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Preface

Design of water control structures, reservoir management, economic evaluation of
flood protection projects, land use planning and management, flood insurance as-
sessment, all rely on knowledge of the magnitude and frequency of floods. Often,
estimation of this information is not easy because of paucity of flood records at the
target sites. Regional flood frequency analysis (RFFA) entails estimating the flood
frequency distribution at a target site by utilizing flood records pooled from several
other watersheds, which are similar to the watershed of the site in flood producing
mechanisms. The process of identifying similar watersheds for pooling peak flow
information is known as regionalization. Research in this area is active over past
four decades with new and intriguing findings constantly being reported.

Clustering techniques are useful to identify groups of watersheds which have
similar flood producing mechanisms. This book deals with regionalization of water-
sheds. It provides a detailed account of several recently developed clustering tech-
niques, including those based on fuzzy set theory and artificial neural networks. It
also documents research findings on application of clustering techniques to RFFA.
An attempt is made to make the technical level of explanation simple and compre-
hensive for the benefit of practitioners.

In regional frequency analysis, the optimal number of regions is based on cluster
validation measures and visual interpretation. The potential of various cluster va-
lidity measures in identifying optimal set of regions is investigated. The L-moment
based homogeneity tests form the basis to check the regions for homogeneity. The
regions formed by any regionalization method are, in general, heterogeneous and
they need adjustments to make them homogeneous. It is demonstrated that the sub-
jectivity involved and the effort needed to identify homogeneous groups of water-
sheds with conventional approaches are greatly reduced by using efficient clustering
techniques. To achieve better results, some modifications are suggested to conven-
tional fuzzy clustering approach to regionalization in Chapter 3. Further, a novel
two-level self-organizing feature map based clustering approach is developed in
Chapter 4. The theoretical background of the proposed approaches is provided and
their performance in practical situation is assessed.

In RFFA, a distribution such as log-Pearson type III or Generalized extreme value
is recommended as default choice to fit peak flows in different parts of the world.
The stipulation that a particular flood frequency distribution can be preferred to fit
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peak flow data in all the regions is investigated in Chapter 5. Further the validity of
simple scaling methods that have been developed in RFFA is tested in practical situ-
ation. It is demonstrated that better flood estimates with smaller confidence intervals
are obtained by analysis of data from homogeneous watersheds. The importance of
regionalization in flood frequency analysis is demonstrated.

It is suggested that Chapter 1 be read before proceeding to other chapters. There
are some repetitions for the sake of completeness. The words: site, watershed, and
catchment are used interchangeably. Feature vectors that are formed using site char-
acteristics are referred to by the words object, data point, and site at several loca-
tions. Similarly, the words: model, method, procedure, algorithm and technique are
used interchangeably to refer to clustering algorithm.
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Rao his wife, Dr. Malini Rao Prasad his daughter, Dr. Sathya Prasad his son-in-law,
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N. Prasad, his delightful grand daughter for their support. Dr. Srinivas would like
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wife, and families of his sisters Smt. Radhika and Smt. Sudha for their continuous
encouragement and affection. He would like to express his gratitude to Prof. Rao
S Govindaraju and his student Mr. Shivam Tripathi, School of Civil Engineering
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Chapter 1
Introduction

1.1 Regionalization for Flood Frequency Analysis

Floods cause widespread damage to property and life in different parts of the world.
Determination of the plausible magnitude and frequency of these hydrologic ex-
treme events is necessary in the design of various flow control structures such as
levees, culverts, bridges, barrages and dams. Flood frequency analysis (FFA) pro-
cedures are in use for a long time in hydrology to relate the magnitude of floods to
their frequency of occurrence. In traditional procedures of FFA, site-specific (at-site)
hydrologic information in the form of annual maximum flow series or peak-over-
threshold series is needed to estimate the flooding potential at the site of interest
(which is also referred to as ‘target site’ or ‘subject site’). However, because of the
paucity of flood data at target sites, it is not always possible to use at-site frequency
analysis to estimate flood of required frequency for hydrologic design. To contend
with this situation, hydrologists use regional flood frequency analysis (RFFA) meth-
ods that are based on pooling flood information from several watersheds which are
similar to the watershed of target site in flood producing mechanisms. A group of
watersheds with sufficient homogeneity in flood generating mechanisms constitutes
a homogeneous region or pooling-group for RFFA, and the procedure to identify the
homogeneous regions is traditionally referred to as regionalization.

A region for FFA is sized to provide at least 5T peak flow values, where T
is referred to as target ‘return period’ or ‘recurrence interval’ in years (Reed et al.,
1999). The choice between at-site and regional frequency analysis methods depends
on both the length of gauged record at the ‘target site’ and the ‘target return period’.
Design of water control structures such as highway culverts, bridges, urban storm
sewers, airfields and small dams may require estimates of flood quantiles corre-
sponding to 50 to 100-year recurrence interval. Design of levees around cities and
intermediate to large dams may require quantile estimates corresponding to 100 to
200-year recurrence interval (Chow et al., 1988, p. 419). Floodway channels are
designed for flood events corresponding to 500-year or even higher return period.
Various regionalization approaches have been developed in the past to form regions
for pooling the required information for reliable estimation of flood quantiles corre-
sponding to the T -year return period.

A.R. Rao, V.V. Srinivas, Regionalization of Watersheds, 1
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2 1 Introduction

1.2 Approaches to Regionalization

Regions for RFFA are often chosen to be groups of geographically contiguous wa-
tersheds based on political, administrative, or physiographic boundaries. However,
this practice is criticized because delineation of regions using these factors does not
guarantee hydrological homogeneity. Consequently, several approaches to region-
alization have been developed which seek similarity between sites by examining
catchment attributes such as physiographic characteristics, geographical location,
and at-site flood statistics.

The approaches to regionalization of watersheds include: (i) the method of resid-
uals (Thomas and Benson, 1970; Wandle, 1977; Glatfelter, 1984; Choquette, 1988);
(ii) the canonical correlation analysis (Ribeiro-Corréa et al., 1995; Ouarda et al.,
2000, 2001; Cavadias, 1989, 1990; Cavadias et al., 2001); (iii) the region of in-
fluence (ROI) approach and its extensions (Burn, 1990a,b; Zrinji and Burn, 1994;
Cunderlik and Burn, 2006a); (iv) the hierarchical approach and its extension to ROI
framework (Gabriele and Arnell, 1991; Zrinji and Burn, 1996); and (v) the cluster
analysis (Mosley, 1981; Tasker, 1982; Acreman and Sinclair, 1986; Wiltshire, 1986;
Bhaskar and O’Connor, 1989; Burn, 1989; Nathan and McMahon, 1990; Hosking
and Wallis, 1997; Hall and Minns, 1999; Burn and Goel, 2000; Hall et al., 2002;
Jingyi and Hall, 2004; Rao and Srinivas, 2006a,b). Javelle et al. (2002) developed
regional flood-duration-frequency (QdF) curves based on the index-flood method
(Dalrymple, 1960) for describing the flood regime for a basin. Shu and Burn (2004)
used a fuzzy expert system with genetic enhancement for RFFA. A detailed com-
parison of some of the approaches generally used for regionalization of watersheds
is found in Cunnane (1988) and GREHYS (1996), whereas Bobée and Rasmussen
(1995) provide a review of the relevant literature.

In the method of residuals (MOR) approach to RFFA, regions are formed using
the positive and the negative signs of residuals extracted from a regional regression
model relating flood quantile at each gauged site to the characteristics of watersheds.
This approach is widely used by the United States Geological Survey (USGS) for re-
gionalization. This method delineates flood regions in a rather arbitrary manner and
the regions are often arranged to be coincident with recognized geographic and/or
hydrologic boundaries, political or administrative areas. Therefore, the regions de-
lineated by this approach are likely to contain watersheds whose flood-frequency
characteristics may not be similar (Wiltshire, 1986; Bhaskar and O’Connor, 1989).

In the canonical correlation analysis (CCA) based approach to RFFA (Cavadias,
1989, 1990), drainage basins are represented as points in the spaces of pairs of un-
correlated flood-related canonical variables and pairs of uncorrelated basin-related
canonical variables to examine similarity in the corresponding point patterns in
these spaces. If the point patterns are sufficiently similar, regions are formed in
the space of the flood-related canonical variables. The approach was originally
based on subjective visual judgement of clustering patterns that may be available.
Ribeiro-Corréa et al. (1995) and Cavadias (1995) extended the approach to de-
termining homogeneous hydrological neighborhoods and applied it to regionali-
zation of flood flows. The problem with this approach to regionalization is that
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similarity in point patterns may not be found (Bobée and Rasmussen, 1995). Ouarda
et al. (2001) present theoretical framework for the use of canonical correlations
in RFFA. Chokmani and Ouarda (2004) proposed a physiographical space-based
kriging method for regional flood frequency estimation at ungauged sites. The
physiographical space was defined based on physiographical and meteorological
characteristics of gauged catchments, using CCA or principal component analysis.
Ordinary kriging was then used to interpolate flow quantiles in the physiographical
space.

The RFFA is sought for reliable estimation of flood quantiles at target sites having
inadequate flood records. Whereas the results of CCA method depend on at-site
estimates of extreme quantiles that cannot be reliably estimated due to paucity of
flood records. Hence it seems unlikely that CCA method can give dependable results
(Hosking and Wallis, 1997, p. 147).

The ROI approach of Burn (1990a,b) allows each site to have its own region.
The ROI of a target site consists of those sites in the study region whose dis-
tance to the target site in a weighted multi-dimensional attribute space does not
exceed a chosen threshold value. In the estimation of a regional growth curve,
each site could be weighted according to its proximity to the target site. The se-
lection and weighting of attributes and sites is one of the problems where no
strict mathematical solution is available (Bobée and Rasmussen, 1995). It be-
comes a point of concern as the number of attributes available for the analysis
increase. Recently Cunderlik and Burn (2006a) recommend using Mahalanobis
distance measure for assessing similarity between sites, instead of the conven-
tionally used Euclidean measure, to account for the correlation between water-
shed attributes used for regionalization. The Mahalanobis distance takes into ac-
count the variance and covariance of the variables, which was not possible with
the Euclidean distance. The proposed approach allows considering estimation un-
certainty due to sampling variability in measures describing flood seasonality of
watersheds.

For fixed regions, Gabriele and Arnell (1991) proposed hierarchical approach to
RFFA which explicitly accounts for spatial variability in different flood characteris-
tics. The skewness of annual maximum flood data is assumed to be constant over a
larger area than the coefficient of variation (CV), which in turn is assumed to vary
more slowly over space than the mean annual flood. Therefore, more sites are used to
estimate the distribution parameters controlling the skewness than are used to derive
the parameters determining the CV. Zrinji and Burn (1996) incorporated the concept
of hierarchical approach into the ROI framework by defining a set of ROIs for each
site as opposed to a single ROI. Similarities between catchments were computed
by using directional statistics (i.e., measures of average time of occurrence and
seasonality of flood events in the catchments). Further, three measures proposed
by Hosking and Wallis (1993) for testing regional homogeneity are used to obtain
three different ROIs for each site.

Each regionalization approach has its strengths and limitations. However, be-
cause of the constraints imposed by scarcity of data and the subjectivity involved
in the selection of attributes, weights, threshold values and distance measures, there
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are no established criteria by which the superiority of any particular regionalization
method can be clearly established.

Recently, increase in awareness of the use of hydro-climatic data seems to have
prompted several agencies to work towards creating databanks of a variety of vari-
ables that influence hydrological processes. To effectively use the data archives in
regionalization studies, there is a need to develop potential approaches that are use-
ful to identify and interpret patterns inherent in hydrologic data. For this task, clus-
tering algorithms that are effective in recognizing patterns in both large and small
data sets appear promising. These techniques are referred to by different names in
different disciplines, including unsupervised learning in pattern recognition, numer-
ical taxonomy in biology and ecology, typology in social sciences and partition in
graph theory (Theodoridis and Koutroubas, 1999). Introductory material on cluster
analysis is found in Hartigan (1975), Aldenderfer and Blashfield (1984), Jain and
Dubes (1988), Kaufman and Rousseeuw (1990), Everitt (1993), Gordon (1999),
Jain et al. (1999) and others.

1.3 Cluster Analysis in Regionalization

Cluster analysis is the generic name of a variety of multivariate statistical procedures
that are used to investigate, interpret and classify given data into similar groups or
clusters, which may or may not be overlapping. The data points within a cluster
should be as similar as possible and the data points of different clusters should be as
dissimilar as possible.

In this section, first a brief description of various attributes used in regionalization
by cluster analysis is provided. Following this, broad classification of existing clus-
tering algorithms is presented. Subsequently, steps in regionalization are described.
Finally the section is concluded with a discussion of issues in cluster analysis.

1.3.1 Attributes Used in Regionalization

A cluster consists of one or more feature vectors. A feature vector (also referred
to as ‘data point’, ‘data vector’ or ‘object’) comprises of several attributes or vari-
ables. The attributes that have been used for regionalization of watersheds include: (i)
physiographic characteristics such as drainage area, length of longest stream, main
stream slope, average basin slope, storage index, fraction of the basin covered by
lakes, reservoirs, and swamps; (ii) soil cover characteristics such as infiltration po-
tential, effective mean soil moisture deficit, and runoff coefficient; (iii) characteristics
associated with the land use pattern such as fraction of the basin covered by forests,
agricultural, suburban or urban land; (iv) drainage characteristics of the basin such
as drainage density; (v) geographical location attributes such as latitude, longitude
and altitude of the gauging station, and the centroid of the catchment containing the
site; (vi) meteorological characteristics such as storm direction in the catchments,
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mean annual number of days below certain temperature (Ouarda et al., 2006); (vii)
Geologic features of the basin such as fraction of catchment underlain by various
types of rock formations (Nathan and McMahon, 1990); (viii) a measure of basin
response time such as basin lag or time to peak (Potter and Faulkner, 1987); and
(ix) flood seasonality descriptors such as directional statistics (Mardia, 1972; Fisher,
1993) and relative frequency of flood occurrence (Black and Werritty, 1997; Lecce,
2000; Cunderlik and Burn, 2002b; Cunderlik et al., 2004a,b). Directional statistics
include measures that describe the average time of occurrence of floods and its vari-
ability in thecatchment, andmeandelaybetweenprecipitationandfloods (Burn,1997;
Castellarin et al., 2001; Cunderlik and Burn, 2002a; Cunderlik et al., 2004a).

Shape indicators of catchments such as form factor, compactness coefficient,
elongation ratio, or circularity ratio may also be used as attributes to form regions
for flood frequency analysis. The form factor of a basin is defined as the ratio of
area of the basin to square of its axial length, where axial length is the distance
from the outlet of the basin to the most remote point in the basin. The compactness
coefficient of a basin is the ratio of the perimeter of the basin to the circumference
of a circle of area equal to the basin area. The elongation ratio of a basin is the ratio
of the diameter of a circle having area the same as the basin area, to the maximum
length of the basin. The circularity ratio of a basin is the ratio of the basin area to
the area of a circle of same perimeter as that of the basin.

At-site flood statistics have also been used as attributes for regionalization in the
past. Examples include mean, coefficient of variation and skewness of annual flood
series, plotting position estimate of T-year flood event interpolated from the annual
flood series (Burn, 1990b), flood magnitude corresponding to a T-year recurrence
interval (Tasker, 1980).

In practice, the homogeneity of regions formed using a regionalization approach
is tested by using flood statistics. Hence, these statistics are not supposed to be
used as attributes to form regions. A drawback in using flood statistics as attributes
to form regions is that the resulting regions may appear homogeneous but are not
necessarily effective for RFFA (Burn et al., 1997). Moreover, using flood statistics in
forming regions for FFA precludes the use of information from the derived regions
to estimate flood quantiles at ungaged sites in the study region. Similarly, the for-
mation of regions should not be based entirely on physiographic characteristics of
catchments. This is because similarity in only physiographic characteristics does not
necessarily imply similarity in catchment hydrologic response. Therefore in form-
ing regions it is reasonable to include some attributes that are estimated from data
measured at the sites, provided that these measurements are not highly correlated
with the flood values themselves (Hosking and Wallis, 1997, pp. 54–55). Examples
include flood seasonality descriptors (Hosking and Wallis, 1997; Burn et al., 1997;
Castellarin et al., 2001). The flood seasonality descriptors are less prone to errors
and are more robust than measures based on flood magnitude data. However, they
are subject to estimation uncertainty resulting from sampling variability. Other site
characteristics to form a region may be based on estimates that are sufficiently ac-
curate to be treated as though they are deterministic quantities. For example, mean
annual precipitation can be reliably estimated from isohyetal maps.
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1.3.2 Classification of Clustering Algorithms

Most existing clustering algorithms can be classified into two categories (Jain and
Dubes, 1988): hierarchical clustering and partitional clustering. Hierarchical clus-
tering procedures provide a nested sequence of partitions, whereas partitional clus-
tering procedures generate a single partition of the data in an attempt to recover the
natural grouping present in the data. In this subsection, a brief description of these
clustering procedures is presented. Further details on these procedures are provided
in subsequent chapters.

Hierarchical clustering algorithms can be subdivided into two categories: Ag-
glomerative and Divisive. For a given set of N feature vectors, the agglomerative
hierarchical clustering procedures begin with N singleton clusters. The singleton
clusters are those that consist of only one feature vector. A distance measure such
as the Euclidean is chosen to evaluate the dissimilarity between any two clusters.
The clusters that are least dissimilar are found and merged. This provides N -2 sin-
gleton clusters and a cluster with two feature vectors. The process of identifying
and merging two closest clusters is repeated till the desired number of clusters is
obtained. On the other hand, the divisive hierarchical clustering procedures begin
with a single cluster consisting of all the N feature vectors. The feature vector that
has the greatest dissimilarity to other vectors of the cluster is then identified and
separated to form a splinter group. The dissimilarity values of the remaining fea-
ture vectors in the original cluster are then examined to determine if any additional
vectors are to be added to the splinter group. This step divides the original clus-
ter into two parts. The larger cluster is subjected to the aforementioned procedure
in the next step. The algorithm terminates when the desired number of clusters is
obtained.

The hierarchical clustering process (both agglomerative and divisive) can be
represented as a nested sequence or tree, called dendrogram, which shows how
the clusters that are formed at the various steps of the process are related. The
drawback of hierarchical clustering algorithms is that the resulting clusters are
usually not optimal because the feature vectors committed to a cluster in the
early stages cannot move to another cluster. Divisive hierarchical clustering algo-
rithms always split clusters. In contrast, agglomerative algorithms always merge
clusters.

Partitional clustering procedures attempt to recover the natural grouping present
in the data through a single partition. Prototype-based clustering algorithms are the
most popular class of partitional clustering methods which consider the prototype,
such as cluster centroid, as representive of the cluster.

Clustering algorithms can also be classified as hard clustering and fuzzy cluster-
ing. In hard clustering, each feature vector is assigned to one of the clusters with
a degree of membership equal to one. This is based on the assumption that feature
vectors can be divided into non-overlapping clusters with well defined boundaries
between them. This is natural for compact and well-separated groups of data. Never-
theless, in many realistic situations feature vectors bear partial resemblance to sev-
eral clusters and therefore one cannot justify fully assigning a feature vector to one
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cluster or the other. The fuzzy set theory (Zadeh, 1965) is a natural way to represent
such a situation. Fuzzy clustering allows a feature vector to belong to all the clusters
simultaneously with a certain degree of membership in the interval [0, 1].

While hierarchical clustering procedures are not influenced by initialization and
local minima, partitional clustering procedures are influenced by initial guesses
(number of clusters, cluster centers, etc.). The partitional clustering procedures
are dynamic in the sense that feature vectors can move from one cluster to an-
other to minimize the objective function. In contrast, the feature vectors committed
to a cluster in the early stages cannot move to another in hierarchical clustering
procedures.

In the past decade, a special class of artificial neural network called Self-
Organizing Feature Map (SOFM) has been applied as a clustering technique. How-
ever, SOFM is not a clustering method because it is seldom possible to interpret
clusters from the output of an SOFM. In Chapter 4 we demonstrate that SOFMs
may, however, serve as a useful precursor to clustering algorithms.

1.3.3 Steps in Regionalization by Cluster Analysis

1. Selection of attributes: The goal of this step is to analyze data of various variables
to identify attributes influencing the flood response of watersheds in the study
region.

2. Preparing feature vectors: The data available for each attribute are rescaled to
nullify differences in their variance and relative magnitude. The rescaling may
involve transforming the values of attributes by appropriate transformation func-
tion (such as logarithmic) and dividing the transformed values by standard de-
viation. Each feature vector consists of rescaled (dimensionless) attributes of a
watershed.

3. Forming clusters: This step involves selection of a clustering algorithm to parti-
tion feature vectors prepared in step 2 into disjoint or overlapping clusters. The
watersheds represented by feature vectors in a cluster constitute a region for
flood frequency analysis. In general, distance (or dissimilarity) measure and a
clustering criterion characterize a clustering algorithm.

4. Selecting optimum number of regions: The clusters formed in step 3 are inter-
preted visually and by using cluster validity indices to determine optimum num-
ber of regions.

Visual interpretation: Clusters obtained in step 3 are visually interpreted by plot-
ting them in geographical space of the study region to identify stable
regions. The stable regions do not change their configuration drastically
with change in the number of clusters formed by clustering algorithm.

Cluster validity indices: These indices are used to identify compact and well sep-
arated clusters. A variety of validity indices are in use with hard and fuzzy
clustering algorithms. These will be discussed in the following chapters.
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5. Testing the regions for homogeneity: The regions determined in step 4 are tested
for homogeneity by using statistical homogeneity tests that are described in
Section 1.4.

6. Adjustment of heterogeneous regions: The regions that are closer to being ho-
mogeneous are adjusted to improve their homogeneity. The various plausible
options available for adjusting the regions are presented in Section 1.4.1.

7. Estimation of flood quantiles: The aim of this step is to perform regional
goodness-of-fit tests to identify and fit a suitable flood frequency distribution
to flood data of sites in a region. The fitted distribution is then used to obtain
flood quantile estimates for hydrologic design (Fig. 1.3.1).

Selection of
attributes

Preparing
feature vectors 

Forming clusters

Selecting optimum
number of regions 

Testing the regions
for homogeneity

Are the regions
Homogeneous?

Yes

No Adjustment of
heterogeneous regions 

Estimation of
flood quantiles 

Fig. 1.3.1 Steps in regionalization by cluster analysis
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1.3.4 Issues in Cluster Analysis

Clustering algorithms attempt to partition a given data set based on certain assump-
tions and criteria that will be discussed in the following chapters. Important issues
that arise in cluster analysis include: (i) choice of clustering algorithm; (ii) choice
of appropriate attributes for clustering; (iii) selection of an objective function;
(iv) choice of dissimilarity (or distance) measure; (v) appropriate initialization of
the clustering algorithm; and (vi) selection of appropriate number of clusters in
the data.

There are several clustering algorithms which may be chosen for regionaliza-
tion. It is generally expected that these algorithms help in identifying homogeneous
groups of watersheds by exploring structure hidden in given data. The performance
of a clustering algorithm depends on the definition of similarity considered for iden-
tifying neighboring watersheds in attribute space. Domain knowledge will be useful
in choosing an appropriate algorithm.

Independent attributes which affect flood response of catchments in the study
region must be selected for cluster analysis from a set of causal variables. How-
ever, in reality, it is impossible to identify and prepare an exhaustive set of causal
variables. Hence the resulting clusters may need adjustment to improve their sta-
tistical homogeneity. The ability of a clustering algorithm to produce a partition
that represents a meaningful interpretation of structure in the data depends on
the chosen objective function. Therefore the objective function should be chosen
judiciously.

Furthermore, in cluster analysis the shape of clusters is determined by the dis-
tance measure. For instance, the use of Euclidian distance measure is suitable for
identification of clusters with a spherical shape (Dunn, 1973). If information is
available regarding the shape of expected clusters, a suitable distance metric can be
chosen to form the clusters. However, in RFFA, information on shape of expected
clusters is not known a priori.

In a partitional clustering procedure, the optimal value attained by an objective
function depends on cluster centers (also called cluster centroids or cluster seeds)
used to initialize the algorithm. As no single procedure of initializing the cluster
centers is theoretically proven to yield global optimum value for an objective func-
tion, several methods of initializing cluster seeds are in use. A detailed description
of various options in vogue in hydrologic literature to initialize partitional clustering
algorithms is provided in Chapter 2.

Optimal number of clusters can be chosen by visual interpretation of clusters in
geographical space. However, since this method is subjective and cumbersome, a
number of cluster validity indices have been developed to aid in their selection. Yet
no single index has proven to be efficient in identifying appropriate clusters for a
wide variety of datasets. In general, for a given set of feature vectors and clustering
algorithm, different cluster validity measures are likely to suggest different values
for optimal number of clusters. Therefore it is suggested that selection of optimal
number of clusters should be based on a set of validity measures and visual inter-
pretation for better confidence in the result.
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1.4 Testing Regional Homogeneity

The homogeneity of regions obtained from cluster analysis is assessed statistically
using homogeneity tests Examples of regional homogeneity tests include those
proposed by Acreman and Sinclair (1986), Wiltshire (1986), Buishand (1989),
Chowdhury et al. (1991), Lu and Stedinger (1992), Hosking and Wallis (1993,
1997), Fill and Stedinger (1995), Cunderlik and Burn (2006b), and Viglione et al.
(2007). The L-moment based homogeneity test of Hosking and Wallis (1993) that
is widely used by practicing hydrologists is described in this section.

Hosking and Wallis (1993) proposed heterogeneity measures that use the ad-
vantages offered by sampling properties of L-moment ratios. A discussion of
L-moments is found in Hosking and Wallis (1997). One of the prime advan-
tages of using L-moment based methods for testing homogeneity is that they
avoid assumptions about the form of the underlying probability distribution of the
observed data.

In a homogeneous region all sites are supposed to have the same population
L-moment ratios. However, their sample L-moment ratios (LMRs: L-coefficient of
variation (L-CV), L-skewness and L-kurtosis) may be different due to sampling
variability. The regional homogeneity tests are developed to examine whether the
between-site dispersion of the sample LMRs for the group of sites under considera-
tion is larger than the dispersion expected in a homogeneous region.

Suppose that the region to be tested for homogeneity has NR sites, with site i hav-
ing record length of peak flows ni . Further, let t (i), t (i)

3 and t (i)
4 denote

L-CV, L-skewness and L-kurtosis respectively at site i . The regional average
L-CV, L-skewness and L-kurtosis, represented by t R , t R

3 and t R
4 respectively, are

computed as:

t R =
NR∑

i=1
ni t (i)

/
NR∑

i=1
ni

t R
3 =

NR∑

i=1
ni t

(i)
3

/
NR∑

i=1
ni

t R
4 =

NR∑

i=1
ni t

(i)
4

/
NR∑

i=1
ni

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.4.1)

where, ni

/
NR∑

i=1
ni denotes the weight applied to sample LMRs at site i , which is

proportional to the sites’ record length. The regional average mean l R
1 is set to 1.

Heterogeneity measures (HMs) are based on three measures of dispersion: (i)
weighted standard deviation of the at-site sample L-CVs (V ); (ii) weighted av-
erage distance from the site to the group weighted mean in the two dimensional
space of L-CV and L-skewness (V2); and (iii) weighted average distance from the
site to the group weighted mean in the two-dimensional space of L-skewness and
L-kurtosis (V3).
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V =
{

NR∑

i=1
ni (t (i) − t R)2

/
NR∑

i=1
ni

}1/2

V2 =
NR∑

i=1
ni

{
(t (i) − t R)2 + (t (i)

3 − t R
3 )2

}1/2
/

NR∑

i=1
ni

V3 =
NR∑

i=1
ni

{
(t (i)

3 − t R
3 )2 + (t (i)

4 − t R
4 )2

}1/2
/

NR∑

i=1
ni

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.4.2)

In these dispersion measures, distance of sample LMRs for site i from the re-
gional average LMRs is weighted proportionally to the record length of the site,
thus allowing greater variability of LMRs for sites having small sample size in a
region.

A large number of realizations (Nsim = 500) of the region are simulated from a
kappa distribution fitted to regional average LMRs: l R

1 , t R , t R
3 and t R

4 . Each realiza-
tion constitutes a homogeneous region, with NR sites having same record length as
their real-world counterparts. Further, in each realization, the data simulated at any
site in the region is serially independent and the data simulated at different sites in
the region are not cross-correlated. For each simulated realization, V , V2 and V3 are
computed.

Let μV , μV2 and μV3 denote the mean and σV , σV2 and σV3 the standard deviation
of the Nsim values of V , V2 and V3 respectively. These statistics are used to estimate
the following three heterogeneity measures (HMs):

H1 = (V − μV )

σV
(1.4.3)

H2 = (V2 − μV2 )

σV2

(1.4.4)

H3 = (V3 − μV3 )

σV3

(1.4.5)

A region can be regarded as ‘acceptably homogeneous’ if HM < 1, ‘possibly
homogeneous’ if 1 ≤ HM < 2, and ‘definitely heterogeneous’ if HM ≥ 2. Further
details of the homogeneity test are found in Hosking and Wallis (1997). The values
of H2 and H3 rarely exceed 2 even for grossly heterogeneous regions and hence
lack power to discriminate between homogeneous and heterogeneous regions. Con-
sequently, H1 is considered to be superior to H2 and H3.

1.4.1 Adjusting the Regions

If the regions obtained from the cluster analysis are not statistically homogeneous,
they are adjusted to improve their homogeneity. This step of regionalization is jus-
tified because the regions are not generally expected to be homogeneous when they
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are formed based on a set of attributes which is not exhaustive. Nevertheless, the
modifications should not be substantial if the attributes used for cluster analysis
include a reasonable number of causal variables affecting flood response of catch-
ments and if an efficient clustering algorithm is used for regionalization.

The options suggested by Hosking and Wallis (1997) for adjusting the regions
resulting from clustering algorithm include: (i) eliminating (or deleting) one or more
sites from the data set; (ii) transferring (or moving) one or more sites from a region to
other regions; (iii) dividing a region to form two or more new regions; (iv) allowing a
site to be shared by two or more regions; (v) dissolving regions by transferring their
sites to other regions; (vi) merging a region with another or others; (vii) merging two
or more regions and redefining groups; and (viii) obtaining more data and redefining
regions. Among these, the first three options are useful in reducing the values of
heterogeneity measures of a region, whereas the options (iv) to (vii) help in ensuring
that each region is sufficiently large. In the following, the size of a region, which is
estimated as sum of record lengths of peak flow data at all the sites in a region, is
expressed in station-years. The effort required for the task of merging or splitting a
region is minimal when cluster analysis is used to form regions. This is brought out
in the following chapters.

The primary option considered for revising a region is to eliminate one or more
sites that are grossly discordant with respect to other sites within the region. In
hard clustering, the site eliminated from a region is transferred to another region
(recipient) that is nearest to the eliminated site in multi-dimensional attribute space,
provided the transfer does not affect the homogeneity of the recipient region ad-
versely. In contract, in fuzzy clustering, a site simultaneously belongs to all the
regions and hence there is no need to transfer the eliminated site to another region.

1.4.2 Discordancy Measure

A discordancy measure is useful to identify sites with gross errors in their data or
those that are grossly discordant with the region as a whole. In practice, discordancy
measure suggested by Hosking and Wallis (1997) is widely used by hydrologists.
To estimate discordancy values for sites in a region, the sites are considered as
points in three-dimensional space of sample L-moment ratios (L-CV, L-Skewness,
and L-Kurtosis). Centroid of the region is regarded as a point depicting average of
sample L-moment ratios of the sites in the region. Any point that is far from the
centroid of the region is flagged as discordant.

Let NR represent the number of sites in a region. Further, let ui =
[
t (i)t (i)

3 t (i)
4

]T
be

a vector containing the t , t3, and t4 values of site i in the region, where the superscript
T denotes transpose of a vector. The discordancy statistic for site i is defined as:

Di = 1

3
NR(ui − ū)TS−1(ui − ū) (1.4.6)
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Table 1.4.1 Critical values
for the discordancy statistic
Di (Hosking and Wallis,
1997)

Nk Critical value of Di

5 1.333
6 1.648
7 1.917
8 2.140
9 2.329
10 2.491
11 2.632
12 2.757
13 2.869
14 2.971
≥ 15 3.000

where ū is the unweighted group average of the L-moment ratios computed using
Eq. (1.4.7) and S is a covariance matrix computed using Eq. (1.4.8).

ū =

NR∑

i=1
ui

NR
(1.4.7)

S =
NR∑

i=1

(ui − ū)(ui − ū)T (1.4.8)

Hosking and Wallis (1993) suggested 3 as the critical value for the discordancy
statistic for regions containing any number of sites. Later it was found that critical
value of Di for a region depends on its size. Hosking and Wallis (1997) provide
critical values of Di for regions of various sizes, which are presented in Table 1.4.1.
In many instances the site discordancy may arise out of sampling variability. There-
fore, the data at all sites with large values of Di should be carefully scrutinized
before deciding whether the sites are discordant.

1.5 Data Used in Examples

In the examples discussed in the following chapters, flow records from 245 gauging
stations in and around the state of Indiana, USA, are used. The stations are the same
as those considered by Glatfelter (1984) in an earlier work of regionalization of
Indiana watersheds. The location of these stations in the study region is shown in
Fig. 1.5.1.

Information related to the magnitude of peak flows and the date and time of
occurrence of the flood events at the gauging stations in Indiana is extracted from
the electronic file of Indiana Department of Natural Resources (IDNR) Division
of Water (2001). The latitude and longitude values of all the 245 stations and
the peak flow records of the stations located outside Indiana are extracted from
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Fig. 1.5.1 Location of gauging stations in the study region considered for regionalization of
watersheds

USGS (United States Geological Survey) national water information system web
site http://water.usgs.gov/nwis/peak. Details of nine attributes used to assess the
degree of similarity between drainage basins in Indiana are available for the 245
stations from Glatfelter (1984). The range of each of these attributes is presented in
Table 1.5.1. The attributes are subjected to a screening process with a view to extract
independent attributes for use in cluster analysis. It is also important to note that
these attributes are not used in testing the statistically homogeneity of the regions.
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Table 1.5.1 Attributes
considered for regionalization
of Indiana watersheds

Attribute Range

Drainage Area 0.28–28,813 km2

Mean Annual Precipitation 86.36–116.84 cm
Main channel Slope 0.17–50.57 m/km
Main channel Length 0.48–506.94 km
Basin Elevation 125.6–362.7 m
Latitude† 38.00–41.75
Longitude† 84.08–87.90
Storage∗ 0 %–11 %
Soil Runoff coefficient 0.30–1.00
Forest cover in Drainage Area 0.0–88.4 %
I(24,2)∗∗ 6.60–8.51 cm
∗ Storage – percentage of the contributing drainage
area covered by lakes, ponds or wetlands.
∗∗ I(24,2) – 24-hour rainfall having a recurrence
interval of 2 years.
†Latitude and longitude are in decimal degrees.

1.6 Organization of the Text

The following part of the book is organized into five chapters. It expands on the con-
cepts, issues and approaches described in the foregoing sections, using the database
prepared for watersheds in Indiana, USA.

Regionalization of watersheds by hard cluster analysis is discussed in Chapter 2.
Various methods of forming regions using hard clustering procedures are reviewed.
Following this, the idea of hybrid cluster analysis is presented. In hard cluster analy-
sis, initial set of regions has to be identified by using hard cluster validity measures.
These measures are presented and discussed. This is followed by a description of
the procedure used for feature extraction, identification of optimal set of clusters,
validating the regions and testing the regions for robustness.

Regionalization of watersheds by fuzzy cluster analysis is discussed in Chapter 3.
First the classification of fuzzy clustering algorithms is presented. Subsequently
fuzzy c-means algorithm is presented and fuzzy cluster validity measures which are
useful to identify optimal number of fuzzy clusters are described. This is followed
by a description of the procedure used for identification and validation of regions
and testing them for robustness.

Chapter 4 is concerned with regionalization of watersheds using a special class
of artificial neural networks called Self-Organizing Feature Maps (SOFMs). Various
issues concerning use of the SOFMs for RFFA are discussed. This is followed by a
discussion of hard and fuzzy clustering of SOFMs. Subsequently a novel two-level
clustering algorithm based on SOFMs and Fuzzy clustering is suggested to derive
effective clusters for flood frequency analysis. An example of using SOFM and two-
level clustering algorithm is given along with the results. The results from validation
and testing the regions for robustness conclude this chapter.
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Various aspects of the effects of regionalization on flood frequency analysis are
discussed in the fifth chapter. Improvement in flood quantile estimation brought
about by regionalization of watersheds is investigated. For this purpose, different
flood quantile estimation methods are considered because conclusions based on
only one method could be misleading. The methods discussed include Index flood
method, generalized least square (GLS) regional regression method, and a method
based on combination of these two methods. Further, since past three decades, prac-
ticing hydrologists in United States resorted to log-Pearson type III (LP3) distribu-
tion to estimate frequency of floods in the country following recommendations of
the U.S. Water Resources Council (1976, 1977, 1981) in Bulletin 17. The premise
of whether a single frequency distribution can be used to fit peak flows in all the
regions formed in Indiana State is examined.

Furthermore, in the past decade, simple scaling methods have been developed to
show that within hydrologically homogeneous regions moments of peak flows scale
with drainage area of watersheds according to log-log linear relations (Gupta and
Waymire, 1990; Smith, 1992; Kumar et al., 1994; Gupta and Dawdy, 1995; Ribeiro
and Rousselle, 1996). To verify this assertion, the behavior of scaling methods in
regionalized watersheds of Indiana is investigated and the results are presented.
This is followed by selection of probability distributions for use in regionalized
watersheds.

A set of concluding remarks is presented in Chapter 6. Some of the recent ap-
proaches to non-stationary at-site and regional frequency analysis of floods are dis-
cussed. These approaches desire attention in the scenario of climate change.



Chapter 2
Regionalization by Hybrid Cluster Analysis

2.1 Introduction to Hybrid Cluster Analysis

Hybrid cluster analysis is discussed in this chapter. The hybrid clustering algorithms
form clusters by combining two hard clustering algorithms, namely hierarchical and
partitional clustering. A brief description of these hard clustering algorithms is pro-
vided. Subsequently, it is shown how these algorithms are combined to perform
hybrid clustering. Following this, performance of the hybrid clustering algorithms
is demonstrated through application to a real world data set.

The hard clustering algorithms partition watersheds in the area of interest into
non-overlapping clusters such that each watershed is in one of the clusters. The
results are good if clusters are well separated. The hard clustering algorithms have
been widely used in hydrology for regional analysis.

2.2 Classification of Hard Clustering Algorithms

Hard clustering algorithms have been classified in Chapter one as hierarchical
and partitional clustering algorithms. Hierarchical clustering algorithms provide a
nested sequence of partitions, whereas partitional clustering algorithms generate a
single partition of the data to recover the natural grouping present in it.

The hierarchical clustering algorithms can be broadly classified into two
categories: Agglomerative and Divisive. The agglomerative hierarchical clustering
begins with singleton clusters and proceeds successively by merging smaller clusters
into larger ones. On the other hand, the divisive hierarchical clustering begins with
one large cluster comprising all feature vectors and proceeds by splitting them into
smaller clusters.

The partitional clustering algorithms require an initial guess of the number of
clusters and cluster centers. They can be classified based on the technique used to
initiate clusters, clustering criteria, and the type of data for which they are appli-
cable. The classification of hard clustering procedures is shown in Fig. 2.2.1. The
K-means algorithm and agglomerative hierarchical clustering algorithms have been
used for regionalization in hydrology.

A.R. Rao, V.V. Srinivas, Regionalization of Watersheds, 17
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Clustering algorithms

Hierarchical

Agglomerative Divisive K-means K-medoids K-modes

Single linkage

Complete linkage

Average linkage

Ward’s algorithm

Partitional

CLARANS

PAM

CLARA

Fig. 2.2.1 Classification of hard clustering algorithms

2.2.1 Hierarchical Clustering Methods

2.2.1.1 Agglomerative Hierarchical Clustering

For a given set of N feature vectors, the agglomerative hierarchical clustering pro-
cedures begin with N singleton clusters. A distance measure such as those shown in
Table 2.2.1 is chosen to evaluate the dissimilarity between any two cluster centroids,
or feature vectors. The clusters that are least dissimilar are found and merged. This
results in N–2 singleton clusters and a cluster with two feature vectors. The process
of identifying and merging two closest clusters is repeated till a single cluster is
left. In general, the number of clusters left at the end of n merges is equal to N -n.
The entire process may be represented as a nested sequence, called the dendrogram,
which shows how the clusters that are formed at various steps of the process are
related.

Algorithms that are representative of the agglomerative hierarchical method of
clustering include: (i) single linkage or nearest neighbor; (ii) complete linkage or
furthest neighbor; (iii) average linkage; and (iv) Ward’s algorithm. These algorithms
differ from each other by the strategy used for defining nearest neighbor to a chosen
cluster. Clusters with the smallest distance between them are merged.

In the Single linkage algorithm, distance between two clusters is the distance
between the closest pair of feature vectors, each of which is in one of the two clus-
ters. This algorithm tends to form a small number of large clusters, with remaining



2.2 Classification of Hard Clustering Algorithms 19

Table 2.2.1 Dissimilarity measures for computing distance between cluster centroids, or feature
vectors

Distance measure Equation

Euclidean

√
n∑

k=1
(xik − x jk )2

Squared Euclidean
n∑

k=1
(xik − x jk )2

Mahalanobis distance
√

(xi − x j )T
∑−1(xi − x j )

Manhattan or City block
n∑

k=1

∣
∣xik − x jk

∣
∣

Canberra
n∑

k=1

∣
∣xik − x jk

∣
∣

|xik | + ∣∣x jk

∣
∣

Chebychev max
1≤k≤n

∣
∣xik − x jk

∣
∣

Cosine 1 −

n∑

k=1
xik x jk

√
n∑

k=1
x2

ik

n∑

k=1
x2

jk

Minkowski

(
n∑

k=1

∣
∣xik − x jk

∣
∣t
)1/t

n: number of attributes; xik : attribute k of feature vector xi in cluster-1; x jk : attribute k of feature
vector x j in cluster-2; In Mahalanobis distance measure, T is transpose of matrix, and Σ is covari-
ance matrix. If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to
the Euclidean distance. t denotes the order of Minkowski distance.

small outlying clusters on the fringes of the space of site characteristics and is not
likely to yield good regions for regional flood frequency analysis (Hosking and
Wallis, 1997, pp. 58–59; Rao and Srinivas, 2006a).

In the Complete linkage algorithm, distance between two clusters is defined as
the greatest distance between a pair of feature vectors, each of which is in one of the
two clusters. This algorithm tends to form small, tightly bound clusters. It is usually
not suitable for application to large data sets.

In the Average linkage algorithm, the distance between two clusters is defined as
average distance between them. There are several methods available for computing
the average distance. These include unweighted pair-group average, weighted pair
group average, unweighted pair group centroid and weighted pair group centroid.

� Unweighted pair-group average (UPGA): The distance between two clusters is
defined as average distance between all pairs of feature vectors, each of which is
in one of the two clusters.

� Weighted pair-group average (WPGA): This method is identical to the UPGA,
except that in the computations, the size of the respective clusters (i.e., the
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number of feature vectors contained in them) is used as a weight. This method is
preferred when the cluster sizes are suspected to be greatly uneven.

� Unweighted pair-group centroid (UPGC): The distance between two clusters is
defined as the distance between their centroids. The centroid of a cluster is the
mean vector of all the feature vectors contained in the cluster. In this method,
if two clusters to be merged are very different in their size, the centroid of the
cluster resulting from the merger tends to be closer to the centroid of the larger
cluster.

� Weighted pair-group centroid (WPGC): This method is identical to the UPGC,
except that feature vectors are weighted in proportion to the size of clusters.

Ward’s algorithm (Ward, 1963) is a frequently used technique for regionalization
studies in hydrology and climatology (Willmott and Vernon, 1980; Winkler, 1985;
Kalkstein and Corrigan, 1986; Acreman and Sinclair, 1986; Nathan and McMahon,
1990; Hosking and Wallis, 1997). It is based on the assumption that if two clusters
are merged, the resulting loss of information, or change in the value of objective
function, will depend only on the relationship between the two merged clusters
and not on the relationships with any other clusters. The governing equation and
a detailed explanation of Ward’s algorithm are provided in Section 2.3.3.

In regional flood frequency analysis, Mosley (1981) used agglomerative hier-
archical clustering available with BioMeDical computer Program 2M (BMDP2M,
Dixon, 1975) for regionalization of catchments in New Zealand. Tasker (1982) ap-
plied complete linkage algorithm of Sokal and Sneath (1963) for regionalization of
watersheds in Arizona, USA.

