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Preface

This book presents the foundations of the inverse scattering method and
its applications to the theory of solitons in such a form as we understand it
in Leningrad.

The concept of soliton was introduced by Kruskal and Zabusky in 1965.
A soliton (a solitary wave) is a localized particle-like solution of a nonlinear
equation which describes excitations of finite energy and exhibits several
characteristic features: propagation does not destroy the profile of a solitary
wave; the interaction of several solitary waves amounts to their elastic scat-
tering, so that their total number and shape are preserved. Occasionally, the
concept of the soliton is treated in a more general sense as a localized solu-
tion of finite energy. At present this concept is widely spread due to its
universality and the abundance of applications in the analysis of various
processes in nonlinear media. The inverse scattering method which is the
mathematical basis of soliton theory has developed into a powerful tool of
mathematical physics for studying nonlinear partial differential equations,
almost as vigorous as the Fourier transform.

The book is based on the Hamiltonian interpretation of the method,
hence the title. Methods of differential geometry and Hamiltonian formal-
ism in particular are very popular in modern mathematical physics. It is
precisely the general Hamiltonian formalism that presents the inverse scat-
tering method in its most elegant form. Moreover, the Hamiltonian formal-
ism provides a link between classical and quantum mechanics. So the book
is not only an introduction to the classical soliton theory but also the
groundwork for the quantum theory of solitons, to be discussed in another
volume.

The book is addressed to specialists in mathematical physics. This has
determined the choice of material and the level of mathematical rigour. We
hope that it will also be of interest to mathematicians of other specialities
and to theoretical physicists as well. Still, being a mathematical treatise it
does not contain applications of soliton theory to specific physical phe-
nomena.

While the book was written in Leningrad, the contents passed through
several revisions caused by new developments of the method. We hope that
in its present version the text has reached sufficient steadiness. At the same
time, we do not claim to give an exhaustive account of the current state of
the subject. In this sense the book is an introduction to the subject rather
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than an outline of all modern constructions connected with multi-dimen-
sional generalizations and representations of infinite-dimensional algebraic
structures.

We would like to thank our colleagues at the laboratory of mathematical
problems of physics at the Leningrad branch of V. A. Steklov Mathematical
Institute: V. E. Korepin, P. P. Kulish, A. G. Reyman, N. Yu. Reshetikhin,
M. A. Semenov-Tian-Shansky, E. K. Sklyanin, F. A. Smirnov. The book un-
doubtedly gained from our contacts. We are also grateful to V. O. Tarasov
for his careful reading of the manuscript.
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Introduction

Over the past fifteen years the theory of solitons and the related theory
of integrable nonlinear evolution equations in two space-time dimensions
has attracted a large number of research workers of different orientations
ranging from algebraic geometry to applied hydrodynamics. Modern mathe-
matical physics has witnessed the development of a vast new area of re-
search devoted to this theory and called the inverse scattering method of
solving nonlinear equations (other names are: the inverse spectral trans-
form, the method of isospectral deformations and, more colloquially, the
L-A pair method).

The method was initiated by the pioneering work of the Princeton group.
In 1967 in the paper “Method for solving the Korteweg-de Vries equation”
[GGKM 1967] Gardner, Greene, Kruskal and Miura introduced a remarka-
ble nonlinear change of variables which made the equation linear and expli-
citly solvable. The change of variables involves the direct and inverse scat-
tering problems for the one-dimensional Schrodinger equation, which ac-
counts for the name of the method.

The formation of the theory was greatly influenced by the following two
contributions. In “Integrals of nonlinear equations of evolution and solitary
waves”’ [L 1968] Lax formalized the results of the Princeton group and intro-
duced the concept of an L-A pair. Next, in “Exact theory of two-dimen-
sional self-focusing and one-dimensional self-modulation of waves in non-
linear media™ [ZS 1971] Zakharov and Shabat showed that the concept of an
L-A pair is not necessarily tied to the Korteweg-de Vries equation but can
also be used for the nonlinear Schrédinger equation, thus opening perspec-
tives for treating other equations.

Since then the increasingly fast development of the inverse scattering
method and its applications has created a large new domain of mathemati-
cal physics. Characteristically, most of the work in this field is collective.
Several long-standing groups can be listed besides the one in Princeton (of
course, some of the people have subsequently moved to other locations).
They are:

1. The group in Moscow represented by Zakharov, Manakov, Novikov,
Krichever, Dubrovin and Mikhailov. Later they were joined by Gelfand,
Manin and Perelomov with their collaborators.
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2. The group in Potsdam represented by Ablowitz, Kaup, Newell, Segur
and their collaborators.

3. The group in Arizona which includes Flaschka, Lamb and McLaugh-
lin.

More recently a group appeared in Kyoto (Sato, Miwa, Jimbo, Kashi-
wara et al.). There are also other centers: in New York (Lax, Moser, Kac,
McKean, Case, Deift and Trubowitz), in Rome (Calogero and Degasperis),
in Manchester (Bullough with collaborators), in Freiburg (Pohlmeyer and
Honerkamp). There is a group in Leningrad too, which includes the authors
of the present book and also Korepin, Kulish, Reyman, Sklyanin, Semenov-
Tian-Shansky, Izergin, Its and Matveev. Besides the groups some single
contributors should be mentioned, Shabat, Kostant, Adler and van Moer-
beke among them.

So far we have only listed mathematical physicists without mentioning
the large army of specialists engaged in applications of soliton theory in
quantum field theory, solid state physics, nonlinear optics, plasma physics,
hydrodynamics, biology and other natural sciences. This impressive list of
people and topics is indicative of the range of interests and geographical
spread of those involved.

At present soliton theory is believed to have reached maturity. The in-
creasingly prominent role of this theory was an impetus for the appearance
of many monographs in which the schools mentioned above made known
their particular views on the subject. They are the following:

1. Zakharov, Manakov, Novikov, Pitaievski, Theory of Solitons. The
Inverse Problem Method [ZMNP 1980].

2. Lamb, Elements of Soliton Theory [L 1980].

3. Ablowitz, Segur, Solitons and the Inverse Scattering Transform
[AS 1981].

4. Calogero, Degasperis, Spectral Transform and Solitons
[CD 1982).

5. Dodd, Eilbeck, Gibbon, Morris, Solitons and Nonlinear waves
[DEGM 1982].

There are also the following collections of papers:

1. Solitons in Action, Lonngren and Scott, eds. [LS 1978].

2. Solitons, Bullough and Caudrey, eds. [BC 1980].

3. Bicklund Transformations, Miura, ed. [M 1976].

4. Proceedings of the Joint US-USSR symposium on Soliton Theory,
Manakov and Zakharov, eds. [MZ 1981].

5. Nonlinear Evolution equations Solvable by the Spectral Transform,
Calogero, ed. [C 1978].

There is also a textbook of Eilenberger “Solitons: Mathematical Meth-
ods for Physicists” [E 1981].

After publishing a number of reviews devoted to the quantum theory of
solitons and its applications in quantum field theory [KF 1977], [FK 1978],
[F 1980a], [F 1980b] the Leningrad specialists think it timely to voice their
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attitude towards the inverse scattering method as a whole. Naturally, the
attitude presented is influenced by the orientation towards the quantum for-
mulation of soliton theory. The quantum version of the inverse scattering
method which has been developed since 1978 and reviewed in a series of
papers [TF 1979], [KS 1980}, [F 1980b}], [F 1981], [F 1982a], [F 1982b],
[IK 1982], [F 1983], [T 1983] forced us to look afresh at the basic tools and
devices of the classical version of the method. Particularly, this concerns the
language of Hamiltonian dynamics closely associated with quantum appli-
cations.

As a matter of fact, most integrable models (including all of applied im-
portance) possess a Hamiltonian structure, that is, the equations defining
them are infinite-dimensional analogues of Hamilton’s equations in classi-
cal mechanics. The inverse scattering transform can be interpreted as a ca-
nonical transformation with respect to this structure so that the variables
which linearize the equation have the meaning of action-angle variables.

For the example of the Korteweg-de Vries equation this programme was
formulated and carried out in the paper of Zakharov and Faddeev “Korte-
weg-de Vries equation, a completely integrable Hamiltonian system”
[ZF 1971] published in 1971, which was the formative period of the theory.
Later the same was done for other interesting models.

The treatises cited above often mention the Hamiltonian approach but
never assign to it a principal methodological role. The main point in which
our book differs from others is the emphasis on the Hamiltonian structure
and the ensuing choice and arrangement of the material (see the Preface). At
the same time the text is self-contained enough to serve as an independent
introduction to the subject.

At first we planned to devote the book mainly to the quantum version,
with a suitable introduction to the classical method. However, as often hap-
pens, the project expanded in the course of writing and the book will appear
in two volumes. The present volume is devoted entirely to the classical
theory.

The pedagogical novelties of the book are clearly noticeable. In contrast
to other authors, we have chosen the nonlinear Schrédinger (NS) equation

v _ 2y

ot T T ax?

+2xlyl’y,

where y(x,?) is a complex-valued function, to be our principal representa-
tive example, instead of the Korteweg-de Vires (KdV) equation

du ou d*u
—=6u— - —.
ot ox  ox?

For this there are several reasons:
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1. In many technical respects the NS equation is simpler and more fun-
damental than the KdV equation. Thus, the NS equation illustrates directly
some simple general constructions of the method, whereas their extension to
the KdV equation requires a reduction procedure. In particular, the auxil-
iary linear problem for the NS equation (the eigenvalue problem for the Lax
operator L) is a system of first order differential equations of general type.
For the KdV equation, the role of the operator L is played by the one-
dimensional Schrodinger operator whose spectral theory is slightly more
complicated. Moreover, this operator may be regarded as a very special case
of a first order system.

2. The Hamiltonian formalism for the NS equation is more simple and
straightforward. The field variables y(x) and y(x), the bar indicating com-
plex conjugation, form a simple set of canonical variables,

{wx), y(N} =id(x—y).
At the same time, the Poisson brackets for the KdV equation

17 1%

1
(G, u(m) =3 (5 - g) 5(:~y)

do not immediately lead to an obvious choice of canonically conjugate var-
iables.

3. The NS equation has a natural quantum analogue describing a quan-
tum system of an indefinite number of particles interacting pairwise via the
potentials v;=8(x; —x;). Therefore it suits our project, including quantum
theory, particularly well. At the same time, the KdV equation has no direct
physical meaning in the quantum domain.

4. The last but not the least motivation comes from our spirit of contra-
diction which forbids us to begin yet another textbook with the hackneyed
KdV equation.

The discussion of the NS equation occupies nearly half of the book and
is organized in a separate part. We exploit this equation to present the foun-
dations of the method in a form which would make its extension to other
equations more or less automatic. All arguments are presented in detail and
proofs are mathematically as rigorous as is compatible with our sense of
what is reasonable. As a consequence, when analyzing other models we can
simply refer to the NS equation. Only the characteristic differences of these
models are discussed at some length.

Part Two is devoted to the analysis of several representative models
which have played a significant role in the development of the inverse scat-
tering method. We call them fundamental models. These are the models de-
fined by the following equations:
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1) the Sine-Gordon equation

o o m?
e — =0
orr x> B sinfo

for a real-valued function @(x, f);
2) the Heisenberg ferromagnet equation

2

Q
el

=Sa

|

2

oS
ot X

D

where S(x, f) is on the unit sphere in R® and A denotes exterior product;
3) the Toda lattice equation

d*q,

——— = eIn+17 I T T n -1

dr?

for the coordinates g,, — o0 <gq, < co.

These are the models discussed most thoroughly in the body of the book.
In addition, one will encounter here several other models of physical inter-
est (the N-wave model, the chiral field, and the Landau-Lifshitz model).
Finally, in Part Two we outline a fairly general classification scheme of in-
tegrable models and methods for solving them.

From the technical point of view, the main distinctive features of our
exposition are as follows:

1. Instead of the original Lax representation

dL
—=[L,A4
o = LAl

and the corresponding auxiliary linear problem
L¥Y=.%¥
we use from the very beginning the zero curvature representation

oU oV
——-—4+[U, V]=0
ot ox

and the auxiliary linear problem of the form

ﬂ:— U(x,A)F.
ox
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2. Alongside the usual analysis of the direct and inverse scattering prob-
lems for the auxiliary linear system on an infinite interval we also consider
the finite interval —L<x<L with quasi-periodic boundary conditions.
However, the associated inverse problem involves analysis on Riemann sur-
faces and goes beyond the scope of our book.

3. Our treatment of the inverse problem is based on the matrix Riemann
problem of analytic factorization of matrix-valued functions, rather then on
the traditional Gelfand-Levitan-Marchenko equation. As has now become
clear, this method is more universal and technically more transparent. For
the prototype NS equation we explain how the Gelfand-Levitan-Marchenko
method can be naturally incorporated into the Riemann problem.

4. The Hamiltonian structure is defined in terms of the so-called r-ma-
trix. This construction originated in the quantum spectral transform method
and later was adapted to the classical case. We believe it to be most ade-
quate and universal and hope to demonstrate this.

5. A comprehensive classification of integrable models based on the
concept of an r-matrix is presented. The Lie-bracket formalism for (infinite-
dimensional) current algebras turns out to provide an adequate language for
continuous models. We also discuss an extension of the classification to lat-
tice models.

We emphasize again that the above characteristic features have their nat-
ural counterparts in the quantum version of the method.

Now, a word about the level of mathematical rigour. Our presentation,
mostly elementary, is based on techniques of classical analysis. Proofs are
given of all results on direct and inverse problems for the auxiliary linear
system for the NS model in the rapidly decreasing case. This is not done
when other models are discussed in order to avoid overloading the text with
tiresome details. We believe that the NS model is treated in a sufficiently
invariant manner, so that the reader will be able to fill in the gaps.

However, a rigorous proof of the assertions concerning the Hamiltonian
formalism should make use of analysis on infinite-dimensional manifolds.
We consider this level of rigour superfluous for our subject and therefore do
not hesitate to use differential-geometric terminology in the infinite-dimen-
sional case without complete justification. This is done deliberately because
in our view rigorous proofs in this situation do not reveal the heart of the
matter; so we leave the job to specialists in global analysis. We believe that
this agrees with the state of affairs in modern mathematical physics to which
the present text belongs.

The inverse scattering method is now developed to such an extent that it
can be presented from the very beginning in its most general form. Howev-
er, this does not seem to be the best way of introducing the subject. As an
alternative we have chosen to introduce its basic concepts by means of a
particular example and to illustrate its generality by other models, so that
the reader is led gradually to the fairly natural and general construction
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underlying the method. In our opinion, this agrees with the spirit of modern
mathematical physics.

With this the main part of the introduction is ended. We have omitted a
formal summary of the text confining ourselves to basic historical comments
and methodological principles. It is hoped that the table of contents gives
sufficient information about the contents of the book.

Finally, a few words about the structure of the text. It consists of two
parts, each divided into chapters and sections. The main text contains no
references to original papers. These are given in special sections at the end
of each chapter, which also contain various remarks and comments. Thus,
other aspects of the theory are mentioned there which are not included in
the main text, with appropriate references.

Each formula has a number composed of the number of the section and
its own number within the section. References to formulae in other chapters
have triple numerations, the first entry being the number of the chapter.
References to a different part of the volume are specified explicitly.
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Part One

The Nonlinear Schrodinger Equation
(NS Model)



Chapter I
Zero Curvature Representation

§ 1. Formulation of the NS Model

The dynamical system to be considered is generated by the nonlinear
equation

oW oy ,
L= ——= 42 1.1
"ot ox? +2xlyly (.1
with the initial condition
wx, Oi—o=w(x). (1.2)

Here w(x, f) is a complex-valued function (the classical charged field)
and |y|>=wy, the bar denoting complex conjugation. A real parameter x in
(1.1) is the coupling constant. The domain of the variable x is the whole real
line — oo <x< oo and the initial data yw(x) are supposed to be sufficiently
smooth.

In the linear limit, x=0, (1.1) goes into the Schrodinger equation for the
wave function of a free one-dimensional particle of mass m=3. For this
reason (1.1) is colloquially called the nonlinear Schrédinger (NS) equation,
though its physical meaning lies far from one-particle quantum mechanics.
Its most significant physical applications are in nonlinear optics. At the
same time, (1.1) provides a fairly universal model of a nonlinear equation.

The initial value problem (1.1)-(1.2) must be supplemented with some
boundary conditions. We shall consider the following three types.

1. Rapidly decreasing type:

wix,)—»0 as Ix|l->o (1.3)

sufficiently rapidly; for instance, i is in the Schwartz space & (R") i.e. y is
infinitely differentiable and together with all its derivatives decays faster
than any power of |x| ~' as Ix|— oo. Weaker conditions will also be used.
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2. Finite density type:

wx, )—»0e®=® as x—+ oo (1.9

where 0> 0 and 0<@. <27. The constant p? plays the role of density and
@ . are called asymptotic phases.

The boundary conditions (1.4) are said to be satisfied in the sense of
Schwartz if w— €'~ is of Schwartz type in the vicinity of + co. This termi-
nology will be frequently used in what follows.

The boundary conditions (1.4) are compatible with (1.1) in the sense that
o and 8=¢, — ¢ _ are time-independent. It is more convenient, however, to
force both ¢, and ¢_ to be time-independent. To this end (1.1) should be
modified by adding a linear term —2x0*y, so that it becomes

Oy o’y

= — +2x(wlP—-0d)y. 1.5
Py Py (yl" =09 w (1.5)

3. Quasi-periodic boundary conditions. Here yw is a smooth function
satisfying

wx+2L, )=e%y(x,1), (1.6)

where 0<f#<2x and 8 does not depend on ¢. Just as before, (1.6) is consist-
ent with (1.1). Clearly, in this case it is sufficient to consider (1.1) in the
fundamental domain for the group of translations generated by the shift
x+—x+2L. For definiteness, let the fundamental domain be the interval
—L<x<L.

Condition 3 is the most general of all listed above. Other types are ob-
tained from (1.6) as subsequent limits L— o, 0—0.

Equation (1.1) supplied with the aforementioned boundary conditions de-
termines a dynamical system called the NS model.

Let us show that this is a Hamiltonian system for all the three types of
boundary conditions. We shall assume that the reader is familiar with the
basic concepts of Hamiltonian mechanics, at least in the finite-dimensional
case. Therefore we discuss below only what is specific for infinite-dimen-
sional systems.

We begin with the rapidly decreasing case. Here the phase space _#; is
an infinite-dimensional real linear space with complex coordinates defined
by pairs of functions w(x), ¥(x) in & (R"). By analogy with finite-dimen-
sional coordinates labelled by a discrete parameter, the variable x may
be thought of as a coordinate label; for x fixed, w(x) and w(x) range
over the two-dimensional real space R? with the real coordinates
y(x)+y(x) y(x)—y(x)

2 2i )

We shall define the algebra of observables on the phase space #;. To

this end consider real-valued functionals of the form

Rey/(x) = , Imy (x) =



§ 1. Formulation of the NS Model 13

oo

Fy,w)=c+ ZO [ oo T Comisees YalZrs ooy Zom)

(n,m)+(0,0)
XYy .- W)W () ... Y(En)dy: ... dy,dzy ... dz,,,  (1.7)

where Com(¥1, - +> Vul2Z1, - -+, Zm) are tempered generalized functions on R"*"™
symmetric in y,, ..., y, and, separately, in zy, ..., z,, and satisfying the reality
condition

Cam(V1y o es VnlZ1s o oos Zm) =Conn (Z1s oo s Zm | Y15 o o5 V) (1.8)

Suppose in addition that (1.7) is absolutely convergent for all y(x), ¥(x) in
Z(R"). Such functionals will be naturally referred to as real-analytic
ones.

According to the general definition of the variational derivative,

OF(y, w)=Fy+6y,y+6y)—F(y, y)

o
—j (ﬂ-) p) + 5—()5w(x))dx (1.9)

up to terms of higher order in § y and §i. Then for functionals such as (1.7)
we have

SF : =

nl i | ComO Vs ooy Vno1lZ1yeees Zm
S . mZ _fw _'L (x, 7 Yn-1|z1 )
(1w (0.0)

XYY - W)W (1) ... W(EZm)dy: ... Ay 1dzy ... dz,,, (1.10)

oo

6F ©o oo

Com (V1 ey VulXs 21y ooy Zi—

61[/(x) an m_j’w _L o8 Yl 2 Zm-1)
(i 4(0,0)

Xy(y) ... () W(z1) ... Y(2m_)dy: ... dy,dz, ... dz,, . (1.11)

OF
Sy(x)’ Sy (x)
functions. A functional is said to be smooth if these derivatives are usual
functions in Schwartz space.
Smooth real-analytic functionals make up the algebra of observables on
the phase space _#,. We define a Poisson structure on this algebra by the
following Poisson bracket

I 6G 6F &G
6= j (5w(x) sy(x) Sw(x) (Sy/(x))dx' (1.12)

Thus in general the variational derivatives are generalized
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Obviously, the bracket (1.12) possesses the basic properties of a Poisson
bracket: it is skew-symmetric

{F, G}=—{G, F} (1.13)
and satisfies the Jacobi identity
{FAG, H}}+{H, {F, G} +{G, {H, F}}=0. (1.14)

The bracket (1.12) is the infinite-dimensional generalization of the
usual Poisson bracket in the phase space R?" with real coordinates

pk:qk:k=17""n,

_ (3 b9 _of o9
{f’g}—,; (3Pk o9k Oqx 3Pk)’ (1.13)

atipe . qu—ipi

7

written in terms of complex coordinates z, =

thot=i > (L 222 Jo), (L16)

Py 8zk 8z'k 3z'k 3zk

The coordinates y(x) and y(x) themselves may be considered as func-
tionals on _#;. However, their variational derivatives are generalized func-
tions,

Oy (x) Sy (x)
—80—y), XY _s5x-y), 1.17
o) T Gy T (-1
where 6(x—y) is the Dirac é-function, and 6"_/(x) and 0y ) vanish. Sub-
stituting (1.17) formally into (1.12) gives %) Sw(»)
lv(x), y(»} ={w(x), y(»}=0, (1.18)

(), y(}=id(x—y),

which can serve as a definition of the Poisson structure in the sense that
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oo oo

O0F 046G
FG = | (Wm Suiy Vw0l

— 00 - 00

oF 6G _
Sy () W ly(x), w(»)}

oF 6G  _
+ e W{W(x), v}

SF &6G
— (), v dxdy. 1.19
5909 W(y){w(x) t//(y)}) x dy (1.19)

In fact, substituting (1.18) into (1.19) gives (1.12). These formulae also
yield

oF . _ OF
) —i{F, y(x)},

5o " i{F, y(x)}. (1.20)

It is clear from the definition that the Poisson bracket is non-degenerate
on the algebra of observables, i.e. if

{F, G}=0 (1.21)

for each observable G, then F(y, )= const. Indeed, (1.21) implies that the

variational derivatives vanish, so that the coefficient

)
an
Sy (x) Sy (x)
functions ¢, ()1, --+s YulZ1, .--» 2) in (1.7) also vanish. Hence, the phase
space .#, acquires a symplectic structure. The corresponding closed 2-form
£ (symplectic form) is

Q=i T diy(x) A dy(x)dx. (1.22)

Each observable H gives rise to a one-parameter group of transforma-
tions on the phase space .#; defined by Hamilton’s equations of motion

%={H9 }='—16—I-_Ia

ot oy

o - (1.23)
v .

&Y g =i 2

ot {H, y} s

In this case H is called the Hamiltonian.
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In particular, the NS equation of motion (1.1) is represented in the form
(1.23) by choosing the Hamiltonian H to be

it
H=_jm(a—f

The Hamiltonian H (also called the energy integral) is the generator of
the group of time displacements.
Along with H we consider the functionals

2
+x|y/|4) dx. (1.24)

N= | lyldx (1.25)
and
1 5 [oy . oy
P=— Ly — L y|dx. )
2i _jm (ax V'™ ex "’) o (1.26)

The Hamiltonian transformations generated by N and P are the phase
shift

y(x)—e?y(x) (1.27)
and the x-displacement

w(x)>y(x+a), (1.28)

respectively. The physical meaning of N and P is that of charge (number of
particles) and momentum, respectively.
It is easily verified that

{H, P}={H, N}=0 (1.29)
and

[N, P}=0. (1.30)

Indeed, the NS equation is invariant under the transformations (1.27) and
(1.28). By (1.29) N and P are integrals of the motion, i.e. they are constant
along the trajectories of (1.23), since for every observable F one has

dF ]i’ ( 6F oy(x) , OF 2y

Sy(x) ot @ byx) ot )dx={H’F}- (1.31)
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Two observables are said to be in involution if their Poisson bracket
vanishes. Thus, (1.30) shows that the integrals of the motion N and P are in
involution. Later we shall see that there is an infinite set of integrals of the
motion in involution for the NS model implying that the model is com-
pletely integrable.

Let us now consider the case of quasi-periodic boundary conditions.
Coordinates in the phase space # ¢ are given by pairs of smooth functions
w(x), @(x) subject to (1.6). Naturally, functionals on _#; o depend only on
the values of w(x) and W(x) in the fundamental domain of the group of
translations x »x+2n L, where n is an integer.

The definition of admissible functionals associated with observables dif-
fers from the one given above in only two points: first, integration over the
¥i» z; in (1.7) is restricted to the fundamental domain; second, the coefficient
functions ¢, (¥1,---» Yu|Z1, ---» Zm) must satisfy the quasi-periodicity condi-
tions

Cam (V1 e s Vit 2Ly oy Ynlziy ooy Zm)
=€_i80nm(J’1,---,J’i,---,)’n|21,---,2m)§ i=1""’n’ (132)

C'IM(yh""ynlzls---,zj+2L,~--,Zm)
=€ Cim(P1s s Vn|Z1yeeerZjseeesZm)s  j=1,...m, (1.33)

understood in the sense of generalized functions. The integrands in (1.7) are
then periodic in each variable separately so that the integral does not de-
pend on the choice of the fundamental domain. As before, the variational
derivatives are given by (1.10)-(1.11) and are supposed to be smooth func-
tions of x.

In terms of variational derivatives, conditions (1.32)-(1.33) become

8F _ o OF

Sy(x) & 2L

w(x) V() |ly—x+2L (134)
oF _w OF

sy ow()

y=x+2L

The Poisson bracket of two observables is defined as in (1.12) and has
the form

L
( oF oG O0F 6G ) X, (135)

E61=i | {5y 590~ 5909 s

—L
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where the value of the integral does not depend on the choice of the funda-
mental domain. This Poisson bracket is well defined and non-degenerate on
the algebra of observables.

Formally, the Poisson brackets of the coordinates w(x) and y(x) are

{we), v} =y ), y(»)}=0,

_ ) (1.36)
{w), g} =ibL6(x—y),
where O ¢(x) is the averaged 8-function,
Se(x)= ) €%8(x-2nL), (1.37)

N = — oo

which satisfies the quasi-periodicity condition with respect to x.

Here the NS equation can also be represented in the Hamiltonian form
(1.23). The Hamiltonian H is given by (1.24) as before, with integration over
the fundamental domain. The observables N and P are defined in a similar
way and have the same physical interpretation as above.

Besides the functionals associated with observables, in Chapter 111 we
shall also need compactly supported functionals. Fix a fundamental domain,
say —L<x<L. The definition requires that with respect to each variable
the coefficients ¢,m(¥1,.-+» V|21, .-, Zw) have support in this interval. The
variational derivatives are supposed to be smooth functions within the sup-
port. For such functionals the Poisson bracket (1.35) is well defined and
non-degenerate. The algebra of admissible functionals is the completion of
compactly supported functionals after imposing the quasi-periodicity condi-
tion. The Poisson bracket for observables is the corresponding limit of the
Poisson bracket for compactly supported functionals.

Finally, let us discuss the finite density case. The phase space #, g is
obtained from _#; o in the limit L— o if the values of yw(x) and y(x) at
x= —L are kept fixed and equal to g. Thus, _#, ¢ is parametrized by two
real parameters ¢ and 6, 0<9 < o0, 0<8<2 7 and consists of pairs of func-
tions w(x), w(x) satisfying the boundary conditions (1.4) in the sense of
Schwartz, with ¢_ =0, ¢, =8. Notice that, in contrast with the previous
examples, _#, o is not a linear space.

Functionals on .#,, are obtained as limiting values, as L— oo, of the
admissible functionals for the quasi-periodic case. However, admissible
functionals associated with observables are subject to the additional
condition that their variational derivatives be of Schwartz type. In fact,

OF OF
and —
oy (x) oy (x)
guarantees that the Hamiltonian transformations leave the phase space
M, ¢ invariant.

enter into Hamilton’s equations (1.23) and their decay
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The Poisson bracket for observables is again given by (1.12), and the
formal Poisson bracket for the coordinates y(x) and y7(x) has the same form
as (1.18), since &, (x) goes into the usual é-function as L— . The Poisson
structure is non-degenerate because it is the limit, as L— oo, of the non-
degenerate quasi-periodic structure with the following two non-commuting
constraints

y(=L)=y(-L)=0. (1.38)

The simplest example of an inadmissible functional is given by
No= | (lyl?—p?dx (1.39)

which could have been a natural analogue of charge in the rapidly decreas-
ing case. Indeed, the variational derivatives

8N, SN, _
5W(X)_W(x)’ 5(/.,(x)—l/f(X) (1.40)

do not vanish as |[x|— o by virtue of the boundary conditions (1.4). This is
related to the fact that the phase shift (1.27) cannot be defined on .4,
because the phase of y(x) has a fixed limit as x— — oo. Another example of
an inadmissible functional is provided by a naive regularization of the
quasi-periodic Hamiltonian

7 T oy |? 4_ 4
H,= j | w1t —0%)dx. (1.41)
On the other hand,
T oy |? 222
H,= j o | T =07 dx (1.42)
and
1 5 [ow . oy
P=— Ty—"Lyld 1.4
2i _[o (3x V'™ ox "/) * (143)

are admissible functionals on _#,  and play the role of energy and momen-
tum, respectively. The modified equations of motion (1.5) are precisely
those generated by H,.
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The Poisson structures in all the three spaces .#, # o and .4,
are non-degenerate. This is, however, a purely mathematical restriction
motivated by symplectic geometry. Later we shall see that soliton dy-
namics of the finite density model is described more naturally in the space

My= |J _#, where the Poisson bracket is degenerate and has a non-
0<f<2rm

trivial centre (sometimes called annihilator) generated by the dynamical
variable 6.

This completes our formulation of the NS model. Now we proceed to
the dynamics.

§ 2. Zero Curvature Condition

The following remarkable observation is basic for solving the NS model
via the inverse scattering method: equation (1.1) turns out to be a compatibil-
ity condition for the overdetermined system of equations

F
oF =U(x,t,A)F, 2.1
ox
F
—=V(x,t,A)F. 2.2)
ot
Here F = (;‘) is a vector-valued function of x and ¢, and the 2 x 2 matrices
2

U and V are given by

U=U,+AU,, 2.3)
where
U =y (3/ "'0’) =)o, +yo), 24)
0Lt 9-Lo, @9
and

V=Vot+ AV, 412V, (2.6)



§ 2. Zero Curvature Condition 21

where

oy

Vx Wl — — _
1% 0 0

Vo=iyx * =ix|y/|203—i1/;?(—"’o+——"’a_); @.7)

31#_]/;?'1//'2 ox ax

ox
Vi=—-Uy, Vo=-Ui. 2.8)

These formulae involve the standard 2 x 2 Pauli matrices which will be
frequently used in the text,

S (I A WY [ W B
At o) P Nioo) TP\ —1)0

(2.9)
01+i02_(0 1) - _ol—ioz_(O 0)

(o 0% 2

0 0 ) 1 0/

In (2.4)-(2.8) the numeric value of /x is taken when x>0 and y/x =i}/lx| when
x<0.

Note that U and V contain, besides y and y, an additional complex
parameter A.

The compatibility condition for (2.1)-(2.2) is

oU _3Y v, vi=o. (2.10)
ot ox

It should hold for each A. The left hand side of (2.10) is a cubic polynomial
in A. The coefficients of 1, A2 and A* vanish identically due to the special
form of U, V. The vanishing of the constant term is equivalent to (1.1).

In the finite density case described by (1.5), equation (2.7) must be modi-
fied. The corresponding V,, is

Vo=V—ixp2os, (2.11)

whereas U is unchanged. Equation (1.5) is then equivalent to (2.10).

The fundamental role of the representation (2.10) in solving the NS model
will become clear from our later discussion. Here we point out that (2.10) is one
of the most universal formulae of the inverse scattering method and will appear
in the analysis of all other models.

Equations (2.1)-(2.2) and their compatibility condition (2.10) have a
natural geometric interpretation. In fact, the matrix functions U(x, ¢, 1) and
V(x, t, A) may be considered as local connection coefficients in the trivial vec-
tor bundle IR? x €? where the space-time R? is the base and the vector func-
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tion F(x, t,A) takes values in the fiber C2 Here A is a subsidiary complex
parameter. Equations (2.1), (2.2) show that Fis a covariantly constant vector
while (2.10) amounts to saying that the (U, ¥)-connection has zero curva-
ture. For this reason a representation of a nonlinear equation in the form
(2.10) is called a zero curvature representation.

The connection coefficients U(x, t,1), V(x, t, ) are affected by a local
change of linear frame in the fiber. The transformation

FGe,t,A)> G(x,t,A)F(x, t, 1) (2.12)

induced by a change of frame with matrix G(x, #, 1) is accompanied by the
transformation

U—»ﬁG”‘+GUG“,
0x

(2.13)
v-296-1hove-.
at

In the physical literature such transformations are usually called gauge
transformations, and we shall also use this name. Clearly, the zero curvature
condition is invariant under gauge transformations so that the representa-
tion of (1.1) as the compatibility condition (2.10) is valid for the whole class
of gauge-equivalent connections.

We shall now define the notion of parallel transport induced by the
(U, V)-connection. Let ¥ be a curve in R? with initial point (xo, #,) and final
point (x, 7). Parallel transport from (x,, %) to (x, ¢) along y is given by

Q,=&p(| Udx+ Vdi), (2.14)
Y

where integration is understood multiplicatively. In what follows we sup-
press the A-dependence in U, V.

To be more precise, consider a partition of ¥y by N—1 cuts into adjacent
segments ¥, ..., ¥n. Let

L,=I+ | (Udx+Vad), (2.15)

Yn

where I is the 2 x 2 unit matrix. Let

7
On= 1] La=Ln... L,. (2.16)

n=1
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Then, by definition, £2, is the limit of {2y as the partition becomes infinitely
dense.
In the physical literature 2, is called a y-ordered matrix exponential.
The parallel transport of a vector F along y is given by

F,=Q,F. @2.17)

In other words, the vector field F, defined on y is covariantly constant.
Obviously, a superposition formula holds

Q. =02, 0,, (2.18)

where it is assumed that the final point of ¥, coincides with the initial point
of ¥, and y, + ¥, denotes the union of y; and ¥, in this order.

Under the gauge transformation (2.13) the parallel transport matrix is
transformed according to

Q, - G(x, 82,6~ (X, o). (2.19)

The vanishing of the curvature means that £2, depends only on the initial
and final points, (xo, %) and (x, f), and not on the curve joining them. This
allows us, given a vector F(x,, ty), to construct a vector field on R?,

F(x, )=2, F(xo, to), (2.20)

satisfying (2.1)-(2.2). If y is closed, the vanishing of the curvature means
that parallel transport along ¥ is trivial

Q=1 (2.21)

no matter what the initial point is. The local zero curvature condition is thus
equivalent to (2.21).

To illustrate the utility of the zero curvature condition we will now show
that equations admitting a zero curvature representation have infinitely
many integrals of the motion (conservation laws).

Fix a point in time ¢=1, and consider parallel transport along the x-axis.
The vector F is covariantly constant if

F
4 = Ul to, )F. (2.22)

This is a linear problem with a spectral parameter A; it is usually referred to
as an auxiliary linear problem.
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The basic characteristic of the problem is its monodromy matrix which
will be defined here in the quasi-periodic case. In terms of U, V the quasi-
periodicity conditions can be expressed as
Ux+2L,1t,1)=0"'(0) U(x, 1, 1) 0(6), (2.23)
Vx+2L,t,A)=0"'(O) V(x,1,1) 2(O), (2.29)

with a diagonal matrix Q(6),

() = e’ Oﬁ =exp{i003}. (2.25)

The monodromy matrix 7, is the matrix of parallel transport along the con-
tour t=t,, — L<x<L oriented in the positive x-direction,

') L
TL (/l, t()) =¢Xp I U(x, to, A«) dx. (2.26)
L

The zero curvature condition leads to a remarkable relationship between
monodromy matrices for different values of ¢. To derive it, consider a closed
rectilinear curve y presented in Fig. 1.

Fig. 1

By virtue of (2.21) and the superposition property (2.18) we have for
such ¥

ST\ (t)S. To(t) =1, (2.27)
where

2
S+, t,t)=exp| V(£L,t,A)dt. (2.28)

n
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By the quasi-periodicity (2.24) and the definition of the erdered ex-
ponential we see that S, is conjugate to S_,

S§,=0"'60)S_-00). (2.29)
Thus (2.27) becomes

T4, ) QO) =S+ (1, ) TLA, 1) QO) ST (11, 1), (2.30)

that is, T, (A, ) Q(6) are conjugate to each other for different values of t. In
particular, (2.30) implies an important relation

trTL(A, ) Q@) =tr T, (4, t;) Q(H), (2.31)

where tr denotes matrix trace in €2 From this we conclude that the trace of
T. (4, 1) Q(F) does not depend on ¢.

So, with the zero curvature representation as a starting point we have
shown that the functional F; (1) given by

FLA)=trT. (1) Q(6) (232)

is a generating function for the conservation laws for (1.1).
The particular choice of the fundamental domain —L<x<L in the
definition of the monodromy matrix is not essential. For a different domain

xo—L<x<xo+ L we set
Y Xo+L
T, A t)=exp | U(x,t,A)dx (2.33)

Xo—L

and show that tr T, . (4, t) Q(f) does not depend on x,. To this end we will
prove that T, (4, ) Q(0) and T, . (A, t) Q(6) are conjugate to each other. In
fact, from (2.33) we have

TL.XO(A@ t)=P+ TL(A" t)P: ! ’ (2’34)
where
\ XoxL
P.(xo)=&p | Ulx,t,A)dx. (2.35)
+L

Using the quasi-periodicity condition (2.23) we find

P.=07'(O)P-0(), (2.36)
whence using (2.34) we conclude that

Tpx,(, ) QO)=P. (xo)) TL(A, ) Q(O) P3 ' (x0). (2.37)
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We thus see that the monodromy matrix T, (1) is a useful tool for de-
scribing the dynamics in our model. In the following sections we shall inves-
tigate it further and obtain some new dynamical applications.

§ 3. Properties of the Monodromy Matrix in the
Quasi-Periodic Case

In this section we shall analyze the monodromy matrix, i.e. the matrix of
parallel transport along the fundamental domain —L<x<L,

TL=&D | Uk Aydr, 3.1)

where U(x, 1) is given by (2.3)-(2.5) and satisfies the quasi-periodicity con-
dition

Ux+2L,A)=0""'0)Ux,A) Q). 3.2)

Here we have suppressed the t-dependence assuming that ¢ is fixed.
Along with the monodromy matrix we shall consider a more general ob-
ject, the parallel transport matrix from y to x along the x-axis,

T(x,y, )=&D | UGz, A)dz, (3.3)

which will be called the transition matrix. The monodromy matrix T, (1) is a
special case of the transition matrix:

T,(A)=T(L, —L,1). (3.4)

The basic properties of T(x, y,A) are the following.
It satisfies the differential equation (2.22) of the auxiliary linear problem

3% T, y,A)=U(x,A)T(x,y, 1) (3.5)

with the initial condition

T(xs B ) ;{')lx=,\'=1- (36)
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This property can serve as an alternative definition of the transition ma-
trix. The well-known theorems for ordinary differential equations assure
that the solution T(x, y, A) exists for all x, y, is unique, and is an entire func-
tion of A. The latter follows because U(x,A) and the initial data (3.6) are
analytic in A.

The superposition property

T(x,z,A)T(z,y,A)=T(x,y,A) 3.7

is a consequence of either the more general relation (2.18) or the differential
equation (3.5), (3.6). In particular, one has the relation

T(x,y,A)=T""(y,x,1), 3.8

consistent with the differential equation for T(x, y, 1) with respect to y,
é
5 T(x:vy’l)= —T(xaya/l) U(ya/l)’ (39)

which follows directly from (3.3).
The matrix T(x, y,A) is unimodular

detT(x,y,A)=1 (3.10)

because U(x, 4) is traceless,
trU(x,1)=0. (3.11)

Indeed, from (3.5) we have
% det T(x,y,)=tr U(x, )det T(x, y, A)=0. (3.12)

This computation works for any matrix solution of (3.5) thus proving
that its determinant does not depend on x.

The matrix U(x, A) is of a rather special form and satisfies the involution
relation

U(x,\)=cU(x, )0, (3.13)

where =0, for x>0, c=0, for <0, and U denotes a matrix whose ele-
ments are the complex conjugates of those of U.

