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Preface

Water is vital for the Earth and all the life forms on it, thus the importance of
hydrology–the science of water–goes without saying. Water resources involve
interplay between geologic, hydrologic, chemical, atmospheric, and biologi-
cal processes. To study the occurrence, movement, distribution, and quality
of water throughout our globe is clearly a challenging task, which requires
a joining force between the different branches of hydrology, from hydrome-
teorology, surface water hydrology to hydrogeology and hydrochemistry as
well as hydrogeophysics and hydroecology, to just mention a few. Besides a
conceptual understanding, quantitative monitoring, characterization, predic-
tions and management must resort to collaborative mathematical models and
numerical algorithms, often together with computer simulations.

In recent years, massive amounts of high-quality hydrologic field data are
being collected at various spatial-temporal scales using a variety of new tech-
niques. Availability of these massive amounts of data has begun to call for
a quantitative integration of geologic, hydrologic, chemical, atmospheric, and
biological information to characterize and predict natural systems in hydrolog-
ical sciences. Intelligent computation and information fusion as such become
a key to the future hydrological sciences. We envision this subject to become
a new research field that will dramatically improve the traditional approach
of only qualitatively characterizing natural systems.

This edited volume contains eight chapters written by some of the leading
researchers in hydrological sciences. The chapters address some of the most
important ingredients for quantitative hydrological information fusion. The
book aims to provide both established scientists and graduate students with a
summary of recent developments in this new research direction, while shedding
some light into the future.

The eight chapters can be divided into three mutually overlapping parts.
The first part consists of Chapters 1 and 2 which mainly address the method-
ological issues. In particular, Chapter 1 discusses different data fusion tech-
niques for integrating hydrological models, where the discussion is carried
out from the perspective of hydroinformatics and computational intelligence.
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Chapter 2 depicts an advanced computational environment that enables inter-
active and real-time 3D groundwater modeling. The combined power of par-
allel computing, dynamic visualization, and computational steering enables a
fusion of flow modeling, transport modeling, subscale modeling, uncertainty
modeling, geostatistical simulation, and GIS mapping.

As the second theme of the book, Chapters 3-6 concentrate on some math-
ematical and numerical methods. Using the Kalman filter based on Karhunen-
Loève decomposition, the authors of Chapter 3 show how to reduce the
uncertainty in characterizing hydraulic medium properties and system re-
sponses. Chapter 4 presents efficient data analysis tools using trajectory-based
methods, which also offer insight into inverse modeling of flow and transport.
In close relation, Chapter 5 describes streamline methods that are capable of
reconciling 3D geological models to dynamic reservoir responses. Another nu-
merical technique in inverse modeling is given in Chapter 6, which addresses
a systematic regularized inversion approach to incorporating geophysical in-
formation into the analysis of tomographic pumping tests.

The third part of the present book focuses on real-life applications of
hydrological information fusion. Chapter 7 is about using satellite rainfall
datasets and hydrologic process controls for flood prediction in ungauged
basins, whereas Chapter 8 reports an engineering case of groundwater man-
agement by integrating large-scale zoning of aquifer parameters and a sedi-
mentary structure-based heterogeneous description of the aquifer properties.

The idea of the present book was conceived following a warm suggestion
by Prof. Dr. Janusz Kacprzyk, Series Editor of Studies in Computational In-
telligence at Springer. We are therefore greatly indebted to Prof. Kacprzyk for
his advice and encouragement. Engineering Editor Dr. Thomas Ditzinger and
Heather King at Springer’s Engineering Editorial Department, in particular,
deserve our sincere thanks for their patient guidance and technical support
throughout the editorial process. We are of course tremendously grateful to
all the contributed authors for carefully preparing their chapters. Moreover,
positive response from numerous researchers to our call-for-chapters is ac-
knowledged, although they were not able to contribute in the end due to the
tight time schedule.

Last but not least, we wish to express our heartfelt gratitude to a large
number of anonymous reviewers, who carefully read through the earlier ver-
sions of the book chapters and provided valuable suggestions for improvement.
There is no exaggeration in saying that this book project has been a team
work from start to finish. We sincerely hope that this book will give the reader
an equal amount of pleasure as it has given us during the editing work.

Oslo & Tucson, July 2007 Xing Cai
T.-C. Jim Yeh
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Data Fusion Methods for Integrating
Data-driven Hydrological Models

Linda See

School of Geography, University of Leeds

Summary. This chapter will address the use of different data fusion techniques for
integrating or combining hydrological models. Different approaches will be demon-
strated using flow forecasting models from the River Ouse catchment in the UK for
a lead time of 6 hours. These approaches include simple averaging, neural networks,
fuzzy logic, M5 model trees and instance-based learning. The results show that the
data fusion approaches produce better performing models compared to the individ-
ual models on their own. The potential of this approach is demonstrated yet remains
largely unexplored in real-time hydrological forecasting.

1 Introduction

Approaches to hydrological models are varied and lie on a spectrum that char-
acterises the degree to which they encapsulate physical processes. On one end
of the scale are fully distributed physical models based on the laws of the con-
servation of energy and mass (e.g. the SHE model of Abbott et al. (1986)).
Conceptual models fall in the middle of the spectrum as parameterisation in-
creases while the opposite end is dominated by data driven models (DDM) or
what Wheater et al. (1993) refer to as metric models. As the name suggests,
DDM is based on finding relationship between the input and output variables
of a system without explicit knowledge of its physical behaviour. Physical
models have their limitations because many of the hydrological processes are
complex and difficult to represent. Understanding of the system is also far from
complete so DDM offers an alternative approach to traditional physically-
based models. DDM has been the subject of much research activity in hydro-
logical modelling over the two last decades and includes a range of different
techniques. These mainly originate from the fields of computational and artifi-
cial intelligence (Solomatine, 2005), and include techniques such as neural net-
works (NN), fuzzy logic, evolutionary computing and machine learning. Many
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2 L. See

of these approaches have shown promising results for hydrological modelling;
some examples include:

• flood prediction (Minns and Hall, 1996; Smith and Eli, 1995; Shamseldin,
1997; Khondker et al., 1998; Salas et al., 2000; Babovic and Keijzer, 2002;
Jain and Srinivasulu, 2004; Nayak et al., 2004; Heppenstall et al., 2006)

• urban stormwater runoff (di Pierro et al., 2006)
• irrigation (Yang et al., 1997; Schmitz et al., 2002)
• water quality prediction (Maier and Dandy, 1996; Gumrah et al., 2000;

Brion et al., 2001; Ha et al., 2003; Chaves and Chang, 2006)
• groundwater prediction and protection (Gangopadhyay et al., 1999;

Lindsay et al., 2002; Singh et al., 2003; Giustolisi and Simeone, 2006;
Yan and Minsker, 2006)

• reservoir operation (Kojiri and Hanatani, 2002; Chaves et al., 2003)
• the potential effects of climate change on the water system (Clair and

Ehrman, 1998; Kojiri, 1999).

Attempts by Young (2002, 2003) to link conceptual and data-driven models in
their data-based mechanistic approach are also proving very useful for flood
forecasting. Wheater et al. (1993) refer to this approach as hybrid metric-
conceptual models, which may appeal to hydrologists interested in both per-
formance and improvement of physical understanding.