Nathan and McMahon (1990) compared the performance of single linkage,
complete linkage, average linkage, centroid, median and Ward’s algorithms of
agglomerative hierarchical clustering available with Statistical Package for the So-
cial Sciences (SPSS, 1988). Euclidean, squared Euclidean, Manhattan, Chebychev
and Cosine distance measures were considered in their study. Burn et al. (1997) have
used agglomerative hierarchical clustering algorithm for regionalization of water-
sheds in Canada. Their study used the dissimilarity measure shown in Eq. (2.2.1),
which was extracted from Webster and Burrough (1972):

Dd
i j =

Di j + di j

dmax
w

1 + w
(2.2.1)

where Di j is the Canberra dissimilarity measure of Lance and Williams (1966),
whose expression is found in Table 2.2.1; di j represents the geographic distance be-
tween catchments i and j ; dmax denotes the maximum geographic distance between
catchment pairs, each of which is in one of the two clusters; w is the weighting
factor that reflects the relative importance of scaled geographic separation (di j /dmax)
and the dissimilarity term in the combined dissimilarity metric.

Catchment seasonality measures, called mean date of occurrence of flood events
and the regularity of the phenomenon at each gauging station have been considered
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by Burn et al. (1997) as attributes in the Canberra dissimilarity measure. The
seasonality measures based on flood seasonality may not be useful attributes when
the catchments in the area of interest do not show strong flood seasonality, or if they
all have similar flood seasonality.

2.2.1.2 Divisive Hierarchical Clustering

The divisive hierarchical clustering procedures begin with a single cluster consisting
of all the N feature vectors. The feature vector that has the greatest dissimilarity to
other vectors of the cluster is then identified and separated to form a splinter group.
The dissimilarity values of the remaining feature vectors in the original cluster are
then examined to determine if any additional vectors are to be added to the splinter
group. This step divides the original cluster into two parts. The larger of the two
clusters is subjected to the same procedure in the next step. The process continues
until a stopping criterion (such as, the requested number of clusters) is achieved. If
no stopping criterion is specified, the algorithm terminates when clusters resulting
from the analysis are all singleton clusters. Description of divisive clustering algo-
rithms can be found in Murtagh (1983) and Guenoche et al. (1991). Savaresi et al.
(2002) discuss strategies for selection of a cluster to be split in divisive clustering
algorithms. The divisive clustering methods are yet to be applied in regionalization
studies.

2.2.2 Partitional Clustering Methods

In partitional clustering procedures, an attempt is made to recover the natural group-
ing present in the data through a single partition. These procedures are subdivided
into K-means and K-medoids methods.

In K-means method (Ball and Hall 1967; MacQueen, 1967), each cluster is rep-
resented by its centroid, which is mean (weighted or unweighted average) of feature
vectors within the cluster. This method is known for its efficiency in clustering large
data sets with numerical attributes. However, it has limitations in clustering cate-
gorical data (Ralambondrainy, 1995; Huang and Ng, 2003). Further, the method is
sensitive to the presence of outliers.

In K-medoids method, median of each cluster is considered as its representative.
This has two advantages. First, the method can be used with both numerical and
categorical attributes, and, second, the choice of medoids is dictated by the loca-
tion of a predominant fraction of data points inside a cluster and, therefore, it is
less sensitive to the presence of outliers (Berkhin, 2002). Examples of algorithms
that can be grouped under K-medoids method include PAM (Partitioning around
medoids, Kaufman and Rousseeuw, 1990), CLARA (Clustering Large Application,
Ng and Han, 1994), CLARANS (Clustering Large Applications based on Random-
ized Search). Among these the PAM is effective with small data sets.

Huang (1997, 1998) proposed K-modes algorithm for clustering large categori-
cal data sets by modifying the K-means algorithm. Each cluster is represented by
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its mode and a frequency-based method is used to update modes in the clustering
process to minimize the clustering cost function.

Algorithms such as K-means and PAM are suitable for regionalization studies in
hydrology. The K-means algorithm and its modifications have been used for RFFA
by Wiltshire (1986), Burn (1989), Bhaskar and O’Connor (1989) and Burn and Goel
(2000). Burn (1989) used the K-means clustering algorithm to determine appropri-
ate grouping of a network of streamflow gauging stations in southern Manitoba,
Canada. Flood statistics (coefficient of variation of peak flows, mean annual flow
divided by the drainage area) and geographic position of catchments (latitude and
longitude) were used as attributes in the feature vector. Traditionally, flood statistics
such as the coefficient of variation are used to test the homogeneity of the derived re-
gions. The use of the same flood related variables to form regions and subsequently
to evaluate the homogeneity of the derived regions leads to formation of regions
that are homogeneous but may not be effective for regional flood frequency analysis
(Burn et al., 1997). If at-site flood statistics are used as attributes in the feature
vector, one has to ensure that they do not exhibit a high degree of correlation with
the flood quantiles of interest. Moreover, the use of flood statistics in a similarity
(or dissimilarity) measure constrains the use of the derived regions for estimating
extreme flow quantiles at ungaged sites in the study region.

When cluster analysis is based on site characteristics, the at-site statistics are
available for use as the basis of an independent test of the homogeneity of the final
regions (Hosking and Wallis, 1997). Burn and Goel (2000) applied the K-means
algorithm to site characteristics (catchment area, length and slope of the main stream
of river) of a collection of catchments in India to derive regions for flood frequency
analysis. The drawback in using only physiographic characteristics for forming re-
gions is that similarity in physiographic characteristics does not necessarily imply
similarity in catchment hydrologic response (Burn et al., 1997, p. 76).

Wiltshire (1986) adopted the iterative relocation algorithm of Gordon (1981),
whereas Bhaskar and O’Connor (1989) used the FASTCLUS clustering procedure
of SAS package. While the former work made use of random partition of data to
initiate their clustering algorithm, the latter work specified a limiting value for the
minimum distance between initial cluster centers.

2.2.3 Hybrid Clustering

Hierarchical clustering algorithms are not influenced by initialization and local
minima, whereas the partitional clustering algorithms are greatly influenced by ini-
tial guesses about number of clusters, cluster centers, etc. The partitional cluster-
ing algorithms are dynamic in the sense that feature vectors can move from one
cluster to another to minimize the objective function. In contrast, in hierarchical
clustering algorithms, the feature vectors committed to a cluster in the early stages
cannot move from one cluster to another. The relative merits of using both the hi-
erarchical and partitional clustering algorithms spurred the development of hybrid
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clustering algorithm. In the Hybrid clustering algorithm, the cluster centers resulting
from a hierarchical clustering algorithm are used to initialize a partitional clustering
algorithm.

2.3 Clustering Algorithms and Performance Assessment

In this section, the hybrid-clustering algorithm for regionalization of watersheds is
presented. It uses K-means algorithm (a partitional clustering algorithm) to identify
groups of homogeneous watersheds by adjusting the clusters derived from agglom-
erative hierarchical clustering algorithm. The K-means algorithm and three agglom-
erative hierarchical clustering algorithms namely single linkage, complete linkage
and Ward’s algorithm are presented and discussed. Subsequently, hard cluster valid-
ity indices which are useful to identify optimal partition of watersheds provided by
the hybrid clustering algorithm are described.

2.3.1 Hybrid Algorithm

Let Y = {yi/ i = 1, . . . , N } denote a set of N feature vectors in n-dimensional at-
tribute space (i.e., yi = [yi1, . . . , yin] ∈ �n), each of which characterizes one of the
N sites. Further, let xi denote the i-th rescaled feature vector in the n-dimensional
attribute space (xi = [xi1, . . . , xin] ∈ �n) obtained by rescaling yi using Eq. (2.3.1).

xi j = w j

σ j

[
f (yi j )

]
for j = 1, . . . , n (2.3.1)

where f (·) represents the transformation function; yi j denotes the value of attribute j
in the n-dimensional feature vector yi ; xi j denotes the rescaled value of yi j ; w j is the
weight assigned to attribute j ; σ j is the standard deviation of attribute j . Rescaling
the attributes may be necessary because of the differences in their variance, relative
magnitude and importance.

The K clusters formed in the step ‘N -K ’ of an agglomerative hierarchical clus-
tering algorithm are used to initialize the K-means algorithm (Hartigan and Wong,
1979). The K-means algorithm (KMA) is an iterative procedure in which the fea-
ture vectors move from one cluster to another to minimize the value of objective
function, F, defined in Eq. (2.3.2).

F =
K∑

k=1

n∑

j=1

Nk∑

i=1

d2(xk
i j − xk

• j ) (2.3.2)

where K denotes the number of clusters, Nk represents the number of feature vectors
in cluster k; xk

i j denotes the rescaled value of attribute j in the feature vector i
assigned to cluster k; xk

• j is the mean value of attribute j for cluster k, computed as:
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xk
• j =

Nk∑

i=1
xk

i j

Nk
(2.3.3)

By minimizing F in Eq. (2.3.2), the distance of each feature vector from the center
of the cluster to which it belongs is minimized. We have the option to incorporate the
knowledge about the global shape or size of clusters by using an appropriate distance
measure d(·), such as Euclidean or Mahalanobis. Euclidean distance measure that is
suitable for clusters with spherical shape is used in the case study presented in this
chapter.

The optimal value attained by the objective function, F, depends on cluster cen-
ters used to initialize the KMA. As no single procedure of initializing the cluster
centers has been proven to yield a global minimum value for the objective function
F, several methods of initialization are in use. Wiltshire (1986) randomly partitioned
data to initiate the clustering algorithm. Bhaskar and O’Connor (1989) considered
initial cluster centers as feature vectors that are separated by at least a specified
minimum distance (Bhaskar and O’Connor, 1989, p. 795). Burn (1989) suggested
choosing K of the N feature vectors as the starting centroids to ensure that each
cluster has at least one member (Burn, 1989, p. 569). In the case study to follow,
results from the hierarchical clustering algorithms namely, single linkage, complete
linkage and Ward’s algorithm are used to provide initial cluster centers for the KMA.

Every feature vector is assigned to a cluster center that is nearest to it among the
K-clusters. After assigning the feature vectors to the K-cluster centers, the center
of each of the K-clusters is updated and the value of the objective function, F, is
computed. This completes an iteration of K-means algorithm. The procedure of
assigning feature vectors to nearest cluster centers and updating the cluster centers
is repeated in each of the subsequent iterations. The algorithm is stopped at a point
when change in the value of objective function between two successive iterations
becomes sufficiently small. The L-moments package of Hosking (2005) contains
Fortran routines for regional frequency analysis using the hybrid algorithm. The
source code and documentation are available from the StatLib software repository
at Carnegie Mellon University.

2.3.2 Single Linkage and Complete Linkage Algorithms

The algorithms begin with N singleton clusters each comprising a rescaled feature
vector. Among the N singleton clusters, two closest clusters xi and x j are identified
and merged to form a new cluster [xi , x j ].

In the single linkage algorithm the distance between the new cluster [xi , x j ] and
any other singleton cluster xk is the smaller of the distances between xi and xk ,
or x j and xk . In general, the distance between two non-singleton clusters is the
smallest of the distances between all possible pairs of feature vectors in the two
clusters (Fig. 2.3.1a). On the other hand, in complete linkage algorithm the distance
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(a)

Cluster A

Cluster B

(b)

Cluster A

Cluster B

Fig. 2.3.1 Illustration of the definition of distance (or dissimilarity) between two clusters in case
of (a) Single linkage and (b) Complete linkage agglomerative hierarchical clustering algorithms.
The stars shown against each cluster denote feature vectors and the line joining the stars refers to
the distance between them

between the new cluster [xi , x j ] and any other singleton cluster xk is the greater
of the distances between xi and xk , or x j and xk . In general, the distance between
two non-singleton clusters is the largest of the distances between all possible pairs
of feature vectors in the two clusters (Fig. 2.3.1b). The pair consists of one feature
vector from each cluster.

At each step, two closest clusters are identified and merged. As a consequence,
the number of available clusters decreases by one with each additional step. The
algorithms are terminated at the step when the number of clusters is equal to the
specified value K .

2.3.3 Ward’s Algorithm

The objective function, W, of Ward’s algorithm (Ward, 1963) minimizes the sum
of squares of deviations of the feature vectors from the centroid of their respective
clusters.

W =
K∑

k=1

n∑

j=1

Nk∑

i=1

(xk
i j − xk

• j )
2 (2.3.4)

The Ward’s algorithm starts with singleton clusters. At this point the cluster cen-
ters are the same as feature vectors. Therefore, the value of the objective function is
zero. At each step in the analysis, union of every possible pair of clusters is consid-
ered and two clusters whose fusion results in the smallest increase in W are merged.
The change in the value of objective function, W, due to merger depends only on
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the relationship between the two merged clusters and not on the relationships with
other clusters. To understand this point Eq. (2.3.4) can be rewritten as:

W =
K∑

k=1

n∑

j=1

Nk∑

i=1

[(xk
i j − x• j ) + (x• j − xk

• j )]
2 (2.3.5)

where, x• j denotes the mean value of j-th attribute over all feature vectors.

x• j =

K∑

k=1

Nk∑

i=1
xk

i j

K∑

k=1
Nk

(2.3.6)

W =
K∑

k=1

n∑

j=1

Nk∑

i=1
(xk

i j − x• j )2 +
K∑

k=1

n∑

j=1
Nk(x• j − xk

• j )
2

+2
K∑

k=1

n∑

j=1

Nk∑

i=1
(xk

i j − x• j )(x• j − xk
• j )

(2.3.7)

From Eq. (2.3.3):

Nk∑

i=1

xk
i j = Nk(xk

• j ) (2.3.8)

The value x• j is unique for a given set of feature vectors. Therefore,

Nk∑

i=1

x• j = Nk(x• j ) (2.3.9)

Substituting the values of Eqs. (2.3.8) and (2.3.9) in (2.3.7), we have

W =
K∑

k=1

n∑

j=1

Nk∑

i=1
(xk

i j − x• j )2 +
K∑

k=1

n∑

j=1
Nk(x• j − xk

• j )
2

+2
K∑

k=1

n∑

j=1
Nk(xk

• j − x• j )(x• j − xk
• j )

⇒ W =
K∑

k=1

n∑

j=1

Nk∑

i=1
(xk

i j − x• j )2 +
K∑

k=1

n∑

j=1
Nk(x• j − xk

• j )
2

−2
K∑

k=1
Nk

n∑

j=1
(x• j − xk

• j )
2

⇒ W =
K∑

k=1

n∑

j=1

Nk∑

i=1
(xk

i j − x• j )2 −
K∑

k=1
Nk

n∑

j=1
(x• j − xk

• j )
2

(2.3.10)
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Let us consider two clusters labeled 1 and 2, before and after merger. Let N1 and
N2 denote the number of feature vectors in clusters 1 and 2 respectively. The value
of objective function before merger is obtained by substituting K=2 in Eq. (2.3.10).

W =
2∑

k=1

n∑

j=1

Nk∑

i=1

(xk
i j − x• j )

2 −
2∑

k=1

Nk

n∑

j=1

(x• j − xk
• j )

2

(2.3.11)

=
n∑

j=1

N1∑

i=1

(x1
i j − x• j )

2 +
n∑

j=1

N2∑

i=1

(x2
i j − x• j )

2 −
2∑

k=1

Nk

n∑

j=1

(x• j − xk
• j )

2

Since there are only two clusters, the centroid for the cluster resulting from their
merger is the same as the centroid of data set x• j . The value of objective function
after merger is given as

W =
K=2∑

k=1

n∑

j=1

Nk∑

i=1

(xk
i j − x• j )

2

(2.3.12)

=
n∑

j=1

N1∑

i=1

(x1
i j − x• j )

2 +
n∑

j=1

N2∑

i=1

(x2
i j − x• j )

2

Comparing Eqs. (2.3.11) and (2.3.12), increase in the value of W due to merger is:

ΔW =
2∑

k=1
Nk

n∑

j=1
(x• j − xk

• j )
2

= N1

n∑

j=1
(x• j − x1

• j )
2 + N2

n∑

j=1
(x• j − x2

• j )
2

(2.3.13)

In Eq. (2.3.13), x• j is the centroid co-ordinate of the cluster resulting from the
merger, whereas x1

• j and x2
• j are the centroid coordinates of clusters 1 and 2 before

merger. The equation indicates that in Ward’s algorithm, if two clusters are merged,
the resulting loss of information or change in the value of objective function ΔW
depends only on the relationship between the two merged clusters and not on the
relationships with other clusters. At each step, the contribution to the objective func-
tion by the clusters that are not merged remains the same as their contribution to the
objective function before the merger.

Ward’s algorithm is good at recovering the cluster structure and it tends to form
spherical clusters of nearly equal size. This characteristic of the Ward’s algorithm
makes it useful for identification of homogeneous regions for regionalization. How-
ever, like other hierarchical clustering techniques, there is no provision in Ward’s
algorithm for reallocation of feature vectors that may have been poorly classified at
an early stage in the analysis.
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2.3.4 Hard Cluster Validity Measures

A number of hard cluster validity measures have been in use to determine optimal
number of clusters in a data set (Romesburg, 1984; Everitt, 1993; Theodoridis and
Koutroubas, 1999; Halkidi et al., 2001). Cluster validity constitutes the procedure
of evaluating the results of a clustering algorithm. In general, the approaches in
vogue to investigate cluster validity can be broadly classified into three categories
(Theodoridis and Koutroubas, 1999). The first approach, which is based on external
criteria, evaluates the results of a clustering algorithm based on a pre-specified struc-
ture, which is imposed on the data set and reflects our intuition about the clustering
structure of the data set. In the second approach, which is based on internal criteria,
results of clustering are evaluated in terms of quantities that involve the vectors
of the data set themselves (e.g., proximity matrix). The third approach to validate
clusters is based on relative criteria, which involves evaluation of cluster structure
by comparing it to other clustering schemes, resulting with different input parameter
values.

In this section, six cluster validity indices, namely cophenetic correlation coeffi-
cient (Sokal and Rohlf, 1962), average silhouette width (Rousseeuw, 1987), Dunn’s
index (Dunn, 1973), Davies-Bouldin index (Davies and Bouldin, 1979), Calinski
Harabasz index (Calinski and Harabasz, 1974), and Minimum Description Length
(Qin and Suganthan, 2004) are presented and discussed. These measures, which
evaluate the clustering result by using internal criteria, find use in identification of
optimal partition of watersheds provided by the hybrid clustering algorithm.

2.3.4.1 Cophenetic Correlation Coefficient

The cophenetic correlation coefficient, abbreviated as CPCC by Farris (1969), is
a validity measure for hierarchical clustering algorithms. A hierarchical clustering
process can be represented as a nested sequence or tree, called dendrogram, which
shows how the clusters that are formed at the various steps of the process are related.
The CPCC is used to measure how well the hierarchical structure from the dendro-
gram represents in two Dimensions the multi-dimensional relationships within input
data. The CPCC is defined as the correlation between the M = N (N − 1)/2 original
pairwise dissimilarities (proximity) between the feature vectors and their cophenetic
dissimilarities from the dendrogram. The cophenetic dissimilarity, ci j , between two
feature vectors i and j is the intercluster distance at which the two feature vectors
are first merged in the same cluster.

CPCC =

(

1/M
N−1∑

i=1

N∑

j=i+1
d p

i j ci j − μpμc

)

√
√
√
√

[

(1/M)
N−1∑

i=1

N∑

j=i+1

(
d p

i j

)2
− μ2

p

][

(1/M)
N−1∑

i=1

N∑

j=i+1
c2

i j
− μ2

c

]

(2.3.14)
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where μp and μc are the means of elements in proximity and cophenetic matrices
respectively, whereas d p

i j and ci j are respectively the (i , j)th elements of proximity
and cophenetic matrices. The concordance between the input data and the den-
drogram is close if value of the index is close to 1.0. A high value for CPCC is
regarded as a measure of successful classification. A value of 0.8 or above indicates
that the dendrogram does not greatly distort the original structure in the input data
(Romesburg, 1984). Nonetheless, the CPCC is not always a reliable measure of
the distortion due to a hierarchical model (Holgersson, 1978; Romesburg, 1984;
Everitt, 1993).

2.3.4.2 Silhouette Width

The silhouette width (Rousseeuw, 1987) for a feature vector is a measure of how
similar that feature vector is to feature vectors in its own cluster compared to feature
vectors in other clusters. The silhouette width s(i) for i-th feature vector in cluster
k is defined as

s(i) = b (i) − a (i)

max {a (i) , b (i)} (2.3.15)

where a(i) is the average distance from the i-th feature vector to all other feature
vectors in the cluster k; b(i) is the minimum average distance from the i-th feature
vector to all the feature vectors in another cluster j ( j = 1, . . . , K ; j �= k). From
this formula it follows that −1 ≤ s(i) ≤ 1.

If s(i) is close to 1, we may infer that the i-th feature vector has been assigned to
an appropriate cluster. On the other hand, when s(i) is close to –1, we may conclude
that the i-th feature vector has been misclassified. When s(i) is approximately zero,
it indicates that the i-th feature vector lies equally far away from the two clusters.
For the given K clusters, the overall average silhouette width is the average of the
silhouette widths for all the feature vectors in the dataset. The partition with the
maximum overall average silhouette width is taken as the optimal partition.

2.3.4.3 Dunn’s and Davies-Bouldin Indices

Dunn’s index (Dunn, 1973) and Davies-Bouldin index (Davies and Bouldin, 1979)
are widely recognized for their ability to identify sets of clusters that are compact
and well separated. The Davies-Bouldin index is a function of the ratio of the sum
of within-cluster scatter to between-cluster separation.

Suppose that the given set of N -feature vectors (in n-dimensional space) has
been partitioned into K clusters {C1, C2, . . . , CK} such that cluster Ck has Nk fea-

ture vectors and each feature vector is in exactly one cluster, so that
K∑

k=1
Nk = N .

The scatter within the k-th cluster, Sk,q , is computed using Eq. (2.3.16) and the
Minkowski distance of order ‘t’ between the centroids that characterize clusters C j

and Ck is defined by Eq. (2.3.17).
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Sk,q =
⎛

⎝ 1

Nk

∑

xi ∈Ck

‖xi − zk‖ |q2

⎞

⎠

1/q

(2.3.16)

d jk,t = ∥∥z j − zk

∥
∥

t
(2.3.17)

where zk represents the centroid of cluster k and Sk,q is the q-th root of the q-th mo-
ment of the Euclidean distance of points in cluster k with respect to their mean. First
moment (i.e., q=1) and Minkowski distance of order 2 (i.e., t = 2) which are com-
monly adopted by practitioners (Pakhira et al., 2004), have been used in examples
presented in this book. The Davies-Bouldin index is computed using Eq. (2.3.18). A
small value for DB indicates good partition, which corresponds to compact clusters
with their centers far apart.

DB = 1

K

K∑

k=1

max
j, j �=k

{
Sk,q + Sj,q

d jk,t

}

(2.3.18)

Dunn’s index is computed by using Eq. (2.3.19),

D = min
1≤i≤K

⎧
⎨

⎩
min

1≤ j≤K , j �=i

⎧
⎨

⎩

δ
(
Ci , C j

)

max
1≤k≤K

Δ (Ck)

⎫
⎬

⎭

⎫
⎬

⎭
(2.3.19)

where δ(Ci , C j ) denotes the distance between clusters Ci and C j (intercluster dis-
tance) computed using Eq. (2.3.20); Δ(Ck) represents the intracluster distance of
cluster Ck defined by Eq. (2.3.21). The value of K for which D is maximized is
taken as the optimal number of clusters.

δ(Ci , C j ) = max
xi ∈Ci ,x j ∈C j

{
d(xi , x j )

}
(2.3.20)

Δ(Ck) = max
xi ,x j ∈Ck

{
d(xi , x j )

}
(2.3.21)

where d(xi , x j ) is the distance between rescaled feature vectors xi and x j .

2.3.4.4 Calinski-Harabasz Index

Calinski-Harabasz Index (VCH) of a partition G = {C1, . . . , CK } comprising K
clusters is computed as

VCH =
[
trace B

/
(K − 1)

]

[
trace W

/
(N − K )

] (2.3.22)
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where B and W are matrices. The matrix B describes dispersion of cluster centroids
and W represents within cluster dispersion. The traces of the matrices B and W can
be written as

trace B =
K∑

k=1

Nk ‖zk − x̄‖2 (2.3.23)

trace W =
K∑

k=1

∑

xi ∈Ck

‖xi − zk‖2 (2.3.24)

where Nk denotes the number of feature vectors in k-th cluster Ck , zk is centroid of
Ck , and x̄ is centroid of the entire set of rescaled feature vectors {xi/ i = 1, . . . , N }.
Maximum value of VCH denotes optimal partition.

2.3.4.5 Minimum Description Length

Minimum Description Length (MDL) principle, which was originally proposed by
Rissanen (1989), can be used to determine the optimum number of clusters by
finding prototype vectors that can minimize the length of description of the set X
containing N feature vectors. The feature vectors of X are divided into two subsets
I and O, which are composed of inliers and outliers, respectively. Inliers are feature
vectors assigned to clusters, whereas outliers are those which are not allocated to
any cluster. The expression of MDL criterion is formulated as follows:

M DL(X, Z) = mod L(I, Z) + error L(I, Z) + mod L(O) (2.3.25)

where Z represents the set of cluster centroids Z = {z1, z2, . . . , zK }. The complexity
of the entire model is evaluated by the term mod L(I, Z).

The length of encoding mod L(I, Z) is given by the sum of: (i) the length of
encoding Z, denoted by L(Z); and (ii) the length of encoding all the indices of I,
given by L(I(Z)). Herein, an index is the identity of cluster to which feature vector
of I is assigned.

The encoding length of ‘error L(I, Z)’ represents residual errors generated in
describing all inlier data points I with prototype set Z. The description length of
the outlier set O, denoted by mod L(O), is usually encoded in the same way as
the prototype vectors. The capability of the model to describe the whole data set
X = I + O is reflected by the last two terms in Eq. (2.3.25).

Let b denote the number of bits needed for encoding a single data vector. Then,
L(Z) = K b and mod L(O) = |O|b, where K is the number of prototypes and
|O| represents the cardinality (i.e., number of feature vectors) of the outlier set. The
b is computed using the average value range of rescaled feature vectors and the
resolution (or accuracy) of data η as b = [log2(range/η)]. Each inlier feature vector
x ∈ I is encoded with log2 K bits following the fixed length encoding scheme of
Bischof et al. (1999) and thus L(I(Z)) =|I| log2 K . The MDL value is instantiated as:
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MDL(X, Z) = K b + |I| log2 K

+ κ

K∑

i=1

∑

x/∈Si

n∑

j=1

max

(

log2

(∥
∥x j − zi j

∥
∥

η

)

, 1

)

+ |O|b (2.3.26)

where K , n, and Si represent the current number of prototypes, the dimension of
input vectors and the inlier receptive field of prototype zi, respectively. Parameter
κ is used to balance the contribution of model complexity mod L(I, Z) and model
efficiency error L(I, Z) in the computation of MDL value. Herein, it is assumed that
the length of encoding the error term L(I, Z) is proportional to its magnitude, and
that data accuracy is η in all n dimensions. Minimum value of MDL denotes optimal
partition. Further details of this validity measure can be found in Qin and Suganthan
(2004).

2.4 Application of Hybrid Clustering Algorithms
to Regionalization

2.4.1 Feature Extraction

Sensitivity of flood response of drainage basins to variations in the values of at-
tributes is examined by plotting each of the attributes discussed earlier (Section 1.5)
against a flood-related variable. The flood related variables considered herein in-
clude: (i) mean value of annual peak flows (or mean annual flood, MAF); (ii) median
value of annual peak flows (or median annual flood, MEF); (iii) mean annual flood
per unit area of drainage basin (MAF/A); (iv) median annual flood per unit area
of drainage basin (MEF/A); (v) mean annual flood divided by the mean annual
precipitation (MAF/P); and (vi) median annual flood divided by the mean annual
precipitation (MEF/P).

The magnitude of flood flow increases with increase in drainage basin area
(Fig. 2.4.1a). The contribution to flood magnitude from unit area of a drainage basin
increases, in general, with increase in the slope and length of the main channel
(Figs. 2.4.1b,c) and soil runoff coefficient of the drainage basin. Also, the magnitude
of MAF from a drainage basin for unit depth of precipitation increases with runoff
coefficient values of the contributing drainage areas.

Figure 2.4.1d and Table 2.4.1 show that the main channel length is highly cor-
related with the area of drainage basin (correlation coefficient = 0.850). Since the
objective of the feature extraction is to identify independent attributes, either the
main channel length or the drainage area could be considered as a physiographic
attribute for cluster analysis. The correlation of flood-related statistics (MAF, MEF,
and MAF/P) is significant with drainage area than with channel length (Table 2.4.1).
Therefore, drainage basin area is selected as an attribute for further analysis.

The MAF and MEF are expected to increase with increase in the mean annual
precipitation volume for a given watershed. This is evident from Table 2.4.1 which
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Fig. 2.4.1 Typical plots prepared for extraction of independent attributes for cluster analysis. MAF
denotes mean annual flood, A is drainage area, and L refers to length of main channel

shows the correlation coefficient of precipitation volume (P×A) with MAF and
MEF as 0.906 and 0.912, respectively. However, the dependence of MAF/A and
MEF/A on depth of mean annual precipitation is insignificant. This is because mean
annual precipitation does not reflect the exact volume of effective rainfall contribut-
ing to flood events experienced in a water year. Investigation of temporal variation
of precipitation and its relationship with the date and time of occurrence of the
resulting flood events would provide further insight in this regard. The meteorolog-
ical attributes: mean annual precipitation and I(24,2) are correlated with correlation
coefficient of 0.804 (Table 2.4.1). Mean annual precipitation is selected for inclusion
in the feature vector for cluster analysis.

It is apparent from Table 2.4.1 that storage, which is percentage of the contribut-
ing drainage area covered by lakes, ponds, or wetlands is weakly correlated with
MAF, MEF and MAF/P. Further, the dependence of flood related statistics on the
attributes, elevation and forest cover in a drainage area is found to be insignificant.
These two attributes are therefore not used for cluster analysis.
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Directional statistics (measures of average time of occurrence and seasonality of
flood events in catchments) could also be considered as attributes for cluster analysis
(Burn, 1997). However, the catchments in Indiana did not show strong seasonal
response (Rao et al., 2002).

Finally, the attributes selected for cluster analysis are: (i) four physiographic at-
tributes: drainage area, slope of the main channel in the drainage basin, soil runoff
coefficient and storage; and (ii) one meteorological attribute: mean annual precipi-
tation. The geographic location attributes latitude and longitude are included in the
feature vector to identify regions that are geographically contiguous. Geographically
nearby sites could exhibit similar extreme flow responses due to similarities in the
causative precipitation events that act as inputs to the flow generation process (Burn,
1990a).

Among the seven attributes, only drainage area was transformed by using log-
arithmic transformation. Then, each of the seven attributes was rescaled by using
Eq. (2.3.1). Equal weight was assigned to all the attributes, implying equal impor-
tance to all the features.

2.4.2 Results from Clustering Algorithms

The K clusters obtained from the agglomerative hierarchical clustering component
of the hybrid model after (245-K ) merges are used to initiate the K-means algorithm.
The value of the objective function (Eq. (2.3.2)), in general, decreases with increase
in the number of clusters. It has maximum value when all the feature vectors are
lumped in a single cluster and has a minimum value of zero when K equals the
number of feature vectors considered for cluster analysis. This is because in the lat-
ter case the centroid of a cluster coincides with its feature vector. As a consequence,
the objective function, which is the sum of squares of deviations of feature vectors
about their respective cluster centers, would be zero.

The sites in a region should collectively supply five times as many station-years
of record as the target return period (Reed et al., 1999). Several of the clusters ob-
tained with the Indiana data for the choice of K greater than 10 are found to be quite
small in size. Hence the results obtained for K greater than 10 are not presented and
discussed further.

Variation in the optimal value of objective function for K ranging from 1 to
10 is presented in Table 2.4.2 for each of the three hybrid clustering models and
their respective hierarchical clustering constituents, namely single linkage, complete
linkage and Ward’s hierarchical clustering algorithms. Further, to understand the
effectiveness of Hybrid clustering over the K-means algorithm (KMA), the KMA
was initialized with three different options. Option-1 initializes KMA with the first
K feature vectors in the data set; Option-2 initializes KMA with centroids of the K
clusters formed by uniform partitioning of the data; Option-3 initializes KMA with
the K farthest feature vectors in the data set.

Among the three hierarchical clustering constituents of the hybrid model, Ward’s
algorithm gave the minimum value for the objective function (Table 2.4.2).
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Table 2.4.2 Minimization of objective function given by Eq. (2.3.2) – A comparison between
Hierarchical, K-means and Hybrid clustering models (K represents number of clusters; SL denotes
single linkage; CL refers to complete linkage; W denotes Ward’s). Option-1 initializes K-means
algorithm (KMA) with the first K feature vectors in the data set; Option-2 initializes KMA with
centroids of K clusters formed by uniform partitioning of the data; Option-3 initializes KMA with
the K farthest feature vectors in the data set. The optimal value of objective function for a chosen
value of K is shown in bold font

K
Hierarchical K-Means (KM) Hybrid clustering

SL CL W Option-1 Option-2 Option-3 SL+KMA CL+K W+K

1 1704.3 1704.3 1704.3 1704.3 1704.3 1704.3 1704.3 1704.3 1704.3
2 1545.2 1509.1 1314.1 1280.6 1280.6 1306 1302.3 1302.3 1277.0
3 1535.5 1214.9 1120.3 1067.6 1069.6 1100.8 1097.9 1097.9 1052.2
4 1529.6 1085 971.9 895.4 899.7 894.1 920.5 890.6 896.1
5 1511.5 913.5 829 788.2 800.8 760 789.8 789.8 746.0
6 1473.7 772.5 721.1 660.5 768.6 670.9 673.9 656.3 668.9
7 1465.1 696.9 648.8 585.9 605.8 599.4 592.7 609.8 592.7
8 1449.7 632.2 583.7 527.6 555.4 571.7 584.1 554.8 531.9
9 1396.5 604.0 530.3 524.3 515.1 502.3 574.4 491.3 490.6

10 1394.8 586.7 491.6 455.5 460.9 457.5 567.6 486.6 452.4

As expected, the performance of each of the three hybrid-clustering algorithms in
minimizing the objective function is better than that of the hierarchical clustering
algorithm used to initialize them. In particular, the blend of Ward’s algorithm and
KMA gave the minimum value of objective function for most values of K in the
range from 1 to 10. The blend of complete linkage and KMA yielded minimum
value of objective function for the choice of K equal to 4 and 6. In essence, the over-
all performance of hybrid models in minimizing the objective function is better than
that of the hierarchical and the K-means clustering models considered separately.

As mentioned in the Section 2.3.1, the output provided by K-means clustering
algorithm depends on cluster centers used to initialize the algorithm. In a hybrid
clustering algorithm, the hierarchical clustering model is expected to provide more
meaningful initial values to the KMA, so that the KMA provides better and mean-
ingful output. However, one cannot guarantee a better output from KMA by hybrid
clustering. This point is evident from the results presented in Table 2.4.2 for choice
of number of clusters, K , equal to 7 and 8, for which the KMA initialized with the
first K feature vectors in the data set provided the smallest value of the objective
function. In other words, one can always consider hybrid clustering as a potential
option to initialize the KMA. However it is not always the best of all options for
initialising it.

Before hybridization, the plausible hydrologic regions (or clusters) obtained from
single-linkage, complete-linkage and Ward’s clustering algorithms were examined.
The clusters obtained from single linkage algorithm consisted of one large cluster
and several small clusters, indicating that the algorithm is not suitable for regional-
ization of watersheds. Visual interpretation of the results showed that the clusters ob-
tained from complete linkage algorithm are not clearly distinguishable (Fig. 2.4.2),
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CL-4 CL-5

CL-6 CL-7 

CL-8 CL-9

CL-2 CL-3 

Fig. 2.4.2 Location of clusters (plausible homogeneous hydrologic regions) obtained from
complete-linkage (CL) clustering algorithm. The number that follows CL denotes the number of
clusters. Each of the symbols in the diagram characterizes a different cluster
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while those resulting from Ward’s algorithm are well separated for the values of K
up to 6 (Fig. 2.4.3).

After hybridization, the clusters obtained from the three hybrid clustering algo-
rithms were examined pictorially. In spite of considerable differences in the results
from the three hierarchical clustering algorithms, the difference in results from the
three hybrid clustering algorithms is found to be small (Fig. 2.4.4). The clusters
obtained from the hybrid of Ward’s algorithm and KMA are found to be very similar
to those resulting from Ward’s algorithm, indicating that the result provided by the
Ward’s algorithm is only slightly altered by the KMA to arrive at the final clusters.
In contrast, the clusters resulting from single linkage algorithm are considerably
modified by KMA.

2.4.3 Validation of the Results

The cluster validity indices, namely cophenetic correlation coefficient (CPCC), av-
erage silhouette width, Dunn’s index, Davies-Bouldin index, Calinski-Harabasz In-
dex, and minimum description length are computed for the clusters obtained from
the clustering methods by Eqs. (2.3.14)–(2.3.26) to determine optimal number of
clusters in the dataset. While CPCC is an index to validate results from hierarchical
clustering, the other indices are useful to validate clusters obtained from hierarchi-
cal, partitional and hybrid clustering algorithms.

The CPCC is found to be considerably high for clusters obtained from single
linkage algorithm than for clusters obtained from complete linkage and Ward’s
algorithms (Table 2.4.3). Following the definition of CPCC, one may argue that
the multi-dimensional relationship within the input data is represented better in the
dendrogram provided by single linkage algorithm than in the dendrograms provided
by complete linkage and Ward’s algorithms. This is in contradiction with our ear-
lier findings that among the three agglomerative hierarchical clustering algorithms
single linkage exhibits poor performance in optimizing the objective function and
Ward’s algorithm performs the best. Moreover, for the dataset considered herein,
single linkage algorithm provides several singleton clusters and one very large
cluster comprising more than 97% of the sites in the study region. This defeats
the purpose of regionalization because such regions are highly heterogeneous. In
essence, CPCC appears ineffective in suggesting a optimal partitioning scheme for
the Indiana dataset. Detailed discussion on the performance of CPCC can be found
in Holgersson (1978).

The average silhouette width (ASW), which has a feasible range from −1 to +1,
varied generally within a narrow range of 0.31–0.46 for the Indiana data set over the
variety of clustering options considered. The ASW is reasonably high for complete
linkage clustering with K equal to 2 and for single linkage clustering with K in
the range 2–4 (Table 2.4.4). However, these cases provide one large heterogeneous
region (cluster) and remaining very small regions, which are not suitable for RFFA
(Fig. 2.4.2 and Table 2.4.5). In general, the ASW of hybrid clusters is marginally
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W-2 W-3

W-4  W-5

W-6 W-7

W-8 W-9

Fig. 2.4.3 Location of plausible hydrologic regions in Indiana obtained from Ward’s (W) cluster-
ing algorithm. The number that follows W denotes the number of clusters. Each of the symbols in
the diagram characterizes a different cluster
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SLKM-2 WAKM-2CLKM-2
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Fig. 2.4.3 (continued)
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WAKM-8CLKM-8SLKM-8

CLKM-9 WAKM-9SLKM-9

Fig. 2.4.4 Location of plausible hydrologic regions in Indiana obtained from the three hybrid clus-
tering algorithms. SLKM – Single linkage and K-means, CLKM – Complete linkage and K-means,
WAKM – Ward’s and K-means. Each of the symbols in the diagram characterizes a different cluster

higher than that of the hierarchical clusters used to initialize the K-means algorithm
(Table 2.4.4), suggesting improvement in performance due to hybridization.

Among the hybrid clustering models the ASW is found to be maximum (opti-
mal) for the clusters obtained from the hybrid of Ward’s and K-means algorithms
with K equal to 9 (Table 2.4.4). The Dunn’s index, Davies-Bouldin index, Calinski-
Harabasz Index, and MDL also indicated the hybrid of Ward’s and K-means algo-
rithms to be the best (Fig. 2.4.5).

Optimal number of clusters could not be discerned using Calinski-Harabasz In-
dex and MDL. Calinski-Harabasz Index suggested 2 clusters as optimal partition,
whereas MDL suggested 4. These cases provide large heterogeneous clusters. The
Dunn’s index identified clusters obtained with K equal to 9 as optimal partition,
whereas the Davies-Bouldin index suggested clusters obtained with K equal to 10 as
optimal partition. Nevertheless, the difference in the value of Dunn’s index between
K = 9 and K = 10 for the hybrid of Ward’s and K-means algorithms is found to be
very small. Based on the foregoing analysis, the clusters provided by the hybrid of
Ward’s and K-means algorithms with K = 10 are selected at this stage for further
analysis.

Table 2.4.3 Cluster validity using Cophenetic correlation coefficient (CPCC) – A measure to
compare the performance of Hierarchical clustering algorithms

Algorithm CPCC

Single linkage 0.72
Complete linkage 0.54
Ward’s 0.50
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Table 2.4.4 Cluster validity using Silhouette width – A comparison between Hierarchical,
K-means and Hybrid clustering models (K represents number of clusters; SL denotes single link-
age; CL refers to complete linkage; W denotes Ward’s). Option-1 initializes K-means algorithm
(KMA) with the first K feature vectors in the data set; Option-2 initializes KMA with centroids
of K clusters formed by uniform partitioning of the data; Option-3 initializes KMA with the K
farthest feature vectors in the data set. The optimal value of validity index for each model is shown
in bold font

Hierarchical K-Means algorithms (KMA) Hybrid clustering

K SL CL W Option-1 Option-2 Option-3 SL+KMA CL+KMA W+KMA

2 0.797 0.758 0.397 0.382 0.382 0.392 0.392 0.392 0.382
3 0.767 0.277 0.406 0.329 0.365 0.411 0.414 0.414 0.424
4 0.748 0.279 0.250 0.380 0.318 0.433 0.366 0.378 0.318
5 0.455 0.302 0.295 0.404 0.326 0.377 0.395 0.375 0.366
6 0.459 0.319 0.345 0.382 0.254 0.369 0.382 0.382 0.372
7 0.067 0.327 0.274 0.414 0.330 0.387 0.382 0.380 0.381
8 0.022 0.320 0.314 0.418 0.339 0.371 0.381 0.376 0.407
9 0.020 0.319 0.356 0.392 0.338 0.426 0.377 0.419 0.430
10 0.011 0.313 0.353 0.432 0.404 0.431 0.383 0.380 0.425

The heterogeneity measures of Hosking and Wallis (1993, 1997), which are de-
scribed in Section 1.4, are used as indicators to determine if the plausible regions
resulting from the hybrid-clustering algorithms are homogeneous. In Figs. 2.4.6
and 2.4.7 the clusters obtained from the hybrid of Ward’s algorithm and K-means
algorithm for different choices of K are compared. Interestingly, increase in the
number of clusters resulted in segregation of a collection of sites that are highly
heterogeneous. Further, the best partition of Indiana data identified with Dunn’s
index and Davies-Bouldin index is found to contain clusters that are closer to being
homogeneous.

It is seen from Fig. 2.4.7 that when the entire set of 245 sites was considered
as a single cluster, the region is highly heterogeneous (H1 = 14.96, H2 = 5.81
and H3 = 1.10). As the number of clusters, K , is increased beyond one, the al-
gorithm exhibited the tendency to provide groups of sites that are relatively less
heterogeneous. However, the sizes of clusters decrease, in general, with increase in
K (Fig. 2.4.6). The collective record length of sites in a region should be reasonably
large to make it effective for RFFA. Therefore, upper limit on K has been fixed fol-
lowing the recommendation of Reed et al. (1999) on data requirement for a region,
as mentioned in Section 2.4.2.

Table 2.4.5 Sizes of clusters
obtained by single linkage
and complete linkage
clustering

Number of
clusters

Single linkage Complete linkage

2 242, 3 240, 5
3 242, 2, 1 121, 5, 119
4 242, 1, 1, 1 121, 5, 115, 4
5 241, 1, 1, 1, 1 121, 5, 93, 4, 22
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The groups of stations resulting from cluster analysis are, in general, heteroge-
neous and are therefore adjusted following the procedure described in Section 1.4.1
to improve their homogeneity. The options suggested by Hosking and Wallis (1997)
for adjusting the regions resulting from clustering algorithm include: (i) eliminating
(or deleting) one or more sites from the data set; (ii) transferring (or moving) one
or more sites from a region to other regions; (iii) dividing a region to form two or
more new regions; (iv) allowing a site to be shared by two or more regions; (v)
dissolving regions by transferring their sites to other regions; (vi) merging a region
with another or others; (vii) merging two or more regions and redefining groups; and
(viii) obtaining more data and redefining regions. Of these, the first three options
are useful in reducing the values of heterogeneity measures, whereas the options
(iv) to (vii) help in ensuring that each region is sufficiently large. In this example
presented, first the options (v) and (vi) are implemented to ensure that each region
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Fig. 2.4.5 Identification of optimal partition provided by the hybrid clustering algorithms using
Dunn’s index, Davies-Bouldin index, Calinski-Harabasz index, and minimum description length
for the Indiana data set. The partition with the maximum value for Dunn’s index (or Calinski-
Harabasz index) and the minimum value for Davies-Bouldin index (or minimum description
length) is taken as the optimal partition
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Fig. 2.4.5 (continued)

is sufficiently large. Next, the options (i)–(iii) are implemented to reduce the values
of heterogeneity measures for the regions.

