kBT .) In the non-FL realm, both the two-lifetime picture of
Anderson and Varma’s MFL theory have had some success in capturing certain aspects of the
empirical situation, particularly at optimal doping. There is still significant work to be done,
however, particularly with regards to the doping dependence and the inclusion of anisotropy
parameters, before those models can claim with any sort of universal applicability.

As mentioned in Section 10.3, the central issue regarding c-axis transport is one of inter-
layer coherence. In the noninteracting case, the coherent/incoherent crossover is expected to
occur once the interlayer hopping rate t⊥ becomes smaller than other energy scales in the sys-
tem. Given that h̄/τab > T , this suggests that in-plane scattering sets also the scale for inter-
layer hopping. The experimental data show clearly that interplane transfer in all OP cuprates
(including YBa2Cu3O6.95) is incoherent and genuine coherent c-axis motion only appears in
the very heavily OD region of the phase diagram. ARPES measurements performed on other
oxides suggest that in the 2D state, the loss of interlayer coherence leads to the development
of an incoherent in-plane response [130]. Hence there may be an interesting correlation be-
tween the large basal plane scattering and the crossover to non-FL physics which should be
explored further in the cuprates.

The UD regime is without doubt the most unusual region of the cuprate phase diagram.
One of the most fundamental problems here for the FL-based models is the violation of the
Luttinger sum rule implied from Hall effect measurements, with the carrier density at low T
scaling withp rather than 1 − p. This contrasts markedly with the situation at optimal doping
where Luttinger’s theorem appears to be restored. Recently, however, new averaging tech-
niques have been exploited in ARPES to reveal a complete FS in UD cuprates with an area
that is compatible with Luttinger’s theorem [131], albeit with a suppressed spectral weight
away from the qp nodes. There are many possible origins for the loss of spectral weight at
the antinodes. Recent combined studies of ARPES and STM for example have pointed to the
possibility of charge ordering between near-nested regions of the FS around (π, 0) [84, 132].
Whether this charge ordering is a consequence of strong correlation effects near half-filling,
or some form of FS reconstruction below T * to minimize the ever increasing scattering ener-
gies near the antinodes remains to be seen. With regards the transport properties though, the
big question that arises is again one of coherence. At what level of spectral weight suppres-
sion does the qp cease to exist or cease to contribute to the longitudinal or transverse charge
response? This question may only be properly addressed once the correct interpretation of the
optical response in HTC is established, i.e., two components (one coherent, one incoherent)
vs. a single component with a large frequency-dependent scattering rate. Such questions of
course lie at the heart of correlated many-body physics and we look forward to new insight
into this fundamental problem in due course.

The fact that the parent HTC compound at half-filling is an AFM Mott insulator rather
than a metal is direct evidence that strong electron correlations in the square planar CuO2
lattice play a central role in the cuprate problem. The introduction of holes into a highly corre-
lated 2D magnetic background gives rise to an exceptional metallic ground state at low doping,
characterized by the highly anomalous physics of the UD and OP cuprates (spin/charge freez-
ing, nanoscale inhomogeneity, stripe formation and pseudogap phenomena) and ultimately,
d-wave superconductivity. Upon further doping, superconductivity is rapidly destroyed and
the ground state that finally emerges has all the hallmarks of a conventional 3D FL. Given this
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bewildering array of observed phenomena, it seems remarkable that such systematic transport
behavior across all the different cuprate families is observed at all. This universality, however,
does suggest that the key to the transport problem in HTC lies in the physics of a single CuO4
unit and that the development of a complete coherent description of the normal state transport
properties of HTC is still an achievable, albeit daunting, task.
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11
High-Pressure Effects

J. S. Schilling

Experiments under hydrostatic and uniaxial pressure serve not only as a guide in the synthesis of mate-
rials with superior superconducting properties but also allow a quantitative test of theoretical models. In
this chapter the pressure dependence of the superconducting properties of elemental, binary, and mul-
tiatom superconductors are explored, with an emphasis on those exhibiting relatively high values of the
transition temperature Tc. In contrast to the vast majority of superconductors, where Tc decreases under
pressure, in the cuprate oxides Tc normally increases. Uniaxial pressure studies give evidence that this
increase arises mainly from the reduction in the area A of the CuO2 planes (Tc ∝ A−2), rather than
in the separation between the planes, thus supporting theoretical models which attribute the supercon-
ductivity primarily to intraplanar pairing interactions. More detailed information would be provided by
future experiments in which the hydrostatic and uniaxial pressure dependences of several basic parame-
ters, such as Tc, the superconducting gap, the pseudogap, the carrier concentration, and the exchange
interaction are determined for a given material over the full range of doping.

11.1. Introduction

Pressure, like temperature, is a basic thermodynamic variable which can be applied in
experiment over an enormous range, leading to important contributions in such diverse areas
of science and technology as astrophysics, geophysics, condensed matter physics, chemistry,
biology, and food processing [1, 2]. The field of superconductivity is no exception. The first
high-pressure studies on a superconductor were carried out in 1925 by Sizoo and Onnes [3]
and revealed that for Sn and In, as for most superconductors [4], the superconducting transi-
tion temperature Tc decreases under pressure. As will be seen below, the explanation for this
pressure-induced decrease in Tc rivals the isotope effect in its simplicity.

It is no accident that many groups active in the synthesis of novel superconducting ma-
terials, particularly the many outstanding scientists who emerged from the groups of the late
Bernd Matthias in La Jolla or Werner Buckel in Karlsruhe, routinely use the high-pressure
technique as an important diagnostic tool. Why? Because high-pressure experiments can pro-
vide valuable assistance in the search for superconductors with higher values of Tc. In con-
trast to magnetic materials, which owe their enormous technological importance to the fact
that their magnetism is stable to temperatures well above ambient, current materials do not
become superconducting unless they are artificially cooled to temperatures at least 160 K be-
low ambient, an inconvenient and expensive process in large-scale applications. An overriding
goal in technology-oriented superconductivity research is, therefore, to find materials where
Tc surpasses room temperature.
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One way to estimate whether a new superconducting material is capable of higher Tc
values is to determine how much Tc changes under variation of the chemical composition
and/or the pressure. A large value of |dTc/dP| gives hope that higher values of Tc are possi-
ble. We give three examples. A notably successful application of this strategy was the early
high-pressure experiments of Paul Chu’s group [5] on the La2−x Bax CuO4 cuprate (La-214);
the large value of dTc/dP (+8 K GPa−1) led to the substitution of the smaller Y3+ cation
for La3+ and the discovery of the famous YBa2Cu3O7−δ compound (Y-123), the first super-
conductor with Tc above the boiling point of liquid N2 (∼77 K). A second example: in the
oxide La2−x Srx CuO4 Tc is found to increase if compressed in one direction, but decrease
if compressed in another [6]; Locquet et al. [7] used this fact to appropriately strain thin
films of this oxide by growing them epitaxially on a substrate, thus doubling the value of
Tc from 25 to 49 K. In a third example, the observed increase in Tc under pressure for the
Hg-oxides [8] (and for most cuprate oxides for that matter) prompted very high-pressure ex-
periments on HgBa2Ca2Cu3O8 (Hg-1223) whereby Tc increased from 134 K to temperatures
near 160 K [9]. In less than 10 years, therefore, the record high value of Tc increased sev-
enfold from 23 K for Nb3Ge to ∼160 K for Hg-1223. A further increase by only a factor of
two would place Tc above room temperature! Forty years ago Neil Ashcroft [10] raised the
possibility that elemental hydrogen may become a room temperature superconductor, if only
sufficient pressure is applied. The metallization of hydrogen and the development of a viable
theory for high-Tc cuprates remain two central goals in current condensed matter research.

High-pressure experiments contribute to the field of superconductivity in diverse ways.
(1) As mentioned above, a large magnitude of dTc/dP is a good indicator that higher values of
Tc may be possible for a given superconductor at ambient pressure through chemical substitu-
tion or epitaxial growth techniques. (2) Some superconducting materials can only be properly
synthesized through the simultaneous application of high pressure and high temperature [11].
(3) Many nonsuperconducting materials become superconducting if sufficiently high pres-
sures are applied. As seen in Figure 11.1, there are 29 elemental superconductors at ambient
pressure. Under pressure 23 more become superconducting (Li, B, O, Si, P, S, Ca, Sc, Fe, Ge,
As, Se, Br, Sr, Y, Sb, Te, I, Cs, Ba, Bi, Ce, and Lu); more than half of these were discovered
by Jörg Wittig in the 1960s and 1970s [1, 12]. (4) The basic electronic and lattice properties
of a material change with decreasing temperature due to the thermal contraction of the lattice.
High-pressure experiments change the lattice parameters directly at any temperature and thus
allow one to correct for the thermal contraction effects at ambient pressure, yielding isochores.
(5) Determining the dependence of Tc and other superconducting properties on the individual
lattice parameters of a single sample allows a clean quantitative test of theoretical models and
gives information on the pairing mechanism. For example, if superconductivity in the high-Tc
cuprates results primarily from interlayer coupling, one would anticipate a particularly strong
change in Tc if uniaxial pressure is applied perpendicular to the layers.

Unfortunately, all high-pressure experiments are not created equal! In superconduc-
tivity the pressure dependence of Tc may depend on the pressure medium used and other
factors, as illustrated in Figure 11.2 for Pb: Tc(P) using the relatively stiff pressure medium
methanol:ethanol lies clearly above that when helium is used [15]. Ideally, the applied pres-
sure should be either purely hydrostatic or purely uniaxial. A purely hydrostatic experiment,
however, is only possible over a limited pressure/temperature range since all fluids solidify
under pressure, the last one being liquid He which requires 12 GPa to freeze at room temper-
ature. Solid He is very soft, i.e., it can only support very weak shear stresses. Dense He is,
therefore, the pressure medium of choice in high-pressure experiments [16,17]. One practical
way to test whether or not a given experimental result is sensitive to shear stress effects is
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T

T T

Figure 11.1. Periodic Table listing 29 elements superconducting at ambient pressure (yellow) and 23 elements
which only superconduct under high pressure (green). For each element the upper position gives the value of Tc(K)
at ambient pressure; middle position gives maximum value T max

c (K) in a high-pressure experiment at P(GPa) (lower
position). In many elements multiple phase transitions occur under pressure. If Tc decreases under pressure, only the
ambient pressure value of Tc is given. Sources for Tc values at ambient pressure are given in [13]. Sources for Tc
values under high pressure are given in [14].

to carry out the experiment using two different pressure media; if the pressure dependence in
question remains the same, it is unlikely that shear stress effects play a major role.

This chapter will restrict itself primarily to the final (fifth) benefit of high-pressure in-
vestigations as applied to elemental, binary, and multiatom superconductors. The focus will
be on those materials with the highest values of Tc since it can be argued that a thorough un-
derstanding of such materials will be most likely to lead to further increases in Tc. Attaining
the highest values of Tc demands careful optimization of the relevant electronic and lattice
(structural) properties. This optimization is most difficult to realize in elemental solids; here
the maximum value of Tc has been limited to the temperature range 9–20 K (for Nb at am-
bient pressure and for Li, B, P, S, Ca, V, Y, Zr, and La under very high pressures, as seen
in Figure 11.1). It is not surprising that multiatom systems exhibit higher values of Tc since
their structural flexibility allows a higher degree of optimization. The highest values of Tc are
exhibited by quasi 2D solids such as MgB2 and the high-Tc cuprate oxides. The cuprates, how-
ever, exhibit great structural and electronic complexity under both ambient and high-pressure
conditions, a fact which has greatly hampered attempts to reach a basic understanding of the
physical mechanisms responsible for the superconducting state. We will, therefore, begin by
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Figure 11.2. Pressure dependence of Tc for Pb from [15] using helium (•) and methanol–ethanol (◦) pressure
media. Straight line gives initial dependence from [18].

discussing in some detail what we can learn from high-pressure experiments on the relatively
simple elemental and binary superconductors before tackling the much more difficult high-Tc
oxides.

Rather than attempting to review the results of high-pressure studies on all known super-
conducting materials, this chapter will attempt to highlight the new information high-pressure
experiments provide, information not readily available using other techniques. We refer the
reader to excellent reviews of the relatively low-Tc heavy Fermion [19–23] and organic [24]
superconductors which are not included here.

11.2. Elemental Superconductors

Referring to Figure 11.1, let us begin by considering those superconductors where the
pressure dependence of Tc is easily understood, namely, the ten simple s, p metals which are
superconducting at ambient pressure: Be, Al, Zn, Ga, Cd, In, Sn, Hg, Tl, and Pb. Under suf-
ficiently high pressures, the number of simple s, p metal superconductors is increased by 14:
Li, B, O, Si, P, S, Ge, As, Se, Br, Sb, Te, I, and Bi. The four s, p elements Cs, Ca, Sr, and
Ba also become superconducting under pressure, but their superconductivity is likely rooted
in the fact that they exhibit strong s → d transfer under pressure and thus effectively become
transition metals. The remaining 24 elemental superconductors in Figure 11.1 are either tran-
sition metals, rare-earth metals, or actinide metals for all of which the conduction electron
character is dominated by d-electrons.

11.2.1. Simple Metals

Nonalkali Metals

The isotope effect played a pivotal role in the development of the BCS theory [25]
for conventional phonon-mediated superconductivity. This is due to the fact that isotopic
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substitution primarily affects only a single property, the lattice vibration (phonon) spectrum.
Considering the BCS expression in Eq. (11.1), changes in the isotopic mass M primarily affect
the prefactor ΘD, the Debye temperature, and not the exponent, whence the simple relation
Tc ∝ ΘD ∝ M−(1/2). On the other hand, if a superconductor is subjected to high pressures,
the exponent in Eq. (11.1) is affected since important changes in both the lattice vibration
and the conduction electron states occur. The dependence of Tc on pressure, therefore, may
be rather complex, as we shall see below. However, in simple s, p metal superconductors
like Sn, In, Zn, Pb, and Al, the pressure-induced stiffening of the lattice vibration spectrum
completely dominates over the minor changes in the electronic properties, leading to a ubiq-
uitous decrease in Tc with increasing pressure [26], as seen, for example, in Figure 11.2 for
Pb. Pressure-induced structural phase transitions in simple metals may prompt Tc to jump
to higher (or lower) values [27], but otherwise dTc/dP exhibits a negative slope. A diamond-
anvil cell was first used to study superconductivity in the beautiful experiments by Gubser and
Webb [28] on Al in 1975; Tc was found to decrease under ∼6 GPa pressure 15-fold from 1.18
to 0.08 K.

The above discussion can be made more concrete by analyzing the BCS expression [25]
for the transition temperature

Tc � 1.13ΘD exp
{ −1

N (Ef)Veff

}

, (11.1)

where N (Ef) is the electronic density of states at the Fermi energy and Veff is the effective
attractive pairing interaction (for simplicity we set kB = h̄ = 1). Since the s, p electrons in
simple metals are normally nearly free, one expects in a 3D system N (Ef) ∝ V +2/3 so that
under pressure N (Ef) decreases even more slowly than the sample volume V . The principal
source for the observed decrease in Tc with pressure in simple s, p metals, however, is not the
decrease in N (Ef) but the sizeable decrease in the pairing interaction Veff itself. The argument
can be made more explicit by neglecting the Coulomb repulsion and using McMillan’s [29]
expression for the electron–phonon coupling parameter λ

N (Ef)Veff = λ = N (Ef)
〈
I 2〉

M
〈
ω2

〉 , (11.2)

where
〈
I 2〉 is the average square electronic matrix element and

〈
ω2〉 the average square phonon

frequency. Making the simplifying assumptions that ΘD ≈ 〈ω〉 ≈ √
k/M, where k is the

lattice spring constant, and M
〈
ω2〉 ≈ M 〈ω〉2 ≈ M(k/M) = k, Eq. (11.1) becomes

Tc ≈
√

k
M

exp

{
−k

N (Ef)
〈
I 2

〉

}

. (11.3)

In the isotope effect, M appears explicitly only in the prefactor, so that one obtains the canoni-
cal BCS relation Tc ∝ M−(1/2). In a high-pressure experiment, the changes in Tc are relatively
large since they arise principally from the terms in the exponent. In simple metal supercon-
ductors, for example, the quantity in Eq. (11.3) which changes most rapidly under pressure
is the spring constant k, the denominator in the exponent being only weakly pressure depen-
dent, as we discuss below. As k increases with pressure, the modest increase of the prefactor√

k is overwhelmed by the decrease from the −k in the exponent, leading to the universal
rapid decrease in Tc with pressure for simple s, p metal superconductors. For example, Al, Sn,
and Pb, where Tc(0) � 1.14, 3.73, and 7.19 K, respectively, have the pressure dependences
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d ln Tc/dP � −0.25,−0.13, and −0.051 GPa−1 [30, 31]. What is also immediately evident
from these data is that |d ln Tc/dP| is largest when Tc(0) is smallest. It can be easily shown
that this inverse correlation follows directly from the fact that Tc depends exponentially on the
solid-state parameters N (Ef)Veff. To show this, take the logarithm of both sides of Eq. (11.1)
and then the derivative with respect to pressure to obtain

d ln Tc

dP
= d lnΘD

dP
+

[

ln
ΘD

Tc

] [
d ln N (Ef)Veff

dP

]

. (11.4)

The first term on the right side of this equation is normally small and can be neglected.
The quantity in the left square bracket is positive. The sign of d ln Tc/dP, therefore, is
determined by that of [d ln N (Ef)Veff/dP] which is negative in the present case. Since
ln[ΘD/Tc] becomes larger for decreasing Tc (unless ΘD decreases substantially) the mag-
nitude of d ln Tc/dP would be expected to increase for smaller Tc, as observed. Note that
such an inverse correlation would not be obtained were Tc to only depend on some (high)
power of the solid-state parameters.

To put this discussion on a more quantitative basis, we consider the McMillan equation
[29]

Tc � 〈ω〉
1.20

exp
{ −1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

}

, (11.5)

which goes beyond weak coupling and connects the value of Tc with fundamental parameters
such as the mean phonon frequency 〈ω〉, the electron–phonon coupling parameter λ, and the
Coulomb repulsion µ∗. Within this framework, it can be shown that the anticipated change in
µ∗ with pressure is normally very small and can be neglected [32]; here we set µ∗ equal to the
constant value µ∗ = 0.1. However, one should be aware that this assumption for µ∗ may not
hold in a more rigorous theoretical framework [33] where the electron–electron and electron–
phonon coupling effects are treated on the same footing; this framework yielded for the alkali
metal Li the estimate Tc � 0.4 mK, in contrast to the value Tc ≈ 1 K from conventional
electronic structure calculations [34].

Taking the logarithmic volume derivative of Tc in Eq. (11.5), we obtain the simple
relation

d ln Tc

d ln V
= −B

d ln Tc

dP
= −γ +∆

{
d ln η
d ln V

+ 2γ
}

, (11.6)

where B is the bulk modulus, γ≡−d ln 〈ω〉 /d ln V the Grüneisen parameter, η ≡ N (Ef)
〈
I 2〉

the Hopfield parameter [35], and ∆ ≡ 1.04λ[1 + 0.38µ∗] [λ− µ∗(1 + 0.62λ)
]−2. Eq. (11.6)

has a simple interpretation. The first term on the right, which comes from the prefactor to
the exponent in the above McMillan expression for Tc, is usually very small relative to the
second term. The sign of the pressure derivative dTc/dP , therefore, is determined by the rel-
ative magnitude of the two terms in the curly brackets. The first “electronic” term involves
the derivative of the Hopfield parameter η ≡ N (Ef)

〈
I 2〉 which can be calculated directly in

electronic-structure theory [36]. McMillan [29] pointed out that whereas individually N (Ef)
and

〈
I 2〉 may fluctuate appreciably, their product η ≡ N (Ef)

〈
I 2〉 changes only gradually,

i.e., η is a well-behaved “atomic” property. One would thus anticipate that η changes in a
relatively well-defined manner under pressure, reflecting the character of the electrons near
the Fermi energy [35]. An examination of high-pressure data on simple s, p metal super-
conductors, in fact, reveals that Eq. (11.6) is obeyed if η increases under pressure at the
approximate rate d ln η/d ln V ≈ −1 [17], a result also obtained from electronic structure
calculations [37]. We also note that Chen et al. [32] derived for s, p metals the approximate
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expression d ln η/d ln V = − [d ln N (Ef)/d ln V ] − 2/3 which yields for a 3D free-electron
gas d ln η/d ln V = −4/3 ≈ −1 .

Let us now apply Eq. (11.6) to an analysis of dTc/dP for simple-metal superconductors.
The expression in the curly brackets is positive since the lattice term is positive (2γ ≈ +3
to +5) and dominates over the negative electronic term d ln η/d ln V ≈ −1. Since ∆ is
always positive and the first term −γ is relatively small, the sign of dTc/dP must be negative.
This accounts for the universal decrease of Tc with pressure in simple metals due to lattice
stiffening.

Let us now consider a specific example in more detail. In Sn Tc decreases under pres-
sure at the rate dTc/dP � −0.482 K GPa−1 which leads to d ln Tc/d ln V � +7.2 [30].
Inserting Tc(0) � 3.73 K, 〈ω〉 � 110 K [38], and µ∗ = 0.1 into the McMillan equation, we
obtain λ � 0.69 from which follows ∆ � 2.47. Inserting these values into Eq. (11.6) and
setting d ln η/d ln V = −1, we can solve for the Grüneisen parameter to obtain γ � +2.46,
in reasonable agreement with the experimental value γ ≈ +2.1 [30]. Similar results are ob-
tained for other conventional simple metal BCS superconductors [17]. Hodder [39] used the
McMillan formula and the measured pressure-dependent phonon spectrum for Pb to estimate
dTc/dP � −0.36 K GPa−1, in good agreement with experimental values [18, 26, 30].

From the above it is clear that the observed ubiquitous decrease in Tc with pressure
for simple metals results from a weakening of the electron–phonon coupling λ due to the
shift of the phonon spectrum to higher frequencies. This weakening of λ is also primarily
responsible for the almost universal decrease in the electrical resistivity of simple metals under
pressure [40].

Alkali Metals

Alkali metals are widely believed to be simple, nearly free electron metals par excel-
lence where each atom donates a single s electron to the conduction band, resulting in a
nearly spherical Fermi surface. No alkali metal is known to be superconducting at ambient
pressure. In lieu of a structural phase transition, high pressure would not be expected to in-
duce superconductivity in an alkali metal since, as discussed above, pressure weakens the
electron–phonon coupling λ. In fact, conventional wisdom tells us that high pressure should
enhance the free electron behavior of a metal since compressing a solid normally broadens
bands and narrows energy gaps.

It was thus with some trepidation that Lin and Dunn [41] reported in 1986 that above
20 GPa the lightest alkali metal, Li, exhibits both a positive resistivity derivative dρ/dP and
some type of phase transition near 5 K, perhaps a superconducting transition. The matter at-
tracted little attention until 1997 when Neaton and Ashcroft [42] argued on general grounds
that under extreme compression the electronic properties of Li could become quite complex
and nonfree-electron-like due to the near overlap of the atomic 1s cores; the anticipated en-
hancement in the electron–lattice interaction would be expected to lead to low-symmetry
crystal structures, possible superconductivity, and an increase in the electrical resistivity.
These results corraborated earlier electronic structure calculations [43] which indicated band-
narrowing and gap-widening in Li under extreme compression, i.e., drastic deviations from
free-electron behavior.

Three years later two groups [44, 45] subjected Li metal to very high pressures and re-
ported superconductivity above 20 GPa, Tc rising to temperatures approaching 20 K at 30 GPa
in the resistivity onset [44]. In these three studies on Li, either a solid pressure medium was
used [41] or no pressure medium at all [44, 45], the sample coming in direct contact with
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Figure 11.3. (top) Gold-plated rhenium gasket with 250 µm dia hole containing Li sample. (bottom) Transmitted-
light photograph of hole containing Li sample at (left) ambient pressure and (right) 30 GPa. Figure taken from [46].

the ultrahard diamond anvils. To determine whether the reported superconductivity might
have resulted from shear stresses on the Li sample, a third group [46] surrounded the sam-
ple with liquid helium in a diamond-anvil cell, as seen in Figure 11.3, resulting in nearly
hydrostatic pressure conditions. These studies confirmed that Li does indeed become super-
conducting at 5 K for 20 GPa, Tc rising rapidly to 14 K at 30 GPa, as seen in Figure 11.4. In
addition, the superconducting phase diagram Tc(P) of Li was accurately mapped out to nearly
70 GPa; several structural phase transitions are indicated at 20, 30, 67, and possibly 55 GPa.
The pressure-induced structural transitions in Li have been investigated to 50 GPa in X-ray
diffraction studies [47] and to 123 GPa in very recent optical spectroscopic studies [48] at
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Figure 11.4. Superconducting phase diagram Tc(P) of Li metal under nearly hydrostatic pressure (helium) to
67 GPa from [46]. Dashed lines are guides to eye. Several structural phase transitions are indicated.

variable temperatures; a unifying scheme for the structural transition mechanisms in all al-
kali metals has been proposed [49]. These two results, (1) that Li becomes superconducting
under pressure and (2) that Tc increases rapidly with pressure, are quite remarkable and con-
firm that at elevated densities the electronic structure of Li deviates markedly from that of a
free-electron gas, the anticipated Fermi surface becoming highly nonspherical [50].

Neaton and Ashcroft [51] applied a similar analysis to the next heavier alkali metal,
Na, predicting similar results to those for Li, but at higher pressures. To date, no pressure-
induced superconductivity has been found above 4 K in Na to 65 GPa or in K to 43.5 GPa (to
35 GPa above 1.5 K) [150], nor in Rb above 0.05 K to 21 GPa [52]. Very recent studies [53]
show that the melting temperature of Na actually decreases for pressures above 30 GPa, falling
particularly rapidly above 80 GPa in the f cc phase before passing through a minimum near
110 GPa. These results give strong evidence for highly anomalous electronic behavior in Na
in the pressure range above 30 GPa and the likelihood of superconductivity, particularly in the
f cc phase above 80 GPa. Further s, p metal systems which likely exhibit anomalous electronic
behavior include S which becomes metallic for P ≥ 85 GPa with a superconducting transition
temperature as high as 17 K at ∼ 200 GPa nonhydrostatic pressure [54] and P where Tc reaches
18 K at 30 GPa [55], as seen in Figure 11.5.

The first alkali metal to become superconducting under high pressure is Cs [56, 57].
Unlike Li and Na, Cs possesses an empty d-band which lies relatively near the Fermi energy.
Since it can be shown on general grounds that Cs’s half-filled 6s-band moves up under pres-
sure more rapidly than the bottom of the empty 5d-band [58], electrons from Cs’s 6s band are
transfered into the 5d band (s → d transfer), so that under sufficient pressure Cs becomes, in
effect, a transition metal. Nonmagnetic transition metals with their higher electronic density
of states are normally superconducting, as seen in Figure 11.1. Wittig has shown that Cs be-
comes superconducting at temperatures between 0.05 and 1.5 K for quasihydrostatic pressures
11–15 GPa [56, 57], respectively, a pressure range over which a number of structural transi-
tions occur. McMahan [59] has estimated that in Cs the s → d transfer is complete for
P ≥ 15 GPa. Considerably higher values of Tc appear possible at higher pressures, in spite
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Figure 11.5. Superconducting phase diagrams Tc(P) for nonalkali elements with the highest values of Tc under
pressure (Ca [65], La [66], P [67], S [68], V [69], Y [70, 71]) as well as for Lu [72] and Sc [73]. For clarity only the
three highest-pressure data are shown for Y in run D.

of Cs’s 40× higher ionic mass (M = 133) compared to Li (M = 7). We note that the tran-
sition metal superconductor La (M = 139) reaches values near Tc ≈ 13 K at 12 GPa (see
Figure 11.5).

Similar scenarios, including superconductivity, would be expected to occur for the next
lighter alkali metals, Rb and K, where pressure-induced 5s → 4d and 4s → 3d transfer is
estimated to be complete at 53 and 60 GPa, respectively [59]. It thus seems likely that under
sufficiently high pressures all alkali metals will become superconducting.

Although the superconducting properties of the alkali metals become highly anomalous
under extreme compression, these properties can still be understood within a conventional
BCS framework where the electron pairing arises through the electron–phonon interaction, as
for the other simple s, d metals, and, in fact, for the transition metal superconductors which
we now briefly discuss.

11.2.2. Transition Metals

In transition metals the d-electron character of the conduction band leads to an en-
hanced density of states N (Ef) which favors superconductivity at higher temperatures than
in simple s, p metals. Because of their importance in technological applications, transition
metal superconductors have received a great deal of attention, particularly in the 1960s and
1970s. The status of high-pressure experiments on d-band metals and their theoretical in-
terpretation in terms of electron–phonon mediated superconductivity were comprehensively
reviewed by Smith [60] and Garland and Bennemann [61], respectively, in the early 1970s.
These same analyses were successfully applied to later systematic studies on transition metal
alloys [62, 63].

Although in the majority of transition metal superconductors Tc decreases with pressure,
in many cases Tc is found to increase. A positive sign of dTc/dP for d-band superconductors
may be understood as arising from a much more rapid increase of the Hopfield parameter
under pressure (d ln η/d ln V ≈ −3 to −4 [35, 61, 64]) than in s, p-band superconductors
(d ln η/d ln V ≈ −1). If, in Eq. (11.6), the electronic term d ln η/d ln V becomes larger in
magnitude than the lattice term 2γ, Tc would be expected to increase with pressure; this is, in
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fact, observed in V, La, and Zr, for example [60], and is seen in Figure 11.5 for V, La, Y, Lu,
and Sc.

Another reason that the pressure dependence Tc(P)may be particularly complex in tran-
sition metals is that the number of d electrons in the conduction band increases under pressure
due to s → d transfer [58], enhancing the possibility of pressure-induced structural transi-
tions or electronic (Lifshitz) transitions; such effects are likely responsible for the unusually
complex Tc(P) dependence of LaAg where Tc(P) to 2.5 GPa passes through two maxima and
minima [74]. See the review by Lorenz and Chu [75] for examples of electronic transitions.

It is well known that the number of d electrons, nd , is a particularly significant quantity
in determining the crystal structure and the electronic properties of transition metal [76, 77],
rare-earth [78], and actinide [77] solids. The pressure-induced superconductivity in the pre-
transition elements Cs, Ca, Sr, and Ba is likely the result of s → d electron transfer.

In Figure 11.5 Tc(P) data are compared for the trivalent transition metals La, Y, Sc,
and Lu. The very recent nearly hydrostatic [70] and nonhydrostatic [71] studies on Y metal
differ substantially from earlier quasihydrostatic work [56, 72] and reveal that Tc increases
monotonically from 5 K at 30 GPa to 19.5 K (midpoint) or 20 K (onset) at 115 GPa, the highest
value of Tc ever measured in the magnetic susceptibility for an elemental superconductor (see
Figure 11.1); remarkably, the dependence of Tc on sample volume is nearly linear over the
entire pressure range 33–115 GPa [70, 71]. The initial slope dTc/dP ≈ + 1 K GPa−1 for La
is particularly large, possibly due to the anomalously low value of the Grüneisen constant
γ ≈ 1 for this metal [61]. Experiments on V metal show that Tc increases slowly, but nearly
linearly, with pressure (+0.1 K GPa−1) from 5 to 17 K at 120 GPa [69]. Unlike for s, p metals,
the pressure dependence Tc(P) for transition metals follows no universal behavior, reflecting
the additional complexity (and potency!) of the electronic properties in a d-electron system.

Can Eq. (11.6) account for the observed pressure dependence of Tc for V ? Setting
Tc(0) = 5.3 K, µ∗ = 0.1, and the Debye temperature ΘD = 399 K [29] in the McMillan
equation, where 〈ω〉 = 0.83ΘD, we obtain λ = 0.538 and thus ∆ = 3.547. Inserting now
into Eq. (11.6) the volume derivative of the Hopfield parameter (d ln η/d ln V � −3.3)
calculated for V by Evans et al. [37] and the Grüneisen parameter γ � 1.5 [79], we
obtain d ln Tc/d ln V � −2.56. Using for the bulk modulus B = 162 GPa [79], we obtain,
finally, dTc/dP = −[Tc(0)/B]d ln Tc/d ln V � + 0.084 K GPa−1, in good agreement with
the experiments of Ishizuka et al. (0.1 K GPa−1) [69] and the earlier studies of Smith
(0.062 K GPa−1) [80].

As seen in Fig. 11.1, the highest values of Tc yet achieved for an elemental super-
conductor lie in the range 15–25 K for both s-, p-, and d-electron metals under high pressure.
It would be expected that higher values of Tc should be possible for binary or pseudobinary
compounds where the flexibility afforded by two elements should allow a superior optimiza-
tion of the parameters. Indeed, binary superconductors reach values of Tc which are more than
twice as high as those for elemental superconductors.

11.3. Binary Superconductors

11.3.1. A-15 Compounds

Until the discovery of the cuprate oxides in late 1986, the binary A-15 compounds
Nb3Ge (Tc � 23 K), Nb3Sn (Tc � 17.8 K), and V3Si (Tc � 16.6 K) exhibited the high-
est values of Tc. High-pressure studies on the A-15s were reviewed in 1972 by Smith [81].
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Hopfield [35] noted that the near doubling of the value of Tc from Nb to Nb3Sn could be
simply understood, using the above relation d ln η/d ln V ≈ −3.5, as resulting from an
enhancement in η by ∼ 60% due to the reduced Nd–Nd separation in Nb3Sn.

In the A-15 compounds the competition between subtle structural transitions and su-
perconductivity has been extensively studied. A case in point are parallel studies by two
groups [82, 83] on “nontransforming” V3Si crystals where Tc increases under pressure from
16.6 K to approximately 17.7 K at 3 GPa, whereupon Tc(P) exhibits a break in slope sig-
nalling a cubic-to-tetragonal structural transformation predicted by Larsen and Ruoff [84].
Further details and references on A-15 compounds are contained in a recent review by Lorenz
and Chu [75]. We will see below that the high-Tc oxides provide numerous examples for the
influence of structural defects and transitions on superconductivity, perhaps more than one
would like!

Following the discovery of high-Tc superconductivity in the cuprates, two binary com-
pounds, MgB2 and Rb3C60, were discovered which have substantially higher transition tem-
peratures than the A-15s. We now consider high-pressure studies on these two compounds.

11.3.2. A Special Case: MgB2

The binary superconductor with the highest known value of the transition tempera-
ture, MgB2 with Tc ≈ 40 K, was discovered in early 2001 [85]; Buzea and Yamashita [86]
have reviewed its superconducting properties. MgB2 is a quasi-2D material with strong co-
valent bonding within the graphite-like B2 layers. Understandably, the compressibility is
highly anisotropic, being 64% greater along the c axis than the a axis, with bulk modulus
B = 147.2(7) [87]. The anisotropy in the superconducting properties is also appreciable, but
less than that observed in the high-Tc oxides [88].

Several studies of the dependence of Tc on pressure for polycrystalline MgB2 were car-
ried out shortly after the discovery of its superconductivity [89–92]. The first studies used
either solid (steatite) [89] or fluid (Fluorinert) [90, 91] pressure media and agreed that Tc
decreases under pressure, but disagreed widely on the rate of decrease which ranged from
−0.35 to −1.9 K GPa−1. The first truly hydrostatic measurement of Tc(P) was carried out
to 0.7 GPa using He gas on an isotopically pure (11B) sample [92]; it was found that Tc de-
creases reversibly under hydrostatic pressure at the rate dTc/dP � −1.11 ± 0.02 K GPa−1,
yielding d ln Tc/d ln V = Bd ln Tc/dP � +4.16 ± 0.08. This latter result was confirmed sub-
sequently by He-gas studies on MgB2 single crystals to 0.6 GPa as well as parallel diamond-
anvil-cell studies in dense He to nearly 30 GPa [93] which are shown in Figure 11.6; the
latter are in excellent agreement to 20 GPa with parallel studies in dense He by Goncharov
and Struzhkin [94]. On the other hand, diamond-anvil-cell studies on the same samples us-
ing methanol:ethanol [95] or Fluorinert [93] pressure media resulted in a substantially more
negative slope dTc/dP, apparently arising from shear stress effects in these frozen pressure
media.

Ultrahigh-resolution thermal expansion and specific heat measurements on MgB2 yield
through the Ehrenfest relation dTc/dP � −1.05 ± 0.13 K GPa−1, in excellent agreement
with the dependence −1.07 ± 0.03 K GPa−1 obtained in He-gas studies, all on the same sam-
ple [96]. On cooling through Tc, both the thermal expansion coefficient and the Grüneisen
function change from positive to negative, the latter showing a dramatic increase to large
positive values at low temperature. These results suggest anomalous coupling between super-
conducting electrons and low-energy phonons [96].
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Figure 11.6. Dependence of Tc for a MgB2 single crystal on nearly hydrostatic pressure P and relative volume
V/Vo in a He-loaded diamond-anvil cell. Figure reproduced from [93].

We now apply the same analysis carried out above for simple s, p metal superconductors
to MgB2 to see whether the measured dependence dTc/dP � −1.11 ± 0.02 K GPa−1 is
consistent or not with BCS theory (electron–phonon coupling). Using the average phonon
energy from inelastic neutron studies [97] 〈ω〉 = 670 K, Tc0 � 39.25 K, and µ∗ = 0.1,
we obtain from the above Eqs. (11.5) and (11.6) λ � 0.90 and ∆ � 1.75. Our estimate
of λ � 0.90 agrees well with those of other authors [98, 99]. Since the pairing electrons in
MgB2 are believed to be s, p in character [98, 100–102], we set d ln η/d ln V = −1, a value
close to that d ln η/d ln V = Bd ln η/dP ≈ −0.81, where d ln η/dP ≈ +0.55 %/GPa,
from first-principles electronic structure calculations by Medvedera et al. [103]. Inserting the
above values of d ln Tc/d ln V = +4.16, ∆ = 1.75, and d ln η/d ln V = −1 into Eq. (11.6),
we find for the Grüneisen parameter γ = 2.36, in reasonable agreement with the values
γ ≈ 2.9 from Raman spectroscopy studies [48] or γ ≈ 2.3 from ab initio electronic structure
calculations on MgB2 [104]. A similar analysis of the data in Figure 11.6 to 30 GPa, based on
an analysis by Chen et al. [32], also gives excellent agreement. See [93] for a full discussion
and a comprehensive summary of all high-pressure studies on MgB2.

The He-gas Tc(P) data are thus clearly consistent with electron–phonon pairing in
MgB2, in agreement with high precision isotope effect experiments [105, 106]. The fact that
the B isotope effect is 15 times that for Mg [106] is clear evidence that the superconducting
pairing originates within the graphite-like B2 layers.

11.3.3. Doped Fullerenes A3C60

A particularly interesting class of superconductors with high values of Tc are the alkali-
doped fullerides A3C60, where A = K, Rb, Cs [107], each alkali atom donating one s electron
to the conduction band. K3C60 and Rb3C60 have Tc values of 19 and 29.5 K, respectively;
evidence has been found for superconductivity in Cs3C60 near 40 K [108], but this has yet to
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be duplicated. The increase in Tc from K3C60 to Rb3C60 to Cs3C60 is mainly related to lattice
expansion (negative pressure) effects [109].

Tc for the alkali-doped fullerides is found to decrease under the application of hy-
drostatic pressure [109]. For Rb3C60, for example, dTc/dP � −8.7 K GPa−1, as seen in
Figure 11.7 [110]. Since the bulk modulus of Rb3C60 is given by B = 18.3 GPa [111], one
can estimate d ln Tc/d ln V = B(d ln Tc/dP) � +5.4, a value intermediate between that for

T

Figure 11.7. Results of hydrostatic pressure studies on Rb3C60 from [110]: (top) superconducting transition tem-
perature Tc; (bottom) magnetic susceptibility and estimated electronic density of states N (Ef) at 50 and 300 K. Data
for C60 at 300 K are also shown. Both Tc and N (Ef) decrease rapidly with pressure.
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MgB2 (+4.16) and Sn (+7.2). It would thus be reasonable to expect that the reason for the
negative value of dTc/dP for the alkali-doped fullerenes is the same as for MgB2, Sn, and
other s, p metal superconductors, namely, lattice stiffening.

To test this hypothesis, let’s attempt an analysis of the above data in terms of electron–
phonon coupling using the above McMillan equation and its pressure derivative, invoking the
intermolecular lattice vibrations for Rb3C60 which are in the range 15–150 K [112]. Setting
the average value 〈ω〉 ≈ 80 K and using µ∗ = 0.2 [113], Eq. (11.5) yields a negative value for
λ, an impossibility, implying that this equation must be invalid for the given set of parameters.
Even setting 〈ω〉 ≈ 150 K, the upper limit for intermolecular vibrations, λ ≈ 5 would be
required by Eq. (11.5), a value clearly beyond the range of validity of the McMillan equation
(λ ≤ 1.5). To proceed, we use the simple expression

Tc = 0.26Echar√
e2/λ − 1

, (11.7)

valid for all values of λ [114], where Echar is the characteristic lattice-vibration energy. Setting
Echar = 〈ω〉 ≈ 80 K and Tc(0 K) = 29.5 K, Eq. (11.7) yields λ = 5. Taking the pressure deriv-
ative of Eq. (11.7), and using a typical value of the Grüneisen parameter γ ≈ +2, it is easy
to show [110] that the above value of dTc/dP is only possible if d ln η/d ln V ≈ +10 ! This
value of d ln η/d ln V differs grossly in both magnitude and sign from that typically found for
conventional simple-metal (−1) or transition-metal (−3.5) superconducting elements, alloys,
or compounds [35]. What is likely wrong is the above assumption that the intermolecular
lattice vibrations are responsible for the superconductivity.

On the other hand, if we assume the characteristic lattice-vibration energy is given
by the high-frequency intramolecular (on-ball) vibrational modes, where Echar = 〈ω〉 ≈
350–2,400 K, then we cannot account for the negative value of dTc/dP through lattice stiff-
ening since, due to the extreme stiffness of the C60 molecule, the average frequency of the
on-ball phonons 〈ω〉 and the mean square electron–phonon matrix element

〈
I 2〉 are essentially

independent of pressure.
So what is responsible for the rapid decrease in Tc under pressure in Rb3C60? Perhaps

electronic effects are important here, in contrast to simple s, p electron metals. The answer
to this question is provided by measurements of the pressure-dependent electronic density of
states N (Ef) which is found [110] to decrease sharply under pressure, as seen in Figure 11.7.
This decrease is a direct result of the rapid increase in the width of the conduction band as the
C60 molecules are pressed together.

We are now confronted with a very different situation than in conventional supercon-
ductors. Utilizing our knowledge of N (Ef)(P) in the McMillan equation, one can use the
pressure-independent value of 〈ω〉 as a parameter to obtain the best fit to the experimental
Tc(P) data. A detailed analysis [110] reveals that weak-coupling theory can account for the
experimental pressure dependences as long as the characteristic energy of the intermediary
boson lies between 〈ω〉 ≈ 300 and 800 K, typical energies for the high-frequency on-ball
phonons. The reason for the large negative value of dTc/dP in Rb3C60, therefore, is not lat-
tice stiffening, but a sharp decrease in the electronic density of states N (Ef) with pressure.
The increase in Tc going from K3C60 to Rb3C60 to Cs3C60 is due mainly to the enhancement
in the density of states N (Ef) as the progressively larger interstitial alkali cations expand
the lattice, increase the separation between neighboring C60 molecules, and thus narrow the
conduction band.
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11.4. Multiatom Superconductors: High-Tc Oxides

As outlined in Section 11.1, the high-pressure technique led directly to the discovery of
YBa2Cu3O7−δ (Y-123) [5], one of the most important high-Tc superconductors (HTSC), and
generated in HgBa2Ca2Cu3O8+δ (Hg-1223) the highest transition temperature Tc ≈ 160 K
[9] for the resistivity onset of any known superconductor (see Figure 11.8); very recently
Monteverde et al. [115] reportedly bested this value by 3–4 K by applying 23 GPa to a fluori-
nated Hg-1223 sample.

In this section we will attempt to determine the “intrinsic” dependence of Tc on pressure
for hole-doped HTSC and from this intrinsic Tc(P) to identify what, if any, new informa-
tion is provided regarding the mechanism(s) responsible for, and the appropriate theoretical
description of, superconductivity in the high-Tc oxides. No attempt will be made to sum-
marize all available results; we refer the reader to previous reviews covering high-pressure
effects in the high-Tc cuprates: Wijngaarden and Griessen in 1989 [116], Schilling and Klotz
in 1991 [17], Takahashi and Môri in 1997 [117], Núñez-Regueiro and Acha in 1997 [118],
Lorenz and Chu in 2004 [75], and an all-too-short but interesting paper by Wijngaarden et al.
in 1999 [119].

We also restrict our consideration here to hole-doped HTSC. As is evident from the
above reviews, electron-doped HTSC have received relatively little attention; in the few high-
pressure studies carried out, Tc is normally found to decrease with pressure [120]. The fact
that electron-doped HTSC must be slightly reduced to induce superconductivity means that
oxygen ordering effects will likely play an important role in the pressure dependence of
Tc, as discussed below for their hole-doped counterparts. Definitive high-pressure studies on
well-characterized electron-doped HTSC which separate “intrinsic” from “oxygen ordering”
effects are encouraged.

We begin by showing in Figures 11.8 and 11.9 the pressure dependence of Tc for
a number of hole-doped HTSC, including the one-, two- and three-layer Hg-compounds
HgBa2CuO4+δ (Hg-1201), HgBa2CaCu2O6+δ (Hg-1212), and HgBa2Ca2Cu3O8+δ (Hg-1223).
With the lone exception of Tl2Ba2CuO6+y (Tl-1201), Tc(P) is seen to initially increase
with pressure and pass through a maximum at higher pressures. The nearly ubiquitous initial
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Figure 11.8. Hg-compounds: (left) Tc vs. pressure to 45 GPa from [9]; (right) change in Tc vs. pressure to 0.9 GPa.
Figure reproduced from Ref. [8]. The initial pressure dependence dTc/dP for all three Hg-compounds is identical.
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Figure 11.9. Tc vs. pressure for several HTSC. Figure reproduced from [122].

increase in Tc with pressure, which was first pointed out by Schirber et al. [121], is a hallmark
of hole-doped high-Tc cuprates.

A central question is whether or not the measured pressure dependence Tc(P) in the
superconducting cuprates gives evidence for an unconventional (non electron–phonon) pair-
ing mechanism. As seen in Figure 11.5, as for the high-Tc oxides, Tc(P) is known to pass
through a maximum for La and S, both of which are believed to superconduct via the standard
electron–phonon interaction. As discussed in detail above, for the majority of conventional
simple and transition metal superconductors Tc decreases with pressure.

The evident similarity in the Tc(P) dependences for the HTSC systems in Figures 11.8
and 11.9, particularly for the three Hg-compounds, gives strong evidence that the nature of the
superconductivity is the same for all. This is not particularly surprising since all HTSC share
one common structural element, the CuO2 planes. The question remains, however, whether the
most important interactions for the high-Tc superconductivity take place within these planes
or between them. Uniaxial pressure experiments, in particular, hold promise to shed some
light on this question.

The pressure dependences Tc(P) in Figures 11.8 and 11.9 bear some resemblance to the
canonical inverted parabolic dependence of Tc(n) for HTSC on the hole carrier concentration
n per Cu cation in the CuO2 sheet

Tc(n) = T max
c [1 − β(n − nopt)

2], (11.8)

illustrated in Figure 11.10, where β � 82.6 and nopt � 0.16 [123, 124]. According to
Eq. (11.8) Tc(n) initially increases with n on the underdoped side from 0 K for n ≈ 0.05
to a maximum value T max

c at optimal doping n = nopt before falling back to 0 K for n ≈ 0.27
on the overdoped side. For underdoped samples one has dTc/dn > 0, for optimally doped
dTc/dn = 0, and for overdoped dTc/dn < 0. Since n has been found to initially increase
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optimally doped
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Figure 11.10. Canonical dependence of Tc on carrier concentration n for HTSC according to Eq. (11.8). Typical
values for dTc/dP in the underdoped, optimally doped, and overdoped regions are given.

with pressure (dn/dP > 0) in the majority of cuprates studied [17, 75, 117, 125], one might
conjecture that with increasing pressure Tc(P) simply traces out the inverted parabolic shape
of Tc = Tc(n) in Figure 11.10, yielding the Tc(P) dependences seen in Figures 11.8 and 11.9.
In such a “Simple Charge-Transfer Model,” where only n is assumed pressure dependent, the
pressure derivative is given by

dTc

dP
=

(
dTc

dn

)(
dn
dP

)

= −2βT max
c (n − nopt)

dn
dP

, (11.9)

each system having a particular initial value of n. Within this model, the negative value of
dTc/dP for Tl-2201 in Figure 11.9 would result from the increase of n with pressure and the
well-known fact that this compound is overdoped, i.e., dTc/dn < 0.

That “life with the cuprates” is not so simple is seen by the data in Figure 11.11(a) on
five Y-123 samples for increasing oxygen content x from A → E , four underdoped (A → D),
and one nearly optimally doped (E). The measured Tc(P) dependences run contrary to the ex-
pectations of the “Simple Charge Transfer Model” for underdoped samples, namely, that the
higher the initial value of Tc, the lower the pressure needed to reach Tc = T max

c . The data on
the Hg-compounds in Figure 11.8, with initial slope dTc/dP � +1.75 K GPa−1, also violate
Eq. (11.9). Since all three Hg-compounds are nearly optimally doped, i.e., dTc/dn � 0, one
would expect dTc/dP � 0 from Eq. (11.9). Evidently the “Simple Charge Transfer Model”
is too simple! Neumeier and Zimmermann [126] extended this model by hypothesizing that
the change in Tc with pressure derives from two contributions (1) an “intrinsic” contribution
reflecting pressure-induced changes in Tc resulting solely from the reduction of the lattice
parameters (no structural transitions, oxygen ordering effects, nonhydrostatic strains, or
changes in the carrier concentration) and (2) the above contribution to dTc/dP in Eq. (11.9)
originating from the normal increase in n under pressure. The pressure derivative in this
“Modified Charge-Transfer Model” is thus given by the general expression

dTc

dP
=

(
dTc

dP

)

intr
+

(
dTc

dn

)(
dn
dP

)

. (11.10)
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Figure 11.11. Dependence of Tc on pressure from [128] (left) for five YBa2Cu3Ox samples A → E with increasing
oxygen content x; (right) for the underdoped sample B. See text for details.

If one now substitutes Eq. (11.8) in this expression and assumes that β and nopt are indepen-
dent of pressure [127], one obtains

dTc

dP
= dT max

c
dP

[
1 − β

(
n − nopt

)2
]

− dn
dP

[(
2βT max

c
) (

n − nopt
)]
. (11.11)

Note that T max
c is the maximum value of Tc when the carrier concentration n alone is varied

at constant pressure; T max
c is not the maximum value of Tc when the pressure is varied (unless

dn/dP = 0). Comparing Eqs. (11.10) and (11.11) we see that the intrinsic component of the
pressure derivative is given by

(dTc/dP)intr = (dT max
c /dP)

[
1 − β

(
n − nopt

)2
]
. (11.12)

Note that dTc/dP = (dTc/dP)intr ≡ dT max
c /dP only for optimally doped samples, where

n = nopt. If the sample is nearly optimally doped, then we can neglect the term in Eq. (11.11)
quadratic in

(
n − nopt

)
, leaving the following expression linear in

(
n − nopt

)

dTc

dP
= dT max

c
dP

− dn
dP

[(
2βT max

c
) (

n − nopt
)]
. (11.13)

A linear dependence of dTc/dP on
(
n − nopt

)
was indeed found in a careful high-pressure

(He-gas) study [126] on the Y1−yCayBa2Cu3Ox compound series where the Ca and O con-
tents were varied to change n near optimal doping; from the slope of this dependence it was
determined that dn/dP � +0.0055 holes GPa−1. At optimal doping the intrinsic pressure
dependence was found to be dTc/dP = (dTc/dP)intr = +0.96 K GPa−1 [126].