Many of the data-driven hydrological models found in the literature are
examples of global models. However, the physical processes underlying these
models are complex and the development of a single global solution may not
be the best approach. An alternative is the development of several individual
models, which are then combined using a data fusion strategy. Data fusion
can be defined as the process of combining or integrating information from
multiple sensors and/or data sources in order to provide a solution that is
either more accurate according to some measure of performance or which
allows one to make additional inferences above and beyond those which could
be achieved through the use of single source data alone (Dasarathy, 1997).
Just as one is able to draw links between methods of artificial intelligence
and the biological system or principle upon which they are loosely based, the
general concept of data fusion is analogous to the manner in which humans
and animals use a combination of multiple senses, experience and the ability
to reason to improve their chances of survival.

Different data fusion strategies for integrating individual rainfall-runoff
models for the River Ouse catchment are presented, which include simple
averaging, and the use of NNs, fuzzy logic, M5 model trees and instance-
based learning. The models are assessed using global goodness-of-fit statistics
and examination of the forecast hydrographs. The chapter concludes with a
discussion of the potential for real-time hydrological forecasting.
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2 Review of Data Fusion and Hydrological Modelling

Data fusion is a growing area of research that covers military applications
such as target recognition and tracking as well as non-military ones such as
law enforcement, medical diagnosis and electromechanical system diagnosis
(Hall, 1992; Hall and Linas, 2001). Examples of data fusion applied to the
management and operation of hydrological systems are less common. Yet these
systems may benefit from data fusion, especially if different forecasting models
are able to capture some aspect of the hydrological record better than another.
In this way the strengths of each individual approach are exploited and a
potentially better overall solution is produced.

There are many different data fusion algorithms available including
Bayesian inference, Dempter-Shafer theory, neural networks and rule-based
reasoning systems (Hall and Linas, 1997). Abrahart and See (2002) used neural
networks and fuzzy logic to combine a set of individual rainfall-runoff models
for the Rivers Ouse and Wye in the UK. Shamseldin et al. (2002) combined
five rainfall-runoff models for eight catchments using neural networks, trained
with a range of different transfer functions. Both studies found that the com-
bination model outperformed the individual rainfall-runoff models.

Data fusion also appears in the hydrological literature under different
names, e.g. stacking, bagging, boosting, committee machines and ensemble
modelling (Breiman, 1996; Anctil and Lauzon, 2004; Solomatine and Siek,
2006). However, these names generally refer to the development of a pool of
models using the same technique, e.g. a series of neural networks, which are
then aggregated to produce a single model output. Stacking or ensemble mod-
elling is most closely related to the way in which data fusion is interpreted
in this chapter. This is an area where recent research attention has been fo-
cused. One of the motivations for this research is to reduce the uncertainty of
the predictions that is partly a function of model structure. This is discussed
by Keijzer and Babovic (2000) where the authors have decomposed the error
term into two main components: error caused by bias, i.e. the ability of a
model to fit a given data set, and error caused by variance, i.e. the variability
associated with a particular method. When several models are fused into a
single predictor, the variance error is effectively eliminated with no change in
the error due to bias and a result in overall improvement in performance. For
example, Georgakakos et al. (2004) examined the performance of ensembles
of single distributed and lumped models from the Distributed Model Inter-
comparison Project (DMIP) using simple averaging compared to individual
model performance. The results showed that the multimodel ensemble out-
performed all individual models and should be considered seriously as tools
for operational forecasting. Ajami et al. (2006) extended this work by consid-
ering different types of model integration schemes such as weighted averaging
and superensembles. They found similar results, i.e. the superiority of the
multimodel approach when compared to individual models, particular when
introducing a bias correction to the aggregation procedure. Similar results are
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being reported in other multimodel ensemble studies of different catchments
(Xiong et al., 2001; Marshall et al., 2006; Oudin et al., 2006). Bagging employs
bootstrapping to create several new training data sets from the original data
(Breiman, 1996). Neural networks (or other model types) are then trained on
each of the new data sets and combined using some form of aggregation such
as an average. Boosting also involves the creation of several individual models
in a two step procedure. The individual models are first trained assuming that
all inputs have equal effect in terms of weight updating of the model (in the
case of a neural network). In the second step the input data that have resulted
in a poorer result will then have a greater impact on the weight optimization.
Anctil and Lauzon (2004) compare the use of stacking, as well as bagging
and boosting along with two other neural network generalization methods
to develop rainfall-runoff models for six catchments. They found that all the
multi-model methods resulted in improved performance when compared to
individual global models.

Committee machines provide another term for the combination of out-
puts from multiple models (Haykin, 1999). Solomatine and Siek (2006) offer
a method for classifying committee machines based on how the original input
data are partitioned. If the data are not split into subsets but different mod-
els are trained on the entire data set, then the approach is that of stacking,
ensembles or data fusion as used in this chapter. If the data are split be-
fore training, then the committee machine contains schemes such as bagging,
boosting and classification. Although many different terms exist that capture
the idea of combining multiple models into a single better performing predic-
tor, it is possible to slot the approaches used here into a larger framework
that defines a hierarchy of data fusion architectures, which is presented in the
next section.

3 A Framework for Data Fusion

Data fusion has developed as a result of advances in technology, i.e. new
sensors that can provide varied and complex real-time information, and a
powerful driver, i.e. military applications such as target tracking and recog-
nition. The literature reveals that there is a lack of standardisation in the
terminology used to describe individual applications; this is reflected in the
large number of architectures that have been proposed, as pointed out by
Smith and Singh (2006). However, these authors examine the model devel-
oped by the American Joint Directors of Laboratories Data Fusion Subpanel
(US Department of Defense, 1991), which provides one framework that is
commonly used. There are four levels in the model, which are arranged in a
hierarchy:

• level 1: object refinement;
• level 2: situation assessment;
• level 3: threat assessment; and
• level 4: process assessment.
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Although these terms have strong military connections, it is level 1 or ob-
ject refinement into which the idea of integrating multiple models falls. This
level is concerned with taking information from disparate sensors and com-
bining them using a number of different algorithms. Singh and Smith (2006)
review a diverse set of algorithms including neural networks, nearest neigh-
bours, fuzzy logic, Dempster-Shafer rules of combination, expert systems, etc.,
depending upon the type of object refinement exercise. This level 1 archi-
tecture is similar to the data-in-data-out (DIDO) architecture suggested by
Dasarathy (1997), which is the simplest data fusion strategy in his hierarchical
classification.

Moving beyond object refinement or the DIDO architectures, data fusion
can operate at higher levels using any combination of input types to produce
a numerical output, a feature output or a higher level decision in the form of
an expert system. For example, forecasting model outputs might be combined
with expert knowledge about likelihood of flooding and the types of opera-
tional activities that should be implemented to issue warnings. It is also pos-
sible to add expert knowledge to the data fusion process via self-adaptation.
Feedback loops inserted between the system output and the combination al-
gorithm can be used to adjust or recalibrate systems in real-time, allowing
for system change to be incorporated. At present the simplest data fusion
techniques are not being used operationally. However, higher level data fusion
implementations incorporating either decisions or adaptation may one day
have significant implications for the design and construction of automated
real-time flood prediction and flood warning systems.

4 Study Area

This study is undertaken on a single catchment but serves to illustrate the
methodology in this chapter. Applicability of these approaches to other catch-
ments is required before it is clear how transferable these techniques are. How-
ever, the literature review has demonstrated that multimodel approaches are
showing superior performance over individual models in every reported case.