To adjust a region by options (i) and (ii), firstly the sites that are flagged discor-
dant by the discordancy measure presented in Section 1.4.2 are identified. Though
Hosking and Wallis (1997) provide critical values for the discordancy measure to
declare a site unusual, it is worth identifying all the sites with high discordancy
values. Secondly, the heterogeneity measures (H1, H2 and H3) of the region to be
adjusted are examined as they changed with exclusion of each site from the region.
In this context, one site is eliminated at a time with replacement. Thirdly, the dis-
cordant site, whose exclusion reduces the heterogeneity measures of a region by a
significant amount, is identified and removed from the region after ensuring that the
site discordancy is not due to sampling variability (Fig. 2.4.8).

The Fig. 2.4.8a shows that the heterogeneity measures of region-4 improve sig-
nificantly by eliminating the site having serial number 64 in the region that has
high discordancy value in Fig. 2.4.8b. The Figs. 2.4.8c,d denote the scenario after
elimination of the site with serial number 64 from the region. These figures further
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Fig. 2.4.6 Composition of clusters provided by the hybrid of Ward’s and K-means algorithms with
increase in the number of clusters from 1 to 10. In (a) the size of each cluster is expressed in terms
of the number of sites or feature vectors contained in it. In (b) the size of each cluster is expressed
as the sum of lengths of peak flow records (in years) at all the sites contained in it. In (a) and (b)
the shaded bar shown for each K value denotes the most heterogeneous cluster

suggest eliminating site with serial number 7 that has high discordancy value in the
updated region for improving its homogeneity.

The sites excluded from a region are examined to see whether they fit in any other
region. In some instances, a site excluded from one region would fit in more than
one region. Such a site is considered to be common to all the concerned regions.

Among the ten clusters identified as optimal partition for the Indiana data, the
second cluster had just five sites. Following option (v) for adjusting the regions,
this cluster is broken-up by transferring the sites contained in it to other regions.
Region-1 is obtained by merging clusters 6 and 8. The cluster 8 has just 12 sites and
several of them are grouped with sites of cluster 6 for a lower choice of K . This
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formed the basis for merging these two clusters and constitutes implementation of
option (vi).

The cluster-3 has just 133 station-years of data making it the smallest of all clus-
ters in terms of information. Following option (vi), the cluster-3 is merged with the
cluster-9 that contains it geographically to obtain Region-2. The basins comprising
clusters 3 and 9 appear as a single group for a smaller choice of K . The Region 3
is formed from the fourth cluster, which characterises small drainage basins with
high soil runoff coefficient. The Region-4 is formed when cluster-1 and cluster-7
are merged following option (vi). Clusters 1 and 7 consist of geographically neigh-
bouring drainage basins that have similar soil runoff characteristics, mean annual
precipitation and surface storage features. They are, however, quite distinct in their
drainage areas and slope of main streams draining the basins. Basins in clusters 1
and 7 appear as a single group for choice of K less than 7. This justifies merging
these clusters.

The Region-5 is formed from cluster 5. The tenth cluster was split into two us-
ing option (iii) for revising the regions. The first part comprising of a collection of
heterogeneous sites form Region-6, whereas the second part with the homogeneous
sites constituted Region-7. Following option (iv), majority of sites in the Region-7
could be considered common to both Region-7 and Region-5. All the regions ob-
tained from the foregoing analysis are then adjusted using options (i) and (ii) to
improve their homogeneity.

2.4.4 Testing the Regions for Robustness

The heterogeneity measures of Hosking and Wallis (1993, 1997) weigh information
from each station in proportion to its record length. As a consequence, influence of
stations with longer record length will be greater than that of stations with shorter
record length. This may have adverse effects especially when some stations in a
region have much longer record lengths than others. Therefore, the hydrologic re-
gions are further examined for their robustness. By specifying various threshold
values, the stations with record lengths significantly different from that of the rest of
the group are removed and the region with the remaining stations was examined for
homogeneity. In this step, the stations that have adverse affect on the homogeneity
of the identified regions are excluded in an attempt to make the regions robust. The
results of this exercise presented in Table 2.4.6 indicate that all the homogeneous
regions identified are indeed robust.

2.4.5 Final Results

Fourteen sites, out of the 245 sites considered in this study, could not be allocated
to any region. Four of these 14 sites were eliminated from the regions in the pre-
vious step to make them robust. Further, the remaining unallocated sites include a
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Table 2.4.6 Results from the experiment performed to test the regions for robustness. R is region
number, RL denotes record length, and NS represents the number of stations

R Condition NS Heterogeneity measure Region type

H1 H2 H3

1 Entire region 48 0.60 0.03 −0.47 Homogeneous
Sites with RL≤10 are

eliminated
26 1.54 0.64 0.10 Possibly

Homogeneous
2 Entire region 59 0.96 0.14 −0.86 Homogeneous

Sites with RL<20 are
eliminated

37 0.60 0.83 0.24 Homogeneous

Sites with RL>50 are
eliminated

49 0.78 0.19 −0.96 Homogeneous

Sites with RL≤10 and RL>50
are eliminated

40 0.72 0.53 −0.29 Homogeneous

3 Entire region 32 −0.30 1.00 0.62 Homogeneous
Sites with RL≤10 are

eliminated
22 −0.31 0.72 0.53 Homogeneous

Sites with RL<20 are
eliminated

15 −0.41 0.01 −0.10 Homogeneous

4 Entire region 69 0.50 −0.28 −1.62 Homogeneous
Sites with RL<20 are

eliminated
59 0.90 0.28 −0.81 Homogeneous

catchment in Illinois and five catchments in Indiana which have less than or equal
to 10 years of peak flow record. In hydrology, such catchments with short record
length are often discarded in RFFA. However, they have been considered here to
enable comparison with the regions derived by Glatfelter (1984).

The results presented in Table 2.4.7 indicate that regions 1 to 5 and region 7 are
all acceptably homogeneous, while region-6 adjoining the Lake Michigan is highly
heterogeneous and consists of 13 catchments in the Kankakee basin of Indiana.

For sites of the region-6, regional frequency analysis is not suitable as the region
is highly heterogeneous. At the same time, it is not possible to reallocate (or transfer)
sites from the region-6 to any other region because the heterogeneity measure of a
region accepting site(s) from the region-6 increases dramatically. The average record
length per station in the region-6 is 38-years, which is reasonably high.

Table 2.4.7 Characteristics
of the regions formed by
hybrid cluster analysis. NS
represents the number of
stations and RS denotes
region size in station-years

Region
number

Heterogeneity measure

NS RS H1 H2 H3

1 48 820 0.60 0.03 −0.47
2 59 1790 0.96 0.14 −0.86
3 32 829 −0.30 1.00 0.62
4 69 2903 0.50 −0.28 −1.62
5 37 1705 0.48 −1.45 −1.56
6 13 493 12.40 5.99 2.78
7 14 543 0.32 0.08 0.00
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Table 2.4.8 Characteristics
of the regions formed by
Glatfelter (1984). NS
represents the number of
stations and RS denotes
region size in station-years

Region
number

Heterogeneity measure

NS RS H1 H2 H3

1 16 598 4.85 1.39 −0.62
2 31 1191 4.99 0.96 −0.62
3 60 3449 2.09 0.14 −0.40
4 46 1294 1.08 1.65 0.20
5 35 852 2.96 −0.24 −1.47
6 32 913 4.57 2.96 2.13
7 22 901 10.81 2.31 0.72

The regions formed by Glatfelter (1984) and those formed in this study are pre-
sented in Figs. 2.4.9 and 2.4.10, respectively. It is evident from the figures and
Tables 2.4.7 and 2.4.8 that the regions identified by hybrid clustering differ sig-
nificantly from those identified by Glatfelter (1984), and are better. All the homoge-
neous regions identified have enough pooled data (Table 2.4.7).

The region-1 identified using hybrid clustering is spread mainly along the course
of Wabash river and consists predominantly of alluvial deposits of the flood plains.
Region-2 contains karst formations associated with limestones of the Mississippian
age, laid down 320–360 million years ago. Region-3 has a karst area consisting of
older Devonian and Silurian limestones. Sinkholes, sinking streams, large springs
and caves dominate the topography of these areas. For the ungauged catchments
lying at the border between the regions 2 and 3, the possibility of including infor-
mation from both the regions can be considered. Region-4 is in central Indiana. The
soil in region 4 is predominantly loamy glacial till. Region 5 is spread over northern
part of Indiana. It is composed of a wide range of soil classes (clayey glacial till,
sandy and loamy deposits, loamy glacial till) overlying the Mississippian rocks of
Michigan basin and Devonian and Mississippian shale. The delineated regions are
found to resemble natural regions of Indiana (Figs. 2.4.11–2.4.13), thus lending
credibility to this method of regionalization.

Fig. 2.4.9 The seven
hydrological regions
identified by Glatfelter (1984)
for estimating the magnitude
and frequency of floods on
streams in Indiana
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Fig. 2.4.10 Location of the regions defined by using the hybrid cluster analysis. The gray coloured
lines within each region denote boundaries of 11 digit watersheds in Indiana, USA

2.5 Concluding Comments

The performance of hard clustering algorithms that are a blend of agglomerative
hierarchical and partitional clustering procedures is investigated in regionalization
of watersheds for flood-frequency analysis. The hierarchical clustering algorithms
considered for hybridization are single linkage, complete linkage and Ward’s algo-
rithms, whereas the partitional clustering algorithm used is the K-means algorithm
(KMA).
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In a hybrid-clustering algorithm, hierarchical clustering algorithm is expected to
provide effective cluster centroids for initializing the KMA, so that the KMA pro-
vides better and meaningful output. Results obtained for Indiana watersheds showed
that one cannot guarantee a better output from KMA by hybrid-clustering. The over-
all performance of hybrid models is found to be better than that of the hierarchical
and the K-means clustering algorithms. Among the three hybrid models presented,
the combination of Ward’s and K-means algorithms consistently provided good ini-
tial estimates of groups of watersheds.

Six hard cluster validity indices, namely cophenetic correlation coefficient
(CPCC), average silhouette width (ASW), Dunn’s index, Davies-Bouldin index,
Calinski-Harabasz Index, and minimum description length are tested to determine
their effectiveness in identifying optimal partition provided by the hard clustering al-
gorithms. The CPCC, Calinski-Harabasz Index, and minimum description length are
found to be ineffective, whereas the ASW performed reasonably well. The Dunn’s
index and Davies-Bouldin index are found to be effective in identifying optimal
partition containing clusters that are closer to being homogeneous. The clusters re-
sulting from hard cluster analysis needed adjustment to improve their homogeneity.



Chapter 3
Regionalization by Fuzzy Cluster Analysis

3.1 Introduction

In the previous chapter, regionalization of watersheds using hybrid cluster analysis
was discussed. The hybrid cluster analysis is a hard clustering method. In regional-
ization by hard clustering, a catchment is classified as belonging to or not belonging
to a cluster. In reality, most catchments bear partial resemblance to several clusters.
Therefore one cannot justify fully assigning a catchment to one cluster or another. In
contrast, fuzzy clustering allows a catchment to have partial or distributed member-
ships in all the clusters. In other words, in fuzzy clustering, a catchment can belong
to more than one cluster simultaneously. Thus, it results in identification of clusters
with vague boundaries between them, as against crisp clusters with well-defined
boundaries in the case of hard clustering. The fuzzy clustering method for region-
alization, which is discussed in this chapter, is therefore expected to convey more
information than hard clustering as it describes the reality better.

The fuzzy set theory (Zadeh, 1965) is a natural way to represent situations where
data vectors bear partial resemblance to several clusters. Fuzzy clustering allows a
feature vector to belong to all the clusters simultaneously with a certain degree of
membership or belonging in the interval [0, 1]. Ruspini (1969, 1970) first introduced
this idea, which was used by Dunn (1974) to construct a fuzzy clustering method.

In fuzzy clustering algorithms, there is not a total commitment of a data point
to a given cluster. Therefore, they require more memory storage than hard cluster-
ing algorithms. However, advent of powerful computational facilities over the past
three decades spurred the development and utility of fuzzy clustering methods for a
variety of applications, including regionalization.

3.2 Classification of Fuzzy Clustering Algorithms

Clustering algorithms may be classified as supervised and unsupervised based on
the uncertainty in the number of natural classes (or clusters) and hierarchies present
in the data. Supervised clustering algorithms are used when the number of clusters
in the input data set is known a priori, whereas unsupervised clustering algorithms

A.R. Rao, V.V. Srinivas, Regionalization of Watersheds, 57
C© Springer Science+Business Media B.V. 2008
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are used when the number of clusters in the input data set is not known. In the
context of regional flood frequency analysis, since the internal structure of the data
is not known a priori, unsupervised clustering algorithms are the options for region-
alization, by default.

The majority of unsupervised clustering algorithms start with two clusters. The
number of clusters is increased every time after clustering is performed and cluster
validity measures are computed. Cluster validity measures are independently used
to evaluate and compare clustering partitions and even to determine optimal number
of clusters existing in a data set. Unsupervised clustering algorithms differ from one
another in their strategy of computing the new cluster center.

Fuzzy clustering methods can be divided into two types based on the strategy
adopted for partitioning the data (Yang, 1993): One that uses a fuzzy relation to
perform fuzzy clustering; the other that uses the objective function to determine
fuzzy clustering. The groupings achieved from fuzzy relations are separate seg-
ments, whereas those resulting from the use of objective functions constitute soft
segmentation. The fuzzy clustering based on fuzzy relations is proposed by Tamura
et al. (1971). They presented a multistep procedure by using the composition of
fuzzy relations beginning with a reflexive and symmetric relation. The description
of the original fuzzy clustering algorithm based on objective function dates back to
1973 (Bezdek, 1973; Dunn, 1974). This algorithm was conceived in 1973 by Dunn
(1974) and further generalized by Bezdek (1973, 1981) and Bezdek et al. (1984).
Subsequently, Roubens (1982), Trauwaert (1985, 1988), Gath and Geva (1989),
Gu and Dubuisson (1990), Xie and Beni (1991), Krishnapuram and Keller (1996),
Frigui and Krishnapuram (1997, 1999) among others developed the approach to
form fuzzy clusters. The description of these developments can be found in Bezdek
and Pal (1992), Sato-Ilic and Jain (2006), and Oliveira and Pedrycz (2007).

Among the existing fuzzy clustering methods, the Fuzzy c-means (FCM) algo-
rithm proposed by Bezdek (1981) is the simplest and is the most popular technique
of clustering. It is an extension of the hard K-means algorithm to fuzzy framework.
The hard K-means algorithm has been discussed in the previous chapter. The FCM
algorithm has found applications in a variety of areas including agricultural engi-
neering, astronomy, chemistry, geology, image analysis, medical diagnosis, shape
analysis and target recognition (Bezdek, 1987).

In hydrology, several investigators have used hard cluster analysis for classifying
watersheds into groups that are homogeneous in hydrologic response (Tasker, 1982;
Burn, 1989; Bhaskar and O’Connor, 1989; Nathan and McMahon, 1990; Hosking
and Wallis, 1997; Burn and Goel, 2000; Srinivas et al., 2002; Srinivas and Rao,
2002; Rao and Srinivas, 2006a). However, very few attempts have been made to
explore the potential of fuzzy clustering for regionalization. Bargaoui et al. (1998)
considered two fuzzy clustering methods, Iphigenie and ISODATA, for regionaliza-
tion. Hall and Minns (1999) examined the utility of fuzzy c-means algorithm for
regionalization by applying it to a sample of 101 gauged sites from two regions
identified in the United Kingdom Flood Studies Report (NERC, 1975). The study
considered catchment area, main stream length, main stream slope, mean annual
rainfall and soil index as features for the analysis.
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3.3 The Fuzzy C-Means Algorithm

A description of the fuzzy c-means algorithm is given in this section. Following
this, the criteria used for evaluating the validity of the clusters resulting from the
algorithm are discussed.

3.3.1 Description of the Algorithm

In the literature of fuzzy clustering, Fuzzy c-Means (FCM) algorithm proposed by
Dunn (1974) and extended by Bezdek (1981) is popular. This algorithm, which is
based on iterative optimization of a fuzzy objective function, is useful to partition
N watersheds in a region into c fuzzy clusters.

Let yk denote k-th feature vector depicting k-th watershed in n-dimensional fea-
ture space with coordinate axis labels (y1, . . . , yn), i.e., yk = [y1k, . . . , ynk] ∈ �n ,
where yik denotes the value of attribute i in yk . Various attributes, which have been
considered for regionalization in flood frequency analysis, are described in Sec-
tion 1.3. The attributes of the feature vector yk are rescaled as

xik = wi

σi
[ f (yik)] for 1 ≤ i ≤ n, 1 ≤ k ≤ N (3.3.1)

where, xik denotes the rescaled value of yik ; wi is the weight assigned to attribute i ;
σi refers to the standard deviation of attribute i ; f (·) represents the transformation
function and N represents the number of n-dimensional feature vectors. Rescaling
the attributes is necessary because of the differences in their variance, relative mag-
nitude and importance.

The set of N rescaled feature vectors can be represented as a n× N data matrix X.

X =

⎡

⎢
⎣

x11

. . .

xn1

. . .

. . .
. . .

x1N

. . .

xnN

⎤

⎥
⎦ (3.3.2)

Further, let V = (v1, . . . , vc) represent a c-tuple of prototypes vi, each of which
characterizes the centroid of one of the c clusters. The FCM algorithm partitions
the matrix X into c overlapping subsets (or clusters) by minimizing the following
objective function.

Minimize J (U,V : X) =
c∑

i=1

N∑

k=1

(uik)μd2(xk, vi ) (3.3.3)

subject to the following constraints,
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c∑

i=1

uik = 1 ∀k ∈ {1, . . . , N } (3.3.4)

0 <

N∑

k=1

uik < N ∀i ∈ {1, . . . , c} (3.3.5)

where uik ∈ [0, 1] denotes the membership (or degree of belongingness) of the k-th
rescaled feature vector xk in the i-th fuzzy cluster; U is the fuzzy partition matrix
which contains the membership of each rescaled feature vector in each fuzzy cluster
Eq. (3.3.6); the parameter μ ∈ [1,∞] refers to the weight exponent for each fuzzy
membership; d2(xk, vi ) is the distance from k-th rescaled feature vector xk to the
centroid of i-th cluster vi . When point prototypes are used, the general form of the
distance measure is given by Eq. (3.3.7)

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u11 . . .
...

ui1 . . .
...

uc1 . . .

u1k . . .
...

uik . . .
...

uck . . .

u1N
...

ui N
...

ucN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c×N

(3.3.6)

d2(xk, vi ) = (xk − vi )
TAi (xk − vi ) (3.3.7)

where the norm Ai is a positive definite symmetric matrix associated with cluster i .
For estimation of Euclidean distance between xk and vi , Ai = I ∀i , where I is a unit
matrix.

The first constraint Eq. (3.3.4) requires that the memberships of a chosen input
feature vector over all the c fuzzy clusters should sum to 1.0. It is meaningful to
assign very small membership values to a feature vector if it is representative of a
catchment whose hydrologic response is quite dissimilar to hydrologic response of
the other catchments considered for clustering. However, the first constraint does
not permit the iterations of the FCM procedure to converge to a solution for which
the memberships of the feature vector in all the c clusters do not sum to 1. Thus,
in the solution of the FCM algorithm, there is a possibility that certain sites which
do not fit in any of the identified regions would still have considerable membership
values in all the clusters, such that they sum to one. This would, in turn, affect the
homogeneity of the resulting clusters. To alleviate this problem, region adjustment
procedures of Hosking and Wallis (1997), which are discussed in the first chapter,
could be useful.

In the last decade, certain modifications have been proposed to the conventional
FCM algorithm to overcome the aforementioned ill-effect of the first constraint
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(Dave and Krishnapuram, 1997). However, these modified FCM clustering
techniques are yet to find application in regional flood frequency analysis and
investigating their advantage relative to conventional FCM in regionalization is still
an open research issue.

The second constraint Eq. (3.3.5) ensures that the sum of membership degrees
at a fuzzy cluster over the N feature vectors lies between 0 and N . If the sum of
membership degrees at a fuzzy cluster is equal to zero, then it implies that the clus-
ter does not contain any site. In contrast, the fuzzy cluster contains all the feature
vectors if the sum equals N . Thus, each cluster has at least one feature vector in the
optimal partition provided by the FCM algorithm.

The weight exponent μ in Eq. (3.3.3) determines the fuzziness of the clusters.
It controls the extent of membership shared among fuzzy clusters. At μ = 1, FCM
converges in theory to the traditional k-means solution. In other words, the member-
ship values uik tend to either 1 or 0 as the value of μ tends to 1. For μ → ∞, feature
vectors tend to have equal membership in all the c clusters. Thus, in general, the
degree of membership of the k-th rescaled feature vector xk in the i-th fuzzy cluster,
uik tends to 1/c. Increase in the value of μ reduces the contribution to objective
function from large values of d2(xk, vi ). In other words, the sites whose character-
istics are most dissimilar to the average characteristics of clusters (depicted by their
centroids) are penalized less. As a consequence, the clusters tend to accommodate
more sites.

The iterative procedure of FCM algorithm (Bezdek, 1981) is summarized below:

(i) Initialize fuzzy partition matrix U (or fuzzy cluster centroid matrix V) using a
random number generator.

(ii) If the FCM algorithm is initialised with fuzzy partition matrix U, adjust the
initial memberships uinit

ik of xk belonging to cluster i using Eq. (3.3.8) so that
Eq. (3.3.4) is satisfied.

uik = uinit
ik

c∑

i=1
uinit

ik

for 1 ≤ i ≤ c, 1 ≤ k ≤ N (3.3.8)

If the FCM algorithm is initialised with fuzzy cluster centroid matrix V (con-
taining c fuzzy cluster centroids vini t

1 , . . . , vini t
c ), determine memberships uik

of xk belonging to cluster i using Eq. (3.3.10) with vini t
i replacing vi .

(iii) Compute the fuzzy centroid vi for i = 1, 2, . . . , c by Eq. (3.3.9)

vi =

N∑

k=1
(uik)μ xk

N∑

k=1
(uik)μ

(3.3.9)
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(iv) Update the fuzzy membership uik using

uik =
(

1
d2(xk ,vi )

)1/(μ−1)

c∑

i=1

(
1

d2(xk ,vi )

)1/(μ−1)
for 1 ≤ i ≤ c, 1 ≤ k ≤ N (3.3.10)

Repeat steps (iii) and (iv) until change in the value of the memberships be-
tween two successive iterations becomes sufficiently small. At this point, the
traditional methods of fuzzy cluster analysis recommend defuzzification of the
fuzzy partition matrix, U (shown in Eq. (3.3.6)), to ultimately assign the feature
vectors to clusters.

The fuzzy partition matrix can be defuzzified or hardened using the maximum-
membership method or the nearest-center classifier (Ross, 1995, p. 398). In the
maximum-membership method, the largest element in each column of U is assigned
a membership value of unity and all the other elements in the column are assigned a
membership value of zero Eq. (3.3.11). In other words, a feature vector is assigned
to the cluster to which it has maximum resemblance. On the other hand, in the
nearest-center classifier, each of the rescaled feature vectors, xk , is assigned to the
cluster to whose centroid it is closest in terms of Euclidean distance Eq. (3.3.12).

u jk = max
1≤i≤c

{uik} = 1; uik = 0 for all i 	= j (3.3.11)

If d jk = min
1≤i≤c

{dik} = min
1≤i≤c

‖vi − xk‖ then u jk = 1; uik = 0 for all i 	= j

(3.3.12)

In hydrology, Hall and Minns (1999) used both Eqs. (3.3.11) and (3.3.12) to form
hard clusters in fuzzy cluster analysis. The results of Rao and Srinivas (2006b)
indicate that the effort needed to form homogeneous regions for RFFA is greatly
reduced if fuzzy clusters are formed, rather than hard clusters by hardening the
fuzzy partition matrix.

A fuzzy cluster is formed by assigning to it the sites whose memberships in the
cluster exceed the specified threshold value. In general, the choice of a threshold
value to form fuzzy clusters is subjective. In the fuzziest partition, the memberships
of a feature vector in all the clusters would be equal to 1/c. Therefore the value of
1/c is believed to be an acceptable choice for the threshold fuzzy membership.

The FCM algorithm may converge to a local minimum of the objective function.
The optimal value of the objective function depends on initial guesses of number
of clusters, cluster centers, and fuzzy memberships. These a priori assumptions are
necessary but do not guarantee convergence to global minimum. Over the past two
decades, researchers have been developing several heuristic cluster validity criteria
to address the issue of convergence. This issue is discussed in Section 3.4.
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3.3.2 Assignment of New Sites to Fuzzy Clusters

When a new site (gauged or ungauged) is considered for flood frequency analysis,
its memberships in all the c clusters (determined by FCM algorithm), are computed
by Eq. (3.3.10) with xk replaced by a feature vector containing rescaled attributes of
the new site, xnew. In mathematical terms,

unew
i =

(
1

d2(xnew,vi )

)1/(μ−1)

c∑

i=1

(
1

d2(xnew,vi )

)1/(μ−1)
for 1 ≤ i ≤ c (3.3.13)

where, unew
i is the membership of the new site in i-th fuzzy cluster and vi denotes

the cluster centroid of the i-th fuzzy cluster. The attributes of the new site should
be the same as those used to form the homogeneous regions and they should be
rescaled using Eq. (3.3.1). If the new site is ungauged, it is assigned to all the
cluster(s) in which it has membership greater than the specified sensible value of
the threshold fuzzy membership (such as 1/c). However, if the new site is gauged, it
is assigned to those clusters in which it has membership greater than the threshold
fuzzy membership after ensuring that the addition of the new site does not lead to
significant increase in their statistical heterogeneity. As mentioned in Section 1.3.1,
the at-site flood statistics must not be used as attributes to form regions for flood
frequency analysis because they are used as the basis of an independent test of the
homogeneity of the regions.

The desired flood quantile for a site that is common to two or more fuzzy regions,
can be computed by using weighted average of the flood quantile values for the site
estimated from the fuzzy regions. The weights may be assigned in proportion to the
degree of membership of the site in the fuzzy clusters.

3.4 Fuzzy Cluster Validity Measures

Validity evaluation is a procedure to evaluate and compare clusters obtained from
a clustering algorithm for different choices of parameters, or to compare clusters
resulting from different clustering algorithms (Backer and Jain, 1981). In fuzzy
cluster analysis the validity evaluation is carried out by using fuzzy cluster validity
measures that are considered different from the objective function being optimized
by the fuzzy clustering algorithm.

The criteria that are considered in cluster evaluation and selection include com-
pactness and separation of clusters.

� Compactness: Optimal partition requires that the members of each cluster should
be as close to each other as possible. A common measure of compactness is the
variance, which should be minimized. If only compactness is considered as the
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validation criterion, then the best partition is obtained when each data point is
considered as a separate cluster.

� Separation: Optimal partition requires that the clusters should be widely spaced.
In other words, clusters should be far from each other. If only optimal separation
is considered as the validation criterion, then the best partition is obtained when
all the data points are included in a single cluster. For this case, the separation
distance to nearest cluster is infinity.

Before describing various fuzzy cluster validity indices, definition of some terms
is in order. Consider a fuzzy partition of the data set X = [xk ; k = 1, . . . , N ]
with vi (i = 1, 2, . . . , c) denoting the centroid of each cluster. Let uik (i =
1, 2, . . . , c; k = 1, 2, . . .,N ) denote the fuzzy membership of feature vector k in
cluster i . Cardinality, variation, compactness and separation of a fuzzy cluster are
defined as follows:

Cardinality of a fuzzy cluster:

Cardinality of a fuzzy cluster i , N f
i , is equal to the sum of memberships of all

the feature vectors in the cluster. In other words, it denotes fuzzy number of feature
vectors in the cluster.

N f
i =

N∑

k=1

uik (3.4.1)

The fuzzy cardinality N f
i need not be an integer. However, in the context of hard

clustering, cardinality of a cluster is an integer. The sum of cardinalities of all the
fuzzy clusters is equal to N .

c∑

i=1

N f
i = N (3.4.2)

Variation of a fuzzy c-partition:

The fuzzy deviation of xk from cluster i , dik , is defined as the distance between
xk and centroid of the cluster i , vi , weighted by uik :

dik = uik ‖xk − vi‖ (3.4.3)

where ‖·‖ is the Euclidean norm. Instead, some other distance metric can also be
used. Variation of fuzzy cluster i is defined as:

σ
f

i =
N∑

k=1

(dik)2 (3.4.4)

The total variation of a data set (�) with respect to the fuzzy c-partition is the sum-
mation of variations of all the clusters formed from the data set.
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σ =
c∑

i=1

σ
f

i =
c∑

i=1

N∑

k=1

(dik)2 =
c∑

i=1

N∑

k=1

u2
ik ‖xk − vi‖2 (3.4.5)

An optimal partition would result in smaller value for �. Further, one may note that
� is the same as the objective function of the fuzzy c-means algorithm J(U, V: X)
for μ = 2 in Eq. (3.3.3)

Compactness of a fuzzy c-partition:

The ratio of variation of a cluster to its cardinality is referred to as compactness
of the cluster πi .

πi = σ
f

i

N f
i

(3.4.6)

There are some alternate ways to define the compactness of a fuzzy c-partition,
π . These include (i) the ratio of the total variation of a fuzzy c-partition to the

size of the data set (�/N ), (ii) average compactness of clusters (
c∑

i=1
σ

f
i /c), and (iii)

compactness of a cluster that is largest.

π = σ

N
or

c∑

i=1
σ

f
i

N
or (max πi , i = 1, . . . , c) (3.4.7)

Separation of a fuzzy c-partition (Xie and Beni, 1991):

Separation of a fuzzy c-partition may be defined as the minimum distance be-
tween cluster centroids dmin.

dmin = min
i 	= j

∥
∥vi − v j

∥
∥ (3.4.8)

where vi and v j are the centroids of clusters i and j respectively (1≤ i ≤ c, 1 ≤
j ≤ c). A larger dmin indicates that the clusters are well separated.

In the following, various fuzzy cluster validity indices in vogue in literature are
briefly described. Some cluster validity indices use only the membership values of a
fuzzy partition of data. Examples include partition coefficient (Bezdek, 1974a,b),
partition entropy (Bezdek, 1975), partition exponent (Windham, 1981), uniform
data functional (Windham, 1982). These and similar indices may not be reliable
because they have no connection to any property of the data.

(i) Partition coefficient: It was designed by Bezdek (1974a,b) to measure the
amount of overlap between clusters.

VPC (U) = 1

N

c∑

i=1

N∑

k=1

(uik)2 (3.4.9)
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(ii) Partition entropy (or classification entropy): Bezdek (1981) defines the classi-
fication entropy of a fuzzy c-partition as:

VP E (U) = − 1

N

[
c∑

i=1

N∑

k=1

uik loga(uik)

]

(3.4.10)

where logarithmic base a ∈ (1, ∞). Two other indices, namely fuzziness per-
formance index VF P I , and normalized classification entropy VNCE , that are
introduced by Roubens (1982), are determined using VPC and VPE as:

VF P I (U) = 1 − c × VPC (U) − 1

c − 1
(3.4.11)

VNC E (U) = VP E (U)

loga(c)
(3.4.12)

The optimal partition corresponds to a maximum value of VPC (or minimum
value of VP E , VF P I and VNC E ), which implies minimum overlap between clus-
ters. The range of variation of VPC is [1/c, 1], while that of VP E is [0, loga(c)].
On the other hand, the range of variation of VF P I and VNC E is [0, 1]. For a
crisp (or hard) partition, VPC is equal to 1, while VP E , ,VF P I and VNC E are all
equal to 0.

The VPC takes the value 1/c and VPE takes the value loga(c) when the mem-
berships of each feature vector in all the clusters are equal (i.e., uik = 1/c∀i, k),
which is the fuzziest c-partition.

The disadvantage of VPC , VP E , VF P I and VNC E is the lack of direct con-
nection to any property of the data. In recent years, these validity indices have
been used in hydrologic literature (Bargaoui et al., 1998; Hall and Minns, 1999;
Güler and Thine, 2004)

While VPC exhibits monotonic decreasing tendency with increase in the fuzzi-
fier value, VP E , VF P I and VNC E exhibit monotonic increasing tendency with
increase in the value of this parameter. Furthermore, VPC and VP E are sensitive
to the value of fuzzifier as μ → 1 and μ → ∞ (Halkidi et al., 2001, p. 138).

(iii) Fukuyama and Sugeno index: Fukuyama and Sugeno (1989) presented a va-
lidity measure, VF S , by exploiting the compactness and the separation of clus-
ters. Minimum value of VF S implies an optimal partition, which corresponds
to compact and well-separated clusters.

VF S(U, V : X) =
N∑

k=1

c∑

i=1

(uik)μ ‖vi − xk‖2
A −

N∑

k=1

c∑

i=1

(uik)μ ‖vi − v̄‖2
A

(3.4.13)

where ‖·‖ is the Euclidean norm, v̄ is the mean vector of X Eq. (3.4.14),
A is a positive definite, symmetric matrix, and ‖X‖A =

√
XT AX is a inner
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product norm. When A is equal to unit matrix I, the distance measure ‖·‖2
A in

Eq. (3.4.13) becomes squared Euclidean distance.

v̄ = 1

N

N∑

k=1

xk (3.4.14)

(iv) Xie-Beni validity measure: The index proposed by Xie and Beni (1991) is a
function of the data set and the centroids of the clusters. It is defined as the
ratio of overall compactness to the separation of a fuzzy c-partition (Xie and
Beni, 1991, p. 842). The validity function is defined by

VX B(U, V : X) =

c∑

i=1

N∑

k=1
(uik)2 ‖vi − xk‖2

N min
i 	=k

‖vi − vk‖2 (3.4.15)

where the term in the numerator is the sum of squares of fuzzy deviation of
each feature vector xk (k = 1, . . . , N ) from the centroid of each fuzzy cluster
vi (i = 1, . . . , c). The magnitude of the term decreases with increase in com-
pactness of the clusters. The denominator term, which measures the minimum
separation between cluster centroids, has a larger value for clusters that are well
separated. Minimum value of VXB implies a good partition, which corresponds
to compact and well-separated clusters. Xie and Beni (1991, p. 843) recom-
mend substituting (uik)μ for (uik)2 in Eq. (3.4.15) when μ 	= 2 in Eq. (3.3.3).
Pal and Bezdek (1995, p. 374) refer to this as extended FCM Xie-Beni index
(VX B,m) which is given by

VX B,m(U, V : X) =

c∑

i=1

N∑

k=1
(uik)μ ‖vi − xk‖2

N min
i 	=k

‖vi − vk‖2 (3.4.16)

The value of VX B monotonically decreases when the number of clusters gets
large. To eliminate this problem, Kwon (1998) presented a new cluster vali-
dation measure VK , which has a second term in numerator termed an ad hoc
punishing function.

VK (U, V : X) =

c∑

i=1

N∑

k=1
(uik)μ ‖vi − xk‖2 + 1

c

c∑

i=1
‖vi − v̄‖2

min
i 	=k

‖vi − vk‖2 (3.4.17)

Cluster validity has often been used to determine optimal number of clusters
in a data set (e.g., Gath and Geva, 1989; Xie and Beni, 1991; Theodoridis
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and Koutroubas, 1999; Halkidi et al., 2001). The procedure requires fixing all
the parameters of a clustering algorithm except number of clusters, c. Next,
the parameter c is varied from 1 to a maximum value Cmax in increments of 1.
Values of a chosen cluster validity index that are computed for clusters obtained
for each choice of c are analyzed to determine the optimal number of clusters
in a given data set.

3.5 Example of Using Fuzzy C-Means Algorithm
for Regionalization

3.5.1 Feature Extraction

The sensitivity of flood response of watersheds in Indiana to variation in the val-
ues of various physiographic, soil cover, land use, meteorological and geograph-
ical location attributes listed in Table 1.5.1 was discussed in Section 2.4.1 of the
previous chapter. This lead to selection of the attributes mean annual precipita-
tion, drainage area, slope of the main channel in the drainage basin, soil runoff
coefficient, and storage. The geographic location attributes latitude and longi-
tude are included in the feature vector to identify regions that are geographically
contiguous.

Information pertaining to these attributes was available for the 245 stations. As
before, only drainage area was transformed using logarithmic transformation. Then,
each of the seven attributes was scaled so that their standard deviation is unity.
Equal weight was assigned to all the attributes, implying equal importance to all
the features.

3.5.2 Results from Fuzzy C-means Algorithm

Pal and Bezdek (1995, p. 370) mention that the FCM provides better performance
for μ in the range 1.5–2.5. In this backdrop, the sensitivity of the results from the
FCM algorithm to variation in the value of fuzzifier is examined by varying μ from
1.1 to 2.5 with an increment of 0.1. Variation in the value of objective function of
FCM algorithm for c ranging from 2 to 10 and μ ranging from 1.1 to 2.0 is presented
in Fig. 3.5.1.

It is evident from the figure that the value of objective function, in general, de-
creases with: (i) increase in the number of clusters for a specified value of fuzzifier
μ and (ii) increase in the value of fuzzifier for a specified number of clusters. The-
oretically, the objective function has a maximum value when all the sites (feature
vectors) are grouped in a single cluster and a minimum value of zero when each
cluster contains only one site.

The plausible hydrologic regions for flood frequency analysis are obtained by us-
ing two procedures. In the first procedure, the conventional defuzzification method
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Fig. 3.5.1 Variation in the optimal value of objective function of the fuzzy clustering algorithm
with change in the number of clusters (c) and the fuzzifier (μ) value

(Ross, 1995; Hall and Minns, 1999) given in Eq. (3.3.11) is used to harden the
fuzzy partition matrices obtained for different values of c. Subsequently the result-
ing clusters are visually interpreted. Alternatively, in the second procedure, fuzzy
cluster validity indices are used to determine optimal partition of watersheds and
fuzzy clusters are formed by specifying a threshold value for fuzzy membership, as
described in Section 3.3.1. The latter procedure retains fuzziness in the delineated
regions.

3.5.2.1 Identification of Regions by Defuzzification and Visual Interpretation

To obtain plausible hydrologic regions in Indiana, the fuzzy partition matrix ob-
tained from the FCM algorithm was defuzzified using the maximum-membership
method described in Section 3.3.1. The resulting clusters were then visually in-
terpreted. It is seen from Fig. 3.5.2 that for the choice of c equal to 2, the FCM
algorithm provided two clusters with well-defined boundaries, one with watersheds
in northern Indiana and the other with those in southern Indiana. It appears that
the result is not sensitive to variation in the parameter μ for c = 2. However,
it is evident from Fig. 3.5.3 that the two clusters tend to possess equal number
of sites with increase in the value of fuzzifier μ. The change in the values of
heterogeneity measures H1 and H2 with variation in μ is found to be insignif-
icant and the cluster in the northern part of the state is highly heterogeneous
(Fig. 3.5.4).

For the number of clusters equal to 3 and μ equal to 1.1, the FCM algorithm
provided one well-defined cluster in the northern part of the state (shown in cir-
cles in Fig. 3.5.5), whereas the other two clusters that are shown in triangles
and rectangles are vague in the sense that the boundaries between them are not
well defined. Interestingly, the vagueness diminished and the clusters become well
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c = 2, µ  = 1.1 c = 2, µ  = 1.2 c = 2,  µ  = 1.3

c = 2, µ  = 1.4 c = 2,  µ  = 1.5 c = 2,   µ  = 1.6

c = 2,  µ  = 1.7 c = 2,  µ  = 1.8 c = 2,   µ  =  1.9

Fig. 3.5.2 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix ob-
tained from FCM algorithm for c = 2. c denotes the number of clusters and μ refers to the value
of fuzzifier. Each of the symbols in the diagram characterizes a site and different symbols denote
different clusters

defined with increase in μ beyond 1.5. One of these clusters is predominantly
in central Indiana, while the other cluster comprising of small drainage basins
with steep slopes is identified in the karst area adjoining Kentucky in southern
Indiana.
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c = 3, µ  = 1.1 c = 3, µ  = 1.2 c = 3, µ  = 1.3

c = 3, µ  = 1.6c = 3, µ  = 1.5c = 3, µ  = 1.4

c = 3, µ  = 1.7 c = 3, µ  = 1.8 c = 3, µ  = 1.9

Fig. 3.5.5 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix ob-
tained from FCM algorithm for c = 3. c denotes the number of clusters and μ refers to the value
of fuzzifier. Each of the symbols in the diagram characterizes a site and different symbols denote
different clusters

It is worth mentioning that the order of a cluster in the output of FCM algorithm
might get altered with change in the value of fuzzifier. In other words, i-th cluster
in the output of FCM algorithm may become j-th cluster with change in the value
of fuzzifier μ.

It is seen from Fig. 3.5.6 that the three clusters tend to possess equal number
of sites with increase in the value of fuzzifier μ. The cluster in the northern part
of the state (shown in circles in Fig. 3.5.5) is highly heterogeneous and it consists
of geographically neighboring drainage basins that have low runoff coefficient and
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Table 3.5.1 Centers of the three clusters obtained from FCM algorithm for two typical values of
fuzzifier (μ). In a few columns, the least or highest values of attributes are shown in bold font for
each value of μ

μ CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1.1 1 45.75 8.34 41.20 86.26 1.429 36.70 0.49
2 0.27 111.62 38.89 86.24 0.315 42.10 0.79
3 61.28 11.92 39.59 86.18 0.438 39.91 0.76

1.5 1 41.42 10.77 41.09 86.39 1.014 36.92 0.49
2 95.84 11.37 39.87 86.00 0.473 39.15 0.74
3 3.88 52.88 38.90 86.39 0.567 41.99 0.79
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Fig. 3.5.6 Variation in size of clusters with increase in the value of fuzzifier – Results from FCM
algorithm for c = 3
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Fig. 3.5.8 Comparison of storage in drainage basins forming cluster-1 with storage at the other
sites for c = 4 and μ = 1.1

high surface storage (see cluster 1 in Table 3.5.1 and Fig. 3.5.7). Similar obser-
vations were made with regard to cluster-1 for the choice of c = 4 and μ = 1.1
(Figs. 3.5.8 and 3.5.9). Change in the value of heterogeneity measure H1 for the
cluster in northern Indiana with variation in the value of μ is found to be insignifi-
cant (Fig. 3.5.7).

When c is 4 with μ equal to 1.1, the result showed two well-defined clusters (rep-
resented by circles and squares in Fig. 3.5.10), one in the northern part of the state
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Fig. 3.5.9 Comparision of soil runoff coefficient values of drainage basins forming cluster-1 with
those at the other sites for c = 4 and μ = 1.1
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c = 4, µ = 1.1 c = 4, µ = 1.2 c = 4, µ = 1.3

c = 4, µ = 1.6c = 4, µ = 1.5c = 4, µ = 1.4

c = 4, µ = 1.7 c = 4, µ = 1.8 c = 4, µ = 1.9

Fig. 3.5.10 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix
obtained from FCM algorithm for c = 4

and the other in central Indiana. These clusters are very similar to those identified
in the same parts of Indiana for c equal to 3. The other two clusters that are shown
in Fig. 3.5.10, by triangles and rectangles are vague. High runoff coefficient and
high precipitation is characteristic of catchments in these clusters, which are spread
along the karst area in the southern part of the Indiana.