We should not be surprised that the “Simple Charge-Transfer Model,” which only con-
siders the single charge-transfer contribution, fails to satisfactorily account for the experimen-
tal results. We have seen that the Tc(P) dependences for transition metal superconductors
can only be understood by taking into account two distinct contributions: from both lattice
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vibrations and electronic properties. One should expect materials as complex as the high-Tc
cuprates with their distorted quasi-2D perovskite structures to be a good deal more complex
than the transition metals. That this is indeed the case is the reason why it has proven so dif-
ficult to reach a basic understanding of HTSC, the results of high-pressure studies being no
exception.

Ideally, in a high-pressure experiment we would like to determine the change in the
superconducting properties of a given high-Tc oxide under variation of both the intraplanar
lattice parameter(s) and the interplanar separation. In actual high-pressure experiments, how-
ever, a number of additional effects may occur which considerably complicate the interpre-
tation of the data (1) structural phase transitions, (2) oxygen ordering effects, and (3) effects
due to shear stress from nonhydrostatic pressure media.

11.4.1. Nonhydrostatic Pressure Media

As pointed out above, not all high-pressure experiments are created equal. Ideally, a
fluid pressure medium is used which transmits hydrostatic pressure to the sample. The use of
solid pressure media, or no pressure media at all, may simplify the experimentation, but results
in the sample being subjected to varying degrees of nonhydrostatic shear stress which may
cause important changes in the superconducting state, in particular in the pressure dependence
of the transition temperature Tc(P), as we have seen above for Pb in Figure 11.2. Shear-stress
effects on Tc(P) are well known from studies on such diverse superconducting materials as
organic metals [129], MgB2 [46], Re metal [130], and Hg [131].

The differing Tc(P) results on the high-Tc cuprates by different groups may arise from
differences in samples, in the pressure medium, and/or in the method used to determine Tc.
Gao et al. [9] suggested that the fact that their value of Tc(30 GPa) ≈ 160 K for Hg-1223 lies
10–15 K higher than that found by other groups [117, 132] may have its origin in shear stress
effects. Klotz et al. [133] carried out two experiments on a single sample of Bi2CaSr2Cu2O8+δ
(Bi-2212) in a diamond-anvil cell, one in helium and the other with no pressure medium
whatsoever, and obtained very different Tc(P) dependences. On the other hand, Wijngaarden
et al. [119] report that the Tc(P) dependences for YBa2Cu4O8 (Y-124) found by different
groups using varying pressure media do not differ widely. Also, a recent purely hydrostatic
He-gas experiment to 0.6 GPa on an overdoped Y-123 single crystal agrees within experi-
mental error with the initial pressure dependence dTc/dP ≈ −1 K GPa−1 found in a parallel
diamond-anvil-cell experiment using solid steatite as pressure medium [134]. As discussed
in Section 11.1, for quantitative investigations fluid pressure media, particularly helium, are
to be preferred over solid media. To test whether or not shear stresses play a role in the
pressure-induced changes obtained, it is prudent to carry out the experiment using two differ-
ent pressure media.

11.4.2. Structural Phase Transitions

As for the A-15 compounds, Tc(P) for HTSC can be a sensitive function of structural
instabilities. The initial rate of increase of Tc with pressure for La2−x Srx CuO4 is relatively
large at +3.0 K GPa−1 [135]; it is even much larger for La2−x Bax CuO4 (+8 K GPa−1) [136].
This led Wu et al. [5] to the discovery of Y-123, as discussed above. The reason for the
anomalously large positive value of dTc/dP for La2−x Bax CuO4 is the existence of a low-
temperature-tetragonal (LTT) phase below 60 K which strongly suppresses Tc for x in the
range 0.07–0.18, as seen in Figure 11.12. Applying pressure eventually suppresses this LTT
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Figure 11.12. Tc vs. Ba content x for La2−x Bax CuO4 at 0 and 2 GPa pressure. Figure reproduced from [137].
There is a marked influence of the LTT phase transition on Tc(x) for x � 0.125.

phase transition, leading to the anomalously large increase in Tc under pressure seen in the
data where dTc/dP reaches values as large as +12 K GPa−1 [137]. At 2 GPa the Tc(x) de-
pendence in Figure 11.12 begins to resemble the canonical bell-shaped Tc(n) dependence in
Figure 11.10, except in a very narrow range of x centered at x = 0.125.

In a further compound system in the same family, La2−x−yNdySrx CuO4, the doping
level or the crystal structure can be independently controlled by varying x or y, respec-
tively [138]. In the phase diagram for La1.48Nd0.4Sr0.12CuO4 in Figure 11.13 it is seen that at
ambient pressure the high-temperature-tetragonal (HTT) phase transforms below 500 K into a
low-temperature-orthorhombic (LTO1) phase, followed by a phase change below 70 K to the
LTT phase [139]. High pressure is seen to suppress the low-temperature phases until above
4 GPa only the HTT phase remains. These phase transitions are seen in Figure 11.13 to have
a dramatic effect on the pressure dependence of the superconducting transition temperature
Tc(P) which peaks near 5 GPa. Evidently, structural instabilities play an important role in the
doped La2CuO4 oxide family, making it almost impossible to extract the intrinsic dependence
of Tc on pressure from experiment.

11.4.3. Oxygen Ordering Effects

In the majority of HTSC oxygen defects are present with a relatively high mobility, even
at ambient temperatures. Many HTSC can thus be readily doped simply by varying the oxygen
defect concentration through annealing at controlled oxygen partial pressures at elevated tem-
peratures. The normal and superconducting state properties of HTSC depend not only on the
concentration of oxygen defects, but on the relative positions assumed by these defects in the
lattice on a local scale. Such oxygen ordering effects were first observed at ambient pressure
in strongly underdoped Y-123 samples where the Tc value could be sharply reduced simply by
quenching the sample from elevated temperatures into liquid nitrogen [140]. A simple model
developed by Veal et al. [140] was able to account for this phenomenon in terms of a reduction
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in the hole-carrier concentration n in the CuO2 planes due to reduced local order of oxygen
defects in the Y-123 chains containing the ambivalent Cu cations. Oxygen ordering effects
on Tc are only observed if (1) oxygen defects are present, (2) there are vacant sites available
which oxygen defects can move into, and (3) the sample is not optimally doped (if optimally
doped, dTc/dn = 0 so that small changes in n due to oxygen ordering have no effect on Tc).

A second way to change the oxygen ordering state is through high pressure. The applica-
tion of high pressure at room temperature prompts the mobile oxygen defects to order locally
and thus enhance the hole-carrier concentration n in the CuO2 planes. Pressure-induced oxy-
gen ordering thus “turbo-charges” the normal enhancement of n with pressure. Significant
pressure-induced oxygen ordering effects have been observed for Y-123 by Fietz et al. [141]
and others [128], as illustrated in Figure 11.11 (right) for an underdoped sample. Whereas
the lower Tc(P) curve in this figure was measured in an experiment carried out completely
at temperatures low enough (T < 200 K) to prevent the ordering of oxygen defects in the
chains as the pressure is changed, the upper curve was obtained for pressure changes at am-
bient temperature. The difference between the two Tc(P) dependences is substantial indeed!
In Y-123 the time-dependent relaxation of Tc following a change in pressure can be best fit
using the stretched exponent β � 0.6 [128]. Phillips [142] has argued that this gives evidence
for the importance of the electron–phonon interaction in HTSC and supports his model for
defect-induced superconductivity [143].

Pressure-induced oxygen ordering effects in HTSC were first observed in overdoped
Tl-2201 samples by Sieburger and Schilling [144] and then extensively studied by Klehe
et al. [145, 146], as illustrated in Figure 11.14. If pressure is applied at room temperature, Tc
is seen to decrease rapidly, as found earlier by Môri et al. [122] (see Figure 11.9); however,
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if the pressure is released at temperatures low enough (55 K) to freeze in the oxygen defects,
Tc does not increase back to its initial value, but actually decreases further! The intrinsic
pressure derivative for Tl-2201 is thus positive (dTc/dP)intr > 0. As seen in Figure 11.14,
if the sample is then annealed at progressively higher temperatures, each for 1 h, Tc relaxes
back towards its initial value in a two-step fashion, indicating two distinct relaxation pathways.
The low-temperature relaxation stagnates for temperatures near 110 K, but picks up again for
temperatures above 180 K where a smaller high-temperature relaxation sets in. For Tl-2201,
therefore, the measured pressure dependence of Tc depends on the entire pressure/temperature
history of the sample, Tc = Tc(T, P, time). As one would expect, the importance of oxygen
ordering effects in Tl-2201 depends strongly on the oxygen defect concentration [144].

Pressure-induced oxygen ordering effects have been observed on numerous other HTSC,
including Hg-1201, Nd-123, Gd-123, TlSr2CaCu2O7−y , Sr2CuO2F2+y , and superoxygenated
La2CuO4+y [148, 149]. The activation energies for oxygen diffusion in Tl-2201, Y-123, and
Hg-1201 were found by Sadewasser et al. [128] to increase with pressure, as expected; the
activation volumes obtained allow an estimate of the most probable diffusion pathways for
oxygen defects through the respective HTSC lattice. For further discussion of oxygen order-
ing effects in La2−x Srx CuO4 and other HTSC see the recent review by Lorenz and Chu [75].

From the above discussion it is apparent that oxygen ordering effects must be suppressed
before the intrinsic pressure dependence T intr

c (P) can be established. There are three known
ways to accomplish this (1) carry out the entire experiment at sufficiently low temperatures

T

K GPa−1

K GPa−1

P

P

P

Figure 11.14. Tc vs. pressure for an overdoped Tl2Ba2CuO6+δ single crystal, demonstrating the marked influence
of oxygen ordering effects. Pressure is first applied at room temperature but released at 55 K, leaving the sample in a
metastable state. Tc relaxes back to its initial value if the sample is annealed at progressively higher temperatures to
300 K. Figure reproduced from [147].
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that oxygen ordering effects are frozen out; (2) determine the initial pressure dependence
dTc/dP only on optimally doped samples since at the extremum Tc(n = nopt) = T max

c the
additional pressure-induced charge transfer from the oxygen ordering will have no effect;
(3) study samples either with no mobile oxygen defects or with the maximum number of
oxygen defects so that no empty defect sites are left.

The method (3) above was employed in the beautiful specific heat experiments to
10 GPa by Lortz et al. [134] on a fully oxygenated overdoped YBa2Cu3O7 sample; the mea-
surement of such a basic thermodynamic property as the specific heat allows the determination
of the pressure dependence not only of the transition temperature Tc(P) but also of the su-
perconducting condensation energy Uo(P), as seen in Figure 11.15. For comparable change
in Tc, the observed change in Uo for underdoped YBCO is three times larger, reflecting the
presence of superconducting fluctuation or pseudogap effects. In addition, from these results
the pressure derivative of the carrier concentration is estimated to be dn/dP ≈ +0.0018 to
+0.0026 holes Cu−1GPa−1.

Sadewasser et al. [128] applied method (1) above to suppress oxygen ordering effects
in an extensive study of Y-123 at different doping levels by maintaining the sample at tem-
peratures below 200 K during the entire experiment in a He-loaded diamond-anvil cell. The
results are shown in Figure 11.11 (left). Disappointingly, no simple systematics in T intr

c (P)
are evident in these data. The “Modified Charge Transfer Model” as outlined above is unable
to account for the data. Y-123 is evidently a VERY complex system, even without oxygen or-
dering effects. The presence of variably doped chains in Y-123 evidently adds a considerable
(and unnecessary!) level of complexity. Y-123 and Y-124 are the only HTSC with CuO chains.
To make advances in our understanding of the origins of HTSC, it is essential to study in depth
the simplest systems possible. The tetragonal Hg-compounds, which exhibit relatively weak
oxygen-ordering effects, appear to be particularly attractive for further detailed studies and
comparison with theory.

Very recently Tomita et al. [150–152] have carried out extensive studies of the criti-
cal current density Jc across single grain boundaries in bicrystalline Y-123 samples for var-
ious oxygen concentrations and grain boundary mismatch angles. In all cases Jc increases
markedly with pressure. Interestingly, Jc also exhibits relaxation effects following pressure
changes at ambient temperature; the relaxation time is shorter than that for Tc, consistent with
the usual picture that oxygen defects have a higher mobility in the grain boundary than in the
bulk. That Jc exhibits relaxation effects at all is evidence that some oxygen defect sites in the

Figure 11.15. Results of specific heat measurements under pressure on an overdoped YBa2Cu3O7 crystal. Figure
reproduced from [134]. (left) Tc vs. both pressure P and relative volume V (P)/V (0). (right) Superconducting con-
densation energy vs. pressure P and relative volume V (P)/V (0). Inferred values of hole-carrier concentration nh
are given in insets.
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grain boundary must be vacant, i.e., high-pressure experiments can be used as a probe to test
whether the grain boundaries are fully oxygenated ot not [151]. Since it has been shown for
Y-123 that Jc increases with oxygen content [152], irrespective of the doping level, further en-
hancements in Jc should be possible if all vacant sites can be filled with oxygen, for example,
by subjecting the sample to a pure oxygen atmosphere at elevated temperatures and pressures.

11.4.4. Intrinsic Pressure Dependence T
intr
c (P)

In spite of the great complexity of HTSC materials, a number of empirical guidelines
have been identified [153] for enhancing the value of Tc (1) vary the carrier concentration
n in the CuO2 planes until its optimal value is reached (see Figure 11.10); (2) increase the
number of CuO2 planes which lie close together (in a packet) in the oxide structure while
maintaining optimal doping—“healthy” one-plane systems, like Tl-2201, have Tc values in
the range 90–100 K, two-plane systems in the range 100–120 K, and three-plane systems in
the range 120–140 K; (3) try to position defects as far from the CuO2 planes as possible;
and (4) since Tc is diminished with increasing buckling angle in the CuO2 planes, develop
structures where the CuO2 planes are as flat as possible. Note that according to the above, the
system Y-123 with T max

c � 92 K is not particularly “healthy.”
We now pose the question: what can we learn from high-pressure experiments about

how to further enhance the value of Tc? To answer this question, we should carefully se-
lect the systems we choose for experimentation, preferably picking “healthy” HTSC systems
with relatively high values of Tc. Experimentation on “pathological” low-Tc systems results
in numerous factors changing at the same time, making the interpretation difficult if not im-
possible. The single-layer La-214 oxides are examples of such “pathological” systems, only
possessing Tc values in the range 30–40 K, far below the 90–100 K expected according to the
above criteria for “healthy” single-layer systems such as Hg-1201 and Tl-2201. It is thus not
surprising that in the La-214 oxides Tc increases relatively rapidly with pressure as the struc-
tural distortions, which result in considerable buckling in the CuO2 planes, are diminished.
The La-214 systems are thus not suitable for further studies aimed at determining T intr

c (P).
Similar structural transition effects led to early reports that the rate of increase of the tran-
sition temperature in HTSC with pressure, |d ln Tc/dP| , is inversely related to the value of
Tc [120,154,155]. A closer examination of the relevant data to exclude systems with structural
transitions, however, gave no evidence for such a correlation [17]. For further discussion we
will focus on HTSC systems, like the one-, two- or three-layer Tl- or Hg-oxides or the two-
or three-layer Bi-oxides, which are free of structural transition issues.

From the measured pressure dependences Tc(P) for these systems, we would like to
extract T intr

c (P), the “intrinsic” pressure dependence of Tc for a given fixed carrier concentra-
tion n. This separation is extremely difficult for arbitrary doping levels since n generally in-
creases under pressure and Tc is a particularly sensitive function of n, as seen in Figure 11.10.
Such a separation has been attempted for Hg-1201 [156] and a Tl-1212 compound [119] un-
der strong simplying assumptions; such studies will only become really quantitative if the
pressure dependence of n is determined independently over the entire range of doping and
pressure. Fortunately, for one value of n, namely, n = nopt, the separation becomes simple,
at least for the initial slope dTc/dP, since at this extremum of Tc(n) we have in Eq. (11.10)
dTc/dn = 0 so that we obtain simply dTc/dP = (dTc/dP)intr. Restricting our attention to
optimally doped samples has the great advantage that the initial slope dTc/dP is free from the
influence of changes in the carrier concentration n, and, as a bonus, oxygen ordering effects
play no important role since they affect Tc primarily through their influence on n.
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For these reasons we now focus our attention on “healthy” optimally doped HTSC
systems. The Hg-compounds are of particular interest here since their superconducting and
structural properties have been studied on the same samples to high accuracy under purely
hydrostatic pressure conditions in dense helium [8], as well as under quasihydrostatic pres-
sures above 40 GPa (see Figure 11.8) [9]. The optimally doped one-, two-, and three-layer Hg-
compounds Hg-1201, Hg-1212, and Hg-1223 have, respectively, Tc(0) values of 94, 127, and
134 K, initial pressure derivatives dTc/dP = +1.75 ± 0.05 K GPa−1 for all three, relative pres-
sure derivatives d ln Tc/dP � +17.6, +14.2, and +12.9×10−3 GPa−1, and bulk moduli B �
69.4, 84.0, and 92.6 GPa to 1.4% accuracy [157]. From these values the relative volume deriv-
atives can be accurately determined to be d ln Tc/d ln V = −B(d ln Tc/dP) � −1.22±0.05,
−1.19 ± 0.06, and −1.20 ± 0.05. It is quite remarkable that the relative pressure derivatives
D ln Tc/dP differ by more than 30%, whereas the relative volume derivatives d ln Tc/d ln V,
which would be expected to be of more direct physical relevance [17], turn out to be identical
for all three Hg-compounds! This invariance of the relative volume derivative gives strong
evidence that the superconducting state, including the pairing mechanism, in the one-, two-,
and three-layer Hg-compounds is the same. If one understands the nature of the supercon-
ductivity, and the mechanism(s) responsible for it, in the one-layer compound Hg-1201, one
understands these basic properties in all three. This conclusion is underscored by the fact that
the pressure dependence Tc(P) to 40 GPa is nearly the same for all three Hg-compounds [9],
as seen in Figure 11.8.

We now consider the values of the relative volume derivative d ln Tc/d ln V for further
optimally doped HTSC systems: Y-123 (−1.25 ± 0.06), Tl-2201 (−1.35 ± 0.4), Tl-2212
(−0.9 ± 0.2), Tl-2223 (−1.16 ± 0.3), Bi-2212 (−1.04 ± 0.15), and Bi-2223 (−1.36)
[8, 146, 158]; the bulk modulus is known to lesser accuracy for the Tl- and Bi-systems
than for Y-123 and the Hg-compounds. It is indeed remarkable that for all these optimally
doped HTSC systems the intrinsic relative volume derivative turns out to be nearly the same
d ln Tc/d ln V ≈ −1.2, corresponding to the volume dependence

Tc ∝ V −1.2. (11.14)

This is strong evidence that the nature of the superconductivity, and the mechanism(s) re-
sponsible for it, are the same in all high-Tc cuprate superconductors. We note that this HTSC
volume derivative d ln Tc/d ln V ≈ −1.2 has the opposite sign, and is much weaker in mag-
nitude, than the volume derivatives d ln Tc/d ln V � +7.2 for Sn and +4.16 for MgB2 which
we discussed above. This fact by itself does not imply, however, that the electron–phonon
interaction plays no role in HTSC. Negative volume derivatives are found in a number of
transition metal systems, like La, Y, Lu, Sc, or V (see Figure 11.5) where the superconductivity
is believed to be phonon mediated.

We are now in a position to understand why in the optimally doped Hg-compounds
Hg-1201, Hg-1212, and Hg-1223, Tc increases with pressure over such a relatively wide pres-
sure range, resulting in the highest values of Tc at 30 GPa for any known superconductor with
the same number of CuO2 layers. The very weak increase in the carrier concentration n un-
der pressure measured for Hg-1201 [159], and calculated for Hg-1223 [160], means that a
relatively high pressure is required to increase n sufficiently in the Tc(n) phase diagram in
Figure 11.10 that the negative slope (dTc/dn)(dn/dP) becomes equal to the intrinsic posi-
tive slope (dTc/dP)intr � +1.75 K GPa−1, at which point Tc(P) passes through a maximum
at P ≈ 30 GPa. This maximum value T max

c (30 GPa), can be estimated from Eq. (11.11) for
Hg-1223 by setting T max

c (0) = 134 K and dT max
c /dP � +1.75 K GPa−1, and assuming nopt

and T max
c are independent of P and n, respectively. If one now asks what value of dn/dP is
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required that Tc(P) reaches its maximum value, where dTc/dP = 0, at 30 GPa, out comes
dn/dP � +0.00129 hole GPa−1. If this value of dn/dP is then inserted in Eq. (11.11), one
obtains the estimate T max

c (30 GPa) � 163 K which is close to the measured value (see Fig-
ure 11.8). This value of dn/dP, which is somewhat smaller than that estimated for Y-123,
agrees reasonably well with a calculation by Singh et al. [160]. Thermopower measurements
by Chen et al. [159] indicate an even smaller value. If, as suggested by Xiong et al. [161], β =
50 is substituted for β = 82.6 in the Tallon formula, dn/dP � +0.00166 is obtained, but the
estimate Tc(30 GPa) � 163 K remains the same.

We would now like to explore the question as to the origin of the relatively weak de-
pendence of Tc on sample volume Tc ∝ V −1.2 in HTSC materials. When hydrostatic pressure
is applied to an HTSC, the unit cell is compressed in all three directions. However, with the
exception of the La-214 compound family, the compressibility in the direction perpendicular
to the CuO2 planes, the c-direction, is in general approximately twice as large as in a direction
parallel to the CuO2 planes [17]. The central question at hand is: does the intrinsic increase
of Tc with pressure, reflected in Tc ∝ V −1.2, originate primarily from the reduction in the
separation between the CuO2 planes or from the reduction in the area of these planes? To
answer this question, we must turn to uniaxial pressure experiments which have the potential
to unravel the information hidden in the hydrostatic pressure studies.

11.4.5. Uniaxial Pressure Results

Uniaxial pressure experiments are technologically very difficult and require high quality
single crystals of sufficient size. The partial pressure derivatives along the crystallographic
axes dTc/dPa, dTc/dPb, and dTc/dPc can be determined either by applying force directly
to the crystal along the respective crystallographic directions [162], or through combined
ultrahigh resolution thermal expansion and specific heat measurements using the Ehrenfest
relation dTc/dPi = 
αi VmTc/
C p, where 
αi and 
C p are the mean-field jumps of the
thermal expansion coefficient and specific heat, respectively, and Vm is the molar volume
[163]. Note that the hydrostatic pressure derivative can be written as the sum of the respective
partial pressure derivatives dTc/dP = dTc/dPa + dTc/dPb + dTc/dPc. The result of the
“Modified Charge Transfer Model” in Eq. (11.11) can be applied by simply replacing dTc/dP
by the respective partial pressure derivative dTc/dPi where i = a, b, c.

The results of detailed thermal expansion studies by Meingast et al. [127] on crystals
from the Y1−yCayBa2Cu3Ox compound series are shown in Figure 11.16. At ambient pres-
sure Tc(n) is seen to pass through a maximum at Tc � 93 K for n = nopt � 0.16. The partial
pressure derivatives generally change from positive to negative as the carrier concentration
n increases, reflecting the influence of pressure-induced charge transfer. At optimal doping
one has n = nopt and dTc/dn = 0 so that the partial pressure derivatives give the intrinsic
effect directly. In Figure 11.16(c) we see that at optimal doping dTc/dPc ≈ 0; this implies
that enhancing the interplanar coupling by pushing the CuO2 planes closer together has no
measureable effect on the superconducting state. This, together with the fact that dTc/dPc
depends linearly on n, in agreement with Eq. (11.13), gives strong evidence that the primary
effect of compression in the c direction is to enhance the carrier concentration n.

On the other hand, as seen in Figure 11.16(b), compressing the CuO2 planes themselves
enhances Tc at the rate ∼ +1 K GPa−1, in good agreement with hydrostatic pressure studies
on the same compound series [126]. Parallel thermal expansion studies [163] on an opti-
mally doped detwinned YBa2Cu3Ox crystal give the following partial pressure derivatives:
dTc/dPa � −1.9 K GPa−1, dTc/dPb � +2.2 K GPa−1, and dTc/dPc � 0 K GPa−1, in
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Figure 11.16. Results of ultrahigh resolution thermal expansion experiments on Y1−yCayBa2Cu3Ox crystals. Fig-
ure reproduced from [127]. (a) Tc vs. hole concentration n. (b) In-plane partial pressure derivative 2(dTc/dPab) vs. n.
(c) Out-of-plane partial pressure derivative dTc/dPc vs. n.

excellent agreement with later studies by Kund and Andres [164] as well as with direct uni-
axial pressure experiments by Welp et al. [162]. All these studies confirm that the intrinsic
pressure effect within the CuO2 planes is large, in contrast to the negligible effect along the
c axis perpendicular to these planes. The opposite sign of the partial pressure derivatives in
the a and b directions is simply a reflection of the above Tc−optimization rule (4) whereby
the CuO2 planes should be as flat (therefore tetragonal) as possible to maximize Tc; Chen
et al. [165] have developed a model which accounts for the dTc/dPi anisotropies in terms of
anisotropies in both the hole dispersion and the pairing interaction.

In the above experiments, a compression along one axis (unfortunately) leads to an
expansion along the other two axes, so that all three change. The partial pressure derivatives,
however, can be converted into the partial strain derivatives dTc/dεa, dTc/dεb, and dTc/dεc, if
the elastic constants are known to sufficient accuracy. For Y-123 the dominant strain derivative
at optimal doping turns out to be dTc/dεb, the other two being at least 5× smaller [166]. When
pressure is applied to a Y-123 crystal, the intrinsic effect on Tc is predominantly caused by a
strain in the CuO2 plane along the b (chain) direction. On the other hand, in the double-chain
system Y-124 compression along the a-direction is dominant [167]. Studies of bond-length
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systematics in RBa2Cu4O8 across a portion of the rare-earth series R both at ambient [168]
and high pressure [169] have revealed that Tc correlates well with the Cu–O bond lengths
within, rather than perpendicular to, the CuO2 planes.

The above results underscore the considerable complexity of the two HTSC compounds,
Y-123 and Y-124, which contain CuO chains, a superfluous structural element unnecessary
for high-Tc superconductivity. Indeed, the HTSC systems with the highest values of Tc have
no chains. To make significant progress in our understanding of the basic issues regarding
superconductivity in HTSC, one would be well advised to focus on tetragonal systems free
from CuO chain structures.

High-resolution thermal expansion experiments have been carried out on a nearly opti-
mally doped Bi-2212 crystal by Meingast et al. [170] with results: dTc/dPi � +1.6,+2.0,
and −2.8 K GPa−1 for i = a, b, c. Kierspel et al. [171] obtain somewhat different values for
Bi-2212: dTc/dPi � +0.9, +0.9, and < 0.4 K GPa−1, respectively, yielding a total pressure
derivative dTc/dP ≈ 2 K GPa−1, in good agreement with the hydrostatic pressure depen-
dence [172].

Unfortunately, uniaxial pressure results have yet to be published for the tetragonal Hg-
and Tl-compound families due to the difficulty in obtaining high-quality crystals of sufficient
size. Further experimentation on the Hg cuprates in particular is strongly encouraged since
these oxides are blessed with a relatively simple structure and thus offer an excellent oppor-
tunity for obtaining definitive results.

11.5. Conclusions and Outlook

Taken together, the above experiments support the picture that the dimensions of the
CuO2 planes, rather than the separation between them, primarily determines the maximum
value of Tc in a given HTSC: the closer the planes are to being square and flat, and the smaller
their area, the higher the value of Tc. A similar conclusion regarding the relative importance
of the in-plane and out-of-plane lattice parameters was reached in a review by Schilling and
Klotz [17] in 1991 and in a paper by Wijngaarden et al. [119] in 1999 who commented that
“There is quite some evidence that c mainly influences doping, while a mainly influences
the intrinsic Tc.” The high-pressure experiments carried out to-date thus lend support to those
theories where the interactions within the CuO2 planes are primarily responsible for the su-
perconducting pairing.

From this it follows that the ubiquitous intrinsic volume dependence Tc ∝ V −1.2

for nearly optimally doped HTSC arises from the compression of the CuO2 planes, rather
than from a reduction in the separation between them. To obtain the intrinsic dependence
of Tc on the in-plane lattice parameter a, we evaluate d ln Tc/d ln a = −κ−1

a (d ln Tc/dP),
where κa ≡ −d ln a/dP is the a-axis compressibility. Using the above values of d ln Tc/dP
for the one-, two-, and three-layer Hg-compounds as well as the κa-values 4.26, 2.94, and
2.57×10−3 GPa−1 [173], respectively, we obtain d ln Tc/d ln a = −4.1,−4.8, and −5.0
which translates into the approximate in-plane lattice parameter dependence

Tc ∝ a−δ, where δ = 4.5 ± 0.5. (11.15)

This expression implies that at optimal doping the intrinsic Tc is roughly proportional to the
inverse square of the area A of the CuO2 planes, Tc ∝ A−2. Similar results are obtained for
other optimally doped HTSC systems.
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This is one of the single most significant results to be distilled from high-pressure ex-
periments on HTSC materials and is information not readily available through other means.
Besides giving information on the superconducting mechanism, this dependence points to an
additional strategy for further increasing Tc. To the above five “Tc optimization rules,” we can
now add: “(6) seek out structures which apply maximal compression to the CuO2 planes with-
out causing them to buckle.” According to the above relations, if we were to apply sufficient
pressure to an optimally doped Hg-1223 sample to compress its in-plane dimension by about
20%, without adding defects or increasing the number of charge carriers, Tc should increase
from 134 to 304 K and we would have the world’s first room temperature superconductor!

HTSC systems with the same number of CuO2 planes generally have different values
of Tc = T max

c at optimal doping. It is interesting to inquire whether this difference arises from
a variation in the in-plane lattice parameter a, i.e., T max

c ∝ a−4.5. From Figure 11.17 one can
see that no such simple correlation exists. The single-plane material with the highest value of
Tc, Hg-1201 with T max

c � 98 K, has the largest value of a, and the compound in Figure 11.17
with the lowest value of Tc, La1.85Sr0.15CuO4 with T max

c � 36 K, has the smallest value of
a. Perhaps La1.85Sr0.15CuO4 owes its anomalously low value of Tc to an overcompression
of its CuO2 plane, resulting in strong structural distortions and plane buckling, effects which
are known to degrade Tc. The a values of the other systems listed differ by only 1.4% which
corresponds to ∼5 GPa or a change in Tc by only 7–8 K. Raising the compression level from
1.4 to 20% is a worthy goal but constitutes a very difficult challenge for materials scientists.

An important point remaining is to identify what information the above dependence
Tc ∝ a−4.5 gives on the nature of the superconducting state in HTSC. If we assume two elec-
trons are bound in a Cooper pair by electron–phonon, electron–electron, electron–magnon, or
other effective interactions, Veff, a BCS-like expression is appropriate for weak interactions

Tc � 〈ω〉 exp [−1/Veff N (Ef)] , (11.16)

where 〈ω〉 is the characteristic energy of the intermediary bosons. Since both Veff and
N (Ef) are in the exponent in Eq. (11.16), it is likely that their pressure dependence is re-
sponsible for that of Tc. Early high-pressure measurements of the spin susceptibility of

Figure 11.17. Average lattice parameter in the CuO2 plane for representative HTSC systems at ambient pressure.
Figure reproduced from [174].
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La1.85Sr0.15CuO4 [175] and Y-123 [176], and band-structure calculations for Hg-1223 [160]
found the changes in N (Ef) under pressure to be less than 0.2, 0.1, and 0.5%/GPa, respec-
tively. For La1.85Sr0.15CuO4 this change in N (Ef) is too small to account for the rapid increase
of Tc under pressure; to make a similar evaluation for Y-123 and Hg-1223, where d ln Tc/dP
is much smaller, the accuracy of the dN (Ef)/dP determination would have to be considerably
enhanced.

The question remains: why does Veff N (Ef) increase with pressure at a rate such that
Tc ∝ a−4.5 ? Unfortunately, this Tc(a) dependence alone gives insufficient information to
allow one to unequivocally identify the pairing interaction. The intrinsic pressure dependence
dTc/dP ≈ +1 to 2 K GPa−1 for “healthy” HTSC easily falls within the wide range of depen-
dences observed for transition metal superconductors (see discussion above) where electron–
phonon pairing is well established. From an analysis of the high-pressure results on HTSC,
Neumeier [177] has come to a similar conclusion, namely, electron–phonon coupling is a
possible pairing interaction for HTSC.

The above analysis leading to the intrinsic relation Tc ∝ a−4.5 has, unfortunately, only
been carried out on HTSC near optimal doping. This restriction was necessitated by the need
to eliminate pressure-induced changes in n. To establish T intr

c (P) over a wide range of doping,
an independent determination of dn/dP over this entire range must first be carried out.

To shed light on the pairing interaction through high-pressure studies, it will be neces-
sary to combine Tc(P) determinations under hydrostatic and uniaxial pressure with simulta-
neous measurements (preferably on the same crystal) of other important superconducting- and
normal-state properties such as the superconducting gap, the pseudo-gap in the underdoped
region, superconducting condensation energy, magnetic susceptibility, electrical resistivity,
Hall effect, thermoelectric power, etc. Aronson et al. [178] made an early attempt along these
lines by carrying out high-pressure Raman scattering studies on antiferromagnetic La2CuO4
and found that the superexchange interaction J increases approximately as J ∝ a6. Such
studies, if expanded to other HTSC, have the potential to test the viability of spin-fluctuation
theories; measurements of the pressure-dependent magnetic susceptibility at elevated tem-
peratures would provide similar information on J (P). Further studies on the La-214 system
would seem ill advised since the rampant structural distortions and transitions in this system
make a quantitative analysis extremely difficult. It would be of considerable interest to attempt
such studies on crystals from the Hg- and Tl-compound families over the full range of doping.
Special emphasis should be placed on uniaxial pressure experiments since they can provide
the kind of detailed information needed to make real progress.
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12
Superconductivity in Organic Conductors

J. S. Brooks

The physical and electronic structure of organic conductors is first described, and their “conventional”
superconducting properties are presented. Two of the most studied organic conductor systems TM2X, a
quasi-one-dimensional system, and ET2X, a quasi-two-dimensional system, when practical, are treated
in parallel for comparison. The generalized phase diagrams for both systems are presented, where it
is noted that superconductivity in many cases lies in proximity to an antiferromagnetic or spin density
wave ground state. The nature of the band filling and the close relationship between organic conduc-
tor structure and the Mott−Hubbard model is reviewed. Examples of organic conductors that exhibit
unconventional superconducting behavior, including p-wave or d-wave pairing are then presented, and
a comparison is made between organic conductors and cuprate systems. In the summary, the future of
organic conductor science is considered.

12.1. Introduction

In 1987 many, or maybe most of us, were drawn away from heavy Fermion materials,
organic conductors, semiconductors, quantum Hall systems, and so forth by the lure of high
temperature superconductivity (HTSC). Although some balance in representation between
these various areas has returned, the chapters in this treatise attest to the formidable (and ir-
resistible) theoretical and experimental challenges that HTSC still presents. Indeed, reflecting
on the topic of the present chapter, the question that is often posed is “to what extent are
organic conductors similar to the cuprates?” This query, if answered favorably, helps justify
the labors of those involved in organic conductor research. Perhaps the best answer is “all of
the above”: the area of organic, or molecular, materials, embraces most of the phenomena we
view as contemporary condensed matter science [1].

The history leading up to the realization of organic superconductors is long, and pre-
dominant in this was Little’s postulate that superconductivity mediated by organic spine and
side chain interactions might occur in organic macromolecules [2,3]. It is interesting to revisit
this visionary paper, which refers to even earlier speculations by London [4], and suggests
that Tc could be near room temperature, and even relevance to biological systems is dis-
cussed. Although this “polaronic” superconductivity has not yet been observed, the nature of
superconductivity in organic conductors has been described as unconventional, and the super-
conducting phases are observed to lie in close proximity to other magnetic and/or insulating
ground states which vary with chemistry, pressure, temperature, and magnetic field.

One important impact that the organic conductor community has had on the HTSC
(cuprates, perovskites, etc.) community involves the study of anisotropic materials and
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23210 USA brooks@magnet.fsu.edu
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Fermiology. After the discovery of superconductivity in quasi-one-dimensional (Q1D) organic
conductors by Jerome and coworkers in (TMTSF)2PF6 [5] and in the quasi-two-dimensional
(Q2D) organic conductor (BEDT-TTF)4(ReO4)2 by Parkin and coworkers [6], an enormous
level of activity followed to characterize the superconducting behavior and normal state elec-
tronic structure. Of particular importance was the use of magnetic fields, not only in con-
ventional de Haas van Alphen and Shubnikov-de Haas (dHvA and SdH) studies, but also in
the area of angular magnetoresistance (AMRO) where the resistance of a single crystal is
monitored as the field direction is changed systematically for a fixed magnetic field and tem-
perature. In Q2D systems with cylindrical-like Fermi surfaces this is often called the “Yamaji”
effect [7] first observed by Kartsovnik et al. [8] in β-(BEDT-TTF)2IBr2 and Kajita et al. [9] in
θ-(BEDT-TTF)2I3. In Q1D systems the effect is often called the Lebed effect as first reported
by Osada et al. [10] and Naughton et al. [11] in (TMTSF)2ClO4. These effects, which only re-
quire the existence of anisotropic magnetoresistance, can be used to map out details of the low
dimensional Fermi surfaces not readily accessible by standard dHvA or SdH measurements.
Hence as someone involved in high magnetic field research, I have seen many cases where the
methods developed for organic conductor research have been effectively applied to problems
in inorganic correlated electron materials. Two nice examples where the Q2D Fermi surfaces
were examined by AMRO are the work by Ohmichi et al. [12] on the perovskite Sr2RuO4 and
Hussey et al. [13] on Tl2Ba2CuO6+δ.

The purpose of this short review is to communicate both the excitement and essential
physical aspects of organic superconducting materials to an audience who does not work in
this area. (To equitably review nearly 30 years of research herein would be impossible.) There
are many excellent books and reviews on this subject, and a selection is discussed in Ap-
pendix 1. Many of the remarkable properties of these materials occur in the normal state, or
in nonsuperconducting members of the organic conductor family. Although we concentrate
here on the superconducting properties, there is much to say about their quantum oscillation
behavior, their magnetic field induced phase transitions, and Mott-insulating, Peierls, semi-
conducting, and charge-ordered behavior. In this review, an attempt is made to present the
material in a format where the highly representative quasi-one-dimensional (Q1D) and quasi-
two-dimensional (Q2D) organic conductor systems are discussed in parallel for the purpose of
comparison. After introducing their general physical properties, the unconventional aspects of
their superconducting ground states presented. A comparison of organic and cuprate materials
is then made, and in the final section a summary and discussion of future prospects for new
physics in these systems is presented. To start, it is important to define the area in brief and
general terms.

12.2. Organic Building Blocks and Electronic Structure

Organic normally means a material with carbon and carbon bonds. The building blocks
of organic conductors are organic molecules where a central double carbon–carbon bond is
often key to its structure. Built out from the center are rings with carbon and chalcogenide
(sulfur or selenium) atoms, which are terminated with hydrogen methyl or ethyl groups (Fig-
ure 12.1). These large molecules, which are highly planar, can stack like dominoes in linear
chains, or in two-dimensional planes, where the chains or planes are separated by smaller
inorganic molecules, as shown in Figure 12.2. In the planar staking of the organic molecules,
there can be many different motifs as shown in Figure 12.3, where Greek letters are used to
describe each symmetry. These assemblies are salts, since in most cases, two of the organic
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(a)

(b)

Figure 12.1. Common building blocks of organic conductors (here black=carbon, green=selenium, and yel-
low=sulfur). (a) Tetramethyltetreselenfulvalne (or TMTSF) represents the donor found in Q1D Bechgaard salt mate-
rials. By replacing the selenium atoms with sulfur atoms, one obtains the Fabre salts based on tetramethyltetrathioful-
valene or (TMTTF). (b) Bis(ethylenedithio)-tetrathiafulvalene (or BEDT-TTF or “ET”). By replacing the four central
sulfur atoms with selenium atoms, one obtains Bis(ethylenedithio)-tetraselenafulvalene (or BETS). The terminal hy-
drogens for the methyl and ethyl groups are not shown.

molecules (cations or donors—D) contribute one electron to the inorganic species (anion or
acceptor—A). Hence the charge transfer is D2A, and at room temperature most of these mate-
rials are conducting. The electronic structure of these materials to first order is well described
by the extended Hückel tight binding (EHTB) model which treats each donor molecule in
terms of a molecular orbital that contributes a single band. With either 2 or 4 molecules per
unit cell, the D2A charge transfer leads to a 1/4 filled band at the Fermi level for undimerized
donors.

Representative Fermi surfaces derived from EHTB are shown in Figure 12.4. The
TMTSF-type materials, termed the Bechgaard salts, are generally quasi-one-dimensional
(Q1D) where the carriers move along the a-axis with bandwidth ∼250 meV. Smaller disper-
sions along the b-axis (∼25 meV) and the c-axis (∼0.03 meV) also allow electronic motion.
Although the TMTSF materials are considered Q1D with open orbits, generally their a–b
plane will act as a 2D conducting plane due to the significant b-axis bandwidth, and un-
der conditions of nesting Q2D orbits can appear [21]. The BEDT-TTF-type materials are
quasi-two-dimensional (Q2D), where the carriers move in the planes on both open and closed
orbits with average bandwidth ∼25 meV, with a much smaller interplane dispersion of order
1/100 tin-plane or less. For the Q2D systems, extensive Fermiology studies are in reasonable
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(a)

(c)(b)

Figure 12.2. Common crystal structures of D2A organic salts. (a) (TMTSF)2PF6 [14]. Here the TMTSF+1/2 cation
molecules stack along the a-direction, and the PF6

−1anions lie between the chains. Conduction is along the a-
direction. (b) κ-(BEDT-TTF)2Cu(NCS)2 [15]. Here the ET+1/2 cation molecules stack in a planar “kappa-phase”
configuration with the Cu(NCS)2−1 anions in the interplanar positions. Conduction is in the b–c plane. (c) κ-(BEDT-
TTF)2Cu(N[CN]2)Br [16]. This is similar to (b), but the unit cell is doubled along the interplane direction, and the
Cu(N[CN]2)Br anions are connected (polymeric) in between the donor planes.

agreement with the Fermi surface topologies derived from the EHTB calculations [22, 23].
Angular dependent magnetotransport and other magnetoresistance measurements show simi-
lar agreement for the Q1D systems [21].

12.3. “Conventional” Properties of Organic Superconductors

Typical behavior for organic superconductors is shown in terms of the temperature de-
pendent resistivity of both Q1D and Q2D materials in Figure 12.5. The immediate message
is that molecular conductors are sensitive to the cooling rate due to the details of their com-
plex molecular structure. Hence even in a high quality single crystal with perfect stoichiom-
etry, disorder may be present if, for instance anion ordering is not achieved near 24 K as in
the case of (TMTSF)2ClO4, or ethylene conformation is not complete as in the case of κ-
(BEDT-TTF)2Cu([N(CN)2]Br in the range 70−100 K. In both cases, this structural disorder
can compromise the superconducting transitions, as well as magnetotransport phenomena
associated with the Fermi surface topologies.

How high is Tc in organic conductors? The highest superconducting transition tem-
perature in an organic charge transfer salt at present [26] is 14.2 K in β′-(BEDT-TTF)2ICl2.
However, this is under unusual conditions where hydrostatic pressure of order 70 kbar (7 GPa)
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a b

kb '

Figure 12.3. Four of the common stacking motifs for the BEDT-TTF donor. The alpha (α) stacking is characteristic
of 1/4 filled systems, and the kappa (κ) stacking, where the donors are dimerized, is characteristic of 1/2 filling. The
donors in Figure 12.2b in the case of κ-(BEDT-TTF)2Cu(NCS)2 for instance, will yield this κ pattern in the b−c
plane when viewed along the a-axis. Note that other stacking motifs are variants of those shown: α′ and θ are variants
of α, λ is a variant of β, and β ′′ is a variant of β ′ (see Fig. 12.13 in Ref. [17]). Band fillings will depend on the degree
of dimerization, and also on the dihedral angle between donors [18].

Figure 12.4. Fermi surfaces derived from tight binding calculations. (a) TMTSF2PF6 (after [19]. Here there are
two open orbit bands, where the conduction is mainly along the a-axis. (b) κ-(BEDT-TTF)2Cu(NCS)2 (after [20]).
Here both closed orbit and open orbit bands exist.

are necessary to stabilize the superconducting state starting from a parent Mott insulator with
an antiferromagnetic ground state with TN = 22 K. Here the resistive transition is used to de-
fine the onset of Tc. Under ambient conditions the highest Tc in charge transfer salts is 11.6 K
obtained inductively from the rf penetration depth [27] in κ-(BEDT-TTF)2Cu([N(CN)2]Br.
A slightly higher onset of Tc (>13 K from resistance) is seen in the related material κ-
(BEDT-TTF)2Cu([N(CN)2]Cl under a few hundred bar of pressure [28]. (These three com-
pounds represent the highest Tc values in Figure 12.6a.)

In the organic conductor series, the BEDT-TTF Q2D-type materials generally have the
higher transition temperatures, whereas the TMTSF and related Q1D materials have transi-
tion temperatures usually less than 2 K at ambient pressure and only slightly higher transition
temperatures ∼3 K under pressure. An overview of the extent and perhaps limitations for su-
perconductivity in these materials may be obtained from “global” descriptions as shown in
Figure 12.6 where the transition temperatures for a wide variety of organic conductors are
plotted vs. key parameters. In Figure 12.6a, Tc for a variety of organic conductors is plotted
vs. the calendar year of discovery. Here the lower Tc of the TMTSF systems were found early
on, and progress in raising the Tc occurred with the BEDT-TTF materials, which appears
to have peaked with the BEDT-TTF materials with polymeric anions (see Figure 12.2c), an
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Figure 12.5. Temperature dependent resistance behavior of Q1D and Q2D organic superconductors. (a)
TMTSF2ClO4 (courtesy of E.S. Choi). Although the resistance drops monotonically with decreasing temperature,
small changes due to strain and cracks generally appear at intermediate temperatures, followed by the signature of
anion ordering of the tetrahedral anion ClO4 at TAO ∼ 24 K. The onset of superconductivity observed below ∼1.2 K
is sensitive to the rate of cooling through the anion ordering transition [24]. (b) κ-(BEDT-TTF)2Cu([N(CN)2]Br. A
maximum in the resistance at lower temperatures is characteristic of some of the ET superconductors, where in this
case a time dependent ethylene ordering behavior is observed. The transition temperature and also the quasiparticle
scattering rate associated with quantum oscillatory behavior is dependent on the degree of ethylene ordering [25].

observation that is further supported in Figure (12.6b. The general description in Figure 12.6b
is that a larger unit cell will provide a narrower band width and also soften the lattice, thereby
increasing Tc. Strategies such as the use of polymeric anions to increase Veff and therefore Tc
appear to support this trend, but as Veff increases, the lattice will eventually become unsta-
ble and/or insulating behavior will emerge. So, carbon based superconductors such as A3C60
and graphite intercalated systems notwithstanding, at present the organic charge transfer com-
plexes appear to have reached a plateau in Tc at 15 K. (Other, more optimistic diagrams have
appeared in the literature, I should admit, as in for instance Figure C4 of [29].) One final men-
tion should be made about the interesting case of the phases of the β-ET2X compounds (see
Fig. 12.6 (b)) pursued early on by the Tsukuba and Tokyo groups [30], where the history of
the pressure dependence could produce either the “high Tc or low Tc” states.

Magnetic fields provide a wealth of information about the superconducting state, where
the most apparent effect is the anisotropy of the upper critical field Hc2. Experimentally, Hc2
has been estimated from both dc and ac transport and magnetic measurements. In principle,
the onset of diamagnetism is considered the most rigorous determination, since transport will
show dissipation as soon as vortices de-pin at the irreversibility line. In Figure 12.7 representa-
tive critical fields are shown for both TMTSF2ClO4 [30], κ-(BEDT-TTF)2 X (X = Cu(NCS)2
and Cu[N(CN)2]Br) [31–33]. Because of the small interplane coupling and large unit cell
structure, many organic conductors have high anisotropy in their critical fields. For materials
with low (or no) anisotropy, a conventional Abrikosov type vortex lattice should be present
in a superconducting sample for any field direction. However, when the interplane coherence
length is comparable or less than the layer spacing, new effects can arise since Josephson
tunneling across layers becomes important. For finite magnetic field perpendicular to the lay-
ers the vortex lattice will become pancake-like, where the superconducting component will be
confined to the molecular planes. This can lead to novel lock-in effects in tilted fields [34], and
also to Josephson plasma resonant effects [35,36]. For fields near or at the in-plane orientation,
a Josephson vortex lattice can occur where vortices lie in the layers. It is in this case where
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(a)

(b)

Figure 12.6. (a) Tc vs calendar year for a variety of organic conductors under ambient or pressurized conditions
(from tables in [21] and references herein). (b) Tc for selected BEDT-TTF organic conductors vs. the effective unit
cell parameter Veff which is the space filling of the donor molecule in the unit cell per conduction electron (redrawn
after [21]).

the orbital component of the critical field is most highly suppressed, and where the Zeeman
(Pauli limit) field can be approached. It is in the latter case where the possibility of new
physics, including p-wave paring [37] or Fulde Ferrell Larkin Ovshinnikov ground states [38]
can be potentially accessed, as we will discuss in Section 12.5 below. One of the most
beautiful examples of the vortex lock-in for in-plane magnetic fields comes from NMR on
κ-(BEDT-TTF)2Cu(SCN)2 [39] where the relaxation rate due to vortex dynamics decreases
by orders of magnitude for fields less than ±0.12 of a degree away from B parallel to the
layers.

Specific heat studies yield a bulk thermodynamic signature of superconductivity. From
the electronic and phonon terms γ and β in Cp(T ) = γ T + βT 3 above Tc, the jump in the
specific heat 
C at Tc, and the temperature dependence of C p(T ) below Tc, one can deter-
mine the electronic density of states, the Debye temperature θD, the BCS coupling parameter
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Figure 12.7. Continued
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Figure 12.7. Critical field anisotropy for Q1D and Q2D organic superconductors. (a) Hc2 for (TMTSF)2ClO4 for
the three principal axes directions (re-drawn after [40]). Inset: anisotropy of Hc2 in the a − b plane. (Lower tempera-
ture data for B//b is shown in Figure 12.15 below.) (b) Hc1 and anisotropic Hc2 for κ-(BEDT-TTF)2Cu[N(CN)2]Br
and κ-(BEDT-TTF)2Cu(NCS)2 (re-drawn after [31–33]). (c) Crossover behavior of Birr from 3D (at 8.2 K-left panel,
where the anisotropic Ginzburg-Landau behavior is seen) to 2D (at 4.2 K-right panel, where the 2D description pre-
vails) for κ-(BEDT-TTF)2Cu(NCS)2 in the vicinity of the B//b − c plane. The sharpness of the cusp at 90◦ (for
B//b − c planes) increases as the ratio of the interplane coherence length to the layer thickness ξ⊥(T )/s decreases
below Tc (re-drawn after [33]).


C/γ Tc, and the superconducting gap 2∆. An advantage of specific heat is that it can be
done in the superconducting state without magnetic field, and hence no vortex contributions
are present. However, due to the relatively small signature of the superconducting jump at Tc,
it is a common practice to perform the measurement at both zero field and for fields above Hc2
to obtain the difference 
C = Cp(T, 0) − C p(T, H > Hc2) where in principle the normal
state electronic and phonon contributions (assumed to be field independent) are subtracted.
Since Cp(T < Tc) ∼ exp(−2∆/kT ) and C p(normal state) ∼γ T,
C will become negative
at lower temperatures, as shown in Figure 12.7b for κ-(BEDT-TTF)2Cu(NCS)2. The results
in Figure 12.8 yield a BCS-like weak coupling behavior for (TMTSF)2ClO4 [24, 41, 43] and
a BCS-like strong coupling behavior for κ-(BEDT-TTF)2Cu(NCS)2 [42]. We note that κ-
(BEDT-TTF)2Cu[N(CN)2]Br (see Section 12.5 below) also shows a strong coupling BCS
behavior and based on the specific heat studies [44] is described as fully gapped (no nodes)
below Tc.

