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The immune system is primarily about host
survival of infections and for this we also
need to understand the biology of the system.

Rolf M. Zinkernagel
(from “On Immunity Against Infections and

Vaccines: Credo 2004”. Scandinavian
Journal of Immunology, 2004, 60:9–13)



Preface

Understanding the cellular and molecular mechanisms that control the ability of the
immune system to mount a protective response against pathogen-derived foreign
antigens, but avoid a pathological response to self-antigens, is a central problem in
immunology. From the new high-throughput technologies, i.e. various omics
measurements, 3D visualization and immunophenotyping, we have now a static
view of the numerous components of the immune system and the links between
them with unprecedental resolution. However, similar to the Classical Physics
of the seventeenth century before the invention of the differential calculus by Sir
Isaac Newton, a dynamical systems paradigm has to be developed and enter
everyday immunological research. This requires the integration of mathematical
methods to complement experimentation with the aim to represent, interpret and
predict the observable characteristics of infections.

Mathematics is the universal language for expressing causal and functional
relationships between observations. Its mainstream developments have been
inspired by the needs of Physics, Chemistry and Engineering. For the twenty-first
century, it is widely expected that Biology becomes a frontier for Mathematics. The
challenge is to establish an interdisciplinary dialogue between mathematicians and
experimentalists so that experimentation and mathematical modelling becomes an
iterative process that boosts the different disciplines. The generated models that
inevitably present simplifications of the underlying biological complexity must not
lose touch with reality and generate testable predictions that drive, for example,
perceptions of pathogen–host interactions. The problem of how to develop, in a
systematic manner, such consistent models that provide a basis for quantitative
analysis and predictions raises challenges for applied mathematicians related to the
formulation of genuine approaches for representing the phenotypic complexity,
spatial heterogeneity, hierarchical organization and control principles inherent to
the infectious disease courses and outcomes.

This book is based on several lecture courses and seminars given by us at the
Lomonosov Moscow State University, University of Chester, Saarland University,
University of Zurich, University Lyon 1, and University Pompeu Fabra
(Barcelona). It consists of eight chapters covering basic facts on viral infections and

vii



biological systems analysis, model formulation and parameter estimation, mathe-
matical models of experimental and human infections and multi-scale and inte-
grative modelling approaches. We follow the route expressed in Andrew and
colleagues (2007) that there is no better way to proceed with application of
Mathematics to Immunology than to formulate mathematical models that corre-
spond qualitatively to the existing theories and to form a range of models ordered
according to their qualitative and quantitative consistency with the experimental
and clinical observations.

Moscow, Villeurbanne, St. Gallen, Barcelona Gennady Bocharov
October 2017 Vitaly Volpert

Burkhard Ludewig
Andreas Meyerhans
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Chapter 1
Principles of Virus–Host Interaction

This chapter presents a brief overview of basic immunological concepts and ideas
necessary for the development of mathematical models of immune processes during
virus infections.

1.1 In Brief

Immunology as a scientific discipline studies the response of an organism to anti-
genic invasion, the recognition of self and non-self, and all the biological, chemical
and physical aspects of immune phenomena. To protect the body against pathogens,
the immune system has a repertoire of body-wide defense modalities that consist of
interacting cells, humoral factors and lymphoid organs (Fig. 1.1). The latter comprise
bonemarrow, thymus, spleen, lymph nodes and gut that are connected by the vascular
systems of blood and lymph allowing the migrating of the immune system compo-
nents between the compartments and to the places of pathogenic threat. In the human
immune system, there are several hundred cytokines, about 1020 antibody molecules
and 1013 immuno-competent cells that migrate spatially and interact with each other
either competitively or cooperatively. Furthermore, the immuno-competent cellsmay
proliferate, differentiate, mature, age and die. They are derived from stem cells in
the bone marrow and develop further in different lymphatic tissues. They function
as pathogen-degrading cells (= phagocytes) (i.e. granulocytes and macrophages),
antigen-presenting cells (i.e. dendritic cells (DC) and macrophages) and specific
effector cells (i.e. T and B lymphocytes). The latter are responsible for cell-mediated
elimination of infected cells and antibody production respectively.

Pathogens are agents that cause disease. The term is usually used in connection
with an infectious microorganism. As this book focuses on the immune responses
towards virus infections, only viruses will be considered. However, the principles
of antiviral immune mechanisms also apply—at least partially—to other pathogens
such as bacteria, helminths or fungi.

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Principles of Virus–Host Interaction

Fig. 1.1 Distribution of human lymphoid tissues/organs and immune cell hierarchy. The physi-
ological distribution of human lymphoid tissues/organs is schematically shown in the left panel.
Within primary lymphoid organs namely bone marrow and thymus, the lymphocytes are gener-
ated. Immune response initiation and lymphocyte maturation take place in the peripheral lymphoid
organs comprising lymph nodes, spleen and the mucosal lymphoid tissue of the gut. Immune cells
move within the human body via the lymphatic system and the blood system. The right panel shows
schematically the developmental path of the major immune cell subsets. Pluripotent hematopoietic
stem cells are generated in the bone marrow and give rise to myeloid and lymphoid progenitors.
These then differentiate into different cell subsets with specialist effector functions. Both myeloid
and lymphoid progenitors contribute to the generation of dendritic cells. Th1, T helper 1 cells; Th2,
T helper 2 cells; Th17, T helper 17 cells; Treg, T regulatory cells; Tfh, T follicular helper cells;
plasma cells, antibody-producing cells (antibodies Y are depicted as a brown ). Adapted from
the website http://anatomybody101.com/the-immune-responses-of-the-lymphatic-system/the-
immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/. Cells pic-
tures were taken from King et al., 2011, Nature Reviews Immunology 11(10):685–92 and
Gabrilovich et al., 2012, Nature Reviews Immunology 12(4):253–68

Viruses are obligatory parasites that depend on host cells to multiply. They consist
of a viral genome in form of ribonucleic acid (RNA) or desoxyribonucleic acid
(DNA) chains that carry all necessary genetic information for virus expansion. Viral
genomes are embedded within a protective protein shell named capsid that may,
depending on the type of virus, be surrounded by a lipid bilayer containing the viral
surface glycoproteins. These so-called envelope proteins or surface glycoproteins
are the keys to enter new target cells after interacting with virus receptors on host
cell surfaces. The schematic structure of a human immunodeficiency virus (HIV)
particle is shown in Fig. 1.2 as an example.

To gain access to cells for multiplication, viruses need to enter a host organism.
Common virus entry routes (Fig. 1.3) are the infection of cells that are exposed on
skin or mucosal surfaces or the entry via injuries or intravenous inoculation as for
example by insect bites. Once viruses have overcome surface barriers of an organism

http://anatomybody101.com/the-immune-responses-of-the-lymphatic-system/the-immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/
http://anatomybody101.com/the-immune-responses-of-the-lymphatic-system/the-immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/


1.1 In Brief 3

Immature HIV virion Mature HIV virion

Reverse transcriptase

Capsid

Glycoproteins

Envelope

Integrase

RNA

Protease

Matrix proteins

Fig. 1.2 Schematic representation of an HIV particle in the immature and mature form. A human
immunodeficiency virus (HIV) particle carries two copies of single-stranded viral RNA enclosed in
a conical capsid structure and is surrounded by a lipid bilayer that contains the viral glycoproteins.
It has all necessary enzymes for reverse transcription of the viral RNAs into a double-stranded
DNA and subsequent integration into the host cell genome. The particle is formed during budding
from the cell surface of an infected cell. Particle maturation depends on the viral protease and is
accompanied by glycoprotein clustering and a 1000-fold increase in viral infectivity. The figure
represents data from Chojnacki et al., Science 338, 524–528 (2012)

and infected a host cell, they start replicating their genome and multiply. A virus life
cycle from infection to progeny production may take up to 24 hours, after which
hundreds to many thousand new virus particles are being released from a single
infected cell. For not being overwhelmed by such explosive virus growth kinetics,
organisms require multiple layers of defense mechanisms that keep viruses under
control (Fig. 1.4). This significantly reduces the in vivo observable virus doubling
times to about 4 hours making it comparable with the lymphocyte division time.

Protection against viruses is provided by a coordinated action of innate immunity
and antigen-specific immunity. The innate immunity refers to (i) physical, chem-
ical and microbiological barriers, (ii) responses of innate immune cells such as
granulocytes, natural killer cells, macrophages and dendritic cells (DCs) that all
lack the classical antigen-specific memory effect and (iii) immunologically active
substances generated by innate immune cells and both stromal and parenchymal
cells present in the infected organ (e.g. complement factors, cytokines, acute-phase
proteins and interferons). The specific immunity is based upon the use of antigen-
specific receptors onT andB lymphocytes to drive targeted effector responses against
a pathogen. As this requires lymphocyte maturation and proliferation, measurable
adaptive responses appear only several days post-infection. The typical dynamics
of an acute infection that is resolved by an efficient immune response is shown in
Fig. 1.5.
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Fig. 1.3 Virus routes of infection. Viruses enter the human body by overcoming the external
epithelium or mucosal surfaces. Examples are given. DENV, Dengue virus; YFV, Yellow fever
virus; ZIKA, Zika virus; RaV, Rabies virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus;
HIV, Human immunodeficiency virus; EBV, Epstein-Barr virus; HSV, Herpes simplex virus; CMV,
Cytomegalovirus; FluA, Influenza A Virus; FluB, Influenza B Virus; HPV, Human papillomavirus

1.2 Virus Recognition and Immune Responses

Viruses and other pathogens display particular molecular signatures (pathogen-
associated molecular patterns) that are recognized by specific pattern recogni-
tion receptors. Signalling via these receptors leads to initiation of innate immune
responses that condition the subsequent stimulation of adaptive lymphocyte
responses. A general overview of these events is schematically given in Fig. 1.6.
Detection of viral components and induced signalling cascades for conventional
dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs), two key cell types
for initiation of efficient antiviral immune responses, are shown in Fig. 1.7. The type
I interferon response, a major antiviral defense component of the innate immune
system, is summarized in Fig. 1.8.
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Fig. 1.4 The multiple layers of defences of the immune system. The immune system comprises
external defences that prevent pathogens from entering the human body, and internal defences
that provide protection against viruses that managed to overcome these barriers. External defences
include host anatomic barriers like skin and cilia, body secretions like mucus, saliva and tears that
contain enzymes with protective functions and the normal commensal flora that keeps pathogens
at bay. Internal defences are composed of the rapid innate immune responses triggered by pattern
recognition receptors (PRRs) (see Figs. 1.6 and 1.7) and the late adaptive immune responses that
exhibit high pathogen specificity and memory. TNF-α, Tumour necrosis factor α; IL-6, interleukin
6; IL-1β, interleukin 1 β; IFN-I, type I interferon

Fig. 1.5 Schematic view of
the kinetics and respective
immune responses of an
acute virus infection. Innate
cytokines like type-I
interferons (IFN-α, IFN-β),
TNF-α and IL-12 are
produced early after a virus
infection. These help
activating natural killer cells
(NK cells). Adaptive T- and
B-cell responses (antibodies)
appear subsequently and are
essential to eliminate a virus
infection
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Fig. 1.6 From pattern recognition to the adaptive immune response. Viruses and other pathogens
display particular molecular signatures, so-called pathogen-associated molecular patterns that are
recognized by specific pattern recognition receptors (PRR) expressed by many cell types including
antigen-presenting cells like dendritic cells (DCs). Pathogen recognition leads to the activation of
innate immune responses as well as pathogen uptake by antigen-presenting cells (APCs), APC
maturation and their migration to lymph nodes. Activated mature APCs in the lymph node can
then trigger adaptive immune responses leading to pathogen-specific B- and T-cell activation, and
subsequently to the development of immunological memory. TCR, T-cell receptor; BCR, B-cell
receptor

1.2.1 Pattern Recognition to Initiate Innate Immune
Responses

Pattern recognition receptors (PRRs) that can detect viral invaders are expressed in
basically all cells in locations that are in contact with viral components like cell
surfaces, vesicular structures like endosomes and the cytoplasm. They have different
recognition specificities and sense microbial RNA (Toll-like receptors (=TLR) 3,
7, and 8; MDA5, RIG-I) or DNA (TLR9). Once a viral invader is detected, PRRs
activate via a complex signalling cascade involving adaptor proteins, kinases and
transcription factors the expression of proinflammatory cytokines including TNF-
α, IL-1β and IL-6, and type I interferons (Fig. 1.7). The inflammatory response
helps to combat the infection by attracting various effector molecules and cells to
the invasion site. The interferons lead to activation of a myriad of interferon-induced
genes (Fig. 1.8) that have diverse functions like (i) direct viral inhibition, (ii) increase
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Fig. 1.7 Virus recognition by conventional and plasmacytoid dendritic cells and intracellular signal
transduction. Dendritic cells are important sensors of virus infections. In conventional dendritic cells
(cDCs), TLR3-dependent and RIG-I-dependent pathways operate to detect viral RNA, whereas
DAI/cGAS-STING pathways detect viral DNA. Recognition of dsRNA by TLR3 in the endosomal
membrane recruits TRIF to the receptor, which induces proinflammatory cytokines and type I IFNs
via the RIP1/TRAF6-NF-κB pathway and the TBK1/IKK-i-IRF-3/IRF-7 pathway, respectively.
Cytoplasmic dsRNA and DNA are detected via RIG-I/MDA-5 and DAI/cGAS, respectively, that
signal through mitochondria-bound IPS1 or STING. In plasmacytoid dendritic cells (pDCs), TLR7
and TLR9 recognize viral ssRNA and DNA in endosomes. TLR stimulation then recruits a complex
of MyD88, IRAK-4, IRAK-1, TRAF6 and IRF-7. NF-κB and phosphorylated IRF-7 translocate
into the nucleus and upregulate the expression of proinflammatory cytokines and type I IFNs,
respectively. The figure is adapted and modified from Akira S et al., Cell 124, 783–801 (2006)

of natural killer cell activity, (iii) activation of antigen-presenting cells (APCs), (iv)
stimulation of chemokine expression to attract effector cells and (v) effecting cellular
lifespans. Thus, PRR signalling not only initiates the immediate antiviral response
but is also the basis for the subsequent adaptive immune response that is tailor-made
for the infecting virus.

1.2.2 Viral Antigen Recognition by Adaptive Immune
Responses

T and B lymphocytes are the major cellular immune system components that medi-
ate specific recognition of viral invaders [12]. Each lymphocyte carries about 105

identical antigen receptors on its cell surface. The receptors of T lymphocytes, the
T-cell receptors, can recognize virus-derived peptides in the context of cellular pro-
teins of the major histocompatibility complex (MHC) while the B-cell receptors (=
antibodies on the surface of B lymphocytes) can recognize any chemical structure
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Fig. 1.8 Type I interferon production and the antiviral response. Virus infections induce IFN-I
(IFN-α and IFN-β). They are secreted from the producer cell and bind to type I IFN receptor-
bearing cells (IFNAR). Receptor binding activates via the JAK/STAT signalling pathway a myriad
of IFN-stimulated genes (ISGs) such as MX GTPases, protein kinase R (PKR) and (2–5) oligo(A)
synthetase (OAS) that exhibit antiviral activities. Some of the ISGs are interferon-regulated factors
(IRFs) that can amplify the IFN response. The figure is adapted from Haller et al., Virology 344,
119–130 (2006)

being it protein, sugar, lipid or a stretch of nucleotides (Fig. 1.9). A population of
lymphocytes with identical antigen-specific receptors is called a clone. The number
of distinct lymphocyte clones represents the repertoire of specificities of the immune
system. For humans, this number was estimated to range from about 105 to 107.
Due to the permanent inflow of antigens and the limited lymphoid population, a
selection of the lymphocyte repertoire through competition between different sub-
sets of cells and between specific clones presumably takes place. Lymphocytes are
subdivided into different cell types according to their functions in protecting a host
against pathogens. CD8+ cytotoxic T lymphocyte (CTL) responses represent amajor
mechanism in eliminating virus-infected cells. They sense virus-encoded peptides
presented to their T-cell receptors in the context ofMHC class I molecules and induce
target cell death thus eliminating foci of virus production. The CD4+ T cells have
special roles as helper cells or regulatory cells; they facilitate cellular and humoral
responses (the primary responses of the CD8+ T cells and B cells, respectively) or
inhibit responses. These functions are mainly provided by cytokines that can induce
cell proliferation and differentiation, or immune system inhibition. Depending on
the range of produced cytokines, CD4+ T cells are classified as Th1, Th2, Th17, Tfh
or Treg cells (see also Fig. 1.1). B lymphocytes are the immune cell type that pro-
duce and release antigen-specific protein molecules, the antibodies. The interaction
of these humoral effector molecules with antigen can be quantitatively defined by an
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Fig. 1.9 Antigen recognition by T-cell and B-cell receptors. T cells recognize an antigen through
the T-cell receptor (TCR). The TCR (left panel) is composed of two different transmembrane
glycoprotein chains, α and β, connected by a disulphide bond. The extracellular portion consists of a
variable and a constant domain, and the juxtaposition of the two variable domains forms the antigen-
binding site that can recognize peptides presented by proteins from the major histocompatibility
complex. B cells recognize an antigen through the B-cell receptor (BCR), a membrane-bound form
of the immunoglobulins (right panel). The secreted form of the immunoglobulin with the same
antigen specificity is the antibody produced by terminally differentiated B cells, so-called plasma
cells. The antibody is composed of two hinged heavy chains (blue) and two light chains (pink)
joined by disulphide bonds. The four chains are made up of a variable and a constant region. The
juxtaposition of the variable region of the heavy and light chains forms two identical antigen-binding
sites. The structures that may act as antigens for B cells are very flexible and can be proteins, lipids,
sugars, etc.

affinity value and the chemical law of mass action. Antibodies exert their immune
system function by pathogen neutralization, pathogen opsonization for subsequent
phagocytosis and/or complement activation.

In order to initiate an adaptive virus-specific immune response, viral antigens
have to be presented to lymphocytes in the context of antigen-presenting cells and a
certain cytokine milieu that is derived from the innate response towards the invading
virus. The overall outcome is then determined by a complex signal transduction and
gene activation machinery at the single cell level, and various modes of communi-
cation at the cell population level. For example, a CD4+ T-cell response requires
activation of the cells via the TCR and a survival signal via co-stimulation which
together lead to clonal T-cell expansion by proliferation (Fig. 1.10). Depending on the
available cytokines, differentiation towards a T-cell subtype follows. Importantly, as
signalling molecules are able to activate different genes at different concentrations,
the lymphocyte response is not always proportional to the stimulus and nonlin-
ear and bell-shaped response curves are observed under certain circumstances. The
antigen-specific activation of lymphocytes leads to important changes in their pro-
tein expression profiles and their functional capabilities. As a result, three different
stages of lymphocyte maturation can be identified: naive cells (cells that have not
yet reacted to the antigen), antigen-activated cells and memory cells (cells that have
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Fig. 1.10 Activation of T cells by antigen-presenting cells (APCs). After capturing and processing
antigens, APCs deliver three signals that lead to the activation of naive T cells. In this example, an
antigen (red circle) is presented by MHC class II proteins to the T-cell receptor (TCR) of a CD4+
T cell delivering an activation signal (signal 1). To survive, the activated T cell requires further a
cosignal delivered by the interaction of B7 proteins on the APC with CD28 proteins on the T-cell
surface (signal 2). Depending on the nature of the antigen, APCs produce cytokines that act on T
cells and induce the differentiation into specific T-cell subsets (signal 3). Cell Pictures taken from
Servier Medical Art

encountered an antigen to which they are specific, and respond faster on re-exposure
to that antigen). They are functionally different and follow distinct travelling routes
within an organism. A large panel of antibodies is available today for characterizing
and quantifying lymphocyte subtypes after natural or experimental virus infections.

1.3 Infection Fates with a Glimpse on the Real Complexity
of Infection Immunology

The majority of viral infections can be fundamentally categorized as acute or per-
sistent according to their temporal relationships with their hosts. Acute infections
in humans are usually resolved within a few weeks by a myriad of immune system



1.3 Infection Fates with a Glimpse on the Real Complexity of Infection Immunology 11

NK cell

Infected cell

virus

CTL

NK cell

IFN type I 

Complement 

IgM
IgG

Infection inhibition
of surrounding cells

Virus opsonization and recognition via Fcγ
and complement receptors on macrophages

Plasma cell

ADCC

DC Macrophage

en
tr

y 
IgA

FCγR 

CR 

Virus restriction

Fig. 1.11 Host defence against viruses. A host organism has multiple immune defence functions
that can eliminate a virus infection. Mucosal surfaces can produce IgA antibodies that may block
virus entry into a host. Interferons (IFNs) that are secreted from infected cellsmay inhibit further viral
spread. Natural Killer (NK) cells, activated by IFNs, may recognize and kill infected cells. IgMs,
IgGs and the complement systemmay take part in virus opsonization and elimination involving Fcγ
and complement receptors (CRs) for example on macrophages. In a later stage of a virus infection,
plasma cells will produce virus-specific antibodies that may neutralize a virus or initiate virus-
infected cell destruction by antibody-dependent cytotoxicity (ADCC) or complement-mediated
lysis. Finally, cytotoxic T cells (CTL) will efficiently kill infected cells when viral epitopes are
presented on their surface by MHC class I proteins. Cell Pictures taken from Servier Medical Art

responses triggered upon infection or prior infection by vaccination (Figs. 1.11 and
1.12a).

In contrast, persistent infections are not resolved and, instead, developwhen innate
and adaptive immune responses are not sufficient to eliminate the invading virus dur-
ing the primary infection phase (Fig. 1.12b). A consequence of this latter condition
is the establishment of a dynamic equilibrium between virus expansion and virus-
specific adaptive responses that may be maintained stably for years without major
pathologic consequences or disrupted in a way that rapidly leads to overt disease.
Viruses of both categories continue to threaten human health. Notable examples are
the regular recurrences of influenza virus strains that cause acute infections with
partly critical illness or death every year and infections with the human immunode-
ficiency virus (HIV) or the hepatitis B and C viruses (HBV, HCV) that can establish
persistence in their hosts with different probabilities and pathogenic consequences.
Whilst nearly all HIV infections lead to virus persistence, 50–80% of HCV and only
about 5% of HBV infections in adults are persistent. The level of persistence of HBV-
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Fig. 1.12 Microbe–host interactions in acute and chronic viral infections. During the early phase of
a viral infection, innate immunity slows down virus expansion through diverse mechanisms includ-
ing type I interferons and NK cells. The subsequent adaptive immune response with virus-specific
effector cells (CD4+ helper and CD8+ cytotoxic T cells, and antibody-producing B cells) may then
clear an infection (1.12a; acute infection). After virus clearance, a pool of memory cells (Bmem
and Tmem) remains in the host that may provide long-term protection from future infections with
the same virus. However, the immune system can fail to eliminate a virus infection resulting in a
long-term, persisting infection (1.12b; chronic infection). In this case, effector functions are down-
regulated, i.e. in exhausted T cells and suppressive factors appear. IDO, indoleamine dioxygenase;
PD-L1, programmed death ligand 1; IL-10; interleukin 10

infected newborns is massively increased to about 95% indicating that the state of
the immune system is an important component in determining infection fates.

A number of viral and host factors in the early infection phase are involved in
the fate decision between an acute and a persistent infection outcome [6, 8]. These
include effector cell and virus expansion capacities, regulatory immune elements as
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IL-10 and regulatory T cells (Tregs) and the IFN-I system. In case a host is unable
to rapidly clear a viral infection, a non-functional state of pathogen-specific T cells
known as exhaustion is established that helps to avoid immunopathology exerted
by the simultaneous presence of virus-infected cells and virus-specific CTL [2, 5].
T-cell exhaustion is acquired via a distinct transcriptional program that leads to the
permanent expression of inhibitory receptors [1, 11]. One of the main inhibitory
receptors expressed on exhausted T cells is the protein programmed cell death-1
(PD1). Interactions of PD1 with its ligands PDL1 and PDL2 shut down the cells
effector function and its capacity to proliferate after an antigen-specific trigger. This
inhibitory system was first identified in persistent LCMV infections in mice and
subsequently shown to also operate in persistent human infections like HIV and
HCV, as well as in cancer [2]. Importantly, blocking the PD1–PD-ligand interaction
can restore T-cell function, thus providing a promising tool for immunotherapeutic
applications. Experiments in animal infection models and clinical trials with late-
stage cancer patients are very encouraging [9, 10].

Besides exhaustion, T-cell functionality in persistent infections is also compro-
mised by regulatory lymphocyte subsets, namely regulatory T cells and regulatory
B cells [3, 4]. These cell subsets are a critical component in the maintenance of
a balanced immune response and necessary to reduce inflammatory responses and
avoid autoimmunity. They exert their function via a variety of mechanisms including
the production of soluble immunosuppressive factors like IL-10 and TGF-β, and
the delivery of suppressive signals by cell–cell contacts to conventional T cells and
to antigen-presenting cells, thus influencing effector functions directly or indirectly.
Interestingly, the PD1–PD-ligand exhaustion pathway and Tregs are linked at least
in two ways. First, PD1–PDL1 interactions are involved in the generation and main-
tenance of induced Tregs from conventional T cells and second, PD1 can also be
expressed on Tregs indicating that these suppressor cells, like their effector counter-
part, are subject to downregulation. Together, this results in a regulatory circuit in
which an overwhelming inflammatory response leads to effector T-cell exhaustion
and generation of Tregs that are themselves blocked by exhaustion to stop exces-
sive suppression of the immune response. While this regulatory circuit is obviously
important to guarantee a balance between the defense against pathogenic intruders
and the avoidance of autoimmunity, predicting the outcome of interfering with this
circuit, for example, by blocking PD1–PD-ligand interactions is not straightforward.
Both exhausted effector and exhausted regulatory cells may be reactivated, and the
net gain of effector function will depend on the relative proliferative responsive-
ness and functional activities of both cell types [7]. Given the recent encouraging
results from inhibiting PD1–PD-ligand interactions in late cancer patients, more anti-
exhaustion immune therapies will be moving into clinical trials in the near future.
Predictive mathematical models of the underlying complex immunological networks
and an understanding of the respective control parameters are expected to signifi-
cantly improve therapy efficacy on a rational basis.
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Chapter 2
Basic Principles of Building
a Mathematical Model of Immune
Response

This chapter introduces a modular approach to the formulation of mathematical
models of immune responses to virus infections. It presents a methodological basis
for mathematical immunology of virus infections.

2.1 Systems Approach to Immunology

A ‘Systems approach’ in immunology [1–3] represents a framework for analysis and
interpretation of complex phenomena. In biology, it is associated with the pioneer
studies of von Bertalanffy [4], Mesarovich [5], Kitano [6, 7] and others. Systems
biology focusses on the analyses of the structure, dynamics, design principles and
control/coordination methods of biological systems (see Fig. 2.1) in order to under-
stand how robustness, i.e. the ability to maintain a stable functioning despite various
perturbations, is achieved [8, 9].

In practical terms, it is important that mechanisms that provide robustness and
protect normal functions under various perturbations may also be used to maintain
disease states. It is argued that a systems approach to drug and therapy design for
robust diseases such as cancer, autoimmunity or diabetes should allow to identify
fragilities that are hidden in the mechanisms that give rise to the robustness of the
pathological states [10]. To understand the robustness/fragility, one needs to examine
the stability/sensitivity of the system behaviour in light of variations in structure or
parameters. Figure2.2 summarizes the key components which have to be looked at
in order to achieve a systems-level understanding of robustness. Let us start with
some basic definitions from http://en.wikipedia.org.

• System, a set (complex) of interacting or interdependent components (elements)
forming an integrated whole.

• Systems characteristics are structure, behaviour, interconnectivity and function(s).
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Fig. 2.1 Fundamental properties of biological systems which are the subject of systems analysis.
Adapted from Kitano, Science, 2002, 1662–1664; Csete and Doyle, Science, 2002, 1664–1669
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Fig. 2.2 Structural and functional features underlying robustness of biological systems. Adapted
from Kitano, Science, 2002, 1662–1664; Csete and Doyle, Science, 2002, 1664–1669

• Systems science aims to develop interdisciplinary foundations that are applicable
in a variety of areas, such as engineering, biology, medicine and social sciences.

• Systems theory is the study of the principles that can be applied to all types of
systems at all levels of organization in all fields of research.

• Systems analysis is the study of sets of interacting entities.

Starting from his pioneer work in 1945 [4], Karl Ludwig von Bertalanffy stated
that

…there exist models, principles and laws that apply to generalized systems or their sub-
classes, irrespective of their particular kind, the nature of their component elements, and the
relationships or ‘forces’ between them. It seems legitimate to ask for a theory, not of systems
of a more or less special kind, but of universal principles applying to systems in general.

Significant development towards the concept of a system was done by Wiener [11]
and Ashby [12] who pioneered the use of mathematics to study complex systems.
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They invented the notion of a feedback and established a new field of mathematics—
the Cybernetics. It is about the study of feedback and derived concepts such as
communication and control in living organisms, machines and organizations. Its
focus is on how anything (digital, mechanical or biological) processes information,
reacts to information and changes or can be changed to better accomplish the first
two tasks.

With the explosion of data at the subcellular level there are difficulties to interpret
them in relation to the physiological behaviour of complex living organisms. A
systems biology approach is a paradigm (from Noble [13]):

…about putting together rather than taking apart, integration rather than reduction. It requires
that we develop ways of thinking about integration that are as rigorous as our reductionist
programmes, but different…. It means changing our philosophy, in the full sense of the term.

Systems biology can be defined as a field of study of the interactions between
the components of biological systems, and how these interactions give rise to the
function and behaviour of that system. The paradigm implies the application of sys-
tems theory to the complexity of biological interactions [14] at all levels, i.e. from
genes to proteins to pathways to subcellular reactions to cells to tissues to organs and
finally, to the whole organisms. A systems approach is essentially based on mathe-
matical modelling and requires the triad: Experiments + Mathematical Modelling +
Theoretical concepts.

2.1.1 Theories in Immunology

Whereas the experimental immunology functions to produce observations and to
understand the relationships between two or more quantities, a theoretical method
ideally is needed to generate hypotheses and then to deduce the consequences to
explain the cause and effect relationships between the hypotheses and the known
facts [15]. Theories provide a means of making new discoveries [16]. A theory is not
successful unless it is fruitful, i.e. it should enable one to deduce certain previously
unknown consequences. The formation of a theory involves the construction of a
model. Thepostulates of scientific theoriesmust agreewith thewaynature is observed
to behave whereas pure mathematics is not restricted by the empirical laws.

The main body of immunology is constituted by non-mathematical theories
(empirically derived) such as

• Clonal selection theory (Nobel Laureate, Burnet) [17];
• Network-type (e.g. idiotypic) theory of immune regulation (Nobel Laureate, Jerne)
[18];

• Spatio-temporal rules of immune response regulation (Nobel Laureate Rolf M.
Zinkernagel) specifying the basic parameters in immune response phenotype reg-
ulation between activation, unresponsiveness and death [19]:
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– Antigen structure,
– Mode of presentation,
– Spatial localization,
– Dose,
– Time of availability,
– Frequencies of specific T and B cells,
– Thresholds of binding avidity of T- and B-cell receptors,
– Variation of the response thresholds on cell maturation stage.

• Balanceof growth anddifferentiation—conceptual frameworkof immune response
regulation (Grossman and Paul) [20–23]

– Individual cells tune and update their activation thresholds,
– Immune system responds to a rapid perturbation in its homeostasis,
– Individual lymphocytes respond to a rapid change in the level of stimulation
rather than a stimulation per se.

Successful theories in immunology are still in the stage of growth and revision.
In particular because, data explosion in immunology due to high-throughput and
advanced experimental techniques is insufficient by itself to understand the com-
plexity and predict the immune system behaviour as a whole. Nonlinearity, threshold
effects, feedback control loops, delays, compartmental organization and the redun-
dancy inherent in the immune processes call for mathematical modelling to be a part
of modern immunology and virology studies. Science and data-driven modelling
analysis of the immune system is expected to allow one

• to estimate relevant parameters (‘numbers game’),
• to understand the dynamic patterns of observations,
• to identify the sensitivity of dynamics to control mechanisms,
• to reduce the need for (animal) experiments and
• to optimize its performance both in vivo and in vitro.

2.2 A Mathematical Model

An insightful discussion of the role that mathematics plays in theoretical and exper-
imental science (physics) can be found in [16]. Mathematics provides universal lan-
guage for expressing causal and functional relationships between observations. The
relationships can be expressed as equations. These equations can be manipulated
together to derive new relations between concepts which is a subject of mathemati-
cal modelling work [24].

Amathematical model is the description of a system usingmathematical concepts
and language. It describes the system by a set of variables and a set of equations that
establish relationships between the variables. Mathematical models can take many
forms including but not limited to dynamical systems, statistical models, differential
equations, game-theoreticmodels, etc. There exists a number ofmodelling issues that
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need to be addressed, e.g. complexity, fit to empirical data and sensitivity analysis.
The model formulations should be tightly linked to a fundamental step called coordi-
natization (Weyl [25]), that is, the quantitative definition of observables, parameters
and structures that enable the link with a biological phenotype.

2.2.1 Basic Issues

To formulate a mathematical model, one needs to proceed as follows:

• Generate a conceptual scheme of the system under study. One restricts the model
to themost important interactions (note that, in this sense, mathematical modelling
represents a reductionists’ approach to studying complex systems).

• Specify modelling assumptions and select the following types of quantities

– time and space as independent variables;
– time- and space-dependent variables:

population densities of cells and pathogens,
concentrations of molecules,

– the parameters which characterize the kinetics of the specified processes.

• Set up or derive model equations.

There is no rigorous ways to set up a mathematical model. In fact a compromise
between the level of details (complexity), biological realism and tractability has to
be found. The types of descriptions which can be considered for mathematical model
building are shown in Fig. 2.3 [26].

generalspecific

model estimation first principle models

numerical analytical

stochastic deterministic

microscopic macroscopic

discrete continuous

qualitative quantitative

Fig. 2.3 Range of major issues to be addressed in order to formulate mathematical model of
biological system. They are related to the nature of the model, level of resolution, complexity,
computational implementation, etc. Reprinted from “The Nature of Mathematical Modeling” ©
CambridgeUniversity Press, Neil Gershenfeld, Fig. 1.1with permission fromCambridgeUniversity
Press
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2.2.2 Dynamics of Immune Responses

Lymphocytes respond to antigen stimulation through processes such as activation,
division, differentiation and death. The kinetics of the cell population dynamics
follows a remarkably similar pattern:

• expansion,
• contraction and
• memory persistence.

The dynamics of any population is affected by four processes. This leads
to the most fundamental balance equation in population dynamics of immune
responses [27]:

ΔN = bir th − death + immigration − emigration, (2.1)

where ΔN is the change in the population size over some time period Δt . Even
for single populations, each rate is likely to depend on the population size and the
structure, and is variable in time. The critical task is to choose or specify the functional
form of the processes in the model.

Amathematical description of the immune processes should address the dynamics
of cellular responses to antigens (either at the population or the single cell level)
occurring locally or systemically. To quantify the population dynamics of cells and
molecules in one compartment1 (defined either physically or functionally), one needs
to consider the rates of (i) growth, (ii) death, (iii) immigration and (iv) emigration.
The relationship can be represented by the following prototype structure of balance
equation the lymphocyte population in a single compartment (e.g. spleen, lymph
node):

d

dt
N (t)=

⎛
⎝

proli f eration
or
‘multiplication′

⎞
⎠ ± (di f f erentiation) − (death) ±

⎛
⎝

transport
or
‘trans f er ′

⎞
⎠ . (2.2)

In the majority of models in immunology, the building blocks (the individual
terms in the differential equations) represent the following elementary processes: (i)
growth of pathogens and cells; (ii) cellular and molecular interactions (e.g. antigen–
antibody or receptor–ligand); (iii) activation, division and death of lymphocytes; and
(iv) homeostasis in the immune system. Possible functional forms of these are given
in the rest of this chapter summarizing the results from several publications [15,
28–31].

1A compartment is defined by a characteristic material occupying a given volume and which is
kinetically homogeneous.
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2.3 Elementary Building Blocks for Models

2.3.1 Ag–Ab Interaction

The chemical nature of interaction of antigen with antibodies was established by
Heidelberger and Kendall in 1935 [32]. This implies that the chemical law of mass
action can be used to model the kinetics of antigen–antibody interactions. Consider
the reversible reaction of a monovalent antigen (Ag) with an antibody binding site
(Ab) as depicted in Fig. 2.4:

Ag + Ab = k1→←
k−1

Ag · Ab. (2.3)

The corresponding differential equation for the rate of change of the concentration
of the complex [AgAb] over time in a well-mixed compartment reads

d

dt
[Ag Ab] = k1[Ag][Ab] − k−1[Ag Ab]. (2.4)

In an equilibrium, the concentrations of the substances are related by the formula

[Ag Ab]
[Ag][Ab] = k1

k−1
= K . (2.5)

The constant K is called an intrinsic affinity of the antibody binding site for the anti-
gen. It can be viewed as an example of the coordinatization of notion of ‘specificity’.

Antibody

Paratope

Epitope 

Antigen

Fig. 2.4 Antigen and antibody
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Note that multivalent Ab and Ag follow a more complex dynamics studied by Bell,
DeLisi, Perelson, Gandolfi and others (see for References in [3, 15]).

2.3.2 Growth Phenomena

The process of biological species growth has common features as summarized in
[33]. The material of this subsection relies on the systematic analysis of growth
equations presented in the above monograph.

2.3.2.1 Exponential Growth Equation

Themost basic growth equation was introduced byMalthus in his early assays on the
principles of population growth already in 1798. It considers N (t)—the magnitude
of a growing quantity as a function of time t . The rate of change of the population
size

d

dt
N (t) = b · N (t), (2.6)

which has the following solution:

N (t) = N (0) expbt . (2.7)

One can define a biologically relevant parameter, i.e. the ‘population doubling time’
in relation to the proliferation rate b

t2 = ln 2

b
. (2.8)

Although Eq.2.6 is simple, it is useful in studies of short-term growth phenom-
ena. One example of exponential cell growth is shown in Fig. 2.5 for B lymphocyte
proliferation in vitro.

2.3.2.2 Logistic Growth Equation

The logistic growth equation was formulated by Verhulst in his work on limits to
population growth in 1838. It can be considered as an extension of Eq. 2.6 by con-
sidering the limiting resources available for growth associated with the notion of
carrying capacity C which enters the equation as follows:

d

dt
N (t) = b · N (t)

(
1 − N (t)

C

)
, (2.9)



2.3 Elementary Building Blocks for Models 23

Fig. 2.5 Exponential growth
of B lymphocyte in vitro and
the best-fit solution of the
exponential growth equation

which has the following solution:

N (t) = C

1 + (C/N (0) − 1) exp−bt
. (2.10)

Here, the parameters have the following meaning:

• b the intrinsic growth coefficient,
• C the carrying capacity,
• d = b/C is called ‘crowding coefficient’.

An example of virus growth in vivo, i.e. LCMV replication in spleen of C57BL/6
mice [34], consistent with the logistic model is shown in Fig. 2.6.

2.3.2.3 Confined Exponential Growth Equation

This equation describes an exponential growth confined to a limiting value bounded
by C . It was first considered by Kreith 1958 and Bird et al. in 1960 to represent a
source mechanism for transfer of heat or mass.

d

dt
N (t) = b (C − N (t)) , (2.11)

which has the following solution:

N (t) = C − (C − N (0)) exp−bt . (2.12)

Here, the parameters have the following meaning:

• b the growth or transfer coefficient,
• C the carrying capacity.
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Fig. 2.6 LCMV-WE replication in spleen of C57BL/6 mice. Data (open and closed symbols) and
the best-fit solution of the logistic equation. Intravenous infections with 104 and 105 pfu are shown
with closed and open circles, respectively. Reprinted from Journal of Theoretical Biology, Vol. 221,
Bocharov et al., Modelling the Dynamics of LCMV Infection in Mice: II. Compartmental Structure
and Immunopathology, Pages 349–348, Copyright © 2003, with permission from Elsevier

The solution of the equations approaches C as t → ∞. If C = 0, then N (t)
approaches 0 for increasing t . This equation is used in mathematical immunology to
model the homeostasis of lymphocytes in the periphery due to the naive cell transfer
from primary lymphoid organs.

2.3.2.4 Gompertz Equation

The equation formulated by Gompertz in his work on the law of human mortality in
1825 assumes that the intrinsic growth rate parameter is not constant but depends on
time according to exponential growth:

d

dt
N (t) = b · N (t), N (0) = N0, (2.13)

d

dt
b(t) = −k · b(t), b(0) = b0. (2.14)

It can be formulated as a single non-autonomous equation with the explicit solution
as follows:
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d

dt
N (t) = b0 exp

−kt ·N (t), N (t) = N0e
[

b0
k (1−e−bt )

]
. (2.15)

Using the constant expressionC = N0 expb0/k , representing a kind of carrying capac-
ity, the equivalent formulation of the population dynamics can be expressed in a form
most close to the logistic equation

d

dt
N (t) = k · N (t) (lnC − ln N (t)) . (2.16)

The Gompertz equation provides a correct description of concave patterns of cell
growth.

2.3.2.5 Time-Dependent Parameters

A generalization of the above models comes from an explicit dependence on time
of the growth rate and carrying capacity parameters. These types of equations were
extensively considered by Nisbet and Gurney [35] to model the dynamics of popu-
lations in fluctuating environments:

d

dt
N (t) = b(t) · N (t)

(
1 − N (t)

C(t)

)
. (2.17)

The solution can be expressed in a closed form

N (t) =
N0 exp

(∫ t
0 b(ξ)dξ

)

1 + N0
∫ t
0 b(ξ)/C(ξ) exp

(∫ ξ

0 b(νdν)dξ
) . (2.18)

Various functional forms can be considered to account for the time dependence, e.g.
of the growth rate:

• Linearly variable b(t) = b0(1 − at),
• Hyperbolically variable b(t) = b0

(1+at) ,

• Exponentially variable b(t) = b0 exp−kt ,
• Sinusoidally variable b(t) = bm + bA sin(2π/T + φ).

2.3.2.6 Time-Delay Equations

In all biological systems, the present growth rate at time t depends on the size of the
population at an earlier time. This assumption leads to a straightforwardmodification
of the exponential equation [36]:
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(a) (b)

(c)

Fig. 2.7 Idealized patterns of cell growth. a Synchronized and b asynchronized growths corre-
sponding to geometric and exponential models of proliferation, respectively. c Real data and the
solution of the model (2.19) of cell proliferation, both characterized by the loss of synchrony

d

dt
N (t) = b · N (t − τ), t ≥ 0, (2.19)

with τ representing reproduction/division time delay or time lag. To solve the initial
value problem for the above delay differential equation (DDE), the initial data have
to be specified on a time interval rather than at one time instant as in the ODEmodels
listed above. Figure2.7 shows the idealized patterns of cell growth and real data
pattern which is consistent with a DDE-type dynamics. The outstanding feature of
the cell system in vitro is that the division of cells is initially synchronized. As one
can see in the figure, the synchronization is lost with time.

A broadly examined equation of population growth with a time delay is the delay
logistic equation proposed by Hutchinson in 1948:

d

dt
N (t) = b · N (t − τ)

(
1 − N (t)

C

)
. (2.20)

An outstanding feature of this scalar equation is the rich dynamics including periodic
and chaotic regimes.
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Fig. 2.8 Growth of the
synchronized cell
populations reproduced with
a neutral DDE (2.21)

Finally, the growth of a synchronized cell populations, as shown in Fig. 2.8, can
be parsimoniously represented by a neutral delay differential equation with the rate
of change depending also on the rate of growth at some previous time [36]:

d

dt
N (t) = a · N (t) + b · N (t − τ) + c · d

dt
N (t − τ), t ≥ 0. (2.21)

The numerical treatment of the neutral delay differential equations is rather
demanding due to the discontinuities of solution derivatives at times defined by
multiples of τ . DDEs are used quite extensively in mathematical immunology [29].
A systematic investigation of the reduction of age-structured populations dynamics
models to delay differential equations is presented in [37].

2.3.3 Lymphocyte Proliferation

Induction of lymphocyte proliferation in response to antigenic stimulation is a multi-
step process, which includes T-cell receptor-mediated signal transduction leading to
genes up-/downregulation. The networks of protein and gene interactions in a single
cell during the activation stage are in the focus of systems biology studies. At the cell
population level, there exist rather few attempts to derive or infer from data-fitting
constitutive relationships for the functional dependence of the antigen-induced divi-
sion rate Rdiv(Ag, N ) of lymphocytes on the antigen concentration Ag(t) and the
cell density N (t). Examples of possible forms can be summarized from [38, 39] as
follows:

• second-order reaction kinetics, with no competition andwithout saturation effects:

Rdiv ∝ b Ag(t) N (t); (2.22)
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• bounded rate growth (saturation at high antigen load):

Rdiv ∝ b N (t)
Ag(t)

θ + Ag(t)
(2.23)

• antigen-specific resource competition:

Rdiv ∝ b N (t)
Ag(t)

θ + Ag(t) + c N (t)
(2.24)

• non-specific resource competition:

Rdiv ∝ b N (t)
A(t)

θ + A(t) + c N (t)
× N (t)

1 + c N (t)
(2.25)

• inhibitory lymphocyte interaction:

Rdiv ∝ b N (t)

(
Ag(t)

θ + Ag(t)
− d N (t)

)
. (2.26)

The last expression includes a second term which resembles a crowding effect of
cells on their division via enhancing their death.

2.3.4 Cell Death

Cell death is a key process in maintaining the homeostasis of the immune system as
well as in the development of disease states (e.g. chronic infections). The lifespan
of cells of the immune system is a tightly regulated process. There is a range of
mechanisms responsible for cell death or elimination. Most of the mathematical
models in immunology restrict the cell death description either to an exponential
(‘natural’ death)- or a predator–prey (effector-mediated elimination)-type kinetics.
The functional forms for the death rate Rdeath used in the models are

• exponential decay
Rdeath ∝ −d N (t), (2.27)

where d > 0 is the intrinsic death coefficient.
• Gompertz model of cell death

Rdeath = −d · N (t), N (0) = N0, (2.28)
d

dt
d(t) = k · d(t), d(0) = d0, (2.29)
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Fig. 2.9 Gompertz kinetics
of cell death. Survival data of
plasmacytoid dendritic cells
after infection with MHV at
MOI = 1 and the best-fit
solution of the Gompertz
model
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describes the kinetics of cell survival which is characterized by a gradually increas-
ing per capita death rate. Figure2.9 shows an example of Gompertz-type death
kinetics observed for plasmacytoid dendritic cells in vitro [40].

• the second-order kinetics due to crowding effects

Rdeath ∝ d N 2(t). (2.30)

Note that the logistic pattern of growth N ′
death ∝ b N (t) − d N 2(t)maybe regarded

as an exponential growth mitigated by death from a second-order crowding effect.
• the effector cell-mediated elimination with or without saturation effects, respec-
tively

Rdeath ∝ d N (t)
E(t)

θ + E(t)
, or ∝ d N (t) E(t). (2.31)

• the fixed-time-delay description of antigen-dependent activation-induced cell
death by apoptosis (see, e.g. [41])

Rdeath ∝ d N (t) Ag(t) Ag(t − τ). (2.32)

• the division-number-dependent death rate, which assumes that there is an upper
limit (the so-called ‘Hayflick limit’ nmax , that was observed for cell division in
vitro) on the number of cell divisions n:

Rdeath ∝ d
(n(t)/nmax )

m

1 + (n(t)/nmax )m
, (2.33)

where m is an integer similar to the Hill coefficient that determines the steepness
of the sigmoidal dependence. It reflects the concept of replicative senescence.
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2.3.5 Cell Differentiation

The activation of lymphocyte via interaction with antigen can result either in divi-
sion, differentiation, anergy or death of the cell, depending on the strength of the
stimulus and the availability of co-stimulatory factors. The regulation of cell prolif-
eration versus differentiation is the least studied process in terms of a mathematical
description. The commonly used approach is based on an ad hoc specification of the
probability of proliferation/differentiation as a function of antigen levels: e.g.

• B lymphocytes

pd = K Ag

1 + K Ag
, (2.34)

• T lymphocytes

pp = Ag

K + Ag
. (2.35)

The fraction of cells following the differentiation pathway is defined as pd or 1 − pp.
It is important to bear in mind that the balance of growth and differentiation is a

dynamically regulated process which should be described as an emergent property
of interacting heterogeneous populations of cells differing in their level of maturity
[42] with a more differentiated cells exerting a negative feedback on the proliferation
rate of the activated cells in a density-dependent manner.

2.3.6 Tuning of the Response

Lymphocytes are known to tune their activation thresholds. This couldmanifest either
as a low- or high-zone tolerance phenomenon (see Fig. 2.10), or a gradual reduction
of the response to the same level of stimulation (anergy). Note that an experimentally
observed bell-shaped pattern of the immune response dependence on the activation
level or speed of the perturbation, as shown in Fig. 2.11 (left), is consistent with the
systems biology view of the need of biphasic regulatory modules Fig. 2.11 (right)
underlying the functioning of the living systems [9]. The available practice with

Fig. 2.10 Thresholds for
low- and high-zone
tolerance. Schematic view of
the probability of
lymphocyte activation as a
function of the number of
bound antigen-specific
receptors
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Fig. 2.11 Bell-shaped patterns in activation of immune responses for varying peptide load, and
virus growth rate. Idealized form of the dose–response to be considered in equations of cell activa-
tion. Reprinted from Transfusion Medicine and Hemotherapy, Vol. 32, Bocharov, Understanding
Complex Regulatory Systems: Integrating Molecular Biology and Systems Analysis, Pages 304–
321, Copyright © 2005, with permission from Karger Publishers

parameterisation of these modes of response in the models can be summarized as
follows:

• B lymphocytes stimulated by antigen

pa =
{
1, if σ1

1−σ1
≤ K Ag ≤ σ2

1−σ2

0, otherwise.
(2.36)

Here, σ1 and σ2 denote the threshold values for fraction of bound immunoglobulin
receptors (n) needed for productive activation as shown in Fig. 2.10. The total
number of receptors per B cell is about 105.

• T lymphocytes responding to virus infection characterized by viral load V (t), see
[41]

pa = b · V (t)

θ +
(∫ T

0 V (t) d t
)2 . (2.37)

A systemic mechanism of the negative feedback of the virus infection on the
immune response can be associated with the destruction of the target organ resulting
in a generalized suppression of the immune processes. The mathematical models
of infectious diseases proposed by G.I. Marchuk implement this paradigm via a
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general negative feedback function depending on the number of damaged sensitive
tissue cells [28].

2.3.7 Cell Competition

The immune system needs to accommodate increasing numbers of newly generated
cells within a limited space of lymphoid organ, so a selection process through com-
petition between different subsets of cells and between specific clones takes place.
The reference set of functional forms to describe the competition can be found in
models of ecological systems dynamics [35, 43].

The homeostasis in the immune system is maintained by a complex regula-
tory network leading to cell survival, proliferation and death. This includes the
following [44]:

• spatial control of cell life and death processes, which in case of two clones N1 and
N2 could be described as follows:

d

dt
N1(t) = b1 · N1(t)

(
1 − N1(t) + a12 N2(t)

C

)
(2.38)

d

dt
N2(t) = b2 · N2(t)

(
1 − N2(t) + a21 N1(t)

C

)
(2.39)

with a12, a21 specifying the strength of the competition.
• competition between cells for the limited resources R(t) provided by antigen-
presenting cells, e.g. persisting cross-reactive antigens, self-antigens, MHC class
I or II molecules and survival factors

d

dt
N1(t) = b1 · N1(t)

R(t)

κ1 + R(t)
(2.40)

d

dt
N2(t) = b2 · N2(t)

R(t)

κ2 + R(t)
(2.41)

d

dt
R(t) = S∗ − u R · R(t)

(
b1 N1(t)

κ1 + R(t)
+ b2 N2(t)

κ2 + R(t)

)
. (2.42)

Here, the parameters S∗, κ1, κ2, u R characterize the production and consumption
of the resource factors.

Other considerations could be employed to represent the inherent regulations, such
as antigen/lymphocyte relationships or supportive/antagonistic relationships between
components; each would bring differing details to the dynamics and the attractors,
and distinguishing the optimum choice will depend on the available data.
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Completing this chapter, one needs to note that modelling of the homeostatic
regulation of lymphocyte clones is a practically uncovered area in mathematical
immunology. A straightforward approach to model the maintenance of the i-th lym-
phocyte clone Ni (t) within the system that controls the total number of immune
cells near the carrying capacity can be described via a density-dependent term of the
following type (here 105 is the total number of specific clones):

d

dt
Ni (t) = Ni (t)

⎡
⎣F

⎛
⎝

∼105∑
i=1

Ni (t)

⎞
⎠ − d

⎤
⎦ , (2.43)

or as constant confined exponential growth that can be found in [29, 45].
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Chapter 3
Parameter Estimation and Model
Selection

In this chapter, we illustrate a data-drivenmethodology to formulation and calibration
of mathematical models of immune responses. The maximum likelihood approach
to parameter estimation, Tikhonov regularization method and information-theoretic
criteria for model ranking and selection are presented for models formulated with
ODEs, DDEs and PDEs. Experimental data on CFSE-based proliferation analysis of
T cells and LCMV–CTL dynamics in a low dose experimental infection of mice are
used. The material of this chapter is based on our previous work published in [1–7].

3.1 General Modelling Issues

Most mathematical models of immune responses have no rigorous physical basis,
i.e. the equations are not obtained from first principles (the basic laws of physics
and mechanics) and therefore have no a priori claim of validity. Multiple models of
differing complexity based upon different types of mathematical frameworks (and
corresponding scientific hypotheses) have been proposed in order to address specific
phenomena. Examples of such phenomena are the population dynamics of virus
infections, the turnover of lymphocytes, the migration and homeostasis of lympho-
cytes, single lymphocyte regulation and the single-cell replication cycle of the virus.
One can find extensive reviews covering various aspects of application of the math-
ematical models in immunology from the modellers’ perspective [8–50].

Mathematical systems theory suggests a view of a mathematical model as an
exclusion law [51]:

...A mathematical model expresses the opinion that some things can happen, are possible,
while others cannot, are declared impossible.
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The above view is formalized by stating that the model selects a certain subset called
behaviour from a universum of possibilities. To minimize artefacts, it is important
to ensure that the repertoire of dynamics suggested by the model is not much richer
than the reality.

The problem of formulating a model explaining a phenomenon specified by data
sets is considered to be central to every scientific discipline. In mathematical physics,
one thinks ofmodels of physical phenomena in termsof equations,which are obtained
from first principles—the basic laws of physics, mechanics, etc. The models, e.g.
the diffusion equation, the transport equation can be used to describe the system
behaviour. In many areas of science, modelling is, in essence, based on the restricting
assumption of an isomorphism between the properties of the model and the real
system [51]. This allows one to make direct inferences about the real system from
the properties of the model.