The cluster shown in triangles has sites with large drainage areas and mild slopes,
whereas the cluster-4 shown in rectangles consists of small drainage basins with
steep slopes (Table 3.5.2, Figs. 3.5.11 and 3.5.12).
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Table 3.5.2 Centers of the four clusters obtained from FCM algorithm for two typical values of μ.
In a few columns, the least or highest values of attributes are shown in bold font for each value of μ

μ CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1.1 1 54.36 7.45 41.29 86.27 1.583 36.69 0.44
2 34.27 12.30 40.18 86.03 0.371 38.28 0.72
3 109.25 12.20 38.88 86.44 0.590 41.87 0.80
4 0.26 116.20 38.89 86.22 0.314 42.15 0.79

1.5 1 51.22 8.47 41.15 86.48 1.009 36.89 0.47
2 50.59 11.43 40.17 85.86 0.463 38.35 0.72
3 87.22 13.33 38.96 86.48 0.601 41.75 0.79
4 0.33 116.28 38.91 86.24 0.485 42.15 0.80

CN is cluster number; A denotes drainage area; LAT and LONG refer to Latitude and Longitude
in decimal degrees; STOR denotes drainage area covered by lakes; P stands for precipitation; RC
is runoff coefficient.
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Fig. 3.5.11 Comparison of the main channel slopes of drainage basins forming cluster-4 with those
at the other sites for c = 4 and μ = 1.1 as well as μ = 1.5
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Fig. 3.5.12 Comparison of the drainage areas of basins forming cluster-4 with those at the other
sites for c = 4 and μ = 1.1 as well as μ = 1.5
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Comparison of the drainage areas at the sites in clusters 1, 2 and 3 show that
drainage area at about 6 % of the sites is considerably high (Fig. 3.5.13). The site
with serial number 184 (USGS station 3374000) has the largest drainage area equal
to 11125 square miles. Movements of such sites with larger drainage area from
one cluster to another affects the average drainage area of the concerned clusters
dramatically. Thus, analyzing the cluster centers such as those shown in Tables 3.5.1
and 3.5.2 may not be sufficient to draw final conclusions. Figures such as 3.5.11 and
3.5.12 would be helpful in understanding the composition of clusters obtained from
the FCM algorithm.

c = 5, µ = 1.1 c = 5, µ = 1.2 c = 5, µ = 1.3

c = 5, µ = 1.6c = 5, µ = 1.5c = 5, µ = 1.4

c = 5, µ = 1.7 c = 5, µ = 1.8 c = 5, µ = 1.9

Fig. 3.5.13 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix
obtained from FCM algorithm for c = 5
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It is evident from Fig. 3.5.10 that the result for c = 4 is not sensitive to variation
in fuzzifier value μ in the range 1.1–1.8. However, the degree of fuzziness in the
result increased dramatically with increase in the value of μ beyond 1.8 which
indicates that the clusters corresponding to μ greater than 1.8 are not suitable for
further analysis.

The cluster observed in central Indiana for c = 4 split up into two vague clusters
when c is increased to 5 (Fig. 3.5.13). These clusters, shown in squares and darkened
diamonds, in central Indiana consist of geographically neighboring drainage basins
that have similar soil runoff characteristics and mean annual precipitation. They are
however, considerably distinct in their drainage areas (clusters 2 and 5 in Fig. 3.5.14
and Table 3.5.3). A significant difference is also noted in the slope of main streams
draining these basins and the percentage of drainage areas covered by water bodies
(Fig. 3.5.15 and Table 3.5.3).
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Fig. 3.5.14 Comparison of drainage areas of basins in clusters 2 and 5 for c = 5 and μ=1.1

Table 3.5.3 Centers of the five clusters obtained from FCM algorithm for two typical values of μ

μ CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1.1 1 74.32 5.99 41.31 86.27 1.684 36.65 0.44
2 1.67 23.87 40.13 86.65 0.128 38.40 0.68
3 107.69 12.45 38.81 86.48 0.635 42.15 0.80
4 0.27 124.90 38.90 86.04 0.348 42.28 0.81
5 184.83 7.47 40.09 85.73 0.506 38.48 0.74

1.5 1 95.29 6.00 41.24 86.50 1.148 36.80 0.44
2 177.65 7.61 40.13 85.75 0.528 38.46 0.73
3 96.73 12.95 38.84 86.49 0.615 42.14 0.80
4 0.30 133.81 38.83 86.24 0.456 42.53 0.81
5 1.95 23.97 40.16 86.39 0.290 38.39 0.68

CN is cluster number; A denotes drainage area; LAT and LONG refer to Latitude and Longitude
in decimal degrees; STOR denotes drainage area covered by lakes; P stands for precipitation; RC
is runoff coefficient.
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Fig. 3.5.15 Comparision of main channel slope at drainage basins in clusters 2 and 5 for c = 5
and μ = 1.1

Comparison of size of clusters resulting from the FCM algorithm for c equal to
4 and 5 shows that the clusters tend to possess equal number of gauging stations (or
sites) with increase in the value of fuzzifier μ. Further, all the clusters have sufficient
size in terms of data (Figs. 3.5.16 and 3.5.17). Cluster-1, which consists of drainage
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Fig. 3.5.16 Variation in size of clusters with increase in the value of fuzzifier – Results from FCM
algorithm for c = 4
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Fig. 3.5.17 Variation in size of clusters with increase in the value of fuzzifier – Results from FCM
algorithm for c = 5

basins in the northern part of Indiana, is highly heterogeneous. Change in the values
of heterogeneity measures with variation in μ is found to be insignificant for c = 4
and c = 5 (Figs. 3.5.18 and 3.5.19).

The partition achieved with c equal to 6 and μ equal to 1.1 consists of a cluster in
the northern part of Indiana, which resembles the cluster that has been observed in
northern Indiana for the choice of c = 4 and c = 5 (Figs. 3.5.20, 3.5.10 and 3.5.13).
The location of sites forming this cluster are shown using circles in Fig. 3.5.20. In
Figs. 3.5.21 and 3.5.22, this cluster refers to cluster-6 obtained from FCM algorithm
for the choice of μ in the range 1.1–1.3 and it refers to cluster-1 obtained from the
algorithm for the choice of μ in the range 1.4–2.0.

The composition of the cluster in northern Indiana was insensitive to variation
in the value of the fuzzifier in the ranges 1.1–1.3 and 1.6–2.0. However, it splits
up to form two clusters in northern Indiana for the choice of μ equal to 1.4 and
1.5 (see Fig. 3.5.20, and clusters 1 and 6 for μ = 1.4 in Table 3.5.4). The larger
of the two clusters consists of highly heterogeneous catchments in the Kankakee
basin (Figs. 3.5.20, 3.5.21, and 3.5.22). It possesses predominantly medium size
catchments with mildest slopes, moderate storage and least runoff coefficient values.
On the other hand, the smaller cluster includes medium to large size catchments with
milder slopes, high storage and low runoff coefficient values.

For c = 6 and the value of fuzzifier in the range 1.1–1.5, the clusters obtained
in central Indiana and those obtained in southern Indiana are very similar to the
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Fig. 3.5.18 Variation of heterogeneity measures with increase in the value of fuzzifier – Results
from Fuzzy c-means algorithm for c = 4
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Fig. 3.5.19 Variation of heterogeneity measures with increase in the value of fuzzifier – Results
from Fuzzy c-means algorithm for c = 5
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c = 6, µ = 1.1 c = 6, µ = 1.2

c = 6, µ = 1.3 c = 6, µ = 1.4

c = 6, µ = 1.5

c = 6, µ = 1.7 c = 6, µ = 1.8

c = 6, µ = 1.6

Fig. 3.5.20 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix
obtained from FCM algorithm for c = 6
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Fig. 3.5.21 Variation in size of clusters with increase in the value of fuzzifier – Results from Fuzzy
c-means algorithm for c = 6

clusters in those parts of Indiana for c = 5. In Fig. 3.5.20, the squares in central
Indiana denote a group of large catchments with milder slopes, moderate storage
and moderate to high runoff coefficient values (cluster-1 for μ = 1.3 in Table 3.5.4).
The darkened diamonds, that are spread in central Indiana and along the Wabash
river, represent smaller catchments with mild slope, small to moderate storage and
moderate runoff coefficient values (see Cluster-2 for μ = 1.3 in Table 3.5.4).
The triangles in southern Indiana depict medium to large size catchments with
mild slopes, high precipitation and high runoff coefficient values (see Cluster-3 for
μ = 1.3 in Table 3.5.4). The diamond symbols in southern Indiana denote small
catchments with steepest slopes, moderate storage and high runoff coefficient values
(see Cluster-4 for μ = 1.3 in Table 3.5.4).

It is also evident from Fig. 3.5.20 that a new cluster emerged in the south-
eastern part of the state for the choice of μ in the range 1.1–1.3 with c = 6.
This cluster (shown in rectangles) comprises of small catchments with moderate
slopes, moderate storage and highest runoff coefficient values (see Cluster-5 for
μ = 1.3 in Table 3.5.4). When the value of μ was increased beyond 1.5, a new
cluster which includes predominantly the sites in central part of the state emerged.
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Fig. 3.5.22 Variation of heterogeneity measures with increase in the value of fuzzifier – Results
from Fuzzy c-means algorithm for c = 6

It is characterized by large catchments with mild slopes and moderate storage (see
Cluster-2 for μ = 1.6 in Table 3.5.4). However, for μ greater than 1.5 the highly
heterogeneous cluster identified in Kankakee basin for the choice of μ equal to 1.4
and 1.5 got merged with the cluster adjoining it in the northern part of Indiana.
Further, the clusters in central and southern parts of Indiana appeared more vague
(Fig. 3.5.20), suggesting that the solution provided by FCM algorithm for the value
of μ greater than 1.5 is too fuzzy to identify the hydrologic regions.
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Table 3.5.4 Centers of six clusters obtained from FCM algorithm for three typical values of μ

μ CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1.3 1 213.14 6.13 40.15 85.77 0.526 38.38 0.73
2 1.89 22.81 40.23 86.70 0.205 38.22 0.66
3 130.87 10.97 38.82 86.61 0.644 42.20 0.79
4 0.26 166.51 38.76 86.51 0.291 43.04 0.79
5 1.39 50.01 39.26 85.38 0.600 40.81 0.84
6 97.28 5.58 41.30 86.36 1.352 36.58 0.44

1.4 1 73.57 6.06 41.16 86.88 0.650 37.44 0.44
2 1.36 26.34 40.07 86.43 0.205 38.57 0.69
3 181.72 7.66 40.03 85.81 0.402 38.71 0.74
4 0.27 138.60 38.81 86.21 0.402 42.57 0.81
5 95.02 13.00 38.80 86.51 0.611 42.27 0.80
6 103.24 7.17 41.32 85.35 2.657 35.23 0.52

1.6 1 93.16 5.91 41.22 86.66 0.995 36.98 0.43
2 155.99 9.14 39.88 86.36 0.431 38.98 0.71
3 73.04 14.45 38.73 86.45 0.602 42.56 0.80
4 0.30 144.14 38.79 86.35 0.406 42.76 0.80
5 1.37 25.49 40.15 86.28 0.298 38.40 0.69
6 132.03 8.66 40.31 85.45 0.695 38.13 0.74

CN is cluster number; A denotes drainage area; LAT and LONG refer to Latitude and Longitude
in decimal degrees; STOR denotes drainage area covered by lakes; P stands for precipitation; RC
is runoff coefficient.

When c was increased to 7, the clusters obtained showed remarkable resemblance
to those obtained for the choice of c = 6. As per the 5T rule (Reed et al. in FEH
1999, p. 28, Vol. 3) the grouped stations should collectively supply five times as many
station years of record as the target return period. Several of the clusters obtained for
the choice of c = 9 and above were quite small in size. Such small clusters are not
suitable for regional flood frequency analysis. Therefore the results obtained for c = 9
and above are not considered to be suitable for forming hydrologic regions. As noted
earlier, it is evident that clusters tend to possess equal number of sites with increase
in the value of fuzzifier μ (Figs. 3.5.23 and 3.5.25) and majority of clusters obtained
from FCM algorithm tend to be closer to homogeneous with increase in the number of
clusters (Figs. 3.5.24 and 3.5.26). Also, change in the value of heterogeneity measure
H1 with variation in the value of μ was found to be insignificant.

From the foregoing analysis, the following conclusions are drawn:

(i) The two clusters noted in northern part of Indiana for the choice of c = 7 and μ

in the range 1.4–1.8 (Fig. 3.5.27) closely resemble the clusters obtained in the
same region of Indiana by partitioning of the state into six clusters (c = 6
and μ = 1.4–1.5 in Fig. 3.5.20). Similar observation is made for c = 8
(Fig. 3.5.28). Since the location of these two clusters is well defined, they
can be considered as plausible hydrologic regions for flood frequency analy-
sis. It may be recalled from the previous discussion that the cluster in north-
western Indiana consists of catchments in the Kankakee basin that are highly
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Fig. 3.5.23 Variation in size of clusters with increase in the value of fuzzifier – Results from Fuzzy
c-means algorithm for c = 7

heterogeneous. It possesses predominantly medium size catchments with mild
slopes, moderate storage, small runoff coefficient values and low precipitation.
On the other hand, the cluster in northeastern Indiana consists of medium to
large size catchments with milder slopes, high storage, low runoff coefficient
values and low precipitation.

(ii) The cluster identified in southeastern part of Indiana for the choice of c = 7 and
μ in the range 1.1–1.4 (or for the choice of c = 8 and μ in the range 1.1–1.8)
closely resembles the cluster observed in the region for the choice of μ in the
range 1.1–1.3 and c = 6. The catchments in this cluster are characterized by
high runoff coefficient values. Since the location of this cluster is well defined,
it may be considered as a plausible hydrologic region.

(iii) The clusters in southern Indiana adjoining Kentucky state, whose sites are
shown as diamonds and triangles, retain their identity despite increase in the
number of partitions from c = 4 to c = 8 (Figs. 3.5.10, 3.5.13, 3.5.20, 3.5.27
and 3.5.28). In fact, the sites comprising these two clusters were members of a
single cluster for the choice of c equal to 2 and 3 (Figs. 3.5.2 and 3.5.5). More-
over, the cluster represented by diamonds is much smaller than that represented
by triangles (Fig. 3.5.29). Consequently merging these two clusters is justi-
fied if the objective of regionalization is to identify geographically contiguous
hydrologic regions. High precipitation and high runoff coefficient values
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Fig. 3.5.24 Variation of heterogeneity measures with increase in the value of fuzzifier – Results
from Fuzzy c-means algorithm for c = 7

characterize the catchments comprising these clusters. However, there is a sig-
nificant difference in their catchment areas, basin storage and slopes. From the
previous discussion it is known that the triangles in southern Indiana depict
medium to large size catchments with mild slopes and moderate basin storage,
whereas the diamonds in southern Indiana denote small catchments with steep
slopes (Fig. 3.5.30) and low basin storage.

(iv) The clusters in central Indiana, whose members are shown as darkened di-
amonds and squares are characterized by mild to milder slopes and moderate
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Fig. 3.5.25 Variation in size of clusters with increase in the value of fuzzifier – Results from Fuzzy
c-means algorithm for c = 8

precipitation. The differences in their slope, basin storage and runoff coefficient
are marginal. However, the difference in their drainage areas is considerable.
Further, the darkened diamonds depict gauges with very short record lengths
and small drainage areas (see cluster-2 in Fig. 3.5.31). For low values of μ, the
darkened diamonds spread predominantly along the course of Wabash river and
its tributaries, whereas for high values of μ they appear to be scattered in the
entire central Indiana. This may be attributed to a few sites which keep shift-
ing from one cluster to another in central Indiana with increase in fuzziness.
The squares that depict larger drainage areas in central Indiana with moderate
to high record lengths might be considered as a plausible hydrologic region.
The effort needed to adjust the identified regions to improve their statistical
homogeneity is found to be significant (Srinivas and Rao, 2003).

3.5.2.2 Identification of Regions by Fuzzy Cluster Validity Indices

The sites which are tightly linked to each cluster are identified by specifying a
threshold fuzzy membership value equal to 1/c. A fuzzy cluster is formed by
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Fig. 3.5.26 Variation of heterogeneity measures with increase in the value of fuzzifier – Results
from Fuzzy c-means algorithm for c = 8

assigning to it the sites whose memberships in the cluster exceed the specified
threshold value. The upper limit on the number of clusters Cmax has been fixed
keeping in view the findings of Reed et al. (1999) on the minimum data requirement
for a region.

The optimal number of clusters in the Indiana data set is identified by using seven
fuzzy cluster validity measures: partition coefficient (VPC ), partition entropy (VP E ),
fuzziness performance index (VF P I ); normalized classification entropy (VNC E ); ex-
tended Xie-Beni index (VX B,m), Fukuyama-Sugeno index (VFS), and Kwon’s Index
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Fig. 3.5.27 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix
obtained from FCM algorithm for c = 7
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Fig. 3.5.28 Clusters of watersheds obtained in Indiana by hardening the fuzzy partition matrix
obtained from FCM algorithm for c = 8
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spread along the course of Wabash river and its tributaries
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(VK ). Description of these measures is provided in Section 3.4. In general, the VX B,m

and VK indicate c = 7 as the optimal number of clusters for the value of μ in the
range 1.1–1.5, while they identify c = 4 as the optimal partition for μ in the range
1.6–2.5 (Table 3.5.5).

Fuzziness in the results increases for μ greater than 1.5 (Fig. 3.5.32). This is
reflected in the values of Xie-Beni and Kwon’s Indices, which increase significantly
beyond μ equal to 1.5 (Table 3.5.5), indicating a drop in the quality of resulting
clusters. The optimal values of Xie-Beni and Kwon’s Indices suggest that the best
choice for μ is in the interval [1.3, 1.5], whose midpoint is 1.4.

The partition coefficient (VPC ) and partition entropy (VP E ) which always suggest
c = 2 as the best partition are inefficient. In general, VPC is maximum and VP E

is minimum at c = 2, irrespective of the chosen μ value (Table 3.5.5). While VPC

exhibits monotonic decreasing tendency with increase in both c and μ, VP E exhibits
monotonic increasing tendency with increase in the values of the model parameters
(Fig. 3.5.33). As a result, both VPC and VP E often suggest c = 2 as optimal partition.
Bargaoui et al. (1998), and Hall and Minns (1999) also make the same observation.
For the Indiana data, the monotonic tendency is evident for the values of μ greater
than 1.4 (Table 3.5.5)

Similar monotonic tendency is seen in case of VF P I and VNC E with increase
in the value of fuzzifier (Table 3.5.5 and Fig. 3.5.33). The disadvantage of these
indices is the lack of direct connection to the geometrical property or structure
of data set (Xie and Beni, 1991; Halkidi et al., 2001). A validity measure should
not exhibit monotonic tendency to be effective as an index for identifying optimal
partition.

The Fukuyama-Sugeno index (VF S), which is one of the seven fuzzy validity
indices computed, exhibits monotonic decreasing tendency with increase in number
of clusters (Table 3.5.5) and is therefore not effective in identifying optimal partition
for the catchments in the study region.

Based on the foregoing analysis, the clusters given by the FCM algorithm with
c = 7 and μ = 1.4, are selected as optimal partition. Moreover, the choice of seven
regions enables comparison of the results obtained in this section with the previously
defined seven regions in Indiana by Glatfelter (1984).This decision on choice of μ

is supported by Fig. 3.5.34 which show that the best partition of data for the value
of c in the range 7–10 is achieved with the value of μ in the range 1.4–1.5, at which
the partition coefficient is maximized and the classification entropy is minimized.
Figure 3.5.35 shows the location of the fuzzy clusters in Indiana.

The optimal partition identified by using the fuzzy cluster validity indices has
clusters which are very similar to the plausible hydrologic regions identified by
visual inspection of clusters of watersheds in the foregoing section. Although this
may not happen always, it gives confidence in the regions that are determined for
flood frequency analysis.

The homogeneity of regions (clusters) corresponding to optimal partition (c = 7
and μ = 1.4), which are formed without defuzzification, is tested by using het-
erogeneity measures of Hosking and Wallis (1997). The regions are, in general,
adjusted following the eight options described in Section 1.4.1 to improve their ho-
mogeneity. In fuzzy cluster analysis, the knowledge of distribution of membership
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Table 3.5.5 Comparison of the cluster validity measures for the data set pertaining to watersheds
in Indiana, USA. The values in bold font denote optimal values of the validity measures. c: number
of clusters; μ: Fuzzifier; VPC : partition coefficient; VP E : partition entropy; VF P I : fuzziness per-
formance index; VNC E : normalized classification entropy VX B,m : extended Xie-Beni index; VF S :
Fukuyama-Sugeno index; VK : Kwon’s index

c μ VPC VP E VF P I VNC E VX B,m VF S VK

2 1.1 0.960 0.066 0.080 0.219 0.73 852.36 164.71
3 0.957 0.071 0.065 0.149 0.60 405.40 134.19
4 0.955 0.075 0.060 0.125 0.66 128.94 151.66
5 0.963 0.067 0.046 0.096 0.74 −215.97 174.12
6 0.949 0.093 0.061 0.120 0.65 −223.75 137.97
7 0.958 0.074 0.049 0.088 0.51 −532.72 118.80
8 0.959 0.074 0.047 0.082 0.53 −602.51 125.11

2 1.2 0.913 0.147 0.174 0.488 0.73 846.17 156.65
3 0.903 0.170 0.146 0.356 0.62 403.67 126.93
4 0.89 0.203 0.147 0.337 0.87 103.38 170.65
5 0.877 0.228 0.154 0.326 0.75 −89.24 140.25
6 0.881 0.227 0.143 0.292 0.63 −213.46 115.59
7 0.896 0.200 0.121 0.237 0.49 −516.54 105.29
8 0.87 0.245 0.149 0.271 0.90 −577.64 185.17

2 1.3 0.857 0.240 0.286 0.797 0.75 839.38 152.63
3 0.834 0.297 0.249 0.622 0.63 403.06 120.87
4 0.811 0.352 0.252 0.585 0.84 110.94 152.50
5 0.802 0.381 0.248 0.545 0.75 −76.76 129.05
6 0.801 0.398 0.239 0.511 0.61 −196.16 104.84
7 0.814 0.371 0.217 0.439 0.50 −481.19 97.02
8 0.811 0.379 0.216 0.420 0.45 −596.52 87.93

2 1.4 0.799 0.328 0.402 1.090 0.77 831.66 152.72
3 0.750 0.445 0.375 0.933 0.63 423.52 114.69
4 0.734 0.500 0.355 0.830 0.80 121.89 139.49
5 0.723 0.547 0.346 0.783 0.74 −54.64 123.13
6 0.675 0.654 0.390 0.840 1.05 −117.99 161.81
7 0.714 0.599 0.334 0.709 0.53 −309.16 85.72
8 0.699 0.653 0.344 0.723 0.58 −358.91 90.63

2 1.5 0.746 0.404 0.508 1.342 0.79 821.27 156.97
3 0.668 0.581 0.498 1.218 0.78 461.68 137.10
4 0.661 0.640 0.452 1.063 0.77 137.28 131.62
5 0.645 0.708 0.444 1.013 0.75 −27.35 122.35
6 0.635 0.756 0.438 0.972 0.65 −157.68 103.97
7 0.622 0.809 0.441 0.957 0.52 −255.76 81.87
8 0.600 0.883 0.457 0.978 0.61 −298.24 92.80

2 1.6 0.699 0.466 0.602 1.548 0.82 807.19 165.39
3 0.608 0.682 0.588 1.429 0.80 460.88 145.26
4 0.593 0.768 0.543 1.276 0.73 157.32 128.44
5 0.572 0.856 0.535 1.225 0.75 1.45 126.25
6 0.514 1.003 0.583 1.289 1.20 −55.56 188.39
7 0.513 1.044 0.568 1.235 0.91 −164.30 141.62
8 0.502 1.097 0.569 1.215 0.94 −244.84 144.56
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Table 3.5.5 (continued)

c μ VPC VP E VF P I VNC E VX B,m VF S VK

2 1.7 0.660 0.515 0.680 1.711 0.85 789.21 178.06
3 0.556 0.765 0.666 1.603 0.81 453.32 155.28
4 0.530 0.885 0.627 1.470 0.70 180.81 129.85
5 0.508 0.986 0.615 1.411 0.76 30.26 134.08
6 0.449 1.142 0.661 1.468 1.32 −25.44 222.88
7 0.414 1.264 0.684 1.496 1.11 −72.10 181.42
8 0.424 1.283 0.658 1.421 0.95 −177.72 156.11

2 1.8 0.628 0.554 0.744 1.840 0.89 767.65 195.23
3 0.512 0.834 0.732 1.748 0.82 440.82 167.84
4 0.472 0.990 0.704 1.644 0.68 207.02 135.83
5 0.450 1.100 0.688 1.574 0.75 58.22 146.24
6 0.395 1.260 0.726 1.619 1.51 2.75 283.95
7 0.355 1.398 0.753 1.654 1.34 −30.99 244.49
8 0.356 1.446 0.736 1.601 1.03 −112.46 187.92

2 1.9 0.602 0.584 0.796 1.940 0.94 743.05 217.37
3 0.475 0.891 0.788 1.867 0.82 425.22 183.88
4 0.414 1.097 0.781 1.822 0.68 257.39 148.03
5 0.399 1.200 0.751 1.717 0.76 84.41 164.97
6 0.348 1.361 0.782 1.749 1.85 28.06 395.98
7 0.310 1.503 0.805 1.778 1.70 −3.53 358.22
8 0.278 1.635 0.825 1.810 1.83 −23.13 382.14

2 2.0 0.505 0.688 0.990 2.285 14.49 844.66 3549.60
3 0.444 0.937 0.834 1.964 0.87 407.41 213.89
4 0.379 1.158 0.828 1.923 0.74 248.45 182.44
5 0.354 1.290 0.808 1.846 0.79 110.35 196.35
6 0.309 1.446 0.829 1.858 2.56 49.80 634.98
7 0.273 1.592 0.848 1.884 2.29 18.25 570.84
8 0.244 1.723 0.864 1.908 3.09 −0.75 771.73

of a catchment among the fuzzy regions is found to be useful in this task. In partic-
ular, there is no need to devote special effort for the options (ii), (iv), (v), (vi) and
(vii) of the eight options if the threshold fuzzy membership value is sensibly chosen
to form the fuzzy clusters.

In this study, adjustment option (i) is implemented on clusters obtained from
FCM algorithm to form hydrologic regions which are statistically homogeneous.
The sites that are flagged discordant by the discordancy measure are first identified.
Though Hosking and Wallis (1997) provide critical values for the discordancy mea-
sure to declare a site unusual, it is worth identifying all the sites with high discor-
dancy values. Secondly, the heterogeneity measures (H1, H2 and H3) of the region
to be adjusted are examined as they change with exclusion of each site from the
region. In this context one site is eliminated at a time with replacement. Thirdly, the
discordant site, whose exclusion reduces the heterogeneity measures for the region
by a significant amount, is identified and removed from the region after ensuring
that the site discordancy is not due to sampling variability. This procedure of region
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Fig. 3.5.32 Variation in cardinality of fuzzy clusters obtained from the fuzzy c-means algorithm
for two typical values of c (4 and 7), with increase in the value of fuzzifier from 1.1 to 2.5 by an
increment of 0.1

adjustment is described in Section 2.4.3. Hydrologic Regions 1, 2, 3, 4, 5 and 8 are
formed by adjusting the clusters 1, 3, 5, 7, 6 and 4 respectively.

To adjust the highly heterogeneous cluster-2, several sites were eliminated from
the region following the adjustment option (i). This amounts to splitting the highly
heterogeneous cluster into two by using option (iii) for adjusting the regions. The
first part containing a collection of highly heterogeneous sites formed hydrologic
Region 6, whereas the second part with the homogeneous sites constituted hydro-
logic Region 7.

3.5.3 Testing the Regions for Robustness

The heterogeneity measures of Hosking and Wallis (1997) weigh information from
each station in proportion to its record length. As a consequence, influence of sta-
tions with longer record length will be greater than that of stations with shorter
record length. This may have adverse effects especially when some stations in a re-
gion have much longer record lengths than others. Therefore, the hydrologic regions
are further examined for their robustness. By specifying various threshold values,
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Fig. 3.5.33 Plots of fuzzy partition coefficient (PC), fuzzy partition entropy (PE), fuzziness per-
formance index (FPI) and normalized classification entropy (NCE) values against the number of
clusters for the Indiana watersheds obtained using FCM clustering. The optimal partition corre-
sponds to a maximum value of PC (or minimum value of PE, FPI and NCE)

the stations with record lengths significantly different from those of the rest of the
group are removed and the region with the remaining stations was examined for ho-
mogeneity. In this step, the stations that have an adverse effect on the homogeneity
of the identified regions are excluded in an attempt to make the regions robust. The
results of this analysis presented in Table 3.5.6 indicate that all the homogeneous
regions identified are indeed robust.

Eleven sites, out of the 245 sites considered in this study, could not be allocated to
any region. Three of these 11 sites were eliminated from the regions in the previous
step to make the regions robust. Further, the remaining unallocated sites are those
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Fig. 3.5.34 Plot of Partition Coefficient (PC) and Classification Entropy (CE) for clusters obtained
from FCM algorithm. The number that follows PC and CE denotes the number of clusters

which are highly discordant with sites in the clusters in which they have very strong
membership.

It is evident from Figs. 3.5.36 and 3.5.37 that a few sites are eliminated from each
fuzzy cluster to form the final regions. Further, the results presented in Table 3.5.7
indicate that except region 6, all the regions are acceptably homogeneous (H1 < 1).
The region-6 adjoining the Lake Michigan is highly heterogeneous and consists of
10 catchments in the Kankakee river basin of Indiana. Except for two of those 10
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Fig. 3.5.35 Location of fuzzy clusters in Indiana obtained from fuzzy cluster analysis. The dark
lines denote boundaries of eight digit watersheds, whereas the grey coloured lines are boundaries
of 11 digit watersheds in Indiana

sites, all others have high membership in region 6 (Fig. 3.5.38). The average record
length per station in the region 6 is 43-years, which is reasonably high.

The regions formed by Glatfelter (1984) using regional regression approach and
those formed by applying FCM algorithm are presented in Figs. 3.5.39 and 3.5.40,
respectively. It is evident from the figures that the regions identified differ signif-
icantly from those identified by Glatfelter (1984). Except region 8, all the homo-
geneous regions identified in this study have enough pooled data (Table 3.5.7).
Following the region adjustment option (vi) mentioned earlier, the region-8 could
be merged with region 2 which contains it geographically. However, it was decided
not to merge these two regions because the sites of region 8 have low membership
in region 2 (Table 3.5.8). It may also be noted that ten of the fourteen sites in the
region 8 have high membership in the region 8 (Table 3.5.8 and Fig. 3.5.37).

The regions formed by using the FCM algorithm correlate well to regions ob-
tained by hybrid clustering (Fig. 2.4.10) and also to geographical features and soil
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Fig. 3.5.36 Comparison of fuzzy clusters 1, 3 and 5 with the fuzzy regions formed by adjusting
the same. The composition of a fuzzy region (cluster) is expressed using histograms of the fuzzy
memberships of sites (feature vectors) belonging to the region (cluster). Sites with membership
greater than 1/c in a cluster are considered to belong to the cluster

regions of Indiana (Figs. 3.5.41–3.5.43). This gives greater confidence in clustering
techniques.

3.6 Concluding Comments

The fuzzy c-means (FCM) clustering algorithm is presented and its effectiveness in
forming homogeneous regions for flood frequency analysis is illustrated through its
application to watersheds in Indiana, USA.
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Table 3.5.6 Results from the test of the regions for robustness

R Condition NS RS Heterogeneity measure Region type

H1 H2 H3

1 Entire region 52 911 0.63 0.83 −0.07 Homogeneous
Sites with RL ≤ 10 are

eliminated
27 664 1.03 1.09 0.58 Possibly

Homogeneous
Sites with RL≥30 are

eliminated
45 665 0.63 0.15 −0.96 Homogeneous

2 Entire region 60 2010 0.89 0.92 −0.08 Homogeneous
Sites with RL<20 are

eliminated
44 1797 0.66 1.34 0.60 Homogeneous

Sites with RL>50 are
eliminated

48 1288 0.78 0.63 −0.23 Homogeneous

Sites with RL≤10 and RL>50
are eliminated

42 1232 0.95 0.85 0.08 Homogeneous

3 Entire region 40 837 0.23 0.95 0.11 Homogeneous
Sites with RL≤10 are

eliminated
22 664 0.50 0.89 0.29 Homogeneous

Sites with RL>40 are
eliminated

35 579 0.61 1.13 −0.03 Homogeneous

4 Entire region 75 3274 0.79 0.80 −0.08 Homogeneous
Sites with RL<30 are

eliminated
58 2912 0.73 0.55 −0.30 Homogeneous

Sites with RL>60 are
eliminated

63 2401 0.78 0.88 −0.08 Homogeneous

Sites with RL<30 and RL>60
are eliminated

46 2039 0.71 0.87 0.06 Homogeneous

R: Region; RL: record length; NS: Number of stations; RS: Region size in station years

Partition coefficient, partition entropy, fuzziness performance index, normalized
classification entropy, extended Xie-Beni, Fukuyama-Sugeno, and Kwon’s index are
tested for their ability to identify optimal partition provided by the FCM clustering
algorithm. Results obtained for Indiana watersheds suggest that extended Xie-Beni
and Kwon’s indices are effective in identifying optimal regions. The inability of
other validity measures in identifying optimal regions could be attributed to short-
comings inherent in their formulation. Several of these indices are based only on
fuzzy membership degrees and lack connection to structure of the data.

Furthermore, the optimal partition identified using the fuzzy cluster validity in-
dices is seen to have clusters which are similar to the plausible hydrologic regions
recognized by visual inspection of clusters formed by hardening fuzzy partition ma-
trix. Although this may not happen always, it gives confidence in the regions that
are determined for flood frequency analysis.

In general, groups of watersheds formed by using cluster analysis are statisti-
cally heterogeneous. Therefore it is necessary to adjust the clusters to improve their
homogeneity. The Fuzzy memberships of sites in clusters are found to be useful in
adjusting the regions. The effort needed to adjust a region is found to be significant
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Fig. 3.5.37 Comparison of fuzzy clusters 7, 6 and 4 with the fuzzy regions formed by adjusting
the same. The composition of a fuzzy region (cluster) is expressed using histograms of the fuzzy
memberships of sites (feature vectors) belonging to the region (cluster). Sites with membership
greater than 1/c in a cluster are considered to belong to the cluster

when hard clusters formed by defuzzification of result from fuzzy clustering algo-
rithm are used to form hydrologic regions. In contrast, the effort needed to form
homogeneous regions by adjusting fuzzy clusters derived from fuzzy clustering
algorithm is found to be smaller.

The results shown in this chapter strongly support the use of fuzzy cluster analy-
sis to derive homogeneous regions, which are effective for flood frequency analysis.
The following conclusions are drawn:
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Fig. 3.5.38 Comparison of fuzzy cluster 2 with the fuzzy regions 6 and 7 formed by splitting
the same

Table 3.5.7 Characteristics
of the regions formed using
FCM cluster analysis

Region
number

Heterogeneity measure

NS RS H1 H2 H3

1 52 911 0.63 0.83 −0.07
2 60 2010 0.89 0.92 −0.08
3 40 837 0.23 0.95 0.11
4 75 3274 0.79 0.80 −0.08
5 22 975 0.97 −0.13 −0.77
6 10 431 13.51 5.71 2.62
7 24 1012 0.48 0.03 0.79
8 14 160 0.99 −0.24 −1.70

(i) The optimal number of clusters (c) for regionalization has to be determined
through detailed analysis of results from the fuzzy clustering algorithm and by
using information from potential cluster validity measures.

(ii) The clusters formed by using FCM algorithm are sensitive to variation in the
value of fuzzifier (μ) for a chosen number of clusters (c). Hence the optimal
value of μ for regionalization has to be determined through careful investiga-
tion. It is not appropriate to use μ = 2 as a default choice, which appears to be
a common practice.

(iii) The fuzzy cluster validity measures such as partition coefficient, partition
entropy, fuzziness performance index, and normalized classification entropy,
which lack direct connection to structure in multi-dimensional space of feature
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Fig. 3.5.39 The seven
hydrological regions
identified by Glatfelter (1984)
for estimating the magnitude
and frequency of floods on
streams in Indiana

vectors prepared from watershed attributes, are inefficient in deriving hydro-
logically homogeneous regions.

(iv) Fuzzy cluster validity indices that simultaneously take into account the prop-
erties of the fuzzy membership degrees and the structure of the data (example,
extended Xie-Beni Index, Kwon’s Index), are effective in identifying optimal
partition.

Table 3.5.8 Fuzzy
memberships of the sites
belonging to Region 8 in
Regions 2 and 8

USGS site
number

Membership of site in:

Region-2 Region-8

03373850 0.0003 0.9984
03373680 0.0015 0.9915
03302690 0.0014 0.9907
03360400 0.0027 0.9827
03303250 0.0059 0.9680
03302350 0.0041 0.9675
03372680 0.0167 0.8961
03276640 0.0162 0.8552
03303440 0.0463 0.8016
03356780 0.0525 0.6308
03303900 0.1574 0.4273
04095250 0.0509 0.3709
03378590 0.2065 0.2569
03376600 0.2580 0.2182
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Fig. 3.5.40 Location of the regions defined by using the hybrid cluster analysis. The grey coloured
lines within each region denote boundaries of 11 digit watersheds in Indiana, USA. Region 8,
which is thoroughly mixed with Region 2, is not marked by soft boundary
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(v) The effort needed to form homogeneous regions by adjusting the ‘hard clus-
ters’ formed by defuzzification of FCM results could be considerable.
Therefore, it is suggested that the final outcome of the fuzzy clustering al-
gorithm be obtained as a set of ‘fuzzy clusters’, which could be adjusted with
relatively smaller effort.



Chapter 4
Regionalization by Artificial Neural Networks

4.1 Introduction

Over the past two decades, artificial neural network (ANN) based models have been
extensively developed and studied in an effort to simulate the behavior of the biolog-
ical neurons in the human brain. The nonlinearity and flexibility embedded in ANNs
makes them useful in a variety of physical science applications, including hydrology
(Govindaraju and Rao, 2000; ASCE Task Committee on Artificial Neural Networks
in Hydrology, 2000a,b). In this chapter, the efficacy of a special class of such net-
works called Kohonen Self-Organizing Feature Maps (SOFMs) for regionalization
of watersheds is discussed.

4.2 Kohonen Self-Organizing Feature Maps (SOFMs)

The SOFMs, also called topology-preserving maps, belong to the category of com-
petitive learning networks. They are based on unsupervised learning, which means
that no target outputs are needed for classifying the given data. These networks
attempt to find topological structure in the input data by mapping given data onto a
feature map, also referred to as output layer or output space.

There are two different models of self-organizing neural networks (Su and
Chang, 2000): Willshaw-Von Der Malsburg model (Willshaw and Malsburg, 1976)
and Kohonen model (Kohonen, 1982). The former model is specialized to mappings
where the dimension of input space is the same as that of output space, whereas the
latter model is capable of generating mappings from high-dimensional input spaces
to lower dimensional output space, known as Kohonen layer. An overview of self-
organizing maps, including recent developments and their engineering applications
are found in Kohonen et al. (1996), Obermayer and Sejnowski (2001), among others.

The SOFM (Kohonen, 1982) has been used in regionalization studies (Hall and
Minns, 1998, 1999; Hall et al., 2002; Jingyi and Hall, 2004), with one-dimensional
(1-D) Kohonen layer (also called linear Kohonen network). But the choice of num-
ber of nodes in the Kohonen layer remains subjective. Hall and Minns (1998, 1999)
examined the utility of Kohonen network for regionalization by applying it to a

A.R. Rao, V.V. Srinivas, Regionalization of Watersheds, 113
C© Springer Science+Business Media B.V. 2008
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sample of 101 gauged sites in southwest of England and Wales in the United
Kingdom. Hall et al. (2002) applied the 1-D SOFM to three data sets from the
south-west of England and Wales, Wales and Scotland and to the islands of Java
and Sumatra in Indonesia. These studies did not report validation of the identified
regions by using any heterogeneity measure. Jingyi and Hall (2004), however, use
the heterogeneity measures of Hosking and Wallis (1997) to assess homogeneity
of regions identified by using 1-D SOFM from 86 gauging stations in Jiangxi and
Fujian provinces of China.

While learning, the SOFM allocates feature vectors depicting watershed charac-
teristics to various output nodes. If well defined natural groupings are inherent in the
data set, the feature vectors cluster around output nodes that are well separated from
each other. It indicates that SOFMs select the optimal number of clusters automat-
ically. This feature of SOFMs offers an advantage over hard and fuzzy clustering
methods discussed in previous chapters, which can only partition given data set into
specified number of clusters.

Nevertheless, in the absence of clearly distinguishable patterns in the given data,
it is seldom possible to interpret clusters from the output of a SOFM, irrespective
of its size and dimensionality. This is illustrated through a real world example in
this chapter. In such situations, however, SOFMs may serve as a useful precursor
to clustering algorithms. In a few recent attempts, clustering methodologies are de-
vised to group the neighbouring nodes in the Kohonen layer to form clusters. A few
algorithms which are based on this perspective are briefly reviewed in this chapter.
Further, a novel clustering algorithm which is based on Fuzzy clustering of SOFM
is presented for regionalization of watersheds for flood frequency analysis.

4.2.1 Algorithm of Kohonen Self-Organizing Feature Map

The SOFM (Kohonen, 1982) is one of the widely used artificial neural networks for
identifying topological structure in given data. It has found applications in the areas
of pattern recognition, biological modeling, data compression, signal processing and
data mining (Kohonen, 1997). A schematic for the SOFM is presented in Fig. 4.2.1.
The SOFM has an input layer and an output layer, each consisting of several nodes.
The number of nodes in the input layer is equal to the number of watershed attributes
considered for regionalization. Each node in the input layer is connected to each
node in the output layer by synaptic links. Associated with each link is a connection
strength or weight.

Let yk denote the ‘k-th’ feature vector in n-dimensional space with coordinate
axis labels (y1, . . . , yn), i.e., yk = [y1k, . . . , ynk] ∈ �n and yik denotes the value of
attribute i in the k-th n-dimensional feature vector yk .

The attributes of the feature vector yk are rescaled as

xik = wi

σi
[ f (yik)] for 1 ≤ i ≤ n, 1 ≤ k ≤ N (4.2.1)
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Fig. 4.2.1 A schematic of the
Kohonen self organizing
feature map. The input layer
consists of rescaled
watershed attributes

Kohonen Layer

Input Layer

SO
FM

 T
ra

in
in

g

where xik denotes the rescaled value of yik ; wi is the weight associated with attribute
i based on its relative importance; σi refers to the standard deviation of attribute i ;
f (·) represents the transformation function that is to be identified; and N represents
the number of n-dimensional feature vectors. Rescaling the attributes is necessary
because of the differences in their variance, relative magnitudes and importance.

In general, the k-th re-scaled feature vector is given by xk = [x1k, x2k, . . . , xnk].
The set of N rescaled feature vectors can be represented as N × n data matrix X.

X =

⎡

⎢
⎣

x11
...

xn1

. . .

. . .
. . .

x1N
...

xnN

⎤

⎥
⎦ (4.2.2)

The number of nodes in the input layer of SOFM is equal to the dimension of the
feature vector, n. The output layer, also referred to as competitive or Kohonen layer,
has m nodes organised in a lattice that is usually one- or two-dimensional. The value
of m can be chosen as maximum number of clusters to be formed (Fausett, 1994).
In the context of regionalization in hydrology, the value of m is generally chosen to
be much larger than the expected number of clusters, CExp. For a one-dimensional
SOFM, Hall and Minns (1999) chose m to be at least 2CExp, while Hall et al. (2002)
considered the same to be at least 3CExp.

The SOFM algorithm is as follows:

(i) Initialize weights {wi j , i = 1, . . . n, j = 1, . . . m} of the connections from
the n input nodes to the m output nodes, randomly. These random weights
are generally chosen from the same range of values as the components of the
input vectors. Let w j = {w1 j , w2 j , . . . , wnj } denote weight vector between
the output node j and the nodes in the input layer. Set iteration t = 0.

(ii) Swap X to X′.
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(iii) Draw an input vector xk from X′ (randomly without replacement) and compute
its distance from w j by using Euclidean metric. Find the winning output node
� as

� = arg min
j

∥
∥xk(t) − w j (t)

∥
∥ j = 1, 2, . . . , m (4.2.3)

(iv) Update the weight vectors by

w j (t + 1) = w j (t) + η(t)h j,�(t)[xk(t) − w j (t)] (4.2.4)

where η(t) is the learning-rate parameter for iteration t , and h j,�(t) is called a
neighborhood function. The quantity η(t) is chosen to decrease monotonically
with increase in t as

η(t) = η(0) exp

(

− t

τ1

)

(4.2.5)

where η(0) is selected to have a value close to 0.1, τ1 is a constant that is
typically set equal to the maximum number of iterations tmax (e.g., 1000).

In Eq. (4.2.4), the neighborhood function h j,�(t), centered around the win-
ning node �, is given by

h j,�(t) = exp

(

− d2
�, j

2σ 2(t)

)

(4.2.6)

where d�, j is the topological distance between the winning node � and its
neighboring node j in the output layer,

d�, j = ∥
∥r� − r j

∥
∥ (4.2.7)

where the discrete vector r� defines the position of the winning node � and
the discrete vector r j defines the position of its neighboring node j , both of
which are measured in discrete output space.

In Eq. (4.2.6), the parameter σ (t) is the effective width of the topological
neighborhood h j,�(t) at time step t .