The involution relation naturally extends to the transition matrix, so
that
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T(x,y,A)=cT(x,y,A)o. (3.14)

In particular, the monodromy matrix can be written as

ar(A) abl(/f)) (3.15)

L.t - (bL(A) )

with ¢=signx. We shall call a, (1) and b, (1) transition coefficients. They are
entire functions of A satisfying for real A the normalization condition

la, A —elb (AP =1, (3.16)

which follows from the unimodularity of T, (A).

This completes the list of elementary properties of the transition and
monodromy matrices.

Let us now discuss the time dependence of the monodromy matrix. In
§ 2 we used its geometric interpretation to obtain the result in the integral
form (2.30). As an alternative, it is possible to derive a differential equation
for T, (A, t) with respect to t. In the derivation which follows we restore the
t-dependance in our notation.

First we shall obtain the corresponding equation for the transition ma-
trix. By differentiating (3.5) with respect to ¢

T oT oU
=U—+-—T 3.17
ox ot ot ot (3-17)

and using the zero curvature condition we can write it as

2 v
ﬂ—(a—+ VU-— UV)T+U—

oxot ox
—QKT+V£—UVT+U——
ox ox

0 oT
=— ¥+ U|—-VT 3.18
(VD)4 (at ) (3.18)

or

8 (21— VT) = U(ﬂ— VT), (3.19)

ot ot

whence we conclude that
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gt- T, )=V T, )+ T(x,y)C, (3.20)

where the matrix C does not depend on x. Using the initial condition (3.6)
we get C= — V(y). As a result, we find the evolution equation for the transi-
tion matrix,

K

57 T&Y) =V T(x,3)— T, ) V(). (3:21)

For the monodromy matrix this equation simplifies due to the quasi-
periodicity conditions. In fact, from (3.21) we get for T, (4, t) Q(0) an evolu-
tion equation of Heisenberg type

% T, ) Q@) =V (L, 1, 1), T.(, ) Q(B)]. (3.22)

Its solution in terms of ordered exponentials is given by (2.30).
From (3.22) we deduce that

K

-t T.(, 1) Q(6)=0, (3.23)

and we see once again that the functional F; (1) (see (2.32)) is a generating
function for the motion integrals of (1.1).

We conclude this section with a discussion of some deeper analytic
properties of the monodromy matrix. Assuming that y(x), y(x) are infinitely
differentiable we will prove that a, (1) and b, (1) are entire functions of ex-
ponential type L with the following asymptotic expansion for large real A:

a,(A)=e " * et Z Z—:+ et Z ;f—;’+0(ll|‘°°) (3.24)
n=1

n=1

and

oo

i b" i < 5" —_
b)) ==t 31kttt Y 7 HOWI™™). (3.25)

n=1 n=1

Here O(]A]1~ =) indicates a function whose asymptotic expansion in powers
of A~ vanishes identically.
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The proof is based on an integral representation for the transition matrix
which will also be important later. Therefore we shall give the details of the
derivation.

We shall start with the integral equations for T(x, y, A) equivalent to the
differential problem (3.5)-(3.6)

Tx,y,A)=E(x—y,A)+ )jc T(x,z, ) Uy(z) E(z—y,A)dz (3.26)
and

T(x,y,)=E(x—y, 1) + )f E(x—z,A)Uy(2)T(z,y,A)dz, (3.27)

where for the sake of definiteness it is assumed that y <x. The matrix Uy(x)
is given by (cf. (2.3)-(2.4))

Vo) = Ue, )+ 2 03 = F (G +y0), (3.28)
and E(x—y, A4) is the solution of (3.5)-(3.6) for Up=0,

E(x—y,A)=exp [% (x—y)a3]. (3.29)

From

030 =—010; (3.30)
we have a useful relation
E(x,A) Us(»)=Uo(») E(—x, 4). (3.31)

Equations (3.26), (3.27) are Volterra integral equations, so that their
iterations are absolutely convergent. The analysis of the iterations shows
that for y<x, T(x, y, 1) can be represented as

X

T(x,y,A)=E(x—y, )+ | ['(x,y,z2)E(z—y,A)dz (3.32)
2 x

Y=

or

)

T(x,p,)=E(x—y, )+ zxj_ | E(x—z, )T (x,y,z)dz. (3.33)
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Indeed, using (3.31) we can assemble in each iteration all the factors
E(-,2) either on the left or on the right of the product of the Uy(-). After
that we use the superposition property of E(x, 1).

The matrix-valued kernels I, I” satisfy

v+z

r'x,y,72) = % Us (x;Z)+ | Fes,25-2Uno)ds,  (3349)
where y < x-zl—z < x and
- 1 y+z * -
Ir'x,y,z)= 3 Uy 3 + | Uo(s)I(s,y,2s—2)ds, (3.35)
y+z

2
where y < J% < x.

For example, in order to derive (3.34) insert (3.32) into (3.26), inter-
change the integrals and use (3.31). Equating the terms with the common
factor E(z—y, ), 2y —x<z<x, gives the desired equation. A similar argu-
ment leads to (3.35).

Obviously, the above arguments are reversible, so that the integral equa-
tions (3.26), (3.27) are equivalent to (3.34), (3.35), respectively. The integral
representations (3.32), (3.33) for the transition matrix as well as the integral
equations (3.34), (3.35) for the kernels I, I" will be needed later in §§ S, 6.

The iterations of (3.34) and (3.35) are absolutely convergent. This asser-
tion relies only on the fact that w(x), w(x) are bounded. Let || - || denote some
matrix norm and let

C= max IU,®)l. (3.36)

~L<x<L
From (3.34), (3.35) we easily get the estimates

x+z

e, y, 20 < (1+ (T_ )) I(cfx—z)(x+z—2y)) (3.37)

and

IC(x, y, 2)Il < (1+c(x—12—)) Licyz-y)2x—y-2)), (3.38)

where Iy(x) is the modified Bessel function.

We point out that the estimates (3.37), (3.38) become too rough for large
values of the arguments in I, I. More accurate estimates will be obtained
in § 5.



32 Chapter I. Zero Curvature Representation
The involution property extends to " and I,
f(X,y,Z)=O'F(x,}’,Z)O', Ii(x,y,z)=0'1:'(x,y,z)0' (339)

and allows us to write them as

S

Ru =0

) , (3.40)

with ¢=signz.

The integral representations (3.32) and (3.33) determine the relationship
between the scalar kernels «, 8 and @&, B, respectively. In fact, E(x, ) com-
mutes with the diagonal parts of I, I" and is replaced by its inverse after
permutation with their off-diagonal parts. Therefore by carrying E(z—y, 1)
to the left in (3.32) we obtain a representation such as (3.33); then, by com-
paring the coefficients we have

a(x,y,z)‘-“‘i(x,y,x'l'}’—z), (341)

Bx,y,2)=Px, y,x~y+2). (3.42)

Now observe that, as is clear from (3.34), (3.35), the smoothness proper-
ties of I'(x, y, z) and I'(x, y, z) are the same as those of w(x), w(x). In parti-
cular, if w(x), ¥(x) are infinitely differentiable, so are the kernels I" and I”
with respect to each of their arguments. Hence we may successively inte-
grate by parts in the integral representations (3.32) and (3.33). Using the
differential equation for E(x, A) we then obtain an asymptotic expansion for
T(x,y,A) for large real A,

< T,
T(x,y,4) = EG—y,2)+ ). flx Y Ee-y,4)
n=1

oo

£y Tn%” E(y—x,A)+0(A1=>). (343)

n=1

Let us now return to the monodromy matrix T; (1). We have established
the representations

T,A)=EQRL,A)+ 2jL I'(L,—L,x—LYE(x,A)dx (3.44)
and

T.A)=EQL,A)+ ZjL E(, ) (L, —L, L—x)dx. (3.45)
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For the transition coefficients a, (1) and b, (1) we then find

a,(A)=e~*L4 TL L (x) e~ dx (3.46)
and
b.(A)= TLﬂL(x)e"“dx, (3-47)
where
aL(x)=2a(L, —L,2x—L)=2a(L, — L, L—2x), (3.48)
BL(x)=2B(L, —L,2x—L)=2p(L, — L, L+2x). (3.49)

Thus the entire functions a, (1) and b, (1) are of exponential type L and
if w(x), y(x) are infinitely differentiable, allow the asymptotic expansions
(3.24) and (3.25).

This completes our discussion of the analytic properties.

The generating function F, (1) has the following expression in terms
of a; (1):

i

ie _ _i8
FLA)=trT,A)QO)=a,(A)e? +a.(l)e 2. (3.50)
Thus the coefficients a,, @, are involved in the construction of the integrals

of the motion. An explicit procedure for expressing them in terms of
Y (x), y(x) is developed in the following section.

§ 4. Local Integrals of the Motion

So far, the set of conservation laws produced by the generating func-
tion

FLA)=trT.(A) Q(0) 4.1
has not been described explicitly enough. Here we will show that

pL(A)=arccos 1 F, (1) 4.2)
is the generating function for the local integrals of the motion and develope an
explicit recursion procedure for computing them in terms of y(x) and y(x). By

a local functional on the phase space .#] ¢ we mean a functional of the
form
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i L
F(y,y)= | P(x)dx, 4.3)
~-L

where P(x) is a polynomial in y(x), y(x) and their x-derivatives. Of course,
w(x), w(x) are supposed to be infinitely differentiable.
The procedure is based on the large real A expansion of p; (1),

0 < I
=—AL+ = E = e .
prA) A +2+xn=] T + O(Al~=), 4.9

which is a consequence of (3.24), (3.50) and (4.2). We are going to show that
the coefficients I, are local functionals of w(x), w(x).

Let us first consider the transition matrix T(x, y, A).

In the previous section we proved that it has the asymptotic expansion
(3.43). Let us show that by a suitable transformation this expansion can be
reduced to

T(x,y,A)=(I+W(x,A))expZ(x,y, A)-(I+ W(y,A)) ™", 4.5)

where W and Z are an off-diagonal and a diagonal matrix, respectively, with
the following asymptotic representations as |A|— oo

W)= ) 29 4 oui==), 4.6)
n=1
Z(x,p,A) = (x—;im + ! Z"i’i’y )y oqu-=). (4.7)
n=1

Clearly, the expansion associated with the right hand side of (4.5) has the
same structure as (3.43). Therefore, in order to prove (4.5) it is sufficient to
show that the coefficients W, (x) and Z,(x, y) are uniquely determined by
T(x,y,4). To do so we shall use the differential equation (3.5) with the
initial condition (3.6) which characterize T(x, y, 1) uniquely.

Geometrically (4.5) may be interpreted as a gauge transformation de-
fined by the matrix G(x, A)=(I+ W(x, y)) ~' (see (2.19)). This transformation
asymptotically reduces the transition matrix to diagonal form exp Z(x, y, 1).
Alternatively one can say that this gauge transformation asymptotically re-
duces the potential U(x, 1) of the differential equation (3.5) to diagonal
form.

Let us now come back to the problem (3.5)-(3.6) for T(x, y, 1) and deter-
mine W(x,A) and Z(x, y, 1).
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For that insert (4.5) into (3.5), cancel out the x-independent matrix
(I+W(y,A))~" and split the result into diagonal and off-diagonal parts. We

then obtain the equations

dW

— = 4.
I Wax Up+A U W (4.8)
Z
oz =UW+AU,, 4.9)
0x

1
where we have used the decomposition U(x,A)=Uy(x)+AU,, U, = 37 3.
i

By eliminating 6Z/6x from (4.8) we find for W a nonlinear equation of
Riccati type

aw
— Tk W WU W—Up=0, (4.10)

where we have used that U, anticommutes with W.
The differential equation (4.9) with the initial condition Z(x, y, 1)| .-, =0
implied by (3.6) can easily be solved,

Ax—y)

Z(x,y, ) =—

a3+j' Uo(z) W(z, N)dz, (4.11)

which gives the asymptotic expansion (4.7) in terms of the expansion (4.6)
for W(x, A).

Substituting (4.6) into the differential equation (4.10) gives the following
recursion relations for W, (x):

dw,(x)

Wn+](X)=iO'3( dx

+ Z Wi (x) Up(x) W, - k(x)) (4.12)

with the initial condition

0
=iy (W (x)o_ —F(x)0.). (4.13)

Wix) =—io; Uo(x)=i]/;? (W(()x) - l/_/(x))

The coefficients W, (x) are uniquely determined by (4.12), (4.13) and can
be expressed locally in terms of Uy(x) and its derivatives. By (4.12) and
(4.13) the asymptotic series W(x, 1) satisfies the involution relation
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Wx,A)=cW(x,A)o (4.14)
and is quasi-periodic
W(x+2L,A)=0""'(6) W(x,A)Q(6). 4.15)
So, W(x,A) can be represented in the form

Wx, A =iz wx,A)o_ —w(x,A)o,), (4.16)

where

wee, )= W;Ex) (4.17)

with the quasi-periodic w,(x),
wa(x+2L)=¢€"%w,(x). (4.18)

In terms of w,(x), the recursion relations and the initial condition be-
come

. dw, N
Wy I(x) =—1 (x) +x l//('x) Z Wi (x) w, —k(x) (4' 19)
dx k=1

and

wi(x)=y(x). (4.20)

Recalling the representation for Z we see that the diagonal matrix Uy W
involved in (4.11) has the form

. (wX)w(x, A) 0

Uox) W(x,A)=ix o= 421

o) W(x,A)=i ( 0 e, A) 4.21)

where the asymptotic series ¥ (x)w(x,A) and y(x)w(x, 1) are periodic in x.
This completes our discussion of the modified asymptotic expansion for the
transition matrix T(x, y, 4).

We now turn to the monodromy matrix. From (4.5) we have the repre-
sentation

T.A)=I+W(L,A)expZ. AT+ W(—L, 1), (4.22)

where
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Z.(A)= —ilLos+ T Us(x) W(x, 1) dx. (4.23)

Since Uy(x) W(x,A) is periodic, the integral in (4.23) is independent of
the choice of the fundamental domain.

Taking the product of the asymptotic expansions for 7+ W(x L, A) and
Z; (A1) we get from (4.22) an asymptotic representation for T, (1) which has
the same form as (3.24)-(3.25). Moreover, we also have a method for com-
puting the coefficients a,, a, and b,, b, occurring in (3.24)-(3.25).

In particular, for the coefficients I, in the expansion of p, (1) the proce-
dure simplifies considerably. Indeed, using quasi-periodicity and (4.22) we
find

T.A) Q@)=+ W(L,1))exp(Z. AN QO T+ W(L,A)~', (424

so that

F,(A)=tr T, () Q() =trexp [ZL(A) + % 03} . (4.25)

Since T,.(1) Q(6) is unimodular, we have
trZ,(A)=0(A~). (4.26)

From (4.11) and (4.21) we then conclude that
L
p)=x | yx)w(x,A)dx (4.27)
—-L

is an asymptotic series with real coefficients,
pLM)=pL(1). (4.28)
As a result, Z; (1) can be expressed as

Z,A)=ioz(p.()—AL), (4.29)

so that

F.(A)=2cos ((pL(/l) + g - AL) . (4.30)
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Thus it is natural to work with the function p,(1)=arccos3F, (1) used

in (4.2).
In this notation we have

@)= =AL+ 3 + o (D), @31)

where the function ¢, (1) defined by (4.27) has an asymptotic expansion

PoLA)=x i /{— + 001~ ). (4.32)
Here "
L.y, p)= If P,(x)dx, (4.33)
where -
P, (x)=y(x)w,(x) (4.34)

is a polynomial in w(x), w(x) and their derivatives at x. Since P,(x) is peri-
odic, this implies that I, is an admissible functional on .4 4, i.e. satisfies
(1.34).

The first four densities P,(x) have the form

d
P =P, P@=—ig() ZE ),

W( ) + 2l ()14,

P3(x)=—y(x)

w()

P4(x)=z( ®) —xlw(x)lZ(w(x)‘j, )+ a0 D ))) (4.35)

The functionals I, n=1, 2, ..., are the promised local motion integrals
for the NS model in the quasi-periodic case. As it follows from (4.35), the
first three of them, I,, I, and I, coincide with the functionals N, P and H
introduced in § 1. Later we shall see that all the I, are in involution with
respect to the Poisson bracket defined in § 1.

The results of this and earlier sections cover all the essential elementary
properties of the NS model and its monodromy matrix for the quasi-peri-
odic boundary conditions. A complete description of the corresponding dy-
namics requires a more sophisticated machinary which in beyond the scope
of this book. Considerable simplifications occur in the limit L— oo for the
boundary conditions of rapid decrease or finite density which will be exam-
ined in the following sections.
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§ 5. The Monodromy Matrix in the Rapidly Decreasing
Case

This section is of auxiliary character. Here we shall analyze the proper-
ties of the transition matrix T(x, y, 1) on the whole axis — o <X, y < oo un-
der the assumption that w(x), y(x) vanish as |x|— c. More precisely, these
functions will be supposed absolutely integrable on RR', i.e. w(x) lies in
L,(— »,). In terms of Uy(x) this amounts to

oo

[ NUs(x)lldx < oo (5.1)

— oo

In the following the space of 2 x 2 matrix functions satisfying (5.1) will be
denoted by L{?*?(— o, o). The off-diagonal matrix Uy(x) is a specific ele-
ment of LZ?*?(— oo, o).

Under this assumption we will show that the limits

Te(x,2)= lim T(x,y,A)E(y,4) (.2
y—*oo

exist for real A, where E(x, ) was defined in § 3. Next we will examine the
properties of T.(x,A) and, in particular, their asymptotic behaviour for
large x and A.

The proof will make use of the integral representations (3.32), (3.33). To
be more specific, let us consider the limit y— — c and write (3.32) in the
form

TG, v, A E(, A)=E(x, A+ | T'(x,y,2)E(z, A)dz. (5.3)

y—x

Let us show that I is absolutely integrable over the interval 2y —x<z<x
uniformly in y. To this end consider the function

X

O, y)= | I (x,p,2)ldz. (5.4)

2y—x

By integrating (3.34) over z in the interval indicated above and interchang-
ing the integrals we obtain the estimate

D(x,y)< I 1Uo(2)ll dz + JI‘ 1T (s)Il @(x, s)ds. (5.5)

By iterating this estimate we find
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D(x, y)<exp | 1Uo(2)ll dz—1. (5.6)

We will now show that the limit

I'_(x,z2)= lim I'(x,y,z) 5.7

y— —oco

exists, where the expression I"_(x, z) belongs to LY*?(— o, x) as a func-
tion of z for each fixed x and convergence is taken in the L, norm. For this it
is sufficient to show that the representation

x+z

) + } I(x,s,25—2) Us(s)ds, (-8)

x+z
2

1
I'_(x,z2)== U
5,2 = 3 0o
which results from (3.34) by formally taking the limit y— — oo, defines a
function in LY*?(— o0, x). The latter follows immediately from (5.6):

[ Ir_lldz< | Wo@ldz+ | 1Uo(s)ll- DG, 5)ds

— o0

X X

< | 1Us@)ldzexp [ IUs(2)lldz. (5.9

Now, using (5.7) we see that the limit (5.2), as y— — «, does exist and
there is an integral representation for T_(x, 1),

T_(A)=Ex )+ | T (x,2)E(z A)dz. (5.10)

The existence of the limit (5.2) as y— + o is established by a similar
argument using (3.33). Recalling that

T(x’y’ﬂ’)=T_](y9x’A)a (511)

we see that the limit exists and there is an integral representation
T7'0,A)=E(—x,A)+ | E(—z, )T, (x, z)dz. (5.12)

The kernel I, is given by
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. . 1
Fr(9)= lim (3, x,2) = 2 Uy ("”)

v oo 2
+ [ Ue(s)I(s,x,25—2)ds, (5.13)
and satisfies
[ I, (x, 2)lldz< [ 1 Up()Il dzexp | WUy(2)lldz. (5.19)

It is not difficult to obtain an integral representation for T, (x, 1) itself.
Observe that, along with T'(x, y,1) and E(x, A), the matrix T, (x, 1) is also
unimodular. Using the general formula

A~ '=0,470,, (5.15)

which is valid for any 2 x 2 unimodular matrix and relates the inverse, 4 ',
with the transposed matrix 4%, we find the integral representation for
T+ (x’ A’))

T, A)=E(e A)+ | Ty (x, 2) E(z, A)dz, (5.16)

where

T (x,2)=0,1"%(x,2)0,. (5.17)
The involution property (3.39) extends naturally to I, (x, z),
T:(x,2)=0l.(x,2)0, (5.18)
and also to T (x,A),
T.(x,A\)=0T.(x,)o. (5.19)

In particular, for I". we have the representation

a. &f. .
r,=(r- -, = . 2
+ (/31 di> g=signx (5.20)

Just as T'(x, y, z), the matrix functions T (x,A) satisfy the differential
equation
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dF
== F. .
= U (5.21)

The initial conditions are now replaced by the asymptotic conditions
T (x,A)=E(@x,A)+o0(1) if x>*xoo, (5.22)

which follow immediately from (5.10), (5.16) and the estimates (5.9),
(5.14).

Here it would be appropriate to comment on the relationship with scat-
tering theory. Since (5.21) contains the spectral parameter A linearly, mul-
tiplying by ios on the left reduces it to the usual form of the eigenvalue
problem

SLF = % F (5.23)
for the first order matrix differential operator
. d . .
F=io; o +ix(wx)o_ —y(x)o.). (5.24)

If x>0, %7 is a formally self-adjoint operator. The corresponding spectral
problem with the coefficients y(x), ¥ (x) stabilizing as |x|— o is the main
object of scattering theory. In particular, a significant role in the theory is
played by the solutions T. (x, 1) which are called the Jost solutions.

Let us now examine the analytic properties of the matrix elements of
T. (x,A) considered as functions of A for a fixed x. Recall that T(x, y, ) is
an entire function of . However, T (x, 1) are not such in general, because
their definition involves a passage to the limit. Nevertheless, the integral
representations (5.10) and (5.16) combined with the absolute integrability of
I'.(x,z) in z imply that the first column of T_(x, A) and the second column
of T, (x,A) may be analytically extended into the upper half-plane, while
the first column of T, (x, A) and the second column of 7_(x, A) may be ana-
lytically extended into the lower half-plane. Indeed, for the corresponding A

) iAx] . . . .
the exponentials, exp iT , involved in the integral representations

(5.10) and (5.16) decay as the integration variable z goes to + co or — oo,
respectively.
We shall denote the above columns by T¢-?(x, A), so that

T+ (6, A)=(TL(x, 1), TP (x,1). (5:25)
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The integral representations combined with the Riemann-Lebesgue lemma
give, at a fixed x, the following asymptotic behaviour:

e7 TO(x, )= ((1)) +o(1), (5.26)
e‘%i TP (x, )= ((1)) +0(1) (5.27)
for ImA =0, |A|—> o, and
e%)i TOM, )= ((1)) +o0(1), (5.28)
e_me TOx,A)= ((1)) +0o(1) (5.29)

for ImA<0, |1 oo.
The involution property extends to complex values of A and takes the
form

TP, )=6TPx,1), (5-30)
where ImA >0 and

TOx, ))=6TP(x, 1), (531
where ImA <0 and 6=0,; when x>0, 6=ic, when ¥ <0.

In the case when w(x), ¥(x) vanish outside the interval —g<x<g,
T.(x,A)E(—x,A) are entire functions of exponential type q. In fact, from
(5.8) and (5.13) it is easily seen that the associated kernels I, (x,z) and
I'_(x, z) vanish for z>2qg—x or z< —2q—x, respectively.

Later we shall need the following relationship between I'. (x, z) re-
stricted to the diagonal z=x and Uy(x),

lo3, I'_ (x, x)] =03 Uo (x) (5.32)

and

[03, I, (x, x)]|= — 03 Up(x). (5.33)

In order to prove (5.32) it is sufficient to observe that the integral equa-
tion (3.34) implies
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L'x,y,2y—x)=3Us(»), (5.34)
so that by (5.8) we have
I'_(x,x)= % (Uo(x)+ )IC U%(s)ds) . (5.35)

Since the diagonal matrix Uj(s) commutes with o3, this implies (5.32). The
proof of (5.33) is quite similar.

To conclude our discussion of the Jost solutions we note that a more
traditional method for studying them in scattering theory is based on the
integral equations

T_(x,A)=E(x,1) + )jc E(x—z,A)Up(2) T_(z,A)dz (5.36)
and

T, )=E(x ) — | Ex—5) U@ To@Adz,  (537)

which result from (3.26) and (3.27) in the limit y— * o for real .. We prefer
the method used here because the dependence on A in the integral represen-
tations (5.10) and (5.16) is located entirely in the elementary functions

ex +zl_x
P——2-

Now we shall introduce an analogue of T, (1), the reduced monodromy
matrix T(A). For real A it is defined by

T)= lim E(—x,A)T(x,y,A)E(y,A). (5.38)

To prove that the limit in (5.38) exists we observe that the transition
matrix can be expressed as

T, p, =T+ (6, )T B, A=T_(x, )T ='(3, ), (5.39)

because the right hand sides in (5.39) satisfy the differential equation (3.5)

with the initial condition (3.6). From (5.39) it is clear that T3 '(x, A) T_(x, A)

does not depend on x. We will show that it coincides with the limit (5.38).
Indeed, let us set

TW)=T5'(, A)T_(x, 1), (5.40)



§ 5. The Monodromy Matrix in the Rapidly Decreasing Case 45

then
T_(x,A)=T,(x,A)TA). (5.41)

By inserting (5.41) into (5.39) we find
T(x,p,A) =T+, YTA) T =" (y,4). (5-42)

By virtue of the boundary conditions (5.22) we then conclude that the limit
in (5.38) exists and coincides with (5.40).

Putting x=L and y= —L in (5.38) we obtain, as a special case of this
formula,

T()= lim E(=L,A)T(L, —L A)E(~L,A). (5.43)

The factor T(L, — L, ) on the right can be interpreted as the monodromy
matrix, Ty (A1), of the periodic problem with y (x), y(x) extended periodically
outside the interval (— L, L) (possibly with dicontinuities). In this sense 7'(1)
can be regarded as the infinite period limit, as L— o, of the periodic
monodromy matrix T, (1) with the trivial oscillating factors reduced out.

The reduced monodromy matrix T(4) possesses the same involution
property as T;. (1),

TA)=cTR)o, (5.44)
so that it can be written in the form

a(l) eb()

)= (W) i)

), e=signx. (5.45)

We retain for a(1) and b(1) the name of transition coefficients. They satisfy
the normalization relation

laA)I>—elb(A)*=1. (5.46)

In terms of transition coefficients the limiting relation (5.43) can be writ-
ten as

a(ﬂ)=Llin:° e*ta (A, b(}“)=,£n:° b.(A). (5.47)

Some deeper properties of these coefficients will be examined in the
next section.
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§ 6. Analytic Properties of Transition Coefficients

We shall use several different representations for the transition coeffi-
cients. First, recalling that T, (x,1) is unimodular we get from (5.40) the
following expressions for a(d) and b(1):

a()=det(TO(x, 1), TP(x, 1)), (6.1)
b)) =det(TP(x, 1), TV(x, 1)), (6.2)

where the column notation is as introduced before. The analytic properties
of the columns TV (x,1), T'P(x,1) and the asymptotic formulae (5.26),
(5.27) imply that a(1) has an analytic continuation into the upper half-plane
ImA >0 with the asymptotic behaviour

a(l)=1+o0(1), (6.3)

as jA|— oo.
The coefficient a(l) has an analytic continuation into the lower half-
plane, which is denoted by a*(1). We have

a*(A)=d(t), ImA<0. (6.4)

The analytic properties of T (x, A) together with (6.2) show that in general
b(4) has no analytic continuation off the real line. However, if w(x), v (x)
have compact support, then a(1d) and b(1) are entire functions.

Next we consider integral representations for a(1) and b(1) which result
from the representations (3.46), (3.47) for a, (1) and b, (1) by a passage to the
limit.

We begin with a(1) and restate (3.46) as

2L
e*a,(V)=1+ | aj(x)e**dx, (6.5)
0
where
a;(X)=a,(L—x)=2a(L, — L, L—2x). (6.6)

The integral equation (3.34) yields
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L—x _
a(L, —L,L-2x)=¢yx | B(L,s,2s+2x—L)w(s)ds
—L
L—-x _
=gyx | B(L,s,s+2x)y(s)ds, 6.7
—L

where the last equality follows from (3.42). We recall the definition of the
kernel I, (x, z) (5.17) and the inequality (5.14) to conclude from (6.7) that
the limit

a(x)=lim a;(x)=—2¢yx | Bi(s,s+2x)y(s)ds (6.8)
L— — o
exists for x>0 and
[ lax)ldx< . 6.9)
0
Thus we obtain an integral representation for a(l),

a(/1)=1+°]° a(x)e*~dx, (6.10)

where a(x) is in L,(0, ).
Now consider the integral representation (3.47) for b, (1),

b(\)= If BL(x)e**dx, (6.11)
where
Br(x)=2B(L, —L,2x—L). (6.12)

We will show that 8, (x) has a limit as L— co. From (3.34) and (3.41) it fol-
lows that

p(L, — L, 2x—L)=gl//(x)+1/7? )f a(L,s,2s=2x+ L)y(s)ds

X

N

wx)+x )j a(L,s,2x—s)y(s)ds. (6.13)

Combined with (5.14) this implies that the limit
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P)= lim =Yy +207 | a6 2x-9p@ds (614

exists and

co

[ 1Bx)ldx<eo. (6.15)

e

Finally, we obtain the desired representation for b(4),
b(h)= | B(x)e*~dx, (6.16)

where f(x) is in L,(— oo, o).
The set of all functions of the form

FA)= T f(x)e**dx, 6.17)

where f(x) is in L,;(— o, o), constitutes a complete normed ring R, well
known in the mathematical literature. So, under our assumptions on y(x),
w(x) the coefficient b(1) belongs to Re. The function a(1) in turn belongs to
the ring &, composed of functions of the form

FoM)=c+ [ fr(x)e* dx, (6.18)

where £, (x) lies in L,(0, o). Functions belonging to &, extend analytically
into the upper half-plane and tend to a constant as |1|— co.

The aforementioned analytic properties of a(1) and b(1) can be deduced
directly from their integral representations which also give a complete char-
acterization of the transition coefficients in terms of their Fourier trans-
forms.

The smoothness properties of a(x) and B(x) are the same as those of y(x)
and y(x). If the latter are in Schwartz space, so is f(x) and hence b(1),
whereas a(x) is infinitely differentiable and of Schwartz type at + .

Let us now investigate the zeros of a(l) in the upper half-plane
ImA=>0.

First we will show that a()) has no zeros if x> 0. In fact, there are no zeros
on the real line by virtue of the normalization relation. Suppose that
a(lo)=0 with ImA,>0. It follows from (6.1) that the column vectors
TD(x, Ao) and TP (x, Ao) are linearly dependent. Since Im 4> 0, the integral
representations (5.10), (5.16) imply that T"(x, A¢) and T*P(x, Ao) decay ex-
ponentially as x— — o or x— + oo, respectively. Thus, for =4, equation
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(5.21) has a column vector solution decaying exponentially as |x|— co. How-
ever, (5.21) is equivalent to the spectral problem (5.23) for a formally self-
adjoint operator . (5.24) which would then have a non-real eigenvalue A,.
This contradiction shows that a(4) has no complex zeros.

If <0, & is not self-adjoint, and a () may have zeros. The properties of
a(A) discussed impose only mild restrictions on them. Analyticity and the
asymptotic behaviour (6.3) imply that the zeros are located in a bounded
region of the half-plane ImA >0 and may only accumulate towards the real
line.

To simplify our analysis we shall assume the following condition (A):

1) no zeros occur on the real axis;

2) all the zeros are simple.

In particular, it follows that the total number of zeros is finite and there
is a strict inequality for b(A),

bA)I<1. (6.19)

It is hard to formulate the corresponding sufficient conditions in terms
of w(x), w(x). Here one is faced with difficult problems of spectral analysis
of non-self-adjoint differential operators. This is, however, of little impor-
tance for our investigation of the NS dynamical system. Actually, the set of
functions y(x), w(x) satisfying condition (4) is, in a natural sense, open and
dense in the phase space _#. Later in Chapter III we shall give an alterna-
tive description of _#; which will clarify this statement.

Let Ay, ..., 4, be the complete list of zeros of a(1), ImA;>0, j=1,...,n.
As noted above, for A=4; the column T (x, 1) is proportional to TP (x, ).
Let y; be the proportionality coefficient,

TOx,A)=y;TPx,4), Jj=1,...,n, (6.20)

y;#0. The set of complex numbers ¥; is one of the characteristics of the
auxiliary linear problem and will play an important role in what follows.

It is clear from (6.4) that A,,...,A, are the zeros of a*(1) in the lower
half-plane. Using the involution property we find that

TPx,A)=—-7%TPx L), j=1,...,n. (6.21)

If w(x), w(x) have compact support, relation (5.41) characterizing the
reduced monodromy matrix makes sense for all complex A, so that sub-
stituting A=4; or A=4; into (5.41) gives y;=b(4)), ¥;,=b(X), j=1,...,n.
We emphasize that this holds only for compactly supported y(x), y(x).

The set A;, A, j=1, ..., n, is the discrete part of the spectrum of (5.23) for
%<0. Furthermore, for any x», .% has continuous spectrum of multiplicity
two on the whole real line, according to the existence for real A of two line-
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arly independent solutions to (5.23) which are bounded in x. These are, for
instance, the columns of T_(x, A1) or of T, (x, A). With this in mind we shall
call a(l) and b(A) transition coefficients for the continuous spectrum, and y;,
visj=1, ..., n, will be called transition coefficients for the discrete spectrum.

To conclude this section we will show that the analyticity of a(1) and the
normalization relation can be used to express a(d) through its zeros (if there
are any) and b(1). Namely, for ImA>0

1% log(1+1b(w)?
a(/l)=exp[2—m_ | —O—giﬂi'—/l(ﬁ)'—) y} (6.22)
if x>0, and "
1% log(1—1b(w)? A=A,
a(/1)=eXp{2—m, | M }H = (6.23)

if #<0. These formulae can be extended up to the real line according to the
Sochocki-Plemelj formula

1 1

1
— =p.V. 6.24
u—i u—A-i0 p-v u—A 6:24)
where p.v. indicates principal value.
To prove (6.23) consider the function
(6.25)

which differs from a(A) by a product of elementary Blaschke factors and is
analytic in the upper haif-plane. The function @(1) has no zeros for ImA>0
and, as before, satisfies the asymptotic condition (6.3). On the real line we
have

laA)*=la@A)>=1—1bA)I*. (6.26)
The function n7(1)=1logd(A) is also analytic for ImA>0, is continuous

down to the real line by virtue of the condition (4), and vanishes as [A|— co.
Therefore, for real 4 its imaginary and real parts are related by

1 T Re
Imn@)=——p.v. | . Z(/{‘) du, (6.27)
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which follows immediately from Cauchy’s theorem. In the physical litera-
ture (6.27) is referred to as a dispersion relation. Using (6.24) it can be writ-
ten as

) = — | Ren) 4, 1maso. (6.28)
mi ¢4 u—A

The representation (6.23) now follows from (6.28) and the obvious rela-
tion

Ren(A)=logla(A)l =1log(1—IbA)?). (6.29)

The proof of (6.22) is similar. This concludes our discussion of the ana-
lytic properties of transition coefficients.
To sum up, in §§ 5-7 we have defined the mapping

W), Fx) = BA), bA); Ay A4, 75, 7) (6.30)

and described its image for various functional classes of y(x), y(x). Thus, if
v (x), ¥(x) are in L,(— oo, o) then the corresponding b(4), b(A) are in Ry; if
w(x), w(x) are of Schwartz type, then b(1), b(1) are also of Schwartz type.

This mapping will be essential in describing the dynamics of our model.
So, in the following section we shall see that the equations of motion be-
come trivial in the new variables, and in the following chapter we shall
study the inverse mapping to (6.30).

§ 7. The Dynamics of Transition Coefficients

In § 3 the transition matrix, T'(x, y, A), was shown to satisfy the evolution
equation

T
S @R A=V @D TE 7,2 =T 1DV, 2), (7.1)

if w(x), w(x) satisfy the NS equation. For w(x), y(x) rapidly decreasing one
can take the limit of (7.1) as y—» — o0, x— + o to obtain simple evolution
equations for the transition coefficients.

For this purpose notice that

212

Vi, A)—> V) = % o3, (7.2)
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as |x|l—> o0, so that V(1) commutes with E(x,1). Now multiply (7.1) by
E(y,A) from the right and take the limit as y— %+ o for real 1. Recalling the
definition of the Jost solutions, T. (x, 1), given by (5.2) we find

aT* 5, A)=V(x, A) Tx(x,A) — "12 — T+ (x,A)0;. (7.3)

Performing the same operation with respect to x we obtain the equation for
the reduced monodromy matrix,

:12

s T(/l 1) = i4 - [05, TG, 1. (7.4)

This equation is remarkable in that the dependence on w(x), w(x) is
completely eliminated. In terms of transition coefficients for the continuous
spectrum (7.4) can be written as

8 8 o
- 0=0, = b(, 0= —iA’b@41). (1.5)

In particular, we deduce that a(1) is time-independent for real A,
all,)=a(, 0). (7.6)

By virtue of analyticity, the same holds for ImA >0, so that the zeros, 4;, of
a(1) are time-independent as well. Thus in the rapidly decreasing case the
generating function for the conservation laws is just a(1).

Let us now determine the evolution of transition coefficients for the dis-
crete spectrum. By (7.3) we have for the column-vectors T®(x,1) and
T (x, 1)

”q) = )=V )TV, ) - i TO(x, 4) 7.7)

and

aT(Z)( A=V DT, A) + - A’ TO(x, A). (1.8)

These equations also hold for ImA > 0. They are compatible with (6.20) for
/‘L =A’j,

TOMXA)=y,TPx, 1), (7.9)
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only if

d . .
:J;}/j(t)=—lﬂjzyj(t), j=1,...,n. (7.10)

Equations (7.5) and (7.10) can easily be solved so that the time depend-
ence of transition coefficients is given by the remarkably simple formulae

bA, )=e~"**'b(A, 0),

2 (7.11)
yi)=e= My (0), j=1,...,n.

This is the simplification of the dynamics due to the mapping (6.30)
promised at the end of the preceding section. In the new variables the equa-
tions of motion can be solved explicitly. Up to the assumption that (6.30)
has an inverse we can affirm that (7.11) provides a complete solution of the
initial-value problem (1.1)-(1.2) in the rapidly decreasing case.

Let us now discuss the local integrals of the motion. We assume that
w(x), w(x) are of Schwartz type. In order to exploit the results obtained
earlier, suppose that w(x), y(x) are the limits, as L— o, of the 2 L-periodic
functions w; (x), ¥, (x). In this case the densities, P,(x), of the local integrals
of the motion defined by (4.19)-(4.20) and (4.34) have limits, as L— oo,
which are also of Schwartz type. Therefore we can take the limit, as L— oo,
in (4.33) to obtain

L= ] P.(x)dx. (71.12)

Here P,(x) is constructed from w(x), w(x) according to (4.19)-(4.20) and
(4.34).

Let us now consider the limit, as L— o, in the generating function
pL(j’)a

pL(A)=arccositr T, (A). (7.13)

Notice that, in contrast to (4.1)-(4.2), we have set #=0. The definition of the
reduced monodromy matrix T(1) and (5.47) imply that for real A

trT,(A)=e~*Lad)+e*a(l)+o(1)
=2la(A)lcos(arga(l)—A L)+0o(1), (7.14)

as L— oo,
Since b(1) is of Schwartz type, the normalization relation yields

la(h)l=1+O0(IA1—=). (7.15)
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Hence, up to terms of order O(|Al~*),

pLA)=—AL+arga(d)+o(1)

=—-AL+ % loga(A)+o(1), (7.16)

as L— o, where we have used
loga(A)=iarga(l)+ O~ =), (7.17)

which is a consequence of (7.15).
Thus, the generating function for the conservation laws in the limit
L— oo coincides with loga(1),

lim (pL(A)+AL)= —:— loga(d), (7.18)

L oo

up to terms of order O(IA|~ ). By comparing this with (4.4) we deduce that
loga(A) is the generating function for local integrals of the motion,

loga(A)=ix ) i— +O(IA==). (7.19)
n=1

The uniform behaviour with respect to L, as L— oo, of the asymptotic
expansion (4.4) for p, (1) +4 L is an obvious consequence of the existence of
the limit in the integral representation (3.44) for E(—L,A) T, (A) E(—L, 4),
as L— oo, proved in § 6.

The coefficients in (7.19) can be determined from (6.22)-(6.23). The den-
sities log(1 +£ b)) in the integrals (6.22) and (6.23) are of Schwartz type;

expanding n in a geometric progression leads to the asymptotic expan-
sion -
< C
1 A)=ix =4+ 0(A™=), 7.20
oga)=iz )y 7+ O(AI™) (7.20)
where

T log(1+£lb@)P)A*~"dA

Cp = —
2nn o

1 n _
— Ak —AF k=1,2,... 7.
+l%k jgl(j j):v 9“9 ( 21)
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Here ¢=signx; if =1, the sum over the zeros on the right hand side of
(7.21) disappears.