The pressure dependence of the superconducting transition temperature is another key
factor in describing the nature of the superconductivity in these materials. Because they are
relatively soft materials, pressure can strongly affect the ground states in several ways (a) For
material in an insulating state (charge order, AF insulator, spin density wave, etc.) pressure, in-
cluding uniaxial pressure, can actually induce the superconducting state. (b) For materials that
are already superconducting, pressure generally suppresses Tc to zero very quickly (∼5 kbar)
as compared with elemental superconductors, but in some cases pressure and/or uniaxial pres-
sure can increase Tc over some range. A global phase diagram for the Fabre (TMTTF)2X
and Bechgaard (TMTSF)2X Q1D salts are shown in Figure 12.9a where anions in the range
X = SbF6 up to ClO4 play the role of increasing chemical pressure [45]. In the Fabre
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Figure 12.8. Superconducting specific heat signature of (a) (TMTSF)2ClO4 (redrawn from [41]) and (b) κ-
(BEDT-TTF)2Cu(NCS)2 (redrawn from [42]). In the latter case the difference between the superconducting and
normal specific heat (for B > Bc2) is plotted.

salts sulfur (tetrathio) replaces the selenium (tetraselena) in the Bechgaard salts, leading to
a smaller overlap of the molecular orbitals, and hence the Fabre salts have nonmetallic ground
states at ambient external pressure. Superconductivity is stabilized above a critical pressure of
about 6−8 kbar in (TMTSF)2PF6. Indeed, this was the first observation of superconductivity
in an organic conductor [5]. Subsequently, superconductivity was discovered at ambient pres-
sure (but effective higher relative pressure) in (TMTSF)2ClO4 [46]. In Figure 12.8, a number
of factors also evolve with increasing effective pressure, including the crossover in influence
from electron–phonon to electron–electron interactions, and the increase in interchain band-
width [45]. Recently, a coexistence of the spin density wave and superconducting states has
been established, first by Vuletic et al. [47] with later confirmations by other workers [48,49].
(Pressure induced superconductivity has also been reported in (TMTTF)2Br above 25 kbar
[50] and in (TMTTF)2PF6 above 50 kbar [51].) As discussed above, (TMTSF)2ClO4 is
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a superconductor under ambient conditions, and like (TMTSF)2PF6, Tc decreases with in-
creasing pressure [52].

In Figure 12.10 the generalized phase diagram for the quasi-two-dimensional
κ-(BEDT-TTF)2X series is shown vs. effective chemical pressure and/or the ration of the
onsite Coulomb repulsion to the bandwidth U/W (i.e., the well known “Kanoda” diagram
redrawn after [39]). Although pressure generally reduces the unit cell volume for a given
system, here the unit cell for different components actually monotonically increases with
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Figure 12.10. (a) Generalized phase diagram of the Q2D systems based on (BEDT-TTF)2X (after [39]). κ′-
(BEDT-TTF)2Cu[N(CN)2]Cl data are from [55]. The unit cell volumes and effective cell volumes (with the anion
volume subtracted) per carrier are from [21] and [55]. Pressure dependence of transition temperature and effective
masses in κ-(BEDT-TTF)2Cu(NCS)2 after [56]). (b) Relationship of Tc to effective mass from pressure studies for α-
(BEDT-TTF)2NH4Hg(SCN)4 [57] and κ-(BEDT-TTF)2Cu(NCS)2 [56]. Uniaxial stress induced superconductivity
in α-(BEDT-TTF)2KHg(SCN)4 and increased Tc in α-(BEDT-TTF)2NH4Hg(SCN)4 [58]. Filamentary supercon-
ductivity in α-(BEDT-TTF)2KHg(SCN)4 was first observed by Ito et al. [59], and subsequently, hydrostatic pressure
was found by Andres et al. [60] to induce a complete superconducting transition below 0.1 K.

decreasing U/W. Since the closed orbit quantum oscillation (de Haas van Alphen and Shub-
nikov de Haas) behavior is accessible in these materials, the effective mass may be determined
from the temperature dependence of the oscillatory amplitudes via the Lifshitz−Kosevich
analysis [54]. This allows a comparison of Tc and the effective mass m∗/me with pressure.
The insets of Figure 12.9 indicate the very strong dependence of Tc on pressure, and on the
effective mass, indicating the importance of many body interactions to the superconducting
state.

12.4. The “Standard Model” for Metallic, Insulating,
and Antiferromagnetic Ground States

12.4.1. Band Filling and Its Consequences

In the last section, we saw that there were many factors involving the donor mole-
cule, anion species, the stacking motif, unit cell volume, etc. that control the ground states
of these materials. Materials with TMTSF or TMTSF donors are generally 1D due to the
linear stacking arrangements, and materials based on the BEDT-TTF structure are gener-
ally 2D and planar in their stacking arrangements. The Q1D materials are more suscepti-
ble to instabilities such as Fermi surface nesting, whereas in the Q2D systems other factors
to be discussed below lead to Mott-insulator type ground states where band instabilities
are less likely to occur. How close the competing ground states can be is evident in the
κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-(BEDT-TTF)2Cu[N(CN)2]Cl systems where small
changes in pressure [61], deuteration [62], or stacking [55] determine either insulating or
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superconducting ground states in the vicinity of the AFI-SC boundary in Figure 12.10a.
Indeed, in both Q1D and Q2D systems, the highest Tc is seen in close proximity to an
insulating AF or SDW state. However, superconductivity does not always occur at an
insulating boundary.

The physical, electronic, and magnetic structure of organic materials are unique in sev-
eral important ways, and a “Standard Model” [63,64] has emerged that describes many aspects
of their physical properties. (We note that there is also a “Standard Model” for the forma-
tion of field induced spin density waves in Q1D systems as discussed in [52] and references
therein.) Since the anion structure is a closed shell, insulating layer, the electronic properties
are mostly determined by the remaining partially filled donor orbitals according to the charge
transfer D2A. (In this description we will limit our discussion to the more mainstream ma-
terials.) Hence the donors represent the sites in the Hubbard models used to describe these
systems. The sites may be insolated donors, or the sites may be dimers or even tetramers of
the original donors. Charge transfer yields a single charge and spin 1/2 per two donor units,
and the outcome (ground state) will depend on a number of competing energies (where we
have suppressed the crystallographic indices in some cases):

U is the on-site coulomb interaction for double occupancy of a single site.
V is the intersite coulomb interaction.
t is the transfer integral parameter derived from the extended Huckle tight binding model
[65, 66].
∆ is the splitting of the two HOMO levels that occurs in dimerization (related to the
intradimer t).
W is the bandwidth = 4t.
J is the intersite spin interaction.

Since the donor stacking can represent ladder, square, or triangular arrangements, the
Hubbard model (or extended Hubbard model) is most often used to describe molecular con-
ductors. The general form is [64]

H =
∑

i, j

∑

σ

(ti j c∗
iσ c jσ + h.c.)+

∑

i

Uni↑ni↓ +
∑

i j

Vi j ni n j ,

where i and j are the lattice sites, and σ is the spin index for up and down spins. In the model,
these parameters, along with pressure, are used in different limits of strength and relative
size to describe various families of organic conducting systems. For the 1/2 filled, or 1/4 filled
systems described below, the extended Hubbard model will typically involve U and t , or V
and t , respectively.

Band filling. In the extended Huckel tight binding model, each donor yields one orbital,
which in the neutral state is occupied by two electrons (see Figure 12.11a). Because of the
D2A charge transfer, each single donor site will have statistically 1(1/2) electrons, and in the
solid state the band associated with this orbital will therefore be 3/4 (or equivalently 1/4) filled.
However, if the donors dimerize, thereby constituting a single site (where statistically there are
three electrons in the HOMO levels), then due to the intradonor interaction, the two molecular
orbitals will split into a higher energy antibonding level with one electron and a lower energy
bonding level with two electrons. Hence in the solid state the singly occupied band will be 1/2
filled.

Distribution of the Charge. In the absence of Coulomb repulsion (U and V = 0) the
charge in both filling schemes will be evenly distributed for finite band width W (or transfer
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Figure 12.11. (a) Relationship of monomers and dimers to band filling and (b) charge distribution in D2A charge
transfer systems. Note that for the 1/2 filling, the sites are dimers, not single donors. See text for discussion.

energy t) as shown on the left of Figure 12.11b. However, for U > W and/or V > W , then
the charges will tend to localize on specific sites. In the case of 3/4 filling, charges will tend
to localize on alternate sites (termed charge order or CO) due to V (where we assume U is
infinite and no double occupancy can occur); and in the case of 1/2 filling, charges will tend to
localize on every site (termed the Mott insulator state where we assume that V is negligible).
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Figure 12.12. Evolution of band insulators. For 1/2 filling dimerization produces a singlet (spin Peierls) state with
2kF periodicity. For 3/3 filling, dimerization produces a 2kF AF Mott insulator, and tetramerization produces a 4kF
charge density wave singlet state.

Distribution of Spin. In Figure 12.11, the spin on the occupied sites will be 1/2. Such a
configuration leads directly to a spin lattice, which generally results in an antiferromagnetic
ground state. However, in some cases the stacking motif of dimer systems can approach a
nearly triangular lattice and spin frustration can become important, and even suppress mag-
netic order [67, 68]. It is also possible to introduce localized spins through the anion substi-
tution, as in the case of λ (or κ)-(BEDT-TSF)2FeX4 (X = Cl,Br, etc.) [69]. This leads to a
π−d exchange interaction between the conduction electrons and the localized spins, which in
turn can yield very important new phenomena, as described in Section 12.5. (See also Enoki
and Miyazaiki [70] for a review of magnetism in TTF-based organic conductors.)

The Special Case of Q1D. The description of the CO and Mott states can be general-
ized to a linear chain system as shown in Figure 12.12, where a 1D Heisenberg model will
be realized. In addition, in the linear Q1D chain systems the 1D instabilities (Fermi surface
nesting, i.e., k-space effects) often determine the low temperature ground states. These can be
spin Peierls, antiferromagnetic, charge density wave, or spin density wave in form, where ad-
ditional parameters, such as the degree of inter chain (transverse) coupling and the electron–
phonon coupling will have strong influence on the nature of the ground state. In the spin
density wave, the spin structure can be incommensurate with the lattice, and is also the re-
sult of delocalized electrons, although the spin wave structure itself is static. As shown in
Figure 12.9 above, pressure, which increases dimensionally, will cause the commensurate AF
state to move toward an incommensurate and/or delocalized SDW ground state, and eventu-
ally to a superconducting state. Giamarchi recently has considered Q1D systems within the
frame work of Mott Insulators and Luttinger liquids [71]. He points out that dimerization and
interchain interactions can greatly complicate any theoretical treatment of the Q1D materials.

In Figure 12.13 another phase diagram is given for materials with 1/4 filled bands (after
[72]). In this case, it is the intersite interaction V , rather than the on site interaction U , that
is generally more important. This phase diagram, as discussed in the next section, is most
relevant to materials with α, τ, θ , or β ′′ stacking where the dihedral angle between donors
does not favor dimerization. Dressel and coworkers [73, 74] have used optical methods to
determine the progression of Drude-like metallic behavior toward charge order behavior in a
number of organic conductors, as indicated in Figure 12.12 for the alpha-phase materials.
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Figure 12.13. Phase diagram for 1/4 filled systems (after Ref. [72]). Superconductivity near the SC – CO boundary
(dashed line) is predicted to have dxy symmetry [72]. The α-(BEDT-TTF)2MHg(SCN)4 series [73,74], and also ma-
terials with θ-(BEDT-TTF)2X and β”-(BEDT-TTF)2X stackings are expected to follow this behavior [72]. Note that
for ambient pressure, α-(BEDT-TTF)2I3 has a charge ordered state, but for a-axis uniaxial strain, superconductivity
is induced. [75]. See also Seo et al. [76] for a recent review.

12.4.2. Can Superconductivity Emerge From the “Standard Model”?

The phase diagrams given in Figures 12.9 and 12.10 show that superconductivity can
lie in close proximity to insulating and/or antiferromagnetic states (although it is noted that
charge ordered states [75] or metallic states [77] can also share the boundary with super-
conductivity). The proximity of AF and SC phases has motivated theoretical work start-
ing from the Mott–Hubbard model, to describe the phase diagrams of these systems. In a
seminal paper by Kino and Fukuyama [78] ground states of three different compounds κ-
(BEDT-TTF)2X, α-(BEDT-TTF)2I3, and α-(BEDT-TTF)2MHg(SCN)4 were described us-
ing the Mott–Hubbard Hamiltonian. By varying the on-site energy U , the dimerization energy
(tb1), and the kinetic energy (tb4), a paramagnetic metal, an antiferromagnetic metal, and fi-
nally an insulating antiferromagnetic ground state were obtained. As pointed out by McKenzie
in his 1997 paper [79], this work provided a frame work for modifying the Hubbard Hamil-
tonian (i.e., the extended Hubbard model) to allow predictions for the superconducting ground
state, the pair interaction, and the symmetry. In 1998, Schmalian [80] used a two-band model
and the tight binding parameters to treat the problem of κ-(BEDT-TTF)2X. This system is
dimerized, half-filled, and the two parameters U and t (the onsite repulsion and interdimer
hopping elements, respectively) were used in the model. It was shown that there was a transi-
tion, at 13 K, to a superconducting state, mediated by spin fluctuations, with d-wave pairing
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Figure 12.14. The triangular lattice relationship in the kappa stacking system. In 1/2 filling, each BEDT-TTF dimer
has one electron and spin. For t ′ > t , AF order is favored in addition to a Mott insulator, but for t ′ = t , spin frustration
can suppress AF order even in the Mott insulating phase.

closely related to dx2−y2 symmetry. Subsequently, Merino and McKenzie [72] considered the
1/4 filled case of θ and β ′′ structures. In this case, the extended Hubbard Hamiltonian includes
the intersite interaction V and the transfer energies t . U is set to infinity. They find an attrac-
tive interaction, mediated by charge fluctuations, with dxy symmetry. A quantum critical point
at (V/t)c between the metallic-superconducting and charge ordered state is also predicted
(see Figure 12.13 above).

The approximation of the kappa-stacking motif shown in Figure 12.3 has also been
viewed in terms of a triangular lattice, as can be seen in Figure 12.14. As pointed out by
McKenzie [81], the kappa stacking in the dimerized 1/2 filled case can be viewed as a spin
1/2 triangular lattice system with two transfer integrals t and t ′, that is, a Hubbard model
on an anisotropic triangular lattice with one electron and spin per site. For relative values
of U , t , and t ′, AF, SDW or SC, PM, and decoupled chain ground states emerge from the
model. This has motivated a number of uniaxial stress/strain studies that can vary the in-
plane lattice parameters, thereby altering the relative values of t and t ′. For instance, as
t → t ′, SC will be favored since AF order will be reduced due to the onset of spin frus-
tration. The effects of uniaxial pressure on organic conductors has been recently reviewed by
Kagoshima and Kondo [82]. Initial studies on κ-(BEDT-TTF)2Cu(NCS)2 have been promis-
ing, where Tc showed a nonmonotonic dependence on in-plane stress/strain, but the results
were not fully conclusive [83, 84]. There is a tendency for spin frustration when t and t ′ be-
come equal, an example of which is κ-(BEDT-TTF)2Cu2(CN)3 where t ′/t = 1.06. Although
κ-(BEDT-TTF)2Cu2(CN)3 is a Mott insulator at low temperatures, there is no magnetic or-
der at least to 34 mK, a characteristic of a spin liquid system and under either uniaxial strain
or hydrostatic pressure κ-(BEDT-TTF)2Cu2(CN)3 becomes superconducting (Tc ≤ 3.9 K)
[67, 68, 85]. Hence, there is no proximity of an AF insulating phase to the superconducting
phase, as in the case of κ-(BEDT-TTF)2Cu[N(CN)2]Cl where t ′/t = 0.75 and the AF phase
does meet the SC phase (see Figure 12.10 above).

The 1/4 filled systems can under go charge ordering, but in the event that the trans-
fer integrals t can be modified experimentally, superconductivity can be induced (see Seo
et al. [76] for a recent review.), and several examples where the SC phase does not border an
AF phase should be mentioned. Tajima et al. [75] have applied a-axis strain to the material
α-(BEDT-TTF)2I3 which is insulating below 135 K at ambient pressure due to charge order.
Here they find that with increasing a-axis in-plane strain, the material becomes supercon-
ducting around 3 kbar, and at higher strain becomes a semiconductor. The same group [86]
has also induced an insulating to superconducting transition in θ-(DIETS)2[Au(CN)4] under
about 10 kbar of uniaxial c-axis strain. However, in this case, inter-plane strain is used to
move the donor molecules closer together laterally, so the mechanism is slightly different.
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Returning finally to the issue of AF/SC proximity, it is important to note that other mod-
els besides the Hubbard model that treat the proximity of antiferromagnetic and superconduc-
tivity, such as the SO(5) renormalization group approach [87]. Here a rotational symmetry
between the AF and SC states is found which is consistent with d-wave symmetry, and also
with NMR experiments as discussed in the next section.

12.4.3. But What if it is Really Just Phonons?

Girlando and coworkers [88, 89] have considered the problem of superconductivity
in the BEDT-TTF salts from the point of view of phonon interactions. They find that both
the electron–lattice phonon coupling and the electron–molecular vibration couplings are
necessary for pairing. Starting from the Eliashberg function obtained from the computed
phonon and vibrational spectrum, the Allen-McMillan equation is used to compute Tc for
κ-(BEDT-TTF)2I3 and β∗-(BEDT-TTF)2I3. They obtain reasonable agreement with the ex-
perimental Tc’s (3.4 an 8.1 K, respectively) and with the specific heat jumps at Tc. They con-
clude that “phonons are mainly responsible for the coupling mechanism” in the BEDT-TTF
systems, and that many different kinds of “entangled” phonon modes are involved, where
the interaction terms (λ = 0.91 and 0.74 for β∗ and κ , respectively) are in the moderate to
strong coupling regime. They note, however, that even with an accounting of all of the phonon
modes, in for instance the kappa phase, that the Tc values for κ-(BEDT-TTF)2Cu(NCS)2
(10.4 K) and κ-(BEDT-TTF)2Cu[N(CN)2]Br (11.5 K) are too large to be computed from the
phonon/vibration spectrum alone. So again, the close proximity of these systems to antiferro-
magnetic order may indicate that electron–electron interactions also play an important role.
It would be interesting to see to what extent the very high sensitivity of Tc to pressure and
uniaxial stress or strain (see Figure 12.9b) could be accounted for by changes in the phonon
spectrum and tight binding parameters. Our own early work [58, 90] indicated that pressure
induced lattice changes alone were not sufficient to account for the changes in Tc and m∗.

12.5. “Unconventional” Properties of Organic Superconductors

12.5.1. Q1D Materials and p-Wave Pairing

Even in the very early days of organic superconductivity, there was discussion [91] of
the superconductivity in (TMTSF)2X being unconventional, and perhaps p-wave in character.
In a series of beautiful experiments first motivated by the theoretical work of Lebed [37, 92,
93], Naughton, Chaikin, Lee, Brown, and coworkers [94–96] have explored this possibility
in great detail, and they have found strong evidence for unconventional superconductivity
in both (TMTSF)2ClO4 and (TMTSF)2PF6. A key step was the precise study of the upper
critical field of these materials where the magnetic field was aligned precisely parallel to the
conducting planes (the a–b′ plane direction), thereby excluding Abrikosov vortex states. The
results for B//b′ are shown in Figure 12.15. Since Tc is of order 1.2 K, the corresponding Pauli
limit Hc2 ∼ 1.84 Tc ∼ 2.2 T is exceeded in all cases where the field is in the a (not shown)
or b′ directions. Moreover, there appears to be an upward curvature in Hc2 at the lowest
temperature. In the simplest model, if the pairing is p-wave, then the magnetic field will not
break the Cooper pair since the spins are already polarized. To further check this possibility,
NMR was used to monitor the Knight shift upon crossing Tc in (TMTSF)2PF6 for H//b′. As
shown in Figure 12.15, there was no observable Knight shift, a finding consistent with the
fact that no singlet pairing occurs in a p-wave transition. For s-wave pairing, the pairs form a
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Figure 12.15. Upper critical fields for (TMTSF)2PF6 (6 kbar, solid squares [95]) determined from transport and
(TMTSF)2ClO4 (solid circles [96]) from both transport and magnetization. The normalized susceptibility from NMR
Knight shift measurements (open squares) for (TMTSF)2PF6 is also shown on the left axis [94]. In all cases, the
magnetic field is precisely aligned in the conducting planes in the b′-axis direction.

singlet spin state, the spin susceptibility vanishes, and this would provide a clear Knight shift
below Tc, which is not observed experimentally.

12.5.2. Q2D Materials and d-Wave Pairing

The κ-(BEDT-TTF)2X materials (predominantly X = Cu(NCS)2 and Cu[N(CN)2]Br)
show experimental evidence for unconventional superconductivity based on a number of
different measurements including NMR, penetration depth, isotope effects, specific heat,
etc. However, the pairing mechanism and the symmetry remain controversial, since there
are contradictory experiments and interpretations in the literature, as recently discussed by
Wosnitza [33] and also Miyagawa et al. [39]. Residing strongly on the conventional side of
the argument (see Figure 12.16) are experiments like the careful specific heat work on κ-
(BEDT-TTF)2Cu[N(CN)2]Br which shows a fully gapped, strong coupling behavior [44]
and also measurments of the temperature dependent penetration depth λ(T ) (determined
from the reversible magnetization [97]), which indicate that λ(T ) is well-described by a
conventional BCS description below Tc for both κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-
(BEDT-TTF)2Cu(NCS)2. These results contradict a simple d-wave pairing mechanism where
nodes in the gap would not allow manifestations of a fully gapped order parameter. However,
equally careful NMR experiments [39,98,99] show no Hebel-Slichter peak and a T 3 tempera-
ture dependence for the NMR relaxation rate, both indicating nodes in the gap. All other NMR
studies are consistent with these results [100, 101]. A summary of NMR results from [39] is
shown in Figure 12.17a. The one caveat concerning NMR experiments is that a finite mag-
netic field is needed to make the measurements in the superconducting state, although care is
taken to minimize possible vortex related effects by careful sample alignment (see inset of Fig-
ure 12.17a.). Further support for non-s-wave superconductivity is the temperature dependence
of the penetration depth for κ-(BEDT-TTF)2X which exhibits a λ ∼ T 3/2 dependence [102]
as shown in Figure 12.17b. This further confirmation that a gap with nodes is present.
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Figure 12.16. Evidence for s-wave superconductivity in κ-(BEDT-TTF)2Cu[N(CN)2]Br. (a) Specific heat (re-
drawn from Elsinger et al. [44] ). Dashed line is the s-wave, strong coupling fit to the data. (b) Temperature penetration
depth λ(T ) for two κ-phase superconductors (re-drawn after Ref. [97]). BCS theory (dashed lines) well describe λ(T )
for both compounds at low temperature.

One final topic in this section of importance is tunneling. Arai and coworkers [103]
performed scanning tunneling microscope (STM) spectroscopy measurements on κ-(BEDT-
TTF)2Cu(NCS)2 for T/Tc ∼ 0.15 normal to the b–c conducting plane, and also along the
edges of the sample in the b-c plane. For the former case, they satisfactorily modeled the
differential conductance data using an approximate ∆ = ∆0 cos(2θ) form characteristic of
d-wave symmetry where ∆0 = 3 meV. In the latter case, for the in-plane tunneling at the
edges, they observed an angle dependent gap which varied from 5.7 meV in the c-direction
to 4 meV near the expected d-wave nodal direction (see Figure 12.18) where they took into
account the k-dependence of the tunneling matrix. Based on the symmetry of the electronic
structure, the STM results are consistent with dx2−y2 symmetry, where the nodal direction is
π/4 between the kb and kc axes.

12.5.3. Magnetic Field Induced Superconductivity and Possible FFLO States

A very important and relatively recent discovery is the observation of a magnetic field
induced superconducting state in λ-(BEDT-TSF)2FeCl4 by Uji and coworkers [104]. This
novel ground state emerges from the more conventional anisotropic type II superconducting
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Figure 12.17. Evidence for d-wave paring. (a) NMR data for κ-(BEDT-TTF)2Cu(NCS)2 for B//a − c plane (re-
drawn from Miyagawa et al. [39]) vs. T/Tc (Tc ∼ 10.4 K). Main panel: 13C NMR relaxation rate 1/T1 exhibits a
power law in T below Tc. Inset: angular dependence of 1H NMR relaxation time vs. magnetic field direction at 5 K.
θ = 0 represents B//a–c plane. Upper panel: Knight shift for 13C NMR data for θ = 0. (b) Penetration depth data
for κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-(BEDT-TTF)2Cu(NCS)2 showing a T 3/2 dependence on temperature
(redrawn after Carrington et al. [102]).

state of the nonmagnetic λ-(BEDT-TSF)2GaCl4 as Fe (with spin 3/2 d electrons) is substituted
for nonmagnetic Ga in the alloy sequence λ-(BEDT-TSF)2FexGa1−x Cl4 for 0 < x < 1,
as shown in the global phase diagram [105] in Figure 12.19. As the Fex concentration in-
creases, the π−d exchange interaction between the donor orbitals and the d-electron spins in-
creases, thereby stabilizing an antiferromagnetic, insulating ground state. In magnetic fields,
the AFI state is suppressed, and a paramagnetic metallic state is stabilized. For magnetic fields
precisely aligned parallel to the conducting planes, the π−d exchange field J will be cancelled
for some value of the external field, and superconductivity can then be stabilized over a range
of total internal magnetic field (B = Bext + |J |) less than the Pauli limiting field (∼11 T for
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Figure 12.18. Schematic representation of in-plane STM measurements [103] of the superconducting gap in κ-
(BEDT-TTF)2Cu(NCS)2 for T/Tc ∼ 0.15. The gap (solid circles) for θ = 0 is = 5.7 meV, and diminishes to 4 meV
near the expected d-wave node line.

x = 0). By inspection of Figure 12.19, the superconducting phase diagram for x = 0 is es-
sentially displaced with increasing x , and for x = 1 appears symmetrically for ∼ ± 14 T with
respect to the external field (Bext ∼ 32 T). In Figure 12.20 the critical field phase diagram for
λ-(BEDT-TSF)2GaCl4 has been displaced (graphically) by the value exchange field to show
the similarity with the field induced superconducting state for λ-(BEDT-TSF)2FeCl4. The
exchange field cancellation mechanism, first observed in the Chevrel materials, is due to the
Jaccarino−Peter effect [106]. A splitting of the Shubnikov−de Haas oscillation frequencies
is observed for magnetic field perpendicular to the conducting planes [107], which is directly
proportional to the Fex concentration and thereby the exchange field J . More recently, the
same behavior has been beautifully demonstrated by Konike et al. [108] in the related com-
pound κ-(BEDT-TSF)2FeBr4.

A closer look at the nature of the Hc2 phase diagram near the effective Pauli field for
the λ-(BEDT-TSF)2Fex Ga1−x Cl4 systems shows an indication of “wings” for T → 0 near
or greater than the upper or lower Pauli limiting fields, as indicated in Figure 12.20. Both
theoretical [38, 109] and experimental [110, 111] work has suggested the possibility that this
behavior is related to the Fulde−Ferrell−Larkin−Ovchinnikov [112, 113] (FFLO) ground
state. In the FFLO state, the superconducting order parameter is expected to oscillate with a
period λ in real space. This has interesting implications for the pinning of inter-plane Joseph-
son vortices since as a function of in-plane magnetic field, there can be a commensurability
relation between the field dependent distribution of the vortices and λ. Here the nodes of the
order parameter can provide pinning sites for the vortices. This has been investigated by Uji
et al. [114] through current density dependent transport measurements in the Josephson vortex
state, where strong evidence for field dependent-commensurate pinning effects are present in
the “wings” of the FISC phase diagram. In a second investigation, Tanatar et al. [115] have
investigated the thermal conductivity near the upper critical field of λ-(BEDT-TSF)2GaCl4
for samples of different impurity levels, and find that the “wing” structure (see Figure 12.20)
is most evident in the more pure samples, which is again consistent with a FFLO ground state.

FFLO-like signatures have also been seen via structure in the susceptibility upon passing
through the upper critical field region of κ-(BEDT-TTF)2Cu(SCN)2 for T < Tc/2 [116], and
in another report of additional structure in the upper critical field via transport measurements
by Su et al. [31], also for T < Tc/2.
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Figure 12.19. Global phase diagram for λ-(BETS)2FexGa1−xCl4 [105] for B//c. For increasing Fe concentration,
the field induced superconducting state appears at higher magnetic fields. The shaded areas are the predicted super-
conducting phases based on the Jaccarino−Peter exchange-field cancellation model [106].

12.6. Comparison of High Tc Superconductors with Organic

Conductors

In this section, we summarize the likenesses and differences between organic supercon-
ductors and the cuprates, ruthenates, etc.

Similarities: Following McKenzie [79] (and also earlier comparisons [3]), both systems
share the following general characteristics:

• They are layered and anisotropic in their physical properties.
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Figure 12.20. Phase diagram for λ-(BEDT-TSF)2FeCl4 [104, 117] and λ-(BEDT-TSF)2GaCl4 [115] displaced
graphically by the value of the exchange field. The field is directed parallel to the conducting planes along the c-axis.
At low temperatures, “wings” appear in the FISC critical fields (upper and lower) that exceed the Pauli limit, and
which may be evidence for the FFLO state [114].

• Antiferromagnetic and superconducting ground states can be in close proximity.
• In the phase diagrams, which bear many strong similarities, pressure (and/or U, V, and t)

in organic systems replaces doping in the cuprates.
• Metallic phases can be nonFermi liquid like, kFl is small, and there is evidence for

pseudogap behavior in properties like the optical conductivity [74] and in NMR where
1/T1 can be orders of magnitude too large for normal Fermi liquid behavior [39].

• In the Q2D organic systems and the cuprates there is strong evidence for d-wave
symmetry.

• From a theoretical standpoint, the ground states of organic systems follow from the
extended Mott–Hubbard Hamiltonian, and McKenzie suggested that the formalism
of Kino and Fukuyama [78] be extended to include superconductivity. As discussed
above in Section 12.5, subsequent work showed that in different cases charge [72] or
spin [80] fluctuations could lead to superconductivity with d-wave symmetry.

• That FFLO states may be similar between the BETS systems and the 115 materials
[118].

• That comparisons for p-wave symmetry may be made between the Q1D systems and
the Ruthenates [119].

Differences. Again, following McKenzie [79], we may again consider the comparison above
that “pressure (and/or U, V, and t) in organic systems replaces doping in the cuprates.” Re-
cently Pratt and Blundell [120] used muon spin resonance/relaxation (µSR) to measure the
penetration depth λ of a series of organic conductors. (λ is related to the superfluid stiffness
ρs = c2/λ2.) A plot of Tc vs. 1/λ2 for a series of superconductors is known as a “Uemura
plot” [121], which yields a scaling relationship for materials of a particular superconduct-
ing family. Previously the cuprates had been treated by Uemura et al. [122], and then more



488 J. S. Brooks

Figure 12.21. The “Uemura plot” of Tc vs. inverse penetration depth 1/λ2 ( or superfluid stiffness ρs/c2) for
organic (solid dots) [120], cuprate and elemental superconductors (open circles) [123] (redrawn after [120]), and
underdoped YBCO [124].

recently by Homes et al. [123]. In the latter case, a scaling of ρs to σ(Tc)Tc (the product of
Tc with the conductivity at Tc) was found to give a complete scaling of the data. However,
for the organic conductors, Pratt and Blundell found that Tc scales as ρs

3/2, and that when
plotted on a log−log scale, the two systems (organic vs. cuprates) clearly do not follow the
same scaling relationship [120]. The “Uemura plot” for both systems is given in Figure 12.21.
A possible argument made to explain the difference is simply that in the organics, the charge
transfer (doping if you will) remains fixed, and it is only the details of the molecular structure
(stacking motif, unit cell volume, anion and cation species, etc.) that change Tc. In contrast,
Tc in the cuprates is generally controlled by the doping. Another obvious difference is that
organic conductors are basically low Tc, and in the absence of doping variation other factors
and energy scales will be important. However, recently Broun et al. [124] systematically stud-
ied a single sample of YBCO as it progressively self doped on the under-doped side of the
phase diagram, where Tc is also lower. Here the scaling was found to be Tc ∼ ρs

1/2, which is
distinctly different from both the organic and more optimally doped cuprates.

In the above, it is clear that to make stronger links and comparisons between the two
systems, two things are probably necessary (a) figure out how to get to higher Tc in the organic
charge transfer systems and break the 15 K barrier shown in Figure 12.6 and (b) figure out how
to dope the organic systems to get away from the rigid rules of D2A charge transfer. Both tasks
are formidable.

12.7. Summary and Future Prospects

I think the essence of this chapter, if the reader wants to quickly take away a message
about organic conductors, goes something like this.
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Q2D. The molecular structures that comprise organic conductors are complex systems,
and there are a lot of things going on. However, because of the unique nature of the D2A
charge transfer and the lattice-like stacking of the donor molecules, the Q2D organic materials
are essentially Hubbard models with either 1/4 or 1/2 band fillings. Starting with the tight
binding model and optical data to get the parameters needed to formulate an extended Hubbard
model Hamiltonian, theorists can go a long way in developing realistic phase diagrams. It
seems a triumph in this respect has been the consideration of the triangular lattice model,
and its consequences in spin frustration and in-plane uniaxial pressure induced ground states,
including superconductivity. In all of the above, there is a theme that in 1/2 filled systems
AF and SC states are in proximity, and in 1/4 filled systems CO and SC can be in proximity.
The models now can predict transition temperatures, order parameter symmetries, and the
nature of the interaction (charge or spin). However, experimentally, careful measurements on
Q2D systems fall on both sides of the interaction and symmetry questions: strong coupling
(mostly phonon) s-wave (perhaps anisotropic s-wave) represents one camp; and d-wave AF
mediated interactions represent the other camp. Hence more experimental work is needed
to resolve these issues. Since unconventional parings states are expected to be sensitive to
impurities sample quality [125] and also lower temperatures [126] will need to be considered
as priorities in future studies to access a fully developed ground state.

Q1D. In the 1/4 filled Fabre and Bechgaard systems, variations in the inter-chain cou-
pling and 1D instabilities (Peierls, band nesting, etc.), and the expected enhancement of inter-
actions due to the 1D nature make the modeling situation a bit more complex, but there has
been progress in using Mott−Hubbard models to describe these systems, as recently discussed
by Giamarchi [71]. It is interesting to note that in (TMTSF)2PF6 the SDW and SC phases co-
exist at their boundary (see Figure 12.9), whereas in the κ-(BEDT-TTF)2X systems, the AF
insulating and SC phases seem to be more exclusive (see Figure 12.10). In terms of pairing,
the work on the Bechgaard salts provides evidence for p-wave pairing with no contradictory
experimental results at this time.

Functionalization, Synthesis, and the Future. By synthesizing new materials with
supramolecular structures, or hybrid metallic or magnetic characteristics, or modifying the
2:1 charge transfer, these materials can go in entirely new directions distinct from the two
basic scenarios described above. An emerging area is to consider biomolecules as compo-
nents of charge transfer systems, or other novel arrangements of complex and/or function-
alized structures. Doping away from the rigid D2A charge transfer would open a whole
new area of comparisons with the cuprates and other perovskite systems. And, going to the
other extreme, by synthesizing materials that are less complex, i.e., more one-dimensional, or
more two- dimensional, the gap between modeling and experiment could perhaps be closed
a bit.

Appendix I. Further Reading in the Area of Organic Conductors

To aid in accessing a deeper (and more accurate!) account of the topics involving organic
conductor science, the following references are offered.

In terms of current reviews and proceedings, a superb up-to-date account of the subject
is given in the review “Molecular Conductors” edited by Batail in Chemical Reviews, 104
(2004). Here, 32 review papers cover in detail most current aspects of the field in synthesis,
physical properties (including techniques), and theory, and many topics not covered in the
present chapter including optics, high magnetic fields, magnetic complexes, X-ray studies,
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etc. are accessible in this comprehensive review. The treatise on Q1D systems by Jerome and
Schulz [127] is a classic. The most recent proceedings of the International Symposium on
Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM) also covers most
of the topics relevant to molecular materials as well [128]. A slightly older, but very compre-
hensive review edited by Bernier et al. [129] is also very informative, and covers a wider rep-
resentation of synthetic organic materials. The Handbook of Organic Conductive Molecules
and Polymers, edited by H. Nalwa (Wiley, New York, 1997) is again a very comprehensive
account of both crystalline and polymeric materials.

As for books, monographs, and earlier work, one of the most comprehensive books on
the subject is by Ishiguro, Yamaji, and Saito [21] which has an advantage in that it was writ-
ten by an experimentalist, a theorist, and a synthetic chemist. Likewise, Williams and seven
coauthors with diverse expertise [29] cover the areas of “synthesis, structure, properties, and
theory”. In the area of magnetic fields, Wosnitza gives a careful expose of Fermiology [22], as
has Singleton [23, 130]. Lang has focused on superconductivity in the Q2D systems [131]. In
1990, Kresin and Little held a conference on Organic Superconductivity that nicely punctu-
ated the field shortly after the discovery of High Tc, where four of the papers discuss compar-
isons between organic conductors and high Tc oxides [3]. Recently Brooks and Chung have
reviewed Q1D systems in high magnetic fields [132]. Further reading on organic supercon-
ductors can be found in a recent springer series on super conductivity [133], and Wosnitze
has recently completed on updated review [134]. Finally, Powell and Mckenzie have carried
out a systematic treatment of electron correlation effects in organic materials, as outlined in a
recent review and in a series of previous paper [135].
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13
Numerical Studies of the 2D Hubbard
Model

D. J. Scalapino

Numerical studies of the two-dimensional Hubbard model have shown that it exhibits the basic phenom-
ena seen in the cuprate materials. At half-filling one finds an antiferromagnetic Mott–Hubbard ground-
state. When it is doped, a pseudogap appears and at low temperature d-wave pairing and striped states
are seen. In addition, there is a delicate balance between these various phases. Here we review evidence
for this and then discuss what numerical studies tell us about the structure of the interaction which is
responsible for pairing in this model.

13.1. Introduction

A variety of numerical methods have been used to study Hubbard and t–J models and
there are a number of excellent reviews [1–8]. The approaches have ranged from Lanczos
diagonalization [1, 2, 9–11] of small clusters to density-matrix-renormalization-group stud-
ies of n-leg ladders [8, 12–14] and quantum Monte Carlo simulations of two-dimensional
lattices [3, 15–24]. In addition, recent cluster generalizations of dynamic mean-field the-
ory [4, 6, 7, 25–33] are providing new insight into the low temperature properties of these
models. A significant finding of these numerical studies is that these basic models can
exhibit antiferromagnetism, stripes, pseudogap behavior, and dx2−y2 pairing. In addition,
the numerical studies have shown how delicately balanced these models are between nearly
degenerate phases. Doping away from half-filling can tip the balance from antiferromagnetism
to a striped state in which half-filled domain walls separate π -phase-shifted antiferromagnetic
regions. Altering the next-near-neighbor hopping t ′ or the strength of U can favor dx2−y2 pair-
ing correlations over stripes. This delicate balance is also seen in the different results obtained
using different numerical techniques for the same model. For example, density matrix renor-
malization group (DMRG) calculations for doped 8-leg t–J ladders find evidence for a striped
ground state [12]. However, variational and Green’s function Monte Carlo calculations for the
doped t–J lattice, pioneered by Sorella and co-workers [23, 24], find groundstates charac-
terized by dx2−y2 superconducting order with only weak signs of stripes. Similarly, DMRG
calculations for doped 6-leg Hubbard ladders [14] find stripes when the ratio of U to the
near-neighbor hopping t is greater than 3, while various cluster calculations [27, 30–33] find
evidence that antiferromagnetism and dx2−y2 superconductivity compete in this same para-
meter regime. These techniques represent present day state-of-the-art numerical approaches.
The fact that they can give different results may reflect the influence of different boundary
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conditions or different aspect ratios of the lattices that were studied. The n-leg open bound-
ary conditions in the DMRG calculations can favor stripe formation. Alternately, the cluster
lattice sizes and boundary conditions can frustrate stripe formation. It is also possible that
these differences reflect subtle numerical biases in the different numerical methods. Neverthe-
less, these results taken together show that both the striped and the dx2−y2 superconducting
phases are nearly degenerate low energy states of the doped system. Determinantal quantum
Monte Carlo calculations [21] as well as various cluster calculations show that the underdoped
Hubbard model also exhibits pseudogap phenomena [27–32]. The remarkable similarity of
this behavior to the range of phenomena observed in the cuprates provides strong evidence
that the Hubbard and t–J models indeed contain a significant amount of the essential physics
of the problem [34].

In this chapter, we will focus on the one-band Hubbard model. Section 13.2 provides
an overview of the numerical methods which were used to obtain the results that will be dis-
cussed. We have selected three methods, determinantal quantum Monte Carlo, the dynamic
cluster approximation and the density matrix renormalization group. In principle, these meth-
ods provide unbiased approaches which can be extrapolated to the bulk limit or in the case of
the DMRG to “infinite length” ladders. This choice has left out many other important tech-
niques such as the zero variance extrapolation of projector Monte Carlo [23, 24], variational
cluster approximations [25, 26, 29–32], renormalization group flow techniques [35–37], high
temperature series expansions [38–40], and the list undoubtedly goes on. It was motivated by
the need to write about methods with which I have direct experience.

In Section 13.3 we review the numerical evidence showing that the Hubbard model
can indeed exhibit antiferromagnetic, dx2−y2 pairing and striped low-lying states as well as
pseudogap phenomena. From this we conclude that the Hubbard model provides a basic de-
scription of the cuprates, so that the next question is what is the interaction that leads to
pairing in this model? From a numerical approach, this question is different from determining
whether the groundstate is antiferromagnetic, striped, or superconducting. Here, one would
like to understand the structure of the underlying effective interaction that leads to pairing.
Although on the surface this might seem like a more difficult question to address numerically,
it is in fact easier than determining the nature of the long-range order of the low temperature
phase. The phase determination problem involves an extrapolation to an infinite lattice at low,
or in the case of antiferromagnetism, to zero temperature. However, the pairing interaction is
short ranged and is formed at a temperature above the superconducting transition so that it
can be studied on smaller clusters and at higher temperatures.

As discussed in Section 13.4, the effective pairing interaction is given by the irreducible
particle–particle vertex Γ pp. Using Monte Carlo results for the one- and two-particle Green’s
functions, one can determine Γ pp and examine its momentum and Matsubara frequency de-
pendence [41, 42]. One can also determine if it is primarily mediated by a particle–hole mag-
netic (S = 1) exchange, a charge density (S = 0) exchange, or by a more complex mechanism.
Section 13.5 contains a summary and our conclusions.

13.2. Numerical Techniques

In this chapter we will be reviewing numerical results which have been obtained for
the 2D Hubbard model. It would, of course, be simplest if one could say that these results
were obtained by “exact” diagonalization on a sequence of L × L lattices with a “finite-size
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scaling” analysis used to determine the bulk limit. While one might not know the exact details
of how this was done, one understands what it means. Unfortunately the exponential growth
of the Hilbert space with lattice size limits this approach and other less familiar and often less
transparent methods are required.

In this chapter, we will discuss results obtained using the determinantal quantum Monte
Carlo algorithm [16, 43], a dynamic cluster approximation [6, 27], and the density matrix
renormalization group [5, 44, 45]. All of these methods have been described in detail in the
literature. However, to provide a context for the numerical results discussed in Sections 13.3
and 13.4, we proceed with a brief overview of these techniques.

13.2.1. Determinantal Quantum Monte Carlo

The determinantal quantum Monte Carlo method was introduced in order to numerically
calculate finite temperature expectation values:

〈A〉 = Tr e−βH A
z

. (13.1)

Here, H includes −µN so that Z = Tr e−βH is the grand partition function.
For the Hubbard model, the Hamiltonian is separated into a one-body term

K = −t
∑

〈i j〉σ

(
c†

iσ c jσ + c†
jσ ciσ

)
− µ

∑

iσ

niσ (13.2)

and an interaction term

V = U
∑

i

(

ni↑ − 1
2

) (

ni↓ − 1
2

)

. (13.3)

Then, dividing the imaginary time interval (0, β) into M segments of width 
τ , we have

e−βH =
[
e−
τ(K+V )

]M �
[
e−
τK e−
τV

]M
. (13.4)

In the last term, a Trotter breakup has been used to separate the noncommuting operators K
and V . This leads to errors of order tU
τ 2 which can be systematically treated by reducing
the size of the time slice 
τ . Then, on each τ$ = $
τ slice and for each lattice site i , a
discrete Hubbard–Stratonovich field [46] Si (τ$) = ±1 is introduced so that the interaction
can be written as a one-body term

e
−
τU

(
ni↑− 1

2

) (
ni↓− 1

2

)

= e−
τU
4

2

∑

Si (τ$)=±1

e−
τλSi (τ$) (ni↑−ni↓) (13.5)

with λ set by cosh(
τλ) = exp(
τ U
2 ). The interacting electron problem has now been re-

placed by the problem of many electrons coupled to a τ -dependent Hubbard–Stratonovich
Ising field Si (τ$) which is to be averaged over. This average will be done by Monte Carlo
importance sampling.

For an L × L lattice, it is useful to introduce a one-body L2 × L2 lattice Hamiltonian
hσ (S(τ$)) for spin σ electrons interacting with the Hubbard–Stratonovich field on the
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τ$-imaginary time slice
∑

〈i j〉
c†

iσ hσ (S(τ$))c jσ = −t
∑

〈i j〉

(
c†

iσ c jσ + c†
jσ ciσ

)

−µ
∑

i

niσ ± λ
∑

i

Si (τ$) niσ . (13.6)

The plus sign is for spin-up (σ = 1) and the minus sign is for spin-down (σ = −1). Then,
tracing out the fermion degrees of freedom, one obtains

Z =
∑

{S}
det M↑(S) det M↓(S) . (13.7)

The sum is over all configurations of the Si (τ$) field and Mσ (S) is an L2 × L2 matrix which
depends upon this field

Mσ (S) = I + Bσ
M Bσ

M−1 · · · Bσ
1 . (13.8)

I is the unit L2 × L2 matrix and Bσ
$ = e−
τhσ (S(τ$)) acts as an imaginary time propagator

which evolves a state from ($− 1)
τ to $
τ .
The expectation value 〈A〉 becomes

〈A〉 =
∑

{S}
A(S)

det M↑(S) det M↓(S)
Z

(13.9)

with A(S) the estimator for the operation A which depends only upon the Hubbard–
Stratonovich field. Typically, we are interested in Green’s functions. For example, the
estimator for the one-electron Green’s function is

Gi jσ (τ$, (S)) = 1
1 + Bσ

M Bσ
M−1 · · · Bσ

1
Bσ
$ Bσ

$−1 · · · Bσ
1 (13.10)

and
Gi jσ (τ$) =

∑

{S}
Gi j (T$, (S))

det M↑(S) det M↓(S)
Z

. (13.11)

The calculations of various susceptibilities and multiparticle Green’s functions are straight-
forward since once the Hubbard–Stratonovich transformation is introduced, one has a Wick
theorem for the fermion operators. The only thing that one needs to remember is that dis-
connected diagrams must be retained because they can become connected by the subsequent
average over the Si (τ$) field.

In computing the product of the B matrices, one must be careful to control round-off
errors as the number of products becomes large at low temperatures or at large U where 
τ
must be small. In addition, there can be problems inverting the ill-conditioned sum of the unit
matrix I and the product of the B matrices needed in Eqs. (13.8) and (13.10). Fortunately, a
matrix stabilization procedure [16] overcomes these difficulties.

For the half-filled case (µ = 0), provided there is only a near-neighbor hopping, H is
invariant under the particle–hole transformation ci↓ = (−1)i c†

i↓. Under this transformation,
the last term in Eq. (13.6) for σ = −1 becomes

−λ
∑

i

Si (τ$) (1 − ni↓) (13.12)
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so that
det M↓(S) =

∏

i$

eλ
τ Si (τ$)det M↑(S). (13.13)

This means that det M↑(S) det M↓(S) is positive definite. In this case, the sum over the
Hubbard–Stratonovich configurations can be done by Monte Carlo importance sampling with
the probability of a particular configuration {S(τ$)} given by

P(S) = det M↑(S) det M↓(S)
Z

. (13.14)

Given M-independent configurations, selected according to the probability distribution
Eq. (13.14), the expectation value of A is

〈A〉 = 1
M

∑

{S}
A(S) . (13.15)

When the system is doped away from half-filling, the product det M↑(S) det M↓(S)
can become negative. This is the so-called “fermion sign problem.” In this case, one must
use the absolute value of the product of determinants to have a positive definite probability
distribution for the Hubbard–Stratonovich configurations:

P‖(S) = |det M↑(S) det M↓(S)|
∑

{S}
|det M↑(S) det M↓(S)| . (13.16)

Then, in order to obtain the correct results for physical observables, one must include the sign
of the product of determinants [47]

s = Sgn(det M↑(S) det M↓(S)) (13.17)

in the measurement
〈A〉 = 〈As〉‖

〈s〉‖ . (13.18)

The ‖ subscript denotes that the average is over configurations generated with the probability
distribution P‖ given by Eq. (13.16). If the average sign 〈s〉‖ becomes small, there will be large
statistical fluctuations in the Monte Carlo results. For example, if 〈s〉‖ = 0.1, one would have
to sample of the order of 102 times as many independent configurations in order to obtain the
same statistical error as when 〈s〉‖ = 1. On general grounds, one expects that 〈s〉‖ decreases
exponentially as the temperature is lowered.

The average sign 〈s〉‖ also decreases as U increases and makes it (exponentially) diffi-
cult to obtain results at low temperatures for U of order the bandwidth and dopings of interest.
Figure 13.1 illustrates just how serious this problem is and why other methods are required.

13.2.2. The Dynamic Cluster Approximation

In the determinantal quantum Monte Carlo approach, one could imagine carrying out
calculations on a set of L × L lattices and then scaling to the bulk thermodynamic limit.
The dynamic cluster approximation [6] takes a different approach in which the bulk lattice is
replaced by an effective cluster problem embedded in an external bath designed to represent
the remaining degrees of freedom. In contrast to numerical studies of finite-sized systems in
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Figure 13.1. The average of the sign of the product of the fermion determinants, Eq. (13.17), that enters in the
determinantal Monte Carlo calculations is shown vs. temperature for an 8 × 8 lattice with U = 8t and 〈n〉 = 0.87.
One can understand why calculations for U = 8t with T < 0.3 become extremely difficult (Scalapino [19]).
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∆ K
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Figure 13.2. In the dynamic cluster approximation the Brillouin zone is divided into Nc cells each represented
by a cluster momentum K. Then the self-energy and 4-point vertices are calculated on the cluster using an action
determined by the inverse of the coarse-grained cluster-excluded propagator G−1(K, ωn), Eq. (13.21). This figure
illustrates this coarse graining of the Brillouin for Nc = 4 (Maier et al. [6]).

which the exact state of an L × L lattice is determined and then regarded as an approximation
to the bulk thermodynamic result, the cluster theories give approximate results for the bulk
thermodynamic limit. Then, as the number of cluster sites increases, the bulk thermodynamic
result is approached.