The River Ouse catchment is located in northern England (Figure 1). It
has three main tributaries: the Swale, the Ure and the Nidd, and one main
urban area: the City of York. The average annual rainfall is 906 mm and the
average annual runoff is 464 mm (1969–90). The catchment consists of a mix
of geologies: Carboniferous Limestone and Millstone Grit in the Pennine Hills
and Yorkshire Dales to the west; Permo-Triassic rocks in the lowland regions
to the east. Elevation ranges from 710 m above sea level at the headwaters to
10 m at the catchment outlet, situated in the Vale of York. Floods are gener-
ated most frequently in the upland area and some of the largest floods have
been the result of a combination of high rainfall and snowmelt. This catchment
is very responsive to rainfall and has a small baseflow component (Kuchment
et al., 1996). Flooding can be a serious problem for the city of York. November
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Fig. 1. Map of the River Ouse catchment.

2000 witnessed some of the worst floods on record and water levels in York
were amongst the highest ever measured. Historical analysis illustrates that
there was a dramatic rise in the number of floods during the 1940s, with a
continual increase after that, except during the 1970s (Lane, 2002). Not only
are floods becoming more frequent, but there is also a general increase in
their magnitude, which may be due to land use changes (Longfield, 1998).
Measurements at Skelton, a hydrological gauging station situated 5.5 km up-
stream of York, forms one of the stations at which operational decisions are
made with respect to York. The station has a downstream location, far from
the headwaters, with an upstream catchment area of 3315 km2. More detailed
information about the catchment can be found in Jarvie et al. (1997) and Law
et al. (1997).

5 Application of Data Fusion Methods

Models for predicting river levels at Skelton have been developed using data
from Skelton, three upstream gauging stations (Crakehill, Skip Bridge and
Westwick) and average rainfall at upstream rain gauges (Tow Hill, Arken-
gartdale, East Cowton, Osmotherly and Malham Tarn) for a lead time of
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6 hours. The input data set was split into a training data set (Jan 1989 to
Jun 1991) using 60% of the data and a second independent test data set (Jul
1991 to Dec 1992) using the remaining 40%.

5.1 Development of Individual Models

Four individual models have been developed, which were then used as inputs
to the data fusion models:

• A hybrid neural network
• A fuzzy logic rule-based model
• An ARMA time series model
• A model of persistence.

These individual models have been developed previously in See and Opensaw
(1999; 2000) and will be described briefly in the sections that follow.

Hybrid Neural Network

Neural networks are a type of biologically inspired computational model, based
loosely on the functioning of the human brain. There are many books and
papers on this topic; see Haykin (1999) for further information.

The hybrid neural network (HNN) developed in See and Openshaw (1999)
consists of five individual feedforward neural networks that were trained on
five subsets of the data. The inputs to these networks were: the level at the
current time and the previous 11 hours, 6 hours of levels at three upstream
stations, lagged to reflect travel time, and 7 days of average rainfall from
nearby rain gauges, resulting in a total of 37 inputs per network. The number
of weights that were trained per network was 228. These subsets were cre-
ated by partitioning the data into hydrological events using a self-organising
map (Kohonen, 1984), producing distinct behaviours such as low levels, rising
levels, falling levels, etc. Once the neural networks were trained, they were
combined into a single hybrid model via a simple fuzzy logic controller. The
fuzzy logic model determined which weighted combination of network predic-
tions to use for a given set of river level conditions, and was developed using
a genetic algorithm to optimise the membership functions and rulebase.

A Fuzzy Logic Rule-Based Model

As with NNs, fuzzy logic models also perform an input-output mapping but
use a fuzzy inference procedure. The input and output variables are parti-
tioned into overlapping membership functions and the model is defined by an
IF-THEN fuzzy rulebase. Execution of the model produces a fuzzy solution
surface that is converted back into a single numerical output value using a
defuzzification algorithm (Jang et al., 1997).
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The model inputs to the fuzzy logic model developed in See and Openshaw
(1999) were (i) change in river level over the past 6 hours; (ii) the current daily
rainfall; and (iii) the river level at three upstream stations (appropriately
lagged for average travel times). In order to minimize the problem of the
curse of dimensionality (Kosko, 1992), the number of variables and fuzzy set
partitions was kept to a minimum. The output variable was the change in
river level in six hours time, and was partitioned into nine fuzzy sets to cover
the solution space adequately. A genetic algorithm was used to train a global
fuzzy model on an equal proportion of the different occurrences of the five
event types described in the previous section. In total there were 32 rules to
calibrate. As a result, only 30% of the data were used in model development,
reducing the potential bias caused by a large number of low level events in the
historical record. The rulebase and fuzzy membership functions of the model
can be found in See and Openshaw (2000).

An ARMA Model

An AutoRegressive Moving Average (ARMA) model (Box and Jenkins, 1976),
which uses a weighted linear combination of previous values and errors in
prediction to produce a forecast, was developed to predict the differences
between the current river level and the value expected in 6 hours time. The
models were fit to the first 60% of the data set and tested on the remaining
40%. The best fitting model had one autoregressive and one moving average
term, i.e. ARMA[1,1] so there were only two weights to determine.

A Model of Persistence

A model of persistence or a näıve model substitutes the last observed value for
the current prediction. It serves as a good benchmark when comparing model
performance. There may also be times when the näıve model produces the
best prediction and may therefore be of assistance in a data fusion approach.

5.2 Data Fusion Methods

The different data fusion strategies used in this chapter include simple arith-
metic averaging, neural network and fuzzy logic models, M5 model trees and
instance-based learning.

Previously Employed Methods

In Abrahart and See (2002), six different data fusion strategies were used,
which were labeled DF1 to DF6. The first approach was a simple averaging
of the individual models (DF1). In the second approach, the best individual
performing model in the previous time step was used to make the prediction
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at the next time step (DF2). DF3 and DF4 used neural networks to combine
the individual models, where DF3 predicts the absolute river level while DF4
predicts the change in river level. The final two approaches (DF5 and DF6)
use fuzzy logic models for data fusion. DF5 uses a fuzzy logic model in which
more than one individual modeling solution could be recommended at each
given moment and to varying degrees. The resulting forecast is therefore a
weighted average of one or more single model recommendations. The inputs
to the model are the current level and the change in level over the last 6 hours.
The weightings are based on the membership functions. DF6, on the other
hand, is a fuzzy model that uses the current level and the forecast error at the
last time step to make its recommendations. The results from these models
are reported in this chapter as a comparison against the two data-driven
approaches described in the following sections.

M5 Model Trees (M5)

M5 model trees are a machine-learning technique that divides the solution
space into subspaces and then builds a separate regression equation for each
one (Quinlan, 1992). The approach is based on information theory where the
criteria for partitioning into subspaces are based on entropy measures. On a
subspace scale the relationships between inputs and outputs are linear but
when combined together result in the ability to capture non-linear relation-
ships. The result is a series of rules governing the input variables and regression
equations at the leaves of the tree.

M5 model trees have some important advantages over neural networks
including faster development time and results that can be easily understood
by decision makers. These advantages have been exploited in a recent paper
in which M5 model trees were applied to a hydrological modeling problem for
the Sieve catchment in Italy (Solomatine and Dulal, 2003). M5 model trees
were developed to forecast discharge at one and three hours ahead using a
combination of discharge at the gauging station and effective precipitation.
The M5 model tree for the one hour ahead predictions essentially divided the
solution space into low, medium and high flows, fitting a linear regression
equation to each subset of the solution space. The results were comparable
for both lead times to a neural network.