Comparing the asymptotic expansion (7.19) with (7.20) gives the identi-
ties

c=I,= | P.(x)dx (1.22)

relating certain functionals of y(x), w(x) with functionals of b(1), b(L) and
A;, 4;. In spectral theory such formulae are called frace identities.

What is essential for our purposes is that we have managed to represent
the integrals of the motion, I,, as functionals of the new variables
(bA), b(A), A1, 4, v, 755 j=1, ..., n) introduced in (6.30). Noteworthy, only
half of these variables enter into I,, namely, 1b(A)I* and A, ;. An interpreta-
tion of this phenomenon in terms of Hamiltonian mechanics will be given in
Chapter III.

§ 8. The Case of Finite Density. Jost Solutions

The finite density boundary conditions have meaningful applications
only when x> 0, hence we shall confine ourselves to this case. We shall as-
sume that w(x), y(x) take their boundary values

lim y(x)=pe’=, ¢,—@_=0 (8.1)

X—* oo

in the sense of Schwartz. With no loss of generality we can fix ¢_ =0, so
that ¢, =6.
In terms of U(x, 1) these boundary conditions take the form

. —if
P I
and
lim U, A) =~ ("”1L ,‘”)= U_@), (8.3)
X — oo 2 il
where
w=2yxo. (8.4

The matrices U. (1) are related by

U.Q)=0"'(O)U_-NQ®). (8.5)
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In this section we shall introduce appropriate solutions of the linear
problem

dF
4 = U F (8.6)

with the boundary conditions (8.2)-(8.3) and analyze their properties fol-
lowing the pattern of the rapidly decreasing case and leaving out unessential
details.

The role of E(x, A) will now be played by the solution matrix E,(x, 1) of
the equation

dE,
FxB x,A)=U_N)E;(x, 1), 8.7

which results from (8.6) in the limit x— — . The continuous spectrum asso-
ciated with (8.7) consists of real A satisfying

A2z, (8-8)

Let R, denote the set of these A.For A in R, we choose E,(x,4) in the
form

| ik=2)

E,(x,A) = k) e . 8.9)

(4]

where
k(A)= ]Mz—a)z ) (8.10)

the branch of the square root being fixed by
signk(1)=signAi. (8.11)

The choice of E,(x,A) is uniquely determined by the requirements of
analytic continuation, namely, that for Imk >0 the first column of E,(x, 1)
vanishes as x— — o and the second one vanishes as x— + co.

The corresponding solution to the equation resulting from (8.6) in the
limit x— + o0 is Q7 '(0) E, (x, A).

Let us now discuss the analytic properties of E,(x,1) in more detail.
Notice that E,(x, A), unlike E(x, ), is not unimodular,

detE,(x,A) = ﬂ‘% (8.12)



§ 8. The Case of Finite Density. Jost Solutions 57

and thus degenerates at 1= t . As 90—0, E,(x, 1) goes into E(x, 1).

The main difference between (8.6) and the same problem in the rapidly
decreasing case is the presence of the gap —w <A <@ in the continuous
spectrum. The degeneracy points of E,(x, 1) are the boundary points of the
continuous spectrum. A natural domain for studying the analytic properties
of E,(x,A) is provided by the Riemann surface /~ of the function k(1). The
surface /™ is pieced together of two copies, /. and /_, of the complex plane
C' slit along the intervals (— o, —®] and [, ) of the real line (see Fig. 2),
the edges of the cuts being suitably identified.

A
_— —
R—— —
-0 @
Fig. 2

A point on /” different from the branch points, +, will be represented
by a pair (4, &) where 1 is a complex number and £= + 1, so thate=1on /",
and €= —1 on /_. The function k(1) is defined on / by (8.10) where
+Imk(A)>0 on /.. Alternatively, the sheet /", is specified by the condition
that k(A +i0)>0 for ImA=0 and A>®; then k(A +i0)<0 for ImA=0 and
A< —. Thus, convention (8.11) is fulfilled for the limiting values of k(1) on
the upper banks of the cuts on /7, and on the lower banks of the cuts
on/_.

In what follows we shall often suppress the dependence of k(1) on A. So,
if both k and 4 occur in a formula, then k is always considered as a function
of A.

For A outside the cuts, E,(x, 1) is not bounded in x. However, its first
column on /7, and its second column on /_ decay exponentially as
x— — oo its second column on /~, and its first column on /_ decay ex-
ponentially as x— + «. In the opposite directions the columns grow ex-
ponentially.

For A in R,, we introduce the matrix Jost solutions of (8.6) through their
integral representations

oo

T, =07 'OV E;(x, 1)+ | I'+(x,) Q7' (0)- Eo(y, A)dy (8.13)

X

and
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T_(x,)=E;(x,A)+ | I'_(x,y)Eo(y,A)dy. (8.14)

The derivation will use a method alternative to that of § 3. Substitute (8.13)
and (8.14) into (8.6) and put the terms containing the common factor
E,(x,A) together. It results that the kernels I, (x, y) satisfy the differential
equations

0 0
o2, 0)+05 —I's(x,y) 05— Uo(¥) '+ (x, y)
ox oy

+o30.(x,y)o3 UL =0, (8.15)
where
. il
U,= lim Uo(x)=Ui(1)+703, (8.16)
Xx— £ oo

with the boundary conditions

(e, x)—o3:(x,x)o3=F(Up(x)—U.), lim I.(x,y)=0. 8.17)
y— oo

These differential equations defining two Goursat problems may be re-
duced to systems of integral equations. For instance, the system for I"_ (x, y)
is

', y)= [ (Uo(s) (s, s+y—x)+ (s, s+y—x)U_)ds, (8.18)

red(x,y) = % (Uo (x;’y) - U_>

+ | (Ue)T'D(s,x+y—s5)—T'D(s,x+y—s)U_)ds, (8.19)
x+y
2

where x>y and I'Y and I"°? indicate the diagonal and off-diagonal parts
of I'_, respectively.

These are Volterra integral equations, and their iterations are absolutely
convergent. Under our assumptions on y(x), y(x) their solution I"_(x, y) is
infinitely differentiable with respect to x and y and of Schwartz type in y as
y— — oo, The kernel I, (x, y) is analyzed in a similar way and proves to be
of Schwartz type in y as y— + co.

Thus we have established the representations (8.13) and (8.14) defining
the Jost solutions. Let us now discuss their properties.
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1. From (8.13) and (8.14) it follows that the Jost solutions have the fol-
lowing asymptotic behaviour as |x|— *+ oo

T,(x,A)=0 " (O)E,(x,\))+0(1) as x—+ oo (8.20)
and

T_(x,A)=E,(x,4)+0(1) as X—» —oo. (8.21)

2. For A in R, the matrices T (x, ) result from T(x, y,A) in the limit
y— + o0

T,(x,A)= lim T(x,y,A)Q "(6)E,(y, 1) (8.22)
and
T_(x,A)= lim T(x,y,A)E,(y,1). (8.23)

To prove this it is sufficient to write T(x, y, 1) as
Ty, A) =T+, )T Z'(y,4) (8.24)
and then use the asymptotics (8.20) and (8.21).

3. The determinant of the Jost solutions coincides with that of
E,(x,7),

2k(A—k
detT. (x,A)=detE,(x,A) = % , (8.25)
so that T (x, 1) are degenerate at A = + .
4. For A in R, the involution property holds
T, (x,A)=0,T.(x,A)0, (8.26)

which coincides with (5.19) when x> 0; a similar relation holds for E,(x, 1).
The kernels I (x, y) also possess this property and hence may be written in
the form

r,— (“* B ) . (8.27)

B ax

5. The integral representations (8.13), (8.14) and the analytic properties
of E,(x, 1) imply the following analytic properties of the Jost solutions. The
first column, TV(x, 1), of T_(x,1) and the second column, T@(x, 1), of
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T, (x,A) extend analytically to the sheet /7, of the Riemann surface [,
whereas the columns T (x,A) and T'®(x,1) extend analytically to the

sheet /_. For x fixed, one has, asymptotically as L— oo,

) 1
fkx [1+A—k|
2 TOM, 1) = +0|———|,
¢ D=1k ( 1Al )
0]
itk=4) -2
ikx —
ez TO(x, )= o 0 +0(M>,
o [Al
for A on the sheet /., and
_i8
ik e’ 11+A—Kl
w0 h) G-k % 1Al
W
i(k—2)
ikx —
e 2 TOm )= ¢ +0<%Ik'),
1
for A on the sheet /_.
Notice that for A in /.
k—l+0(—l—)
[A]
as |Al—» o, ImA >0, and
k= Ho(i)
(Al

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

as |Al—» o, ImA <0. So, to estimate the remainders in (8.28)-(8.31) it should
be remembered that 1+A—k=0(1) in the first case, but 1+A—k=0(1) in

the second case. On /_ these cases are interchanged.
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6. The involution property (8.26) extends to the analytically continued

columns of T (x, A). To show this let P be an involution on /" sending A >,
k—k. A more formal definition is

P, e)=(, —¢), (8.34)
so that P permutes /~, and /_. We have

E,(x,1)=0,E,(x, P()) o1, (8.35)
which gives

o1 TP(x, ) =T, PQ)), (8.36)

where A is in /_ for the plus sign and in /~, for the minus sign.
There is another involution on /~ sending A—/A, k— —k. A more formal
definition is

J@, &)=, ¢), (8.37)

so that J leaves /. invariant. For any A in /~ we have

Eg(x, A)y=-

8 oy, s 0, (8.38)

which also extends to the corresponding columns of the Jost solutions. We
have

700 I =K 6, TP, ) (8.39)
and
TO(x, JA) = — ’EL o1 TD(x, ), (8.40)

where 4 belongs to the corresponding /.. In particular, we deduce a rela-
tionship between the values of the columns of T.(x,A) on the upper and
lower banks of the cuts on the corresponding sheets of analyticity:

TWO(x,A—i0) = ’%a TO(x,A+i0) (8.41)

and
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. k
T(i)(x, A, - IO) = - %_ O-] T(i)(xs ;l' +10) ] (8'42)

where A is real, |1 > o.

This completes our list of the properties of T (x, A).

As in the rapidly decreasing case, there exists a reduced monodromy
matrix, T,(A), relating T, (x,A) to T_(x,A):

T_(x,A)=T,x )T, A). (8.43)

The matrix T,(A) is well defined and unimodular for 4 in R,, A# *®. For
such A it can also be obtained as the limit

T,A)= Llim E;Y(L,AQO)T(L, —L,A)E,(—L,A). 8.44)

Once again, for A in R,, the involution property yields
T,()=01T,(A) o (8.45)
which allows us to represent T, (A) in the already familiar form

a,() bLM))_

L= (bgm) Go(h)

(8.46)

As before, the coefficients a,(1) and b,(4) will be called transition coeffi-
cients. Since T,(1) is unimodular, we have the normalization relation

lagA)I? = b () =1. (8.47)

Further properties of a,(4) and b, (1) will be discussed in the following sec-
tion.

§ 9. The Case of Finite Density. Transition Coefficients

We shall begin by enumerating the properties of transition coefficients
following the pattern of the rapidly decreasing case. From (8.43) and (8.25)
one immediately obtains the representations

2

o
a,(1) = 25—k

det(TW(x, A), TP (x, 1)) ©.1)

and
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2

w
bo(?) = 2k(A—k)

det(TP(x, 1), TV(x, 1)), 9.2)

which generalize those given by (6.1) and (6.2).

It follows from (9.1) that a, (1) may be analytically extended to the sheet
I, except the branch points A= +®. From (8.28) and (8.29) we see that
a,(A) has the asymptotic behaviour

0 A .0 1
ag(ﬂ,)=cosi +i % sm—2— +0 (M_I) , 9.3)

as |Al—oo. In other words,

8 1
2
= — 4
a,(A)=e +O(IM) 94)
when ImA >0 and
-8 1
ao (ﬂ) =e +0 (m) (95)

when ImA <0.
In a similar way, 4,(1) extends analytically to the sheet /_ except
A= to. Let a}(1) denote this analytic continuation. Then (8.36) yields

a3 () =do(P(). 9.6)

The representation (9.2) shows that in general b,(4) need not extend off
IR,. Such an extension, of course, exists if y(x), y(x) differ from their
asymptotic values only in a finite interval. It follows from (8.28) and (8.30)
that for 1 in R,,,

1
b,(1)=0 (W) , 9.7

as |[Al— oo,

Let us now discuss the possible behaviour of a,(1) and b,(A) in the
vicinity of A= +@. From (9.1) it follows that if the columns 7" (x, 1) and
TP(x, A) are linearly independent at A=w or A= —w (i.e. at k=0), then
a,(A) has a singularity of the form

ag(/l)|h,w=“7*+ o), 9.8)
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with the non-zero a .. This is what happens generically. In a special situation
when T®(x,A) and T@(x,A) become linearly dependent at A=w or
A= —uw, either a, or a_ or both of them vanish, so that a,(1) is non-singu-
lar near the corresponding branch point. In scattering theory one usually
says in this case that l=w or A= —o or both are virtual levels.

The coefficient b,(A) is either singular or regular in the vicinity of
A= *o simultaneously with a,(1). In fact, the matrices T, (x,1) become
degenerate at A=+, so that the columns T (x, +w) become propor-
tional to TP (x, + ). The asymptotic expressions (8.20) and (8.21) and the
definition (8.9) of E,(x, ) imply that

TOx, to)=+iTP®x, to). (9.9)

Comparing (9.1), (9.2) and (9.9) shows that if a, or a_ does not vanish
then

bo)|3= 20 = F 2+ O(1). (9.10)

In particular, under this hypothesis one has

a,() _

+1i. .
Pl 7 ©-11)

It should be emphasized that it is the gap in the continuous spectrum for
the finite density boundary conditions which makes the analytic properties
of the transition coefficients more complicated than in the rapidly decreas-
ing case.

The involution J on / relates the values of a,(1) in the half-planes
+ImA >0 of the sheet /. Specifically, (8.39) and (8.40) yield

a,()=d, (). ©.12)

Besides, the involution allows us to relate the values of a,(1) and b,(A) on
the upper and lower banks of the cuts on /[,

a,(A+i0)=a,(A—i0), b,(A+i0)=—b,(1—i0), (9.13)

A being real, |A|>@. The latter formula follows from (8.41). By taking the
limit in (9.13) we find that a. are pure imaginary.
As in the rapidly decreasing case, there are integral representations

9 1.6 3 .
ag(/l)=cosa+t-k—sma+ ‘([ a(x) e > dx

oo . o

+i% ! az(x)e”"‘dx+é ! a3 (x) e~ dx (9.14)
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and

b,(A)=i I ﬂ](x)e”‘"‘dx+% I Ba(x) e~ dx
= | Bxe~dx. 9.15)

The derivation proceeds by taking the limit x— 4+ oo in (8.43) and using
(8.14) and (8.18), (8.19) (cf. § 6). The functions a;(x), B;(x), j=1, 2, 3, are real
by virtue of (9.13), and of Schwartz type near + o or on the whole axis,
respectively. Therefore, b,(1) is of Schwartz type as |A|— oo,

It follows from (9.14) that a,(1) has an asymptotic expansion in inverse
powers of A or k as |A|— 0. To write it down we shall use the following
asymptotic expansions on /" :

1 S (o) (=3 e
3 2 G (V) row o0

or

A ik(l +“’_)2 -z 2 (i) +OxKI—>), (9.17)

3\ . .. . .
where the common +sign is that of ImA, and ( 2 ) indicates the binomial
n

coefficient. Integration by parts in (9.14) then gives the desired expansions
for a,(4). For instance, one has

i8 haid
a,()=e + D' 4 O(lki~=), (9.18)

x|

when ImA >0, and
a,(A)=e Z = T Ok, (9.19)

when ImA <0. The expansions agree with the involution (9.12).

As in the rapidly decreasing case, the zeros of a,(4) for A outside of R,
correspond to the discrete spectrum of the auxiliary linear problem (8.6)
which is equivalent to the spectral problem
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A
FLF= 5 F, (9.20)

where

3=i03%+i|/77(l//0‘_—([/0’+). 9.21)

Indeed, if a,(A) vanishes at A=1;, then the columns T®(x,A) and
T®(x, ) become linearly dependent,

TO,A)=%TPxA4), (9.22)

and for A outside of IR,, decay exponentially as x— — co or x— + oo, respec-
tively. Therefore, equation (9.20) has a column-solution decaying exponen-
tially as [x]— 0.

If %> 0, the operator . is formally self-adjoint for the boundary condi-
tions in question, so that its eigenvalues, and hence the zeros of a, (1), are
real. By virtue of the normalization relation (8.47), the zeros must be located
inside the gap —w <A <w. In fact, we have either la, (@)= o (the general
case) or la, (w)| < o (a virtual level) in which case |a, ()| > 1 by the normal-
ization relation. The same holds for A= —w. In particular, it follows that
a,(A) has only finitely many zeros; they will be labelled 44, ..., 4,.

Let us show that the zeros are simple. Let A; be a zero of a,(4) lying in the

d
gap. We will show that —{1—9 does not vanish at A=A, From (9.1) and
a,(A))=0 we find

- o’
a@( j) = 2kj(/lj—kj)
+ det(T(l)(x, A’j)’ T(_*Z_)(x’ /lj))) ’ (923)

(det (TL(x, ), TP, 4)

where the dot indicates the derivative with respect to 4. Since TOx, 1)
and T@(x, 1) satisfy (8.6), their derivatives, T”(x, 1) and TP (x, A), satisfy

4 v F-'2F, (9.24)
Ix 2
Together with
Ut (x,A)= —0: Ux, )02 (9.25)

these equations easily lead to
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% det(TV(x, A), TP (x, 1)) = é det(o; TV (x, 1), T'P(x,A)) (9.26)
and

ai det(TV(x, A), TP (x, 1) = — —;— det(o; TV (x, 1), TP(x,A)). (9.27)
x

Recalling that, for A=4;, the columns T®(x,A) and T'P(x,1) are propor-
tional to each other and decay exponentially as |x|— o0 we derive that

det(TD(x, A)), TP (x, 1)) = % 7 :f A’ Aj)dx’ (9.28)
and
det(TV(x, 4;), TP(x, 4))) = % Y, _)j; A, A)dx’, (9.29)
where
A(x,A)=det(o3 TP (x,A), TP(x, 1)). (9.30)

Now we notice that

@ A+k
— == 9.31
A—k 1] ©31)
so that by using the involution (8.40) the expression Aw 3 A(x, A) for 4 in-

side the gap can be transformed into

A+k - 1
%A(x, A)=det(c, TP (x,4), TP(x, 1)) = i TP, I%, (9.32)
where |||l denotes the usual vector norm in €. Putting together the formu-

lae obtained we get the final expression for d,(4;),

oo

% [ ITD(x, A2 dx, 9.33)
ak .

d,(A;) = —
which shows that d,(4;) does not vanish.
The involution (8.40) also shows that the transition coefficients for the
discrete spectrum, y;, involved in (9.22) are pure imaginary. Therefore (9.33)
implies that d,(4;) is real and of the same sign as iy;,
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signd, (A;) =signiy;; Jj=1,...,n. 9.34)
Let us now show that, just as in the rapidly decreasing case, a,(1) is
uniquely determined by b,(1), the zeros A;,j=1, ..., n, inside the gap, and the
parameter 0. For this purpose we will derive an analogue of the dispersion
relations (6.22), (6.23). Consider a conformal mapping of the sheet /.. onto
the upper half-plane of the variable z defined by
z=zA)=A+k(), Imz=0. (9.35)
The mapping takes the cuts on /. into the real axis — o <z < o and takes a
neighbourhood of « for ImA <0 into a neighbourhood of z=0. The inverse
mapping is given by
Ll
z

A=A(2) = % (z + 2) , (9.36)

where A(z) is sometimes referred to as the Zukowsky Sunction.
For Imz >0 consider the function

i9
f@=e ?a,(A@). (9:37)

It is analytic in the upper half-plane and behaves asymptotically as
|zl

f@=1+0 (L) (9.38)

as |z|—» . Its zeros, z;, are
ZI=Z(AJ)=AJ+II/(02—A«IZ, IZJI=CU; j=1,...,n. (9.39)

Therefore the following dispersion relation holds:

N oz—z 1 71
1) = 1:[1 E_Z exp [E _L OSL_fSﬂds}, (9.40)

which is just another variant of (6.28).
By (9.12), f(z) satisfies the involution

f(z)=e""® j( ) 9.41)

(1)
z
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In particular, for real s,

If)l= ‘f (%) . (9.42)

Hence, the integral in (9.40) can be reduced to an integral over the half-lines
|s|>w. Coming back to the initial variables 1 and k and using the normali-
zation relation we obtain the required representation for a, (1),

A+k(A k;
ag(/l)— M

L 3k -2,k

1 log(1+1b,()1%) k(L)
><exp{2 lmj ——W (l+m)d,u}, (9.43)

where integration goes over the upper banks of the cuts on /., and A lies
outside of IR,,.

In contrast with the rapidly decreasing case, the data b,(1), 4, and 0 are
not all independent. Namely, the asymptotic formula (9.5) implies the rela-
tion

/l+k {1 I log (1+1b,(1)1%) d/l} 9.44)

L 2+K +k P\ i k()

which results from (9.43) by taking the limit as |1|— oo in the half-plane

ImA <0 and using that A +k=0 (L) . In what follows, (9.44) will be called
the condition (6). 141

However, this does not exhaust all the constraints on the data b,(1), A,
and 6. Generically, b,(4) is singular in the neighbourhood of 1= +w,

b
bp(/l)llztw = "I‘;_t'

+ 0(), (9.45)
with b, real. On the other hand, a, (1) satisfies (9.8) with
a.=xib,. (9.46)

Since (9.43) involves only |b,(A)l, the latter relation imposes some restric-
tions on b, which have the form

signb, =(—1)"=, 9.47)

where N. are some integers (see (9.58)).
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To find N let us consider the integral in (9.43) for 4 in the neighbour-
hood of +w outside of IR,,. Clearly, for A near  the only singular contribu-
tion comes from the integral

w®chd
log (1+ 16, (w)I1*) k(1)
IA)= R 9.48
T T 049
with 6> 0. It follows from (9.45) that
IA)=2niloglb |+ I,(A)+O(k@A)), 9.49)
where
wché
logk(u)
IyA)=—-2k{) ——"—du. 9.50)
‘ | o2 (
By a change of variables,
1 ? 1 o?
= — k =—[x—— .51
ue) =[x+ ). ke - (x- %) ©.51)
the last integral is reduced to
Ii(A)=—2 J' l_Ode+ J‘ de’ 9.52)
we =% xX—z we™? x

where z=2z(A) (see (9.35)). Now we shall use the formula

| lo—gxk(_ﬂzﬂ dx = — % log’k(A)+milogk()+ (),  (9.53)

where @(z2) is regular near z=w, and logk on the right hand side is the
branch of the logarithm with a cut along the positive axis 0<k<oo. To

2
prove (9.53), consider the integral j log” k(1)

d{ and apply
I —ol=w(E®—1) ¢~z

Cauchy’s theorem. From (9.53) we have
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[ ek, 1 = log? (— k(1) — milog(— k(1)

s xXx—z

we ¢

9.54)

Nl-—»

" log |k(u(X))| (wz)
[ lomlue 4o, (@)
e—9% z

which gives a representation for I,(1) in the neighbourhood of 1=,

Io(A)= —2milogk(A)— >+ O(lkA)l). (9.55)

It then follows that

byl P o-M—k
wWbeo =30 ¢ 0%
1 J‘ 10g(1+|bg(ﬂ)|2)

P ) k(i) d,u} +0(1). (9.56)

X exp{

Notice that for —o <A <® one has

(w—/l—k)z Atk ©.57)

o—-A-k]  A+k’

Comparing (9.56), (9.57) and (9.44) shows that (9.46) holds if the integer N
is determined by

o-A-k 1 log(1+1b,(A)I1%)
< el R A A A SCARAY) /) N . 58
0< E argw “A—k + I k) +aN,<m. (9.58)

&

Jj=

Clearly, (— 1)+ does not depend on the choice of the branch of the argu-
ment.

The neighbourhood of 1 = —w is treated in a similar manner. The integer

_ is determined by a relation such as (9.58) with  replaced by —®. Hen-

ceforth conditions (9.47) will be called the conditions for the determination of
signs. If b,(1) is regular at L=w or A= —® then additional constraints of
this type do not arise.

The properties of the data b,(A),A;, j=1,...,n, and 0 stated above,
namely:

1) the involution (see (9.13))

2) the condition (0) (see (9.44))

3) the conditions for the determination of signs (see (9.47) and (9.58))
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allow us, using (9.43), to reconstruct a unique coefficient a, (L) with the proper-
ties

1) the involution (see (9.12))

2) the asymptotic behaviour as |A|— < (see (9.3)-(9.5))

3) the sign correlations (see (9.46)).
The verification of 2) and 3) is obvious because their derivation can be re-
versed. To verify 1) one should use the condition (6) and the equation

A—k—Ai—k A+k _A+k—A—k
A—k—A—k A+k, A+k—A—k’

<

(9.59)

\
<

which holds for —w<4;<w.
This closes our list of the properties of transition coefficients.

§ 10. The Case of Finite Density. Time Dynamics and
Integrals of the Motion

We shall begin by deriving the evolution equations for the Jost solutions.
For that purpose we multiply the equation for the transition matrix (3.21)

%TT 6,3, )=Vo(x, ) T(x, y, )= T(x, 3, 1) Vo (¥, 2) (10.1)

by E,(y,A) on the right and let y——o. Consider the limit of
E;' (3, M) Vo(y, A) Ex(y, A) as y— — oo, with V,(y,A) as defined in § 2,

Vo=A Vot AVi+ Vo, (10.2)
(see (2.4)-(2.8) and (2.11)). By virtue of the boundary conditions (8.1), the
last term in (10.2) vanishes as y— — oo, while the first two terms turn into

—AU_(A) (see (8.3)). The differential equation (8.7) and the explicit expres-
sion (8.9) for E,(y, /) yield

ik
E; ' (3, ) U-A)Ep(y, ))=E5 ' (, N E o1, ) =——0s. (10.3)
So, passing to the limit in (10.1) leads to

T S A=V ) T_(x,2) - ﬁT (x, 1) 0s. (10.4)
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The limit as y— + o is analyzed in a similar manner; it results that
T . (x, A) satisfies the same differential equation as 7_(x, A).

The subsequent limit with respect to x gives the evolution equation for
the reduced monodromy matrix,

o kA
o o) = =" [os, T, (). (10.5)

Comparing the evolution equations for the columns T (x, A) and TP (x, 1)
at A=/, leads to differential equations for the transition coefficients for the
discrete spectrum,

d . .
E}/j=—zkjlj}/j, j=1...,n. (10.6)

Notice that the only difference between these equations and their analogues
(7.4) and (7.10) is that A? is replaced by kA.

From (10.5) and (10.6) we derive that the time-dependence of the transi-
tion coefficients is given by

ag(ﬂ'a t)=ag(l, 0), bp(/ls t)=e_ikmbg(la 0),
yi(t)=e~ "My, (0), j=1,...,n. (10.7)

Thus, also in the case of finite density boundary conditions, the dynam-
ics is considerably simplified by passing from y(x), ¥(x) to the transition
coefficients and discrete spectrum:

W), ¥ ()~ (bo (), bo(A)5 45 ¥ j=1, ..., 1). (10.8)

In the next chapter we shall investigate the reversibility of (10.8) and in
Chapter III we shall discuss this mapping from the Hamiltonian point of
view.

Let us now proceed to the integrals of the motion. From (10.7) it follows
that their generating function is a,(A). We will show that, as in the rapidly
i8
decreasing case, loga,(A)e ? is the generating function for the local inte-
grals of the motion. To be able to use the results of § 4 let us assume that
W (x), ¥(x) are obtained in the limit L— o from the functions w (x), i, (x)

satisfying (1.6)
vi(x+2L)=eCy(x), PL(x+2L)=e "y, (x) (10.9)

with the additional constraint (cf. § 1)
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WL =W (X)|x=_L=0. (10.10)
First consider the limit of the generating function
pL(A)=arccostr T, (A) Q(6), (10.11)

as L— oo. Recalling that b, () is of Schwartz type for |1l— oo, from (8.44)
and the explicit formula (8.9) for E,(x, 1) we deduce that, for 4 in R,,

tr T, (A) Q@) =e *La,(A)+e*"a,(1)+0(1)
=2cos(—kL+arga,(1))+o(1), (10.12)

as L— oo, up to terms of order O(IA|~ ). The last identity relies upon
la,AM)I=1+0(A1~") (10.13)

(cf. § 7). Thus, up to terms of order O(IAl~ =) we obtain
. 0 1 -8
lim |p.(A)+kL — 3 =7 loga,(A)e “. (10.14)
L—+ o [
Now recall the expansion (4.4)
(A)——AL+Q+7¢2 £+ o(Al—=) (10.15)
PL - 2 “ An ’ :
where (see (4.32)-(4.34))
L
I,= | P,(x)dx. (10.16)
-L
Using the asymptotic expansion

A—k@)=) /’1’—: +0(A=), (10.17)

valid for A in R, where

1

Pona=(=1)""' 0™ (;) p2n=0, (10.18)
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we conclude from (10.14) that in the case of finite density boundary condi-
tions the expressions

L

Py _ _ P
L-"rL _jL (P,,(x) zx)dx (10.19)

have a limit I, , as L—oc. We have thus shown that adding kL to p; (1)
regularizes the functionals I,(y;, ;) so that, as L— co, they have finite
limits I, o,

Io= j (P,, () — % p,,) dx. (10.20)

It follows from (10.14) and (9.43) that the I, , may be represented as
functionals of log(1+1b,(A)I%) and 4;, j=1, ..., n. However, if n is odd, I, ,
is not an admissible functional on the phase space .#, o. Indeed, we have,
for example,

6L,  dyx)
Sy(x) dx?

+ 2xlw ()P y(x), (10.21)

ol .
so that —>2- does not vanish as |x|— co.
oy(x)
Nevertheless, suitable linear combinations of the I, , turn out to be admis-
sible. They are obtained by expanding p, (1) in inverse powers of k(A),

0 < Jy .
)= —kL+§+x; o+ O(KI==), (10.22)

which follows from (10.15) by using (10.17) and the asymptotic expansion

n
1 S e |2
= P , (10.23)
/‘L n;() k i m

valid for A in R,,. The functionals J, have the same form as in (10.16) and
their limit as L— oo is
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Joo=lim J,= | P, o(x)dx. (10.24)
Lo oo e

By (10.23), there is a simple expression for J, , in terms of I, ,

!
2m 2
Jro= Z © I, (10.25)
n=I14+2m,i>0 m
In particular, we find
Jio=No, Jro=P,, J3,=H, (10.26)

(see § 1), so that, in contrast with J, ,, the functionals J,, and J;, corre-
spond to observables. In Chapter III we shall give a simple proof of the fact
that the J, , are admissible for n> 1, i.e. their variational derivatives vanish
as |x|— . The proof will be based on an explicit formula for the variational
derivatives of p; (1).

As in the rapidly decreasing case (see § 7), the local constants of the
motion J,, o» depend on only half of the new variables (b,(4), b,(1);
A Vis J ..., n). In order to determine them consider the asymptotic ex-

i0
pansion of logag(/l)e_T for A in R, as |A|— oo,

i <
-z _ Co e
loga,(A)e —m,; o + O(lkl—=), (10.27)

which results from (9.18). To find the real coefficients ¢, in closed form we

use (9.43) and expand the denominator in a geometric progression

(cf. § 7). Using (10.23) we find H—

1 ) 1<
Clo=7— [ @) log(1+1b,M)1HdA + ;; o (10.28)

R

w

For ¢,(1) we have the expression

(p,(;t)—m—) _pZ”q/lpw q . (10.29)
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For odd /=2m+1, using the elementary formula
a n—a—1
=(-1)" (10.30)
n n

and the binomial theorem, we obtain from (10.29)
Pom +1(A)=AE" "1 Q). (10.31)

For even /=2m, using (10.30) and the simple formula

205 0)-3) 032

1=0

we can rewrite (10.29) as

Pamd) = ﬁ D @)+ (p —m _7)

P

=k2m_1(l) N (w—Z)m—q (m—P) (P—m—%)
,; ;0 k*(A) q p

— ") (%) (T“’z—)p (10.33)
,;, p/ \kK*)

To compute the coefficients ¢, ; we shall make use of the relation

Atk—A—k rt k(L)
logm—— 24 J | — {1422 .
' J ( 2 )dﬂ, (10.34)

which holds for —w<4;<® and can be proved either directly or by a
change of variable as in § 9. It follows that

1
G, ;= 7

o) dA. (10.35)

e

Integration then gives

i
TmT1 kzm+1 (10.36)

Pom+1,j=
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and

S Y
L A @, 10.
Pomj = D NV (10.37)

r=0
_ie
We thus conclude that loga,(A)e * has the asymptotic expansion
(10.27) with the coefficients ¢, , given by (10.28), (10.31), (10.33) and (10.36),
(10.37). The first few coefficients are

1 log (1+1b,(1)1?) i
co=5.— | G M ,; k, (10.38)
1 log(1=lb,(W)P) (,, .. @ I
Cro= 57— RI ) K@) + =) d + o ; ALk,  (10.39)
= __1___ 2 i S 3
0= gy | 1080+ QNI+ 2 Z . (10.40)

Comparing (10.14), (10.22), (10.24) with (10.27) leads to the identities
Jno=Cno= | Puo(x)dx (10.41)

which are the trace formulae for the case of finite density. Their interpretation
in terms of Hamiltonian mechanics will be given in Chapter III.

This concludes our discussion of the properties of transition coefficients
and their dynamics. In the next chapter we shall investigate the invertibility
of the mapping from y(x), ¥(x) to the transition coefficients and the dis-
crete spectrum for both rapidly decreasing and finite density boundary con-
ditions. The results obtained will be fundamental for the complete solution
of the NS initial value problem (1.1)-(1.2) under these boundary condi-
tions.

§ 11. Notes and References

1. The zero curvature representation (2.10) is an alternative to the Lax
representation (see the Introduction) exploited at the early stage of the in-
verse scattering method. A significant contribution to the related analysis
was made by the papers [AKNS 1974], [N 1974], [ZM 1978, [ZS 1979]. In our
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text we have given preference to this representation because it has a clear
geometric meaning emphasized in [ZT 1979].

2. The NS equation supplied with various boundary conditions provides
models for a broad class of nonlinear phenomena in physics. We have al-
ready mentioned its applications in nonlinear optics; it is encountered in
plasma physics as well. Here we point out its role of the Hartree-Fock equa-
tion for a multi-particle quantum system (Bose gas) with a pairwise interac-
tion via the potential 2x6(x — y). The sign of the coupling constant x distin-
guishes between attraction (¥ <0) and repulsion (x> 0) of particles. In the
attractive case a physically meaningful problem is that of a finite number of
particles and their bound states. Its classical limit is modelled by rapidly
decreasing boundary conditions. In the repulsive case a problem of interest
is the one corresponding to the gas of particles of finite density. The bound-
ary conditions called here the finite density conditions model this situa-
tion.

The first imbedding of the NS model into the framework of the inverse
scattering method was given in [ZS 1971], [ZS 1973].

3. The integral representations (3.32) and (3.33) for the transition matrix
are a variant of the formulae of M. G. Krein [K 1956]. The triangular repre-
sentations (5.10) and (5.16) for the Jost solutions are more traditional. They
were introduced by B. Ja. Levin [L 1956] starting from the eigenvalue prob-
lem for the one-dimensional Schrédinger operator

d’y
—E+u(x)y=ly (11.1)
with a potential u(x) satisfying
| Q+Ixl)lu@)ldx< oo, (11.2)

and were used extensively by V. A. Marchenko (see the summarizing treatise
[M 1977]). Our derivation of these representations in § 5 differs from the
usual one which we follow in § 8 in the case of finite density.

4. The discussion in §§ 5-6 is just a variant of quantum scattering theory
for the operator & (see (5.24)) whose quantum mechanical meaning is that
of the Dirac operator with zero mass. In the context of inverse scattering
method this operator is sometimes called the Zakharov-Shabat operator.

5. In the case of the finite density boundary conditions the operator .
actually coincides with the Dirac operator with non-zero mass. Its scattering
theory is closer to the one-dimensional Schrédinger operator (11.1) because
in both cases the continuous spectrum has boundary points. The minimal
requirements on y(x), y(x) assuring that the general scattering formalism
works are more stringent than in the rapidly decreasing case. So, not only
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the decaying parts, w(x)—pe'?=, of w(x), but also their first moments must
be absolutely integrable in the neighbourhood of + o (cf. (11.2)) [AK 1981].
The inverse problem was studied in [Fr 1972] and [GK 1978]; in [Fr 1972] the
condition (#) was omitted.

[AK 1981]

[AKNS 1974}

[Fr 1972]

[GK 1978]

[K 1956]

[L 1956]

M 1977]

[N 1974]

[ZM 1978]

[ZS 1971]

[ZS 1973]

[ZS 1979]

[ZT 1979]
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Chapter 11
The Riemann Problem

In Chapter I we analyzed the mapping

T (y(x), P) > A, bA); 4, )

from the functions w(x), w(x) to the transition coefficients and discrete
spectrum of the auxiliary linear problem. We saw that for both rapidly de-
creasing and finite density boundary conditions this “change of variables”
makes the dynamics quite simple because the time evolution of the transi-
tion coefficients for the continuous and discrete spectra becomes linear.

In this chapter we shall investigate the inverse mapping & ~'. More
precisely, we shall explain in what sense & has an inverse and present a
solution of the inverse problem, i.e. the problem of reconstructing w(x),
¥ (x) from the transition coefficients and discrete spectrum. The basic tool
for solving the inverse problem is provided by the formalism of conjugation
problem in function theory, also called the Riemann problem or analytic
factorization problem. There are different variants of this problem depend-
ing on the boundary conditions, discrete spectrum, etc. Here we shall spe-
cify the Riemann problem for the boundary conditions considered above
and analyze it in detail.

§ 1. The Rapidly Decreasing Case. Formulation of the
Riemann Problem

The rapidly decreasing case leads to the following Riemann problem.
Let G(A) be a matrix function on the real line — oo <A< co. The problem
consists in representing it in the factorized form

GH=G6.MG_-A), (L1)

where G . (1) and G _ (1) may be analytically extended into the upper and lower
half-planes, respectively. The existence problem for (1.1) under various re-



82 Chapter II. The Riemann Problem

strictions on G(1), G (1) has been extensively studied in the mathematical
literature. Let us show how (1.1) arises in the framework of the auxiliary
linear problem,

dF
4 = U F, (1.2)

and what are the properties of G(1), G. (A).
Our starting point is the relationship between the Jost solutions T, (x, 1)
and T_(x, A) involving the reduced monodromy matrix T(4),

T_(x,A)=T.(x,A)TA). (1.3)

This is not yet a relation of the type (1.1) because the columns of T, (x,1)
are analytic in different half-planes. In fact, from § .5 we know that, in the
column notation for T (x, 1)

T.(x, /’L)=(T(¢])(X, /l), T(i%)(xs /‘L))a (1.4)

the columns TM(x, 1) and T?(x,A) are analytic in the upper half-plane,
whereas TP (x, 1) and T®(x, 1) are analytic in the lower half-plane. How-
ever, (1.3) can easily be transformed to the form (1.1). To this end we define
the matrices

S+ 06, A)=(TPx, 1), TP, 1) (1.5)
and

S_ (e, A)=(TPx, ), T2(x, 1)), (1.6)

which solve the linear problem (1.2) and extend analytically into the upper
and lower half-planes, respectively. In these half-planes they have the fol-
lowing asymptotic behaviour:

S0, A)E~"(x,)=I+0(1), (1.7)

as |A|— «, which follows from (I.5.26)-(1.5.29).
By using (1.3), S.(x, 4) can be written as

S, A)=T, x, )M, , A)=T_(x, )YM_, (1) (1.8)
and

S_( =T, WM, _N)=T_(x, )M__(A), (1.9)

where M. . (A) are given by
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_{a@) 0 (1 —eb@)
(1 eb®) a0 ’
Mew=(5 ) --0=(5 1)

with e=signx. Here a(1) and b(A) are the transition coefficients entering
into T(A) (see (1.5.45)). The fact that (1.8) and (1.9) are compatible with (1.3)
yields the following factorization of the reduced monodromy matrix:

TA)=M,_WOM-"N)=M, , M-\ ). (1.11)

The special triangular form of M, , (1) permits to reconstruct them in a
unique way from the given unimodular matrix T(A) of the form (I.5.45).
In terms of S. (x, 1), (1.3) becomes
S_x,1)=8,(x,)SA), (1.12)
where

SAH=MT MM _ Q=M= WHhM__@)

- 10))

all) a(d)
by 1 (-

T ad)  a@d)

The matrix S(A) plays the role of scattering matrix for the auxiliary linear
1 b(1)
and
a(d) a(d)
called transmission and reflection coefficients, respectively. Unlike T'(1), the
scattering matrix is not unimodular,

problem. In scattering theory the coefficients

are commonly

_al)
detS(A) = -—“a(l) . (1.14)
It satisfies the involutions
oSA)o=S""1) (1.15)
and
6S*V)a=S"'(1), (1.16)
where o=0,; when £=1, =0, when ¢=—1 (see 1.2), 6=1 when £=1,

6 =03 when £= —1, and * indicates Hermitian conjugation. Formula (1.16)
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can be interpreted as G-unitarity of the scattering matrix. Relations (1.15)
and (1.16) uniquely determine the form of S(1).