In the dynamic cluster approximation, the Brillouin zone is divided into Nc = L2 cells
of size (2π/L)2. As illustrated in Figure 13.2, each cell is represented by a cluster momentum
K placed at the center of the cell. Then the self-energy �(k, ωn) is approximated by a coarse
grained self-energy

�(K + k′, wn) � �c(K, ωn) (13.19)

for each k′ within the Kth cell. The coarse grained Green’s function is given by

Ḡ(K, ωn) ∼= Nc

N

∑

k′

1
iωn − (εK+k′ − µ)−�c(K, ω)

, (13.20)

where the lattice self-energy is replaced by the coarse grained self-energy. Given Ḡ and �c,
one can set up a quantum Monte Carlo algorithm [6, 48] to calculate the cluster Green’s
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function. Here, the bulk lattice properties are encoded by using the cluster-excluded inverse
Green’s function

G−1(K, ωn) = Ḡ−1(K, ωn)+�c(K, ωn) (13.21)

to set up the bilinear part of the cluster action. In Eq. (13.21), the cluster self-energy has been
removed from G to avoid double counting.

Then, the interaction on the cluster

U
Nc

∑

K,K′,Q
c†

K+Q↑cK↑c†
K′−Q↓ cK′↓ (13.22)

is linearized by introducing a discrete τ -dependent Hubbard–Stratonovich field on each
τ -slice and for each K point. In this way, the cluster problem is transformed into a problem
of noninteracting electrons coupled to τ -dependent Hubbard–Stratonovich fields. Integrat-
ing out the bilinear fermion field and using importance sampling to sum over the Hubbard–
Stratonovich fields one evaluates the cluster Green’s function Gc(K, ωn). From this, one
evaluates the cluster self-energy

�c(K, ωn) = G−1(K, ωn)− G−1
c (K, ωn) . (13.23)

Then, using this new result for �c(K, ωn) in Eq. (13.20), these steps are iterated to conver-
gence.

Measurements of correlation functions and the 4-point vertex are made in the same man-
ner as for the determinantal Monte Carlo. That is, after the Hubbard–Stratonovich field has
been introduced, one has a Wick’s theorem for decomposing products of various time-ordered
operators. However, in this case there is an additional coarse-graining of the Green’s function
intermediate state legs [6, 42]. Since one is using a determinantal Monte Carlo method, there
is also a sign problem for the doped Hubbard model. However, the self-consistent bath and
the coarse-graining of the momentum space significantly reduce this problem so that lower
temperatures can be reached [49].

13.2.3. The Density Matrix Renormalization Group

The density-matrix-renormalization-group method was introduced by White [44, 45]. Here,
as illustrated in Figure 13.3 for a one-dimensional chain of length L , the system under study
is separated into four pieces. A block B$ containing $ = L/2 − 1 sites on the left, a reflected
BR
$′ (right interchanged with left) block containing $′ = L/2 − 1 sites on the right, and two

additional sites in the middle. The left-hand block B$ and its near-neighbor site are taken to
be the system to be studied, while the block BR

$′ plus its adjacent site are considered to be the
“environment.” The entire system is diagonalized using a Lanczos or Davidson algorithm to

Bl Bl′

B ′l+1

R

Figure 13.3. The configuration of blocks used for the density matrix renormalization group algorithm (White [45]).



502 D. J. Scalapino

obtain the ground state eigenvalue and eigenvector ψ◦. Then, one constructs a reduced density
matrix from ψ◦

ρi i ′ =
∑

j

ψ∗◦i jψ◦i ′ j . (13.24)

Here, ψ◦i j = 〈i |〈 j |ψ◦〉 with |i〉 a basis state of the $ + 1 block and | j〉 a basis state of
the $′ + 1 “environment” block. Then the reduced density matrix ρi i ′ is diagonalized and m
eigenvectors, corresponding to the m largest eigenvalues are kept. The Hamiltonian H$+1 for
the left-hand block and its added site B ′

$+1 is now transformed to a reduced basis consisting
of the m leading eigenstates of ρi i ′ . The right-hand environment block HR

$′+1 is chosen to
be a reflection of the system block including the added site. Finally, a superblock of size
L + 2 is formed using H$+1, HR

$′+1, and two new single sites. Open boundary conditions
are used. Typically, several hundred eigenstates of the reduced density matrix are kept and
thus, although the system has grown by two sites at each iteration, the number of total states
remains fixed and one is able to continue to diagonalize the superblock.

This infinite system method suffers because the groundstate wave function ψ◦ continues
to change as the lattice size increases. This can lead to convergence problems. Therefore,
in practice, a related algorithm in which the length L is fixed has been developed. In this
case, instead of trying to converge to the infinite system fixed point under iteration, one has
a variational convergence to the ground state of a finite system. This finite chain algorithm
is similar to the one we have discussed but in this case the total length L is kept fixed and
the separation point between the system and the environment is moved back and forth until
convergence is achieved [5, 45]. Following this, one can consider scaling L to infinity.

In a sense, the density-matrix-renormalization-group method is a cluster theory. It em-
beds a numerical renormalization procedure in a larger lattice in which an exact diagonaliza-
tion is carried out. The division of the chain into the system and the environment is similar in
spirit to the embedded cluster and G−1. The use of the reduced density matrix, corresponding
to the groundstate, to carry out the basis truncation provides an optimal focus on the low-lying
states.

An important aspect of this approach is how rapidly the eigenvalues of the reduced
density matrix fall off. This determines how many m states one needs to obtain accurate
results. Unfortunately, for the study of n-leg Hubbard ladders, this fall-off becomes signifi-
cantly slower as n increases and many more states must be kept. In addition, it appears that the
behavior of the pairfield–pairfield correlation function is particularly sensitive to the number
of states m that are kept. A measure of the errors associated with the truncation in the number
m of density matrix eigenstates that are kept is given by the discarded weight

Wm =
D∑

i=m+1

wi . (13.25)

Here, D is the dimension of the density matrix and wi is its i th eigenvalue. A useful approach
is to increase m and extrapolate quantities to their values as Wm → 0. The error in the
groundstate eigenvalue varies as Wm and a typical extrapolation is shown in Figure 13.4.
For observables which do not commute with H , the errors vary as

√
Wm .



Numerical Studies of the 2D Hubbard Model 503

0 5×10−6 1×10−5

Discarded weight

−886.1056

−886.1055

E

Figure 13.4. DMRG results for the ground state energy of a 2000-site Heisenberg spin-one-half chain vs. the
discarded weight Wm . The exact Bethe ansatz energy is shown as the line at the bottom of the figure (S.R. White).

13.3. Properties of the 2D Hubbard Model

As we have discussed, the particle–hole symmetry of the half-filled Hubbard model
with a near-neighbor hopping t leads to an absence of the fermion sign problem. In this case,
the determinantal Monte Carlo algorithm [43] provides a powerful numerical tool for study-
ing the low temperature properties of this model. In a seminal paper, Hirsch [15] presented
numerical evidence that the groundstate of the half-filled two-dimensional Hubbard model
with a near-neighbor hopping t and a repulsive on-site interaction U > 0 had long-range
antiferromagnetic order. In this work, simulations on a set of L × L lattices were carried out.
For each lattice, simulations were run at successively lower temperatures and extrapolated
to the T = 0 limit. Then, a finite-size scaling analysis was used to extrapolate to the bulk
T = 0 limit.

This work sets the standard for what one would like to do in numerical studies of the
Hubbard model. Unfortunately, the fermion sign problem prevents one from carrying out a
similar determinantal Monte Carlo analysis for the doped case. However, various other meth-
ods have been developed which provide information on the doped Hubbard model. Here, we
will discuss results obtained from a dynamic cluster Monte Carlo algorithm [6]. This method
also provides a systematic approach to the bulk limit as the cluster size increases. As noted in
Section 13.2, the dynamic cluster Monte Carlo still suffers from the fermion sign problem, al-
though to much less of a degree than the standard determinantal Monte Carlo. Maier et al. [27]
have made the important step of studying the doped system on a sequence of different-sized
clusters ranging up to 26 sites in size. Furthermore, this work recognized the importance
of cluster geometry and developed a Betts’-like [50] grading scheme for determining which
cluster geometries are the most useful in determining the finite-size scaling extrapolation.

Following this, we review a density-matrix-renormalization-group (DMRG) study [14]
of a doped 6-leg Hubbard ladder in which the authors extrapolate their results to the limit of
zero discarded weight and to legs of infinite length. This work provides evidence that static
stripes exist in the ground state for large values of U (U � 12t) but are absent at weaker cou-
pling (U <∼ 3t). We conclude this section with a discussion of the pseudogap behavior which
is observed in the lightly doped Hubbard model when U is of the order of the bandwidth.
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13.3.1. The Antiferromagnetic Phase

Determinantal quantum Monte Carlo results for the equal-time magnetization–
magnetization correlation function

C($) = 〈
mz

i+$m
z
i
〉

(13.26)

with mz
i = (ni↑ − ni↓) are plotted in Figure 13.5. These results are for a half-filled Hubbard

model on a 10 × 10 lattice at a temperature T = 0.1t with U = 4t . At this temperature, the
antiferromagnetic correlation length exceeds the lattice size and the cluster is essentially in its
groundstate. Strong antiferromagnetic correlations are clearly visible in C($).

Figure 13.5. The equal-time magnetization–magnetization correlation function C($x , $y) on a 10 × 10 lattice with
U = 4t , 〈n〉 = 1 and T = 0.1t . The horizontal axis traces out the triangular path on the lattice shown in the inset.
Strong antiferromagnetic correlations are seen (Hirsch [15], White et al. [16]).

Figure 13.6. S(qx , qy) vs. qx , qy for 〈n〉 = 1, U = 4t and T = 0.167t . The solid line is a fit to guide the eye
(Hirsch [15], Moreo et al. [17]).
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The magnetic structure factor, shown in Figure 13.6,

S(q) = 1
N

∑
e−iq·$ 〈mz

i+$ mi
〉

(13.27)

has a peak at q = (π, π) reflecting the antiferromagnetic correlations. As shown in
Figure 13.7, as the temperature is lowered S(π, π) grows and then saturates when the anti-
ferromagnetic correlations extend across the lattice. If there is long-range antiferromagnetic
order in the groundstate, the saturated value of S(π, π) will scale with the number of lattice
sites N = L × L . Furthermore, based upon spin-wave fluctuations [51], one expects that the
leading correction will vary as N

1
2 so that

Figure 13.7. The antiferromagnetic structure factor S(π, π) for 〈n〉 = 1 and U = 4 as a function of the inverse
temperature β for various lattice sizes. S(π, π) saturates when the coherence length exceeds the lattice size (Hirsch
[15], White et al. [16]).
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Figure 13.8. The zero-temperature limit of S(π, π)/N vs. 1/N 1/2. The results extrapolate to a finite value as
N → ∞ implying that there is long-range antiferromagnetic order in the groundstate of the infinite lattice (Hirsch
[15], White et al. [16]).
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lim
N→∞

S(π, π)
N

= 〈mx 〉2

3
+ A

N
1
2
. (13.28)

Figure 13.8 shows S(π, π)/N versus N− 1
2 for U = 4t and one sees that the groundstate has

long-range antiferromagnetic order. In his original paper, Hirsch [15] concluded that the
groundstate of the half-filled 2D Hubbard model with a near-neighbor hopping t would have
long-range antiferromagnetic order for U > 0.

13.3.2. d
x

2−y
2 Pairing

The structure of the pairing correlations in the doped 2D Hubbard model was initially
studied using the determinantal Monte Carlo method. The d-wave pairfield susceptibility

Pd =
∫ β

0
dτ 〈
d(τ )


†
d(0)〉 (13.29)

with

†

d = 1

2
√

N

∑

$,δ

(−1)δc†
$↑c†

$+δ↓ (13.30)

was calculated. Here δ sums over the four near-neighbor sites of $ and (−1)δ gives the +−+−
sign alteration characteristic of d-wave pairing. The doped Hubbard model has a fermion
sign problem, so that the Hubbard–Stratonovich fields must be generated according to the
probability distribution P‖(S) given by Eq. (13.16).

In this case, it is essential to include the sign factor s in the evaluation of observables.
The red circles in Figure 13.9 show results [47] for Pd(T ) obtained on a 4 × 4 lattice with
〈n〉 = 0.875 and U = 4t . If the sign s is not included, one obtains the (blue) squares. The
neglect of this sign in early work [52] left the false impression that the Hubbard model did not
support dx2−y2 pairing.

As seen, when the sign is included, the d-wave pairfield susceptibility increases as the
temperature is lowered. However, over the temperature range accessible to the determinantal

0 0.5 1
T

0

0.1

0.2

0.3

0.4

0.5

0.6

Pd

   with sign
without sign

Figure 13.9. The d-wave pairfield susceptibility Pd(T ) (red circles) for a 4×4 lattice with U = 4t and 〈n〉 = 0.875
vs. temperature T measured in units of the hopping t . The blue squares show the erroneous result that is found if the
fermion sign is ignored (Loh et al. [47]).
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Figure 13.10. The d-wave pair-field susceptibility Pd(T ) is shown as the open (red) circles. The open (green)
squares show results for the “noninteracting” pair-field susceptibility Pd(T ) calculated using dressed single-particle
Green’s functions, Eq. (13.31), while the dashed (blue) curve is the noninteracting susceptibility Pd0 calculated with
the bare Green’s functions. (White et al. [16])

Monte Carlo, it remains smaller than the U = 0 result Pd◦, shown as the (blue) dashed line
in Figure 13.10. In [16], it was argued that this behavior was due to the renormalization of
the single particle spectral weight and that the significant feature to note was that Pd(T ) was
enhanced over

Pd(T ) = T
N

∑

pn

G(p)G(−p) (cos px − cos py)
2 . (13.31)

Here, G(p) is the dressed single particle Green’s function determined from the Monte Carlo
simulation and Pd corresponds to the contribution of a pair of dressed but noninteracting
holes. The fact that Pd(T ) lays below Pd(T ) implies that there is an attractive dx2−y2 -pairing
interaction between the holes. Pd(T ) is shown as the (green) curve labeled with open squares
in Figure 13.10.

In order to determine what happens at lower temperatures, Maier et al. [27] have
determined Pd(T ) using a dynamic cluster approximation. In a systematic study, they
provided evidence that the doped Hubbard model contained a dx2−y2 pairing phase. In this
work, the authors adapted a cluster selection criteria originally introduced by Betts et al. [50]
in a numerical study of the 2D Heisenberg model. For the Heisenberg model, Betts et al. [50]
showed that an important selection criteria for a cluster was the completeness of the “allowed
neighbor shells” compared to an infinite lattice. They found that a finite-size scaling analysis
was greatly improved when clusters with the most complete shells were selected. For a d-wave
order parameter, Maier et al. noted that one needs to take into account the nonlocal 4-site pla-
quette structure of the order parameter in applying this criteria. As illustrated in Figure 13.11,
the 4-site cluster encloses just one d-wave plaquette.

Denoting the number of independent near-neighbor plaquettes on a given cluster by Zd,
the 4-site cluster has no near-neighbors so that Zd = 0. In this case the embedding action does
not contain any pair field fluctuations and hence Tc is over estimated.
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Alternatively, the 8A cluster has space for one more 4-site plaquette (Zd = 1) and the same
neighboring plaquette is adjacent to its partner on all four sides. In this case the phase fluc-
tuations are over estimated and Tc is suppressed. For the 16B cluster, one has Zd = 2 while
Zd = 3 for the oblique 16A cluster. Thus, one expects that the pairing correlations for the
16B cluster will be suppressed relative to those for the 16A cluster. The number of inde-
pendent neighboring d-wave plaquettes Zd for the clusters shown in Figure 13.11 is listed in
Table 13.1.

Results for the inverse of the pair field susceptibility vs. T for U = 4t and 〈n〉 = 0.9
are shown in Figure 13.12. As expected, the 4-site cluster results over estimate Tc and the
results for the 8A and 18A clusters do not give a positive value for Tc. However, successive
Zd = 4 results on larger lattices fall nearly on the same curve. These results suggest that the
2D Hubbard model with U = 4t and 〈n〉 = 0.9 has a dx2−y2 pairing phase. The dynamic
cluster approximation leads to a mean field behavior close to Tc [53]. Values of Tc obtained
using a mean field linear fit of the low temperature data for the various clusters are listed in
Table 13.1.

Figure 13.11. Cluster sizes and geometries used by Maier et al. [27] in their study of the d-wave pair-field suscepti-
bility. The shaded squares represent independent d-wave plaquettes within the clusters. In small clusters, the number
of neighboring d-wave plaquettes Zd listed in Table 1 is smaller than 4, i.e., than that for an infinite lattice (Maier
et al. [27]).

Table 13.1. Number of independent neighboring d-wave plaquettes Zd and the value Tc obtained
from a linear fit of the pair-field susceptibility in Figure 13.12 (Maier et al. [27]).

Cluster Zd Tc/t
4 0 (MF) 0.056
8A 1 −0.006
18A 1 −0.022
12A 2 0.016
16B 2 0.015
16A 3 0.025
20A 4 0.022
24A 4 0.020
26A 4 0.023
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Figure 13.12. The inverse of the d-wave pair-field susceptibility is plotted vs. T/t for various clusters. Here U = 4t
and 〈n〉 = 0.9. (Maier et al. [27]).

If Tc � 0.02t and we take t = 0.2 eV, this gives Tc ∼ 50 K. We believe that Tc will
increase with U , reaching a maximum when U is of order the bandwidth. In addition, we
expect that the transition temperature is sensitive to the one-electron tight binding parameters.
An example which illustrates this is known from density matrix renormalization group cal-
culations for the 2-leg Hubbard ladder [54]. Figure 13.13 shows an average of the rung–rung
pairfield correlations

D =
∑

$

〈
(i + $)
†(i)〉 (13.32)

for a 2 × 16 Hubbard ladder versus the ratio of the rung to leg hopping parameters t⊥/t . Here


†(i) = c†
i1↑c†

i2↓ − c†
i1↓c†

i2↑ (13.33)

creates a pair on the i th rung of the ladder. The pairing, as measured by D exhibits a maximum
at a value of t⊥/t when the minimum of the antibonding band at kx = 0 and the maximum of
the bonding band at kx = π approach the fermi surface.

For the half-filled noninteracting system, this would occur when t⊥/t = 2. The doping
and the interaction U leads to a reduction of this ratio and to a flattening of the dispersion
which further enhances the single particle spectral weight near the fermi energy. If one con-
siders the antibonding band to have ky = π and the bonding band to have ky = 0, then this
behavior is similar to increasing the single-particle spectral weight near (0, π) and (π, 0) in
the 2D Hubbard model. One also sees that the largest peak in D occurs when U is of the order
of bandwidth.

Having argued that the bandstructure plays a key role in determining Tc, it is impor-
tant to note that this raises a puzzle. State-of-the-art LDA calculations, as Andersen and
co-workers have shown [55], can be folded down to give material specific near-neighbor t ,
next-near-neighbor t ′, etc. hopping parameters. For the one-band Hubbard model one would
then have
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Figure 13.13. D̄ vs. t⊥/t for various values of U/t at a filling 〈n〉 = 0.9375 (Noack et al. [54]).

for the one-electron energy

Ek = −2t (cos kx + cos ky)− 4t ′ cos kx cos ky − · · · (13.34)

From an analysis of a large number of hole-doped cuprates, it was found that Tc is correlated
with the range of the intralayer hopping [56]. For the one-band Hubbard model that we have
discussed, this analysis implies that Tc should increase as t ′/t becomes more negative. The
opposite trend is seen in both dynamic cluster [57] and density matrix renormalization group
calculations [13, 58]. However, a projected fermion calculation [59] finds that t ′ enters the
effective interaction and can lead to an increase in Tc which is consistent with the conclusions
of [56]. The resolution of this puzzle represents an important open problem.

13.3.3. Stripes

In a DMRG study of 7r×6 Hubbard ladders with 4r holes, Hager et al. [14] found that
the ground state was striped for strong coupling values of U (U = 12t). Using a systematic
extrapolation they gave evidence that such stripes exist in infinitely long 6-leg ladders. These
studies also found that for small values of U (U = 3t) there were no stripes in the ground
state. This work extended earlier work [60] on a 7 × 6 system with four holes which found
that a well-defined stripe formed for U/t ∼8 to 12. The absence of stripes for weak coupling
is consistent with the fact that weak coupling renormalization group studies of the Hubbard
model find no evidence of a stripe instability [36, 37].

Using the DMRG technique, the ground state expectation values of the hole density

h(x) =
6∑

y=1

(1 − 〈n(x, y)〉) (13.35)
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and the staggered spin density

s(x) =
6∑

y=1

(−1)x+y〈n↑(x, y)− n↓(x, y)〉 (13.36)

were evaluated for 7r×6 ladders with 4r holes. Periodic boundary conditions were used for the
6-site direction and open boundaries were used in the leg direction. Results for the hole h(x)
and spin s(x) densities for a 21×6 ladder doped with 12 holes are shown in Figure 13.14.
One sees from the modulation of the hole density along the leg direction that three stripes
have formed. These stripes, each associated with four holes, run around the 6-site cylinder. In
earlier t–J studies [12], a preferred stripe density of half-filling was found and we believe that
the 2/3 filling seen in Figure 13.14 is a consequence of the restriction to 6 legs. Just as in the
t–J ladder calculations, the staggered spin density undergoes a π -phase shift where the hole
density is maximal. The finite staggered spin density is an artifact of the DMRG procedure in
which no spin symmetry was imposed. This, along with the open boundary conditions which
break the translational symmetry, allows the charge and spin density structures to appear in
the h(x) and s(x) expectation values.

While stripe-like structures are seen in Figure13.14 for both U/t = 12 and U/t = 3,
the amplitude of the charge density modulations for U/t = 3 are both smaller and less regular
than the U/t = 12 results. As discussed in Section 13.2, DMRG results for operators which
are nondiagonal in the energy basis are expected to deviate from their exact values by the
square root of the discarded weight

√
Wm as the number of basis states is increased. Thus, to

determine whether there are stripes in the ground state of an infinite ladder, Hager et al. [14]
extrapolated their results for a set of 7r×6 ladders to Wm → 0 and then took R = 7r → ∞.

They did this for the wave-vector power spectrum of the charge density

H2 =
∑

kx

| H(kx ) |2 (13.37)
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Figure 13.14. The hole h(x) (circle) and staggered spin s(x) (square) densities in the leg x-direction are plotted for
a 21 × 6 ladder with 12 holes for U = 12t (solid symbols) and U = 3t (open symbols) (Hager et al. [14]).
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Results for a fixed number (6000 ≤ m ≤ 8000) of density-matrix eigenstates (squares) and results extrapolated to
the limit Wm → 0 (circles) are shown as a function of the inverse ladder length 1/R for U = 12t (solid symbols)
and U = 3t (open symbols). The dashed lines are linear fits (Hager et al. [14]).

with

H(kx ) =
√

2
R + 1

∑

x

sin(kx x) 〈h(x)〉 . (13.38)

For a ladder with a periodic array of stripes separated by 7 sites, the maximum contribution
to H2 is associated with the wave vector

k∗
x

π
= 2r + 1

R + 1
→ 2

7
(13.39)

and
Hmax = | H(k∗

x ) | ∝ √
R h0 (13.40)

as R goes to infinity. In Figure 13.15, the amplitude Hmax(k∗
x )/

√
R is plotted for U/t = 12

and U/t = 3 vs. the inverse of the ladder length R−1. The solid squares show the results
when a fixed number (6000 ≤ m ≤ 8000) of density-matrix eigenstates are retained. The
solid circles are the extrapolated Wm → 0 (m → ∞) results for U/t = 12. Similar results
are shown using open symbols for U/t = 3. When the Wm → 0 results are then extrapolated
to R → ∞, one sees clear evidence for stripes when U/t = 12 and an absence of stripes for
U/t = 3. Note the importance of the Wm → 0 extrapolation in determining the absence of
stripes for U/t = 3.

13.3.4. The Pseudogap

Besides the antiferromagnetic, d-wave pairing, and striped phases, the cuprates exhibit
a normal state pseudogap below a characteristic temperature T ∗ when they are underdoped.
This pseudogap manifests itself in a variety of ways [61]. There is a decrease in the Knight
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shift, reflecting a decrease in the magnetic susceptibility [62]. This was interpreted in terms
of the opening of a pseudogap in the spin degrees of freedom. Observations of a similar
suppression in the tunneling density of states [63], the c-axis optical conductivity [64] and the
specific heat [65] made it clear that there was a pseudogap in both the spin and charge degrees
of freedom. ARPES studies show that in the hole-doped materials, a pseudogap opens near the
(π, 0) antinodal regions while in the electron-doped materials, at the lowest dopings, it opens
along the nodal direction near (π2 ,

π
2 ) [66]. The pseudogap appears in the underdoped region

of the phase diagram and weakens as optimal doping is approached. If the Hubbard model is
to contain the essential physics of the cuprates, it should exhibit the pseudogap phenomenon.

Before looking for evidence of pseudogap behavior in the doped Hubbard model, it is
useful to first look at the structure of the single particle spectral weight for the half-filled
Hubbard model. An important paper on this was that of Preuss et al. [20]. Here, determinantal
Monte Carlo calculations of the finite temperature single particle Green’s function G(k, τ )
were carried out on an 8×8 periodic lattice. The spectral weight

A(k, ω) = − 1
π

Im G(k, iωn → ω + iδ) (13.41)

was then determined using a numerical maximum entropy continuation. Results for the half-
filled case with U = 8t and T = 0.1t are shown in Figure 13.16a. Here, A(k, ω) is plotted
vs. ω for various k values in the Brillouin zone. Figure 13.16b summarizes these results us-
ing a standard “band structure” ω vs. k plot in which the dark areas signify a large spectral
weight. This work and related studies [67] showed that when U was of order the bandwidth
or larger, there were four bands consisting of two incoherent upper and lower Hubbard bands
and two quasiparticle-like, narrow bands nearer ω = 0. The inner bands were found to have a
dispersion set by J ∼= 4t2/U while the outer, upper, and lower Hubbard bands, appear as an
essentially dispersionless incoherent background.

The left-hand part of Figure 13.17 shows the single particle density of states for the half-
filled case. Here, when the temperature is small compared to the exchange energy J ∼ 4t2/U ,
one clearly sees the broad upper and lower Hubbard bands and the narrow inner bands. When
the system is hole-doped, the chemical potential moves down into the narrow coherent band
that lays below ω = 0 for the half-filled case and at the same time the upper coherent band
loses weight and disappears as shown on the right hand side of Figure 13.17. This is also
seen in Figure 13.18 which shows A(k, ω) for 〈n〉 = 0.95 from [20]. Here, one sees that the
dispersing band below ω = 0 in the insulator and the band that the holes are doped into as the
system becomes metallic are quite similar. At the same time, the narrow dispersing band that
lays just above ω = 0 in the insulating state has lost most of its spectral weight.

For the doped system, the fermion sign problem limited the temperature to T = t/3 for
the determinantal data shown in Figure 13.18, but later similar determinantal Quantum Monte
Carlo runs at T = 0.25t and a filling of 0.95 found evidence for the formation of a pseudogap
near (π, 0) [21]. In this work, the spin susceptibility was shown to have a large spectral weight
at well-defined spin excitations for the doping and temperature range in which the pseudogap
appeared. There was no pseudogap in the overdoped 〈n〉 <∼ 0.8 regions where the spectral
weight of the spin susceptibility became broad and featureless.

Dynamic cluster Monte Carlo calculations [28] with U = 6t and 〈n〉 = 0.95 find that
the magnetic spin susceptibility exhibits a clear decrease below a temperature T ∼= 0.1t , as
shown in the inset of Figure 13.19 and simulations at T = 0.06t gave the results for A(k, ω)
shown in Figure 13.19. Here, a pseudogap has opened for k = (π, 0), while the nodal region
with k = (π2 ,

π
2 ) remains gapless. In addition, a variety of other cluster calculations [7, 29,
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Figure 13.16. Single-particle spectral weight A(k, ω) for an 8 × 8 Hubbard model at half-filling 〈n〉 = 1 with
U = 8t and T = 0.1t . (a) A(k, ω) vs. ω for different values of k and (b) ω vs. k plotted as a “band-structure” where
sizable structure in A(k, ω) is represented by the strongly shaded regions and peaks by error bars (Preuss et al. [20].)

Figure 13.17. On the left, the single particle density of states N (ω) vs. ω for U = 8t and 〈n〉 = 1. On the right,
N (ω) for the hole doped 〈n〉 = 0.875, U = 8t case at T = 0.33t (Scalapino [68]).

30,32] have found pseudogap behavior in both hole- and electron-doped Hubbard models and
studied its dependence on the next near-neighbor hopping t ′. The t ′ dependence as well as the
doping dependence are consistent with renormalization-group calculations which show the
importance of umklapp scattering processes [37] and the short-range antiferromagnetic spin
correlations.
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Figure 13.20. Bethe–Salpeter equations for (a) the particle–particle and (b) the particle–hole channels showing the
relationship between the full vertex, the particle–particle irreducible vertex Γ pp, and the particle–hole irreducible
vertex Γ ph, respectively. (c) Decomposition of the irreducible particle–particle vertex Γ pp into a fully irreducible
two-fermion vertex &irr plus contributions from the particle–hole channels (Maier et al. [42]).

In the next section, we turn to a discussion of the effective pairing interaction. Specifi-
cally, the structure of the two-particle irreducible vertex and its associated d-wave eigenfunc-
tion are analyzed.

13.4. The Structure of the Effective Pairing Interaction

As discussed in Section 13.3, determinantal quantum Monte Carlo studies of the doped
two-dimensional Hubbard model find that dx2−y2 pairing correlations develop as the temper-
ature is lowered and a dynamic cluster quantum Monte Carlo calculation on Betts’ clusters
finds evidence for a finite temperature d-wave superconducting phase. Here we discuss how
one can use numerical techniques to determine the structure of the interaction responsible for
the pairing. The basic idea is to numerically calculate the 4-point vertex Γ and the single
particle propagator G (solid lines) shown in Figure 13.20. Then, using the particle–particle
Bethe–Salpeter equation (Figure 13.20a), one can extract the two-particle irreducible vertex
Γ pp which is the pairing interaction. As we will discuss, the 4-point vertex Γ also contains
information on the particle–hole magnetic (S = 1) and charge (S = 0) channels. Thus, it
provides a natural framework for understanding the relationship of the pairing interaction to
these other channels.

Using quantum Monte Carlo simulations, one can calculate both the one- and two-
fermion Green’s functions

G(x2, x1) = −〈T cσ (x2)c†
σ (x1)〉 (13.42)

and
G2(x4, x3, x2, x1) = −

〈
T cσ4(x4) cσ3(x3) c†

σ2
(x2) c†

σ1
(x1)

〉
. (13.43)
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Here, c†
σ (x$) creates an electron with spin σ at site x$ and imaginary time τ$. T is the usual

τ -ordering operator and we have suppressed the σ indices. Fourier transforming on both the
space and imaginary time variables, one obtains G(p) and

G2(p4, p3, p2, p1) = −G(p1)G(p2)(δp1,p4δp2,p3 − δp1,p3δp2,p4)

+ T
N
δp1+p2, p3+p4 G(p4)G(p3)Γ (p4, p3; p2, p1)G(p2)G(p1)

(13.44)

with p = (p, iωn). Then, using the Monte Carlo results for G and G2, one can determine the
4-point vertex Γ from Eq. (13.44).

Given Γ and G, one can solve the Bethe–Salpeter equations shown in Figure 13.20a
and b to obtain the irreducible particle–particle and particle–hole vertices Γ pp and Γ ph. For
example, in the zero center of mass and energy channel, the particle–particle Bethe–Salpeter
equation shown in Figure 13.20a gives

Γ (p′|p) = Γ pp(p′|p)− T
N

∑

k

Γ pp(p′|k)G↑(k)G↓(−k) Γ (k|p) (13.45)

with Γ (p′|p) = Γ (p′,−p′; p,−p). Given Γ and G, one can then determine the irreducible
particle–particle vertex Γ pp. This procedure is essentially the opposite of what one does in the
traditional diagrammatic approach. There, one introduces an approximation for the irreducible
vertex Γ pp and solves Eq. (13.45) for Γ . Here, we use Monte Carlo results for Γ and G
and solve Eq. (13.45) for Γ pp. The Monte Carlo results for Γ satisfy crossing symmetry and
Γ pp(p′|p) obtained from Eq. (13.45) is the effective particle–particle interaction. There is no
approximation except for the fact that a finite lattice is used and one has the usual statistical
Monte Carlo errors (and the small systematic finite 
τ errors which can be eliminated by
extrapolating 
τ → 0).

The dominant pairing response, at low temperatures, is found to occur in the even fre-
quency dx2−y2 channel. Since this channel is even in both the relative frequency and momen-
tum, it must be a spin singlet. Note that there are also spin singlet pairing channels which are
odd in the relative frequency and momentum. However, the pairing instability in the doped
Hubbard model comes from the even frequency and even momentum part of the irreducible
particle–particle vertex

Γ
pp

e (p′|p) = 1
2

[
Γ pp(p′|p)+ Γ pp(−p′|p)

]
. (13.46)

Determinantal quantum Monte Carlo results [41] for Γ pp
e (p′|p) obtained from an 8×8 lattice

with U = 4t and 〈n〉 = 0.87 are shown in Figure 13.21. Here, Γ pp
e (p′|p) is plotted for various

temperatures as a function of q = p′ − p with p = (π, 0) and ωn = ωn′ = πT . One sees
that as the temperature is lowered, Γ pp

e peaks at large momentum transfers. The size of the
effective pairing interaction Γ pp

e also depends upon the energy transfer ωm = ωn′ − ωn , and
falls off with ωm on a scale set by the characteristic spin-fluctuation energy.

To obtain a more intuitive picture of the way in which the local repulsive Uni↑ni↓
Hubbard interaction can lead to an effective attractive pairing interaction in the singlet chan-
nel, it is useful to construct the real space Fourier transform

Γ
pp

e (R) = 1
N 2

∑

p,p′
ei(p′−p)·R Γ

pp
e (p′, iπT ; p, iπT ) . (13.47)
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momentum transfer q along the (1, 1) direction. Here U = 4t and 〈n〉 = 0.875. As the temperature decreases below
the temperature where spin–spin correlations develop, the strength of the interaction is enhanced at large momentum
transfers (Bulut et al. [41]).
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Figure 13.22. The real-space structure of Γ pp
e (R) at a temperature T = 0.25t for U = 4t and 〈n〉 = 0.87. When

the singlet electron pair is separated by one lattice spacing, R = x or y, the interaction is attractive, while it is strongly
repulsive when R = 0 and the pair occupies the same site (Bulut et al. [41]).

Values for Γ pp
e (R) are shown in Figure 13.22, with the distance R between the two fermions

measured from the central point. If two fermions occupy the same site, spin-up and spin-down,
Γ

pp
e (R = 0) � 9.6t . That is, the effective pairing interaction is even more repulsive than the

bare U = 4t onsite Coulomb interaction. However, if two fermions in a singlet state are on
near-neighbor sites, the effective interaction Γ pp

e (R = x̂ or ŷ) � −0.5t is attractive.
In order to determine the structure of the pairing correlations which are produced by

Γ
pp

e , we turn to the homogenous Bethe–Salpeter equation
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− T
N

∑

p′
Γ

pp
e (p|p′)G↑(p′)G↓(−p′) φα(p′) = λαφα(p) . (13.48)

The temperature dependence of the leading eigenvalue in the particle–particle channel is plot-
ted vs. the temperature in Figure 13.23. When this eigenvalue reaches 1, it signals an instabil-
ity into a superconducting phase. Here, U = 4t with 〈n〉 = 0.85 and we are showing results
obtained using the dynamic cluster approximation [42] for the 24-site k-cluster discussed
in Section 13.3. The distribution of k points for the 24-site cluster is shown in the inset of
Figure 13.23. Similar results for T ≥ 0.25t have been obtained using the determinantal Monte
Carlo algorithm on an 8 × 8 lattice [41].

The eigenfunction corresponding to the leading particle–particle eigenvalue is a singlet
and its K dependence, plotted in the inset of Figure 13.24, shows that it has dx2−y2 symmetry.
The frequency dependence of this eigenfunction at the antinodal point K = (π, 0) is shown
in the main part of Figure 13.24. Here, φ((π, 0), ωn) has been normalized so that at ωn = πT
its value is 1. It is even in ωn as it must be for a d-wave singlet to satisfy the Pauli princi-
ple. Also shown in this figure is the ωm-dependence of the Q = (π, π) spin susceptibility
χ(Q, ωm) normalized by (χ(Q, 0)+ χ(Q, 2πT ))/2 for comparison with φ((π, 0), ωn). The
boson Matsubara frequency dependence, ωm = 2mπT , of the susceptibility is seen to inter-
lace with the fermion, ωn = (2n + 1)πT , dependence of the eigenfunction. The momentum
and frequency dependence of φdx2−y2 (K , ω) reflects the structure of the pairing interaction

Γ
pp

e . The numerical results show that Γ pp
e is an increasing function of momentum transfer

and is characterized by a similar energy scale to that which enters the spin susceptibility
χ(Q, ωm).

In a similar way, one can use Γ and G to solve for the irreducible particle–hole vertex
Γ ph shown in Figure 13.20b. The homogenous Bethe–Salpeter equation for the channel with
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symmetry. Here, ωn = πT and the momentum values correspond to values of K which lay along the dashed line
shown in the inset of Figure 13.23. (Maier et al. [42]).

center-of-mass momentum Q, Matsubara frequency ωm = 0 and z-component of spin Sz = 0
is

− T
N

∑

k′
Γ ph(k + Q, k; k′ + Q, k′)G↑(k′ + q)G↓(k′) φQα(k′) = λα(Q) φQα(k) . (13.49)

The leading eigenvalue in the particle–hole channel occurs for Q = (π, π) for the 24-site
k-cluster and carries spin 1. Earlier determinantal quantum Monte Carlo studies [17] on 8 × 8
lattices show that for this doping the peak response is, in fact, slightly shifted from (π, π), but
the 24-site k-cluster used in the dynamic cluster calculation lacks the resolution to show this.
As seen in Figure 13.23, for this doping, the antiferromagnetic eigenvalue initially grows as
the temperature is reduced, peaking at low temperatures. The largest eigenvalue in the S = 0
charge density channel occurs for Q = (0, 0) and ωm = 0. Its temperature dependence is also
plotted in Figure 13.23.

Returning to the question of the structure of the irreducible particle–particle vertex Γ pp
e ,

we have seen that Γ pp
e peaks at large momentum transfers and has a frequency dependence

reflected inΦdx2−y2 (K , ωn)which is similar to the spin susceptibility. However, we would like
to understand one further aspect. Is the dominant contribution to the dx2−y2 pairing interaction
associated with an S = 1 particle–hole channel? Alternatively, for example, one could have
a charge density S = 0 channel or a more complicated multiparticle–hole exchange process
such as that suggested by the spin-bag picture [69].

In order to address this, we will make use of the representation of Γ pp shown diagram-
matically in Figure 13.20c. Here, Γ pp is decomposed into a fully irreducible vertex &irr plus
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contribution from particle–hole exchange channels. Because of the spin rotation invariance of
the Hubbard model, one can separate the particle–hole channels into a charge density S = 0
contribution and a spin S = 1 magnetic part. For the even frequency and even momentum
(singlet pairing) part of the irreducible particle–particle vertex, Eq. (13.46), one has

Γ
pp

e (p′|p) = Λirr(p′|p)+ 1
2
Φd(p′, p)+ 3

2
Φm(p′, p) . (13.50)

The subscripts d and m denote the charge density (S = 0) and magnetic (S = 1) particle–hole
channels, respectively, with

Φd/m(p′, p) = 1
2

[

Γd/m(p′ − p; p,−p′)− Γ
ph

d/m(p′ − p; p,−p′)

+ Γd/m(p′ + p;−p,−p′)− Γ
ph

d/m(p′ + p;−p,−p′)
]

. (13.51)

Here, on the right-hand side, the center of mass and relative wave vectors and frequencies
in these channels are labeled by the first, second, and third arguments, respectively. Results
for the irreducible particle–particle interaction Γ pp

e obtained from the 24-site dynamic cluster
approximation are shown in Figure 13.25. As we have seen, when the temperature is lowered,
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Figure 13.25. (a) The irreducible particle–particle vertex Γ
pp
e vs. q = K − K′ for various temperatures with

ωn = ωn′ = πT . Here, K = (π, 0) and K′ moves along the momentum values of the 24-site cluster which lay on
the dashed line shown in the inset of Figure 13.23. Note that the interaction increases with the momentum transfer as
expected for a d-wave pairing interaction. (b) The q-dependence of the fully irreducible two-fermion vertex &irr. (c)
The q-dependence of the charge density (S = 0) channel 1

2�d for the same set of temperatures. (d) The q-dependence

of the magnetic (S = 1) channel 3
2�m (Maier et al. [42]).
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Figure 13.26. The dx2−y2 -wave eigenvalue λd vs. temperature T/t for 〈n〉 = 0.85 with U = 4t (red), U = 8t
(blue) and U = 12t (green). These results were obtained for a 4-site k-cluster (Maier et al. [70]).

Γ
pp

e increases as the momentum transfer q = p′ − p increases. Using the results for Γ ph, Γ ,
and G one can calculate the contributions Φd from the S = 0 charge density and Φm for the
S = 1 magnetic channels. Subtracting these from Γ

pp
e gives Λirr and results for each of these

contributions are shown in Figure 13.25. The dominant dx2−y2 pairing contribution to Γ
pp

e
clearly comes from the S = 1 channel.

At larger values of U , 4-site k-cluster calculations [70] of the temperature dependence
of the dx2−y2 eigenvalue for 〈n〉 = 0.85 and U = 4t , 8t , and 12t are shown in Figure 13.26.
Over the temperature range [71] shown in Figure 13.26, the dx2−y2 eigenvalue is largest for
U = 8t . This is consistent with the 2-leg ladder result shown in Figure 13.13 and the ex-
pectation that the maximum transition temperature occurs for U of order the bandwidth. The
dx2−y2 eigenfunction φdx2−y2 (K , ωn) has the expected d-wave K dependence and its Matsub-
ara frequency dependence for U = 4t and 8t are shown in Figure 13.26. Here, as before,
we also show the ωm dependence of the spin susceptibility χ(Q, ωm). As U increases, both
φdx2−y2 (K , ωn) and χ(Q, ωm) fall off more rapidly, reflecting the reduction in the frequency

scale set by J ∼ 4t2/U .

13.5. Conclusions

The numerical studies of the Hubbard model that we have reviewed show that it ex-
hibits the basic properties that are observed in the cuprate materials: antiferromagnetism,
dx2−y2 -pairing, stripes, and pseudogap phenomena. Numerical methods have also been used
to study the structure of the interaction responsible for pairing in the Hubbard model. As
discussed in Section 13.4, this can be done by directly calculating the irreducible particle–
particle vertex Γ pp or by studying the momentum and frequency dependence of the gap func-
tion φdx2−y2 (K , ω). The decomposition of Γ pp showed that the dominant pairing interaction
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arose from a spin-one particle–hole exchange. The strength of Γ pp was found to increase with
momentum transfer leading to dx2−y2 -pairing. Alternately, the (cos Kx − cos Ky) momentum
dependence of the gap function φdx2−y2 (K , ω) and the similarity of its ωn dependence to that
of the Q = (π, π) spin susceptibility leads to the same conclusion: the pairing interaction
in the doped Hubbard model is repulsive on site, attractive between near-neighbor sites and
retarded on a time scale set by the inverse of the spin-fluctuation spectrum. It is important to
recognize that this spectrum includes a particle–hole continuum.

Now, one can ask whether this interaction is actually the mechanism responsible for
pairing in the high Tc cuprate materials and how one would know this from experiments?
As far as the momentum dependence of the interaction is concerned, ARPES studies [66]
of the k-dependence of the gap along with a variety of transport [72] and phase dependent
studies [73, 74] provide strong evidence for the nodal d-wave character of the gap. While it is
known that the chains in YBCO lead to an admixture of s-wave [75–77] and the momentum
regions probed are primarily along the fermi surface, there is good reason to believe from
the observed k-dependence of the gap that the pairing interaction is indeed repulsive on site
and attractive for singlets formed between near-neighbor sites. It will be interesting to com-
pare calculations for an orthorhombic Hubbard model with experiments [76, 77], to see if
the observed k-dependence of the gap can provide additional help in identifying the pairing
mechanism.

Another characteristic of the interaction is its frequency dependence. Here, less is
known but it seems likely that the frequency dependence of the gap and renormalization
parameter will provide important insight into the mechanism. As one knows, it was the fre-
quency dependence of the gap for the traditional low Tc superconductors that provided the
ultimate fingerprint identifying the phonon exchange pairing interaction, although at the time
few doubted that this was the mechanism. In the high Tc case, the initial hope was that the
d-wave momentum dependence of the gap would provide a sufficiently precise fingerprint.
However, this has not been the case. For example, the exchange of B1g phonons is known
to favor d-wave pairing [55, 78], although its overall contribution to Tc is small within the
standard theory. A two-band Cu–O model, in which fluctuations in circulating currents pro-
vide a d-wave pairing mechanism, has also been proposed [79]. Even within the framework
of the Hubbard model there are different views regarding the dynamics. In the “Plain-Vanilla-
RVB” picture [80], it has been suggested that the dynamics is set by an energy scale associate
with the Mott–Hubbard gap [81]. However, our numerical results support a picture in which
the dominant contributions come from particle–hole excitations within the relatively narrow
band that the doped holes enter giving an energy scale of several times J . While the spec-
trum of these excitations extends down to zero energy, the main strength is associated with a
broad spin-fluctuation continuum [82, 83]. Thus it seems likely that the dynamics will again
be important in identifying the mechanism.

In addition to the traditional electron tunneling [84] and infrared conductivity [85] mea-
surements, ARPES experiments provide an important tool for probing the frequency depen-
dence of the renormalization parameter and the gap. Advances in the energy and momentum
resolution of both ARPES [66] and neutron scattering [86] along with material preparation
techniques that allow ARPES and neutron scattering to be done on the same material are
opening new opportunities. Various RPA-BCS approximations have been used to model both
the ARPES [87, 88] and neutron scattering data [89, 90]. One would clearly like to extend
the numerical Hubbard model studies so that they can be used in making such experimental
comparisons.
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Finally, in addition to the frequency and momentum dependence of the interaction, there
is the question of its strength. The estimate for the transition temperature in Section 13.3 with
U = 4t was relatively small. As discussed, we believe that for larger values of U (of order
the bandwidth) and a more optimal bandstructure, Tc will increase. Beyond this, the actual
Cu–O structure has additional exchange paths and it is known that t–J–U Hubbard ladders
can exhibit stronger pairing correlations [91]. Nevertheless, the question of the strength of the
pairing interaction remains. It is not that several times J is not a wide spectral range compared
to the phonon scale of the traditional low temperature superconductors or that the system isn’t
strongly coupled with U of order the bandwidth. Rather it is that the strong coupling has
created a delicately balanced system [92]. As discussed in Section 13.3, different numerical
methods on different lattices find evidence in one case for d-wave pairing and in another
for stripes. Thus small changes in local parameters may alter the nature of the correlations
and there is a question regarding the role of inhomogeneity in the cuprates. An interesting
theory of “dynamic inhomogeneity-induced pairing” is discussed in another chapter of this
treatise [93]. In this approach, pairing from repulsive interactions appears as a mesoscopic
effect and the phenomena of high temperature superconductivity is viewed as arising from
the existence of mesoscale structures [93, 94]. Recent STM measurements of impurities and
inhomogeneities in BSCCO are providing important new information on the question of the
local modulation of the pairing and its strength [95–97].

Thus, two decades after Bednorz’ and Müller’s [98] discovery of the high Tc cuprates
the question of the pairing mechanism remains open. However, it is clear that the desire to
understand these materials has driven dramatic advances in the experimental energy and mo-
mentum resolution of ARPES and neutron scattering and the energy and spatial resolution of
STM. It was also largely responsible for the development of a variety of numerical techniques
which are providing new insights into the electronic properties of a wide class of strongly
correlated materials.
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14
t−J Model and the Gauge Theory
Description of Underdoped Cuprates

Patrick A. Lee

We review the effort to understand the physics of high temperature superconductors from the point of
view of doping a Mott insulator. We begin with a discussion of the basic electronic structure of the
cuprates, emphasizing the physics of strong correlation and establishing the model of a doped Mott in-
sulator as a starting point. We review the analytic treatment of the t–J model, with the goal of putting the
RVB idea on a more formal footing. The slave-boson formalism is introduced to enforce the constraint of
no double occupation. The implementation of the local constraint leads naturally to gauge theories. We
follow the historical order and first review the U (1) formulation of the gauge theory. Some inadequacies
of this formulation for underdoping are discussed, leading to the SU (2) formulation and its extension
to nonzero hole doping. Then we digress with a discussion of the role of gauge theory in describing the
spin liquid phase of the undoped Mott insulator. We emphasize the difference between the high energy
gauge group in the formulation of the problem vs. the low energy gauge group which is an emergent
phenomenon. We emphasize that d-wave superconductivity can be considered as evolving from a stable
U (1) spin liquid. We apply these ideas to the high Tc cuprates, and discuss their implications for the
vortex structure and the phase diagram. A possible test of the topological structure of the pseudogap
phase is discussed.

14.1. Introduction

The discovery of high Tc superconductivity in cuprates was a major milestone in con-
densed matter physics. Not only was the transition temperature raised, but the fact that super-
conductivity was discovered in an unexpected class of materials, the transition metal oxide,
made it clear that some new physics must be at work. By now it is clear that superconductiv-
ity emerges by doping a Mott insulator. The understanding of the strong correlation physics
which is central to the Mott insulator and its doped state is a challenge that has to be met.
Experimentalists and materials scientists have made great strides in studying these materials
and it is clear that the cuprates embody a wealth of new phenomena not encountered previ-
ously, and that superconductivity is only one part of a fascinating phase diagram which must
be understood in its entirety.

The present chapter reviews the theoretical work over the past two decades which ad-
dresses the strong correlation problem head-on. We review the basic electronic structures of
the cuprates and argue that the important physics can be modeled by a single band Hubbard
model, or its strong coupling limit, the t–J model. The strategy is to first see whether this
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deceptively simple model has enough physics to describe the high Tc phenomena. The most
unusual part of the phase diagram is the underdoped region, where the proximity to the Mott
insulator is most strongly felt. After a brief review of the phenomenology, we explain the RVB
picture proposed by Anderson [1]. To a large degree, our work is an effort to put these ideas
on a firm theoretical footing. There are really not too many analytic tools available to address
these strongly correlated problems which involve the imposition of the constraint of no dou-
ble occupation in the case of the t–J model. The best tool available to us is the slave-boson
formulation. It turns out that the mean field theory already gives a good qualitative account
of the phase diagram, including the existence of d-wave superconductivity and the pseudogap
regime. The imposition of the constraint invariably leads to gauge theories. The original U (1)
theory and a more recent SU(2) version are then reviewed. These theories are treated with
various levels of approximations. The goal is to make contact with experiments and to predict
new measurements as much as possible. Since the problem of slave particles coupled to gauge
fields remains one of strong coupling without a well-controlled expansion parameter, our con-
clusions remain largely qualitative in nature and confrontation with experiments is essential
for future progress. Meanwhile, important progress has been made in the past decade toward
understanding the spin liquid state which forms the backbone of the RVB theory. The relation
of the existence of the spin liquid state with the deconfined phase of gauge theories is now
firmly established. Fractionalized particles and gauge fields are emergent properties which de-
scribe the low energy physics. After describing these advances we return to the high Tc prob-
lem and see what insight can be gained in light of the recent progress. From this more general
vantage point, one challenging aspect of the high Tc problem is that the ground states, which
range from the antiferromagnetic to the superconductor to the Fermi liquid as the doping in-
creases, are all phases where the gauge field is confining. Consequently, unusual phenomena
associated with exotic phases of matter are not manifest at zero temperature. While the con-
fined phase is difficult to treat theoretically, this observation by itself is in agreement with
experiment because the low temperature properties of the Néel and superconducting states are
quite conventional, as far as we can tell. But this also means that possible novel phases only
reveal themselves as cross-over phenomena at finite temperatures. One such scenario is de-
scribed, where the novel phase is assumed to be the algebraic spin liquid, which emerged as a
promising candidate in the SU(2) slave-boson theory. An experimental test of this hypothesis
is then proposed.