Instance-Based Learning

Instance-based learning involves combining instances from the training data
set that are close in attribute space to the input vector for which a prediction is
required (Solomatine, 2005). No model is actually trained or calibrated during
this process. The nearest neighbour classifier is an example of the simplest
instance-based learning approach and is one of the easiest to apply. This can
be generalized to the k-nearest neighbour (k-NN) method, where the user
specifies the value of k. A simple average is then used to combine the instances
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or alternatively, a weighted distance decay function can be applied. Solomatine
(2005) argues that comparable results can be achieved with instance-based
learning and NNs. Some successful applications of instance-based learning in
hydrology include the works by Karlsson and Yakowitz (1987), Shamseldin
and O’Connor (1996) and Toth et al. (2000).

Both the M5 model trees and the instance-based learning approaches have
been implemented using the WEKA software, which is available from the
following website: http://www.cs.waikato.ac.nz/∼ml/weka/.

5.3 Evaluation of the Models

The different models are compared using three global goodness-of-fit statistics:

• Root Mean Square Error (RMSE) in meters:

RMSE =

√√√√N−1

N∑
i=1

(Oi − Pi)
2

• Mean Absolute Error (MAE) in meters:

MAE = N−1
N∑

i=1

|Oi − Pi|

• Nash-Sutcliffe Coefficient of Efficiency (CE):

CE = 1 −

N∑
i=1

(Oi − Pi)
2

N∑
i=1

(
Oi − O

)2
• Persistence Index (PI) (Kitanidis and Bras, 1980):

PI = 1 −

N−L∑
i=1

(Oi+L − Pi+L)2

N−L∑
i=1

(Oi+L − Oi)
2

where Oi is the observed value at time i, Pi is the predicted value at time i,
N is the total number of observations, O is the mean of O over N and L is the
lead time. For the most recently developed models, these statistics have been
calculated using the Hydrotest website (Dawson et al., 2007). Hydrographs
are also examined from the independent test data set.
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6 Comparison of Results

Table 1 contains the performance measures for the different models. It can
be seen that all the data fusion models, with the exception of a simple av-
erage, outperform the individual models in all four goodness-of-fit statistics.
The best performing models are DF3 and DF4, which involved integrating
the individual models using a neural network, predicting either absolute or
differenced values. The next best performers of the different data fusion meth-
ods are the instance-based learning and the M5 model trees. Interestingly, the
model using 10 nearest neighbours did not perform as well as the one with
only 5. In terms of the RMSE and MAE, which provide absolute measures
of error, the individual models ranged between 55.5 to 15.9 cm for RMSE
and 2.7 and 6.6 cm for MAE, where flood heights of beyond 6 metres have
been recorded at this site and an average across all observations is approxi-
mately 1 metre. Compared to the averaging approach (DF1), the individual
HNN model performs better. However, the RMSE of all the other data fu-
sion approaches ranges between 1.5 to 4.9 cm for RMSE and 0.6 to 2.2 cm for
MAE, indicating a substantial improvement considering that these measures
take all the data points into account. The CE values are already high for
the individual models but further improvements can be seen when the data
fusion approaches are applied. A more interesting measure is the PI, which
indicates how well a given model performs relative to the näıve or persistence
model. The closer the value is to 1, the better the given model performs. Both
the individual fuzzy model and the averaging of models (DF1) produced the
lowest PI values. Both DF3 and DF4 have the highest PIs, which correlates
with their superior results in RMSE, MAE and CE. However, all the other

Table 1. Goodness-of-fit evaluation measures for the individual and combined
models for the independent test data set.

RMSE MAE CE PI

Individual
Models

HNN 0.0553 0.0268 0.9947 0.879
ARMA 0.0794 0.0338 0.9890 0.751
Fuzzy Model 0.1091 0.0427 0.9793 0.529
Persistence 0.1590 0.0657 0.9560 0.000

Data Fusion
Models

DF1 0.0860 0.0340 0.9871 0.707
DF2 0.0416 0.0161 0.9970 0.932
DF3 0.0160 0.0067 0.9996 0.990
DF4 0.0146 0.0064 0.9996 0.992
DF5 0.0489 0.0219 0.9958 0.905
DF6 0.0399 0.0171 0.9972 0.937
M5 0.0394 0.0157 0.9974 0.939
IBL 5NN 0.0376 0.0160 0.9976 0.944
IBL 10NN 0.0387 0.0163 0.9975 0.941
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Fig. 2. Hydrograph of a storm event in the independent data set (26/11/92 to
11/12/92). The solid black line is the actual river level data while the grey line is
the prediction from the (a) IBL-5 (b) IBL-10 and (c) M5 model tree.

data fusion approaches except for DF1 (averaging) have PI values close to
1, indicating that they are significantly better than the näıve or persistence
model.

Figures 2 and 3 are two storm events taken from the independent data
set. The storm in Figure 2 is the largest event in this data set while Figure 3
represents a more typical and frequent storm event. The figures show plots of
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Fig. 3. Hydrograph of a storm event in the independent data set (27/03/92 to
09/04/92). The solid black line is the actual river level data while the grey line is
the prediction from the (a) IBL-5 (b) IBL-10 and (c) M5 model tree.
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actual level against predictions from the two instance-based learning models
(a and b) and the M5 model tree (c). It is clear from the hydrographs that the
timing and peak prediction is very good for each of them and there is little to
differentiate their performance.

Although the instance-based and M5 model trees were only marginally
worse than the neural network, they have the following advantages:

• speed and ease of development: these models were generated in approx-
imately 2 minutes on a Pentium 1.7 GHz machine, and the data require
less pre-processing than a neural network.

• no generalisation techniques like stop training required, which means there
is less trial-and-error, one of the main criticisms of the use of neural net-
works.

These development features may help promote the uptake of this particular
technique in an area where there is still skepticism surrounding the use of
data-driven models.

Another theoretical advantage of M5 model trees is their transparency.
Normally they create a highly interpretable set of rules with regression equa-
tions at the leaves of the tree. For example, Khan and See (2006) produced
M5 model trees for the River Ouse for 6 and 24 hour ahead forecasting. The
6 hour ahead model produced four rules while the 24 hour ahead forecasting
model consisted of a single regression equation that indicated the importance
of a single upstream station at this lead time. See et al. (2006) used M5 model
trees to integrate different conceptual and AI-based rainfall-runoff models for
a catchment in China. The model consisted of two rules which clearly showed
the importance of the different individual models under certain flow regimes.
However, in this situation the model produced 38 rules, even with pruning
of the model tree. Although the model itself produces good results, it was
not possible to examine the behaviour of the model, which is one of the main
selling points of this data-driven approach. The number of rules produced will
be a function of how complex the modeling problem is and may therefore not
always provide interpretable rules.