σ (t) = σ (0) exp

(

− t

τ2

)

(4.2.8)

where σ (0) is set to be equal to the radius of the lattice in the output layer of
SOFM (Fig. 4.2.2); τ2 is a constant estimated by

τ2 = tmax

lnσ (0)
(4.2.9)
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Fig. 4.2.2 Schematic of the
diameter (D) of the Kohonen
lattice of SOFM – (a) square
lattice and (b) rectangular
lattice. The neighborhood of
winning neuron at iteration
t = 0 of SOFM is chosen as
radius of the lattice, which is
equal to D/2

DD

(a)

DD

(b)

From Eqs. (4.2.8) and (4.2.9) it follows that for t = 0, σ (t) = σ (0), while for
t = tmax, σ (t) = 1. In other words, at t = 0 almost all nodes in the output layer
centered on the winning node are updated, whereas at the end of iterations only
a few neighboring nodes around a winning node are updated. Further, it can
be inferred from Eq. (4.2.6) that h j,�(t) will shrink (or decay) exponentially
with increase in t .

(v) If X′ is empty go to step (vi), else go to step (iii).
(vi) If t ≥ tmax go to (vii), else increment ‘t’ to ‘t + 1’ and continue with step (ii)

until no noticeable changes in the feature map are observed.
(vii) Assign to each input vector xk the label of its winner output node j( j =

1, . . . , m) using Eq. (4.2.3). The m ′ winning output nodes (m ′ ≤ m) are
referred to as prototypes. A detailed description of the SOFM algorithm is
found in Haykin (2003).

4.3 Example of Using SOFMs for Regionalization

4.3.1 Features Used

The sensitivity of flood response of Indiana watersheds to variation in the values
of watershed attributes is discussed in Section 2.4.1. As described before, this lead
to selection of the attributes mean annual precipitation, drainage area, slope of the
main channel in the drainage basin, soil runoff coefficient, and storage.

It is natural to expect that nearby watersheds exhibit similar extreme flow re-
sponses due to similarities in the causal precipitation events which form input to
the flow generation process in the watersheds. Keeping this in view, the latitude
and the longitude which reflect physical proximity of sites are chosen as attributes
to identify regions that are geographically contiguous. Information pertaining to all
these attributes was available for the 245 stations considered.
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4.3.2 Results from SOFM

The selected seven attributes were used to form clusters of watersheds in Indiana,
USA, using SOFM. The number of nodes in the input layer of the SOFM is equal
to 7 (i.e., the number of attributes chosen for cluster analysis), while those in the
Kohonen layer (KL) were chosen to be at least two times the expected number
of clusters. In practice, the expected number of clusters in a study region is not
known a priori, and was estimated as 12 (≈245/20) assuming that regions with
average size of 20 sites will be formed. Thus, the plausible grid size of KL was
24 (= 2 × 12) nodes. Hosking and Wallis (1997, pp. 119–123) report that with an
index-flood procedure, unless extreme quantiles with non-exceedance probability
greater than 0.999 are to be estimated, there is little gain in the accuracy of flood
quantile estimates by using regions larger than about 20 sites.

To arrive at an appropriate architecture for the KL, sensitivity in the spatial re-
lationships of mapping produced by SOFM was analyzed for a few alternate KL
sizes by visual inspection of several 1- and 2-D feature maps. Previous regional-
ization studies in hydrology (Hall and Minns, 1999; Hall et al., 2002; Jingyi and
Hall, 2004) have considered 1-D feature maps. However, in view of the fact that
regionalization of watersheds occurs in 2-D, it is expected that 2-D KL maps would
be more revealing. Further, for the 2-D feature maps, a square grid was considered
for the KL. Other possible shapes for the KL include rectangular and hexagonal.
The grid size of 2-D KL was varied from 5 × 5 nodes to 11 × 11 nodes, with an
increment of one node for each edge.

It is noted from the results of SOFM that irrespective of the architecture cho-
sen for KL, same groups of feature vectors are always mapped onto nearby nodes
on the KL. Further, increase in the size of grid resulted in increase in the count
of nodes with zero (or no) mapping on the KL. It was observed that the feature
maps generated did not reveal any information that would allow selection of an
appropriate number of clusters. This could possibly be due to lack of well defined
natural groups in the data. A typical example of result from linear (1-D) SOFM
is shown in Fig. 4.3.1. It can be seen that the distribution of the number of hits
at nodes on the lattice is fairly uniform with little indication of any preferential
grouping. Figure 4.3.2 shows examples of 6 × 6 and 8 × 8 2-D Kohonen lattices.
No specific patterns could be discerned with this classical application of SOFMs.
While previous studies have utilized 1-D feature maps for regionalization (Hall
and Minns, 1999; Hall et al., 2002; Jingyi and Hall, 2004), the results obtained
herein suggest that additional steps are required for identification of homogeneous
regions.

To form clusters using SOFM, two options are considered. In the first option,
1-D feature map is used with the number of nodes in its output layer equal to the
number of clusters to be formed. As the second option, a novel procedure involving
clustering of 2-D feature map formed with SOFM is considered (Srinivas et al.,
2008). The results obtained from the first option are presented and discussed in the
following Section 4.3.2.1, whereas the algorithm and results obtained for the second
option are presented in the next section.



4.3 Example of Using SOFMs for Regionalization 119

0
1 3 5 7 9 11 13 15 17 21 2319

5

10

15

20

25

N
um

be
r 

of
 h

its

Output neuron

Fig. 4.3.1 Typical count map for one-dimensional Kohonen lattice obtained with classical SOFM
developed for regionalization of watersheds in Indiana, USA, which illustrates the ambiguity in
interpreting the number of clusters based on the number of hits at nodes (neurons) on the lattice

4.3.2.1 Identification of Plausible Regions Through 1-D SOFM

The 1-D feature map is used to form regions, by considering the number of nodes
in the output layer to be equal to the number of clusters to be formed. To examine
the sensitivity of results obtained from the feature map to number of nodes in the
output layer of the SOFM, m is varied from 1 to 12. Further, three different sce-
narios were considered to form clusters of watersheds. In the first scenario, equal
weight is assigned to all the seven attributes in Eq. (4.2.1). In the second scenario,
weight assigned to drainage area is twice the weight assigned to other attributes. In
the third scenario, feature maps are formed without geographic location attributes
(latitude and longitude), with equal weight for all the other attributes. Comparison
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Fig. 4.3.2 Count maps for typical two-dimensional Kohonen lattices obtained with classical
SOFM developed for regionalization of watersheds in Indiana, USA. Note that no clear picture
is revealed for identifying the number of clusters for regionalization
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of results from scenario-1 with those from scenario-3 helps in understanding the role
of latitude and longitude in forming clusters that are geographically contiguous.

Further, the plausible hydrologic regions are identified by using two procedures.
In the first procedure, the clusters provided by the feature map are visually in-
terpreted. In the second procedure, hard cluster validity measures that have been
described in Chapter 2 are adopted to determine optimal number of regions.

Identification of Regions Through Visual Interpretation of Clusters

The geographic location of clusters obtained from the 1-D feature map for the three
scenarios is shown in Fig. 4.3.3(a–i), whereas the sizes of clusters and their homo-
geneity statistics are shown in Figs. 4.3.4–4.3.9.

The extent to which regional frequency analysis is preferable to at-site analysis
depends on the number of sites in a region. In general, majority of identified clusters
tend to be homogeneous with increase in m. However, increase in m provides several
small clusters that are ineffective for regional flood frequency analysis. Hence, for

(a) 

(b) 

S-1: m = 2 S-2: m = 2 S-3: m = 2

S-1: m = 3 S-2: m = 3 S-3: m = 3

Fig. 4.3.3 Location of plausible hydrologic regions in Indiana obtained from 1-D SOFM. m de-
notes the number of output nodes of SOFM; S-1, S-2 and S-3 represent Scenario-1, Scenario-2 and
Scenario-3 respectively. Each of the symbols in the diagram characterizes different clusters
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(c) 

S-1: m = 4 S-2: m = 4 S-3: m = 4

(d)

S-1: m = 5 S-2: m = 5 S-3: m = 5

(e) 

S-1: m = 6 S-2: m = 6 S-3: m = 6

(f)
S-1: m = 7 S-2: m = 7 S-3: m = 7

Fig. 4.3.3 (continued)
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(g)

S-1: m = 8

S-3: m = 9

S-3: m = 10 S-3: m = 10 S-3: m = 10

S-3: m = 9 S-3: m = 9

S-2: m = 8 S-3: m = 8

(h)

(i)

Fig. 4.3.3 (continued)

identifying plausible hydrologic regions that are effective for RFFA, optimal value
of m is determined as a tradeoff between decrease in region size and increase in
homogeneity of the region.

For m = 2 and scenario-1, the SOFM provides two clusters with well-defined
boundaries, one consisting of watersheds in northern Indiana and the other con-
sisting of those in southern Indiana. On the other hand, m = 2 and scenario-2
resulted in vague clusters in the sense that boundaries between them are not well
defined. Interestingly, scenario-3 classified almost all the stations in Indiana as a
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Fig. 4.3.4 Characteristics of clusters obtained from one-dimensional SOFM for the scenario-1
with equal weights to all the seven attributes

single cluster, except for a small group of 5 stations that are characterized by small
drainage areas, milder slopes, large storage and low runoff coefficient values (cluster
2 in Table 4.3.1). It is seen from Figs. 4.3.4–4.3.9 that for all the three scenarios, ma-
jority of the sites belong to a larger cluster that is highly heterogeneous. Therefore
m = 2 does not constitute a suitable classification for RFFA.

When m is increased to 3, scenario-1 provided a cluster in northern Indiana,
whereas the other two clusters in the southern part of the state (shown in trian-
gles and rectangles) are vague. The cluster shown in rectangles closely resembles
a cluster identified in the same location of the state with scenario-3. Further, this
cluster could also be viewed as a subset of the vague cluster that is spread through-
out Indiana for scenario-2 (Fig. 4.3.3b). Possibly, this indicates a unique identity of
the collection of those stations at m equal to 3. The first, second and third scenar-
ios classify 51%, 39% and 85% of the sites as highly heterogeneous, respectively
(Figs. 4.3.4–4.3.9). Therefore m = 3 does not constitute a suitable classification
for RFFA.

With increase in m to 4, considerable improvement is evident in the results. The
second scenario classified 40% of the stations into a highly heterogeneous cluster,
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Fig. 4.3.5 Characteristics of clusters obtained from one-dimensional SOFM for the scenario-2
with weightage to drainage area twice that of all other attributes

while the first and third scenarios classified 47% and 37% of the sites into a hetero-
geneous cluster, respectively (Figs. 4.3.4–4.3.9).

From the results for all three scenarios shown in Table 4.3.2 (as cluster 1) it is
evident that watersheds in southern-Indiana (shown as rectangles in Fig. 4.3.3(c))
consist of small drainage basins with steep slopes, low surface storage, high pre-
cipitation and moderate to high runoff coefficient values. Cluster 3 for scenario 2
and cluster 2 for scenario 3 (shown as + symbols in Fig. 4.3.3(c)) contain drainage
basins with high storage and low runoff coefficients (Table 4.3.2). The cluster in
northern Indiana consists of sites that are highly heterogeneous (cluster 3 for scenar-
ios 1 and 3; cluster 2 for scenario 2; Figs. 4.3.7–4.3.9). In Fig. 4.3.3c, the triangles
shown in south and south-central Indiana represent large drainage basins with milder
slopes (cluster-2 for scenario-1; cluster-4 for scenarios 2 and 3 in Table 4.3.2). Since
the fraction of stations classified into highly heterogeneous clusters was fairly high
for the choice of m equal to 4, the clusters were not used to derive regions for flood
frequency analysis.

For the choice of m = 5, the algorithm provided clusters shown in Fig. 4.3.3d.
The triangles seen in south and south-central Indiana represent drainage basins with
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Fig. 4.3.6 Characteristics of clusters obtained from one-dimensional SOFM for the scenario-3
without latitude and longitude as attributes and with equal weights to all other five attributes

milder slopes and high runoff coefficient values (cluster-1 for scenario-1; cluster-5
for scenario 2; cluster-3 for scenario 3 in Table 4.3.3). Scenario-1 provided a cluster
in central Indiana (represented by squares in Fig. 4.3.3d) which includes medium
size basins that are characterized by milder slopes, low storage, moderate precipita-
tion and runoff coefficient values.

The darkened circles include small drainage basins with short records, mild
slopes and low storage (Fig. 4.3.3d, cluster-5 for scenarios 1 and 3 and cluster-3
for scenario-2 in Table 4.3.3). Average record length at the sites in these clusters
is in the range 13–15-years. While 36% of the stations comprising the darkened
circles in case of scenario-1 were found to have record lengths less than 10 years,
the respective values for scenarios 2 and 3 were found to be 57–60%.

Characteristics of the cluster represented by ‘+’ symbols in case of scenarios 2
and 3 are same as those reported for a similar cluster for the choice of m equal to 4.
This cluster has just 5 stations and 157 station-years of data. Such small clusters are
not suitable for regional flood frequency analysis. In case of scenario-3, this cluster
is evident for all the values of m in the range 2–10, whereas in case of scenario-1
this cluster emerges at m equal to 8 and persists when m is increased beyond 8. For
scenario-2, this cluster emerges for the choice of m = 4. In order to save space,
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Fig. 4.3.7 Effect of increase in the number of clusters on heterogeneity measures – Results from
one-dimensional SOFM for the scenario-1 with equal weights to all the seven attributes

characteristics of this cluster are not discussed repeatedly in the following part of
this chapter.

In effect, for the choice of m equal to 5 we have three predominant plausible
regions in case of scenario-1 (shown as circles, squares and triangles), while only
two predominant plausible regions in case of scenarios 2 and 3 (shown as circles and
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Fig. 4.3.9 Effect of increase in the number of clusters on heterogeneity measures – Results from
one-dimensional SOFM for the scenario-3 without latitude and longitude as attributes and with
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triangles). All other clusters appear to be insignificant in terms of their information
content.

Furthermore, it is noted that the first scenario classified only 21% of the sta-
tions into a highly heterogeneous cluster, whereas in the second and third scenarios
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Table 4.3.1 Centers of the two clusters obtained from one dimensional SOFM for the three typical
scenarios

S CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1 1 330.19 8.97 40.57 86.14 0.842 37.74 0.63
2 348.66 45.37 38.91 86.34 0.442 41.84 0.80

2 1 500.18 6.65 40.04 86.22 0.836 39.12 0.68
2 1.75 57.43 39.68 86.21 0.374 39.82 0.72

3 1 344.17 23.61 – – 0.474 39.40 0.70
2 69.15 8.15 – – 9.105 37.17 0.50

S denotes Scenario; CN is cluster number; A denotes drainage area; LAT and LONG refer to
Latitude and Longitude in decimal degrees; STOR denotes drainage area covered by lakes; P stands
for precipitation; RC is runoff coefficient

39% and 31% of the sites belong to highly heterogeneous clusters, respectively
(Figs. 4.3.4–4.3.9 and circles in Fig. 4.3.3d).

Among the six clusters obtained for the choice of m equal to 6, the sites in cluster-
6 for scenario-2 and those in cluster-1 for scenarios 1 and 3 depict small drainage
basins with short records, steep slopes, low surface storage, high precipitation and
high runoff coefficient values (Table 4.3.4). These sites represented as rectangles are
spread in southern Indiana (Fig. 4.3.3e). They closely resemble the clusters obtained
in the same region of the state for m = 5.

Further, clusters represented by hollow circles in northern Indiana and those
represented by triangles in southern Indiana closely resemble the clusters noted in
the respective parts of Indiana for scenario-1 at m = 5 (Figs. 4.3.3d and 4.3.3e).
The hollow circles represent a highly heterogeneous collection of medium size
drainage basins with milder slopes, low precipitation and low runoff coefficient

Table 4.3.2 Centers of the four clusters obtained from ANN clustering algorithm for the three
typical scenarios. In a few typical columns, the least and/or highest values of attributes are shown
in bold font

S CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1 1 0.37 124.25 39.08 85.76 0.321 41.98 0.82
2 632.92 10.81 39.08 86.24 0.495 41.32 0.78
3 264.63 8.34 40.79 86.09 1.007 37.34 0.60
4 2.83 37.23 39.42 87.20 0.121 39.70 0.69

2 1 1.10 61.37 39.69 86.24 0.199 39.82 0.72
2 369.28 5.43 40.71 86.15 0.693 37.47 0.62
3 56.18 9 41.23 85.66 9.994 37.80 0.50
4 663.07 10.02 38.94 86.32 0.507 41.67 0.79

3 1 0.38 109.51 – – 0.285 41.98 0.81
2 56.18 9 – – 9.994 37.80 0.50
3 191.54 13.1 – – 0.501 37.20 0.57
4 550.41 8.99 – – 0.538 40.38 0.77

S denotes Scenario; CN is cluster number; A denotes drainage area; LAT and LONG refer to
Latitude and Longitude in decimal degrees; STOR denotes drainage area covered by lakes; P stands
for precipitation; RC is runoff coefficient
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Table 4.3.3 Centers of the five clusters obtained from ANN clustering algorithm for the three
typical scenarios

S CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1 1 751.18 9.79 38.81 86.45 0.601 42.13 0.81
2 283.86 7.60 41.29 86.27 1.75 36.76 0.45
3 0.36 153.60 39.04 85.96 0.26 42.18 0.78
4 299.87 9.87 40.18 85.91 0.35 38.30 0.73
5 1.66 40.60 39.28 86.77 0.26 40.37 0.75

2 1 56.18 9.00 41.23 85.66 9.994 37.80 0.50
2 386.65 5.10 40.70 86.16 0.714 37.49 0.62
3 2.23 26.37 40.27 86.19 0.134 38.14 0.64
4 0.33 113.86 38.85 86.30 0.311 42.32 0.81
5 669.70 10.03 38.93 86.32 0.511 41.71 0.79

3 1 56.18 9.00 – – 9.994 37.80 0.50
2 0.31 175.54 – – 0.206 43.08 0.79
3 583.25 8.35 – – 0.490 40.80 0.78
4 335.34 6.04 – – 0.741 36.84 0.55
5 1.41 41.27 – – 0.215 39.51 0.73

S denotes Scenario; CN is cluster number; A denotes drainage area; LAT and LONG refer to
Latitude and Longitude in decimal degrees; STOR denotes drainage area covered by lakes; P stands
for precipitation; RC is runoff coefficient

Table 4.3.4 Centers of the six clusters obtained from ANN clustering algorithm for the three
typical scenarios

S CN A (miles)2 Slope (ft/mile) LAT LONG STOR (%) P (in) RC

1 1 0.31 175.54 38.94 86.45 0.206 43.08 0.79
2 3.08 38.22 39.44 87.35 0.105 39.69 0.69
3 278.61 7.72 41.27 86.27 1.717 36.79 0.45
4 435.36 5.89 40.12 85.93 0.403 38.39 0.73
5 3.93 40.49 39.61 85.55 0.324 39.78 0.79
6 745.50 9.23 38.77 86.55 0.637 42.31 0.80

2 1 357.14 4.35 41.22 86.55 0.960 36.79 0.47
2 56.18 9.00 41.27 85.66 9.994 37.80 0.50
3 730.99 5.71 39.99 85.92 0.443 38.74 0.74
4 249.75 13.06 38.77 86.42 0.644 42.29 0.82
5 1.85 26.14 40.30 86.19 0.106 38.07 0.64
6 0.33 113.86 38.85 86.30 0.311 42.32 0.81

3 1 0.31 175.54 – – 0.206 43.08 0.79
2 1.48 40.78 – – 0.214 39.48 0.73
3 56.18 9.00 – – 9.994 37.80 0.50
4 560.27 10.83 – – 0.613 42.41 0.81
5 510.30 5.74 – – 0.428 38.42 0.73
6 325.03 6.09 – – 0.906 36.45 0.44

S denotes Scenario; CN is cluster number; A denotes drainage area; LAT and LONG refer to
Latitude and Longitude in decimal degrees; STOR denotes drainage area covered by lakes; P stands
for precipitation; RC is runoff coefficient
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values (cluster-3 for scenario-1; cluster-1 for scenario 2; cluster-6 for scenario-3 in
Table 4.3.4). This cluster has 17–21% of the stations considered for cluster analysis
(Figs. 4.3.4–4.3.6). The tendency of the SOFM algorithm to filter out highly hetero-
geneous collection of basins into a cluster is evident from the foregoing discussion
of results for the choice of m in the range 2–6.

The triangles seen in south and south-central Indiana denote medium to large size
drainage basins with milder slopes and high runoff coefficient values (Fig. 4.3.1e;
cluster-6 for scenario-1, cluster-4 for scenarios 2 and 3 in Table 4.3.4). Also, the
squares shown in central Indiana for the three scenarios depict medium to large
size basins that are characterized by milder slopes, low storage, moderate precipita-
tion and runoff coefficient values (cluster-4 for scenario-1; cluster-3 for scenario-2;
cluster-5 for scenario-3 in Table 4.3.4).

For scenario-1, the sites represented as darkened circles for m = 5 split up into
two clusters at m = 6 which are coded as darkened diamonds and darkened squares
(Figs. 4.3.3d and 4.3.3e; clusters 2 and 5 in Table 4.3.4). A slight difference is ev-
ident in the runoff coefficient values and storage at the two resulting clusters. The
collection of these stations closely resembles cluster-2 provided by scenario-3 that
does not consider latitude and longitude as attributes for the cluster analysis. Thus,
the split in case of scenario-1 seems to be primarily the effect of considering latitude
and longitude as features for cluster analysis.

The collection of sites coded as darkened diamonds and darkened squares in case
of scenario-1 and those represented as darkened circles for scenarios 2 and 3 consists
of small drainage basins with short records, mild slopes and low storage (Fig. 4.3.3e;
clusters 2 and 5 for scenario 1, cluster-5 for scenario 2, cluster-2 for scenario 3 in
Table 4.3.4). These results are further corroborated by Figs. 4.3.10–4.3.12, which
compare record lengths at sites in this cluster with those at other sites considered
for cluster analysis.

When m was increased beyond 6, several of the clusters provided by the SOFM
for all the three scenarios showed remarkable resemblance to those obtained for the
choice of m = 6. Among those, clusters coded as hollow circles in northern Indiana,
squares in central Indiana and triangles in southern Indiana are noteworthy. They
can be considered as plausible hydrologic regions because they are all significant in
terms of pooled information content.

Further, emergence of a cluster is noted in southeastern part of Indiana for m ≥ 7.
The catchments in this cluster are characterized by high runoff coefficient values.
It may also be considered as one of the hydrologic regions. Several other clusters
that are noted in southern Indiana for m > 6 are small (example, pentagons, x and
darkened triangles in Figs. 4.3.3f–i).

Identification of Optimal Partition Through Cluster Validity Measures

The optimal number of clusters formed by SOFM for the Indiana dataset is identi-
fied by using four hard cluster validity measures, namely Dunn’s index (VD; Dunn,
1973), Davies-Bouldin index (VDB; Davies and Bouldin, 1979), Calinski-Harabasz
index (VCH; Calinski and Harabasz, 1974), and Minimum description length (VMDL;
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Fig. 4.3.10 Comparison of record lengths at sites comprising the clusters obtained for scenario-1
at m = 6

Bischof et al., 1999; Qin and Suganthan, 2004). These measures have been described
in Section 2.3.4.

For optimal partition, the values of VDB and VM DL should be small, whereas the
values of VD and VCH should be large. It is seen from Fig. 4.3.13 that VMDL indicates
6 as the optimal value of m for all the three scenarios. The VDB indicates 6 as the
optimal value of m for scenario-1, and 8 as the optimal value of m for scenario-2.
In addition, for scenario-3, the value of the index is seen to be low for m = 2
and m = 3. However, this is a false indicator of optimal partition because clusters
obtained with the smaller values of m comprise excessively large regions, which
are generally heterogeneous and hence not suitable for RFFA (Figs. 4.3.4–4.3.9).
Similarly, it is noted that VD also gives a false indication of optimal partition for
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Fig. 4.3.11 Comparison of record lengths at sites comprising the clusters obtained for scenario-2
at m = 6
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Fig. 4.3.12 Comparison of record lengths at sites comprising the clusters obtained for scenario-3
at m = 6

scenario-3, for m equal to 2 and 3. Interestingly, for m in the range 4–11, both VDB

and VD show 6 as the optimal value of m for the scenario-3.
Furthermore, it is noted that the VD shows 5 as the optimal value of m for

scenario-1, and 8 as the optimal value of m for scenario-2. Conversely, the VC H
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indicates 6 as the optimal value of m for scenarios 1 and 3, and 8 as the optimal
value of m for scenario-2. The VCH gives a false indication of optimal partition for
the second scenario for m = 2 and m = 3.

In conclusion, majority of the cluster validity indices appear to indicate 6 as the
optimal value of m for scenarios 1 and 3. On the contrary, for scenario-2 they appear
to indicate 8 as the optimal value of m.

The optimal partition identified using the cluster validity indices for the scenarios
1 and 3 are found to be very similar to the plausible hydrologic regions recognized
by visual inspection of clusters of watersheds in Indiana.

Comparison of the clusters obtained for m = 6 for the scenarios 1 and 3 show
that four of the six clusters, which are coded as hollow circles in northern Indiana,
squares in central Indiana, rectangles and triangles in southern Indiana are very
similar (Fig. 4.4.3e). In addition, the sites which are shown as darkened circles for
scenario-3 comprise the sites that are coded as darkened diamonds in eastern Indiana
and darkened circles in western Indiana for scenario-1. The split up of the collec-
tion of sites in scenario-3 into eastern and western parts in scenario-1 is attributed
to the use of location attributes (latitude and longitude) for regionalization in the
scenario-1.

The reason underlying use of location attributes has already been mentioned in
Section 4.3.1. In this setting, the plausible hydrologic regions (i.e., clusters) obtained
from scenario-1 are adjusted following the procedure described in Section 2.4.3 and
using the options listed in Section 1.4.1.

Considerable effort was required to adjust the clusters determined using SOFM.
In the process, additional 28 gauging stations in Indiana having a minimum record
length of 10 years were considered for inclusion in the regions based on geo-
graphical contiguity following option (viii) of Section 1.4.1. Hydrologic regions
1, 2, 3 and 4 shown in Fig. 4.3.15 resulted upon revising the clusters coded
as darkened circles, triangles, darkened diamonds and squares, respectively, in
Fig. 4.3.3(e). The highly heterogeneous cluster coded as hollow circles in north-
ern Indiana was split into two parts. The part which had highly heterogeneous
sites constituted Region 6 and the remaining sites were merged with sites elim-
inated while forming hydrologic region 4 to derive hydrologic region 5. Consid-
erable effort was necessary for adjusting clusters to derive regions 3, 5 and 6.
This could be because the set of plausible hydrologic regions (clusters) are iden-
tified using conventional SOFM, which has limitations in determining structure in
hydrologic data.

In the region revision process, first the sites that are flagged discordant by the
discordancy measure of Hosking and Wallis (1997) are identified. Secondly, the
heterogeneity measures (H1, H2 and H3) of the region to be adjusted are examined
as they changed with exclusion of each site from the region. Thirdly, the discor-
dant site, whose exclusion reduces the heterogeneity measures for the region by a
significant amount, is identified and removed from the region after ensuring that the
site discordancy is not due to sampling variability. In some instances, a site excluded
from one region would fit in more than one region. Such a site is considered to be
common to all the concerned regions.
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Fig. 4.3.14 Comparison of peak flow records for sites in the adjusted regions
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4.3.3 Testing the Regions for Robustness

The Regions are tested for robustness following the procedure described in previ-
ous chapters. Peak flow records of sites in each region are examined (Fig. 4.3.14).
Regions 1 to 4 have sites with large variation in their record length. Hence they
are tested for robustness. By specifying various threshold values, the stations with
record lengths significantly different from that of the rest of the group are removed
and the region with the remaining stations was examined for homogeneity. The re-
sults presented in Table 4.3.5 show that the Regions 1 to 4 are robust.

The study resulted in delineation of Indiana into five homogeneous regions, one
heterogeneous region and an unallocated residue of 23 stations of which 21 are lo-
cated in Indiana (Fig. 4.3.15). These residual stations have a collective record of 506
station-years. The values of heterogeneity measures shown in Table 4.3.6 indicate
that regions 1 to 5 are all acceptably homogeneous, while region-6 adjoining Lake
Michigan is highly heterogeneous. All the homogeneous regions identified have suf-
ficient pooled information to be effective for flood frequency analysis. Interestingly,
the delineated regions bear remarkable resemblance with geological features and
soil regions of Indiana (Figs. 4.3.16–4.3.18).

Table 4.3.5 Results from testing the regions for robustness. R denotes Region number, and NS
represents number of stations

R Condition NS Heterogeneity measure Region type

H1 H2 H3

1 Entire region 59 0.86 −0.12 −0.94 Homogeneous
Sites with RL≤10 are

eliminated
41 1.08 0.07 −0.73 Possibly

Homogeneous
Sites with RL<20 are

eliminated
31 0.88 0.40 −0.24 Homogeneous

Sites with RL≥35 are
eliminated

51 0.39 −0.24 −0.75 Homogeneous

2 Entire region 58 0.85 0.43 −0.65 Homogeneous
Sites with RL<20 are

eliminated
36 0.58 1.16 0.56 Homogeneous

Sites with RL>50 are
eliminated

49 0.88 0.48 −0.76 Homogeneous

Sites with RL≤10 and RL>50
are eliminated

40 0.85 0.87 −0.17 Homogeneous

3 Entire region 30 −0.46 0.66 0.28 Homogeneous
Sites with RL≤10 are

eliminated
21 −0.28 0.40 0.20 Homogeneous

Sites with RL<20 are
eliminated

15 −0.41 0.01 −0.10 Homogeneous

4 Entire region 73 0.48 −0.40 −1.78 Homogeneous
Sites with RL<20 are

eliminated
63 0.81 0.12 −1.03 Homogeneous
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Fig. 4.3.15 Location of the regions defined using the 1-D SOFM

Table 4.3.6 Characteristics
of the regions formed using
SOFM

Region
number

N RS Heterogeneity measure

H1 H2 H3

1 62 1689 0.86 −0.12 −0.94
2 58 1730 0.85 0.43 −0.65
3 30 804 −0.46 0.66 0.28
4 73 3039 0.48 −0.40 −1.78
5 42 1938 0.04 −0.91 −0.85
6 14 519 13.69 6.33 2.94

N: Number of stations; RS: Region size in station years
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4.4 Regionalization by Two-Stage Clustering of SOFM

4.4.1 Introduction

The SOFM is an unsupervised learning technique that is useful for extracting the topo-
logical structure hidden in the higher dimensional data of input vectors that contain
watershed attributes perceived as being important for regionalization. However, as
demonstrated in the previous section, it is not always possible to interpret patterns in
the output of SOFM. In this context, the second option that has been considered to form
regions isclusteringofnodes in2-Dfeaturemap.Anovelalgorithmfor regionalization
of watersheds using two-level SOFM clustering is presented in this section.

4.4.1.1 Two-Level Clustering – Historical Perspective

The SOFM may be viewed as a nonlinear generalization of principal component
analysis (Ritter, 1995). In contrast, clustering algorithms attempt to partition data
into clusters or natural groups such that the data within a cluster are as similar as
possible, and data belonging to different clusters are as dissimilar as possible. There-
fore, an SOFM pursues a goal that is conceptually different from that of clustering
(Pal et al., 1993, Wu and Chow, 2004). However, an SOFM can be successfully
utilized as a first step in clustering algorithms. In the past decade this idea has been
explored. Lampinen and Oja (1992) proposed a two-level SOFM, where outputs of
the first SOFM are fed into a second SOFM as inputs. This model was shown to
perform better than SOFM and classical K-means algorithms in classifying artifi-
cial data and sensory information from low-level feature detectors in a computer
vision system. Murtagh (1995) proposed an agglomerative contiguity-constrained
clustering method to merge (or group) the neighbouring nodes in the output from
SOFM, based on a minimal distance criterion. The efficiency of this model was
demonstrated for classification of Infrared Astronomical Satellite Point Source Cat-
alog (IRAS PSC) data. Kiang (2001) extended the idea of merging neighbouring
nodes of SOFM by using a minimum variance criterion as an alternative to mini-
mum distance criterion. The performance of the method was tested with machine
learning databases. Vesanto and Alhoniemi (2000) applied both hierarchical ag-
glomerative and partitional K-means clustering algorithms to group the output from
SOFM. Through experiments on real and artificial data sets, the model was shown to
perform well compared to direct clustering of data using hierarchical agglomerative
and partitional K-means clustering algorithms. More recently, Wu and Chow (2004)
used cluster validity index based on inter- and intra-cluster density for merging the
neighbouring nodes in the output from SOFM to obtain final clusters.

4.4.2 Algorithm for Fuzzy Clustering of Kohonen SOFM

The algorithm presented in this section has two levels. In the first level, the al-
gorithm of SOFM, which has been presented in Section 4.2.1, is used to form a
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two-dimensional feature map. In the second level, nodes in the two-dimensional
feature map are clustered by using Fuzzy C-Means (FCM) algorithm to form regions
for flood frequency analysis. A schematic for the two-level model is presented in
Fig. 4.4.1.

The m ′ output nodes in Kohonen layer, which are winners for at least one input
vector, are considered for clustering by FCM algorithm. These m ′ winning output
nodes (m ′ ≤ m) are referred to as prototypes. The final weight matrix after the
SOFM step is the m ′ × n data matrix W′.

W′ =

⎡

⎢
⎣

w11
...

wn1

. . .

. . .
. . .

w1m ′

...
wnm ′

⎤

⎥
⎦ (4.4.1)

Let w′
j denote the ‘ j-th’ prototype in n-dimensional space i.e., w′

j = [
w1 j , . . . ,

wnj
] ∈ �n , and let V = (v1, . . . , vc) represent a c-tuple containing c fuzzy cluster

centroids. The FCM algorithm partitions the matrix W′ into c overlapping subsets
(or clusters) by minimizing the objective function in Eq. (4.4.2).

J (U, V : W′) =
c∑

i=1

m ′
∑

j=1

(ui j )
μd2(w′

j , vi ) (4.4.2)

subject to the following constraints,

Kohonen Layer

Input Layer

Output Layer

m´ prototypes formed
at level-1 

c clusters formed
at level-2

Cluste
rin

g

SO
FM

 T
ra

in
in

g

Fig. 4.4.1 A schematic of the two-level clustering process that is recommended for regionalization.
The number of nodes in input layer is equal to the number of watershed attributes considered for
regionalization
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c∑

i=1

ui j = 1 ∀ j ∈ {
1, . . . , m ′} (4.4.3)

0 <

m ′
∑

j=1

ui j < m ′ ∀i ∈ {1, . . . , c} (4.4.4)

In Eqs. (4.4.2), (4.4.3) and (4.4.4), ui j ∈ [0, 1] and it denotes the degree of
membership of the j-th prototype w′

j in the i-th fuzzy cluster depicted by its cen-
troid vi ; U is the fuzzy partition matrix which contains the membership of each
prototype in each fuzzy cluster Eq. (4.4.5); the parameter μ ∈ [1, ∞] refers to the
weight exponent for each fuzzy membership and is called fuzzifier; d2(w′

j , vi ) is the
distance from j-th prototype w′

j to the centroid of i-th cluster vi . The general form
of the distance measure is given by Eq. (4.4.6).

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u11 · · · u1 j · · · u1m ′

...
...

...
ui1 · · · ui j · · · uim ′

...
...

...
uc1 · · · ucj · · · ucm ′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c×m ′

(4.4.5)

d2(w′
j , vi ) = (w′

j − vi )
TAi (w′

j − vi ) (4.4.6)

In Eq. (4.4.6), Ai is a positive definite, symmetric matrix associated with cluster i .
The FCM algorithm used in this study consists of Euclidean distance measure, for
which Ai = I ∀i , where I is a unit matrix. The weight exponent, μ, determines the
fuzziness of the clusters. It controls the extent of membership shared among fuzzy
clusters.

The iterative procedure of FCM algorithm (Bezdek, 1981) is summarized below:

(i) Initialize fuzzy partition matrix U (or fuzzy cluster centroid matrix V) using a
random number generator.

(ii) If the FCM algorithm is initialised with fuzzy partition matrix U, adjust the
initial memberships uinit

i j of w′
j belonging to cluster i by using Eq. (4.4.7) so

that Eq. (4.4.3) is satisfied.

ui j = uinit
i j

c∑

i=1
uinit

i j

for 1 ≤ i ≤ c, 1 ≤ j ≤ m ′ (4.4.7)

If the FCM algorithm is initialised with fuzzy cluster centroid matrix V (con-
taining c fuzzy cluster centroids vini t

1 , . . . , vini t
c ), determine memberships ui j of

w′
j belonging to cluster i using Eq. (4.4.9) below with vini t

i replacing vi .



144 4 Regionalization by Artificial Neural Networks

(iii) Compute the fuzzy centroid vi for i = 1, 2, . . . , c

vi =

m ′∑

j=1

(
ui j

)μ
w′

j

m ′∑

j=1

(
ui j

)μ

(4.4.8)

(iv) Update the fuzzy membership ui j

ui j =
(

1
d2(w′

j ,vi )

)1/(μ−1)

c∑

i=1

(
1

d2(w′
j ,vi )

)1/(μ−1)
for 1 ≤ i ≤ c, 1 ≤ j ≤ m ′ (4.4.9)

Repeat steps (iii) and (iv) until change in the value of the memberships between two
successive iterations becomes sufficiently small. At this point, following traditional
methods of fuzzy cluster analysis (Ross, 1995, p. 398), the fuzzy partition matrix,
U (shown in Eq. (4.4.5)), can be defuzzified to ultimately assign the prototypes to
clusters. For instance, in the maximum-membership method, the largest element in
each column of U is assigned a membership value of unity and all the other elements
in the column are assigned a membership value of zero.

uk j = max
1≤i≤c

{ui j } = 1; ui j = 0 for all i �= k (4.4.10)

In other words, a prototype is assigned to the cluster to which it has maximum
resemblance. Alternatively in the nearest-center classifier method, each of the pro-
totypes, w′

j , is assigned to the cluster whose centroid is closest in terms of Euclidean
distance.

If dk j = min
1≤i≤c

{di j } = min
1≤i≤c

∥
∥vi − w′

j

∥
∥ then uk j = 1;

ui j = 0 for all i �= k
(4.4.11)

As mentioned in Section 3.3.1, Hall and Minns (1999) used the aforementioned
two defuzzification methods to form hard clusters in fuzzy cluster analysis. As most
catchments often show characteristics from several regions, one cannot justify as-
signing a catchment to a single group.

In the two-stage SOFM algorithm, the prototypes obtained by using SOFM de-
pict the catchments that are tightly linked to each other. The proximity of prototypes
is determined by a threshold fuzzy membership Tj computed for each prototype j .
In other words, a fuzzy cluster is formed by assigning to it the prototypes whose
memberships in the cluster equal or exceed Tj computed by using Eq. (4.4.12).

Tj = max

{
1

c
,

1

2

[

max
1≤i≤c

(ui j )

]}

(4.4.12)
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In general, the choice of a threshold value to form fuzzy clusters is subjective.
In the fuzziest partition, the memberships of a prototype in all the clusters would
be equal to 1/c. It is logical to assign a prototype to the cluster in which it has
maximum membership. However, the decision becomes less clear when a prototype
has nearly equal memberships in several clusters.

The FCM algorithm may converge to a local minimum of the objective function.
The value of the objective function depends on initial guesses of cluster number,
cluster centers, and fuzzy memberships. These a priori assumptions are necessary,
but do not guarantee optimal partition. Over the past two decades, researchers have
been developing several heuristic cluster validity criteria to address the choice of
optimal number of clusters.

4.4.3 Example of Using Two-Level Fuzzy SOFM

The data from watersheds in Indiana, USA, which is described in Section 4.3.1, is
provided as an input to the two-level fuzzy SOFM. A square grid is considered for
the 2-D Kohonen layer (KL) in the model. Since regionalization of watersheds is
carried out in 2-D, it is expected that the 2-D KL would be more revealing than the
1-D KL which is in use for regional flood frequency analysis. Further, to determine
the architecture of the KL in the two-level model, the number of wins by each node
in the KL of trained SOFM is noted by varying the grid size of KL from 6×6 nodes
to 11 × 11 nodes, with an increment of one node for each edge.

4.4.3.1 Results from the Two-Level Fuzzy SOFM

It is seen that irrespective of the architecture chosen for KL, same groups of feature
vectors are always mapped onto nearby nodes on the KL. Further, increase in the
size of grid resulted in increase in the count of nodes with zero (or no) mapping on
the KL. The sensitivity of mapping to grid size of Kohonen layer is seen to be less
in the neighborhood of 8×8 lattice, hence it is chosen as the architecture of the KL.

To examine the sensitivity of results of the two-level model to variation in the
value of fuzzifier, μ was varied from 1.1 to 2.5 with an increment of 0.1, as sug-
gested by Pal and Bezdek (1995). Results obtained for Indiana data show that for a
specified Kohonen grid, the value of objective function of FCM algorithm decreases
with: (i) increase in the number of clusters for a specified value of fuzzifier and (ii)
increase in the value of fuzzifier for a specified number of clusters. Furthermore,
for a given number of clusters and fixed μ, the value of objective function increases
with increase in the size of Kohonen lattice.

4.4.3.2 Validation of the Results

The optimal number of clusters in the data set was identified by computing fuzzy
cluster validity indices for the partitions obtained from the second level of the two-
level clustering model. The extended Xie-Beni index Eq. (3.4.16) indicated c = 8
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as the optimal number of clusters for the value of μ equal to 1.7 (Fig. 4.4.2). For
the choice of μ in the range 2.1–2.5, the values of the cluster validity index are
quite high for some values of c, and are not included in Fig. 4.4.2 for clarity. The
heterogeneity measures, which are described in Section 1.4, showed that the regions
corresponding to the chosen partition are close to being homogeneous.

The fuzzy partition coefficient VPC , fuzzy partition entropy VP E , fuzziness per-
formance index VF P I , and normalized classification entropy VNC E that have been
used in the hydrologic literature (Bargaoui et al., 1998; Hall and Minns, 1999; Güler
and Thine, 2004) are known to exhibit monotonic tendency, which is an undesirable
characteristic of a validity measure. The values of these measures computed for clus-
ters obtained by using the two-level clustering conform to this monotonic behaviour
(Fig. 4.4.3). This suggests that these validity indices used in hydrologic literature
may not be suitable for identifying optimal number of clusters. The VPC exhibits
monotonic decreasing tendency with increase in the value of fuzzifier, whereas VP E ,
VF P I and VNC E exhibit monotonic increasing tendency with increase in the value
of fuzzifier. The disadvantage of these indices is the lack of direct connection to any
property of the data (Xie and Beni, 1991).

In cluster analysis using direct FCM, which is described in Chapter 3, all the
245 feature vectors were clustered by using FCM and the memberships of the 245
feature vectors in all the fuzzy clusters were used to compute the values of validity
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Fig. 4.4.2 The value of extended Xie-Beni index versus the number of clusters for the Indiana
data. It is used to identify optimal partition provided by the two level fuzzy SOFM with map size
of 8 × 8. The partition with the minimum value for the index is taken as the optimal partition.
μ denotes weight exponent for fuzzy membership
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indices for the clusters. However, in the proposed two-level clustering method, the
m ′ prototypes, which were obtained from 245 feature vectors using SOFM, were
clustered by FCM. Therefore, the memberships of the m ′ prototypes in the fuzzy
clusters were used to estimate the values of validity indices.

To evaluate the relative performance of direct FCM and the two-level clustering
algorithms in forming compact and well-separated clusters, the validity indices com-
puted for clusters formed by using both the methods were compared. The validity
measures are sensitive to the number of vectors used in their computation. There-
fore, to enable comparison of FCM and the two-level clustering method, the cluster
validity values for the clusters obtained by using the proposed two-level method
were re-computed using 245 feature vectors (instead of m ′ prototypes) under the
assumption that the memberships of each feature vector in all fuzzy clusters are the
same as those of the prototype to which it belongs. For the clusters obtained from
the two-level clustering method with c = 8 and μ = 1.7, the recomputed value of
extended Xie-Beni statistic was 0.358, which was less than the values of the statistic
computed for clusters obtained with direct FCM for various combinations of c and μ

(see Table 3.5.5).
The location of fuzzy clusters (plausible hydrologic regions) obtained from the

two-level fuzzy SOFM is shown in Fig. 4.4.4. These hydrologic regions are adjusted
following the procedure described in Section 2.4.3, and by using options listed in
Section 1.4.1. In the two-level fuzzy SOFM, the knowledge of distribution of mem-
bership of a prototype among the fuzzy regions is useful in adjusting the regions to
improve their homogeneity. In particular, there is no need to devote special effort
for adjustments if the threshold fuzzy membership value is properly chosen to form
the fuzzy clusters.