In contrast to mathematical physics, mathematical modelling in immunology fol-
lows a ‘systems engineering’ approach. A conceptual scheme for the system is gen-
erated by a priori restricting the model to the ‘most important’ interactions. This
defines the selection of the time- and space-dependent variables as well as the set
of parameters which characterize the kinetics of the specified processes. The model
equations are formulated by putting together elementary functional forms (building
blocks) for the growth, death, differentiation, etc. processes rather than by deriving
constitutive equations from the first principles. Various functional forms and math-
ematical equations can be used to build up a mathematical model in immunology.
Typically, modellers borrow concepts from ecology, enzyme kinetics or epidemi-
ology, making use of the mass action law to formulate equations and describe the
dynamics.

The problem of how to develop, in a systematic manner, consistent models that
provide a basis for quantitative analysis and prediction in every day immunology
research raises a number of challenges. The translation process starting fromobserva-
tions of a particular phenomenon and scientific theories and explanations and ending
with a family of mathematical models often appears to be an ill- or vaguely defined
process. At the first stage, it involves the conversion of often imprecise assumptions
or theories into mathematical variables and relationships between them. The next
stage relies on the availability of comprehensive data measuring various aspects of
the immune system. When this is available, the process involves the assessment of
the accuracy, and explanatory and predictive power of a particular model and of rival
models. This last stage is not routinely implemented in most modelling efforts.

The key aspects of our procedure involve the following steps:

• Assumptions about the statistical nature of the variation between one set of data
and another;

• Least-squares-type fitting, using an appropriate least-squares type of objective
function, related to MLE;
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• The calculation of indicators, incorporating a measure of parsimony, that provide
a score of the merits or demerits (reflecting the information retained or lost when
the model in question is used to approximate a—in some sense—‘best’ model for
the data) of each model.

3.2 Parameter Estimation

Those who attempt computational modelling in immunology are faced with sub-
stantial challenges due to the enormous complexity of the systemic-, cellular-
and molecular-level processes underlying various immunological phenomena [52].
Model formulation is a critical element and it requires selection of essential variables
and parameters and specification of causal relationships between them. The model
must be related to the amount of data: small data sets support simple models with few
reliably estimated parameters. However, various functional forms can be suggested
for the same interaction/action, even while retaining ‘simple’ models.

Our objective is to present and illustrate a computational approach for (i) devel-
oping a best-fit mathematical model that provides an accurate approximation to the
data, (ii) assessing the confidence in the estimates of the parameters in the model
and (iii) characterizing the parsimony of the model.

The general discussion here will be conducted with reference to models based
on ordinary differential equations (ODEs) and delay differential equations (DDEs)
(see [1, 53], etc.). The considered ODEs and DDEs models have solutions that
we denote y(t) = y(t;p) ∈ R

M , with parameter p = [p1, p2, . . . , pL ]T ∈ R
L ; the

mathematical models can be written in the following general form:

y′(t;p) = f(t, y(t;p), y(t − τ ;p);p), for t ∈ [t0, T ];
y(t;p) = ψ(t;p), for t ∈ [t0 − τ, t0]. (3.2.1)

We refer to the components p� of the ‘parameter vector’ p in (3.2.1) as ‘param-
eters’. The form of f is known, so that f is defined precisely if p is specified; ψ is
an initial function (possibly parameter-dependent) and for a choice of p the values
y(t j ;p) with components yi (t j ;p) will be expected to simulate data {y j } (observed
at times1 t j ∈ [t0, T ]) with components {yij } (i = 1, 2, . . . , M , j = 1, 2, . . . , N ).
Specific models are given in the following sections of this chapter. In (3.2.1), τ ≥ 0,
and if τ > 0 it represents a time lag. The methodology outlined here gives, inter
alia, an indication whether a lag parameter τ > 0 can be justified. We can be asked
to identify parameter values in ψ(t;p) as well in the equations. Throughout the
chapter, L is the number of parameters, M is the dimensionality of the state vector
and n denotes the sample size (the number of scalar observations, usually n = NM).

1With little amendment we can consider the casewhere different components {yij }Ni
j=1 are associated

with i-dependent times {tij }Ni
j=1.
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3.2.1 Maximum Likelihood Approach2

Themaximum likelihood approach allows one to find the values of model parameters
that maximize the probability of obtaining exactly the observed data3 (see [54–58]).
Parameters are regarded as at our disposal; those parameters for which the likeli-
hood is the highest are the ‘maximum likelihood estimates’. We make the following
assumptions.

Assumption 3.2.1 The errors in observations at successive times are independent.

Assumption 3.2.2 The errors in the observed data are assumed to have a Gaussian
distribution around the vectors {y(t j ;p)}Nj=1, that is

y j ∼ N (y(t j ;p),� j ),

where � j is the j-th covariance matrix

Under Assumption 3.2.2, the component probability density functions are given by

{
H (y j ;p) = 1√

(2π)M det� j

exp{−1

2
[y(t j ;p) − y j ]T�−1

j [y(t j ;p) − y j ]}
}N
j=1

.

(3.2.2)
Under Assumption 3.2.1, the likelihood function is then given by

L (p) =
N∏
j=1

H (y j ;p), (3.2.3)

where H (y j ;p) appears in (3.3.35).

Assumption 3.2.3 The errors in the components ofy j are assumed to be independent

Define
ΦWLS(p) ≡ [y(t j ;p) − y j ]T�−1

j [y(t j ;p) − y j ].

Under Assumption 3.2.3, we are led to define

� j = σ 2
{
diag[ω[ j]

1 , ω
[ j]
2 , . . . , ω

[ j]
M ]}; (3.2.4)

(where σ 2 denotes the data variance) then,

ΦWLS(p) ≡ σ−2ΦΩLS(p), (3.2.5a)

2Material of sects. 3.2.1–3.2.2 uses the results of the study Journal of Computational and Applied
Mathematics, Vol. 184, C.T.H. Baker et al., Computational approaches to parameter estimation and
model selection in immunology. Pages 50–76, Copyright © 2005 with permission from Elsevier.
3The data are regarded as fixed and assumed to have errors of a certain type.
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where

ΦΩLS(p) =
∑
j

‖diag−1[ω[ j]
1 , ω

[ j]
2 , . . . , ω

[ j]
M ][y(t j ;p) − y j ]‖2. (3.2.5b)

The maximum likelihood estimate of the model parameters provides an optimal
estimate of the data variance as

σ̂ 2 = 1

NM

∑
j

‖diag−1[ω[ j]
1 , ω

[ j]
2 , . . . , ω

[ j]
M ][y(t j , p̂) − y j ]‖2 = 1

NM
ΦΩLS (̂p),

(3.2.5c)
where p̂maximizes the likelihood, and then (denoting the natural logarithm by �n(·))
�nL (̂p) = −1

2

{
NM�n(2π) + NM + 2

∑
i, j

�n(ω
[ j]
i )
}

− 1

2
{NM�n(ΦΩLS (̂p)) − NM�n(NM)}.

(3.2.6)
Clearly, L (̂p) is maximized when ΦΩLS (̂p) is minimized (equivalently, when
ΦWLS (̂p) is minimized) and σ 2 is assigned the value σ̂ 2 in (3.2.5c). We seek a
best-fit parameter p̂ for (3.2.1) for which the corresponding values {yi (t j ; p̂)}i=1:M

j=1:N ,
provide a ‘best fit’ to the given data {yij }i=1:M

j=1:N in the sense that

ΦΩLS (̂p) = min
p

ΦΩLS(p). (3.2.7)

Remark 3.1 Our approachfits into a general framework as follows.Ageneral statisti-
cal framework for parameter estimation is the Bayesian approach. Under the assump-
tion of a uniform prior distribution of parameter values, the Bayesian approach [55,
56] reduces to a maximum likelihood estimation (MLE) [55]. The widely used least-
squares technique (LSQ) is equivalent to MLE under the following set of assump-
tions:

(i) the observational errors are normally distributed;
(ii) equivalent positive and negative deviations from the expected values differ by
equal amounts;
(iii) the errors between samples are independent.
Other powers of the deviation between model and data can be used depending on the

error distribution, for example, the first power would correspond to an exponential
distribution of the errors [55].

3.2.2 Least-Squares Type Objective Functions

As indicated above, a key element is the least-squares fitting which involves the
informed selection of a least-squares objective function ΦΩLS (̂p) (and this corre-
sponds to a choice of Ω). This entails making the connection between ‘the most
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likely’ parameters and the ‘best fit’ parameters by ascertaining a criterion for ‘best
fit’, that is by choosing an appropriate Ω .

In general least-squares type data fitting, one encounters in particular three types
of objective functions Φ(p), which depend upon the given data {t j ; yij }Nj=1 (for i =
1, · · · , M) and the values {yi (t j ;p)}i=1:M

j=1:N of the solution y(t;p) of the parametrized
model, e.g. (3.2.1). These three types (ordinary least-squares, weighted least-squares
and log-least-squares objective functions) correspond to

ΦOLS(p) =
N∑
j=1

M∑
i=1

[
yi (t j ;p) − yij

]2 =
N∑
j=1

‖y(t j ,p) − y j‖2; (3.2.8a)

ΦWLS(p) ≡ σ−2ΦΩLS(p), where ΦΩLS(p) =
N∑
j=1

M∑
i=1

{
ω

[ j]
i

[
yi (t j , p) − yij

] }2;(3.2.8b)

(when locating p̂, the scaling factor σ−2 in the objective function is not relevant)
and

ΦLogLS(p) =
N∑
j=1

M∑
i=1

[
�n(yi (t j ,p)) − �n(yij )

]2
. (3.2.8c)

(Variants of these are possible.) To use (3.2.8c), it will be assumed that yij > 0 and
that yi (t j ;p) > 0.

As observed by Gingerich [59], the objective functions (3.2.8) above correspond
to maximum likelihood functions under differing assumptions. Thus, (i) (3.2.8b) (of
which (3.2.8a) is a special case) follows from an assumption of arithmetic normality
of observational errors, in which equivalent positive and negative deviations from
expected values differ by equal amounts; (ii) (3.2.8c) is associatedwith an assumption
of geometric normality of observational errors in which equivalent deviations differ
by equal proportions. The use of the term ‘geometric normality’ refers to the errors
being ‘log-normal’.

If we adopt a weighted least-squares approach, as in (3.2.8b), the choice of Ω in
ΦΩLS(p) can be based on the natural assumption:

Assumption 3.2.4 We assume ω
[ j]
i = {yij }−1.

This implies that the variance increases with the expected value but the coefficient
of variation remains constant.

3.2.3 Uncertainty Quantification

The general approach to characterize the reliability of parameter estimations is based
upon evaluating their confidence intervals (CIs). There exist three major frameworks
to evaluate CIs: a technique based on the variance–covariance matrix [56], a profile-
likelihood-based method [60] and two variants of the bootstrap method—parametric
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and non-parametric ones [61, 62]. We review these methods and assess their
relative performance by computing approximations to 95% confidence intervals for
the estimated parameters of a mathematical model describing CFSE-based prolifer-
ation analysis formulated with ODEs [5].

In the following, Φ(p∗) stands for the optimized least-squares function, nd is
the number of the experimental data used and np is the number of the estimated
parameters.

3.2.4 Variance–Covariance Analysis

The variance–covariance method is based upon a parabolic approximation of the
objective function around the best-fit parameter estimatep∗. The 100 · θ%confidence
interval for the parameter of interest, e.g. for pk , is approximated by the standard
interval

C Ipk = [p∗
k − σpk z(θ, n f ), p∗

k + σpk z(θ, n f )], k = 1, 2, ..., np, (3.2.9)

where p∗
k is the best-fit parameter estimate, σpk is the standard deviation for pk and

z(θ, n f ) is the 100 · θ percentage point of the Student’s t-distribution with n f :=
nd − np degrees of freedom. An estimate of the standard deviation of pk is computed
as follows. First, we construct the covariance matrix

Ξ(p∗) = 2Φ(p∗)
nd − np

H−1(p∗) ∈ Rnp×np , (3.2.10)

where H is the Hessian matrix,

H(p) :=
{ ∂

∂p

}{ ∂

∂p

}T
Φ(p) ∈ Rnp×np , Hk,m(p) = ∂2

∂pk∂pm
Φ(p), (3.2.11)

with Hk,m being the (k,m)-th element of H . The standard deviation for the k-th
element of p is given by the corresponding diagonal element Ξk,k of the covariance
matrix,

σk = √
Ξk,k(p∗). (3.2.12)

3.2.5 Profile-likelihood-based Method

The profile-likelihoodmethod provides a way for computing the confidence intervals
of the maximum likelihood parameter estimates by following ‘a global’ behaviour
of the objective function [60]. To compute approximations to the 95% CIs of the
estimates, we proceed as follows. For the parameter of interest, p∗

k , we search for the
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interval [pmin
k , pmax

k ] of maximal width and containing p∗
k such that

| ln(L (p̃)) − ln(L (p∗))| ≤ 1

2
χ2
1,0.95 whenever pk ∈ [pmin

k , pmax
k ]. (3.2.13)

In (3.2.13), L (p∗) stands for the likelihood function,

L (p̃) := max
p∈S(pk )

L (p), where S(pk) :=
{
[p1, p2, ..., pk−1, p, pk+1, ..., pnp ]|p fixed

}
,

and χ2
1,0.95 = 3.841 is the 0.95th quantile of the χ2-distribution for one degree of

freedom.

3.2.6 Bootstrap Method

The bootstrap technique is a computationally intensive method for estimating the
mean and standard error on the basis of samples generated from small data sets
(say of size n) [62]. The new data sets, being subsets of available data, are randomly
drawn from original observations set of data points and fit as if theywere independent
observations. Therefore, the method works by resampling randomly, for example,
with a uniform probability equal to 1/n, the observed sample values to model the
unknown population of observations. The whole process of random sampling with
replacement is repeated M times to generate M data sets. For these data sets, one
computes the best-fit parameter estimates p∗

m, m = 1, 2, ..., M , which provide an
estimate of the ‘true’ standard error by taking the standard deviation of the M values
of p∗

m . The standard interval

C Ipk = [E (p∗
k ) − σpk z(θ), E (p∗

k ) + σpk z(θ)], k = 1, 2, ..., np, (3.2.14)

approximates the 100 · θ bootstrap confidence interval. Here E (p∗
k ) and σpk are the

mean and standard deviation, respectively, of the estimates of the parameter p∗
k that

are found by fitting the bootstrap resamples of the original data and z(θ) is the 100 · θ -
th percentile of a normal deviate. The value z(0.95) ≈ 1.96 is used for approximating
the 95% CI in conjunction with a large number of resamplings M .

3.2.7 Example of Computational Analysis of CFSE
Proliferation Assay

CFSE-based tracking of the lymphocyte proliferation using flow cytometry is a pow-
erful experimental technique in immunology allowing for the tracing of labelled cell
populations over time in terms of the number of divisions cells have undergone (see
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Fig. 3.1 Schematic view of the CFSE-based tracking of the lymphocyte proliferation. The division
of cells is assumed to reduce the amount of CFSE label in daughter cells as compared to the mother
cell by half. Cells with the same number of completed divisions j contain the same amount of the
label equal to X0

(2 j )

Fig. 3.1). Interpretation and understanding of such population data can be greatly
improved through the use of mathematical modelling.

3.2.7.1 ODE Model of CFSE-labelled Cell Growth

We apply a heterogenous linear compartmental model, formulated by a system of
ordinary differential equations [5]. Thismodel allows the division number-dependent
rates of cell proliferation and death, and describes the rate of changes in the numbers
of cells having undergone j divisions as shown in Fig. 3.2.

In our setting, the compartments represent the cell populations, which have made
a specified number of divisions. In the equations, N j (t) and D(t) denote the pop-
ulation sizes at time t of live lymphocytes having undergone j divisions and dead
but not disintegrated lymphocytes, respectively. The heterogenous compartmental
model assumes that the per capita proliferation and death rates of T lymphocytes, α j ,
respectively, β j , depend on the number of divisions lymphocytes have undergone.
The rates of change of N j (t) and D(t) with time are represented by the following
set of equations:
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Fig. 3.2 Scheme of the heterogenous linear compartmental model of CFSE-labelled cell prolifer-
ation. Basic assumption: the level of CFSE expression (x) on an individual cell takes on a discrete
set of values, related to the number of divisions the cell has undergone => each cell generation
displays some mean CFSE intensity

dN0
dt (t) = −(α0 + β0)N0(t),

dN j

dt (t) = 2α j−1N j−1(t) − (α j + β j )N j (t), j = 1, . . . , J,

dD
dt (t) = ∑J

j=0 β j N j (t) − δD(t).

(3.2.15)

The first term on the right of equations for N j (t) represents the cell birth (influx from
previous compartment because of division), while the last term on the right represents
cell loss (outflux from the compartment) due to division and death. In the equation
for dead cells, δ denotes the specific (fractional) decay rate of dead lymphocytes due
to disintegration and phagocytosis.

Assuming that the population sizes at time t0 are specified by initial data N j (t0)
and D(t0), and the condition α j + β j �= αi + βi is fulfilled for i �= j , the solution
of the model is expressed in the form

N j (t) =
j∑

s=1

⎧⎨
⎩2

s N j−s (t0)
j−1∏

m= j−s

αm

j∑

i= j−s

exp−ci (t−t0)
j∏

k= j−s,k �=i

(ck − ci )
−1

⎫⎬
⎭+ N j (t0) exp

−c j (t−t0)
,

j = 0, 1, . . . J, t ≥ t0,

D(t) =
J∑

j=0

β j

⎧
⎨
⎩

j∑

s=1

2s N j−s (t0)
j−1∏

m= j−s

αm

j∑

i= j−s

exp−ci (t−t0) − exp−δ(t−t0)

δ − ci

j∏

k= j−s,k �=i

(ck − ci )
−1

⎫
⎬
⎭

+
J∑

j=0

β j N j (t0)
exp

−c j (t−t0) − exp−δ(t−t0)

δ − c j
+ D(t0) exp

−δ(t−t0), t ≥ t0,

(3.2.16)
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where c j := α j + β j . The availability of the closed-form solution to the model
reduces the computational treatment of the model-driven data analysis.

A simplified version of the heterogenous model can be obtained if we assume
that the proliferation and death rates of cells, α and β, do not depend on the number
of divisions cells have undergone. For practical examples, we refer to cell kinetics
studies [63–66]. The corresponding ‘homogenous compartmental model’ is defined
by system (3.2.15) with αi = α, βi = β, i = 0, 1, . . . , J, and the same initial data
as for the heterogenous model. The solution of this model for t ≥ t0 is given by

N j (t) = exp−c(t−t0)
j∑

i=0

(2α)i
(t − t0)i

i
N j−i (t0), j = 0, 1, . . . , J,

D(t) = β

J∑
j=0

j∑
i=0

(2α)i N j−i (t0)

{
(−1)i

(δ − c)i+1

(
exp(δ−c)(t−t0)

0∑
k=i

((t − t0)(c − δ))k

k! − 1
)}

exp−δ(t−t0)

+D(t0) exp
−δ(t−t0),

(3.2.17)
where c := α + β.

3.2.7.2 Data of CFSE-labelled Cell Proliferation

The experimental data set that we analyse is derived from measuring the kinetics
of PHA-induced human T lymphocyte proliferation in vitro from day 3 to day 7.
Specified characteristics are as follows: (i) the total number of live cells, N (ti ), (ii)
the total number of dead but not disintegrated cells, D(ti ), and (iii) the number of
cells divided j times, N j (ti ), i = 0, 1, . . . , 4, j = 0, 1, . . . , 7. Table3.1 presents the
set of CFSE data analysed.

Table 3.1 Quantitative dynamics of human peripheral blood T lymphocytes following stimulation
with PHA in vitro. At various times, CFSE profiles were obtained by flow cytometry. The total
numbers of live, N (ti ), and dead, D(ti ), lymphocytes and the distribution of lymphocytes with
respect to the number of divisions they have undergone, N j (ti ), j = 0, 1, . . . , 7, were followed
from day 3 to day 7 at the indicated times ti , i = 0, 1, . . . , 4

Time
days ti

Total
number of
live cells
N (ti )

Total
number of
dead cells
D(ti )

Numbers of cells w.r.t. the number of
divisions ( j) they undergone N j (ti )

0 1 2 3 4 5 6 7

3 1.4 × 105 1.6 × 104 29358 22876 43372 39970 5208 98 14 0

4 2.5 × 105 2.4 × 104 16050 12600 22650 57025 96350 46950 2500 25

5 4.4 × 105 6.0 × 104 14476 14784 25344 58652 141460 156290 32076 440

6 5.0 × 105 1.2 × 105 13500 12150 24150 55000 137850 188950 69450 2150

7 5.7 × 105 1.3 × 105 13509 12198 21603 51927 140560 232160 96102 3420
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3.2.7.3 Confidence in Best-Fit Estimates

We search for a vector of best-fit parameters, p∗, for which the model solution
N j (t;p∗), D(t;p∗) is closest according to the least-squares criterion to the given
experimental data at the time points of the measurements, i.e. the solution fits the
data in an optimal way. The vector p, p ∈ RL has the components

p := [α0, α1, . . . , α7, β0, β1, . . . , β7, δ],

and
p := [α, β, δ]

for the heterogenous and the homogenous model, respectively. Our data set consists
of cell numbers Ni

j := N j (ti ) and Di := D(ti ) measured at times ti , cf. Table3.1,
where t0 = 72, t1 = 96, t2 = 120, t3 = 144, t4 = 168 (h). The values N 0

j and D0

are used as the initial data N j (t0) and D(t0) for the models.
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Fig. 3.3 Experimental data (circle) and the best-fit solutions of the heterogenous (solid lines)model
(3.1) and the homogenous (dashed lines) model
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Fig. 3.4 The kinetics of the human peripheral blood T cell population growth. Left: The total
number of live lymphocytes N over all divisions and the number of precursors P that would
have generated the current lymphocyte population in the absence of death, estimated from the
data in Table3.1 (circle) and predicted by the heterogenous (solid line) model (3.2.15) and the
homogenous (dashed line)model for the best-fit parameter values. Right: The behaviour of themean
division number μ(◦) and its variance σ 2 (asterisk) suggested by the data. The solid and dashed
curves correspond to μ(t) and σ 2(t) computed using the best-fit solutions of the heterogenous and
homogenous models, respectively

Figure3.3 shows the experimental data and the solutions of the two models corre-
sponding to the best-fit parameter estimates. The kinetics of cells which have under-
gone more than two divisions is consistently reproduced by the heterogenous model.
In contrast, the data characterizing the kinetics of the first two divisions appear to be
a problem for both models. This discrepancy might be related to a large observation
error for the number of T cells that have undergone one or two divisions. Indeed,
the decline in the number of undivided cells is not accompanied by an increase in
the number of cells that have divided once or twice, which seems to be counter-
intuitive. As shown in Fig. 3.4 (left), the growth of the total cell population N slows
down after day 5. This concave pattern is consistently captured by the heterogenous
model, whereas the homogenous model predicts a biased dynamics. The numbers of
precursors P estimated from the data and predicted by the models are close to each
other. Figure3.4 (right) shows that the mean number of divisions cell populations
have undergone (μ) is predicted reliably by the heterogenous model. However, the
evolution of the variance (σ 2) in the mean division number over time is not precisely
reproduced. The homogenous model gives a poor fit of μ and σ 2.

Parameter estimation results obtained using the ordinary least-squares approach
for both models are summarized in Table3.2. The best-fit estimates of the heteroge-
nous model parameters suggest that the lymphocyte proliferation and death rates are
not constant but vary essentially with the division number in a non-monotone way,
Fig. 3.5.

The best-fit estimates of parameters β j , j = 0, 1, 2, 3, 6, 7, are close to zero,
taking numerical values ranging between 10−15 and 10−11 (hours−1). Biologically,
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Fig. 3.5 Dependence of the cell turnover parameters on the division number. The best-fit estimates
of the division rate (left) and the death rate (right) parameters of the heterogenous (circle) and
homogenous (dot-dashed curves)models. The best-fit value ofα7, α∗

7 ≈ 1.37 is not shown. The best-
fit estimates of α j , j = 0, ..., 5, for the parameterized version of the model with the proliferation
rate described by the function α j = z1 − z2(z3 + j)2 are indicated by asterisks

Table 3.2 Best-fit parameter estimates of the heterogenous and homogenousmodels obtained using
the ordinary least-squares approach and the data set in Table3.1

Heterogenous
model

Division rate
(1/hour)

Death rate
(1/hour)

Disintegration
rate (1/hour)

Doubling time
(hours)

α0 1.31 ×10−2 β0 2.33 × 10−15 δ 4.52 × 10−2 52.8

α1 3.10 ×10−2 β1 7.98 × 10−13 22.4

α2 5.21 ×10−2 β2 5.56 × 10−13 13.3

α3 4.95 ×10−2 β3 1.54 × 10−14 14.0

α4 2.94 ×10−2 β4 7.12 × 10−3 23.5

α5 7.28 ×10−3 β5 2.69 × 10−2 95.3

α6 2.26 ×10−2 β6 7.07 × 10−15 30.6

α7 1.37 β7 6.249 ×10−11 0.5

Homogenous model

α 2.13 × 10−2 β 3.35 ×10−3 δ 5 ×10−18 32.5

these small values would imply zero death rate of the proliferating cells with division
number age from zero to three, six and seven. We have performed computational
analysis of the confidence intervals for the vector of 11 parameters

p = [α0, α1, α2, . . . , α7, β4, β5, δ], (3.2.18)

of the heterogenousmodel (3.2.15) with β j = 0, j = 0, 1, 2, 3, 6, 7, as fixed ad hoc.
The computed estimates of 95% CIs (z ≈ 2.06) for the best-fit parameters of

model (3.2.15) are presented in Table3.3 and shown in Fig. 3.6. The intervals appear
to be quite narrow for all parameters except α6 andα7. The estimated CIs indicate that
data sets covering seven divisions (J ), such as presented in Table3.1, are informative
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Fig. 3.6 Comparison of the approximations to 95% confidence intervals for the best-fit parameter
values of the heterogenous model computed by three methods: the variance–covariance method
(diamond), the profile-likelihood-based method (asterisk) and two versions of the bootstrap method
non-parametric (times) and parametric (open circle) approaches. The best-fit parameter values are
marked by filled circle

enough to estimate reliably the proliferation and death rates of the first six (J − 1)
successive divisions.

The estimated 95% confidence intervals by a profile-likelihood-based method,
cf. Table3.3 and Fig. 3.5, were computed using a numerical algorithm presented in
[60]. The profile-based CIs, except CIα7 , are rather close to the variance–covariance-
based ones. The fact that they turned out to be somewhat narrower for most of the
parameters indicates that the objective function grows a bit faster than the parabolic
one. The profile-likelihood-based method does not provide an estimate of the upper
limit of the CIα7 . Its value tends to infinity as the iterations of the computational
algorithm continue. The reason is as follows. Using the relationship between the
maximum likelihood and least-squares objective function, the expression (3.2.13) is
equivalent to

| ln(Φ(p̃)) − ln(Φ(p∗))| ≤ 1

nd
χ2
1,0.95 whenever pk ∈ [pmin

k , pmax
k ], (3.2.19)

where
Φ(p̃) := min

p∈S(pk )
Φ(p).

Then, using ln(Φ(p∗)) ≈ 20.96, the final expression for computing the 95% CIpk is
equivalent to

Φ(p̃) ∈ [Φ(p∗), 1.41 × 109] whenever pk ∈ [pmin
k , pmax

k ]. (3.2.20)

The value of Φ(p̃) stays below the threshold 1.41 × 109 as α7 → +∞.
The bootstrap approach can be used in two ways, i.e. following either a non-

parametric or parametric bootstrap. We used a non-parametric bootstrap approach
[61] as follows.Theoriginal observations are available for days 3 to 7 and characterize
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Table 3.3 Computational estimates of 95% confidence intervals for the best-fit parameter values
of the heterogenous model (3.2.15) approximated by the variance–covariance, profile-likelihood
and bootstrap methods

p Best-fit values Estimates of 95% confidence intervals

Variance–
covariance
method

Profile-
likelihood
method

Bootstrap method

Non-parametric Parametric

α0 1.31 × 10−2 [0.79, 1.8] ×
10−2

[0.94, 1.8] ×
10−2

[0, 2.9] × 10−2 [0.51, 2.1] ×
10−2

α1 3.10 ×10−2 [2.1, 4.1] ×
10−2

[2.4, 4.0] ×
10−2

[1.1, 5.1] ×
10−2

[2.0, 4.2] ×
10−2

α2 5.21 ×10−2 [4.1, 6.4] ×
10−2

[4.4, 6.3] ×
10−2

[3.1, 7.4] ×
10−2

[3.8, 6.7] ×
10−2

α3 4.95 ×10−2 [4.2, 5.7] ×
10−2

[4.4, 5.6] ×
10−2

[3.0, 6.9] ×
10−2

[4.1, 5.8] ×
10−2

α4 2.94 ×10−2 [2.1, 3.7] ×
10−2

[2.4, 3.5] ×
10−2

[1.4, 4.5] ×
10−2

[2.3, 3.6] ×
10−2

α5 7.28 ×10−3 [0.24, 1.2] ×
10−2

[0.42, 1.3] ×
10−2

[0, 2.2] × 10−2 [0.32, 1.1] ×
10−2

α6 2.26 ×10−2 [0, 5.5] × 10−2 [0.09, 5.8] ×
10−2

[0, 4.8] × 10−2

α7 1.37 [0, 6.8] [0.016,∞) [0, 2.7]
β4 7.12 × 10−3 [0, 1.8] × 10−2 [0, 1.51] ×

10−2
[0, 2.6] × 10−2 [0, 1.7] × 10−2

β5 2.69 × 10−2 [1.2, 4.2] ×
10−2

[1.0, 3.8] ×
10−2

[0, 5.6] × 10−2 [1.4, 3.9] ×
10−2

δ 4.52 × 10−2 [2.7, 6.4] ×
10−2

[2.9, 6.0] ×
10−2

[0, 9.4] × 10−2 [2.9, 6.1] ×
10−2

the numbers of live and dead cells. One can treat the measurements of live and dead
lymphocytes at a given time as independent, whereas the distribution of cells over the
division number is a single entity which cannot be split. Therefore, we considered
five measurement times (days 3 to 7) for the live and dead cells as separate data
points, which represent altogether the original sample set of size 2nt , nt = 5. The
resampled data sets were generated by choosing the measurement times randomly
from the original set using a uniform probability distribution.

Let the m-th resampling procedure select the following set of measurement days
{t N0 , t N1 , t N2 , t N3 , t N4 } for N and {t D0 , t D1 , t D2 , t D3 , t D4 } for D. The day set is further
ordered to ensure that t N0 ≤ t N1 ≤ t N2 ≤ t N3 ≤ t N4 and t D0 ≤ t D1 ≤ t D2 ≤ t D3 ≤ t D4 . The
resamples consisting of only one day of measurement, i.e. the measurement day
represented nt times, are discarded from analysis as being not informative. The
bootstrapping analysis involves the following heuristics:

• construct samples of measurements by selecting the measurement times and cor-
responding cell data at the sampled days;
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• take the best-fit parameter vector as an initial guess for fitting the resampled data;
• compute the best-fit estimate p̃∗ using the objective function

Φ̃(p) =
4∑

i=1

( 7∑
j=0

(N
tNi
j − N j (t

N
i ;p))2 + (DtDi − D(t Di ;p))2

)
, (3.2.21)

where N
tNi
j and DtDi are the original data at the resampled times t Ni and t Di , respec-

tively. If it happens that t D0 < t N0 , we compute the model predictions for N j for all
times t Di for which t Di < t N0 , i = 0, . . ..

Repeating the above bootstrapping procedure M times, we compute a set of best-
fit vectors p̃∗

m, m = 1, . . . , M, for M bootstrap samples. The standard deviation of
the element pk of the vector p̃∗

m can be approximated from the above set in a usual
way,

σpk,M =
(∑M

m=1 | p̃∗
k,m − p̂∗

k |2
M − 1

)1/2
, where p̂∗

k :=
∑M

m=1 p̃
∗
k,m

M
, (3.2.22)

cf. [61], Eq. (2.4). If
lim

M→∞ σpk,M =: σpk

exists, then σpk is the bootstrap estimate of the standard deviation for pk . In this case,
a standard bootstrap 95% CI for pk is given by

C Ipk,M = [ p̂∗
k − 1.96σpk,M , p̂∗

k + 1.96σpk,M ]. (3.2.23)

It is important that M is large enough to achieve convergence of σpk,m as m → M .
However, as it was noticed in [61], the bootstrap is not generally reliable for small
sample sizes regardless of how many resamples M are used.

The computed 95% CIs for the parameters of the heterogenous model are pre-
sented in Table3.3 and Fig. 3.6. These results are based on M = 4000 resamplings.
The bootstrap CIs for all parameters appear to be much broader than the ones pre-
dicted with variance–covariance and profile-likelihood-based methods.

Applying a parametric variant of the bootstrap method to estimate the 95% CIs
for the best-fit values of the heterogenous model parameters, new data samples were
generated by perturbing the original data as follows:

Ñ i
j = Ni

j + σ ∗N (0, 1),

D̃i = Di + σ ∗N (0, 1), i = 0, 1, . . . , 4, j = 0, 1, . . . , 7,
(3.2.24)

where Ni
j and Di are the data from Table3.1 at time ti , N (0, 1) is a normally

distributed random variable with zero mean and variance equal to one, and σ ∗ ≈
5.9 × 103, where
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σ ∗2 = 1

nd
Φ(p∗), (3.2.25)

which follows from the optimality condition ∂(ln(L(p∗; σ)))/∂σ 2 = 0. The maxi-
mum likelihood estimate of the variance σ ∗2 is rather large compared to the values of
Ni
7. Hence, the parametric resampling (3.2.24) can generate biologically improper

values of Ñ i
7, e.g. negative, sharply decreasing values. Such inconsistent data for Ñ

i
7

were filtered out by ignoring the sequences that do not increase monotonically. The
above difficulty indicates that the variance in the components of the observed state
space vector might not be equal. Rather, σ ∗2 should be dependent on the number of
divisions cells have undergone and therefore, estimated separately.

For each perturbed data sample, we computed the bootstrap estimates of the best-
fit parameters by minimizing the following objective function:

Φ̃(p) =
4∑

i=1

( 7∑
j=0

(Ñ i
j − N j (ti ;p))2 + (D̃i − D(ti ;p))2

)
. (3.2.26)

Similar to the non-parametric bootstrap, we generated 4000 data samples. The boot-
strap set of the best-fit parameter values was used to calculate, by (3.2.22) and
(3.2.23), the standard deviation of the estimators to approximate the 95% CIs,
cf. Table3.3 and Fig. 3.6. The estimated CIs are consistent with those given by the
variance–covariance and profile-likelihood methods.

The presented results show that the three techniques give rather close estimates
of the 95% confidence intervals of the identified parameters of the considered het-
erogenous model.

3.3 Regularization of Parameter Estimation

The parameter estimation task discussed above represents an example of an inverse
problem. A fundamental question governing the solution of an inverse problem is
whether it is well posed in the sense of Hadamard [67, 68]: an inverse problem,
defined on certain metric spaces, is well posed if its solution exists in the given space,
the solution is unique and the problem is stable in these spaces. An ill-posed function
coefficient inverse problem is typically characterized by the lack of uniqueness of its
solution (a few parameter sets yield a solution of the model that is close to the data
within the noise level in the data) and by a high sensitivity to noise in the measured
data (instabilities), cf. [68–77]. Ill-posedness of a function coefficient inverse problem
might be caused by (i) modelling errors, (ii) errors in the experimental data and
(iii) a high dimension (L) of the finite-dimensional space used to approximate the
unknown function (which is not justified by the information content of the data).
This important issue will be addressed for the CFSE proliferation assay when a
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Fig. 3.7 Examples of the original CFSE histograms of PHA-stimulated T cells at days 0,1,2,4,5.
Left: cell counts distributions. Right: cell number rescaled distributions suitable for parameter
estimation

more complex description of the cell growth is used, i.e. the model formulated as a
distributed parameter system.

In a standard experimental approach, the CFSE fluorescence histograms (a rep-
resentative example is shown in Fig. 3.7) are used to evaluate the fractions of T
cells that have completed certain number of divisions. This type of ‘mean fluores-
cence intensity’ data can be obtained either manually or by using various deconvo-
lution techniques implemented in programmes, such as ModFit (Verity Software),
CellQuest (Becton Dickinson) and CFSEModeler (ScienceSpeak). The correspond-
ing computer-based procedures require setting of the spacing between generations,
i.e. marking the CFSE fluorescence intensities that separate consecutive generations
of dividing cells. Note that when the starting population of cells exhibits a broad
range of CFSE fluorescence, the division peaks can be not easily identifiable, mak-
ing conventional division tracking analysis problematic. Therefore, this mapping
procedure can often be vaguely defined.

Mathematical modelling of CFSE-labelled cell proliferation is an area of active
research (see recent reviews [78–81]). From the viewpoint of the cell turnover param-
eters estimation, the models can be subdivided into two categories: the ‘division-
structured models’ and the ‘label-structured models’. The first one requires prepro-
cessing of the histogram data to quantify the cell populations differing in the number
of completed cell cycles. Note that decomposition of the histograms into cell gen-
erations is subject to bias due to the lack of clear peak separation, the CFSE label
degradation during the experiment, the presence of noise, etc. The second group of
the models deals directly with the CFSE histograms, and, therefore, eliminates the
need for histogram analysis.

3.3.1 Distributed Parameter Model

We present the label-structured cell population model proposed in [6] to quantita-
tively describe the dynamics of CFSE-labelled cell populations and to estimate the
rates of cell division, death, label decay and the label dilution factor from CFSE pro-
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liferation assays. Consider a population of cells that are distinguishable from each
other in terms of their fluorescence intensity (U I ) with the distribution function
n(t, x) (cell/U I ), characterizing the number of cells at time t which have a label
intensity between x and x + dx . The total number of cells in a system is then given

by N (t) =
∫ xmax

xmin

n(t, x)dx .We assume that (i) at the beginning of the experiment the

cells are labelled with CFSE giving rise to an initial distribution function; (ii) some
proliferation inducing stimuli are provided and (iii) the level of stimulation remains
uniform during the experiment. We assume constant (i.e. independent of the CFSE
intensity level) rates of cell death and label decay, consistent with the CFSE data set
used, cf. [6]. Under these assumptions, the cell population dynamics is described by
the following population balance hyperbolic PDE model:

∂n

∂t
(t, x) − v

∂n

∂x
(t, x) = −(α(x) + β)n(t, x) + 2γ a(γ x)n(t, γ x), t > t0,

(3.3.27)
where

a(γ x) =
{

α(γ x), xmin ≤ x ≤ xmax/γ

0, xmax/γ < x ≤ xmax.

The model consists of the following terms:

• The advection term v∂n(t, x)/∂x describes the natural decay of the CFSE fluo-
rescence intensity of the labelled cells with the rate v (U I/hour).

• The term −(α(x) + β)n(t, x) describes the local disappearance of cells with the
CFSE intensity x due to the division associated label dilution and cell death, with
the coefficients α(x) ≥ 0 and β ≥ 0 characterizing the proliferation and death
rates, respectively. The unit of α(x) and β is 1/hour . The precise dependence of
α(x) on x is not known a priori, and it is estimated from the data.

• 2γα(γ x)n(t, γ x) represents the birth of two cells due to division of the mother
cell with the label intensity γ x . The factor 2 accounts for the doubling of numbers
and the coefficient γ (1 < γ ≤ 2) accounts for the difference in the size of the
CFSE intervals to which daughter and mother cells belong.

The initial data for model (3.3.27) specify the distribution of cells at time t0,

n(t0, x) =: n0(x), x ∈ [xmin, xmax]. (3.3.28)

For the data set considered in this paper, the observations start at t0 = 72 h (day
3) after the onset of stimulation. The initial function n0(x) is determined by an
interpolation of the vector n0 := {n0, j }M0

j=1 obtained as described below. To translate
the flowcytometry counts data to cell numbers considered in themathematicalmodel,
the following transformation is used:

ni, j = ci, j Ni

Fi
, Fi =

∫ smax

smin

c̃i (s)ds, i = 0, 1, . . . , M, j = 1, . . . , Mi ,

(3.3.29)



3.3 Regularization of Parameter Estimation 55

where Ni and Fi denote the total number of cells and cell counts, respectively, at
time ti , and c̃i is a continuous approximation of the vector ci defined on the mesh
si . Figure3.7 (right) shows the resulting set of five (M = 4) histograms of CFSE-
labelled cell distributions that we used to identify the model parameters.

The boundary condition

n(t, xmax) = 0, t > t0, (3.3.30)

reflects the absence of cells with CFSE intensity above the given maximal value xmax

for all t > t0.
The CFSE histograms obtained by flow cytometry use the base 10 logarithm of the

marker expression level. Therefore, for numerical analysis, we reformulate model
(3.3.27) using the log10-transformed coordinate z = lg x :

∂n

∂t
(t, z) − ν(z)

∂n

∂z
(t, z) = −(α(z) + β)n(t, z) + 2γ a(z + lg γ )n(t, z + lg γ ), t > t0,

(3.3.31)

where ν(z) = v/10z ln 10. The initial and boundary conditions now read as

n(t0, z) =: n0(z), z ∈ [zmin, zmax]; n(t, zmax) = 0, t > t0. (3.3.32)

3.3.2 Distributed Parameter Estimation

The population balance model (3.3.31) depends on the unknown function α(z) and
the parameters v, β, γ . The identification of these unknowns from the observed
CFSE histograms, using some measure of closeness of the model solution to the
observations, represents an inverse problem. This problem is characterized by a
finite set of observations and an infinite-dimensional space of the unknowns to be
estimated. To transform an optimization in a function space into a finite-dimensional
parametric optimization problem, we parameterize the unknown function. In this
section, we present the parametrization of α(z) used in this study and outline our
choice of the cost function and the numerical methods used to solve the direct and
inverse problems.

3.3.2.1 Parameterization of Unknown Rate Functions

To obtain a biologically consistent approximation of the birth rate α(z), we use
the fact, following from CFSE histograms, that at any time t there are no divisions
of cells with the marker intensity below some level z ≤ z∗(t) and hence α(z) = 0
for z ∈ [zmin, z∗(t)]. The CFSE histogram data at days 4 to 7 are such that z∗(t) is
(nearly) independent of time, and hence, we can set z∗(t) = z∗. To fulfil this aspect
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in computations, we set α(z) = 0 for z ∈ [zmin, z∗]with z∗ = 1.15 for the considered
data set.

Our previous studies [5, 6] showed that the birth rate of cells depends on the
number of divisions that cells have undergone and that the rate is a bell-shaped
function. We approximate the function α(z) using piecewise cubic Hermite splines,

αL(z) =
L∑
j=0

a jφ j (z), z ∈ [z∗, zmax], (3.3.33)

where φ j (z) is a piecewise cubic polynomial defined on the mesh Z := [z∗ =
z̃0, z̃1, . . . , z̃L = zmax] with the property φ j (z̃ j ) = 1, φ j (z̃i ) = 0, i �= j, and hence
αL(z̃ j ) = a j , j = 1, . . . , L , αL(z̃0) = a0 = 0. Note that the approximation of a
function by Hermite splines is a general representation of a smooth function which
ensures continuity of its first derivative.

One can consider two types of the parametrization (3.3.33):

1. The nodes of the mesh Z are equally spaced and a priori fixed so that only the
elements of the vector a := [a1, . . . , aL ] are estimated.

2. The internal nodes of the mesh Z , i.e. the elements of the vector z̃ := [z̃1, . . . ,
z̃L−1], are estimated together with the elements of the vector a.

Note that while fixed uniform meshes for the parametrization of an unknown func-
tion are often used in practice, e.g. [69, 82], the authors are not aware of the use of
estimated mesh points in similar problems. The above parametrization of the func-
tion α(z) reduces the original infinite-dimensional function identification problem
to a finite-dimensional parameter estimation problem for the following vector of
parameters:

p = [a, v, β, γ ] ∈ RL+3 or p = [a, z̃, v, β, γ ] ∈ R2L+2. (3.3.34)

We refer to them as minimization problem 1 and minimization problem 2, respec-
tively.

We present a regularization procedure for the second more complex parameter
estimation problem.

3.3.2.2 Regularized Maximum Likelihood Approach

The objective is to find the elements of the vector p such that the corresponding
model solution computed at time ti at the points of the data mesh si , i.e.

n(ti , si ;p) := [n(ti , si,1;p), . . . , n(ti , si,Mi ;p)],

is quantitatively consistent with the data on the CFSE-labelled cell distribution avail-
able at time ti ,

ni := [ni,1, . . . , ni,Mi ], i = 0, 1, . . . , M.
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For an optimal estimation of the parameter values, we seek to maximize the
likelihood that the data agree with the model. To apply the maximum likelihood
approach, we assume that (i) the observational errors, i.e. the residuals defined as a
difference between observed and model-predicted values, are normally distributed;
(ii) the errors in observations at successive times are independent; (iii) the errors
in cell counts for consecutive label bins are independent; (iv) the variance σ 2 of
observation errors is the same for all observation times and independent of the label
expression level. Then, the corresponding likelihood function is

L (p; σ) =
M∏
i=0

(2πσ 2)−Mi/2 exp
{

− 1

2

(
n(ti , si ;p) − ni

)
σ−2

(
n(ti , si ;p) − ni

)T}
.

(3.3.35)
The maximization of the log-likelihood function

ln(L (p; σ)) = −0.5
(
nd ln(2π) + nd ln(σ

2) + σ−2Φ(p)
)

(3.3.36)

is equivalent to the minimization of the ordinary least-squares function Φ(p),

Φ(p) =
M∑
i=0

‖n(ti , si ;p) − ni‖22 =
M∑
i=0

Mi∑
j=1

(n(ti , si, j ;p) − ni, j )
2, (3.3.37)

provided that σ 2 is assigned the maximum likelihood value σ ∗2 = Φ(p∗)/nd , where
p∗ is the vector which gives a minimum to Φ(p) and nd := ∑M

i=1 Mi is the total
number of scalar measurements fitted by the model solution (M = 4 for the data
used).

Note that the following issue, related to the presence of measurement errors, has
to be taken into account in any data-fitting procedure, cf., e.g. [68]. Any model
solution, consistent with the data set within the noise level, can be considered as an
acceptable one. In other words, the best-fit vector p∗ (i.e. the minimizer of Φ(p))
does not necessarily provide a biologically most consistent parameter estimate since
the best data fitting may imply a good fitting of the error in the data (the overfitting
problem). Hence, the use of a priori information about experimental data (e.g. noise
level) and an information of the qualitative nature concerning the physical meaning
of the solution (e.g. boundness, smoothness) is important in a data-fitting procedure.
For Φ(p) defined by (3.3.37), we can use the l2-norm to measure the cumulative
contribution of the noise to the data,

δε =
( 4∑

i=1

‖εni‖22
)1/2 = ε

( 4∑
i=1

Mi∑
j=1

n2i, j
)1/2

, (3.3.38)

where ε is the relative level of the measurement errors, e.g. ε = 0.2 in case of
20% noise in the data. The errors in the data measurements that we consider were
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Table 3.4 Results on the solution of the minimization problem 2with α(z) approximated by αL (z),
L = 3, 4, 6. For all computedminimaML ,i : the total number of the estimatedmodel parameters n p ,
the estimated model parameters v, β, γ , the corresponding value of Φ(p), the condition number
τ and the Akaike index μ are presented

L ML ,i n p v β γ Φ(p) τ μ

3 M3,1 8 0.050 0.0212 1.92 7.89 ×
1011

374 8675

M3,2 0.118 0.0218 1.99 7.94 ×
1011

2080 8677

4 M4,1 10 0.088 0.0207 1.90 6.16 ×
1011

2395 8601

M4,2 0.118 0.0174 1.94 7.28 ×
1011

8605 8654

6 M6,1 14 0.057 0.0211 1.92 5.78 ×
1011

1291 8573

M6,2 0.129 0.0176 1.94 6.88 ×
1011

3783 8645

within 15–20% (S. Ehl, personal communication), and hence δε ranges in the interval
[δ0.15, δ0.2]. Since Φ(p) is the squared norm of the sum of the residuals, the value
of interest is δ2ε , which can be confronted with the value of Φ(p) at a computed
minimum. For the data used, δ2ε ∈ [6.3, 11.3] × 1011.

We use a non-uniformmeshZ = [1.15 = z̃0, z̃1, . . . , z̃L = zmax]with its internal
nodes, i.e. the elements of the vector z̃ = [z̃1, . . . , z̃L−1], included in the list of
parameters to be estimated. We keep the ordering of the mesh points z̃k not allowing
them to jump over each other during the minimization procedure. In fact, we solve
a minimization problem with inequality constraints of a special form (Fig. 3.8).

The results on the estimation of the parameters of model (3.3.31) using the
parametrization (3.3.33) of α(z) with L = 3, 4, 6 and estimated nodes of the mesh z̃
are presented in Table3.4 and Figs. 3.8 and 3.9. For L = 3, the larger number of the
estimated parameters (8 against 6 in case of the uniform mesh Z ) leads to multiple
minima of Φ(p), cf. Table3.4 and Fig. 3.8 (left). Hence, the minimization problem 2
is ill-posed for all values of L . A large uncertainty in the right part of the estimated
αL(z), observed for the minimization problem 1, is also present as confirmed by the
results presented in Fig. 3.8 (right) for L = 4. Note that small values of the computed
95% CIs for the estimated parameters which determine α3(z) corresponding to the
minimum M3,2, cf. Figure3.8 (left), are due to a specific location of the estimated
nodes z̃1 and z̃2 and their very small CIs.

The minimization approach 2 provides a better fit to the data. Indeed, the value of
Φ(p) at the computed minima is reduced significantly, by about 50%, for L = 3 and
by 23 − 30% and 17 − 25% for L = 4 and L = 6, respectively. Obviously, this is
due to a larger number of the estimated parameters, as compared to the corresponding
minimization problem 1. Regularization of the ill-posed minimization problem 2 is
the subject of the following section.
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Fig. 3.8 The estimated functions α3(z) and α4(z). Bullets and stars indicate the pairs {z̃ j , a j }Lj=0

with estimated {z̃ j }L−1
j=1 and {a j }Lj=1. The dashed and solid curves indicate αL (z) corresponding to

the minima ML ,1 and ML ,2, respectively. The estimated values a3 ≈ 0.58 and a4 ≈ 0.61 in case of
the minima M3,1 and M4,1 are not shown. Approximations to 95% CIs for the estimated parameters
{z̃ j }L−1

j=1 and {a j }Lj=1 are computed for the minima M3,2 and M4,2

Fig. 3.9 The estimated
functions α6(z). Bullets and
stars indicate the pairs
{z̃ j , a j }6j=0 with estimated

{z̃ j }5j=1 and {a j }6j=1. The
dashed and solid curves
indicate α6(z) corresponding
to the minima M6,1 and
M6,2, respectively. The
estimated value a6 ≈ 0.32 in
case of the minimum M6,1 is
not shown

3.3.3 Regularization of the Parameter Estimation

A common approach to deal with ill-posed problems is to transform the original
problem to awell-posed problemwhich is close, in a certain sense, to the original one.
This approach leads to some forms of regularization of the original ill-posed problem.
We use the well-known Tikhonov regularization framework [68, 71]. One of the
main ideas of Tikhonov regularization is to use, as much as possible, supplementary
information concerning the solution. In the context of ill-posed inverse problems, this
implies the use of a priori information about the experimental data (e.g. noise level)
and the qualitative nature of the solution (e.g. boundness, smoothness) consistentwith
its physical meaning. This allows one to restrict the space of computed solutions and
to obtain ameaningful solutionof thewell-posedproblem.According to theTikhonov
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Fig. 3.10 Experimental data (grey filled histograms) and the best-fit solutions of model (5) cor-
responding to (i) the minimization problem 1 with α(z) approximated by α3(z) (dashed curves)
and (ii) the regularized minimization problem 2 (solid curves). The dashed horizontal lines indicate
the maximum likelihood estimate of the data standard deviation σ ∗ = 4.7 × 104 corresponding to
Φ(p) = 7 × 1011

regularization procedure, the regularized solution pλ is obtained as the minimizer of
the following combination of the objective function Φ(p) and a weighted penalty
functional Ω(p):

pλ = argmin
p

{J (p; λ) := Φ(p) + λΩ(p)}, (3.3.39)

where the scalar λ > 0 is the regularization parameter that controls the trade-off
between the two objectives. The non-negatively valued penalty functional Ω(p)

reflects desirable constraints on the solution p, i.e. its choice is prompted by the
nature of the problem. We seek regularized solutions pλ such that αL(z) is a non-
oscillatory function. Therefore, we consider

Ω(p) =
∫ zmax

z∗

(d2αL(z)

dz2

)2
dz. (3.3.40)
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This type of Ω(p) implies that the function αL(z) is approximated by functions
having the smallest integrated squared curvature.

The regularizationparameterλ shouldbe chosenwith care.According toTikhonov
regularization [68], λmust be adjusted to the noise level δ in the data, λ = λ(δ). One
of the methods to choose λ(δ) is the discrepancy principle [68, 83, 84]: λ∗ is deter-
mined as the minimizer of the functional Q(pλ),

λ∗ = argmin
λ

{Q(pλ) := |Φ(pλ) − δ2|}, (3.3.41)

with δ being the corresponding norm of the error in the data. Note that although the
rigorous justificationof theTikhonov regularizationwith the regularizationparameter
chosen by the discrepancy principle (e.g. convergence of the regularized solution to
the exact one as the noise level in the data vanishes) is established for linear ill-posed
problems, this method is widely used for nonlinear problems and, in particular, for
nonlinear least-squares problems.

The discrepancy method, based on an embedded minimization problem, is com-
putationally rather expensive. In [68], the following algorithm for computing λ(δ) is
proposed: using

λk = λ0q
k, q > 0, (3.3.42)

we compute pλk for k = 0, 1, . . . , K , where K is such that λK gives a minimum to
Q(pλ) with a reasonable accuracy. Using this algorithm, one needs to solve K + 1
minimization problems of the form (3.3.39).

We apply the Tikhonov regularization procedure to the minimization problem 2
with α(z) approximated by α4(z). We consider L = 4 for the following reason. For
any value of λ, the value of Φ(pλ) at the computed minimum is larger than the one
without regularization. Moreover, the larger L is (i.e. if more freedom for the shape
of αL(z) is given), the stronger regularization is necessary. However, this leads to a
significant increase in the value of Φ(pλ) at the computed minimum and hence to a
decrease of the quality of the data fitting. As one can see in Table3.4, the increase
of L from 3 to 4 reduces Φ(p) by about 20%, while Φ(p) changes negligibly when
increasing L from 4 to 6.A similar behaviour is observed for the value of the Akaike
index. Hence, the use of L = 4 seems to be the most suitable for the parametrization
of α(z) with the ensuing regularization.

Using the discrepancy method, we found that the minimization problem (3.3.39)
with α(z) approximated by α4(z) has a unique solution pλ when λ is about 5 × 1012

and larger. For λ = 5 × 1012, the corresponding model solution fits the data with an
accuracy within the noise level in the data: Φ(pλ) ≈ δ20.166. The regularized function
α4(z) is shown in Fig. 3.11 (left).