7 Conclusions

In this chapter different data fusion techniques were presented for integrating
individual hydrological models that had been developed for the River Ouse
catchment. Compared to the individual models, the data fusion approaches
almost always performed better in terms of global goodness-of-fit statistics.
In addition to performance, the advantages of data fusion approaches are the
ability to take evidence from several sources and converge them into a single
better informed result, as well as ease of development, especially with ap-
proaches such as instance-based learning and M5 model trees. Disadvantages
include the need to develop more models for the same forecasting problem.
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This is relatively easy when it comes to data-driven modeling but this may
be more time consuming when considering physical and conceptual models.
However, where these models already exist, these types of methods should be
viewed as complementary. All too often real-time forecasting is undertaken
using one physically-based model. Data fusion and other ensemble techniques
have much to offer operational forecasting yet there is still a reluctance to
use these methods due to their black box nature. Although not demonstrated
in this particular example, M5 model trees do have the added advantage of
transparency, normally producing a small number of comprehensible and in-
terpretable rules. Providing greater understanding as to when different mod-
els work best is something that might provide decision makers with a greater
confidence in their operational models. Moreover, higher level data fusion ar-
chitectures could provide a valuable enhancement to operational and real-time
forecasting by allowing expert knowledge to be incorporated into the manage-
ment of water resource systems in the future.
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A New Paradigm for Groundwater Modeling
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Summary. A 1987 landmark National Science Foundation report on scientific com-
puting and visualization (McCormick et al., 1987) envisioned the future of scientific
computing to be real-time interactive with the modelers being dynamically-engaged
and in full control throughout the computational process. The report stressed: scien-
tists not only want to solve equations or analyze data that results from computing,
they also want to interpret what is happening to the data during computing. Re-
searchers want to steer calculations in real-time; they want to be able to change
assumptions, conceptual framework, resolution, or representation, and immediately
see the integrated effects, the ultimate implications, and the complex interrelation-
ships presented intelligently in a meaningful context. They want to be an equal
partner with the computer, interact on-line with their data, and drive in real-time
the scientific discovery process. While this would certainly be the preferred modus
operandi and is finally becoming computationally feasible even for many 3D dy-
namic problems on a personal computer, it is not the current standard of ground-
water modeling. Although these thoughts were first reported nearly twenty years
ago, they express an idea that is current and more relevant than ever before as the
computing power continues to grow exponentially.

In this chapter, we present a new computing paradigm and a novel, sophisti-
cated computational environment that enables fully taking advantage of today’s
computing power, especially the computer of the future, and allows, for the first
time, real-time 3D groundwater modeling. The new environment, called Interactive
Ground Water (IGW), utilizes a powerful “parallel computing”, “dynamic visual-
ization”, and “computational steering” methodology, restructuring and integrating
the entire modeling process. This environment enables seamless, dynamic data rout-
ing and fusion of flow modeling, transport modeling, subscale modeling, uncertainty
modeling, geostatistical simulation, GIS mapping, and 3D visualization. IGW func-
tions as an intelligent “numerical research laboratory” in which a modeler can freely
explore: visually creating aquifers of desired configurations, interactively applying
stresses, and then investigating on the fly the geology, dynamic flow and transport in
three space dimensions. At any time, a modeler can edit, monitor and interact with
virtually any aspects of the integrated modeling process; the modeler can initiate,
pause, or resume particle tracking, plume modeling, multi-scale modeling, stochastic
modeling, and analyses. IGW dynamically merges geospatial data, modeling inputs
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and outputs, and stratigraphic and sampling network information into composite
2D and 3D graphical images – providing a more complete view of the complex in-
terplay among the geology, hydrology, and transport. The capabilities of real-time
simulation, analysis, steering, and presentation expand the utility of groundwater
modeling as a tool for research, education, professional investigation, and integrated
management decision support.

1 Introduction

The enormous increase in computational speed and capacity achieved over
the last two decades is responsible for both the development of computational
science and engineering and its current status as a unique and powerful tool
for scientific discovery. Model-based simulation, a key branch of this new dis-
cipline, provides the capability for simulating the behavior of complex systems
under realistic environmental conditions. Modeling creates a new window into
the natural world [Sack, 1999].

Our understanding of subsurface flow and contaminant transport stands
to benefit immensely from model-based research. Models provide the ability to
simulate the behavior of integrated, large-scale systems and interactions; they
permit prediction of future outcomes based on current or historical conditions.
Modeling can provide fundamental insights into complex field-scale behavior
of heterogeneous processes, nonlinear scale effects, aquifer system interactions,
groundwater and surface water connections, and interactions between geologi-
cal, hydrological, and biochemical processes. Model-based simulation provides
a systematic framework for assimilating and synthesizing field information and
prioritizing sampling activities. Modeling becomes particularly useful for ad-
dressing “what-if” types of questions, testing hypotheses, assessing data-worth
and model uncertainty, and evaluating management, monitoring, and cleanup
options. Modeling makes it possible for scientists and engineers to see the
unseen, to develop new understanding, and to predict the future [Anderson
and Woessner, 1992; Bear, 1979; Bredehoeft, 2002].

1.1 A Substantial Gap

However, practical implementation of groundwater models can be difficult,
especially for large-scale, integrated simulation of coupled processes and when
available data is limited.

The traditional modeling paradigm employed by most groundwater mod-
elers makes use of a sequential scheme based on disjointed batch simulations
and offline visualizations and analyses. A bottleneck occurs under this par-
adigm because it creates a fragmented modeling process characterized by a
significant waste in human efforts and computations, loss of information, and
extra disk storage and offline operations. And modelers repeatedly rely on this
inefficient process as they refine the conceptual model, through an iterative,
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trial and error process that is central to the “art” of all modeling. The se-
quential nature of the modeling scheme significantly increases the turnaround
time between questions and final answers. It presents serious obstacles in the
process of professional investigation and scientific discovery. It breaks one’s
train of thought – providing little intuition into the complex interplay among
geology, hydrology, chemistry, and management decision making, and little
“flow” in the process of subsurface exploration, integrated problem solving,
and investigation.

In today’s professional, research, and business environment – character-
ized by high complexity, short development cycle, and high human cost,
the ineffective modeling paradigm is turning away many people who may
otherwise benefit significantly from model-based simulations. The fragmented
paradigm makes people think small by using highly simplified analytical mod-
els and creates a substantial gap between what is computationally possible
and practically feasible and between basic research and practice [Sack, 1999;
Atkins et al., 2002].

1.2 Traditional Modeling Paradigm

Most of today’s groundwater modeling studies are interdisciplinary and re-
quire simulating coupled processes and solving multiple interrelated models
(see Box 1). For example, a typical model-based investigation on contaminant
fate and transport at a waste disposal site may consist of a number of com-
puter based stages, including 1) groundwater flow modeling, 2) particle track-
ing analyses, 3) solute transport modeling, 4) aggregated water and solute
mass balance computations and analyses, and 5) overall post-processing and
analysis with, e.g., a Geographic Information System (GIS) [Anderson and
Woessner, 1992; Pinder, 2002].

The inherently uncertain nature of the subsurface system (not just in
aquifer parameter values but, most importantly, in the ways one conceptual-
izes and parameterizes the aquifer processes, stresses, structure, and boundary
conditions) requires iterative implementation among the different modeling
stages or throughout the “life cycle” of the modeling project [Bredehoeft,
2003; Konikow and Bredehoeft, 1992; Hassan, 2004; Kovar and Hrkal, 2003;
Bear et al., 1992]. Each of the modeling stages may in itself be another itera-
tive procedure that consists of the following sequential steps:

1. Create or modify a conceptual model;
2. Assign ormodify model stresses, properties, and starting/initial conditions;
3. Solve the governing equations over the entire specified time span and store

the results on a disk;
4. Analyze the results using a post-processing/visualization package [e.g.,

GIS];
5. Compare with field data;
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6. Make appropriate changes to the model;
7. Repeat.