Sites are removed from clusters obtained by using the two-level model to form
hydrologic regions which are statistically homogeneous. First, the discordancy val-
ues for all the sites in each cluster are estimated by using the discordancy measure
described in Section 1.4.2. Table 1.4.1 provides critical values for the discordancy
measure to declare a site unusual, and using these all the sites with high discordancy
values were identified. Secondly, the heterogeneity measures (Eqs. 1.4.3–1.4.5) of
the adjusted region are examined as they change with exclusion of each site from the
region. A site is eliminated at a time with replacement. Thirdly, the discordant site,
whose exclusion reduces the heterogeneity measures of the region by a significant
amount, is identified and removed from the region after ensuring that the fuzzy
membership of the prototype containing the site in the region is not high and the
site discordancy is not due to sampling variability. The general finding of this step
of adjustment is that prototypes with weak membership get eliminated.

A comparison of un-adjusted and adjusted fuzzy clusters is shown in Fig. 4.4.5
for two sample cases. While adjusting cluster-1 to form Region-4, twelve sites
having memberships in the interval 0.2–0.4 are eliminated, whereas those eliminated
from the intervals 0.4–0.6 and 0.6–0.8 are 2 and 1, respectively. Similarly, to form
region 1 by adjusting cluster 3, the sites eliminated from the intervals 0.2–0.4 and
0.4–0.6 were 5 and 2 respectively. Only one site (out of 45 sites) is eliminated from
the membership interval 0.6–1.0 to form region 4, whereas no site is eliminated
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Fig. 4.4.3 Plots of fuzzy partition coefficient (VPC ), fuzzy partition entropy (VP E ), fuzziness per-
formance index (VF P I ) and normalized classification entropy (VNC E ) values against the number of
clusters for the Indiana watersheds obtained using the two-level fuzzy SOFM. The optimal partition
corresponds to a maximum value of VPC (or minimum value of VP E , VF P I and VNC E )

from the interval while forming region 1. Thus this technique only targets sites that
have low membership in a region.

Hydrologic Regions 1, 2, 3, 4, 5 and 8 are formed by adjusting the clusters 3, 4,
5, 1, 7 and 8, respectively. To adjust the highly heterogeneous cluster 2, several sites
were eliminated from the region. This amounts to splitting the highly heterogeneous
cluster into two parts. The first part consists of a collection of highly heterogeneous
sites forming hydrologic Region 6, whereas the second part consisting of the homo-
geneous sites constituted hydrologic Region 7. The cluster 6, which consists of only
5 sites, could not be considered as a potential region for flood frequency analysis.
At the same time, it was not possible to dissolve the cluster by transferring them
to other regions because four of those sites belong to a prototype, which does not
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Fig. 4.4.4 Location of fuzzy clusters in Indiana obtained from the two-level fuzzy SOFM. The dark
lines denote boundaries of eight digit watersheds, whereas the grey coloured lines are boundaries
of 11 digit watersheds in Indiana

have reasonable membership in any other cluster. Hence the prototype remained
unallocated.

4.4.3.3 Testing the Regions for Robustness

The hydrologic regions are further examined for their robustness. By specify-
ing various threshold values, stations with record lengths significantly different
from the rest of the group are removed and the region with the remaining sta-
tions is examined for homogeneity. The results of this analysis are presented in
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Fig. 4.4.5 Two typical fuzzy clusters obtained from the two-level fuzzy SOFM and the fuzzy
regions formed by adjusting them using the guidelines of Hosking and Wallis (1997). The com-
position of a fuzzy cluster (or region) is shown as a histogram prepared with the memberships of
sites in the cluster (or the region). It is assumed that the memberships of a site in fuzzy clusters (or
regions) are same as those of the prototype to which the site belongs

Table 4.4.1 and indicate that all the homogeneous regions identified are indeed
robust.

Sixteen sites, out of the 245 sites considered, could not be allocated to any region.
Four of these 16 belong to the unallocated prototype, while another 5 of these 16 are
eliminated to improve the homogeneity of clusters from being classified as ‘possibly
homogeneous’ to ‘acceptably homogeneous’. The remaining unallocated sites are
those that are highly discordant with sites in clusters where they have very strong
membership.

The results presented in Table 4.4.2 indicate that except region 6, all the regions
are acceptably homogeneous. Region 6 adjoining Lake Michigan is highly hetero-
geneous and consists of 11 watersheds in the Kankakee basin of Indiana all of which
have high membership in region 6. The average record length per station in region
6 is 42-years, which is reasonably high.

The regions formed by the two-level clustering of SOFM are presented in
Fig. 4.4.6. Except region 8, all the homogeneous regions identified have enough
pooled data (Table 4.4.2). The region 8 could be merged with region 2 which con-
tains it geographically. However, it was decided not to merge these two regions
because all the prototypes of region 8 have very low membership in region 2.

The regions obtained by two-level fuzzy SOFM algorithm bear resemblance
to those formed using hard and fuzzy clustering algorithms discussed in previous
chapters.
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Table 4.4.1 Results from the test of the regions for robustness

R Condition NS RS Heterogeneity measure Region type

H1 H2 H3

1 Entire region 45 674 0.65 −0.30 −0.93 Homogeneous
Sites with RL≤10 are

eliminated
19 421 0.77 0.70 0.71 Homogeneous

Sites with RL≥25 are
eliminated

38 471 0.33 −0.83 −1.79 Homogeneous

Sites with RL≤10 and RL≥25
are eliminated

12 218 0.06 0.17 −0.08 Homogeneous

2 Entire region 55 1869 0.76 0.41 −0.37 Homogeneous
Sites with RL ≤20 are

eliminated
39 1656 0.38 0.82 0.23 Homogeneous

Sites with RL≥50 are
eliminated

40 984 0.38 −0.15 −0.66 Homogeneous

Sites with RL≤20 and RL≥50
are eliminated

24 771 −0.14 0.32 0.23 Homogeneous

3 Entire region 29 608 −0.32 0.93 0.31 Homogeneous
Sites with RL≤10 are

eliminated
17 491 0.34 0.84 0.42 Homogeneous

Sites with RL≥40 are
eliminated

25 404 0.32 1.42 0.44 Homogeneous

Sites with RL≤10 and RL≥40
are eliminated

13 287 1.25 1.88 1.05 Possibly
Homogeneous

4 Entire region 62 2820 0.86 0.69 −0.46 Homogeneous
Sites with RL≤30 are

eliminated
48 2498 0.67 0.48 −0.41 Homogeneous

Sites with RL≥60 are
eliminated

50 1947 0.95 1.09 −0.10 Homogeneous

Sites with RL≤30 and RL≥60
are eliminated

36 1625 0.71 1.23 0.20 Homogeneous

5 Entire region 24 1121 0.93 −0.11 −0.82 Homogeneous
Sites with RL≤30 are

eliminated
19 1012 1.23 0.22 −0.45 Possibly

Homogeneous
Sites with RL≥60 are

eliminated
18 694 0.69 0.30 −0.43 Homogeneous

Sites with RL≤30 and RL≥60
are eliminated

13 585 1.00 0.47 −0.10 Homogeneous

7 Entire region 25 990 0.82 0.42 1.27 Homogeneous
Sites with RL≤20 are

eliminated
23 963 0.97 0.30 1.16 Homogeneous

Sites with RL≥55 are
eliminated

20 683 0.90 0.65 0.98 Homogeneous

Sites with RL≤20 and RL≥55
are eliminated

18 656 0.97 0.46 0.78 Homogeneous

R: Region; RL: record length; NS: Number of stations; RS: Region size in station-years
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Table 4.4.2 Characteristics
of the regions

Region
number

NS RS Heterogeneity measure

H1 H2 H3

1 45 674 0.65 −0.30 −0.93
2 55 1869 0.76 0.41 −0.37
3 29 608 −0.32 0.93 0.31
4 62 2820 0.86 0.69 −0.46
5 24 1121 0.93 −0.11 −0.82
6 11 467 13.77 6.05 2.41
7 25 990 0.82 0.42 1.27
8 16 188 0.54 −0.69 −1.99

NS: Number of stations; RS: Region size in station-years

Fig. 4.4.6 Location of the hydrologic regions defined by using the two-level fuzzy SOFM. The
dark lines denote fuzzy (soft) boundaries of regions, whereas the grey coloured lines are boundaries
of 11 digit watersheds in Indiana. The region 8, which is thoroughly mixed with Region 2, is not
marked by a soft boundary
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4.5 Concluding Comments

A class of artificial neural networks called Self-Organizing Feature Maps (SOFMs)
are described. Limitations associated with the use of one and two-dimensional
classical SOFMs for regionalization are brought out by using data from watersheds
in Indiana, USA. The feature maps generated did not reveal any information that
would allow for selection of an appropriate number of clusters.

With a view to form clusters using SOFM, two options are considered. In the first
option, 1-D feature map is used with the number of nodes in its output layer equal to
the number of clusters to be formed. Alternatively, fuzzy clustering of the nodes in
the 2-D feature map formed with SOFM is considered. Six clusters are identified as
optimal partition using hard cluster validity measures and visual interpretation for
the first option. On the other hand, eight clusters are identified as optimal partition
using fuzzy cluster validity measures for the second option.

A promising technique for regionalization should require minimal effort for ad-
justing the plausible hydrologic regions (clusters) to form acceptably homogeneous
regions. While the first option required considerable effort to adjust three of the six
clusters that are formed, the second option yielded homogeneous regions with rela-
tively minimal adjustments. Further, it is seen that the hydrologic regions identified
with either of these options are consistent with those derived in Chapters 2 and 3.
This is satisfying because there is ambiguity among practicing hydrologists regard-
ing the appropriate procedure to be adopted for regionalization. The results suggest
that Fuzzy clustering of 2-D SOFM can be a viable alternative to derive homoge-
neous regions for flood frequency analysis.

The extended Xie-Beni index performed reasonably well in identifying optimal
number of clusters. In contrast, the fuzzy partition coefficient, fuzzy partition en-
tropy, fuzziness performance index, and normalized classification entropy, exhib-
ited monotonic increasing or decreasing tendencies with increase in the value of
fuzzifier. Therefore they are not suitable for identifying optimal number of clusters.



Chapter 5
Effect of Regionalization on Flood
Frequency Analysis

En-Ching Hsu, A. Ramachandra Rao, V.V. Srinivas

5.1 Introduction

Watersheds in a region can be classified into homogeneous groups by using the
regionalization methods discussed in the previous chapters. Regionalization is, how-
ever, only a prelude to flood frequency analysis and several aspects related to flood
estimation remain to be examined. Perhaps the most important of these is related to
quantifying the improvement in flood quantile estimation brought about by region-
alization of watersheds into hydrologically homogeneous groups.

In general, the error in estimation of flood quantiles depends on the method used
for regional flood frequency analysis (RFFA). An inefficient method may have errors
which could nullify any gains obtained by regionalization. Hence it is preferable to
investigate more than one RFFA method in order to assess their relative advantages
and to quantify the improvement in flood estimation brought about by regional-
ization. In this chapter performance of two commonly used methods of RFFA is
investigated. The first method is based on the regional L-moment algorithm, whereas
the second method is based on regional regression analysis.

Another important aspect is related to verifying whether a single distribution is
acceptable for estimating flood quantiles in all the regions formed for flood fre-
quency analysis. Bulletin 17 of the U.S. Water Resources Council (1976, 1977,
1981) recommends fitting log-Pearson type III (LP3) distribution to annual maxi-
mum streamflows. The stipulation that LP3 distribution must be used over a large
area such as the continental United States presumes that it is the preferred distribu-
tion. In order to test the validity of such an assumption, the performance of LP3 can
be compared with that of several other frequency distributions in fitting peak flow
data of different homogeneous regions. If LP3 distribution is preferred to other dis-
tributions in such a comparative analysis then it has some justification behind using
it. Also, the analysis would be useful to conclude whether any particular frequency
distribution is preferred to fit peak flow data in all the regions.

Further, in the past decade, simple scaling methods have been developed in flood
frequency analysis. It is found that within hydrologically homogeneous regions

E-C. Hsu
Purdue University, West Lafayette, IN 47906, U.S.A.

A.R. Rao, V.V. Srinivas, Regionalization of Watersheds, 155
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moments of peak flows scale with drainage area of watersheds according to log-log
relations (Gupta and Waymire, 1990; Smith, 1992; Kumar et al., 1994; Gupta and
Dawdy, 1995; Ribeiro and Rousselle, 1996; Blöschl and Sivapalan, 1997; Pandey,
1998; Cathcart, 2001; Eaton et al., 2002). If simple scaling results are valid in a
hydrologically homogeneous region, then for any ungauged watershed in the region
one can use the area of the watershed to estimate the moments of floods. These
moments can then be used to estimate the parameters of any chosen distribution.
These parameters may be used to estimate flood quantiles corresponding to different
recurrence intervals. Consequently examining the behavior of scaling methods and
how the scaling properties vary with homogeneity of watersheds is an interesting
aspect, and is discussed in this chapter.

The material in this chapter is organized as follows. The regional index flood
method for estimation of flood quantiles is discussed in Section 5.2. Following this,
flood estimation by generalized least squares (GLS) regional regression analysis is
discussed in Section 5.3. As both these methods are well known, the discussion
is limited to data analysis and interpretation of results. A procedure for flood es-
timation based on both regional index flood method and GLS regional regression
analysis is discussed in Section 5.4. As mentioned earlier, different flood estimation
procedures are considered because conclusions based on only one method could be
misleading. The performance of these procedures of flood estimation is compared
in Section 5.5 by using split sample test. Among these methods, observed annual
maximum flows are used in Method 1 for estimation of flood quantiles and hence it
gives smallest errors. These are used as bench marks in the comparison of results.

The scaling behavior of annual maximum flows in different regions is examined
in Section 5.6 by studying variations of the conventional statistical moments with
the basin area. The importance of regionalization is brought out in a graphical form.
Research in this area is progressing (Gupta and Waymire, 1990; Smith, 1992; Kumar
et al., 1994; Gupta and Dawdy, 1995; Ribeiro and Rousselle, 1996; Blöschl and
Sivapalan, 1997; Pandey, 1998; Cathcart, 2001; Eaton et al., 2002) and is of interest.
The scaling concept may lead to better and simpler methods both for regionalization
and for testing homogeneity of regions.

The plausibility of fitting a particular probability distribution to flood series in
all the regions is tested in Section 5.7. It is of interest to note that a single proba-
bility distribution is not acceptable in all the regions of Indiana. Some concluding
comments are presented in Section 5.8.

5.2 Regional Index Flood Method Based on L-Moments

5.2.1 Introduction

The basic idea behind the index flood method (Dalrymple, 1960), which has been in
use for a long time, is that the frequency distributions of floods at the sites in a homo-
geneous region are identical except for a scaling factor known as the index-flood.
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The index flood parameter reflects the important physiographic and meteorologic
characteristics of a watershed. The L-moment based index flood method was pro-
posed by Landwehr, Matalas and Wallis and popularized by Wallis and others
(Hosking et al., 1985; Wallis, 1980; Wallis and Wood, 1985). An important require-
ment for the success of the index flood method is that data from hydrologically
similar basins should be used (Lettenmaier et al., 1987).

Regional index flood methods based on probability weighted moments and
L-moments have been studied, generally with Generalized Extreme Value (GEV) or
Wakeby distributions (Hosking and Wallis, 1988; Jin and Stedinger, 1989; Landwehr
et al., 1987; Potter and Lettenmaier, 1990; Wallis and Wood, 1985). These results,
especially with GEV distribution have been demonstrated to be robust.

5.2.2 Regional L-Moment Method

Suppose that annual maximum flow data are available at NR sites in a region, with
site k having sample size nk and observed data Qk j , j = 1, . . ., nk . The first three
L-moments λ̂1(k), λ̂2(k) and λ̂3(k) at the site k are computed by using the unbiased
probability weighted moment (PWM) estimators. The L-moments are subsequently
scaled by using λ̂1(k) as the index flood. The regional estimates of the normalized
L-moments (or regional average L-moments) of orders 1, 2 and 3 are computed as

λ̂R
r =

NR∑

k=1
wk

[
λ̂r (k) / λ̂1 (k)

]

NR∑

k=1
wk

, r = 1, 2, 3 (5.2.1)

where r is the order of L-moment and wk are the weights. A simple choice for wk

is nk . In general the value of this parameter may depend on the heterogeneity of a
region (Tasker and Stedinger, 1986, 1989) and some modification might be required.

The Eq. (5.2.1) indicates that the first order regional average normalized
L-moment is 1.0. The normalized parameters for different 3-parameter probability
distributions are computed by probability weighted moment method based on the
first three normalized L-moments. Using these parameters, the quantiles q̂ R

T of the
normalized regional distribution are estimated for various recurrence intervals T .
Denote by F the nonexceedance probability (F = 1 − 1/T ). The dimensionless
quantile function q̂ R

T (F), known as regional growth curve, is common to every site
in a region. The quantile estimates at site k, Q̂k

T , are obtained by multiplying q̂ R
T

with the index flood value λ̂k
1 as

Q̂k
T = λ̂k

1 q̂ R
T (5.2.2)

Since λ̂k
1 is the regressor, the confidence limit for the regional L-moment quantile

estimate at site k is calculated by Eq. (5.2.3),
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C L = Q̂k
T ± tα/2,N−2

√
√
√
√M SE

(
1

N
+

(
λ̂k

1 − λ
)

Sλλ

2)

(5.2.3)

where N is the total number of observations of the annual peak flow, λ̄ is the average

of λ̂k
1 values, Sλλ is the sum of squares of errors

NR∑

k=1
(λ̂k

1 − λ̄)2, MSE is the mean

square of the errors, and tα/2,N−2 is the value of the student’s t-distribution for a
100(1 − α)percent of confidence interval with N-2 degrees of freedom (Hines and
Montgomery, 1980).

The advantage of estimating q̂ R
T by regional L-moment method is well docu-

mented (Hosking and Wallis, 1997). The importance of using data from a homo-
geneous region in index flood analysis is stressed by Lettenmaier et al. (1987). To
adopt the index flood procedure for estimating flood frequency at ungauged sites
one of the important variables which must be estimated for the sites is λ̂k

1. The usual
practice is to estimate this variable by relating it to other watershed attributes that
are easily available even for ungauged sites in the region.

5.2.3 At-Site and Regional Parameter Estimation

The regions that are formed by using regionalization methods discussed earlier are
adjusted based on requirements of Indiana Department of Transportation, USA, to
form contiguous regions 1 to 8 shown in Fig. 5.2.1. The heterogeneity measures
computed for these regions show that region 6 adjoining the Lake Michigan is
highly heterogeneous, whereas all other regions are either acceptably homogeneous
or possibly homogeneous (Table 5.2.1).

For each site in a region, the conventional moments (mean, standard deviation,
skewness and kurtosis), L-moments (l1, l2, l3, l4) and L-moment ratios (t = l2/ l1,

t3 = l3/ l2, t4 = l4/ l2) are estimated based on at-site records of annual maximum
flows. Subsequently, these moments are used to compute parameters of six candidate
distributions and flood quantiles for 2, 5, 10, 20, 25, 50, 100 and 200 year recurrence
intervals based on method of moments and probability weighted moment procedures
described in Rao and Hamed (2000).

Further, the regional average normalized L-moment ratios are derived from the
at-site estimates of L-moments by Eq. (5.2.1). The normalized L-moments ratios are
used to compute parameters and flood quantiles following the procedure discussed
above. The normalized regional flood quantiles estimated for each region using the
six distributions are presented in Table 5.2.2 for the eight recurrence intervals. The
flood corresponding to normalized regional quantile is estimated by Eq. (5.2.2) con-
sidering the first at-site L-moment (l1) as the index flood value.

The precision in estimation of regional flood quantiles is evaluated using variance
ν2 as an indicator. For a chosen distribution and exceedence probability p = 1/T ,
the variance is computed based on differences between the flood quantiles estimated
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Fig. 5.2.1 Regions considered for flood frequency analysis

Table 5.2.1 Characteristics of the regions considered for flood frequency analysis. NS represents
the number of stations

Region
number

NS Heterogeneity measure Region type

H1 H2 H3

1 21 0.66 −1.83 −2.40 Acceptably Homogeneous
2 30 1.17 −1.18 −2.00 Possibly homogeneous
3 24 0.26 0.53 0.12 Acceptably Homogeneous
4 72 0.79 −0.97 −1.45 Acceptably Homogeneous
5 18 1.18 −0.30 −0.09 Possibly homogeneous
6 12 14.68 5.42 2.47 Heterogeneous
7 22 1.56 0.04 −0.24 Possibly homogeneous
8 25 1.07 −0.59 −0.96 Possibly homogeneous
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Table 5.2.2 Normalized regional quantile estimates obtained by using regional L-moment method

T years LN3 GM2 PT3 LP3 GEV GLO

Region 1 2 0.9098 0.8478 0.9088 1.0036 0.6319 0.9209
5 1.3367 1.7612 1.3469 1.0482 1.0522 1.3046

10 1.6257 2.3350 1.6353 1.0696 1.3418 1.5809
20 1.9066 2.8622 1.9069 1.0863 1.6286 1.8761
25 1.9966 3.0252 1.9920 1.0910 1.7214 1.9774
50 2.2767 3.5163 2.2513 1.1041 2.0131 2.3162

100 2.5599 3.9897 2.5049 1.1153 2.3114 2.6984
200 2.8481 4.4501 2.7545 1.1252 2.6177 3.1320

Region 2 2 0.8761 0.8298 0.8739 1.0023 0.5716 0.8916
5 1.3556 1.7468 1.3737 1.0531 1.0362 1.3200

10 1.7013 2.3349 1.7194 1.0785 1.3788 1.6438
20 2.0512 2.8814 2.0538 1.0988 1.7363 2.0024
25 2.1658 3.0514 2.1600 1.1046 1.8561 2.1280
50 2.5305 3.5663 2.4871 1.1209 2.2452 2.5580

100 2.9100 4.0658 2.8116 1.1353 2.6638 3.0587
200 3.3066 4.5544 3.1350 1.1481 3.1156 3.6453

Region 3 2 0.8456 0.8257 0.8409 0.9989 0.4719 0.8656
5 1.3352 1.7433 1.3635 1.0614 0.9369 1.2999

10 1.7163 2.3347 1.7477 1.0947 1.3075 1.6479
20 2.1217 2.8857 2.1306 1.1226 1.7187 2.0497
25 2.2585 3.0573 2.2541 1.1307 1.8619 2.1942
50 2.7046 3.5777 2.6393 1.1543 2.3458 2.7019

100 3.1859 4.0835 3.0276 1.1756 2.8976 3.3163
200 3.7055 4.5787 3.4195 1.1954 3.5287 4.0638

Region 4 2 0.8824 0.8250 0.8808 1.0040 0.6083 0.8964
5 1.3748 1.7426 1.3903 1.0593 1.0885 1.3376

10 1.7204 2.3346 1.7355 1.0859 1.4328 1.6648
20 2.0642 2.8865 2.0657 1.1069 1.7843 2.0222
25 2.1758 3.0584 2.1700 1.1128 1.9004 2.1464
50 2.5276 3.5798 2.4898 1.1293 2.2724 2.5678

100 2.8893 4.0867 2.8052 1.1435 2.6643 3.0525
200 3.2630 4.5832 3.1179 1.1561 3.0785 3.6133

Region 5 2 0.9578 0.8657 0.9576 1.0061 0.7422 0.9623
5 1.3213 1.7747 1.3235 1.0510 1.1097 1.2938

10 1.5387 2.3336 1.5406 1.0713 1.3294 1.5106
20 1.7340 2.8411 1.7337 1.0865 1.5242 1.7268
25 1.7938 2.9971 1.7925 1.0907 1.5829 1.7979
50 1.9725 3.4644 1.9668 1.1019 1.7550 2.0257

100 2.1433 3.9118 2.1317 1.1113 1.9135 2.2670
200 2.3084 4.3443 2.2894 1.1193 2.0599 2.5242

Region 6 2 0.9275 0.8831 0.9267 1.0017 0.5879 0.9538
5 1.2558 1.7867 1.2645 1.0456 0.9097 1.2459

10 1.4809 2.3309 1.4891 1.0677 1.1348 1.4458
20 1.7014 2.8196 1.7018 1.0854 1.3600 1.6519
25 1.7723 2.9688 1.7686 1.0904 1.4334 1.7210
50 1.9940 3.4136 1.9727 1.1048 1.6657 1.9472

100 2.2195 3.8366 2.1728 1.1174 1.9057 2.1940
200 2.4502 4.2430 2.3703 1.1288 2.1545 2.4650
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Table 5.2.2 (continued)

T years LN3 GM2 PT3 LP3 GEV GLO

Region 7 2 0.8562 0.8262 0.8527 0.9966 0.5123 0.8713
5 1.3460 1.7436 1.3704 1.0711 0.9811 1.3060

10 1.7163 2.3347 1.7422 1.1121 1.3440 1.6496
20 2.1027 2.8853 2.1087 1.1470 1.7376 2.0425
25 2.2316 3.0568 2.2262 1.1573 1.8726 2.1830
50 2.6482 3.5767 2.5911 1.1874 2.3224 2.6733

100 3.0915 4.0818 2.9567 1.2150 2.8243 3.2614
200 3.5640 4.5765 3.3240 1.2407 3.3859 3.9705

Region 8 2 0.9396 0.8722 0.9392 1.0031 0.6683 0.9477
5 1.2937 1.7793 1.2989 1.0449 1.0212 1.2678

10 1.5207 2.3328 1.5253 1.0651 1.2500 1.4880
20 1.7339 2.8332 1.7336 1.0808 1.4662 1.7159
25 1.8008 2.9866 1.7980 1.0853 1.5340 1.7925
50 2.0055 3.4455 1.9923 1.0977 1.7410 2.0438

100 2.2073 3.8837 2.1798 1.1084 1.9435 2.3189
200 2.4082 4.3064 2.3622 1.1178 2.1422 2.6221

LN3: Three parameter log normal distribution. GM2: Two parameter gamma distribution. PT3:
Pearson type 3 distribution. LP3: log Pearson type 3 distribution. GEV: Generalized extreme value
distribution. GLO: Generalized logistic distribution.

for all the sites in the region by at-site frequency analysis and by regional frequency
analysis.

ν2 = E
[
λ̂1q̂ R

T − λ̂1q̂k
T

]2
(5.2.4)

Higher ν2 denotes high variability within the region and smaller variance indi-
cates strong homogeneity within a region.

The at-site quantile estimates are plotted against the regional quantile estimates
for each of the recurrence intervals considered and for all the candidate distributions
to observe the goodness of fit. In general, the at-site and regional quantile estimates
are found to be nearly equal for GEV, PT3 and LN3 distributions. Consequently,
the points corresponding to each of these distributions are seen to lie close to 45
degree line for all the regions. In contrast, the points corresponding to LP3 and
two-parameter gamma distributions are found to be widely scattered about the 45
degree line indicating that they are not suitable to fit the data. For brevity the results
for 100-year recurrence interval are shown in Fig. 5.2.2.

The variance of estimation errors in the eight regions are shown in Fig. 5.2.3.
The PT3 distribution has smaller variance than other distributions, especially for
longer recurrence intervals. In general, the variance obtained for GEV and LN3 dis-
tributions is close to that obtained for PT3 distribution. Overall, GEV, PT3, and LN3
have good estimates for all the regions. One of the problems with LN3 distribution is
that sometimes it does not yield convergent parameter estimates. The other issue is
that although LP3 may not be a good candidate for regional index flood estimation,
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Fig. 5.2.2 At-site and regional flood quantile estimates for T = 100 year. LP3 is shown as LPT3,
and GM2 is shown as Gamma
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Fig. 5.2.3 Variance of the differences between at-site and regional estimates

it is widely used for engineering design in United States. Consequently, PT3, GEV
and LP3 distributions are used in the following analysis.

Typical plots of the 95% confidence intervals for the regional L-moment flood
quantile estimates are shown in Figs. 5.2.4–5.2.6. The confidence intervals are cal-
culated by using Eq. (5.2.3) based on regression of the mean annual peak discharge,
which is the first L-moment. In the figures the axes are logarithmic for better clarity.
Further, both at-site and regional L-moment estimates of flood quantile are plotted
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Fig. 5.2.4 Ninety-five percentage confidence interval error bounds for regional PT3 L-moment
estimates
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Fig. 5.2.5 Ninety-five percentage confidence interval error bounds for regional GEV L-moment
estimates
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Fig. 5.2.6 Ninety-five percentage confidence interval error bounds for regional LP3 L-moment
estimates
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Table 5.2.3 Determination of optimal probability distributions for regional L-moment flood esti-
mates of the entire series of data

Region No. Candidate Probability
Distributions

Optimal Distributions for
Regional Estimates

1 PT3, GM2, LN3, GEV, LP3 PT3, LN3, GEV
2 GEV, LN3, PT3, GM2, GLO GEV, PT3, LN3
3 LP3, GEV, LN3, GLO, PT3 PT3, LN3, GEV
4 GEV, LN3, LP3, PT3, GM2 PT3, LN3, GEV
5 GEV, LP3, LN3, PT3, GM2 GEV, PT3, LN3
6 LN3, PT3, GM2, GLO, GEV PT3, GEV, LN3
7 PT3, GM2, LN3, LP3, GEV PT3, LN3, GEV
8 LP3, GLO, GEV, LN3, PT3 PT3, LN3, GLO

as ordinate, whereas index flood value is abscissa. It can be inferred from the figures
that the regional L-moment estimates obtained from LP3 are inferior to those from
PT3 and GEV. Further, it is seen that the confidence intervals obtained for LP3
distribution are much wider than those obtained for PT3 and GEV distributions.

The candidate probability distributions are determined for each region based on
the mean-square-error (MSE) of regional L-moment method. The order shown in
Table 5.2.3 begins with the distribution having the minimum MSE. Optimal dis-
tributions for regional L-moment flood estimates are obtained from the variances
of regional estimates. PT3, GEV and LN3 are good probability distributions for
regional L-moment flood estimates.

An important conclusion from the results shown herein is that a single distribu-
tion is not applicable for all the regions even where the regions are adjacent to each
other. Secondly, the LP3 distribution is clearly inferior to others for regional flood
estimation in Indiana, USA.

5.3 Regional Regression Analysis

5.3.1 Introduction

In general, at-site information is used for frequency analysis of floods at locations
of interest. However, in cases where data are inadequate or missing at the loca-
tion of interest, regional regression relationships are used for flood quantile estima-
tion. Regional regression is an idea in which the flood characteristics are related
to the geographical or hydrological attributes which are measurable for any loca-
tion in a watershed. Generalized Least Square (GLS) regression is introduced by
Stedinger and Tasker (1985) to develop these relationships. The GLS method takes
the data consistency (lengths of record and correlation) and geographical distance
into account. Details of GLS regression are found in the reference cited above. The
GLS regression relationships for different regions are discussed in this section.
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5.3.2 GLS Regional Regression Results

To identify the governing hydrological attributes influencing peak flows from Indi-
ana watersheds, first of all, the square of the correlation coefficient R2 between each
hydrological feature and the at-site quantile estimates are calculated. For brevity
the results are shown for PT3 and GEV distributions in Tables 5.3.1 and 5.3.2 re-
spectively. The drainage area (A) and slope (S) are found to be the primary factors
affecting floods in Indiana. For the secondary factor, wet area (W) which is the
percentage of area of lakes and ponds, and urbanization factor (U) which is the
percent of urban area in the region are considered. These variables show smaller

Table 5.3.1 R2 values for the relationship between the individual hydrological attributes and PT3
flood quantile estimates

Region
number

Attribute T = 10yr T = 20yr T = 50yr T = 100yr T = 200yr

1 Drainage area (mi2) 0.978 0.975 0.970 0.967 0.964
Slope (%) 0.856 0.850 0.841 0.836 0.831
W(%) 0.380 0.306 0.260 0.232 0.211
U (%) 0.280 0.223 0.191 0.172 0.158

2 Drainage area (mi2) 0.935 0.935 0.933 0.931 0.929
Slope (%) 0.729 0.731 0.732 0.733 0.733
W(%) 0.183 0.166 0.160 0.156 0.154
U (%) 0.288 0.230 0.196 0.175 0.160

3 Drainage area (mi2) 0.978 0.976 0.973 0.969 0.966
Slope (%) 0.753 0.749 0.744 0.739 0.736
W(%) 0.096 0.067 0.054 0.046 0.041
U (%) 0.042 0.029 0.023 0.020 0.018

4 Drainage area (mi2) 0.935 0.934 0.932 0.931 0.929
Slope (%) 0.397 0.394 0.390 0.388 0.386
W(%) 0.234 0.213 0.203 0.196 0.192
U (%) 0.008 0.001 0.000 0.001 0.002

5 Drainage area (mi2) 0.939 0.938 0.937 0.936 0.935
Slope (%) 0.453 0.456 0.458 0.460 0.461
W(%) 0.028 0.037 0.043 0.048 0.053
U (%) 0.150 0.165 0.170 0.173 0.175

6 Drainage area (mi2) 0.797 0.750 0.689 0.644 0.601
Slope (%) 0.466 0.405 0.333 0.285 0.243
W(%) 0.074 0.091 0.112 0.127 0.141
U (%) 0.228 0.193 0.188 0.186 0.187

7 Drainage area (mi2) 0.907 0.903 0.899 0.896 0.894
Slope (%) 0.534 0.529 0.523 0.520 0.517
W(%) 0.001 0.007 0.011 0.014 0.017
U (%) 0.377 0.379 0.380 0.380 0.381

8 Drainage area (mi2) 0.795 0.792 0.788 0.785 0.781
Slope (%) 0.674 0.677 0.680 0.682 0.683
W(%) 0.000 0.003 0.007 0.009 0.012
U (%) 0.005 0.000 0.002 0.006 0.010
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Table 5.3.2 R2 values for the relationship between the individual hydrological attributes and GEV
flood quantile estimates

Region
number

Attribute T = 10yr T = 20yr T = 50yr T = 100yr T = 200yr

1 Drainage area (mi2) 0.982 0.978 0.971 0.964 0.956
Slope (%) 0.865 0.856 0.842 0.831 0.818
W(%) 0.389 0.311 0.260 0.227 0.201
U (%) 0.284 0.226 0.191 0.169 0.153

2 Drainage area (mi2) 0.935 0.935 0.933 0.929 0.923
Slope (%) 0.723 0.728 0.732 0.733 0.733
W(%) 0.177 0.162 0.159 0.159 0.160
U (%) 0.296 0.235 0.197 0.172 0.153

3 Drainage area (mi2) 0.975 0.978 0.974 0.967 0.956
Slope (%) 0.753 0.753 0.748 0.740 0.730
W(%) 0.101 0.072 0.056 0.046 0.039
U (%) 0.044 0.031 0.025 0.021 0.018

4 Drainage area (mi2) 0.933 0.934 0.932 0.928 0.922
Slope (%) 0.398 0.393 0.387 0.382 0.376
W(%) 0.226 0.207 0.201 0.198 0.196
U (%) 0.008 0.001 0.000 0.001 0.003

5 Drainage area (mi2) 0.939 0.939 0.938 0.936 0.934
Slope (%) 0.453 0.456 0.459 0.462 0.464
W(%) 0.029 0.037 0.042 0.047 0.050
U (%) 0.152 0.166 0.168 0.169 0.168

6 Drainage area (mi2) 0.816 0.770 0.689 0.609 0.513
Slope (%) 0.511 0.441 0.336 0.250 0.165
W(%) 0.069 0.093 0.130 0.161 0.193
U (%) 0.228 0.199 0.207 0.216 0.227

7 Drainage area (mi2) 0.911 0.906 0.899 0.894 0.889
Slope (%) 0.541 0.534 0.524 0.517 0.509
W(%) 0.001 0.006 0.011 0.014 0.016
U (%) 0.375 0.377 0.379 0.381 0.383

8 Drainage area (mi2) 0.799 0.796 0.789 0.781 0.771
Slope (%) 0.673 0.677 0.681 0.682 0.682
W(%) 0.000 0.003 0.006 0.009 0.012
U (%) 0.006 0.000 0.002 0.007 0.013

correlation with floods. The correlation coefficients are quite low for region 6 which
is heterogeneous and region 8 which is close to being acceptably homogeneous
(Table 5.2.1).

Models described by Eqs. (5.3.1)–(5.3.3) are developed by using GLS regional
regression to fit the relationships between floods quantiles and hydrological features
of watersheds.

Model I: QT = a Ab (5.3.1)

Model II: QT = a Ab Sc (5.3.2)
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Model III: QT = a Ab Sc(1 + W )d (5.3.3)

The probability distributions used for regional regression are generalized extreme
value (GEV), Pearson type III (PT3) and log-Pearson type III (LP3). Of these dis-
tributions GEV and PT3 fit the observed data well and also provide stable results
in regional flood evaluation. The LP3 distribution is considered because it is widely
used in engineering design in United States. However, from the previous results, it
is not a good distribution to estimate regional flood values for Indiana watersheds
and this aspect should be kept in mind.

The regression coefficients computed for the three models by the GLS method are
summarized in Tables 5.3.3–5.3.5 for PT3, GEV and LP3 distributions respectively.
There are two sub-tables in each table and they refer to recurrence intervals of 100
and 200 years. In each sub-table, the coefficients a, b, c, d and R2 are given for each
model and region. In the developed regression relationships the unit for drainage
area is square miles, slope and wet area are in percentage and the regressed quantile
flow is in cubic feet per second (cfs).

Table 5.3.3 GLS Regression coefficients computed for PT3 flood quantile estimates

Region
number

Model Parameters for T = 100 years R2

a b c d

1 I 489.317 0.613 0.984
II 57.265 0.817 0.648 0.988
III 106.649 0.806 0.549 −0.282 0.990

2 I 896.268 0.573 0.959
II 131.618 0.774 0.460 0.978
III 219.760 0.750 0.380 −0.187 0.975

3 I 698.344 0.746 0.849
II 83.356 0.952 0.521 0.919
III 99.717 0.955 0.519 −0.191 0.913

4 I 334.991 0.702 0.901
II 31.407 0.886 0.789 0.943
III 27.817 0.882 0.800 0.110 0.940

5 I 130.743 0.663 0.939
II 53.972 0.761 0.351 0.954
III 54.480 0.758 0.343 0.008 0.954

6 I 639.416 0.303 0.569
II 26.717 0.729 1.036 0.732
III 19.759 0.704 0.942 0.264 0.790

7 I 158.534 0.733 0.985
II 21.273 0.901 0.676 0.981
III 130.208 0.909 0.591 −1.146 0.991

8 I 111.992 0.692 0.679
II 368.409 0.564 −0.397 0.778
III 543.001 0.739 −0.152 −0.956 0.707
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Table 5.3.3 (continued)

Region
number

Model Parameters for T=200 years R2

a b c d

1 I 546.361 0.610 0.983
II 58.599 0.823 0.675 0.986
III 114.985 0.810 0.566 −0.304 0.989

2 I 1007.864 0.570 0.959
II 155.814 0.766 0.448 0.977
III 245.104 0.744 0.378 −0.165 0.974

3 I 785.830 0.747 0.838
II 88.529 0.959 0.534 0.912
III 109.137 0.962 0.531 −0.218 0.905

4 I 367.385 0.704 0.897
II 33.848 0.889 0.794 0.942
III 28.799 0.883 0.808 0.151 0.939

5 I 143.074 0.660 0.937
II 59.790 0.756 0.344 0.952
III 58.519 0.753 0.336 0.027 0.952

6 I 793.937 0.278 0.500
II 27.519 0.730 1.090 0.702
III 20.111 0.706 0.997 0.266 0.768

7 I 175.509 0.735 0.984
II 22.918 0.905 0.686 0.980
III 137.604 0.915 0.602 −1.137 0.989

8 I 121.778 0.691 0.672
II 427.940 0.556 −0.419 0.779
III 628.520 0.730 −0.174 −0.952 0.697

Table 5.3.4 GLS Regression coefficients computed for GEV flood quantile estimates

Region
number

Model Parameters for T=100 years R2

a b c d

1 I 502.034 0.613 0.983
II 52.261 0.829 0.682 0.987
III 101.327 0.818 0.577 −0.302 0.989

2 I 935.570 0.572 0.959
II 142.691 0.770 0.450 0.977
III 224.135 0.748 0.380 −0.165 0.974

3 I 699.260 0.758 0.837
II 91.561 0.955 0.500 0.911
III 106.380 0.959 0.501 −0.174 0.905

4 I 338.494 0.706 0.899
II 29.401 0.896 0.815 0.942
III 25.616 0.891 0.827 0.127 0.939

5 I 131.386 0.662 0.938
II 55.997 0.756 0.338 0.953
III 54.942 0.754 0.332 0.023 0.953
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Table 5.3.4 (continued)

Region
number

Model Parameters for T=100 years R2

a b c d

6 I 679.210 0.292 0.508
II 23.975 0.740 1.095 0.712
III 15.343 0.708 0.971 0.367 0.803

7 I 165.136 0.735 0.983
II 21.175 0.906 0.691 0.980
III 127.332 0.914 0.609 −1.134 0.990

8 I 113.807 0.691 0.673
II 400.359 0.556 −0.420 0.779
III 587.756 0.732 −0.174 −0.954 0.689

Parameters for T = 200 years

1 I 583.377 0.608 0.980
II 48.663 0.844 0.750 0.982
III 104.543 0.831 0.626 −0.346 0.985

2 I 1101.084 0.567 0.957
II 191.505 0.751 0.419 0.973
III 263.778 0.736 0.370 −0.117 0.971

3 I 827.871 0.765 0.806
II 98.503 0.971 0.522 0.886
III 121.376 0.976 0.522 −0.233 0.876

4 I 376.795 0.711 0.883
II 31.130 0.904 0.830 0.935
III 24.698 0.894 0.848 0.223 0.932

5 I 143.723 0.658 0.936
II 63.126 0.749 0.325 0.950
III 59.066 0.746 0.318 0.051 0.949

6 I 975.037 0.245 0.362
II 22.440 0.751 1.218 0.667
III 13.982 0.723 1.097 0.370 0.769

7 I 188.332 0.741 0.979
II 22.107 0.920 0.721 0.975
III 128.715 0.930 0.642 −1.121 0.984

8 I 127.852 0.686 0.657
II 513.403 0.537 −0.464 0.777
III 747.139 0.712 −0.218 −0.948 0.662

Table 5.3.5 GLS Regression coefficients computed for LP3 flood quantile estimates

Region
number

Model Parameters for T = 100 years R2

a b c d

1 I 545.593 0.594 0.965
II 43.115 0.837 0.762 0.971
III 100.881 0.825 0.627 −0.400 0.976

2 I 1140.736 0.537 0.942
II 225.895 0.707 0.388 0.966
III 462.830 0.674 0.276 −0.264 0.962
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Table 5.3.5 (continued)

Region
number

Model Parameters for T = 100 years R2

a b c d

3 I 703.266 0.760 0.771
II 115.414 0.934 0.447 0.823
III 115.061 0.937 0.455 −0.031 0.822

4 I 343.147 0.699 0.857
II 25.572 0.900 0.866 0.923
III 24.071 0.899 0.872 0.051 0.923

5 I 128.672 0.662 0.933
II 53.337 0.759 0.352 0.948
III 45.829 0.759 0.350 0.091 0.948

6 I 1154.568 0.202 0.358
II 36.271 0.671 1.082 0.588
III 22.666 0.639 0.955 0.381 0.703

7 I 201.377 0.700 0.983
II 16.612 0.909 0.838 0.973
III 129.619 0.918 0.741 −1.296 0.984

8 I 113.236 0.690 0.707
II 378.588 0.560 −0.403 0.804
III 536.122 0.723 −0.175 −0.883 0.739

Parameters for T = 200 years

1 I 638.605 0.585 0.954
II 39.569 0.851 0.835 0.959
III 104.145 0.837 0.681 −0.452 0.966

2 I 1338.893 0.528 0.937
II 309.724 0.682 0.352 0.959
III 637.815 0.648 0.239 −0.267 0.956

3 I 810.942 0.766 0.690
II 126.844 0.945 0.458 0.737
III 126.029 0.950 0.468 −0.038 0.736

4 I 376.568 0.701 0.818
II 26.199 0.908 0.886 0.899
III 23.286 0.903 0.896 0.110 0.899

5 I 138.683 0.659 0.930
II 58.230 0.755 0.345 0.944
III 46.684 0.755 0.344 0.131 0.944

6 I 1713.317 0.148 0.199
II 37.354 0.668 1.175 0.498
III 21.930 0.639 1.042 0.409 0.629

7 I 235.898 0.699 0.968
II 16.371 0.922 0.896 0.957
III 130.285 0.933 0.798 −1.312 0.966

8 I 124.222 0.686 0.701
II 453.553 0.547 −0.432 0.808
III 634.820 0.710 −0.205 −0.874 0.724
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Among the three regression models, the best-fitting GLS regional regression
model has maximum R-square value. To observe the goodness-of-fit for the eight
hydrological regions, the GLS regression estimates obtained from the best-fitting
model are plotted against at-site quantile estimates in Figs. 5.3.1–5.3.3 for PT3,
GEV and LP3 distributions respectively.