For comparison, we computed the regularized solution pλ for larger values of
λ: λ = 1013 and λ = 4 × 1013, cf. Table3.5 and Fig. 3.11 (left). The corresponding
regularized functions α4(z) do not differ much. However, the contribution of the term
λΩ(pλ) to the value of the minimized functional J (pλ; λ), cf. (3.3.39), grows with
growing λ, cf. Table3.5, and reaches half of the value of J (pλ, λ) at the computed
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Table 3.5 Results on the solution of the regularized minimization problem 2 with α(z) approx-
imated by α4(z). For the given values of the regularization parameter λ: the estimated model
parameters v, β, γ , the corresponding values of Φ(pλ), δ2 and λΩ(pλ)/Φ(pλ) are presented

λ v β γ Φ(pλ) δ2 λΩ(pλ)/Φ(pλ)

5 × 1012 0.132 0.0167 1.93 7.79 × 1011 δ20.166 0.15

1013 0.127 0.0170 1.94 8.08 × 1011 δ20.169 0.22

4 × 1013 0.113 0.0176 1.95 9.49 × 1011 δ20.184 0.45

Fig. 3.11 Left: The regularized functions α4(z) estimated using different values of the regulariza-
tion parameter λ. Bullets, stars and diamonds indicate the pairs {z̃ j , a j }4j=0 with estimated {z̃ j }3j=1

and {a j }4j=1. Right: The estimated regularized functionα4(z) (thick curve) and allαL (z) correspond-
ing to the minima estimated via minimization 1 and 2 approaches (thin curves). The vertical lines
at the top of the figure indicate intervals of the CFSE intensity z corresponding to the generations
of cells which have undergone 0, 1, . . . , 7 divisions

minimum for λ = 4 × 1013. The latter implies too strong regularization, while the
value λΩ(pλ)/Φ(pλ) = 0.16 for λ = 5 × 1012 is acceptable.

Since the impact of the term λΩ(pλ) in the minimized functional J (pλ; λ) is
minimal for λ = 5 × 1012, this value of λ can be accepted as the optimal one. The
regularized function α4(z) for λ = 5 × 1012 and all estimated αL(z) corresponding
to the minima listed in Tables 3.4 and 3.5 are shown in Fig. 3.11 (right). We observe
that the right part of the estimated α(z) is much more affected by the regularization
procedure than the left part. Figure3.10 shows the best-fit of the experimental data by
the model solution corresponding to the regularized solution pλ of the minimization
problem (3.3.39) with λ = 5 × 1012. This figure clearly indicates that the model
solution is consistent with the CFSE histogram data.

3.3.4 Cell Growth Model with Asymmetry and Time Lags

The interpretation of CFSE proliferation assays relies on the assumption that the label
is divided equally between the daughter cells upon cell division. However, recent
experimental studies indicate that division of cells is not perfectly symmetric, and
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Fig. 3.12 Impact of asymmetry in T cell division impinges on fluorescent protein partition between
daughter cells. a, b Symmetric cell division with equal distribution of the fluorescent dye between
daughter cells a and modelled time course analysis of T cell proliferation as determined by flow
cytometry (b, solid black lines). Dashed red lines in b indicate the evolution of CFSE intensity of the
cohorts (generations) of cell which differ in the number of completed divisions with the assumption
of symmetric division. c, d Asymmetric cell division with low asymmetry (c) and modelled flow
cytometric time course analysis of CFSE dilution (d, solid black lines) that corresponds to an
asymmetry 46 and 54% (d, dashed red lines describe theCFSEdistributions for cell cohorts differing
in terms of the completed divisions). e, f T cells dividingwith high asymmetry (e) and corresponding
model-generatedflowcytometricCFSEdilution patterns (f, solid black lines)with asymmetry values
of 42% and 58% describing the behaviour of the T cells in this setting (f, dashed red lines describe
the cell cohorts corresponding to different generations)

there is unequal distribution of protein between sister cell pairs. The uneven partition
of protein ormass to daughter cells can lead to an overlap in the generations of CFSE-
labelled cells with straightforward consequences for the resolution of individual
generations as shown in Fig. 3.12.

Numerous mathematical models developed for the analysis of CFSE-based pro-
liferation incorporate the premise that the CFSE fluorescence intensity is halved in
the two daughter cells. For quantitative analysis of CFSE-labelled cell proliferation
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which is characterized by poorly resolved peaks of cell generations in flow cytomet-
ric histograms, an extension of the label-structured analysed in the previous section
is needed to take into account the cell division asymmetry. We formulate the cor-
responding model in the form of a system of delay hyperbolic partial differential
equations. This model considering asymmetry and time lag in cell division belongs
to a powerful family of the so-called label- and division-structured mathematical
models [85–89], which have some conceptual similarity to the age- and division-
structured model (Bernard et al. 2003, Biophys J. 84(5):3414–24). These models
allow for a direct reference to the histograms of cell distribution and are more robust
to a poor peak resolution of cell generations.

3.3.5 Division-Structured DDE Model

Let Ni (t) be the total population size of live T lymphocytes (cells) which have
undergone i divisions at time t as shown in Table3.6. We split the population of
cells in each generation i in two subpopulations as follows:

Ni (t) = Nr
i (t) + Nc

i (t), i = 0, 1, . . . , ir − 1, Nir (t) = Nr
ir (t). (3.3.43)

The Nr
i -subpopulation consists of cells which divided i times by the time t and they

are not in the division cycle (resting cells), while the Nc
i -subpopulation contains the

cellswhich are in the process of the i + 1 division (cycling cells). These dividing cells
will complete the (i + 1)-th division at time t + τi+1 if their i-th division happened at
time t , where τi+1 is the duration of the i + 1 round of division. The last expression
for Nir (t) represents the simplifying assumption that the last (ir -th) generation of
cells which can be experimentally traced with CFSE consists of T cells which do not
divide. The schematic illustration of the mathematical model is given in Fig. 3.13.
The rates of change of Nr

i (t) and Nc
i (t) with time are represented by the following

set of delay differential equations:

dNr
0 (t)
dt = −(α0 + β0)Nr

0 (t),

dNr
i (t)
dt = −(αi + βi )Nr

i (t) + 2αi−1Nr
i−1(t − τi−1), i = 1, 2, . . . , ir ,

dNc
i (t)
dt = αi (Nr

i (t) − Nr
i (t − τi )), i = 0, 1, . . . , ir − 1,

(3.3.44)

with initial conditions: Nr
0 (ξ) = 0, ξ ∈ [−τ0, 0), Nr

0 (0) = N 0 is the given number
of cells at the start of the experiment (cf. Table3.6), Nr

i (ξ) = 0, ξ ∈ [−τi , 0], i =
1, 2, . . . , ir , Nc

i (ξ) = 0, ξ ∈ [−τi , 0], i = 0, 1, . . . , ir − 1.
The first term on the right of equations for Nr

i (t) represents the cell loss (outflux
from the compartment) due to division and death, while the last term on the right
represents the cell birth (influx from the previous compartment due to cell division).
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Table 3.6 In vitro proliferation data of MHV s598-605-specific CD8+ T lymphocytes following
co-culture with dendritic cells pulsed with the s598 peptide at a concentration of 10−5 M. At the
indicated times, CFSE histograms were obtained by flow cytometry and analysed with the FlowJo
software. The total numbers of live lymphocytes, Ns , and the distribution of lymphocytes with
respect to the number of divisions they have undergone, Ns

i , i = 0, 1, . . . , 7, were followed during
96 h from the start of the experiment at the indicated times ts , s = 0, 1, . . . , 5

Time
hours ts

Total
number
of live
cells Ns

Numbers of cells w.r.t. the number of divisions (i) they undergone Ns
i

0 1 2 3 4 5 6 7

0 55827 55827 0 0 0 0 0 0 0

36 30492 18283 12197 0 0 0 0 0 0

48 52272 11678 15635 19550 5395 0 0 0 0

60 63180 6722 8315 13609 18493 12598 5332 0 0

72 50787 5104 3316 6282 11046 14622 8974 1432 0

96 20849 715 915 1418 2815 3628 4545 4629 2773

Fig. 3.13 The scheme of the division-structured model with a time lag for T cell proliferation.
Resting and cycling cell compartments of generations i and i + 1 are shown. The parameters of the
model are explained in the text

The two terms on the right-hand side of the equations for Nc
i (t) consider the rates

at which cells enter the i-th round of division and complete the cell cycle after time
τi , respectively. The experimental data on cell numbers correspond to the sum of
the resting and cycling cell populations. Therefore, although the cycling cells do not
appear on the right-hand side of the DDE for the resting cells, their number needs to
be followed for correctly representing the total cell number for data fitting. In general,
the per capita proliferation and death rates of T lymphocytes, αi , respectively, βi ,
depend on the number of divisions the lymphocytes have undergone. Model (3.3.44)
is used for the description of the dynamics of cell generations and to estimate the
rates of cell division (αi ) and death (βi ) from CFSE data in Table3.6.
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The model (3.3.44), formulated as a system of linear delay differential equations,
allows an analytical solution, which is given by the following

Lemma 3.1 Let ci := αi + βi , ci �= ck for i �= k, i = 0, 1, . . . , ir , and Ti :=∑i
j=0 τ j , i = 0, 1, . . . , ir − 1. The solution of model (3.3.44) is

Nr
0 (t) = N 0 exp−c0t , t ≥ 0,

Nr
i (t) = 0, t ∈ [0, Ti−1), i = 1, . . . , ir ,

Nr
i (t) = 2i N 0

( i−1∏
j=0

α j
) i∑

j=0

expc j (Ti−1−t)
i∏

k=0,k �= j

(ck − c j )
−1,

t ≥ Ti−1, i = 1, . . . , ir ,

Nc
0 (t) = N 0α0(1 − exp−c0t )c−1

0 , t ∈ [0, T0),
Nc
0 (t) = N 0α0(exp

c0(T0−t) − exp−c0t )c−1
0 , t ≥ T0,

Nc
i (t) = 0, t ∈ [0, Ti−1), i = 1, . . . , ir − 1,

Nc
i (t) = 2i N 0( i∏

j=0

α j
) i∑

j=0

(1 − expc j (Ti−1−t))c−1
j

i∏
k=0,k �= j

(ck − c j )
−1,

t ∈ [Ti−1, Ti ), i = 1, . . . , ir − 1.

Nc
i (t) = 2i N 0( i∏

j=0

α j
) i∑

j=0

(expc j (Ti−t) − expc j (Ti−1−t))c−1
j

i∏
k=0,k �= j

(ck − c j )
−1,

t ≥ Ti , i = 1, . . . , ir − 1.
(3.3.45)

The proof of this lemma can be found in [7]. Lemma3.1 gives an analytical solution
for the linear DDE model with proliferation, time lag and death parameters which
are considered to be different for every cell generation. Notice that similar results
were obtained for an ODE model in the fully heterogeneous parameters case [5] and
partly heterogeneous ODE and DDE models [90].

3.3.6 Asymmetric Division and Label-Structured Delay
hPDE Model

In this section, we introduce a novel mathematical model for the dynamics of CFSE-
labelled lymphocyte populations which considers asymmetry and time lag in cell
division. We consider (as before [4]) a population of cells which are structured
according to a single continuous variable x that characterizes the CFSE amount
(unit of intensity, UI) in the cells with the cell distribution function n(t, x) (cell/UI).
Similarly to [85–87, 89], we split the overall CFSE-labelled cell population into
generations of cells which differ in terms of the completed divisions. Therefore, the
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Fig. 3.14 The scheme of the
division- and label-structured
model with an asymmetry
and a time lag for T cell
proliferation. Resting and
cycling cell compartments of
generations i and i + 1 are
shown. The parameters of
the model are explained in
the text

state of the population in the i-th generation of cells at time t is described by the
distribution (density) function ni (t, x), so that the number of cells with the CFSE
intensity between x1 and x2 is given by

∫ x2
x1

ni (t, x)dx . As in the division-structured
DDE model (3.3.44) each generation of cells is further subdivided into the resting
and cycling subsets as follows: ni (t, x) = nri (t, x) + nci (t, x), i = 0, 1, . . . , ir − 1,
nir (t, x) = nrir (t, x).

Now, we relax the fundamental assumption in the analysis of the CFSE prolifer-
ation assay, namely, that as a cell divides the fluorescently tagged cellular proteins
are allocated equally to each daughter cell [91]. The asymmetric T cell division with
respect to partitioning of proteins has been clearly shown to take place in the adaptive
immune responses in a number of recent studies (e.g. [92]). To take into account an
unequal partitioning of fluorescent proteins between daughter cells, we introduce
the label dilution parameters m1 and m2 such that when a mother cell has CFSE
label intensity (equivalently, the fluorescently tagged proteins) x , then upon division
one daughter cell has the fluorescence intensity m1x , while another daughter cell
has the fluorescence intensity m2x . We assume that cells do not lose label during
division, i.e. m1 + m2 = 1. The schematic illustration of the mathematical model is
given in Fig. 3.14.

The evolution of the generation-structured cell distributions for resting and cycling
subsets, nri (t, x) and nci (t, x), respectively, is modelled by the following label-
structured cell population balance equations formulated as a system of delay hyper-
bolic PDEs:
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∂nr0(t,x)
∂t − k

∂(xnr0(t,x))
∂x = −(α0 + β0)n

r
0(t, x),

∂nri (t,x)
∂t − k

∂(xnri (t,x))
∂x = −(αi + βi )n

r
i (t, x) + αi−1exp

kτi−1
(

1
m1

nri−1(t − τi−1, exp
kτi−1 x

m1
)+

1
m2

nri−1(t − τi−1, exp
kτi−1 x

m2
)
)
, i = 1, 2 . . . , ir ,

∂nci (t,x)
∂t − k

∂(xnci (t,x))
∂x = αi (n

r
i (t, x) − expkτi nri (t − τi , exp

kτi x)), i = 0, . . . , ir − 1,
(3.3.46)

with the initial conditions: nr0(ξ, x) = 0 for ξ ∈ [−τ0, 0); nr0(0, x) is the initial cell
density determined by the given experimental histogram at t = 0 as described below;
nri (ξ, x) = 0 for ξ ∈ [−τi , 0], i = 1, . . . , ir and nci (ξ, x) = 0 for ξ ∈ [−τi , 0], i =
0, . . . , ir − 1. The solution of this model, as Theorem 3.1 below shows, is uniquely
determined by the initial conditions so that boundary conditions are not required.
This model takes into account the time lags in cell division and asymmetry in protein
partition in the daughter cells.

The model equations consist of the following terms:

k∂(xnri (t, x))/∂x , the advection term, describes the natural decay of the CFSE
fluorescence intensity of the labelled cells with the rate kx ;

(αi + βi )nri (t, x) describes the local disappearance of cells with the CFSE inten-
sity x due to the division and the death with αi and βi being the proliferation and
death rates, respectively;

αi−1 expkτi−1

(
1
m1

nri−1(t − τi−1, expkτi−1 x
m1

) + 1
m2

nri−1(t − τi−1, expkτi−1 x
m2

)
)
. It describes

the birth of two cells, appearing in the interval [x + dx] at time t , after division,
which started at time t − τi−1, of one cell from the interval η1 = expkτi−1[x +
dx]/m1 and another one from the interval η2 = expkτi−1[x + dx]/m2. Since the
length of the intervals η1 and η2 differs by the factor expkτi−1 /m1, respectively,
expkτi−1 /m2 from the length of the interval [x + dx], the factors in the source terms
expkτi−1 /m1 and expkτi−1 /m2 appear before nri−1(t − τi−1, expkτi−1 x

m j
), j =

1, 2. The terms expkτ x/m j , j = 1, 2, in the definition of the intervals η1 and
η2 have the following meaning: if the label intensity of a cell at time t is x(t)/m j ,
then at time t − τ it is expkτ x(t)/m j . This follows from the equation for the rate
of the label dilution,

dx(t)

dt
= −kx(t), (3.3.47)

which implies that x(t) = exp−kt x(0) and x(t − τ) = exp−k(t−τ) x(0) = expkτ

x(t). Note that ifm1 = m2 = 1/2 and τi = 0, then the last term in the equation for
nri (t, x) takes the standard form specific for symmetric division 4αi−1ni−1(t, 2x).

αi (nri (t, x) − expkτi nri (t − τi , expkτi x)) describes the density of cells with label
intensity x which are in the division cycle. The factor expkτi in the disappearance
term with nri (t − τi , expkτi x) arises due to the following reason: setting m1 +
m2 = 1, we require that the total amount of label
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expkτi
( ∫∞

0
x
m1

nri (t − τi , exp
kτi x

m1
)dx + ∫∞

0
x
m2

nri (t − τi , exp
kτi x

m2
)dx

)
=

m1
expkτi

∫∞
0 ynri (t − τi , y)dy + m2

expkτi

∫∞
0 ynri (t − τi , y)dy = 1

expkτi

∫∞
0 ynri (t − τi , y)dy,

(3.3.48)
is conserved during the cell division. Therefore, the following equality should be
fulfilled for the last term in the equation for nci (t, x):

ω
∫∞
0 xnri (t − τi , expkτi x)dx = ω

exp2kτi

∫∞
0 ynri (t − τi , y)dy = 1

expkτi

∫∞
0 ynri (t − τi , y)dy.

(3.3.49)
Hence, we arrive at the expression for the scaling factor ω = expkτi .

The parameter k characterizes the exponential decay of the CFSE fluorescence
intensity of cells. This is a result of complex processes including the turnover of
intracellular proteins to which the fluorescent conjugate binds and the outflow of
CFSE from the cells [93]. Both processes depend on the activation status of the cells
with the corresponding differences in the cellular metabolism, internal biochem-
istry and the cell membrane properties. The current knowledge of these processes
is rather limited (see further discussion in [93]). Therefore, we used as simplifying
assumption the same constant value of parameter k for resting and cycling cells. The
assumption can be relaxed and different values of k for resting and activated cells
can be readily considered in the model. However, the corresponding increase of the
model complexity should be considered in the context of the data sets available for
parameter estimation.

Clearly, the state variables of models (3.3.44) and (3.3.46) are related as

Nr
i (t) =

∫ ∞

0
nri (t, x)dx, Nc

i (t) =
∫ ∞

0
nci (t, x)dx (3.3.50)

and the overall population size at time t is

N (t) =
ir∑
i=0

Ni (t) =
ir−1∑
i=0

(Nr
i (t) + Nc

i (t)) + Nr
ir (t) =

∫ ∞

0
(

ir−1∑
i=0

(nri (t, x) + nci (t, x)) + nrir (t, x))dx =
∫ ∞

0
n(t, x)dx,

(3.3.51)

where n(t, x) is the cell density in the overall population at time t .
Model (3.3.46) is a system of linear hyperbolic PDEs with time delays. Recently,

an efficient approach was proposed in [85–87] to treat analytically similar type of
hyperbolic PDEs, however without time delays (i.e. only equations for aggregated
cell population ni (t, x) are considered) and under the assumption of equal partition
of the marker intensity x between daughter cells upon division (m1 = m2 = 0.5).
The approach is based upon decomposition of a system of coupled hyperbolic PDEs
into a system of ODEs and a set of decoupled hyperbolic PDEs which can be solved
analytically. We extend this method to a more complex system (3.3.46) of delay
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hyperbolic PDEs by decomposing (3.3.46) into the system of DDEs (3.3.44) and a
set of decoupled hPDEs. Since the background necessary for this method is detailed
in [87], we only present one issue specific for our dhPDE model (3.3.46) with the
two states for cells (i.e. resting and cycling ones). Similar to [85–87], for cells which
have divided i times we introduce the probability density for a single cell to have a
certain label intensity x as

pi (t, x) = nri (t, x)

Nr
i (t)

(3.3.52)

for Nr
i (t) > 0. Note that

nri (t, x)

Nr
i (t)

= nci (t, x)

Nc
i (t)

, (3.3.53)

since cells of the resting and cell cycle progressing populations in the i-th generation
have the same distribution of the label intensity. The set of model equations (3.3.46)
has an explicit solution defined by the following theorem.

Theorem 3.1 The solution of model (3.3.46) is

nri (t, x) = Nr
i (t)pi (t, x), i = 0, 1, . . . , ir ,

nci (t, x) = Nc
i (t)pi (t, x), i = 0, 1, . . . , ir − 1,

(3.3.54)

where

(i) Nr
i (t) and Nc

i (t) are the solutions of the system of DDEs (3.3.44),
(ii) pi (t, x) is the solution of the PDE:

∂pi (t, x)

∂t
− k

∂(xpi (t, x))

∂x
= 0, i = 0, 1, 2 . . . , ir , (3.3.55)

with initial conditions:

p0(0, x) = nr0(0,x)
N 0 ,

pi+1(0, x) = 1
2

(
1
m1

pi (0, x
m1

) + 1
m2

pi (0, x
m2

)
)
, i = 0, 1, . . . , ir − 1.

(3.3.56)

The proof of Theorem 3.1 can be found in [7].
Note that, according to (3.3.52), pi (t, x) is not defined in case Nr

i (t) = 0. Since
in this case nri (t, x) = 0, Eq. (3.3.54) simplifies to 0 = 0 · pi (t, x), allowing, as
suggested in [85–87], any specification for pi (t, x). Therefore, in such cases we use
pi (t, x) defined by (3.3.55)–(3.3.56).

Corollary 3.1 The solutions nri (t, x) and nci (t, x) of model (3.3.46) are
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nr0(t, x) = Nr
0 (t) exp

kt nr0(0,exp
kt x)

N 0 , nc0(t, x) = Nc
0 (t) exp

kt nr0(0,exp
kt x)

N 0 ,

nri (t, x) = Nr
i (t)Ci−1(t, x), i = 1, . . . , ir ,

nci (t, x) = Nc
i (t)Ci−1(t, x), i = 1, . . . , ir − 1,

Ci (t, x) = expkt

2

(
1
m1

pi (0,
expkt x
m1

) + 1
m2

pi (0,
expkt x
m2

)
)
, i = 0, 1, . . . , ir − 1,

(3.3.57)
where Nr

i (t) and Nc
i (t) are the solutions of the DDE model (3.3.44).

The proof of this corollary follows from the proof of Theorem 3.1.
The division stage- and label-structured population balance model (3.3.46) with

asymmetry and time lag in cell division is developed for the description of the evo-
lution of CFSE histograms and to estimate per each cell generation the average rates
of cell division (αi ) and death (βi ), the duration of the cell cycle (τi ), the rate of
label decay (k) and the division asymmetry coefficient (m1). Note that the dhPDE
model (3.3.46) is formulated using a linear scale for the structure variable x , while
the initial cell density n0j , j = 1, . . . , d, is determined in the z-coordinate by

nsj = cs, j N s

CsΔz
, s = 0, 1, . . . , M, j = 1, . . . , d, (3.3.58)

where Ns is the given total number of cells at time ts (cf. Table3.6), cs, j = c(ts, z j )
andCs = ∑d

j=1 cs, j is the total number of cell counts at time ts ;M = 5 and d = 4096
for the data set used. Note that the values nsj are the experimental data to estimate
parameters of the label-structured dhPDE model. Therefore, we translate n0j in the
x-coordinate as

nr0(0, x j ) = n0j
ln(10)10z j

, j = 1, . . . , d, (3.3.59)

where the factor ln(10)10z j is necessary to preserve the fluorescence intensity after
the change of variables.

3.3.7 dhPDE Model

The division- and label-structured mathematical model of the CFSE proliferation
assay formulated with a system of delay hyperbolic PDEs has the same parameters
as the division-structured DDE model plus the two ones which characterize the rate
of label loss and the fraction of the label which is acquired by the daughter cells
from the mother cell upon division. Therefore, the task is to estimate the following
parameters of the dhPDE model (3.3.46):

θ = (k,m1,α,β, c, τ0, τ1) ∈ R19, (3.3.60)
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Fig. 3.15 Symmetric cell division. Experimental data (grey filled histograms) and the best-fit
solution of the dhPDE model (3.3.46) with fixed m1 = 0.5 (solid curves)

assuming that τi = τ1, i = 2, . . . , 7 and using the information on the total number
of live T cells at the given times (columns 1 and 2 of Table3.6) and the corresponding
histograms of the CFSE distribution (Fig. 3.15). No decomposition of the histograms
into generational clusters is needed. The experimental histograms of the cell popula-
tion density, to which themodel solution is fitted are characterized by poorly resolved
peaks (and therefore, poorly identifiable generations) after time t = 36. The absence
of clear peaks of the population density, corresponding to different generations of
cells, cannot be explained by cellular autofluorescence. Indeed, the fluorescence of
the labelled proliferating cells at the final time t = 96 h is larger than the determined
background fluorescence (the median fluorescence of unstained control sample),
which is below 100 U I .

One can readily observe from Fig. 3.15 that as time increases, the pattern of the
CFSE distribution of the cell population becomes smoother suggesting that the flu-
orescent dye is divided unequally between the daughter cells. The computed best-fit
solution for model (3.3.46) under the assumption of an equal division of the CFSE
label between the two daughter cells (i.e. with m1 = 0.5 fixed) is characterized by
clearly pronounced peaks in histograms representing the different cell generations,
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Fig. 3.16 Asymmetric cell division. Experimental data (grey filled histograms) and the best-fit
solution of the dhPDE model (3.3.46) with estimated m1 (solid curves)

cf. Figure3.15. The parameter estimation formodel (3.3.46)with a released asymme-
try parameter m1 leads to the best-fit solution shown in Fig. 3.16 with the estimated
parameter values presented in Table3.7. The model solution with released asymme-
try provides an improved fit to the histogram data as well as the data on the clonal
expansion of T lymphocytes.

We showed in a higher resolution Fig. 3.17 (upper row) that the symmetric division
leads to a best-fit solution which is characterized by a systematic bias from the data
as compared to an asymmetric consideration (left versus right figures, respectively).
A direct consequence of the asymmetry in the lymphocyte division is the broadening
of the CFSE range associated with a particular generation with the increase in the
generation number as one can see at the middle row of Fig. 3.17. Therefore, the use
of the label partition parameter m1 = 0.5, corresponding to the symmetric division
scenario, does not result in a qualitatively andquantitatively consistent approximation
of the given set of experimental histograms.

We note that, starting with different initial points, the minimization procedure
either converges to the best-fit minimum indicated in Table 3.7, or much poorer
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Fig. 3.17 Best-fit model solution. First two rows: Consistency with the data of the versions of the
dhPDE model (3.3.46) based upon symmetric (left) versus asymmetric (right) division with the
support of the individual generations shown in the middle row. Last row: Predicted structure of cell
generations in the asymmetric case (left); the generation numbers are indicated; bullets indicate the
data on the total cell numbers (cf. Table3.6). Evolution of the initial CFSE support, the interval
[4 × 104, 9 × 104] of CFSE intensity of nondivided cells, with the cell divisions (right)

local minima are found. The estimated value m1 ≈ 0.423 clearly suggests that an
unequal partition of the fluorescent dye during cell division takes places. The extent
of the asymmetry is about 16% when compared to m1 = 0.5.

The presence of asymmetry leads to the following important consideration for
the generational resolution of CFSE histograms. Let an undivided cell have the
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Table 3.7 Best-fit parameter estimates for the dhPDE model (3.3.46), the estimates of their 95%
CIs and the estimates of the 95% CIs of the best-fit values of the ratios βi/αi . The best-fit solution
is characterized by Φ(θ) ≈ 1.32 × 1011

Parameter Best-fit value Estimate of CIs Fraction of
parameters

Best-fit value Estimate of CIs

k 7.40 × 10−3 [7.06, 7.73] ×
10−3

β0/α0 1.65 [1.56, 1.74]

m1 4.23 × 10−1 [4.19, 4.27] ×
10−1

β1/α1 2.7 × 10−5 [0, 0.03]

α0 2.48 × 10−2 [2.34, 2.63] ×
10−2

β2/α2 0.19 [0.12, 0.28]

α1 2.73 × 10−1 [2.40, 3.16] ×
10−1

β3/α3 0.81 [0.69, 1.0]

α2 489 [21, > 105] β4/α4 2.5 [1.2, 6.4]
α3 36.0 [4.0, > 105] β5/α5 4.9 [0, 31]
α4 3.07 × 10−1 [0.065, >

105]
β6/α6 0.10 [0, 22]

α5 5.75 × 10−2 [0.026, >

105]
α6 3.82 [0.05, > 105]
β0 4.08 × 10−2 [3.9, 4.3] ×

10−2

β1 7.41 × 10−6 [0, 7 × 10−3]
β2 94.9 [0.6, > 105]
β3 29.2 [1.5, > 105]
β4 7.52 × 10−1 [0.55, > 105]
β5 2.84 × 10−1 [0.18, > 105]
β6 3.83 × 10−1 [0, > 105]
c 5.08 × 10−1 [0, 1.1]
τ0 30.0 [29.5, 30.5]
τ1 7.48 [7.25, 7.71]

Number of parameters  (L) 

Variance Bias, 

Few Many

Φ

Fig. 3.18 Model performance characterization: accuracy versus parsimony. An increase in the
complexity of the model associated with the number of the model parameters, leads to a better
description of the data (bias reduction) but eventually results in a poorer estimation of the parameters
(larger variance). A proper balance between under-fitting and over-fitting needs to be achieved for
the mathematical model of optimal complexity



76 3 Parameter Estimation and Model Selection

marker intensity x . Then, assuming loss of the label only due to cell division, its
daughter cells, appearing after its i-th division, have the marker intensity in the inter-
val [mi

1x, mi
2x] (m2 = 1 − m1). If m

i+1
2 x > mi

1x , then the interval [mi
1x, mi+1

2 x]
will contain cells which divided i and i + 1 times, i.e. the generations overlap.
This imposes a limit on our ability to resolve the individual generations using a
conventional decomposition approach with Gaussian functions of equal variance.
Figure3.17 (lower right panel) shows how the initial interval of the CFSE label
intensity [5 × 104, 9 × 104], to which most undivided cells belong to at time t = 0,
moves to the left and broadens in size after each division of cells. As a result, an
overlap of the support (CFSE range) of sequential generations becomes more and
more prominent. For instance, the marker intensity 2.5 × 104 can be a characteristic
of cells which have divided one or two times, whereas the marker intensity 103 can
be observed in cells divided five, six and seven times. Hence, in case of nonequal
partition of the marker at cell division, it is practically impossible to correctly predict
the number of cells in later generations from the initial distribution of the marker
intensity without using an appropriate analytical framework. The best-fit parameters
of the division- and label-structured dhPDE model (3.3.46) allows one to predict
the generational structure of the CFSE-labelled population at any given time via
the solution of the related division-structured DDE model. The predicted number of
cells Ni (t) in each generation i using the parameters from Table 3.7 is shown in
Fig. 3.17(left).

Overall, we quantified the uncertainty of the best-fit estimates of themodel param-
eters using the profile-likelihood-based approach. The computed 95% confidence
intervals are shown in Table3.7. They indicate that the parameters k,m1, α0, α1,

β0, β1, c, τ0 and τ1 (τi = τ1, i ≥ 2) have a much lower uncertainty than the others.
The ratios βi/αi , i = 0, 1, . . . , 6, are estimated with a high degree of confidence as
indicated by their small CIs and can therefore be used as robust descriptors of cell
proliferation performance.

In completion of the modelling aspects related to fine details of the CFSE-based
proliferation analysis, we note the studies of the effects of autofluorescence and label
decay presented in [93–95].

3.4 Model Ranking and Selection4

A priori immunological and mathematical knowledge enter into the models in the
form of simplifying assumptions. Potentially, the interaction between a virus infec-

4Material of sect. 3.4 uses the results of the studies from Journal of Computational and Applied
Mathematics, Vol. 184, C.T.H Baker et al., Computational approaches to parameter estimation
and model selection in immunology, Pages 50–76, Copyright © 2005; Applied Numerical
Mathematics, Vol. 53. C.T.H Baker et al., Computational modelling with functional differential
equations: Identification, selection, and sensitivity, Pages 107–129, Copyright © 2005; Journal
of Computational and Applied Mathematics, Vol. 205, S. Andrew et al., Rival approaches to
mathematical modelling in immunology, Pages 669–686, Copyright© 2007, with permission from
Elsevier.



3.4 Model Ranking and Selection4 77

tion and the immune system can be described by multiple mechanisms and con-
sidering various sets of differential equations. One may thus argue that different
mechanisms and their functional forms might equally well describe the data set and
the goodness of fit (i.e. the maximized likelihood function) is not sufficient to judge
whether the model is correct. It has been observed elsewhere that the maximum
likelihood principle leads to choosing the models with higher possible complexity
(corresponding to more parameters) [96].

3.4.1 Accuracy and Parsimony

Given a set of related models, a fundamental question is how to rank them. One
possibility is to consider the goodness of fit, i.e. the size of the minimized least-
squares (or maximized likelihood) function. However, a consistent approach is based
on the parsimony principle, i.e. a proper balance between underfitting and overfitting.
Indeed, as shown in Fig. 3.18, a mathematical model that is based more closely on
the biology of the system, would require to consider many parameterized processes.
This would result in a multi-parameter estimation characterized by a better fit of the
model solutions to the data. However, in practice, the empirical data sets (in R.A.
Fisher’s terms, the relevant information supplied by the sample) are limited as well
as the information content per estimated parameter and eventually starts to decrease
with an increase of dimensionality of the model parameter space. As a consequence,
an uncertainty in the estimated parameter values will tend to become larger after
some level of model complexity. Therefore, one needs a quantitative measure to
implement the general principle that a model should be ‘as simple as possible yet as
complex as necessary’ [97] with respect to the included variables, model structure
and the number of parameters for adequate representation of the data.

3.4.2 Information-Theoretic Basis for Model Selection

The information-theoretic approach to model building has been presented systemati-
cally in [98]. The ranking methodology is that associated estimation of the minimum
information loss for the model in hand. The model-specific information loss crite-
rion is based on the Kullback–Leibler information-theoretic measure of the ‘distance
between’ two probabilistic models and it characterizes the information lost when the
model is used to approximate the reality or ’full truth’ as outlined below.

The researcher aiming to find a true quantitative description of the complex system
has a set of ‘multiple working hypotheses’ about the phenomenon at hand. The
science of matter, experience and expertise are used to define an a priori set of
candidate models gi , i = 1, . . . , M , representing each hypothesis. Then, one seeks
to find a candidate model g∗ that minimizes the ‘information’ I ( f, gi ) loss when the
model gi is used to approximate full reality or truth f , over the candidate models gi .
However, I ( f, gi ) cannot be used directly because neither the full truth model f nor
the parameters in the approximating models gi are known.
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The problem of discrimination between statistical models describing the under-
lying data was solved by Kullback and Leibler who suggested a measure of the
information distance of divergence between statistical populations represented by
models f and g [99]. The Kullback–Leibler information is defined as the following
multidimensional integral:

I ( f, g) =
∫

Ωx

f (x) log
(

f (x)
g(x,p)

)
dx, (3.4.61)

where I ( f, g) denotes the information losswhen g is used to approximate f .Ωx is the
state space domain, and p ∈ Ωp is the parameter space vector to be estimated. In fact,
the Kullback–Leibler discrepancy is a directed or oriented distance from the various
candidatemodels gi to f . TheKullback–Leiblermeasure provides a basis for deriving
‘information-theoretic’ criteria, such as the Akaike, Schwarz and Takeuchi indices.
One problem is that the full truthmodel is not known.Akaike in 1973 found a rigorous
way to estimate the Kullback–Leibler directed distance of the candidate model g to
the truth f based on the empirical log-likelihood function L (p) at its maximum
point p∗, L (p∗) [100]. Given a family of mathematical models and a data set, the
Akaike index usesmaximized likelihood estimation to quantify theKullback–Leibler
information loss for eachmodel. Therefore, the Akaike’s information criterion (AIC)
makes use of an estimate of the expected, relative distance between the fitted model
and the unknown true mechanism that actually generated the observed data set with
some cardinality (n).

3.4.3 Akaike Criteria

Given a hierarchy of models (each one with a best-fit set of parameters), the question
is how to rank them by giving each a score. The goodness of fit associated with
parameter estimates p̃ can be characterized when one has confidence in the form of
themodel by the size of an objective functionΦ�(̃p). This is the data-fitting approach,
and here p̃ may be an approximation (however obtained) to p̂ such that Φ�(̂p) =
minp Φ�(p). Thus, one criterion by which to judge a model may be the size of Φ�(̃p)

(see [101]). However, if there are a number of candidatemodels, our task is not simply
to identify the onewith the smallest objective function but to incorporate other criteria
for discriminating between models of differing complexity. There are (information-
theoretic) criteria, such as the Akaike, Schwarz and Takeuchi information criteria5

and generalizations related to informational complexity of models, which depend
not only upon the maximum likelihood estimation bias [96, 98, 100] but take into
account the number of parameters and the number of observations in a quantitative
evaluation of different models. Burnham and Anderson [98] review both the concept

5TheAkaike criterion is baseduponKullback–Leibler notion of information or distance between two
probabilisticmodels (information loss) [99] approximated using themaximum likelihood estimation
[98, 100].
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of Kullback–Leibler information and maximum likelihood as a natural basis for
model selection.

For the Akaike and the corrected Akaike criteria, the indicators are the size of the
measures μAIC and μcAIC given by

μAIC = −2 �n L (̂p) + 2(L + 1), (3.4.62a)

μcAIC = −2 �n L(̂p) + 2(L + 1) + 2(L + 1)(L + 2)

n − L − 2
, with n = NM, (3.4.62b)

respectively, see [98]. These indicators are expressed in terms of the MLE L (̂p).
There are L + 1 parameters being estimated, comprising p1, p2, . . . , pL and σ , since
we currently assume that a single value σ , which we also estimate, characterizes all
the variances. The advice of Burnham and Anderson in [98] is that (3.4.62a) is
satisfactory if n > 40(L + 1); otherwise, (3.4.62b) is preferred by these authors. We
note that as n → ∞, μcAIC → μAIC .

Our interest is in the relative size of the indicators; thus (omitting technical details)
it is convenient to discard extraneous terms and to employ the revised indicators

μ̆AIC = NM�n(ΦΩLS (̂p)) + 2(L + 1), (3.4.63a)

μ̆cAIC = μ̆AIC + 2(L + 1)(L + 2)

NM − L − 2
. (3.4.63b)

3.4.3.1 Experimental Data on Viral Load—CTL Dynamics

The infection of amouse with lymphocytic choriomeningitis virus (LCMV) provides
a basic experimental system used in immunology to address fundamental issues
of virus–host interactions [102]. The infection results in the activation of immune
responses and clonal burst [103] of virus-specific cytotoxic T lymphocytes (CTL).
We note that Ehl et al. [104] observed that

The use of a well-characterized murine infectious disease, which has been shown to be
almost exclusively controlled by CTL-mediated perforin-dependent cytotoxicity, provides
an exceptionally solid basis for the formulation of [models].

At discrete times, it is possible to measure, experimentally, (i) the amount of
the virus, measured in plaque forming units (pfu), and (ii) the virus-specific CTL
(measured in the number of cells found per spleen6).

In general, it is possible that data comes from a single experiment, or that the
data arises from several experiments or a series of observations. Our mathematical
models rely upon data being of a certain type: we assume that the mean values of
data are, at each time, normally or log-normally distributed, and independent.

The experimental data is provided in Table3.8 and is shown in Fig. 3.19. It was
obtained as follows. A batch of genetically identical C57BL/6 mice were infected
with 200 pfu (plaque forming units) of LCMV (WE strain), delivered intravenously.

6Some modellers introduce as a variable the amount of virus-specific memory CTL, a subset of (ii)
that is harder to quantify reliably.
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Fig. 3.19 The infection of a mouse with lymphocytic choriomeningitis virus (LCMV). At discrete
times, the following characteristics of infection were determined experimentally, (i) the amount
of the virus, measured in plaque forming units (pfu), and (ii) the virus-specific CTL (measured
in the number of cells found per spleen). Upper: individual observations. Lower: averaged data.
Reprinted from Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al.,
Computational approaches to parameter estimation and model selection in immunology, Pages
50-76, Copyright © 2005, with permission from Elsevier

Viral titers in spleens were determined at 1, 2, 3, 4, 6, 8, 10, 12 and 14 days post infec-
tion and the clonal expansion of CTL cells specific for the gp33 epitope in spleens
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Table 3.8 Data set for the virus and cytotoxic T lymphocyte kinetics in the spleen after systemic
infection with 200 pfu of LCMV-WE (‘b.d.l.’ means ‘below the detection limit’). Reprinted from
Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al., Computational
approaches to parameter estimation and model selection in immunology, Pages 50-76, Copyright
© 2005, with permission from Elsevier

V (t) E(t)

Time (days) Set 1—Virus
population (pfu)

Set 2—Virus
population (pfu)

Set 1—CTLs
population (cells)

Set 2—CTL
population (cells)

1 3.55 × 104 1.20 × 104 b.d.l. b.d.l.

2 5.0 × 105 1.6 × 106 b.d.l. b.d.l.

3 3.8 × 106 3.9 × 106 b.d.l. b.d.l.

4 3.2 × 106 2.1 × 106 b.d.l. b.d.l.

6 3.7 × 104 1.25 × 105 8.33 × 105 9.85 × 105

8 3.1 × 104 2.6 × 104 4.75 × 106 4.03 × 106

10 2.5 × 102 8.0 × 104 4.16 × 106 5.8 × 106

12 2.0 × 102 7.5 × 102 3.07 × 106 2.25 × 106

14 b.d.l. b.d.l. 2.22 × 106 2.89 × 106

were assessed using tetramer analysis (see below). The techniques are standard; see,
for example, [105, 106]. At the indicated time points after infection, blood samples
were taken from two mice and single cell suspensions were prepared of spleen, prior
to the determination of absolute cell counts using FACS and Neubauer equipment.

An important feature of this experiment is that themicewere genetically identical,
produced by inbreeding. Inbred strains reduce experimental variation; their immune
responses can be studied in the absence of variables introduced by individual genetic
differences. If the mice are genetically identical, it is argued that large numbers of
mice are not required and the mean obtained represents the mean of a larger set of
data. This assertion merits closer examination and testing, but we proceed on the
basis that it is correct.

For a reliable parameter estimation, it is useful to have an idea of the CTL kinet-
ics at times earlier than 6 days post infection—before the virus population starts
to decrease. The quantity of virus-specific CTL below 5000 cells/spleen cannot be
detected using the tetramer technique. Our experience (arising from numerous stud-
ies with the LCMV system) suggests that after injection of 200 pfu of LCMV the
proliferating CTLs should reach the detection threshold in about two and a half
days. This evidence was considered in the parameter estimation by supplementing
Table3.8 with a CTL number at day 2.5 representing the least possible detection
level.

The detection threshold for LCMV in the spleen is about 100 pfu. LCMV-WE
dropped below the detection threshold by day 14; however, it is believed that the
virus still persists below the detection level for some time. To ensure that the LCMV
number in the model remains below the detection threshold between days 12 to 14,
we supplement the data with an assumption that the virus quantity on day 14 was 10
pfu/spleen.
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Replica on rate

Precursor 
CTL

Virus

Virus-dependent division rate

Virus _V(t)
(prey) 

CTL_P(t)
(predator) 

CTL-dependent elimina on rate Death

Fig. 3.20 Biological scheme of the virus–host organism interaction to model the dynamics of
lymphocytic choriomeningitis virus infection in mice

3.4.4 Rival Models for Virus-CTL Dynamics

The simplest scheme of the interaction between the virus infection and the antiviral
CTL response is presented in Fig. 3.20. It is equivalent to a predator–prey view of
the above system which is valid for a low dose infection resulting in acute infection
followed by CTL-mediated virus elimination.

Themathematicalmodels for the virus-CTL interaction in LCMV infection can be
introduced as a system of two or three ODEs or DDEs for the evolution of the virus,
V(t), and virus-specific CTL (activated and memory cells—E(t), Em(t)) population
dynamics. As there are a number of candidate models, our task is not simply to
identify the one with the smallest objective function but to consider the principle
of parsimony in model evaluation, and the maximum use of information presented
implicitly in the data. We consider and analyse a hierarchy of mathematical models
that were distilled from the existing literature.

The equation for the rate of change of the virus population is the same for all the
models. It is based upon aVerhulst–Pearl logistic growth term and second-order elim-
ination kinetics. The models we consider here differ in the way the immune response
is described—an issue of some controversy in today’s mathematical immunology.
Specifically, the models differ with respect to the following building blocks:

1. virus-dependent CTL proliferation (basic predator–prey versus the Holling type
II response);

2. whether a time lag in the division of CTL (cell division time) is included;
3. consideration of homeostasis for naive CTL precursors;
4. whether a separate equation for the memory CTL is used.
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The death rate of CTL is assumed constant. Overall, we consider here the following
five models that have their prototypes in the literature (see Table3.9 for biological
definitions of the parameters included in the model).

Model 1: simplest predator–prey consideration of the CTL dynamics

d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t), (3.4.64)

d

dt
E(t) = b1 · V (t) · E(t) − αE · E(t). (3.4.65)

Model 2: virus-dependent CTL proliferation with saturation

d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t), (3.4.66)

d

dt
E(t) = b2 · V (t) · E(t)/(θSat + V (t))︸ ︷︷ ︸

A modification of model 1

−αE · E(t). (3.4.67)

Model 3: virus-dependent CTL proliferation with saturation and with time lag

d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t), (3.4.68)

d

dt
E(t) = b3 · V (t − τ) · E(t − τ)/(θSat + V (t))︸ ︷︷ ︸

As in model 2 but incorporating delay

−αE · E(t). (3.4.69)

Model 4: primary CTL homeostasis

d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t), (3.4.70)

d

dt
E(t) = b4 · V (t − τ) · E(t − τ)/(θSat + V (t)) − αE · E(t) + T ∗

︸ ︷︷ ︸
includes additive term

. (3.4.71)

Model 5: Additional equation for the population of memory CTL

d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t), (3.4.72)

d

dt
E(t) = b5 · V (t − τ) · E(t − τ)/(θSat + V (t)) − αE · E(t) − rm · E(t) + T ∗,

(3.4.73)
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Table 3.9 Biological definition of the model parameters for virus-CTL dynamics in the spleen
during primary LCMV infection. The spleen volume is estimated to be about 0.1 (millilitres).
Reprinted from Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et
al., Computational approaches to parameter estimation and model selection in immunology, Pages
50-76, Copyright © 2005, with permission from Elsevier

Parameter (units) The units are d (days), pfu (plaque forming units) Notation

Virus exponential growth rate (d−1) β

Carrying capacity for the virus (copies/spleen) K

Virus elimination rate (1/copy/d) γ

CTL stimulation rate (1/copy/d, M1; d−1, M2 to M5 ) bi
CTL division time (d) τ

Viral load for half-maximal CTL stimulation (copy/spleen) θSat

Death rate of CTL (d−1) αE

Specific precursor CTL export from thymus (cell/spleen/d) T ∗

Reversion activated CTL into the memory state (d−1) rm
Death rate of memory CTL (d−1) αm

d

dt
Em(t) = rm · E(t) − αm · Em(t). (3.4.74)

Model 1 cannot be regarded as a special case of Model 2 if some of the Model
2 parameters are set to zero. However, Models 2 to 5 have a common subset of
parameters, i.e. they are nested.

The general initial data are

V (t) = 0, t ∈ [−τ, 0), V (0) = V0; E(t) = E0, t ∈ [−τ, 0]; Em(0) = 0.

We set the initial values for the dose of infection and for the number of naive CTL
as follows: V0 = 200 p f u and E0 = 265 cells. These parameters are considered to
be fixed.

3.4.5 Information-Theoretic Model Evaluation

Parameter estimation results obtained using an ordinary least-squares approach for
Models 1 to 5 are summarized inTable3.10. The numerical treatment of the parameter
estimation problem is based on the following software:

• the code Archi, at www.ma.man.ac.uk/~chris/reports/rep283.pdf, for fortran
(and the related codes Archi-L, Archi-N) [107, 108] for the initial value
problem;

• the code LMDIF1 at http://www.netlib.org/minpack/lmdif1.f to solve nonlinear
least-squares problems (with an approximate Jacobian), Archi-L;

• Archi-N invokes a NAg constrained minimization routine E04UNF [109].

www.ma.man.ac.uk/~{}chris/reports/rep283.pdf
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Table 3.10 Best-fit parameter estimates for ordinary least squares and the corrected Akaike indi-
cator. Calculations are based on LMDIF and the values eps= 10−6, ftol= 10−6, xtol= 10−6,
epsfcn= 0. Reprinted from Journal of Computational and AppliedMathematics, Vol. 184, C.T.H
Baker et al., Computational approaches to parameter estimation andmodel selection in immunology,
Pages 50-76, Copyright © 2005, with permission from Elsevier

Parameter M1 M2 M3 M4 M5

β 4.44 × 100 4.36 × 100 4.52 × 100 4.52 × 100 4.50 × 100

K 3.99 × 106 3.23 × 106 3.17 × 106 3.17 × 106 3.19 × 106

γ 3.02 × 10−6 3.48 × 10−6 3.45 × 10−6 3.48 × 10−6 3.63 × 10−6

bi 1.23 × 10−6 1.92 × 100 2.52 × 100 2.41 × 100 2.40 × 100

θSat − 2.46 × 104 1.34 × 105 1.31 × 105 1.15 × 105

τ − − 7.17 × 10−2 8.98 × 10−2 9.54 × 10−2

αE 0.0 9.14 × 10−2 8.62 × 10−2 9.1 × 10−2 9.31 × 10−2

T ∗ − − − 1.24 × 102 1.40 × 102

rm − − − − 5.17 × 10−3

αm − − − − 2.55 × 10−1

ΦOLS 1.05 × 1013 4.49 × 1012 4.04 × 1012 3.91 × 1012 3.78 × 1012

μ̆cAIC 472.2 467.0 475.4 488.9 544.4

In optimization procedures the tolerances specified by the user govern the successful
conclusion of an iterative process for the determination of the minimum of an objec-
tive function: (i) ftol governs the relative change in the estimated minimum value
of the objective function, (ii) xtol, governs the relative change in the argument at
which the estimate of the minimum is attained. In Archi, eps specifies the error-
per-step tolerance in the ODE or DDE solver, and epsfcn sets the relative errors
in the objective functions.

An increase in the number of model parameters provides a better description of
the data in terms of the minimized value of the objective function. However, the
increasing values of the corrected Akaike index indicate a gradual information loss
for the given data set as the complexity of models increases. The variation of the best-
fit parameter estimates between the models is within ±10%, except for the estimate
of θSat . Further, the data set does not provide a biologically correct estimate of the
time lag of cell division τ . Rather, the delay estimate obtained via ordinary least
squares corresponds to a realistic duration of some stage of the cell cycle. Visual
inspection of graphs of V (t) and E(t) in Fig. 3.21 (upper raw) suggests that Model
1 nicely approximates the viral load data, but rather poorly approximates the CTL
data. The other models (see lower raw in Fig. 3.21 corresponding to M2) describe
much better the CTL kinetics at the expense of a somewhat poorer agreement with
the virus data (V (t)).

The calculations represented in Table3.10 were checked by refining the param-
eters that govern the accuracy. The original values eps = 10−6, ftol = 10−6,
xtol = 10−6, epsfcn = 0 were replaced by eps = 10−15, ftol = 10−12, xtol
= 10−12, epsfcn = 10−15, and the computed values of interest are presented in
Table3.11. The refined tolerances have a noticeable effect on the parameter val-
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Table 3.11 Best-fit parameter estimates for ordinary least squares and the corrected Akaike indica-
tor when the higher accuracy numerical solution is used: Calculationswere based onArchi-Nwith
E04UNF, and eps = 10−15, ftol = 10−12, xtol = 10−12, epsfcn = 10−15. Reprinted from
Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al., Computational
approaches to parameter estimation and model selection in immunology, Pages 50-76, Copyright
© 2005, with permission from Elsevier

Parameter M1 M2 M3 M4 M5

β 4.61 × 100 4.51 × 100 4.62 × 100 4.61 × 100 4.61 × 100

K 2.70 × 106 4.69 × 106 5.01 × 106 4.98 × 106 5.07 × 106

γ 1.39 × 10−6 8.04 × 10−5 3.29 × 10−4 2.96 × 10−4 2.45 × 10−4

bi 9.22 × 10−7 1.42 × 100 1.14 × 100 1.16 × 100 1.22 × 100

θSat − 0 (3.23 ×
10−176)

8.79 × 10−6 4.59 × 10−6 2.45 × 10−4

τ − − 4.38 × 10−2 4.15 × 10−2 4.38 × 10−2

αE 9.29 × 10−2 2.01 × 10−1 1.02 × 10−1 1.02 × 10−1 1.03 × 10−14

T ∗ − − − 1.09 × 100 134 × 100

rm − − − − 2.12 × 10−1

αm − − − − 2.20 × 10−1

ΦOLS 6.54 × 1012 7.82 × 1011 1.60 × 1012 1.60 × 1012 1.37 × 1012

μ̆cAIC 465.1 440.8 461.5 475.5 529.2

Table 3.12 Best-fit parameter estimates for weighted least-squares and the corrected Akaike indi-
cator when the higher accuracy numerical solution is used: Calculations were based on Archi-N
with E04UNF, and eps = 10−15, ftol = 10−12, xtol = 10−12, epsfcn = 10−15. Reprinted
from Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al., Com-
putational approaches to parameter estimation and model selection in immunology, Pages 50-76,
Copyright © 2005, with permission from Elsevier

Parameter Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) Model 5 (M5)

β 5.14 × 100 4.56 × 100 4.57 × 100 4.60 × 100 4.60 × 100

K 1.23 × 105 4.42 × 106 4.46 × 106 3.27 × 106 3.26 × 106

γ 1.90 × 10−6 5.47 × 10−5 7.93 × 10−5 2.14 × 10−5 2.23 × 10−5

bi 1.37 × 10−5 1.41 × 100 1.41 × 100 2.34 × 100 2.41 × 100

θSat − 0 (9.19 ×
10−77)

3.49 × 10−13 4.854 × 104 5.39 × 104

τ − − 1.76 × 10−2 5.18 × 10−1 5.04 × 10−1

αE 2.09 × 10−2 1.09 × 10−1 1.09 × 10−1 1.09 × 10−1 2.52 × 10−10

T ∗ − − − 1.663 × 103 1.508 × 103

rm − − − − 1.32 × 10−1

αm − − − − 5.10 × 10−1

ΦΩLS 5.23 × 100 5.36 × 100 5.15 × 100 4.18 × 100 4.18 × 100

μ̆cAIC 47.3 55.2 64.6 75.5 131.5
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Fig. 3.21 Ordinary least squares. a Model 1 computed using low accuracy (Table4); b Model 2
computed using high accuracy (Table7). Shown are the best-fit predictions (solid lines) for the viral
load, V (t) and for the number of CTLs, E(t), and the mean values (* symbols) for the original data.
Reprinted from Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al.,
Computational approaches to parameter estimation and model selection in immunology, Pages
50-76, Copyright © 2005, with permission from Elsevier

ues and, as a consequence, on the ranking of the parameterized models. Models with
parameters computed with lower tolerance are ranked with respect to the information
loss as follows:

M2 (best) − M1 − M3 − M4 − M5;

with parameters computed to the higher tolerance, we obtain the ranking

M2 (best) − M3 − M1 − M4 − M5.