Equation (1.12) has almost the same form as (1.1), so that it might seem
sufficient to put G,(x,A)=S7'(x,A) and G_(x,A)=S_(x,A). However,
(1.8) implies that

detS,(x,)=a(l). (1.17)

Hence, the zeros of a(1) correspond to singularities of S7'(x,A) in the up-
per half-plane. Therefore we set

G_(x,A)=S_(x,A)E~"'(x,1) (1.18)
and

G.(x,\)=a(Q)E(x,1)S3'(x,4), (1.19)
where in addition we have cancelled out the asymptotic part of S. (x, 1) as

[Al— oo.
The matrices G . (x,A) solve the Riemann problem

G (x,4)G_(x,A)=G(x, 1), (1.20)
where
G(x,l)=E(x,ﬂ)G(ﬂ)E"(x,},)=(—b(/ll)emx 815(/1)16"'“) (1.21)
and
G(/l)=(_bl(/1) gb—l('l)), (1.22)
with the usual normalization
G.(x, )=I+0(1), G(x,)=I+o(1), (1.23)

as |Al— . The variable x is a parameter of the Riemann problem entering
through exponential factors in G(x, A).

We shall now list the properties of G(x, 1) and G (x, A1) associated with
the auxiliary linear problem with y(x), w(x) in L;(— oo, o). If %<0, the
condition (4) concerning the location of the zeros of a(1) will be assumed
(see § 1.6). We start with G(4) and the related matrix G(x, 1).

1. The involution property

TG*(x, V) T=G(x,A), (1.29)
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where 7=03 when £=1 and =1 when ¢= —1.
2. The non-degeneracy property

detG(x,A)=detGL)=1+¢lb(A)I?, (1.25)
so that by virtue of the condition (4)
detG(x,A)>0 (1.26)

for each A.
3. The integral representations.
From (1.6.16) it follows that G(1) can be represented as

Gh)y=I+ | D(s)e*ds, (1.27)

where @(s) has the specific form

[ 0 gB(—9)
D(s)= (—ﬁ(s) 0 ), (1.28)
and f(s) is given by
_l T —ils
B(s) = 7 _jm b(A)e di (1.29)

and belongs to L;(— oo, o). There is a similar expression for G(x, 1) with
@(s) replaced by @(x, s),

_ 0 sB(—s—x)
D(x,s)= ( —Bls—x) 0 ) . (1.30)

In other words, G(4) and G(x, A) are specific elements of the normed ring
RE*2 consisting of matrix functions of the form

Fy=cl+ | Q(s)e*ds, (1.31)

where €2(s) is in LE*?(— o0, ©), ¢ is in C' and the norm is defined in the
usual way (cf. § 1.6)
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IFl=lcl+ | 12(s)llds. (1.32)

Later we shall also need the subrings R2>? of the ring R>>? consisting of
matrix functions of the form

F.(A\)=c. I+ [ Q.(s)e**ds, (1.33)
0

respectively, where £.(s) are in L{$*?(0, ). The elements of
R2>*2 and RZ*? are analytic in the upper and lower half-planes, respec-
tively. By the Riemann-Lebesgue lemma they tend to c. I as [A|— oo.

Now we turn to the properties of G. (x, 7).

1. The involution property

TG (x,A)t=G_(x, 1), (1.34)

which follows from (1.5.30), (1.5.31) and (1.5), (1.6), (1.17). In particular, if
%<0 we have

G%(x,)=G_(x,1). (1.35)

2. The integral representations
G.(x,\)=I+ | @, (x,5)e**ds, (1.36)
0

which result from (1.5.10), (1.5.16) and (1.6.10) after trivial transformations.
Note that the matrix functions @.(x,s) are in L¥*?(0, o), so that
G.(x,A) are in REZ*?,

3. The relationship (see § 1.2)

U()(x)=%[0'3, d)t(x’ S)] |s=0’ (1'37)
where
_ A 0 yx
Us()= U 4) — 5= 0= | (W(x) ¢ ) (1.38)

which is an immediate consequence of (1.5.32) and (1.5.33).
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4. The asymptotic behaviour for real A, as |x|— oo :

1 0
N P L |+ew. (1.39)
TN iAx R
an’ ak)
N —ilx
G_(x, 1) =((1) Eb(z)(z) )+o(1), (1.40)
as x— + o and
Gl = | 4P a@) +o(1), (1.41)
0 1
10 0
G_(x,A) = (_ b‘E/(l)Zz"“ 1)+o(1), (1.42)

as x— — oo, which follows from (1.8), (1.9) and (1.18), (1.19).

5. Degeneracy properties for complex A.

From (1.8), (1.9) and (1.18), (1.19) we find that detG,(x,A)=a(d),
detG_(x,A)=a* (1), where a*(1) is the analytic extension of a(1) into the
lower half-plane (see § 1.6). If >0, it follows that G . (x, 1) are non-degen-
erate in their domains of analyticity. If x<0 and the condition (4) holds,
G, (x,1) and G_(x, 1) become degenerate at A=1; and /l=/l_j, respectively,
where A, j=1, ..., n, are the zeros of a(1). More precisely, they have simple
zeros, i.e. G (x,A;) and G_(x, A;) are rank one matrices. Comparing (1.5),
(1.19) with (1.6.20) shows that G (x, 4;) can be written in the form

_iAjx 1 1
Gi(x, )= 2 T? (x, A) - — 03, 1.4
+(x,A)=e (—}’j(x)) ¥ (x5 4) io'z (1.43)
with _
yix)=er y;, j=1,...,n, (1.44)

1 . - .
and the column-matrix ( y x)) is multiplied by the row-matrix
-y -
—iTY"(x, A;) 05. By virtue of (1.35) and (1.5.30), G_(x, 1,) can be expressed
as

il x

G_(x A)=e 2 TOM ), —7(x), (1.45)
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where the column-matrix T¢(x,A,) is multiplied by the row-matrix

(1, =%x)).

To give a geometric interpretation of these representations, let Nf *’(x)

be the one-dimensional subspace in C? spanned by ( ) and let

1
T =y
N{7(x) be its orthogonal complement spanned by (y,-(x)). Then (1.43) and
(1.45) amount to 1

NP x)=ImG, (x, 1)), N (x)=KerG_(x, 1)), (1.46)
j=1,...,n. The dependence of N{*’(x) on x is given by

NO@=E@ AN, NO@=ExHNT, (14D

where the subspaces N{*’ and N{~) are spanned by ( ! > and (}), re-
spectively. =7 Yi

The properties of G(1), G(x, 1) and G . (x, A) listed above result from the
analysis of the auxiliary linear problem (1.2) for w(x), w(x) in L,(— oo, o)
carried out in Chapter I. Now we let them be the basic ingredients of the
Riemann problem which consists in reconstructing G.(x,1) (and hence
w(x), ¥(x), see (1.37)) from a given G(A).

More precisely, let the following data be given:

1) a matrix G(A) from the ring R>>? subject to conditions 1-3;

2) if #x<0, an n-tuple of pairwise distinct numbers A;, A, ImA;>0,
j=1,...,n, and an n-tuple of non-zero numbers y;, y;,j=1, ..., n.

Consider the matrix G(x, A) given by (1.21) and, if x<0, the set of sub-
spaces N{*)(x) given by (1.47).

The Riemann problem is to find, for each x, the matrices G . (x,1)
in RE*? with ¢ =1 satisfying

G(x,A)=G, (x,A)G_(x, ). (1.48)

If >0, G+ (x, A) are supposed non-degenerate in their domains of analy-
ticity. If x<0, they are supposed non-degenerate except for the points A;, 4;,
respectively, where

ImG, (x,A)=N{"(x), KerG_(x,A)=N{"(x), j=1,...,n. (1.49)

In the following section we shall prove that the problem has a unique
solution and analyze the properties of the solution G . (x,1). We will show
that within the chosen functional class the matrices G (x, A) are character-
ized by the aforementioned properties 1-5.
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§ 2. The Rapidly Decreasing Case. Analysis of the
Riemann Problem

Consider the Riemann problem
Gx,A)=G,(x,A)G_(x,1) 2.1)

stated at the end of § 1. Here we shall analyze the problem for the given
G(x,4) and the unkown G. (x, 1) in the functional classes indicated above.
We will prove the following.

1. The Riemann problem (2.1) is uniquely solvable.

2. The matrices

Fo(x,))=G3'(x,\)E(x,1) (2.2)
and

F_(x,A)=G_(x,))E(x, 1) 2.3)
satisfy the differential equation of the auxiliary linear problem

d A
o F.(x,A)= (E o3+ U (x)) F.(x,1), 24

with Uy(x) having the form

W(X)) , @.5)

0
Vo= (w(x) 0

where y/(x), ¥(x) are in L,(— o, ).

3. For real A, G (x,1) have the asymptotic behaviour (1.39)-(1.42) as
|x|—co, where b(1) enters into the definition (1.22) of G(L) and a(d) is
given by

1T A4 1T log(1+elb(p)l?)
a(/l)—jl:[] s exp{zﬂi _L P dut. (2.6)

Note that if £=1, there are no Blaschke factors in (2.6).
4. The reduced monodromy matrix of the auxiliary linear problem (2.4) has
the form
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a(l) eb()
TA) = . 2.7
@ (bw i) @7
If €= —1, the discrete spectrum coincides with the set 4;, /fj, j=1,...,n, and

the transition coefficients for the discrete spectrum are y;, v;, j=1,...,n.

Let us now turn to the proof of these assertions.

1. The unique solvability of the Riemann problem.

Here the simplest way is to exploit the general theory of Gohberg and
Krein who considered the Riemann problem

GH=G6G.ADG_-A) (28

for a non-degenerate n x n matrix G(4) from the ring R <", defined on the
whole real line and normalized to I as |1]— co. The theorem we need reads
that if G(A)+ G*(1) is positive definite then (2.8) has a unique solution in the
class of matrices G, (1) and G_(A) belonging to the rings RL*™, non-degen-
erate in their domains of analyticity and normalized to I as |Al— oo.

The analysis is based on the reduction of the Riemann problem to a
Wiener-Hopf equation which can be carried out as follows. Rewrite (2.8) as

G_AW)=G3'M)GA). (2.9)

Since G, (1) is non-degenerate, Wiener’s theorem implies that G '(1) can
be expressed as

G W)=I+ | 2. (s)e*ds, (2.10)
0

where 2, (s) is in L{"*™(0, o). The Fourier transform applied to (2.9) then
makes the Riemann problem equivalent to the Wiener-Hopf equation

oo

Q,)+P)+ | 2,($)P(s—s)ds'=0, 520, 2.11)
where
GO)=I+ [ D(s)e* ds. 2.12)

The analysis of equation (2.11) is what the Gohberg-Krein theory is mainly
concerned with.

The theorem cited above proves the unique solvability of (2.1) in the
regular case, i.e. when G .. (x, 1) are non-degenerate in their domains of ana-
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lyticity, or, equivalently, when there are no discrete eigenvalues. Indeed,
G(x,A) has the form

1 bA)e~*x
G, 2) = (_ sayers Oy ) 2.13)
so that for =1
G(x,A)+G*(x,4) _
> =1. (2.14)

For ¢= —1, G(x,A) is Hermitian positive-definite by virtue of the condition
(4,) from § 1.6,

IbA)<1. (2.15)

By the uniqueness theorem for the Riemann problem (2.1), the involu-
tion (1.24) for G(x, A) extends to G (x,A)

G (x,))=1G+ (x, )7 (2.16)

with t=03if e=1and r=Iif = — 1. In particular, if e= — 1, G_(x, 1) is the
Hermitian conjugate of G, (x, 1),

G% (x,A)=G_(x, ). (2.17)

Let us now consider the Riemann problem with zeros, i.e. the general
problem (2.1) with the given 4;, 4;, ImA,;>0; ¥;, ¥;,j=1, ..., n, and the rela-
tions (1.49). We shall assume from the very beginning that x <0.

To start with, let there be only one pair of zeros, g, 1o, ImAy> 0, with the
corresponding o, 7o, and let N§*’(x) be the associated pair of orthogonal
subspaces (see (1.47)). To simplify the notation we shall also leave out the
dependence on the parameter x. We look for solutions G.. (1) in the form

G.AW)=G.NBR), G_-H=B'WG_®), (2.18)

where G . (1) are solutions of the regular Riemann problem. We shall find a
matrix factor B(A) such that

a) B(A) is analytic in the upper half-plane and B~'()) is analytic in the
lower half-plane;

b) lim B)=I, (2.19)

|Al— oo
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¢) detB(A)#0 for ImA >0 and det B~'(A)#0 for ImA <0 except at A=Ao
or Ao respectively, where

ImB(i)) =G5 '(A) NH = NG, (2.20)
KerB~'(do) =G _(Ao) Ny~ =N§™. (2.21)

In addition, by virtue of the involution (2.17) the subspaces N§* are or-
thogonal.

These requirements unambiguously identify B(1) with the matrix
Blaschke-Potapov factor

BA)=1I+ Ao=o P, B '(W)=I+
A—Ao

Ao—Ao
A—2o

P, (2.22)

where the orthogonal projection operator P is determined by

Im(I—P)=N§", Ker(I—P)=N§> (2.23)
and has the form
1 1p1? ﬂ')
- . 2.24
1167 ( 51 (2.24)

Here

_ é(l])(ﬂvo) Yo+ G(E])(}vo)
GG 70+ P o)’

B (2.25)

with the obvious notation for the matrix elements of G, (o).
The Blaschke-Potapov factor defined by (2.22) satisfies the generalized
unitarity condition

B*(M)=B~"()). (2.26)

Restoring the dependence on x we find that P(x) has the form (2.24)
with

) = G:(ll)(x, Ao) Yo (x) + C‘;t(_il)(x, Ao)
G(+12) (x’ A,O) yo(x) + G(+2_2)(x’ ;{0) ’

(2.27)

and 7,(x) = yoe'**. If the denominator in the expression for f(x) vanishes
for some x, then (2.24) still makes sense and P turns into 1 +03).

In the general case, given the zeros A;, A4; and the subspaces N,
j=1,...,n, the Riemann problem can be solved in a similar way. The factor
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B(A) should be replaced by the ordered product of the Blaschke-Potapov fac-
tors

IA)=B,()... B,(}) = H (1 + if':;f P,) (2.28)
j=1 J

where the orthogonal projection operators P; are determined by the sub-
spaces N{*). They are most simply constructed step by step. Suppose the
unitary factors B;(A), ..., Br_1(1) are found. Then P, is determined by

Im(I—P)=Bi' (&) ... BT ') G () NP =N (2.29)
and

Ker(I—P)=Bi1(A) ... Bi ') G _ () N =N, (2.30)

Let us now show the uniqueness of the solution of (2.1). Suppose there are
two solutions G. (x,A) and G’ (x,A). Suppressing once again the depend-
ence on x, from (2.1) we have

Gi'AW)G.AM)=G_AGZ'Q) (231

for real A. The left hand side is analytic in the upper half-plane except at
A=4;, and the right hand side is analytic in the lower half-plane except
at A=A, j=1,..., n. For large |A| both sides of (2.31) are normalized to I. If
there are no actual singularities at these points, then by the Liouville the-
orem both sides are equal to I identically, whence the uniqueness.

To prove the regularity, consider, for definiteness, the left hand side of
(2.31). In the neighbourhood of =4, the matrices G, (1) and G1'(1) have
the expansions

G, A)=A4+0(1-4)), G;‘(/l)=/1 1 +0Q), (2.32)
—4
with
AB=BA=0. (2.33)
Since
ImA=ImG.(A)= N}*’, (2.34)

it follows from (2.33) that the subspace N{*’ is contained in KerB. Both
spaces being one-dimensional, they coincide with each other:

N{*)=KerB. (2.35)
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There is a similar expansion for G’, (A) and G’ '(1); as before,
ImA’'=N{"’=KerB'. (2.36)

Now it is clear that the residue of G'7'(1)G . (4) at A=4; equals B’4 and
therefore vanishes.

The same argument works for the right hand side of (2.31) proving that
both sides of this equation are regular in the whole plane.

The uniqueness theorem shows in particular that the involution (2.17)
also extends to the general case of the Riemann problem with zeros.

2. Derivation of the differential equation.

Let us consider the matrices F. (x,1) (see (2.2), (2.3)). Obviously, they
satisfy

F_(x,)=F,(x,A)G(A). (2.37)

The matrix F, (x, A) is analytic and non-degenerate in the upper half-plane
except for simple poles at A=A;,j=1,...,n; F_(x,A) is analytic in the lower
half-plane and has simple zeros at A=7;, j=1,...,n. In addition, F. (x,1)
satisfy

ImF3'(x,A)=N{*, KerF_(x,4)=N{", j=1,...,n, (2.38)

where the subspaces N{*’ are determined by the ;, 7; (see § 1) and do not
depend on x.

Later it will be shown that F. (x, A) are absolutely continuous functions
of x. So, differentiating (2.37) with respect to x gives

9 ey =T e new = Er oy e HF-( D), (239)
dx dx dx
or
dF, A FF (x4 = aF- o, A)F='(x, 1). (2.40)
dx dx

Both left and right hand sides of (2.40) may be analytically continued into
their respective half-planes in spite of the fact that F, (x,A) is singular at
A=A; and FZ'(x, ) is singular at A=4;, j=1,...,n.

The proof is similar to that of the uniqueness theorem. We set

AX)

J

+0(1) (2.41)

and
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F3'(x, A)=B()+O0(A—A)). (2.42)

We have
ImB(x)=N{* (2.43)

with the obvious identities
A(xX)B(x)=B(x)A4(x)=0. (2.44)
: . . dA o
Since N{*’ does not depend on x it follows that Ker E (x) contains N{*,

T'(x,2) at A=4;
dA
equals — (x)B(x) and therefore vanishes. Hence the left hand side of (2.40)

is non- smgular. The same argument applies to the right hand side of
(2.40).

F
Thus, for each x, % (x,A)F3'(x,A) is an entire function of A. Let us

analyze its asymptotic behaviour as |A|— oo.
In the lower half A-plane we shall make use of the representation

F_(x,A)= (I+ oj? D_(x,5)e*s ds) E(x,A) (2.45)

(recall that G_(x, 1) belongs to the ring RZ*?). Assume for the moment
that @_(x, s) is absolutely continuous in x and s and that a:;_ , a;p_
*D_ s
prpyall functions of s belong to L{?**(0, ). Then, for ImA<0, F_(x, 1)

has the asymptotic behaviour

b

o, P_(x,0)
F_(x,A)= (1+ o (MI))E(x ), (2.46)

as |A|— oo, which allows differentiation with respect to x. It follows that, as
|[Al— oo in the lower half-plane,

dL( LA)FZ'(x l)——+ [0'3,(1)_(x, 0)]+o0(1). (2.47)

Similarly, the representation
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F7'(x,A))=E~"'(x,1) (I+ | D4 (x, s)e"“ds) (2.48)
i}

implies for |A|— oo, IMA =0,

—1
A e DFT ) = —Fo (6 4) 2 (1,2
dx dx
~2% 4 0y 0w Ol o().  (249)

By the Liouville theorem we then obtain

Ay P = e P ) =22 4 ), (250)
dx dx 2i

where

Up(x) =315, @1 (x, 0)] =303, D_(x, 0)]. 2:51)

We thus conclude that the auxiliary linear equation (2.4) is satisfied. The
matrix Up(x) is off-diagonal and satisfies

Us(x)=1tUp(x¥) 7, (2.52)

which follows from (2.16) reexpressed in terms of F (x, A). Hence it can be

0 eopx)
px) 0
introducing a parameter x: @(x)=x y(x). The parameter x here is some-
what artificial; it is needed for (2.5) to coincide with (1.2.4) literally.

Let us return to the hypothesis that the kernels @, (x, s) are differentia-
ble. In general, our assumptions on b(1) do not imply this property, and the
validity of the differential equation (2.4) will be demonstrated in the next
subsection by means of a closure procedure.

We point out that the above derivation of (2.4) did not use any special
features of the matrix G(x, 1) except the unique solvability of the Riemann
problem, the involution and the explicit form of the x-dependence. So, there
is a fairly general relationship between the Riemann problem and the differ-
ential equation (2.4), which is, besides, local in x. All these requirements on
G(x,A) will be used in our analysis of the properties of G.(x,4) and Up(x)
as functions of x.

3. The asymptotic behaviour of G 1 (x,A) as |x|—co.

First we shall consider the regular case of the Riemann problem. We
shall exploit the Wiener-Hopf equation (2.11)

written as Up(x)= ( ) and coincides with the matrix (2.5) upon
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Q,(x,)+D(x, )+ | Q,(x,s)D(x,s—s5)ds'=0, (2.53)
0

5>0, with the x-dependence indicated explicitly. The matrix kernel @(x, s)
is given by (1.30)

0 ef(—s—x)
= 2.54
D, 5) (_ﬂ(s_x) , ) 2.54)
where
B(s) = L [ blye=*<da, (2.55)
2r .
and 2, (x, s) is determined from
Gi'(x, V)=I+ [ Q. (x,s)e*ds. (2.56)
0
The matrix @ _(x, s) involved in the representation
G_(x,A)=I+ [ ®_(x,s5)e""**ds 2.57)
1]

has the following expression in terms of the solution £2 (x, 5) of the Wiener-
Hopf equation:

D_(x,5)=D(x, —s)+ T Q,(x,sVYO(x, —s—s")ds’. (2.58)

To emphasize that the variable x is merely a parameter in the Wiener-
Hopf equation we introduce the following notation for the matrix elements
of 2, (x,s):

(2.59)

Q. (x,5)= (Ax () B (S)) .

C(s)  Dxi(s)

By using (2.54), the matrix equation (2.53) can be written as

A.(5)= | B(s—x—5")B,(s")ds", (2.60)
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B.(s)=—¢f(—s—x)—¢ T ky(s, s) B.(s")ds’ (2.61)
1]
and

D.(s)=—¢ T B(—s—x+5)Ce(s)ds', (2.62)
C.(s)=Pp(s—x)—¢ T L.(s,s) C(s)ds’', (2.63)

where
ke(s,s)= °j° pu—s)pu—s"du, (2.64)
I.(s,s") = T Bs—u)B(s’'—u)du. (2.65)

Clearly, equations (2.61) and (2.63) together with (2.60) and (2.62) are
equivalent to the initial Wiener-Hopf equation (2.53). Their solvability is an
immediate consequence of the aforementioned theorem of Gohberg and
Krein. Still, the dependence of 2, (x, s) on the parameter x remains to be
analyzed because it governs the behaviour of y(x), ¥(x) in x, as is shown by
the first formula in (2.51),

1 1
V)= 2 GOlmos  90) = = = BO)lmo- (2.66)

To study the behaviour of the solutions of (2.61) and (2.63) as functions of
x we proceed as follows. The equations involve the integral operators K, and
L., with the kernels k. (s, s") and I, (s, s), respectively, bounded on the space
L,(0, ) and continuous in x in the sense of operator norm. To estimate the
norm of the occurring integral operators it will be enough to use an obvious
estimate

l4ll< max [ l4(s,s")ds. 2.67)

0<s'<eoo

The Gohberg-Krein theory gives that for each x the operators I+¢K, and
I +¢ L, have inverses in L,(0, o). It follows that £2, (x, 5) as an element of
L?*?(0, ) depends continuously on x, so that for each 1 the matrices
G, (x,A) are continuous in x.
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Let us show that the norms of (1+¢XK,)™', (I+&L,)™", in L,(0, =) are
uniformly bounded in x, — o <x< . To this end we will prove that the
operators K, and L, have limits, K. and L., as x— + oo, where conver-
gence is taken in the operator norm, and that the inverses (I+¢K.)~ ' and

(I +£L )" exist and are bounded operators.
Consider, for definiteness, the operator K, and write it as

K.=K+R,, (2.68)

where K is an integral operator with the kernel k(s —s’),
k(s)= _]; B(u+s)fu)du, 2.69)
and the kernel r.(s, s') of the operator R, is
ro(s, s’)= — __j: Bu—s)B(u—s")du. (2.70)
The norm of R, is bounded by

—X

IR, < max i [ 1pu—s)Bu—s"duds

0<s'<o@ (0 _oo
< max T Iﬂ(s)ﬂ(u—s’)ldsdu<(—j lﬁ(u)ldu)z. @.71)

Hence the norm vanishes as x— + .

The operator I +¢K has an inverse, because the inversion problem re-
duces to a scalar Wiener-Hopf equation equivalent to the Riemann problem
for the function

1+¢ | k(s)e™ds=1+elbA)2=a, R)a_A). 2.72)

Its unique solvability is obvious when £=1 and follows from the condition
(4,) (see (2.15)) when £= — 1. The solution a (1) is given by (2.6) with the
Blaschke factors left out, and a_(1)=a, (1).

Thus we have shown that the norm of (I+¢K,) ™" is uniformly bounded
in x in the neighbourhood of + .

Now we consider the neighbourhood of — «. One should not be misled
by (2.64) into thinking that K, vanishes as x— — . This is made clear by
introducing a new function
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fe(s)=B.(s—x), s>x, (2.73)

so that (2.61) becomes
fi(s)=—€f(—s)—¢ T q(s, s") (s ds'. (2.74)
The kernel g(s, s") does not depend on x and has the form
q(s,s)= :j: Bu—s)Bu—s")du. (2.75)

The shift takes L;(0, o) into L;(x, ) and K, into the operator Q. on
L (x, o) with the kernel g(s, s') where s, s’>x. Now, L,(x, «) embeds natu-
rally into L,(— o, ); let Q, also denote the operator on L,(— o, «) with
the kernel

g4x(s,5)=0(s—x)6(s'—x)q(s, 5), (2.76)

where 8(s)=1 for s >0 and 0(s) =0 for s <0. As x— — oo, the family Q, has a
limit Q with the kernel g(s, s") where convergence is taken in the norm of
Ll ( — 0o, °°)

To prove that I+£Q has an inverse we will show that the equation

£6)=9(0)=2 | . )f)ds’ @77)
is uniquely solvable in L;(— oo, o). Let
Fl)= 1 f(s)eds, G)= _Tw g(s)e** ds 2.78)
and apply the Fourier transform to (2.77). Then

F)=GMA)—eb()IT, (bA)F)), (2.79)

where the projection operator /71, is defined as follows: if

(0= T E@etds, (2.80)

then
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UT.0)R)= [ &(s)e™ ds. (2.81)
0

Equation (2.79) has a unique solution which can be written in closed
form

FA)=G()—¢ ali(/(l/i) m, (ab_(’(l;) G(/l)) , (2.82)
with a . (1) as defined in (2.72).
Indeed, introducing a new function @(1) by
FA)—GA)=-eb(L)@(), (2.83)
from (2.79) we have the equation
OA)=I1, (b(A) GA)—elbR)I> D)), (2.84)

which shows, in particular, that @(1) belongs to the ring R , . Using the fac-
torization (2.72) we can write (2.84) in the form

11,6 GA)—arB)a_A)P@A)=0, (2.85)

and easily get an expression for @(1),

1 b(A)
O0) = 5 1+ (a_ & G(/l)), (2.86)

which implies (2.82).

Thus we have shown that I4+¢K, has a bounded inverse in the neigh-
bourhood of — oo. This completes our proof of solvability, uniformly in x,
of the integral equation (2.61).

Equation (2.63) is analyzed in a similar way. To prove that (I+¢L,) ' is
uniformly bounded in the neighbourhood of — o, a representation of the
type (2.68) should be used; the neighbourhood of + « should be treated by
the method just described.

Let us apply the above results for studying the asymptotic behaviour of the
solutions of the Riemann problem as |x|— co. For half of the matrix elements
of G37'(x,A) the asymptotics are trivial.

In fact, the L;(0, «o)-norms of the inhomogeneous terms in (2.61) and
(2.63) are
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T |B(—s—x)lds= —jx |B(s)| ds (2.87)
and

T 1BG—x)ds= [ 1Bs)lds, (2.88)

and vanish as x— + o and x— — o, respectively. Therefore

IBll-0, ll4,l1-0 (2.89)
as x— + o and

ICAN—-0, D0 (2.90)

as x— — oo. So, for every 4 with ImA >0, the asymptotic behaviour of the
first row of G3'(x,A), as x— + oo, and of the second row, as x— — oo, is
given by (1.39) and (1.41).

Next, consider the first row of G3'(x,A), as x— —oco. Putting
B, (s)=f.(s +x) we have f.(s) - f(s), as x— — oo, in the norm of L,(— oo, o).
Since f(s) satisfies (2.77) with g(s)= —gf(—s), we find for real A, as

X—+ — Co,

(GF' 6 D)z = [ Buls)e™ds
0

= g—itx jf(s)e"“ds+o(1)

__8b@) i (a+a>— . (albw)) o(l)

Ca ) a-@4)
- _ 6‘b_(ﬂ’) e—i/lx
a,(A)
X (a;,(/l)+H+ ((1 —a,(A))+ (;%/1—) - 1))) +o(1)
&b .,
e A4 o(1). (2.91)

Moreover, from (2.60) it follows that, as x— — oo,
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(G0 i = 1+ [ Ac(s)e™ ds
0

B(s—s'—x) f.(x+s)e*ds'ds

I

—

+
O ey 8
O oy §

]S B(s—s")f(s")e** ds'ds+o(1)

||
oh-a8

_ elb)1?
=1-I1, 2. 0) ) +o(1)
1
=1+71, ((‘h(ﬂv) — 1) +(1—a_(l))) +o(1)
1
D +o(1). (2.92)
In a similar way, as x— + oo,
0 _bA) .
(GF (%A = 2. ) e**+o(1) (2.93)
and
(G3'(x, ) = +1(/1) +0(1). (2.94)

So, identifying a(1) with a ., (1), we have reproduced the asymptotic for-
mulae (1.39) and (1.41).

The asymptotic behaviour of G_ (x, 1) follows from (2.1), (2.13), and the
asymptotic behaviour of G '(x, 1) just established. It is given by (1.40) and
(1.42) upon identifying a(1) with a_(4).

Thus we deduce that G.(x,A) are composed of the Jost solutions,
T.(x,A), of the auxiliary linear problem (2.4) according to (1.5), (1.6) and
(1.8), (1.19). The matrix

a(l) gb'(/l)) (2.95)

TW) =

@= (5> 2

plays the role of the reduced monodromy matrix for T. (x, A).
Let us now proceed, for x <0, to the general case of the Riemann problem

with zeros. For simplicity we shall again consider a single pair of zeros
Ao, Ao, ImAe>0, and of subspaces N4*)(x) of the form (1.47). The formulae
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(2.18), (2.22), (2.24) and (2.27) solving the Riemann problem with zeros in-
volve the solution G, (x, A) of the regular Riemann problem at 4 =4,. There-
fore, we also need the asymptotic behaviour of G.(x,1), as |x|— oo,
for complex A in the upper half-plane. An inspection of the preceding
argument confirms that all the formulae remain valid for such A with the
exception of (2.91) and (2.93) in which b&) and b
a,() a.A)
placed by 0. Indeed, consider, for instance, the limit of the matrix element
(G3'(x,A)12 as x— — 0. One has

must be re-

T fuls)e c=2dx = | f(s)e*c " dx+o(1). (2.96)
Let

gx)= o[‘,f(s)e"’us""dx = Tf(s+x)e"“ ds. (2.97)

We will show that for ImA >0 the function g(x) vanishes, as x— — co. The
second identity in (2.97) implies that for such A, g(x) is a convolution of two
functions in L,(— o, ), so that it is itself in L;(— e, o). On the other
hand, the first identity in (2.97) shows that g(x) is absolutely continuous
and

dg(x)

e —idg(x)—f(x), (2.98)
x

so that its derivative also lies in L,(— o0, o). Since g(x) vanishes as
Xx— + oo, it follows that it also vanishes as x— — oo,
Thus, for ImA >0 we have the asymptotic formulae

- 1

G+(x,/1)=(0 a+(/1))+o(1) (2.99)
as x— + o and

G+(x,l)—-(a+0(/l) (1))+o(1) (2.100)

as x— — oo,

Now consider the projection operator P(x) entering into the definition of
the Blaschke-Potapov factor (2.22). The asymptotic formulae (2.99), (2.100)
combined with (2.27) imply that
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lim B(x,Ag)=0, lim B(x,A¢)=oo. (2.101)

X+ oo

Therefore for P(x) we have

. 00 . 10
xl"llmp(x)_<o 1)’ xl"f‘oop(x)_<0 0)’ (2.102)
whence
1 0 j_}" 0
lim B(1)= , lim B(A)= 0 . (2.103)
X— + oo 0 /1—240 X — 00 0 1

Thus the asymptotic behaviour, as |x|— o, of the solutions G . (x, A1) of the
Riemann problem with zeros is given by (1.39)-(1.42) with a(A) replaced by
A—2o _ A=A

pan a,(A) and a(1) by P
that G (x, Ao) is composed, according to (1.5) and (1.19), of the columns of
the Jost solutions, T, (x, Ao), which are proportional to each other and decay
exponentially as [x]|— co.

Consequently, 4, is an eigenvalue of the auxiliary linear problem (2.4)
and y, plays the role of the associated transition coefficient for the discrete
spectrum. i

The case of several pairs of zeros 4;, A;, ImA; >0, and subspaces N *)(x),
Jj=1,...,n, is treated in a similar way. The Blaschke-Potapov factors in-
volved in I1(A) (see (2.28)) become diagonal as |x|— oo ; the asymptotic be-
haviour of G. (x, 1) is given by (1.39)-(1.42) with a(4) given by (2.6). This
completes the proofs for Subsection 4.

The proof in Subsection 2 has shown that both the regular Riemann
problem and the one with zeros are related to equation (2.4) with coeffi-
cients Up(x) and Up(x) of the form (2.5), respectively. Comparing (2.18),
(2.28), (2.46) and (2.51) leads to the following relationship between Up(x)
and Uy(x):

a_(A). Moreover, it can easily be verified

Us(x) = Up(x) + Ao (x), (2.104)
with

Ao(x) =303, T(x)], (2.105)

where the matrix 7(x) is determined by the asymptotic behaviour of IT(x, 1)
as [A]— oo,
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1. 1
M5, 2) =1+ 7 in()+0 (W) . (2.106)
It has the form
w0 =+ 3 G- B ). (2.107)
i=1

Here the P,(x) are the orthogonal projection operators entering into (2.28).

The above information about the asymptotic behaviour of G (x, 1), as
|x|— oo, together with formulae such as (2.27) show that Ay(x) is absolutely
integrable in the neighbourhood of + . Besides, 7(x) and hence Ay(x) are
continuous in x. If then follows that Ay(x) belongs to LY *?(— o0, ). We
shall need this fact later.

Now we shall prove that w(x), W(x) are in L,(— o, o). First we shall dis-
cuss the regular Riemann problem and show that B,(s) and C,(s) as func-
tions of x for each s>0 are elements of L,(— o, ) depending contin-
uously on s.

Let us prove this, say, for B, (s). We shall interprete (2.61) as an equation
in the space of functions of two variables, f(x, s), absolutely integrable in x
on the whole line and continuous in s for s=>0 in the sense indicated
above.

In other words, the space in question is just the tensor product
Li(— o0, 00)® C[0, o) where C[0, =) is the space of bounded continuous
functions on [0, o). The norm in L,(— o, ) ® C[0, o) is given by

oo

I|f||=oglzlx [ 1f(x, s)ldx. (2.108)

Clearly, the inhomogeneous term in (2.61) lies in this space. It is easily
verified that the operator K, with the kernel k.(s,s’) is bounded on
Li(— o, ) ® C[0, o). In fact, since f(x) is in L,(— oo, ), we have

oo

ke (s, sH< | I,B(u—s)ﬁ(u—s’)ldu=l€(s—s’), (2.109)
where
K= [ Ik(s)ds<oo. 2.110)

It follows that
K. fI<K-lfIl, (2.111)
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where f(x, s) is any element of L,(— o0, 00) ® C[0, ). Now, by using the

representation (2.64) for k. (s, s’) it is easily shown that j (K. f)(x,s)dx is
a continuous function of s.

This allows to prove that I+¢K, has a unique inverse on
Li(— o0, ) ® C[0, ). Indeed, the results obtained may be interpreted as
the existence of (I+&K,)~' on the space C(— o, 00)® L,(0, ) with the
natural norm

llgl= max | lg(x,s)lds. (2.112)

—ee<x<oo (

The space Li(— o0, o) ® C[0, o) is “almost” the dual of the latter and,
according to (2.64), K, is a formally self-adjoint operator. Therefore
(I+£K,) ™! exists and is bounded on L,(— o, ) ® C[0, ) as well. More
accurately, we could reproduce the existence proof for (I+£K,)™' based
on the Gohberg-Krein theory in the space C[0, o) instead of L;(0, ).

By virtue of (2.66) we then conclude that in the regular case of the Rie-
mann problem the functions y(x), ¥ (x) belong to L,(— o, o). For the case
of the Riemann problem with zeros one should use (2.104) and the afore-
mentioned fact that Ay(x) is absolutely integrable.

Let us now prove that F. (x,A) are absolutely continuous in x, which will
Jjustify the derivation of (2.4) in Subsection 2.

Suppose for the moment that f(x) has two derivatives belonging to
L(— o, ). Then it is easily seen that £, (x,s) is a solution to (2.53)

2

differentiable with respect to x and s and 42, . 242, , 742, are in
ox as 0x0ds
LE*?(— o0, ) as functions of 5. As was shown in Subsection 2, this im-
plies that the matrices F. (x, 1) are absolutely continuous in x and satisfy the
differential equation (2.4). To treat the general case it is sufficient to approx-
imate f(x) by functions S,(x) in L;(— oo, o) with the properties indicated
above. Then the associated U§”(x) will converge to Upy(x) as n— oo in the
norm of L¥*?(— oo, o), while F¢(x, ) will satisfy the differential equa-
tion (2.4),

pw

o A)—( 03+U‘”)(x))F"’(x ). (2.113)

For fixed A these converge to F. (x, A) in the norm of C?**?(— o0, ). Since
differentiation is a closed operator, F. (x, 1) are absolutely continuous and
satisfy the auxiliary linear equation (2.4).

So we have proved all the assertions indexed 1-4 at the beginning of this
section. Here we shall add several comments.
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1. Everything was discussed in a most general setting assuming y(x),
W(x) are in L;(— o, o) and b(A1) is the Fourier transform of an absolutely
integrable function. The Riemann problem and the relationship between
b(1) and w(x), w(x) can also be investigated in other functional classes. In
particular, the simplest case here is when b(1) is of Schwartz type. Then
w(x), w(x) prove to be of Schwartz type, too.

2. The functions b(1), b(1) and the set A;, 4;; ¥;, ¥, /=1, ..., n, are inde-
pendent input data for the Riemann problem. Therefore we may consider
the situation when b(1), b(A) vanish identically, i.e. G(1) = I. In this case the
determination of the parameters of the Blaschke-Potapov matrix factors in
(2.28) reduces to solving a system of linear algebraic equations which will be
written in closed form and solved in § 5. The associated auxiliary linear
problem (2.4) is then called reflectionless because one of the transition coef-
ficients, b(1), vanishes and the other, a(l), is a product of elementary
Blaschke factors. The functions y(x), y(x) in this case provide pure soliton
solutions of the NS equation which will be discussed at length in § 5.

This completes our analysis of the Riemann problem in the rapidly de-
creasing case. In the next section we shall consider its implications for the
NS model.

§ 3. Application of the Inverse Scattering Problem to the
NS Model

The investigation of the Riemann problem in § 2 allows us to solve the
inverse problem in the rapidly decreasing case, i. e. to give an explicit proce-
dure for inverting the mapping

T (W), §(x) > (0, bA); A 4y v, Tjp =1, ..., 1) 3.1

from w(x), y(x) to the transition coefficients and discrete spectrum of the
auxiliary linear problem

dF = U(x,A)F. 3.2)
dx

In fact, the results of §§ 1.5-1.6 show that 5% maps the functions y(x),
(x) belonging to L,(— oo, ) into the functions b(1), b(1) belonging to R,,
the ring of Fourier transforms of functions in L,(— o, =) (see § 1.6). The
discrete spectrum comes into play only if # <0, and then the condition (4)
from § 1.6 is assumed; it implies that b(1) is subject to an additional con-
straint,
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bA)I<1 (3.3)

for all A, and the A, are pairwise distinct and ImA4;>0. Also, none of the y;,
j=1,...,n, vanishes. Within these classes the mapping & is one-to-one.

Indeed, the initial data of the Riemann problem (see the end of § 1) are
parametrized by the data on the right hand side of (3.1). The analysis of the
Riemann problem in § 2 shows that w(x), ¥(x) defined by (2.66) give rise to
these data as transition coefficients and discrete eigenvalues of the auxiliary
linear problem. Technically, the inversion of &7 is based on the matrix
Wiener-Hopf equation with the x-dependence of a special form as described
in § 2.