The ordinary least square (OLS) regression is also used to fit these data and the
results are shown as dashed lines in these figures. Graphically the dashed lines are
very close to the solid lines which result from the GLS regression. However, the
result from GLS is slightly better than that from OLS in goodness-of-fit.

From the results shown in Tables 5.3.3–5.3.5 it is seen that the performance of
models II and III is better than that of model I. The model II shows marginally better
results for regions 2, 3, 4 and 8, whereas model III shows marginally better results
for regions 1, 6 and 7. Models II and III performed equally well for region 5.

Ideally, flood quantile should be proportional to slope of watershed (S). But,
region 8 has the opposite behavior with negative exponent (c) for the slope term
(Tables 5.3.3–5.3.5). To avoid this unreasonable result, model I having only drainage
area in regression relationship is considered for region 8. As for the other regions,
the factors contributing to the best fit in regions 1, 6 and 7 are area (A), slope (S)
and percentage wet area (%W); while the factors contributing to best fit in regions
2, 3 and 4 are area and slope. Region 5 could have area and slope, or area, slope and
percent wet area.

Of the three models, it is better to chose model II which relates flood quantile
(QT) to only drainage area and slope of watershed because often information on
these attributes is available even for ungauged sites.

5.4 Combination of GLS Regional Regression
and L-Moment Method

In order to use the regional L-moment method for estimating flood quantiles at tar-
get locations, information on the first moment (i.e., the mean annual peak flow)
is needed. However, it is not possible to compute this statistic for an ungauged
location. In such situations, GLS regression is a feasible approach to estimate
flood quantiles for various recurrence intervals. The GLS regression relationships
may be developed to relate the hydrological and geographical attributes of water-
sheds with mean (or logarithm of mean) annual peak flows at gauged sites in the
region. The developed GLS regression equations find use in estimating the first
moment of peak flows even at ungauged locations in the region. This informa-
tion may be combined with the normalized regional quantiles determined using
L-moment method to estimate desired flood quantiles. The mean of the logarithms
of the annual maximum flows find use in estimation of flood quantiles by LP3
distribution.

Three GLS regression models are constructed for estimation of mean annual
flood, MAF, based on the watershed attributes namely drainage area (A), slope
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Fig. 5.3.1 GLS regional regression for PT3 (T = 100 years)
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Fig. 5.3.2 GLS regional regression for GEV distribution (T = 100 years)
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Fig. 5.3.3 GLS regional regression for LP3 (T = 100 years)
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(S) and wet area percentage (W). Model I is based only on the drainage area,
which is MAF = a Ab, Similarly, Model II considers area and slope, which is
MAF = a Ab Sc, and Model III considers area, slope and wet area percentage, which
is MAF = a Ab Sc(1 + W )d , where a, b, c and d are GLS regression coefficients.
These coefficients for each region and each model are listed in Table 5.4.1. For
the logarithms of peak flows, the results are presented in Table 5.4.2. In this case
the unit of drainage area is square miles, slope and wet area are in percentage. If
the regressed value is logarithm of mean annual peak flow, Qlog, then it has to be
transformed using exponential function to get mean annual peak flow as exp(Qlog).

The error bounds for 95% confidence interval are calculated for all the flood
estimates in each region. In Fig. 5.4.1 four series of data are plotted for each region.
The observed mean annual peak flow, GLS-regressed mean annual peak flow, and
95% upper and lower confidence limits are shown. Simple log-linear fit is applied
for each of them in order to show the trend of each data set. It is seen that the
observed and fitted means are close to each other. Except for Regions 4 and 6, the
two trend lines in the other six regions are almost overlapping.

Table 5.4.1 GLS regional regression for mean annual peak flows

Region
number

Model a b c d R2

1 I 173.4825 0.6309 0.9881
II 37.3649 0.7779 0.4602 0.9951
III 42.5792 0.7763 0.4406 −0.0627 0.9953

2 I 299.5047 0.5894 0.961
II 32.1958 0.8256 0.5314 0.9846
III 81.8451 0.7822 0.3841 −0.3468 0.9793

3 I 226.0649 0.7443 0.8972
II 41.8274 0.9055 0.4197 0.9335
III 40.0037 0.9065 0.4231 0.0339 0.9333

4 I 145.918 0.6712 0.9091
II 21.6708 0.8161 0.6508 0.937
III 34.0161 0.8328 0.6172 −0.4202 0.9524

5 I 50.2466 0.7005 0.9556
II 19.3921 0.8038 0.3927 0.9709
III 25.7894 0.7971 0.3779 −0.1358 0.971

6 I 94.6589 0.5154 0.9026
II 12.9361 0.7811 0.6608 0.9352
III 11.5316 0.7621 0.6054 0.1367 0.9378

7 I 53.8668 0.7342 0.9845
II 8.2252 0.8914 0.6306 0.9765
III 52.7069 0.896 0.539 −1.1561 0.9892

8 I 49.8341 0.6986 0.7204
II 96.4878 0.6277 −0.2204 0.7637
III 143.2239 0.8076 0.0277 −0.9783 0.7449
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Table 5.4.2 GLS regional regression for mean of logarithms of annual peak flows

Region
number

Model a b c d R2

1 I 5.3345 0.0779 0.9645
II 5.0811 0.0824 0.0152 0.9639
III 4.7038 0.0857 0.033 0.0223 0.9645

2 I 5.7749 0.0728 0.894
II 4.6272 0.0944 0.0557 0.9063
III 5.896 0.0811 0.0178 −0.0796 0.9101

3 I 5.2372 0.1085 0.9546
II 3.6401 0.1458 0.087 0.9694
III 3.5076 0.1467 0.0896 0.0287 0.9703

4 I 5.2189 0.0874 0.9264
II 4.1978 0.1041 0.073 0.9517
III 4.5072 0.1075 0.0679 −0.0693 0.9583

5 I 4.7561 0.0868 0.9472
II 3.7632 0.1137 0.079 0.9603
III 3.9458 0.1149 0.08 −0.0316 0.9677

6 I 4.8775 0.0708 0.881
II 3.4816 0.1175 0.0924 0.9253
III 3.4933 0.1174 0.0899 −0.0017 0.9242

7 I 3.6987 0.1276 0.9461
II 2.9408 0.1448 0.0874 0.9532
III 3.9225 0.1416 0.0891 −0.1828 0.979

8 I 4.0622 0.1119 0.7936
II 4.2363 0.1072 −0.013 0.795
III 4.6362 0.1228 0.0269 −0.1297 0.9148

Figure 5.4.2 shows the histograms of the distribution of the drainage areas in each
region. In regions 1, 3 and 7 there are quite a few small watersheds. In Regions 4 and
6 most of the drainage areas are larger than 100 square miles and there are a few small
drainage areas with high variability of flow than in the other regions. Typically the
data lengths in small watersheds are quite small. The accuracy of measurements is
also less. These lead to reduction in accuracy in the estimates of mean annual flows
also. The reduction in the accuracy of estimation in region 8 is not easy to explain.

In all regression methods the effect of flow variations in small drainage areas is
not prominent. Also, the 95% confidence intervals are added to the logarithms of
mean annual peak flow and examples of these are shown in Fig. 5.4.3. Regions 3,
5, 7 and 8 have perfect match between the trend lines, and for Regions 1, 2, 4 and 6
the trend lines are not as close.

By using the GLS regression, we can obtain the first L-moment (i.e., mean or log
mean) for the location of interest. The T-year flood quantile Q̂k

T at site k is com-
puted by multiplying the first moment with the regional normalized flood quantile
q̂ R

T estimated based on regional L-moment method. For LP3 distribution, the first
L-moment is mean of the logarithms of the flows λ′

k , and the estimated T-year quan-
tile flood is Q̂k

T (=exp(λ′
k q̂ R

T ) in unit cfs).
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Fig. 5.4.2 Histographs of drainage areas for each region
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Fig. 5.4.3(a) At-site logarithms of mean annual peak flows compared with GLS regression results
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5.5 Comparative Analysis

There are three methods by which the procedures discussed in previous sections
can be used to estimate flood quantiles. In the first method, the normalized regional
quantiles can be used with the observed mean value of annual maximum flows at a
site to compute the flood quantiles for specified recurrence intervals. In the second
method, the mean annual maximum flows are estimated by GLS regression relation-
ships based on hydrological characteristics at a site such as the watershed area and
stream slope. These mean values are used with the normalized regional quantiles to
estimate the flood quantiles. In the third method, the equations for quantiles derived
by the GLS method are used directly to obtain flood magnitudes.

Split sample test is used to estimate the errors associated with each of these
methods. The data from each region is divided into two parts. The first part known
as calibration set has data from 75% of the watersheds in the region, whereas the
second part known as validation set is chosen to have data from 25% of the water-
sheds that are selected to reflect the distribution of areas of watersheds in the region.
For each method of flood quantile estimation, the calibration set is used to estimate
the parameters of equations used for that method. The data from watersheds in the
validation set are given as input to the equations developed using calibration set
to estimate flood quantiles. The flood quantiles estimated for each of the sites in
the validation set are compared to their respective at-site estimates to determine the
error associated with the method. The procedures used in the three methods are
schematically shown in Fig. 5.5.1.

5.5.1 Split Sample Test for the First Method

For each region the normalized regional quantiles are computed by regional
L-moment method based on peak flow data of all the watersheds in the calibration
set. Flood quantiles corresponding to various recurrence intervals are computed at
each site in the validation set by multiplying the normalized regional quantiles with
the index flood (i.e., first moment of the observed annual peak flows) for the site.
Following this, the regional L-moment based flood estimates are compared to the
at-site estimates of flood quantiles for all sites in the validation set. The measure to
evaluate the error is the variance calculated by Eq. (5.2.4). The numbers of stations
in regions 1–8 are 21, 30, 24, 72, 18, 12, 22 and 25 respectively and the number
of stations in the validation sets prepared for these eight regions are 5, 8, 6, 18, 5,
3, 6 and 6 respectively. The split sample analysis is valid only in homogeneous or
possibly homogeneous regions. The data from region 6, which is heterogeneous, is
included only for the sake of completeness.

Typical results of the split sample validation are presented in Figs. 5.5.2 and 5.5.3.
Figure 5.5.2 shows plots with the at-site quantile estimates as abscissa and the
quantile estimates from the regional L-moment method as ordinate. The variance
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Fig. 5.5.2 Results of at-site and regional quantile floods from method 1 (T = 100 year). LP3 is
shown as LPT3, and GM2 is shown as Gamma
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Fig. 5.5.3 Variance of the differences between at-site and regional estimates from method 1

of differences between at-site and regional estimates are shown in Fig. 5.5.3.
These results show that by regional L-moment method Gamma distribution (GM2)
overestimates the flood quantiles, whereas LP3 distribution underestimates them.
The PT3, LN3 and GEV distributions produce consistent and better estimates. Also,
results from Fig. 5.5.3 indicate that Gamma (GM2) and LP3 distributions are not
good candidates for regional flood estimation. Results from PT3 distribution are
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Table 5.5.1 Optimal probability distributions for regional flood estimates

Region No. Candidate Probability
Distributions

Optimal Distributions for
Regional Estimates

1 PT3, GM2, LN3, GEV, LP3 LP3, PT3, LN3
2 GEV, LN3, PT3, GM2, GLO GEV, PT3, LN3
3 GEV, LN3, LP3, GLO, PT3 PT3, LN3, GEV
4 GEV, LN3, LP3, PT3, GM2 PT3, LN3, GEV
5 GEV, LN3, LP3, PT3, GM2 PT3, LN3, GEV
6 LN3, PT3, GM2, GLO, GEV GEV, PT3, LN3
7 PT3, GM2, LN3, GEV, LP3 PT3, LN3, GEV
8 LP3, GLO, GEV, LN3, PT3 LP3, PT3, LN3

Note: 1) Candidate probability distributions are determined from the mean-square-error for the
75% of data, and the order is beginning with the one having the minimum MSE. 2) Optimal dis-
tributions for regional estimates are obtained from the variances of L-moment regional estimates
from the 25% of data.

better than those from other distributions. The optimal probability distributions for
regional flood estimates from this method are summarized in Table 5.5.1. The results
show that PT3 is the favored distribution for Regions 3, 4, 5 and 7, LP3 is preferred
for Regions 1 and 8, and GEV is good for Regions 2 and 6. PT3 is acceptable for
regions 1, 2, 6 and 8 as the second best distribution.

It is seen from Fig. 5.5.2 that both homogeneous and possibly homogeneous
regions (1, 2, 3, 4, 5, 7, and 8) have flood quantile estimates close to 45 degree
lines. On the other hand, the quantile estimates in region 6, which is heterogeneous,
are farther away from the 45 degree line. It indicates that flood estimates for het-
erogeneous region are not accurate. Hence, once a region fails homogeneity tests,
accurate estimation of flood quantile may not be possible.

The flood estimates are seen to deviate more from the 45-degree line with in-
crease in recurrence interval to 200 years. This behavior is caused by extrapolation
errors and because of short data lengths. Also, it is found that the prediction result
is less stable for smaller flows which are mostly from small drainage areas. The
hydrological responses from small watersheds are strongly affected by local events.
Higher values of streamflow corresponds to larger drainage areas which bear more
resemblance to the regional properties and are less influenced by local events. Sim-
ilar conclusion is drawn from the results of methods 2 and 3.

5.5.2 Split Sample Test for the Second Method

In the second method GLS regional regression equations are developed between the
first moments of annual peak flows and the characteristics of watersheds in the cal-
ibration set. Further, regional L-moment method is used for computing normalized
regional flood quantiles for LN3, Gamma, PT3, LP3, GEV and GLO distributions
based on observed peak flow data at the sites in the calibration set.

The mean annual peak flow (index flood) for each site in the validation set is com-
puted by substituting its watershed characteristics in the developed regional regression
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equation. Subsequently, flood quantiles corresponding to various recurrence intervals
are computed by multiplying the normalized regional quantiles (estimated by using
data in calibration set) with the index flood computed for the site.

The flood quantiles computed for each of the sites in the validation set based
on the second method are plotted against their at-site estimates for each of the six
candidate distributions. Typical results presented in Fig. 5.5.4 show that PT3 distri-
bution provides best estimates for Regions 3 and 5. The best estimates for Region 1
were obtained from GEV distribution and LP3 distribution gave the best estimates
for Region 3.

For Regions 6, 7 and 8 the bias between at-site estimates and those based on
the second method are found to be significant. The bias is considerable for small
drainage areas in case of Regions 6 and 7. The bias in quantile estimates could be
partly attributed to bias in estimate of index flood value for stations in these regions
by GLS based regional regression equation. The correlation coefficients between
hydrological attributes and the index flood value for sites in these regions are shown
in Table 5.4.1.

5.5.3 Split Sample Test for the Third Method

To examine the accuracy of floods estimated by GLS regression method, the regional
regression equations are developed between flood quantiles and the attributes of
watersheds in the calibration set. This involves computation of the coefficients and
exponents (for example, a′, b′, c′, d ′ from equation QT = a′ Ab′

Sc′
(1 + W %)d ′

).
For each site in the validation set the flood quantiles are estimated by inserting its

watershed characteristics in the developed regional regression equations. Points are
plotted in Fig. 5.5.5 using flood quantile estimate based on GLS regression equation
as ordinate and the at-site quantile estimate as abscissa. If the points approach 45-
degree line, it indicates a better capability to predict. In most cases GLS regression
and PT3 quantile floods are in good agreement, except for some outlier points in
Regions 6, 7 and 8. Similar results were obtained in the case of fitting flood quan-
tiles based on GEV distribution. The errors noted for Region 2 (besides outliers
in regions 6, 7 and 8) were more with LP3 distribution, than with PT3 and GEV
distributions.

In summary, the third method does not indicate too many differences among
PT3, GEV and LP3 probability distributions because the result of GLS regression is
dominated by the correlation between watershed attributes and flood quantiles. The
second method shows that both PT3 and GEV distributions exhibit similar perfor-
mance, whereas LP3 yields poor result. Except for Region 6, the results from either
GLS regression or combination method are quite reliable and follow the trend well.
Region 7 may have more estimation errors for drainage areas less than 1000 square
miles and Region 8 has more error for the drainage areas in the range of 500–5000
square miles.
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Fig. 5.5.4 At-site quantile floods and the quantile floods obtained by method 2 for the validation
set with PT3 distribution
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Fig. 5.5.5 At-site quantile floods and the quantile floods obtained by method 3 for the validation
set with PT3 distribution
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5.5.4 Comparison of the Three Methods

For each region, the average error between quantile estimates based on at-site and
regional analysis is quantified as

eD,T,M
j (%) =

N j∑

i=1

∣
∣
∣Q D,T

AS (i)−Q D,T
M (i)

∣
∣
∣

Q D,T
AS (i)

· D AR (i) j = 1, . . . ,K (5.5.1)

where eD,T,M
j is the average error (in percentage) for region j with method M ,

probability distribution D (PT3, GEV or LP3), and recurrence interval T (2, 5, 10,
20, 25, 50, 100 or 200 years). N j is the number of stations in Region j . Q D,T

AS (i)
is the T-year flood quantile estimated at site i by using at-site frequency analy-
sis with distribution D. Q D,T

M (i) is the T-year flood quantile estimated at site i by
method M and distribution D. DAR(i) is the drainage area ratio, which is ratio of
the drainage area at site i divided by the sum of drainage areas at all the sites in the
region.

The average error is computed by weighting error estimate at each site by its
drainage area because it is not reasonable to give same weightage for errors from
small and large drainage areas due to differences in their flood magnitudes. The
percentage errors from small drainage areas are always larger and lead to misinter-
pretation if weights are not applied.

The average errors calculated for the calibration and validation data sets by each
of the three methods of flood quantile estimation are presented in Tables 5.5.2
and 5.5.3. In general, the average errors estimated for calibration data set are smaller
than those computed for validation data set over all the return periods. Further,
for most of the regions flood quantiles are accurately predicted by the regional
L-moment method (Method 1) than by GLS regression method (Method 3) and
combination method (Method 2). Results with PT3 distribution are better than those
from GEV and LP3 distributions. The performance of PT3 distribution is closely
followed by that of GEV distribution. Except region 6, all the regions have less than
10% average errors with best fitting distribution in calibration. The poor result of
region 6 is expected, because it is a heterogeneous region.

For Method 2, in which GLS regression is used to determine mean annual peak
flow (index flood) from geographical attributes of watersheds, the average errors in
quantile estimates are found to be more than those computed for Method 1. The
error percentages are mostly between those estimated for methods 1 and 3.

As for the GLS regional regression method (Method 3), calibration and vali-
dation results show that PT3 distribution is the preferred distribution. In terms of
performance, the PT3 distribution is closely followed by the GEV distribution.
For regions 1, 4, 5, and 7 the average error noted in calibration for Method 3 is
in the range 10–21%. Validation results suggest that GEV performs well for re-
gion 1, and PT3 is preferred distribution for regions 2, 3, 4, 5 and 6, whereas
LP3 is preferred distribution for regions 7 and 8. For regions 1 and 7 error with
PT3 is less than 11%, the same for regions 3, 4, 5 and 6 is in the range 16–26%.
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Table 5.5.2 Errors obtained from calibration of the three methods of flood quantile estimation with
PT3, GEV and LP3 distributions. Stdev is the standard deviation of errors

Method Method 1 Method 2 Method 3

Region T (yrs) PT3 LP3 GEV PT3 LP3 GEV PT3 LP3 GEV

1 2 1.23 1.8 31.52 11.4 20.31 23.94 8.09 8.33 7.01
5 1.58 9.4 22.07 11.29 13.85 13.42 12.39 13.06 9.66
10 1.74 15.1 18.25 11.4 26.33 9.24 14.54 17.19 12.46
20 2 19.8 15.5 11.54 34.77 6.95 16.14 21.33 14.86
25 2.22 21.1 14.76 11.59 36.96 6.82 16.46 22.66 15.68
50 2.83 25.2 12.77 11.73 42.63 6.28 17.56 26.85 18
100 3.37 28.9 11.15 11.87 47.07 5.6 18.39 30.97 20.19
200 3.85 32.3 9.8 12.01 50.66 5.12 19.04 35.06 22.49
Average 2.35 19.2 16.98 11.60 34.07 9.67 15.33 21.93 15.04
Stdev 0.92 10.2 7.06 0.25 13.01 6.35 3.62 8.99 5.23

2 2 2.02 2.0 35.38 43.58 59.52 9.74 41.79 38.61 38.67
5 1.24 9.5 23.14 45.81 15.37 15.31 45.59 41.77 42.29
10 2.24 15.9 17.89 47.27 9.18 21.79 47.49 45.2 44.5
20 3.14 21.8 13.98 48.5 19.68 27.23 48.76 49.01 46.64
25 3.49 23.7 12.92 48.86 22.74 28.76 49.13 50.38 47.41
50 4.45 29.4 9.97 49.88 30.62 33.09 50.09 54.61 49.55
100 5.29 35.0 7.49 50.78 36.79 37.01 50.81 59.14 51.96
200 6.03 40.6 5.37 51.59 41.75 40.66 51.47 63.92 54.47
Average 3.49 22.2 15.77 48.28 29.46 26.70 48.14 50.33 46.94
Stdev 1.67 12.9 9.75 2.66 16.30 10.61 3.18 8.61 5.14

3 2 6.82 5.4 45.18 27.64 30.94 49.06 27.73 27.16 41.39
5 1.87 13.1 25.97 22.5 26.5 30.74 21.9 23.41 29.84
10 5.08 23.1 18.24 19.99 33.22 26.63 20.71 20.62 24.46
20 8.33 33.2 14.06 18.2 44.27 23.26 23.85 21.93 19.93
25 9.29 36.5 13 17.7 47.12 22.34 25.13 23.81 19.5
50 11.95 47.6 14.52 18.12 54.45 19.51 28.8 32.42 25.92
100 14.23 60.0 18.08 19.92 60.07 19.08 31.96 41.84 33.49
200 16.22 73.1 22.16 21.53 64.48 23.32 34.79 52.01 42.52
Average 9.22 36.5 21.40 20.70 45.13 26.74 26.86 30.40 29.63
Stdev 4.77 23.1 10.55 3.28 14.04 9.77 4.90 11.16 8.92

4 2 4.36 3.4 31.64 25.27 35.01 27.67 30.05 31.34 42.25
5 1.77 8.9 19.21 23.71 16.21 17.09 22.29 25.86 28.56
10 3.45 14.5 14.15 22.71 25.4 14.13 18.45 22.37 23.11
20 5.48 20.0 11.21 22.32 34.84 13.77 15.66 19.22 18.59
25 6.07 21.9 10.56 22.44 37.4 13.76 14.98 18.35 17.26
50 7.68 27.5 9.76 22.78 43.94 14.27 13.42 16.58 13.86
100 9.07 32.9 9.72 23.08 48.94 15.61 12.8 15.8 12.2
200 10.31 38.1 11.19 23.75 52.91 17.16 12.48 16.48 12.51
Average 6.02 20.9 14.68 23.26 36.83 16.68 17.52 20.75 21.04
Stdev 2.88 11.8 7.54 0.97 12.07 4.65 6.04 5.47 10.24

5 2 3.25 2.9 24.81 17.86 17.31 28.54 17.26 17.49 17.4
5 1.15 8.4 16.4 16.18 26.06 23.12 17.2 18.12 17.73
10 3.56 14.1 12.22 14.59 32.28 20.5 16.38 16.95 16.8
20 5.7 19.3 8.74 13.01 36.94 18.2 15.45 15.43 15.54
25 6.35 20.9 7.71 13.04 38.2 17.5 15.25 15.02 15.15
50 8.26 25.6 4.81 13.26 41.5 15.46 14.65 13.79 14.28
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Table 5.5.2 (continued)

Method Method 1 Method 2 Method 3

Region T (yrs) PT3 LP3 GEV PT3 LP3 GEV PT3 LP3 GEV

100 10.14 30.1 6.99 13.45 44 13.53 14.08 12.58 13.35
200 11.98 34.5 9.88 13.76 45.96 12.66 13.5 12.97 13.17
Average 6.30 19.5 11.45 14.39 35.28 18.69 15.47 15.29 15.43
Stdev 3.68 10.7 6.45 1.76 9.69 5.28 1.39 2.09 1.77

6 2 7.54 1.7 40.14 23.13 20.36 41.69 17.00 15.25 15.80
5 8.49 20.0 22.13 18.48 25.91 31.39 23.28 22.89 23.35
10 18.1 33.1 10.57 20.78 28.19 25.58 24.97 26.26 25.76
20 26.72 45.3 4.67 25.75 30.55 19.61 25.81 28.57 26.95
25 29.38 49.0 8.21 28.22 31.18 19.37 25.98 29.16 27.19
50 37.48 60.9 20.36 35.56 32.82 21.23 26.3 30.52 27.43
100 45.1 72.7 33.04 42.48 34.09 29.11 26.43 31.36 27.09
200 52.35 84.2 46.32 49.08 35.11 41.19 26.44 31.75 26.29
Average 28.15 45.9 23.18 30.44 29.78 28.65 24.53 26.97 24.98
Stdev 16.37 27.3 15.38 10.92 4.86 9.00 3.22 5.56 3.94

7 2 6.18 3.0 31.38 18.56 36.05 25.22 16.18 14.87 23.64
5 2.67 38.3 17.66 15.46 11.09 17.61 11.53 11.91 17.55
10 3.21 61.1 14.48 12.37 27.75 12.88 9.27 9.28 13.5
20 5.93 81.9 13.68 9.88 41.12 9.76 7.76 7.27 9.74
25 6.66 88.3 13.73 9.2 44.68 8.85 7.37 6.7 8.58
50 8.61 108.1 14.73 8.37 53.97 10.54 8.01 10.79 5.99
100 10.17 127.6 17.01 9.76 61.23 13.82 9.65 15.15 9.29
200 11.45 147.3 19.79 10.91 67.02 17.47 11.03 19.55 13.72
Average 6.86 81.9 17.81 11.81 42.86 14.52 10.10 11.94 12.75
Stdev 3.10 47.3 5.89 3.52 18.26 5.43 2.88 4.38 5.70

8 2 2.06 2.2 27.77 39.91 40.12 28.95 40.84 39.02 41.39
5 2.35 6.4 19.97 39.76 31.07 32.3 39.85 38.5 40.63
10 4.09 8.8 17.09 39.89 28.7 33.82 39.41 37.38 39.56
20 5.48 11.2 15.24 40.29 31.74 34.91 39.3 37.02 39.39
25 5.86 12.0 14.79 40.39 33.66 35.2 39.24 36.85 39.31
50 6.91 14.2 14.22 40.6 38.77 35.95 39.04 36.25 38.98
100 7.84 16.2 14.22 40.77 42.91 36.52 38.86 35.71 38.69
200 8.67 18.0 14.43 41.02 46.35 36.93 38.79 35.14 38.55
Average 5.41 11.1 17.22 40.33 36.67 34.32 39.42 36.98 39.56
Stdev 2.43 5.2 4.70 0.45 6.29 2.63 0.67 1.32 0.98

Table 5.5.3 Errors obtained from validation of the three methods of flood quantile estimation with
PT3, GEV and LP3 distributions. Stdev is the standard deviation of errors

Method Method 1 Method 2 Method 3

Region T (yrs) PT3 LP3 GEV PT3 LP3 GEV PT3 LP3 GEV

1 2 4.4 2.1 27.2 15.07 25.33 20.61 11.84 12.48 10.63
5 2.0 5.6 21.1 10.34 13.71 11.74 10.35 11.22 10.11
10 5.2 6.5 20.0 7.89 28.04 9.69 9.11 11.46 9.32
20 7.6 6.8 20.1 5.97 37.64 9.31 7.99 12.23 8.21
25 8.3 6.7 20.3 5.44 40.12 9.36 7.55 12.55 7.88
50 10.2 6.6 21.2 3.97 46.53 9.93 6.56 13.66 6.73
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Table 5.5.3 (continued)

Method Method 1 Method 2 Method 3

Region T (yrs) PT3 LP3 GEV PT3 LP3 GEV PT3 LP3 GEV

100 11.8 6.3 22.6 2.74 51.53 10.94 5.72 14.8 5.62
200 13.2 5.8 24.1 1.68 55.56 12.26 4.9 15.94 4.51
Average 7.8 5.8 22.1 6.64 37.31 11.73 8.00 13.04 7.88
Stdev 3.8 1.6 2.5 4.39 14.22 3.75 2.35 1.64 2.15

2 2 4.3 3.9 36.8 33.42 52.36 14.99 37.03 36.06 36.12
5 1.0 10.5 24.5 44.24 10.58 11.52 40.15 37.21 37.67
10 2.7 20.4 18.3 50.89 7.64 23.19 42.49 40.02 40.02
20 4.6 30.5 13.0 56.64 17.04 33.89 44.71 43.84 42.91
25 5.4 33.8 11.3 58.38 19.38 37.31 45.37 45.28 44.1
50 7.4 44.4 6.4 63.34 25.25 47.85 47.2 49.79 47.95
100 9.3 55.1 2.0 67.74 29.62 58.49 48.74 54.62 52.31
200 11.0 66.3 6.7 71.71 32.97 69.43 50.19 59.71 56.98
Average 5.7 33.1 14.9 55.80 24.36 37.08 44.49 45.82 44.76
Stdev 3.4 21.5 11.4 12.64 14.31 20.58 4.43 8.40 7.25

3 2 2.6 4.8 44.8 17.79 7.83 47.48 29.67 27.69 44.49
5 1.7 9.2 29.2 17.78 35.6 37.11 19.03 23.28 33.37
10 3.7 19.9 22.2 17.36 46.8 32.69 12.3 16.59 24.59
20 5.4 30.9 16.5 17.58 54.53 29.33 11.14 12.48 16.52
25 5.8 34.5 15.7 17.86 56.52 28.38 11.29 12.55 14.68
50 7.2 46.3 14.0 18.67 61.65 26.4 11.88 12.81 12.36
100 8.5 58.7 13.0 19.61 65.63 27.09 16.18 20.56 16.71
200 9.6 71.7 13.7 20.55 68.81 28.19 22.36 35.5 33.3
Average 5.6 34.5 21.1 18.40 49.67 32.08 16.73 20.18 24.50
Stdev 2.8 23.5 11.0 1.13 19.97 7.14 6.64 8.33 11.49

4 2 2.8 2.1 29.2 26.93 37.76 20.45 38.4 38.47 50.96
5 1.4 5.9 19.2 29.19 17.38 17.94 25.27 28.86 32.75
10 3.0 9.0 15.6 30.21 25.24 19.3 20.99 22.87 25.21
20 4.3 11.3 13.2 31 33.95 21.38 20.58 22.11 22.16
25 4.7 12.0 12.6 31.23 36.51 22.07 20.5 22.05 21.86
50 5.7 13.7 11.3 31.86 43.57 24.15 20.3 21.95 21.23
100 6.7 15.0 12.4 32.41 49.02 26.15 20.2 21.96 21.05
200 7.6 16.1 13.7 32.89 53.37 28.11 20.23 22.06 21.01
Average 4.5 10.7 15.9 30.72 37.10 22.44 23.31 25.04 27.03
Stdev 2.1 4.8 5.9 1.93 11.89 3.47 6.33 5.92 10.45

5 2 1.7 1.4 24.3 20.9 20.12 33.11 20.42 20.7 20.69
5 2.2 5.5 18.6 21.02 34.58 27.92 22.55 23.48 22.98
10 2.0 9.6 15.7 20.74 41.51 26.5 23.07 24.08 23.39
20 1.6 13.3 13.4 20.57 45.76 25.62 23.39 24.41 23.59
25 1.4 14.3 12.6 20.51 46.79 25.36 23.48 24.44 23.61
50 1.1 17.7 10.6 20.29 49.29 24.59 23.62 24.4 23.54
100 1.9 20.8 8.7 20.06 51.03 23.86 23.72 24.59 23.36
200 2.6 23.7 6.9 19.82 52.25 23.17 23.76 25.02 23.09
Average 1.8 13.3 13.8 20.49 42.67 26.27 23.00 23.89 23.03
Stdev 0.5 7.6 5.6 0.41 10.74 3.14 1.12 1.36 0.97

6 2 6.8 0.2 41.2 22.30 19.13 47.86 15.49 13.56 13.06
5 7.8 19.4 22.5 16.49 26.82 36.78 22.08 21.17 20.01
10 16.9 31.3 10.9 12.93 30.53 30.43 25.02 26.14 23.91
20 25.2 42.0 1.3 9.75 33.83 25.21 27.11 30.24 27.07
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Table 5.5.3 (continued)

Method Method 1 Method 2 Method 3

Region T (yrs) PT3 LP3 GEV PT3 LP3 GEV PT3 LP3 GEV

25 27.7 45.3 4.4 8.79 34.74 23.72 27.68 31.41 28
50 35.1 55.3 15.6 5.95 37.13 19.14 29.18 34.54 30.49
100 42.0 64.9 27.3 3.3 39.05 14.67 30.42 37.15 32.66
200 48.5 74.2 39.5 5.81 40.63 10.2 31.47 39.28 34.62
Average 26.2 41.6 20.3 10.67 32.73 26.00 26.06 29.19 26.23
Stdev 15.3 24.3 15.1 6.31 7.09 12.22 5.22 8.60 7.08

7 2 3.7 2.8 38.0 3.18 11.54 33.35 5.96 7.46 8.9
5 1.8 38.8 22.6 4.68 23.14 22.7 7.42 8.68 9.36
10 3.0 70.5 17.0 8.47 36.12 20.06 9.33 8.48 10.02
20 5.2 104.1 13.5 11.5 45.24 19.26 10.66 7.73 11.64
25 5.8 115.4 13.6 12.34 47.69 19.25 11.03 7.36 12.14
50 7.5 152.6 14.7 14.67 54.13 20.84 11.98 5.65 13.59
100 9.0 193.3 16.5 16.63 59.25 23.7 12.81 5.11 15.04
200 10.4 237.9 18.7 18.31 63.44 26.82 13.49 9.58 16.45
Average 5.8 114.4 19.3 11.22 42.57 23.25 10.34 7.51 12.14
Stdev 3.0 78.5 8.1 5.45 17.98 4.83 2.62 1.51 2.73

8 2 3.3 1.3 26.9 68.64 70.06 61.28 68.22 68.86 67.8
5 2.4 3.9 22.0 73.1 65.75 66.4 72.13 71.66 70.71
10 4.6 6.7 20.5 75.43 63.86 69.28 74.28 73.18 72.79
20 6.4 9.2 19.8 77.29 62.45 71.87 75.97 74.48 74.85
25 6.8 10.0 19.6 77.81 62.06 72.68 76.44 74.86 75.5
50 8.2 12.3 19.3 79.29 61.02 75.13 77.72 76.02 77.54
100 9.2 14.4 19.2 80.58 60.16 77.48 78.8 77.09 79.57
200 10.2 16.4 19.3 81.73 59.44 79.75 79.72 78.13 81.62
Average 6.4 9.3 20.8 76.73 63.10 71.73 75.41 74.29 75.05
Stdev 2.8 5.1 2.6 4.28 3.46 6.02 3.79 3.01 4.58

For region 2 error with PT3 is 45% and for region 8 it is as high as 75%. The
high error from region 8 could be attributed to poor correlation between flood
quantiles and drainage area which makes the GLS regression equation not as
reliable as for other regions. Nevertheless, the average errors computed for the
method 3 are, in general, found to be more than those computed for the other
two methods.

Overall, the average errors for LP3 distributions are quite high with all the three
methods. Hence it can be concluded that LP3 is not preferable. Further, method
2 should be preferred less because it embeds the error from methods 1 and 3 and
makes the result unreliable.

5.6 Simple Scaling in Regionalized Watersheds

In general, scaling implies that the properties associated with a process at different
scales are related to each other by a transformation involving only the scale ratio
between them.



5 Effect of Regionalization on Flood Frequency Analysis 197

Consider a regional flood process {Q(X )} indexed on a parameter set X which
characterizes the statistical spatial structure of peak flows. They are said to be simple
scaling if the following equality holds:

{
Q(λX )

λθ

}

d {Q(X )} (5.6.1)

where λ > 0 is a scale parameter and θ is a scaling exponent; the equality is in the
sense of probability distribution. Gupta et al. (1994) suggest taking X as represent-
ing the channel network in drainage basin. Since channel networks are proportional
to drainage areas, X might be taken simply as the drainage area A. Parametric repre-
sentation of peak flows by the drainage areas may seem insufficient, but is justified
by the important preponderance of basin size in explaining variance of statistics
related to flood peak discharges (Ribeiro and Rousselle, 1996). Assuming X = 1
and λ = A, Eq. (5.6.1) can be rewritten as

{
Q(A)

Aθ

}

d {Q(1)} (5.6.2)

where {Q(1)} represents the peak flows generated by an hypothetical basin with
unit drainage area.

If the mean of peak flows is considered as a deterministic function μ = Aθ

and if {Q(1)} corresponds to the dimensionless flood frequency curve, the index
flood assumption is equivalent to simple scaling. Thus the above equation shows
how the index flood assumption is closely related to simple scaling. The equality in
distribution given by Eq. (5.6.2) is referred to as simple scaling.

Ribeiro and Rousselle (1996) obtained the following relationship for simple scal-
ing using statistical moments,

E [Q (A)]h

Aθ ·h = E [Q (1)]h (5.6.3)

where h is the order of the statistical moments. This expression can be rewritten us-
ing log transform to show that h is proportional to the slope of the log–log trendline.

log
{

E [Q (A)]h
} = θ · h · log (A) + log

{
E [Q (1)]h

}
. (5.6.4)

Using the expression in Eq. (5.6.4), a relationship between any statistical moment
E[Q(A)]h of order h, and A can be written as,

E [Q (A)]h = Y · Aθ ·h (5.6.5)



198 E-C. Hsu et al.

where Y is a coefficient that denotes the intercept of the power law. Y and θ can
be determined through a simple regression analysis. For simple scaling to be valid
for watersheds in a region, θ should be a constant. In the following discussion,
only first three moments are used. The first moment, E[Q(A)], is the mean. It is
defined as,

E [Q (A)] = μQ = 1

n

n∑

i=1

Qi . (5.6.6)

where n is the sample size of peak flows at the site. The second central moment,
E[Q(A) − μQ]2, is defined as,

E
[
Q (A) − μQ

]2 = σ 2
Q = 1

n − 1

n∑

i=1

(
Qi − μQ

)2
(5.6.7)

The third central moment, E[Q(A) − μQ]3, is defined as,

E
[
Q (A) − μQ

]3 = n

(n − 1) (n − 2)

n∑

i=1

(
Qi − μQ

)3
(5.6.8)

The relationships between the first three conventional statistical moments of ob-
served peak flows and the basin areas are developed for watersheds in each region
of Indiana formed using SOFM in Chapter 4 (Fig. 4.3.15). Using these relationships,
the first three moments can be estimated for ungauged watersheds.

The first, second and third moments estimated from observed peak flows at all the
sites in a region are plotted against the basin areas of the respective sites (Fig. 5.6.1).
It can be inferred from the results summarized in Table 5.6.1 that for regions 1
through 5, slopes of the regression lines plotted for second moment are approxi-
mately twice that of the first moment, and the slopes of the regression lines plotted
for third order moment are nearly triple that of the first order moment. The log-
linearity between the sample moments and basin area shows that the annual floods
in a region scale with basin area. Nevertheless, the correlation for these relationships
weakens as the moment order increases.

It is seen from Fig. 5.6.1 that for region 6 the magnitude of the regression co-
efficient (R2) is very low for the regression line fitted between second and third
order moments and basin areas. The estimated R2 values for the second and third
order moments for the region 6 are 0.6802 and 0.4518 respectively. This is due to
the non homogeneity of Region 6. Therefore, in general, it can be concluded that
simple scaling using statistical moments is valid for the homogeneous Regions 1–5,
and not valid for Region 6 which is heterogeneous. Similar conclusions are drawn
for regions obtained by other regionalization procedures discussed in previous
chapters.
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Fig. 5.6.1 Log–log plot prepared between conventional sample moments of annual peakflows and
basin area for regions determined using SOFM clustering

5.7 Probability Distributions for Flood Frequency Analysis
in Regionalized Watersheds

In flood frequency analysis, an assumed probability distribution is fitted to the avail-
able data to estimate the flood magnitude for a specified return period. The choice
of an appropriate probability distribution is quite arbitrary, as no physical basis is
available to rationalize the use of any particular distribution. The type of error which
is associated with the wrong assumption of a particular distribution for the given
data can be checked to a certain extent by using goodness-of-fit tests. These are
statistical tests which may be used to evaluate the adequacy of distributions.

Even if an acceptable distribution is selected, proper estimation of parameters is
important. Some of the parameter estimation methods may not yield good estimates,
or may not even converge. Therefore, information about the parameter estimation
method is also useful in practice.
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Table 5.6.1 Characteristics of moments for regions 1 to 6. The ‘ratio of slopes’ for a region denotes
ratio of slope of second (or third) moment to that of first moment for the region

Region number Moment number Intercept Slope R2 Ratio of slopes

1 First 127.45 0.6303 0.902 –
Second 5062.7 1.2554 0.889 1.99
Third 302301 1.9806 0.879 3.14

2 First 217.34 0.6585 0.945 –
Second 15110 1.2938 0.928 1.96
Third 2.0E+06 1.9132 0.896 2.90

3 First 182.31 0.7843 0.963 –
Second 10635 1.5743 0.956 2.01
Third 2.0E+06 2.3856 0.938 3.04

4 First 145.16 0.6723 0.939 –
Second 6575.5 1.3149 0.916 1.96
Third 585385 1.9239 0.880 2.86

5 First 50.148 0.7017 0.838 –
Second 360.37 1.4121 0.825 2.01
Third 709.29 2.3968 0.763 3.42

6 First 52.54 0.6287 0.914 –
Second 3329.4 0.8132 0.680 1.29
Third 475849 0.9292 0.452 1.48

5.7.1 Parameter Estimation

Several methods can be used for parameter estimation. In the following discussion,
the method of moments (MOM), the maximum likelihood method (MLM) and the
probability weighted moment (PWM) are used for parameter estimation.

The maximum likelihood (ML) method is considered to be the most important
method especially for large data sets since it leads to efficient parameter estimators
with Gaussian asymptotic distributions. It provides the smallest variance of the esti-
mated parameters, and hence of the estimated quantiles, compared to other methods.
However with small samples the results may not converge.

The method of moments (MOM) is a relatively simple method and is more com-
monly used. It can also be used to obtain starting values for numerical procedures
involved in ML estimation. However, MOM estimates are generally not as efficient
as the ML estimates, especially for distributions with large number of parameters,
because higher order moments are more likely to be highly biased for relatively
small samples.

The PWM method gives parameter estimates comparable to the ML estimates.
Yet in some cases the estimation procedures are much less complicated and the com-
putations are simpler. Parameter estimates from samples using PWM are sometimes
more accurate than the ML estimates. Further details on this topic are found in Rao
and Hamed (2000).
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5.7.2 Quantile Estimation

After the parameters of a distribution are estimated, quantile estimates (QT ) which
correspond to different return periods may be computed. The return period (T), is
related to the probability of non-exceedence (F) by the relation,

F = 1 − 1

T
(5.7.1)

where F = F(QT ) is the probability of having a flood of magnitude QT or smaller.
The problem then reduces to evaluating QT for a given value of F. In practice, two
types of distribution functions are encountered. The first type is that which can be
expressed in the inverse form QT = φ (F). In this case, QT is evaluated by replacing
φ(F) by its value. In the second type, the distribution cannot be expressed directly
in the inverse form QT = φ (F). In this case numerical methods are used to evaluate
QT corresponding to a given value of F.

5.7.3 Probability Distributions

There are many functions which fulfill the conditions to be satisfied by a probability
density function. Four distributions which are commonly used in modeling flood
data are used in this discussion. These are (1) Three parameter log normal distribu-
tion (2) Pearson type 3 distribution (3) log Pearson type 3 distribution and the (4)
Generalized Extreme Value distribution. Details of these distributions are found in
Rao and Hamed (2000).

To assess the reasonability of the selected distribution, several statistical tests like
Chi-Square test and Kolmogrov-Smirnov test may be used. The Chi-square test and
Kolmogrov-Smirnov tests are discussed below.

5.7.3.1 Chi-Square Test

In the chi-square test, data are first divided into k class intervals. The statistic χ2 in
Eq. (5.7.2) is distributed as chi-square with k - 1 degrees of freedom.