In both cases, Model 2 has the least Akaike index. The parameter θSat (which repre-
sents the viral load for half-maximal CTL stimulation) does not occur in Model 1;
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Table 3.13 Estimates of 95% confidence intervals, for the best-fit high-accuracy parameter esti-
mates for Models 1 to 3 using ordinary least squares. Estimates were computed using Archi-N,
with E04UNF, eps = 10−15, ftol = 10−12, xtol = 10−12, epsfcn = 10−15 as in Table3.11.
Reprinted from Journal of Computational and Applied Mathematics, Vol. 184, C.T.H Baker et al.,
Computational approaches to parameter estimation and model selection in immunology, Pages
50-76, Copyright © 2005, with permission from Elsevier

Parameter M1 M2 M3

β 4.61 ×100 4.51 ×100 4.62 ×100
95% CI: [4.00 ×100, 5.23 ×100] [4.23 ×100, 4.76 ×100] [4.43 ×100, 4.85 ×100]
K 2.70 ×106 4.69 ×106 5.01 ×106
95% CI: [2.28 ×106, 3.00 ×106] [4.20 ×106, 5.20 ×106] [4.62 ×106, 5.45 ×106]
γ 1.39 ×10−6 8.04 ×10−5 3.29 ×10−4

95% CI: [1.17 ×10−6, 1.71 ×10−6] [7.54 ×10−5, 8.58 ×10−5] [3.20 ×10−4, 3.31 ×10−4]
bi 9.22 ×10−7 1.42 ×100 1.141 ×100
95% CI: [7.96 ×10−7, 1.01 ×10−6] [1.40 ×100, 1.43 ×100] [1.134 ×100, 1.143 ×100]
θSat − 0 (3.23 ×10−176) 8.79 ×10−6

95% CI: − [0, 1.2 ×10−164] [5.25 ×10−6, θmax ]
If θSat = 0, bE(t) growth term

results.

where θmax ≥ 8 ×10−5.

τ − − 4.38 ×10−2

95% CI: − − [4.24 ×10−2, 4.43 ×10−2]
αE 9.29 ×10−2 2.01 ×10−1 1.02 ×10−1

95% CI: [4.84 ×10−2, 1.73 ×10−1] [1.19 ×10−1, 2.14 ×10−1] [1.01 ×10−1, 1.15 ×10−1]
ΦOLS 6.54 ×1012 7.82 ×1011 1.6 ×1012
μ̆cAIC 465.1 440.8 461.5

in the high-accuracy figures for Model 2 it is close to zero (see Tables3.11, 3.12).
Such a small value represents an effective immediate response to the infection (what
is considered to be a ‘programmed’ response, in [110]), irrespective of the viral load.
If we use Model 5, the data do not support a biologically correct estimate of the
memory cell lifespan αm . We note that in a similar parameter estimation study [110],
the value of parameter αm was assigned rather than estimated.

Table3.13 summarizes the analysis of the confidence in the best-fit parameter
estimates for Models 1 to 3 using high-accuracy solutions and following OLS. The
ranking of the models according to the Akaike criteria suggests that the least infor-
mation loss is the feature of Model 2 as compared to Models 1 or 3. The reader may
compare the widths of the confidence intervals for the same parameter in differing
models displayed in Table3.13. Other things being equal, a narrower interval is to
be preferred. An unduly large confidence interval indicates that the parameter is
unidentifiable in practice (for the given data set).

Note that the structure of the parsimonious model M2 is such that the following
conclusions can be drawn: the CTL response to a low dose LCMV-WE infection is
regulated by virus antigen load in an on and off way [110].
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Fig. 3.22 Data on
persistence of plasmacytoid
dendritic cells: comparison
of the exponential decay and
Gompertz models

3.4.6 Minimum Description Length

Theminimum description length (MDL) provides a selectionmethod that is sensitive
to models functional form and favours the model that permits the greatest compres-
sion of data in its description. The use of MDL for model selection with reduced
complexity is reviewed in [112]. The quantitative measure of the model descrip-
tion length for specific data which needs to be computed is given by the following
expression:

μMDL = − ln(L(p∗)) + 0.5 np ln(nd/(2π)) + ln
∫

Ωp

√
det (I (p))dp, (3.4.75)
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where nd is the total number of scalar observations, np is the number of optimized
parameters, L(p∗) is the maximized likelihood function, I (p) is the Fisher infor-
mation matrix, and Ωp is the domain of the parameter space in which the model is
defined.

To illustrate its practical use, we examined whether the persistence of plasma-
cytoid dendritic cells (pDC) in vitro shown in Fig. 3.22 is consistent with the expo-
nential decay (E-model), or the Gompertz (G-model) (see Chap. 2). To test whether
the increased complexity of the G- versus E-model of decay is justified by the pDCs
data in hand, we evaluated the Akaike criterion of the information loss μAIC and the
μMDL for the models. Both criteria of the model parsimony turned out to be smaller
for the Gompertz model: theμAIC is 30 versus 38 and the μMDL value is 19.5 versus
22.1 [111]. For a comprehensive coverage of the MDL methodology, we refer to
[113].

3.4.7 Summary

We presented a computational methodology for developing mathematical models of
different complexities formulated with various types of differential equations, e.g.
ODEs, DDEs, hPDEs and delay hPDES. The models in immunology have no a pri-
ori claim of validity. Therefore, their consistency with available data and knowledge
has to be checked. Maximum likelihood approach to data fitting and information-
theoretic criteria ofmodel ranking are shown to provide necessary tools for identifica-
tion of the most parsimonious model from a family of plausible ones. The efficiency
of approach was illustrated by considering data on CFSE-labelled cell proliferation
and antiviral immune response for a low dose LCMV infection.
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Chapter 4
Modelling of Experimental Infections

This chapter aims to give a clear idea of howmathematical analysis for experimental
systems could help in the process of data assimilation, parameter estimation and
hypothesis testing. In particular, we illustrate the potential of a question-, and data-
driven mathematical modelling in the

• estimation of model parameters for the ‘virus–host’ system,
• understanding kinetic regulation of virus infection dynamics,
• prediction of various phenotypes of virus infections and antigen-specific immune
responses,

• testing specific hypothesis about the feedback regulation of T-cell responses.

Thematerial of this chapter is basedonour previousworkpublished in [1–4, 9, 51, 84].

4.1 Why Experimental Infections?

Experimental systems of various types are used in fundamental immunology to
unravel the complex cellular interactions of the immune responses. In vivo systems,
which involve the whole animal provides the most natural experimental conditions.
However, the in vivo systems have many unknown and uncontrollable interactions
that add ambiguity to the interpretation of empirical data. The study of the immune
system in vertebrates requires a suitable animal model. For most basic research in
immunology, mice have been the experimental animal of choice. To control exper-
imental variation caused by differences in the genetic background of experimental
animals, immunologists work with inbred or knock-out or knock-in strains that are
genetically identical animals produced by inbreeding. Hundreds of different strains
of mice are available these days, e.g. CBA, BALB, C57BL/6, etc.

In this chapter, we present examples of mathematical models developed for exper-
imental virus infection systems to answer specific questions concerning the kinetic
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regulation of virus infection dynamics, which are beyond the realm of purely empiri-
cal analysis techniques. The role ofmathematicalmodelling in infection immunology
can be summarized as follows:

• Descriptive

– qualitative and quantitative characterization of process dynamics;

• Explanatory

– interpretation of the experimental observations,
– understanding the numbers game;

• Predictive

– testable predictions; suggestion of new experiments,
– sensitivity performance quantification,
– hidden effects.

4.2 The LCMV System: Gold Standard for Infection
Biology1

One of the best-studied model systems of viral infections is the lymphocytic chori-
omeningitis virus (LCMV) infection in mice.

4.2.1 Immunobiology of LCMV

LCMV is an RNA virus of the Arenaviridae family that is non-cytopathic in vivo,
i.e. the virus itself does not cause direct damage to cells and tissues. This feature
enables relating any damage that appears in the course of an infection to host immune
responses against the virus. Another important feature of the LCMVmodel system is
the existence of several well-characterized viral strains that differ in their replicative
capacity, host range (cell tropism and mouse strain) and experimental routes of

1Material of subsections (4.2.2–4.2.4) uses the results of our studies from Bocharov, Modelling the
dynamics of LCMV infection in mice: conventional and exhaustive CTL responses. J. Theor. Biol.
192, 283–308, Copyright © 1998; Ehl et al., The impact of variation in the number of CD8+T-
cell precursors on the outcome of virus infection. Cell. Immunol. 189, 67–73, Copyright © 1998;
Bocharov et al., Modelling the dynamics of LCMV infection in mice: II. Compartmental structure
and immunopathology. J. Theor. Biol. 221, 349–78, Copyright© 2003; Luzyanina et al., Low level
viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation
analysis. Math. Biosci. 173, 1–23, Copyright © 2001, with permission from Elsevier and the
results of the studies from Proc. Natl. Acad. Sci. USA. (PNAS USA), Bocharov et al., Feedback
regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion
on precursor number, 108, 3318–23, Copyright © 2011 with permission from PNAS USA.
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infection (intracranial versus intraperitoneal (i.p.) or intravenous (i.v.)) and thus show
different infection outcomes. This enables directly linking easily measurable viral
dynamic properties to pathogenic consequences and studying the kineticmechanisms
of chronic infections.

With the use of the LCMV infection model system, a large number of conceptual
discoveries in immunology have been made, which are as follows:

• back in 1974/75, Zinkernagel and Doherty demonstrated that cytotoxic
T-lymphocytes (CTLs) recognize foreign antigens only in the context of proteins
of the major histocompatibility complex (MHC) [5, 6]. For this finding of MHC
restriction, they were awarded the Nobel Prize in 1996.

• with the help of knockout mice, the mechanism of CTL-mediated destruction of
LCMV-infected target cells in vivo was directly linked to perforin, a pore-forming
protein contained in granules of this cell type [7, 8].

• fundamental properties of ‘memory’ of the adaptive immune response have been
understood, in particular, the requirements for CTL memory to prevent the estab-
lishment of a persistent LCMV infection [9].

• NK cells of the innate immune response have been recognized as an important
regulator of the helper T-cell support for antiviral CTL [10].

• a critical role of organized secondary lymphoid organs in the induction of naive T
and B cells and subsequent virus control was established [11].

• the concept of immunopathology, that is the damage of tissues and organs due
to the antiviral immune response rather than the infecting virus itself, was estab-
lished. Mediators of immunopathology include CTL, macrophages, neutrophils
and interferons [12–14].

• based on the amino acid similarities between viral antigens and host proteins,
the so-called molecular mimicry, viral infections can trigger autoimmunity and
influence the course of subsequent infections with other viral pathogens [15–17].

• important observations towards an acute versus a persistent infection outcomes
were made as shown in Fig. 4.1 [18–21].

Which infection fate is followed depends on the infecting viral dose and the
viral strain and thus can be easily directed experimentally. LCMV persistence is
associated with CTL exhaustion, a reversible, non-functional state of CTL. CTL
exhaustion is a physiological consequence of persistent antigen exposure and has
been observed both in persistent human viral infections and in cancers, the LCMV
system was instrumental to understand infection fate regulation in general terms. As
CTL exhaustion can be reversed by antibodies against PD1 or PD-L1 that block the
negative signalling pathway, novel immunotherapeutic modalities arose which show
exciting promises as antiviral and anticancer therapies [22–24].

The LCMV infection model system offers sufficient experimental data to develop
mathematical models in a problem-orientedmanner. Themathematical model-driven
studies of LCMV resulted in experimentally testable predictions concerning the
mechanisms of the infection control, for example (i) threshold numbers of initial
specific CTL precursors to protect from a chronic LCMV infection outcome, (ii)
minimal number of antigen-presenting DCs in spleen for robust induction of CTL
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Fig. 4.1 Scheme of acute
(top) and chronic (bottom)
LCMV infection.
Phenotypically different
dynamic patterns of viral
load and CTL activity are
shown
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responses, and (iii) the effect of virus growth rate on the magnitude of the clonal
expansion of CTLs, to name just the major of them.

The basic biological features of LCMV, relevant to the mathematical models
presented below can be summarized as follows:

• Family: Arenaviridae;
• Strains: Docile, Traub, WE, Aggressive, Armstrong, Clone 13;
• Host: mice, hamsters; humans: acute hemorrhagic fever;
• Target cells: macrophages and lymphocytes;
• Cytopathicity in vivo: non-cytopathic;
• CTL responses play a dominant role in virus clearance: appear early and are high;
• Neutralizing antibody responses: appear only late after infection;
• Immunopathology is a recovery fee: is observed in spleen, liver, central nervous
system.

The spatial distribution (compartmental structure) of LCMV infection is presented
in Fig. 4.2. It must be noted that spleen plays a central role in LCMV infection as it
is a target organ for virus replication and the lymphoid organ in which the antiviral
immune response takes place.
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Fig. 4.2 Scheme of the compartmental structure of LCMV infection spreading in mice. The vol-
umes of the organs, considered as well-mixed reactors, are indicated

4.2.2 Basic Mathematical Model of LCMV Infection

The biological scheme underlying the mathematical model of LCMV infection is
presented in Fig. 4.3. The mathematical model of antiviral CTL response devel-
oped previously [1] is based upon assumptions reflecting general mechanisms of the
virus–host interaction: (i) virus-specific CTLs are primarily responsible for control
of infection with non-cytopathic viruses; (ii) the virus population stimulates clonal
expansion and differentiation of the specific CTL precursors (CTLp) into effector
cells; (iii) a high viral load leads eventually to inhibition of CTL responses via anergy
and activation-induced cell death by apoptosis; (iv) in the absence of viral antigens
the homeostasis of naive CTLs reflects a balance between the input of the precursor
CTLs from thymus and their death at the periphery; (v) virus replication in the host
exhibits a logistic-type growth,whereas the elimination follows a second-order kinet-
ics. Only one organ in which both the virus infection and immune response take place
(compartment), i.e. the spleen is considered in the basic model. The time-dependent
variables of the model are as follows:

• V (t) virus titer in spleen at time t (pfu/ml);
• Ep(t) number of virus-specific precursor CTLs in spleen at time t (cell/ml);
• E(t) number of virus-specific effector CTLs in spleen at time t (cell/ml);
• W (t) cumulative virus antigen load in spleen at time t (pfu/ml).
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Fig. 4.3 Schematic representation of the variables and processes considered in the mathematical
model of LCMV infection in mice

Their choice is guided by the availability of data for model identification [25] and
a clearly elaborated understanding of the most relevant processes in the control of
acute LCMV infection. The above-listed processes define the structure of a system of
delay differential equations describing the rates of change of the population densities
in the course of infection:

dV

dt
= βV (t)(1 − V (t)/K ) − γV EV (t)E(t), (4.1)

dEp

dt
= αEp

(
E0
p − Ep(t)

)
+ bpgp(W )V (t − τ)Ep(t − τ) − αAPV (t − τA)V (t)Ep(t), (4.2)

dEe

dt
= bege(W )V (t − τ)Ep(t − τ) − αAEV (t − τA)V (t)Ee(t) − αEe Ee(t),

(4.3)
dW

dt
= bWV (t) − αW (t), (4.4)

where gp(W ) = 1
(1+W/θp)2

, ge(W ) = 1
(1+W/θe)2

. The equations are supplemented by
initial data reflecting the low-, intermediate- and high-dose infections of C57BL/6
mice with LCMV-Docile i.v.:

• V (t) = 0, t ∈ [−τ ∗, 0), V (0) = 102, 104, 107 pfu/ml, τ ∗ = max[τ, τA],
• Ep(t) = 265 cell/ml, t ∈ [−τ ∗, 0],
• Ee(0) = 0 cell/ml,
• W (0) = 0 pfu/ml.

In the equation for V (t), the first term on the right-hand side describes the virus
growth with an upper limit K due to the limited amount of sensitive tissue cells
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supporting virus replication, and the second term takes into account the clearance of
viruses due to lysis of virus-infected cells by effector CTLs.

In the equation for Ep(t), the first term describes themaintenance of virus-specific
precursor CTL at a certain level through their export from thymus and death in the
periphery. The second term accounts for an increase in the number of CTL precursors
resulting from virus-induced proliferation with the inhibitory effect of cumulative
virus load on clonal expansion. The last term describes activation-induced cell death
by apoptosis.

The dynamics of Ee(t) is determined by the appearance of mature effector CTLs
due to the division and differentiation of antigen-stimulated precursor CTLs with
the downregulation of the differentiation process of CTLp due to high virus antigen
load (the first term); the decrease in the number of effector CTLs as a consequence
of lytic interactions with virus-infected target cells (the second term); the activation-
induced cell death of effector CTLs and natural death of effector CTL due to their
finite lifespan (two last terms).

In the equation for W (t), the first term describes the increase in the total viral
antigen load due to virus spread in the host and the second one accounts for the
decrease of the inhibitory effect of high virus loads on the virus-specific CTLs as the
virus is eliminated.

The model is based upon a fundamental assumption which reflects results of
empirical analysis [25] that continuous exposure of virus-specific CTLs to LCMV
induces a sequence of proliferation, anergy and activation-induced cell death by
apoptosis. The balance between the above processes depends on the cumulative viral
load and shifts towards the anergy and death phenotype in a high viral load infection.

This low-dimensional model is based on (i) a Verhulst logistic form for virus
growth; (ii) second-order virus elimination kinetics by CTLs; (iii) the Holling type II
response curve for CTLs expansionwith a time lag representing cell division time and
antigen-independent production/death of CTLs in the immune system (homeostasis).

The relevant information about the model parameters is summarized in Table4.1.
The model parameters were estimated via a maximum likelihood approach using

experimental data characterizing the virus-CTL dynamics after low-, intermediate-
and high-dose i.v. infections of C57BL/6 mice [1, 25] and permit a good consis-
tency of the model with the data, Fig. 4.4. The phenomenology of conventional and
exhaustive CTL responses is quantitatively captured in the mathematical model.

The phenomenon of exhaustion in the model is defined as disappearance of CTL
activity and the functional impairment of virus-specific CTLs. The exhaustion of
antiviral CTL responses ismodelled as a stepwise process observed in an overwhelm-
ing infection with LCMV-Docile. Following the initial activation, LCMV-specific T
cells become anergic for 3–5days and then disappear because of activation-induced
cell death (apoptosis). (Of note, the observed lack of T-cell functionality was in time
of the described experiments termed anergy; however, this functional state of T cells
has been studied in more detail and shown to be a non-responsive state after contin-
uous antigen exposure that is now termed exhausted; for a detailed discussion, see
Wherry and Kurachi [26]).
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Table 4.1 The LCMV infection model parameters and their best-fit estimates. We considered one
p f u is one infectious particle

Parameter Biological meaning Units Best-fit estimate

β Replication rate constant
of viruses

1/day 3.35

γV E Rate constant of virus
clearance due to effector
CTLs

ml/(cell day) 1.34 × 10−6

K Virus carrying capacity of
spleen

particles/ml 4.82 × 107

τ Duration of CTL division
cycle

day 0.6

bp Rate constant of precursor
CTL stimulation

ml/(particle day) 7.73 × 10−5

be Rate constant of precursor
CTL stimulation

ml/(particle day) 7.73 × 10−4

θp Cumulative viral load
threshold for anergy
induction in precursor CTL

particle/ml 3.25 × 106

θe Cumulative viral load
threshold for anergy
induction in differentiation
of CTL

particle/ml 3 × 105

αEp Rate constant of precursor
CTL natural death

1/day 0.542

αEe Rate constant of effector
CTL natural death

1/day 0.01

E0
p Homeostatic concentration

of LCMV-specific
precursor CTL in spleen of
unprimed mice

cell/day 265

τAP Duration of commitment
of CTLs for apoptosis

day 5.6

αAP Rate constant of precursor
CTL apoptosis

(ml/particle)2/day 7.5 × 10−16

αEP Rate constant of effector
CTL apoptosis

(ml/particle)2/day 4.36 × 10−14

bW Rate constant of the
cumulative viral load
growth

1/day 1

αW Rate constant of the
restoration from the
inhibitory effect of
cumulative viral load

1/day 0.11
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Fig. 4.4 Solutions of model (4.1–4.4) with the parameters estimated to best-fit the low-,
intermediate- and high-dose i.v. infections (Table4.1). Experimental data are denoted by ◦.
Reprinted from Journal of Theoretical Biology, Vol. 192, Bocharov, Modelling the Dynamics of
LCMV Infection inMice: Conventional and Exhaustive CTLResponses, Pages 283–308, Copyright
© 1998 with permission from Elsevier

The single characteristic that appeared to be sufficient to control conventional
versus exhaustive responses of CTLs was the cumulative viral load (cvl) since the
beginning of the infection. The increase of cvl above a certain threshold value in
conjunction with the high viral load in the host for about 5days results in the shift
of the infection phenotype from an acute with recovery to a chronic infection.
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Fig. 4.5 Model prediction
for the dose dependence of
virus clearance from the
spleen of C57BL/5 mice
inoculated i.v. with the
indicated doses of
LCMV-Docile and
LCMV-WE. Reprinted from
Journal of Theoretical
Biology, Vol. 192, Bocharov,
Modelling the Dynamics of
LCMV Infection in Mice:
Conventional and Exhaustive
CTL Responses, Pages
283-308, Copyright © 1998
with permission from
Elsevier

4.2.3 Viral Parameters: Impact on the Infection Phenotype

The model predicts that the virus population reaching the spleen after i.v. infection
depends on the inoculum size (I S) in a nonlinear way, as described by the following
formula:

VSpleen(day0) = 0.37 · I S
1 + I S/0.84 · 105 . (4.5)

It suggests that the fraction of virus population reaching the spleen and establishing
a productive infection decreases from 48% to 27% and 0.3% after infection with 102,
104 and 107 pfu, respectively. A continuous dose dependence of the extent of virus
elimination from the spleen of infected mice is shown in Fig. 4.5 (left curve). The
extent of virus elimination was assessed by the minimal value of the variable V (t)
over 30days post-infection. The extent of virus (LCMV-Docile) clearance displays
a threshold-type behaviour in relation to the dose of infection. The doses below
2 × 103 pfu are eliminated due to the CTL response, while the infections with higher
doses lead to CTL exhaustion and virus persistence.

4.2.3.1 Why Does LCMV-WE Strain Fail to Cause Exhaustion of CTLs
After i.v. Infection of C57BL/6 Mice?

It is known that some LCMV isolates (WE or Armstrong) do not induce viral persis-
tence after high-dose i.v. infection. However, under certain conditions LCMV-WE
can also establish persistent infection like in congenital LCMV-WE carrier C57BL/6
mice. The calibratedmodel can be used to examine the shape and position of the dose
of infection-clearance curve for the LCMV-WE isolate. To this end, using additional
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data on the growth kinetics of LCMV-WE, one needs to quantify the exponential
growth rate of the virus in spleen and the carrying capacity value. These appear
to be smaller than in the cases of LCMV-D, i.e. β = 2.57 pfu ml−1 day−1 and
K = 0.18 × 108 pfu ml−1, respectively. Neglecting the differences in CTL stimu-
lation rate due to the variation in amino acids of the LCMV-GP epitope, the infec-
tion dose-dependent clearance curve for LCMV-WE can be computed as shown in
Fig. 4.5. It suggests that the threshold dose of infection separating clearance and per-
sistence phenotypes is around 7.0 × 106 pfu. This is an order of magnitude larger
than the virus population reaching the spleen after i.v. infection (see 4.5). The dif-
ference provides an explanation of why LCMV-WE fails to cause chronic infection
after i.v. injection of 107 pfu. Thus, minor variations between the distinct LCMV
strains in the values of virus multiplication parameters might underline the about 103

increase in the virus dose threshold separating the two phenotypes of the virus–mouse
interaction, i.e. virus clearance and persistent infection.

4.2.3.2 Can Underwhelming Infection Lead to Chronic Persistence?

According to the balance of growth and differentiation concept by Grossman and
Paul [80–82], the immune system responds to a strong perturbation of the antigenic
homeostasis. The implication is that a slower replicating virus could lead to a weaker
immune response. The basic mathematical model of LCMV infection can be used
to predict the impact of the virus replication kinetics on the magnitude of the CTL
response in acute LCMV infection. To this end, we varied the exponential growth
rate of the virus from 1 to 4.8 day−1. This corresponds to an increase of the virus
population per day by factors of 2.7 and 122. The predicted dependence of the
maximum value of Ep(t) + Ee(t), t ∈ [0, 30] days is shown in Fig. 4.6. It appears
to be bell shaped.

The experimental analysis of the clonal expansion of CTLs in C57BL/6 mice
to LCMV strains (Armstrong, WE-Armstrong, WE, Traub and Docile) differing
in their replication rate confirmed that there is a bell-shaped relationship between
the LCMV growth rate and the peak CTL response (see Fig. 4.6). Both slow and
fast replicating LCMV strains produce weaker CTL responses. Thus, a mechanism
of virus persistence by sneaking surveillance due to slow replication kinetics can
be hypothesized. The ‘underwhelming’ infection mechanism (supplementing the
‘overwhelming’ infection) fits the above-mentioned concept of the sensitivity of
immune responses to perturbations.
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Fig. 4.6 Dependence of CTL expansion on virus growth rate. Left: Model prediction for i.v. infec-
tion with 200 pfu of LCMV stains differing in their replication rates. Center: Data on virus and CTL
kinetics for the WE (solid line) and Armstrong (dashed line) strains. Right: Experimental data on
the peak CTL responses in blood and spleen for 5 LCMV strains and C57BL/5 mice

4.2.3.3 Low-Level LCMV Persistence2

Acute infection with a low-dose LCMV is characterized by virus and CTL dynamics
as shown in Fig. 4.7. The viral load drops below the level of detection by conventional
assays. Experimental evidence indicates that (i) after acute infection with LCMV the
virus might persist for some time in spleen cells at a frequency of 1 copy per 104–
105 splenocytes, giving an estimate of about 500–5000 DNA copies per spleen; (ii)
a difference in total LCMV RNA copies between the peak of infection (108 − 109

copies per spleen) and the memory phase (103 or fewer copies per spleen) has been
observed; (iii) infectious LCMVmay persist at no more than 100 pfu per spleen [27]
and in some cases at the level of 1000 pfu per kidney [28].

Howcan the virus population persist in the face ofCTLmemory?There is a diverse
array of biological mechanisms that are used by viruses to escape complete elimi-
nation by the immune system, ranging from those based on a limited growth, cell-
to-cell passage without maturation, localization in an immunologically privileged
site, integration into the host cell chromosome to those based on decreasing immune
detection and destruction, e.g. via downregulation of MHC-restricted antigen pre-
sentation [29–31]. In terms of kinetics, the implication is that the replication rate and
CTL-mediated elimination rate of LCMV (represented by β and γV E , respectively)
might well be reduced during transition from the acute to the low-level persistence
phase. Indeed, available data on the growth kinetics of LCMV after immune therapy
of a persistent viral infection [32] or in CD4+ T cell or B-cell-deficient mice [33]
show a much lower rate of viral growth compared to the acute infection.

2The material of this subsection uses the results from Luzyanina et al., Low level viral persistence
after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math.
Biosci. 173, 1–23, Copyright © 2001, with permission from Elsevier.
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Fig. 4.7 Scheme of the
within-host dynamics of
virus and CTL populations
characterized by expansion-,
contraction- and memory
phases. Reprinted from
Mathematical Biosciences,
Vol. 173, Luzyanina et al.,
Low level viral persistence
after infection with LCMV: a
quantitative insight through
numerical bifurcation
analysis, Pages 1–23,
Copyright © 2001, with
permission from Elsevier
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One can investigate coexistence of viral and CTL populations in the memory
phase through numerical bifurcation analysis of the virus–host interaction model.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dt V (t) = βV (t)(1 − V (t)

K ) − γV E Ee(t)V (t),
d
dt E p(t) = αEp (E0

p − Ep(t)) + bp
(1+W (t)/θp)2

V (t − τ)Ep(t − τ) − αAPV (t − τA)V (t)Ep(t),

d
dt Ee(t) = bd

(1+W (t)/θE )2
V (t − τ)Ep(t − τ) − bEV V (t)Ee(t) − αAEV (t − τA)V (t)Ee(t)

−αEe Ee(t),
d
dt W (t) = bW V (t) − αWW (t).

(4.6)
In the context of dynamical system analysis, the coexistence of a low-level virus pop-
ulation and CTL memory corresponds to a stable steady-state solution (equilibrium)
or to a stable oscillatory solution of the model (4.6) with V , respectively V (t), below
a (small) value, e.g. below the detection level of the virus in experiments. Concern-
ing oscillatory solutions, we are interested in periodic solutions, i.e. solutions both
existing in the long term and repeating themselves after a finite time.

For the model analysis, we use the software package DDE-BIFTOOL [34, 35].
DDE-BIFTOOL is aMATLAB package (TheMathWorks, Inc.) for bifurcation anal-
ysis of systems of DDEs with several discrete delays. The package can be used to
compute and analyse the stability of steady-state and periodic solutions of a given
system as well as to study the dependence of these solutions on system parameters
via continuation.

4.2.3.4 Steady-State Solutions

Introduce the notation S := [V, Ep, Ee, W ]T for a vector of solutions of Eq. (4.6)
and F := F(S(t), S(t − τ), S(t − τA), p) for a vector defined by the right-hand
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sides of (4.6) with p a vector of parameters. A steady-state solution, S∗, of (4.6) is
a solution of the following nonlinear algebraic system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βV (1 − V
K ) − γV E EeV = 0,

αEp (E
0
p − Ep) + bp

(1+W/θp)2
V Ep − αAPV 2Ep = 0,

bd
(1+W/θE )2

V Ep − bEV V Ee − αAEV 2Ee − αEe Ee = 0,
bWV − αWW = 0.

(4.7)

This system is solved by a Newton iteration starting from an initial guess for S∗.
The linearization of (4.6) around a solution trajectory S∗(t) is the variational

equation,
d

dt
y(t) = A0(t)y(t) + A1(t)y(t − τ) + A2(t)y(t − τA), (4.8)

where Ai equals the derivative of F with respect to its (i + 1)-th argument evaluated
at S∗(t).

For a steady-state solution, S∗(t) ≡ S∗, the matrices Ai (t) are constant, Ai (t) ≡
Ai , and the variational equation (4.8) leads to a characteristic equation,

det(λI − A0 − A1e
−λτ − A2e

−λτA) = 0, (4.9)

with I the identity matrix. The characteristic roots, λ ∈ C, determine the stability of
the steady-state solution S∗. In general, (4.9) has an infinite number of roots.However,
it is known that �(λ j ) → −∞ as j → ∞ and that the number of roots in any right
half- plane�(λ) > η, η ∈ R, is finite. Hence, the stability is always determined by a
finite number of roots. The rightmost (stability determining) characteristic roots are
approximated using a linear multi-step method applied to variational equation (4.8),
see [34–36] for details. A steplength heuristic is implemented to ensure accurate
approximations of the roots with real part greater than a given constant. The approx-
imations thus obtained are corrected using a Newton iteration on the characteristic
equation.

Dependence of the steady-state solution S∗ on a physical parameter (a component
of p) can be studied by computing a branch of steady-state solutions as a function of
the parameter using a continuation procedure [34]. The stability of the steady state can
change during continuation whenever characteristic roots cross the imaginary axis.
Generically a fold bifurcation (or turning point) occurs when a real characteristic root
passes through zero and aHopf bifurcation occurs when a pair of complex conjugate
characteristic roots crosses the imaginary axis. Once aHopf point is detected it can be
followed in a two-parameter space using an appropriate determining system [34]. In
this away, for instance one computes the stability region of the steady-state solution
in the two-parameter space (if no other bifurcations occur in this region).

The relevant parameters of virus and CTL memory persistence are those charac-
terizing virus replication and precursor-, effector CTL lifespans: β, αEp , and αEe .
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Fig. 4.8 Left, middle: Solutions V (pfu/ml), Ep (cell/ml) and Ee (cell/ml) along a branch of steady-
state solutions of (4.6) versus parameter β for αEe = 0.3, αEp = 0.01. Middle figure is a blow up
of the left figure. Stable and unstable parts of the branch are denoted by solid, respectively dashed
lines. A logarithmic scale is used for the Y−axis (Left figure). Right: Real part of the rightmost
roots (real (−) and complex (−−) roots) of the characteristic equation along the same branch. Hopf
bifurcation (◦) at β ≈ 1.675

We choose the Hopf bifurcation point indicated in Fig. 4.8, as a starting point
to continue a branch of Hopf bifurcation points in the (β, αEp )-plane, see Fig. 4.9
(left). The corresponding Hopf curve bounds the stability region of the steady state
corresponding to virus population–CTLmemory coexistence because no other bifur-
cations were found in this region. Using a sequence of similar continuations, we
computed branches of Hopf points in the (β, αEp )-plane for different values of αEe ,
see Fig. 4.9 (right). Whenever αEp < 0.9αEe , it can be shown that the numerically
established stability regions in the three- parameter space can be approximated by
the formula,

β < 1.7 − 1.8αEp/αEe , (4.10)

quantitatively describing the nature of the coupling between the parameters necessary
to ensure a stable steady state with viral persistence and CTL memory. It indicates
an opposite effect of parameters αEp and αEe on the value of β.

Some information about the numerical values of virus and CTL population den-
sities for the steady states in the stability region shown in Fig. 4.9 (left) is given in
Fig. 4.10. Figure4.10 (left) presents the regions in the (β, αEp )-plane where virus
persists below the detection limit (V < 1000 pfu/ml) and below 100 pfu/ml. One
can see that the value of V almost does not depend on β unless β gets close to 0 (see
also Fig. 4.8) and virus can persist at a very low level if the death rate of CTLp (αEp )
is small enough.

4.2.3.5 Periodic Solutions

A periodic solution S∗(t) is a solution which repeats itself after a finite period T ,
i.e. S∗(t + T ) = S∗(t) for all t > 0. A discrete approximation to a periodic solution
on a mesh in [0, T ] and its period are computed as solutions of the corresponding
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periodic boundary value problem using piecewise polynomial collocation [37, 38].
Adaptive mesh selection (the lengths of the mesh subintervals are adapted to the
solution gradient) allows the computation of solutions with steep gradients.

Stability of a periodic solution is determined by the spectrumof the linear so-called
Monodromy operator, which integrates the variational equation (4.8) around S∗(t)
from time t = 0 over the period T . Any nonzero eigenvalueμ of this operator is called
a characteristic (Floquet) multiplier. Furthermore, μ = 1 is always an eigenvalue
and it is referred to as the trivial Floquet multiplier. A discrete approximation of this
operator, a matrix M , is obtained using the collocation equations. The eigenvalues
of M form approximations to the Floquet multipliers.

A branch of periodic solutions can be traced as a function of a system parameter
using a continuation procedure [34]. The branch can be started from a Hopf point
or from an initial guess (e.g. resulting from time integration). Bifurcations of peri-
odic solutions occur when Floquet multipliers move into or out of the unit circle.
Generically this is a turning point when a real multiplier crosses through 1, a period
doubling point when a real multiplier crosses through −1 and a torus bifurcation
when a complex pair of multipliers crosses the unit circle.

In the neighbourhood of a Hopf bifurcation point, solutions which belong to a
branch of periodic solutions emanating from this point oscillate around the steady-
state value corresponding to the Hopf point. Hence, Hopf points with low values of
V can be sources of periodic solutions with oscillatory low-level viral persistence.
We use the Hopf point shown in Fig. 4.8 as our ‘basic Hopf point’ and study the
existence of oscillatory patterns in viral persistence by computing branches of peri-
odic solutions emanating from this point as a function of the parameters listed in
Table4.1. Note that we depict periodic solutions on the time interval [0, 1], i.e. after
time is scaled by the factor T−1 with T the period of the solution.

Influence of β. As β grows from its Hopf point value (β ≈ 1.675), the amplitude
of oscillations of V (t) grows rapidly, see Fig. 4.11. The sensitivity of the dynamics
to changes of β is also well characterized by the fact that a subtle change in β (from
1.675 to 2.06) leads to ‘pulse’ oscillations in virus population size, see Fig. 4.11
where solutions are shown for three values of β: close to the Hopf point (a), when
Vmax ≈ 103 pfu/ml (b) and when Vmax ≈ 2 · 103 pfu/ml (c).

We summarized the bifurcation analysis results for (β, αEp ) in Fig. 4.12, where
the curves of the turning points bound regions with different numbers of (stable
and unstable) periodic solutions are shown. Note that left parts of the curves of
turning points end at Hopf bifurcation points of steady-state solutions. The dynamic
complexity of the system is well characterized by the fact that in region 3 steady-state
solutions coexist with periodic solutions and in region 2 two stable periodic solutions
coexist. However, the region of our interest, where periodic oscillations are such that
Vmax < 103 pfu/ml, is quite small. Much smaller is the region with V varying in
between 10 and 103 pfu/ml (or equivalently in between 1 and 100 pfu/spleen), see
Fig. 4.12 (right). In this region, the period of oscillations varies from 10 to 20days.

Influence of bp. Larger values of bp increase the region in the (β, αEp )-plane
where oscillatory solutions with Vmax < 103 pfu/ml exist, see region A in Fig. 4.13.
However, due to a high sensitivity of the amplitude of oscillations to changes in
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Reprinted from Mathematical Biosciences, Vol. 173, Luzyanina et al., Low level viral persistence
after infection with LCMV: a quantitative insight through numerical bifurcation analysis, Pages
1–23, Copyright © 2001, with permission from Elsevier
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Fig. 4.12 Left: Stability region (depicted in grey) of the steady-state solution and Hopf curve
(solid line) as in Fig. 4.9 (left). Two curves of turning points (−·) of periodic solutions. (∗)—two
turning points corresponding to αEp ≈ 0.130, αEp , ≈ 0.078 (see [2] for further details). Regions of
existence of periodic solutions: 1 stable solution (1, 4), 2 stable and 1 unstable solution (2), 1 stable
and 1 unstable solutions (3). The dotted line bounds a region (A) of existence of periodic solutions
with Vmax < 1000 pfu/ml. Right: A blow up of the left figure. The dashed line bounds a region (B)
where Vmin > 10 pfu/ml, i.e. the regionwith V varying in between 1 and 100 pfu/spleen. αEe = 0.3.
Reprinted from Mathematical Biosciences, Vol. 173, Luzyanina et al., Low level viral persistence
after infection with LCMV: a quantitative insight through numerical bifurcation analysis, Pages
1–23, Copyright © 2001, with permission from Elsevier



4.2 The LCMV System: Gold Standard for Infection Biology1 115

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

β

α
Ep

2 

4 

1 

3 

A 

B 

Fig. 4.13 Stability regions of steady-state- and periodic- solutions for bp = 10−3. All notations are
analogous to Fig. 4.12. αEe = 0.3. Reprinted fromMathematical Biosciences, Vol. 173, Luzyanina
et al., Low level viral persistence after infectionwithLCMV: aquantitative insight throughnumerical
bifurcation analysis, Pages 1–23, Copyright © 2001, with permission from Elsevier

values of β and αEp the region where Vmin > 10 pfu/ml (B) remains quite small.
Although two stable periodic solutions coexist in a part of region A, one of them is
not biologically realistic because of very large values of the amplitude and the period
of oscillations. Note that the upper left part of region A is bounded by the curve of
turning points (which ends at a Hopf point), i.e. for the corresponding values of β

and αEp periodic solutions lose stability before Vmax reaches 103 pfu/ml.
The effect of other parameters can be briefly summarized as follows.
Influence of αEe . As αEe decreases from 0.3 (Hopf point) to 0.1, the period of

oscillations increases to 22days and Vmax increases to 950 pfu/ml. For αEe = 0.1,
Hopf bifurcation occurs at β ≈ 1.54, which implies that for αEe = 0.1 the value of
Vmax grows from 129 to 950 pfu/ml as β changes from 1.54 to 1.675. Hence, for
αEe ∈ [0.1, 0.4] the size of the region in (β, αEp )-plane where Vmax < 103 pfu/ml is
also quite small, and the location of this region with respect to the corresponding
Hopf curve is similar to the one shown in Fig. 4.12.

Influence of τ . As τ increases from 0.6 (Hopf point), the amplitude of oscillations
grows rapidly and Vmax reaches 103 pfu/ml at τ ≈ 0.8. At this point the period of
oscillations is about 15days. For τ = 0.8 Hopf bifurcation occurs at β ≈ 1.3, which
implies that for τ = 0.8 the value of Vmax grows from 129 to 103 pfu/ml as β changes
from 1.3 to 1.675. Hence for τ = 0.8 the size of the region in (β, αEp )-plane where
Vmax < 103 pfu/ml is also quite small and the location of this region with respect to
the corresponding Hopf curve (see Fig. 4.9) is similar to the one shown in Fig. 4.12.

Variations of parameters bd and γV E within some admissible ranges (see Table2
in [2] for details) have much lesser impact on the amplitude of oscillations compared
to variations of β, αEp and τ and do not change it significantly.

Overall, we found that the periodic solutionswith V varying in between 10 and 103

pfu/ml exist in quite narrow intervals of β and αEp values and the amplitude of
oscillations grows rapidly as parametersβ, αEp and τ increase. So themodel predicts
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that oscillatory patterns in low level viral persistence (with virus population varying
in between 1 and 100 pfu/spleen) are possible for quite ‘special’ combinations of the
rates of virus growth and precursor CTLs death because of a high sensitivity of the
amplitude of oscillations to changes in the above parameters.

The main result of our analysis is that unless LCMV replication rate does not
reduce to smaller values, as compared to that during the acute phase of primary
infection, a low-level persistence in the face of CTL memory as an equilibrium state
is not possible: the virus will either be cleared or establishes a high viral load chronic
infection, both outcomes depend on the initial dose of infection and the relative
kinetics of viral growth. The extent of reduction needed depends on the responder
status of the host, in particular, the lifespan of CTLmemory subsets, duration of CTL
division cycle, activation thresholds of CTL for proliferation, and differentiation.
Since the virus remains the same during acute and persistence phase (it should not
acquire attenuating mutations) we propose that the reduction in LCMV replication
rate resulting in the low-level persistence could be either due to changes in the host
cells, e.g. mediated by type I interferons, or intrinsic features of the virus replicatory
cycle [39], which slow down the virus growth. This mechanism seems to be in
agreement with virus reappearance after in CD4+ T cell help deficient mice, since
the deficiency primarily impairs the LCMV-specific I FNγ production by CTLs and
CD4+ T cells.

4.2.4 Role of CD8+ T Cells: Protection, Exhaustion,
Immunopathology

LCMV infection ofmice is a highly dynamic processwith high sensitivity to variation
in both host and virus parameters: virus control and functional CTL memory versus
virus persistence and complete exhaustion of virus-specific CTL precursors reflect
the two extreme ends of this spectrum. While both of these outcomes are of limited
pathological consequences for the host, extensive T-cell-mediated immunopathol-
ogy represents an unfortunate intermediate in the balance of virus–host interactions.
Important host and virus parameters that determine the outcome of infection include
those controlled by MHC and non-MHC genes, presumably affecting T-cell precur-
sor frequencies and T-cell responsiveness, and virus strain, the route and dose of
infection affecting the kinetics of initial virus multiplication and virus distribution.
Thus, the susceptibility to the establishment of a virus carrier state is increased with
lower CTL responses (low responder status) and slower CTL expansion on the one
hand and the ability of the virus to spread rapidly and widely on the other hand.



4.2 The LCMV System: Gold Standard for Infection Biology1 117

4.2.4.1 How Many Precursor T Cell are Needed to Protect Against
Chronic Infection?3

The calibratedmathematicalmodel allows the examination of the effects of variations
in virus dose and initial CTLp number on the phenotype of the LCMV infection. Two
basic outcomes of the infection can be assessed: virus clearance, i.e. virus titer on day
20 (Vmin) less than the detection limit of 30 pfu per gram of spleen associated with
an elevated number of CTLp versus virus persistence (Vmin ≥ 30 pfu/g of spleen)
and exhaustion of virus-specific CTL.

The impact of variations in the initial number of virus-specific CTLp on control of
early virus spread is shown in Fig. 4.14 (left). The effect can also be studied experi-
mentally. To this endC57BL/6micewere adoptively transfusedwith 107 spleen virus
antigen-specific CTLp from TCR-P14 mice (closed symbols) or left unmanipulated
(open symbols). One day later, mice were infected with 500 pfu LCMV-Docile and
splenic virus titers were determined daily thereafter in two to three mice per group
(Fig. 4.14 centre). The results show that a 1000-fold elevation in the number of
CTLp reduces the time until virus clearance was achieved by about 2–3days. The
peak virus concentration reached during the course of the infection is also reduced
about 2–3 orders of magnitude. The model and data consistently predict that while
further increases in CTLp have an only limited effect, any decrease in the number
of CTLp below that of a C57BL/6 mouse results in significant increase in the time
until virus elimination is achieved (Fig. 4.14 right).

The model can be further used to predict the impact of variation in the number
of virus-specific CTLp on the prevention of virus persistence. The results are sum-

Fig. 4.14 Impact of variation in the number of virus-specific CTLp on the kinetics of virus clear-
ance. Left: Mathematical model prediction. Centre: Experimental assessment. Right: The relation
of the number of initial naive LCMV-specific CTL precursors and the time needed to clear virus
from the spleen as predicted by the model and validated experimentally. Reprinted from Cellular
Immunology, Vol. 189, Ehl et al., The Impact of Variation in the Number of CD8+T-Cell Precursors
on the Outcome of Virus Infection, Pages 67–73, Copyright © 1998, with permission from Elsevier

3Material of this subsection uses the results of our studies from Ehl et al., The impact of variation
in the number of CD8+T-cell precursors on the outcome of virus infection. Cell. Immunol. 189,
67–73, Copyright © 1998, with permission from Elsevier.
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marized in Fig. 4.15, right. In particular, the model predicts that a minimal threshold
number of about 25 splenic virus-specific CTLp is needed to prevent virus persis-
tence after infection with 1 pfu. Some of themodel-generated predictions were tested
experimentally as described below. To address the question of whether and how effi-
ciently an increase in the initial number of virus-specific naive CTL precursors can
protect against the establishment of virus persistence, C57BL/6 mice were adop-
tively transfused with different numbers of spleen cells from TCR-P14 mice such
that the splenic CTLp number was varied in the range from 50 to 50 × 103 cells. One
day later, the recipient mice were infected with varying doses of LCMV-Docile i.v.
and 20days after infection, virus titers were determined in the spleen and LCMV-
specific CTL activity was assessed after restimulation in vitro. Overall, the following
conclusions can be made (see Fig. 4.15, left):

• a minimal threshold number of about 2550 naive LCMV-specific CTL precursors
are necessary for control of infections in the range of 1 − 104 pfu;

• with a tenfold higher dose, a 100-fold increase is required to restore virus control;
• in high-dose infection (above 106 pfu), elevations in CTLp were found to be detri-
mental as they changed the outcome of infection from harmless virus persistence
to lethal immunopathology.

In the range where the model predictions could be tested, they were in good
agreement with observational data and supported the conclusion that above a certain
threshold increases in the number of naive CTLp must be enormous in order to
improve virus control. However, the limiting parameter for the efficacy of CTL-
mediated virus control is not only the achievement of a criticalCTLnumber in relation
to the number of virus-infected cells. Of equal importance is the time required for
CTL to mature to be antivirally protective, i.e. the earliest time point when the CTL
can efficiently eliminate a population of infected target cells.

The opportunity to compare the model predictions and experimental allows one
to define the limitations of the model as a predictive tool related to the fact that
it neglected virus spread outside the spleen. While this assumption is presumably
justified for low-dose infection, it is responsible for the fact that the model does not
account for the significant immunopathology observed after infections with higher
doses.

Since the model neglects spread of virus to extralymphatic organs, it is not suited
to predict the extent of immunopathology associated with virus clearance from these
tissues. The model requires organ-oriented extention to be relevant for examination
of the balance between protection and immunopathology by effector memory versus
naive precursor CTLs against intravenous or peripheral infections.
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Fig. 4.15 Impact of variation in the number of virus-specific CTLp on the prevention of virus
persistence. Left: Experimental data on splenic virus titers determined in surviving mice 20days
after infection for the indicated doses and initial CTLp number. Right: model prediction on the
relation of the number of initial naive LCMV-specific CTL precursors and the maximum dose of
virus that can still be eliminated from the spleen within 20days after infection. Reprinted from
Cellular Immunology, Vol. 189, Ehl et al., The Impact of Variation in the Number of CD8+T-Cell
Precursors on the Outcome of Virus Infection, Pages 67–73, Copyright © 1998, with permission
from Elsevier

4.2.4.2 Modelling LCMV-Associated Liver Disease4

Infection of mice LCMV represents an example of a systemic infectious process,
where the localization, dose and time of availability of virus antigens are important
parameters determining the outcome of infection by affecting the antiviral immune
response and pathological consequences of the cytotoxic T lymphocyte- (CTL)medi-
ated destruction of virus-infected cells [40, 41]. It provides an experimental model
system for studying diseases mediated by cytotoxic activity of effector CTL against
cells expressing virus antigen such as diabetes [42, 43], aplastic anemia [44], chori-
omeningitis [45], liver disease [46], to name just few of them. A classical example
is the LCMV-WE-induced liver hepatitis in mice [47].

The problem closely related to systemic virus spread is CTL-mediated
immunopathology. This depends on the extent of virus distribution in peripheral
tissues as well as the relative kinetics of the CTL response and is an important
determinant of the outcome of infection. Virus-induced CTL responses represent
heterogeneous populations of cells in different activation and differentiation states:
activated cycling, cytolytic effector and quiescent memory cells. These subsets dif-
fer essentially in their function and ability to migrate to peripheral sites of infec-
tion. Because LCMV is non-cytopathic, virus clearance from the host through CTL-
mediated perforin-dependent destruction of infected cells is always associated with a
varying degree of immunopathology. Under small infectious doses virus replication

4Material of this subsection uses the results of our studies from Bocharov et al., Modelling the
dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology. J. Theor.
Biol. 221, 349–78, Copyright © 2003, with permission from Elsevier.
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is localized mainly to the spleen so that virus-triggered CTL-dependent destruction
of infected antigen-presenting cells (macrophages and dendritic cells) is manifested
as acquired immune suppression [48, 49]. Large doses of systemic or any peripheral
infections lead to a wider spread of the virus in the host and can induce other types of
immunopathology, depending on the tissue damage involved (e.g. choriomeningitis).
The type of pathology in natural and experimental systems depends on

• the route of infection (intravenous, intracerebral, intrahepatic, etc.),
• tissue tropism of the virus,
• the dose of infection and
• immune status of the host.

All these factors interact nonlinearly to produce various infection outcomes ranging
from virus elimination to lifelong persistence. A quantitative characterization and
prediction of the outcome of infection in murine LCMV system requires considera-
tion of the three aspects of infection:

1. systemic virus spread,
2. lymphocytemigration during immune responses to tissue sites outside the spleen

and
3. the pathological consequences of virus elimination via perforin-dependent CTL-

mediated destruction of infected cells.

In this section,we formulate amathematicalmodel to investigate the demands toCTL
memory for protection against LCMV infection with minimal immunopathology.
To address the immunopathology question, the basic model of LCMV infection in
spleenwas extended to consider additional organs, i.e. blood and liver. Such extension
should allow to examine the severity of LCMV-associated CTL-induced hepatitis.

Formulation of a multi-compartmental mathematical model integrating the kinet-
ics of LCMV spread in various tissues of mice with effector CTL activation and traf-
ficking allow one to specify the parameters which have to be achieved for CTL vac-
cination/immunization to ensure virus elimination with minimal immunopathology
versus vaccination for disease. To keep the mathematical model in accord with what
is experimentally controlled [47], one can consider the dynamics of two enzymes
signalling liver cells destruction, AST (t) and ALT (t) as disease characteristics.

The mathematical model for CTL-mediated hepatitis in LCMV infection con-
siders the population dynamics of infection and immune response in three organs
(compartments), i.e. the blood, spleen and liver, as shown in Fig. 4.2. The compart-
mental structure of the model is formulated as a linear mamillary compartmental
system [50]:

d

dt
y(t) = M × y(t), (4.11)

where y(t) is a state vector of spatially distributed species.
The corresponding set of differential equations for LCMV-induced hepatitis con-

siders the population dynamics of

• virus titer in spleen, blood and liver: VSpleen(t), VBlood(t), VLiver (t);
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• precursor CTLs in spleen: Ep(t);
• recirculating effector CTLs in spleen, blood and liver: Ee,Spleen(t), Ee,Blood(t),

Ee,Liver (t);
• cumulative viral load in spleen: W (t);
• liver enzymes levels in blood: AST (t), ALT (t).

The basic model of LCMV infection in spleen (developed in Sect. 4.2) has to be
modified and extended to take into account the virus transfer between blood and
spleen as well as the recirculation of effector CTLs between blood and spleen. The
procedure is outlined in detail in [51]. Implementing a building block approach, it
can be described in the following structured form. Splenic LCMV infection module:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt VSpleen (t) = μSBVBlood (t) − μBSVSpleen (t)

+βVSpleen (t)(1 − VSpleen (t)
Vmvc,Spleen

) − γV E Ee,Spleen (t)VSpleen (t)/(1 + Ee,Spleen (t)/θV E,S ),

d
dt E p(t) = αEp (E0

p − Ep(t)) + bp

(1+W (t)/θp )2(1+(Ep (t)+Ee,Spleen (t))/ESat
PE )

VSpleen (t − τ)Ep(t − τ)

−αAP VSpleen (t − τA)VSpleen (t)Ep(t),
d
dt Ee,Spleen (t) = ηSB Ee,Blood (t) − ηBS Ee,Spleen (t)

+ bd
(1+W (t)/θE )2(1+(Ep (t)+Ee,Spleen (t))/ESat

PE )
VSpleen (t − τ)Ep(t − τ) − bEV VSpleen (t)Ee,Spleen (t)

−αAE VSpleen (t − τA)V (t)Ee,Spleen (t) − αEe Ee,Spleen (t)
−αPCD/(1 + VSpleen (t)/θPCD)Ee,Spleen (t),

d
dt W (t) = bW VSpleen (t) − αWW (t).

(4.12)
Note that the equation for the effector CTLs in spleen has additional terms which
describe saturation of CTL expansion rate at high population densities and passive
effector cell death under condition of limiting antigen in the spleen. We assume
bEV = 0.

Additional equations for virus dynamics in blood and liver are as follows:

⎧
⎪⎪⎨
⎪⎪⎩

d
dt VBlood (t) = μBSVSpleen (t) + μBL VLiver (t) − (μSB + μLB + εB )VBlood (t)
d
dt VLiver (t) = μLBVBlood (t) − μBL VLiver (t)

+βVLiver (t)(1 − VLiver (t)
Vmvc,Liver

) − γV E Ee,Liver (t)VLiver (t)/(1 + Ee,Liver (t)/θV E,L )

(4.13)

The module describing the recirculation of effector CTLs between blood and liver
is

{
d
dt Ee,Blood (t) = ηBS Ee,Spleen(t) + ηBL Ee,Liver (t) − (ηLB + ηSB + δB )Ee,Blood (t)
d
dt Ee,Liver (t) = ηLB Ee,Blood (t) − (ηBL Ee,Liver (t) + δL )Ee,Liver (t).

(4.14)

The equations for enzymes dynamics in blood are as follows:

⎧⎪⎪⎨
⎪⎪⎩

d
dt AST (t) = ρAST VLiver (t))Ee,Liver (t)/(1 + Ee,Liver (t)/θV E,L)

−αAST AST (t)
d
dt ALT (t) = ρALT VLiver (t))Ee,Liver (t)/(1 + Ee,Liver (t)/θV E,L)

−αALT ALT (t).