The mapping .&# has an inverse in other functional classes as well. For
instance, % may be restricted to the phase space .#; of the NS model
consisting of functions (y(x), y/(x)) in Schwartz space. Then b(1), b(1) are
also in Schwartz space and & is one-to-one. In Chapter II1 we shall see
that both & and &7 ! are differentiable mappings in these classes.

Let us now use this information for a complete description of the NS
dynamics in the rapidly decreasing case. From § 1.7 we know that if a com-
plex-valued function y(x, ) satisfies the initial-value problem

81// Py

8! ax?

+2xlyly, 3.4

W, Oi—o=wx), (3.5)

then the dynamics of the transition coefficients and discrete spectrum for
the auxiliary linear problem with the potential

U(x, tl)———+f(w(x Ho, +y(x,Ho_) (3.6)

is given by

b, )=e~"*'b(A);  A()=1;,

—iA2t

yi(y=e "'y, j=1,...,n. 3.7)
Here b(A), 4; and y; result from the initial data, y(x), of (3.4)-(3.5) by apply-
ing the mapping 5.

Now we will prove the converse, i.e. given (3.7), the function y(x, t) result-
ing from the data in (3.7) via & ~' satisfies the NS equation. We shall as-
sume b(A) to be a Schwartz function because the dynamics (3.7) leaves the
Schwartz space invariant.

For the proof consider the Riemann problem (2.1)
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G, t,A)=G.(x,1,A)G_(x,1,1) (3.8)
where the dependence on ¢ is also taken into account. By (3.7) we have

G(x,t, A)=E~\(t, A9 G(x, ) E(t,\?), (3.9)

A%t
where E(t, A*)=exp {2— 0'3} has already occurred more then once. For
i

x# <0 there are additional relations due to the presence of zeros,
ImG, (x,t,4)=N{"(x, 1), KerG_(x,1, 1)=N{"(x, 0, (3.10)
where

NP (x, )=E~'t,ADN(x), NO@H=E 'L, ADN (),

. 3.11)
j=1,...,n.

By the results of § 2, the Riemann problem (3.9)-(3.10) is uniquely solvable
in the Schwartz class for each x and .
Let F. (x,t, 1) be defined by

Fo(x,t,))=G3'(x, t, ) E(x, ) E~'(t,A%), (3.12)
F_(x,t,))=G_(x, t, ))E(x, ))E~'(t, A?). (3.13)

In § 2 we have shown that, for ¢ fixed, F.(x,t A) satisfy the differential
equation (3.2) of the auxiliary linear problem. Let us show that they also
satisfy a differential equation with respect to ¢ for a fixed x. The Wiener-
Hopf equation (2.53) depending on ¢ implies that they are differentiable
with respect to t.

To derive the desired equation in ¢ (as in § 2 for the equation in x) we
rewrite (3.9) in the form '

F_(x,t,A)=F,(x,, ) G(A), (3.14)

which gives

%F_(x, LAFZ'(x, t,A) = %F+(x, LAFI'(x, ,A). (3.15)

By virtue of (3.11), the subspaces ImF3'(x,t,4;) and KerF_(x, ¢, 4;) de-
pend neither on x nor on ¢z The same argument as in § 2, Subsection 2,

. OF. . . .
shows that the functions —at__ (x,t,A)F1'(x, t,A) are non-singular in their
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respective half-planes and hence, by (3.15), give rise to an entire function
of . To analyze it we will use, following § 2, the integral representation

F_(x,t,A)= (I+ ojo D_(x,t, s)e“"“ds) Ex, )VE~'(t,A> (3.16)
0

with the resulting asymptotic behaviour

F_(x,t,/l)=<1+—‘p‘(z{”0) %‘9 (t0)+0(w3))
x E(r, ) E-\(t, 42), 3.17)

as |Al— e, ImA<0. Differentiation with respect to ¢ gives

a——1(x LAFZ'(x, ,A)=V_(x, tl)+0(w) (3.18)
where
V_(x,t,)=A*V,+ AV, + V,, 3.19)
with
V,= % , Vikx,n= % [@_(x,¢0), 03]= — Us(x, ¥ (3.20)

(see (2.51)) and
Vo(x, 8) = : [0'3, 9P (x, ¢, 0)] + : [P_(x,¢,0),05]D_(x,2,0). (3.21)
2 as 2

We shall now express Vy(x, ) in terms of Uy(x, f). Notice that the differ-
ential equation (3.2) yields an infinite sequence of identities involving
@_(x,t,5) and its derivatives with respect to x and s for s=0. In fact, suc-
cessive integration by parts in (3.16) and differentiation with respect to x
give the following asymptotic expansion:

F,(x, 0

oA~ 3.22
G towT), 6

oF_ . Ao, o
oy G BAFZ 60 = =2+ Uo(x) + z

as {Al— oo, ImA <0 (cf. § 2). In particular, we have
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1 o0 _
Fl (x’ t) = _2— ([0-33 7 (xa A 0)]
oD _
+[@_(x,1,0),05]D_(x,1,0) + 2—8;_ (x,1,0)). (3.23)
On the other hand, from (3.2) it follows that the coefficients F,(x, f) vanish

F,(x,)=0, n=1,2,... (3.24)

The first of these identities implies that Vy(x, ¢) can be expressed as

Vo(x, )= —i 6P (x,1,0). (3.25)
ox

oD _ . .
(x, t, 0) coincides with
ox

03. To find the diagonal part, consider (3.24) for n=1 and split

By virtue of (3.20), the off-diagonal part of
oUs(x, 1)
ox
off its diagonal part. From (3.20) and (3.23) we deduce that it equals
—0;3 Uj(x, £), so finally we obtain

3U0(x’ t) o
— " 03.

Vo(x, )=ios Ud(x, ) +i
ox

(3.26)

By comparing (3.20) and (3.26) with (1.2.7) we see that V_(x, t, 1) coin-
cides with the matrix V(x, ¢, A) from § 1.2

V_(x,t,\)=V(x,1,1). (3.27)

In a similar manner, we find the asymptotic behaviour of F, (x,t,1) as
[Al= oo, ImA >0,

aFt Y x, t, )F7'(x, t, D)=V, (x,t,1)+ 0 (i) (3.28)

1Al

where V (x, t, 1) has the form (3.19). The Liouville theorem then shows that
V. (x,t,A) coincides with V_(x, t,A)

Vi, t, )=V_(x,t,)=V(x,t,1), (3.29)

and F. (x, t, 1) satisfy the required differential equation
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‘?Ft 2 (x, t,A)=V(x, t,A)Fs(x,1,1). (3.30)

Combined with the differential equation (3.2) this implies that the con-
nection (U(x, t, 1), V(x, t, 1)) satisfies the zero curvature condition (1.2.10)

oU oV
———+I[U, V]=0. 3.31
ot e TGV (3.31)

Thus, starting with the Riemann problem (3.9)-(3.10) we have defined a
connection (U(x, t,1), V(x, t,A)) of the form (1.2.3)-(1.2.8) satisfying the zero
curvature condition. It follows that w(x, f) is indeed a solution of the NS
equation. The above discussion also proves the global unique solvability of
the initial-value problem (3.4)-(3.5) for the NS model in the Schwartz class (if
%<0 the condition (4) is assumed as well).

It is now clear that &% is a nonlinear change of variables linearizing the
NS equation.

The method for solving the initial value problem for the NS equation
can be presented as a commutative diagram

W), 7)) = A, 6OY; 4 1y 7 7)
T T, (3.32)
W, 1), 5(x, 1) B 1, 5@, 1 Ay A 7, (1), 7))

Here 7, is the t-displacement according to (3.4) and 7, is the ¢-displacement
given explicitly by (3.7).

It is instructive to look at the linear approximation for 5% as x—0, when
the NS equation goes into the linear Schrédinger equation

v _ 2y

ot ox*’

(3.33)

For that purpose consider the asymptotic behaviour of the transition coeffi-
cients a(1) and b(A) as x—0.

The integral equation (I.5.37) for the Jost solution T_(x, 1) yields, as
%—»0,

T_ e A=E )+ | EG=y) U)E(n, Ady+0(x).  (3.34)
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Letting x— + o in this formula gives
a)=1+0(x), bA)=yx [ yx)e *dx+0(lxl). (3.35)

So the discrete spectrum disappears and & turns into the Fourier transform.
The time dynamics of b(1) given by (3.7) is obviously the same as that of the
Fourier transform of y(x, t) subject to (3.33).

In the general case, x #0, this argument allows us to interprete & as a
nonlinear analogue of the Fourier transform. The scheme for integrating the
NS equation via the inverse scattering method (diagram (3.32)) becomes a
nonlinear analogue of the Fourier method.

§ 4. Relationship Between the Riemann Problem Method
and the Gelfand-Levitan-Marchenko Integral Equations
Formulation

This section is of technical nature. It discusses an alternative, more tra-
ditional method for solving the inverse problem, based on the Gelfand-
Levitan-Marchenko equation, and establishes its relation to the Riemann
problem.

In contrast with the latter method, based on the typical factorization
problem for matrix-valued functions (2.1), the Gelfand-Levitan-Marchenko
method employs a special conjugation problem for vector-valued analytic func-
tions suggested by the relation (1.3) for the Jost solutions,

T_(x,A)=T.(x,A)TQA). @.1)

Recall that T'(1) has the form

a(l) 315(/1)) “2)

TA) =
@=(sy
with £=signx.

To formulate the problem let us write down the relation (4.1) for the first
column, TW(x, 1), of T_(x,A) in the form

—1— TOM,A)=TPx,A)+r(A) TP (x,A), 4.3)
aid)

where
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b(A
r) = % : (4.4)

The left hand side of (4.3) has an analytic continuation into the upper half
A-plane with the exception of A=4;, j=1,..., n, where it has simple poles.
By (1.6.20),

TOMx,A)=yT?Px, 1), 4.5)
we obtain
1
res P TOMX,M)|1o2,=¢ TP (x, 1), (4.6)
with
Yi .
¢ = — , Jj=1,...,n, 4.7
! a)

the dot indicating the derivative with respect to A. Then, asymptotically as

[A]—> o0,

. T _ (1
@T(_’(x,l)e _(0)+o(1)- (4.8)

The first term, T¢(x, A), on the right hand side of (4.3) is analytic in the
lower half-plane and has there the asymptotic behaviour

ilx

TP, e > = ((1)) +o(1), (4.9)

as |Al— co. The column TP (x, A) in the second term is analytic in the upper
haif-plane and, asymptotically as |[A|— oo,

TP (x, A)e’%‘x = ((1)) +0o(1). (4.10)

The columns TP (x, A) and T‘P(x, A) are related to each other by the invo-
lution (1.5.30),

T(-ll—)(x’ ):)=6-T(42—)(x9 A’)s (4]1)

where 6=0, for x>0 and 6=io, for x<0.
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Equation (4.3) combined with (4.6) and (4.8)-(4.11) constitutes the conjuga-
tion problem referred to above. Given a function r(1) on the real line and
parameters A, ¢, j=1,...,n, it allows to recover the columns TP(x, 1),

1
T?(x,A) and @ TV(x, 1) with the necessary analyticity properties.
a

Like the Riemann problem, this conjugation problem can be reduced to

a system of integral equations. To derive it consider the representations

iax % _idy
TP, )= ((1))8_ 2+ I F+(x,y)<(1))e 2 dy, (4.12)
@ 0\ %= 7 0\ &
TR )=(, e +jr+(x,y) ety (4.13)

. . . 1\ -iAx .
and insert them into (4.3). Substracting (0) e ? from both sides of the re-

sulting equation and performing Fourier transform with respect to A we ob-
tain

I, (x,) ((1)) +w(x+y)((1)) + [ r,(, s)((l))a)(s+y)ds=0 (4.14)

for y>x, where

a)(x)—a _L r(e d/l+2—i ;cje . (4.15)
By using the involution (I.5.18)
f‘+(x’y)=o'r+(xs}’)0', (416)
equation (4.14) can be written in matrix form,
i)+ 2x+0+ | I'i(x,5)2(+y)ds=0 4.17)
for y >x with
Qx)=0x)o_+ed(x)o., . (4.18)

The integral equation (4.17) for the unknown matrix I, (x, y) is called
the Gelfand-Levitan-Marchenko equation from the right.
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In a similar manner, (4.1) gives an equation for T?(x, 1),

i TP, )=rA)TOx, 1)+ TP(x, 1), (4.19)
a(l)
with i
IR 10
FA)=—¢ aQ)’ (4.20)

which leads to the Gelfand-Levitan-Marchenko equation from the left

I_(,p)+Q2(x+y)+ )j I_(x,5)Q2(s+y)ds=0 4.21)

for x>y. Here

Qx)=edx)o_+d(x)0,, 4.22)
_ 1 © _ _MTx 1 n B _illzjx
a)(x)=a_wr(l)e d,1+§; Ge 2, (4.23)
and
1
G=——, j=1,...,n. (4.24)
T yaly)

The kernel I"_ (x, y) occurs in the integral representation (I1.5.10)
T_(x,))=Ex,)+ [ I'-(x,y)E(y,)dy. (4.25)

The analytical tools used for studying the Wiener-Hopf equation apply
to (4.17) and (4.21) as well. A characteristic difference is that now we are
dealing with compact integral operators.

In the general case, let y(x), Y (x) be absolutely integrable over the whole
line. Since a(1)#0 for A real, Wiener’s theorem implies that the function

ilx

Fe)= | r(d)e ? di (4.26)

is absolutely integrable on the whole line. The contribution into @(x) from
the discrete spectrum is rapidly decaying as t— + o (see (4.15)). Therefore
the well-known theorem of functional analysis yields that the integral
operator £, on L{*?(x, o) defined by
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Q.f(s)= T F() Qs +s)ds’ @.27)
is compact and its norm vanishes as x— + c. In a similar way,

Q. f(s)= _L f)Q(s+5")ds' (4.28)

is a compact operator on L{?*?(— o,x) with the norm vanishing as
X— — oo,

The method for solving the inverse problem through the Gelfand-Levi-
tan-Marchenko integral equations (4.17) and (4.21) is based on the following
fact.

Suppose we are given functions r(A), F(A) in the ring R, and, if e=—1, a
set of pairwise distinct A;, ImA;>0, and of ¢;, ¢;, j=1, ..., n, subject to:

1. For all real A

IrA)=1FA)I<1 (4.29)
fore=1 and
[r(A) =F(A)l < o (4.30)

fore=—1.
2. The consistency relations

A a@) o1

fy - fay YT @) @3h
hold,j=1,...,n, where a(l) is given by (cf. (1.6.22) and (1.6.23))
A=A 1 7 log(1—elr(p)?
A)= Jexpl— [ —r—— R gyt 432
a@ 177 exP[zm' _[o A—p+io (432)

Given these data, let £2(x) and £(x) be defined by (4.15), (4.18) and
(4.22), (4.23), (4.24), respectively.

Then we claim that

1. For each x the Gelfand-Levitan-Marchenko integral equations (4.17)
and (4.21) have unique solutions, I'.(x, ), in L?*?(x, o) or L?*?(— o, x),
respectively.

2. The matrices T, (x,A) resulting from these solutions via (4.12), (4.13)
and (4.25) satisfy the involution (cf. (1.5.19))

T.(x,A)=0T.(x,A\)c (4.33)
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and the differential equations

i Ti (x’ j') = (AL.-3 + Ugi)(x)) Ti (x, A’) ’ (434)
dx 2i

where U§*)(x) are given by (cf. (1.5.32) and (1.5.33))
U™ (x)= £(03 1+ (x, X) 03— '+ (x, X)) (4.35)

and are absolutely integrable near + oo, respectively.
3. The consistency relation

UsH (x)=U§™ (x) = Uo(x) (4.36)

holds, so that Uy(x) is in L?**?(— o0, o) and has the form (2.5).

4. The transition coefficients for the continuous spectrum of the auxiliary
linear problem (3.2) with the potential Uy(x) coincide with a(l) and
b(A)=a(A)r(A), whereas the discrete spectrum consists of the A;, A; with the
transition coefficients y;, y; where y;=da(A))c;, j=1,...,n.

Notice that if the Gelfand-Levitan-Marchenko method is used for solv-
ing the inverse problem, both equations from the right (4.17) and from the
left (4.21) are to be considered. The former serves to determine the behav-
iour of U§*)(x) near + oo whilst the latter that of U§~’(x) near — co. The
fact that U§*(x) coincides with U§~’(x) needs a special demonstration.

Instead of giving an independent proof of the assertions 1-4 we will
show how to derive the Gelfand-Levitan-Marchenko equations from the
Wiener-Hopf equation discussed in § 2. In particular, this will imply the
above assertions. For simplicity we shall concentrate on the regular Rie-
mann problem where no discrete spectrum is present.

Recall that the Wiener-Hopf equation has the form (see § 2)

Q. (x,5)+D(x, 5)+ :f: Q. (x, YO, s —s')ds'=0 4.37)
for 5>0 with
D(x, s) = (_ ﬁ(g_x) eB( 'Os_x)) (4.38)
and
Bx) = % _Tm b(A)e—*dj.. (4.39)

Putting
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Gi'(x,A)=I+ | Q2,(x,s)e**ds (4.40)
0
we find that G ;'(x, A) is composed of the columns of the Jost solutions,

1
Gy, 4) = a0) (TPCx, 1), TP (x, D)) E~'(x, 1), (4.41)
a
of the auxiliary linear problem (3.2) with the potential
Uo(x) =303, 2. (x, 0)]. (4.42)
The remaining columns of the Jost solutions make up a matrix G_(x, 1),

G_(x,A)=(TP(x,A), T?(x,A)) E~"(x, 1), (4.43)

which can be represented as

G_(x,A)=I+ | @_(x,5)e **ds, (4.44)
0
with
D_(x,5)=D(x, —s)+ [ 2, (x,s)D(x, —s—s")ds". (4.45)
0
Recall that, according to the general Gohberg-Krein theory, the Wiener-

Hopf system (4.37) is Fredholm, i.e. the operator I+ ® on the space
L$*2(0, «) involved in (4.37) can be written as

I+®=A+K, (4.46)

where A has a bounded inverse and K is compact. The equation

f+®f=g 4.47)
becomes
f+A 'Kf=A"yg, (4.48)

with A ="K compact. The transformation of (4.47) into (4.48) is sometimes
called regularization.
It will be shown that the Gelfand-Levitan-Marchenko equations are ob-
tained from the Wiener-Hopf equation through a particular regularization.
Denote the matrix elements of 2, (x, 5) by
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(4.49)

Qv 5)= (Ax(s) Bx(s))'

Ci(s) Di(s)

The specific off-diagonal form of the matrix kernel @(x, s) allows us to re-
duce (4.37) to two independent integral equations for B,(s) and C,(s) (see

§2)

B.(s)+ef(—s—x)+¢ I ke(s, s") B(s")ds' =0 (4.50)

and
C.(s)—ps—x)+¢ Zj: L(s,s)C.(s)ds'=0, 4.51)

with
ke(s,)= | Blu=s)Bu—s)du, @.52)
Ls.5)= [ Bls—1) B(s'~w)du. 4.53)

Consider, for definiteness, (4.50). Denoting S (s)=f(—x—s) we regard
B, (s) and the free term, £f,.(s), as elements of L,(0, «) and write (4.50) as

(I+¢K,)B. +¢&B. =0, (4.54)
where K, is an integral operator with the kernel k. (s, s"). We have (see § 2)
I+eK.,=1+¢K+R,, (4.55)

where K is an integral operator with the kernel k(s —s),
k(s)= _Tw Bu+s)f(u)du, (4.56)
and the kernel r.(s, s") of the operator R, is
re(s,s)= —¢ __L, Bu—s") flu—s)du. 4.57)

The operator I+¢K has a unique inverse since its inversion problem
amounts to the scalar Riemann problem for the function
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1+e | k(s)e™ds=1+elb@)P=a,A)a_A). (4.58)

Here a.(A)=a(l) and a_(1)=a (A) with a(1) given by (2.6) but without the
Blaschke factors (see § 2). Now R, is a compact operator on L,(0, «). To
see this it is enough to verify that the functions h(s) = R, f(s) are equicontin-

uous in the mean and [ |h(s)lds is small for large 4 uniformly with respect

A
to f(s) from a bounded set in L,(0, ). There are elementary estimates

T lh(s+8)—h(s)lds

=°(j: Zj: __[ (B —5—8)—P(u—3)) Bu—s")f(s"duds'| ds
< [ 1Bwldu [ 17s)ds' | 1B(s+8)—B(s)lds 4.59)

and

T h(s)lds = T ds

O(f: _fx Bu—s)B(u—s")f(s")duds’

— oo

x—

< T 1aldu T1fe)ds | 1B@)lds,  (4.60)
— oo 0

— oo

which imply compactness.
A regularization of (4.54) is given by

B.+(I1+¢K) (R, B, +£f.)=0. 4.61)
We will show that (4.61) actually coincides with the Gelfand-Levitan-Mar-
chenko equation.

To find an explicit expression for (I+£K)~' we use a standard method
for solving the scalar Wiener-Hopf equation

(T+eK) f(s)=g(s), s=0. (4.62)

Extend the inhomogeneous term g(x) to be zero for s <0 and take the Fou-
rier transform,

fy= _°f fs)e*ds, ()= :[: g(s)e* ds. (4.63)



§ 4. Gelfand-Levitan-Marchenko Equations 123

Equation (4.62) becomes

FA) +elb@)fL W)= (4.64)
or
(I+elbW)) fr D)= —f- (), (4.65)
where
Fe()= Zf(is)e*"“ds, F)=F.0)+F-@). (4.66)

By virtue of (4.58) this gives

_ L g (4%
foty= 1 (29). (467)

where the projection operator /1, introduced in § 2 is determined by

m.fr=f., MH,f_=0. (4.68)

Remark that by this property of /1., an arbitrary absolutely integrable
extention of g(s) to the half-line s<0 may be chosen (not necessarily the
ZEero one).

Finally, the solution of (4.62) has the form

Ss) = I fr@ye=™dr,  s>0, (4.69)

with f, (4) given by (4.67). This leads to an explicit expression for
(I+eK)™ L

The formulae obtained will serve to modify (4.61). Introducing the Fou-
rier transform of B.(s),

B.(s)=— j B.(Me *dA, (4.70)
we write (4.61) as
a)B, V)+11, (8 ZS; R R (/1) ']'; :j: (s, s") B(s) e** ds’ ds)

(4 71)
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where the natural extension of B.(s) and r.(s, s") over the negative s is taken,
which is possible according to the above remark. By using (4.57) the last

term in (4.71) is easily reduced to

[ [ rs,s)B.(s)e**ds'ds
0

— oo

oo

=—gh(l)e "~ | (j) Bu—x—s)B.(s)e** duds
= —cbM)e~*I_(b(A) B, (R)e™),

where IT_ is a projection operator complementary to 1.,

n_=1-1,.
Then (4.71) becomes

a()B, W) +ell, (Fh)e** —i(A)e =
xI1_(a(}) B+ (A)r(A)e**) =0,

with r(1) defined by (4.4). Letting

co

1 .
o) =5~ | al)B,(he > d
and taking the inverse Fourier transform we find from (4.74)
O (5)+eW(—x—5)—¢ | _j w(u—s)ywu—s')-@.(s)duds'=0,
0 —oo

where

wx) = % _T r(A)e **dA.

Let
@ (5)=2¢(x,x+25)

and recall that w(x)=2w(—2x), so that finally (4.76) becomes

o, y)+eax+y)—¢e | | o(x,2)0(z+2z) o' +y)dz'dz=0, y=>x.

(4.72)

4.73)

(4.74)

(4.75)

s>0,
(4.76)

4.77)

(4.78)

(4.79)
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This is the same equation as the one which results from the Gelfand-Levi-
tan-Marchenko system (4.17) for the first row of I, (x, y) when (I". (x, y)1:
is reduced out.

We also point out that the identification of ¢(x, y) with the matrix ele-
ment £f, (x, y) =4 (x, ¥))12 (see (1.5.20)) follows directly from comparing
(4.13), (4.40), (4.41), (4.49), (4.70) and (4.75).

To derive an equation relating the matrix element (I, (x, y))1; =a 4 (x, »)
with B, (x, y) (see (1.5.20)) we consider the expression (4.45) for @ _(x, s) in
terms of 2, (x, 5). Denote a,(s)=(P_ (x, 5))11; then (4.45) yields

a.(s)=— | B(—s—s"—x)B.(s")ds’, (4.80)
0
for s >0, whence immediately

a,.(s)=— T O (sYW(—s—s"—x)ds’. (4.81)
0

Letting
a.()=2a,(x,x+2s) (4.82)

and using (4.81) we have
ay () +& [ Bi(x,2)0(z+y)dz=0, (4.83)

for y = x. This equation coincides with the one relating the matrix elements of
. . . 1 - .
the first row of I, (x, y). Note that the identification of > o, (y_sz) with

the matrix element (/" (x, ¥))11 is also a direct consequence of (4.12), (4.43)
and (4.44).

Thus we have shown that (4.79), (4.83) together with the involution (4.16)
are equivalent to (4.17), the Gelfand-Levitan-Marchenko equation from the
right.

In a similar manner, (4.51) leads to (4.21), the Gelfand-Levitan-Mar-
chenko equation from the left.

So we have seen how the Wiener-Hopf equation turns into the Gelfand-
Levitan-Marchenko equations upon a special regularization. We conclude
with several comments comparing the two approaches to the inverse prob-
lem.

1. The Riemann problem starts from a single independent function,
b(4), whose Fourier transform behaves as w(x) for all x. On the other hand,
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the Gelfand-Levitan-Marchenko approach deals with two dependent func-
tions, w(x) and @(x), behaving as y(x) near + o0 or — oo, respectively.

2. The initial data b(4), 4;, ¥;, j=1,...,n, are mutually independent
whereas in the Gelfand-Levitan-Marchenko approach the eigenvalues A; of
the discrete spectrum cannot vary without varying at least one of the func-
tions r(A) or F(1).

3. In contrast to the Wiener-Hopf equation the Gelfand-Levitan-Mar-
chenko integral equations are associated with compact operators.

4. The derivation of the auxiliary linear differential equation in the Rie-
mann problem framework proceeds in a most simple way and is local in x.
In the Gelfand-Levitan-Marchenko approach locality is lost and one is
faced with an additional problem of identifying U§*’(x) with U§™(x).

This concludes our comparison of the two approaches to solving the in-
verse problem. In the next section an explicit solution of the inverse prob-
lem will be presented in an important special case when b(4) vanishes. This
will give us solitons for the NS model.

§ 5. The Rapidly Decreasing Case. Soliton Solutions

In this section we shall discuss an important special case of the inverse
problem when it can be solved in closed form. Namely, we shall consider the
case when

b(A)=0 (.1

for all A, so that the Riemann factorization problem trivially reduces to de-
termining the matrix Blaschke-Potapov factors. The latter problem makes
sense only for ¥ <0, which will be assumed in what follows.

As indicated in § 1, the ratio of the transition coefficients, Z—g%, plays
the role of reflection coefficient in the scattering theory for the auxiliary
linear problem. Therefore, in the case (5.1) the problem itself and everything
related with it is referred to as reflectionless.

Now we proceed to the inverse problem. We begin with a single pair of
zeros Ag, Lo, ImAy>0, and coefficients o, 7o, Yo# 0. The solution of the Rie-
mann problem is

G,(x,))=B(x,A), G_(x,A)=B~'(x,]), (5.2)

(see (2.18)) where B(x, A) is the matrix Blaschke-Potapov factor,
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Y= by, (5.3)

Bx,)=I+ )

and P(x) is an orthogonal projection operator,

P(x)

1 (H’o(X)l2 }70(X)). (5.4)

T p@E \ e 1

Here yo(x)=yoe™*°* (see (2.22), (2.24) and (2.27)). The matrix Us(x) of the
form (2.5),

Uo(x) =y (W?x) “7(()")), (5.5)

occurring in the auxiliary linear problem (2.4) is given by (2.105),
Uo(x)=3[03, m(x)], (3.6

where 7(x) is a coefficient in the expansion

B(x,\)=1I + ”Zlﬁ +0 (#) (5.7

and has the form (see (2.106), (2.107))

do—A
7(x) = %

P(x). (5.8)

As a result, there is the following simple expression for y(x):

_ 2Imie . Yo(x)
W(x) - 1/7? 1+!}/0(x)|2 *

5.9)

Formula (5.9) provides the simplest example of a reflectionless function
y(x). It is specified by two arbitrary complex numbers 1o, 7, subject to
ImA¢>0, y0#0, is infinitely differentiable and decays exponentially as
|x|— oo.

Next we shall discuss the evolution of these initial data under the NS
equation. The formulae (3.7) for the dynamics of the transition coefficients
imply that (5.1) remains invariant and

Yo(x, ) =e ="' yo(x). (5.10)
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It follows that y(x, f), which is a solution of the NS equation, remains re-
flectionless and, as before, is given by a formula such as (5.9),

_ 2ImA, Yol(x, )

x,t . 5.11
VO T T et OF -1
With the definition
A= Inlljl", u=2Imlo, v=2Relo,
1 (5.12)
*o= i loglyol, @o=argyo,
(5.11) may be written as
vx W—-v®) =n
expyit@o + > + a =5
wix, )=A (5.13)

The expression (5.13) shows that y(x, t) is a smooth function localized
along the line

x()=xo+01 (5.14)

50 that its center moves with constant velocity v. Besides, the solution oscillates
2 2
u’—v

both in space and time with frequencies g and , respectively. The pa-

rameters A, xo and @, play the role of amplitude, initial center and initial
phase, respectively.

We see that the NS solution (5.13) is a solitary wave with the following
properties:

1. Propagation does not change its shape.

2. It has finite energy and, moreover, all the integrals of the motion are
finite.

Following the established tradition, solutions with the above properties
will be called solitons in the broad sense of the word. In the physics literature
the term “‘soliton” sometimes refers to a general particle-like solution, i.e. a
localized solution of finite energy.

So, the function y(x, t) given by (5.13) will be called a soliton solution of
the NS equation in the rapidly decreasing case. It describes the free motion of
a soliton.
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Notice that the existence of solitons is due to the nonlinear term in the
NS equation: there are no solitons in the linear limit #—0. In fact, consider
the solution w(x, r) as x—0. For the limit to be finite it is necessary that
Yo=1* Vo, and then

Wo(x, H)=1lim y(x, 1) =coero¥ A5t (5.15)
x—0

with ¢y =27, ImA,. Obviously, wo(x, f) satisfies the linear Schrodinger equa-
tion and has property 1, but both its energy and momentum are infinite.
Furthermore, the general solution ¥ (x, t) of the linear Schrodinger equation
is given by the Fourier integral

w(x, 0= T e A o) dA. (5.16)

In order that its energy and momentum be finite, ¢ (1) must be sufficiently
smooth and decaying. However, the method of stationary phase yields for

1 .
such ¢(A) that (x, f) decays as ]/_ITT along every direction x—uvt, as |t|— .

Therefore, property 1 is violated here. We may thus affirm that soliton is an
essentially nonlinear phenomenon.

Let us now discuss the general reflectionless case when there are n pairs
of zeros, 4;,1;, ImA;>0, and parameters ¥;, ¥;, j=1, ..., n. The solution of
the associated Riemann problem is

G, A)=1(x,1), G_(x,A)=1""(x,1), (5.17)

where [1(x, A) is an ordered product of matrix Blaschke-Potapov factors,

M(x,2) = H B,(x, 1), (5.18)
A=A
Bi(x,2) =1+ o P(x) (5.19)

(see (2.28)). The P;(x) are the orthogonal projection operators uniquely de-
termined by the y;, y; via the relations (1.49) for the subspaces Im/I(x, 4;)
and KerlT~'(x, ), j=1, ..., n. Using the generalized unitarity property

IT*(x, \)=IT""(x, 1), (5.20)

we can write (1.49) as
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17'(x, 4) §=11%(x, 1) §=0, (5:21)
where
&) = (y’( )) (5.22)
is a column-vector with y;(x)=e"%"y;, j .

As was explained in § 2, (5.21) allows to find the projection operators
Pi(%), ..., P,(x) recursively. As before, Uy(x) is given by (5.6) where 7(x) is a
coefficient in the asymptotic expansion

A, A) =1+ "”/1(") +0 (|/1|2> (5.23)
More explicitly,
12 -
n(x) = 7 _ZI A —4) Pi(x). (5.24)

Now we shall describe an alternative method for determining I7(x, A). It
consists in resolving IT~'(x, A) into partial fractions

A; (x)

o '(x,\)=I+ Z (5.25)

and finding the matrix coefficients 4;(x). Equations (5.20) and (5.21) show
that 4,(x) can be represented as

4;(x)=z;(x) {F (%), (5.26)
where z;(x)= (p ()
q;(x)

column-vector &(x), j=1, ..., n. It follows in particular that all the 4;(x) are
rank one matrices.

For the proof let us consider the following expansions in the neighbour-
hood of A=4; (cf. § 2):

) and £*(x)=(7;(x), 1) is a row-vector conjugate to the

4;(x)

-1
mm'(x,A) = T )

+0(1) (5.27)

and
II(x,A)=B;(x)+ 0(1 -4}, (5.28)
so that
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4;(x) B;(x) = B;(x)4,(x)=0. (5-29)

Together with (1.49),

Im B, (x) = { ( _ ;A(x))} , (5.30)

this shows that 4;(x) has rank one and can be represented as in (5.26).

Equations (5.21) allow us to determine the unknown vectors z;(x) in-
volved in (5.26). Indeed, substituting (5.26) into (5.25) and using (5.21) we
get a system of linear algebraic equations

§,(x)+Z 5"(")5’(") Z(®)=0, j=1,...,n. (5.31)

The inner products &} &; are

EEX) &) =14yi(x) 7;(x) (5.32)

so that (5.31) breaks up into two disjoint systems for the first and second
vector components of the z;(x). In particular, for the first components p;(x)
we have

kZ My X)p(x)=-y;(x), Jj=1,...,n, (5:33)
=1
where
M) = FLO% (5.34)
A —

The matrix 7(x) can be expressed in terms of the 4;(x) as
m(x)=i _i} A;(x), (5.35
iz
whence by virtue of (5.6), (5.26) and (5.35) we have
V)= 5 0. (536)

Let M(x) be the n x n matrix with matrix elements M,-k(x) and let
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=l Y] (5-37)

Then Cramer’s rule gives the required expression for y(x):

_ i detM,(x)
y(x)= Vi ——detM(x) . (5.38)

We have derived general closed-form expressions for reflectionless func-
tions y(x), w(x). They depend on 2n complex parameters A;, y; satisfying
ImA;>0, 7;#0 and such that the 4; are pairwise distinct; y(x), y(x) are
Schwartz functions and, moreover, decay exponentially as |x|— oo.

In fact, y(x), y(x) are smooth (and, in particular, M(x) is non-degener-
ate) because the projection operators P;(x) are non-singular for all x, which
is easily verified by recursion. To show their exponential decay observe that
¥;(x)=0(e~"™**) as x— + oo so that the &;(x) approach the constant vector

((1)) with the same order. It then follows that

1 0

B(x,A) = 1 | HoE™, (5.39)
J
0 =1

with a= min {ImA;} so that y(x)=0(e ") as x— + c. The estimate
j=1....n
w(x)=0(e"") as x— — o follows from a relation similar to the previous

one,

ihy
B(x,A) = A=A +0(e%), (5.40)
0 1

which follows from the fact that y;(x)=0(e~'™**) as x— — o« and hence
1 1
&i(x) approach ( ) exponentially.
)7 0
Now let a reflectionless w(x) of the form (5.38) be taken as an initial
value for the NS equation. The solution y(x, #) is given by (5.38) upon re-
placing y;(x) by ¥;(x, f) as prescribed by (3.7):

the vectors

v, )=e"H'y(x), j=1,...,n. (5.41)
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The solution remains reflectionless. We will show that it corresponds to n in-
teracting solitons. Namely, we will show that generically y(x, t) can be ex-
pressed as a sum of one-soliton solutions

Ve D= X YD, 0+ 0@ "W). (5.42)

=1

Here w{*)(x, 1), j=1,...,n, are solitons with parameters 4;, v, x¥’ and
@4’ defined by (5.12) from the following data 4; and y{*:

y -

(+)__ J J

vit=v |<| e || Pt (5.43)
A — A A — Ak

(=) _— J j

YiT' =Y |<| AT || A (5.44)

with ¢=min |v; —v,|. “Generically” means here that all velocities v; are dis-
tinct. /*k

For the proof of (5.42)-(5.44) it is sufficient to show that y(x, ) ap-
proaches the one-soliton solution y{*(x, f) along the trajectory C; of a par-
ticular soliton,

X —v;t=const, (5.45)

and decays exponentially in all other directions as t— + .

This can be derived by examining the explicit formula (5.38). Instead of
doing so we shall outline a more simple and elegant method based on a
direct analysis of I1(x, t, 1).

Observe that each of the ;(x, 7) either decays or grows exponentially, as
t— t oo, along any direction except its own trajectory C,. In fact, (5.41)
yields

uj i 2 2
(co+(w—v)1) ZQRu;co+(u’+2vv, —v)1)
2 o i} 4 ito J J i
Pj(x, t)lx——vt=c0_e e Pj,

L (5.46)
j=1,...,n.

For the corresponding vectors & (x, f) this gives, along C;,

lim §k(x,t)=((1)), lim £ ’)—(1>, (5.47)

-t o i~ VX, 1) \0

if v, <v; and
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S(x, 1) (1)’

. 0
H+w e ) 0 lim &.(x, )= (l) , (5.48)

- — o0

if U > vj.
To determine the asymptotic behaviour of /I(x, ¢, A) along C; it is con-
venient to use, in contrast with (5.18), the ordered product

(x,t,A) = T Bi(x,t,A)B;(x,1,A), (5.49)
k=1

k#j

where the Blaschke-Potapov factor B (x, t, A) associated with a pair of zeros
A;, A; is shifted to the extreme right. Here each of the B, (x, t, A) for k+j has
asymptotlcally the form

depending on whether the asymptotic value of & (x, t) is proportional to

0 1 . . . .
1 or NE respectively. Indeed, computing successively the asymptotic

factors B{*'(A), k#j, k=1, ..., n, we obtain diagonal projection operators
and hence diagonal matrices B{*’(1) which leave invariant the subspaces

spanned by (‘1)) and ((]))

_ Therefore equations (5.21) reduce asymptotically to a single equation for
B{*)(1), the asymptotic value of B;(x, t,A) along C; as t— £ oo,

E}i)*(lj) £+ =0, (5.50)
where
()
() (?’11 ) (5.51)

and the y{* are given by (5.43), (5.44). To complete the proof of (5.42) it is
enough to observe that this argument also shows that w(x, t) decays expo-
nentially along every direction other than the trajectories C;, j=1,...,n, as
t— t oo,

The assertion proved above has a natural interpretation: the solution
W (x,t) in (5.42) describes the process of interaction of n solitons moving freely
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and going apart from each other for large positive or negative times. For that
reason y(x, t) is called an n-soliton solution.

The formulae obtained also allow a clear interpretation in terms of gen-
eral scattering theory. In contrast with what happens in the linear theory,
the one-soliton solution (5.13) is associated with a soliton particle, rather
than with a wave train. A soliton is characterized by its velocity v, the posi-
tion of its center of inertia x(f) and the internal motion parameters 4, @,. As
t— + oo, the n-soliton solution y(x, ) describes the free motion of n solitons
with parameters (v;, x§7’, 4;, 47’) given by (5.43), (5.44) and (5.12). It is
convenient to relable the solitons according to their velocities, so that
o0 >p;> ... >p,> — oo, Then, as t— — oo, their centers of inertia are sepa-
rated by large intervals of order aclt| where c= II:élII(l lv; —vl, and the quick-

J
est soliton is located on the left of all the others.

In this way, the asymptotic state associated with the n-soliton solution,
as t— — oo, reproduces the motion of n solitons separated in space and com-
ing together in the course of time. At finite times the picture of spatially
separated solitons breaks down and the n-soliton solution describes the in-
teraction of solitons. Finally, as — + o, the separated solitons reappear,
the quickest being on the right of all the others. So it has interacted with all
of them at finite times. A similar conclusion follows for all other solitons. In
particular, the distance between solitons increases with time.

The above picture is typical of scattering theory which deals with asymp-
totic states described in terms of free particles. Scattering may only change
the parameters of the particles and, possibly, their total number.

Here we encounter a very specific scattering process. Namely, the num-
ber of particles, their velocities and half of internal motion parameters - the
amplitudes - remain invariant. The only effect of scattering is a variation in
the centers of inertia and phases of internal motion. From (5.43), (5.44) and
(5.12) one can deduce a relationship between the parameters of the asymp-
totic motion:

xf]j-')=x87’+Ax0j, (087)=(0§)7)+A(00j, (5.52)
where
2 c L= = l-—ik)
Axg; = —— log |+ - log|-2—= 5.53
%= Tma, (k;. o rary k; Sy (5:53)
and

n

o _
A(p0,=2( Z arg (%_%)— Z arg (%))(modzn). (5.54)
i) 3 J

k=j+1 k=1
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It is characteristic that the increments in the coordinates xo; and phases
®o; are additively expressed through the two-particle increments

2 =4
Axg, = 1
or Imll og‘/‘l] —12 ’
2 i] —12
Axgy = — I
Y02 Im/lz og‘l] —12 ?
_ (5.55)
Aoy = 2ar, bl
(P01 gll —Az s
/f] —/‘Lz
APoy=—2
Po2 arg;t, 1

when v, >v,, with the interchange 1« 2 when v,>v,. The sum is taken over
all two-particle interactions of the given soliton with the others. This spe-
cific scattering property, when n-particle scattering reduces to that of two
particles, is commonly called factorization.