A fuller treatment of the gauge theory approach is available in the review article by Lee,
Nagaosa, and Wen [2]. References to other reviews and a more complete reference list can
also be found there.

14.2. Basic Electronic Structure of the Cuprates

It is generally agreed that the physics of high Tc superconductivity is that of the copper
oxygen layer, as shown in Figure 14.1. In the parent compound such as La2CuO4, the formal
valence of Cu is 2+, which means that its electronic state is in the d9 configuration. The copper
is surrounded by six oxygens in an octahedral environment (the apical oxygen lying above and
below Cu are not shown in Figure 14.1). The distortion from a perfect octahedron due to the
shift of the apical oxygens splits the eg orbitals so that the highest partially occupied d orbital
is x2–y2. The lobes of this orbital point directly to the p orbital of the neighboring oxygen,
forming a strong covalent bond with a large hopping integral tpd. As we shall see, the strength
of this covalent bonding is responsible for the unusually high energy scale for the exchange
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Figure 14.1. The two-dimensional copper–oxygen layer (left) is simplified to the one-band model (right). Bottom
figure shows the copper d and oxygen p orbitals in the hole picture. A single hole with S = 1/2 occupies the copper d
orbital in the insulator.

interaction. Thus the electronic state of the cuprates can be described by the so-called three-
band model, where in each unit cell we have the Cu dx2−y2 orbital and two oxygen p orbitals
[3, 4]. The Cu orbital is singly occupied while the p orbitals are doubly occupied, but these
are admixed by tpd. In addition, admixtures between the oxygen orbitals may be included.
These tight-binding parameters may be obtained by fits to band structure calculations [5, 6].
However, the largest energy in the problem is the correlation energy for doubly occupying the
copper orbital. To describe these correlation energies, it is more convenient to go to the hole
picture. The Cu d9 configuration is represented by energy level Ed occupied by a single hole
with S = 1

2 . The oxygen p orbital is empty of holes and lies at energy Ep which is higher
than Ed. The energy to doubly occupy Ed (leading to a d8 configuration) is Ud, which is
very large and can be considered infinity. The lowest energy excitation is the charge transfer
excitation where the hole hops from d to p with amplitude −tpd. If Ep−Ed is sufficiently large
compared with tpd, the hole will form a local moment on Cu. This is referred to as a charge
transfer insulator in the scheme of Zaanen et al. [7]. Essentially, Ep−Ed plays the role of the
Hubbard U in the one-band model of the Mott insulator. Experimentally an energy gap of
2.0 eV is observed and interpreted as the charge transfer excitation (see [8]).

Just as in the one-band Mott–Hubbard insulator, where virtual hopping to doubly
occupied states leads to an exchange interaction JS1·S2 where J = 4t2/U , in the charge-
transfer insulator, the local moments on nearest neighbor Cu prefer antiferromagnetic align-
ment because both spins can virtually hop to the Ep orbital. Ignoring the Up for doubly
occupying the p orbital with holes, the exchange integral is given by

J = t4
pd

(Ep − Ed)3
. (14.1)

The relatively small size of the charge transfer gap means that we are not deep in the insulating
phase and the exchange term is expected to be large. Indeed, experimentally the insulator is
found to be in an antiferromagnetic ground state. By fitting Raman scattering to two magnon
excitations [9], the exchange energy is found to be J = 0.13 eV. This is one of the largest
exchange energies known. (It is even larger in the ladder compounds which involve the same
Cu–O bonding.) This value of J is confirmed by fitting spin wave energy to theory, where an
additional ring exchange terms is found [10].

By substituting divalent Sr for trivalent La, the electron count on the Cu–O layer can be
changed in a process called doping. For example, in La2−x Srx CuO4, x holes per Cu is added
to the layer. As seen in Figure 14.1, due to the large Ud, the hole will reside on the oxygen p
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orbital. The hole can hop via tpd and due to translational symmetry, the holes are mobile and
form a metal, unless localization due to disorder or some other phase transition intervenes.
The full description of the hole hopping in the three-band model is complicated. On the other
hand, there is strong evidence that the low energy physics (on a scale small compared with
tpd and Ep − Ed) can be understood in terms of an effective one-band model, and we shall
follow this route in this review. The essential insight is that the doped hole resonates on the
four oxygen sites surrounding a Cu and the spin of the doped hole combines with the spin on
the Cu to form a spin singlet. This is known as the Zhang–Rice singlet [11]. This state is split
off by an energy of order t2

pd/(Ep − Ed) because the singlet gains energy by virtual hopping.
On the other hand, the Zhang–Rice singlet can hop from site to site. Since the hopping is a
two step process, the effective hopping integral t is also of order t2

pd/(Ep − Ed). Since t is
the same parametrically as the binding energy of the singlet, the justification of this point of
view relies on a large numerical factor for the binding energy which is obtained by studying
small clusters.

By focusing on the low lying singlet, the hole doped three-band model simplifies to a
one-band tight binding model on the square lattice, with an effective nearest neighbor hopping
integral t given earlier and with Ep–Ed playing a role analogous to U . In the large Ep–Ed limit
this maps onto the t–J model

H = P

⎛

⎝−
∑

〈ij〉,σ
tijc

†
iσ cjσ + J

∑

〈ij〉

(

Si · Sj − 1
2

ninj

)
⎞

⎠ P, (14.2)

where the projection operator P restricts the Hilbert space to one which excludes double
occupation of any site. J is given by 4t2/U and we can see that it is the same functional
form as that of the three-band model described earlier. It is also possible to dope with elec-
trons rather than holes. The typical electron doped system is Nd2−x Cex CuO4+δ (NCCO).
The added electron corresponds to removal of a hole from the copper site in the hole picture
(Figure 14.1), i.e., the Cu ion is in the d10 configuration. This vacancy can hop with teff and the
mapping to the one-band model is more direct than the hole doped case. Note that in the full
three-band model the object which is hopping is the Zhang–Rice singlet for hole doping and
the Cu d10 configuration for electron doping. These have rather different spatial structure and
are physically quite distinct. For example, the strength of their coupling to lattice distortions
may be quite different. When mapped to the one-band model, the nearest neighbor hopping
t has the same parametric dependence, but could have a different numerical constant. As we
shall see, the value of t derived from cluster calculations turn out to be surprisingly similar
for electron and hole doping. For a bipartate lattice, the t–J model with nearest neighbor t
has particle–hole symmetry because the sign of t (but not that of next nearest neighbor hop-
ping t ′) can be absorbed by changing the sign of the orbital on one sublattice. Experimentally
the phase diagram exhibits strong particle–hole asymmetry. On the electron doped side, the
antiferromagnetic insulator survives up to much higher doping concentration (up to x ≈ 0.2)
and the superconducting transition temperature is quite low (about 30 K). Many of the prop-
erties of the superconductor resemble that of the overdoped region of the hole doped side and
the pseudogap phenomenon, which is so prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability of the antiferromagnet has covered
up any anomalous regime that might exist otherwise.

A promising possibility is that particle–hole asymmetry may be accounted for by includ-
ing further neighbor hopping t ′. This point of view has been tested extensively by Hybertson
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et al. [12] who used ab initio local density functional theory to generate input parameters for
the three-band Hubbard model and then solve the spectra exactly on finite clusters. The results
are compared with the low energy spectra of the one-band Hubbard model and the t–t ′–J
model. They found an excellent overlap of the low lying wavefunctions for both the one-band
Hubbard and the t–t ′–J model and were able to extract effective parameters. They found J
to be 128 ± 5 meV, in excellent agreement with experimental values. Furthermore they found
t ≈ 0.41 eV and 0.44 eV for electron and hole doping, respectively. The near particle–hole
symmetry in t is surprising because the underlying electronic states are very different in the
two cases, as already discussed. Based on their results, the commonly used parameter J/t for
the t–J model is 1/3. They also found a significant next nearest neighbor t ′ term, again almost
the same for electron and hole doping.

More recently, Andersen et al. [13] have pointed out that in addition to the three-band
model, an additional Cu 4s orbital has a strong influence on further neighbor hopping t ′ and
t ′′ where t ′ is the hopping across the diagonal and t ′′ is hopping to the next-nearest neighbor
along a straight line. Recently Pavarini et al. [14] emphasized the importance of the apical
oxygen in modulating the energy of the Cu 4s orbital and found a sensitive dependence of t ′/t
on the apical oxygen distance. They also pointed out an empirical correlation between optimal
Tc and t ′/t . Thus t ′ may play an important role in determining Tc and in explaining the dif-
ference between electron and hole doping. However, in view of the fact that on-site repulsion
is the largest energy scale in the problem, it would make sense to begin our modeling of the
cuprates with the t–J model and ask to what extent the phase diagram can be accounted for.
As we shall see, even this is not a simple task and will constitute the major thrust of this review.

14.3. Phenomenology of the Underdoped Cuprates

The essence of the problem of doping into a Mott insulator is readily seen from
Figure 14.1. When a vacancy is introduced into an antiferromagnetic spin background, it
would like to hop with amplitude t to lower its kinetic energy. However, after one hop its
neighboring spin finds itself in a ferromagnetic environment, at an energy cost of 3

2 J if the
spins are treated as classical S = 1

2 . It is clear that the holes are very effective in destroy-
ing the antiferromagnetic background. This is particularly so when t � J when the hole is
strongly delocalized. The basic physics is the competition between the exchange J and the
kinetic energy which is of order t per hole or xt per unit area. When xt � J we expect the
kinetic energy to win and the system should be a Fermi liquid metal with weak residual an-
tiferromagnetic correlation. When xt ≤ J , however, the outcome is much less clear because
the system would like to maintain the antiferromagnetic correlation while allowing the hole
to move as freely as possible. Experimentally we know that Néel order is destroyed with 3%
hole doping, after which d-wave superconducting state emerges as the ground state up to 30%
doping. Exactly how and why superconductivity emerges as the best compromise is the cen-
terpiece of the high Tc puzzle but we already see that the simple competition between J and
xt sets the correct scale x = J/t = 1

3 for the appearance of nontrivial ground states. We shall
focus our attention on the so-called underdoped region, where this competition rages most
fiercely. Indeed it is known experimentally that the “normal” state above the superconducting
Tc behaves differently from any other metallic state that we have known about up to now.
Essentially an energy gap appears in some properties and not others. This region of the phase
diagram is referred to as the pseudogap region and is well documented experimentally.

As seen in Figure 14.2 Knight shift measurement in the YBCO 124 compound shows
that while the spin susceptibility χs is almost temperature independent between 700 and
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Figure 14.2. The Knight shift for YB2Cu4O8. It is an underdoped material with Tc = 79 K. From Curro et al. [15].

300 K, as in an ordinary metal, it decreases below 300 K and by the time the Tc of 80 K is
reached, the system has lost 80% of the spin susceptibility [15]. Similar phenomena have
been seen in YBCO and LSCO, making this a universal property of the cuprates.

A second indication of the pseudogap comes from the linear T coefficient of the specific
heat, which shows a marked decrease below room temperature. Furthermore, the specific heat
jump at Tc is greatly reduced with decreasing doping [16]. It is apparent that the spins are
forming into singlets and the spin entropy is gradually lost. On the other hand, as shown
in Figure 14.3 the frequency dependent conductivity behaves very differently depending on
whether the electric field is in the ab plane (σab) or perpendicular to it (σc).

At low frequencies (below 500 cm−1)σab shows a typical Drude-like behavior for a
metal with a width which decreases with temperature, but an area (spectral weight) which is
independent of temperature [17]. Thus there is no sign of the pseudogap in the spectral weight.
This is surprising because in other examples where an energy gap appears in a metal, such as
the onset of charge or spin density waves, there is a redistribution of the spectral weight
from the Drude part to higher frequencies. An important observation concerning the spectral
weight is that the integrated area under the Drude peak is found to be linear in x [18–21].
In the superconducting state this weight collapses to form the delta function peak, with the
result that the superfluid density ns/m is also linear in x . It is as though only the doped holes
contribute to charge transport in the plane. In contrast, angle-resolved photoemission shows
a Fermi surface at optimal doping very similar to that predicted by band theory, with an area
corresponding to (1–x) electrons. With underdoping, this Fermi surface is partially gapped in
an unusual manner which we shall next discuss.

In contrast to the metallic behavior of σab, it was discovered by Homes et al. (1993)
that below 300 K σc(ω) is gradually reduced for frequencies below 500 cm−1 and a deep hole
is carved out of σc(ω) by the time Tc is reached. This is clearly seen in the lower panel of
Figure 14.3.

Finally, angle-resolved photoemission shows that an energy gap (in the form of a pulling
back of the leading edge of the electronic spectrum from the Fermi energy) is observed near
momentum (0, π ). However, the lineshape is extremely broad and completely incoherent.
The onset of superconductivity is marked by the appearance of a small coherent peak at this
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Figure 14.3. The frequency dependent conductivity with electric field parallel to the plane (σa(ω) top figure) and
perpendicular to the plane (σc(ω) bottom figure) in an underdoped YBCO crystal. From Uchida [23].

gap edge. The size of the pull back of the leading edge is the same as the energy gap of the
superconducting state as measured by the location of the coherence peak. This gap energy
increases with decreasing doping, while the superconducting Tc decreases. This trend is also
seen in tunneling data.

It is possible to map out the Fermi surface by tracking the momentum of the minimum
excitation energy in the superconducting state for each momentum direction. Along the Fermi
surface the energy gap does exactly what is expected for a d-wave superconductor. It is maxi-
mal near (0, π ) and vanishes along the line connection (0, 0) and (π, π) where the excitation
is often referred to as nodal quasiparticles. Above Tc the gapless region expands to cover a
finite region near the nodal point, beyond which the pseudogap gradually opens as one moves
toward (0, π). This unusual behavior is sometimes referred to as the Fermi arc [24–26]. It
is worth noting that unlike the antinodal direction [near (0, π)] the lineshape is relatively
sharp along the nodal direction even above Tc. From the width in momentum space, a lifetime
which is linear in temperature has been extracted for a sample near optimal doping [27] and
recently this width is found to decrease rapidly below Tc [28]. A narrow lineshape in the nodal
direction has also been observed in LSCO [29] and in Na doped Ca2CuO2Cl2 [30]. So the no-
tion of relatively well-defined nodal excitations in the normal state is most likely a universal
feature.

As mentioned earlier, the onset of superconductivity is marked by the appearance of
a sharp coherence peak near (0, π). The spectral weight of this peak is small and gets even
smaller with decreasing doping. Note that this behavior is totally different from conventional
superconductors. There the quasiparticles are well defined in the normal state and according
to BCS theory, the sharp peak pulls back from the Fermi energy and opens an energy gap in
the superconducting state.

Yet another indication that the superconducting transition is different from BCS theory
comes from the measurement of the change in kinetic energy through the transition. In con-
ventional BCS theory, pairing between quasiparticles leads to a gain in the attractive potential
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energy at the expense of increasing the kinetic energy, since Fermi distribution is smeared
by the creation of the energy gap. By carefully monitoring the optical spectral weight above
and below Tc, it was found that while optimally doped samples behave as expected for BCS
superconductors, underdoped samples exhibit the opposite behavior in that the kinetic energy
is lowered by the onset of superconductivity [31–34].

In the literature, the pseudogap behavior is often associated with anomalous behavior
of the nuclear spin relaxation rate 1/T1. In normal metals the nuclear spin relaxes by ex-
citing low energy particle–hole excitations, leading to the Koringa behavior, i.e., 1/T1T is
temperature independent. In high Tc materials, it is rather 1/T1 which is temperature inde-
pendent, and the enhanced relaxation (relative to Koringa) as the temperature is reduced is
ascribed to antiferromagnetic spin fluctuations. It was found that in underdoped YBCO, the
nuclear spin relaxation rate at the copper site reaches a peak at a temperature T ∗

i and decreases
rapidly below this temperature [35–37]. The resistivity also shows a decrease below T ∗

i . In
some literature T ∗

i is referred to as the pseudogap scale. However, we note that T ∗
i is lower

than the energy scale we have been discussing so far, especially compared with that for the
uniform spin susceptibility and the c-axis conductivity. Furthermore, the gap in 1/T1 is not
universally observed in cuprates. It is not seen in LSCO. In YBa2Cu4O8, which is naturally
underdoped, the gap in 1/T1T is wiped out by 1% Zn doping, while the Knight shift remains
unaffected [38]. It is known from neutron scattering that the low lying spin excitations near
(π, π) are sensitive to disorder. Since 1/T1 at the copper site is dominated by these fluctu-
ations, it is reasonable that 1/T1 is sensitive as well. In contrast, the gap-like behavior we
described thus far in a variety of physical properties is universally observed across different
families of cuprates (wherever data exist) and are robust. Thus we prefer not to consider T ∗

i
as the pseudogap temperature scale.

14.4. Introduction to RVB and a Simple Explanation of the Pseudogap

We explained in the last section that the Néel spin order is incompatible with hole hop-
ping. The question is whether there is another arrangement of the spin which achieves a better
compromise between exchange energy and the kinetic energy of the hole. For S = 1

2 it ap-
pears possible to take advantage of the special stability of the singlet state. The ground state
of two spins S coupled with antiferromagnetic Heisenberg exchange is a spin singlet with
energy –S(S + 1)J . Compared with the classical large spin limit, we see that quantum me-
chanics provides an additional stability in the term unity in (S + 1) and this contribution is
strongest for S = 1

2 . Let us consider a one-dimensional spin chain. A Néel ground state with
Sz = ± 1

2 gives an energy of − 1
4 J per site. On the other hand, a simple trial wavefunction of

singlet dimers already gives a lower energy of − 3
8 J per site. This trial wavefunction breaks

translational symmetry and the exact ground state can be considered to be a linear superpo-
sition of singlet pairs which are not limited to nearest neighbors, resulting in a ground state
energy of 0.443J . In a square and cubic lattice the Néel energy is − 1

2 J and − 3
4 Jper site,

respectively, while the dimer variational energy stays at − 3
8 J . It is clear that in a 3D cubic

lattice, the Néel state is a far superior starting point, and in two dimensions the singlet state
may present a serious competition. Historically, the notion of a linear superposition of spin
singlet pairs spanning different ranges, called the resonating valence bond (RVB), was intro-
duced by Anderson [39] and Fazekas and Anderson [40] as a possible ground state for the
S = 1

2 antiferromagnetic Heisenberg model on a triangular lattice. The triangular lattice is
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of special interest because an Ising-like ordering of the spins is frustrated. Subsequently, it
was decided that the ground state forms a

√
3 × √

3 superlattice where the moments lie on
the same plane and form 120◦ angles between neighboring sites [41]. Up to now there is no
known spin Hamiltonian with full SU (2) spin rotational symmetry outside of one dimension
which is known to have an RVB ground state. However, there have been suggestions that ring
exchange or proximity to the Mott insulator may stabilize such a state [42–45]. There are also
examples which either violate spin rotation or which permit charge fluctuations.

The Néel state has long-range order of the staggered magnetization and an infinite
degeneracy of ground states leading to Goldstone modes which are magnons. In contrast,
the RVB state is a unique singlet ground state with either short range or power law decay of
antiferromagnetic order. This state of affairs is sometimes referred to as a spin liquid. Soon
after the discovery of high Tc superconductors, Anderson [1] revived the RVB idea and pro-
posed that with the introduction of holes the Néel state is destroyed and the spins form a
superposition of singlets. The vacancy can hop in the background of what he envisioned as
a liquid of singlets and a better compromise between the hole kinetic energy and the spin
exchange energy may be achieved. Many elaborations of this idea followed, but here we ar-
gue that the basic physical picture described above gives a simple account of the pseudogap
phenomenon. The singlet formation explains the decrease of the uniform spin susceptibility
and the reduction of the specific heat γ . The vacancies are responsible for transport in the
plane. The conductivity spectral weight in the ab plane is given by the hole concentration x
and is unaffected by the singlet formation. On the other hand, for c-axis conductivity, an elec-
tron is transported between planes. Since an electron carries spin 1

2 , it is necessary to break
a singlet. This explains the gap formation in σc(ω) and the energy scale of this gap should
be correlated with that of the uniform susceptibility. In photoemission, an electron leaves the
solid and reaches the detector, the pull back of the leading edge simply reflects the energy cost
to break a singlet. The lowering of the kinetic energy below the onset of superconductivity
may also be explained qualitatively in this picture, because superconductivity is driven by the
phase coherence of holes which lower the kinetic energy, while the cost of smearing out the
Fermi surface by the creation of the gap has already been paid by the creation of the spin gap
at higher temperatures.

A second concept associated with the RVB idea is the notion of spinons and holons,
and spin charge separations. Anderson postulated that the spin excitations in an RVB state are
S = 1

2 fermions which he called spinons. This is in contrast with excitations in a Néel state
which are S = 1 magnons or S = 0 gapped singlet excitations.

Initially the spinons are suggested to form a Fermi surface, with Fermi volume equal to
that of 1–x fermions. Later it was proposed that the Fermi surface is gapped to form d-wave
type structure, with maximum gap near (0, π). This k dependence of the energy gap is needed
to explain the momentum dependence observed in photoemission.

The concept of spinons is a familiar one in one-dimensional spin chains where they
are well understood to be domain walls. In two dimensions the concept is a novel one which
does not involve domain walls. Instead, a rough physical picture is as follows. If we assume
a background of short-range singlet bonds, forming the so-called short-range RVB state, a
cartoon of the spinon is shown in Figure 14.4. If the singlet bonds are “liquid,” two S = 1

2
formed by breaking a single bond can drift apart, with the liquid of singlet bonds filling in
the space between them. They behave as free particles and are called spinons. The concept of
holons follows naturally [46] as the vacancy left over by removing a spinon. A holon carries
charge e but no spin.
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(a) (b)

Figure 14.4. A cartoon representation of the RVB liquid or singlets. Solid bond represents a spin singlet config-
uration and circle represents a vacancy. In (b) an electron is removed from the plane in photoemission or c-axis
conductivity experiment. This necessitates the breaking of a singlet.

While the RVB idea is qualitative successful in describing the phenomenology, many
conceptual questions remain. The remainder of this review discusses effort to put these ideas
on a more formal footing.

14.5. Slave-Boson Formulation of t–J Model and Mean Field Theory

We begin with the t–J model given by Eq. (14.2). The effect of the strong Coulomb
repulsion is represented by the fact that double occupation is forbidden. This is written as the
inequality ∑

σ

c†
iσ ciσ ≤ 1, (14.3)

which is very difficult to handle. A powerful method to treat this constraint is the use of
projected wavefunctions. One writes down trial wavefunctions of the form

0 = PG |ψ0〉 , (14.4)

where PG = ∏
i (ni↑ni↓) is called the Gutzwiller projection operator and ψ0 is typically a

mean field trial wavefunction. The projection is treated numerically using quantum Monte
Carlo methods. It has been found that the choice of the d-wave BCS wavefunction for ψ0
gives an excellent account of the ground state properties, as well as other properties such as
the quasiparticle’s spectral weight [47–49]. A useful analytic method is called the Gutzwiller
approximation, which imposes the constraint only approximately by treating the available
configuration for the hopping and exchange operators in a statistical basis [50]. The Gutzwiller
approximation is closely related to the slave-boson mean field theory, which we discuss below.
In the slave-boson method [51, 52] the electron operator is represented as

c†
iσ = f †

iσbi, (14.5)

where f †
iσ is the fermion operators, while b is the slave-boson operators. This representation

together with the constraint reproduces all the algebra of the
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f †
i↑ fi↑ + f †

i↓ fi↓ + b†
i bi = 1 (14.6)

electron (fermion) operators. This constraint can be enforced with a Lagrangian multiplier λi.
Note that Eq. (14.5) is not an operator identity and the R.H.S. does not satisfy the fermion
commutation relation. Rather, the requirement is that both sides have the correct matrix
elements in the reduced Hilbert space with no doubly occupied states. For example, the
Heisenberg exchange term is written in terms of f †

iσ , fiσ , only [53]

Si ·Sj = −1
4

f †
iσ fjσ f †

jβ fiβ− 1
4

(
fi↑† f †

j↓ − f †
i↓ f †

j↑
) (

fj↓ fi↑ − fj↑ fi↓
)+ 1

4

(
f †
iα fiα

)
. (14.7)

We write
ninj =

(
1 − b†

i bi

) (
1 − b†

j bj

)
. (14.8)

Then Si · Sj − 1
4 ninj can be written in terms of the first two terms of Eq. (14.7) plus quadratic

terms, provided we ignore the nearest-neighbor hole–hole interaction 1
4 b†

i bib
†
j bj. We then

decouple the exchange term in both the particle–hole and particle–particle channels via the
Hubbard–Stratonovich (HS) transformation.

Then the partition function is written in the form

Z =
∫

D f D f †Db DλDχ D∆ exp
(

−
∫ β

0
dτ L1

)

, (14.9)

where
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f †
iσ fjσ

)

+ c.c.

⎤

⎦

+ J̃

⎡

⎣
∑

〈ij〉
∆ij

(
f †
i↑ f †

j↓ − f †
i↓ f †

j↑
)

+ c.c.

⎤

⎦ +
∑

i

b∗
i (∂τ − iλi + µB)bi −

∑

ij

tijbib∗
j f †

iσ fjσ

(14.10)

with χij representing fermion hopping and ∆ij representing fermion pairing corresponding
to the two ways of representing the exchange interaction in terms of the fermion operators.
From Eqs. (14.7) and (14.10) it is concluded that J̃ = J/4 but in practice the choice of J̃ij is
not so trivial, namely one would like to study the saddle point approximation (SPA) and the
Gaussian fluctuation around it, and requires SPA to reproduce the mean field theory. The latter
requirement is satisfied when only one HS variable is relevant, but not for the multicomponent
HS variables [54, 55]. In the latter case, it is better to chose the parameters in the Lagrangian
to reproduce the mean field theory. In the present case, J̃ = 3J/8 reproduces the mean field
self-consistent equation which is obtained by the Feynman variational principle [56].

We note that L1 in Eq. (14.10) is invariant under a local U (1) transformation

fi → eiϕi fi
bi → eiϕibi
χij → e−iϕiχijeiϕj

∆ij → eiϕi∆ijeiϕj

λi → λi + ∂τϕi,

(14.11)
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which is called U (1) gauge transformation. Due to such a U (1) gauge invariance, the fluctu-
ations λi and the phase of χij have the dynamics of U (1) gauge field.

Now we describe the various mean field theory corresponding to the saddle point
solution to the functional integral. The mean field conditions are

χij =
∑

σ

〈 f †
iσ fjσ 〉, (14.12)

∆ij = 〈 fi↑ fj↓ − fi↓ fi↑〉. (14.13)

Let us first consider the t–J model in the undoped case, i.e., the half-filled case. There are no
bosons in this case, and the theory is purely that of fermions. The original one, i.e., uniform
RVB state, proposed by Baskaran et al. [53] is given by

χij = χ = real (14.14)

for all the bond and ∆ij = 0. The fermion spectrum is that of the tight binding model

HuRVB = −
∑

kσ

2 J̃χ
(
cos kx + cos ky

)
f †
kσ fkσ , (14.15)

with the saddle point value to the Lagrange multiplier λi = 0. The so called “spinon Fermi
surface” is large, i.e., it is given by the condition kx ± ky = ±π with a diverging density
of states (van Hove singularity) at the Fermi energy. Soon after, many authors found lower
energy states than the uniform RVB state. One can easily understand that lower energy states
exist because the Fermi surface is perfectly nested with the nesting wavevector 
Q = (π, π)
and the various instabilities with 
Q are expected. Of particular importance are the d-wave state
and the staggered flux state. The d-wave state is described by χij = χ0 for nearest neighbors,
and ∆ij = ∆0 for j = i + x̂ and –∆0 for j = i + ŷ. The eigenvalues are the well-known BCS
spectrum

Ek =
√
(εk − µ)2 +∆2

k, (14.16)

where

εk = −2χ0(cos kx + cos ky), (14.17)
∆k = 2∆0(cos kx − cos ky). (14.18)

A variety of mean-field wavefunctions were soon discovered which give identical energy and
dispersion. Notable among these is the staggered flux state [57]. In this state the hopping χij
is complex, χij = χ0exp (i(−1))ix + jy Φ0, and the phase is arranged in such a way that it
describes free fermion hopping on a lattice with a fictitious flux ±4Φ0 threading alternative
plaquettes. Remarkably, the eigenvalues of this problem are identical to that of the d-wave
superconductor given by Eq. (14.16), with

tan Φ0 = ∆0

χ0
. (14.19)

The case Φ0 = π/4 called the π-flux phase, is special in that it does not break the lattice trans-
lation symmetry. The key feature is that the energy gap vanishes at the nodal points located
at

(±π
2 ,±π

2

)
. Around the nodal points the dispersion rises linearly, forming a cone which

resembles the massless Dirac spectrum. For the π-flux state the dispersion around the node
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is isotropic. For Φ0 less than π/4 the gap is smaller and the Dirac cone becomes progressively
anisotropic.

The reason various mean-field theories have the same energy was explained by [58]
and [59] as being due to a certain SU(2) symmetry. It corresponds to the following particle–
hole transformation

f †
i↑ → αi f †

i↑ + βi fi↓
fi↓ → −β∗

i f †
i↑ + α∗

i fi↓. (14.20)

Note that the spin quantum number is conserved. It describes the physical idea that adding a
spin-up fermion or removing a spin-down fermion are the same state after projection to the
subspace of singly occupied fermions. Let us write

�i↑ =
(

fi↑
f †
i↓

)

,�i↓ =
(

fi↓
− f †

i↑

)

. (14.21)

Then Eq. (14.10) can be written in the more compact form

L1 = J̃
2

∑

〈ij〉
Tr

(
U †

ijUij

)
+ J̃

2

∑

〈ij〉,σ
Tr

(
�†

iσUij�jσ + c.c.
)

+
∑

i,σ

f †
iσ (∂τ − iλi) fiσ

+
∑

i

b∗
i (∂τ − iλi + µB)bi −

∑

ij,σ

tijbib∗
j f †

iσ fjσ , (14.22)

where

Ui j =
(−χ∗

i j ∆i j

∆∗
i j χi j

)

. (14.23)

At half filling b = µB = 0 and the mean field solution corresponds to λi = 0. The Lagrangian
is invariant under

�iσ → Wi�iσ , (14.24)
Uij → WiUijW

†
j , (14.25)

where Wi is an SU(2) matrix. To give an explicit example, the π-flux and d-RVB states are
represented as

Uπ−flux
ij = −χ

(
τ 3 − i(−1)ix + jy

)
(14.26)

and
U d

i,i+µ = −χ
(
τ 3 + ηµτ

1
)
, (14.27)

respectively, where τ i are the Pauli matrices and ηx = –ηy = 1. These two are related by

U SF
ij = W †

i U d
ijWj, (14.28)

where

Wj = exp
[

i(−1) jx + jy
Π

4
τ 1

]

. (14.29)
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Therefore the SU(2) transformation of the fermion variable

�′
i = Wi�i (14.30)

relates the π-flux and d-RVB states. Here some remarks are in order. First it should be noted
that at half filling we are discussing the Mott insulating state and its spin dynamics. The
charge transport is completely suppressed by the constraint Eq. (14.6). Implementation of the
constraint will be discussed in the next section where the mean field theory is elaborated into
gauge theory. Secondly, it is now established that the ground state of the two-dimensional anti-
ferromagnetic Heisenberg model shows the antiferromagnetic long-range ordering (AFLRO).
This corresponds to the third (and most naive) way of decoupling the exchange interaction in
the spin channel. However, even with the AFLRO, the singlet formation represented by χij and
∆ij dominates and AFLRO occurs on top of it. This view has been stressed by Hsu [60, 61]
generalizing the π-flux state to include the AFRLO, and is in accord with the energetics of
the projected wavefunctions which find that the best trial mean-field state requires both flux
and AFRLO. An alternative route to reach the AF ground state is to start with the π-flux mean
field state and include gauge fluctuations. The phenomenon of confinement in lattice gauge
theory will also lead to AF order.

Now we turn to the doped case, i.e., x 	= 0. Then the behavior of the bosons are crucial
for the charge dynamics. At the mean field level, the bosons are free and condensed at TBE.
In three-dimensional system, TBE is finite while TBE = 0 for purely two-dimensional system.
If we assume weak three-dimensional hopping between layers, we obtain finite TBE roughly
proportional to the boson density x . This materializes the original idea by Anderson that RVB
turns into the real superconductivity via the Bose condensation of holons. Kotliar and Liu [62]
found the d-wave superconductivity in the slave-boson mean field theory presented above,
and the schematic phase diagram is given in Figure 14.5. There are five phases classified by
the order parameters χ , ∆, and b = <bi> for the Bose condensation. In the incoherent
state at high temperature, all the order parameters are zero. In the uniform RVB state (IV in
Figure 14.5), only χ is finite. In the spin gap state (II), ∆ and χ are nonzero while b = 0. This
corresponds to the spin single “superconductivity” with incoherent charge motion, and can
be viewed as the precursor phase of the superconductivity. This state has been interpreted as

X

T

I
II

III

IV

Figure 14.5. Schematic phase diagram of the U (1) mean field theory. The solid line denotes the onset of the uniform
RVB state (χ 	= 0). The dashed line denotes the onset of fermion pairing (∆ 	= 0) and the dotted line denotes mean
field Bose condensation (b 	= 0). The four regions are (I) Fermi liquid χ 	= 0, b 	= 0; (II) spin gap χ 	= 0, ∆ 	= 0;
(III) d-wave superconductor χ 	= 0,∆ 	= 0, b 	= 0; and (IV) strange metal χ 	= 0 (from Lee and Nagaosa [67]).
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the pseudogap phase [63]. We note that at the mean field level, the SU(2) symmetry is broken
by the nonzero µB in Eq. (14.22) and the d-wave pairing state is chosen because it has lower
energy than the staggered flux state. We shall return to this point later. In the Fermi liquid state
(I), both χ and b are nonzero while ∆ = 0. This state is similar to the slave-boson description
of heavy fermion state. Lastly when all the order parameter is nonzero, we obtain the d-wave
superconducting state (III). This mean field theory, in spite of its simplicity, captures rather
well the experimental features as described earlier.

14.6. U(1) Gauge Theory of the URVB State

The mean field theory only enforces the constraint on the average. Furthermore, the
fermions and bosons introduce redundancy in representing the original electron, which re-
sults in an extra gauge degree of freedom. To include these effects we need to consider fluc-
tuations around the mean field saddle points, which immediately become gauge theories, as
first pointed out by Baskaran and Anderson [64]. Here, we review the early work on the U (1)
gauge theory, which treats gauge fluctuations on the Gaussian level [65–68]. The theory can
be worked out in some detail, leading to a nontrivial recipe for obtaining physical response
functions in terms of the fermion and boson ones, called the Ioffe–Larkin composition rule.
It highlights the importance of calculating gauge invariant quantities and the fact that the
fermion and bosons only enter as useful intermediate steps. The Gaussian U (1) gauge theory
was mainly designed for the high temperature region of the optimally doped cuprate, i.e., the
so-called strange metal phase in Figure 14.5. We will describe its failure in the underdoped
region, which leads to the SU(2) formulation of the next two sections. The Gaussian theory
also misses the confinement physics which is important for the ground state.

As discussed earlier, the phenomenology of the optimally doped Mott insulator is re-
quired to describe the two seemingly contradicting features, i.e., the doped insulator with
small hole carrier concentration and the electrons forming the large Fermi surface. The for-
mer is supported by various transport and optical properties, representatively the Drude weight
proportional to x , while the latter by the angle resolved photoemission spectra (ARPES) in
the normal state of optimal doped samples. In the conventional single-particle picture, the re-
duction of the 1st Brillouin zone due to the antiferromagnetic long-range ordering (AFLRO)
distinguishes these two. Namely small hole pockets with area x are formed in the reduced
1st BZ in the AFLRO state, while the large metallic Fermi surface of area 1–x appears other-
wise. The challenge for the theory of the optimally doped case is that aspects of the doped
insulator appear in some experiments even with the large Fermi surface. Also it is noted that
the ARPES shows that there is no sharp peak corresponding to the quasiparticle in the nor-
mal state, especially at the antinodal region near k = (π, 0). The fermi surface is defined by a
rather broad peak dispersing near the Fermi energy. These strongly suggests that the normal
state of high temperature superconductors is not described in terms of the usual Landau Fermi
liquid picture.

A promising theoretical framework to describe this dilemma is the slave-boson formal-
ism introduced above. It has the two species of particles, i.e., fermions and bosons, due to the
strong correlation, and the electron is “fractionalized” into these two particles. However, one
must be mindful that the fermions and bosons are not gauge invariant and they are strongly
coupled to the gauge field. Under the gauge transformation [Eq. (14.11)] the Green’s functions
for fermions and bosons GF(i, j; τ) = −

〈
Tτ fiσ (τ ) f †

jσ

〉
and GB(i, j; τ) = −

〈
Tτbi(τ )b

†
j

〉
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transforms as
GF (i, j; τ) → ei(ϕi−ϕj)GF (i, j; τ)
GB (i, j; τ) → ei(ϕi−ϕj)GB (i, j; τ). (14.31)

Nevertheless, the fermions and bosons are useful in the intermediate step of the theory to
calculate the physical (gauge invariant) quantities.

The question is often asked, whether the fermions and bosons are real particles. Strictly
speaking, the physical electron operator is also not gauge invariant under the electromagnetic
field gauge transformation. Yet, due to the small size of the coupling constant e, we can
mentally turn off the coupling for the electromagnetic field and have no trouble thinking of
the electron as real. In our case, for the fermion and boson to emerge as useful concepts, we
require that on some short distance scale (or finite temperature) the confinement effects due
to the compactness of the gauge fields are not important and the problem can be treated as
noncompact as is done below. Even granting this, we find that the fermions and bosons are
not close to being free particles, but are coupled to the gauge field with coupling constant of
order unity. (This coupling has been reduced from infinity to unity by screening.) Thus in the
following we regard the fermions and bosons as intermediate steps in the theory and focus
on the calculation of physical (gauge invariant) quantities. The notion of spinons as emergent
low energy excitations will be discussed further in a later section.

At the mean field level, the constraint was replaced by the averaged one <Qi> = 1.
This average is controlled by the saddle point value of the Lagrange multiplier field<λi> = λ.
Originally λi is the functional integral variable and is a function of (imaginary) time. When
this integration is done exactly, the constraint is imposed. Therefore we have to go beyond
the mean field theory and take into account the fluctuation around it. In other words, the local
gauge symmetry is restored by the gauge fields which transform as

aij → aij + ϕi − ϕj
a0(i) → a0(i)+ ∂ϕi(τ )

∂τ .
(14.32)

The fields satisfying this condition are already in the Lagrangian Eq. (14.10). Namely the
phase of the HS variable χij and the fluctuation part of the Lagrange multiplier λi are ai j and
a0(i), respectively.

Let us study this U (1) gauge theory for the uRVB state in the phase diagram Figure 14.5.
This state is expected to describe the normal state of the optimally doped cuprates, where the
SU(2) particle–hole symmetry described by Eq. (14.21) is not so important. Here we neglect
∆ field, and consider χ and λ field. There are amplitude and phase fluctuations of χ field, but
the former one is massive and does not play important roles in the low energy limit. Therefore
the relevant Lagrangian to start with is

L1 =
∑

i,σ

f ∗
iσ

(
∂

∂τ
− µF + ia0(ri)

)

fiσ +
∑

i

b∗
i

(
∂

∂τ
− µB + ia0(ri)

)

bi

− J̃χ
∑

〈ij〉σ

(
eiaij f ∗

iσ fjσ + h.c.
)

− tη
∑

〈ij〉

(
eiaijb∗

i bj + h.c.
)
, (14.33)

where η is the saddle point value of another HS variable to decouple the hopping term. We
can take η = χ using Eq. (14.12). Equation (14.33) takes the form of a lattice gauge theory.
The spatial component of the gauge fields are ai j defined on (ij) link while the time compo-
nent a0(ri) is defined on the lattice site ri . Note the ai j appears as a phase variable, i.e., the
Lagrangian is invariant under the transformation ai j → ai j + 2π , which identifies this theory
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as a compact U (1) gauge theory. The gauge fields are coupled to fermions and bosons hopping
on the lattice. The fermions and bosons are referred to as matter fields in the field theory
literature. We also note that the usual Maxwell term (familiar in electrodynamics), 1

g f 2
µν

where fµν = ∂µaν − ∂νaµ, which controls the gauge fluctuations and describes their
dynamics, is absent in Eq. (14.33). In other words, the coupling constant g is infinite. This
is because the gauge field represents the constraint; by integrating over the gauge field we
obtain the original problem with the constraint.

In the mean field theory the gauge fluctuations are completely ignored. One conse-
quence is that the entropy is grossly overestimated, since extra degrees of freedom have been
introduced. This was shown explicitly by Hlubina et al. [69], who compared the entropy of
the mean field theory with high temperature expansion and found that it is too large by a fac-
tor of two. They also found that by including gauge fluctuations in the RPA approximation,
the agreement is improved considerably. In the RPA approximation we exchange the order of
the integration between the gauge field (aij, a0) and the matter fields (fermions and bosons).
Namely the matter fields are integrated over first, and we obtain the effective action for the
gauge field.

e−Seff. (a) =
∫

D f ∗D f Db∗Db e− ∫ β
0 L1 . (14.34)

However, this integration cannot be done exactly, and an approximation is introduced here.
The most standard one is the Gaussian approximation or RPA, where the effective action is
obtained by perturbation theory up to the quadratic order in a. For this purpose we introduce
here the continuum approximation to the Lagrangian L1 in Eq. (14.33).

L =
∫

d2r

[
∑

σ

f ∗
σ (r)

(
∂

∂τ
− µF + ia0(r)

)

fσ (r)+ b∗(r)
(
∂

∂τ
− µB + ia0(r)

)

b(r)

− 1
2mF

∑

σ, j=x,y

f ∗
σ (r)

(
∂

∂x j
+ ia j

)2

fσ (r)− 1
2mB

∑

j=x,y

b∗(r)
(

∂

∂x j
+ ia j

)2

b(r)

⎤

⎦ ,

(14.35)

where the vector field a is introduced by aij = (ri − rj) • a[(ri + rj)/2]. Note 1/mF ≈ J̃χ
and 1/mF ≈ tχ . The coupling between the matter fields and gauge field is given by

L int =
∫

d2r
(

jF
µ + jB

µ

)
aµ, (14.36)

where jF
µ

(
jB
µ

)
is the fermion (boson) current density.

Note that integration over a0 recovers the constraint Eq. (14.6) and integration over the
vector potential a yields the constraint

jF + jB = 0, (14.37)

i.e., the fermion and boson can move only by exchanging places. Thus the Gaussian approxi-
mation apparently enforces the local constraint exactly. We must caution that this is true only
in the continuum limit, and an important lattice effect related to the π periodicity of the phase
variable, i.e., the compactness of the gauge field, has been ignored. These latter effects lead to
instantons and confinement, as will be discussed later. Thus it is not surprising that the “exact”
treatment of Lee [70] yields the same Ioffe–Larkin composition rule which is derived based
on the Gaussian theory as we next discuss.
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We now proceed to reverse the order of integration. We integrate out the fermion and
boson fields to obtain an effective action for aµ. We then consider the coupling of the fermions
and bosons to the gauge fluctuations which are controlled by the effective action. To avoid
double counting, it may be useful to consider this procedure in the renormalization group
sense, i.e., we integrate out the high energy fermion and boson fields to produce an effective
action of the gauge field which in turn modifies the low energy matter field. This way we
convert the initial problem of infinite coupling to one of finite coupling. The coupling is of
order unity but may be formally organized as a 1/N expansion by artificially introducing N
species of fermions. Alternatively, we can think of this as an RPA approximation, i.e., a sum
of fermion and boson bubbles. The effective action for aµ is given by the following

SRPA
eff (a) =

(
%F
µν(q)+%B

µν(q)
)

aµ(q)aν(−q), (14.38)

where q = (q, ωn) is a three-dimensional vector. The current–current correlation function
%F
µν(q)

(
%B
µν(q)

)
of the fermions (bosons) is given by %α

µν(q) = 〈
jαµ(q) jαν (−q)

〉
with

α = F,B. Taking the transverse gauge by imposing the gauge fixing condition ∇ • a = 0
the scalar (µ = 0) and vector parts of the gauge field dynamics are decoupled. The scalar part
%α

00(q)corresponds to the density–density response function and does not show any singular
behavior in the low energy/momentum limit. On the other hand, the transverse current–current
response function shows singular behavior for small q and ω. Explicitly the fermion correla-
tion function is given by

%F
T(q) = iωσT

F1(q, ω)− χFq2, (14.39)

where χF = 1/(24πmF) is the fermion Landau diamagnetic susceptibility. The first term
describes the dissipation and the static limit of σT

F1 (real part of the fermion conductivity) for
ω < γq, σT

F1(q, ω) = ρF/(mFγq) where ρF is the fermion density and

γq = τ−1
tr for |q| < (vFτtr)

−1

= vF|q|/2 for |q| > (vFτtr)
−1, (14.40)

where τtr is the transport lifetime due to the scatterings by the disorder and/or the gauge field.
It turns out that %B � %F and the propagator of the transverse gauge field is given by

〈
aα(q)aβ(−q)

〉 =
(
δαβ − qαqβ/ |q|2

)
DT(q), (14.41)

DT(q) =
[
%F

T(q)+%B
T(q)

]−1 ∼=
[
iωσ(q)− χdq2

]−1
. (14.42)

Here

σ(q) ∼= k0/ |q| for |q| $ > 1
∼= k0$ for |q| $ < 1, (14.43)

where $ is the fermion mean free path and k0 is of the order kF of the fermions.
This gauge field is coupled to the fermions and bosons and leads to their inelastic scat-

terings. By estimating the lowest order self-energies of the fermion and boson propagators, it
is found that these are diverging at any finite temperature. It is because of the singular behav-
ior of DT(q) for small |q| and σ . This kind of singularity was first noted by Reizer [71] for the
problem of electrons coupled to a transverse electromagnetic field, even though related effects
such as nonFermi liquid corrections for the specific heat have been noted earlier by Holstein
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et al. [72]. As an example, we consider the conductivity of fermions and bosons. (Note that
these are still not “physical” because one must combine these to obtain the physical conduc-
tivity as discussed in the next section.) The integral for the (inverse of ) transport life-time τtr
contains the factor 1 − cos θ where θ is the angle between the initial and final momentum
for the scattering. This factor scales with |q|2 for small q, and gets rid of the divergence. The
explicit estimate gives

1
τF

tr

∼= ξ
4/3
k for ξk > kT

∼= T 4/3 for ξk < kT (14.44)

for the fermions while
1
τB

tr

∼= kT
mBχd

(14.45)

for bosons. These results are interpreted as the scattering by the fluctuating gauge flux whose
propagator is given by the loop representing the particle–hole propagator for the two-particle
current–current correlation function.

Now some words on the physical meaning of the gauge field are in order. For simplicity
let us consider the three sites, and that the electron is moving around these. The quantum
mechanical amplitude for this process is

P123 = 〈χ12χ23χ31〉 =
〈

f †
1α f2α f †

2β f3β f †
3γ f1γ

〉
. (14.46)

One can prove that
(P123 − P132) / (4i) = S1 · (S2 × S3) (14.47)

and the right-hand side of the above equation corresponds to the solid angle subtended by the
three vectors S1,S2,S3, and is called spin chirality [73]. The left-hand side of Eq. (14.47) is
proportional sinφ, where φ is the flux of the gauge field as seen by the fermions. Therefore
the gauge field fluctuation is regarded as that of the spin chirality. A possible way to measure
the chirality fluctuation using resonant Raman scattering has been discussed by Shastry and
Shraiman [74].

In order to discuss the physical properties of the total system, we have to combine the
information obtained for fermions and bosons. This has been first discussed by Ioffe and
Larkin [65]. Let us start with the physical conductivity σ , which is given by

σ−1 = σ−1
F + σ−1

B (14.48)

in terms of the conductivities of fermions (σF) and bosons (σB). This formula corresponds to
the sequential circuit (not parallel) of the two resistance, and is intuitively understood from
the fact that both fermions and bosons have to move subject to the constraint. This formula
can be derived in terms of the shift of the gauge field a, and resultant backflow effect. In the
presence of the external electric field E, the gauge field a and hence the internal electric field
e is induced. Let us assume that the external electric field E is coupled to the fermions. Then
the effective electric field seen by the fermions is

eF = E + e (14.49)

while that for the boson is
eB = e. (14.50)
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The fermion current jF and boson current jB are induced, respectively, as

jF = σFeF, jB = σBeB. (14.51)

The constraint jF + jB = 0 given by Eq. (14.37) leads to the relation

e = − σF

σF + σB
E. (14.52)

The physical current j given by

j = jF = −jB = σFσB

σF + σB
E (14.53)

leading to the expression for the physical conductivity σ in Eq. (14.48). It is also noted here
that the same result is obtained if instead we couple the e.m. field to bosons. In this case
the internal electric field e is different, but eF and eB remain unchanged. Therefore it is not
a physical question which particle is charged, i.e., fermion or boson. Note that σF � σB in
the uRVB state, we conclude that σ ∼= σB = xτB

tr /mB which is inversely proportional to
the temperature T . Furthermore the Drude weight of the optical conductivity is determined
by x/mB as is observed experimentally. It remains true that the superfluidity density ρS in
the superconducting state is given by the missing oscillator strength below the gap, this also
means that ρS ∝ x .

The Ioffe–Larkin rule can be extended to various other physical quantities. For example,
the thermopower S = SB + SF and the electronic thermal conductivity the κ = κB + κF are
sum of the bosonic and fermionic contributions [67].

Compared with the two-particle correlation functions discussed above, the single parti-
cle Green’s function is more complicated. At the mean field level, the electron Green’s func-
tion is given by the product of those of fermions and boson in the (r, τ ) space. Therefore in
the momentum–frequency space, it is given by the convolution. The spectral function is com-
posed of the two contributions, one is the quasiparticle peak with the weight ∼x while the
other is the incoherent background. Even the former one is broadened due to the momentum
distribution of the noncondensed bosons, i.e., there is no quasiparticle peak in the strict sense.

Combined with the discussion on the transport properties and the electron Green’s
function, the present uniform RVB state in the U (1) formulation offers an explanation on
the dichotomy between the doped Mott insulator and the metal with large Fermi surface.
In particular, the conclusion that the conductivity is dominated by the boson conductivity
σ ≈ σB ≈ xτB

tr /mB ≈ xtT explains the linear T resistivity which has been taken as a sign of
nonFermi liquid behavior from the beginning of high Tc research. However, we must caution
that this conclusion was reached for T > T (0)

BE while in the experiment the linear T behavior
persists to much lower temperature near optimal doping. It is possible that gauge fluctuations
suppress the effective Bose condensation. Lee et al. [75] attempted to include the effect of
strong gauge fluctuations on the boson conductivity by assuming a quasi-static gauge fluctu-
ation and treating the problem by quantum Monte Carlo. The picture is that the boson tends
to make self-retracing paths to cancel out the effect of the gauge field [76]. They indeed find
that the boson conductivity remains linear in T down to much lower temperature than T (0)

BE .