(4.15)

The model was calibrated using diverse sets of published data as described in
details in [51]. The parameters of the model are listed in Table4.2.
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Table 4.2 List of the model parameters estimated for systemic LCMV-WE infection in CB57BL/6
mice

Parameter Biological meaning Units Best-fit estimate

β Replication rate
constant of viruses in
spleen

1/day 4.7

Vmvc Maximal virus
concentration in
spleen

pfu/ml 6.5 × 108

β Replication rate
constant of viruses in
liver

1/day 2.1

Vmvc Maximal virus
concentration in
spleen

pfu/ml 3.0 × 108

γV E Rate constant of virus
clearance due to
effector CTLs

ml/(cell day) 2.5 × 10−5

θV E CTL number of
half-maximal virus
clearance rate

cell/ml 2.6 × 105

E0
p Homeostatic

concentration of
LCMV-specific CTLs
in spleen of unprimed
mouse

cell/ml 1100

αEp Rate constant of
natural death for
precursor CTLs

1/day 0.068

bp Rate constant of CTL
stimulation

ml/(pfu day) 2 × 10−3

τ Duration of CTL
division cycles

day 1.0

bd Rate constant of CTL
differentiation

ml/(pfu day) 2 × 10−2

θp Cumulative viral load
threshold for anergy
induction in precursor
CTLs (proliferation
process)

pfu/ml 1 × 106

θE Cumulative viral load
threshold for anergy
induction in effector
CTLs (differentiation
process)

pfu/ml 5.5 × 105

αPCD Rate constant of
effector CTL death
after virus clearance
below a threshold

l/day 0.3

(continued)
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Table 4.2 (continued)

Parameter Biological meaning Units Best-fit estimate

θPCD Extent of virus
elimination at which
the passive cell death
is in effect

l/day 1.0

αEe Rate constant of
natural death for
effector CTLs

pfu/ml 0.068

τA Duration of
commitment of CTLs
for apoptosis

day 9.1

αAP Rate constant of
apoptosis for precursor
CTLs

(ml/pfu)2/day 1.0 × 10−13

αAE Rate constant of
apoptosis for effector
CTLs

(ml/pfu)2/day 3 × 10−14

bW Rate constant of viral
load increase

1/day 1.7

αW Rate constant of
restoration from the
inhibitory effect of
virus load

1/day 0.4

ESat
E P Saturation rate

constant for CTL
expansion

cell/ml 1.0 × 107

ρAST Rate constant of AST
release into blood
from CTL destroyed
infected liver cell

U/l/(pfu cell day) ml2 1.0 × 10−9

ρALT Rate constant of ALT
release into blood
from CTL destroyed
infected liver cell

U/l/(pfu cell day) ml2 0.7 × 10−9

αAST Decay rate of AST in
blood

1/day 0.5

αALT Decay rate of ALT in
blood

1/day 0.5

Table 4.3 Transfer rates (hr−1) of LCMV between Blood-, Spleen- and Liver compartments

Organ Blood Spleen Liver

Blood −0.74 0.33 × 10−3 0.27 × 10−4

Spleen 0.5 × 10−3 −0.33 × 10−3 0

Liver 0.74 × 10−2 0 −0.27 × 10−4



124 4 Modelling of Experimental Infections
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Fig. 4.16 Model prediction for the dynamics of liver disease associated with LCMV infection
of C57BL/6 mice. Two qualitatively different routes of application of 2 × 105 pfu of LCMV-WE
are considered: a systemic infection leads to acute infection with modest immunopathology and
elimination of the virus; b peripheral route of infection via liver leads to severe immunopathology
and death of the animal by day 6 post-infection. Reprinted from Journal of Theoretical Biology,
Vol. 221, Bocharov et al., Modelling the Dynamics of LCMV Infection in Mice: II. Compartmental
Structure and Immunopathology, Pages 349–378, Copyright © 2003, with permission fromElsevier
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Table 4.4 Trafficking rates (day−1) of effector CTLs between Blood-, Spleen- and Liver compart-
ments

Organ Blood Spleen Liver

Blood −20 0.25 0.2

Spleen 10 −0.25 0

Liver 10 0 −0.2

The transfer rates, i.e. the elements of compartmental matrix M, for virus and
effector CTL are specified in Tables4.3 and 4.4, respectively.

The example of compartmental dynamics of LCMV infection predicted by the
model is shown in Fig. 4.16a. It presents the simulation of the CTL-mediated liver
disease after i.v. infection of C57BL/6 mice with 2 × 105 pfu of LCMV-WE. The
model predicts that: (i) virus growth in the liver proceeds at a slower rate than in
spleen and the viremia lasts for about 1week; (ii) CTL response in spleen eliminates
the splenic virus in about 10days starting from day 4; (iii) it takes 3days more to
overcome virus replication in the liver and this time lag is needed for effector CTL
to accumulate in liver above the threshold number, estimated to be 1.24 × 105 cells
per ml of liver, for which the basic reproductive ratio of the virus in liver becomes
less than one; (iv) the serum enzyme levels start to rise at high rate by day 5 after
infection.

The dynamics and outcome of LCMV infection after peripheral route of infection
is quite different. In Fig. 4.16b, the simulation of a direct injection of 2 × 105 pfu of
LCMV-WE into the liver of C57BL/6 mouse is shown. The model predicts that virus
extensively replicates in liver reaching the maximum possible titer of 3 × 108 pfu/ml
by day 5, which implies that all target cells get infected. Virus growth in the spleen is
decreased and delayed by about 1day as compared to the i.v. infection, and therefore,
the splenic CTL response starts later. By day 5, when effector CTLs accumulate
in the liver in large number, the destruction of all the infected hepatocytes results
in a fulminant immunopathology as is manifested in the model by the enormous
elevation of AST and ALT levels. Therefore, this particular combination of viral and
host parameters leads to a lethal outcome.

Adoptive transfer experiments demonstrated that virus-specific CTLs are crucial
in production of LCMV-associated hepatitis.We examined the ‘dose-effect’ relation-
ship between the number of effector CTLs injected into blood from one side and the
peak serum AST levels and the time until virus in spleen declines below detection
limit of 100 pfu/ml on the other side. The scenario of experimental i.v. infection of a
naive C57BL/6 mouse with 2 × 105 pfu of LCMV-WE accompanied with adoptive
transfer of effector CD8+ T cells at day 0 was mathematically modelled to determine
the maximum serum AST level. The predicted effect of the number of transferred
effector CTL and peak AST is shown in Fig. 4.17 Left, (b). It suggests that a higher
number of injected effectors decreases the severity of clinical disease, and injection
of about 103 cells is enough to reduce the AST level below 500U/l. The time required
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to eliminate virus below detection limit displays a non-monotone pattern, it declines
from 14 to 7days as the number of transferred effector CTL increases from 0 to
105. Further increase of transferred CTL above 4 × 105 cells leads to a rapid virus
elimination within 1 day with no signs of disease. Note, that the narrow suboptimal
range of transferred CTL represents the situation when the basic reproductive ration
of virus infection is close to 1.

The effect of increase in number of virus-specific precursor CTL in spleen (the
responder immune status) on the severity of LCMV-WE- induced liver disease and
the time of virus elimination is summarized in Fig. 4.17 Left, (c). A lifelong virus
persistence andCTLexhaustion are predicted by themodel as an outcomeof systemic
infection with 2 × 105 pfu of mice with less than 20 precursor CTLs in spleen. The
minimal number of precursor CTL to clear an infection is about 100 per spleen.
The time needed for virus elimination decreases with the increase in the number
of precursor CTLs but does not go below 4days, in contrast to the case of effector
CTLs. For initial numbers of precursor CTLs in spleen ranging from 30 to 100 cells
the outcome of the high-dose infection would be a severe or fatal hepatitis, reflecting
an unfavourable combination of viral and host parameters.

The validation of the model was conducted by comparing its predictions on the
virus dose dependence of serum enzyme concentration with experimental observa-
tions. The results and data available for C57BL/6 and ICR mice, the last one known
as being more susceptible to LCMV-WE-induced hepatitis than C57BL/6 mice, are
shown in Fig. 4.17a. The data shown are the averages for 2–4 mice bled at the times
indicated. The mathematical model based upon data for LCMV-WE infection of
C57BL/6 mice predicts a dose-effect curve which is situated below the data for ICR
mice. However, it is consistent with three available data points for C57BL/6 mice
representing the severity of infection with 2 × 105 pfu of LCMV-WE. Overall, the
model predicts the following functional relationship between the peak AST level in
blood and the dose (ranging from 0 to 106 pfu) of i.v. infection:

ASTmax ∼ √
Vblood(0) (4.16)

that is the severity of the hepatitis increases as a squared root of the infection dose.
The mathematical model can be further used to examine the infection out-

come/severity of the liver disease after peripheral LCMV-WE infection with 2 × 105

pfu via liver, i.e. intrahepatic infection. The liver infection of naive C57BL/6 mice
would result in severe hepatitis for doses ranging in between 10 and 106 pfu, see
Fig. 4.17Right, (a).Onemight try to prevent this unfavourable outcomeby adoptively
transferring LCMV-specific effector or precursor CTLs. The impact of effector CTL
is presented in Fig. 4.17 Right, (b). First, there exists a threshold number of effector
CTL∼2 × 105 cells conferring an immediate type of protection against virus spread
and severe disease. With the CTL number above the threshold, the LCMV popula-
tion is eliminated in less than 1 day, with no signs of the disease. If the number of
transferred lytic CTL is below threshold then protection against the liver disease is
not conferred, although the virus is likely to be eliminated.
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Fig. 4.17 Analysis of the impact of viral and immune status parameters on the essential character-
istics of LCMV-WE infection associated liver disease. Left: Intravenous infection with 2 × 105 pfu
is considered. Left: I.v. infection. a severity of the disease in terms of peak AST level as a function
of initial virus dose; b effect of the initial number of virus-specific cytolytic effector CD8+ T cells
injected into blood at day 0 of infection on the serum AST level and the time until virus is elimi-
nated below detection level of 100 pfu/ml; c effect of the initial number of precursor CD8+ T cells
present in spleen at day 0 of infection on the serum AST level and the time until virus is eliminated
below detection level of 100 pfu/ml. Right: Peripheral infection. a severity of the disease in terms
of peak AST level as a function of initial virus dose; b effect of the initial number of virus-specific
cytolytic effector CD8+ T cells injected into blood at day 0 of infection on the serum AST level
and the time until virus is eliminated below detection level of 100 pfu/ml; c effect of the initial
number of precursor CD8+ T cells present in spleen at day 0 of infection on the serum AST level
and the time until virus is eliminated below detection level of 100 pfu/ml. Reprinted from Journal
of Theoretical Biology, Vol. 221, Bocharov et al., Modelling the Dynamics of LCMV Infection in
Mice: II. Compartmental Structure and Immunopathology, Pages 349–378, Copyright © 2003, with
permission from Elsevier

Figure4.17 right, (c) predicts the effect of the LCMV-specific precursor CTLs
present in the spleen at the moment of infection on the peak AST level and virus
elimination time. Low numbers (less than 20 cells per spleen) of CTLp are associated
with virus persistence, CTL exhaustion and no symptoms of hepatitis. For the initial
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number of CTLp in between 20 and 105 cells a severe or fatal hepatitis would be
an outcome of the intrahepatic infection with 2 × 105 pfu. Only the population of
splenic precursor CTLs larger than 105 cells would provide protection against virus
persistence, but at the expense of a marked damage of the infected liver. Even with
107 LCMV-specific precursor CTLs in the spleen, the mouse would need at least
4days to eliminate the virus and the associated immunopathology would still be
above 1000 U/l. This time lag is required for them to get activated and generate
sufficient number of effector CTLs.

Overall, a ‘Complete’ characterization of the outcome of virus–host organism
interactionwith amathematical model requires consideration of not only the immune
response and viral dynamics, but also some characteristics of tissue damage. A new
‘spatial’ dimension can be introduced into the model via compartmental analysis.

The extended model quantitatively predicts that there is a range for the initial
number of precursor CTLs in spleen for which an elevation in the clonal size is
accompanied by an increase of disease immunopathology. Thus, it overcomes the
predictive limitations of a single-compartmental model as discussed in Sect. 4.2 and
reflects what was described experimentally as ‘vaccination for disease’ [16].

4.3 Parameters Defining a Robust DC-Induced CTL
Expansion5

Successful vaccination depends on the availability of specific antigens, efficient deliv-
ery of these antigens, and their optimal presentation to T cells within secondary lym-
phoid organs. The growing knowledge of the molecular identity of tumour-specific
antigens has opened new avenues for effective cancer vaccines [52]. Immunother-
apeutic approaches based on adoptive transfer of dendritic cells (DC) expressing
relevant antigens may be used for active mobilization of cellular immune responses
(CTLs, T-helper cells and NK cells) against tumours. DC-based immunotherapeutic
approaches appear particularly promising because DC migrate to the T-cell zones of
secondary lymphoid organswhere they efficiently initiate bothTh andCTL responses
[53, 54]. The extraordinary efficacyofDC toprime immune responses is shownby the
fact that only 102 − 103 antigen-presentingDCs in the spleen are sufficient to achieve
protective levels of CTL activation in mice [55]. A series of preclinical experimental
studies in mice demonstrated that anti-tumour immunity can be induced using DC
[56–59]. This preclinical experience has been translated into the performance of a
variety of clinical trials, which have shown that application of DC is safe and that
clinical efficacy of this treatment strategy can be obtained [60–62].

The efficacy of this active immunization depends on the complex biology of the
DC life cycle and their interaction with T cells. The kinetics of this interaction and its
sensitivity to relevant parameters are still incompletely understood. These parameters
include antigen loading, DC maturation stage, frequency and route of DC injection,

5Material of this section uses the results from Ludewig et al., Eur J Immunol. 34 (2004), 2407–18.
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frequency and activation status of T cells, and the homing rate of DC to and their
persistence within lymphoid tissues. However, the major quantitative parameters of
the DC–CTL interaction (e.g. the elimination kinetics of DC by CTL, the threshold
for T cell activation, and the impact of DC onT cell homing and recirculation) require
further analysis.

In this section, we present one possible approach to modeling the interaction
of DCs with CTLs. In the presented model, the DC–CTL interaction is described
by adapting different theoretical frameworks, such as predator–prey models from
population biology and Monod-type kinetics with saturation which are applied in
biochemistry. We are considering the underlying processes at the macroscopic level
of the whole immune system via a compartmental approach and aim to produce
a meaningful mathematical model that is both descriptive and predictive. Using a
combination of experimental in vivo work and mathematical modelling, we examine
here the systemic aspects of DC–CTL interactions. The interdisciplinary approach
presented below is composed of three major segments:

1. initial data collection and model establishment by data assimilation;
2. evaluation of effects of varied parameters in a range that is easily accessible to

the model prediction but not experimental measurement;
3. model predictions on DC-based immunization and experimental validation.

4.3.1 The Experimental Model of LCMV gp33-Specific CTL
Induction

The experimental murine system based on priming of CD8+ T cells specific for the
immunodominant gp33-peptide of the lymphocytic choriomeningitis virus (LCMV)
glycoprotein presented by DC proved to be valuable in assessing relevant parameters
of CTL induction and maintenance [56, 63, 64]. Reliable input from experimental
or clinical research in terms of precise and comprehensive data sets is a core part
of an interdisciplinary modelling approach. The data set for model-driven analysis
was generated using established protocols [55, 63]. Briefly, major histocompatibility
complex (MHC) class I tetramers complexed with the immunodominant CTL epi-
tope (gp33) derived from the glycoprotein of the lymphocytic choriomeningitis virus
(LCMV-GP) were used to follow activation of gp33-specific CTLs after immuniza-
tion with DC. DCs derived from transgenic mice ubiquitously expressing the first
60aa of LCMV-GP including gp33 (H8-DC) were injected intravenously into naive
C57BL/6 recipient mice. At the specific time points following immunization, the
densities of the following cell populations as a function of time t were determined:

• Activated CD8+ 62L− T-cells staining with the gp33-tetramer (tet+) in spleen
• Quiescent CD8+CD62L+tet+ cells in spleen Em(t);
• The availability of adoptively transferredDC for productive interactionwithT-cells
within secondary lymphoid organs was quantified. To this end 51Cr-labelled H8-
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DC were injected i.v. into naive recipient mice, and the accumulated radioactivity
was determined in spleen at different time points using established protocols [65].

The data set for homing of adoptively transferred DC from blood to spleen has been
published elsewhere [84].

4.3.2 Mathematical Model for DC-Induced Systemic
Dynamics of CTL Responses

Mathematical models for the interaction of antigen-presenting cells (APC) and T
cells developed so far, consider mainly the stimulatory aspects of the interaction of
APC and T cells [67, 68]. However, CTL-mediated killing of the antigen-presenting
DC is probably a key process in the downregulation of adaptive immune responses
[63, 69, 70]. The positive amplification effect of antigen-presenting DC on the CTL
population and the negative feedback from CTL on DC numbers implies that the cell
population dynamics of the CTL–DC system in vivo most likely reflects a predator–
prey type of interaction (Fig. 4.18). Mathematical modelling facilitates the analysis
of the following issues: (i) suitability of the predator–prey-type framework for the
dynamics of the DC–CTL system in vivo; (ii) estimation of thresholds for DC-
mediated CTL induction and trafficking; (iii) analysis of sensitivity of CTL dynamics
to various parameters (e.g. half-life ofDC and the initial number of precursor T cells);
and (iv) role of TCR avidity in the robustness of CTL priming.

To formulate equations for DC–CTL interaction following i.v. injection, we make
the following simplifying biological assumptions. Such a list is also helpful for the
evaluation of the modelling results from the viewpoint of the underlying biology.
A conceptual model for the predator–prey-type induction/regulation of CD8+ T-cell
responses by dendritic cells is shown in Fig. 4.18. Antigen-expressing DC migrate
from blood to spleen, where they induce clonal expansion of nave antigen-specific
cytotoxic T-lymphocytes (CTL), whereas activatedCTL eliminatesDC.Arrows indi-
cate the modeled processes. The structure of the model equations is based on the
following assumptions:6

1. DC do not recirculate from lymphoid organs into the blood after intravenous
injection.

2. Adoptively transferred DC are in mature state.
3. DC-mediated induction of antigen-specific CTL is due to their interaction in the

spleen.
4. DC do not divide in secondary lymphoid organs.
5. DC decay due to a short lifespan and their killing by activated CTL.

6(see for details Bocharov et al., (2005): A Mathematical Approach for Optimizing Dendritic Cell-
Based Immunotherapy. In: Adoptive Immunotherapy.Methods and Protocols, Eds. Ludewig B. and
Hoffmann M.W. (Humana Press) 109: 19–34).
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6. The population of antigen-specific CTLs in spleen is split into quiescent (nave
or central memory-like) and activated CTL (effector or effector memory-like).

7. CTL recirculate among spleen, blood and peripheral organs (e.g. liver).

To formulate the systemic model, we follow a building block approach and cali-
brate submodels (1) for initial DC distribution, (2) DC–CTL population dynamics
in spleen, and (3) the compartmental dynamics of CTL responses.

4.3.2.1 Initial DC Migration

I.v. injection of DCs leads to one way migration to the peripheral organs, i.e. spleen,
liver, lung and others. The rate of chage of the DCs population is described by

d

dt
DBlood(t) = − (μBS + μBL + μBLu + μBO) · DBlood(t) (4.17)

d

dt
DSpleen(t) = μBS · DBlood(t)

QBlood

QSpleen
(4.18)

d

dt
DLiver (t) = μBL · DBlood(t)

QBlood

QLiver
(4.19)

d

dt
DLung(t) = μBLu · DBlood(t)

QBlood

QLung
− μLuO · DLung(t) (4.20)

The transfer parameters estimated from experimental data are gived in Table4.5.

4.3.2.2 DC–CTL Interaction in Spleen

The submodel for DC and CTL interaction in spleen reflects a biological view of the
processes as depicted in Fig. 4.18.

The rate of change in the density of DC in the spleen is modelled as

Table 4.5 Transfer rates (hr−1) of DC between Blood-, Spleen-, Liver- and Lung compartments

Organ Blood Spleen Liver Lung

Blood −1.124 0 0 0

Spleen 0.12 0 0 0

Liver 0.38 0 0 0

Lung 0.16 0 0 −0.0911
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Fig. 4.18 Scheme of the predator–prey type interaction between CTL responses and DCs in spleen
used for the model formulation. Arrows indicate the modelled processes which appear as individual
terms on the right-hand sides of specified equations. Cell Pictures taken from Servier Medical Art

d

dt
D(t) = μBS · QBlood

QSpleen
· DBlood(t) − αD · D(t) − bDE · Ea(t) · D(t). (4.21)

The first term represents the trafficking of DCs from blood to spleen (QBlood and
QSpleen being the volumes of the blood and spleen compartments, respectively), and
the other two take into account the natural death of the cells and their elimination by
activated CTLs.

The dynamics of activated CTLs is modelled by the following equation:

d

dt
Ea(t) = αEa ·

(
Enaive − Ea(t)

)
+ bp · D(t − τd ) · Ea(t − τd )

θD + D(t − τd )
− ram · Ea(t) + ba · D(t) · Em(t)

(4.22)
The first term considers the homeostasis of naive CTLs in the spleen, the second term
represents the DC-induced division of CTLs proceeding at the rate that saturates at a
high number of DCs. The time lag between the cognate interaction of CTL with DC
represents the duration of pre-programming of CTL for division and differentiation.
The last two terms take into account the silencing of activated CTLs into quiescent
memory cells (third term) and the activation of the memory cells by DCs.

The equation for the dynamics of quiescent memory CTLs is

d

dt
Em(t) = ram · Ea(t) − (

αEm + ba · D(t)
) · Em(t) (4.23)

which considers the transition of the activated CTLs into the quiescent memory state,
the death of memory CTLs at some slow rate, and the activation of memory CTLs
depending on the availability of DCs.
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The above model for DC–CTL interaction in the spleen was fitted to the experi-
mental data sets to estimate the parameters via a maximum likelihood approach. We
assumed that the observational errors of the data follow a log-normal distribution
and are independent between cell populations. The relevant information about the
model parameters governing the DC–CTL interaction in the spleen is summarized
in Table4.6. The corresponding solution of the model is shown in Fig. 4.19.

Themodel predicts that the threshold of DC density for half-maximal CTL expan-
sion rate in the spleen is about 200 cells per spleen which explains the rather small
effects in the chosen dose range on the magnitude of the CTL response. The ampli-
fication factor of the CTL expansion is about 12 cells per day implying that the
pre-programming effect probably lasts for three to four divisions. The estimate of
per capita CTL-mediated elimination rate of theDC (bDE ) suggests that the threshold
number of activated CTLs eliminating about 50% of antigen-presenting DCs per day
is about 1.4 × 104 per spleen. Furthermore, the model predicts that about 7% of the
activated CTLs enter the memory pool.

4.3.2.3 Compartmental Dynamics of CTL Responses

The next step is to extend the spleen-localized model to the systemic dynamics
of a DC-induced CTL response according to the scheme shown in Fig. 4.20. The
extended model considers the dynamics of DC–CTL interactions in spleen and
CTL recirculation between spleen, blood and liver. The trafficking of both acti-
vated and quiescent antigen-specific CTLs between the spleen, blood and liver
is described in a uniform way as a nonlinear compartmental system. Using the
vector notation for the CTL subsets densities in the above compartments Ei (t) =[
EBlood
i (t), ESpleen

i (t), ELiver
i (t)

]T
, i = a,m

d

dt
Ei (t) = MEi · Ei (t)(t) + Ii (t), (4.24)

where Ei (t) is a state vector of organ distributed CTLs in activated and memory
states. Here the compartmental matrix stands for CTL inter-compartmental transfer
rates.

MEi =
⎛
⎝

−μBB μSB (DSpleen(t)) μLB
μBS −μSB (DSpleen(t)) 0
μBL 0 −μLB

⎞
⎠, with μSB (DSpleen(t)) = μ∗

SB + Δμ
1+DSpleen (t)/θshut

.

Here, theDC-dependentmigration rate from the spleen to the blood takes into account
the trapping effect. The input/output vector-function
Ii (t) = [

0, (division − death)Spleen, 0
]T

represents the contribution of DC-induced
CTL responses in the spleen.

The estimated trafficking rate parameters for CTLs are listed in Table4.7. The
computed curves of CTL dynamics versus the experimental data are shown in
Fig. 4.21. A critical feature for the systemic response is that CTL transfer rates from
spleen to blood appear to be DC-density dependent. To describe the observed CTL
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Fig. 4.19 Data versus model description for the population dynamics of DCs and CTLs in spleen
induced by i.v. injection of 2 × 104, 2 × 105, 2 × 106 gp33-presenting H8-DCs. The symbols
represent averages of 3 mice ± SD. The lines describe the predicted populations dynamics of total
tet+, activated tet+ and quiescent memory tet+ CTL and H8-DC. DC elimination follows a biphasic
kinetics, the first slower phase reflects their life-span and the accelerated decay phase results from
the killing effect by activated CTLs. (The figure is adapted from Ludewig et al., EJI, 2004)
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Table 4.6 The estimated parameters of themathematicalmodel ofH8-DC-inducedCTLpopulation
dynamics

Parameter Biological meaning Units Best-fit estimate

μH8−DC
BS Transfer rate of

H8-DCs from blood to
spleen

1/day 2.832

αD Decay rate of gp-33
expressing DCs

1/day 0.23

bDE Per capita elimination
rate of H8-DCs by
activated CTLs

ml/(cell day) 0.487 × 10−5

Enaive The number of naive
gp-33-specific CTLs
contributing to
primary clonal
expansion

cell 370

τd Duration of
pre-programmed CTL
division cycle

day 1

αEa Rate constant of
activated CTLs death

1/day 0.12

αEm Rate constant of
resting memory CTLs
death

1/day 0.01

bp Maximal expansion
factor of activated
CTLs per day

1/day 12

θD Threshold in DC
density in the spleen
for half-maximal
proliferation rate of
CTL

cell/ml 2.12 × 103

ram Rate constant of
reversion of activated
CTLs

1/day 0.01

ba Activation rate
constant of quiescent
CTLs by DCs

ml/(cell day) 1.05 × 10−3

θshut Threshold in DC
density in the spleen
for half-maximal
transfer rate of CTL
from spleen to blood

cell/ml 13.0

kinetics, one needs to consider the possibility of the DC-dependent retention of T
cells. Thus, the model predicts a trapping effect, which reduces the export rate of
CTLs to blood by about tenfold above a threshold of about 10 H8-DCs present in
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Fig. 4.20 Compartmental scheme of systemic dynamics of adoptively transferred DC and CTL.
Antigen-expressing DCs migrate from blood to spleen, where they induce clonal expansion of nave
antigen-specific cytotoxic T-lymphocytes, whereas activated CTL eliminate DC. Arrows indicate
the modelled processes. Cell Pictures taken from Servier Medical Art

Table 4.7 Trafficking rates (day−1) of tet+ CTLs between Blood-, Spleen- and Liver compart-
ments

Organ Blood Spleen Liver

Blood −1 [0.012, 0.112] 0.51

Spleen 0.022 −[0.012, 0.112] 0

Liver 0.1 0 −0.51

the spleen and equally applies to quiescent and activated CTL. The model predicts
that 89% of peptide-specific CTL leave the blood compartment daily to organs other
than the spleen and liver.

The sensitivity analysis of themodel solutions suggests that T-cell receptor avidity,
the half-life of DC, and the rate of CTL-mediated DC elimination are the major
control parameters for optimal DC-induced CTL responses. For induction of high
avidityCTLs, the number of adoptively transferredDCwas ofminor importance once
a threshold of approximately 200 cells per spleen had been reached. As discussed
before, the major objective of DC-based immunization is the maximal expansion
and long-term maintenance of high numbers of antigen-specific T cells. Thus, the
model can be applied to study the patterns of CTL population dynamics following
repeated injection of H8-DC. Two sequential applications of 2 × 104 DCs at days
0, and 40 induce a robust CTL response with only a weak boosting effect. The
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Fig. 4.21 Compartmental dynamics of DC-induced tet+ CTL responses in the spleen, blood and
liver. The values for blood indicate the number of tet+CD8+ T cells/ml. The symbols represent
averages of three mice ± SD

model predicts that as long as significant numbers of activated (or memory cells
with a faster activation kinetics than that of naive) CTLs persist which ensure rapid
elimination of antigen-expressing DCs, any further application of DCs has only a
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limited enhancement effect.Nevertheless, such repeatedDCapplication is apparently
necessary to maintain high levels of activated CTLs.

4.4 MHV Infection: How Robust Is the IFN Type
I-Mediated Protection?6

Human infections with highly virulent viruses, such as 1918 influenza or SARS-
coronavirus, represent major threats to public health. The initial innate immune
responses to such viruses have to restrict virus spread before the adaptive immune
responses fully develop.Therefore, it is of fundamental practical importance to under-
stand the robustness and fragility of the early protection against such virus infections
mediated by the type I interferon response. The inherent complexity of the virus–
host system suggests the application of mathematical modelling tools to predict the
sensitivity of the kinetics and severity of infection to variations in virus and host
parameters.

4.4.1 Immunobiology of MHV Infection

The mouse hepatitis virus (MHV) infection represents a well- understood paradig-
matic system for the analysis of type I IFN responses. MHV is a member of the
Coronaviridae family that harbour a number of viruses causing severe diseases in
animals and humans, such as acute hepatitis, encephalitis, infectious bronchitis, lethal
infectious peritonitis and the severe acute respiratory syndrome (SARS) [74, 75]. In
systemic MHV infection, spleen and liver represent major target organs [76], and
primarily hematopoietic cell-derived type I IFN controls viral replication and virus-
induced liver disease [77] as shown schematically in Fig. 4.22.

It has been demonstrated experimentally that pDCs are the major cell popula-
tion generating IFNα during the initial phase of mouse coronavirus infection [76].
Importantly, mainly macrophages (Mφ) and, to a lesser extent conventional DCs,
respond most efficiently to the pDC-derived type I IFN and thereby secure con-
tainment of MHV within secondary lymphoid organs (SLOs) [78]. Thus, the type
I IFN-mediated crosstalk between pDCs and Mφ represents an essential cellular
pathway for the protection against MHV-induced liver disease. In systems biology
terms, MHV infection triggers a complex array of processes at different biological
scales such as protein expression, cellular migration or pathological organ damage.
To focus on the front edge of the virus–host interaction, the modelling-based anal-
ysis specifically addresses the early dynamics (i.e. the first 48h) of the type I IFN
response to MHV since this is decisive for the outcome of the infection. The reduc-
tionists view of the most essential processes underlying the early systemic dynamics

6Material of this section uses the results Bocharov et al., PLoS Pathog. 6 (2010), e1001017.
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of MHV infection, liver pathology and the first wave of type I IFN production is
summarized in Figs. 4.22 and 4.23.

4.4.2 Setting up a Mathematical Model

To describe quantitatively the structure, dynamics and the operating principles that
permit pDCs to initially shield the host against an overwhelming spread of the cyto-
pathic MHV infection, one can follow a systems biology approach. First, the system
dynamics is decomposed into a set of elementary, well-documented processes such
as virus replication, target cell turnover and IFN-I decay, as well as the production of
virus and IFN-I by infected cells (Fig. 4.22). This allows one to quantify the individ-
ual decay rates, the virus–target cell interaction parameters and the protective effect
of IFN-I. Once these elementary modules of virus–target cell interactions were cal-
ibrated, one can use them as building blocks to set up an integrated mathematical
model of pDC-mediated type I IFN responses against MHV infection in mice.

Themathematicalmodel canbedeveloped in stages by formulating and calibration
the modules specifying

• Kinetics of virus, IFN-I and cells in vitro,
• Basic IFN-I response to infection of target cells,
• Compartmental dynamics of virus growth,
• Systemic model of MHV infection and IFN-I response.

The compartmental model considers the temporal dynamics of

• IFN-I I (t) and unifected/infected pDCs and macrophages C pDC (t),CMφ(t),
C pDC

V (t),CMφ

V (t) in spleen,
• systemic dynamics of the virus in spleen, blood and liver VS(t), VB(t), VL(t).
• dynamics of liver enzyme AST in blood.

The corresponding equations formulated using a well-established approach (we refer
to [3] for further details) read as follows:

d I

dt
(t) = ρ

pDC
I C pDC

V (t − τ
pDC
I ) + ρ

Mφ

I CMφ

V (t − τ
Mφ

I ) − dI I (t) (4.25)

dC pDC
V

dt
(t) = σ

pDC
V VS(t)C

pDC (t) − d pDC
0CV C pDC

V (t) (4.26)

dCMφ

V

dt
(t) = σ

Mφ

V VS(t)C
Mφ(t) − dMφ

0CVC
Mφ

V (t) (4.27)

dC pDC

dt
(t) = −σ

pDC
V VS(t)C

pDC (t) + d pDC
0C

(
C pDC
0 − C pDC (t)

)
(4.28)
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dCMφ

dt
(t) = −σ

Mφ

V VS(t)C
Mφ(t) + dMφ

0C

(
CMφ
0 − CMφ(t)

)
(4.29)

dVS

dt
(t) = ρ

pDC
V

1 + I (t)/θpDC
C pDC

V (t − τ
pDC
V ) + ρ

Mφ

V

1 + I (t)/θMφ

CMφ

V (t − τ
Mφ

V )

−
(
σ

pDC
V C pDC (t) + σ

Mφ

V CMφ(t)
)
VS(t) − dV VS(t)

− μSBVS(t) + μBSVB(t)
QB

QS
(4.30)

dVB

dt
(t) = μSBVS(t)

QS

QB
+ μLBVL (t)

QL

QB
− (μBS + μBL + μBO ) VB(t) (4.31)

dVL

dt
(t) = βLVL(t) (1 − VL(t)/KL) − μLBVL(t) + μBLVB(t)

QB

QL
(4.32)

d A

dt
(t) = ρAVL(t) + dA

(
A∗ − A(t)

)
. (4.33)

The relevant information about the model parameters is summarized in Table4.8.
The best-fit solution is shown in Fig. 4.24.

4.4.3 Parameter Estimates and Sensitivity Analysis

The best-fit parameter estimates of the model characterize the concentration of IFN-I
which is required to inhibit by twofold the production of virus by the infected cells. It
appears that the pDC and Mφ differ with respect to their sensitivity to the protective
effect of interferon, so that the 50% reduction threshold concentrations are about
46 pg/ml and 1 pg/ml, respectively. The per capita type I IFN secretion rate also
differs substantially between pDC and Mφ, being 15586 molec/h and 106 molec/h,
respectively. The sensitivity analysis suggests a high protective capacity of single
pDCs which protect 103–104 Mφ from cytopathic viral infection localized to spleen.
Themodel allows one to determine theminimal protective unit of pre-activated pDCs
in spleen to be around 200 cells which can rescue the host from severe disease. The
modelling results suggest that the spleens capability to function as a sink for the virus
produced in peripheral target organs remains operational as long as viral mutations
do not permit accelerated growth in peripheral tissues.
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Table 4.8 Estimated parameters of themathematicalmodelMHV infection and type I IFN response

Parameter Biological meaning Units Best-fit estimate

ρDC
V Virus production rate

by pDC
pfu/cell/h 1.7

ρ
Mφ
V Virus production rate

by Mφ

pfu/cell/h 36.7

ρDC
I Type I IFN production

rate by pDC
pg/cell/h 4.4 × 10−4

ρ
Mφ
I Type I IFN production

rate by Mφ

pg/cell/h 1.0 × 10−6

θpDC The threshold for 50%
reduction of virus
production rate by
type I IFN

pg/ml 45.8

θMφ The threshold for 50%
reduction of virus
production rate by
type I IFN

pg/ml 0.97

σ DC
V Infection rate of pDC cell/pfu/h 1.3 × 10−6

σ
Mφ
V Infection rate of Mφ cell/pfu/h 0.9 × 10−7

τ
pDC
V Virus production delay

by pDC
h 5.96

τ
Mφ
V Virus production delay

by pDC
h 5.99

τ
pDC
I Type I IFN production

delay by pDC
h 5.77

τ
Mφ
I Type I IFN production

delay by Mφ

h 5.8

d pDC
0CV , k pDC

CV Gompertz death rate
parameters for
infected pDC

1/h 0.2, 0.087

dMφ
0CV , kMφ

CV Gompertz death rate
parameters for
infected Mφ

1/h 0.049, 0.057

μBS Virus transfer rate
from blood to spleen

1/h 3.46

μBL Virus transfer rate
from blood to liver

1/h 0.018

μSB Virus transfer rate
from spleen to blood

1/h 0.91

μLB Virus transfer rate
from liver to blood

1/h 0.61

(continued)
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Table 4.8 (continued)

Parameter Biological meaning Units Best-fit estimate

μBO Virus elimination rate
from blood

1/h 1.22

βL Virus growth rate in
liver

pfu/ml/h 0.78

KL Carrying capacity of
the liver

pfu/ml 107

ρA Rate constant of ALT
release into blood

IU/l 0.68 × 10−3

dA Decay rate of ALT
release in blood

1/h 0.16

A∗ Physiological level of
ALT in blood

IU/l 25

Importantly, the mathematical model of MHV infection can be used to evaluate
the limits of protection against severe disease for increasing virus replication rates.

Fig. 4.24 The solution of the compartmental model describing the kinetics of a interferon response
and the population dynamics of b virus in spleen (solid line), liver (dotted line) and blood (dashed
line), c and e uninfected/infected pDCs,d and f uninfected/infectedmacrophages. The parameters of
the interferon response were estimated from in vitro and in vivo (spleen) data. The compartmental
approach assumes an instantaneous mixing of IFN-I implying that the concentration across the
SLO (spleen) is uniform. Reprinted from Mathematical Modelling of Natural Phenomena, Vol. 6,
Bocharov et al., Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid
Organs, Pages 13–26, Copyright © 2011, with permission from EDP Sciences
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Liver Spleen 

Fig. 4.25 Effect of virus growth rates on pDC-mediated protection against disease. a Sensitivity
of the disease severity to variations in pDC numbers (cells per spleen) and the global increase of
viral replication rate in the liver (% increase). Disease severity is determined as peak ALT levels
in serum within 48 h post-infection following i.v. infection with 50 pfu. b Determination of the
systems robustness against disease with respect to variations in pDC numbers (cells per spleen) and
increasing viral replication rates restricted to Mφ in the spleen (Note: fold increase). (The figure
is reprinted from Bocharov et al. PLoS pathogens, 2010)

Since various MHV strains display significant differences in their ability to replicate
in different organs, two complementary scenarios were considered: the increase in
virus growth rate in the peripheral organs (liver) versus secondary lymphoid organs
(spleen). Figure4.25 A shows that pDCs in spleen provide very limited protection
against severe disease for faster replicating strains of the virus in hepatocytes. Indeed,
only a 15% increase in the growth rate of MHV in the liver leads to infection with
ALT levels rising to 103 IU/L within 2 days. The decrease of pDC numbers in spleen
makes the situation more fragile to even smaller increases in the virus growth rate.
On the contrary, pDCs provide a robust protection against severe disease when the
virulence-enhancing mutation leads to faster replication only in target cells located
in spleen, i.e. splenic pDCs protect against severe disease for up to 30-fold increase
in the viral replication rate in splenic Mφ (See Fig. 4.25b). Taken together, these
analyses indicate that the spleen represents a robust sink system able to cope with
substantially enhanced virus production as long as this gain of viral fitness remains
restricted to this SLO.

Overall, the modelling results suggest that the pDC population in spleen ensures
a robust protection against virus variants which substantially downmodulate type I
IFN secretion. However, the ability of pDCs to protect against severe disease caused
by virus variants exhibiting an enhanced liver tropism and higher replication rates
appears to be rather limited. Taken together, this system immunology analysis sug-
gests that antiviral therapy against cytopathic viruses should primarily limit viral
replication within peripheral target organs.
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4.5 Identifying a Feedback Regulating Proliferation and
Differentiation of CD4+ T Cells8

In response to antigens, specific T-cell clones rapidly increase in size and then steeply
decline, approaching relatively stable frequencies higher than those of the naive
cell population. It was discovered by W.E. Paul’s team (see data presented in [79])
that there is a log-linear relation between the CD4+ T-cell precursor number (PN)
and the factor of expansion (FE), with a slope of ∼0.5 over a range of 3–30,000
antigen-specific precursors per mouse. The experimental results suggested an inhi-
bition mechanism of precursor expansion either by competition for specific antigen-
presenting cells or by the action of other antigen-specific cells in the same microen-
vironment. Mathematical modelling can be used to identify the specific functions
underlying the feedback regulation of the observed clonal dynamics.

As it was discussed in Chap.2, the role of immunological theories in specify-
ing mathematical models is essential. To formulate a mathematical model which
describes and explains the observed findings, i.e. the data on CD4+ T-cell expan-
sion for various precursor numbers and the accompanying data sets from BrdU- and
CFSE labeling kinetics, we considered the feedback-regulated balance of growth
and differentiation concept by Grossman and Paul [80–82]. It was assumed that the
most differentiated effectors (or memory cells) limit the growth of less differenti-
ated effectors, locally, by increasing the rate of differentiation of the latter cells in
a dose-dependent manner [4]. The biological scheme and the sequence of function-
ally distinct stages in cell development underlying the equations of the mathematical
model is shown schematically in Fig. 4.26. Cell proliferation and differentiation rates
were assumed to be regulated in a feedback fashion, i.e. they depend on the number
of differentiated cells.

The population dynamics of the above four subsets of CD4+ T cells was modelled
using a system of ODEs. The core mathematical model was used for data assimila-
tion either directly (data on the kinetics of clonal expansion and contraction) or in
two extended forms in which the cell subsets were further subdivided into unlabelled
and labelled compartments, to describe the BrdU-labeling data and CFSE dilution
data, respectively. A number of data fitting and analysis methods, including themaxi-
mum likelihood approach, Akaike information criteria, statistical model comparison
methods and sensitivity analyses were used to identify a parsimonious model of the
kinetics of antigen-driven CD4+ T-cell expansion (we refer to [4] for details). The
set of core model equations with feedback regulation is represented in the following
form:

d

dt
X1(t) = p1X1(t) −

(
α1 + α12

1

1 + (Z1(t) + Z2(t))/θx1
Z2

)
X1, (4.34)

8Material of this subsection uses the results of our studies fromProceedings of theNationalAcademy
of Sciences of the United States of America (PNAS USA), Vol. 108, Bocharov et al., Feedback
regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion
on precursor number, Pages 3318–3323, Copyright © 2011 with permission from PNAS USA.
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Prolifera on & differen a on

Feedback regula on

(a)

(b)

Fig. 4.26 Biological scheme of the concept of feedback-regulated balance of growth and differen-
tiation of cells by Z. Grossman by W. Paul. a Heterogeneity of the proliferation and differentiating
clones. b A simple view of the sequence of functionally distinct stages in cell development. Cell
proliferation and differentiation rates are assumed to be regulated in a feedback fashion, i.e. they
depend on the number of differentiated cells. Two subsets X1 and X2 represent the proliferating
cell population. X1 is less mature than X2. The differentiated cell populations Z1 and Z2 can not
divide. The population of more differentiated cells Z2 controls the balance of proliferation and
differentiation of X1 and X2 subsets. Reprinted from Proceedings of the National Academy of
Sciences of the United States of America (PNAS USA), Vol. 108, Quiel et al., Antigen-stimulated
CD4 T-cell expansion is inversely and log-linearly related to precursor number, Pages 3312–3317,
Copyright © 2011 with permission from PNAS USA

d

dt
X2(t) = p2X2(t) +

(
α1 + α12

1

1 + (Z1(t) + Z2(t))/θx1
Z2

)
X1 − (α2 + α22Z2) X2, (4.35)

d

dt
Z1(t) = (α2 + α22Z2) X2 − β1Z1, (4.36)

d

dt
Z2(t) = β1Z1 − δZ2. (4.37)

The consistency of the model with data on clonal expansion of CD4+ T cells starting
from 300 precursors in the LNs at the time of immunization and 3 × 104 cells along
with the evolving structure of the clones is illustrated in Fig. 4.27. The model gives a
precise quantitative relation between the factor of expansion (FE) and the precursor
number (PN ) as follows: FE = PN 0.48 × 3.981.
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Fig. 4.27 Model-based data assimilation and parameter estimation. The kinetics of clonal expan-
sion and contraction for different initial numbers of transferred antigen-specific precursor CD4+
T cells. The time evolution of the total number of cells (Left) and evolution of the clonal struc-
ture (Right) are shown. Upper row, 300 antigen-specific CD4+ T cells in the LNs at the time
of immunization; Lower row, 3 × 104 antigen-specific precursor CD4+ T cells at immunization.
Reprinted from Proceedings of the National Academy of Sciences of the United States of America
(PNAS USA), Vol. 108, Bocharov et al., Feedback regulation of proliferation vs. differentiation
rates explains the dependence of CD4 T-cell expansion on precursor number, Pages 3318–3323,
Copyright © 2011 with permission from PNAS USA

One can conclude that the feedback-regulated balance of growth and differen-
tiation hypothesis, although requiring definite experimental characterization of the
hypothetical cell phenotypes and molecules involved in the identified regulation, can
explain the kinetics of CD4+ T-cell responses to antigenic stimulation.We note that a
mathematical model based on a different hypothesis (e.g. ‘grazing of peptide-MHC
complexes’) was proposed to explain the same phenomenon although in a semi-
quantitative manner [83]. However, no evidence of its consistency with all available
data sets that were described and analysed in [4, 79] was presented.

In conclusion, while a multitude of mathematical models can be generated to
describe any given immunological phenomenon, it is crucial to always link it to
available experimental data. If model and data are in good agreement, then the model
may help to generate new hypothesis of underlying mechanisms and provide further
testable predictions. In addition, as outlined in Sect. 4.5, a model may also strongly
support a novel hypothesis that was brought up ad hoc from immunological consid-
erations.
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Chapter 5
Modelling of Human Infections

In this chapter we illustrate the application of mathematical models and computa-
tional analyses tools of various complexity to the description and explanation of
some observed phenotypes of viral infections in humans, such as HIV and HBV
infections. Specifically, we try to gain a deeper understanding of the sensitivity of
infection dynamics to growth rate and the efficacy of antigen presentation by APCs,
the phenomenon of spontaneous recovery from HBV infection and the kinetic deter-
minants of a low-level (i.e. below the detection threshold) HBV persistence. The
material of this chapter is based on our previous work published in [3, 12–14, 33].

5.1 Outcome of Virus Infections as a ‘Numbers Game’

Application of mathematical models for analysis and prediction of the mecha-
nisms underlying unfavourable outcomes of viral infections in humans presents a
formidable challenge. This is due to the genetic diversity of individuals as well as
limited access to dynamic processes in vivo.Virus infections of humans are character-
ized by a spectrum of courses and outcomes which can be categorized as subclinical,
acute with recovery, chronic and lethal infection phenotypes as presented in Fig. 5.1.

Research in viral immunology centres around the questions ‘Why’ and ‘How to
cure’ unfavourable infectious disease. From the clinician’s perspective, the differ-
ences in the disease course and outcomes depend on characteristics such as (see
Fig. 5.2)

• Health condition of the infected individual (e.g. Tx-patient, newborn etc., age),
• Immunopathology,
• Cytopathicity of virus,
• Persistence,
• Tropism,
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Fig. 5.1 Basic dynamic patterns of infectious diseases: subclinical, acute with recovery, chronic
and lethal infection
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Fig. 5.2 Coordinatization problem in infectious disease modelling: view of the disease from a
clinician’s and mechanistic perspectives

• Latency,
• Dose of infection,

with most of them being difficult to quantify [1]. From a mechanistic point of view,
the phenotype of virus–host organism interaction is determined by a set of physi-
cal, chemical and biological processes (Fig. 5.2) which are in principle amenable to
a mathematical description. A general framework for understanding the regulation
(sensitivity) of the immune response by the antigen growth-accumulation kinetics
has been proposed by Grossman and Paul [2] based upon the notion of perturbation.
The mathematical models allow one to explore a dynamic interplay between virus
and host parameters in the outcome of infection (Fig. 5.3). Once the mathematical



5.1 Outcome of Virus Infections as a ‘Numbers Game’ 155

Nonlinear interplay between virus & 
host factors in the outcome of infec on 

Virus 
growth

Immune 
Response

Fig. 5.3 Schematics view of the viruses and the host organism as competitors for resources of
survival. There exists a nonlinear interplay between virus and host factors in the outcome of infection

model is formulated, it can be used to study theoretically the regulation of disease
dynamics from a quantitative and causal perspective, i.e. in terms of ‘numbers game’
[1]. The effect of pathogen replication rate on the outcome of virus infection is a
straightforward example of a controversial issue that can be resolved using mathe-
maticalmodelling. Indeed, earlier experimental studieswith LCMV infection inmice
suggested that a faster virus replication is an advantage for a virus in overcoming
the immune system control and establishing persistent infection by exhaustion [4].
However, the mathematical model based steady-state stability analyses suggested
that slow virus replication also favours long-term persistence [6] consistent with the
sensitivity theory of Grossman and Paul [2]. The contradictionwas partly resolved by
additional experiments as described in Chap.4, which showed that the dependence of
CTL expansion depends nonlinearly on the growth rate of the pathogen, suggesting
that slower replicating (non-cytopathic) viruses have an advantage in establishing
persistence.

5.2 Reference Curves: HIV and Memory T-Cell Decay
Under HAART

Antigen-specific memory T cells1 are of fundamental importance for the control
of microbes, particularly persistent infections such as HIV, and hepatitis B and C
viruses. The longevity of virus-specific memory T cells in humans and, in particular,
their dependence on persisting antigen are poorly known and understood. To estimate
turnover of such memory T cells, we analysed the data on the population kinetics of
HIV-1 Gag-specific and cytomegalovirus (CMV)-specific CD4+ and CD8+ T cells
in a cohort of HIV-1-infected individuals after highly active antiretroviral therapy
(HAART) [3]. We used a simplest mathematical model in the form of an exponential
(decay/growth) kinetics

d

dt
N (t) = b · N (t), (5.2.1)

1Material of this section uses the results of our studies from AIDS Res Hum Retroviruses, Vol. 23,
Sester et al., Maintenance of HIV-Specific Central and Effector Memory CD4 and CD8 T Cells
Requires Antigen Persistence, Pages 549–553, Copyright © 2007 Mary Ann Liebert, Inc.
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Fig. 5.4 Effect of HAART on antiviral responses in HIV infection. Best-fit regression curves are
shown. Upper row: HIV viral load normalized in each individual as a percentage of the respective
value at the beginning of HAART; absolute number of CD4+ T cells (centre) CD8+ T cells (right).
Lower row: The values for absolute numbers of HIV-specific CD4+ T cells (left) and CD8+ T cells
(right) during HAART in each individual were normalized as a percentage of the respective values
at the beginning of HAART. Solid line—the exponential model, dotted lines—the 95% CIs of the
uncertainty in dynamics. (The figure is reprinted from Sester et al., AIDS Res Hum Retroviruses,
(2007) 23: 549–553

where N (t) stands for the viral load, or CD4+ and CD8+ T cell numbers. Figure5.4
shows the effect of HAART on HIV load and HIV-specific CD4+ T cells and CD8+
T cells summarizing the data in the form of exponential regression. The best-fit value
and 95% confidence intervals for half-live parameter τ1/2 = log2/b are estimated.
The model predicts the following mean half-lives for the key characteristics of HIV
infection:

• HIV-RNA in blood τ V L
1/2 = 0.176 months, C I95% = [0.169, 0.184];

• HIV-specific CD4 T cells in blood τCD4
1/2 = 6.0 months, C I95% = [4.2, 10];

• HIV-specific CD8 T cells in blood τCD8
1/2 = 7.7 months, C I95% = [5.8, 11.4];

With respect to theHIV-specific immunity underHAART, theHIV load is reduced
so low that the HIV-specific CD4+ T-cell memory effectively collapses. This loss
of help plus the reduction of the antigen load may in concert lead to the loss of the
CD8+ T-cell memory pool with slightly slower kinetics. Although the decrease of
HIV-specific CTL responses under HAART was known, the above analysis shows
that both global HIV-specific CD4+ and CD8+ T memory cell responses decay in a
manner directly coupled to plasma viral load.

In contrast to HIV-specific responses, the cytomegalovirus (CMV)-specific T-
cell responses in CMV-positive individuals are shown to be robust to HAART. The
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Fig. 5.5 Effect of HAART on absolute CMV-specific T-cell subsets. The values for absolute num-
bers ofCMV-specificCD4+ Tcells (left) andCD8+ Tcells (right) duringHAART in each individual
were normalized as a percentage of the respective values at the beginning of HAART. Solid line—
the exponential kinetics model, dotted lines—the 95% CIs. (The figure is reprinted from Sester et
al., AIDS Res Hum Retroviruses, (2007) 23: 549–553

corresponding reference curves are shown in Fig. 5.5. In general, the maintenance of
T cell memory represents a dynamic equilibrium between cell proliferation and cell
death. Inhibition of HIV replication by HAART would then revert this balance to a
normal equilibrium and lead to an increase in CMV-specific CD4+ and CD8+ T cells.
Alternatively, instead of being an effect of mere cell death, the production rate of
CMV-specific cellsmay be lower before the treatment because of activation threshold
tuning resulting fromchronic low-level stimulation by cytokines and/or self-antigens.
This may reduce responsiveness of resting memory cells to signals, including those
involved in homeostasis. Consequently, normalization of the immune activation level
after HAART may have facilitated a slow increase of the CMV-specific population
to the normal steady state.

The above reference curves, although being quite simple in terms of the underlying
model, can be used to monitor the effect of HAART on the restoration on immune
function and robustness of specific T cell immunity inHIV-infected individuals under
therapy. Note that earlier, similar methodology was developed by G.I. Marchuk for
management of recovery from HBV infection [6].

5.3 Chronic HBV Infection

Infection with human hepatitis B virus (HBV),2 affecting about 400 million persons
worldwide [26], represents a dynamic process with a spectrum of clinical outcomes
ranging from acute infection followed by virus clearance to chronic persistence of

2Material of Sects. 5.3.1 and 5.3.2 uses the results of our studies from Journal of Virology, Vol. 78,
Bocharov et al., Underwhelming the immune response: effect of slow virus growth on CD8+-T-
lymphocyte responses, Pages 2247–2254, Copyright © 2004 by the American Society for Micro-
biology. Material of Sect. 5.3.3 uses the results of our studies from Journal of Computational and
Applied Mathematics, Vol. 184, Luzyanina et al., Numerical bifurcation analysis of immunological
models with time delays, Pages 165–176, Copyright © 2005, with permission from Elsevier.
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Fig. 5.6 Schematic view of the mechanistic framework for the dynamic analysis of the HBV-CTL
interaction representing the amplification mode

the virus. A persistent HBV infection can lead to high morbidity and mortality due
to the development of end-stage liver diseases [16]. The basis for the inadequate
immune response that is characteristic of the onset of chronic HBV infection is not
well understood [15].