The need to iterate both within and among the disconnected sequential
stages makes modeling an inefficient process. It makes it difficult to investigate
the conceptual uncertainty and to calibrate the integrative modeling system.
Under the traditional sequential paradigm, modelers typically go offline to
change the conceptual model or the computational scheme via a graphical
interface (e.g., the powerful Department of Defense Groundwater Modeling
System-GMS), and each change in the model or the input parameters causes
most of the other steps or the various modeling stages in the process to be
repeated. Errors as simple as an incorrect value of a single model parameter
may only become apparent, in many cases, after many man-hours or a long
“calendar time” because of the fragmented nature of the modeling process
and the difficulty imposed by visualizing and analyzing results offline during
post-processing. For this reason, even major errors invalidating the results of
an entire simulation may go undetected. A meticulously calibrated model at
one particular stage (e.g., a flow model) may be invalidated at any of the
following stages (e.g., during transport modeling, subscale modeling, mass
budget calculations, analyses or visualization of the overall results) – forcing
the whole inefficient modeling processes within and among the different stages
to start over, perhaps again and again!

Model 1 (e.g., flow)

t1 – Incremental computation
t2 – Incremental computation
t3 – Incremental computation
. . .
tn – Incremental computation
End
save results to disk or memory
offline postprocessing
offline analysis (e.g., mass balance)
offline visualization

Model 2 (e.g., particle tracking)

t1 – Incremental computation
t2 – Incremental computation
t3 – Incremental computation
. . .
tn – Incremental computation
End
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save results to disk or memory
offline postprocessing
offline analysis
offline visualization

Model 3 (e.g., solute transport)

t1 – Incremental computation
t2 – Incremental computation
t3 – Incremental computation
. . .
tn – Incremental computation
End
save results to disk or memory
offline postprocessing
offline analysis (e.g., mass balance)
offline visualization

. . .

Integrated offline postprocessing, analysis, mapping, and visualization

Box 1 – The traditional sequential modeling paradigm. The fragmen-
tation in the overall modeling process makes it difficult to take full advantage
of the dramatically increased computing power.

We believe the traditional disjointed paradigm is not best suited for inte-
grated modeling that involves multiple steps and stages and requires iterative
conceptualizations. We have always known the critical importance of concep-
tual modeling and that solving groundwater problems is inherently a process
of iterative hypothesis testing and involves a significant element of “art” that
requires frequent human interactions [Bredehoeft, 2003; Bear et al., 1992;
Mercer, 1991; Anderson and Woessner, 1992; Konikow and Bredehoeft, 1992].
But we just do not have an adequate tool that allows exploring potentially
large numbers of combinations of possibilities for integrated simulations and to
incorporate conceptual changes throughout a multi-staged modeling process.
Conceptual modeling typically stops until resources are exhausted, or when
the modeler “gives up” when he/she no longer has the time to carry out an-
other model run, even though major questions are still unresolved or data
unexplained.
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1.3 A Few Basic Questions

It is time we “step back” and ask ourselves a few basic questions:

• Given the computing power today and especially that of the future, can we
make groundwater modeling truly a transparent process of “continuous”
integrated problem solving, hypothesis testing, and exploration?

• Does the groundwater modeling process have to be this fragmented?
• Why do we have to divide the modeling of concurrently occurring processes

into sequential and isolated computational stages?
• Why do we have to decouple the modeling, post-processing, visualization,

analyses, and overall presentation?
• Why do we have to investigate a model to “death” before moving on to

the next model when we know in all likelihood we will come back to revise
it in response to the feedback obtained from the next stage?

• Why do we have to wait for days, months, or even years before we can
see the connections between a simple change in the input or a preliminary
assumption and its integrated economic or policy implications when it only
takes, for many practical problems, a net computer time of minutes or even
seconds (per simulation time step) to compute all the state variables of
direct interest?

• How can we deal with the bewildering amount of information associated
with integrated, large-scale modeling? How can we route the large volumes
of dynamic data streams efficiently across the different modeling steps
and disjointed stages? How can we make sense of the large amount of
information and present it in ways that best reveal the hidden structure
and complex interrelationships in a timely fashion?

1.4 The 21st Century Demands a New Paradigm

These questions clearly influence importantly our practical ability to model,
to investigate, and to discover, but they have so far received little attention
in the hydrologic and environmental modeling community.

In the general context of scientific computing, Sack [1999] emphasized that
“the development of traditional codes has probably reached a limit. The future
of modeling lays in research to move to a true distribution of, not only equation
solving, but also model building, simulation, information and data manage-
ment, and visualization interpretation”. Sack further stressed that there is an
“urgent research need for an open, integrative approach to modeling”.

Atkins et al. [2002] described a vision for the future of supercomputing
that emphasizes removing the human bottleneck and improving the complete
“life cycle” of the modeling process. They stressed the need to use computers
intelligently as complete tools, environments, or collaboratories, not just as
raw technologies for processing data. The NSF Blue Ribbon report [Branscom
et al., 1993] listed “removing barriers to the rapid evolution of high perfor-
mance computing capability” as a major challenge.
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Beazley and Lomdahl [1996] pointed out, in the context of molecular dy-
namic modeling, that large-scale modeling “is more than just a simulation
problem, an analysis problem, a visualization problem, or a user interface
problem. It is a combination of all of these things -and the best solution will
be achieved when these elements have been combined in a balanced manner”.
Beazley and Lomdahl also stressed that the underlying source of difficulty in
solving large problems is “not the result of having large data sets, a lack of
tools, or lack of high performance machines, but the entire methodology of
the process”.

McCormick et al. [1987] and De Fanti et al. [1987] envisioned the future
of scientific computing to be real-time interactive with the modelers being in
full control throughout the computational process and being an equal part-
ner with the computer. In particular, they stressed: scientists and engineers
not only want to solve equations or analyze data that results from super-
computing; they also want to interpret what is happening to the data during
supercomputing. Researchers want to steer calculations in close-to-real-time;
they want to be able to change assumptions, conceptual framework, resolu-
tion, or representation, and immediately see the integrated effects and the
complex interrelationships presented in a meaningful context. They want to
interact on-line with their data and drive in real-time the scientific discovery
process.

While this would certainly be the preferred modus operandi for most sci-
entists and engineers and is finally becoming computationally feasible even
on a personal computer for many problems we are solving today, it is not
the current standard of groundwater modeling. Although these thoughts were
first reported nearly twenty years ago, they express an idea that is current
and in fact more relevant than ever before as the computing power continues
to grow exponentially.