14.7. SU(2) Slave-Boson Theory of Doped Mott Insulators

The U (1) gauge theory described up to now encounters a number of difficulties when
applied to the underdoped region. First, it is known from neutron scattering that spin
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correlation at (π, π) is enhanced as the doping is reduced. This happens at the same time
the spin gap is formed in the pseudogap regime. In the U (1) mean field theory the pseudogap
is explained by fermion pairing and it is not clear how to enhance the spin correlation except
by introducing phenomenological RPA interactions [56]. Secondly, the U (1) theory predicts
that the hc/e vortex is more stable than the hc/2e superconducting vortex in the underdoped
limit [77, 78]. This is because one can wind the boson phase by 2π around the vortex, while
keeping the fermion gap intact inside the core. An hc/2e vortex would necessarily destroy
the fermion pairing inside the core. This contradicts the observation of a pseudogap inside the
vortex core by STM [79, 80]. Finally, on a formal level, the U (1) mean field theory ignores
the SU(2) symmetry at x = 0, which states that many apparently different mean field states
are degenerate. Slightly away from x = 0, the degeneracy is slightly broken, but the U (1)
mean field state picks out only the most stable one (d-wave pairing) and completely ignores
the other states which are nearby in energy. This motivates us to develop an SU(2) theory for
finite doping which connects smoothly to x = 0 and includes the myriad low lying states
already at the mean field level [81].

14.7.1. SU(2) Slave-Boson Mean-Field Theory at Finite Doping

The generalized SU(2) slave-boson theory involves two SU(2) doublets ψi and

hi =
(

b1i
b2i

)

. Here b1i and b2i are two spin-0 boson field and ψi =
(

fi↑
f †
i↓

)

. The additional

boson fields allow us to form SU(2) singlet to represent the electron operator ci:

c↑i = 1√
2

h†
i ψi = 1√

2

(
b†

1i f↑i + b†
2i f †

↓i

)

c↓i = 1√
2

h†
i ψ̄i = 1√

2

(
b†

1i f↓i − b†
2i f †

↑i

)
,

(14.54)

where ψ̄ = iτ 2ψ∗ which is also an SU(2) doublet. The t–J Hamiltonian can now be
written in terms of our fermion–boson fields. The Hilbert space of the fermion–boson sys-
tem is larger than that of the t–J model. However, the local SU(2) singlets satisfying(
ψ†

i τψi + h†
i τhi

)
|phys〉 = 0 form a subspace that is identical to the Hilbert space of the t–J

model. On a given site, there are only three states that satisfy the above constraint. They are
f †
↑ |0〉, f †

↓ |0〉, and 1√
2

(
b†

1 + b†
2 f †

↓ f †
↑
)

|0〉 corresponding to a spin up and down electron, and
a vacancy, respectively. Furthermore, the fermion–boson Hamiltonian Ht J , as a SU(2) singlet
operator, acts within the subspace, and has same matrix elements as the t–J Hamiltonian.

We note that just as in Eq. (14.8), our treatment of the 1
4 ninj term introduces a nearest

neighbor boson attraction term which we shall ignore from now on. Now the partition function
Z is given by

Z =
∫

Dψ Dψ Dh Da1
0Da2

0Da3
0DU exp

(

−
∫ β

0
dτ L2

)

with the Lagrangian taking the form

L2 = J̃
∑

〈ij〉
Tr

[
U †

ijUij

]
+ J̃

∑

〈ij〉

(
ψ†

i Uijψj + c.c
)

+
∑

i

ψ†
i

(
∂τ − ia$0iτ

$
)
ψi

+
∑

i

h†
i

(
∂τ − ia$0iτ

$ + µ
)

hi − 1
2

∑

〈ij〉
tij

(
ψ†

i hih
†
jψj + c.c

)
. (14.55)
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Following the standard approach with the choice J̃ = 3
8 J , we obtain the following

mean-field Hamiltonian for the fermion–boson system

Hmean =
∑

〈ij〉

3
8

J
[

1
2

Tr
(

U †
ijUij

)
+

(
ψ†

i Uijψj + h.c.
)]

− 1
2

∑

〈ij〉
t
(

h†
i Uijhj + h.c.

)

−µ
∑

i

h†
i hi +

∑

i

al
0

(
ψ†

i τ
lψi + h†

i τ
l hi

)
. (14.56)

The value of the chemical potential µ is chosen such that the total boson density (which
is also the density of the holes in the t–J model) is

〈
h†

i hi

〉
=

〈
b†

1ib1i + b†
2ib2i

〉
= x .

The values of al
0 (i) are chosen such that

〈
ψ†

i τ
lψi + h†

i τ
l hi

〉
= 0.

For l = 3 we have 〈
f †
ia fia + b†

1ib1i − b†
2ib2i

〉
= 1. (14.57)

We see that unlike the U (1) slave-boson theory, the density of the fermion
〈

f †
iα fiα

〉
is

not necessarily equal to 1−x . This is because a vacancy in the t–J model may be represented
by an empty site with a b1 boson, or a doubly occupied site with a b2 boson.

To obtain the mean-field phase diagram, we have searched the minima of the mean-field
free energy for the mean-field ansatz with translation, lattice, and spin rotation symmetries.
We find a phase diagram with six different phases (see Figure 14.6) [81].

LS

T/J

0.2

0.2xt /J

SC

FL

uRVB

πfL sfL

Figure 14.6. SU(2) mean-field phase diagram for t/J = 1. The phase diagram for t/J = 2 is quantitatively
very similar to the t /J = 1 phase diagram, when plotted in terms of the scaled variable xt/J , except the π fL phase
disappears at a lower scaled doping concentration. We also plotted the Fermi surface, the Fermi arcs, or the Fermi
points in some phases (from Wen and Lee [81]).
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(1) The d-wave superconducting (SC) phase is described by the following mean-field
ansatz

Ui,i+x̂ = −χτ 3 +
τ 1

Ui,i+ŷ = −χτ 3 −
τ 1

a3
0 	= 0, a1,2

0 = 0
〈b1〉 	= 0, 〈b2〉 = 0.

(14.58)

Notice that the boson condenses in the SC phase despite the fact that in our mean-
field theory the interactions between the bosons are ignored.

(2) The Fermi liquid (FL) phase is similar to the SC phase except that there is no fermion
pairing (∆ = 0).

(3) Staggered flux liquid (sfL) phase:

Ui,i+x̂ = −τ 3χ − i(−)i

Ui,i+ŷ = −τ 3χ + i(−)i

al

0 = 0,
〈
b1,2

〉 = 0.
(14.59)

The U matrix is the same as that of the staggered flux phase in the U (1) slave-
boson theory, which breaks transition symmetry. Here the breaking of translational
invariance is a gauge artifact. In fact, a site dependent SU(2) gauge transformation
Wi = e−iπτ 1/4 e−iπ(ix +iy)(τ

1/2+1) maps the sfL ansatz to the d-wave pairing ansatz:

Ui,i+x̂ = −χτ 3 +
τ 1

Ui,i+ŷ = −χτ 3 −
τ 1

al
0 = 0,

〈
b1,2

〉 = 0,
(14.60)

which is explicitly translation invariant. However, the staggered flux representation
of Eq. (14.59) is more convenient because the gauge symmetry is immediately appar-
ent. Since this U matrix commutes with τ 3, it is clearly invariant under τ 3 rotation,
but not τ 1 and τ 2, and the gauge symmetry has been broken from SU(2) down to
U (1). For this reason we shall refer to this state as the staggered flux liquid (sfL). We
emphasize that this U (1) gauge field is distinct from the one discussed in the earlier
section in connection with the uniform RVB state.
In the sfL phase, a3

0 and we have
〈

f †
αi fαi

〉
= 1 and

〈
b†

1b1

〉
=

〈
b†

2b2

〉
= x

2 .
(4) The π-flux liquid (πfL) phase is the same as the sfL phase except here χ = ∆.
(5) The uniform RVB (uRVB) phase is described by Eq. (14.60) with ∆ = 0.
(6) A localized spin (LS) phase has Uij = 0 and al

0i = 0, where the fermions cannot
hop.

Note that the topology of the phase diagram is similar to that of U (1) mean field theory
shown in Figure 14.5. The uRVB, sfL, πfL, and LS phases contain no boson condensation and
correspond to unusual metallic states. As temperature is lowered, the uRVB phase changes
into the sfL or πfL phases. A gap is opened at the Fermi surface near (π, 0) which reduces the
low energy spin excitations. Thus the sfL and πfL phases correspond to the pseudogap phase.

The FL phase contains boson condensation. In this case the electron Green’s function〈
c†c

〉 = 〈(
ψ†h

) (
h†ψ

)〉
is proportional to the fermion Green’s function

〈
ψ†ψ

〉
. Thus the elec-

tron spectral function contain δ-function peak in the FL phase. Therefore, the low energy



550 Patrick A. Lee

excitations in the FL phase are described by electron-like quasiparticles and the FL phase
corresponds to a Fermi liquid phase of electrons.

The SC phase contains both the boson and the fermion-pair condensations and corre-
sponds to a d-wave superconducting state of the electrons. Just like the U (1) slave-boson
theory, the superfluid density is given by

ρs = ρb
s ρ

f
s

ρb
s + ρf

s
,

where ρb
s and ρf

s are the superfluid density of the bosons and the condensed fermion-pairs,
respectively. We see that in the low doping limit, ρs ∼ x and one needs the condensation of
both the bosons and the fermion-pairs to get a superconducting state.

We would like to point out that the different mean-field phases contain different gapless
gauge fluctuations at classical level, i.e., the gauge groups for gapless gauge fluctuations are
different in different mean-field phases. The uRVB and the πfL phases have trivial SU(2) flux
and the gapless gauge fluctuations are SU(2) gauge fluctuations. In the sfL phase, the ansatz
Eq. (14.60) breaks the SU(2) gauge structure to a U (1) gauge structure. In this case the gapless
gauge fluctuations are U (1) gauge fluctuations. In the SC and FL phases, 〈ba〉 	= 0. Since ba
transform as a SU(2) doublet, there is no pure SU(2) gauge transformation that leave mean-
field ansatz

(
Uij, al

0, ba
)

invariant. As a result, the SU(2) gauge structure is completely broken
and there is no low energy gauge fluctuations.

14.7.2. Effect of Gauge Fluctuations: Enhanced (π, π ) spin Fluctuations
in Pseudogap Phase

As mentioned earlier, the pseudogap phase has a very puzzling property which seems
hard to explain. As the doping is lowered, it was found experimentally that both the pseudo-
gap and the antiferromagnetic (AF) spin correlation in the normal state increase. Naively, one
expects the pseudogap and the AF correlations to work against each other. That is the larger
the pseudogap, the lower the single particle density of states, the fewer the low energy spin
excitations, and the weaker the AF correlations. It turns out that the gapless U (1) gauge fluc-
tuations present in the sfL phase play a key role in resolving the above puzzle [82, 83]. Due
to the U (1) gauge fluctuations, the AF spin fluctuations in the sfL phase are enhanced despite
the presence of the pseudogap.

To see how the U (1) gauge fluctuation in the sfL phase enhance the AF spin fluctuations,
we map the lattice effective theory for the sfL state onto a continuum theory. In the low doping
limit, the low energy excitations consist of nodal fermions centered at

(±π
2 ,±π

2

)
and bosons

which are coupled to a U (1) gauge field. At half filling the bosons are absent and this problem
can be treated as a 1

N expansion, where N is the number of independent four-component nodal
fermions. Rantner and Wen [83] showed that coupling to gauge fields leads to a singularity in
the (π, π) spin fluctuation spectrum, in that the spectral fluctuation Imχ(q, ω) is proportional
to (ω2 − q2)1/2−α . They found α to be 32/(3π2 N ). This singularity may explain why the
neutron scattering detects enhanced staggered spin correlations in the pseudogap regime.

Rantner and Wen [84] also calculated the electron Green’s function by combining the
fermion and boson Green’s function in a gauge invariant way. In the single hole limit, they find
that the nodal quasiparticle at

(
π
2 ,

π
2

)
is destroyed and replaced by a very broad spectrum. At

finite doping, by introducing binding between fermions and bosons due to gauge fluctuations
in a phenomenological way, Wen and Lee [81, 85] produced electron spectra which display
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the Fermi arcs seen by ARPES experiment. Essentially, the nodal fermions are shifted towards
(0, 0) and stretched out into an arc, while the gap at the antinodal points around (0, π ) remain
intact.

The coupled problem of nodal fermions with a U (1) gauge field leads to an interesting
state where the staggered spin correlation functions have power law decay. This has been
called the algebraic spin liquid (ASL). We stress that this is a phase of matter, and not a
critical point in a phase transition. This state is unusual in that while the fermions are low
energy excitations, they cannot be treated as free quasiparticles and response functions contain
branch cuts rather than holes. As such, the ASL is reminiscent of the Luttinger liquid in
one dimension. However, in this discussion, so far the compactness of the gauge field has
been ignored in the 1

N expansion. In a compact gauge theory, instantons can appear which
lead to confinement. Fortunately, it has recently been shown that instantons are irrelevant for
sufficiently large N [86]. Thus confinement can be avoided and the large N expansion is
internally consistent.

In the next section we shall further explore the properties of the U (1) spin liquid upon
doping. We approach the problem from the low temperature limit and work our way up in
temperature. This regime is conveniently described by a nonlinear σ -model effective theory.

14.7.3. σ-Model Effective Theory and New Collective Modes
in the Superconducting State

Here we attempt to reduce the large number of degrees of freedom in the partition
function in Eq. (14.55) to the few which dominate the low energy physics. We shall ignore the
amplitude fluctuations in the fermionic degree of freedom which are gapped on the scale of
J . The bosons tend to Bose condense. We shall ignore the amplitude fluctuation and assume
that its phase is slowly varying on the fermionic scale, which is given by ξ = εF/∆ in space.
In this case we can have an effective field theory σ -model) description where the local boson
phases are the slow variables and the fermionic degrees of freedom are assumed to follow
them. We begin by picking a mean field representation U (0)

ij . The choice of the staggered flux
state U SF

ij given by Eq. (14.60) is most convenient because U SF
ij commutes with τ 3, making

explicit the residual U (1) gauge symmetry which corresponds to a τ 3 rotation. Thus we choose

U (0)
ij = U (SF)

ij eia3
ijτ

3
and replace the integral over Uij by an integral over the gauge field a3

ij.

It should be noted that any U (0)
ij which are related by SU(2) gauge transformation will give

the same result. At the mean field level, the bosons form a band with minima at Q0. Writing
h = h̃eiQ0·r, we expect h̃ to be slowly varying in space and time. We transform to the radial
gauge, i.e., we write

h̃i = gi

(
bi
0

)

, (14.61)

where bi can be taken as real and positive and gi is an SU(2) matrix parametrized by

gi =
(

zi1 −z∗
i2

zi2 z∗
i1

)

, (14.62)

where

zi1 = eiαi e−i φi
2 cos

θi

2
(14.63)
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and
zi2 = eiαi ei φi

2 sin
θi

2
. (14.64)

We ignore the boson amplitude fluctuation and replace bi by a constant b0.
An important feature of Eq. (14.56) is that L2 is invariant under the SU(2) gauge trans-

formation

h̃i = g†
i hi, (14.65)

ψ̃i = g†
i ψi, (14.66)

Ũij = g†
i U (0)

ij gj, (14.67)

and
ã$0iτ

$ = g†a$0iτ
$g − g

(
∂τ g†). (14.68)

Starting from Eq. (14.55) and making the above gauge transformation, the partition
function is integrated over gi instead of hi and the Lagrangian takes the form

L ′
2 = J̃

2

∑

〈ij〉
Tr

(
Ũ †

ijŨij

)
+ J̃

∑

〈ij〉
ψ†

i Ũijψj + c.c.+
∑

i

ψ†
i

(
∂τ − ia$0iτ

$
)
ψi

+
∑

i

(
−ia3

0i + µB

)
b2

0 −
∑

ij,σ

t̃ijb2
0 f †

jσ fiσ . (14.69)

We have removed the tilde from ψ̃iσ , f̃iσ , ã$0 because these are integration variables and

t̃ij = tij/2. Note that gi appears only in Ũij. For every configuration
{

gi(τ ), a3
ij(τ )

}
we can, in

principle, integrate out the fermions and a$0 to obtain an energy functional. This will constitute
the σ -model description. In practice, we can make the slowly varying gi approximation and
solve the local mean field equation for a$0i. This is the approach taken by Lee et al. [85].

The σ -model depends on
{

gi(τ ), a3
ij(τ )

}
, i.e., it is characterized by αi, θi, φi, and the

gauge field a3
ij.αi is the familiar overall phase of the electron operator which becomes half of

the pairing phase in the superconducting state. To help visualize the remaining dependence of
freedom, it is useful to introduce the local quantization axis

Ii = z†
i τ zi = (sin θicosφi, sin θisinφi, cos θi). (14.70)

Note that Ii is independent of the overall phase αi, which is the phase of the physical
electron operator. Then different orientations of I represent different mean field states in the
U (1) mean field theory. This is shown in Figure 14.7. For example, I pointing to the north pole
corresponds to gi = I and the staggered flux state. This state has a3

0 	= 0, a1
0 = a2

0 = 0 and has
small Fermi pockets. It also has orbital staggered currents around the plaquettes. I pointing to
the south pole corresponds to the degenerate staggered flux state whose staggered pattern is
shifted by one unit cell. On the other hand, when I is in the equator, it corresponds to a d-wave
superconductor. Note that the angle φ is a gauge degree of freedom and states with different
φ anywhere along the equator are gauge equivalent. A general orientation of I corresponds to
some combination of d-SC and s-flux.
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Staggered flux

Staggered flux

Superconductor

dq

df

Figure 14.7. The quantization axis I in the SU(2) gauge theory. The north and south poles correspond to the stag-
gered flux phases with shifted orbital current patterns. All points on the equators are equivalent and correspond to the
d-wave superconductor. In the superconducting state one particular direction is chosen on the equator. There are two
important collective modes. The θ modes correspond to fluctuations in the polar angle δθ and the φ gauge mode to a
spatially varying fluctuation in δφ.

At zero doping, all orientations of I are energetically the same. This symmetry is broken
by doping, and the I vector has a small preference to lie on the equator. At low temperature,
there is a phase transition to a state where I lies on the equator, i.e., the d-SC ground state. It is
possible to carry out a small expansion about this state and work out explicitly the collective
modes [87]. In an ordinary superconductor, there is a single complex order parameter ∆ and
we expect an amplitude mode and a phase mode. For a charged superconductor the phase
mode is pushed up to the plasma frequency and one is left with the amplitude mode only.
In the gauge theory we have in addition to ∆ij the order parameter χij. Thus it is natural to
expect additional collective modes. From Figure 14.7 we see that two modes are of special
interest corresponding to small θ and φ fluctuations. Physically the θ mode corresponds to
local fluctuations of the s-flux states which generate local orbital current fluctuations. These
currents generate a small magnetic field (estimated to be ∼10 G) which couples to neutrons.
Lee and Nagaosa [87] predict a peak in the neutron scattering cross-section at (π, π), at energy
just below 2∆0, where ∆0 is the maximum d-wave gap. This is in addition to the resonance
mode seen experimentally which is purely spin fluctuation in origin. The orbital origin of this
mode can be distinguished from the spin fluctuation by its distinct form factor [61, 88].

The φ mode is more subtle because φ is the phase of a Higgs field, i.e., it is part of
the gauge degree of freedom. It turns out to correspond to a relative oscillation of the ampli-
tudes of χij and ∆ij and is again most prominent at (π, π). Since |χij| couples to the bond
density fluctuation, inelastic Raman scattering is the tool of choice to study this mode, once
the technology reaches the requisite 10 meV energy resolution. Due to the special nature of
the buckled layers in LSCO, this mode couples to photons and may show up as a transfer of
spectral weight from a buckling phonon to a higher frequency peak. Such a peak was reported
experimentally [89], but it is apparently not unique to LSCO as the theory would predict, and
hence its interpretation remains unclear at this point.
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From Figure 14.7 it is clear that the σ -model representation of the SU(2) gauge theory
is a useful way of parameterizing the myriad U (1) mean field states which become almost
degenerate for small doping. The low temperature d-SC phase is the ordered phase of the σ -
model, while in the high temperature limit we expect the I vector to be disordered in space
and time, to the point where the σ -mode approach fails and one crosses over to the SU(2)
mean field description. The disordered phase of the σ -model then corresponds to the pseudo-
gap phase. How does this phase transition take place? It turns out that the destruction of
superconducting order proceeds via the usual route of BKT proliferation of vortices. To see
how this comes about in the σ -model description, we have to first understand the structure of
vortices.

14.7.4. Vortex Structure

The σ -model picture leads to a natural model for a low energy hc/2e vortex [90]. It takes
advantage of the existence of two kinds of bosons b1 and b2 with opposite gauge charges but
the same coupling to electromagnetic fields. Far away from the vortex core, |b1| = |b2| and
b1 has constant phase while b2 winds its phase by 2π around the vortex. As the core is ap-
proached |b2| must vanish in order to avoid a divergent kinetic energy, as shown in Figure 14.8
(top). The quantization axis I provides a nice way to visualize this structure [Figure 14.8
(bottom)]. It smoothly rotates to the north pole at the vortex core, indicating that at this level
of approximation, the core consists of the staggered flux state. The azimuthal angle winds by
2π as we go around the vortex. It is important to remember that I parameterizes only the
internal gauge degrees of freedom θ and φ and the winding of φ by 2π is different from
the usual winding of the overall phase α by π in an hc/2e vortex. To better understand the
phase winding we write down the following continuum model for the phase θ1, θ2 of b1 and
b2, valid far away from the core.

D =
∫

d2x
K
2

[
(∇θ1 − a − A)+ (∇θ2 + a − A)2

]
+ · · · , (14.71)

where a stands for the continuum version of a3
ij in the last section and A is the electromagnetic

field (e/c has been set to be unity). We now see that the hc/2e vortex must contain a half
integer vortex of the a gauge flux with an opposite sign. Then θ1 sees zero flux while θ2 sees
2π flux, consistent with the windings chosen in Figure 14.8. This vortex structure has low
energy for small x because the fermion degrees of freedom remain gapped in the core and
one does not pay the fermionic energy of order J as in the U (1) gauge theory. Physically, the
above description takes advantage of the states with almost degenerate energies (in this case

|b1|

|b2|

I

Figure 14.8. Structure of the superconducting vortex. Top: b1 is constant while b2 vanishes at the center and its
phase winds by 2π . Bottom: The isospin quantization axis points to the north pole at the center and rotates toward
the equatorial plane as one moves out radially. The pattern is rotationally symmetric around the ẑ axis.
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the staggered flux state) which is guaranteed by the SU(2) symmetry near half filling. There
is direct evidence from STM tunneling that the energy gap is preserved in the core [79, 80].
This is in contrast to theoretical expectations for conventional d-wave vortex cores, where a
large resonance is expected to fill in the gap in the tunneling spectra [91].

We can clearly reverse the roles of b1 and b2 to produce another vortex configuration
which is degenerate in energy. In this case I in Figure 14.8 points to the south pole. These
configurations are sometimes referred to merons (half of a hedgehog) and the two halves
can tunnel to each other via the appearance of instantons in space–time. The time scale of
the tunneling event is difficult to estimate, but should be considerably less than J . Depend-
ing on the time scale, the orbital current of the staggered flux state in the core generates a
physical staggered magnetic field which may be experimentally observable by NMR (almost
static), µSR (intermediate time scale), and neutron (short time scale). The experiment must
be performed in a large magnetic field so that a significant fraction of the area consists of
vortices and the signal of the staggered field should be proportional to H . A µSR experi-
ment on underdoped YBCO has detected such a field dependent signal with a local field of
±18 G [92]. However, µSR is not able to determine whether the field has an orbital or spin
origin and this experiment is only suggestive, but by no means definitive, proof of orbital
currents in the vortex core. In principle, neutron scattering is a more definitive probe, be-
cause one can use the form factor to distinguish between orbital and spin effects. However,
due to the small expected intensity, neutron scattering has so far not yielded any definite
results.

As discussed earlier, we expect enhanced (π, π) fluctuations to be associated with the
staggered flux liquid phase. Indeed, the s-flux liquid state is our route to Néel order and if
gauge fluctuations are large, we may expect to have quasistatic Néel order inside the vortex
core. Experimentally, there are reports of enhanced spin fluctuations in the vortex core by
NMR experiments [93–95]. There are also reports of static incommensurate spin order form-
ing a halo around the vortex in the LSCO family [96–99]. One possibility is that these halos
are the condensation of pre-existing soft incommensurate modes known to exist in LSCO,
driven by quasistatic Néel order inside the core. We emphasize the s-flux liquid state is our
way of producing antiferromagnetic order starting from microscopies and hence is fully con-
sistent with the appearance of static or dynamical antiferromagnetism in the vortex core. Our
hope is that gauge fluctuations (including instanton effects) are sufficiently reduced in doped
systems to permit a glimpse of the staggered orbital current. The detection of such currently
fluctuations will be a strong confirmation of our approach.

Finally, we note that orbital current does not show up directly in STM experiments,
which are sensitive to the local density of states. However, Kishine et al. [100] have considered
the possibility of interference between Wannier orbitals on neighboring lattice sites, which
could lead to modulations of STM signals between lattice positions. STM experiments have
detected 4 × 4 modulated patterns in the vortex core region and also in certain underdoped
regions. Such patterns appear to require density modulations which are in addition to our
vortex model.

14.7.5. Phase Diagram

We can now construct a phase diagram of the underdoped cuprates starting from the
d-wave superconductor ground state at low temperatures. The vortex structure allows us to
unify the σ -model picture with the conventional picture of the destruction of superconducting
order in two dimensions, i.e., the Berezinskii–Kosterlitz–Thouless (BKT) transition via the
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unbinding of vortices. The σ -model contains in addition to the pairing phase 2α, the phases θ
and φ. However, we saw in the last section that a particular configuration of θ and φ is favored
inside the vortex core. The SU(2) gauge theory provides a mechanism for cheap vortice core
energy which is necessary for a BKT description. If the core energy is too large, the system
will behave like a superconductor on any reasonable length scale above TBKT, which is not
in accord with experiment. On the other hand, if the core energy is small compared with
Tc, vortices will proliferate rapidly. They overlap and lose their identity. There is now strong
experimental evidence based on the Nernst effect that vortices survive over a considerable
temperature range above Tc [101–103]. Taken as a whole, these experiments require the vortex
core energy to be cheap, but not too cheap, i.e., of the order of Tc. Honerkamp and Lee
[104] have attempted a microscopic modeling of the proliferation of vortices. They assume
an s-flux core and estimate the energy from projected wavefunction calculations. They indeed
found that there is a large range of temperature above the BKT transition where vortices grow
in number but still maintain their identity. This forms a region in the phase diagram which
may be called the Nernst region shown in Figure 14.9. The corresponding picture of the I
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Figure 14.9. Schematic phase diagram showing the phase fluctuation regime where the Nernst effect is large. Note
that this regime is a small part of the pseudogap region for small doping.
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Figure 14.10. Schematic picture of the quantization axis I in different parts of the phase diagram shown in
Figure 14.9. (a) In the superconducting phase I is ordered in the x−y plane. (b) In the Nernst phase, I points to the
north or south pole inside the vortex core. (c) The pseudogap corresponds to a completely disordered arrangement of
I. (I is a three-dimensional vector and only a two-dimensional projection is shown.)
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vector fluctuation is shown in Figure 14.10. Above the Nernst region the I vector is strongly
fluctuating and is almost isotopic. This is the strongly disordered phase of the σ -model. The
vortices have lost their identity and indeed the σ -model description which assumes well-
defined phases of b1 and b2 begin to break down. Nevertheless, the energy gap associated
with the fermions remains. This is the pseudogap part of the phase diagram in Figure 14.9. In
the SU(2) gauge theory this is understood as the algebraic spin liquid (ASL) discussed earlier.
There is no order parameter in the usual sense associated with this phase, as all fluctuations
including staggered orbital currents and d-wave pairing become short range. Is there a way
to characterize this state of affairs other than the term spin liquid? This question is addressed
later, but first we digress to discuss recent advances in understanding the spin liquid state and
its relation to deconfinement in gauge theories.

14.8. Spin Liquids, Deconfinement, and the Emergence of Gauge
Fields and Fractionalized Particles

The spin liquid state was first proposed by Anderson [39] and Fazekas and Anderson
[40] as the ground state for the spin · 1

2 AF Heisenberg model on a triangular lattice. One
important consequence of the spin liquid state is that the low energy excitations are spin · 1

2
particles, called spinons. This is in contrast to the Néel ordered AF, in which case the low
energy excitations are magnons which carry S = 1. The spinons are considered an example of
fractionalized quasiparticles. Doping holes into a spin liquid leads naturally to a superconduc-
tor, and this idea forms the backbone of Anderson’s RVB theory. However, the ground states
of the AF Heisenberg model on the triangular lattice is now known to be Néel ordered, with
neighboring spins forming 120◦ angles. Furthermore, up to now no example of Heisenberg
models on any lattice has been firmly established as having a spin liquid ground state, either
theoretically of experimentally. (Some promising possible examples will be mentioned later.)
Thus the spin liquid concept and, by implication, the RVB idea have been met with skepticism
by the community. Yet much progress has been made in the past several years in characteriz-
ing the spin liquid state and in the understanding of the phenomenon of fractionalization. Here
we summarize what is known and also attempt to clear up some common misconceptions.

By now we have many theoretically well-established examples of ground states which
do not show Néel order and which support fractionalized excitations. For example, Kitaev
[105] has found an exactly soluble model on the honeycomb lattice and Wen [106] on the
square lattice. These models support fermionic excitations and Z2 gauge fields. The interac-
tion involves multispin interactions which break spin rotation symmetry and thus these are not
Heisenberg models per se. Earlier, a dimer model on a triangular lattice, admitted not a spin
Hamiltonian, has been shown to support Z2 gauge fields and fractionalized spinons [107].
Other examples where strong arguments for fractionalization with varying degrees of rigor
can be made include certain spin·- 1

2 models on the Kagome lattice [108] and bosonic models
which in principle can be realized by Josephson junction arrays [109]. Recently, a model of
multiorbital exciton condensations has been shown to support U (1) gauge photons and either
bosonic or fermionic fractionalized particles depending on the coupling constants [110].

There has also been progress on more realistic spin models using less reliable methods.
Exact diagonalization of small clusters of the S = 1

2 Heisenberg model on the Kagome lattice
and on the triangular lattice with ring exchange [42] suggests the existence of a disordered
ground state. The latter model has recently been studied by Motrunich [43] using projected
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trial wavefunction methods. Also, it has been proposed that the Hubbard model on the tri-
angular lattice may have a spin liquid ground state just on the insulating side of the Mott
transition based on numerical [44] and analytic [45] considerations. These latter works were
motivated by experiments on the organic compound κ-(BED-TTF)2Cu2(CN)3 which appears
to be a promising candidate for the spin liquid state [111, 112].

In all these examples, the emergence of fractionalized particles at low energies is invari-
ably accompanied by the emergence of a gauge field. The gauge structure may be Z2 or U (1),
but they must be in the deconfined phase. Thus the phenomenon of fractionalization is iden-
tified with deconfinement of certain gauge structures. We have seen that gauge fields emerge
very naturally in the slave particle representation of the spin operator. When S is written as
f †
α σαβ fβ , we see that S is invariant under the gauge transformation fα → fαeiθ , i.e., there

is a redundancy in the representation which forces one to introduce a U (1) gauge field in this
case. However, there are many different ways to represent the spin operators. One can write
them either in terms of slave bosons or fermions and these are originally introduced as formed
devices. How can they emerge as real particles? These are reasonable questions but they also
lead to a number of misconceptions which we address below.

(1) What is the distinction between high energy and low energy gauge groups. As we
mentioned earlier, the spin operator can be decoupled into fermions or bosons. Fur-
thermore, the gauge field associated with this decoupling is not unique. It can be
U (1), SU(2) as we have seen earlier, or Z2 [113]. These different formulations of
the theory are distinct on the lattice scale, but in principle they are all exact and they
are all equivalent to the same Heisenberg model. We refer to the different formula-
tions as the high energy gauge group. On the other hand, fractionalization and gauge
fields are emergent quantities which describe the low energy physics. We refer to
these as the low energy gauge structures. In principle a U (1) low energy gauge field
can emerge from a SU(2) or Z2 high energy gauge structure. It is a matter of con-
venience which formulation one chooses to begin with, in that the emergent gauge
field may correspond closely to the mean-field decoupling of one formulation and
not another. To show that fractionalization occurs, one has to show that a deconfined
phase of the low energy gauge structure exists.

(2) If the initial gauge coupling is infinite, how can a deconfined state emerge? This
question was raised by Nayak [114] and addressed by several subsequent com-
ments [115, 116]. The gauge field is introduced as a way of enforcing constraint.
There is not Maxwellian restoring force, i.e., the coupling constant is infinite. In
pure compact gauge theory this leads to confinement. In the presence of matter fields
such as fermions and bosons, the situation is more complicated and examples of de-
confinement with infinite coupling are cited in [115]. A clear example is given in
the recent work which studies the Bose condensation of excitons with multiple band
indices a = 1, . . . , N [110]. On the short distance scale the exciton field χab made
up of band a electrons and band b holes. The exciton field can be represented by a
product of bosonic fields ψ†

aψb. In a world-line picture of the excitons, the Bose par-
ticle is always part of an exciton, i.e., it is never unbound on the lattice scale. This is
enforced by an infinite gauge coupling constant. Nevertheless, excitons scatter with
each other and exchange partners, thus rapidly losing their identity. However, the
band index is conserved and the world line of an individual particle, which carries a
fixed band index, emerges as a low energy excitation which lives much longer than
an individual exciton χab. It is also clear that new particles are not free but coupled
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to each other through a web of other exciton world lines. It can be shown that this
web of exciton world lines is equivalent to fluctuating U (1) gauge fields. In the large
N limit, the effective gauge coupling is small despite the initial infinite coupling,
essentially due to screening. Thus a Coulomb phase of fractionalized particles and
gauge photons emerge as low energy excitations. This example also shows that the
emergent particles may be fermion or boson, depending on the coupling constant.
The statistics and spin of the emergent particles are governed by dynamics of the mi-
croscopic Hamiltonian, and are independent of the method of decoupling. This again
reinforces the distinction between high energy and low energy gauge groups.

A related objection that is often made is that the field ψa (and the slave fermion or
boson fields used to decouple the spin operators) are not gauge invariant and there-
fore cannot be real. Well, the world we live in is the Coulomb phase of the compact
QED, and the electron operator is also not gauge invariant under an electromagnetic
gauge transformation. What it means is that electrons are always accompanied by
electromagnetic fields and do not live in isolation. Since the gauge fluctuations are
so weak, we get accustomed to fix the gauge and think of electrons as real objects.
Strictly speaking, electrons are real only in the sense that gauge invariant quantities
can be easily understood in terms of them. The same is true with fractionalized par-
ticles, provided we are in the deconfined phase and the coupling to the gauge field
is relatively weak. If the coupling is of order unity, the resulting ground state can be
complicated. Nevertheless, the emergent particles and gauge fields are the appropri-
ate starting points to address the following question.

(3) What is the ultimate fate of the emergent fractionalized particles? It turns out that de-
pending on the situation, the fractionalized particles may or may not behave as qua-
siparticles, i.e., with poles in the spectral function, in the low field limit. A number of
examples of fractionalization is based on the Z2 gauge group, which is discrete and
has a well understood deconfined phase even in 2 + 1 dimensions. In the deconfined
phase, excitations of the gauge fields (called visons) are gapped and therefore dilute.
It is possible to fix the gauge and the matter fields become well-defined quasiparticles
which may be either gapped or gapless. In the case where fractionalization is based
on a low energy U (1) gauge group, if the matter fields are gapped, deconfinement
can occur only in 3 + 1 dimensions, in which case the emergent fractionalized parti-
cles are also well defined quasiparticles. This is the case for the exciton condensate
described above. The algebraic spin liquid (ASL) discussed in the last section turns
out to be a special example. There the emergent particle is a gapless nodal fermion
which is coupled to a U (1) gauge field. As a result of the coupling, the low energy
excitations are not well-defined S = 1

2 quasiparticles (spinons) and the spin excita-
tions take on branch cuts as discussed earlier. The case of a gauge field coupled to an
emergent Fermi sea of fermions and nonrelativistic bosons encountered in the U (1)
gauge theory is even more difficult to control and is less understood at present.

14.9. Application of Gauge Theory to the High Tc Superconductivity

Problem

Now we summarize how the gauge theory concepts we have described may be applied
to the high Tc problem. The central observation is that high Tc superconductivity emerges
upon doping a Mott insulator. The antiferromagnetic order of the Mott insulator disappears
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Figure 14.11. (a) Schematic zero temperature phase diagram showing the route between the antiferromagnetic
Mott insulator and the d-wave superconductor. The vertical axis is labeled by a parameter g which may be taken as a
measure of the frustration in the interaction between the spins in the Mott insulator. AF represents the antiferromag-
netically ordered state. SL is a spin liquid insulator that could potentially be reached by increasing the frustration.
The path taken by the cuprate materials as a function of doping x is shown in a thick dashed-dot line. The question
marks represent regions where the physics is not clear at present. Doping the spin liquid naturally leads to the dSC
state. The idea behind the spin liquid approach is to regard the superconducting system at nonzero x as resulting from
doping the spin liquid as shown in the solid line, though this is not the path actually taken by the material. (b) Same as
in Figure 14.11(a) but as a function of chemical potential rather than hole doping. Here the AF includes an insulating
and a lightly doped (light shaded) regions.

rather rapidly and is replaced by the superconducting ground state. The “normal” state above
the superconducting transition temperature exhibits many unusual properties which we refer
to as pseudogap behavior. How does one describe the simultaneous suppression of Néel order
and the emergence of the pseudogap and the superconductor from the Mott insulator? The
approach we take is to first understand the nature of a possible nonmagnetic Mott state at zero
doping, the spin liquid state, which naturally becomes a singlet superconductor when doped.
This is the central idea behind the RVB proposal [1] and is summarized in Figure 14.11. The
idea is that doping effectively frustrates the Néel order so that the system is pushed across
the transition where the Néel order is lost. In the real system the loss of Néel order may
proceed through complicated states, such as incommensurate charge and spin order, stripes
or inhomogeneous charge segregation [117]. However, in this direct approach the connection
with superconductivity is not at all clear. Instead it is conceptually useful to arrive at the
superconducting state via a different path, starting from a spin liquid state. Recently, Senthil
and Lee [118] have elaborated upon this point of view which we summarize below.

14.9.1. Spin Liquid, Quantum Critical Point, and the Pseudogap

It is instructive to consider the phase diagram as a function of the chemical potential
rather than the hole doping as shown in Figure 14.11b. Consider any spin liquid Mott state
that when doped leads to a d-wave superconductor. As a function of chemical potential, there
will then be a zero temperature phase transition where the holes first enter the system. For
concreteness we will simply refer to this as the Mott transition. The associated quantum crit-
ical fixed point will control the physics in a finite nonzero range of parameters. The various
crossovers expected near such transitions are well known and are shown in Figure 14.12.

Sufficiently close to this zero temperature critical point many aspects of the physics
will be universal. The regime in which such universal behavior is observed will be limited by
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Figure 14.12. Schematic phase diagram for a doping induced Mott transition between a spin liquid insulator and a
d-wave superconductor. The bold dot-dashed line is the path taken by a system at hole density x that has a supercon-
ducting ground state. The region marked FS represents the fluctuation regime of the superconducting transition. The
region marked QC is the quantum critical region associated with the Mott critical point. It is separated from the Mott
spin liquid state by a cross-over line (dashed). The QC region may be identified with the high temperature pseudogap
phase in the experiments.

“cut-offs” determined by microscopic parameters. In particular we may expect that the cutoff
scale is provided by an energy of a fraction of J (the exchange energy for the spins in the
Mott insulator). We note that this corresponds to a reasonably high temperature scale.

Now consider an underdoped cuprate material at fixed doping x . Upon increasing the
temperature this will follow a path in Figure 14.12 that is shown schematically. The properties
of the system along this path may be usefully discussed in terms of the various crossover
regimes. In particular it is clear that the “normal” state above the superconducting transition
is to be understood directly as the finite temperature “quantum critical” region associated with
the Mott transition. Empirically this region corresponds to the pseudogap regime. Thus our
assertion is that the pseudogap regime is controlled by the unstable zero temperature fixed
point associated with the (Mott) transition to a Mott insulator.

What are the candidates for the spin liquid phase? There have been several proposals
in the literature. One proposal is the dimer phase [119]. Strictly speaking, this is a valence
bond solid and not a spin liquid: it is a singlet state which breaks translational symmetry.
It has been shown by Read and Sachdev [120] that within the large N Schwinger boson
approach the dimer phase emerges upon disordering the Néel state. Sachdev and collaborators
have shown that doping the dimer state produces a d-wave superconductor [121]. However,
such a superconductor also inherits the dimer order and has a full gap to spin excitations, at
least for low doping. As we have seen in this review, there are strong empirical evidence for
gapless nodal quasiparticles in the superconducting state. In our view, it is more natural to
start with translation invariant spin liquid states which produce d-wave superconductors with
nodal quasiparticles when doped.

We have seen that the spin liquid states are rather exotic beasts in that their excitations
are conveniently described in terms of fractionalized spin 1

2 “spinon” degrees of freedom.
We discussed that spin liquids are characterized by their low energy gauge group. Among
spin liquids with nodal fermionic spinons, two versions, the Z2 and the U (1) spin liquids
have bee proposed. The Z2 gauge theory was advocated by Senthil and Fisher [113]. It can
be considered as growing out of the fermion pairing phase of the U (1) mean field phase
diagram shown in Figure 14.5. The pairing of fermions ∆ij = 〈

fi↑ fi↓ − fi↓ fi↑
〉

breaks the
U (1) gauge symmetry down to Z2, i.e., only f →– f remains unbroken. One feature of this
theory is that in the superconducting state hc/e vortices tend to have lower energy than hc/2e
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vortices, particularly at low doping. We that hc/2e vortices involve suppression of the pairing
amplitude |∆ij| at the center and cost a large energy of order J . On the other hand, one can
form an hc/e vortice by winding the boson phase by 2π , leaving the fermion pairing intact
inside the core. Another way of describing this from the point of view of Z2 gauge theory
is that the hc/2e vortex necessarily involves the presence of a Z2 gauge flux (called a vison
by Senthil and Fisher) in its core. The finite energy cost of the Z2 flux dominates in the
low doping limit and raises the energy of the hc/2e vortices. Experimental proposals were
made [122] to provide for a critical test of such a theory by detecting the vison excitation or
by indirectly looking for signatures of stable hc/e vortices. To date, all such experiments have
yielded negative results and provided fairly tight bounds on the vison energy [123].

We are then left with the U (1) spin liquid (also called the algebraic spin liquid ASL) as
the final candidate. The mean field basis of this state is the staggered flux liquid state of the
SU(2) mean field phase diagram (Figure 14.6). The low energy theory of this state consists
of fermions with massless Dirac spectra (nodal quasiparticles) interacting with a U (1) gauge
field. Note that this U (1) gauge field refers to the low energy gauge group and is not to be
confused with the high energy gauge group. This state has enhanced (π, π) spin fluctuations
but no long-range Néel order, and the ground states becomes a d-wave superconductor when
doped with holes. As we have seen, a low energy hc/2e vortex can be constructed, thus
overcoming a key difficulty of the Z2 gauge theory. Furthermore, an objection in the literature
about the stability of the U (1) spin liquid has been overcome, at least for sufficiently large
N [86]. It has also been argued by Senthil and Lee [118] that even if the physical spin 1

2 case
does not possess a stable U (1) liquid phase, it can exist as a critical state separating the Néel
phase from a Z2 spin liquid and may still have the desired property of dominating the physics
of the pseudogap and the superconducting states. An example of deconfinement appearing at
the critical point between two ordered phases is recently pointed out by Senthil et al. [124].

14.9.2. Signature of the Spin Liquid

If the pseudogap region is controlled by the U (1) spin liquid fixed point, is it possible to
characterize this region in a certain precise way? The spin liquid is a deconfined state, meaning
that instantons are irrelevant. Then the U (1) gauge flux is a conserved quantity. Unfortunately,
it is not clear how to couple to this gauge flux using conventional probes. We note that the
flux associated with the a3 gauge field is different from the U (1) gauge flux considered in
Section 14.6., which had the meaning of spin chirality.

In the superconducting state the gauge flux is localized in the vortex core and fluc-
tuations between ± half integer vortices are possible via instantons, because the instanton
action is finite. The superconductor is in a confined phase as far as the U (1) gauge field is
concerned. As the temperature is raised toward the pseudogap phase this gauge field leaks
out of the vortex cores and begins to fluctuate more and more homogeneously. The obser-
vation that the gauge flux is associated with the vortex core led Senthil and Lee [124] to
propose a way to generate and detect the existence of conserved gauge fluxes. Their proposed
experiment involves creating a disc in the pseudogap phase with two concentric rings of su-
perconductors, i.e., if we denote Tc of the outer ring, inner ring and the disc as Tc1, Tc2, Tc3
then Tc3 < Tc2 < Tc1.

Now consider the following set of operations on such a sample.

(i) First cool in a magnetic field to a temperature Tin such that Tc2 < Tin < Tc1. The
outer ring will then go superconducting while the rest of the sample stays normal. In
the presence of the field the outer ring will condense into a state in which there is a
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net vorticity on going around the ring. We will be interested in the case where this
net vorticity is an odd multiple of the basic hc/2e vortex. If as assumed the physical
penetration depth is much bigger than the thickness 
Ro then the physical magnetic
flux enclosed by the ring will not be quantized.

(ii) Now consider turning off the external magnetic field. The vortex present in the outer
superconducting ring will stay (manifested as a small circulating persistent current)
and will give rise to a small magnetic field. As explained above if the vorticity is
odd, then it must be associated with a flux of the internal gauge field that is ±π .
This internal gauge flux must essentially all be in the inner “normal” region of the
sample with very small penetration into the outer superconducting ring. It will spread
out essentially evenly over the full inner region. We have thus managed to create a
configuration with a nonzero internal gauge flux in the nonsuperconducting state.

(iii) How do we detect the presence of this internal gauge flux? For that imagine now
cooling the sample further to a temperature Tfin such that Tc3 < Tfin < Tc2. Then the
inner ring will also go superconducting. This is to be understood as the condensation
of the two boson species b1,2. But this condensation occurs in the presence of some
internal gauge flux. When the bosons b1,2 condense in the inner ring, they will do
so in a manner that quantizes the internal gauge flux enclosed by this inner ring into
an integer multiple of π . If as assumed the inner radius is a substantial fraction of
the outer radius then the net internal gauge flux will prefer the quantized values ±π
rather than be zero. However, configurations of the inner ring that enclose quantized
internal gauge flux of ±π also necessarily contain a physical vortex that is an odd
multiple of hc/2e. With the thickness of the inner ring being smaller than the physical
penetration depth, most of the physical magnetic flux will escape. There will still be
a small residual physical flux due to the current in the inner ring associated with the
induced vortex. This residual physical magnetic flux can then be detected.

Note that the sign of the induced physical flux is independent of the sign of the initial magnetic
field. Furthermore the effect obtains only if the initial vorticity in the outer ring is odd. If on
the other hand the initial vorticity is even the associated internal gauge flux is zero, and there
will be no induced physical flux when the inner ring goes superconducting.

14.10. Summary and Outlook

In this review we have summarized a large body of work which views high temperature
superconductivity as the problem of doping of a Mott insulator. We have argued that the t − J
model, supplemented by t ′ terms, contains the essence of the physics. Superconductivity with
d-wave pairing emerges as a natural candidate for the ground state. The driving force is the
exchange interaction J and the temperature scale for superconductivity is set by xt. These
simple observations answer the question: what is unique about the cuprate. The answer is
that the exchange constant J in the cuprates is among the highest known and the two dimen-
sional S = 1

2 system is also unique in that the effect of quantum fluctuations is maximized.
Already at the mean field level, the phase diagram includes the d-wave superconductor and
the pseudogap state and captures the essential features of the experiment. Variational Monte
Carlo calculations using projected wavefunctions further improve these comparisons. Further
progress on analytic theory hinges on the treatment of the constraint of no double occupation.
The redundancy in the representations used to enforce the constraint naturally leads to various
gauge theories. We argue that with doping, the gauge theory may be in a deconfined phase,
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in which case the slave-boson and fermion degrees of freedom, which were introduced as
mathematical devices, take on a physical meaning in that they are sensible starting points to
describe physical phenomena. However, even in the deconfined phase, the coupling to gauge
fluctuations is still of order unity and approximation schemes (such as large N expansion) are
needed to calculate physical properties such as spin correlation and electron spectral function.
These results qualitatively capture the physics of the pseudogap phase, but certainly not at a
quantitative level. Nevertheless, our picture of the vortex structure and how they proliferate
gives us a reasonable account of the phase diagram and the onset of Tc.

One direction of future research is to refine the treatment of the low energy effective
model, i.e., fermions and bosons coupled to gauge fields, and attempt more detailed compar-
ison with experiments such as photoemission lineshapes, etc. On the other hand, it is worth-
while to step back and take a broader perspective. What is really new and striking about the
high temperature superconductors is the strange “normal” metallic state for underdoped sam-
ples. The carrier density is small and the Fermi surface is broken up by the appearance of a
pseudogap near (0, π ) and (π , 0), leaving a “Fermi arc” near the nodal points. All this happens
without doubling of the unit cell via breaking translation or spin rotation symmetry. How this
state comes into being in a lightly doped Mott insulator is the crux of the problem. We can
distinguish between two classes of answers. The first, perhaps the more conventional one, pos-
tulates the existence of a symmetry-breaking state which gaps the Fermi surface, and further
assumes that thermal fluctuation prevents this state from ordering. A natural candidate for the
state is the superconducting state itself. However, it now appears that phase fluctuations of a
superconductor can explain the pseudogap phenomenon only over a relatively narrow temper-
ature range, which we called the Nernst regime. Alternatively, a variety of competing states
which have nothing to do with superconductivity have been proposed, often on a phenom-
enological level, to produce the pseudogap. We shall refer to this class of theory as “thermal”
explanation of the pseudogap.

A second class of answer, which we may dub the “quantum” explanation, proposes
that the pseudogap is connected with a fundamentally new quantum state. Thus, despite its
appearance at high temperatures, it is argued that it is a high frequency phenomenon which is
best understood quantum mechanically. The gauge theory reviewed here belongs to this class,
and views the pseudogap state as derived from a new state of matter, the quantum spin liquid
state. The spin liquid state is connected to the Néel state at half filling by confinement. At
the same time, with doping a d-wave superconducting ground state is naturally produced. We
argue that rather than following the route taken by the cuprate in the laboratory of evolving
directly from the antiferromagnet to the superconductor, it is better conceptually to start from
the spin liquid state and consider how AF and superconductivity develop from it. In this view
the pseudogap is the closest we can get to obtaining a glimpse of the spin liquid which up to
now is unstable in the square lattice t–J model.

Is there a “smoking gun” signature to prove or disprove the validity of this line of
theory? Our approach is to make specific predictions as much as possible in the hope of stim-
ulating experimental work. This is the reason we make special emphasis on the staggered flux
liquid with its orbital current fluctuations, because it is a unique signature which may be exper-
imentally detectable. Our predictions range from new collective modes in the superconducting
state, to quasi-static order in the vortex core. Unfortunately the physical manifestation of the
orbital current is a very weak magnetic field, which is difficult to detect, and to date we have
not found experimental verification. Besides orbital current, we also propose an experiment
involving flux generation in a special geometry. This experiment addresses the fundamental
issue of the quantum spin liquid as the origin of the pseudogap phase.
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In the past several years signification progress has been made in our understanding of
the concept of fractionalization and the characterization of the spin liquid state. In physics we
are familiar with the binding of particles to form more complicated entities, electrons and nu-
clei form atoms, atoms form molecules and solids, etc. Fractionalization is the reverse process,
where particles which carry a fraction of the quantum number of the original particles emerge
as low energy excitations. What we have learned is that gauge field invariably accompany
these particles, and the fractionalized particles and gauge fields should be considered as emer-
gent phenomena since there is no sign of them in the original short distance starting point. As
time progresses we will see more concrete examples of this phenomena, and hopefully real
experiments as well. Progress in this direction will help establish the point of view of high
temperature superconductivity which is summarized in this review.
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How Optimal Inhomogeneity Produces
High Temperature Superconductivity

Steven A. Kivelson and Eduardo Fradkin

Before Vic Emery’s untimely death, we had the privilege of working closely with him on the role of
Coulomb frustrated phase separation in doped Mott insulators, and on the consequences of the resulting
local electronic structures on the “mechanism” of high temperature superconductivity. In the present
paper, we discuss the resulting perspective on superconductivity in the cuprates, and on the more general
theoretical issue of what sorts of systems can support high temperature superconductivity. We discuss
some of the general, qualitative aspects of the experimental lore which we think should constrain any
theory of the mechanism, and show how they are accounted for within the context of our theory.