Although protection against infection is a multifactorial phenomenon depending
on both the innate and adaptive immune mechanisms, CTLs play a vital role in the
control of human HBV infection via both cytolytic and non-cytolytic mechanisms.
The dynamics of virus infections can be biologically characterized in terms of the
interacting populations of viruses and effector CTLs (see Fig. 5.6). In the amplifi-
cation mode of the immune response, the virus acts as a positive regulator of the
CTL population, whereas CTLs function to eliminate the virus population, so their
mutual interaction dynamics can be viewed and formally described as a predator
(CTL)-prey (virus)-type system. Our analysis of the limited set of HBV data are
based on a simple predator–prey-type model, which differs from the classical Lotka
and Volterra model in that the rate of growth of the predator population (CTLs) sat-
urates at a defined predator density. This allows us to more accurately mimic the
kinetic patterns of virus and CTLs observed in a patient during acute HBV infection,
as shown in Fig. 5.7.

5.3.1 Deterministic Model of HBV Infection

The dynamics and outcome of HBV infection is driven by a complex interaction
between the virus and the host immune response. The HBV-specific CD8+ cytotoxic
T-cell (CTL) response plays a fundamental role in viral clearance. The ability to clear
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the virus after infection is associated with the presence of a strong virus-specific CTL
response [24]. Earlier [14] a delay-differential equation based model was proposed
to describe the acute phase of HBV infection. The available patient’s data charac-
terized the population dynamics of HBV (HBV DNA copies/ml) and HBV-specific
CTL (cell/ml) in blood, see Fig. 5.7. As it was discussed in Chap.3, such a low-
resolution data do not support complex models with a number of parameters above
some threshold. Therefore, we consider a reduced complexity DDE-based model
which describes the interaction between the virus and the CTL response as a preda-
tor (CTL)—prey (virus) type system. Using V (t) and E(t) for population densities
of virus and CTL respectively, we describe the rate of changes of the densities by
the following system of delay differential equations:

V̇ (t) = βV (t)(1 − V (t)/K ) − γ V (t)E(t),
Ė(t) = bV (t − τ)E(t − τ)/(θ + V (t)) − αE(t) + C.

(5.3.2)

The equations of the deterministicmodel specify the rate of changes of the popula-
tion densities of the hepatitis B virus V (t) and virus-specific cytotoxic T lymphocytes
E(t) in the acute phase of the infection. This simple model is based on (i) a Verhulst–
Pearl logistic form for virus growth; (ii) second-order virus elimination kinetics by
CTLs; (iii) the Holling type II response curve for CTLs expansion with a time lag
representing cell division time and antigen-independent production/death of CTLs
in the immune system (homeostasis).

The parameters of the model (β, γ , K , b, τ , θ , α,C) were estimated following the
maximum likelihood approach from the data on acute HBV infection. The relevant
information about the model parameters is given in Table5.1. The best-fit solution
is shown in Fig. 5.7a.

5.3.2 Sneaking Through Phenomenon

Since the experimental discovery of T-cell exhaustion phenomenon in LCMV infec-
tion [4], the speed of virus replication has typically been seen as an advantage for
a virus in overcoming the ability of the immune system to control its population
growth. From the other side, according to the ‘balance of growth and differentia-
tion’ concept, the immune system tends to respond to strong perturbations caused by
rapid increases in antigen appearance and by inflammation, which are characteristic
of acute infections, but adapts to and/or tolerates slow changes. Mathematical studies
of the asymptotic stability of the steady states of the basic infectious disease model
[6] suggested that slow virus replication favours the long-term persistence. The fre-
quencies of virus-specific CTLs that characterize chronic infections in humans by
non-cytopathic viruses, such as hepatitis B virus (HBV) (and hepatitis C virus) are
generally very low in the face of high virus loads compared to the frequencies in those
patients who successfully resolve the infection. However, it is not clear to what extent
this reflects differences in the initial status of the antiviral response or subsequent
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Table 5.1 The biological meaning of the model parameters, their best-fit estimates for the acute
phase of HBV infection and plausible ranges, i.e. 95% confidence intervals

Parameter Biological
meaning

Units Best-fit estimates
for acute
infection

Plausible ranges
95% CIs

β Replication rate
constant of
viruses

1/day 0.27 [0.27, 0.32]

γ Rate constant of
virus clearance
due to CTLs

ml/(copies day) 6.2 × 10−4 [10−3, 3.4 × 10−3]

K Virus carrying
capacity

copies/ml 1.5 × 1010 ≥ 0.4 × 1010

b Rate constant of
CTL stimulation

1/day 0.15 [0.09, 0.15]

θ Viral load
saturation in CTL
expansion rate

copies/ml 1.2 × 107 [0.34 × 102, 106]

τ Duration of CTL
division cycle

day 0.6 fixed ad hoc
[0.4 − 1]

α Rate constant of
CTL death

1/day 0.035 [0.021, 0.063]

C Rate of CTL
export from
thymus

cell/(ml day)
export from
thymus

0.23 fixed ad hoc
[0, 0.23]

exhaustion. Under some circumstances, however, the ability of such viruses to persist
correlates with acute CTL responses which appear to be weaker from the outset. To
examine the impact of the magnitude of the CTL response to virus growth rate, a
mathematical model of CTL response to HBV infection can be fruitfully applied.

The major point of the modelling process was to examine the sensitivity of the
immune response to a decrease in the HBV growth rate compared to the acute infec-
tion. To investigate the virus growth effect on CTL expansion, we conducted mathe-
matical analyses basedon themodel simulatingCTL responses of patients to infection
with HBV mutants with different doubling times. The replication rate estimates (τd
ranging from 2.2 to 5.8 days) for acute HBV infection are derived from a study of a
cohort of seven patients performed by Whalley et al. [9]. The results summarized in
Fig. 5.7b, c show that a decrease in the virus population doubling time proportionally
increases the peak virus number, the magnitude of the CTL response and the overall
efficacy of virus elimination. An HBV infection with a slowly replicating strain, with
the doubling time, set at ∼14.7 days, induces only a weak response, and the virus
tends to persist.

Patients may have different major histocompatibility complex backgrounds,
resulting in various patterns of responsiveness to a given virus strain. Variations
in the clonal burst size and dynamics of virus-specific CTLs might reflect differ-
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Fig. 5.7 Model predictions of HBV-CTL dynamics for different virus population doubling times.
a Clinical data for patient 1 [8] and the corresponding mathematical model simulation. d, days. b
and c Viremia and CTL numbers in blood of a normal responder (b) and a high responder (c). A
reduction in the HBV growth rate during the incubation period leads to a weaker CTL expansion
and underwhelming of the host immune response. (The figure is reprinted from Bocharov et al.
Journal of Virology (American Society for Microbiology), 2004, 78: 2247–2254)

ences in the initial CTL precursor frequency and/or in the activation thresholds of
lymphocytes. The latter are also determined by the genetic makeup of the host. To
simulate the difference in the HBV dynamics between a high responder and a nor-
mal responder, we increased the CTL population division rate by 50%. It has been
recorded [5] that minor quantitative differences in the lymphocyte responsiveness
parameter may result in large changes in the magnitude of the response due to non-
linear amplification, akin to the growth of cells. The overall dynamics of infection
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shifts towards a lower viremia, a stronger CTL response and earlier virus elimination
(Fig. 5.7c). However, the slowly replicating strain (τd ∼ 14.7 days) still hasmoderate
growth but elicits a weak and transient CTL response that decreases after day 200
(not shown).

The above modelling analyses suggest that transition from acute to chronic HBV
infection might be explained (at least in part) by a decrease in the replication rate of
the evolving virus population. Overall, more slowly replicating viruses may evoke
weaker cellular immune responses and therefore enhance their likelihood of persis-
tence. Thus, such virusesmay sneak through immune surveillance by underwhelming
the immune response of the host, rather than overwhelming it, in order to establish
a persistent infection.

5.3.3 Low-Level HBV Persistence

Clinical data suggest that HBV3 can persist at various levels rather than being com-
pletely eliminated from the host. The low-level HBV persistence (i.e. below the
detection limit of conventional assays of about 102 − 103 HBV DNA copies/ml
of serum) is relevant for sustaining the immunological memory (called ‘infection
immunity’ [10]) but can have negative consequences for the host, e.g. the possi-
bility of viral reactivation during immunosuppression and the likelihood that these
individuals or their organs may be infectious to others [7]. The mechanism of the
viral persistence is not understood [7] as the quantitative parameters of the low-level
HBVpersistence are outside the range of the analytical techniques existing in clinical
practice. Therefore, one can use the mathematical model for HBV-CTL dynamics to
explore the kinetic basis of low-level HBV persistence.

Time integration of the initial value problem (5.3.2) with the estimated param-
eters from acute infection data shows that the corresponding solution presented
in Fig. 5.8 is a periodic solution with V (t) oscillating between (almost) zero and
3.5 · 109 copies/ml. We are interested to know the necessary conditions, in terms
of the turnover rates for virus and CTLs, allowing the coexistence of a small-scale
virus population and memory CTL population either as an equilibrium state or as an
oscillatory pattern. In the context of dynamical system analysis, the low-level virus
persistence corresponds to a stable steady-state solution or to a stable periodic solu-
tion of model (5.3.2) with V , respectively V (t), below 103 copies/ml. We study the
model predictions related to the above issue through a numerical bifurcation analysis
of model (5.3.2) with the package DDE-BIFTOOL (see Sect. 4.2.3.3 for details).

It is necessary to note that model parameters characterizing the virus and CTL
kinetics might change in transition from the acute to the memory phase of HBV
infection, reflecting, for example, the effect of humoral immunity at later stages

3Material of this section uses the results of our studies from Journal of Computational and Applied
Mathematics, Vol. 184, Luzyanina et al., Numerical bifurcation analysis of immunological models
with time delays, Pages 165–176, Copyright © 2005, with permission from Elsevier.
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Fig. 5.8 Solutions of model
(5.3.2) with the parameters
estimated for the acute phase
of HBV infection (Table5.1).
The initial data used: V (t) =
0, t ∈ [−τ, 0), V (0) = 10
copies/ml, E(t) = 2 cell/ml,
t ∈ [−τ, 0]. V (t) < 1 is not
depicted. Clinical data are
denoted by ◦. (Reprinted
from Journal of
Computational and Applied
Mathematics, Vol. 184,
Luzyanina et al., Numerical
bifurcation analysis of
immunological models with
time delays, Pages 165–176,
Copyright © 2005, with
permission from Elsevier)
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of the acute infection as well as maturation of initially naive CTLs to the memory
phenotype. Therefore, we focus our analysis on the virus replication rate β and
the CTL death rate α. We start with the stability analysis of steady-state solutions
of (5.3.2) and proceed by analysing oscillatory patterns in virus and memory CTL
persistence.

5.3.3.1 Steady States Representing Infection Immunity

To start the analysis, we set the virus growth rate β = 0.1 and all other parameters
as in Table5.1. We examine the dependence of the corresponding steady state on the
parameter α, α ∈ [0.001, 0.12]. The corresponding branch of steady-state solutions
(cf. Fig. 5.9) was computed using continuation and its stability was assessed by
computing the rightmost characteristic roots λ with �(λ) > −13. For α = 0.12,
the steady state is unstable, �(λ1,2) ≈ 2.5 · 10−3, and it is stabilized through a
Hopf bifurcation at α ≈ 0.031. Further, at α = 1.75 · 10−3, the computed solution
intersects the solution V = 0, E = C/α. At this point, a real characteristic root
equals zero indicating a transcritical bifurcation.

Note that a pair of dominant complex conjugate characteristic roots with a very
small (positive or negative) real part is a distinctive property of steady-state solutions
of system (5.3.2) observed for the model parameters within their plausible biological
ranges (see [12] for details). Mathematically, this implies a very slow and oscillatory
transition either to a new stable state of the system or to its previous state after
a perturbation of its current state. The latter is consistent with the nature of HBV
infection characterized by a slow kinetics in both the acute and memory phase of the
infection.
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Fig. 5.9 Left: Stable (−) and unstable (−−) solutions V and E along a branch of steady-state
solutions of (5.3.2) versus parameter α. Middle: Real part of the rightmost roots of the characteristic
equation along the same branch. Right: Two enlargements of the middle figure. Hopf bifurcation (◦)
at α ≈ 0.031. Complex and real roots are denoted by solid, respectively dashed lines. (Reprinted
from Journal of Computational and Applied Mathematics, Vol. 184, Luzyanina et al., Numerical
bifurcation analysis of immunological models with time delays, Pages 165–176, Copyright © 2005,
with permission from Elsevier)

Under the condition V � K , which is fulfilled in the case of low level viral
persistence, an approximate steady-state density of the populations can be obtained
from the nonlinear algebraic system for steady-state solutions of (5.3.2),

βV (1 − V/K ) − γ EV = 0,
bV E/(θsat + V ) − αE + C = 0,

(5.3.3)

as

V ≈ θ(αβ − Cγ )

β(b − α) + Cγ
, E ≈ β

γ
. (5.3.4)

These approximations are in agreement with the numerical results presented in
Fig. 5.9(left) corresponding to low values of V .

Starting from the found Hopf point, we computed a branch of Hopf bifurcation
points in the (β, α)-plane, see Fig. 5.10(left). Using a sequence of similar continu-
ations, we computed two more branches of Hopf points corresponding to τ = 0.4
and τ = 1. This figure also shows the curve of transcritical bifurcation points. Since
no other bifurcations were found, the stability region of the steady state is bounded
by the corresponding Hopf curve and the transcritical bifurcation curve. The regions
in the (β, α)-plane where virus persists below the detection limit are depicted in
Fig. 5.10(left). The analysis predicts that (i) the value of V is almost independent of
β unless β gets close to 0 and (ii) the virus can persist at a very low level if the death
rate of CTL is small enough. Steady-state values of V and E along the branch of
Hopf points (τ = 0.6) as a function of parameter β are shown in Fig. 5.10(right).
Notice that for each value of β, there is an associate value of α on the branch of Hopf
points.

These results specify a quantitative connection between the parameters β, α and
τ necessary to ensure a stable coexistence of low-level HBV population and memory
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CTLs as an equilibrium state. In particular, the model predicts that such coexistence
is possible for relatively small values of the rates of virus replication and CTL death.
The impact of other virus andCTLparameters (γ, b,C) on low-level viral persistence
can be investigated in a similar way.

5.3.3.2 Oscillatory Patterns of Persistence

From Hopf bifurcation points at which the (steady state) value of V is low, branches
of periodic solutions emanate which represent another mode of a low-level viral
persistence. Figure5.11 depicts a branch of periodic solutions emanating from the
Hopf point (β = 0.3, α ≈ 0.0038, τ = 0.6) as a function of the parameter β.
The variation of solutions along this branch is characterized by their maximal and
minimal values over the period for each computed point on the branch, i.e. Vmax(β) =
maxt∈[0,T ] V (t, β), Vmin(β) = mint∈[0,T ] V (t, β), etc. As β increases from its Hopf
point value, the amplitude of oscillations of V (t) grows very rapidly and a subtle
change in β (from 0.3 to 0.317) leads to ‘pulse’ oscillations in virus population size,
exceeding the detection level, see Fig. 5.12. Note that periodic solutions are depicted
on the time interval [0, 1], i.e. after time is scaled by the factor T−1 with T being the
period of the solution.

In a similar way (starting from different Hopf points), branches of periodic solu-
tions can be computed as function of any parameter of the model. The results show
a high sensitivity of the amplitude of oscillations of the virus population to changes
in the parameters, especially in β and α. Hence, the model predicts that oscilla-
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tory patterns in low-level viral persistence (with virus population varying below 103

copies/ml) are possible within very narrow intervals of the rates of virus replication
and CTLs death.
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5.4 Spontaneous Recovery from Chronic HBV Infection

One of the intriguing issues in the pathogenesis of chronic HBV infection4 is related
to the phenomenon of spontaneous recovery observed in some patients [11, 15, 16].
In the previous section, we examined the emergence of HBV persistence through
numerical bifurcation analysis of the deterministic mathematical model. In the fol-
lowing section, we elaborate a computational methodology for analysing the sensi-
tivity of the virus infection dynamics to random perturbations in the virus replication
and immune responses parameters. The practical details of the implementation of
the stochastic ODE models in the analysis of spontaneous recovery are presented.
These include the effect of sampling of the parameter space, the number of simulation
runs needed for a robust estimation of the mean and the variance of the spontaneous
recovery pattern, the impact of the noise intensity and the noise type on the response
of the models.

5.4.1 Stochastic Framework for Modelling HBV Infection

Although persistent HBV infection is associated with ineffective CTL responses, the
onset of chronic infections is considered to be multifactorial with the potential con-
tributing factors including mutational variations of HBV, alterations in the innate-
and B-cell responses [15]. The variations can affect either the replication of the virus
or its elimination kinetics, e.g. via parameters β and γ , respectively. One way to
explore their impact on the dynamics of HBV infection could be the extension of the
deterministic description of the virus-CTL interaction to include the stochastic forc-
ing either in an additive or multiplicative way. The resulting stochastic models offer a
more realistic representation for studying the long-term kinetics of the HBV-immune
system interaction. Specifically, we consider two stochastic extensions of the deter-
ministic ODEs version of model (5.3.2) (in which the delay in proliferation of CTLs
is taken into account implicitly by the proliferation rate parameter b) assuming that
the virus dynamics equation is subject to either (i) a nonspecific rapidly fluctuating
forcing term, or (ii) additionally to (i), the virus replication/elimination processes are
fluctuating in the presence of ongoing CTL response.

5.4.1.1 Additive Noise Extension

Introducing an additive noise with an intensity σ > 0 to the first equation of (5.3.2),
we obtain the following system of stochastic differential equations of Itô type (see
for definitions [18]):

4Material of Sect. 5.4 uses the results of our studies fromMathematics andComputers in Simulation,
Vol. 96, Luzyanina andBocharov, Stochasticmodeling of the impact of random forcing on persistent
hepatitis B virus infection, Pages 54–65, Copyright © 2014, with permission from Elsevier.
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dV (t) =
(
βV (t)(1 − V (t)/K ) − γ V (t)E(t)

)
dt + σdW (t),

dE(t) =
(
bV (t)E(t)/(θ + V (t)) − αE(t) + C

)
dt,

(5.4.5)

where W (t), t > 0, is a standard Wiener process, i.e. a Gaussian process with
independent increments such that W (0) = 0 w.p. (with probability) 1, E(W (t)) =
0, Var(W (t) − W (s)) = t − s for all 0 ≤ s ≤ t . The solution {V (t), E(t), t ∈
[0, t f inal]} of (5.4.5) is a two-dimensional Itô process. The equivalent stochastic
integral equations read

V (t) = V (0) + ∫ t
0 (βV (s)(1 − V (s)/K ) − γ V (s)E(s))ds + ∫ t

0 σdW (s),
E(t) = E(0) + ∫ t

0 (bV (s)E(s)/(θ + V (s)) − αE(s) + C)ds,
(5.4.6)

where the first integral in both equations is a regular Riemann–Stieltjes integral and
the second integral in the first equation is a stochastic integral in Itô form.

5.4.1.2 Multiplicative Noise Extension

To investigate influence of fluctuating (versus constant) rates β and γ on the model
solutions, we randomize these parameters as follows. Let p ∈ [pl, pu] be a parameter
being randomized and pl, pu are its low and upper bounds. We assume that p varies
randomly according to the equation p(t) = p̃ + σpξ(t), where p̃ is the value of p
around which we randomize, ξ(t) is a white noise process (i.e. ξ(t) is a standard
Gaussian random variable for each t) and σp > 0 is the intensity of the noise. We
choose σp as σp = min(( p̃− pl), (pu− p̃))/3 to ensure that p remains in the interval
[pl, pu]with probability 0.997. This implies that about 99.7% of values drawn from
a normal distribution are within three standard deviations σp away from the mean
(3-sigma rule).

Randomizing the parameters β and γ in (5.4.5) will result in the following system
of stochastic differential equations:

dV (t) =
(
βV (t)(1 − V (t)/K ) − γ V (t)E(t)

)
dt+

σβV (t)(1 − V (t)/K )dW1(t) − σγ V (t)E(t)dW2(t) + σdW3(t),

dE(t) =
(
bV (t)E(t)/(θ + V (t)) − αE(t) + C

)
dt,

(5.4.7)

where W1(t), W2(t) and W3(t) are independent standard Wiener processes, con-
stituting a three-dimensional Wiener process W (t) = (W1(t), W2(t), W3(t)). The
equivalent stochastic integral equations are

V (t) = V (0) + ∫ t
0 (βV (s)(1 − V (s)/K ) − γ V (s)E(s))ds+∫ t

0 σβV (s)(1 − V (s)/K )dW1(s)−∫ t
0 σγ V (s)E(s)dW2(s) + ∫ t

0 σdW3(s),
E(t) = E(0) + ∫ t

0 (bV (s)E(s)/(θ + V (s)) − αE(s) + C)ds.

(5.4.8)
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To avoid dealing with very large and small numbers in computations, we rewrite
stochasticmodels (5.4.5) and (5.4.7) using the logarithmic transform Ṽ = ln V, Ẽ =
ln E of the state variables. Then both stochastic models read

dṼ (t) =
(
β(1 − exp(Ṽ (t))/K ) − γ exp(Ẽ(t))

)
dt+

σ exp(−Ṽ (t))dW (t),

dẼ(t) =
(
b exp(Ṽ (t))/(θ + exp(Ṽ (t))) − α + C exp(−Ẽ(t)

)
dt

(5.4.9)

and

dṼ (t) =
(
β(1 − exp(Ṽ (t))/K ) − γ exp(Ẽ(t))

)
dt+

σβ(1 − exp(Ṽ (t))/K )dW1(t)−
σγ exp(Ẽ(t))dW2(t) + σ exp(−Ṽ (t))dW3(t),

dẼ(t) =
(
b exp(Ṽ (t))/(θ + exp(Ṽ (t)) − α + C exp(−Ẽ(t))

)
dt.

(5.4.10)

Note that after this transformation, the random forcing in model (5.4.9) becomes a
multiplicative noise.

5.4.2 Quantitative Spectrum of Chronic HBV Infection

The persistent HBV infection can take various clinical forms, which are classified
(e.g. asymptomatic carrier, chronic infection) according to the observable character-
istics of the virus–host interaction, such as viral load, the strength and the patterns
of immune responses and liver damage. Studies in HBV-infected chimpanzees sug-
gested that low virus doses favour the establishment of persistence, while higher
doses favour viral clearance [15]. Chronic hepatitis B infection is a highly hetero-
geneous disease with the viral load ranging from 103 to 109 HBV DNA copies/ml
[24]. In treated patients, the withdrawal of antiviral therapy resulted in HBV rebound
from 102 −103 copies/ml to 109 −1010 copies/ml [23]. It was found that completely
different levels of HBV replication can coexist with slightly different numbers in the
circulation and comparable numbers of intrahepatic HBV-specific CTL [19]. This
feature was interpreted, using the theoretical framework provided in [21], to reflect
the differences in CTL responsiveness which denote the rate of expansion and antivi-
ral efficacy of the virus-specific CTLs. Efficient CTL responsiveness would result
in a lowering of the viral load and smaller CTL abundance with the lower antigenic
stimulation. Dysfunctional CTLs are considered to be a hallmark of chronic HBV
infection [23]. Notice that the parameter, representing the functionality of CTL in the
considered mathematical model, is the rate constant γ of HBV elimination from the
host. The clinical outcome of persistent HBV infection may result in spontaneous
recovery [11, 16, 23] with the underlying mechanisms remaining to be identified.

The biological objective of our study is to investigate the sensitivity of persistent
HBV infection to the fluctuating variations in virus production/elimination processes.
Basedon the above consideration,weexamine twovariants of chronicHBVinfection:
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1. LVLTA: the low viral load and low cytotoxic T lymphocyte abundance (LVLTA)
infection and

2. HVLTA: the high viral load and high cytotoxic T lymphocyte abundance
(HVLTA) infection.

According to the results of longitudinal analysis of CTL responses in chronic HBV
infection [24], the threshold level of viral load, separating the two types, is set to
107 HBV DNA copies/ml. The threshold for CTL abundance in blood is taken to
be 103 HBV-specific cells/ml, which is the peak number of CTLs in acute resolving
HBV infection [14]. Therefore, the first type of chronic HBV infection (LVLTA) is
characterized by smaller values of virus and CTL populations:

Vaverage := 1

T

∫ T

0
V (t)dt < 107, Eaverage := 1

T

∫ T

0
E(t)dt < 103, (5.4.11)

where [0, T ] is a time interval of the chronic infection and {V (t), E(t), t ∈ [0, T ]}
is a solution of the deterministic model (5.3.2). In our study, we use T = 730 days
(2 years). For the second type of chronic HBV infection (HVLTA), we assume that

Vaverage > 107, Eaverage > 103. (5.4.12)

We also assume that once the viral load variable of the model, V (t), drops below the
clinical detection threshold of 102 copies/ml, i.e. V (t) < 102 at some time t , the cor-
responding solution can be interpreted as a spontaneous recovery case. We examine
the robustness of the two variants of the persistent HBV infection subject to ran-
dom fluctuating forcing, using the above two stochastic versions of the mathematical
model of HBV infection.

5.4.3 Numerical Methods

For every specified set of the model parameter values, we solve the deterministic
model (5.3.2) and compute Vaverage and Eaverage to decide whether this parameter
set results in LVLTA- or HVLTA chronic HBV infection. For the corresponding
simulations, the MATLAB code ode45 [20] is used.

5.4.3.1 Simulation of the Stochastic Models

In order to compute the trajectories of solutions to the SDE model (5.4.9), we used
the solvers of the SDE Toolbox [22] intended for simulation of sample paths of
solutions to SDEs with diagonal noise. Twomethods to solve SDEs are implemented
in this Toolbox: the Euler–Maruyama method (strong order 1/2) and the Milstein
method (strong order 1). We used the Milstein scheme and modified the code to
reduce computational effort. In order to solve model (5.4.10) with three-dimensional
non-diagonal noise, we implemented the approach proposed in [17] to approximate
double Itô integrals appearing in the Milstein scheme for non-diagonal noise.
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Error analysis

If we know a solution X (t) to an SDE explicitly, we can calculate the error of
its approximation X̃(t) using the absolute error criterion ε = E(|X̃(T ) − X (T )|)
[18]. This is the expectation of the absolute value of the difference between the
approximation and the Itô process at time T , which gives a measure of closeness at
the end of the time interval [0, T ].

Since the exact solutions to models (5.4.9) and (5.4.10) are not known explicitly,
we estimate ε statistically using computer experiments, see, e.g. [17, 18]. For this,
we solve SDEmodels (5.4.9) and (5.4.10) over MWiener paths, using step sizes h =
2−k, k = 2, 3, . . . , kmax. Note that for each h, the sameM sample paths of theWiener
process must be used as for h = 2−kmax . We denote the value of the j-th trajectory at
time T , simulatedwith the step size h−k , by X j,k, j = 1, . . . , M, k = 2, 3, . . . , kmax.
The solutions X j,kmax are regarded as ‘exact’. Then, for each k = 2, 3, . . . , kmax − 1,
we estimate the absolute error by the statistic

ε̃k = 1

M

M∑
j=1

|X j,k − X j,kmax |. (5.4.13)

The computed estimates ε̃k against h = 2−k for SDE models (5.4.9) and (5.4.10)
are shown on a log–log scale in Fig. 5.13. This figure provides an idea about depen-
dence of the accuracy of the computed solutions on the value of the step size h. For
all results presented in the next sections, we used h = 10−2 and h = 2 × 10−2 to
compute the trajectories of solutions to models (5.4.9) and (5.4.10), respectively. The
larger step size in case of model (5.4.10) is due to much higher (compared to model
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Fig. 5.13 Computed estimates ε̃ of the absolute error: (◦) for Ṽ and (∗) for Ẽ . The time interval
used is [0, 730] days, M = 100. The values of the model parameters: β = 0.066, γ = 4.6 ×
10−4, b = 0.14, θ = 6.7 × 106, α = 0.039, C = 0.21, K = 1.5 × 1010. The initial values:
Ṽ (0) = 15.5, Ẽ(0) = 5.89. The solid line indicates the slope 1. Left: Model (5.4.9) with σ = 104;
kmax = 10. Right: Model (5.4.10) with σ = 104, σβ = 0.022, σγ = 1.52 × 10−4; kmax = 9.
(Reprinted from Mathematics and Computers in Simulation, Vol. 96, Luzyanina and Bocharov,
Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection,
Pages 54–65, Copyright © 2014, with permission from Elsevier)
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(5.4.9)) computational efforts caused by the need to approximate double Itô integrals
in the Milstein scheme. These step sizes correspond to the absolute error estimate
about 10−2 for the computed solutions. The corresponding relative error is less than
0.3%. Note that these figures also indicate the order 1 of the Milstein scheme.

5.4.3.2 Sampling of the Model Parameters and Initial Data

We need to find sets of the values of the model parameters and initial data for
which solutions of the deterministic model correspond to the first or the second
variant of chronic HBV infection. One way is to split biologically admissible ranges
of the model parameters and initial data into a number of small subintervals and
compute model solutions for all possible combinations of the parameters from each
subinterval. This way is computationally expensive. In order to construct samples of
parameters and initial data in an efficient way, we use the statistical method of Latin
Hypercube Sampling (LHS). For this, we first determine biologically admissible
ranges of the model parameters and initial values and subintervals of these ranges
necessary to apply the LHS.

Biologically consistent ranges of the model parameters and initial values

As biologically admissible ranges of the model parameters β, γ, b, θ, C , charac-
terizing chronic HBV infection, we use the intervals [0, p∗], where p∗ is the best-fit
value of the parameter p, estimated for the acute phase of HBV, see Table5.1. Doing
so, we take into account that chronic HBV infection is characterized by smaller
values of these kinetic parameters compared to acute resolving HBV infection. For
the parameter α, we use the interval [0, 10 × α∗], to take into account that the rate
constant of CTL death can be higher during chronic HBV infection. The parameter
K , characterizing virus carrying capacity, is assumed to be independent of the type
of HBV infection. Therefore, it is fixed at its best-fit value estimated for acute HBV,
cf. Table5.1. For the initial values of the SDEmodels, we use the following intervals:
V (0) ∈ [106, 107], E(0) ∈ [10, 103].
Subintervals of the model parameters and initial values

We include the initial data V (0) and E(0) in the list of the model parameters being
sampled and call the vector p = (β, γ, b, θ, C, α, V (0), E(0)) the vector of
parameters. We assume that the model parameters and initial values have triangular,
respectively, uniform probability density functions. Let pl and pu denote vectors of
the low and upper bounds of the elements of p, respectively. According to the Latin
Hypercube Sampling algorithm, we divide the admissible ranges of all elements of p
into N non-overlapping equiprobable intervals [pmin, j , pmax, j ], j = 1, . . . , N . The
limits pmin, j and pmax, j of each interval are ascertained as follows. We set pmin,1 =
pl , pmax,N = pu . Other interval limits are calculated by using the corresponding
cumulative distribution function F , i.e. pmax, j = F−1(F(pmin, j )+1/N ), and setting
the minimum value for the next interval (pmin, j+1) to be equal to the maximum value
for the previous interval (pmax, j ) and repeating the whole process.
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Latin Hypercube Sampling

Next, we generate an LHS table as an (N × np) matrix, where np = 8 is the number
of the sampled parameters (6 model parameters and 2 initial data). For this, we use
the MATLAB code lhsdesign [20] which generates a latin hypercube sample
containing N values on each of np parameters. For each parameter, the N values are
randomly distributed with one from each interval (0, 1/N ), (1/N , 2/N ), . . . , (1 −
1/N , 1). After the LHS matrix is created, its elements are replaced by the values of
the parameters using the corresponding cumulative distribution function.

5.4.3.3 Choice of the Number of Subintervals of the Model Parameters
in the LHS Method

To the best of our knowledge, no practical recommendations for the sample size N
of LHS samplings have been proposed in the literature. Therefore, we performed
computational experiments with various N = 25, 50, 100, 200, 300, 400 to
determine the value of N that is sufficient for our analysis, and to decide on robustness
of results.

Let the range of each model parameter be divided into N subintervals. Using the
Latin hypercube algorithm, we obtain N sets of the model parameter values. We
compute N solutions of the deterministic model, using these sets of parameters, and
count the number (n) of solutions satisfying condition (5.4.11), i.e. the number of
solutions resulting in the chronic LVLTA infection. For each of these n sets of the
model parameters, we compute M trajectories of the stochastic model (5.4.9) with
σ = 104, i.e. we compute Mn trajectories. Next, we count the number of trajectories
(r ) satisfying Ṽi < ln(100) for a certain time t = ih. We refer these trajectories as
spontaneous recovery, see an example in Fig. 5.14.We are interested in the percentage
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Fig. 5.14 Left: Solutions V (t) and E(t) of the deterministic model (5.3.2) corresponding to the
case of chronic LVLTA infection. Right: Trajectories V (t) and E(t) of the stochastic model (5.4.5)
with σ = 104 and the same parameter values as the ones used to compute the deterministic solution
shown in the left figure. We refer this dynamic pattern as a spontaneous recovery since V (t) < 102

for t ≥ 680.7 days. (Reprinted fromMathematics andComputers in Simulation, Vol. 96, Luzyanina
and Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus
infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Fig. 5.15 Choice of the number of subintervals N of the model parameters in the LHS method.
The mean E j of the percentage of recoveries over j = 1, 2, . . . , 500 observations. The right figure
is a zoom of the left figure. (Reprinted from Mathematics and Computers in Simulation, Vol.
96, Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent
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of the recoveries, p = 100r/(Mn), its mean and variance over j observations,
j = 1, . . . , J . The latter are computed as follows. For a fixed N , we repeat the above
steps J times and, for each observation j, j = 1, . . . , J , we compute n j , r j and p j

as described above. Then, we compute the mean of the percentage of recoveries over
j observations E j = (

∑ j
i=1 pi )/j, j = 1, 2, . . . , J , and the corresponding variance

of the percentage of recoveries σ 2
j = (

∑ j
i=1(pi − E j )

2)/j, j = 2, . . . , J .
Comparative plots of the computed mean E j and variance σ 2

j (model 5.4.5) for
N = 25, 50, 100,200, 300, 400 and j = 1, . . . , J = 500, are depicted in Figs. 5.15
and 5.16. We observe that the higher N is, the faster is the convergence of E j and
σ 2
j . The histograms of the percentage of recoveries, presented in Fig. 5.17, indicate
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Fig. 5.17 Histograms of the percentage of recoveries (p j ) over 500 observations for different values
of the number (N ) of subintervals of the model parameters in the LHS method used. (Reprinted
from Mathematics and Computers in Simulation, Vol. 96, Luzyanina and Bocharov, Stochastic
modeling of the impact of random forcing on persistent hepatitis B virus infection, Pages 54–65,
Copyright © 2014, with permission from Elsevier)

that the mean E500 and the variance σ 2
500 are well localized for N ≥ 100. We also

observe that the distribution of the percentage of recoveries for N large enough
(N = 200, 300, 400 in Fig. 5.17) becomes close to a normal distribution with a
mean about E500 ≈ 6. However, this is not fulfilled for smaller values of the noise
intensity factor σ as we show in the next section.

Based on the results shown in Figs. 5.15, 5.16 and 5.17, we conclude that N = 25
and N = 50 are certainly not sufficient to estimate consistently the sets of the model
parameters corresponding to the chronic phase of HBV infection. On the other hand,
for N = 200, 300, 400 and large j , we observe that values of E j and σ 2

j are located
in a rather narrow band, cf. Figs. 5.15(right) and 5.16(right). We choose N = 200 for
our further investigations to reduce the computational cost. We also choose J = 500
observations to be made, and we use E500 and σ 2

500 to characterize the percentage
of recoveries in experiments presented in the next section. Clearly, E500 and σ 2

500
approximate the mean and the variance of the percentage of recoveries with a certain
accuracy. As follows from Fig. 5.15, E500 is estimated with the relative accuracy of
1 − 3%, which is sufficient for the purpose of our study.
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5.4.4 Determinants of Spontaneous Recovery

Using N = 200, we repeat the LHS algorithm J = 500 times. For each observation
j = 1, 2, . . . , J we analyse the corresponding N sets of the model parameters and
initial data to select such sets that the solution of the deterministic model (5.3.2) with
these parameters satisfies either condition (5.4.11) (LVLTA) or (5.4.12) (HVLTA).
We denote these sets by S( j)

lv and S( j)
hv and the corresponding number of sets by

N ( j)
lv and N ( j)

hv , respectively, i.e. S
( j)
lv ∈ R

8×N ( j)
lv , S( j)

hv ∈ R
8×N ( j)

hv , j = 1, 2, . . . , J .
Histograms of Nlv and Nhv are presented in Fig. 5.18. We observe that while the
average number of ‘chronic persistent’ outcomes of the deterministic model is about
25 (out of 200), the average number of ‘chronic active’ outcomes is only about 5.5.

For each set from S( j)
lv and S( j)

hv , we computeM solutions (trajectories) of a stochas-
tic model, i.e. we compute MN ( j)

lv and MN ( j)
hv trajectories. We count the number of

trajectories satisfying Vi < 102 for a certain time t = ih, for sets S( j)
lv and S( j)

hv

separately. Let N ( j)
lvr and N ( j)

hvr denote the number of such trajectories, respectively.
Then the values

Rlvr = 1

500

500∑
j=1

100
N ( j)
lvr

MN ( j)
lv

, σ 2
lvr = 1

500

500∑
i=1

(pi − Rlvr )
2 (5.4.14)

and

Rhvr = 1

500

500∑
j=1

100
N ( j)
hvr

MN ( j)
hv

, σ 2
hvr = 1

500

500∑
i=1

(pi − Rhvr )
2 (5.4.15)
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Fig. 5.18 Histograms of the number of sets of the model parameters corresponding to the LVLTA
chronic infection (N ( j)

lv , left) and the HVLTA chronic infection (N ( j)
hv , right). Each N ( j)

lv and

N ( j)
hv , j = 1, 2, . . . , 500, is a number out of N = 200 sets of the parameters obtained by the

LHS method. (Reprinted from Mathematics and Computers in Simulation, Vol. 96, Luzyanina
and Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus
infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Table 5.2 Influence of the noise intensity σ on the mean and the variance of the percentage of
recoveries. (Reprinted from Mathematics and Computers in Simulation, Vol. 96, Luzyanina and
Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus
infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)

Model Intensity σ of
additive
noise

Rlvr σ 2
lvr Rhvr σ 2

hvr

Model (5.4.9) 10 0.4 0.7

102 1.7 3.0 1.8 30.6

103 3.6 5.2 3.6 31.4

104 6.3 5.8 4.9 28.6

Model (5.4.10) 10 1.3 1.9

102 2.6 4.6 3.7 31.3

103 4.5 5.8 5.4 40.6

104 7.6 5.9 6.6 40.1

approximate the mean value and the variance of the percentage of recoveries in cases
of LVLTA and HVLTA chronic infections, respectively.

Obviously, the noise intensity factors σ, σβ and σγ affect values of Rlvr and Rhvr .
The values of σβ and σγ are uniquely determined by the 3-sigma rule as described
in Sect. 5.4.1. To have an idea about the suitable range of the intensity σ of additive
noise, we estimated ranges of the virus population V (t) and the deterministic term
in the first equation of SDE model (5.4.5) for both LVLTA and HVLTA chronic
HBV infections. In case of the chronic infection with LVLTA, these ranges are
(102, 108] and [−106, 106], respectively, while in case of HVLTA chronic infection,
the corresponding intervals are (102, 1010] and [−109, 109]. So we used σ = 10d

withd = 1, 2, 3, 4 in case ofLVLTA- andd = 2, 3, 4 in case ofHVLTAchronicHBV
infections. The influence of σ on the values of Rlvr ,Rhvr ,σ 2

lvr and σ 2
hvr is summarized

in Table5.2.
Note that all computations were done for the time interval [0, 730] days (2 years).

In (5.4.14) and (5.4.15),weusedM = 103 andM = 2×102 for themodels (5.4.9) and
(5.4.10), respectively,to reduce the CPU time needed formuchmore computationally
expensive model (5.4.10). The difference in the approximations to the mean value
computed with M = 103 and M = 200 is within the approximation error.

We observe in Table5.2 that the percentage of recoveries for both low viral load
and high viral load variants of chronic HBV infection decreases with the decreasing
noise intensity σ . Also, as σ decreases, the number of zero values of Nlvr and
Nhvr increases, see histograms in Figs. 5.19, 5.20, 5.21 and 5.22. The percentage
of zero values of Nlvr in the case of additive noise (model (5.4.9)) vs. the case
of multiplicative noise (model (5.4.10)) is 1% vs. 0.2% (σ = 103), 18% vs. 2%
(σ = 102) and 70% vs. 6% (σ = 10). The percentage of zero values of Nhvr in
the case of additive noise (model (5.4.9)) vs. the case of multiplicative noise (model
(5.4.10)) is 16% vs. 10% (σ = 104), 50% vs. 21% (σ = 103) and 76% vs. 32%
(σ = 102).
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Fig. 5.19 Histograms of the percentage of recoveries over 500 observations. Model (5.4.9), case
LVLTA chronic infection. (Reprinted from Mathematics and Computers in Simulation, Vol. 96,
Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent hep-
atitis B virus infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Fig. 5.20 Histograms of the percentage of recoveries over 500 observations. Model (5.4.9), case
HVLTA chronic infection. (Reprinted from Mathematics and Computers in Simulation, Vol. 96,
Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent hep-
atitis B virus infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Fig. 5.21 Histograms of the percentage of recoveries over 500 observations. Model (5.4.10), the
case of LVLTA chronic infection. (Reprinted fromMathematics and Computers in Simulation, Vol.
96, Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent
hepatitis B virus infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Fig. 5.22 Histograms of the percentage of recoveries over 500 observations. Model (5.4.10), the
case of HVLTA chronic infection. (Reprinted fromMathematics and Computers in Simulation, Vol.
96, Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent
hepatitis B virus infection, Pages 54–65, Copyright © 2014, with permission from Elsevier)
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Since the chronic HBV infection with HVLTA is characterized by higher values
of virus and CTL numbers, one would expect that Rhvr must be smaller than Rlvr for
any noise intensity σ . However, only for σ = 104 we observe that Rhvr < Rlvr . For
smaller values of σ , we observe that Rhvr and Rlvr have close values in case of model
(5.4.9) and Rhvr > Rlvr in case of model (5.4.10). This can be explained as follows.
When computing the percentage of recoveries, the impact of the most sensitive to
noise trajectories is smoothed in case of LVLTA chronic infection due to a relatively
high value of Nlv compared to Nhv , see histograms in Fig. 5.18, while the impact
of such solutions in case of HVLTA chronic infection is much more pronounced, as
confirmed by large values of the variance σ 2

hvr , cf. Table5.2.
Overall, the stochastic model derived analyses predict that

• the relative frequency of spontaneous recovery from persistent HBV infection is
rather low, less than 10%, for the random forcing intensity varying within three
orders of magnitude;

• the increase of thefluctuation intensity by tenfold approximately doubles the recov-
ery frequency;

• the persistent infection with low viral load/CTL abundance is driven to recovery
more frequently than the high viral load/CTL number type once the intensity of
the random perturbations exceeds a certain level;

• a combination of a nonspecific rapidly fluctuating forcing term with fluctuating
virus replication and elimination processes leads to more frequent recoveries as
compared to the additive noise scenario.

We considered the stochastic version of the deterministic ODEmodel in which the
random forcing appears in the equation of virus dynamics. The effect of the intrinsic
variability inherent in the CTL response (e.g. due to bystander activation) can be
studied an a similar way.

5.5 Pathogenesis of Chronic HBV Infection via Adjoint
Equations Sensitivity Analysis

The major problem in understanding the nature of immunity5 is related to the diffi-
culty of dealing conceptually with the complexity of the immune system in vivo [1,
26, 28]. Mathematical immunology is dealing with increasingly complex models of
immune phenomena formulated with ordinary or delay differential equations.

One of the earliest frameworks for a mathematical analysis of the basic patterns
of infectious disease dynamics within an individual was the so-called ‘basic model
of infectious disease’ by G.I.Marchuk in 1974 [29]. It is based on the following
assumptions:

5Material of Sect. 5.5 uses the results of our studies from Journal of Computational and Applied
Mathematics, Vol. 184, Marchuk et al., Adjoint equations and analysis of complex systems: Appli-
cation to virus infection modelling, Pages 177–204, Copyright © 2005, with permission from
Elsevier.
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Fig. 5.23 Conceptual views of infectious disease: predator–prey versus antigen and tissue damage
dependent regulation immune responses

1. an infectious disease is considered as the immune response of an organism to
multiplying pathogenic antigens (virus, bacteria);

2. the damage of the sensitive tissue cells (virus-infected cells) provides a basis for
clinical illness;

3. an outcome of the disease depends on the competition between the pathogen and
the host for resources of survival;

4. all model equations are derived on the basis of mass balance relations for the
components of the virus–host interaction on a short time interval dt ;

5. interactions between several components of the process on dt are considered to
be additive and proportional to their concentrations multiplied by the length of
dt .

The view of the virus and the antiviral immune response as competitors for
resources of survival and the consideration of the target organ damage represent
the features which made this model unique. Indeed, in other early models (e.g. by
G.I Bell [39]), the complexity of virus–host interaction was reduced to the predator
(immune system)–prey (pathogen)-type system (see Fig. 5.23).

The steady-state stability analysis of the basic Marchuk model suggested that
viruseswhich cause chronic infections should display a slowgrowth rate. This predic-
tion resembles the ‘sneaking through’ phenomenon established in tumour immunol-
ogy by Lloyd Old in the early 1960s. Themost outstanding prediction with the model
was that some chronic infections can be treated via exacerbation—a treatment strat-
egy that has been clinically successful [29]. It is worth noticing that although the
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negative feedback of the virus infection on the specific immune response was ini-
tially associated in the basic model with cytopathic viruses which damage directly
the target organ (e.g. influenza), later developments in immunology (e.g. exhaustion
in LCMV system) had established that weakly or non-cytopathic viruses may also
suppress immune responses via anergy and apoptosis (see the corresponding model
in Chap.4.).

5.5.1 Mathematical Model of Antiviral Immune Response

The basic mathematical model of an infectious disease was extended jointly by
Marchuk (mathematician) and Petrov (immunologist), who formulated the delay
differential equations model for antiviral immune responses [29, 31]. The time-
dependent state variables are as follows:

(1) free virus population— V f (t);
(2) antigen-presenting cell population— MV (t);
(3) T helper 1 cell population— HE (t);
(4) T helper 2 cell population— HB(t);
(5) cytotoxic T lymphocyte (CTL) population— E(t);
(6) B-cell population— B(t);
(7) plasma cell population— P(t);
(8) antibody population— F(t);
(9) virus-infected sensitive tissue cell population— CV (t);

(10) destroyed sensitive tissue cells— m(t).

The model equations take account of the most relevant processes of the virus–
host interaction summarized by the following conceptual view in Fig. 5.24. The
reaction of the immune system to any virus infection is mediated by both T-cell
(cellular) and B-cell (humoral) immune responses. It is accepted that the recovery
from primary virus infection is provided by cytotoxic T lymphocytes’ mediated
killing of infected cells and destruction of sensitive tissue (by cytotoxicity and/or
recruitment of inflammatory cells) to prevent further virus replication. The humoral
immunity is composed of B cells, plasma cells and antibodies. Antibodies neutralize
free virus particles in particular body fluids (blood, lymph or mucosa). The immune
response is triggered in lymph nodes by virus antigens being presented in the context
of MHC class I or class II molecules on the surface of macrophages or other antigen-
presenting cells. Helper T cells play a critical role in the generation of both the CTL
and humoral immunity. The T- and B-cell responses are considered as an antigen-
driven selection of virus antigen-specific clones leading to expansion by a series of
division and differentiation events. The population dynamics of the state variables is
modelled by the following system ofDDEs specified in amodularmanner as follows:
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Fig. 5.24 Scheme of the populations and processes underlying the mathematical model of antiviral
immune response

Virus-, infected target cells-, destroyed target cell compartments

d

dt
V f (t) = νCV (t) + nbCECV (t)E(t) − γV FV f (t)F(t) − γV MV f (t)

− γVCV f (t)(C
0 − CV (t) − m(t)), (5.5.16)

d

dt
CV (t) = σV f (C

0 − CV (t) − m(t)) − bCECV (t)E(t) − bmCV (t),(5.5.17)

d

dt
m(t) = bCECV (t)E(t) + bmCV (t) − αmm(t), ξ(m) = 1 − m/C0. (5.5.18)

Antigen-presenting cells-, Th1-helper cells-, cytotoxic T lymphocytes com-
partments:

d

dt
MV (t) = γMV M

0V f (t) − αMMV (t), (5.5.19)

d

dt
HE (t) = bE

H [ξ(m)ρE
HMV (t − τ E

H )HE (t − τ E
H ) − MV (t)HE (t)]

− bHE
p MV (t)HE (t)E(t) + αE

H (H 0
E − HE (t)), (5.5.20)
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d

dt
E(t) = bE

p [ξ(m)ρEMV (t − τE )HE (t − τE )E(t − τE ) − MV (t)HE (t)E(t)]
− bECCV (t)E(t) + αE (E0 − E(t)). (5.5.21)

Th2-helper cells-, B-lymphocytes-, Plasma cells-, Antibodies compartments:

d

dt
HB(t) = bB

H [ξ(m)ρB
HMV (t − τ B

H )HB(t − τ B
H ) − MV (t)HB(t)]

− bHB
p MV (t)HB(t)B(t) + αB

H (H 0
B−HB(t)), (5.5.22)

d

dt
B(t) = bB

p [ξ(m)ρBMV (t − τB)HB(t − τB)B(t − τB) − MV (t)HB(t)B(t)]
+ αB(B0 − B(t)), (5.5.23)

d

dt
P(t) = bP

p ξ(m)ρPMV (t − τP)HB(t − τP)B(t − τP)

+ αP(P0 − P(t)), (5.5.24)

d

dt
F(t) = ρF P(t) − γFV F(t)V f (t) − αF F(t). (5.5.25)

Time lags are introduced to allow for the duration of proliferation and differentiation
of lymphocytes. The negative effect of target organ damage on the immune reaction
is described phenomenologically by a decreasing function ξ(m). The homeostasis of
the target tissue cells and virus-specific lymphocytes in an uninfected host is taken
into account by considering constant input terms.

Consideration of a limited set of processes in the model (although assumed
to be most essential), as compared to the full reality is a part of a reductionist
approach to the mathematical analysis of virus–host interactions. However, even
for the above reduced model, one can hardly expect data to be collectable which
simultaneously characterize the evolution of the state variables represented by
y ≡ [V f ,CV ,m, MV , HE , E, HB, B, P, F]T . The key aspect of our approach to
the adjustment between the model and numerous partial data on virus infections like
hepatitis B or influenza Awas the derivation of a consistent data set called ‘the gener-
alized picture of infection’ [29, 31]. The concept provides a theoretical definition of
the typical kinetics of virologic, immunological and pathologic processes occurring
after virus invasion in normal individuals (e.g. those without immunodeficiences).
The solution of the model corresponding to the ‘normal infection course’ (see [32])
can be used as a reference trajectory in the analysis of unfavourable disease out-
comes (e.g. chronic or lethal infections). This provides a sensible way to deal with
the complexity of the infection in an individual patient under study on the one hand
and a paucity of available data on the other. In this case, partial information about
the solution in the form of functionals of solutions, like
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• the cumulative viral load, J (y) ≡ J (V f ) =
T∫

0

V f (t)dt ,

• the severity of clinical disease J (y) ≡ J (m) =
T∫

0

(mchronic(t) − mnormal(t))
2dt ,

can still provide enough information to differentiate the causal relationships between
the deviations in the virus–host parameters from the reference ones and the outcome
of an infection.

5.5.2 Sensitivity of Functionals to Deviations of Parameters
from ‘norms’

Adjoint equation methods provide a powerful method to examine the sensitivity of
objective functionals, depending on the model solution, to deviations of the model

parameters from ‘norms’. Consider the functional J (y) =
T∫

t0

〈y, y〉dt, where 〈·, ·〉 is

a scalar product in RN and y(t) = y(t,p) ∈ RN
+ is the solution to the initial value

problem (IVP)

d

dt
y(t) = f (t, y(t), y(t − τ),p) , t ∈ [t0, T ] (5.5.26)

y(t) = φ(t,p), t ∈ [t0 − τ, t0], (5.5.27)

with parameter vector p = [p1, p2, · · · , pL ]T ∈ RL+. The right-hand side function
f is a smooth function of its arguments and is Lipshitz-continuous with respect to y
and z ≡ y(t − τ ), where τ is a constant time lag. φ(t,p) is an initial function.

Let ŷ ≡ y(t, p̂) be an unperturbed trajectory and let the model parameters be
changed by δp = p̂ − p. The corresponding solution can be represented as

y(t,p) ≈ y(t, p̂) +
L∑

i=1

si (t, p̂)δpi ,

with the sensitivity vector function

si (t, p̂) ≡ ∂y(t, p̂)

∂pi
,

being a solution to
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A (y(t, p̂), p̂)si (t, p̂) = ∂f
∂pi

, t ∈ [t0, T ], si (t, p̂) = ∂φ

∂pi
, t ∈ [t0 − τ, t0].

Here, the differential matrix operator

A ≡ d

dt
−

[
∂f
∂y

]
−

[
∂f
∂yτ

]
Dτ

specifies a linearized system of the model equations. [·] denotes a matrix of partial
derivatives and Dτ is the backward time shift operator. Then, the first-order variation
of the functional is

δ J (̂y) = 2
L∑

i=1

T∫

t0

〈̂y, si (t, p̂)〉dtδpi .

Using the Lagrange identity, one can introduce the operator A ∗ adjoint to A

(A s,w) = (
s,A ∗w

)

with the domain D(A ∗). Consider the set D1 of continuous functions w(t) on Ω =
[t0, T + τ ] such that (i) they are C1(Ω)–piecewise and w′(t) ∈ L2(Ω), and (ii)
w(t) = 0, t ∈ [T, T + τ ].
Then

(A s,w) ≡
T∫

t0

〈A s,w〉dt =
T∫

t0

〈s,A ∗w〉dt,

where A ∗(̂y, p̂) ≡ − d

dt
−

[
∂f
∂y

]T

−
[

∂f
∂yτ

]T

t+τ

D−τ .

The first-order variation of the functional J (y) can be represented in the form

δ J = 2
L∑

i=1

T∫

t0

〈w,
∂f
∂pi

δpi 〉dt,

using the solution w(t,p) to the adjoint problem

A ∗(̂y, p̂)w ≡ − d

dt
w(t) −

[
∂f
∂y

]T

w(t) −
[

∂f
∂yτ

]T

t+τ

w(t + τ) = y(t, p̂),

t0 ≤ t ≤ T, w(t) = 0, t ∈ [T, T + τ ]. (5.5.28)
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The gradient of the functional can be calculated by integrating numerically the
ODEs

d

dt

(
∂ J

∂pi

)
= 2〈w(t),

∂f
∂pi

(t)〉, t ∈ [t0, T ], ∂ J

∂pi
|t0 = 0. (5.5.29)

5.5.3 Numerical Treatment

We obtained the numerical solution of the model using the DI FSU B − DDE code
developed for DDEs with constant time lags [25]. The Nordsieck vector form for the
solution to the difference problem

ȳn =
[
yn, hn y

′
n, . . . ,

h p
n y

(p)
n

p!