The factorization of scattering is sometimes included in the definition of
the soliton along with properties 1-2. In this case one usually refers to the
soliton in the narrow sense. However, in this book we shall only deal with
solitons in the narrow sense and so simply call them solitons. In the next
chapter we shall interprete the process of solitons scattering from the
Hamiltonian standpoint.

To conclude this section we point out that a generic situation, when all
velocities v; are distinct, is essential for interpreting the n-soliton solution in
terms of scattering theory. However, the solution itself obviously makes
sense even if two or more velocities coincide. In this case solitons with the
same velocity do not go apart but produce a bound state. In particular, a
two-soliton solution with v,=v,=0 is periodic in time with frequency
(ImA,)? —(ImA,)>

This observation also refers to the constraints on the initial parameters
A;,7; of the n-soliton solution. The algebraic formula (5.38) allows some of
the A, to coincide and even reach the real axis, and some of the y; to vanish.
Then the resulting w(x, f) may vanish or go out of the Schwartz class (for
instance, by developing a singularity); nevertheless, it will satisfy the NS
equation by virtue of the algebraic nature of (5.38). As we shall see in the
following chapter, these singular solutions are immaterial for the Hamil-
tonian interpretation of the NS model.
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§ 6. Solution of the Inverse Problem in the Case of Finite
Density. The Riemann Problem Method

In this section we begin the solution of the inverse problem under the
finite density boundary conditions. The problem is to recover the functions
w(x), w(x) from the transition coefficients a, (1), b, (1) and characteristics of
the discrete spectrum 4; and y;. We shall restrict our attention to the case
when y(x), w(x) take their boundary values, as x— + o, in the Schwartz
sense.

As in the rapidly decreasing case, there are two approaches to solving
the inverse problem, one based on the Riemann problem and the other on
the Gelfand-Levitan-Marchenko formalism.

This section outlines the first one based on the matrix Riemann problem.
Its natural formulation involves the Riemann surface /- of the function
k()=1A*—w? with a contour %, consisting of points (1, £) where ¢= + 1
and A lies in R,, (i.e. A is real and I1|>® - see § 1.8). The contour .57,
devides /™ into two pieces - the sheets /..

As in the rapidly decreasing case, we start with a formula relating the
Jost solutions,

T_(x,A)=T, (x,)) T,(A) (6.1)

(see (1.8.43)) where A is in R, and T,(1) is the reduced monodromy ma-
trix,

=[5 5.
The involutions (1.8.41)-(1.8.42) show that, for A in R,
T.(x,A—i0)=" (’1; 8 6\ Tz, A+i0)0 6.3)
and
T,A—-i0)=03T,(A+i0)0;. 6.4)
In analogy with § 1 we set
S+ (6, A)=(TOx, A), TP, 1) 6.5)

and

S_x,A)=(TP(x,4), T?x, 1)). (6.6)
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These matrices may be analytically continued to the sheets /.., respectively,
(see § 1.8) and for A in &7, satisfy

S_(x,A)=8S:(x,1)S,(1), 6.7)
where
1 1 b, (A
Se(A) = m (—b @ 91( )). (6.8)

In the scattering theory for the auxiliary linear problem, S, (1) plays the role
ang 2@
a@) T ag)
reflection coefficients, respectively.

In terms of S.(x,A) the asymptotic behaviour (1.8.28)-(1.8.31), as
[Al— oo, becomes

of scattering matrix and are interpreted as transmission and

S+ (x, A)E~"(x,k(A))=S(©B) (H—O(!il)) 6.9)

where 4 is in /7, and ImA1>0,
., 2, 1
S+ 0 NE™ (k@) =2 0:S 'O | 1+0( (6.10)
where 1 is in /7, and ImA <0; also,
10 1
S_(,MDE~'(x,k(A))=e 2S5©0) (1+0(MI)) 6.11)

where A is in /_ and ImA <0,

S_(x, A)E-(x, k(/l))=-2102e S- '(0)(1+0(w)) (6.12)

where A4 is in //_ and ImA>0. Remind that E(x, k)= exp[k

% } with the
definition

1 0

S@)= (6.13)
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Now consider the matrices

G,(x,M)=a,M)GO)E(x,k(A))S 7' (x,A) 6.14)
and
G_(x,)=S_(x, VE~'(x, k(X)) G~ (), (6.15)
_io
where G(@)=e > S(6). These have an analytic continuation to the respec-

tive sheets /., possibly with the exception of the branch points A = + (see
below), and provide a solution to the Riemann problem,

G, (x,A)G_(x,1)=Gp(x, 1), (6.16)
where
Go(x,1)=G(O) E(x, k(1)) Go(A) E~ " (x, k(1)) G~ ' (F)
1 R )
= o 6.17)
- +ikx
—e? b,(1) 1
and
(1 b,(2)
Go(A) = (—bg(/l) ) ) (6.18)
(cf. § 1).

The matrices G.(x,A) are non-degenerate on the sheets /. except at
AfP=(4;, £),j=1,...,n. More precisely, we have

_i6

2 .2

detG, (x,4) = =2

for A in , and
i9
2e* k(A—k)
w2

detG_(x,A) = az (%) (6.20)

for A in /_, where a} (1) is the analytic continuation of @, (1) to the sheet /_.
The functions a,(A) and a}(A) vanish precisely at A=A{*), j=1,...,n. In
addition (see (1.8.36), (1.9.22) and (6.14)-(6.15)) we have

ImG, (x,A{")=N{H(x) (6.21)

and
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KerG_(x,A{™)=N{"(x), (6.22)

where N{*)(x) and N{~)(x) are one-dimensional subspaces in C* spanned
by

_ie

+ik,x
1 e 2y
) and Yi .
%+ik,x
—e ¥ 1
respectively, ;= —7; are the transition coefficients for the discrete spec-

trum, and k;=ijo’ -1}, j=1,...,n.

Thus, equation (6.16) describes a Riemann problem with zeros on the
surface /. Let us continue the list of the properties of its ingredients G, (x, 1)
and G.(x, 7).

We begin with G,(x, ) and the 4;, y;, j=1,...,n.

1) G,(x,A) has the form (6.17) with an integral representation for b, (1),

bp(l) = !

=1

| Bpeacst [ ppwerar, 629

for A in 92,, where BS-?(x) are real-valued Schwartz functions. (This repre-
sentation results from (1.9.15) through integration by parts.)
In particular, it follows that G,(x, ) has the asymptotic behaviour

1
G,(x,A)=I+0 (W) (6.24)

as |[Al— o and satisfies the involution
Gg(x,/l—i0)=0'3Q“(H)E;(x,/l+i0)Q(0)0'3. (6.25)

2) The pairwise distinct real numbers J; lie in the gap — 0 <1;<w, and the
¥;#0 are pure imaginary, j=1, ..., n.

The next three properties characterize the relationship between b,(4)
and 4;, 7; (see § 1.9).

3) The condition (0).

4) The condition for the determination of signs.

5) The relationship

da,

signiy;= sign—‘a ), (6.26)

where a, (1) is recovered from by(1), 6 and A, ..., A, according to



§ 6. Finite Density. The Riemann Problem 141
ig n
L A+k—+k;

1 log (1+1bo(1)1%) k
x exp{z—m ij P (u§ (1 oz /1) d,u}. 6.27)

The properties of G. (x,A), besides the degeneracy property mentioned
above, are as follows.
1) The asymptotic behaviour as |A|— o :

1
G.(x,A)=I+0 (W} , (6.28)

where respectively A lies in /. and £ ImA>0; when =ImA <0 we have

o _, 1
G,(x,)= 2 G*(0)0, (I+ (0] (m)) (6.29)
and
G_(x,/l)=EGZG‘2(0)(I+0(—1—)). (6.30)
1) [Al

2) The involution property for A in R,:

w

G, (x,A—i0)= G+0 0:G*(O) G, (x,A+i0)o, (6.31)
and
G_(x,l—iO)=l—(—/-1£—k—)0'1€(x,/1+i0)6‘2(0)03, (6.32)

consistent with the asymptotic formulae (6.28)-(6.30).
3) The asymptotic behaviour as |x|— oo for A in R,,:

if
e? 0

Gi'(x,)=07"(O)E, (1) +o(l),  (633)

bp (/1) e% +ikx 1
a, (1) a,(A)
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e% E;(l)e—-ikx
G_(x,A) =Q '"@)E,(A) +o(1) (6.34)
R
as x— + oo, and
i0 N
e’ _ bo(d) _ikx
Gi'(x, A)=E,() | %D ap(A) +o(1), (6.35)
0 1
io
a,(A)e? 0
G_(x,A) =E,() w0 +o(1) (6.36)
—by()e? 1
i00'3

as x— — oo. Here E,(A)=E,(x,A)|«-0 and Q(f)=exp
4) The behaviour at the branch points A= * .
The exact form of this property depends on the behaviour of b,(1) at
A= +o. First consider the case A =w. There are two possibilities.
a) A virtual level,

by (@)l < oo . 6.37)
In this case G_(x, ) and G 7 '(x, ) are degenerate, so that
KerG;'(x,w)=N,", KerG_(x,0)=N", (6.38)

where N> and N$~ are one-dimensional subspaces in C? spanned by
i@
1 coe ?

and , respectively, and

NES

4 1
¢y =by(@)+ia,(w) (6.39)

(see (1.9.9)). By virtue of (1.9.13) we have in addition ¢, = —¢,.
b) The generic case
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b,(A) = Ifki +0(1), b,+40 (6.40)

near A=w. Here G _ (x, ®) is non-degenerate and G, (x, A) can be expressed
as

Gi(x,A)=

G“;c(x) +0(1) (6.41)

near A =®, with a non-degenerate G (x) (see (1.9.11) and (6.19)-(6.20)).
The case A= —w is examined in a similar manner. If 1 = —® is a virtual
level, the constant ¢, (6.39) is replaced by

c_=b,(—w)—ia,(—w). (6.42)

The formulation of the Riemann problem and the properties of G,(x, A)
and G, (x,A) look more complicated then those in the rapidly decreasing
case. This is due primarily to the nature of the continuous spectrum of the
auxiliary linear problem, especially to the existence of a gap in the spectrum
- the interval —w <A <w.

The properties of G,(x, A) and G . (x, 1) listed above were actually estab-
lished in §§ 1.8-1.9 during the investigation of the auxiliary linear problem.
Let us now turn to solving the inverse problem. The solution is based on the
matrix Riemann problem with zeros

Go(x,1)=G, (x,))G_(x, 1), (6.43)

where the matrix G, (x, 1), the zeros 4;, the constants y; and the parameter 6,
0<0<2x, play the role of initial data, and G . (x, 1) give the solution of the
Riemann problem. Here the variable x stands for a parameter.

The data G,(x, ), A; and y; are supposed to satisfy conditions 1)-5). It is
required that the solution G . (x,A) is analytic on . except, possibly, at the
branch points, satisfies the degeneracy conditions (6.21)-(6.22) and has proper-
ties 1)-2) and 4).

Then we claim the following.

I. The Riemann problem has a unique solution.

II. The matrices S . (x,A) constructed from G . (x, ) according to (6.14)-
(6.15) satisfy the differential equation of the auxiliary linear problem

dS:(x,2) (Ao
—E - ( i Uo(x))Si(x,/l), (6.44)

with
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Uo(x)=x (¥ (x)o+ +y(x)o_). (6.45)

IIL. The solution G . (x,A) has the asymptotic behaviour, as x— * oo, pre-
scribed by property 3).

IV. The functions w(x), y(x) satisfy the finite density boundary condi-
tions

lim y(x)=o0, lim y(x)=0€", (6.46)
xX— + oo

X— — oo

with 9 = —Zw—x and the boundary values taken in the Schwartz sense.

V. The functions a,(A) and b, (), with a,(A) given by (6.27), are the tran-
sition coefficients for the continuous spectrum of the auxiliary linear problem
(6.44), and S . (x, ) are composed of the corresponding Jost solutions accord-
ing to (6.5)-(6.6). The discrete spectrum of the auxiliary linear problem consists
of the n-tuple A, ..., A,, and y\, ..., Y. are the associated transition coeffi-
cients.

The proof of these facts can be given along the lines of § 2. Since the
Riemann surface /~ has genus 0, it is convenient to use the uniformization
variable z as in § 1.9,

2 2
A(z) = % (z + %) k(z) = % (z — “’7> (6.47)

so that .27, is mapped onto the real axis of the complex z-plane. The sheets
. are mapped onto the upper and lower half planes, respectively; a neigh-
bourhood of 1= o on /", with +£ImA>0 is mapped onto a neighbourhood
of z= o0, and a neighbourhood of 1=« on /. with +ImA <0 onto a neigh-

bourhood of z=0. The involution A—i0 > A1+i0 on %, goes into the in-
2

volution z —» bl on the real axis.
zZ
From (I.8.13)-(1.8.14) and (1.9.14) we derive integral representations for
Gi (xs Z) = Gt (xa /I(Z)),

22

G.(x,2) = (1 - % G*(0) o,

22— @?

+ j DV (x,s)e(s, z)ds + % I PD(x, s)e(s, z) ds) (6.48)

and
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o -2
G_(x,2)=I+—0,G7*(0)
- -
+ [ @0, s)e(s, 2)ds + — | 2(x,5)e(s, 2)ds,  (6.49)
0 z 0

where

2
2isk(z) is(z—ﬂ)
=e

e(s,z)=e = i (6.50)

These integral representations generalize those given by (1.36) in the rapidly
decreasing case. They incorporate both the asymptotic behaviour (6.28)-
(6.30) and the singularities of G, (x, z) at z= @ (see condition 4)).

The integral representations (6.48)-(6.49) provide a basis for proving the
assertions I-V. They can be used to derive a system of integral equations -
an analogue of the Wiener-Hopf equation in the rapidly decreasing case,
equivalent to the original Riemann problem. However, there arise several
technical difficulties. First, various types of behaviour of b, (1) at the branch
points A = + o should be examined separately; there are four cases altogeth-
er. Second, by properties 3)-5), the discrete spectrum data A;, y; are not in-
dependent of the continuous spectrum data b,(4); in particular, for the case
of virtual level they appear in the behaviour of G7'(x,A) at A= +w (see
condition 4)). Hence the solution of the Riemann problem with zeros cannot
be expressed as a product of Blaschke-Potapov factors and a solution of the
regular Riemann problem with the same continuous spectrum data (cf.
§2).

Therefore, a detailed analysis of the Riemann problem (6.43) along the
lines of § 2 would be rather cumbersome and is not so instructive as to be
presented here. Instead, the next section will discuss more thouroughly a
different approach to solving the inverse problem based on the Gelfand-
Levitan-Marchenko formalism, which will also provide a proof for the as-
sertions [-V.

To conclude this section we note that, as in § 3, the Riemann problem
method allows to show that if the data b, (1), A;, y; depend on t according to
(1.10.7),

bo(h, )= b, (4,0), ¥ ()=e~HN1y,(0),

(6.51)
}’j(t)=ﬂ‘j(0); j=15"'9n9

then the resulting y(x, t) satisfies the NS equation under the finite density
boundary conditions.

For that purpose the dependence on ¢ should be inserted into the Rie-
mann problem (6.43)



146 Chapter II. The Riemann Problem

Go(x,t, )=G . (x,, )G _(x, 1, 1), (6.52)
where

G, (x, 1, Ay=E~"(t, Ak(A)) G, (x, 1) E(t, Ak(1)). (6.53)

From (6.52)-(6.53) it follows that

et DFT b )= DF ), (659

where

Fo(e,t, )=S:(x,t, VE~'(t,Ak(A)). (6.55)

Then, in complete analogy with § 3, in addition to the equation in x,

oF
= =U(x,t,A)Fx, (6.56)
ox
we also have an equation in ¢,
oF
611 = V,(x,t,A)Fy, (6.57)

where V,(x, t, 1) is the same as in § 1.2.

Thus, in the case of finite density as well, the Riemann problem method
comes down to the zero curvature condition, so that the function y(x,t) ob-
tained via the inverse problem satisfies the NS equation.

§ 7. Solution of the Inverse Problem in the Case of Finite
Density. The Gelfand-Levitan-Marchenko Formulation

Here we outline another method for solving the inverse problem. In con-
trast to the previous one based on the Riemann problem of analytic factori-
zation for matrix-valued functions, this approach exploits a special conjuga-
tion problem for vector-valued analytic functions, motivated by the relation
(6.1) for the Jost solutions.

In terms of the variable z, (6.1) is

T_(x,2)=T,(x,2) T,(2), (7.1)

where Imz=0 and
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Ti(x,2)=T:(x,A2)), To(@)=T,(A(2)). (7.2)

The involutions (6.3)-(6.4) take the form

2 -
I, (x, “’—) _ 5 TI(x, D), (1.3)
z [0}
w? —_
T, (—Z—> =03 T,(2) 0. (7.4)

To state the required conjugation problem, consider (7.1) for the first
column T®(x, z) of T_(x, z) and rewrite it as

TP, 2)=TV(x,2)+r,(2) T?(x,2), 7.5)
a,(2)

where we have denoted (cf. § 4)

bo(2)
a,(2) '

r,(z) = (7.6)

The vector function F,(x, z) = T(x, z) on the right hand side of

a,(2)
(7.5) may be analytically continued into the upper half-plane of the variable
z with the exception of z=z;=A;+ijJw*—A},j=1, ..., n where it has simple
poles, and z=0 where it has an essential singularity. By virtue of (1.9.22),

T(l)(x, z)=7Y; T x, z), 7.7
we find
resFi(x,2)|._.,=¢ TP(x,z), (7.8)
where
Yi .
¢=——"—, Jj=1,...,n, 7.9)
T dy(z))

a dot indicating differentiation with respect to z.
In the neighbourhood of z=0, for Imz>0, (1.8.28), (1.8.33) and (1.9.5)
yield asymptotically
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+0(1), (7.10)

where the notation e(x, z) was introduced in § 6. From (1.8.28), (1.8.32) and
(1.9.4) we have, asymptotically as |z| > o0, Imz>0,

i@

F](x,z)e(-;f,z) - +0(l). 7.11)

0

Now consider the right hand side of (7.5). The first term, T4(x, z), may
be analytically continued into the lower half-plane of the variable z with the
exception of z=0 where it has an essential singularity. From (I.8.30),
(1.8.32)-(1.8.33) and (1.9.4)-(1.9.5) we find the asymptotic formulae

0
TO, el z) = |+ow, (1.12)
4 o 5
—e
z
as z—0, and
o
e 2
. x 1
TP, 2)el=,z) = +0{=]}, (7.13)
4 0 Izl

as |z|—» .

The column T®(x, z) in the second term may be analytically continued
into the upper half-plane and is related to T'’(x,z) by the involution
(1.8.36),

TP(x,2)=01 TP, 7). (7.14)

The relation (7.5) combined with the analyticity properties stated above,
relations (7.8), (7.14) and the asymptotic formulae (7.10)-(7.13) is what consti-
tutes the required special conjugation problem. The data prescribed are the
function r,(z) defined on the real line and the parameters z;, ¢;; j = 1,...,n.
The data r,(z) and z;, ¢; are not all independent. They are subject to the
following conditions resulting from § 1.9.
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1) The function r,(2) lies in Schwartz space and together with all its deri-
vatives vanishes at z=0.

This is a consequence of a similar property of b,(z) (see the integral
representation (6.23)).

2) The involution property

"o (“’—) = ~7() (7.15)
z

(see (7.4)).
3) The inequality

7o (2)I <1 (7.16)
holds, with equality possibly attained only at z = *+ @, in which case
ro(xw)=Fi (7.17)

so that we are in a generic situation.
This follows from the normalization relation

1 by (2)I?
21— =2 7.18
o (@)l lap @1~ 1+16,2)2 (7.18)
together with (1.9.11) which holds when la,(+ @)l = oo.
4) The condition (0)
noo- bt _ 2
e — H Z exp {l I M dz} . (7.19)
F= Zj T o z
This is a variant of (1.9.44) since
1+1b e 7.
+1b, (2)1 1 l@P (7.20)
Here Izl =w because the real numbers 4, lie in the gap (— o, ®).
5) The positivity condition: the quantities m;= — ﬁ, j=1,..., n, are posi-
tive real numbers. %
This follows from
Yi v dz()
= = 7.21
9= day(2) da,(}) di |i_s’ (7.21)

dz |... dA
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di(z) 1 ®?
-—1-= :
dz 2 ( z? (7.22)
together with relation (6.26)
. . da, .
51gn1yj=51gngll—(/'tj), j=1,...,n (7.23)

(see § 1.9).

The formulation of the conjugation problem in the case of finite density
(as well as that of the Riemann problem in § 6) looks more complicated than
in the rapidly decreasing case in § 4. Yet, unlike the Riemann problem, it
can be investigated in quite a similar way as in the rapidly decreasing case
by reducing it to a system of integral equations.

To derive this system we shall make use of the integral representations
(1.8.13)-(1.8.14) for the Jost solutions,

T.(x,2)=07"(0) E;(x,2)+ T Fiy)Q 'O E(y,2)dy  (1.24)

and
T_(x,2)=E,(x, )+ _Iw (e, y)E, (v, )dy, (1.25)
where
ey
B =B 100 =, lz T 29
z

(see (1.8.9)). Insert these expressions into (7.5), substract from both sides the
first column &, (x, z) of Q~'(0) E, (x, 2),

xa=|. e(—ﬁ,z), (7.27)
a) —
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multiply both sides of the resulting equation by e(%,z), y=x, and inte-

grate over z from — o to o (compare with the manipulations in § 4). Let us
evaluate the integrals which occur.
First consider the left hand side; denote it L. From (7.10)-(7.11) it fol-

lows that the vector function (F(x, z)—&,(x, z)) e (%, z) is regular at z=0

and of order 0(i

) as |z|—» . So using (7.8) and the Jordan lemma we
deduce that z

R y
L=27i ) TP, z)e (Z’ z,) . (7.28)

j=1

Now consider the right hand side; denote it R. Here we encounter the

co oo d . .
integrals [ e(x,z)dz and | e(x, z)—i taken in the sense of generalized
- Z

— oo oo

functions. We have

o oo 2

j e(x,2)dz = I ei(z_w?z)xdz+ } ei(z_wT)xdz
e 0 e
2

- ]o RGeS (1 + a’—) dz = T er*dp=216(x), (7.29)

ZZ

where the second integral in the first equality was modified by a change of
2

variables z— — —. In a similar manner we find
z

j e(x, z) % =0, | ex2 5;; = % 5(x). (7.30)

— oo — oo

These formulae lead to

P 1\ | [Ex+m\ , § E(s+y)
R=8re (1"+(x,y) (0)+<ﬁ(x+y))+£r+(x,s) (ﬁ(s+y))ds), (7.31)

where
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z N d

fo =g | rp(z)e(ﬁ,z)—zz—, (7.32)
ei9 ©°

=5 | rg(z)e( )dz (7.33)

Now by using the equation L =R and the representation (7.24) we ob-
tain

1 Ex+y) EGs+y)
F*(’“’y)(0)+(n(x+y))+j (’)((+y))d =0 039

for y =x, with

)]
§@)) _ (€0, L iz | fx
(reo) = eo) * 3 Z ol (&%) 3
Recalling the involutions (1.8.26)-(1.8.27)
—:(x,y)=o-lri(x,y)o-la (736)
we can write (7.34) in matrix form
. (x,y))+Q2x+y)+ T ', (x,5)Q2(s+y)ds=0 (1.37)
for y=x, with
() ﬁ(X))
O(x) = . 7.38
D= ko 739

Here we have used that, by (7.15) and the positivity condition, £(x) is a real-
valued function.

Equation (7.37) is an integral equation for the matrix I, (x, y); it is
called the Gelfand-Levitan-Marchenko equation from the right. Notice that it
has the same structure as the Gelfand-Levitan-Marchenko equation in the
rapidly decreasing case in § 4. However, £2(x) is no more an off-diagonal
matrix but has a diagonal part proportional to the unit matrix.

The matrix Uy(x) involved in the auxiliary linear problem,
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dT. (x, /l) A Aoy
dx 2i

-+ Uo(x)) T.(x,4), (7.39)

is expressed in terms of I, (x, y) according to (1.8.17)

Ux)=U, +030 (x,x)05— "4 (x, %), (7.40)

with
U,=07'OU_Q@B), U_=—o. (7.41)

In a similar manner, (7.1) yields

agl(z) TRx,2)=F)(2) TV (x,2)+ T?(x, 2), (7.42)

with

b, (2)

ro(z) = — @) (7.43)

Interpreting this equation as an appropriate conjugation problem gives the
Gelfand- Levitan-Marchenko equation from the left

M) +00+)+ | T (5,5)06+y)ds=0, y<x.  (1.44)

The kernel £2(x) has the form

(x) 7x)
O(x) = .
()= (n(x) §(x)) (7.43)
where
= io % x é} x
§0) = _j rg(z)e( )—+— Z . (—Z,z,) (7.46)
and

oo

ﬁ(x)=—8—1;T— | Fg(z)e(——%,z)dz+11—i Z@e(-%,zj), (71.47)

with
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1

¥ido(z)

¢ =

j=1,...,n. (7.48)

Relation (7.45) takes account of the fact that, by (7.15) and the positivity
condition, £(x) is real-valued.

The matrix Up(x) can be expressed in terms of I'_(x, y) according to
(1.8.17):

Ux)=U_+T_(x,x)—03 _(x,x)03. (7.49)

The integral equations (7.37) and (7.44) provide a basis for solving the
inverse problem in the case of finite density by the Gelfand-Levitan-Mar-
chenko method. Suppose we are given functions 7,(z), 7,(z) and a set of
numbers z;, ¢;, ¢;, and 8, 0<68 <2, subject to the following conditions.

1. The set {r,(2), z;, ¢;; j=1, ..., n} satisfies conditions 1)-5).

2. The functions r,(z) and r,(z) are related by

RE) _ ()

, 7.50
(@) a2 720

with

oo

ag(z)=e%H j_z_f exp[—l— | lo—g(l—_ﬂs)'—z)ars}. (1.51)

—z 2wi z—s+i0

j=1
3. The coefficients c; and ¢; satisfy

- 1 .
cjcj—a_z)(zj), j=1,...,n. (7.52)

Then we claim the following.

I. The Gelfand-Levitan-Marchenko equations (7.37) and (7.44) have
unique solutions in LY?*?(x, o) and L?*?(— oo, x). Their matrix solutions
I, (x,y) are of Schwartz type as x, y— + oo, respectively.

II. The matrices T. (x, z) derived from I . (x, y) according to (7.24)-(7.25)
satisfy the differential equations

elssd) _ (2D% 4 ygor ) Tatr,2), (1.5
dx 2i
where U§t)(x) and U{7(x) are given by the right hand sides of (7.40) and
(7.49), respectively.
II1. The matrices U§*)(x) have the form
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UG (x) = ]/;? (W O(X) l/-/io(x)> , (1.54)

where y . (x) behave asymptotically as

; )
1' — =g, l' = i N = _— 7.55
Jim y (x)=0 im oy, (x)=e"0, o 2 (7.55)
the asymptotic values being taken in the Schwartz sense.
IV. The relation
UGH (x) = U§™(x) = Up(x) (7.56)

holds, so that Uy(x) satisfies the finite density boundary conditions.

V. The transition coefficients for the continuous spectrum of the auxiliary
linear problem with potential matrix Uy(x) are a,(A)=a,(z(1)) and
by(A)=a,(A)r,(z(A)); the discrete spectrum consists of the eigenvalues A,
—o <A;<w with transition coefficients y;=c;d,(z;), j=1,...,n

Now we shall give the proofs.

1. The unique solvability of the Gelfand-Levitan-Marchenko equations.

Consider, for definiteness, equation (7.44) and write it in operator
form,

I+Q)I=-9Q,, (7.57)

where I'.(y)=I"_(x,y) and Q.(y)=0(x+y) belong to L¥*?(— o, x), and
Q, is an integral operator with the kernel Q(s+y),

@NW)= | f©)G6+ds. (7.58)

The variable x plays the role of a parameter. In order not to overload our
notation we have omitted the symbols — and ~ in the entries of (7.57).

The kernel £2(s) is a Schwartz function for s— — oo so that Q. is a com-
pact operator on L{*?(— oo, x) whose norm vanishes as x— — oo (cf. § 4).
Therefore, for (7.57) to have a unique solution it is sufficient to show that
the homogeneous equation

S+, f=0 (7.59)

has only a trivial solution in L?**?(— o, x).

To show this let us first consider this equation in the Hilbert space
L$¢*?(~ o0, x) of square integrable 2 x 2 matrix functions with the inner
product
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(fig)= [ uf(s)g*(s)ds, (7.60)

the asterisk indicating Hermitian conjugation. The operator €, in this space
is defined by the same expression (7.58) and is compact. By examining the
kernel £2(s) it is easily seen that a solution of (7.59) which belongs to
L?*?(— o0, x) also belongs to LY *?(— o, x). So it is enough to show that
(7.59) has no nontrivial solutions in L§>*?(— o, x). Actually, we shall
prove a stronger result that the operator I+, is positive definite on
L(22x2)(_ oo,x)‘

First suppose there is no discrete spectrum. Then £, can be regarded as
a restriction of an operator Q on L¥*?(— o, o) defined by

(QF)(s)= _T F(YO(s+s7ds’. (71.61)

More precisely, L$*?(—co,x) is embedded into LE*?(— 0, ) in
such a way that its elements, f(s), are extended to be zero for s >x. We will
show that I+ Q is positive definite, hence so is I+ Q..

The representations (7.45)-(7.47) for the kernel £2(x) may be written as

Qx) = é _Tw E,(x,2)R(2)dz, (7.62)
with
_ 0 ro(2)
R(z)= (r;g @ 0 ) (7.63)

The matrix E,(x, z) in the integrand satisfies the relations

in | Eo(x,2)E¥(y,2)dz=06(x—y)1, (7.64)
o T B DB ) dx =BG, (7.65)

with z and z' in R,, (i.¢€., Izl, |z'| > ®). They have the meaning of completeness

and orthogonality relations for eigenfunctions of the differential operator
d . . . .

& =io; - + %02 which governs the asymptotic behaviour of the differ-
x

ential operator .& of the auxiliary linear problem, as x— — o (see § 1.9).
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The proof of (7.64) makes use of (7.29)-(7.30) and of the involution
2

w ) .

z— —— which maps R, onto the gap —w<z<w. Equation (7.65) follows
z

from the usual representation for the §-function as an integral over ex-

ponentials and the change of variable formula

1
Slp@)= ), o7 5C=2), (7.66)
! ‘g ()

where ¢(z;)=0. It is essential here that z and z’ are in R,,. If z is in R,, and 2’
in the gap (— o, w), then instead of (7.65) we have the relation

1 hed 2
on | EE2)Eyx2)dx = g&(z’— d )az. (7.67)

z
We may interprete (7.64) as a requirement that the operator E, from

LE*P(— o0, 00) to LE*?(R,,) defined by

(B))@) =) = T J00E, (5, )ds (1.69)

is isometric. The adjoint operator E} is given by
” 1 o
* - - %
(E2S) ) =f(x) = 2= le J@)E¢(x, z)dz (7.69)

and, by (7.65) is also isometric, so that
EfE,=1, E E}=I. (7.70)
Now we will show that the operator
Q-E,QE? (7.71)

conjugate to Q and acting on L¥*?(R,,) is a multiplication operator by
the matrix-function

(/) @)=F@)RE). (1.72)

For that purpose consider the kernel f)(z, z") of Qasa generalized func-
tion
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1 o oo oo

- W _Im _Ico _jw Eg(}’, ZI)EQ(x+y’ Z”

X R(z")Ey(x, z)dxdydz", (7.73)

0z, 2')

where the representation (7.62) for £2(x) is used. The variables x and y in
E,(x+y,z") separate,

1 2
E,(x+y,2")=E,(p, 2")E (x, 3 (z” _ “’)) , (1.74)
z

and the integral over y is evaluated by using (7.65) and (7.67). This gives a
o-function which reduces out integration over z”, so that

A T 1 2
Q(z,z’)=§17t— j [E(x,5<’—%))R(z’)

+ QazE(x, _1 ( r_ “’—2)) R (9—2)] E,(x,2)dx.  (1.75)
z' 2 ! z'

Z

Next we employ the involution (see (7.15))
wZ
R 7 =O'2R(Z)O'2 (7.76)

to carry the diagonal matrix E(x, -) to the right across the off-diagonal ma-
trices R(-) and o,. As a result we find

2z, 2" =$ I R(z") [E(x, —% ( f— az)—,z))

2
+ £070'2E‘(x, l (ZI - 2,‘))] Eg(x, Z)dx
z 2 z

j R(Z)E}(x,z)Ey(x,2)dx=0(z—2z)R(z), (7.77)

— oo

_ 1
87

which proves (7.72).
The positive definiteness of I + £ and hence of I+ £, follows from that
of the matrix

I+R() = (f 12) " "fz)), (7.78)
o
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(7.79)

which is guaranteed by
7 (2)l <1

for |z| > w (see property 3) and (7.50))
present. To prove that I+ €, is positive definite we shall split it into terms
(7.80)

Let us now consider the general case when the discrete spectrum is also
corresponding to the continuous and discrete spectra, respectively:

I+Q,=1+QY+ QY.

Here Q and Q¢ are integral operators on L¥*?(— o, x) with the ker-
(71.81)

nels (s +s’) and 29 (s +5"), respectively, where

0C(%s) = iﬂ :f E,(s,2)R(2)dz

3= Y cel-2,2), 7.82
(s) ,; je( 2 z; ( )
and the Hermitian 2 x 2 matrices C; have the form
m (o —iz
C=-2 4 7.
= ( 5 ) (7.83)
(7.84)

with
The decomposition (7.80) follows from (7.45)-(7.47) and
(7.85)

e(s, Zj) =e(s, Z_l) >

which is obvious since |z;| = .
We have already proved that I + Qs positive definite on LY *?(— o, x)
It is therefore sufficient to show that Q¢ is non-negative. This in turn

follows from the fact that the matrices C; are non-negative
In fact, in this case, for any f(s) in LY *?(— o, x) we have

( )e( S—I,zj)dsds’>0. (7.86)

(@)= Zj ftrf(s)Cf*(SDe
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The simplest way to verify this estimate is to reduce each of the C; to
diagonal form. Clearly, each term in (7.86) will then be non-negative.

Let us now show that all the C; are non-negative. Since |z;| = o, they are
degenerate, hence it is sufficient to show that

>0, j=1,...,n. (7.87)

These inequalities result from

1
M, = 7.
Mty == s (7.88)

and the estimate
1

<0, j=1,...,n, 7.89
a2 J (7.89)

which is a consequence of the positivity condition, the condition (8), and
formulae (7.15), (7.51).

This completes the proof of the fact that I + £, is positive definite, and
hence (7.44) has a unique solution.

To conclude, we point out that by virtue of the uniqueness theorem and
the involution property of £2(x),

Ox)=0:0(x)0, (7.90)
the solution I'(x, y) has the same property,

I'(x,y)=01I'(x,)0;. (7.91)

Equation (7.37) is examined is a similar manner.
I1. Derivation of the differential equations for T. (x, z).
It is enough to show that I'. (x, z) satisfy partial differential equations

P, 0
a—xl“i(x,y)+0'351"t(x,y)a3— UiE () (x, y)+ 030 (x, )03 UL =0,

(7.92)
where

U () =U, FT +(x,x)— 037+ (x,x)03) (7.93)

(see (1.8.15)~(1.8.17)).

Indeed, these equations were derived in § 1.8 when analyzing the auxil-
iary linear problem. It was indicated there that they are equivalent to the
differential equations (7.53) for the matrices T (x, z) obtained from /. (x, y)
according to (7.24)-(7.26).
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For definiteness, consider I"_ (x, y). Differentiate (7.44) with respect to x
and y and add up the results after multiplying the second one by o; from
both sides. Then

0 17,
5;F(x,y)+0'3 gl“(x,y)og, +Q2'(x+y)+ 032" (x+y) o3+ '(x, x)Q2(x +y)

X

+ j (;;F(x,s).Q(s+y)+03F(X,S)-Q'(S+J’)03> ds=0, (7.94)

where the prime indicates the derivative with respect to the argument and
for notational simplicity we have omitted the symbols — and ~ in the en-
tries.

The equation involves the matrix 03£2'(x)o;+£2'(x) proportional to the
unit matrix. From (7.46) by using the involution (7.15) and the positivity
condition we find

di) _o
dx 4

(S

nx)+7(x)), (7.95)
so that (7.45) yields

QX)+0:2'(x) 0, = % (012()— 0, 2(x) 5571

=U_Rx)-0:Q2(x) 05 U_, (7.96)

where account was taken of U_ = 30'1. By using this equation, the last

term in the integrand in (7.94) can be transformed into

I o3 (x, )82 (s +y)o3ds = — J' o3I (x,5)0382' (s +y)ds

+ I 031 (x,5)03(82' (s +y)+ 032 (s +y)03)ds

x

=0 a2+ | (o5 90+

— oo

+030'(x,5)o3(U_Q2(s +y)— 0:02(s + y) 03 U_)] ds, (1.97)

where we have integrated by parts. Using (7.93) and (7.96)-(7.97) we can
write (7.94) as
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é &
ox (G +os oy I(x,y)03+ Uy () 2(x +y) ~0:2(x +y) o3 U

+_L [(%F(x, s)+03 a%I"(x,s)0'3).(2(s+y)
+030(x,8)03(U_Q2(s+y)—03Q2(s +y) o3 U_)]ds=0. (7.98)

Let the terms U™’ (x)Q2(x+y) and 032(x+y)os U_ on the left hand
side of this equation be modified by replacing 2(x+y) by the right hand
side of the Gelfand-Levitan-Marchenko equation written in the form

Qx+y)=-Tx,y)— | I'(x,s)Q2(s+y)ds. (7.99)
With the definition

d d
@(x,y)=gf(x,yHosé—;F(x,y)as—U&"(x)F(x,y)+63F(x,y)os u_,
(7.100)

we rewrite (7.98) as
O, )+ | Dx,5)Q(s+y)ds=0, (7.101)

which means that @(x, y) as a function of y satisfies the homogeneous equa-
tion (7.59). By virtue of the uniqueness theorem,

@ (x,y)=0 (7.102)

for all x, y, y<x; this shows the validity of (7.92).

The equation for I, (x, y) can be proved in a similar way.

111. The behaviour of Uy (x) as x— + .

By (7.40) and (7.49), the matrices Uj*’(x) are off-diagonal, and the in-
volution (7.91) assures that they have the special form (7.54).

The study of the asymptotic behaviour of the non-zero entries of U§™(x)
is based on the following argument. The norm of the operators €2, and Q,
vanishes as x— + o or x— — oo, respectively, so that the integral equations
(7.37) and (7.44) may be solved by successive approximations. Each itera-
tion gives a function of Schwartz type for x— + oo, and this property is also
shared by the solutions /. (x, y). In particular, I, (x, x) are of Schwartz type
for x— + . This implies the required behaviour of .. (x) as x— + .
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We also note that these properties of /. (x, y) yield the following asymp-
totic behaviour of T (x, z) for real z:

T_(x,z2)=E,(x,z)+o0(1) (7.103)
as x— — o and
T, (x, z)=Q"(0)EQ(x,z)+o(1) (7.104)

as Xx— + oo,

IV. The consistency relation Uy (x)= U§™(x).

For the proof it is enough to show that the matrices T, (x,z) and
T_(x, z) are linearly dependent, i.e., differ by a right matrix factor indepen-
dent of x. Indeed in this case both T, (x, z), T_ (x, z) satisfy the same differ-
ential equation, and hence U{*’(x) and U§~’(x) coincide as coefficients in
(7.53).