The focus of this paper is a “dynamic inhomogeneity-induced pairing” mechanism of
high temperature superconductivity (HTC) in which the pairing of electrons originates directly
from strong repulsive interactions.1 Repulsive interactions can be shown, by exact solution, to
lead to a form of local superconductivity on certain mesoscale structures, but the strength of
this pairing tendency decreases as the size of the structures increases above an optimal size.
Moreover, the same physics responsible for pairing within a structure provides the driving
force for the Coulomb frustrated phase separation that leads to the formation of mesoscale
electronic structures in many highly correlated materials. From this perspective, the forma-
tion of mesoscale structures (such as “stripes”) in the cuprate superconductors may not be a
problem for the mechanism of superconductivity but rather a part of the mechanism itself.
This mechanism is not based, as is the BCS mechanism [1], on the pairing of preexisting
well-defined and essentially free quasiparticles. Rather, it is based on the physics of strong
correlations and low dimensionality. In this approach, coherence and quasiparticles are emer-
gent phenomena at low energy, not an assumed property of the “high energy physics” from
which this state derives.

The existence of strong local pairing does not guarantee a large critical temperature,
since in a system of electronically isolated structures, the phase ordering (condensation) tem-
perature is suppressed by phase fluctuations, often to T = 0. Thus, the highest possible su-
perconducting transition temperature is obtained at an intermediate degree of inhomogeneity.
A corollary of this is that the optimal Tc always occurs at a point of crossover from a pairing
dominated regime when the system is too homogeneous, to a phase ordering regime with a
pseudo-gap when the system is too granular.

1 By “dynamic inhomogeneity” we mean inhomogeneity, whether static or fluctuating, which is generated dynam-
ically by the strongly interacting degrees of freedom.
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Coulomb frustrated phase separation leads to mesoscale electronic structures as a
generic feature of highly correlated electronic systems. (By “mesoscale” we mean on length
scales longer than but of order of the superconducting coherence length, ξ0.) Usually this ten-
dency leads to dominant charge density wave (CDW) and spin density wave (SDW) order, or
possibly to more exotic electronic liquid crystalline phases, which can coexist with but tend
to compete with superconductivity. However, we argue that one feature that is special about
the cuprate high temperature superconductors is that the intrinsic electronic inhomogeneity
is strong enough to produce high temperature pairing, but strongly fluctuating enough that it
does not entirely kill phase coherence.2

In Section 15.1, we discuss the reasons that HTC is difficult, and hence why there are so
few high temperature superconductors. In Section 15.2 we discuss the inhomogeneity induced
pairing mechanism of HTC. Section 15.3 reports the latest theoretical development in this
area—a solved model, the “striped Hubbard model,” for which a well-controlled theoretical
treatment is possible, and many of the qualitative points made in the other sections can be
illustrated explicitly. Then, in Section 15.4 we briefly discuss the ways in which incipient
charge order, especially due to Coulomb frustrated phase separation, can lead to the sort of
local (slowly fluctuating) electronic inhomogeneities required for the proposed mechanism, as
well as to a host of interesting “competing ordered” phases; a much more complete discussion
of these aspects of the problem, with an extensive review of the experimental evidence in the
cuprates, is contained in [3]. Sections 15.5, which discusses the relative merits of the weak and
strong coupling perspectives, and 15.6, which examines what is so special about the cuprates,
deal explicitly with HTC in the cuprates, as opposed to the more abstract issues treated in
the first part. These sections can be viewed as a set of commentaries, rather than a coherent
exegesis. In Section 15.7, we highlight some of the salient conclusions. Finally, in Appendix A
we give a theoretical definition of HTC.

With the exception of Section 15.3, the discussion in this paper is entirely qualitative and
descriptive. For all but the most recent developments, a more detailed and technical discussion
can be found in a review article [4], which also includes extensive references to the original
literature.

15.1. Why High Temperature Superconductivity is Difficult

Before 1986, all but a few lonely voices proclaimed that superconductivity with transi-
tion temperatures much above 20 K was impossible. Since the experimental discovery of high
temperature superconductivity in the cuprates, scores of different theoretical arguments have
been presented demonstrating that any number of simple model Hamiltonians are supercon-
ducting below a temperature which is “high” in the sense that it is equal to a number of order
one times a microscopic electronic energy scale. These calculations, however, are typically
uncontrolled, in the sense that they cannot be justified either as exact solutions of the stated
model, or as asymptotic expansions in powers of a small parameter—they rely on physical
intuition rather than systematic solution in any traditional sense of the word.

It seems to us that the answer cannot be so simple. The arguments (some of which are
reviewed later and in [4]) made before 1986 were not ill-considered, even if they may have

2 That the building blocks of an appropriate theory of strongly correlated systems should involve various self-
organized mesoscale structures, rather than simple weakly interacting quasiparticles, is genetically related to the
point of view articulated by P. W. Anderson in his famous monograph, More is different [2]. He, however, may
deny paternity.
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been accepted somewhat too uncritically—in materials that are basically good metals (Fermi
liquids) there are, indeed, serious reasons to suspect that high temperature superconductivity is
implausible. Moreover, even now, that we have learned to expand our horizons to include “bad
metals” (i.e., resistively challenged materials which are not well described by Fermi liquid
theory), the number of high temperature superconducting materials remains extremely small;
maybe it is only the cuprates that can legitimately be called high temperature superconductors,
or the class may include some subset of alkali doped C60, Ba1−x Kx BiO3, (TMTSF)2ClO4,
BEDT, MgB2, and Na0.3CoO2yH2O.

In Figure 15.1, we show the distribution of superconducting transition temperatures
among over 500 superconducting materials, as tabulated by Geballe and White [5] in 1979.
The definition of what constitutes a distinct “material” is somewhat arbitrary (e.g., at what
point, as one varies the concentration of two constituents of an alloy, does it become a new
material). However, what is clear from the figure is that materials with transition temperatures
above 15 K are, already, extremely rare exceptions. Indeed, for reasons which, as far as we
know are still not clear, all the materials known prior to 1979 with Tc in excess of 18 K are
alloys of Nb with the A15 crystal structure. We have added to the figure (blue hatched bars)

512

256

128

64

32

16

8

4

2

1

log
2
(N)

Tc(K)0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 15.1. Distribution of superconducting transition temperatures. The solid magenta bars represent the num-
ber of materials, N , whose transition temperatures are tabulated in Figure VI.2 from [5], which includes over 500
superconducting materials known prior to 1979. Note that the numbers are shown on a log scale. We have added to
the figure (the blue hatched bars) superconductors discovered since 1979 with transition temperatures in excess of
20 K. Since all the cuprate superconductors contain nearly square Cu–O planes, which are thought to be the central
structure responsible for HTC, one might think of them all as one superconducting material. However, there are also
notable differences between different cuprates, including the fact that some are n-type and some p-type, they have
different numbers of proximate Cu–O planes, they can have different elements making up the charge reservoir layer,
etc. There were 26 distinct crystal structures for cuprate superconductors tabulated in the 1994 monograph by Shaked
et al. [6], so we have taken this as our definition of “distinct” materials. In each case, we have reported the highest
transition temperature among different materials with the same crystal structure, restricting ourselves, however, to
data at atmospheric pressure in bulk materials. C60 can be doped with different metal ions or mixtures of metal ions,
but they all have more or less the same crystal structure and charge density, so we have counted this as one material
(with a maximum Tc = 31 K in Rb2CsC60). One point is for BaKBiO (Tc = 31 K). We have also added one point for
MgB2 (Tc = 39 K). All of the organic superconductors and Na0.3CoO2yH2O have Tc less than our arbitrary cutoff,
and so have not been included.
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some of the new superconductors with Tc in excess of 18 K that have been discovered since
this figure was made, using arbitrary definitions of our own. (See caption of Figure 15.1.)

The paucity of materials that exhibit high temperature superconductivity suggests that
there must be a number of fairly stringent conditions on the character of the interactions that
give rise to HTC. Many theories of high temperature superconductivity give no indication
of why this should be the case—applying the stated (uncontrolled) analysis used in these
approaches to a wide variety of Hubbard-like models on different lattices would suggest the
existence of a high temperature superconducting phase in all of them.

There are several reasons why high temperature superconductivity is hard to attain [7]
and why we should be pleasantly surprised that it occurs at all, rather than being shocked
that it does not lurk in every third new material. At the crudest level, the dominant interaction
between electrons is the strongly repulsive Coulomb interaction—for electrons to pair at all
must involve subtle many-body effects which will therefore tend to be rather delicate. In BCS
theory, it is the fact that the Coulomb interaction, µ, is well screened (short-ranged), and that
the phonon-induced attraction, λ, is highly retarded, that combine to make a net effective at-
traction, λeff = λ − µ∗, between electrons at low energy. (This important point is stressed,
for instance, in the classic treatise on the subject, [1].) Since the downward renormalization
of the Coulomb repulsion, µ∗ = µ[1 + µ log(EF/ω0)]−1, is only logarithmic, it is effective
only when the scale of retardation, ω0, is very small compared to the Fermi energy, EF. More-
over, since there are all sorts of polaronic and structural instabilities which occur if λ is large
compared to one, λeff can never be much larger than one. Combined, these considerations
imply that superconductivity in normal metals must satisfy the hierarchy of energy scales,
EF � ω0 � Tc ∼ ω0 exp(−1/λeff).

Another important issue is that superconductivity has two distinct features: the electrons
must pair and the pairs must condense. Rather than approaching the problem from the normal
state, if we try to understand the physics of Tc by asking what sorts of fluctuations destroy
the superconducting order as the system is heated from T = 0, we find that Tc is roughly de-
termined by the lower of the two characteristic energy scales corresponding to these two fea-
tures [8]. The energy scale which characterizes pair formation is the maximum gap, ∆0. The
energy scale, Tθ , of bose condensation (or more precisely, the temperature above which phase
fluctuations destroy the order) is proportional to the superfluid density, Tθ ∝ ρs(T = 0)/m∗.
In good metals, Tθ is enormous. As is correctly captured by mean field theory, Tc is deter-
mined entirely by the pairing scale. However, strong interactions tend to localize electrons,
either collectively (through formation of charge or spin density wave states) or through small
polaron formation. Thus, as the strength of the interactions increases, ∆0 can increase, but
correspondingly Tθ will decrease. Eventually, in the strong interaction limit, Tc is set by Tθ ,
and so decreases as the strength of the pairing increases.

The opposing tendencies of ∆0 and Tθ mean that there is generally an optimal Tc, i.e.,
one that does not grow without bound as the interaction strength is varied. This also suggests
that, within a class of model systems, or even possibly in a class of materials, the optimal
Tc will always occur at a point of crossover from a pairing dominated transition to a phase
ordering transition.

15.2. Dynamic Inhomogeneity-Induced Pairing Mechanism of HTC

In order to obtain high temperature superconductivity, we would like to eliminate the
middle man. Rather than relying on a weak induced attraction, the pairing should arise directly
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from the strong short-range repulsion between electrons. It might not be a priori obvious that
any such mechanism exists, but we have by now demonstrated, by controlled solution of
several model problems, that it does. Clearly any such pairing mechanism must be highly
collective (since the pairwise interaction is repulsive), and must be “kinetic energy driven” in
the sense that the energy cost of pairing two mutually repelling electrons must be more than
compensated by the gain in some sort of energy of motion.3

One of the main reasons we have reached the conclusion that mesoscale inhomo-
geneities are essential to the mechanism of high temperature superconductivity is that all
the model systems in which pairing from repulsive interactions has been clearly established
share this feature. This observation may reflect our limited model solving abilities rather than
a characteristic of nature. However, enormous effort has been devoted to numerical searches
for superconductivity in various uniform Hubbard and t–J related models, with results that
are, at least, ambiguous. (For a review, see [4].) It seems to us that if superconductivity with
characteristic energy and length scales of order the microscopic scales in the problem were
indeed a robust feature of these models, that unambiguous evidence of it would have been
found by now.

15.2.1. Pairing in Hubbard Clusters

The properties of the Hubbard model on various clusters has been studied [13–18] ex-
tensively, both numerically and analytically. A finite cluster cannot be a superconductor, but
there are two local indicators of superconductivity that can be investigated: existence of a
spin-gap and pair binding. If we wish to think of a Hubbard cluster as being a superconduct-
ing grain, then we certainly expect it to have a spin-gap. Even if we think of it as a grain
of a d-wave superconductor, since nodal quasiparticles only occur at discrete points (sets of
measure 0) in k-space, and since k is effectively quantized in a small grain, we expect there to
be a true spin-gap in almost all cases. Pair-binding is less obvious—on small superconduct-
ing grains, the energy to add one quasiparticle can be less (by the charging energy) than the
energy to add a pair. However, especially in models (such as the Hubbard model) in which
the long-range Coulomb interaction is neglected, pair-binding is also a reasonable indicator
of local superconductivity.

What is found in the cited studies is that many, but certainly not all, small Hubbard
clusters exhibit spin-gaps and pair-binding in an appropriate range of strength of (repulsive)
Hubbard interaction, U , and electron concentration. This effect is typically strongest at half-
filling (one electron per site). It occurs most strongly for intermediate values of U/t , and the
pair-binding is lost when U/t gets either very large or very small [19]. Finally, there is a
general tendency for the magnitude of both the pair-binding and the spin-gap to decrease as
the size of the cluster increases, suggesting that this is intrinsically an effect associated with
mesoscale structure.

Among the Hubbard clusters that have been found to exhibit this locally superconduct-
ing behavior are [20] the 4n membered Hubbard ring, with n from 1 to 250, the cube, the
truncated tetrahedron, and various pieces of the 2D square lattice on a torus. Closely related
studies [21, 22] have been carried out on clusters that are effectively infinite in one direction
but are mesoscale transverse to it. These clusters include Hubbard ladders with up to eight

3 This latter statement is intuitively compelling, but cannot be made completely precise since, by the time one is
dealing with effective Hamiltonians, it is never completely clear how each remaining interaction is related to
the microscopic kinetic energy of the constituent electrons. Note, the attractiveness of a kinetic energy driven
mechanism has been emphasized by several other authors, including [9–12].
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legs, and the circumference 4 Hubbard cylinders. In these “fat” 1D systems, the size of the
spin-gap, and with it the magnitude of the pair-binding energy, tend to decrease exponentially
with the transverse size of the clusters.4

The physics of spin-gap formation is at the core of this problem. It is inherited from the
properties of the cluster at half-filling where, at least for large U/t , the system can better be
thought of as a grain of a Mott insulator. The spin-gap is then associated with the quantum
disordering of the electron spins. In the limit of infinite cluster size there is no spin-gap since
(except, perhaps, on special, highly frustrating lattices) the spin rotation symmetry sponta-
neously broken, and there are gapless spin-waves. For instance, if one considers a ladder of
width L to be a finite size version of the square lattice quantum antiferromagnet, whose inter-
acting spin-waves one treats in the continuum limit, then one can derive an expression for the
spin-gap [23], ∆s ∼ 3.347 J exp(−0.682L/a) [1 + O(L/a)], which agrees quantitatively
with the results of numerical simulations [24–26]. Again, this argument makes clear that the
spin-gap is a mesoscale effect, which tends to decrease rapidly with the size of the cluster.

The remaining question is why does the spin-gap survive away from half filling, and
why does the existence of a spin-gap (in many, but not all cases) lead to pair-binding? There
are two distinct intuitive arguments that rationalize this observation.

The first is based [14] on the notion of a local form of spin-charge separation [27]. If
we add one hole to each of two half-filled Hubbard clusters, we must make on each cluster
an excitation carrying spin 1/2 and charge e. If we add two electrons to a single cluster, they
can form a spin singlet, in which case we need to make excitations carrying only charge
2e. If we can approximate the excitations as holons (charge e spin 0) and spinons (charge 0
and spin 1/2), then by adding two electrons to one cluster we save twice the spinon creation
energy. Even if this description is invalid (due to confinement) at long length scales, in some
circumstances, it may give us a good handle on the local energetics.

The second line of argument is similar to those that lead to phase separation in doped
antiferromagnets [28], or the spin-bag ideas of pairing [29]. Under some circumstances the
state of the system at half-filling is anomalously stable, since the system can take maximal
advantage of Umklapp scattering. A large spin-gap is a measure of this anomalous stability.
When adding two electrons to two identical clusters, we have the choice of adding one electron
to each cluster, in which case the particularly favorable correlations are disturbed on both
clusters, or we can add both to one cluster (even if they have a direct repulsion between them),
since in that case only one cluster is disturbed. Thus, paradoxically, it could be the strength
of the insulating correlations in the half-filled cluster that give rise to superconductivity when
the system is lightly doped.

15.2.2. Spin-Gap Proximity Effect

The arguments in the previous section are general and intuitive, but supported mainly
by anecdotal evidence. (In a few cases, the origin of the pair-binding can be understood an-
alytically for small U/t on the basis of perturbation theory [14, 15], but here the effects are
weak and the strong correlation physics, which is so central in the actual materials, is only
present in ghostly form.) In the case of “fat” 1D systems, various ladders or sets of coupled

4 Tsunetsugu, M. Troyer and T. M. Rice [22] studied arrays of two-leg t–J ladders as a way to understand the
physics of the translationally invariant 2D system. Although the model they studied nominally corresponds to the
period 2 case we discuss later, and some of their discussion prefigures the present analysis, the questions asked
by these authors were quite different. In particular they did not consider the mechanism of superconductivity in
inhomogeneous 2D systems which we discuss here.
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ladders, we have sufficient theoretical understanding of the problem that we can analyze in
some detail the conditions under which superconducting correlations emerge directly from
the repulsive interactions.

In a single band one-dimensional electron gas (1DEG) with short-ranged repulsive in-
teractions, superconductivity is suppressed relative to noninteracting electrons—there is no
tendency toward a spin-gap (rather, there is quasi-long-range antiferromagnetic order) and the
superconducting susceptibility is not even logarithmically divergent as T → 0. Technically
speaking, the low-energy physics is governed by the Luttinger liquid fixed point (gapless,
bosonic modes with spin–charge separation) with the charge Luttinger exponent, Kc < 1.
However, in multiband 1D systems, under many circumstances [30–32], the low-energy
physics is governed by a strong-coupling Luther–Emery fixed point [33], with a spin-gap,
∆s, and with a charge Luttinger exponent in the range 0< Kc < 2. This fixed point exhibits
incipient superconductivity in the sense that the singlet superconducting susceptibility
diverges for T � ∆s so long as Kc > 1/2,

χSC ∼ ∆s/T 2−K −1
c . (15.1)

To complicate matters, it also exhibits incipient CDW order in the sense that the CDW sus-
ceptibility diverges at wave number Q = 2kF for T � 
s so long as Kc < 2,

χCDW(Q) ∼ ∆s/T 2−Kc . (15.2)

Why are the multiband cases so different from the single band case? In particular, since
spin-gap formation is the 1D version of singlet pairing, what is it that causes pairing to be a
common feature of multiband systems and not of the single band problem? The new physics
comes from interband pair scattering, and has been explained intuitively by Emery, Zachar,
and one of us [11] as “the spin-gap proximity effect.”

Consider coupling two distinct 1D systems. From the weak coupling perspective, one
can think of these as being two bands arising from the existence of more than one atom per unit
cell. From a strong coupling perspective, one could think of these as two chemically distinct
chains in close physical proximity to one another. Assuming that the two systems have distinct
values of the Fermi wave vector, kF and k′

F, low-energy processes in which an odd number of
electrons are scattered from one system to the other are forbidden by momentum conservation.
Coupling of CDW fluctuations, which are singular at different values Q and Q′, are negligible
(i.e., it is an irrelevant interaction). However, scattering of electron pairs with zero center of
mass momentum from one system to the other is, under many circumstances, peturbatively
relevant. It is the renormalization of these interband pair-scattering terms, and their feedback
on the other interactions in the system, that can drive the system to the Luther–Emery fixed
point.

The physical origin of this effect is simply understood. The electrons can gain zero-point
energy by delocalizing between the two bands. In order to take advantage of this, however,
the electrons need to pair, which may cost some energy. When the energy gained by delo-
calizing between the two bands exceeds the energy cost of pairing, the system is driven to a
spin-gap phase. In this sense, the physics is very analogous to the ordinary proximity effect
in superconductivity. Here, a normal metal, even one with residual repulsive interactions be-
tween electrons, is brought in contact with a superconductor. In order for the electrons to be
delocalized over the combined system, the electrons in the metal must pair. In this case, even
though this costs energy, the gain in zero point “kinetic energy” always makes the proximity
effect favorable. In this sense this is a kinetic energy driven mechanism. As is well known, the
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result is that superconductivity is induced in the normal metal over a distance which diverges
as T → 0.

The spin-gap proximity effect is not quite so robust—it occurs only if a certain exponent
inequality is satisfied. If one of the two subsystems already has a spin-gap, then the price
(pairing) only needs to be paid in the other, so the exponent inequality is easier to satisfy. It
is an interesting, and still largely unexplored issue, what local “chemistry” does or does not
give rise to a Luther–Emery liquid with a large spin-gap in a variety of multicomponent 1D
systems. We do know that the two-leg ladder in both weak and strong coupling has a robust
Luther–Emery phase. We also know, as mentioned above, that the spin-gap of the half-filled
2N leg ladder in strong coupling decreases exponentially with N . Similar behavior is seen
in weak coupling, where the spin-gap in the entire Luther–Emery phase can be shown [34]
to decay exponentially with N . Together, these two observations reinforce our belief that
pairing directly from repulsion is a mesoscopic effect, which disappears rapidly if the relevant
dimensions of the system in question get too large.

15.3. Superconductivity in a Striped Hubbard Model: A Case Study

In this section, we present a theoretically well-controlled solution of an explicit model
in which high temperature superconductivity arises directly from the repulsive interactions
and the existence of mesoscale structures.5 In collaboration with Arrigoni, we discuss this
model in some detail in [36].

The model has modulated interactions in one direction, so that it breaks into an ar-
ray of weakly coupled two-leg ladders (hence the name “striped Hubbard model”). Perhaps
one can view this as a caricature of the spontaneous symmetry breaking that occurs in stripe
phases in real materials, but there are troubles with this identification. Primarily, we would
like this model to be viewed as a solvable model in which the basic mechanism of mesoscale
inhomogeneity-induced pairing can be studied.

Because the solution of the ladder problem is so well characterized, it is possible to
treat the coupled ladder problem reliably so long as the coupling between ladders is suffi-
ciently weak. Within this model, we establish the occurrence of superconductivity directly
from the repulsive interactions, document the important role of competing (CDW) order in
the phase diagram, and analyze the circumstances under which the optimal Tc is obtained. A
very schematic representation of the resulting phase diagram is shown in Figure 15.2.6

The striped Hubbard model (sketched in Figure 15.3) is

H = −
∑

<
r ,
r ′>,σ
t
r ,
r ′ [c†


r ,σ c
r ′,σ + h.c.] +
∑


r ,σ
[ε
r c†


r ,σ c
r ,σ + (U/2)c†

r ,σ c†


r ,−σ c
r ,−σ c
r ,σ ],

where < 
r , 
r ′ > designates nearest-neighbor sites, c†

r ,σ creates an electron on site 
r with spin

polarization σ = ±1 and satisfies canonical anticommutation relations, and U > 0 is the

5 The same sort of physics was studied in weak coupling in [35].
6 In the schematic phase diagram of Figure 15.2, we have illustrated qualitatively several important effects discussed

in the text: (a) at low x , Tc grows linearly with x ; (b) for somewhat larger values of x , one can use the low-
temperature form of the susceptibility of the spin-gap phase to estimate Tc; (c) although for larger values of x non
universal effects are important, as x → xc the spin-gap vanishes and so does Tc. We have simplified the figure
by taking the Tc curves for the periods 2 and 4 stripes to coincide, so as to highlight the main difference, i.e.,
the critical x shifts to larger values as the period increases. In fact, however, the entire curve should be somewhat
different in the two cases.



How Optimal Inhomogeneity Produces High Temperature Superconductivity 577

SC

Ds(x)

x
0 xc

CDW

J
2
_

Tc

xc(2) xc(4)

Figure 15.2. Schematic phase diagram for a period 2 and a period 4 striped Hubbard model, at fixed (and small)
δt . The broken line is the spin-gap ∆s(x) as a function of doping x , which labels the horizontal axis; xc(2) and xc(4)
indicate the SC-CDW quantum phase transition for the period 2 and period 4 cases. These, most likely, are first-order
transitions. For x � xc the isolated ladders do not have a spin-gap; in this regime the physics is different involving
low-energy spin fluctuations.
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Figure 15.3. Schematic representation of the striped Hubbard model analyzed in this paper. See the surrounding
text for details; here A and B are the two types of ladders discussed in the text.
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repulsion between two electrons on the same site. In the limit of strong repulsions, U � t
r ,
r ′ ,
this model reduces approximately to the corresponding t−J model, which operates in the
subspace without doubly occupied sites, but with an exchange coupling, J
r ,
r ′ = 4|t
r ,
r ′ |2/U
between neighboring spins. Our results only depend on the low-energy physics of the ladder
and, thus, apply equally to the t−J and Hubbard models.

In the translationally invariant Hubbard model, t
r ,
r ′ = t and ε
r = 0. The striped version
of this model is still translationally invariant along the stripe direction (which we take to be
the y axis), so t
r ,
r+ŷ = t . However, perpendicular to the stripes the hopping matrix takes on
alternately large and small values: t
r ,
r+x̂ = t ′ for rx = even, and t
r ,
r+x̂ = δt � t ′ ∼ t for
rx = odd. This defines a “period 2 striped Hubbard model,” as shown in Figure 15.3. For the
“period 4 striped Hubbard model,” we include a modulated site energy, ε
r = ± ε on alternate
ladders with ε � δt . Ladders with site energy ε will be called A ladders and ladders with site
energy −ε will be called B ladders.

15.3.1. Zeroth-Order Solution: Isolated two-Leg Ladders

For δt = 0, the model breaks up into a series of disconnected two-leg ladders. Con-
siderable analytic and numerical effort has gone into studying the properties of two-leg t–J
and Hubbard ladders, and much is known about them. For x = 0, the undoped two-leg ladder
has a unique, fully gapped ground state. In the large U limit, the magnitude of the spin-gap
of the undoped [24, 37] ladder is approximately ∆s ≈ J/2. Then, for a substantial range
of x (0 < x < xc), the ladder exhibits a Luther–Emery phase, with a spin-gap that drops
smoothly7 with increasing x , and vanishes at a critical value of the doping, x = xc. (This
particular Luther–Emery liquid is known [30, 37–41] to have “d-wave-like” superconducting
correlations, in the sense that the pair-field operator has opposite signs along the edge of the
ladder (y-direction) and on the rungs (x-direction).) For x > xc, there remain uncertainties
concerning the exact character of the possible gapless phases.

For the purposes of the present paper, we will confine ourselves to the range of parame-
ters where both A and B type ladders are in the Luther–Emery phase. The low-energy physics
(at all energies less than ∆s) of the two-leg ladder in the Luther–Emery phase is contained in
the effective (free) bosonized Hamiltonian for the collective charge degrees of freedom

H =
∫

dy
{vc

2

[

K (∂yθ)
2 + 1

K
(∂yφ)

2
]

+ · · ·
}
, (15.3)

where φ is the CDW phase and θ is the superconducting phase. These two fields are dual to
each other, and so satisfy the canonical equal-time commutation relations, [φ(y′), ∂yθ(y)] =
iδ(y − y′). Specifically, the component of the charge density operator at the wave-vector
P = 2πx of the incipient CDW order is

ρ̂P (y) ∝ √
∆s exp[iPy + i

√
2πφ(y)], (15.4)

while the singlet pair creation operator,

�̂(y) ∝ √

s exp[i√2πθ ]. (15.5)

7 For a restricted range of x , the authors of [37] show numerical evidence indicating that the spin-gap decreases
smoothly with increasing x . We are not aware of any published studies that carefully trace the spin-gap as a
function of x , and in particular ones that accurately determine the critical doping, xc, at which it vanishes.
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This effective Hamiltonian is general and physical; the precise x dependence of the spin-gap,
∆s, the charge Luttinger exponent, K , the charge velocity, vc, and the chemical potential,
µ(x), depends on details such as the values of U/t and t ′/t . For certain cases [37–39] ∆s, K ,
vc, and vs have been accurately computed in Monte Carlo studies, and these studies could be
straightforwardly extended to other values of the parameters.8

The ellipsis in Eq. (15.3) represent cosine potentials, which we will not explicitly ex-
hibit here, that produce the Mott gap ∆M at x = 0. Because of these terms, for x → 0 the
elementary excitations are charge 2e solitons that can either be viewed as spinless Fermi-
ons or hard-core bosons, with a dispersion relation E(k) � ∆M + t̃ k2. One consequence of
this is that [39, 42] K → 2 and vc → 2πt̃ x as x → 0. A second consequence is that the
renormalized harmonic theory, which retains only the explicitly exhibited terms in Eq. (15.3),
is valid in a range of energies which is small in proportion to the effective Fermi energy,
Ẽ (1D)

F = 2πt̃ x2. (An estimate of t̃ ≈ t/2 can be obtained from the DMRG study of the t–J
ladder with J/t = 1/3 in [38].)

For larger x , the numerical studies [38, 39, 43] generally find that both K and ∆s drop
monotonically with increasing x . By the time x = x1 ≈ 0.1, K is close to 1, and by x = xc ≈
0.3, ∆s has dropped to values that are indistinguishable from 0, and K ≈ 0.5. Thus, over
most of the Luther–Emery phase, both the SC and the CDW susceptibilities are divergent.
However, the SC susceptibility is the more divergent only at rather small values of x < x1.

Before leaving the single-ladder problem, it is worth mentioning a useful intuitive cari-
cature of its electronic properties. We picture a singlet pair of electrons on neighboring sites
as being a hard-core bosonic “dimer.” The undoped ladder can be thought of as a Mott in-
sulating state of these dimers, with one dimer per rung of the ladder, i.e., a “valence bond
crystal” with lattice spacing one. To remove one electron from the system, we need to de-
stroy one dimer and remove one electron, leaving behind a single electron with spin 1/2 and
charge e. However, when we remove a second electron from the system, we have the choice
of either breaking another dimer, thus producing two quasiparticles with the quantum num-
bers of an electron, or of removing the unpaired electron left behind by the first removal, thus
producing a new boson—a missing dimer—with charge 2e and spin 0. The persistence of the
spin-gap upon doping the ladder can thus be interpreted as implying that the energy needed
to break a dimer (of order ∆s) is sufficiently large that one charge 2e boson costs less than
two charge e quasiparticles. At finite x , the missing dimers can be treated as a dilute gas of
hardcore bosons. That the elementary excitations of the undoped ladder can be constructed in
this simple manner reflects the fact that this is a confining phase [44–47], not a spin liquid.9

15.3.2. Weak Inter-Ladder Interactions

We now address the effect of a small, but nonzero coupling (i.e., single-particle hopping)
between ladders, δt > 0. Because of the spin-gap, δt is an irrelevant perturbation in the renor-
malization group sense, and so does not directly affect the thermodynamic state of the system.
However, second-order processes result in various induced interactions between neighboring
ladders. These consist of marginal forward scattering interactions, which are negligible for

8 Note that the normalization convention on the fields used in the present paper differs from that of White and
coworkers [39], so that our K is the same as their 2Kc,+.

9 In a confining phase, all finite energy excitations have quantum numbers equal to those of an integer number of
electrons and holes; a deconfining phase supports excitations with “fractional” quantum numbers such as those of
a “spinon”: spin 1/2 and charge 0.
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small δt , and potentially relevant Josephson tunneling and back-scattering density–density
interactions.

The important (possibly relevant) low-energy pieces of these latter interactions are most
naturally expressed in terms of the bosonic collective variables defined above:

H ′ = −
∑

j

∫

dy
{
J cos[√2π(θ j − θ j+1)] + V cos[(Pj − Pj+1)y + √

2π(φ j − φ j+1)]
}
,

(15.6)

where Pj = 2πx j , with x j the concentration of doped holes on ladder j , and φ j and θ j are the
charge field and its dual on each ladder. Here, again, the form of the low-energy interactions
between two Luther–Emery liquids is entirely determined by symmetry considerations, but
the magnitude of the Josephson coupling J and the induced interaction between CDW’s, V ,
must be computed from microscopics; they are renormalized parameters which result from
“integrating” out the high-energy degrees of freedom with energies between the bandwidth
W ∼ 4t and the renormalized cutoff, ∆s, or with wavelengths between a and ξs ≡ vs/∆s
where vs is the spin-wave velocity.

So long as x is not too near xc, the spin-gap is large, ∆s ∼ J . In this case, the spin
physics really occurs on a microscopic scale, and hence the coupling constants are not quali-
tatively changed in this first stage or renormalization. In this case, a rough estimate of J and
V can be made from second-order perturbation theory:

J ≈ V ∼ (δt)2

J
. (15.7)

As x → xc, and hence ∆s → 0, the problem becomes more subtle, as discussed in [36].

15.3.3. Renormalization-Group Analysis and Inter-Ladder Mean Field Theory

The effect of these interchain couplings can be deduced from an analysis of the
lowest-order perturbative renormalization group equations in powers of the couplings V and
J . However, equivalent results are obtained from inter-ladder mean-field theory [43, 48],
which is conceptually simpler. These equations are the analogue of the BCS gap equations
applied to this model, and are expected to give a quantitatively accurate estimate of Tc for
small δt/∆s for precisely the same reason. A discussion of the accuracy of interchain mean-
field theory is given in the Appendix of [36]. In the present two-dimensional system, Tc should
be interpreted as the onset of quasi-long range order, i.e., as a Kosterlitz–Thouless transition.

To implement this mean-field theory, we need to compute the expectation value
M j (h j ) = 〈cos[√2πθ j ]〉 of the pair creation operator on an isolated ladder, where the ex-
pectation value is taken with respect to the mean-field Hamiltonian

HMF = Hj − h j

∫

dy cos[√2πθ j ] (15.8)

in which Hj is the effective Hamiltonian in Eq. (15.3) with parameters appropriate to ladder
j , and h j represents the mean-field due to the neighboring ladders, and so satisfies the self-
consistency condition,

h j = J [M j+1 + M j−1]. (15.9)

The expression for the mean-field transition temperature can be expressed in terms of
the corresponding susceptibility, χ̃ ( j)

SC = ∂M j (h)/∂h|h=0, which is related to the supercon-
ducting susceptibility in Eq. (15.1) by a proportionality constant which depends on the expec-
tation value of the spin-fields. In the case in which all the ladders are equivalent, this yields
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the implicit relation 2J χ̃SC(Tc) = 1. For an alternating array of A and B type ladders, the
expression for the superconducting Tc is easily seen to be

(2J )2 χ̃
(A)
SC (Tc) χ̃

(B)
SC (Tc) = 1. (15.10)

Notice that in the case in which the A and B type ladders are identical Eq. (15.10) reduces
properly to the expression for equivalent ladders. The expression for χSC from Eq. (15.1) can
be used to invert Eq. (15.10) to obtain the estimate for Tc

Tc ∼ ∆s

(J
W̃

)α

;α = 2KA KB

[4KA KB − KA − KB] (15.11)

where J is the effective coupling given in Eq. (15.7), and W̃ is a high energy cutoff which, so
long as x is not too close to xc, is also of order J . Although Tc is small for small J , it is only
power law small. In fact typically α ∼ 1. A perturbative renormalization-group treatment for
small J yields the same power law dependence as Eq. (15.11), suggesting that this expression
is asymptotically exact for J � W̃ .

The mean-field equations for the CDW order are obtained similarly. The expression for
the transition temperature for CDW order with wave-vector P is

(2V)2 χ̃ (A)CDW(P, Tc) χ̃
(B)
CDW(P, Tc) = 1, (15.12)

where the notation is the obvious extension of that used in the superconducting case. The best
ordering vector is that which maximizes Tc. For P = PA, χ(A)CDW(PA, T ) diverges with de-
creasing temperature as in Eq. (15.2), but χ(B)CDW(PA, T ) saturates to a finite, low temperature
value when T ∼ vc|PA − PB|. Thus, even if χ(A)CDW(PA, T ) diverges more strongly with de-
creasing temperature than χ(A)SC , there are two divergent susceptibilities in the expression for
the superconducting Tc, and only one for the CDW Tc. So long as the exponent inequalities

2 > K −1
A + K −1

B − KA; 2 > K −1
A + K −1

B − KB (15.13)

are satisfied, the superconducting instability wins out.

15.3.4. The x → 0 Limit

Since K → 2 as x → 0, there is necessarily a regime of small x in which the supercon-
ducting susceptibility on the isolated ladder is more divergent than the CDW susceptibility.
Here, in the presence of weak inter-ladder coupling, even the period 2 striped Hubbard model
(i.e., with ε = 0) is superconducting. However, care must be taken in this limit, since, as
mentioned above, the range of energies over which H in Eq. (15.3) is applicable vanishes in
proportion to x2. Fortunately, a complementary treatment of the problem, which takes into
account the additional terms, the ellipsis in Eq. (15.3), can be employed in this limit. The
small x problem can be mapped onto a problem of dilute, hard-core charge 2e bosons (with
concentration x per rung) with an anisotropic dispersion, E(
k) = t̃ k2

y − J cos[2kx ]. (The 2
reflects the ladder periodicity.) Consequently, for small x

Tc ≈ 2π
√

2J t̃ x F(x) ∼ |δt |x, (15.14)

where F(x) ∼ 1/ ln(1/x) is never far from 1, and the logarithm reflects [49] the fact d = 2
is the marginal dimension for Bose condensation. (This result is not substantially different for
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the period 4 striped Hubbard model, so long as ε is not too large.) There is a complicated
issue of order of limits when both δt and x are small; roughly, we expect that Tc will be
determined by whichever expression, Eq. (15.10) or Eq. (15.14), gives the higher Tc, but with
the understanding that χSC must be computed taking into account the terms represented by the
ellipsis in Eq. (15.3) which cause the susceptibility to vanish as x → 0.

15.3.5. Relation to Superconductivity in the Cuprates

The striped Hubbard model realizes the idea that the pairing scale, in this case the spin-
gap, can be inherited from a parent Mott insulating state. Moreover, like the underdoped
cuprates, the gap scale is a decreasing function of increasing x , while the actual supercon-
ducting transition occurs at a Tc typically much smaller than ∆s/2, and is determined by the
phase ordering temperature rather than the pairing scale. Hence, for x not too close to xc, this
model exhibits a pseudogap regime for temperatures between Tc and T ∗ ∼ ∆s/2, reminiscent
of that seen in underdoped cuprates. However, Tc is always bounded from above by ∆s and
so tends to zero as x → xc. The model also exhibits a competition between SC and CDW
order, which is somewhat akin to the competition with fully developed stripe order and SC
that occurs in certain cuprates.10

However, as mentioned earlier, the model cannot be thought of as a literal model of
superconductivity in the cuprates. First, most of the cuprates have, at most, local fluctuating
charge stripe order (see [3] for an extensive discussion of the present status of this issue), and
even where such order occurs, it occurs through spontaneous symmetry breaking. Moreover,
the striped Hubbard model possesses a large spin-gap, and so does not contain any of the
physics of low energy incommensurate spin-fluctuations which are the principle experimental
signatures to date of stripe correlations in the cuprates. Last, although the superconducting
state is “d-wave-like” in the sense that the order parameter changes sign under rotations by
π/2, since the striped Hamiltonian explicitly breaks this symmetry, there is no precise sym-
metry distinction between d-wave and s-wave superconductivity. Indeed, the superconducting
state is not even truly adiabatically connected to the superconducting state observed in the
cuprates, because the existence of a spin-gap implies the absence of gapless “nodal” quasipar-
ticles in the superconducting state.11

There is a strong tendency in our contentious field to set up straw men which can easily
be toppled by (purposely?) misinterpreting carefully caveated statements. We therefore reiter-
ate that the striped Hubbard model is a solvable (and, we believe, fascinating) case study—not
a “realistic” model of superconductivity in the striped phase of the cuprates.

15.4. Why There is Mesoscale Structure in Doped Mott Insulators

The cuprate high temperature superconductors are strongly correlated electronic sys-
tems, in which the short-range repulsions between the electrons are larger than the bandwidth.
They are doped descendants of a strongly correlated (Mott) insulating “parent compound”
which is antiferromagnetically ordered. While HTC is, seemingly, uniquely a property of the
cuprates, many other aspects of the strong correlation physics are features of a much broader

10 For x > xc the low-energy physics is dominated by spin fluctuations and by single-particle (electron) tunneling.
Low Tc superconductivity can occur in this regime by conventional BCS-like mechanisms.

11 However, simplified models of this type can have 2D anisotropic superconducting phases both with and without
low-energy nodal quasiparticles; see, e.g., [50].
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class of strongly correlated materials including various manganites, nickelates, cobaltates, and
ruthenates. Magnetism, and various forms of charge order (to be discussed later) are among
the clearest signatures of the strong correlation physics.

Of great fundamental importance is the failure of the Fermi liquid description of the
“normal” state at room temperature and above. This fact was clear already at the time of
the discovery of high temperature superconductivity and it has been a leit motif of much
of the research done since then [51, 52]. A directly related and associated fact is that these
doped Mott insulators are “bad metals” [53]: above the superconducting Tc they exhibit a
metallic T dependence of the conductivity, the famous linear resistivity, while at the same
time there appears to be no evidence of well-defined quasiparticles (in the sense of Landau),
and the resistivity passes the Ioffe-Regel limit without taking any notice of it. It may often
be the case that well-defined quasiparticles develop as emergent phenomena at low T and
energy; those who treat the normal state as a Fermi liquid, despite the evidence to the contrary,
are, in the immortal words of Landau [54], “Enemies of the working class.”

Whether their ground states exhibit long-range magnetic order or not, most models
of undoped Mott insulators share an intrinsic tendency towards electronic phase separation
[28,55], an effect which was found quite early on in analytic studies and numerical simulations
of models of strongly correlated systems. The physics behind electronic phase separation is
quite simple, and is related to the mechanism of pair-binding in clusters, discussed above.
The addition of a single hole induces a “defect” in the correlations of the Mott insulator.
The energy associated with the subsequent addition of holes is less if they clump together,
since this disrupts the favorable correlations of the insulating state to a lesser extent. Thus,
even though all the microscopic interactions are repulsive, there are effective attractive forces
between the doped holes.

On the other hand, since the undoped systems are insulators, the long-range piece of
the repulsive Coulomb interactions between the charges is poorly screened. This gives rise
to Coulomb-frustrated phase separation—states which have as their constituents mesoscopic
puddles of charges whose size and shape [56] are determined by the competition between the
short-range tendency to phase separation and the Coulomb interaction. Electronic phases with
self-organized mixtures of high- and low-density regions have been called [56,57] “electronic
microemulsions.” In a precise sense, the mesoscale structure defines the set of relevant degrees
of freedom responsible for the low-energy physics of strongly correlated systems.

At sufficiently small T , depending on how large the effective mass of a puddle, they
can remain mobile (a puddle fluid), or can freeze into a variety of possible charge ordered
states. (In the presence of quenched disorder, they can also be pinned.) Among the possible
charge ordered states are a variety of electronic liquid crystal phases which exhibit a varying
degree of charge inhomogeneity and spatial anisotropy [58]. As far as the mechanism of HTC
is concerned, the existence of local structures on length scales greater than or of order of
the superconducting coherence length, ξ0, is what is important, not the manner in which the
structures themselves order or not. However, it is much easier experimentally to identify the
states of broken spatial symmetry that arise from Coulomb frustrated phase separation. Thus,
both because of their intrinsic interest, and as a way of gaining insight into the nature of
the structures produced by Coulomb frustrated phase separation, there has been considerable
interest in studying these phases.12

Since electronic liquid crystalline phases are in some ways ordered and in some ways
fluid, they are more subtle to identify in experiments than typical CDWs. Elsewhere, we have

12 A related proposal is developed in [59, 60].
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discussed the evidence in the cuprates [3], of the existence of such ordered phases, especially
smectic (stripe ordered) and Ising nematic phases. In many respects, electronic liquid crystal
phases are similar to the analogous phases of complex classical fluids [61]. However, while in
classical liquid crystals, the rich phase diagram originates form the microscopic anisotropic
structure of complex molecules (e.g., nematogens, chiral molecules, viruses, “molecular
bananas,” etc.), electronic liquid crystals are the quantum ground states of systems of point
particles (holes); the role of the complex molecules is played by the self-organized structures
produced by Coulomb-frustrated phase separation. It cannot get more politically correct than
this: complex “soft quantum matter” from self-assembling nanostructures!

15.5. Weak Coupling Vs. Strong Coupling Perspectives

Much of the commonly adopted theoretical analysis of the mechanism of high tempera-
ture superconductivity is, at core, the same as the BCS/Eliashberg theory, but (possibly) with
a different collective excitation (spin-wave, phonon, exciton, director wave, . . . ) playing the
role of the “glue.” However, an essential feature of BCS theory is that the normal state is a
good Fermi liquid [1], with well-defined quasiparticles at all energies small compared to the
retardation scale (the frequency of the collective mode). It is, of course, possible to simply
evaluate the same class of diagrams that are sanctified by Eliashberg theory, even when what-
ever peaks there are in the single particle spectral function are too broad to be classified as
quasiparticles; however, in this case, there is no known justification for summing this partic-
ular class of diagrams (which sum the leading logarithms in a Fermi liquid). Whether or not
one is comfortable with this sort of uncontrolled extrapolation of the (beautifully well con-
trolled) weak coupling theory is a matter of personal taste. A distinguishing feature of these
theories is that, for them, the strongly correlated nature of the cuprates is an inconvenient
side issue. Indeed in all these theories, if the single particle spectral function, A(k, ω), (often
taken phenomenologically from experiment) were replaced by a Fermi liquid A(k, ω), with
well-defined quasiparticles, the resulting calculated Tc would actually increase!

In contrast, a smaller but highly visible set of theories start from the viewpoint that
the strong correlation physics is central to the physics of high temperature superconductivity.
In this case, the mechanism is not based on pairing of well-defined quasiparticles. Theories
based on proximity to quantum critical points are of this sort. In these theories, the same
physics (quantum critical fluctuations) that is supposed to be responsible for the pairing is
also presumed to be responsible for the non-Fermi liquid character of the normal state, so
it does not make sense to ask what would happen were the normal state replaced by a Fermi
liquid. Of course, theories based on a fractionalized normal-state, with spin–charge separation,
also fall in this category. The ideas we have discussed, in which mesoscale (and/or mesotime)
inhomogeneity plays a crucial role in the pairing, share some features with both of these
other non-Fermi liquid-based approaches. Since in the cleanest versions of our mechanism,
coherence between different clusters occurs with the advent of superconducting order, these
ideas provide a very concrete implementation of a mechanism of superconductivity in which
the normal state has no coherently propagating quasiparticles.

It may be possible to discriminate between the strong correlation and the more BCSish
approaches experimentally. In the strong correlation approaches, it would be unexpected to
find a material with a high superconducting transition temperature and well-defined quasi-
particles in the normal state. This finds some support in the observation that, with increasing
doping in the overdoped regime, as the single-particle spectral function becomes more Fermi
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liquid like, Tc drops rapidly. From the more BCSish viewpoint, one would be unsurprised
to find some materials, even materials in which Tc is optimized, in which the normal state
is well described by Fermi liquid theory, and the single-particle spectral function exhibits
well-defined quasiparticles.

In this context, it is important not to over-interpret ARPES evidence for or against the
existence of quasiparticles. On the one hand, it is possible for quenched disorder, especially
at the sample surface, to broaden what would have been a sharp peak in A(k, ω), making
it too broad to be clearly identified as a quasiparticle—so long as this broadening is due to
strictly elastic scattering process, a quasiparticle description remains valid despite the nega-
tive evidence from ARPES. Probably, this can be checked with STM by looking for Friedel
oscillations with random phases, but long distance power-law fall-off associated with the in-
troduction of a known scatterer at a point in space. On the other hand, the spectral function
of the one-dimensional Luttinger liquid, even with moderately strong interactions, posseses
a reasonably clear Fermi-liquid-like peak, although the elementary excitations of the system
have no overlap with a single electron [62]. Thus, one should be cautious about concluding,
without rather detailed theoretical analysis, that any particular observed spectral function is
or is not exhibiting quasiparticle behavior.

15.6. What is so Special About the Cuprates?

Until now, the issues we have discussed were mostly abstract, based on an analysis of
the behavior of model Hamiltonians. Ultimately, however, we are interested in understanding
the superconductivity in the cuprates. Moreover, since it is the one place where we all agree
that a new phenomenon called high temperature superconductivity occurs, we would like to
gain intuition about what is essential for high temperature superconductivity more generally,
by analyzing what is essential to its occurrence in the cuprates.

15.6.1. Is Charge Order, Or Fluctuating Charge Order, Ubiquitous?

We have argued that some form of mesoscale spatial structure is essential to the mecha-
nism of pairing. This structure could be static or slowly fluctuating, so long as the fluctuation
frequency is less than the pairing scale. For this statement to be true, it is necessary that any
material which exhibits high temperature superconductivity should also exhibit the requisite
inhomogeneities. Since in the cuprates, Tc is not terribly sensitive to out of plane disorder,
but, if anything, it increases as materials get cleaner, it seems implausible to us that the in-
homogeneities in question can be directly linked to any sort of chemical inhomogeneity. This
sort of inhomogeneity is certainly present in some materials—for instance, it is well docu-
mented [63–65] in STM studies on Bi2Sr2CaCu2O8+δ , and may play a role in the supercon-
ductivity in that material.13 However, more plausibly, in our opinion, the inhomogeneities in
question are primarily associated with slow fluctuations of a proximate charge ordered state,
of which the best documented example is the stripe phase [67].

Stripe order has been clearly documented in cuprates with reduced or vanishing Tc
[68]. Clearly, where the stripe order is fully developed, the inhomogeneity is too strong—the
superfluid density is highly suppressed and with it, Tc [69]. However, fluctuating stripe order
has been clearly seen in numerous materials with moderately high Tcs, as discussed in depth

13 For comparison, it is interesting to note that similar STM evidence of stripes has been found in the manganates
[66].
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in a recent review article of ours [3]. It remains an open issue whether such fluctuating order is
universal in materials with high transition temperatures. In this regard, it is most important to
study the evidence [70] of stripe fluctuations in YBa2Cu3O, the material in which the greatest
degree of chemical homogeneity has seemingly been achieved. While the evidence for stripe-
like fluctuations in this material is not unambiguous, the magnetic structure seen with neutrons
is extremely reminiscent of that seen in stripe-ordered La2−x Bax CuO4, and is in many ways
suggestive of the existence of some remnant tendency to striping. (See [3, 71–73].)

15.6.2. Does the “Stuff” Between the Cu–O Planes Matter?

One structural feature of the cuprates which has a much discussed systematic rela-
tion with Tc is the variation with the number of Cu–O planes stacked together between
each “charge reservoir layer.” For instance, in the sequence of materials HgBa2CamCunOy ,
Tc(n) = 98, 128, 135, 125, and 108 K for n = 1, 2, 3, 4, 5, respectively. The peak in Tc at
n = 3 is seen in all families of high temperature superconductors in which n can be system-
atically varied. There are many ideas concerning what this variation means. It is important to
note that for n > 2, the different layers are not all equivalent, and so there is every reason to
expect different doping levels on the different layers [74–76].