]T

∈ Rp+1

provides a ‘natural’ built-in p–th order interpolating polynomial in a neighbourhood
of the mesh point tn

πq,n(ȳn, t − τ) = C

(
t − τ − tn

hn

)
ȳn,

where C(α) = [1, α, . . . , α p], (t − τ) ∈ (tn−1, tn]. The computation of the gradient
of the functional splits into three distinct stages

(1). Solve numerically the direct problem for which the set of jump discontinuity
points includes {t0 + jτ }r+1

j=0:

d

dt
y(t) = f (t, y(t), y(t − τ),p) , t ∈ [t0, T ] (5.5.30)

y(t) = φ(t,p), t ∈ [t0 − τ, t0]. (5.5.31)

Keep the Nordsick history array yn at the whole set of mesh points tn on [t0, T ]:
t0 < t1 < · · · < tN = T ; hn = tn − tn−1, n = 1(1)N .

(2). Solve theadjointproblem fromT to 0 for a systemof equations from linearized
around the unperturbed solution specified by parameter vector p̂
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A ∗(̂y, p̂)w ≡ − d

dt
w(t) −

[
∂f
∂y

]T

w(t) −
[

∂f
∂yτ

]T

t+τ

w(t + τ) = y(t, p̂),

t0 ≤ t ≤ T, w(t) = 0, t ∈ [T, T + τ ], (5.5.32)

with negative stepsizes. The Nordsieck’s vector allows to approximate the solution
to the main problem at any given time. Keep the adjoint solution w̄(t) at the mesh
points tn∗ . The set of jump discontinuity points is {t0 + jτ }r+1

j=0 ∪ {T − jτ }r+1
j=0.

(3). Compute the gradient of the functional by integrating the set of L ODEs:

d

dt

(
∂ J

∂pi

)
= 2〈w(t),

∂f
∂pi

(t)〉, t ∈ [t0, T ], ∂ J

∂pi
|t0 = 0, i = 1(1)L . (5.5.33)

5.5.4 Adjoint Equations for the Antiviral Immune Response
Model

Consider the following notation for the state vector function of an adjoint problem:

w(t) ≡ (
V ∗

f (t), M
∗
V (t), H∗

E (t), H∗
B(t), E∗(t), B∗(t), P∗(t), F∗(t),C∗

V (t),m∗(t)
)T

.

Then, the adjoint equations look as follows:

d

dt
V ∗

f (t) = (γV F F(t) + γVM + γVC(C0 − CV (t) − m(t)))V ∗
f (t)

− σ(C0 − CV (t) − m(t))C∗
V (t) − γMV M

∗
V (t)

+ γFV F(t)F∗(t), (5.5.34)

d

dt
M∗

V (t) = αMM∗
V (t) − ρE

HbEH HE (t)ξ(m(t + τ E
H ))H∗

E (t + τ E
H )

− ρB
HbBH HB(t)ξ(m(t + τ B

H ))H∗
B(t + τ B

H )

− ρEb
E
p HE (t)E(t)ξ(m(t + τE ))E∗(t + τE )

− ρBb
B
p HB(t)B(t)ξ(m(t + τB))B∗(t + τB)

− bPp HB(t)B(t)ξ(m(t + τP ))P∗(t + τP ) + (bEH HE (t) + bHE
p HE (t)E(t))H∗

E (t)

+ (bBH HB(t) + bHB
p HB(t)B(t))H∗

B(t) + bEp HE (t)E(t)E∗(t)

+ bBp HB(t)B(t)B∗(t), (5.5.35)
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d

dt
H∗
E (t) = −ρE

HbEH MV (t)ξ(m(t + τ EH ))H∗
E (t + τ EH )

+ (bEH MV (t) + b
HE
p MV (t)E(t) + αE

H )H∗
E (t)

− ρEb
E
p MV (t)E(t)ξ(m(t + τE ))E∗(t + τE ) + bEp MV (t)E(t)E∗(t), (5.5.36)

d

dt
H∗

B(t) = −ρB
Hb

B
HMV (t)ξ(m(t + τ B

H ))H∗
B(t + τ B

H )

+ (bB
HMV (t) + bHB

p MV (t)B(t) + αB
H )H∗

B(t)

− ρBb
B
p MV (t)B(t)ξ(m(t + τB))B∗(t + τB) + bB

p MV (t)B(t)B∗(t)

− bP
p MV (t)B(t)ξ(m(t + τP))P∗(t + τP), (5.5.37)

d

dt
E∗(t) = −ρEb

E
p MV (t)HE (t)ξ(m(t + τE ))E∗(t + τE )

+ (bE
p MV (t)HE (t) + bECCV (t) + αE )E∗(t) + bHE

p MV (t)HE (t)H∗
E (t)

− nbCECV (t)V ∗
f (t) + bCECV (t)(C∗

V (t) − m∗(t)), (5.5.38)

d

dt
B∗(t) = −ρBb

B
p MV (t)HB(t)ξ(m(t + τB))B∗(t + τB)

+ (bB
p MV (t)HB(t) + αB)B∗(t) − bP

p MV (t)HB(t)ξ(m(t + τP))P∗(t + τP)

+ bHB
p MV (t)HB(t)H∗

B(t), (5.5.39)

d

dt
P∗(t) = αP P

∗(t) − ρF F
∗(t), (5.5.40)

d

dt
F∗(t) = γV FV f (t)V

∗
f (t) + (γFV V f (t) + αF )F∗(t), (5.5.41)

d

dt
C∗

V (t) = (
σV f (t) + bCE E(t) + bm

)
C∗

V (t) − (bCE E(t) + bm)m∗(t)

+ bEC E(t)E∗(t) − (ν + nbCE E(t) + γVCV f (t))V
∗
f (t), (5.5.42)
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d

dt
m∗(t) = αmm

∗(t) − γVCV f (t)V
∗
f (t) + σV f (t)C

∗
V (t)

− ∂ξ

∂m
× (ρE

Hb
E
HMV (t − τ E

H )HE (t − τ E
H )H∗

E (t)

+ ρB
Hb

B
HMV (t − τ B

H )HB(t − τ B
H )H∗

B(t)

+ ρEb
E
p MV (t − τE )HE (t − τE )E(t − τE )E∗(t)

+ ρBb
B
p MV (t − τB)HB(t − τB)B(t − τB)B∗(t)

+ bP
p MV (t − τP)HB(t − τP)B(t − τP)P∗(t)). (5.5.43)

Initial data on [T, T + τi ] are

V ∗
f (T ) = 0, M∗

V (T ) = 0, H∗
E (t) = 0, T ≤ t ≤ T + τ E

H , H∗
B(t) = 0, T ≤ t ≤ T + τ B

H ,

E∗(t) = 0, T ≤ t ≤ T + τE , B∗(t) = 0, T ≤ t ≤ T + max(τP , τB),

P∗(t) = 0, T ≤ t ≤ T + τP , F∗(T ) = 0, C∗
V (T ) = 0, m∗(T ) = 0. (5.5.44)

5.5.5 HBV Infection: Chronic Versus Resolving Infection

Weconsider unique data that represent the dynamics of hepatitis B virus (HBV) in the
blood of healthy male inmates of the U.S. Federal penitentiaries (1951–1954) ([27]).
The volunteer subjects were inoculatedwith plasma samples from patients withHBV
infection. The HBV load, the surface antigen (HBsAg) concentrations and the level
of liver enzymes in patients’ bloodwere examined everyweek. The primary objective
of the study was to understand the factors that determine whether an individual with
acute hepatitis B will resolve the illness and clear the virus below the detection level
(about 105 and 108 HBV and HBsAg particles/ml, respectively) or will develop a
chronic infection. The representative data sets from a patient who cleared the virus
(we call him Patient 1) and a patient who became chronically infected (Patient 2)
are summarized in Fig. 5.25(left) (the original data were reproduced manually from
the graphs in [27]). Among the set of factors that were considered to be responsible
for the chronic outcome in Patient 2 were the immune factors (e.g. a delay in the
development of the antiviral response) as well as the virus factors (e.g. replication
rate, immunogenicity). It was proposed that high levels of viral replication during
acute infection predict progression to chronicity. In HBV chronic infection, the viral
loads are generally high in the face of very low frequency of virus-specific CTL.
However, it is not clear whether this reflects the higher initial virus replication levels
or results from acute immune responses which appear to be weaker from the onset.

We further can analyse whether the above proposition is consistent with the data
in hand. Specifically, we examine the sensitivity of the cumulative load functional
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Fig. 5.25 Representative data on acute and chronic HBV infection and the model solutions repro-
ducing the observed phenotypes, i.e. the kinetics of the viral load. (Reprinted from Journal of
Computational and Applied Mathematics, Vol. 184, Marchuk et al., Adjoint equations and analysis
of complex systems: Application to virus infection modelling, Pages 177–204, Copyright © 2005,
with permission from Elsevier)

with respect to the parameters of the antiviral immune response model. Consider as
an integral measure of the HBV infection the following linear functional (T = 98
days):

J[0,98](y) ≡ J (V f ) =
T∫

0

V f (t)dt.

The data over days 0 to 98 suggest that for patients 1 and 2 the functional takes the
values J1(V f ) ∼ 5.8 × 108 HBV/ml day and J2(V f ) ∼ 1.7 × 1010 HBV/ml day,
respectively. A visual inspection of the kinetics of HBV and HBsAg in acute versus
chronic infection (See Fig. 5.25(left)) suggests that there is little difference (if any)
in the initial growth phase. The differences appear about day 48 post infection at
the peak of the acute infection viral load. Notice, that the parallel rightward shift of
the growth curve might simply be due to the initial dose in the chronic infection.
Therefore, we assumed that the sensitivity of the cumulative viral load functional to
the model parameters computed for 48 and 98 days should provide information for
the selection of those parameters that might be different between patients 1 and 2.
This should provide a basis for further inference about the pathogenetic mechanisms
of chronicity.

Using the adjoint equation technique, we compute the gradients of the viral load
functional

J (V f ) =
98∫

0

V f (t)dt =
48∫

0

V f (t)dt +
98∫

48

V f (t)dt

for the whole observation interval and the first 48 days. The components of the
gradient vector are ranked in Table5.3 by their absolute values. According to the
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Table 5.3 Sensitivity of the cumulative viral load functional evaluated over [0, 98] days and [0, 48]
days (value in brackets) intervals. (Reprinted from Journal of Computational and Applied Mathe-
matics, Vol. 184, Marchuk et al., Adjoint equations and analysis of complex systems: Application
to virus infection modelling, Pages 177–204, Copyright © 2005, with permission from Elsevier)

Parameter Gradient component
∂ J
∂pi

· pi [×109]
Parameter Gradient component

∂ J
∂pi

· pi [×109]

ν 2.3 (3.9) ρB
H −1.7 (−0.0002)

σ 1.2 (3.8) γV M −1.2 (−1.6)

αM 0.4 (−0.0006) γMV −0.6 (−0.0006)

αB
H 0.2 (0.00003) ρB −0.4 (−0.000008)

γFV 0.06 (0.001) γV F −0.3 (−0.1)

αP 0.05 (0.00006) ρF −0.3 (−0.06)

αF 0.05 (0.06) H0
B −0.3 (−0.0002)

αm 0.01 (0.001) bPp −0.2 (−0.0002)

αB 0.01 (0.0000008) bm −0.2 (−0.31)

ρE
H 0.008 (−0.0001) bBH −0.2 (−0.00005)

bEC 0.006 (0.0005) B0 −0.2 (−0.0001)

αE
H 0.0006 (0.00003) bBp −0.1 (−0.000006)

bHB
p 0.000006 (<10−9) P0 −0.04 (−0.05)

ρE −0.01 (−0.04)

bEp −0.005 (−0.04)

H0
E −0.005 (−0.0004)

bCE −0.003 (−0.004)

E0 −0.003 (−0.004)

bEH −0.001 (−0.00004)

αE −0.0006 (−0.00008)

γVC −0.00001
(−0.00005)

bHE
p −0.00000001

(<10−10)

following criteria of parameters selection, (i) a low sensitivity of J[0,48], (ii) a high
sensitivity of J[0,98], (iii) the biological feasibility of such variation in the parameter
value, which could lead to an increase in the viral load functional by two orders, the
group of candidate parameters reduces to γMV , H 0

B, B0, bB
H , bB

p , bP
p out of the

total set of 35 parameters. Further numerical simulations suggest that the transition
from acute to chronic infection can be caused by about 102 fold decrease in the
value of γMV , representing the efficacy of virus antigen processing and presentation
by antigen-presenting cells as shown in Fig. 5.26. This change might be considered
as a most parsimonious explanation of the chronic outcome of HBV infection in
Patient 2.

A finer tuning of the solution via fitting of the acute and chronic viral load data
(the corresponding solutions of the model is shown in Fig. 5.25(right)) suggests the
following differences in the virus–host interaction parameters between Patient 1 and
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Fig. 5.26 Model prediction
for HBV infection dynamics
for different values of the
efficacy function of
antigen-presenting cells (the
model parameter γMV )
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Patient 2: (i) antigen presentation rate is reduced by γMV 102; (ii) virus clearance by
macrophages γVM reduced by 25%; (iii) virus replication rate ν is reduced by 20%;
(iv) infection rate of target cells σ is 30% higher; (v) total number of target cells is
30% smaller.

Using the results of the above analysis, we propose that (prop1) the efficacy of
antigen presentation might be the main cause of the chronic HBV infection in Patient
2; (prop2) the parameters of virus infection seem to be rather similar for the acutely
and chronically infected patients. Overall, the explanation of HBV pathogenesis
generated via the sensitivity analysis states that observed chronicity in the analysed
HBV infection data results from a poor antigen presentation rather than high initial
level of viral replication.

An important task in mathematical immunology is to explain and predict the
changes in the patterns of infectious disease dynamics between various patents. Sen-
sitivity analysis provides a means to establish causality relationships between basic
parameters of the process kinetics and the clinicallymeasured characteristics of infec-
tion. Various approaches to characterize the sensitivity can be used. In those cases
when the modelled system is highly complex (e.g. the number of kinetics parameters
is large) and integrative information about solutions in the form of functionals is
appropriate, the adjoint equations framework allows one to compare the sensitivity
of the system performance to deviations of the parameter values from their ‘norms’.
This should provide the way to individualize the disease dynamics and to use the
mathematical models to design a treatment for an individual patient rather than for
an abstract ‘averaged’ individual.
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Chapter 6
Spatial Modelling Using
Reaction–Diffusion Systems

Mathematical immunology is dealing with increasingly complex models of immune
phenomena formulated with ODEs or DDEs. Except for few studies, mathemati-
cal models of the immune response against virus infections conventionally consider
the infected whole organism as a single homogenous compartment. Thus, they do
not take into account that the dynamics of infection spread differs between tissues,
organs and blood. The spatial aspects of the immune processes can be partly taken
into account by a compartmental view of the space. A more detailed description
however should include this spatial heterogeneity with respect to virus propaga-
tion and immune response development. Models based upon PDEs are still rare in
mathematical immunology. In this chapter, we present basic foundations of spatio-
temporalmodelling using reaction–diffusion (RDE) systems. The application of one-
dimensional RDEswith time lag for predicting the qualitative regularities of the virus
infection spreading in target tissues will be presented in the first sections. Then, a
computational approach to study the cytokine distribution in LN will be illustrated.
The results of this chapter are based on our earlier work published in [1, 2].

6.1 Reaction–Diffusion Equations for Immunology

6.1.1 Spatial Models of Infection Development

The virus distribution in tissue can be heterogeneous due to its non-homogeneous
initial distribution and the emergence of spatio-temporal patterns determined by the
interaction of virus reproduction, transport and the immune response. Regulation of
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Fig. 6.1 Schematic
representation of virus
infection dynamics
regulation (see the
explanation in the text).
(The figure is reprinted from
Bocharov et al., PLOS ONE,
2016)

the virus population is schematically presented in Fig. 6.1.1 There are three main
processes which determine the distribution of virus in tissue: its reproduction, its
elimination by immune cells and its transport. In the simplest case, virus reproduction
can be described by the logistic function where the reproduction rate is proportional
to its concentration v and to the concentration of uninfected host cells. In the dimen-
sionless variables, the latter is proportional to 1 − v. Therefore, the reproduction rate
becomes proportional to the conventional logistic term v(1 − v).

Virus elimination by immune cells is proportional to the product of their con-
centrations, cv. The concentration of immune cells at time t depends on the con-
centration of virus at some time t − τ since the immune cells need some time
to proliferate and differentiate after being stimulated by the infection. Therefore
c(x, t) ∼ f (v(x, t − τ)), where the function f (v) describes the immune response
depending on the infection level. This function has a specific bell shape: for small
viral loads, the immune response is an increasing function of v while for large viral
loads, it decreases since infection can downregulate the immune cells via anergy and
activation-induced apoptosis.

Finally, virus population can spread in the tissue by different transport mecha-
nisms. It can spread either by either direct cell–cell transmission or a randommotion
in the extracellular matrix [3, 4]. Under these assumptions, we obtain the following
delay reaction–diffusion equation describing the virus distribution:

∂v

∂t
= D

∂2v

∂x2
+ kv(1 − v) − f (vτ )v. (6.1.1)

We will begin the investigation of virus spreading in tissue with this equation. In
the end of this section, we will consider more complete models. In order to study
dynamics of solutions of this model, we recall some basic definitions and results
from the theory of reaction–diffusion waves.

1Material of Sects. 6.1 and 6.2 uses the results of our studies from Bocharov et al., Spatiotemporal
dynamics of virus infection spreading in tissues, PlosOne, 2016, 11(12):e0168576.
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6.1.1.1 Reaction–Diffusion Waves

The reaction–diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ F(u) (6.1.2)

describes the evolution of the variable u(x, t) in space and in time. In immunological
models, it canbe the concentrations of viruses, of cells or biochemical substances.The
diffusion term in the right-hand side of this equation describes their random motion,
and the function F(u) shows their production (birth) and consumption (death) rates.
A typical example is given by the following function:

F(u) = aun(1 − u) − b(u). (6.1.3)

It will allow us to describe specific features of solutions which are also observed for
other nonlinearities considered below. For the dimensionless (normalized) concen-
tration of cells or viruses, the first term in (6.1.3) describes their birth rate and second
term their death rate. If n = 1, then the birth rate is proportional to the concentration
of viruses (cells) and it is limited by the available resources (1 − u), for example, host
cells where virus multiplies. The death rate function b(u)will be specified in the fol-
lowing section. At the moment, it will be taken in the simplest linear form b(u) = σu
implying that the death rate is proportional to the concentration. In a more general
and biologically interesting case, b(u) can be a nonlinear function which takes into
account specific properties of the immune response. The value n > 1 corresponds to
a possible self-amplification of the birth rate.

We will consider Eq. (6.1.2) on the real axis, −∞ < x < ∞, with an initial con-
dition u(x, 0) assuming that it is a bounded non-negative and piecewise continuous
function (Cauchy problem). The existence and uniqueness of solution of this problem
is well known (see, e.g. [5]) and we will not discuss it here. If n = 1 and b(u) = σu,
then there are two different cases, σ > a and σ < a (for the sake of simplicity we
consider only strict inequalities). In the first case, the equilibrium point u = 0 is a
unique non-negative stationary solution, and it is globally asymptotically stable. The
latter means that solution u(x, t) of Eq. (6.1.2) uniformly converges to 0 as time t
increases:

sup
x∈R

|u(x, t)| → 0, t → ∞.

This mathematical conclusion has a clear biological interpretation: if the virus death
rate is greater than its birth rate, then infection disappears with time.

In the second case, where σ < a, there are two non-negative equilibrium points,
u0 = 0 and u1 = (a − σ)/a. Considered as solutions of the ordinary differential
equation
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du

dt
= F(u), (6.1.4)

the former is unstable and the latter is stable. Therefore, any small positive concen-
tration of viruses leads to their multiplication, and their concentration grows towards
the positive equilibrium u1.

Behavior of solutions of Eq. (6.1.2) can be described in this case by travelling
wave solutions. Travelling wave is a solution of this equation of the form u(x, t) =
w(x − ct). It satisfies the second-order ordinary differential equation

Dw′′ + cw′ + F(w) = 0 (6.1.5)

and the limits at infinity

w(−∞) = u1, w(∞) = u0. (6.1.6)

Here c is the wave speed. It is a constant, which is a priori unknown andwhich should
be found as a solution of the problem. Hence, we search for the values of c for which
problem (6.1.5), (6.1.6) has a solution.

Travelling wave solutions for reaction–diffusion equations were introduced
by Fisher [6] and Kolmogorov–Petrovskii–Piskunov [5] for the models of popu-
lation dynamics and by Zeldovich and Frank-Kamenteskii [9] in combustion theory
(see also [10]). These works initiated a wide area of research with numerous
applications [8].

6.1.2 Existence and Stability of Waves

6.1.2.1 Existence of Waves

In the example considered above, travelling waves describe a transition from an
unstable equilibrium u0 to a stable equilibrium u1. Existence of such solutions for the
scalar reaction–diffusion equation can be easily studied by the phase space analysis
of the system of two first-order equations

w′ = p, p′ = 1

D
(−cp − F(w)) (6.1.7)

obtained from the second-order Eq. (6.1.5).

Existence of waves in the monostable case. In a more general setting, let the function
F(w)be positive on the intervalu0 < w < u1 and F(u0) = F(u1) = 0. This is the so-
called monostable case where one of the two non-negative equilibria of Eq. (6.1.4)
is stable and another one is unstable. In this case, problem (6.1.5), (6.1.6) has a
solution for all values of the speed c greater than or equal to the minimal speed
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c0. These solutions are monotonically decreasing functions of the space variable x .
Their monotonicity is important for the stability of waves (see below).

The properties of the function F(u) in (6.1.3) are different if n > 1. For simplicity,
let n = 2. If 4σ > a, then F(u) has only one non-negative zero, u0 = 0. It is globally
asymptotically stable as a stationary solution of Eq. (6.1.2). If 4σ < a, then F(u)

has three non-negative zeros, u0 = 0, u1 and u2; the last two zeros are found as
solutions of the equation u(1 − u) = σ/a, u2 < u1. Stationary solutions u0 and u1

of Eq. (6.1.4) are stable, and u2 is unstable.

Existence of waves in the bistable case. For a more general function F(u), not
necessarily given by equality (6.1.3), suppose that F(u0) = F(u1) = F(u2) = 0 for
some u0 < u2 < u1, F(w) is negative on the interval u0 < w < u2 and positive on
the interval u2 < w < u1. This is the so-called bistable case since the zeros u0 and
u1 are stable as stationary solutions of Eq. (6.1.4). In this case, there exists a unique
value of c such that problem (6.1.5), (6.1.6) has a solution. It is a monotonically
decreasing function of the space variable x .

6.1.2.2 Wave Speed

An important characterization of travelling waves is the speed of propagation. If
n = 1 in (6.1.3), then the minimal speed is given by the formula c0 = 2

√
DF ′(0).

In general, explicit formula for the wave speed does not exist but there are various
analytical approximations. In the bistable case, the wave speed can be positive or
negative depending on the nonlinearity. Indeed, multiplying Eq. (6.1.5) by w′ and
integrating, one obtains

c =
∫ ∞

−∞
F(u)du�

∫ ∞

−∞
(w′(x))2dx .

Though it is not an explicit formula for the wave speed since the function w′(x) is
unknown, it allows the determination of the sign of c: it is positive (zero, negative)
if and only if the integral of F is positive (zero, negative). This condition gives a
simple and useful criteria of propagation, in particular, of virus spread which occurs
under the positive wave speed.

6.1.2.3 Convergence to Waves

By definition, solution u(x, t) of Eq. (6.1.2) with some initial condition u(x, 0) =
u0(x) uniformly converges to the travelling wave solution w(x) if there exists a
constant h such that

sup
x∈R

|u(x, t) − w(x − ct − h)| → 0, t → ∞. (6.1.8)
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This convergence characterizes behavior of solutions, and it shows that solution of
the Cauchy problem propagates as a travelling wave solution. A more general type
of convergence, called convergence in form occurs if instead of (6.1.8) one has

sup
x∈R

|u(x, t) − w(x − m(t))| → 0, t → ∞ (6.1.9)

for some function m(t). Clearly, the uniform convergence is a particular case of the
convergence in formwhere m(t) = ct + h. Therefore from the uniform convergence
it follows the convergence in form. However, the inverse may not be true. If the func-
tion m(t) is such that m ′(t) → c as t → ∞, then convergence (6.1.9) is convergence
in form and in speed. However, convergence in form and in speed does not imply the
uniform convergence neither. The function

m(t) = ct + k log t + h (6.1.10)

satisfies the property of convergence in speed but not the uniform convergence.
Having introduced these definitions, one can now present the main results on the

convergence to waves in the monostable and in the bistable cases.

Convergence to the wave with the minimal speed in the monostable case. Let u0(x)

be a non-negative monotone function such that u0(x) ≡ 0 for x ≥ x0 and some x0
and u(−∞) > 0. Then, the solution u(x, t) of Eq. (6.1.2) with the initial condition
u(x, 0) = u0(x) converges to the wave w(x) with the minimal speed c0 in form and
in speed. In the case of function F(u) given by (6.1.3) with n = 1, the function m(t)
in the definition of convergence has the form (6.1.10).

Convergence to the wave in the bistable case. Let u0(x) be a non-negative mono-
tone function such that u0(∞) = u0 and u(−∞) = u1. Then the solution u(x, t)
of Eq. (6.1.2) with the initial condition u(x, 0) = u0(x) uniformly converges to the
wave w(x).

More general results about convergence towave are known including convergence
to the waves with the speed greater than the minimal one [7]. Convergence to waves
is related to the wave stability determined by the location of the spectrum of the
corresponding linearized operator. It should be noted that monotone waves are stable
in appropriate classes of perturbations and non-monotone waves are not stable.

6.1.2.4 Systems of Waves

The existence of waves was discussed above for some particular functions F(w). In
what follows, some other functions will also be considered for which the waves may
not exist and for which behavior of solutions of Eq. (6.1.2) can be different.

It was assumed above that the function F(w) has two non-negative zeros u0 and
u1 in the monostable case, and it is positive on the interval u0 < w < u1. Suppose
now that it has two additional zeros u∗ and u∗ such that u0 < u∗ < u∗ < u1 and
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F(w) > 0 for u0 < w < u∗, u∗ < w < u1; F(w) < 0 for u∗ < w < u∗.
(6.1.11)

This case is also monostable since u0 is unstable with respect to Eq. (6.1.4), and point
u1 is stable. However, the behavior of solutions in this case is more complex.

The limiting values of waves at infinity can now be different from (6.1.6). The
waves with the limits w(−∞) = u∗, w(∞) = u0 will be called the [u0, u∗]-waves.
Similarly, we define the [u∗, u1]-waves and the [u0, u1]-waves.

The [u0, u∗]-waves correspond to the monostable case considered in Sect. 6.1.2.1
since the function F(w) is positive on the interval u0 < w < u∗. Such waves exist
for all values of the speed greater than or equal to the minimal speed c0. The [u∗, u1]-
wave corresponds to the bistable case. It is unique, and its speed will be denoted by
c1. The existence of [u0, u1]-waves depends on the relation between the speeds c0
and c1.

Existence of waves in the monostable–bistable case. If c1 > c0, then [u0, u1]-waves
exist for all speeds c in the interval c∗ ≤ c < c1 for some c∗. If c1 ≤ c0, then such
waves do not exist.

An interesting question arises then, how to describe the behavior of solutions of
Eq. (6.1.2) if the waves do not exist. In this case, not only waves but also systems of
waves should be considered. The system of waves consists of two (or more) waves
propagating one after another. Propagation of a single wave is shown in Fig. 6.2 (left),
propagation of a system of waves in Fig. 6.2 (right). Here the [u0, u∗]-wave with the
minimal speed c0 is faster than the [u∗, u1]-wave. Therefore, the first waves runs
away followed by a slower second wave.

Fig. 6.2 Propagation of a single wave (left) and of system of waves (right). Different curves in the
left figure show the solution u(x, t) of Eq. (6.1.2) as a function of x at different moments of time.
(The figure is modified from Bocharov et al., PLOS ONE, 2016)
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6.2 Virus Spreading in Tissue

6.2.1 The Model Without Time Delay

The virus distribution in tissue such as spleen or lymph node can be described by the
reaction–diffusion equation

∂v

∂t
= D

∂2v

∂x2
+ kv(1 − v) − f (v)v. (6.2.1)

Here v = v(x, t) is the dimensionless virus concentration, the first term in the right-
hand side of this equation describes virus diffusion, the second term its production
and the last term its elimination by CTLs. We suppose that the function f (v) is
non-negative and it is continuous together with its second derivatives. By a change
of variables this equation can be reduced to the same equation with D = 1, k = 1.

The function f (v) describes the concentration of immune cells which eliminate
infection. It depends on the concentration of virus. According to its biological mean-
ing, we suppose that it is growing for small v and decreasing for large v. Indeed,
small viral load stimulates immune response while large viral load downregulates
it. The qualitative form of this function is shown in Fig. 6.3. There are two different
cases depending on the strength of the immune response for low viral load: f (0) < 1
(Fig. 6.3, left) or f (0) > 1 (Fig. 6.3, right).

The nonlinearity F(v) = v (1 − v − f (v)) corresponds to themodel function con-
sidered in Sect. 6.1.2 with n = 1 and b(v) = f (v)v. We will consider this equation
on the whole axis with a non-negative initial condition. Depending on the form of the
function f (v), we will get different behavior of solutions. Let us note that F(0) = 0.
This function can have other zeros for v > 0.

Fig. 6.3 Qualitative form of the function f (v) with f (0) < 1 (left) and f (0) > 1 (right)
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6.2.1.1 Stable Virus Free State

Suppose that f (0) > 1. Then F ′(0) < 0, and the virus-free state v = 0 is locally
asymptotically stable as a solution of Eq. (6.1.1). If F(v) < 0 for all v > 0, then it
is globally asymptotically stable. This condition on the function F(v) signifies that
virus elimination due to the immune response is stronger than the virus reproduction
for all values of v.

The form of the function f (v) implies that F(v) can have two other zeros for
positive v. We suppose that they are different from each other and denote them by
v0 and v−, v0 < v−. Then F(v) < 0 for 0 < v < v0 and F(v) > 0 for v0 < v < v−
(bistable case). In this case, there is a travellingwave solution of Eq. (6.1.1), v(x, t) =
w(x − ct). The function w(x) satisfies the equation

w′′ + cw′ + F(w) = 0 (6.2.2)

and it has the limits

w(−∞) = v−, w(+∞) = 0 (6.2.3)

at infinity. Behavior of solutions of the Cauchy problem is determined by the wave
speed and by the initial conditions.

Wave speed

The sign of the wave speed depends on the sign of the integral

I (F) =
∫ v−

0
F(v)dv.

The wave speed c is positive (zero, negative) if I (F) is positive (zero, negative).
Positive wave speed corresponds to infection spreading. If the speed is negative,
infection retreats.

Initial condition

Assume, first, that the initial condition v(x, 0) is amonotonically decreasing function
with the limits

v(−∞, 0) = v∗, v(+∞) = 0.

If v∗ < v0, then the solution converges to 0 uniformly on the whole axis. If v− >

v∗ > v0, then it converges to the travelling wave uniformly on the whole axis. If
F ′(v−) < 0, then the rate of this convergence is exponential.

Next, consider the case where the initial condition is non-negative and it has zero
limits at infinity. If the function v(x, 0) is sufficiently large, then v(x, t) → v− as
t → ∞ locally uniformly. The transition between 0 and v− is provided by travelling
waves moving in the opposite directions. If v(x, 0) is sufficiently small, then the
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solution converges to 0 uniformly on the whole axis. The conditions on v(x, 0)
under which one of these cases occurs can be formulated more precisely.

Thus, even if the wave speed is positive, infection propagation depends on the
initial condition. The initial infection load should be sufficiently large to provide
infection spreading.

6.2.1.2 Unstable Virus Free State

If f (0) < 1, then F ′(0) > 0, and v = 0 is anunstable stationary solutionofEq. (6.1.1).
For any non-negative initial condition v(x, 0), which is not identically 0, the solution
v(x, t) does not converge to 0. It grows to some positive value.

Wewill discuss behavior of solution inmore detail. Since F(1) < 0, then there is at
least one zero of this function for v > 0. Taking into account the form of the function
f (v), the function F(v) can have from one to three positive zeros. Let F(v) = 0 for
v = 0, v0, v1, v−, where 0 < v0 < v1 < v−. It is a monostable case with intermediate
zeros (cf. Sect. 1.2.4):

F(v) > 0 for 0 < v < v0, v1 < v < v− ; F(v) < 0 for v0 < v < v1 .

There exist travelling waves with the limits v(−∞) = v0, v(+∞) = 0 , the [0, v0]-
waves (monostable case).Moreover, there is a [v0, v−]-wavewith the limits v(−∞) =
v−, v(+∞) = v0 (bistable case).

Denote by c0 the minimal speed of the [0, v0]-waves and by c1 the speed of
the (unique) [v0, v−]-wave. If c1 > c0, then there are [0, v−]-waves with the speeds
c∗ ≤ c < c1, where c0 ≤ c∗ < c1. If c1 ≤ c0, then such wave does not exist. In this
case, there is a system of waves consisting of two waves. First there is a [0, v0]-wave
followed by the [v0, v−]-wave propagating with a lesser speed.

Convergence to these waves and systems of waves depends on the initial condi-
tions. The following cases of infection spread can be identified:

1. Weak infection v0 is established after the infection spread in the tissue (c1 < 0 or
c1 > 0 but the initial condition is sufficiently small). Infection spreads as [0, v0]-
wave with the minimal speed c0,

2. Strong infection v− is established after wave propagation (c1 > c0, initial con-
dition is sufficiently large). Infection spreads as [0, v−]-wave with some speed
c ≥ c0,

3. Weak infection v0 is followed by strong infection v− (0 < c1 < c0, initial condi-
tion is sufficiently large). Infection spreads as two consecutive waves with differ-
ent speeds (cf. Fig. 6.2, right).
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6.2.2 The Model with Time Delay

In this section, we take into account time delay in the immune response and we use
the results of the work [1]. The concentration of immune cells f (v(x, t − τ)) at time
t depends on the concentration of virus at time t − τ . Therefore, we consider the
equation

∂v

∂t
= D

∂2v

∂x2
+ kv(1 − v) − f (vτ )v, (6.2.4)

where the first term in the right-hand side describes virus transport, the second
term its reproduction and the last one its elimination by the immune response,
vτ (x, t) = v(x, t − τ). As above, we set k = 1 but we keep the diffusion coefficient
as a parameter.

6.2.2.1 Time Oscillations

Time delay can lead to the instability of the homogeneous in space stationary solu-
tion, and it can also influence wave propagation. Let the following equality hold
f (v0) = 1 − v0 for some v0. Then v(x, t) = v0, x ∈ (−∞,+∞), t ∈ (−∞,+∞)

is a stationary solution of Eq. (6.2.4). In order to study its local asymptotic stability
with respect to small perturbations, we look for the solution of this equation in the
form

v(x, t) = v0 + εeλt+iax ,

where a, ε are real numbers, ε is a small parameter, and λ is an eigenvalue. Substi-
tuting the above function in (6.2.4) and equating the terms with the first power of ε,
we get the following characteristic equation:

λ = −Da2 − v0
(
1 + f ′(v0)e−λτ

)
(6.2.5)

(we do not assume here that D = 1). The stability boundary of the steady-state
solution can be computed by considering the characteristic roots in the form of
purely imaginary eigenvalues λ = iφ. Then we have

iφ = −Da2 − v0
(
1 + f ′(v0)e−iφτ

)
.

Therefore, the following equalities must hold for the real and imaginary parts:

Da2 + v0 + v0 f ′(v0) cos(φτ) = 0, (6.2.6)

v0 f ′(v0) sin(φτ) = φ. (6.2.7)
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Set z = φτ . Then from (6.2.6), (6.2.7) we obtain

cos z = − Da2 + v0
v0 f ′(v0)

, τ = z

(v0 f ′(v0) sin z)
. (6.2.8)

The first equation has a solution if the right-hand side is greater than−1. In particular,
if D = 0, then the condition reduces to f ′(v0) ≥ 1. Using z determined from the first
equation, we find τ from the second equation.

Proposition 6.1 If f ′(v0) > 1 + Da2/v0, then for all τ > z/(v0 f ′(v0) sin z) the
solution v0 of Eq. (6.2.4) is unstable. Here z is determined from the first equation
in (6.2.8).

Our analysis suggests that if the initial condition v(x, 0) does not depend on the
space variable, then the solution v(x, t) of Eq. (6.2.4) is also homogeneous in space.
In this case, depending on the values of parameters, the solution of the model either
convergence to the stationary solution v0 or to stable periodic time oscillations both
being spatially homogeneous.

However, this behavior can be different in the case of travelling wave propaga-
tion. If we fulfil the linear stability analysis of the homogeneous in space stationary
solution v0 in the moving coordinate frame attached to the wave, we obtain the same
stability conditions as before. It follows from the first equation in (6.2.8) that the
onset of stability depends on the wave number a of the spatial perturbation and
on the diffusion coefficient. The steady-state solution v0 appears to be more sta-
ble with respect to spatially non-uniform perturbations (a �= 0) than with respect to
perturbations which are homogeneous in space (a = 0). The frequency of the spa-
tial perturbations depends on the ratio of wave speed and the frequency of the time
oscillations, a = φ/c.

We illustrate the regimes of wave propagation in the case of the linear function
f (v) = rv (Fig. 6.4). In the first one, both types of perturbations, i.e. the spatial
perturbations and time perturbations homogeneous in space, decay with time. They

Fig. 6.4 Numerical simulations of Eq. (6.2.4) with the function f (v) = rv (r = 2, D = 10−4).
Wave propagation for three different values of time delay, τ = 1.4, 2, 4, respectively. For small
time delay (left) space and time oscillations decay, for intermediate time delay (middle) space
oscillations decay while time oscillations persists, for large time delay (right) both of them persist.
(The figure is reprinted from Bocharov et al., PLOS ONE, 2016)
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manifest themselves as decaying spatial oscillations behind the wave front followed
by a spatially constant solution (Fig. 6.4, left). Another regime of wave propagation is
characterized by the decaying spatially heterogeneous perturbation and the persisting
homogeneous in space perturbations (Fig. 6.4, middle).

Finally, if the spatial perturbations persist, then the travelling wave propagation
takes place with a (moving) periodic structure established behind the wave front
(Fig. 6.4, right). Note that the wave speed in all these cases equals c0.

6.2.3 Full-Scale Viral Regulation of the Immune Response

We consider now a full-scale viral regulation of the immune response, i.e. the whole
function f (v), v ≥ 0 as shown in Fig. 6.3 (left). The corresponding behavior of
solutions will be assessed using numerical simulations and insight gained via the
analyses of the simplified model problem with a linear function f (v).

Let us recall that equation f (v) = 1 − v has three roots (solutions), v0, v1 and
v−. In the model without delay (Sect. 2.1), Eq. (6.2.4) has wave solutions with the
limits w(−∞) = v0, w(∞) = 0 for all values of the speed greater than or equal
to the minimal speed c0 = 2

√
D(1 − f (0)). Suppose that the stationary point v0 is

stable (cf. Sect. 2.2.1), and the initial condition has limits 0 and v0 at±∞. Numerical
simulations show that solution of Eq. (6.2.4) converges to the wave with the minimal
speed. If the time delay is sufficiently large, then the wave is not monotone, similar
to the model problems considered in Sect. 2.2.1.

The travelling wave with the limits w(−∞) = v−, w(∞) = v0 corresponds to the
bistable case. It exists for a unique value c1 of wavefront speed in the case without
delay τ = 0 and for themodel problemwith non-zero delay τ > 0. Let us consider the
case where c1 < c0. Then in the case without delay (τ = 0) the wave with the limits
w(−∞) = v−, w(∞) = 0 does not exist. The behavior of solutions of Eq. (6.2.4) is
described by a system of two waves propagating one after another with the speeds
c0 and c1. A similar behavior is observed when the delay is present in the regulation
of the immune response but it is sufficiently small (Fig. 6.5). The solution can be
monotone behind the first wave or non-monotone depending on the value of τ .

It appears that the speed of the bistable travelling wave increases with time delay.
This increase occurs because the bistable wave is preceded by a monostable wave
characterized by a lower level of infection. Therefore, the values of the function f (v)
at the bistable wave also decrease due to time delay. Hence the speed c1 increases
as a function of τ , while the speed c0 of the monostable wave does not depend on τ .
For τ sufficiently large, the two waves merge and form a single wave with the limits
w(−∞) = v−, w(∞) = 0 (Fig. 6.5). This is specific for the system of waves where
the bistable wave follows the monostable one. If τ is large enough, this resulting
wave becomes non-monotone.

Figure6.6 shows the last series of simulations in which the slope (sensitivity of
immune response) of f ′(v1) is large enough. In this case, we observe the existence
of a monostable wave with spatial oscillations behind it. This wave can be separated



208 6 Spatial Modelling Using Reaction–Diffusion Systems

Fig. 6.5 Numerical simulations of different regimes of infection spreading depending on time
delay, τ = 0.4, 0.95, 1.5, 10; D = 0.0001. For small time delay (two left figures: τ = 0.4, 0.95),
there are two consecutive waves of infection propagating with different speeds. The first wave can
be non-monotone. For large time delay (two right figures: τ = 1.5, 10), the second wave propagates
faster and they finallymerge forming a single wavewhich can be either monotone or non-monotone.
(The figure is reprinted from Bocharov et al., PLOS ONE, 2016)

Fig. 6.6 Existence of a monostable wave with spatial oscillations behind it. This wave is separated
from the bistable wave by a zone of irregular oscillations. Increase of the delay value results in a
qualitative change of the spatial patterns of the infection spread. The two travelling waves do not
merge and the monostable wave is not followed by steady space oscillations. Aperiodic oscillations
are observed behind the wave front which propagates at a speed c0. The values of time delay are,
respectively, τ = 1, 2, 3, 4; D = 0.0001. (The figure is reprinted fromBocharov et al., PLOSONE,
2016)

from the bistable wave by a zone of irregular oscillations. Further increase of the
delay results in a qualitative change of the spatial patterns of the infection spread.
The two travelling waves do not merge any longer and the monostable wave is not
followed by steady space oscillations. Aperiodic oscillations are observed behind the
wave front which propagates, as before, at a constant speed c0.

6.3 Spatial Model of Virus and Immune Cells Dynamics

In the previous section, we studied the simplestmodel of infection dynamics inwhich
the concentration of immune cells in virus elimination term at time t is implicitly
determined by the infection level at time t − τ . The simplest model can be extended
to reaction–diffusion system of equations



6.3 Spatial Model of Virus and Immune Cells Dynamics 209

∂v

∂t
= D1

∂2v

∂x2
+ kv(1 − v) − σvc, (6.3.1)

∂c

∂t
= D2

∂2c

∂x2
+ φ(vτ )c(1 − c) − ψ(vμ)c (6.3.2)

which describes the spatio-temporal distributions of virus and immune cell concen-
trations. We suppose that φ(v) and ψ(v) are some growing function with saturation.

We present here some examples of numerical simulations. Figure6.7 shows two
regimes of infection spreading. In the first one (without time delay, left image), virus
distribution represents a sharp peak moving in space. Virus concentration vanishes
behind the peak due to its elimination by immune cells whose concentration remains
positive. The second example (Fig. 6.7, right) considers the case with time delay
leading to the oscillations of persistent infection behind the propagating infection
front.

Two other regimes are shown in Fig. 6.8. The first infection front propagates with
a low infection level behind it and the presence of immune cells (left image). It is
followed by a second front with high infection level and immune cell exhaustion.
For a higher virus multiplication rate, transition to the high-level infection can occur
directly, without the intermediate stage (Fig. 6.8, right).

The last example illustrates the influence of the virus diffusion coefficient charac-
terizing the intensity of its randommotion. If it is sufficiently high, then the develop-
ment of the infection can begin as before (Fig. 6.7, left). However, after some time,
the infection peak widens and forms two wave fronts propagating in the opposite
directions. One of them leads to the elimination of immune cells (Fig. 6.9).

Fig. 6.7 Wave propagation without time delay (left). Virus peak is followed by its complete elimi-
nation by immune cells. Wave propagation with time delay (right) and with an oscillating persisting
infection
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Fig. 6.8 Two stage infection propagation (left). First, a low-level infection is established followed
by the second infection front with a high infection level and immune cell exhaustion. Transition to
the high-level infection can occur directly (right)

Fig. 6.9 Two snapshots of solution in the case of large virus diffusion coefficient. In the beginning,
we observe the usual immune cell front accompanied by an infection spike (left). After some time,
infection forms a two side propagating front eliminating immune cells (right)

6.4 Predicting the Type I IFN Field in Lymph Nodes
During a Cytopathic Virus Infection

Secondary lymphoid organs (SLO) are tissues where the induction of innate and
adaptive immune responses takes place.2 The SLO microenvironment provides the

2Material of Sect. 6.4 uses the results fromMathematical Modelling of Natural Phenomena, Vol. 6,
Bocharov et al., Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid
Organs, Pages 13–26, Copyright © 2011, with permission from EDP Sciences.
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structural basis for the induction of T- and B-cell responses. The efficacy of immune
responses relies on a productive interaction between antigen-presenting cells and
lymphocytes. APCs protection by interferon requires that the in situ IFN-I concen-
tration should exceed a certain threshold [14]. The interferon produced by pDCs is
spatially distributed via convection and diffusion processes to various SLO compart-
ments. The microanatomy of a paradigmatic SLO e.g. the lymph node can be essen-
tially reduced to three zones: the subcapsular zone, which is an APC-rich area, the
B-cell activation zone (B-cell follicle) and the T-cell activation zone [17]. Although
direct measurements of the hydraulic conductivity within the T-cell zone aremissing,
it is considered that both diffusion and convection are extremely low [19]. Therefore,
the spatial distribution of IFN in SLO deserves special investigation.

6.4.1 Reaction–Diffusion Model of IFN Dynamics

Delay differential equations considered in Chap. 4 in order to model the type I inter-
feron reaction was developed following a compartmental approach, i.e. assuming the
secondary lymphoid organ (spleen) in which the reaction takes place to be spatially
homogeneous with instantaneous mixing. However, the secondary lymphoid organs
have an elaborated architecture. The details of their structural organization allowus to
suggest that an intensity of the transport processes, in particular, the diffusion, medi-
ating the spread of soluble factors, in particular, IFN-I, differs essentially depending
on the location in the specific anatomical SLO compartments [19]. To examine the
effect of diffusion on the spatial distribution of IFN-I, we consider the concentration
of the interferon I at time t to be also dependent on position x ∈ Ω ⊂ R3, where
Ω represents the spatial region occupied by the lymphoid organ. In the case of a
paradigmatic SLO, it consists of a number (N ) of non-overlapping subdomains Ωi :
Ω = ⋃N

i=1 Ωi . The spatio-temporal dependence of the variable I (x, t) is treated as
a continuum field of concentrations evolving according to the reaction–diffusion
equation with a source term:

∂ I

∂t
(x, t) = ∇ · (D∇ I (x, t)) − dI I (x, t) +

L∑
l=1

Fl(x). (6.4.1)

Here, D stands for the diffusion mass transfer tensor which is assumed to be a scalar
constant coefficient depending on the subdomain (D = Di · E, i = 1, . . . , N ) since
diffusion is considered to be isotropic. Interferon degradation is described by the
term−dI I (x, t). IFN-I secretion by different types of activated cells located at some
positions

(
xm

k

)l=1,L
k=1,Kl

is represented by the source term. It is the sum over Dirac delta

functions Fl(x) = ∑Kl
k=1 ρ(l)δ(x − x(l)

k )with ρ(l) representing the per capita cell type
specific secretion rate. Due to the singularity of Fl(·), the equations are understood
in the weak sense [20].
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The production–degradation parameters were estimated based on the actual data
using the compartmental model in [14]. In particular, the production rates of IFN-I by
activated pDC and macrophage are ρ pDC = 4.4 × 10−4 pg/h/cell and ρMϕ = 10−6

pg/h/cell, respectively. The estimated decay rate of IFN-I in a cell-free medium is
dI = 0.012 h−1. The last value does not consider the consumption of interferon and
can be increased by up to tenfold to account for the internalization of free IFN-I by
various cells in SLO.

The diffusion characteristics of the subdomains representing various compart-
ments of a paradigmatic secondary lymphoid organ and corresponding boundary
conditions are discussed in the next section.

6.4.2 3D Approximation of a Paradigmatic Lymph Node

Secondary lymphoid organs have a highly elaborate structure and organization to
facilitate the interaction between the immune cells and the lymph-borne pathogens
derived from distant tissues. Following a building block approach, a paradigmatic
lymph node synthesis is presented in [17]. Functionally, the lymph node (domainΩ)
consists of three major subdomains:

• an outer antigen-sampling zone (subcapsular sinus, trabecular sinuses, conduit
tubes), referred to as subdomain Ω1,

• B-cell follicles which make subdomain Ω2,
• T-cell zone (cortex and paracortex) denoted as subdomain Ω3.

A paradigmatic LN schematic view is presented in Fig. 6.10. The subcapsular sinus
in the LN contains aggregates of macrophages and dendritic cells which trap soluble
antigens and serve both innate and adaptive immune responses. Once the pDCs detect
viral RNA or DNA, they pass through ordinary activation programs to subsequently
start secreting IFN-I. Conduits represent an important systemof distribution channels
for small soluble antigens and immune modulators (with molecular weight below 70
kDa). They extend from subcapsular sinus floor through the T-cell zone and form a
contiguous lumen with fluid channels around the high endothelial venules (HEVs),
thus making a network highly connected with the cortex capillaries and venules [17,
21]. The bulk flow of water and tracers passing via conduits is documented [19]. As
the IFN-I molecules mass is rather low, ∼17 kDa, they could also enter the conduit
system.

The paradigmatic lymph node domain Ω is schematically described in Fig. 6.10
using a constructive solid geometry representation by combining three subdomains
Ωi , i = 1, 2, 3, defined below. Each subdomain is made of composition of geometric
primitives, such as spheres and cylinders differing in their sizes and orientation.
The Open CASCADE technology (see http://www.opencascade.org) was used to
construct a 3D geometric model of a paradigmatic lymph node. The first domain
Ω1 is topologically defined as follows: (Sout\Sinn) ∪ CT S ∪ CCT , where Sout and

http://www.opencascade.org
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Fig. 6.10 Schematic representation of a paradigmatic lymph node (LN). LNmajor functional build-
ing blocks are subcapsular sinus, trabecular sinus, conduits, B-cell follicles, T-cell zone. (Reprinted
from Mathematical Modelling of Natural Phenomena, Vol. 6, Bocharov et al., Reaction-Diffusion
Modelling of Interferon Distribution in Secondary Lymphoid Organs, Pages 13–26, Copyright ©
2011, with permission from EDP Sciences)

Sinn are the outer and inner spheres of diameters 2mm and 1.9 mm, respectively;
CT S = ⋃4

i=1 Ci stands for the union of four right circular cylinders with 0.05mm
diameter and 0.5mm length; and CCT = ⋃2

i=1 Yi is a set of two conduits having
Y -shape and 0.0005mm diameter. The second domain Ω2, representing the B-cell
follicles, is a union of four disconnected spheres

⋃4
i=1 SF,i with a diameter of 0.2mm

located inside Sinn. Finally, the third domain Ω3 topologically can be described as
Sinn\ (Ω2 ∪ CT S ∪ CCT ). The final Open CASCADE-based 3D geometric model of
the lymph node consists of 50 vertices, 62 curved edges and 30 curved faces. The
solid geometry model and its mesh approximation are presented in Fig. 6.11. This
geometry requires multiple length scales resolution for the representation of the
conduits and overall major domains. To this end, we used the mesh approximation
based on unstructured-mesh approach.

The CAD-designed geometric model was imported into the Ani3D mesh genera-
tion toolkit. Ani3D is a solid modeller-based preprocessing tool for robust generation
of three-dimensional unstructured tetrahedralmeshes [15]. Ani3D algorithms control
and automate much of the meshing process. The tetrahedrization technology imple-
ments advancing front methods supplemented by Delaunay meshing technique to
deal with void faces. Notice, that the mesh is a fine-grained closer to conduits in
order to properly represent the structure of conduits, whose diameter is about three
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Fig. 6.11 Reconstruction of the 3D geometry of the LN. Slice planes showing the tetrahedral spatial
discretization of the LN: left: slice plane for the subdomain Ω1; middle: slice plane xz; right: slice
plane yz. Refining ofmesh approximating conduits is an important feature of themeshing algorithm.
ThedomainΩ1 is shown in yellow, the follicles domainΩ2, consisting of small spheres, in green, and
the subdomainΩ3 in grey. (Reprinted fromMathematicalModelling of Natural Phenomena, Vol. 6,
Bocharov et al., Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid
Organs, Pages 13–26, Copyright © 2011, with permission from EDP Sciences)

orders of magnitude smaller than the lymph node one. The lymph node surface
approximating triangle mesh consists of 24720 vertices and 95732 triangles. The
generated tetrahedral mesh model of the lymph node containing 103891 vertices and
619691 tetrahedrons was further improved using mesh smoothing implemented in
aniMBA toolkit of the Ani3D package. The resulting mesh is characterized by the
minimal cell quality of qmin = 0.08 and the total number of tetrahedra is reduced to
594898.

Experimental studies reviewed in [19] indicate that a small molecular tracer was
quickly distributed from the subcapsular sinus into theB-cell follicle, where it located
diffusely between the lymphocytes. In contrast, within the T-cell zone, the tracer dis-
tribution was restricted to conduits. It has been proposed that the differences in the
distribution result from the biophysical characteristics of theT-cell zone, in particular,
a hydraulic conductivity. Although direct measurements of the hydraulic conductiv-
ity within the T-cell area aremissing, it is likely that both diffusion and convection are
extremely low. The B-cell zone is considered to have a larger hydraulic conductivity
that the T-cell zone. The above semi-quantitative observations have direct implica-
tions for the diffusion properties of soluble molecules like interferon. We assumed
that the diffusion in domains Ω1 to Ω3 is characterized by the rates obeying the
following diffusion coefficients ranking: D1 � D2 � D3. As the molecular weight
of IFN-I is very close to that of myoglobin, we used the following estimate of the
diffusion coefficient D∗ = 0.16 mm2/h [18] as a baseline value.
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6.4.3 Numerical Results

The reaction–diffusion partial differential equation governing the interferon dynam-
ics was used to analyse the steady-state distribution of IFN-I across the subdomains
of the 3D lymph node geometry. The corresponding reduced model (second-order
elliptic equation) reads

− D

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
I (x, t) + dI I (x, t) = F(x), (6.4.2)

where

D = Di · E in x ∈ Ωi , i = 1, . . . , 3, F(x) =
K∑

k=1

ρδ(x − xk). (6.4.3)

The equation is understood in the weak sense. It considers interferon diffusion in
the lymph node (the first term on the left side), its production and loss due to degra-
dation and uptake by various cells (the first and the second terms on the right side,
respectively). As the major IFN-I producers are pDCs, we neglected the contribution
of macrophages to the source term.