We will show that (7.1) holds for real z with T,(z) of the form

_ (2 b, (2)
%0 (30 ano) (7199
where a,(z) is given by (7.51) and
b, (2)=a,(2)r,(2). (7.1006)

For the proof observe that the unique solvability of the integral equa-
tions (7.37) and (7.44) established earlier is equivalent to the existence and
uniqueness theorem for two special conjugation problems

Fi(x,2)=TQ(x, 2)+71,(2) T'P(x, 2) (7.107)
and

Fy(x,2)=F,(2) TV (x, 2) + TP(x, 2), (7.108)
whose exact formulation was given above. The data {r,(z),z,¢;} and

{fo(2), z;, ¢;} of the two problems are interrelated by conditions 1-3. Starting
from these relations we will show that

Fi(x,2) = a—l() TOx,2), F(x,z)=

o2 a,

! rox,2, 109
2)

which is equivalent to the required formula (7.1).
For the proof multiply (7.107) by 7,(z)

@ Fi(x,2)=F@) TV (x,2) +Ir, (I TP (x, 2), (7.110)
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and, using the involution (7.14), write it down as
01 Fi(x,2)=Fg(2) TP (x, 2) + TP (x, 2). (7.111)

By substracting (7.110) and (7.111) and using (7.18) we obtain

'Z(Z)Fl(xa Z)_'O-] F](x, Z) = —

RO T (x, z). (7.112)
(%

Now we exploit condition 2 given by (7.50) to transform the last equation
into
1

L 106 )=7,0a@ &) taG@OFE. (113
a,(z)

Thus we have converted the conjugation problem (7.107) into a conjuga-
tion problem of the type (7.108). Next we are going to apply the uniqueness
theorem. For that it is enough to show that the vector functions a,(z) F (x, z)

and T{H)(x, z) fit into the setting of the conjugation problem (7.108).

z
(4

First consider the column a,(z) F;(x, z). It has an analytic continuation

into the upper half z-plane with the same asymptotic behaviour as for the

column T (x, z), as z—0 or |zl» o. In a generic situation we have

a,(z) = Z‘j_jw +0(1), a.#0 (7.114)

and a,(z) Fi(x, z) is regular at z= *+ . In fact, using 7, (+ @)= Fi (see condi-
tion 3)) and the relation

TV, +0)=+iTP(x, ) (7.115)
we find

Fi(x,2)=0(IzFl) (1.116)

in the neighbourhood of z= +@. In turn, (7.115) is a consequence of a sim-
ilar property of the columns of Q~'(0) E,(x, ) by virtue of the differen-
tial equation (7.53) and the asymptotic formula (7.104).

1
Now, the column e T'?(x, z), as well as F,(x, z), has an analytic con-
a,(z
tinuation into the upper half-plane with the exception of z=z;, j=1,...,n,
where it has simple poles. By condition 3 (see (7.52) and (7.8)) we have
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1
TP®, 2)|euz, = —— TP, 2
@ TEwDems, = 5 T02)

res

¢ 4,(2))

=@, Fi(x, ).z, j=1,...,n. (1.117)

res Fy(x, 2)| -,

So the columns TP (x, z) and a,(z) Fi(x, z) are subject to the same

a,(z)
conditions as imposed on the columns F,(x, z) and T®(x, z) in the conju-
gation problem (7.108). Therefore these columns coincide so that equations
(7.109) hold.

V. Transition coefficients and discrete spectrum.

The results of Subsections I-1V imply that T (x, z) are the Jost solutions
for the auxiliary linear problem with potential matrix Uy(x)= U§*’(x)
= U§™(x). The functions a,(4) and b,(1) play the role of transition coeffi-
cients for the continuous spectrum; the quantities A; are the discrete spec-
trum eigenvalues with transition coefficients y;, j=1, ..., n.

This completes our general analysis of the inverse problem in the finite
density case via the Gelfand-Levitan-Marchenko method. The results ob-
tained may serve as a proof of the assertions I-V of the Riemann problem
method in the previous section. Namely, the data {b, (1), b,(1); 4;, ¥;} of the
Riemann problem satisfying conditions 1)-5) of § 6 give rise to the data
{ro(1), 7,(A); zj, ¢;, ¢;} of the Gelfand-Levitan-Marchenko method satisfying
conditions 1-3 of this section. Therefore, the results obtained for the two
special conjugation problems yield the assertions I-V of § 6.

The next section will deal with an important special case of the inverse
problem where the coefficient b,(z) (and hence r,(2), 7,(2)) vanishes identi-
cally. The corresponding Gelfand-Levitan-Marchenko equations reduce to a
system of linear algebraic equations and can be solved in closed form. This
will give us soliton solutions for the NS model under the finite density
boundary conditions.

§ 8. Soliton Solutions in the Case of Finite Density

As in the rapidly decreasing case, soliton solutions are associated with a
reflectionless linear problem, that is, with such y(x), y(x) that the corre-
sponding b, (1) vanishes identically.

In that case the restrictions on the initial data simplify considerably.
Namely, the set {1, ¢;, ¢;; j=1, ..., n} must satisfy the following conditions.
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1. The numbers A; lie in the gap —w <A;<w and are pairwise distinct.

.. G .
2. The quantities m; = — with
%

. 2 2
Zj=lj+l|/w —/‘Lj, le|=a),

are real and satisfy
8.2)

m;<0, j=1,...,n.

(8.1)

3. The condition (8) holds,
el = Inl é 8.3)
ZA

4, The ’elation
C;C ———1 . _] 1 n (8 4)
) ]-Z(j) s R AR .

holds, where
% (8.5)

g _"

_— Z—
a(,(z)——e2 | | N a
Z__ j

Jj=1

and a dot indicates differentiation with respect to z.

In terms of m; = G , (8.2) becomes m; >0, j=1,..

N

J
Notice that in the reflectionless situation the function a,(z) is regular at

z= +m, so that these points are virtual levels.
The set {4, ¢;, ¢;} is related to the original data {4, y;} of the Riemann

problem by
8.6)

}’j=cl'dg(zl'), j=1,...,n.

By virtue of (8.2)-(8.3) and (8.5) the quantities y; are pure imaginary and
8.7

. . Zidy(2) .
signiy;=sign == =g¢;, j=1,...,n.
i

Now we turn to the inverse problem; to begin with, let n=1. By (8.3), the
eigenvalue A, is expressed explicitly through @ as

1= —a)cos—z-. (8.8)
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Indeed, the condition (8) gives

i0
z1=—we 2, 0<6<2rm, (8.9)

so that (8.8) follows from (8.1).
The Gelfand-Levitan-Marchenko equation from the left is

I_(x, )+ Q2(x+y)+ j I_(x,5)2(s+y)ds=0 (8.10)

for y<x with £(x) given by (7.45)-(7.47). In our case it has the form

\4r.1

Ax)=M,Nie * . @.11)

Here
Vi =%k,=]/w2—/l%>0, (8.12)

and the columns M, and N, have the form

1

M, =V “’) p=Vm o] (8.13)
2 \iz, 2 .

iw

where the numeric value of the square root is taken. For notational uni-
formity with the subsequent formulae for n> 1, we write z, rather than 6.
So the kernel, £2(x+y), of the integral equation (8.10) is one-dimen-
sional, and the equation may be solved in closed form.
Representing I'_(x, y) as

vy

I'_(x,y)=fix)Nie * , (8.14)

we find a linear algebraic equation for the column f;(x)

[i)+Mie 2 +AX) f,(0)=0, (8.15)
where 4(x) is given by
T I v,s _ 'ﬁlw v, x
A()=NIM, j e ds——zv] e, (8.16)

— oo
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This yields an expression for f;(x)

vyx
2

e
h = =T M-

(8.17)

Evaluating w(x) through the general formulae (7.49) and (7.54), we
find

iy +e®en

s 8.18
i}’]"l‘ele ( )

yx)=o0

where we used (8.6) and the connection between z; and 6 (8.9). Remind that
iy;>0 by (8.7), so that the denominator in (8.18) does not vanish, and hence
w(x) is regular on the whole real line. The finite density boundary condi-
tions

lim y(x)=p, lim y(x)=pe* (8.19)
X— — oo X— + oo

are satisfied with the exponential order O(e V1",

The solution w(x, t) of the NS equation evolving from the initial data
w(x) is given by the general formulae (6.51) upon replacing ¥, by ¥,(f) in
(8.18),

PO ="ty (8.20)

It can be expressed as

1+e%exp{vi(x—vt—x,)}
1+exp{vi(x—vt—Xxo)}

w(x, )=ye(x—vt, X0)=0 , @8.21)

with
0 1 )
v=A,=—-wcos—, xo=—Ilogiy,. (8.22)
2 Vi

From (8.21) it is clear that w(x, ) describes a wave propagating with
velocity v. Since

vi

®*ch? {% (x— vt—xo)}

ly(x, HI*=0” - , (8.23)

it follows that the wave is localized near x =x,+vt.
By construction, the solution has finite energy; moreover, all other integrals
of the motion are finite. By the definition in § 5, w(x, t) is a soliton in a wider
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sense for the NS model in the finite density case. Later we shall see that the
scattering of these solitons is factorizable, so that y(x,t) is a soliton in the
usual sense.

As opposed to the rapidly decreasing solitons which are parametrized by
four real parameters, our soliton y(x, ) depends on two parameters: the
velocity v and the coordinate x, of its center of inertia at time t=0. The
velocity of the soliton cannot be arbitrary but satisfies |v| <. The parameter
v; =)@’ —v* characterizing the amplitude of the soliton vanishes as |v|—>
(0—0). From the point of view of physics, y(x, f) describes a solitary wave
propagating over a condensate of constant density; there is a natural bound
for its velocity.

_ Now consider the general case of arbitrary n. As before, the kernel
£2(x+y) of the integral equation (8.10) is degenerate and can be written as

_ n vi(x+y)
Q(x+y)= ) MNie * , (8.24)
j=1
with
vi=Imz;=1)0’ -1} (8.25)
and
7 (@ v | !
M,-=—’(.-), N =0 (8.26)
2 \iz; 2 |z
iw

where y/n; >0, j=1,...,n.
We ask for a solution of (8.10) of the form

Yy
2

ro.y)= 3 fe6)N; e (827)

This leads to a system of linear algebraic equations for the columns f;(x),
[ +Me? + 3 4,(x)fi(x)=0, (8:28)
I=1

where the functions 4;,(x) are given by

1

7(v,+v,)x == ) 1 v
A;i(x)=2NF M; € = VPG Z) 30 (8.29)

Vit+v 2z;(v;+v)
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The last expression simplifies by using v; = 4

—z
? and |zjl=w. As a result
we have !

lV~ le
Ay () = VBT "'"fm’.ez"+ > (8.30)

We emphasize that (8.28) splits into two systems for the first and the
second components of the fj(x), respectively. The second components, p;(x),
satisfy the following linear algebraic system:

p,(x)+ HV E2 + D Ay(X)pi(x)=0, j=1,...,n. (8.31)
I=1
The function w(x) is expressed in terms of the p;(x) as

yx)=— Z ]/—p,(x)e +p, (8.32)

which by Cramer’s rule can be written as

det(I+A4,(x))

det(I+A(x)) (8.33)

y(x)=0

Here A(x) is a n x n matrix with elements 4;,(x), and 4,(x) has the form

: e (x)
A,(x) = FoE ], (8.34)
di(x)...d,(x) -1

where
— 5 io .
di(x)=ym;e * , e,-(x)=—;d,-(x), j=1,...,n. (8.35)
J

In (8.33)-(8.35) we have a final expression for reflectionless functions
w(x), w(x) under the finite density boundary conditions.

Remark that the smoothness of y(x), i.e. the non-degeneracy of I+ A4(x),
as well as the validity of the finite density boundary conditions (8.19), are a
consequence of the general assertions I-V established in the preceding sec-
tion. However, they may be verified directly starting from (8.34)-(8.35). The
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limiting values (8.19) are now approached faster than in the Schwartz sense,
namely, with the exponential order O(e~""™), where v= mm {v;}. This
will easily follow from the discussion below. Sl

The NS solution y(x, f) with the inital value w(x) of the form (8.33)-
(8.35) is given by the same formulae upon replacing m; by m;(¢),

A,v, ¢t

m()y=e "' m;,  j=1,...,n. (8.36)

Let us verify that this solution describes the n-soliton scattering process.

With no loss of generality we may assume the parameters A,, ..., 1, of
w(x, 1) to be ordered, A, >A,> ... >A,. Then, as t— + o, w(x, f) is expressed
as a sum of one-soliton solutions,

wo, =i 0 D+e (ws ) (x, 1) —0)
4. O FO Iy D (x, H—0)+ 0" (8.37)

as t— — oo, and

wx, =y, H+e (wi(x, ) —p0)
o HEOT DD () 0)+ O~ ) (8.38)

as t— + oo, with c=min {lv; —vl}.
Al
The y{*)(x, 1) are here solitons with parameters 8, v;, x{3:

Y Ex, ) =ye, (x— ;1 +x67), (8.39)

where
ig; j 01
ei=—=, 0<6,<2m, u=4= —@cos (8.40)

and

1 < v—0)2+ (Vi +v,)?
x5 = X0, — — Z lo @ v’)2 (it ’)2
2vi & @) +(vi—w)

j—1
+LJ lo (UI_Uj)j+(vl+Vj)z’
2vi & T -y t(vi—v)

(8.41)
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n

1 —0)? 32
x{)}}-) =x0j +2_ (l)] vj)2+(vl+vj)2
Vi 5 ) +(vi-v)
1’4, =) ++v)?
-— > lo . L 42
2 22" oty ®4
with
1 , 1 .
xo; = —logig;y; = —logly;l, j=1,...,n. (8.43)
4 Y

Here ¢; is the sign of the real parameter iy; uniquely determined by (8.7).

The proof of these statements will be based on the explicit formulae
(8.33)-(8.35). Consider, for definiteness, the case t— — . It is sufficient to
show that along the trajectory C; of a particular soliton

X —v;f=const (8.44)

the solution y(x, ) approaches the one-soliton solution e’ @1+~ *8 -0 y(=)(x 1)
as t— — oo, whereas along a generic line x—v¢=const it takes asymptotic
values o, 0e'®*+ %% or pe 0=6,+...+6,(mod2x), when v>v,
v;>v>v;4 Or v, >, respectively. These limiting values are approached with
the exponential order O(e~"“").

Let us proceed to the proof of these statements. Write the matrix ele-
ments of A(x, ) in the form

o
Ajl(x, ,) — _ e§,—(x,l)+§l(x,r)’ (8.45)
Zj —Z[

where

; 1
§,-(x,t)=%(x—v,t)+§logrhj; j=1,...,n, (8.46)

and modify in turn the numerator and the denominator of (8.33).
We start with the denominator. There is an obvious relation

det(I+A(x, 1)

=1+éj (iw)- o AQ, - J)exp2(g,x, D+ ... +5;,(x, 1), (8.47)

1<j,<...<j,<n

where A(j,, ..., Ji) is the principal minor of order / of the n x n matrix
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1 1
Z1—2Zy Z1—2Z,
D= : : s (8.48)
1 N 1

Zn—21 Zn_z_n

composed of the rows and columns with indices ji,...,j.. To compute
A(ji, .-.,Ji1) we use the well-known relation

1 1
a,+b; a,+b,
det : :
1 1
a,+b, a,+b,
= JI (ai—a)b:i—b) [] (ai+b)~", (8.49)
I<i<j<n ij=1

which gives

n 2
. . 5 — Z'p _Z'q
AGss-id=[] @-2)" ][ o (8.50)
p=1 lsp<q=<! 1%Jp Jq
For x —v;t=const we have
lim {(x,0)=—o; I>], 8.51)
lim {(x,)=+o; I<j, (8.52)

t— — oo
so that by (8.47) we find the asymptotic behaviour along C; as t— — oo:

det(I+A(x, N)=(w)  "exp2({i(x, )+ ... +&_1(x, 1)) (8.53)
XA, ..., )exp2{i(x, ) +A(, ...,j— 1)+ O(e~"").

Next consider the numerator of (8.33). Similarly to (8.47) we have

det(I+A](x,t))=:'§2 (ico)’-'-1 2 MG i) exp2(g, (00
+. 4G, 0), (8.54)

where A1(j1, ...,Ji_1) is the principal minor of order / of the matrix
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D, = . 1, (8.55)

composed of the rows and columns with indices ji, ..., ji—; and n+1.
To compute A,(ji, ...,Ji_1) we take a side way. Let

Zy

D . :
D\(2)= : 1 . (8.56)

----------- _Z:

1 1 1

zZ—2 z—2Z, z

By the general formula (8.49) we have

detD, (z) = 312 T2 == (8.57)

zZ = Zj Z'—Zj

On the other hand, expanding the determinant of D,(z) along the last row
and letting z— o gives

lim zdet D,(z)=det D +detD,. (8.58)

Z—» 00

By comparing these expressions we find

I1 4_ 1) detD. (8.59)
1 g

Jj=

detD] = (

The principal minors of D, are treated in a similar way. As a result, we
get the final expression

A1y o fsm1) = (€Ot U=V Ay, . i), (8.60)

where
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175

(8.61)

Similarly to (8.53), we find the asymptotic behaviour along C,as t—— oo,

det(I+A4,(x, )=o)y 'exp2({i(x, )+ ... +§_1(x, 1)

XA (1,...,))exp24(x, ) +A,(1,...,j— 1)+ O(e~"')).

(8.62)

Now insert the asymptotic formulae (8.53) and (8.62) into the expression
(8.33) for w(x, #). Using (8.46), (8.50) and (8.61) we deduce the asymptotic

behaviour along C;,

) 1 +ei9}aj(—)evl(x—vil)
-1

W(xa t)=9ei(9'+m 4 1+a(._)evl(x_"i') + O(e—vclll)’
Jj
where
. - J=1
a}_’=ia)n”1j A(l’a.]) = ag : 2 ij
A, ....j=1) 2viz L4 |z-3

Let us modify the last expression. Using (8.5)-(8.6) we obtain

04 _ 7
2viz; iy’
with
iw o -2 7oz
Zi=r—F——=——e¢ * H —,
2V;z;a,(z;) z; = 21—z
I%j
Observe that, by virtue of (8.7), Z; is real and
signZ;=g¢;.
Therefore
 lz-z
Z,=¢1Z)|=¢ ke
1)
so that (8.64) becomes
1

a7 = —,
1E;Y;

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)
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where

j—1

11

=1

Zj—Zj ZI—Z.j

Z[—Zj

. (8.70)

v =v H

I=j+1

Z,—Z-j

Insert the expression for a!~’ into (8.63) and use the equation
zy=v,+iv,. Finally, we find the following asymptotic behaviour along the
trajectory C;, as t— — oo,

wx, )=e"C* - *0-Vyy (x—v;t +x577)+ O(e V"), (8.71)

The behaviour of w(x, ) along generic paths is analyzed by similar
means. Asymptotically as t— oo, we have

U/(X, t)=ei(61+ +6,)p+ O(e—w:ltl) (872)

in the region v;>9>v; ;. This completes the proof of (8.37).

The limit t— + o is examined in a similar way.

Notice that this reasoning also proves the aforementioned fact that
w(x,f) approaches its boundary values with the order O(e~*“) as
X— * oo,

Thus we have shown that the solution y(x, t) describes the n-soliton inter-
action. As t— x o, the solitons become free and go far apart from one an-
other. So, as in the rapidly decreasing case, y(x, t) will be called an n-soliton
solution.

The peculiarity of the present situation is that w(x, f) “decays” into soli-
tons y{*)(x, f) with distinct phase values 6,. These phases are tied up with
the velocities v; of the asymptotic solitons and are therefore distinct. One
can say that only those solitons interact which have different phases. For
that reason soliton dynamics looks more natural in the extended phase
space #,= |J .#,p already mentioned in § I.1. The relation

0<6<2n

6= i 6;(mod2 ) 8.73)

j=1

may then be regarded as a conservation law.

As in the rapidly decreasing case, the formulae (8.37)-(8.42) allow for a
natural interpretation in terms of scattering theory. Namely, an n-soliton
solution describes the scattering process of n solitons. For t— *+ o, we are
dealing with the free motion of n solitons separated in space with parame-
ters (v, x6¥’). Here for t— — oo the centers of inertia of the solitons,
x5;7 ) +v;t, are ordered from left to right in decreasing order of velocities; for
t— + oo, the spatial order of solitons is reversed.
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Scattering only changes the parameters x{3’ - the center of inertia coor-
dinates at +=0. Their relationship follows from (8.41)-(8.42),

x§7) =x§7"+Axo;, (8.74)
where

i1
! W —v)’+ WV +v)?

W—v)’+(vi—v)?

Aij= -
Vi i

4 l 'Z' log (l)[ — Uj)2 + (V[ + Vl)2

W—v)’+Wvi—v)*’

(8.75)

Y52

These formulae show that the scattering increments in the coordinates
Xo; are expressed as a sum over two-particle shifts,

1 (U] —02)2+(V1 +V2)2
Axgy = —1lo ,
o v 8 01— 0’ + (Vi —v2)?

(8.76)
1 01 —v2)’ + (Vi +vy)?

Axgy = — —1
Yoz Vi ° @1 —v)’+(Vi—w)?

for v;>v, with the interchange 1+ 2 for v, <v,. So, as in the rapidly de-
creasing case, scattering factorizes.

Hamiltonian aspects of soliton scattering will be discussed in the follow-
ing chapter.

§ 9. Notes and References

1. The regular Riemann problem of analytic factorization has been
extensively studied in the mathematical literature; see the books by
N. I. Muskhelishvili [Mu 1968] and N. P. Vekua [V 1970]. The principal
method here is to reduce it to singular integral equations. The latter are
examined in various functional classes, mostly in Holder classes. For our
purposes it is preferable to deal with the normed rings R">*" and R&*™
where the Riemann problem reduces naturally to a Wiener-Hopf integral
equation. This approach was developed by I. C. Gohberg and M. G. Krein
[GK 1958] who proved the existence theorem for the Riemann problem used
in this chapter. A passage from the scattering matrix S(4) to G(1)=a (1) S(1)
performed in § 1 is an essential step for applying the theorem.

2. The Riemann problem method in soliton theory was introduced in
[ZS 1979], which also contained a suitable formulation of the problem with
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zeros. Since then the Riemann problem method has gained in popularity
and in use (see, for instance, [M 1981]). In [ZM 1975], [S 1975], [S 1979] for
the first time the Riemann problem was taken as a basis for solving the
inverse problem for a first order matrix linear differential operator.

3. The matrix B(1) generalizing the scalar Blaschke factor was intro-
duced in a general setting in [P 1955]. In order to reduce the Riemann prob-
lem with zeros to the regular one in § 2 we follow [ZS 1979] and multiply
B(A) by G, (1) from the right. This operation leaves invariant G (1), the ma-
trix to be factorized. Other authors (see, for instance, [ZMNP 1980] and
[M 1981]) usually multiply B(1) by G .. (1) from the left. Then G(A) is modif-
ied by a similarity transformation.

4. A simple derivation of the differential equation with respect to x in
§ 2 and of the differential equation with respect to ¢ in § 3 is the major con-
ceptual benefit of the Riemann problem method, based, in fact, on the Liou-
ville theorem only. The idea to derive the zero curvature condition from the
Riemann problem with the matrix G(x, ¢, 1) depending explicitly on x and ¢
was suggested by V. E. Zakharov and A. B. Shabat; a detailed exposition
can be found in [ZS 1979]. Similar ideas were also present in [K 1977] where
actually a special Riemann problem on an algebraic curve was studied. It
then became clear that the form of the matrices U(x, ,4) and V(x,t, 1) in
the zero curvature condition is governed only by the principal parts of the
factorizing matrices F. (x, f, 1) at their essentially singular points (cf. §§ 2-
3). Again, extensive use is made of the Liouville theorem (see [JMU 1981],
[IM 1981a}, [JM 1981b], [I 1984]).

5. If B(s) lies in L,(— oo, o), the operators K, and L, introduced in § 2
are well defined and bounded on L, (0, o). By (2.64), for f(s) in L,(0, ) we
have

(Kofif) =1 ] ks, ) f(s") T dsds’

0

(=

oo oo

= [ || Blu—s)f(s)ds 2du>0, 9.1

—X

so that the operator K, (and also L,) is positive and monotone in x. More-
over, I+£K. and [ +¢L . have bounded inverses both for £=1, which is
obvious, and for e= — 1 by the condition (4). So it is quite easy to prove that
I+¢K, and I +¢L, have inverses on L,(0, o) uniformly in x.

However, under our general assumptions on f(s), these operators are
only defined on L,(0, ). Therefore we have to appeal to the Gohberg-
Krein theory and give a more detailed analysis in Subsection 3 of § 2.

6. In the derivation of the asymptotic behaviour of G. (x, 1) as |x|— o,
we exploited the explicit dependence of G(x, 1) on x (see (2.13)) to obtain
explicit expressions (2.64)-(2.65) for the kernels k. (s, s') and /.(s, s). On the
other hand, the matrix G(x, ¢, A) for the NS equation also depends explicitly
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on ¢ (see (3.9)). It is then natural to ask whether one can investigate in this
way the behaviour of G. (x, ¢, 1) and derive the asymptotic behaviour of the
NS solution w(x, f) as t— + . Asymptotic expressions of this kind were
first obtained in [ZM 1976] and proved rigorously in [N 1980].

This problem is more difficult than that in Subsection 3 of § 2; it was
solved in [I 1981]. It was shown that along the lines x —vf=const, as
t— * oo, the Riemann problem simplifies and reduces to one where the ma-
trix to be factorized does not depend on A. The latter problem can be solved
in closed form in terms of special functions. There emerge some interesting
connections with the so-called isomonodromic solutions, self-similar solu-
tions and Painlevé-type equations. This vast theme is not treated here and
we can only refer the reader to the original papers [ARS 1980 a], [ARS 1980b],
[FN 1980], [U 1980a], [U 1980b], [A 1981], (JMU 1981], [JM 1981a],
[JM 1981b]. The role of isomonodromic solutions of the Riemann problem
in soliton theory is discussed in [I 1985].

7. The formalism of the Gelfand-Levitan-Marchenko integral equations
was developed by I. M. Gelfand and B. M. Levitan [GL 1951] and V. A. Mar-
chenko [M 1955] who gave a complete solution of the inverse problem for
the radial Schrodinger equation (Schrodinger operator on the half-line). An
elementary exposition of these methods and connections with M. G. Krein’s
approach [K 1954], [K 1955] can be found in the review paper [F 1959]. The
Schrodinger equation on the whole line (one-dimensional Schrodinger oper-
ator) was studied by I. Cay and G. Moses [CM 1956]. A complete mathemat-
ical treatment of the problem for potentials u(x) satisfying

[ (Il dx < oo ©2)

was given in [F 1958], [F 1964]. This work showed for the first time the ne-
cessity to consider both of the Gelfand-Levitan-Marchenko equations and
established the relationship between their solutions.

The inverse problem for the NS model in the rapidly decreasing case
was solved via this method in [ZS 1971] for = —1 and in [T 1973] for ¢=1.
We also note that the inverse problem for the radial Dirac operator with
zero mass was solved in [GL 1966].

8. Soliton solutions for the NS model in the rapidly decreasing case
were first found and analyzed in [ZS 1971].

9. In § 6 we have already mentioned some technical difficulties in the
Riemann problem arising in the case of finite density due to boundary
points of the continuous spectrum.

Conceptually similar complications also occur in the analysis of the Rie-
mann problem for the one-dimensional Schrodinger operator. The role of
the surface /~ is now played by the Riemann surface of the function
k=1/4; the branch point 1=0 may give rise to a virtual level.
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In this connection it might be of interest to consider the general Rie-
mann problem on an arbitrary Riemann surface and develope an analogue
of the Gohberg-Krein theory.

10. The Gelfand-Levitan-Marchenko equations for the case of finite
density derived in §7 were obtained in [ZS 1973] (see also [Fr 1972],
[GK 1978], [AK 1984]). Here we follow the approach first suggested in
[F 1958], [F 1964] for the one-dimensional Schrédinger operator (see also the
review paper [F 1974]). The proof of the existence and uniqueness theorem
for the integral equations (7.37) and (7.44) relies on the fact that the asso-
ciated operators are positive and is similar to the approach mentioned in
our note 5.

The Gelfand-Levitan-Marchenko equations in the rapidly decreasing
case can also be treated by the method of § 7, with some technical simplifi-
cations.

11. In § 7 we assumed, for simplicity, that the boundary values in the
finite density case are approached in the sense of Schwartz. In § 1.2 it was
explained to what extent this assumption may be relaxed. The restrictions
on a,(1) and b,(1) at A= +w are then as follows

kbyA)=b.+0(1), ka,(A)=a. +o(l) (9.3)

as k—0. The above method for solving the inverse problem applies here,
too.

For the one-dimensional Schrédinger operator a natural restriction on
the potential u(x) in the direct and inverse problems is given by (9.2). This is
precisely the condition stated in [F 1958], [F 1964]. However, the behaviour
of the transition coefficients on the boundary of the continuous spectrum
was treated inaccurately. This was the reason for the criticism in [DT 1979]
after which the impression was formed that u(x) should be subject to a
stronger restriction,

T (4% ()l dx< . 9.4)

Nevertheless, as is shown in [M 1977] and [L 1979), if the behaviour of the
transition coefficients at k=0 is made more precise, the method of [F 1958],
[F 1964] remains valid under the single condition (9.2).

12. Soliton solutions in the finite density case were analyzed in {ZS
1973]. We note their method for studying the interaction of solitons. It is
based on the assumption that a multisoliton solution w(x,?) can be ex-
pressed, as t—+ oo, as a sum of spatially separated solitons. For such
w(x, 1), w(x, {) the auxiliary linear problem can be solved in closed form, so
that the transition coefficients for the discrete spectrum, and hence the

x63), are evaluated explicitly.
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In application to the rapidly decreasing case this method is presented in
the book [ZMNP 1980].

The method outlined in § 8 is based on the direct analysis of the explicit
formulae (8.33)-(8.36) for a multisoliton solution. The expression for the
determinant of (8.49) which plays an important role in the computations can
be found in the problem-book [FS 1977].

13. Throughout the text we made a pedantic use of the notation y(x),

w(x) (also b(A), b(1)) despite the fact that the functions in these pairs are the
complex conjugates of each other. We persist in this notation by analogy
with complex coordinates z=x+iy and z=x—iy of the real plane RR?
which is particularly convenient in the Hamiltonian formalism. Moreover,
this notation allows an easy extension to the more general case where y(x)
and y(x) are completely independent, so that the bar ceases to indicate
complex conjugation. Instead of the NS equation we then obtain a system

0 o* oy Oy
i Y yz/+2xy/ i Y _oY
ot ox ot ox?

9.5)

All the results of Chapter I including the zero curvature representation
and the analysis of the mapping &~ remain essentially valid for this system.
Of course, various involutions for the Jost solutions hold no longer so that,
for instance, the reduced monodromy matrix in the rapidly decreasing case
has the form

a(l) 85(/1))- ©.6)

TA)=

D= (5 20
Here a(A) and b(1) are not the complex conjugates of a(l) and b(A), respec-
tively. The same refers to the discrete spectrum 4;, /1 and its transition coef-
ficients y;, 7;. In the case of finite density the boundary conditions become

lim y(x)=0{*, im g = 05", ()]

X—» * oo

where in general |0i*|#105°|; it is only assumed that {05 = 0{*)04*.

As regards the Poisson structures introduced in § 1.1, we note that
(I.1.18) and the related formulae should be interpreted in the formally-com-
plex sense. So, for example, the Hamiltonian (see (I.1.24)) becomes

oo

_ oy 3(//
H= j (ax Rl l//)dx 9.8)

and is a complex-valued functional.
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All the results of Chapter II can also be generalized with the exception
of one important fact. The matrix
1 eb(l)e~i*~
G(x,A) (—b(l) ot 1 ) 9.9)
of the Riemann problem (2.1) does not satisfy the hypothesis of the theorem
of Gohberg and Krein referred to above because b(4) and b(1) are now com-
pletely independent. Here in order for the Riemann problem to have a solu-
tion it is to be assumed that for every x all partial indices of G(x, 1) vanish.
Thus there arise severe but rather implicit restrictions on the inverse prob-
lem data. Moreover, the class of these data need not be invariant under the
evolution in ¢.

In a similar manner, the Gelfand-Levitan-Marchenko formulation has to
be supplemented by the requirement that the corresponding integral equa-
tions have a solution, which is a restriction on the initial data.

The general case under the rapidly decreasing boundary conditions was
studied in detail in [AKNS 1974]. For the general finite density case the
reader is referred to [GK 1978], [AK 1981], [AK 1984].

Since physical applications involve primarily the ordinary NS equation,
we concentrate here on the model admitting the involution of complex con-
jugation.

14. Besides the Riemann problem and the Gelfand-Levitan-Marchenko
equations there are other schemes for constructing solutions to a wide class
of nonlinear equations. We can cite, for instance, the methods of [FA 1981],
[QC 1983], [M 1985]). We think, however, that these methods are not so
natural mathematically. The problem of identifying the solutions that be-
long to a given functional class has been studied within these schemes in
lesser detail than in the Riemann problem method or the Gelfand-Levitan-
Marchenko formalism.
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Chapter I11
The Hamiltonian Formulation

In this chapter we return to the Hamiltonian formulation of the NS
model in order to discuss the basic transformation of the inverse scattering
method

T (W), gx) — bA), bA); 4, 7))

from the Hamiltonian standpoint. We shall describe the Poisson structure
on the scattering data of the auxiliary linear problem induced through &~
from the initial Poisson structure defined in Chapter 1. Under the rapidly
decreasing or finite density boundary conditions, the NS model proves to be
a completely integrable system, with & defining a transformation to ac-
tion-angle variables. In particular, we will show that the integrals of the mo-
tion introduced in Chapter I are in involution. In these terms scattering of
solitons amounts to a simple canonical transformation.

This chapter introduces an important element of the inverse scattering
method, the classical r-matrix, whose universal role will be fully revealed
only in Part II. Here we shall see that the r-matrix is a useful tool for com-
puting the Poisson brackets of transition coefficients. Moreover, it will be
shown that the r-matrix representation of the Poisson brackets can replace
the zero curvature representation.

§ 1. Fundamental Poisson Brackets and the r-Matrix

We will show how to compute the Poisson brackets of the entries of the
transition matrix T'(x, y, A). The formulae of this section will be used in §§ 5
and 6 to describe the Poisson structure on transition coefficients under the
rapidly decreasing and finite density boundary conditions, respectively.

Most of the computations in this section are purely local. We suppose
w(x), w(x) are defined on the interval — L <x < L; we shall only deal with
compactly supported functionals, i.e. functionals depending only on w(x),
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w(x) for x inside the interval. A precise definition of compactly supported
functionals was given in § L.1.
Recall that the Poisson bracket of such functionals is given by

L
( 0F oG OF oG )dx, (1.1)

6= | (5,69 5900~ 500 5u

—L

where, due to compact support, integration actually goes over a smaller in-
terval. Boundary conditions are irrelevant here. From now on, along with
real-valued functionals we shall also consider complex-valued ones. The
Poisson structure extends by linearity to these functionals, and their Poisson
bracket has the same form (1.1).

Our nearest goal is to compute all the 16 Poisson brackets between the
matrix elements of T(x,y,A) for different values of A. The definition
of T(x,y,A) and the superposition property (I.3.7) imply that, for
— L<y<x<L, the matrix elements are functionals with compact support.
To be able to treat all their Poisson brackets simultaneously, it is convenient
to adopt the following notation.

Let A and B be two matrix functionals with compact support, i.e., 2 x2
matrices whose elements are functionals with compact support. Let

(1.2)

£l

. L 5A SB SA OB
4@ BI=i | (5w(x) 5y 84) ®5w(x)>dx’

—L

where ® on the right hand side indicates tensor product. So {4 ® B} is a
4 x 4 matrix composed of various Poisson brackets of the matrix elements of
A and B. We shall use the natural convention for tensor product,

AnB AB
A®B= .
(A21B AZZB) ’ (1.3)
or
(A ® B)ik,mn=Ajm Bkn’ (14)
where jk,mn=11, 12, 21, 22 so that
{A @ B}ik,mn = {Aim, Bkn}' (1'5)

This notation will really prove convenient as will be seen more than
once. In particular, the basic properties of the Poisson bracket take the
form

(A®B}=—P{BQA)P (1.6)
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for skew-symmetry,

{A®@BC}={AQB}(I® C)+(I®B){4® C} (1.7)
for the derivation property and

{4 ®{B® Cl}+ Pi3 P{C®{4 @ B} P3 P13
+P;3 Pa{BQ{CR AR P, Pi3=0 (1.8)
for the Jacobi identity.

Let us explain the notation employed. In (1.6) there appears a 4 x 4 ma-
trix P which is the permutation matrix in C> ® C? defined by

PE®M=n®¢ (1.9)

for any vectors £ and 77 in €. From (1.9) it follows that
P’=I, PA®B)=(B®A)P, (1.10)
where 4 and B are any 2 x 2 matrices and I denotes the unit 4 x 4 matrix (we
are not afraid of confusion because the context will always make clear on

which space I acts). In terms of the Pauli matrices o, (see § 1.2), P is ex-
pressed as

P=%(1+ i 0,,®0',,> (1.11)

a=1

and in the basis 11, 12, 21, 22 it has the form

(1.12)

(=R R
O = O O
SO = O
- O O QO

The operation {@} in (1.8) is defined, according to (1.2), for matrices of
arbitrary dimension, so that {4 @ {B @ C}} is a matrix in C’®C*® C? and
P,» (P3 and P,3, respectively) denotes a matrix which equals the unit matrix
in the third (respectively the second and the first) space and coincides with
P in the product of the remaining two spaces.

Obviously, the representation of the basic properties of the Poisson
bracket in terms of the operation {®} allows for n x n, not necessarily 2 x 2,
matrices 4, B, C; the n> x n> matrix P is then defined by (1.9) as before, and
satisfies (1.10).
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Let us now compute the Poisson brackets. Consider U(z,1) as a com-
pactly supported matrix-functional of w(x), w(x), — L <x < L. Remind that

A A i}
U@ A =505+ U@ = - o+ Vx W) os +y()o),  (1.13)
where o3, 0, and o_ are the Pauli matrices (see § 1.2). The basic Poisson

brackets from § 1.1
W), yIi=twx), y(»i=0, {yx), y(y=id(x-y), (1.14)
easily lead to the Poisson bracket matrix {U(x, 1) @ U(y, u)}:
{Ux, )Q U(y,pl=ix(0c_®o, -0, Q0o_)o(x—y). (1.15)
Now observe that the matrix on the right hand side can be expressed as
0-®0,-0,Q0_=3[P,03:®I]=—3[P,IQ cy]. (1.16)

To verify this, it is enough to use the expression (1.11) for P and the com-
mutation relations for the Pauli matrices

lo+,0_1=03, [o03,0.]1=20,, o3, 0_1=-20_. (1.17)

Equation (1.16) makes it possible to rewrite the right hand side of (1.15) as
an expression linear in U(x, A1) and U(y, p).

In fact, by virtue of (1.16) it can be expressed as a commutator
=% [P, i :®I+21® 03] 8(x—y). By (1.10), P commutes with
A—u 2i 2i
Uo(x) ® I+ 1® Uy(x). Hence we can write the Poisson bracket matrix as

U Q Uy, =lrA—p), U, ) @ I+1® U(x, p)16(x~y), (1.18)

with
x
r(A) = —ZP' (1.19)

At first sight this formula is nothing but a rather cumbersome reformula-
tion of the basic Poisson brackets (1.14). Yet, as we shall see below, it
represents a universal property of the matrices U(x, 1) involved in the zero
curvature representation for all the models to be considered. Moreover, this
property underlies the integrability itself and has a natural Lie-algebraic in-
terpretation. For that reason (1.18) will be called the fundamental Poisson
brackets.
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We will now show that (1.18) immediately yields the Poisson brackets be-
tween the entries of the transition matrix in the form

{Tx,y,) @ T(x, y, wh=lrA—p), T(x,y, ) ® T(x, p, )],  (1.20)

for —L<y<x<L.

We shall outline two derivations of this formula. One is based on the
definition of T(x, y,A) as a multiplicative integral by a passage to the limit
(see § 1.2), the other makes use of the differential equation (see § 1.3).

We begin with the first one. Cut the interval (y, x) into N segments A,
n=1,..., N, so that their maximal length A vanishes as N— co. Then, by
(1.2.14)-(1.2.16) we have

T(x,y,A)= lim Ty(A), (1.21)
N— oo
where
9
Tv@A) = I_Il L,@4) (1.22)
and
L,A)=I+ | U(x,A)dx. (1.23)
A,
Now, by virtue of (1.18)
{L,(A) @ L..(1)} =0 (1.24)

for n#£m.
Indeed the computation of {L,® L,} leads to a vanishing integral

[ | 6(x—y)dxdy.
A, A

It is essential in this reasoning that the fundamental Poisson brackets
(1.18) contain only the generalized function d(x—y) but not its derivatives.
This is an important property of the potential U(x, A) of the auxiliary linear
problem; we shall call it ultralocality.

From (1.22), (1.24) and (1.7) we obtain

{Tn(A) © Tn(w)}

= Z. (T.2) ® T,(IWL(A) @ Li(WNT o W) ® T, 1 (w)),  (1.25)

n=

where

T,,(/l)=ﬁLk(,1), T.A)= [1 L&). (1.26)

k=1 k=n+1
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Then the fundamental Poisson brackets yield
{L,A) @ L ={] Ulx,A)dx @ | U(x, p)dx}
a, A,

=[r(l—p), | Ux,)dx®I+IQ | U(x, n)dx], (1.27)
A, a,

whence we find
{L,(A) ® L,(w)}=[r(A—p), L,(A) ® L,()]+0(4%. (1.28)

Using that the commutator acts as derivation with respect to multiplica-
tion, we find from (1.28)

(Tw() @ Tn () =[r(A— ), Tn(A) ® Tw(w)]+ O(NA?). (1.29)

Letting N— oo in this equation and using NA = O(1) we obtain (1.20).