In the present context, three aspects of the layer number systematics seem suggestive. In
the first place, this is a clear example of a situation in which there is an optimal inhomogeneity
for superconductivity—apparently, n = 3 is in some way an optimal scale for superconductiv-
ity. Second, where phase fluctuations play a substantial role in determining Tc, it is clear that
interplane couplings will suppress phase fluctuations and hence increase Tc. For instance [77],
for the classical cubic lattice XY model on a slab n layers thick, the transition temperatures
(computed by Monte Carlo) are Tc(1) = 0.89J, Tc(2) = 1.38J, Tc(∞) = 2.38J . Finally, the
n = 3 problem may reflect still more directly the way in which inhomogeneity can enhance
Tc—where one has underdoped layers in good contact with overdoped layers, the combined
system can inherit the high pairing scale from the underdoped layers and the large phase
stiffness (superfluid density) from the overdoped layers [75].

Different “families” of high temperature superconductors are defined by subtle differ-
ences in the crystal structure and in the chemical character of the “charge reservoir layers”
that lie between the Cu–O planes. There are substantial differences between the optimal Tcs
in different families. For instance, double layer YBCO has an optimal Tc ≈ 92 K, while dou-
ble layer Tl 2212 has Tc = 118 K and double layer Hg 2212 has Tc = 128 K . The differences
are still more extreme if we compare the single layer cuprates, where the optimal Tc in the 214
family is Tc = 42 K for Stage IV O-doped LCO, while it is Tc = 94 K in Hg 1221. Thus, the
variation of Tc with family is stronger still than its variation with n, as has been stressed by
Leggett [74], Chakravarty et al. [76], and Geballe and Moyzhes [78]. Relatively little thought
has been given to this striking observation, possibly because it makes one reflect uncomfort-
ably about the importance of the solid state chemistry. One exception is the appealing idea
of Geballe and Moyzhes [78], which is discussed in the article by Geballe elsewhere in this
volume [79]. It is clear to us that this is an issue worth considerably more attention than it has
so far received.

While it may well be true that interlayer tunneling [76] and/or electronic interactions
in the charge reservoir layers in some way enhances the pairing, there is another possible ex-
planation for the strong dependence of Tc on the three-dimensional structure of the materials.
This is illustrated in the schematic phase diagram in Figure 15.4. We suppose, as indicated by
the dashed-dotted line, that the pairing scale, i.e., the superconducting gap magnitude ∆0(x),



How Optimal Inhomogeneity Produces High Temperature Superconductivity 587

T

x

Tθ
(1)

Tθ
(n)

Tc
(n)

Tc
(1)

D0(x)

Figure 15.4. Schematic phase diagram for a high temperature superconductor for a single layer and a multilayer
cuprate (n layers) as a function of doping x . The rationale for this figure is discussed in the text. The dashed lines
are the putative classical phase-ordering temperature (were all other fluctuations suppressed), and the dashed-dotted
curve is the pairing scale or mean-field transition temperature. The solid lines are the transition temperatures.

is a monotonically falling function of doping, x . Were fluctuations negligible, the material
would order at a mean-field transition temperature ∼ ∆0/2. However, in the underdoped
regime, the small superfluid density implies [8, 80, 81] a large, fluctuation-induced reduction
of Tc to a phase ordering temperature, Tθ ∼ Ax , as shown by the dashed lines in Figure 15.4.

Since pairing involves short-distance physics (on the scale of ξ0), we take as a working
hypothesis that it is largely a single plane property, so∆0(x) is largely insensitive to structures
outside of the Cu–O plane.14 However, since the phase ordering involves long-wave-length
fluctuations (at length scales large compared to ξ0), it is reasonable to expect the proportion-
ality constant, A, to depend on the number of layers, n, and the electronic structure of the
charge reservoir layer. Specifically, from the Monte Carlo calculations on the classical XY
model mentioned earlier [77], we know that it is reasonable for A to vary by 50% or so with
n. Since the pair tunneling amplitude through the charge reservoir layer can clearly depend on
its electronic structure [82], it is likewise possible that A depends on “family.”

The two different Tθ lines in the figure are thus supposed to represent materials with dif-
ferent three-dimensional structures.15 The actual superconducting transition, Tc, is bounded
above by Tθ and ∆0/2, as shown schematically by the solid curves in the figure. (In drawing
the figure, we have assumed that quantum fluctuations will drive Tc → 0 at a critical xc > 0.)
A consequence of this scheme is that in comparing the properties of “optimally doped” mate-
rials, those with a higher Tc(xopt) should (unsurprisingly) have a larger gap, ∆0(xopt), and

14 This is certainly an oversimplification. For instance, in La2−x Srx CuO4 the gap at all doping levels is much smaller
than in Y Ba2Cu3O6+y, at optimal doping.

15 For graphical simplicity, we have assumed that in all cases, Tθ , which is proportional to the low-frequency Drude
weight, is linear in x , but the same qualitative physics is obtained if a more complex x dependence is assumed;
what is important is that Tθ vanishes as x gets small (approaching the Mott insulator) and increases monotonically
with increasing x .
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a smaller value of the optimal doping, xopt. (This latter correlation, which as far as we know
has never been tested, is a slightly nontrivial prediction.)

15.6.3. What About Phonons?

There are phonons in the cuprates—they are seen in neutron scattering and thermal con-
ductivity. They show up clearly in the optical absorption spectrum, so they must involve charge
motion. There is evidence in support of the obvious fact that they affect the electron dynamics
obtained from an analysis of the ARPES spectra, and the Raman spectra [83]. Despite the
moral injunction against mentioning the “P word” in certain company, it is respectable—even
desirable—to think about the relevance of phonons for high temperature superconductivity.

Two obvious facts argue against the usual role for phonons in the mechanism. First, there
is the d-wave character of the superconductivity: most phonons are pair-breaking in the d-
wave channel [84]. Second, the isotope effect is nearly zero at optimal doping; it is, of course,
possible to have zero isotope effect even in the context of a conventional phonon-mediated
BCS mechanism from a competition between the isotope dependence of the prefactor and
µ∗. However, were this to occur precisely where Tc is maximum would smack of a joke by a
malicious deity.

In underdoped cuprates, there is often an appreciable isotope effect, one that can be
larger than those observed in simple metallic superconductors and which can apparently di-
verge as x → 1/8 in some cases [85, 86]. However, the fact that this isotope effect occurs
where Tc is suppressed, and in particular its singular doping dependence near x = 1/8, sug-
gests that the isotope effect is indirect as far as superconductivity is concerned, and is probably
better thought of as an isotope-dependent enhancement of the tendency to stripe order. In the
underdoped regime, where the inhomogeneity is more than optimal, if replacing O17 with O18

tends to further stabilize the charge order, it will consequently tend to suppress the supercon-
ducting Tc.

15.6.4. What About Magnetism?

The empirical evidence suggests that antiferromagnetic correlations are an important
feature of the electronic correlations in the cuprates, even when doped. Exactly what role
this plays in the mechanism of HTC is much debated. It seems clear, by now, that whatever
antiferromagnetism survives in the optimally doped superconductor is very short-ranged, so
exchange of well-defined magnon like elementary excitations cannot be the mechanism of
HTC. In addition, as shown by Schrieffer [87], excitations that too closely resemble Goldstone
modes decouple from the electrons, and so are particularly ineffective for inducing pairing.
However, short-range magnetic correlations can [88], and in our opinion are likely do play a
role in the mechanism of HTC. These are the principle correlations responsible for the pair
binding on Hubbard clusters.

In other strongly correlated systems, such as the manganites and nickelates, there is
ample magnetism, but no superconductivity. Any mechanism that involves magnetism must
rationalize why these other materials are not superconducting. In our view, there are sev-
eral features that are responsible for this. The higher spin (spin 1/2 in the cuprates, spin 1
in the nickelates and spin 3/2 in the manganates) means that the magnetism is less quan-
tum mechanical, and less easily quantum disordered in the presence of weak inhomogene-
ity. In addition, the presence of stronger electron phonon coupling and of other orbital
degrees of freedom increases the tendency of these other materials to condense into other
(nonsuperconducting) ordered ground states. In particular, the strong electron–phonon
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coupling in many standard perovskites, much enhances their tendency to form insulating
“classical” charge-ordered states relative to the cuprates.

15.6.5. Must We Consider Cu–O Chemistry and the Three-Band Model?

It is a standard assumption in this field that the 2D Hubbard model, i.e., without any
additional interactions or other embellishments, is “the Standard Model of Strongly Correlated
Systems.”16 There are other “simple models,” such as the Emery or three-band model [89,90],
which are more complicated (and hence “uglier”) but which may be, in some ways, more
“realistic.” It is unclear to us whether the microscopic differences between the Emery and
Hubbard models are essential to the mechanism of HTC, or unimportant. However, one thing
that we have realized recently is that the Emery model, by virtue of its greater complexity,
can be studied in various limits where certain aspects of the physics can be seen more simply
and with better mathematical control than in the Hubbard model. For instance, the Emery
model has an even stronger tendency to electronic phase separation than its simpler cousin,
the Hubbard model. In addition, we have recently shown [91] the Emery model supports
charge (Ising) nematic long range order, and probably other electron liquid crystal phases.
(See also [92, 93].) Hence, competing interactions over microscopic length scales can (and
do) give rise to relevant mesoscale structures.

15.6.6. Is d-Wave Crucial?

The answer to this question depends on what one means by “d-wave.” If by d-wave
one means a precise symmetry under rotations by π/2 this is clearly not essential as many
materials, notably YBa2Cu3O, are orthorhombic. In the particular case of YBa2Cu4O8 the
anisotropy is so large that the ratio of the superfluid densities in the a and b directions is
as large as ρa

s /ρ
b
s ∼ 7; this material is essentially quasi one-dimensional [94]. (At the very

least, this means that there must be order one s–d mixing.) On the other hand, even in this
case, the sign of the order parameter alternates as seen clearly in corner junction [95] and
tri-crystal [96] experiments. So far, all the existing experimental evidence in the cuprates is
consistent with “d-wave like” superconductivity, in this sense.

What is less evident is how essential are the nodal quasiparticles. The experimental evi-
dence in most cuprates [83, 97–99] is consistent with the existence of nodal excitations in the
superconducting state,17 while they are either manifestly absent or poorly defined above Tc, in
the pseudogap regime [83, 99, 100]. One of the puzzles of this problem, and one that makes it
interesting, is why there are nodal quasiparticles below Tc even though they do not exist in the
“normal.” In the BCS mechanism, or in any other weak coupling approach, the quasiparticles
of the superconducting state are a “left-over” of the states of the parent normal (Fermi liquid)
state. While it is clear that as the interactions become stronger the symmetry of the supercon-
ducting state may be “protected,” it is not obvious that the quasiparticles themselves should
be. From the perspective of a strong coupling approach, such as the one advocated here which
does not assume a state with well-defined quasiparticles in the parent state, the nodal quasi-
particles are an emergent phenomenon, and one can perfectly conceive a d-wave state with or

16 The enshrinement of this simple model as a sort of “Theory of Everything” is peculiar in a field that stresses the
fundamental importance of “emergent” and the misleading assertions of the “fundamental.”

17 In fact, even in the superconducting state the nodal quasiparticles in high temperature superconductors are never
as well-defined as in conventional metals, e.g., even at temperatures as low as 5 K, the energy width of a nodal
quasiparticle is at least comparable to its energy.
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without nodal quasiparticles. In fact, the transition between a node-less and nodal d-wave-like
state was studied in [50, 101], where it was found to be a mean field (Lifshitz) transition with
relatively little effect on Tc.

15.6.7. Is Electron Fractionalization Relevant?

The discovery of high temperature superconductivity and the realization that the un-
derlying physics of these systems is inconsistent with the venerable Landau Theory of the
Fermi Liquid, launched an all-out effort to develop a “new” theory of strongly correlated sys-
tems. Many interesting and novel phases of matter were (and are) proposed, some of which
were hoped to contain the fundamental (pardon our language) correlations responsible for
high temperature superconductivity and in particular for the high values of Tc. Thus, in addi-
tion to the conventional Néel antiferromagnetic state, other nonmagnetic ground states have
been proposed, such as spin liquids with and without time-reversal symmetry breaking, as
well as valence bond crystals which break translation and rotation invariance to various de-
grees [46, 47, 102–104]. However, perhaps following the “Bell Labs Rule” (a New Jersey
version of Occam’s Razor) that of all possible theories the most boring one (the one with the
standard answer) is the one most likely to be correct, it has turned out that the ground states
of simple models of undoped strongly correlated systems are typically antiferromagnets with
long range Néel order [105, 106].

A number of interesting theories of spin liquid states, with [107, 108] and without
[27, 109–113] time-reversal symmetry breaking, have been proposed over the years. Elec-
tron fractionalization and deconfinement are a defining feature of all these spin liquid phases.
However, while recent advances in this subject [114] have put some of these proposals on
firmer theoretical footing (by proving that they are the ground states of reasonably local
Hamiltonians), most simple models of strongly correlated systems do not seem to naturally
have these phases [4, 45, 103]. Moreover, in apparent accordance with the Bell Labs Rule,
there is no compelling experimental evidence (yet) in support of their relevance, at least in
the cuprates. Typically, the simple spin models thus far explored, even those with significant
ring exchange interactions, have either spin ordered phases or valence bond ordered phases,
and confinement on relatively short length scales, although there are known counterexam-
ples [115]. We should note, however, that it is also possible to have phases with extremely
long confinement length scales, e.g., the Cantor Deconfinement phases of [116], which for all
practical purposes can do the job just as well.

As noted in Section 15.2.1, both the spin liquid scenario and the mechanism explored
here have in common the existence of a high energy pairing scale associated with spin-gap
formation.

15.7. Coda: High Temperature Superconductivity is Delicate
But Robust

By whatever measure one might devise, the set of materials which exhibit high tem-
perature superconductivity is a very small subset of electronically active materials. However,
within the cuprates, materials that share the basic motif of Cu–O planes, high temperature
superconductivity is robust in the sense that the transition temperature is not wildly sensi-
tive to many sorts of chemical substitutions, structural differences, and degrees of quenched
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disorder.18 It seems reasonable to us to expect that any theory of high temperature supercon-
ductivity should be able to answer the question: why is high temperature superconductivity so
rare?

Part of the answer is clearly the role of competing order. At weak coupling, the only
instability of a Fermi liquid is the Cooper instability, so low temperature superconductivity
should be (and is) reasonably generic. At strong coupling, many sorts of ordered states can be
stabilized, including spin and charge density wave states, and more exotic states such as orbital
antiferromagnetism [117] (dDW), which, in general, compete with superconductivity. Thus,
precisely in those materials in which the couplings are strong enough that they could produce
high Tc, other ordered phases occur which can quench the superconductivity substantially.

In our view, another feature is the necessity of an optimal degree (and character) of
inhomogeneity—self-organized or otherwise. If the system is too homogeneous, then a high
pairing scale is unattainable. If the system is too inhomogeneous, the coherence scale is
strongly suppressed, and with it Tc. Obtaining a high Tc requires a rather delicate balance
between these two extremes.

There are several other special features of the cuprates which likely also are essential.
It seems to us that the fact that the cuprates are doped Mott insulators (with local moments),
and that the insulating state in question is highly quantum mechanical (spin 1/2) are likely
to be essential features of the physics, although the fact that the undoped system has a Néel
ordered ground-state is probably not crucial. It is clear to us that overly strong electron–
phonon coupling would produce too strong a tendency toward charge ordering [118], and
hence would be destructive of high temperature superconductivity. From this point of view,
the relatively weakness of the electron–phonon coupling in the cuprates in comparison with
other perovskites (e.g., the nickelates and the manganates) is one of the important features
of the cuprates that makes them high temperature superconductors. On the other hand, it
seems to us likely that the tendency toward self-organized inhomogeneity found in theoretical
studies of the Hubbard and related models is too weak to provide the necessary mesoscale
inhomogeneity. In this sense, the electron–phonon coupling in the cuprates likely plays an
important role in producing high temperature superconductivity—not that phonons serve as
the glue but that they help with the self-organization of the necessary inhomogeneities.
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Appendix A: What Defines “High Temperature Superconductivity”

The term “high temperature superconductivity” is rather vague, since of course the ques-
tion arises, high compared to what? From Figure 15.1, it is clear that, from a material science
viewpoint, high temperature superconductivity means Tc larger than 20 K. However, as an
abstract issue in theory, it is less clear what is meant.

What we would like to find are models that are “physical,” although not necessarily
“realistic,” and which have superconducting transition temperatures that are the of order of
a microscopic energy scale. By “physical,” we mean that the model must satisfy certain sets
of constraints, such as having electrons with spin-1/2 which are fermions with dominantly
repulsive bare interactions. Of course, in some sense, the closer a model is to reflecting the
essential solid state chemistry of a particular material of interest, the more clearly physical it
is, but for the purposes of understanding the mechanism, we would prefer to study as simple
a model as possible, rather than one that has extraneous bells and whistles that happen to be
part of the electronic structure of one material or another.

Alas, upon reflection, this rough definition of what constitutes high temperature super-
conductivity ceases to make any sense. Presumably, in any model in which the strength of the
various interactions are all comparable to each other, if the model is superconducting at all, Tc
must be equal to a number of order 1 times a microscopic scale. It then becomes a question of
how big the number of order 1 must be to be considered high. (For the negative U Hubbard
model with U = −4t the superconducting transition temperature has been estimated [119]
from quantum Monte Carlo to be Tc = 0.14t . Putting aside the “unphysical” nature of the mi-
croscopically attractive interactions in this model, it is not clear whether one should or should
not classify this as “high temperature superconductivity.”)

We [36] have therefore proposed a different purely theoretical definition of HTC. In
all cases we know of in which Tc can be computed reliably (other than by Monte Carlo or
related numerical methods), there is a small parameter, λ � 1, which is exploited in the
calculation. In BCS theory, λ is the dimensionless electron–phonon coupling, and Tc depends
exponentially on 1/λ. If we agree that we can trust BCS theory when λ < 1/5 (to choose a
number arbitrarily), this means that on the basis of this theory, we can claim to have a good
understanding of the mechanism of superconductivity only so long as Tc is at least two orders
of magnitude smaller than the typical microscopic scale. In contrast, mechanisms we wish to
associate with high temperature superconductivity should have a much weaker dependence on
the small parameter, Tc ∝ λα , where the smaller α the better. For such a mechanism, say with
α ∼ 1, if we accept the same criterion for the range of λ for which the theory is trustworthy,
we have a valid theoretical understanding of the superconductivity even when Tc is fully 1/5
of a microscopic scale.
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16
Superconducting States on the Border
of Itinerant Electron Magnetism

Emma Pugh, Siddharth Saxena, and Gilbert Lonzarich

16.1. Introduction

In recent years there has been growing evidence for the existence of novel metallic
states on the border of long-range magnetic order in certain materials. At sufficiently low
temperatures these unfamiliar metallic states can be unstable and lead to the formation of
unconventional forms of superconductivity that cannot be fully explained in terms of the
Bardeen–Cooper–Schrieffer (BCS) model [1] in its usual form. As this superconductivity is
observed in a narrow regime on the border of magnetism, it is thought that the pairing of carri-
ers might arise from a spin–spin or magnetic interaction rather than solely from the traditional
electron–phonon interaction of the BCS model.

This chapter begins by considering the simplest deviations that are observed from the
standard low-temperature theory of metals on the border of long-range ferromagnetic order in
metals where superconductivity is not observed. It then goes on to discuss the border of anti-
ferromagnetism where superconducting instabilities are prevalent. We consider, in particular,
the role of the effective dimensionality of the material and of the combined effect of magnetic
and density instabilities that have led to a clarification of the nature of Cooper pair forma-
tion in some heavy-fermion superconductors. Until relatively recently superconductivity on
the border of itinerant ferromagnetism was elusive. The search and discovery of this new and
important class of superconductors is discussed. The chapter concludes by looking forward to
possible future advances in this area of research. Throughout, examples are demonstrated by
showing data from experiments and open questions to our understanding are highlighted.

16.2. Uncharted Territory: The New Frontier

By the precise control of matter it is possible to observe in detail the crossover region as
one goes from one state of matter to another at low temperature. Figure 16.1 shows a possible
phase diagram of a magnetic metal when it is subjected to applied pressure. In the past much
research effort has focused on the nature of magnetic ordering in materials (left-hand side
of Figure 16.1) and on the conventional metallic state (right-hand side of Figure 16.1). For
low temperatures the right-hand side of the figure is well described by Landau’s Fermi-liquid
theory and the left-hand side is described in terms of an exchange split Fermi surface together
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Figure 16.1. The temperature–pressure phase diagram of a ferromagnetic or antiferromagnetic metal. The crossover
region between the magnetic metal and the conventional metal can be occupied by a strange quantum “liquid” which
defies conventional description. In sufficiently pure samples and at sufficiently low temperatures, the electron liquid
can condense into other quantum phases. These include exotic forms of superconductivity that can differ from that of
the traditional Bardeen–Cooper–Schrieffer (BCS) model. (Figure is taken from reference [100].)

with collective excitations corresponding to spin waves. The crossover region between the
magnetic and conventional metal can be occupied by a strange metallic state or quantum
“liquid” which defies conventional description and a quantum critical point can occur in this
region at low temperature. This liquid state, normally viewed as an intermediate-temperature
phenomenon, can extend down to the lowest temperatures explored near the quantum critical
point. In sufficiently pure samples and at sufficiently low temperatures, the electron liquid can
condense into other quantum phases. These include exotic forms of superconductivity. (For
recent reviews see, e.g., [2, 3]).

16.3. Logarithmic Fermi Liquid

The mildest form of quantum liquid that deviates from the Fermi-liquid theory is the
marginal or logarithmic Fermi liquid state. A review of several underlying models that yield
such a state can be found in a 1991 book by Baym and Pethick [4]. For example, in the
logarithmic Fermi liquid that is expected to arise where the Curie temperature tends toward
absolute in an isotropic system, one expects a breakdown of the standard Fermi-liquid char-
acter and instead observe a T ln(1/T ) dependence of the heat capacity, a T 5/3 temperature
dependence of the resistivity, an inverse susceptibility varying as T 4/3 and a linear quasi-
particle relaxation rate. (For discussions and references to the earlier literature, see [5, 6]. A
renormalisation group approach to this problem is given in [7, 8].) Experimental evidence for
such behaviour is mounting. Examples can be found in cubic metals which are on the bor-
der of ferromagnetism and which have a nearly continuous ferromagnetic transition when the
Curie temperature is suppressed to zero with increasing pressure. Recent re-examinations of
this problem have been carried out for example in Ni3Al [9] and ZrZn2 [10].

The observation of the logarithmic Fermi liquid appears to be sensitive to the exact
form of the ferromagnetic transition as pressure is applied. If the transition switches from
second order to first order then this state may not be clearly seen. However, this does not
mean that the only other possibility is a return to Fermi-liquid behaviour. It is thought that
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behaviour which cannot be explained by either the Fermi-liquid or logarithmic Fermi-liquid
models have been observed, such as in MnSi.

16.4. The Puzzle of MnSi

The d-electron metal MnSi has proved a puzzle to our understanding of systems on the
border of magnetism. It has a cubic structure that orders into a long-wave spin-spiral state at
ambient pressure with a Curie temperature of around 30 K. If clean samples of MnSi are sub-
jected to hydrostatic pressure, the Curie temperature is pushed towards absolute zero at around
a critical pressure of 1.5 GPa [11–14]. The Curie temperature begins by decreasing in a second
order way and then switches over to first order [12, 15, 16]. Above this later critical pressure
MnSi shows anomalous normal state properties with clear deviations from the Fermi liquid
temperature dependence of the resistivity. In place of the Fermi liquid T 2 dependence one
observes an unexpected T 3/2 dependence. Figure 16.2 shows the temperature–pressure phase
diagram for MnSi. As the magnetic transition with pressure is first order close to the critical
pressure, models predict that if cooled to sufficiently low temperature the T 2 Fermi-liquid
behaviour should be recovered. This has not yet been observed in MnSi and remains at the ro-
bust T 3/2 value down to the lowest temperatures currently measured and at least up to 2.5 GPa
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Figure 16.2. Temperature–pressure phase diagram of MnSi [11–17]. The magnetic transition is continuous or sec-
ond order at low pressures but is discontinuous or first order near the critical pressure Pc = 15 kbar where the
Curie temperature vanishes. Since the transition from the magnetic to the non-magnetic state is discontinuous at
Pc, the logarithmic (marginal) Fermi liquid discussed in the text is not expected to be observed in this material. Thus
the exponent characterising the temperature dependence of the resistivity is predicted to tend to the Fermi-liquid value
of 2 both above and below Pc for temperatures below about 10 K. The recovery of a T 2 regime at much lower tem-
perature is not ruled out but would not significantly alter the discrepancy between theory and experiment. As shown
in the inset on the lower left, this is not observed. The resistivity exponent drops suddenly and unexpectedly at Pc to a
value of around 3/2. The resistivity exponents are determined from the logarithmic derivative of 
ρ = 
ρ−ρo where
ρo is the extrapolated residual resistivity, which is 0.2 µ� cm for the samples investigated (top inset on right). Analy-
sis of another logarithmic derivative, d(ln(T dρ/dT ))/d(ln T ), that does not depend on the way ρo is extrapolated
gives a similar result. The lower inset on the right gives the B20 structure of MnSi (10 kbar = 1 GPa).
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[14, 17]. It is possible that a new ground state is forming in this material near and above the
critical pressure. There is so far no evidence for the formation of a superconducting conden-
sate in MnSi even in extremely pure samples with mean free paths of the order of 10,000 Å.

16.5. Superconductivity on the Border of Magnetism

For conventional superconductors that can be described by the BCS theory, the pres-
ence of magnetic interactions tends to destroy superconductivity [18]. However, in the heavy-
fermion compounds and a number of other systems, superconductivity appears to arise in
the presence of strong magnetic fluctuations. One possibility is that the magnetic interactions,
rather than destroying superconductivity as in the conventional superconductors, could instead
act as “glue” and actually bind electrons together to form pairs. It is important to discern be-
tween two basic classes of magnetic superconductor. In some systems, such as the Chevrel
phase superconductors, different electrons are responsible for the magnetism and supercon-
ductivity. Examples of Chevrel phase materials that exhibit antiferromagnetic and supercon-
ducting states are GdMo6Se8 and ErMo6Se8 [19, 20]. There are some materials, however,
where it is believed that the magnetic order and superconductivity arise from the same elec-
trons. Examples include, in particular, the heavy-electron compounds in which 4f electrons
in Ce or 5f electrons in U form narrow quasi-particle bands characterised by quasi-particle
effective masses two to three orders of magnitude greater than that of bare electrons (see,
e.g., [21] for a recent discussion).

The magnetic interaction model for Cooper pair formation and superconductivity has a
long history that has been reviewed recently, e.g., in [22,23]. The results of model calculations
show that magnetic pairing can be exceedingly sensitive to the details of the lattice, electronic
and magnetic structures. In the simplest models considered, spin-triplet pairing is favoured on
the border of ferromagnetism, whereas anisotropic spin-singlet pairing is most likely to arise
on the border of antiferromagnetism. In the latter case the superconductivity dome is expected
to peak near the critical pressure or critical carrier concentration when the Néel temperature
tends towards absolute zero.

An experimental example of this behaviour is shown in Figure 16.3 for CePd2Si2
[24–29]. A somewhat more complex, but related, case is that of CeRh2Si2 [30, 31]. In
CePd2Si2 the superconducting state arises out of an unconventional normal metallic state
that is characterised by a quasi-linear temperature dependence of the resistivity. A similar
behaviour has also been seen more recently in the parent compound YbRh2Si2 [32] and its
doped relatives in which a quasi-linear resistivity is found to extend over a wide temperature
range. This behaviour is not cut off by any superconducting transition down to low millikelvin
temperatures. The puzzling absence of superconductivity in this and related Yb analogues of
superconducting Ce compounds will be discussed in a later section.

16.6. Three Dimensional vs. Quasi-Two-Dimensional Structures

The magnetic interaction model has proved to be a useful tool in directing experimental
research and can be used to consider materials in which one might expect an elevated super-
conducting transition temperature. In particular elementary analysis suggests that the dimen-
sionality of the materials is likely to be important [26, 28, 33–36]. In tetragonal materials on
the border of antiferromagnetism the robustness of magnetic pairing increases gradually with
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Figure 16.3. Temperature–pressure phase diagram of CePd2Si2 [24–29]. The antiferromagnetic ordering temper-
ature is suppressed to zero around 28 kbar with the application of pressure. In this region the temperature exponent
of the resistivity is well below the Fermi-liquid value of 2 and is close to unity (upper inset). Around this region
superconductivity is observed. Tsc values are scaled by a factor of 3 for clarity. The bottom inset shows the tetragonal
crystal structure of CePd2Si2. Another example is CeRh2Si2 [30, 31] (10 kbar = 1 GPa).

the strength of the magnetic correlations and a more anisotropic lattice. Therefore, all else
being equal one might expect materials with a quasi-two-dimensional lattice to have elevated
superconducting transition temperatures compared to their three dimensional cousins. Some
experimental evidence exists for this behaviour. CeIn3 has a simple cubic lattice and has been
shown to superconduct in a narrow window of applied pressure with a superconducting transi-
tion temperature maximum of around 0.2 K [31,37,38]. If this simple cubic lattice is stretched
along one axis by the inclusion of non-magnetic layers to form the quasi-two-dimensional
tetragonal compound CeMIn5, where M is Co, Rh or Ir, the maximum superconducting tran-
sition temperature increases by nearly an order of magnitude to around 2 K and exists over a
much wider pressure range [31,39–41]. Another interesting effect of the dimensionality is the
change in the non-Fermi liquid temperature exponents of the resistivity. For example in CeIn3
the temperature exponent of the resistivity has a T 3/2dependence, whereas in the tetrago-
nal CeMIn5 systems it has a quasi-linear dependence. Figure 16.4 shows the superconducting
regions for CeIn3 and CeRhIn5.

16.7. Density Mediated Superconductivity

There is increasing evidence that other forms of instabilities may be responsible for
superconductivity in some materials. An example of particular relevance to the heavy-fermion
compounds concerns the border of density instabilities.

Often when there is a volume change in a material it is accompanied by a change in
the crystal structure. However this is not always the case. An example is the α−γ or valence
instability transition in some Ce compounds. The change of valence and corresponding change
in volume can occur as a first-order transition line in a way reminiscent of the familiar liquid–
gas transition. The volume collapse can be as high as 15%, e.g., in the α−γ transition of
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Figure 16.4. Effect of dimensionality on the superconducting transition temperature as illustrated by the supercon-
ducting regions for cubic CeIn3 and quasi-two-dimensional tetragonal CeRhIn5 [31, 37–41]. CeIn3 superconducts
over a narrow window of applied pressure with a superconducting transition temperature maximum of around 0.2 K.
If this simple cubic lattice is stretched along one axis by the inclusion of non-magnetic layers to form the quasi-
two-dimensional tetragonal compound CeRhIn5, the maximum superconducting transition temperature increases by
nearly an order of magnitude to around 2 K and exists over a much wider pressure range. (Figure is taken from
reference [22].)

elemental cerium. It is thought that superconductivity can occur if the first-order transition
line has a critical end point at suitably low temperatures.

A simple example of this behaviour may have been found in CeNi2Ge2 [27,42–44]. This
system can be considered as the high-pressure analogue of CePd2Si2. However, in CeNi2Ge2
a second superconducting dome was found which is disconnected from the antiferromagnetic
boundary. This suggested that more than one mechanism for pairing could act in close prox-
imity. Recent work on the heavy-fermion superconductor CeCu2Si2 [45] and CeCuGe2 [46]
has helped shed further light on what is happening in these systems.

CeCu2Si2 has an antiferromagnetic quantum critical point and superconductivity near
ambient pressure. The superconducting transition temperature vs. pressure plot however does
not exhibit a simple dome structure, but instead remains constant at around 0.7 K and then
increases to a maximum value of around 2.2 K at around 4 GPa [47]. Recent studies of super -
conductivity in which disorder is introduced via Ge doping have split this large coalescing
single superconducting region into two separate superconducting domes [48]. One dome is
on the border of antiferromagnetism and the other near an α−γ density transition [48, 49].
The presence of two distinct domes suggests two quantum critical points occur in close prox-
imity. The critical end point for the α−γ transition is believed to occur at low temperatures
(10–20 K) and so density fluctuations may be sufficiently important to cause pairing. The
superconductivity in this system has been modelled in terms of the effects of magnetic and
valence fluctuations [50,51]. Figure 16.5 shows the phase diagram of the CeCu2Si2/CeCu2Ge2
system.

16.8. The Search for Superconductivity on the Border of Itinerant
Ferromagnetism

At first sight simple forms of the magnetic interaction model suggest that ferromagnetic
pairing looks more promising to produce superconductivity than in the antiferromagnetic case
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Figure 16.5. Phase diagram of the CeCu2Si2/CeCu2Ge2 system [27, 42–49]. CeCu2Si2 has an antiferromagnetic
quantum critical point and superconductivity near ambient pressure with a large superconducting transition region
which increases to a maximum some distance from the border of antiferromagnetism (blue region). By the application
of hydrostatic pressure or doping CeCu2Si2 with Ge, the superconducting region can be split into two separate
superconducting domes, one on the border of antiferromagnetism and the other near an α−γ density transition. The
presence of two distinct domes suggests two quantum critical points occur in close proximity in this system. The first-
order density transition line in the CeCu2Si2/CeCu2Ge2 system is believed to have a critical end point at sufficiently
low temperature to permit pairing. (Figure is taken from reference [22].)

(see, e.g., [22] for a recent review). For a long time the absence of superconductivity on the
border of ferromagnetism was a puzzle, particularly as an ever increasing number of examples
on the border of antiferromagnetism were being shown. Suggestions for the relative scarcity
of superconductivity on the border of ferromagnetism have now been made.

In the spin-triplet case, which might occur on the border of ferromagnetism, only the
longitudinal component of the spin fluctuations contribute to pairing, whereas the trans-
verse fluctuations reduce the superconducting transition temperature by increasing the quasi-
particle self-interaction energy arising from the exchange of magnetic fluctuations which is
ultimately pair breaking. In the spin-singlet case on the border of antiferromagnetism how-
ever, all three components of the magnetic interaction contribute to pairing. This has the effect
that all else being equal, the attraction between quasi-particles, can be on average three times
smaller in magnitude for the spin-triplet state than the spin-singlet state for quantum spin-1/2
particles. This comparison involves a number of qualifications and subtleties that have been
reviewed in [52, 53].

In ferromagnetic systems with strong magnetic anisotropy however, the effect of the
transverse fluctuations on the self-interaction energy is reduced while the beneficial longitu-
dinal fluctuations that result in pairing can remain strong [52]. Therefore, materials on the
border of ferromagnetic order, which possess strong spin–orbit coupling and have strong spin
anisotropy, may be considered as promising candidates for ferromagnetically mediated super-
conductivity.

Bearing this in mind the ambient pressure ferromagnetic material UGe2 was studied
with hydrostatic pressure to suppress the ferromagnetic ordering temperature. This proved
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Figure 16.6. Temperature–pressure phase diagram of UGe2 [54–62] showing the co-existence of itinerant-electron
ferromagnetism and superconductivity. A strongly first-order ferromagnetic transition occurs along the solid line,
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values are scaled by a factor of 10 for clarity.) More recent examples include URhGe [69, 70] and UIr [73]. (Figure
is taken from reference [22].)

to be very fruitful and in 1999 produced the first example of the co-existence of super-
conductivity and itinerant-electron ferromagnetism [54–59] in this new class of supercon-
ductors. Figure 16.6 shows the temperature–pressure phase diagram for UGe2. At ambient
pressure UGe2 orders ferromagnetically with a Curie temperature of 52 K. As pressure is
applied the Curie temperature decreases. Superconductivity is observed in a narrow win-
dow of pressure (1.0–1.5 GPa) and temperatures below 1 K. Specific heat [60] and NMR
[61,62] measurements showed the superconductivity to be bulk in nature. Neutron-diffraction
experiments showed the coexistence of superconductivity and ferromagnetism [57]. The
temperature–pressure phase diagram of UGe2 is somewhat more complicated than origi-
nally expected. A strongly first-order ferromagnetic transition occurs along the solid line in
Figure 16.6, and a weaker more nearly continuous ferromagnetic or more precisely meta-
magnetic transition is seen along the dashed line. The superconducting transition observed
in this system is centred near the end point of the metamagnetic transition. The expected
superconductivity dome around the end of the upper ferromagnetic transition line may
be absent because this transition is found to be strongly first order. Firstly, the magnetic
pairing potential is expected to be reduced compared to a continuous transition and sec-
ondly, the system may be accompanied by strong magnetic heterogeneities which may be pair
breaking. Spin-triplet pairing has been proposed as a possible form of the superconducting
state in UGe2 [63–65]. Alternative mechanisms based on a spin-singlet order parameter have
also been proposed [66–68]. Because the exchange splitting near the superconducting dome
is expected to be much larger than the superconducting energy gap in an itinerant electron
ferromagnet such as UGe2, spin-triplet pairing is the most natural choice.

Since the discovery of superconductivity in ferromagnetic UGe2 physicists have looked
for other examples that may show similar behaviour. URhGe [69, 70] has been shown to be
a ferromagnetic superconductor similar to UGe2 but superconducts at ambient pressure. The
possibility of superconductivity on the border of the elemental ferromagnets was reconsid-
ered shortly before the discovery of superconductivity in UGe2 [54, and references therein]
and was subsequently discovered in iron [71, 72] (Figure 16.7). Iron orders ferromagnetically
at ambient pressure below 1,042 K. At an applied pressure of 14 GPa it undergoes a structural
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Figure 16.7. The temperature–pressure phase diagram of iron [54, 71, 72]. The low-pressure and low-temperature
phase of iron has a body-centred cubic (bcc) structure and is strongly ferromagnetic. The higher-pressure phase has
a hexagonal close-packed (hcp) structure and energy band calculations predict that it might be weakly or nearly
antiferromagnetic at low temperature [93]. Below 2 K and at pressures above 10 GPa (100 kbar) the hcp phase of iron
becomes superconducting. (Here the superconducting transition temperature, Tc, has been enlarged by a factor of
100.) At higher temperatures iron exists in the face centred cubic (fcc) structure. (Figure is taken from reference [94].)

phase transition from the body centred cubic α-phase to the hexagonal close packed ε-phase.
Recently, superconductivity has also been observed on the border of ferromagnetism in an-
other U system, UIr that crystallises in a somewhat unusual lattice structure not possessing
inversion symmetry [73].

However, despite the difficulties associated with ferromagnetically mediated supercon-
ductivity described above, the relative scarcity of superconductivity on the border of metallic
ferromagnetism has still been seen by some as surprising [22]. One possibility of this scarcity
is because real materials can have very complex band structures, the details of which have not
been fully included in theoretical models of magnetically mediated superconductivity. The
Lindard function is the building block for developing the magnetic interaction in several such
theories, e.g., [53], and has oscillatory structure that would not be found, for example, in jel-
lium, i.e., the starting model of early theoretical work on nearly ferromagnetic systems. These
oscillations lead to peaks and troughs in the magnetic interaction that, analyses show, tend to
frustrate the triplet state [53, 74].

Although the observation of superconductivity on the border of ferromagnetism is
still relatively rare, ferromagnetic quantum critical points are proving to be a rich arena for
observing new quantum states of matter as illustrated in Figure 16.8.

16.9. Why Don’t All Nearly Magnetic Materials Show
Superconductivity?

There are a large and growing number of examples of superconductivity on the bor-
der of antiferromagnetism and ferromagnetism, however there are also a significant number
of other examples where superconductivity is not seen, not only on the border of ferromag-
netism but also antiferromagnetism. Notable cases are found among d-electron metals and
most especially among the Yb hole-analogues of the Ce band heavy fermion superconduc-
tors. Superconductivity has recently been discovered in the ytterbium system YbC6 [75,76] at
ambient pressure. However, in this system ytterbium appears to be non-magnetic under these
conditions.
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Figure 16.8. Examples of new quantum states on the border of ferromagnetism. When the ferromagnetic order-
ing temperature is suppressed to low temperature by the application of pressure a wide variety of new quantum
states can occur particularly when magnetic field is used as an additional quantum tuning parameter. For example,
UGe2 [54–62] shows the co-existence of itinerant electron ferromagnetism and superconductivity, Sr2RuO4 [95, 96]
shows p-wave superconductivity, Ni3Al [9] exhibits logarithmic (marginal) Fermi-liquid behaviour, Sr3Ru2O7 shows
anomalous high field states [97, 98] and MnSi [11–17] appears to have new transport behaviour.

The lack of observed superconductivity in these types of system leads us to ask why this
is the case. There are a number of possible reasons. Some of the effects which are detrimental
to superconductivity within the framework of the magnetic interaction model are listed below:

1. Effects of quenched disorder. The mean free path must be greater than the supercon-
ducting coherence length for the anticipated anisotropic superconductivity to occur.
For example, this requires residual resistivities of the order of or below 1 µ� cm in
d-metal superconductors such as ε-Fe [72] and Sr2RuO4 [77].

2. Measurement range. The superconducting transition could be outside of the range
of temperature and pressure so far studied or the pressure resolution is too coarse.
For example, the superconducting dome in UIr [73] at the magnetic quantum critical
point is only a few kilobars wide and this could readily be missed.

3. The presence of first-order transitions which may suppress the strength of the mag-
netic interaction and introduce magnetic heterogeneities.

4. The effects of competing quasi-particle interactions. Co-existence and competition
between ferromagnetic and antiferromagnetic fluctuations, for example, can be detri-
mental to magnetically mediated superconductivity [53, 78].

5. Frustrated magnetic interactions in, e.g., triangular lattices [79].
6. Multiplicity of energy bands near the Fermi level and effects of orbital fluctuations

[80].

The effects of these complications are not fully understood, but some analyses suggest that
they can be detrimental to magnetic pairing. The missing superconductivity, for example,
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in d-electron metals such as V2O3 and NiS2 on the border of metallic antiferromagnetism
(see [81] for a review of these and related materials) may be due to the high degree of frozen-
in disorder in the samples that have been reported thus far as well as due to the multiplicity of
bands that are thought to be important near the Fermi level. On the other hand, the absence of
superconductivity in the Yb analogues of the heavy electron Ce compounds may be due to the
fact that the characteristic spin–spin (intersite) interaction parameter is typically lower in the
former than in the latter. This leads to lower Néel temperatures and to more local behaviours
of the magnetic response in the Yb than in the corresponding Ce systems. In turn this leads
to a lower predicted superconducting transition temperature, making the Cooper pairs more
sensitive to the pair breaking effects of impurities.

16.10. From Weak to Strong Coupling

In the early models of magnetic pairing based on the Hubbard model the effective spin–
spin interaction was evaluated in perturbation theory in terms of the dimensionless coupling
parameter U /W , where U is the intra-atomic Coulomb energy and W is the electronic band
width. The predictions of these models were largely restricted to the weak coupling limit
(U � W ). An approach appropriate to the opposite limit (U � W ) was subsequently intro-
duced and extensively studied (for recent reviews, see, e.g., [23, 82]). More recently, numeri-
cal techniques that bridge these limits have been developed and a typical prediction of one of
these, the so-called Cellular Dynamical Mean Field Theory, is shown in Figure 16.9. Although
the different methods involve subtle and important distinctions, it nevertheless seems that in
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Figure 16.9. Predicted d-wave superconductivity on the border of antiferromagnetism in the Hubbard model. The
calculations are based on the cellular dynamical mean field theory [99] for a single nearly half filled band in a square
lattice and at absolute zero. The hole concentration is measured from the half filling of the band, U is the Coulomb
interaction for two electrons in the same atomic site and W is here defined as 4t (the width of the occupied portion
of the band at half filling), where t is the hopping matrix element for the band. The calculations are for intermediate
coupling (U = W ). A detailed description of the model and scaled order parameters is given in [99].
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all of these approaches superconductivity on the border of magnetism may be thought of as
arising from an effective induced spin–spin interaction.

16.11. Superconductivity Without Inversion Symmetry

Recently superconductivity has been shown in materials in which space and time in-
version symmetry is broken (for recent comments see [83]). Examples include CePt3Si [84],
UIr [73] and CeRhSi3 [101]. A Cooper pair in crystals like CePt3Si is likely therefore to be
a mixture of spin-triplet and spin-singlet states. Although magnetically mediated pairing is
thought to be relevant in such systems, most theoretical interpretation to date has been for
parity-conserving materials. The presence of these new superconducting states which do not
possess inversion symmetry are initiating the development and analysis of new theoretical
models (e.g., [85–87]).

16.12. Quantum Tuning

In order to push forward our understanding of unconventional forms of superconductiv-
ity and novel forms of quantum order such as those discussed above, we have relied on a series
of low noise measurements on high purity samples. These can be exacting experiments, par-
ticularly if meaningful temperature exponents of the resistivity are to be found. This research
has particularly benefited from recent developments in high pressure methods. Pressure has
become as important a control parameter as temperature and magnetic field in probing the
many-body states of matter. These three parameters (temperature, pressure, magnetic field)
together make very powerful tools to the modern condensed matter physicist and allow for
precise control and tuning of systems as is demonstrated in Figure 16.8 for materials on the
border of ferromagnetism. With the availability of good quality samples and with these tech-
niques we have a rich arena for pushing forward our understanding of these systems and to
discover new phenomena.

Pressure has the advantage over other control parameters in that it only normally alters
the lattice spacing within the material and the evolution into new quantum states can be studied
on the same sample. Doping studies, although of great importance, introduce new elements
into a material or vary the quantity of existing elements therein in a random way and can make
theoretical analysis of the results difficult. They can also suppress certain physical states, in-
cluding anisotropic superconductivity when the mean free path is below the superconducting
coherence length as stated above.

The use of high pressure in science research is expanding and it has now become a
multidisciplinary tool and has applications in physics, materials sciences, chemistry, earth sci-
ences, engineering, astronomy and biological sciences. High pressure methods are discussed
elsewhere in this book so we will not go into detail in this chapter. However, we will consider
briefly the possible impact of future developments in this area of research. For studies on un-
conventional superconductivity and novel quantum order, resistivity measurements are partic-
ularly useful as if done with sufficient sensitivity they can show deviations from Fermi-liquid
theory by seeing deviations from the T 2 temperature term of the resistivity. These measure-
ments should ideally be carried out under hydrostatic pressure conditions. This places certain
constraints on the pressure environment, and together with difficulties in attaching four wires
to tiny samples in pressure cells has meant that for a long time the main work horse for these
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Figure 16.10. Diamond anvil high pressure cell. The diamond anvils are accurately positioned so that they are
centred and aligned parallel to each other. The samples, pressure gauge and hydrostatic pressure medium are con-
tained within a small hole (<0.5 mm diameter) in the centre of a preindented region of the gasket. As force is applied
the diamonds press on the gasket causing the hole in the centre of the gasket to collapse. The collapse of this hole
pressurises the hydrostatic medium and hence the sample contained within the hole.

type of measurements was the large piston cylinder clamp cells which make use of hydrostatic
liquid pressure medium. These cells however are limited to a pressure of around 3 GPa. To
achieve higher pressures, cells which make use of opposing anvils (e.g., diamond, moissanite,
sapphire) need to be used (Figure 16.10). The difficulty with these however is that the sample
size is considerably smaller (250 × 250 × 40 µm or less).

Recent technological advances promise to change high pressure research into a routine
technique which can be utilised by a wide range of researchers. Future high pressure de-
velopments are likely to involve new advances in growth of single crystal large synthetic
diamond, nanolithography of conducting wires and diamond chemical vapour deposition
as well as new micromanipulation methods. Figure 16.11 shows a possible future direc-
tion for resistivity measurements in the diamond anvil cell. “Designer anvils” are produced
by lithographically depositing metal wires on to diamond anvils and then covering them
with a protective, electrically insulating cap of diamond deposited on the top by chemi-
cal vapour deposition of diamond (e.g., [88] and references therein). Increasing the size of
diamonds available for research is also likely to be hugely advantageous as it means that
greater pressure homogeneities can be achieved on smaller samples or larger samples can
be used which gives a larger signal to noise in measurements and makes the experiments
easier to set up. Using chemical vapour deposition of synthetic diamond it is possible to
produce large single crystal colourless diamonds (up to 10 carats). Further studies on the
use of alternatives to diamond as an anvil material, e.g., moissanite [89], is also likely to be
beneficial.

The exploitation of high pressure methods for the investigation of novel forms of quan-
tum order and unconventional superconductivity has gone in tandem with developments of
other quantum control parameters, in particular low temperature methods. This has been part
of ongoing research programmes which have led to advances in cryogenic methods such that
the high pressure experiments can be performed at millikelvin temperatures in a routine man-
ner with a fast turn around time. The recent advances in cryogen free systems are making
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Figure 16.11. Possible future of high pressure resistivity measurements. Tungsten wires are vapour deposited on
the surface of a diamond anvil. A protective cap of diamond will be deposited over the tungsten wires by chemical
vapour deposition. (Figure courtesy of Dr. Konstantin Kamenev of the Centre for Science at Extreme Conditions,
University of Edinburgh, UK).
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Figure 16.12. Next generation cryogen free cooler to operate continuously from room temperature to 1 mK in
development at the Cavendish Laboratory in collaboration with Cambridge Magnetic Refrigeration Ltd. The system
is based around low vibration pulse tube refrigerators to cool from room temperature to 4 K and a two-stage adiabatic
demagnetisation refrigerator to cool to 1 mK. For ultra-low noise operation the apparatus is equipped with a passive
helium ballast to maintain base temperature for 1–2 days with the pulse tube turned off.
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low temperatures more accessible to a wider number of researchers. They also remove prob-
lems usually associated with liquid cryogens. These coupled with adiabatic demagnetisation
systems mean that it is possible to get to temperatures normally as low as 1 mK in a turn-key
fashion without the use of cryogenic liquids (liquid helium or nitrogen) (Figure 16.12).

16.13. Concluding Remarks

The magnetic interaction model can be used to consider the make up of systems that are
likely to give elevated superconducting transition temperatures. As already discussed in this
chapter, suitable materials on the border of antiferromagnetism can produce superconducting
Cooper pairs which all else being equal are likely to be a more robust than that formed by ma-
terials on the border of ferromagnetic ordering. Also mentioned are the improvements to the
superconducting transition temperature when one goes from a cubic three dimensional struc-
ture to an anisotropic quasi-two-dimensional tetragonal structure. The model also predicts
that a single band having a relatively high energy scale is likely to be beneficial to producing
a higher superconducting transition temperature provided the other desirable features are also
present (see, e.g., [52]). To increase the energy scale one might look for suitable materials
among the 5f metals, e.g., PuCoGa5 [90–92], which have larger bands than 4f metals. The
effective Fermi temperature and hence the superconducting transition temperature is found to
increase by an order of magnitude in PuCoGa5 compared with the 4f analogue CeCoIn5. The
next step would be to go to d-metal systems that generally have a larger bandwidth compared
to the f-metal systems without losing other requirements for superconductivity.

Interestingly, the cuprate high temperature superconductors possess many of these fea-
tures. The parent compounds are all antiferromagnetic insulators. They crystallise in an
anisotropic tetragonal structure. The superconductivity is thought to be caused by a single
dominant copper quasi-two-dimensional d-band. The magnetic interaction model, both in the
weak and strong coupling limits (for recent reviews see, e.g., [22, 23] and references cited
therein), predicts very robust spin-singlet d-wave pairing not too far from half filling of this
d-band. This is found to be the case for the cuprates. A density interaction model (section 16.7)
may also be relevant to these systems.

This chapter has given an overview of some of the interesting and unusual physics that
occurs between a magnetically ordered state and a conventional metal at low temperatures.
It has been shown that the new quantum states that emerge cannot be explained by the con-
ventional low temperature theories of matter, but instead we must turn to new theoretical
models. Advances in experimental methods, particularly in the areas of material preparation,
high-pressure and cryogenics, promise to lead to further understanding and in particular to
the discovery of still more exotic phenomena on the border of quantum phase transitions in
general.
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