χ2 =
k∑

j=1

(
O j − E j

)2

E j
(5.7.2)

In Eq. (5.7.2), O j is the observed number of events in the class interval j, E j is
the number of events that would be expected in the class interval from the theoretical
distribution. If the class intervals are chosen such that each interval corresponds to
an equal probability, then E j = n/k where n is the sample size, and Eq. (5.7.2)
reduces to Eq. (5.7.3)
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χ2 = k

n

k∑

j=1

O2
j − n (5.7.3)

Class intervals corresponding to different values of probability F can be computed
by taking the inverse of the distribution function and following the procedure similar
to estimation of flood quantiles.

5.7.3.2 Kolmogorov-Smirnov Test

A statistic based on the deviations of the sample distribution function Fn(x) from
the completely specified continuous hypothetical distribution function F0(x) is used
in this test. The test statistic Dn is defined in Eq. (5.7.4).

Dn = max |Fn (x) − F0 (x)| (5.7.4)

The values of Fn(x) are estimated as nc
j /n where nc

j is the cumulative number of
sample events in class j . F0(x) is then 1/k, 2/k, . . . etc., similar to the chi-square test.
The value of Dn must be less than a tabulated value of Dn at the required confidence
level for the distribution to be accepted.

5.7.4 Data Analysis

The following nine distributions were selected as candidates for the best distribution
suitable to each region in Indiana: Pearson Type III, Log Pearson Type III, Generalized
Extreme Value, Log Normal III parameter, Gamma, Generalized Pareto, Logistic,
Gumbel (Extreme value type I) and Weibull distribution. Pearson Type I, Extreme
Value Type II, and Log Normal (II) distributions were not considered because the
same distributions with three parameters were selected. Data sets from region 1 were
selected to observe the results for all of the nine distributions. The plots of goodness
of fit obtained for many data sets in the case of Gamma, Generalized Pareto, Logistic
and Weibull distribution showed a very poor fit. Consequently, four distributions, Log
Normal III (LN3), Log Pearson III (LP3), Pearson Type III (PT3) and Generalized
Extreme Value (GEV), were chosen for further investigation.

The results from goodness-of-fit tests were ranked from 1 to 4. The distribu-
tion which showed best fit for the data is ranked 1, whereas the distribution which
showed poorest fit for the data was ranked 4. The frequency distribution(s) that
showed best fit for the data of each region are shown in Figs. 5.7.1–5.7.6. The results
are also tabulated in Table 5.7.1.

As mentioned above, method of moments (MOM), maximum likelihood (ML)
and probability weighted moments (PWM) were used to estimate parameters of the
selected distributions. These parameters were used to calculate the flood quantiles
corresponding to 10, 20, 50 and 100 year return periods. Standard errors correspond-
ing to the observed values were also obtained. Results of goodness of fit at 95%
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Fig. 5.7.1 Region 1 – Frequency of rank 1 for selecting the best distribution
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Fig. 5.7.4 Region 4 – Frequency of rank 1 for selecting the best distribution
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Table 5.7.1 Selection of best distribution and method of parameter estimation for each Region

Region
number

Number of
stations

Rank 1 Rank 2 Rank 3 Rank 4 Best method of
parameter estimation

1 62 LP3, LN3 – GEV PT3 ML
2 58 LP3 LN3 PT3 GEV ML
3 30 LP3 LN3 GEV PT3 MOM
4 73 GEV LN3 PT3 LP3 ML
5 42 GEV LN3 PT3 LP3 ML
6 14 LP3 GEV PT3 LN3 ML

confidence limit were tabulated for each gage station in a region corresponding to
each distribution and method of parameter estimation.

To select the best method of parameter estimation, the Chi-Square and the
Kolmogorov-Smirnov test values for each distribution and gauging station, are
compared for the three methods of parameter estimation. The method with the low-
est value is given the highest rank, Rank 1. The method having highest frequency of
Rank 1 in each region is selected as the best method of parameter estimation for that
region. In most cases, maximum likelihood method turned out to be the best one.
The final results are tabulated in Table 5.7.1.

The results in Figs. 5.7.1–5.7.6 and Table 5.7.1 were obtained based on observed
data from all the watersheds in Indiana. In many of these watersheds the data were
quite short. For example, in region 3, the number of observations is less than 30 in 17
out of 30 sites. The goodness-of-fit tests are not reliable for smaller samples. There-
fore, sites having more than 30 station-years of peak flow data are screened to repeat
the foregoing analysis. The procedure described above for ranking the distributions
and the methods of parameter estimation are adopted and the results are shown in
Figs. 5.7.7–5.7.12. The new rankings given to the distributions and the best method
of parameter estimation are shown in Table 5.7.2 for each of the six regions.
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Fig. 5.7.7 Region 1 – Frequency of rank 1 for selecting the best distribution with more than 30
observations at each site
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The significance of having longer data sequences in goodness-of-fit tests is
clearly brought out by the results in Table 5.7.2. The GEV distribution is the best
distribution with larger data sets, followed by Log Normal (III) distribution. Log
Pearson (III) distribution which was selected as the best distribution in Table 5.7.1
is no longer in Rank 1 for any region.

The objective of the study was to select the probability distribution which best
fits the data in each of the six regions in Indiana. Based on the results presented in
Table 5.7.2 for regions 1, 4, 5 and 6, Generalized Extreme Value distribution comes
out to be the best distribution. For regions 2 and 3, Log Normal (III) distribution
is the best. The maximum likelihood method in found to be the best parameter
estimation method.
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Table 5.7.2 Selection of best distribution and method of parameter estimation for each Region,
considering stations with more than 30 peak flow observations

Region
number

Number of
stations

Rank 1 Rank 2 Rank 3 Rank 4 Best method of
parameter estimation

1 21 GEV LN3 LP3 PT3 ML
2 30 LN3 LP3, PT3 GEV ML
3 13 LN3 LP3 GEV PT3 MOM
4 55 GEV LN3, PT3 LP3 ML
5 36 GEV LN3, PT3 LP3 ML
6 07 GEV LN3, LP3, PT3 ML

5.7.5 Dimensionless and Standardized Quantile Measures

There are other ways to examine the behaviour of the quantile floods. Sveinsson
(2002) introduces two types of measures. The first of these is a dimensionless quan-
tile measure and the second one is standardized quantile measure. The assumption
that the at-site population quantiles divided by their population mean are identical in
a homogeneous region implies that the dimensionless quantile measure is constant
in that region. The expression of the dimensionless quantile measure for site j is

Dimensionless quantile measure (DQM) = Q̂ j
T

μ̂
j
Q

(5.7.5)

where Q̂ j
T is the flood quantile for return period T estimated by using any specified

distribution and μ̂
j
Q is the mean annual peak flow at site j . As for the standard-

ized quantile measure, the assumption that the standardized at-site population are
identical implies that the standardized quantile measures should not depend on the
data from different stations. The expression of the standardized quantile measure
for site j is

Standardized quantile measure (SQM) = Q̂ j
T − μ̂

j
Q

σ̂
j

Q

(5.7.6)

where σ̂
j

Q is the standard deviation of the annual peak flows at site j .
The dimensionless quantile measures calculated for all the sites in each of the

eight regions using PT3 distribution are shown in Fig. 5.7.13. The standardized
quantile measures calculated for the same by PT3 distribution are shown in
Fig. 5.7.14. Each region has its own sub-plot for eight recurrence intervals of 2,
5, 10, 20, 25, 50, 100 and 200 years. The arrows indicate those stations which have
high discordancy measures. The result shows that the measures are almost constant
for all the stations for recurrence intervals less than 25 years. For recurrence inter-
vals greater than 25 years, the statistics fluctuate considerably. These results bring
out the fact that the homogeneity of dimensionless quantile measures depends on the
recurrence intervals considered. For smaller recurrence intervals the homogeneity
assumption may be acceptable, whereas for higher recurrence intervals the statistics
for stations which are discordant to the other sites in a region show high variability.
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Fig. 5.7.13 Dimensionless quantile measures for each region
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5.8 Concluding Comments

It is of interest to note that the flood estimates vary with the choice of distributions
for the same region. These differences in flood estimates due to different distribu-
tions can be considerable. The differences depend on the method used to estimate
the parameters of the distributions. These differences must be established and used
to assess the accuracy of flood estimates. Procedures which yield the smallest er-
rors of estimates must be used in flood estimation. Despite considerable advances
in computational procedures these have not been put in to common practice. The
results presented in this chapter highlight these issues.

The importance of regionalization in reducing the flood estimation errors is also
brought out by these results. The smallest estimation errors are usually associated
with the most homogeneous watersheds. The errors increase with heterogene-
ity. Consequently regionalization is an important first step in flood estimation.
After regionalization the observed data must be used to develop flood estimation
relationships. These relationships may be tested by using suitable techniques to
assess estimation errors. The errors may be used in assessing flood estimation
accuracy.

Similar considerations apply in selecting the probability distribution for flood
estimation. Use of a single distribution may not be acceptable to an area such as a
large state. We may have large unacceptable errors by using a single distribution.
These issues must be carefully considered and used in practice.



Chapter 6
Concluding Remarks

6.1 General Remarks on Clustering Approach to Regional Flood
Frequency Analysis

In flood frequency analysis, regionalization of watersheds is perceived mostly as a
clustering problem. Identification of groups of watersheds (regions) having similar
flood response was based on at-site flood statistics such as mean annual flood, co-
efficient of variation, skew, and kurtosis. The current practice is to form regions by
seeking similarity in attributes that affect and depict floods in watersheds.

It is suggested not to form regions based on at-site flood statistics because: (1) the
resulting clusters will not be useful for estimating floods at ungauged sites, when the
requirement arises at a later time; (2) the regional average L-statistics of resulting
clusters will not be much different from L-statistics of sites in those regions. Thus,
little can be gained by using those regional statistics for estimating parameters of fre-
quency distribution(s) to arrive at quantiles of floods for hydrologic design; (3) with
at-site statistics there is a tendency to group together all the sites having similar
outliers. An outlier for a site is a data point that is numerically far-off from the rest
of the data at the site. The outlier could be due to random fluctuations caused by a
localized meteorological event at the site that may not have affected its neighboring
sites. If such an event is equally likely to affect any of its neighbors in the future,
then it is incorrect to treat the site with outlier as different from its neighbors.

Further, the regions formed based on similarity in chosen watershed attributes
need not be homogeneous in flood response. This is because it is impossible to col-
late data on exhaustive set of attributes for regionalization. Hence it is necessary to
test homogeneity of identified regions. This aspect has not received the importance
it deserves (e.g., Hall and Minns, 1999; Hall et al., 2002).

There are a few approaches to regionalization. Each approach has its strengths
and limitations, and there are a number of issues in using them. One of the issues
is that the use of different approaches leads to formation of different set of regions
because the strategy used for grouping sites differs from one approach to another.227

In practice, hydrologists have been trying different approaches as there are no es-
tablished criteria by which the superiority of any particular approach can be clearly
brought out. Further, there is a dearth of attempts to comprehend performance of
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various regionalization approaches ever since the contributions of Cunnane (1988),
Bobée and Rasmussen (1995) and GREHYS (1996) in the past century.

Recently, increase in scientific knowledge and global concern about water re-
sources assessment paved the way for creation of databanks of a variety of hydro-
climatic and hydro-meteorological attributes that influence flood response of
watersheds. In this scenario, clustering approach that is recognized for its effec-
tiveness in classifying multivariate data has become a natural choice for grouping
watersheds. Although cluster analysis is useful, there are several clustering tech-
niques and their relative merits and de-merits in forming homogeneous regions for
flood frequency analysis are not explored. This predicament makes it necessary to
examine the performance of various clustering procedures in vogue.

Conventionally, hard clustering algorithms are used to form regions. To explore
their merits, the performance of commonly used hierarchical clustering algorithms
(single linkage, complete linkage and Ward’s), a widely used partitional cluster-
ing algorithm (K-means), and hybrids of the hierarchical and partitional clustering
algorithms is examined. The hybrid of Ward’s and K-means algorithms is found
to be better than that of the hierarchical and the partitional clustering algorithms
considered. Plausible homogeneous hydrologic regions are identified by visual in-
terpretation of partitions provided by the hard clustering algorithms, and by using
six hard cluster validity indices, namely cophenetic correlation coefficient (CPCC),
average silhouette width (ASW), Dunn’s index, Davies-Bouldin index, Calinski
Harabasz index, and Minimum Description Length. The CPCC is found to be ineffi-
cient, whereas the ASW performed reasonably well. The Dunn’s index and Davies–
Bouldin index are found to be effective in identifying optimal partition containing
clusters that are close to being homogeneous. Optimal partition identified using the
cluster validity indices is found to be very similar to the plausible hydrologic regions
recognized by visual inspection of clusters.

One of the issues in the use of cluster analysis concerns partially or completely
assigning watersheds to regions. In hard cluster analysis, a watershed is classified
as belonging to one region or another. This type of analysis is acceptable if water-
sheds can be classified into regions in a stringent manner based on their attributes.
However, application of hard clustering analysis to cases where the classification
is rather vague is undesirable. Vagueness in region formation is unavoidable in
grouping watersheds which partially resemble each other in terms of their attributes.
The issue in this situation is whether a procedure such as fuzzy clustering can be
used to achieve effective partition of watersheds. To explore this, fuzzy c-means
(FCM) algorithm is used for regionalization of watersheds in Indiana and is found
to be efficient in forming regions. Several fuzzy cluster validity indices are tested
to examine their effectiveness in identification of optimal partition obtained from
FCM algorithm. It is found that the fuzzy validity measures: partition coefficient,
classification entropy, fuzziness performance index and normalized classification
entropy that are in vogue in hydrologic literature are inefficient in deriving hydro-
logically homogeneous regions. This could be attributed to lack of direct connection
of these indices to structure in multi-dimensional space of feature vectors prepared
from watershed attributes. These measures are based only on membership values of
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feature vectors in various clusters. Xie-Beni, extended Xie-Beni, Fukuyama-Sugeno
and Kwon’s Indices have been tried as alternatives to the existing indices. Among
these, extended Xie-Beni index is found to be quite useful for identification of opti-
mal partition. Since the conclusions are drawn using only data sets of Indiana, USA,
these could be premature. It is necessary to test these validity measures further with
data sets from other parts of the world to support or reject the conclusions drawn
based on the results presented in this book.

It is suggested that caution should be exercised in deciding optimal number of
clusters based on the cluster validity indices because they are developed and val-
idated on certain standard data sets (such as Iris data, and wine data found in the
University of California, Irvine (UCI), machine learning repository) in applications
other than regionalization of watersheds. Further, none of these indices is found
to be suitable for identification of optimal partition in all types of standard data
sets. Hence, further research is needed to explore the possibility of developing new
validity indices exclusively for identification of optimal number of regions in re-
gionalization studies.

As in the case of hard clustering, the regions obtained from the fuzzy cluster
analysis are also adjusted to improve their homogeneity. The Fuzzy memberships
of sites in clusters are found to be useful in adjusting the regions. Considerable effort
is needed to adjust a region when clusters determined by hard cluster analysis or by
defuzzification of partition provided by FCM algorithm are used to form hydrologic
regions. In contrast, the effort needed to form homogeneous regions by adjusting
fuzzy clusters derived from FCM algorithm is found to be smaller.

It is noted that the use of effective clustering procedures can provide regions
that are close to being homogeneous. Consequently the effort involved in adjusting
regions to make them homogeneous is reduced considerably. The subjectivity in
region adjustment has been an issue of concern for several practising hydrologists,
despite a large number of guidelines that have been framed for this purpose (see
Section 1.4.1).

The linear Kohonen’s self-organizing feature map (SOFM) has been applied as
a clustering technique for regionalization in recent studies. However, specific pat-
terns could not always be discerned in Kohonen lattice for grouping watersheds with
SOFM, irrespective of its size and dimensionality (1-D or 2-D). It is demonstrated
that SOFMs may, however, serve as a useful precursor to clustering algorithms. A
novel two-level SOFM-based clustering approach is proposed for regionalization of
watersheds. In the first level, the SOFM is used to form a two-dimensional feature
map. In the second level, the output nodes of SOFM are clustered using FCM algo-
rithm to form regions for flood frequency analysis. The optimal number of regions
is determined by fuzzy cluster validity indices.

The two-level SOFM-based clustering algorithm is found to be efficient in de-
termining homogeneous groups of watersheds. This is demonstrated through appli-
cation to watersheds in Indiana. The knowledge of distribution of membership of
winning output nodes of SOFM among the fuzzy regions is useful in adjusting the
regions to improve their homogeneity. Thus the effort needed to adjust regions is
smaller for the two-level fuzzy clustering than for the conventional hard, fuzzy and
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SOFM clustering procedures. Several avenues should be explored to further refine
these attempts to regionalize watersheds. Investigations in this direction can lead to
identification of robust procedures for regionalization.

As regionalization is neither easy nor a simple exercise, an attempt is made to as-
sess its importance in regional flood frequency analysis by examining if it improves
accuracy in estimation of flood quantiles. Results show that the error in estimation
of flood quantiles at target site by using regional information is smaller when target
site belongs to a homogeneous group.

Practicing hydrologists in United States were using several distributions to es-
timate frequency of floods in different parts of the country. They resorted to log-
Pearson type III (LP3) distribution following recommendations of the U.S. Water
Resources Council (1976, 1977, 1981) for the continental United States published
in Bulletin 17 (Griffis and Stedinger, 2007). The question of whether a single dis-
tribution can be used to fit peak flows in all the regions in a state is examined. The
performance of LP3 distribution is compared with that of several other frequency
distributions in modeling peak flow data of different regions in Indiana. Results
show that a single distribution cannot be used for all the regions. Further, it is
noted that the LP3 distribution yielded significant errors for several regions, thus
indicating that it cannot be opted as a default choice for modeling floods.

Furthermore, it isnoted thatwithinhydrologicallyhomogeneousregions inIndiana,
moments of annual peak flows scale with drainage area according to log–log linear
relations. Thus, for ungauged basins within a homogeneous region, it is possible to
predict moments of annual peak flows fairly well. Subsequently, the moments can be
used to estimate flood quantiles by using regional growth curve computed using index
flood method. Alternatively, the moments can be used to compute parameters of any
distribution and the corresponding flood quantiles. Future research should explore if
the concept of scaling can be used to test homogeneity of regions.

6.2 Recent Developments

In the past decade there have been some interesting developments in the area of
regional flood frequency analysis. New procedures that are useful to characterize
regional frequency distribution of floods, and methodologies to perform frequency
analysis of floods in the presence of non-stationarity are proposed. In this section
some of those contributions are described briefly. Further, new avenues of research
which are evolving are mentioned.

6.2.1 Tests of Regional Homogeneity

Viglione et al. (2007) compared heterogeneity measures based on L moment ratios
(Hosking and Wallis, 1993) with the bootstrap Anderson-Darling test (Scholz and
Stephens, 1987) and with the Durbin and Knott rank test (Durbin and Knott, 1972).
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It is suggested that the Hosking and Wallis heterogeneity measure based only on
coefficient of L-variation (p. 21, Hosking and Wallis, 1997) is preferable when re-
gional skewness is low, while the bootstrap Anderson-Darling test is preferable for
regions with higher skewness.

6.2.2 Methods for Characterizing Regional Frequency Distribution

LH moments were proposed by Wang (1997, 1998) as an alternative to the con-
ventional L-moments for characterizing the upper parts of distributions and larger
events in a sample. The idea underlying LH moments is that a distribution function
which is inappropriate for describing complete data series may still be reasonable
for describing the larger events in that data series. The LH moments are based on
linear combinations of higher order statistics. Self-determined probability weighted
moments (SD-PWM) were proposed by Haktanir (1997) as an extension of the
probability weighted moments of Greenwood et al. (1979). Whalen et al. (2002) de-
veloped algorithms to simplify parameter estimation by SD-PWM. Moisello (2007)
advocated the use of partial probability weighted moments (Wang, 1990) for re-
gional analysis of hydrologic extremes.

6.2.3 Methods for Regional Frequency Analysis

Traditionally hydrologists have been using index flood procedure (Dalrymple, 1960)
for combining information from different sites in a homogeneous region for regional
frequency analyses. This procedure involves the use of scale factor (called index
flood) to scale flood data at all the sites in a region, before proceeding to estimate
at-site L-moment ratios and combining them to arrive at regional L-moment ratios.
When the index flood method was proposed, the scale factor was taken to be the
at-site population mean. However, since then the population statistic has been esti-
mated by the at-site sample mean in several regionalization studies. Sveinsson et al.
(2001) investigated the consequences of replacing a population characteristic with
its sample counterpart, and proposed population index flood method as an analytical
alternative to the traditional index flood procedure for regional frequency analyzes
of extreme hydrologic events. Sveinsson et al. (2003) suggested methods for esti-
mating the standard errors of at-site quantile estimators for two regional population
index flood methods utilizing the generalized extreme value distribution with maxi-
mum likelihood estimation.

6.2.4 Goodness-of-fit Measures for Regional Frequency Analysis

Hosking and Wallis (1997) proposed a regional goodness-of-fit statistic based on
L-moments for choosing a frequency distribution, from a number of candidate
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distributions, to fit the flood data in a homogeneous region. The quality of fit is
judged by the difference between the theoretical value of L-kurtosis of the fitted
candidate distribution and the sample estimate of the regional average L-kurtosis.
To assess the significance of the difference, it is compared with sampling variability
of the regional average L-kurtosis.

The distribution which may provide good fit to the regional data can also be
determined by visual interpretation of L-moment ratio diagram, which is a plot of
L-skewness against L-kurtosis of frequency distributions. A two-parameter distribu-
tion with a location and a scale parameter plots as a point on the diagram, whereas
a three-parameter distribution having location, scale, and shape parameters plots
as a line. Hosking and Wallis (1997) provided theoretical relationships between
the L-moment ratios of various distributions that are useful to plot the theoretical
L-moment ratio curves on the L-moment ratio diagram.

To select a distribution for regional frequency analysis, the sample L-moment
ratios of sites in a region are plotted as points on the L-moment ratio diagram and
the resulting scatter plot is compared with theoretical L-moment ratio curves of
candidate distributions. The subjective methods that are in vogue for this task in-
clude those that are based on (i) sample average (i.e., comparison of point depicting
regional average L-skewness and L-kurtosis with the theoretical L-moment ratio
curves) and (ii) line of best-fit method (Vogel and Wilson, 1996).

In practice, all the regions delineated in a study area may not be homogeneous.
For very heterogeneous regional data, exhibiting a large range in the distributions
shape parameter, the curve of best-fit through sample L-moment ratios could be
more useful for distribution selection than the goodness-of-fit statistic of Hosking
and Wallis (Peel et al., 2001; Kroll and Vogel, 2003). Kroll and Vogel (2002) de-
veloped a performance measure named AWOD to alleviate the subjectivity and the
effort required for interpretation of the L-moment ratio diagram. For each of the can-
didate distributions the AWOD statistic measures the average weighted orthogonal
distance between the sample L-moment ratios of sites in a region and the theoretical
L-moment ratio curve of the distribution on the L-moment ratio diagram. Among
the candidate distributions, the distribution with smallest value of AWOD is chosen
to fit the regional data. These ideas need to be tested with data from watersheds in
different parts of the world before they are accepted.

6.2.5 Non-Stationary Flood Frequency Analysis

For estimation of flooding potential at the sites in a region, it is assumed that flood
flows at the sites represent samples of independent and identically distributed real-
izations drawn from a stationary homogeneous stochastic process. These assump-
tions are not strictly valid (Klemeš, 2000). For example, natural and human-induced
changes in global water and energy cycles could alter the magnitude and fre-
quency of flood events. Also, the natural periodicity present in climate causes non-
stationarity in the hydrologic time series (Rao and Hamed, 2003). However, the
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short historical records and the lack of mathematical framework for analyzing and
modeling the dynamics of non-stationary processes have impaired studies in this
direction (Sveinsson et al., 2003), especially on river basin scale.

A brief review of the current approaches to at-site and regional frequency anal-
ysis of dependent and/or non-stationary flood flows can be found in Khaliq et al.
(2006). The development of models for non-stationary pooled frequency analysis
is in formative state. Strupczewski and Kaczmarek (2001) and Strupczewski et al.
(2001a,b) proposed non-stationary approach to at-site flood frequency analysis by
assuming trend in the first two moments of probability distributions. Six probability
distribution functions and four classes of time trends were selected for investigation.
The probability distributions include the Normal, the two-parameter lognormal, the
three-parameter lognormal, the Gamma, the Pearson type III, and extreme value
type I distribution. The trends analyzed include (i) trend in the mean value, (ii) trend
in the standard deviation, (iii) trend in the mean value and the standard deviation
related by a constant value of the variation coefficient, and (iv) unrelated trend in
the mean value and the standard deviation.

Cunderlik and Burn (2003) proposed a second-order non-stationary model to
RFFA by assuming at-site non-stationarity in the first two moments of the peak flow
time series. This model separates the regional flood quantile function into at-site
time-dependent component comprising the location and scale parameters (i.e., mean
and variance), and a regional component that was considered as time-invariant un-
der the assumption of second order non-stationarity. Standardized annual maximum
peak flow time series was decomposed into a ‘trend component’ and a ‘residual
time-dependent component’, representing irregular fluctuations around the trend.
The time varying location parameter was predicted from the ‘trend component’
based on regression, assuming trend to be a linear function of time. ‘Transformed
residual time series’ was computed by taking absolute deviation of the time series
of ‘residual time-dependent component’ about its mean value. The time varying
scale parameter was predicted based on regression equation assuming trend in the
‘transformed residual time series’ to be a linear function of time. Furthermore, the
trend in the ‘transformed residual series’ was removed from the ‘residual time-
dependent component’ to obtain second order stationary time series having time
invariant parameters.

6.2.6 Flood Frequency Analysis in Climate Change Scenarios

There is a need to update the existing methodologies for regional frequency analysis
in parallel with developments in climate research. Recently, with growth in scien-
tific consensus that current climate change is largely the result of human activities
(Oreskes, 2004), scientists are devoting their efforts to explore implications of cli-
mate change on water which is one of the vulnerable resources of earth.

A group called Intergovernmental Panel on Climate Change (IPCC) has been
established by the World Meteorological Organization (WMO) and the United Na-
tions Environment Programme (UNEP), in 1988, with a view to assess scientific,
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technical and socio-economic information relevant for the understanding of climate
change, its potential impacts and options for adaptation and mitigation. To date,
the IPCC has published four comprehensive assessment reports. These reports es-
sentially summarize the state of scientific knowledge on global climate change, its
causes, impacts and possible response measures.

In its eighth session, the working Group II of the IPCC has summarized that the
magnitude and frequency of floods are likely to increase in different parts of the
world (IPCC, 2007). The increase in flood events is attributed to increase in snow
melt, glacial lake outbursts, rise in sea-level, or increase in severity and frequency
of storms. Warming in western mountains of North America is projected to cause
increase in snow melt and more winter flooding. Increase in risk of inland flash
floods and frequency of coastal flooding are projected for Europe. Increase in the
severity and frequency of storms and coastal flooding are projected for Australia and
New Zealand by 2050. Sea-level rise is projected to cause increased risk of flooding
in low-lying areas of Latin America. Floods due to increase in Glacier melt in the
Himalayas in the next two to three decades, and floods in mega-deltaic regions of
South, East and Southeast Asia due to rise in sea level are projected to cause havoc.

In the past decade, following the developments in climate research (e.g., Waylen
and Caviedes, 1986; Robson et al., 1998), a few researchers have attempted to study
plausible impact of climate change on flood frequency (e.g., Olsen et al., 1999;
Jain and Lall, 2000, 2001; Walker and Stedinger, 2000, among others). The findings
reported in these studies are confined to a few selected stations with long flood
record. Even with long records, the possibility of multiple causal factors for trends in
a flood series makes it a challenging task to attribute the observed non-stationarities
entirely to climate change. Moreover, to establish the nature and type of impact of
a climate change signal on the flood response of watersheds in a region, research
should address the trends in hydrologic time series at all the watersheds in the study
region. In the absence of such an effort, the research findings would not be useful
to propose general guidelines for estimating flood quantiles at ungauged sites and
those with short records in a study region.

6.2.7 Simulation of Floods Using Output from GCMs

General Circulation Models (GCMs) are the most advanced tools currently avail-
able to simulate climatic conditions on earth hundreds of years into the future. The
GCMs simulate climatic conditions for projected changes in large scale forcings
(LSFs). Forcings in the climate sense are external boundary conditions or inputs to
a GCM. In general, the LSFs could be natural or anthropogenic. Natural forcings
include volcanic eruptions, variations in the solar radiation, the large-scale distri-
bution of continents, oceans and ice, and large topographical systems. On the other
hand, anthropogenic forcings are mostly decided based on IPCC climate scenarios
which are developed to facilitate the scientific community to obtain projections for
climate change for many decades into the future. A projection is a probabilistic
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statement that it is possible that something will happen to the response of global
circulation in the future if certain boundary conditions develop. The set of boundary
conditions that is used in conjunction with making a projection is often called a sce-
nario, and each scenario is based on assumptions about how the future will develop
(MacCracken, 2001). Examples of anthropogenic forcings include radiative forcing
(which can result from changes in greenhouse gas concentrations and aerosol load-
ing in the atmosphere), variations in stratospheric and/or tropospheric ozone and
sulfate aerosols, future trends in population, economic growth, energy demand and
land use change (IPCC, 1992).

In 1992, the IPCC worked out six alternative emissions scenarios termed IS92
a-f, which provided alternative emissions trajectories for the years 1990 through
2100 for various radiatively active greenhouse gases. In 2001, IPCC issued a Spe-
cial Report on Emissions Scenarios (SRES) to replace IS92 scenarios (IPCC, 2001).
Similarly the IPCC report released in the year 2007 has six scenario groups: A1B,
A1FI, A1T, A2, B1 and B2. Detailed review of these scenarios can be found in
IPCC (2007). Nevertheless, it is to be mentioned that these new scenarios represent
a wider range of driving forces to reflect current understanding and knowledge about
underlying uncertainties. Such scenarios are internally consistent patterns of plau-
sible future climates, not predictions carrying assessed probabilities (Section 1.5,
IPCC, 2001).

The GCMs provide climate variables as output at nodes of grid boxes covering
the earth’s surface. In general, the resolution of the present state-of-the-art GCMs
is coarser than two degrees for both latitude and longitude, which is of the order
of a few thousand square kilometers for grid box. However, the watershed scale,
which is of interest to hydrologists, is of the order of a few hundred square kilo-
meters. Furthermore, GCMs run on a sub-daily time step (hourly or daily). These
high-frequency outputs are not reliable and therefore outputs are integrated in time
to produce monthly or seasonal scale outputs that are considered to be more ro-
bust. Consequently, the temporal resolution of GCM outputs could be too coarse for
hydrological studies at the basin scale. In the past decade, to deal with this prob-
lem of mismatch of spatial and temporal scales between the GCM output and the
watershed-scale, a variety of regional climate models and statistical downscaling
approaches have been developed.

The downscaling models can be used to obtain projections for hydro-meteorologic
variables such as temperature, precipitation and wind speed which govern runoff
and flood response of watersheds in the study region. The projected information
on the hydro-meteorologic variables can then be routed through an appropriate
rainfall-runoff model developed for each of the watersheds to yield projections for
runoff, from which peak flows information can be extracted. One of the assumptions
inherent in this analysis is that rainfall-runoff relationships remain unchanged with
time for the watersheds.

Methodologies can also be developed to capture the relationship between global
climate signals such as El Niño and La Niña, and flood events. The identified rela-
tionships would be useful to obtain flood forecast at target sites in the study region.
The peak flows projected in each watershed can supplement the available at-site
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information. Flood quantile estimates based on an ensemble of projected floods
corresponding to various scenarios and GCMs can reduce risk associated with hy-
drologic designs. However, this area of research still remains largely unexplored and
provides an opportunity for future research.

The approaches discussed in this section are still evolving. But they deal with im-
portant questions. One must be aware of this research and extract the more reliable
of the results in future practice.
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Index of Notation

a(i) Average distance from the i–th feature vector to all other feature
vectors in the cluster k

b(i) Minimum average distance from the i-th feature vector to all the
feature vectors in another cluster j

c Number of fuzzy clusters
CExp Expected number of clusters
Cmax Maximum number of clusters
Ck Cluster k
ci j (i , j)th elements of cophenetic matrix
d p

i j (i , j)th elements of proximity matrix
DAR(i) Drainage area ratio defined as ratio of the drainage area at site i

divided by the sum of drainage areas at all the sites in a region
DB Davies-Bouldin index
di j Geographic distance between catchments i and j
dmax Maximum geographic distance between catchment pairs
Di Discordancy statistic for site i in a region
D Dunn’s cluster validity Index
d�, j Topological distance between the winning node � and its neighboring

node j in the output layer of SOFM
eD,T,M

j Average error (in percentage) for region j with method M , probability
distribution D and recurrence interval T

F Non-exceedence probability
G Partition comprising of clusters
f (·) Transformation function
HM Heterogeneity measure
h Order of statistical moment
H1 Heterogeneity measure based on L-CV
H2 Heterogeneity measure based on L-CV and L-skewness
H3 Heterogeneity measure based on L-skewness and L-kurtosis
h j,�(t) Neighborhood function in SOFM
I Unit matrix
K Number of hard clusters
l1 First at-site L-moment or sample mean
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l2 Second at-site L-moment or L-CV
l3 Third at-site L-moment or L-skew
l4 Fourth at-site L-moment or L-Kurtosis
l R
1 Regional average L-location or mean of the distribution

m Number of output nodes in Kohonen layer of SOFM
m ′ Number of output nodes in Kohonen layer of SOFM that are

winners for at least one input vector
n Number of attributes
ni Record length of peak flows at site i
N Number of feature vectors or watersheds considered for cluster

analysis
NR Number of feature vectors (sites) in cluster (or region) R
Nsim Number of realizations of region obtained by Monte-Carlo

simulations
N f

i Cardinality of a fuzzy cluster
Qk j Peak flow value at site k for year j
μ̂

j
Q Mean annual flood (or mean annual peak flow) at site j

Qlog logarithm of mean annual peak flow
Q̂k

T Quantile estimate at site k for T year recurrence interval
Q D,T

M (i) T-year flood quantile estimated at site i by method M and
distribution D

q̂ R
T Quantile of normalized regional distribution (or Growth curve

ordinates estimated using index flood method) for T year
recurrence interval

r j Discrete vector denoting the position of node j in Kohonen
lattice

S Covariance matrix in expression of discordancy measure
s(i) silhouette width
Sk,q Scatter within the k-th cluster estimated by using q-th root of the

q-th moment of Euclidean distance of points in the cluster about
its centroid

t (i) L-CV of peak flows at site i
t (i)
3 L-skewness of peak flows at site i

t (i)
4 L-kurtosis of peak flows at site i

t R Regional average L-CV
t R
3 Regional average L-skewness

t R
4 Regional average L-kurtosis

U Fuzzy partition matrix containing memberships of feature
vectors in c fuzzy clusters

ui Vector containing L-CV, L-skew and L-kurtosis values of site i
ū Vector containing unweighted regional average L-moment

ratios
uik Fuzzy membership of feature vector k in cluster i
V Matrix containing centroids of c fuzzy clusters
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vi Centroid of fuzzy cluster i
vini t

i Initialized centroid of fuzzy cluster i
V Weighted standard deviation of the at-site sample L-CVs
V2 Weighted average distance from the site to the group weighted mean

in the two dimensional space of L-CV and L-skewness
V3 Weighted average distance from the site to the group

weighted mean in the two dimensional space of L-skewness
and L-kurtosis

VPC Partition coefficient
VPE Partition entropy (or classification entropy)
VFPI Fuzziness performance index
VNCE Normalized classification entropy
VCH Calinski Harabasz cluster validity Index
VF S Fukuyama and Sugeno cluster validity index
VXB Xie-Beni cluster validity index
VX B,m Extended FCM Xie-Beni index
VK Kwon’s cluster validity Index
wi j Weight of connection from the input node i to the output node j in

SOFM
w j Weight vector between the output node j and the nodes in the input

layer of SOFM
xi n-dimensional rescaled feature vector used for clustering
x̄ Centroid of the entire set of rescaled feature vectors
X n × N data matrix containing set of N rescaled feature vectors
yi n-dimensional feature vector i
zk Centroid of cluster k
η(t) Learning rate parameter
λ Scale parameter
λ̂1(k) First L-moment
λ̄ Average of λ̂k

1 values (same as l R
1 when estimated for a region)

λ̂2(k) Second L-moment for data at site k
λ̂3(k) Third L-moment for data at site k
λ̂k

1 Index flood value for site k (taken as mean annual flood)
μ Fuzzifier value in fuzzy c-means algorithm
μ̂

j
Q Mean annual peak flow at site j

μc Means of elements in cophenetic matrix
μp Means of elements in proximity matrix
μV Mean of the Nsim values of V
μV2 Mean of the Nsim values of V2

μV3 Mean of the Nsim values of V3

σV Standard deviation of the Nsim values of V
πi Compactness of fuzzy cluster i
σV2 Standard deviation of the Nsim values of V2

σV3 Standard deviation of the Nsim values of V3
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σ
f

i Variation of fuzzy cluster i
σ̂

j
Q Standard deviation of the annual peak flows at site j

σ j Standard deviation of attribute j
σ Total variation of a data set
θ Scaling exponent
ν2 Variance used to evaluate the precision in estimation of regional

flood quantiles



Abbreviations

A Drainage area
ASW Average silhouette width
BMDP2M BioMeDical computer Program
CCA Canonical correlation analysis
CE Classification entropy validity measure
CL Complete linkage
CLARA Clustering Large Application
CLARANS Clustering Large Applications based on Randomized Search
CN Cluster number
CPCC Cophenetic correlation coefficient
CV Coefficient of variation
FCM Fuzzy c-means
FFA Flood frequency analysis
GM2 Two parameter gamma distribution
GLO Generalized logistic distribution.
GLS Generalized least square
GEV Generalized extreme value distribution
GREHYS Groupe de recherche en hydrologie statistique
IRAS PSC Infrared Astronomical Satellite Point Source Catalog
KL Kohonen layer
KMA K-means algorithm
LAT Latitude in decimal degrees
L-CV Coefficient of L-variation
LMRs L-moment ratios (L-CV, L-skewness and L-kurtosis)
LN3 Three parameter log normal distribution
LONG Longitude in decimal degrees
LP3 Log-Pearson type III distribution
MAF Mean annual flood
MDL Minimum Description Length cluster validity Index
MEF Median annual flood
MOR Method of residuals
MSE Mean square error
OLS Ordinary least square
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238 Abbreviations

P Precipitation
PAM Partitioning around medoids
PC Partition coefficient validity index
PT3 Pearson type 3 distribution
RC Runoff coefficient
RFFA Regional flood frequency analysis
ROI Region of Influence
S Slope
SI Scenario
SOFM Self-Organizing Feature Map
STOR Drainage area covered by lakes in percentage (same as W)
T Return period or recurrence interval
UPGA Unweighted pair-group average
UPGC Unweighted pair-group centroid
USA United States of America
USGS United States Geological Survey
W Wet area percentage (same as STOR)
WPGA Weighted pair-group average
WPGC Weighted pair-group centroid



Index

A
Adjusting regions, 11–12, 48, 60, 101–104,

147, 158, 215
Agglomerative hierarchical clustering, 6,

17–21, 24–27
At-site information, 1
At-site flood statistics, 2, 5, 22, 63, 213
Average linkage clustering, 18–21
Average silhouette width, see Validity

measures

B
Bulletin 17, 16, 155, 216

C
Calinski-Harabasz index, see Validity

measures
Canberra distance, see Dissimilarity measures
Canonical correlation analysis, 2–3
Chebychev distance, see Dissimilarity

measures
Chi-square test, see Goodness-of-fit test
Circularity ratio, 5
City block distance, see Dissimilarity measures
CLARA, 18, 21
CLARANS, 18, 21
Classification of clustering algorithms

fuzzy clustering, 57–58
hard clustering, 17–23

Classification entropy, see Partition entropy in
validity measures

Combination of GLS regression and L-moment
method, 174–183

Compactness coefficient, 5
Complete linkage clustering, 18–20, 24–25,

35–38, 41–42, 51, 214
Confidence limit of quantile estimate, 157–158
Cophenetic correlation coefficient, see Validity

measures

Cosine distance, see Dissimilarity measures
Count map, 119

D
Davies-Bouldin index, see Validity measures
Defuzzification, 62, 68–69, 104, 111, 144, 215
Dendrogram, 6, 18, 28–29, 38
Dimensionless and standardized quantile

measures, 208–210
Directional statistics, 3–5, 35
Discordancy measure, 12–13, 44–48, 97, 134,

147, 208
Dissimilarity measures

Canberra, 19–21
Chebychev, 19, 20
Cosine, 19, 20
Euclidean, 19, 20
Mahalanobis distance, 19
Manhattan or City block, 19
Minkowski, 19
Squared Euclidean, 19

Distance measures, see Dissimilarity measures
Divisive hierarchical clustering, 6, 17–18, 21
Dunn’s index, see Validity measures

E
Elongation ratio, 5
Euclidean distance, see Dissimilarity measures
Extended Xie-Beni index, see Validity measures

F
Feature vector, 4
Form factor, 5
Fukuyama and Sugeno index, see Validity

measures
Furthest neighbor clustering, see Complete

linkage clustering
Fuzziness performance index, see Validity

measures
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G
Generalized least square regional regression

analysis, 167–183
Goodness-of-fit tests

Chi-square test, 201–202
Kolmogorov-Smirnov test, 202

H
Hierarchical approach, 2–3
Hierarchical clustering, 6–7, 17–21
Homogeneity of regions, 5, 8–12, 22, 63, 156,

198, 211, 213–217

I
Index flood method, 156–167
Issues in cluster analysis, 9, 213–216

K
K-means clustering, 18, 21–24
K-medoids clustering, 18, 21
K-modes clustering, 18, 21–22
Kohonen lattice, 117–119,

145, 215
Kohonen layer, 113–115, 118, 142, 145
Kolmogorov-Smirnov test, see Goodness-

of-fit test
Kwon’s index, see Validity measures

M
Mahalanobis distance, see Dissimilarity

measures
Manhattan distance, see Dissimilarity

measures
Method of residuals, 2
Minimum Description Length, see Validity

measures
Minkowski distance, see Dissimilarity

measures

N
Nearest-neighbor clustering, see Single linkage

clustering
Normalized classification entropy, see Validity

measures

P
PAM, 18, 21–22
Partitional clustering, 6–7, 9, 17, 21–23,

51, 214
Partition coefficient, see Validity measures
Partition entropy, see Validity measures
Partition exponent, see Validity measures
Prototype-based clustering, 6

R
Regional average L-moments, 157–158
Regional growth curve, 157–158
Regional L-moment method, 157–167
Region of influence, 2–3

S
Scaling in regionalized watersheds, 16,

155–156, 196–199, 216
Self-organizing feature map, 113–117, 153,

215
Single linkage clustering, 18–20, 23–25,

35–38, 41–42, 51, 214
Singleton cluster, 6, 17–18, 21, 24–25, 38
Split sample test, 156, 184–196
Squared Euclidean, see Dissimilarity measures
Steps in regionalization, 7–8

T
Testing regions for robustness, 15, 48, 98–102,

136, 149–151
Two-stage clustering of Self-organizing feature

map, 141–152

U
Uniform data functional, see Validity measures
Unweighted pair-group average method, see

Average linkage clustering
Unweighted pair-group centroid method, see

Average linkage clustering

V
Validity measures of fuzzy clustering

Extended Xie-Beni index, 67, 91, 95–96,
106, 145–146, 153, 215

Fukuyama and Sugeno index, 66, 91,
95–96, 103, 215

Fuzziness performance index, 66, 91, 96,
99, 103, 105, 146, 148, 153, 214–215

Kwon’s index, 67, 91, 95–96, 103, 106, 215
Normalized classification entropy, 66,

91, 96, 99, 103, 105–106, 146, 148,
153, 214

Partition coefficient, 65, 91, 95–96,
99–100, 103, 105, 146, 148, 153,
214–215

Partition entropy, 65–66, 91, 95–96, 99,
103, 105, 146, 148, 153

Partition exponent, 65
Uniform data functional, 65
Xie-Beni validity measure, 67–68

Validity measures of hard clustering
Average silhouette width, 28–29, 38,

41–42, 55, 214
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Calinski Harabasz index, 28, 30–31, 38, 41,
43–44, 55, 131–133, 214

Cophenetic correlation coefficient, 28–29,
38, 41, 55, 214

Davies-Bouldin index, 28–30, 38, 41–43,
55, 131–133, 214

Dunn’s index, 28–30, 38, 41–43, 55, 131,
133, 214

Minimum Description Length, 28, 31–32,
38, 43–44, 55, 131, 133, 214

W
Ward’s algorithm, 18, 20–21, 23–27, 35–38,

42, 51, 214
Weighted pair-group average method, see

Average linkage clustering
Weighted pair-group centroid method, see

Average linkage clustering

X
Xie-Beni validity measure, see Validity

measures
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