2 A Visual Steering Environment for Integrated
Groundwater Modeling

In this chapter, we present a new paradigm and a novel, sophisticated compu-
tational environment for integrated groundwater modeling – one that promises
to eliminate the current bottlenecks and allows truly capitalizing on the
rapidly increasing computing power. The new environment, called Interac-
tive Ground Water (IGW), utilizes a powerful “parallel computing” method-
ology as well as novel, emerging computing concepts, including incremental
computing, discrete simulation formalism [Aiello et al., 1998; Bisgambiglia,
2002; Delhow, 1995; Cellier, 1996ab; Zeigler, 1990, 2000], dynamic visual-
ization, and computational steering [Papadopoulos et al., 1998; Parker and
Johnson, 1995; Folino and Spezzano, 1999; Eisenhauer, et al., 1994; Surles
et al., 1994; Sun, 1997]. The term “parallel computing” used in this chapter
does not mean modeling on massively parallel processors but, rather, a new
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Fig. 1. The IGW environment and a snapshot of an integrated visual
simulation and analysis. IGW functions as a “digital groundwater laboratory”
in which a user can freely and naturally explore and experiment: creating visually
an aquifer of desired configurations and characteristics, interactively applying de-
sired stresses, and then investigating and visualizing on the fly the geology and
the dynamic processes of flow and contaminant transport and transformation. The
palette on the left provides the tools and buttons for creating, running, visualizing,
analyzing, and steering a model. The right pane displays the aquifer conditions and
parameter values at the cursor location. (Source: Li and Liu, 2003)

way of structuring computation – one that allows seamless data routing and
dynamic integration of groundwater flow modeling, solute transport model-
ing, data processing, analyses, mapping, and visualization. Figure 1 presents a
snapshot of the IGW environment and an illustrative integrated visual simula-
tion and analysis. Some of the basic IGW capabilities were briefly introduced
in Li and Liu [2006ab]. Use of IGW as a virtual research laboratory in the
classroom was reported in Li and Liu [2003].

A single object-oriented application program forms the core of the new
IGW modeling environment. It employs multiple groundwater modeling tasks
to rapidly integrate and present complex data in a sophisticated graphical for-
mat. It permits the modeler to produce sophisticated 2-D and 3-D graphical
displays of spatial, time-varying information at any point during the mod-
eling process. It permits the modeler to steer the entire modeling process.
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Fig. 2. The IGW computational and visualization engines. The arrows indi-
cate the control capabilities of the various components. The libraries are dynamically
embedded in the IGW environment.

Modeling under the new paradigm continually provides and displays results
that have been intelligently processed, organized, overlaid, and displayed. It
seamlessly and dynamically merges heterogeneous, geo-referenced spatial data
into graphical images – integrating related data to provide a more complete
view of complex interrelationships. It provides a quick connection between
modeling concepts/assumptions and their significance/implications.

We have developed this general-purpose, integrated groundwater modeling
environment for research, educational, professional, and outreach pursuits by
taking advantage of the recent developments in software engineering, image
processing, 3D visualization, geographic information system technologies, as
well as, recent research in geostatistics, stochastic subsurface hydrology and
modeling, hierarchical multi-scale modeling [Li et al., 2006], and computa-
tional methods in subsurface flow and transport modeling.

Figure 2 and Table 1 presents the underlying computational, visualization,
and analysis engines dynamically embedded in the IGW environment.

The current version of the 3D FLOW library is limited to modeling homo-
geneous fluids under isothermal condition in saturated, non-deformable porous
media. The 3D transport library is limited to modeling soluble contaminants
undergoing simple chemistry such as first-order degradation and equilibrium
sorption with a linear isotherm.

3 The New Modeling Paradigm

The new “parallel” paradigm allows us to couple all the various models and
solve them for conditions one time step forward from the current time. This
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Table 1. IGW computational and visualization libraries and capabilities.

IGW Libraries

3D Flow A dynamic linking library modeling steady and unsteady
water flow of constant density in saturated, unfractured, and
incompressible media.

3D Transport A dynamic linking library modeling unsteady transport of
soluble contaminants undergoing equilibrium linear sorption
and first order decay.

Sparse Matrix Solver A dynamic linking library for solving sparse matrix systems.
The library contains algebraic multigrid and 11 other matrix
methods.

GSLIB A dynamic linking library for 2D geostatistics, including
simple, ordinary, universal and multiscale kriging, uncondi-
tional and conditional simulation using LU decomposition,
spectral method, turning bands, sequential Gaussian, simu-
lated annealing.

OLECTRA A dynamic linking library for plotting hydrograph and
concentration breakthrough curves, head and concentra-
tion contours, mass balance bar charts, and 3D elevation
surfaces.

VTK A dynamic linking library for integrated visualization of
3D aquifer elevation surfaces, 3D aquifer volumes with lo-
cal cutout of arbitrary configurations, 3D head and concen-
tration isosurfaces, 2D and 3D head contours, 3D velocity
vectors, 3D scatter measurement points, 3D wells and
piezometers, 3D aquifer fence diagrams, and basemaps
draped over a 3D aquifer elevation surface.

GIS Map-Object A dynamic linking library for importing GIS shape files
(points, polylines and polygons) as base maps or modeling
features and automatically extracting the associated model-
ing attributes (e.g., aquifer elevations, water levels, pumping
rates, conductivities, river/lake levels, etc.). The automatic
attribute extraction capability is currently limited to the
Michigan statewide groundwater database (GIS files).

allows us to restructure and integrate the computations and modeling tasks
into a single application program – a program that permits the modeler to
visualize the model system’s behavior at every time step and evaluate its ade-
quacy, so that we can interrupt the computations, alter the model in significant
ways, and restart computations as we deem necessary.

The basic concept is simple. Instead of treating flow and transport sepa-
rately, we model them concurrently. Instead of treating groundwater flow mod-
eling, solute transport modeling, subscale modeling, particle tracking analysis,
and zone budget analyses as different phases in a long sequential process, we
couple the multi-staged processes and model them simultaneously. Instead of
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relegating the graphical presentation of results and their analysis to the “post-
processing” phase, at the end of a time consuming sequence of many steps,
we incorporate them into a single on-line program along with the simulation,
to permit the interpretation of results as soon as they become available at
the end of each time step. To accomplish this, we adopt the following new
modeling paradigm:

At a discrete time level t = tn (the nth time step)

1. Flow modeling;
2. Subscale flow modeling, if subarea(s) of detailed interest are specified;
3. Particle tracking, if particles are introduced;
4. Plume transport modeling, if contaminant(s) are introduced;
5. Subscale transport modeling, if subarea(s) of detailed interest are specified

and contaminant(s) are introduced;
6. Data and output processing and analysis, solute mass balance and water

budget analyses; and
7. Visualization and integrated presentation.
8. tn = tn + time step
9. Repeat step 1 to 8.

Box 2 presents a summary of the new “parallel” paradigm under general
conditions for integrated groundwater modeling and analysis.

t1 model 1, model 2, model 3, . . . , on-line processing, analysis, integrated
mapping and visualization

t2 model 1, model 2, model 3, . . . , on-line processing, analysis, integrated
mapping and visualization

t3 model 1, model 2, model 3, . . . , on-line processing, analysis, integrated
mapping and visualization

t4 model 1, model 2, model 3, . . . , on-line processing, analysis, integrated
mapping and visualization

. . . .
tn model 1, model 2, model 3, . . . , on-line processing, analysis, integrated

mapping and visualization
end

Box 2 – A new “parallel” modeling paradigm. Data are dynamically
routed and IGW goes through the complete modeling process before moving
on to the next time step.