For the second method let us consider T(x, y, 1) as a matrix functional of
the entries of U(z,A) for —L<y<z<x<L. By the differentiation rule for
composite functions, (1.1) gives

{Tab(x’ Y, A’)a Tl‘d(x9 y’ lu)}

OT.4(x,y, )

_I I 01t ® 2 2) 1y, (2, 3), Un(z's ) 5Urn (2 1)

5U (2 0) dzdz', (1.30)
where repeated indices j, k, I, m imply summation from 1 to 2. Here the
8T (x,y, 1) .
oU(z,A)
to a general variation § U(z, A) which need not preserve the special form of
Uz, A).
Now by varying the differential equation

variation of T'(x,y,A) in the definition of is taken with respect

%;(x,y,l)=U(x,l) T(x,y,A) (1.31)

for the transition matrix (see § 1.3) with the initial condition
T(x,)’, A)I.\'=.\'=I’ (132)

we find the equation

% 6T(x,y,)=Ux,1)6T(x,y,A)+6U(x, ) T(x, y, 1) (1.33)
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with the initial condition
0T (x,y,A)|x=,=0. (1.34)

It is immediately verified that the solution of (1.33)-(1.34) is given by

5T (x,y,2) = | T(x,2,A)6 Uz, A) T(z, y, Ay dz, (1.35)

whence it follows that

6Tab(X,.VJ~)
) , ‘ .
6L]jk(Z, l) "-l(x’ Z, /‘L) T’\b(za Vs ;L) (l 36)

Now insert this formula into (1.30). We then deduce a relation which we
shall again write in invariant form

{T(Ox,y,4) @ T(x,y, w)}

I
Cey A,
—

(T(x,2,A) @ T(x, 2", W){U(z,4) @ U(z', w)}

-

x(T(z,y,4) ® T(z', y, ) dzdz'. (1.37)

Using the fundamental Poisson brackets we find

(T, ) @ T(x, sl = | (T(x,2,2) @ Tx, 7, )

X[rA—p), Uz, A) ® I+1® U(z, p)i
x(T(z,y,A)® T(z,y, n))dz. (1.38)
The matrices U(z,A) and U(z, u) in the commutator on the right hand

side of (1.38) stand on the left or on the right of T(z,y,4), T(z, y, 1) or of
T(x, z,A), T(x, z, u), respectively. By the differential equation (1.31) and

aoT
_a_j;(x’y’/l)": —T(xay,l) U(yal) (139)

we deduce that the integrand of (1.38) is a total derivative with respect to z
of the product

(T(x,2,4) ® T(x, 2, ) rA —u)(T(z, y, A) @ T(z, y, 1))
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Integration with the initial condition (1.32) gives (1.20).

To conclude this section we make a few comments on the formulae ob-
tained.

1. By no means any given matrix r(1) can play the role of the classical
r-matrix. For the fundamental Poisson brackets (1.18) to be consistent with the
skew-symmetry (1.6) and the Jacobi identity (1.8) it is sufficient that

r(=A)=—-Pr(A)P (1.40)
and

[riz(A —p), riz()) +raa()]+Iriz(A), r2s(p)]=0, (1.41)

respectively. Obviously, these relations hold for the matrix r(1) in (1.19).
Conversely, if (1.40)-(1.41) hold, then (1.18) defines a Poisson structure on the
space of functionals of matrix elements of U(x,A). In Part II we will show
how to construct some other solutions of (1.40)-(1.41) and prove that each
of them gives rise to an integrable Hamiltonian system.

2. The two methods for deriving (1.20) outlined above are quite general
and do not depend on a particular form of U(x,A) and r(A). Precisely, we
have shown that if U(x, A) satisfies (1.18) with some r(1), then the Poisson
brackets between the matrix elements of the transition matrix T(x, y, ) sa-
tisfy (1.20). Also, the local formula (1.18) is an infinitesimal version of
(1.20).

3. The right hand sides of (1.18) and (1.20) contain an apparent singular-
ity at A=y since the denominator in (1.19) vanishes at A =u. However, by
virtue of (1.10), P commutes with both U(x,A)® I+I® U(x,A) and
T(x,y,A)® T'(x,y,A) so that the numerator in (1.18) and (1.20) also vanishes
at A =y, and the singularity cancels out (“L’Hopital’s rule™).

4. For —L<x<y<L it follows from (1.20) that

{T(x, Y /1) @ T(xa Y, /l)} = '—[r(ﬂ’_.u)’ T(x’ Y, A’) ® T(xa ¥, Au)]a (142)

since (see § 1.3)

T(y,x,A)=T""(x,,4). (1.43)

5. Relation (1.20) extends to transition matrices for two arbitrary inter-
vals (y, x) and (', x") contained in (— L, L). To show this observe that, by
ultralocality, the Poisson brackets of the matrix elements of T(x, y, A1) and
T(x', y', ) vanish for disjoint intervals (y, x) and (3, x') as well as for inter-
vals with only one point in common. Therefore the superposition property
(1.3.7), the derivation property (1.7), and (1.20) imply
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{TC,y, )@ Ty, i =(T(x,x",4) ® T(x', x", 1))
X [r(ﬂ' —lu)’ T(x”’ )’”, 'l) ® T(x”’ y”’ ﬂ)]
x(T(y",y, Y@ T(y",y", 1)), (1.44)

where (y", x"") is the intersection of the intervals (y, x) and (y’, x').

§ 2. Poisson Commutativity of the Motion Integrals in the
Quasi-Periodic Case

As a first application of the formulae derived in the previous section, we
will prove that the local integrals of the motion I, constructed in § 1.4 are in
involution,

{In’ Im}=0' (2'1)
Still, first of all we have to show that the I, are admissible functionals on the

phase space _#] o (see § 1.1). We will show the admissibility of the generating
Junctional F; (A) defined in § 1.2 by

FLA)=trT.(1)Q(0). (2.2)

‘We shall deal with the quasi-periodic boundary conditions
p+2L)=efy(x), Gx+2L)=e"""y(x) 2.3)
and fix the fundamental domain — L<x< L. Consider the transition matrix
T(x,y,A) for —L<y<x<L. As noted in § 1, its matrix elements are func-
tionals with compact support. Their series expansion in y(z), ¥(z) of the

type (I.1.7) results from the Volterra integral equation (1.3.26) for the transi-
tion matrix,

T(x,y,4)=E(x~y,2)+ | T(x,2,4) Up(2) EGz -y, A dz, 2.4)
. 2«20'3 . . .
with E(z,A)=exp YRR The iterations here converge absolutely and give
i

the required series for the matrix elements of T(x, y, A).

Now compute the variational derivatives 0Ty, /1), ST()f’y’ A). To
this end we use (1.35) where we set 6y (2) 6y (2)
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U@z, \)=Yx Sy (2)o, +Sy(z)o_). 2.5)
As a result we find, for y<z<x,

0T(x,y,4)

uiy  —VETezho Tyl 2.6)
and
%ﬂl =1/;?T(x, z, /1)0'+ T(Zay’ /l) (27)

For z in the fundamental domain but outside of (y, x), these variational
derivatives vanish.

Thus the variational derivatives are discontinuous functions. Hence the
matrix elements of T(x, y, A1) cannot be regarded as admissible functionals
in the sense of § I.1.

To prove that F; (1) is admissible let us take the limit of (2.6)-(2.7) as
ST.() 6T.@)
Sy’ 6y(2)
the monodromy matrix 7;(1)=T(L, — L, A). From (2.6)-(2.7) it follows that
these variational derivatives are smooth functions of z in the interval
— L <z< L. Taking the limit as z—L—0 and z— — L+ 0 we find

x—L, y— —L, and consider the variational derivatives

6T, (1)

sy .o, " VFo-Te® @8)

% B 2.9)
and

(3574;((;)) . V@, 2.10)

% z=_L=ﬁTL(/DG+' .11

This shows that the matrix elements of the monodromy matrix are not ad-
missible functionals either.

To continue proving that F; (1) is admissible, multiply the above equa-
tions by Q(0) from the right and evaluate the trace. Using the elementary
formulae
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Q@) o, Q '(0)=€‘0,, (2.12)
Q©0)o_Q~'(®)=e""?0_, (2.13)

we obtain the required quasi-periodicity conditions

SFLA)| e 8F()

59@) oo ¢ 09 |oeyr’ (219)
O0F, (1) _AH5FL(A)

—_— = " ——= . 2.15
e ) @.1)

d 6FL.(A) d d k) there are similar for-

For the z-derivatives - 5v ) an & 50

mulae,

For the derivation one should use the equations
% 6_7(;(%;& —E T, 2z, Mo, Uz, N Tz 3, 4), (2.18)
& 0T ) _ orix 2, Ao, U, DI TG, 3, 4) (2.19)

oz  Ow(2)

for y <z <x which follow from (1.31), (1.39) and (2.6)-(2.7), and repeat the
above reasoning taking into account the quasi-periodicity conditions

U(L,A)=0""(6) U(~ L, 1) 0(6). (2.20)

6F.()

Sy(2)’
for —L<z< L make it possible to extend these functions to the

Conditions (2.14)-(2.17) together with the smoothness of
6F . (A)

oy(z)
whole real axis in a smooth quasi-periodic way,

SFLA) 5 6F() SFL()  _ 10 SE()

sui+2L) C Sy Swe+2D) su &
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If w(x), w(x) are infinitely differentiable, then the variational derivatives
0F.(A) 6F.(A)
Sy(2)’ 6y(2)
the whole axis.

Finally we point out that F; (1) is a real-analytic functional. Its expan-
sion of the type (I.1.7) results from the corresponding expansion for the
functional tr T(x, y, A1) Q(0) in the limit as x— L, y— — L. This finishes prov-
ing that F; (1) is an admissible functional.

Now we will show that the integrals of the motion generated by F, (1) are in
involution:

are also infinitely differentiable quasi-periodic functions on

{FL(A), FL(u)}=0. (2.22)
For that purpose we recall (1.20)
(TG, y, )@ T(x,y, W =lrA—p), T(x, y, 1) ® T(x, y, W], (2.23)

for —L<y<x<L, and multiply it by Q(8) ® Q(6) from the right. The ele-
mentary property

[r4), 0 ® 0]=0 (2.24)

shows that (2.22) remains also valid when T(x, y,A) and T(x, y, it) are re-
placed by T(x, y,4) Q(0) and T(x, y, u) Q(0), respectively. Now take the ma-
trix trace in €> ® C? of the resulting equation and use

tr(4 ® B)=trA-tr B, (2.25)

where tr on the right indicates the trace in €. Since the trace of the commu-
tator is zero, we have

{trT(x, y,4) Q(0), tr T(x, y, 1) Q(6)}=0. (2.26)

Here one can take the limit as x— L, y— — L; then (2.22) results.
So we have shown that the motion integrals for the model in question
are in involution. Equation (2.1) follows from (2.22) by expanding

0 < I, .
Pd)=—AL+ - +x Z 2+ 00A™™), (2.27)

n=1
where
pr(A)=arccos3 F, (1) (2.28)

(see § 1.4).
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To every local integral I, on _#; o there corresponds a Hamiltonian
flow

oy
= In’ s
o = U vl

oW i}

o {1, v}. (2.29)
For n=1, 2 the flows have a simple physical interpretation (see § 1.1); for
n=3 we recover the NS equation. The corresponding equation of motion
(especially for n>3) are commonly called the higher nonlinear Schrédinger
equations (higher NS equations).

What is remarkable here is that in addition to the first two (trivial) flows
there are infinitely many commuting flows. This may be viewed as a mani-
festation of the “hidden symmetry” of the NS model.

To avoid misunderstanding, let us point out that the family tr T(x, y, 1) Q
with an arbitrary matrix @ also gives functionals in involution, but these are
irrelevant to our model. First, their variational derivatives are not smooth,
so that these functionals are inadmissible. Next, even if we agree to extend
the class of admissible functionals, then the functionals tr T'(x, y, 1) Q will
not Poisson commute with the /, and so will be of no use for showing the
complete integrability of the NS model.

The existence of infinitely many integrals of the motion in involution
suggests that our model may be completely integrable. In case the phase
space has finite dimension 2n, there is the Liouville-Arnold theorem saying
that a Hamiltonian system is completely integrable if it has a set of n (half
the dimension of the phase space) integrals of the motion in involution. If
so, the phase space is foliated by n-dimensional submanifolds on which the
motion is linear.

In our case the phase space is infinite-dimensional and integrability is
not so elementary since there is no analogue of the Liouville-Arnold the-
orem. Naively, one can assert that the “number” of the motion integrals, I,
contained in p; (1) is “half the dimension” of the phase space and these
integrals are functionally independent.

However, to implement these ideas in the quasi-periodic case and, espe-
cially, to construct the angle variables which linearize the motion it is neces-
sary to employ the analysis on Riemann surfaces in the general case of in-
finite genus - the techniques beyond the scope of this book. Therefore, we
shall not elaborate the quasi-periodic case any further, reserving it to outline
some basic constructions connected with the r-matrix (see §§ 3-5). In con-
trast, in the rapidly decreasing case and for the finite density boundary con-
ditions, we shall give a full treatment of complete integrability and exhibit
the corresponding action-angle variables.
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§ 3. Derivation of the Zero Curvature Representation from
the Fundamental Poisson Brackets

Here we will show in what sense the existence of the fundamental Poisson
brackets can replace the zero curvature condition. Namely, given the r-matrix
and a matrix U(x, 1) we shall construct a sequence of matrices V,(x,A) ap-
pearing in the zero curvature representation for the higher NS equations, which
are the equations of motion generated by the integrals I,. As in § 2, we shall
concentrate on the case of quasi-periodic boundary conditions.

Consider the generating equations of motion

oy oy -
i {pL(), v, Py {pL(n), vl (3.1

for all the higher NS equations. Here

pr(p)=arccosy FL(p), (3-2)

and u plays the role of a parameter. Let us show that (3.1) is equivalent to the
zero curvature condition

oU oV
E(x,/‘l’) - a_x(xs A’),u)+[U(x5 2')9 V(xa 2'5:[1)]:09 (3'3)

satisfied for all A (for notational simplicity, the dependence on t is suppressed),
and derive an explicit expression for V (x, A, y).

To begin with, we compute the Poisson bracket matrix { T(x, y, 1) @ U(z, A)}
for —L<y<z<x<L. In analogy with the second derivation of (1.20), we
use (1.18), (1.36) and the obvious identity

0U,p(z, 1)

m=5ac5bd6(z—z), (34)

where J,; is the Kronecker -symbol, to obtain

(TG, y, 1) @ Uz, )} =(T(x, z, ) ® I)
x[r(u—=A4), Uz, ) @ I+ I ® U(z, )]
X(T(z,y,)®I). (3-5)

This relation involves a 4 x 4 matrix
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M(z,x,y; A, p)=(T(x, 2, 1) @ Dr(u—A)(T(z, 3, 1) ® ), (3-6)

which appears in (3.5) through the commutator with I ® U(x, ). To modify
the other terms on the right hand side of (3.5) containing U(z, u) ® I we
make use of the differential equations (1.39) and (1.31) for T'(x, z, 1) and

T(z, y, 1), respectively. We find that these terms sum up to P M@z, x,y; A, 1.
So, finally, we have z
17
{T(x,y,#) @ U(Z,l)} = a—ZM(Z,x,% /’La‘u)
+M(z,x,y; A, 1), I® Uz, )] (3.7
In what follows, along with the usual matrix trace we shall use the oper-
ation tr,, which is matrix trace in the first factor of the tensor product
€2 ® C2; it carries a matrix in €2 ® €2 into a matrix in C? and is defined by
linearity by
tri(A ® B)=tr4-B, (3.8)

where 4 and B are matrices in C% The operation tr, is characterized by

t Q@A) X =A-tr, X, (3.9
tr, X(I® A4) =t X-4, (3.10)
thA®NX=tr,X(4®I), (3.11)

where A4 is a matrix in €? and X is a matrix in C*>® C°.
Now multiply both sides of (3.7) by Q(0) ® I from the right, take the
trace tr; and let x— L, y— — L. Using (3.9)-(3.10) we find

{Fu(w), Ulx, A)} = aix V(x, A, ) +1V(x, A, ), Ux, D], (3.12)

with
Vx, A, p)=tr;(M(x, L, —L; A, u)(Q(6) ® I)) (3.13)

where the variable z is replaced by x, — L<x<L. The left hand side of
(3.12) is a 2 x 2 matrix composed of the Poisson brackets between Fy (1) and
the matrix elements of U(x, ).

The expression for V(x, A, 1) can be simplified by using the explicit form
of the r-matrix (1.19). We have
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V2,0 = 77 (T % 1) © D PTG, — L, 1) Q(0) @ 1)

= ,lf p tr (P(T(x, — L, 1) Q(0) T(L, x, ) ® I)

- Af (U@ TG, =L QO T(L x, 1) P)

—L,p)Q@O)T(L, x,u)-tr, P, (3.14)
/1 —p

where we have used (3.11), (1.10) and (3.9). Now the explicit form of P (1.11)
shows that

tr, P=1I, (3.15)

which yields an expression for I7(x, A, 1),
- %
Vix,, 1) = i—p T(x, —L,p)Q0) T(L, x, ). (3.16)

Let us show that ¥ (x, A, y) satisfies the quasi-periodicity condition
Vx+2L4,1)=07"(0) V(x, 1, 1) Q(6). (3.17)

Following the discussion of the preceding section, we compare the matrices
V(x, A, 1) evaluated at x=L and x= — L. We have

V(L o) = 37 (10 00) (3.18)
and
V(-LAw =12 0O T, (3.19)
so that
VLA, m)=Q~'0) V(—L, 4, 1) Q(6). (3.20)

This equation together with the smoothness of the matrix elements of
V(x,A, 1) for —L<x<L assures that the latter extends to the whole line
— o0 <x < oo under the quasi-periodicity condition (3.17).

Thus we have seen that both left and right hand sides of (3.12) are well
defined under the boundary conditions in question. As a corollary, all the
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commuting flows on the phase space _#; 4 induced by the general equations
of motion

2y

oy _ -
E;_—{FL(JU), t//}a ot _{FL(.U'), W}s (321)
or equivalently
20D R, U ), (3.22)

are representable as the zero curvature condition (3.3) with the matrix
V(x,A, 1) given by (3.16). Notice that our derivation based on the funda-
mental Poisson brackets was quite general.

However, equations (3.22) are non-local. Let us now show how the above
Sformulae lead to the zero curvature representation for the flows generated by
the local integrals 1,, the higher NS Hamiltonians.

To this end we recall the representation (1.4.5) for the transition matrix

T(x,y, W)=I+ W(x, ) e“™> I+ W(y,u) ", (3.23)

where W(x,u) and Z(x,y, ) are an off-diagonal and a diagonal matrix,
respectively. As noted in § 1.4, this decomposition is of asymptotic nature
for large real ¢ and holds with the order O(lul~ ), so that the matrices

W(x,u) and Z(x, y, u) + % (x—y) are given by asymptotic Taylor series

in powers of g~ '. Therefore all the operations below are taken asymptoti-
cally and all the formulae are valid with the order O(lul~ =) which will not
be specially mentioned any more.

Now insert the decomposition (3.23) into (3.16). The quasi-periodicity
condition

WE+2Lp)=07"'0) W(x, 1) Q(6) (3.24)
and the fact that Z(x, y, ) is diagonal yield an expression for V(x, A, u):

2(I+ W (x, 1)) e*“00) I+ W(x, w)) "
A—p '

Vix,A, p) = (3.25)

Next, notice that (3.23)-(3.24) give the decomposition

T () QO)=U+ W (L, p)e” Q@) I+ W(L,w))~". (3:26)
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The fact that T, (1) Q(0) is unimodular and the definition

tr Ty (1) Q(8) =2 cospy.(u) (3-27)
then yield

e“tW (@) =cosp, (u) I +isinp, (u)os. (3.28)

Substituting this into (3.25) we find

- iz
Vix,A,p) = L sinpy (1)

T CoSPUT +
x (I+ W(x, m))os(I+ W(x, 1))~ (3.29)

Now observe that the first term in (3.29) does not depend on x and is pro-
portional to the unit matrix. Hence it does not contribute to the right hand
side of (3.12) and may be left out. Thus we obtain the required expression
for V(x, A, 1)

Vx, A, p)=—2sinp.(p) V(x, 4, 1), (3.30)
where
V(o Ay ) = 51(7"% T+ W(x, ) os(T+ Wx, )~ (3.31)

After these transformations let us go back to the problem of the zero
curvature representation for (3.1) or, equivalently, for the equation

U(x, A
EEED) (), U ). (3:32)
The elementary relation
4a ____ 40
7 arccos f(t) = o d (3.33)
together with (3.12), (3.30) yields
v
{pr(p), Ulx, M)} = a—x(x, A ) +IVx, A, ), Ux, )] (3.34)

It follows that (3.32) admits a zero curvature representation understood
asymptotically to the order O(lul~*).
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The matrix V(x, A, 1t) is the generating function for the matrices V, (x, )
appearing in the zero curvature representation for the higher NS equations. In
fact, it was shown in § I.4 that W(x, 1) has the asymptotic expansion

W= Y 2+ 0=, (3.39)

n=1

where the W, (x) are polynomials in w(x), ¥(x) and their derivatives at x.

Substituting this expansion into (3.31) and expanding in inverse
powers of u we find A—p
< V.(x, A
V(x, A, 1)=x Z S‘ ) o(lul==), (3.36)
n=1

where the coefficients V,(x, 1) are computed explicitly. The first two are
V,= 303, Va(x, A)y= - U(x, 1), and Vi(x, 1) coincides with V(x, 1) from § 1.2

(see (1.2.6)-(1.2.8)).
By comparing (3.35) with (2.27) we see that all the higher NS equations

oy oy )
- In, s - In: ’ 337
ET) {1, w} ot {L, wi ( )

n=1,2,..., admit a zero curvature representation with matrices U(x, 1) and
V,(x, ). The matrix elements of V,(x, 1) are polynomials in 4, y(x), ¥(x)
and their derivatives at x, whose degree with respect to A is n— 1. The corre-
sponding zero curvature equation involves a polynomial in A of degree n;
the coefficients of 4,...,A" vanish identically whereas the vanishing of the
constant term is equivalent to the n-th NS equation.

We have thus shown that the fundamental Poisson brackets provide an
alternative to the zero curvature representation. To conclude this section, we
shall make the following general comment.

The zero curvature condition which is fundamental to the inverse scat-
tering method looks somewhat mystical and appears in § [.2 as nothing
more than a remarkable computational observation. The Hamiltonian ap-
proach based on the concepts of the r-matrix and fundamental Poisson
brackets provides a natural explanation for this observation. However, it
may also be said that the intrinsic meaning of the r-matrix remains obscure.
We hope, nevertheless, that by the end of Part II it will be made quite trans-
parent in the light of general Lie-algebraic considerations.
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§ 4. Integrals of the Motion in the Rapidly Decreasing
Case and in the Case of Finite Density

In this section we return, from the Hamiltonian standpoint, to the inte-
grals of the motion under the rapidly decreasing or finite density boundary
conditions.

We shall begin with the rapidly decreasing case. As was shown in § 1.7,
the local integrals of the motion, I,, result from the corresponding func-
tionals for the quasi-periodic case with #=0 by a passage to the limit as
L— . By construction, the integrals I, correspond to observables on the
phase space _#,. Hence their Poisson brackets, too, are obtained by taking
the limit as L— oo, so that, by the arguments of § 2, the integrals I, are in
involution

{I,, 1,}=0. 4.1

Thus the flows on the space _#, generated by the higher NS equations
commute with each other, and the equations themselves admit a zero curva-
ture representation with U(x,A) and V,(x, 1) given by the same formulae as
in§ 3.

The role of the generating function for the motion integrals I, is played

by % loga(1) where the transition coefficient a(l) is as defined in § I.5. The
asymptotic expansion of } loga(4) in powers of 1~! results from the corre-
sponding expansion of p;. (A)+A L as L— o (see § 1.7). One may then expect
that the functionals %log a(A) are in involution, as well as p; (1). This will

be proved in §§ 6-7 by showing that the functionals a(l) for ImA >0 corre-
spond to observables on the phase space .#; and have vanishing Poisson
brackets {a(1), a(u)} and {a(1), d(w)}.

Let us now consider the finite density boundary conditions. As was
noted in § 1.10, here the quasi-periodic functionals I, have no limit as
L— . To regularize them one uses the asymptotic expansions of p; (1) +kL
in powers of 1" or of k! where k(1)=|/A*— @ (see § 1.8). It is then pos-
sible to take the limit as L—c termwise and obtain functionals on the
phase space _#, 4. However, as was noted in § 1.10, there may occur inad-
missible functionals, i.e. functionals which have no associated observable
on _#, ¢. Also, it was noted that admissible functionals result from the expan-
sion of pL(A) +k L in powers of k. Here we shall prove this claim by using the
expression for the Poisson brackets {p, (1), U(x, A)} derived in the previous sec-
tion.
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Recall the expansion

0, < .
pL(A)=-kL+§+an_] o F Ok =), (4.2)

for A in R, (i.e. IA|=® and A is real), as |1l— . The functionals J, have
limits as L oo,

Joo=lim J,, 4.3)

L— oo

in particular, J; o =N,, J, o =P,, J3 ,=H,. The generating function for the
. . .1 -6 . .

integrals of the motion J, , is —~loga,(A)e . Its asymptotic expansion for
i

|Al—> o0, A in R, results from (4.2) by taking the limit as L— c (see §§ 1.9-
1.10)

i0

Yioga,ye T=x S e 4 oK), (4.4)
i (Y
n=1

k"

5Jﬁg and 5{RQ
Sy(x) oy (x)
vanish as |x|— oo, so that the J, ,, n>1, in contrast to J; , (see § I.1), are
admissible functionals on _#, ,.

For that purpose recall the basic formulae of the preceding section,

We will show that, if n> 1, the variational derivatives

{p(w), Ux, M)} = % (x4, ) +[V(x, 4, ), Ux, A)] (4.5)
and

VA ) = 5o (I W i) os I+ W, 0) ™. (4.6)

A—-w)

These equations and the subsequent ones should be considered asymptoti-
cally to the order O(lul~ =) which will be assumed for the rest of the sec-
tion. The off-diagonal matrix W (x, i) appearing in (4.6) has an asymptotic
expansion

Weew= ) 2o+ o) @7

n=1

and satisfies the Riccati equation of § 1.4
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%iz+iu0'3 W—-U+WU,W=0, (4.8)

with Up(®) =1/ (§(x) 0+ +y(x)o ).
Using an explicit expression for U(x, 1) given in § 1 we see that the left
hand side of (4.5) has the form

1) i3 1) L
(pL(), UGx, D) =i ((;”W—E;‘)) oy — 5P¢2)‘C‘)) o-) 49)

and contains, in the limit as L— oo, the relevant variational derivatives
Sne. , é‘_l";" . By comparing (4.5), (4.9) and (4.6) it follows that the behav-
Sy(x) Sy(x)
iour of these variational derivatives, as x— + o, is governed by V(x, A, y)
and in the long run by W(x, u). Thus we come down to the problem of
determining the limit of W(x, u) as x— * o,

W.(u)= lim W(x, ) . (4.10)

for y in R,,, under the finite density boundary conditions. In terms of U, (x),
these boundary conditions are

lim Uy(x)=U,, U,=0"'0)U_Q®), 4.11)

X— * oo

and U_ = %0'1 (see § 1.8).

The existence of the limits (4.10) is an immediate consequence of the
expression for the W, (x), § 1.4. To evaluate them we take the limit of (4.8),
as x— — oo. Denoting W(u)= W_(u) we have

%Wa, W+i,u0'3W—%0']=0. (4.12)

Introducing a diagonal matrix X = Wo, we can write the last equation as
%X2+i,uo3X—§I=0, (4.13)

or

(X+ i“"3>2 —— kz(f) 1. (4.14)
w (4]
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Equation (4.14) for a diagonal matrix X has four solutions. However, only
one of them is consistent with the asymptotic expansion (4.7) for u in R,,
since

oo

k()= — Z— +0(lul~>) (4.15)

n=1

for all such u (see § 1.10). The solution is

X=ﬂ‘;—“)a3, (4.16)

so that
/‘t —

W_(u) = ko, 4.17)

For W, (u) we have, from (4.11),

W ()=0""O)W_(1) Q). (4.18)

Inserting these expressions into (4.6) we see that the limits of V(x, A, u),
as x— * oo, for u in R, are

lim V(x, A’s #) = V:t (}‘” ;u’) s (4' 19)
where
Vi, w)=0"'@)V_(4,w)Q(0) (4.20)
and
#((1+nHos3+2in0,)
V_(A,p)= : 4.21)
W= ia—ma—n) (
with the definition 7 = ,u_:w_k(u) It follows that the limits of the right hand

side of (4.5) as x— + oo have the form

Py= lim [V(x,4,u), Ux,A)]= [Vi “, ), ’1291; +U +] , (4.22)

X— t+ oo

where

V4 Lo p)

P(W=0"'OP-WQO), P-(W=-Fcr.

(4.23)
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So we have shown in our case that the limits

ig

lim {% loga,(wye 2, U(x, /'L)} =P, (u) (4.24)

X— % oo

exist. Now the asymptotic expansion (4.4), the expression for the variational
derivatives

8o _ ho _
sv " Sk

y(x) (4.25)

(see § I.1), and (4.23) combined with (4.24) allow us to conclude that

8J, 8J,
lim 22me _ j me _
ot BY(X) i BX)

(4.26)

We have thus shown that the functionals J,,, n>1, are admissible
on _#, . Relation (4.3) proves that they are in involution,

n.os Im,0}=0. (4.27)

Hence, in the finite density case these are the functionals the higher NS
equations are naturally associated with,

oy oy .
= ={Jnos W}, = 1{J0o, V). 4.28
ot { QO } ot {J »©Q } ( )

These equations admit a zero curvature representation with the matrices
Ux,4) and V, ,(x, ), n> 1, determined by the asymptotic expansion

Vao(x, 1)

O(lk(p)l == 4.29
e T (Ik(1~=) (4.29)

Vix,A, u)=x i
n=1

Jor p in R,. It is obtained by reexpanding the asymptotic series (3.36)
in powers of k~'(y) (cf. a similar operation in §1.10). In particular,
V20(x,A)=V3(x, 1) and V3 ,(x, 1) =V, (x, ) with V,(x, ) defined in § 1.2.

So this section gives further evidence of the utility of the notion of an
r-matrix. Using the general zero curvature representation (3.3) derived in § 3
from the fundamental Poisson brackets we were able to analyze the local
integrals of the motion in the case of finite density and select the admissible
functionals. Another application of the basic formulae of § 3 can be found
in the next section.
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§ 5. The A-Operator and a Hierarchy of Poisson Structures

In § 3 we derived the generating function, V(x, A, ), for the zero curva-
ture representation of the higher NS equations. Here we shall introduce
compact notation for these equations and their local integrals of the motion
I,. The Hamiltonian interpretation of the corresponding formulae leads nat-
urally to a family (hierarchy) of Poisson structures. The NS model and the
higher NS equations prove to be Hamilton’s equations with respect to each
of these structures. The associated Hamiltonians are just all of the local
integrals I,. A Lie-algebraic interpretation of these results will be given in
Part II.

As usual, we begin with the quasi-periodic case. Recall (see § 3) that
V(x, A, ), the generating function for the V,(x, 1),

V(x, A, 1) =% Z Va (x 2 (5.1)
can be expressed as -
Vs 3o t) = 3o M5 1), (52)
where
M) =0+ W ) os 4 W )~ =ovt Y 8 (s

n=1

The matrices M, (x) depend only on the functions y(x), ¥(x) and their deri-
vatives at x and have zero trace.

These identities and those to follow should be understood asymptoti-
cally to the order O(lul~ =), which will be assumed for the rest of the sec-
tion.A-Operator and

By comparing (5.1)-(5.3) we find

; n—-2
Vn(x,ﬂ’)=% (/1"_10-3+k;()lan—k-—l(x))a (54)

so that the n-th NS equation is given by the coefficients M, (x), k<n—1. By
using (5.3) these can be calculated from the asymptotic expansion of
W (x, u) obtained in § 1.4 by means of the Riccati equation. Here we shall
outline a more direct method for computing the M, (x).
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Observe that M(x, A) satisfies the differential equation

dM
dx = [U(x7 /‘L)a M]s (5'5)
with
10'3

and the quasi-periodicity condition
Mx+2L,A)=0""(0)M(x,1) Q(9) 5.7

(see (3.24)).
In fact, M(x, ) may be written as

. 1
Mx,A)=ictgp,(A)I + m T, —LAQOYT,x,A) (5.8)

(see (3.16) and (3.29)), whence by using the differential equations (1.31) and
(1.39) for the transition matrix with respect to the first and the second var-
iables we get (5.5).

Now express M(x, 1) as

M(x, )= MD(x, ) + M©D(x, 1), (5.9)

where M and M©? indicate respectively diagonal and off-diagonal parts
of M, and insert this into (5.5). Splitting the resulting equation into diagonal
and off-diagonal parts gives

dM(d)
ax [Uo(x), M©], (5.10)

od)
djl;; = %[03, MO +[Us(x), M]. (5.11)

Using (5.10), we can formally write M (x, A) in terms of M©“?(x, 1) as

M@ (x,A)=d ="' [Uo(-), M“O(-, ) (%) +03. (5-12)
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Substituting this into (5.11) we obtain an integro-differential equation for
M@ (x, 1)

dM©?
X

+idos MO —[Us(x), ™' ([Uo, MD(x)]=2Uo(x) 03,  (5.13)

whose derivation made use of the fact that the diagonal matrix o; anticom-
mutes with the off-diagonal matrices M©“?(x, 1) and Uy(x).

Let the operator A on the space of off-diagonal matrices F(x) be defined
by

dF
AF(x)=io; (EE )~ [Uo(x), 7' ([(Uo(-), F()D (X)]) . (5.14)

Using A we can write (5.13) in the following compact form:
A=2)MCOD(x, )= —2iUy(x). (5.15)
We then have, formally,
MCD(x, 2)= —2i(A —=1) "' Up(x). (5.16)

Expanding (A—A4)~"' in inverse powers of 1 we find an explicit expression
for the coefficients M9 (x),

MED(x)=2iA""" Uy(x), 5.17)
so that
MED(xX)=AMSD(x), n>1, (5.18)
and
M§PD(x)=2iUy(x). (5.19)

The matrices M (x) are recovered from the M ¥ (x) according to (5.12),
MP(x)=d~'([Uo(-), MY (D (). (5-20)

By virtue of (5.18), A is sometimes referred to as a recursion operator. We
shall use the more expressive though colloquial name of A-operator.

The above derivation contains an ambiguity in the integration operator
d~'. However, by virtue of (5.10) we know in advance that this operator is
evaluated on matrices which are total derivatives with respect to x. The ma-
trices M{P(x) whose derivative we have in mind are of the form
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M (x)=f,(x)03, (5.21)

where the periodic function f,(x) is a polynomial in w(x), w(x) and their
derivatives with respect to x, with no free term. By definition, d ' gives the
latter matrix.

In particular, d ! is consistent with the following boundary conditions
for M@ (x, 1) and M (x, 1) considered as functionals of w(x), ¥(x):

M, D|yepoo=0,. MPx, A)|y—y-0=03. (5.22)

The free term o5 in (5.12) results from these conditions.

At first sight our definition is a tautology. Still, the relevant fact is that if
M@ (x) is given by (5.18)-(5.19) then [Up(x), MP¥(x)] proves to be always
a total derivative. In a different way, one can say that A" Uy(x) is well de-
fined for all n>0.

Let us now use the expression for M©®?(x, 1) in order to completely
determine M (x, 1). Writing (5.12) as

M@ (x,A)=03-2id~"([Uo, (A—2) "' U (), (5.23)
we find an explicit expression for M(x, ) in terms of the A-operator:
M(x,A)=03—2i(A=A)" " Up(x)=2id~"([Up, (A=A) "' UgD) (x). (5.29)

As a first corollary of the above results we shall derive a compact form of
the higher NS equations. The zero curvature representation

GUCA) _ 2Vn o 1) +1UG, D), Vlx, A)]=0 (5.25)
ot ox

together with (5.4), (5.6) imply that the n-th NS equation, which is the con-
stant term in (5.25) with respect to 4, is written as
alU, i oMY,
ot 2 ox

+ % [Uo, M@ ,]=0. (5.26)

By (5.17) and (5.20) this equation can be written as

oUy + A" U,
ot o0x

— [Uo, d' ([T, A" 2 UoD]=0. (5:27)

With the definition (5.14), this leads to the desired expression for the n-th NS
equation,



214 Chapter I1I. The Hamiltonian Formulation

2 Uo(x) _

o =0 A" Ug(). (5.28)

Let us compare (5.28) with the Hamiltonian form of the same equation

2 Up(x)
ot

= {1, Uo(x)}. (5:29)

The matrix on the right hand side is given by

ol, ol,
I, =i — = . .
{E, Do)} =i (6w(x) o~ 556 ) 39
Let the matrix grad I,,(x) be defined by
1 o1 ol
radI,(x) = = ( o, cr_). 5.31
; 7 v 7 sum 3D

We shall explain later why this notation is natural from the Hamiltonian
point of view. The equation of motion (5.29) becomes

a—;? =ixosgradl,. (5.32)

By comparing (5.28) with (5.32) we find a compact expression for the gra-
dients of the local integrals of the motion,

gradI,(x) = %A"“' Uo(x), (5.33)

or the recursion relation
gradl,(x)=Agradl,_,(x), n>1, (5.34)
where

grad I, (x) = % Up(x). (5.35)

Next we will show that the A-operator also provides expressions for the
local integrals I,. For that purpose, instead of the generating function
pL(A)=arccos(3tr T, (A) Q(0)) it will be convenient to deal with its derivative
with respect to 4. We will show that
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dp.(A) _

L
7 —:1— | trM(x,A)o;dx. (5.36)

—L

We shall start from the basic representation for the monodromy matrix
~ k

T,A)=exp | U(x,A)dx (5.37)
—L

(see §§ 1.2-1.3). Differentiation with respect to A gives

dT. () _ | U i
—= = j T(L,x,A) - (6, 2) Tx, =L, A)dx

—L
1 L
=5 [ T(L,x,A)os T(x, — L, A)dx, (5.38)
—L
so that

% trT,(A) Q) = —2}; JL tr(T(x, —L,A) Q@) T(L,x,A)os)dx

. L
=S"”;7LW [ trM(x, D)oy (5.39)
—L

In deriving the last identity we made use of (5.8). Now, (5.36) follows from
(5.39) by the differentiation rule for composite functions.

The right hand side of (5.36) has an explicit expression in terms of the
A-operator via (5.23),

L L
I trM(x,l)0'3dx=4L+4l I d_]tr(U00'3(A—l)—' Uo)(x)dx, (5.40)
—L —L

while the left hand side may be taken, along with p, (1), as a generating
function for local integrals of the motion,

d nl,
P =—L—x Z . (5.41)

Comparing (5.41) with the expansion of (5.40) in inverse powers of 1 we
finally obtain
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1 L
I,=— | d~"(trUyos A" Up)(x)dx, n=1. (5.42)
mxn _p

The coefficient of A~ in the expansion for the right hand side of (5.40)
vanishes because Uy(x)os Uy(x) is traceless.

It might be of interest to observe that (5.42) can be extended over the
negative indices n producing a sequence of non-local integrals 1,,, n<0.

The starting point here is the Taylor series expansion of the entire func-
tion p; (A1)

pLA)=x i 1_,A". (5.43)

The expressions (5.12) and (5.15) for the matrix M(x, 1) given by (5.8), as
well as (5.36) relating % (A) to M(x, A), are independent of the asymptotic

expansion in powers of A~'. By definition, the operator d~' transforms
[Uo(x), M©?P(x,A)] into M“(x,A)—0;, in accordance with the boundary
conditions (5.22). It results that the Taylor series coefficients of

M©D(x, ),
MD(x, )= — 3 MOD(x)A" (5.44)

by virtue of (5.15) satisfy

AMCD(x)=M?, ,(x) (5.45)
and

AMED(x)=2iUy(x). (5.46)
These equations are extensions of (5.18)-(5.19), so that
MED(x)=2iA"""Uy(x) (5.47)

holds for all integers n.
The same reasoning as for positive n leads to (5.42) for negative n.

1
Formally, the integral I, = " p.(0) does not fit into the family (5.42).

Nevertheless one can show that L’Hopital’s rule applies to (5.42) with the
result
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1 L
Io=— [ d~'(trUpo;logA Up) () dx. (5.48)
% L

We will not present here the involved and uninteresting details of the com-
putation.

Expressions such as (5.33) for the gradients of the motion integrals are
also valid for all integers n. For the proof one should expand the matrix
V(x, 4, 1) of the zero curvature representation (3.34) into Taylor series in u

Vix,A, p)y=x 20 V_.(x,A)u" (5.49)

and find the coefficients by using (5.2) and (5.44).

Of course, computationally the above formulae are of small efficiency
because A cannot be inverted in closed form. However, we shall see that
they are interesting enough withing the Hamiltonian ideology. Namely,
these formulae will allow us to define the aforementioned hierarchy of Pois-
son structures.

To begin with, we shall explain why it is natural, for a matrix such as
(5.31), to use the notation grad which we now extend to any observable F
by

1 OF OoF
grad F(x) = W (51//(?5) o+ 5v ) 0'_). (5.50)
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