We considered the scenario, where the individual pDCs are located randomly,
mainly in domain Ω1 around the polar region of the subcapsular sinus, although
there was a no-zero probability of them to be placed in the upper half of the cortex
and follicles. The algorithm for specifying the individual pDCs position with respect
to the lymph node centre in cylindrical coordinates, xk = (zk, rk, θk), k = 1, ..., K ,
makes use of random numbers (εi ∼ U (0, 1)) generated from a standard continuous
uniformdistribution as follows: zk = RL N (1 − ε1ε2ε3), rk = Rzk (1 − ε4ε5ε6), θk =
2πε7, where RL N is the radius of the outer sphere approximating the LN, and Rzk =√

(R2
L N − z2k).

The boundary conditions were specified as follows. At the outer boundary of
the domain Ω1 and the part of its inner boundary, overall defined as ∂∗Ω1=∂Sout ∪
∂Sinn\(Sinn∩ CT S)\(Sinn∩ CCT ) the homogeneousNeumannboundary conditionwas
used

n · D∇ I (x, t) = 0 on ∂∗Ω1. (6.4.4)

The vector fields are not differentiable with respect to spatial coordinates at the
other interfaces between the lymph node domains with different diffusion prop-
erties. Therefore, we impose the boundary conditions, which describe the con-
tinuity of both the IFN-I concentration and the diffusion flux. If ∂123Ω denotes
the interface between the domains Ω2 and Ω3, Ω1 and Ω3, except for the part
∂Sinn\ (Sinn ∩ CT S) \ (Sinn ∩ CCT ), then we require that

I (x, t) continuous across ∂123Ω, n · D∇ I (x, t) continuous across ∂123Ω.
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Fig. 6.12 Simulated stationary distribution of IFN-I across the paradigmatic lymph node for various
number of source cells, pDCs, located randomly, mainly in the subcapsular sinus around the upper
pole. Upper panel: OXZ cross section; left: 1 pDC, middle: 10 pDCs, right: 100 pDCs. Lower panel:
OYZ cross section; left: 1 pDC, middle: 10 pDCs, right: 100 pDCs. The logarithmic colour bars
represent the concentrationof the interferon (pg/mm3). (Reprinted fromMathematicalModellingof
Natural Phenomena,Vol. 6,Bocharov et al., Reaction-DiffusionModellingof InterferonDistribution
in Secondary Lymphoid Organs, Pages 13–26, Copyright © 2011, with permission from EDP
Sciences)

The numerical simulations of the full three-dimensional model were carried out
using a monotone nonlinear cell-centred finite volume method developed for diffu-
sion equations on conformal polyhedral meshes in [16]. The practically observed
convergence order was about two. The diffusion coefficients in subdomains 1 to 3
we set as follows: D1 = D∗, D2 = 0.1D∗ and D3 = 0.01D∗.

We started by studying the interferon spatial distribution in the LN for different
number of activated plasmacytoid dendritic cells. Figure6.12 shows the stationary
IFN-I distribution across the LN for the source size (parameter M in Eq. (4.23))
consisting of 1, 10 and 100 pDCs. These numbers correspond to the fraction of
interferon secreting cells covering the range of about 0.15 to 15% of the total pDCs in
the lymph node. The IFN-I distribution appears to be highly inhomogeneous with the
differences in concentration ranging over two orders of magnitude between different
regions. The subdomain Ω1 (subcapsular sinus, trabecular sinuses and conduits)
is characterized by much higher concentration of the IFN-I than subdomain Ω3

representing T-cell zone. A pDCs number increase from 1 to 100 results in the rise
of the concentration field of IFN-I so that larger parts of the LN become protected
against virus infection. In Fig. 6.13 the subdomains are shown, where the IFN-I
concentration is below the threshold values of 0.01, 0.1 and 1 pg/mm3, for the
corresponding numbers of pDCs. The results suggest that as few as 10 pDCs in the
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Fig. 6.13 Simulated stationary distribution of IFN-I across the paradigmatic lymph node for var-
ious number of source cells, pDCs, located randomly, mainly in the subcapsular sinus around the
upper pole, with the tetrahedra showing the regions in which the IFN concentration is below some
threshold θ . OXZ and OYZ cross sections are shown. Left: 1 pDC with θ = 0.01 pg/mm3, middle:
10 pDCs with θ = 0.1 pg/mm3, right: 100 pDCs with θ = 1.0 pg/mm3. The logarithmic colour bar
represents the concentration of the interferon (pg/mm3). (Reprinted fromMathematical Modelling
of Natural Phenomena, Vol. 6, Bocharov et al., Reaction-Diffusion Modelling of Interferon Dis-
tribution in Secondary Lymphoid Organs, Pages 13–26, Copyright © 2011, with permission from
EDP Sciences)

Fig. 6.14 Simulated stationary distribution of IFN-I across the paradigmatic lymph node for various
number of source cells, pDCs, located randomly, mainly in the subcapsular sinus around the upper
pole with the interferon loss rate dI increased by tenfold . OYZ cross section is shown. Left: 1
pDC, middle: 10 pDCs, right: 100 pDCs. The logarithmic colour bar represents the concentration
of the interferon (pg/mm3). (Reprinted from Mathematical Modelling of Natural Phenomena, Vol.
6, Bocharov et al., Reaction-DiffusionModelling of Interferon Distribution in Secondary Lymphoid
Organs, Pages 13–26, Copyright © 2011, with permission from EDP Sciences)

lymph node secrete enough interferon to ensure the protection of APCs (such as
macrophages) in the whole subdomain Ω1.

The sensitivity of the stationary interferon concentration to the rate of loss dI has
been studied. The simulation results presented in Fig. 6.14 show that tenfold increase
leads to about twofold decrease of themaximumconcentration in subcapsular domain
and conduits but dramatically reduces the amount of available interferon in the B-
and T-cell zones.

This study results suggest that the spatial stationary distribution of IFN-I is essen-
tially heterogeneous across the lymph node. Highly protected subdomains such as
sinuses, conduits, coexistwith the regions,where the stationary concentration of IFN-
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I is lower by about 100-fold. This implies that for some infections, the pathogens can
escape the IFN-I effect if the infected target cell is localized/migrated into poorly
protected SLO regions.

The study allows one to put forward a hypothesis on the process of establishment
of viral persistence which is related to the heterogeneity of spatial distribution of
IFN-I. The morphology of secondary lymphoid organs can lead to the formation
of poorly protected areas. In these areas, the localization of the cells infected by
viruses, such as CD4+ T lymphocytes in the case of HIV infection or macrophages
provides the conditions for the continuation of active infectious processes. The pre-
dicted diffusion-mediated compartmentalization of cytokines, chemokines and drugs
heavily depends on the assumed variations in hydraulic conductivity of various zones
of the secondary lymphoid organs which deserves further experimental investigation.
However, there are clinical observations on HIVART-based treatment failure related
to insufficient drug concentration in LT [11] suggesting that HIV-1 persists in tissues
during drug therapy allowing ongoing, low-level replication in tissues [12, 13].
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Chapter 7
Multi-scale and Integrative Modelling
Approaches

7.1 Multi-scale Models

The term multi-scale models is used with different meanings in different sci-
ences. In mathematics, it implies the presence of one or several small parame-
ters, homogenization and averaging techniques. In physics, it is understood in the
sense of microscopic–macroscopic scales (e.g. molecular dynamics versus contin-
uum mechanics). These questions are exhaustively discussed in particular in [39].
Multi-scale modelling in biology has been intensively developed during the last
decade. It implies that the model includes different biological scales: cells, intracel-
lular regulation, extracellular matrix, the tissue under study and other organs (not
necessarily all of them in the same model). It is in this sense that we understand
multi-scale modelling in this chapter.

Multi-scale models in physiology imply the presence of different levels of the
description of biological processes: intracellular (molecular), cellular, extracellular,
tissue and organ, the whole organism. The corresponding mathematical models can
include ordinary and partial differential equations, agent-based models and their
combinations. A more detailed description can be found in [1, 2]. In this section, we
introduce an emerging multi-scale approach to modelling in immunology.

7.2 Multi-scale Approaches in Mathematical Immunology

The immune system is regulated by multiple processes at various levels of biological
organization including the genetic, cellular, tissue, organ and thewhole organism lev-
els. The resulting structural and functional complexity of the immune system called
for a major shift towards information-rich, systems-based approaches in immuno-
logical research. High-throughput technologies generate vast amounts of data that
facilitate dissection of the immunological processes at ever finer resolution. The
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need to embed immune processes into their spatial context both at the molecular
and cellular level is a hallmark of the systems immunology approach. In fact, there
are many examples of how the fate decisions in the immune system depend on the
spatial–temporal dynamics of cytokines, e.g. the interleukin-2 (IL-2) [5] and type I
interferon (IFN) [6, 7]. The physical scales of the processes underlying functioning
of immune system during infections are represented in Fig. 7.1.

Although the spatial and temporal scales of the immune and pathogen dynamics
and regulation arewell appreciated, the overallmodelling practice is rathermodest. A
multi-scale framework turned out to be insightful for understanding the mechanisms
and identifying potential therapeutic targets for human infectionwithMycobacterium
tuberculosis [40–42]. Other specific examples of immune system analysis based on
multi-scale models are the studies of early CD8+ T-cell immune responses in lymph
nodes (LN) [43, 44], the NF-κB signalling pathway [45] and immune processes
in lymph nodes [46, 47]. The gained experience led to the formulation of some
more general principles for developing and computationally implementing integra-
tive models of immune responses [41, 48, 49]. A recent study integrating the spatial
structure of the T-cell zone of lymph nodes and the dynamics of T-cell responses in

Fig. 7.1 Multi-scale nature of the immune system structure and function as defence system against
virus infections. The graphical elements shown in the figure are adapted and modified using fig-
ures from (1) the website http://anatomybody101.com/the-immune-responses-of-the-lymphatic-
system/the-immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/,
(2) Junt et al., Nat Rev Immunol. 2008, 8(10):764–75, and (3) from Akira S et al., Cell 124,
783–801 (2006)

http://anatomybody101.com/the-immune-responses-of-the-lymphatic-system/the-immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/
http://anatomybody101.com/the-immune-responses-of-the-lymphatic-system/the-immune-responses-of-the-lymphatic-system-3d3979405d904f69a2f42156fa6a7973/
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HIV infection has quantified the effect of the destruction of the fibroblastic reticular
cell (FRC) network on T-cell reactivity [50].

This chapter aims to present a computational approach to setting up a multi-scale
mathematical model of immune response to infection and apply it to examine the
impact of heterogeneity of spatial signalling on the kinetics of immune responses.

7.2.1 Equations of Cell Kinetics and Cell Dynamics

The behaviour of biological cells can be characterized by three aspects: cell fate, cell
motion and cell interaction with other cells and molecules. Cell fate includes their
self-renewal (proliferation without differentiation), differentiation (with or without
proliferation) and apoptosis (programmed cell death). Suppose that cells A can self-
renewwith the rate coefficient ks, differentiate, kd and die by apoptosis, ka. If they are
uniformly distributed in space, then their concentration is described by the ordinary
differential equation

dA

dt
= I + (ks − kd − ka)A, (7.2.1)

where I is the cell influx.Assuming that the coefficients of these equation are constant,
we conclude that the concentration A(t) exponentially grows if ks > kd + ka and
A(0) > 0 or I > 0. If the relation between the coefficients is opposite, ks < kd + ka,
then A(t) converges to the stationary value I/(kd + ka − ks).

This description of cell population dynamics is oversimplified. In general, the
coefficients of the equation are not constant, and they can depend on the concen-
trations of other cells and on various molecular substances. Moreover, spatial cell
distribution and their motion can also be essential to be taken into account.

Equation (7.2.1) is an example of a cell kinetics equation. In the case of n cell types,
we get a system of equations: each of them can self-renew, differentiate or die by
apoptosiswith certain rates.Wehave the following equations for their concentrations:

dAi

dt
= 2ksi Ai − kmi Ai − Ai

n∑

j=1

kdij +
∑

j �=i

kdji Aj, i = 1, ..., n. (7.2.2)

We do not specify the form of differentiation (with or without proliferation, symmet-
ric or asymmetric). This can be taken into account in the coefficients of the system.
Here, ksi is the rate of self-renewal of cells Ai, kmi the rate of their apoptosis and kdij
the rate of differentiation of cells Ai into cells Aj.

If the coefficients of system (7.2.2) are constant, then it is a system with non-
negative off-diagonal elements. The point Ai = 0, i = 1, ..., n is a stationary solution
of this system. Its stability is determined by the eigenvalues of the matrix P = (pij),
where
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pii = 2ksi − kmi −
n∑

j=1

kdij , pij =
∑

j �=i

kdji ≥ 0.

According to the well-known criterion of stability of matrices with non-negative off-
diagonal elements, this stationary point is stable if pi1 + ... + pin < 0 for all i and
unstable if pii > 0 for some i.

Taking into account random cell motion, we obtain the system of equations of
cell dynamics:

∂A

∂t
= DΔA + F(A). (7.2.3)

Here, A = (A1, ...An), F = (F1, ...,Fn), D is the diagonal matrix of diffusion coeffi-
cients supposed to be constant. The functions Fi, i = 1, ..., n are determined by the
right-hand sides of Eq. (7.2.2). Thus, equations of cell dynamics represent reaction–
diffusion equations. In a more detailed description, convective cell motion can be
taken into account when it is appropriate. This equation should be completed by the
boundary and initial conditions. In particular, if cells cannot cross the boundary, then
we have the Neumann boundary condition

∂A

∂n
= 0. (7.2.4)

Here, n is the outer normal vector to the boundarywhich is supposed to be sufficiently
smooth. The initial condition A(x, 0) is some non-negative function.

Density-dependent cell proliferation.

In the case of self-renewal, A → 2A, the proliferation rate k can decrease with the
local cell density, k(A) = k0(A0 − A). Then, we get the following equation for the
cell concentration:

∂A

∂t
= DΔA + k0A(A0 − A) (7.2.5)

(A here is a scalar variable and D is a number). We considered similar equations in
the previous chapter. Let us recall that they have travelling wave solutions describing
growth of cell populations (including tumour growth). If the initial condition is
positive and the boundary condition is given by (7.2.4), then the solution converges
to the value A0 everywhere in the domain.

Differentiation with feedback.

Suppose that cells A can make a choice between self-renewal and differentiation into
cells B:

A → 2A, A → 2B,
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and cellsB can die by apoptosis. The corresponding rate coefficients are, respectively,
ks, kd and ka Then, the cell concentrations are described by the equations

∂A

∂t
= DΔA + (ks − kd )A, (7.2.6)

∂B

∂t
= DΔB + 2kdA − kaB. (7.2.7)

If the rate coefficients are constant, and ks �= kd , then this system has a unique
homogeneous in space stationary solution A = B = 0.

Assume now that differentiated cells B can influence the rate coefficients, upregu-
late differentiation and downregulate self-renewal of cells A. Then, ks is a decreasing
function of B and kd an increasing function. If the equation ks(B) = kd (B) has a
solution B = B0, then (A0,B0), where A0 = kaB0/(2kd (B0)), is a positive stationary
point. Solutions of system (7.2.6) and (7.2.7) with no-flux boundary conditions and
with positive initial conditions converge to this stationary solution for large time.

In the models of the immune response, cells A correspond to naive lymphocytes
and cells B to mature lymphocytes. The latter produce various cytokines stimulating
differentiation of the naive immature cells.

7.2.2 Global Extracellular Regulation

The total number of cells Ai in the domain Ω is given by the integral

Ji(t) =
∫

Ω

Ai(x, t)dx.

If cells produce some biochemical substances, such as cytokines, hormones and
growth factors, then their quantity depends on the total number of cells Ji in the tissue.
If the rate coefficients in the cell kineticsEq. (7.2.2) are constant (donot dependoncell
concentrations), then integrating cell dynamics Eq. (7.2.3) with boundary conditions
(7.2.4), we obtain the system of equations for total cell numbers:

dJi
dt

= F(J ), i = 1, ..., n, (7.2.8)

where J = (J1, ..., Jn). We obtain a similar system of equations if the rate coeffi-
cients depend on Ji, that is, on the concentrations of substances whose production is
determined by the total number of cells. Here, cells Ai can belong to different tissues
and organs. Thus, we obtain a model of global regulation of cell dynamics.
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Global regulation of the immune response.

Let us complete the system of Eqs. (7.2.6) and (7.2.7) for naive and differentiated T
cells by the equation for the concentration of virus V in blood:

dV

dt
= kV (V0 − V ) − φ(T )V . (7.2.9)

Here, the first term in the right-hand side describes virusmultiplicationwith a logistic
growth, and the second term its elimination by T cells (CTLs). The rate coefficients
in the equations of lymphocyte production depend on the virus concentration:

∂A

∂t
= DΔA + (ks(V ) − kd (V ))A, (7.2.10)

∂B

∂t
= DΔB + 2kd (V )A − ka(V )B. (7.2.11)

Furthermore, the concentration of T cells in blood is proportional to the total number
of differentiated lymphocytes in the tissue:

T (t) = α

∫

Ω

B(x, t)dx,

where α is some positive coefficient. Integrating Eqs. (7.2.10) and (7.2.11) with the
no-flux boundary conditions, we obtain the ODEs:

dJ

dt
= (ks(V ) − kd (V ))J , (7.2.12)

dT

dt
= 2αkd (V )J − ka(V )T . (7.2.13)

Systems (7.2.9), (7.2.12) and (7.2.13) describe the interaction of a virus infection
with the immune response. A similar model with a single type of immune cells was
considered in the previous chapter (with or without delay and with logistic growth
of the number of cells).

7.2.3 Local Extracellular Regulation

We will assume in this section that cell density is sufficiently small such that cells
do not prevent random motion of each other and convective motion of the medium
does not occur. Cell adhesion is also neglected, so that they move independently
of each other. Let C = (C1, ...,Cn) be the vector of cell concentrations and u =
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(u1, ..., um) the vector of concentrations of extracellular substances. Assuming that
the rates of self-renewal, differentiation and apoptosis depend on cell concentrations
and extracellular variables, we get the reaction–diffusion system

∂C

∂t
= DcΔC + F(C, u), (7.2.14)

∂u

∂t
= DuΔu + G(C, u), (7.2.15)

whereF = (F1, ...,Fn) are the rates of cell production,G = (G1, ...,Gn) are the rates
of production of extracellular species. By the rate of cell production, we understand
the overall rate of change of cell concentration taking into account their self-renewal,
proliferation, apoptosis. Similarly, the functions Gi take into account production,
consumption and destruction of the corresponding biochemical species. We will
assume for simplicity that the matrices of diffusion coefficients are diagonal.

7.2.4 Intracellular Regulation

Cell fate, that is, the choice between self-renewal, differentiation and apoptosis is
determined by the intracellular regulation through the concentrations of intracellular
proteins and other molecules. Continuous models of cell dynamics, where cells are
described by their concentrations, imply that a small space volume contains a large
number of cells. The cells of the same type in this small volume can differ by
the concentrations of the intracellular substances. Hence, there is no one-to-one
correspondence between space points and intracellular concentrations, and the latter
cannot be considered as functions of space and time. Therefore, we need to introduce
another description of cell dynamics with the intracellular regulation.

Let p = (p1, ..., pm) be a vector of intracellular concentrations. We will consider
them as independent variables together with space and time. Cell concentrations
depend now on all these variables, Ai = Ai(p, x, t). The evolutions of the concentra-
tions are described by the equations

∂Ai

∂t
+

m∑

j=1

φj∂Ai

∂pj
= DpΔpA + DΔxAi + �i(A, p), (7.2.16)

where

DpΔpAi =
m∑

j=1

Dj
∂2Ai

∂p2j
, ΔxAi =

3∑

j=1

∂2Ai

∂x2j
,
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φj(p, u)(= dpj
dt ) is the rate of production of the corresponding intracellular concen-

trations. It can depend on both intracellular variables p and extracellular variables u.
Let us note that besides the usual diffusion in the physical space (second term in the
right-hand side of this equation), we can also consider diffusion in the state space
which describes random fluctuations of the intracellular variables. If we omit the
diffusion terms, we obtain conventional transport equations considered in structured
population dynamics. The last term in the right-hand side of Eq. (7.2.16) describes
cell proliferation, differentiation and death which depend on their concentrations and
on the intracellular variables.

The interval of variation of the variablespj depends on cell properties. In particular,
if cells Ai divide for pj = p0j , give cells of the same type, and the daughter cells have
a half of the concentration p0j /2 in comparison with the mother cell before division,
then the variable pj changes in the interval p0j /2 ≤ pj ≤ pj. In this case, the boundary
conditions for the function Ai become as follows: Ai(p0j /2) = 2Ai(p0j ). Similarly, we
can introduce the boundary conditions in the case of cell differentiation and death.

7.3 Hybrid Multi-scale Models

Hybrid models represent a combination of different models used to describe some
complex process. Each of these models is more appropriate for some particular part
of this process, and they should be considered in their interaction [1, 2]. We will
present here in more detail a particular type of hybrid models well adapted for the
description of physiological processes.

Biological cells are considered as individual-based objects. They can move,
divide, change their type, produce and consume various biochemical substances,
or die. In the latter case, they are removed from the computational domain. In the
simplest representation, cells can be considered as elastic spheres.

Moving from the molecular and cellular level to a multi-scale model requires the
development of novel modelling methodologies for an iterative integration of data
fromdifferent biological levels intomechanism-basedmodularmathematicalmodels
[8, 41, 48]. So far, very few mathematical models have been proposed to describe
the multi-scale spatial regulation of immune responses in a genuine hybrid manner
[40, 43, 46, 47].

The model presented here takes into account: (1) spatial aspects of the immune
response in the lymph node by means of cell and concentration distributions, (2)
regulation of T lymphocytes in the lymph node including their asymmetric division
and their interaction with extracellular cytokine concentrations, (3) the intracellular
regulation of T cells depending on IL-2 and type I IFN and (4) the interaction of
the tissue level processes and the systemic infection dynamics (blood) via inter-
compartmental cell fluxes as shown in Fig. 7.2.

Conventional models of the immune response are based on ordinary differential
equations, and they do not take into account spatial distributions of cells and con-



7.3 Hybrid Multi-scale Models 229

centrations in the lymph node. The multi-scale models previously developed use a
similar agent-based cell description. However, they do not take into account pro-
cesses such as asymmetric cell division, their interaction with IFN or the interaction
of the tissue level with the organism level which is one of the key features of our
multi-scale model. The presentation below follows our recent works [3, 4].

7.3.1 Hybrid Models of Immune Response

To formulate the mathematical model, we consider a part of the lymph node, i.e. the
T-cell zone, which contains various cell types, mainly the antigen-presenting cells
(APCs) and subsets of T lymphocytes (see Fig. 7.2). Naive T cells and some APCs
(such as plasmacytoid dendritic cells, pDCs) enter the node with blood flow via
the high endothelial venules (HEVs), whereas effector and/or memory T cells, and
mainly DCs and macrophages home to lymph nodes via afferent lymphatic vessels
[16, 17]. Following activationwith pathogens,APCs acquire amotile state that allows
their translocation to the T-cell zone of draining lymph node with the afferent lymph
flow [18, 19]. Therefore, we assume that the influx of APCs is proportional to the
level of infection in the organism. Differentiation of naive T cells into CD4+ and
CD8+ T cells occurs in the thymus from progenitor T cells [20]. We suppose that
they enter lymph nodes already differentiated and that there is a given influx of each
cell type.

The APCs bearing foreign antigens activate the clonal expansion of naive T lym-
phocytes. The activation of T-cell division and death is regulated by a set of signals
coming from the interactions of the antigen-specific T-cell receptors (TCRs) with the
MHC class I or class II presented peptides and IL-2 receptors binding IL-2. Naive

Fig. 7.2 Schematic representation of the two-scale model. Naive T cells and antigen-presenting
cells (APC) enter the lymph node. Due to asymmetric cell division, some T cells differentiate.
Mature CD8+ T cells leave the lymph node and kill infected cells. Mature CD4+ T cells produce
IL-2 that influences cell survival and differentiation. APCs are shown in green, and naive T cells
are white. Differentiated CD4+ T cells are yellow and CD8+ T cells are blue. Levels of yellow and
blue indicate cell maturation. Infection level and immune cells in the body are described by ODEs.
Cells in the lymph node are considered as individual objects, intracellular regulation is described
by ODEs and extracellular substances by PDEs
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Fig. 7.3 Scheme of the
spatial regulation of the
asymmetric T-cell division in
lymph nodes (elaborated
from [21])

T cells undergo asymmetric division [21]. Some of the daughter cells continue to
proliferate and differentiate. Mature CD4+ T cells produce IL-2 [20, 22, 23] which
influences survival and differentiation of both CD4+ and CD8+ T cells. The prolifer-
ation of CD8+ T cells is stimulated by IL-2 [22]. They can expand their numbermany
1000-fold. In addition to IL-2 enhancing the proliferation of T cells, APCs start to
secrete type I IFN (IFN-I) which has an antiviral and immunomodulatory function.
In fact, the effect of IFN-I depends on the temporal sequence of the signals obtained
by naive T cells [6]. It can change from a normal activation of T cells followed
by their proliferation and differentiation to an already differentiated state followed
by apoptosis. Overall, the regulated death of T cells by apoptosis depends on the
availability and the timing of the T cell receptor (TCR), IL-2 and IFN signalling.

Mature CD8+ T cells (effector cells) leave the lymph node and kill infected cells.
Therefore, there is a negative feedback between production of mature CD8+ T cells
and the influx of APCs.

In the model, an asymmetric T-cell division is considered as shown in Fig. 7.3.
Naive T cell entering the draining lymph node is recruited into the immune response
after the contact interaction via theTCRwithAPCpresenting the foreign antigen. The
activation and prolonged contact with APC can result in polarity of the lymphocyte.
The position of the contact with the APC determines the direction of cell division
and the difference between the daughter cells in terms of their differentiation state.
According to [21], the proximal daughter cell will undergo clonal proliferation and
differentiation resulting in the generation of terminally differentiated effector cells
(mature CD8+ T cells) that leave the lymph node for peripheral tissues to search
and kill infected cells. The distal daughter cell becomes a memory cell. The memory
cells are capable of self-renewal by slowly dividing symmetrically in the absence of
recurrent infection.
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In our model of cell dynamics, cells are considered as individual objects that can
move, divide, differentiate and die. Their behaviour is determined by the surrounding
cells, by intracellular regulatory networks described by ordinary differential equa-
tions and by various substances in the extracellular matrix whose concentrations
are described by partial differential equations. This approach was used to model
hematopoiesis and blood diseases [9–15].

Cell motion and geometry.

The cells divide and can increase their number leading to their displacement in the
lymph node. We describe cell displacement by the following model. Let us denote
the centre of two cells by x1 and x2 and their radii by r1 and r2, respectively. Then,
if the distance h12 between the two cells is less than the sum of their radii (r1 + r2),
there will be a repulsive force f12 between them. This force should depend on the
difference between (r1 + r2) and h12. Let us consider the case of one cell interacting
with different cells in the lymph node. The total force applied to this cell will be
Fi = ∑

j �=i fij. We describe the motion of the particles as the motion of their centres
which can be found by the applying Newton’s second law:

mẍi + mμẋi −
∑

j �=i

fij = 0, (7.3.1)

where m is the mass of the particle, μ is the friction factor due to contact with the
surrounding medium. The potential force between two cells is given explicitly by:

fij =
{
K h0−hij

hij−(h0−h1)
, h0 − hi < hij < h0

0 , hij ≥ h0
,

where hij is the distance between the centres of the two cells i and j, h0 is the sum of
their radii, K is a positive parameter and h1 is the sum of the incompressible part of
each cell. The force between the particles tends to infinity if hij decreases to h0 − h1.

Cells and concentrations.

Cells in the lymph node:

1. nAPC(x, t)—the density of APCs in T-cell zone;
2. nCD4(x, t)—the density of CD4+ T cells in T-cell zone (with different levels of

maturity);
3. nCD8(x, t)—the density of CD8+ T cells in T-cell zone (with different levels of

maturity);

Extracellular variables:

4. Ie(x, t)—the concentration of IL-2 in T-cell zone;
5. Ce(x, t)—the concentration of type I IFN in T-cell zone;

Intracellular variables:
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6. Ii(t)—the intracellular concentration of IL-2-induced signalling molecules in
the i-th cell;

7. Ci(t)—the intracellular concentrationof type I IFN-induced signallingmolecules
in the i-th cell;

The state variables at the level of the whole organism:

8. Nef (t)—the total number of effector CD8+T cells in the body;
9. Ninf (t)—the total number of infected cells in the body;

Cell division and differentiation.

APC and naive T cells enter the computational domain with a given frequency if
there is available space. Naive T cells move in the computational domain randomly.
If they contact APC, they divide asymmetrically Fig. 7.3. The distant daughter cell
is similar to the mother cell, and the proximal daughter cell becomes differentiated.

When the cell reaches the half of its life cycle, it will increase its size. When
it divides, two daughter cells appear, and the direction of the axis connecting their
centres is chosen randomly from 0 to 2π . The duration of the cell cycle is 18h with
a random perturbation of −3 to + 3h.

We consider two levels of maturity of CD4+ T cells and three levels of CD8+ T
cells. If a differentiated cell has enough IL-2 (see the next paragraph), then it divides
and gives two more mature cells. Finally, differentiated cells leave the lymph node.
In the simulations, this means that they are removed from the computational domain.

Intracellular regulation.

The survival and differentiation of activated CD4+- and CD8+ T lymphocytes
depends on the amount of signalling via the IL-2 receptor and the type I IFN receptor.
It is controlled primarily by the concentration of the above cytokines in the close
proximity of the respective receptors. The signalling events lead to the upregulation
of the genes responsible for cell proliferation, differentiation and death. One can use
similar type of equation to model qualitatively the accumulation of the respective
intracellular signalling molecules linked to IL-2- and type I IFN receptors. The IL-
2-dependent regulatory signal dynamics in individual cells can be described by the
following equation:

dIi
dt

= α1

nT
Ie(xi, t) − d1Ii. (7.3.2)

Here, Ii is the intracellular concentration of signalling molecules accumulated as
a consequence of IL-2 signals transmitted through transmembrane receptor IL2R
downstream the signalling pathway to control the gene expression in the i-th cell.
The concentrations inside two different cells are in general different from each other.
The first term in the right-hand side of this equation shows the cumulative effect of
IL-2 signalling. The extracellular concentration Ie is taken at the coordinate xi of
the centre of the cell. The second term describes the degradation of IL-2-induced



7.3 Hybrid Multi-scale Models 233

signalling molecules inside the cell. Furthermore, nT is the number of molecules
internalized by T-cell receptors.

In a similar way, the IFN-dependent regulatory signal dynamics in individual cells
can be described by the following equation:

dCi

dt
= α2

nT
Ce(xi, t) − d2Ci. (7.3.3)

Here, Ci is the intracellular concentration of signalling molecules accumulated as
a consequence of IFN signals transmitted through transmembrane receptor IFNR
downstream the signalling pathway to control the gene expression in the i-th cell.
The concentrations inside two different cells are in general different from each other.
The first term in the right-hand side of this equation shows the cumulative effect of
IFN signalling. The extracellular concentration Ce is taken at the coordinate xi of
the centre of the cell. The second term describes the degradation of IFN-induced
signalling molecules inside the cell.

To model the fate regulation of growth versus differentiation of the activated cells
in relation to the timing of the IL-2 and type I IFN signalling, we implement the
following decision mechanisms:

1. If the concentration of activation signals induced by type I IFN, Ci, is greater
than some critical level C∗

i at the beginning of the cell cycle and that of Ii is
smaller than the critical level I∗

i , then the cell will differentiate resulting in a
mature cell.

2. If the concentration of activation signals induced by IL-2, Ii, is greater than some
critical level I∗

i at the end of the cell cycle, then the cell will divide producing
two more mature cells.

3. If Ci < C∗
i at the beginning of cell cycle and Ii < I∗

i at the end of cell cycle,
then the cell will die by apoptosis and will be removed from the computational
domain.

Stochastic aspects of the model.

As it is discussed above, mechanical interaction of cells results in their displacement
described by Eq. (7.3.1) for their centres. In order to describe randommotion of cells,
we add random variables to the cell velocity in the horizontal and vertical directions.
Duration of cell cycle is given as a random variable in the interval [T − τ,T + τ ].
Extracellular dynamics of cytokines.

Proliferation and differentiation of T cells in the lymph node depends on the concen-
tration of IL-2 and type I IFN. These cytokines are produced by mature CD4+ T cells
and antigen-presenting cells, respectively. Spatial distribution of IL-2 is described
by a reaction–diffusion equation as follows:

∂Ie
∂t

= DILΔIe + WIL − b1Ie. (7.3.4)
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Here, Ie is the extracellular concentration of IL-2, D is the diffusion coefficient, WIL

is the rate of its production by CD4+ T cells, and the last term in the right-hand side
of this equation describes its consumption and degradation. The production rateWIL

is determined by mature CD4+ T cells. We consider each such cell as a source term
with a constant production rate ρIL at the area of the cell. Let us note that we do not
take into account explicitly consumption of IL-2 by immature cells in order not to
introduce an additional parameter. Implicitly, this consumption is taken into account
in the degradation term.

For type I IFN, the equation and the terms in it have a similar interpretation:

∂Ce

∂t
= DIFNΔCe + WIFN − b2Ce. (7.3.5)

Initial and boundary conditions for both concentrations IL-2 and IFN are taken zero.
As before, the production rate WIFN equals ρIFN at the area filled by APC cells and
zero otherwise.

Infection.

Mature T cells leave the bone marrow. The level of CD8+ T cells (effector cells) Nef

in the body is determined by the equation

dNef

dt
= k1T − k2Nef , (7.3.6)

where T is their number in the lymph nodes. So the first term in the right-hand side
of this equation describes production of effector cells in the lymph nodes and the
second term their death in the body.

Let Ninf be the number of virus-infected cells. Its dynamics is described by the
equation

dNinf

dt
= f (Ninf ) − k3Nef Ninf . (7.3.7)

The first term in the right-hand side of this equation describes growth of the number
of infected cells and the second term their elimination by effector cells. The function
f will be considered in the form:

f (Ninf ) = aNinf

1 + hNinf
,

where a and h are some positive constants.
Finally, the influx of APCs into the lymph nodes is proportional to the number of

infected cells Ninf . This influx is limited by the place available in the lymph node.
If there is a free place sufficient to put a cell, new cells are added. Let us also note
that the lymph nodes can increase due to infection in order to produce more effector
cells.
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7.3.2 Numerical Experiments

We illustrate the model performance by considering two scenarios, reflecting differ-
ent spatial patterns of IL-2 and type I IFN concentration fields. In the first one, both
cytokines have the same diffusion coefficient DIL2 = DIFN , whereas in the second
case the diffusion rate of IFN is tenfold faster. The details of the numerical imple-
mentation of the hybrid model and the parameter values used for the simulations are
presented in [3, 4]. Cell population densities and cytokine concentrations are scaled
with respect to some reference values. These are determined by the cell density in
the lymph node ∼105 − 106mm−3, the relative proportions of APCs, CD4+ T cells
and CD8+ T cells [24–30] and the production rate of the cytokines [38]. The consid-
ered cell numbers correspond to a computational domain in the T-cell zone of about
100 × 100 × 100µm.

The model presented above contains two compartments, the lymph node where
effector cells are produced and the body where infection develops. The lymph node
is described with the hybrid model while infection development in the organism by
ordinary differential equations for infected cells and for effector cells. These two
compartments are coupled by means of flux of effector cells from the lymph node to
the body and by the flux of APC cells to the lymph node.

Fig. 7.4 Snapshot of numerical simulations of the cells and cytokines distribution in lymph node.
Different cells are shown: APC (green), naive CD4+ T cells (black), naive CD8+ T cells (white),
three maturity levels of differentiated CD8+ T cells (blue), two maturity levels of CD4+ T cells
(yellow). Mature CD4+ T cells produce IL-2 whose concentration in the extracellular matrix is
shown by the level of green. APC produce IFN-I (red). The upper figure shows the simulation (day
8 post-infection) with equal diffusion coefficients of IL-2 and IFN-I, in the lower figure (day 80
post-infection) the diffusion coefficient of IFN is 10 times larger than the diffusion coefficient of
IL-2. (Reprinted from Bouchnita et al., Hybrid approach to model the spatial regulation of T cell
responses, BMC Immunol. 2017, 18(Suppl 1):29)
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Fig. 7.5 The numbers of CD4+ and CD8+ T cells in time in the case of equal diffusion coefficients
(left panel) and for the diffusion coefficient of IFN-I 10 times larger than the diffusion coefficient of
IL-2 (right panel). (Reprinted fromBouchnita et al., Hybrid approach tomodel the spatial regulation
of T cell responses, BMC Immunol. 2017, 18(Suppl 1):29)

Fig. 7.6 The numbers of APC cells (left panel) and effector T cells (right panel) in time in the
case of equal diffusion coefficients (black curve) and for the diffusion coefficient of IFN-I 10 times
larger than the diffusion coefficient of IL-2 (grey curve). (Reprinted from Bouchnita et al., Hybrid
approach to model the spatial regulation of T cell responses, BMC Immunol. 2017, 18(Suppl 1):29)

The results of the simulations are shown in Figs. 7.4, 7.5, 7.6 and 7.7. Figure 7.4
represents a snapshot of the lymph node T-cell zone with all cells participating in the
simulations: APC cells, naive T cells, differentiatedCD4+ T andCD8+ T cells. Naive
T cells divide when they are close to APC cells. It is an asymmetric division where
a proximal daughter cell differentiates while a distant cell remains undifferentiated.
Differentiated cells continue their division and maturation in the presence of IL-2
produced by mature CD4+ T cells. If the level of IL-2 is not sufficient, they die by
apoptosis. Mature T cells leave the lymph node. One can see that the cytokine fields
are non-uniform and their distribution patterns change essentially if the turnover
parameters, e.g. the diffusion coefficient, are varied. Note that the cell distribution
is more uniform in the case of large diffusion coefficient of IFN-I (Fig. 7.4 lower
image) compared with the case of small diffusion coefficient (upper image).

The evolution of the total number of CD4+ and CD8+ T cells in the lymph
node T-cell zone is shown in Fig. 7.5. The dynamics of APC cells in the lymph
node T-cell zone and the effector cells in the body is shown in Fig. 7.6. The magni-
tude of the immune response is not sufficient to eradicate completely the infection.
Indeed, the number of infected cells decreases but remains positive (Fig. 7.7). As
virus infection is not cleared, the cell populations fluctuate around some constant
values. Overall, the model reproduces the qualitative patterns of long-term persistent
infection (experimental infections and in humans) dynamics (e.g. [31–35]). The pri-
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Fig. 7.7 The level of virus infection in the body in the case of equal diffusion coefficients (black
curve) and for the diffusion coefficient of IFN-I 10 times larger than the diffusion coefficient of IL-2
(grey curve). (Reprinted from Bouchnita et al., Hybrid approach to model the spatial regulation of
T cell responses, BMC Immunol. 2017, 18(Suppl 1):29)

Table 7.1 Cumulative numbers of key variables of the model over 113 days post-infection

DIFN = DIL−2 DIFN = 10DIL−2

Number of CD4+ T cells 27544 27040

Number of CD8+ T cells 15194 14139

Number of APCs 4749 5293

The infection load 16.98 19.31

Number of Nef 87849 80967

mary clonal expansion takes about 7 days and is followed by an enhanced long-term
T-cell response to the persistent infection. The increase in the spread of type I IFN
changes the relative distributions pattern of IL-2 and IFN-I, so that the resulting alter-
ation in cytokine signalling reduces the clonal expansion and increases the overall
level of virus infection.

The cumulative numbers of CD4+ and CD8+ T cells and virus infection load.

As single simulation runs of the stochastic model are characterized by a fluctuating
and overlapping dynamics, we quantified integrative characteristics of the model
behaviour. To describe the effect of the diffusion coefficient DIFN on the T-cell pro-
duction, we compared the cumulative numbers of CD4+ and CD8+ T cells as well
as the infection load over the total time of the simulation for the two scenarios. We
also show the cumulative numbers of effector T cells in the body Nef . The results are
shown in Table7.1.

The net effect of the increase in the diffusion rate of type I IFN is a reduction in
the clonal expansion of the T cells, in particular the effector T cells in the peripheral
organs (by ∼10%) and a rise in the infection level (by ∼20%). The changes in
the clonal T-cell expansion are the consequence of the differences in the cytokine
concentration fields, which in turn alter the timing and the sequence of the IL-2 and
type I IFN signalling.
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The types and the relative densities of immune cells considered in the model
essentially correspond to the clonal, APC-induced expansion of T cells activated
by virus infections (see, e.g. [36]). The motility of T cells in the lymph node is
determined by their random motion and mechanical cell–cell interactions [37]. The
spatial distribution of cytokines considered in themodel (IL-2 and type I IFN), though
it requires more detailed investigation, corresponds to the actual understanding of
the role of these cytokines.

7.3.3 Infection Spreading in the Lymph Node

Antigen-presenting cells can become infected and, when they enter the lymph node,
initiate infection spreading in the lymphoid tissue. This question was discussed in
the previous chapter where we studied reaction–diffusion models of the immune
response. Here, we present an example of numerical simulations of the infection
spreading with the hybrid model (Fig. 7.8).

The process begins with a single infected APC in the lymph node. Virus spreads
to the lymph node through direct cell–cell interaction and by means of random
motion in the extracellular matrix. More and more APC and CD4+ T cells become
infected. The number of uninfected cells decays resulting in the deceleration of their
reproduction and weakening of the immune response.

7.4 Basis for Further Work

The aimof this chapter is to present amethodology for a hybridmodelling of immuno-
logical processes in their spatial context. A two-level hybrid mathematical model of
immune cell migration and interaction integrating cellular and organ levels of reg-
ulation for a 2D spatial consideration of idealized secondary lymphoid organs is
developed. It considers the population dynamics of antigen-presenting cells, CD4+
and CD8+ T lymphocytes in naive, proliferation and differentiated states. Cell divi-
sion is assumed to be asymmetric and regulated by the extracellular concentration
of interleukin-2 (IL-2) and type I interferon (IFN), together controlling the balance
between proliferation and differentiation. The cytokine dynamics is described by
reaction–diffusion PDEs, whereas the intracellular regulation is modelled with a sys-
tem of ODEs. The mathematical model has been developed, calibrated and numer-
ically implemented to study various scenarios in the regulation of T-cell immune
responses to infection, in particular, the change in the diffusion coefficient of type
I IFN as compared to IL-2. We have shown that a hybrid modelling approach pro-
vides an efficient tool to describe and analyse the interplay between spatio-temporal
processes in the emergence of abnormal immune response dynamics.

Virus persistence in humans is often associated with an exhaustion of T lympho-
cytes. Many factors can contribute to the development of exhaustion. One of them
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Fig. 7.8 Snapshots of simulations corresponding to 1day after infection appearance in the lymph
node (a), 20 days (b) and 60 days (c). Infection level is shown in blue, infected APCs in red and
infectedCD4+ T cells in orange, naive uninfectedCD4+ T cells (black), naiveCD8+ T cells (white),
three maturity levels of differentiated CD8+ T cells (blue) and two maturity levels of uninfected
CD4+ T cells (yellow)

is associated with a shift from a normal clonal expansion pathway to an altered one
characterized by an early terminal differentiation of T cells. We propose that an
altered T-cell differentiation and proliferation sequence can naturally result from a
spatial separation of the signalling events delivered via TCR, IL-2 and type I IFN
receptors. Indeed, the spatial overlap of the concentration fields of extracellular IL-2
and IFN in lymph nodes changes dynamically due to different migration patterns of
APCs and CD4+ T cells secreting them.

The proposed hybrid mathematical model of the immune response represents a
novel expandable and tunable analytical tool to examine challenging issues in the
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spatio-temporal regulation of cell growth and differentiation, in particular, the effect
of timing and location of activation signals. Further application of hybrid modelling
approach to describe the virus infection dynamics (HIV) can be found is [4].

The growing tendency in modern immunology to deal with the dynamic com-
plexity of virus–host interactions needs advanced mathematical modelling tools and
hence an interaction between experimentalists, theoreticians and mathematicians
which is by no means easy. We hope that our experience shared in this chapter helps
the research community to promote the coming of genuine integrative tools for the
analysis of infection immunity.
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Chapter 8
Current Challenges

The outcomeof a viral infection is determined by the race between an expanding virus
and the respective antiviral immune response of the infected host. This dynamic inter-
action lends itself to a quantitative description inherent in mathematical modelling.
In this book, we have been covering several basic aspects of virus–host interactions,
in particular,

• the kinetic regulation of antigen-specific T-cell responses,
• the quantitative characterization of T-cell proliferation,
• the causal links between biological process parameters and the pathogenesis of
chronic viral infections.

The description of our work on these immunologically relevant issues covers diverse
computational modelling technologies and specifies practical aspects ofmodel build-
ing, parameter estimation and sensitivity analysis. However, all this represents just
a start in a meaningful analysis of virus–host interactions and many more complex
questions need to be addressed in the future. Themajor issue is how to deal efficiently
with the complexities of the immune system using mathematics as an exploratory
tool. These complexities are revealed by modern high-throughput measurements
and visualization technologies generating overwhelming big-data sets from which
the multi-level regulation of the existing, phenotypically different infection dynam-
ics may be derived and understood in mechanistic terms. Questions arising are as
follows:

(1) What is the key information needed to mechanistically understand the control
of a given infection dynamics?

(2) What constitutes the functional network of processes that regulate homeostasis
of the immune system?

(3) How is the redundancy of the immune system elements used to generate robust
immune system functioning?
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(4) What is the limit in the prediction of immune system functions when starting
from quantitative characteristics of its components, e.g. genetic-, cellular- or
tissue characteristics?

(5) Can one finally link antiviral immune responses including its limits and failures
to the first physical–chemical principles of living systems in terms of energy
balance, genetic make-up and reaction kinetics?

(6) How can one assess the control and regulation of immune processes that are
impacted by the spatial structures of various organs dynamically evolving during
their functioning?

In order to handle the above issues and to identify the immune systems regulation
rules, it is clear that mathematical modelling has to go beyond a routine development
of low-resolution phenomenological models, and exploit the full knowledge avail-
able in mathematical theory and technology of automatic control. Furthermore, the
reaction systems that describe the elementary immune functions have to be embed-
ded into the physiologically distinct compartments and themorphological constraints
inherent to chromosomes, cells, tissues and the whole organism. This will then allow
the research community not only to get a better quantitative understanding of immune
system functioning in infections, but also enable to build predictive pharmacokinet-
ics and pharmacodynamics models for antiviral and immunomodulatory drugs of
various physical and chemical nature and ideally, to specify the necessary criteria
for drug performance.

From the view of a mathematician, a number of challenging issues remain that
deserve further analyses, both analytical and numerical. The spatial distribution of
virus and immune cells in tissues can influence the dynamics of immune responses.
If we compare ODE models (without diffusion) and the corresponding RDE mod-
els (with diffusion), then they may have the same equilibria. However, basins of
attraction of these equilibria and transitions between them are likely to be different.
For example, if we have two stable stationary points within an ODE model, then
we cannot pass from one to another one due to a small perturbation. In contrast,
this can easily happen within the frame of an RDE model via a localized in space
perturbation that can initiate a reaction–diffusion wave of transition to another stable
equilibrium. Hence, localized spatial perturbations can be important from the point
of view of infection development and the corresponding immune response, and the
correct model choice might critically impact its predictive power.

Additional properties of spatial models of the immune response in comparison
with ODE models are related to the diffusion terms describing random motion of
virus and immune cells. Virus displacement in tissue is an important issue in bio-
logical research. Tissue invasion happens by virus moving either directly between
host cells or through the intercellular matrix. The mechanisms of this motion are not
yet sufficiently elucidated but it is clear that a possible control of these mechanisms
would provide additional means to eliminate infections. Similarly, as we discussed
above, the intensity of motion of immune cells can strongly influence the efficacy
of immune responses. However, the models considered up to now are based on sim-
plified mechanisms of virus and cell motion assuming that it is random and can be
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described by conventional diffusion terms. In fact, displacement of biological objects
can be of complex nature. There are numerous evidence that anomalous diffusion
models can be appropriate. In the case of virus and immune cells, this question is yet
completely open.

Another dimension in modelling of immune responses is provided by multi-scale
models. Their development is in the very beginning but the necessity of more pre-
cise quantitative descriptions of immune responses will determine their develop-
ment. An immune response is a complex systemic process, which involves different
organs and tissues of a host organism. Clearly, we cannot neglect this aspect and
restrict ourselves to a single-level average model. Bone marrow, thymus, lymph
nodes and the lymphatic system, spleen and blood circulation are all involved in an
immune response and they have very different structures and functions. Thus consid-
ering a human organism as a one-compartment entity is an oversimplification, which
becomes largely outdated. One of the modern approaches to multi-scale modelling
is provided by hybrid models, where various discrete and continuous models are
chosen to describe the corresponding physiological process in the most appropriate
way. However, issues like approximation, stability, consistency, and efficacy of the
numerical implementation of such models need further rigorous analyses.

To conclude, we expect that mathematical immunology is entering the phase of
a genuinely mutual inspiration of immunological and mathematical studies. Novel
challenges will emerge on the way to master the full potential of the immune system
to controlling unfavorable dynamics of virus infections. An exciting time is lying
ahead.


	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Principles of Virus–Host Interaction
	1.1 In Brief
	1.2 Virus Recognition and Immune Responses
	1.2.1 Pattern Recognition to Initiate Innate Immune Responses
	1.2.2 Viral Antigen Recognition by Adaptive Immune Responses

	1.3 Infection Fates with a Glimpse on the Real Complexity of Infection Immunology
	References

	2 Basic Principles of Building a Mathematical Model of Immune Response
	2.1 Systems Approach to Immunology
	2.1.1 Theories in Immunology

	2.2 A Mathematical Model
	2.2.1 Basic Issues
	2.2.2 Dynamics of Immune Responses

	2.3 Elementary Building Blocks for Models
	2.3.1 Ag–Ab Interaction
	2.3.2 Growth Phenomena
	2.3.3 Lymphocyte Proliferation
	2.3.4 Cell Death
	2.3.5 Cell Differentiation
	2.3.6 Tuning of the Response
	2.3.7 Cell Competition

	References

	3 Parameter Estimation and Model Selection
	3.1 General Modelling Issues
	3.2 Parameter Estimation
	3.2.1 Maximum Likelihood Approach
	3.2.2 Least-Squares Type Objective Functions
	3.2.3 Uncertainty Quantification
	3.2.4 Variance–Covariance Analysis
	3.2.5 Profile-likelihood-based Method
	3.2.6 Bootstrap Method
	3.2.7 Example of Computational Analysis of CFSE Proliferation Assay

	3.3 Regularization of Parameter Estimation
	3.3.1 Distributed Parameter Model
	3.3.2 Distributed Parameter Estimation
	3.3.3 Regularization of the Parameter Estimation
	3.3.4 Cell Growth Model with Asymmetry and Time Lags
	3.3.5 Division-Structured DDE Model
	3.3.6 Asymmetric Division and Label-Structured Delay hPDE Model
	3.3.7 dhPDE Model

	3.4 Model Ranking and Selection
	3.4.1 Accuracy and Parsimony
	3.4.2 Information-Theoretic Basis for Model Selection
	3.4.3 Akaike Criteria
	3.4.4 Rival Models for Virus-CTL Dynamics
	3.4.5 Information-Theoretic Model Evaluation
	3.4.6 Minimum Description Length
	3.4.7 Summary

	References

	4 Modelling of Experimental Infections
	4.1 Why Experimental Infections?
	4.2 The LCMV System: Gold Standard for Infection Biology
	4.2.1 Immunobiology of LCMV
	4.2.2 Basic Mathematical Model of LCMV Infection
	4.2.3 Viral Parameters: Impact on the Infection Phenotype
	4.2.4 Role of CD8+ T Cells: Protection, Exhaustion, Immunopathology

	4.3 Parameters Defining a Robust DC-Induced CTL Expansion
	4.3.1 The Experimental Model of LCMV gp33-Specific CTL Induction
	4.3.2 Mathematical Model for DC-Induced Systemic Dynamics of CTL Responses

	4.4 MHV Infection: How Robust Is the IFN Type I-Mediated Protection?
	4.4.1 Immunobiology of MHV Infection
	4.4.2 Setting up a Mathematical Model
	4.4.3 Parameter Estimates and Sensitivity Analysis

	4.5 Identifying a Feedback Regulating Proliferation and Differentiation of CD4+ T Cells
	References

	5 Modelling of Human Infections
	5.1 Outcome of Virus Infections as a `Numbers Game'
	5.2 Reference Curves: HIV and Memory T-Cell Decay Under HAART
	5.3 Chronic HBV Infection
	5.3.1 Deterministic Model of HBV Infection
	5.3.2 Sneaking Through Phenomenon
	5.3.3 Low-Level HBV Persistence

	5.4 Spontaneous Recovery from Chronic HBV Infection
	5.4.1 Stochastic Framework for Modelling HBV Infection
	5.4.2 Quantitative Spectrum of Chronic HBV Infection
	5.4.3 Numerical Methods
	5.4.4 Determinants of Spontaneous Recovery

	5.5 Pathogenesis of Chronic HBV Infection via Adjoint Equations Sensitivity Analysis
	5.5.1 Mathematical Model of Antiviral Immune Response
	5.5.2 Sensitivity of Functionals to Deviations of Parameters from `norms'
	5.5.3 Numerical Treatment
	5.5.4 Adjoint Equations for the Antiviral Immune Response Model
	5.5.5 HBV Infection: Chronic Versus Resolving Infection

	References

	6 Spatial Modelling Using Reaction–Diffusion Systems
	6.1 Reaction–Diffusion Equations for Immunology
	6.1.1 Spatial Models of Infection Development
	6.1.2 Existence and Stability of Waves

	6.2 Virus Spreading in Tissue
	6.2.1 The Model Without Time Delay
	6.2.2 The Model with Time Delay
	6.2.3 Full-Scale Viral Regulation of the Immune Response

	6.3 Spatial Model of Virus and Immune Cells Dynamics
	6.4 Predicting the Type I IFN Field in Lymph Nodes During a Cytopathic Virus Infection
	6.4.1 Reaction–Diffusion Model of IFN Dynamics
	6.4.2 3D Approximation of a Paradigmatic Lymph Node
	6.4.3 Numerical Results

	References

	7 Multi-scale and Integrative Modelling Approaches
	7.1 Multi-scale Models
	7.2 Multi-scale Approaches in Mathematical Immunology
	7.2.1 Equations of Cell Kinetics and Cell Dynamics
	7.2.2 Global Extracellular Regulation
	7.2.3 Local Extracellular Regulation
	7.2.4 Intracellular Regulation

	7.3 Hybrid Multi-scale Models
	7.3.1 Hybrid Models of Immune Response
	7.3.2 Numerical Experiments
	7.3.3 Infection Spreading in the Lymph Node

	7.4 Basis for Further Work
	References

	8 Current Challenges