The IGW program provides an interactive, graphical environment for
defining the aquifer framework, for inputting parameters, properties and
stresses, for changing grid resolution, solvers, numerical schemes, and model-
ing methods, for controlling and managing program execution, and for inte-
grating, overlaying and visualizing data and results.
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We have taken advantage of interactive, object-oriented programming and
designed the IGW environment so that scientists and engineers can, at any
time (including during simulation or analysis), pause to edit and interact
on-line with virtually any aspects of the modeling process, (just like what
a modeler can do offline at the beginning of the simulation). At any time,
the modeler can initiate, stop, and edit particle tracking, plume modeling,
sub-scale modeling, and stochastic modeling. At any time, scientists and en-
gineers can see the current results presented in a meaningful way, no matter
how preliminary the model inputs or assumptions. The results displayed on
the screen can then be used as starting conditions for continued incremental
improvement. An incremental modeling capability proves to be very useful
for groundwater modeling because of its inherently uncertain nature and the
high cost of data acquisition.

Groundwater modeling within the IGW environment becomes a process
of high-level graphical conceptualization, as if one is drawing a picture of the
site, and iteratively analyzing and improving the mathematical representation
of its various features. It becomes a process of iteratively making sense of the
results and solving integrated problems. By pointing and clicking the mouse,
the modeler can delineate areas of interest (e.g., the spatial extent of the
modeled aquifer, its materials and properties; the spatial coverage of rivers,
lakes, and wetlands; wells; hydraulic stresses; and contamination sources) and
quickly visualize the integrated dynamics and system interaction. The user is
always in control throughout the entire modeling/problem solving process.

Specifically, the IGW environment allows an investigator, at any time
during the modeling process, to pause program execution and do any of the
following:

• To modify the conceptual model: The modeler can input and edit model
boundaries, conceptual assumptions, and aquifer structure, properties, and
stresses. These changes can be imposed over any graphically specified ar-
eas or 3D volumes, independent of the spatial and temporal discretizations
employed. And data describing any aquifer property or spatial parameter
at scattered locations throughout the modeled region can be analyzed us-
ing advanced regression, interpolation, and geostatistical simulation tech-
niques. The conceptual model can be converted on the fly to an integrated
numerical model. Figure 3 presents a snapshot of a hierarchically struc-
tured “IGW Model Explorer” through which the user can interact, visu-
alize, and edit the conceptual model and the associated properties and
stresses. Figure 4 illustrates GIS-based conceptual modeling within IGW
and real-time conversion of GIS objects and attributes to a numerical
model.

• To modify the numerical representation: The modeler can select and
change numerical parameters such as time step and grid spacing, the
number of computational layers in a geological layer, the discretization
schemes, solution methods, solver parameters, and spatial interpolation
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Fig. 3. The IGW model explorer. The model explorer presents a hierarchical
visualization of the conceptual model structure and allows a user to navigate across
the aquifer system and edit the aquifer features, properties, and stresses over any
graphically specified areas or 3D volumes independent of the computational grid.
And data describing any aquifer property or spatial parameter at scattered loca-
tions throughout the modeled region can be analyzed using advanced regression,
interpolation, and statistical simulation techniques. The conceptual model can be
converted on the fly to an integrated numerical model.

techniques. Figure 5 shows a snapshot of IGW interfaces through which a
user can access and edit on-line the numerical representation and inter-
act with the numerical schemes, the matrix solvers, and the geostatistical
interpolation and simulation methods.

• To initiate particle tracking and/or reactive contaminant transport mod-
eling: The modeler can graphically and interactively release particles at
a point, along a poly-line, over a polygon, or around the wells and track
forward or backward particle migration. The modeler can also simulate the
migration of concentration plumes resulting from a number of resources.
These include polluted rivers and lakes, polluted rainfall and artificial
recharge, waste-well injections, as well as, instantaneous spills and con-
tinuous sources with a time-dependent loading rate. Figure 6 presents a
typical integrated flow, transport, particle tracking simulation and on the
fly visual monitoring and mass balance analyses.
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Fig. 4. Real-time GIS-Enabled Modeling. IGW allows quickly building a com-
plex, georeferenced, conceptual model from GIS objects (e.g., streams, lakes, wet-
lands, wells, digital elevation model, etc.) and attributes (e.g., pumping rates, lake
elevations, stream elevations, stream orders, aquifer elevations, lithologic informa-
tion, etc.) and automatically converting the GIS-based conceptual model into a nu-
merical model. IGW provides a suite of systematic filters controlling the extraction
of GIS objects and attributes. IGW is live-linked to Michigan Statewide RS/GIS
surface water and groundwater database.

• To develop nested sub-models of flow and transport: The modelers can de-
fine incrementally a hierarchy of sub-model regions within a larger model.
Sub-models can span one or more geological layers and run in parallel
within the parent model. They are solved right after the parent solution
is obtained for each time step. Initial and boundary conditions for the
sub-models are extracted dynamically and automatically from their par-
ent model at every time step. Figures 7 and 8 present illustrative examples
of on the fly, integrated hierarchical modeling of a 2D and 3D groundwater
system across multiple spatial scales.

• To examine the impact of unmodeled small-scale heterogeneity, data lim-
itations, and uncertainty: The modeler can perform stochastic first-order
analysis [Ni and Li, 2005; Ni and Li, 2006] or Monte Carlo simulations to
quantify model uncertainty caused by subgrid, small-scale heterogeneity.
IGW Monte Carlo simulation permits any spatial parameters (e.g., conduc-
tivity, porosity, partitioning coefficient, decay coefficient, recharge, aquifer
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Fig. 5. Dynamic Interaction with the Computational Engines. IGW pro-
vides an integrated interface that allows a user to access and edit on-line the nu-
merical representation (e.g., time step, grid spacing, and number of computational
layers) and to experiment in real-time with the numerical schemes, matrix solvers,
and spatial interpolation methods and quickly see the impact on integrated flow and
transport dynamics.

elevations, leakage factor, etc.) to be modeled as a random field, and any
temporal stress (e.g., fluctuating surface water elevation, pumping rates,
recharge, source concentration and contaminant loading) to be modeled
as a 1-D stochastic process. Figure 9 shows an illustrative example of inte-
grated stochastic modeling and on the fly recursive probabilistic analysis.

• To graphically present model characteristics and results and customize
the presentation: IGW allows 1) dynamic “data fusion” and integrated
presentation of flexible combinations of data, model inputs and outputs,
and geo-referenced GIS information for 2D and 3D graphic displays,
2) computing and graphically displaying solute and water fluxes and/or
water budgets over any specified zones or along any specified “compliance
surfaces”, 3) computing and graphically displaying heads and contaminant
concentrations as a function of time at monitoring wells. Figure 10 presents
illustrative examples of integrated, live-linked, 3D visualization of ground-
water flow, solute transport, as well as, the geologic framework, monitoring
network, and scattered observational data.
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Fig. 6. Real-time Transport Modeling. IGW allows a user to initiate particle
tracking and/or reactive contaminant transport modeling anytime during the in-
tegrated simulation process. The modeler can graphically and interactively release
particles at a point, along a polyline, over a polygon, or around the wells and track
forward or backward the particle migration. The modeler can also simulate the mi-
gration of concentration plumes originating from a variety of contamination sources.
(Source: Li and Liu, 2003)

3.1 Real-time Steering

Rapid, interactive modeling and visualization makes the scientist or engineer
an equal partner with the computer in manipulating and maneuvering the
3D visual presentations of the modeling results. It allows the investigator to
interactively steer the computation, to control the execution sequence of the
program, to guide the evolution of the subsurface flow and plume migration
dynamics, to control the visual representation of data during processing, and
to dynamically modify the computational process during its execution. Such a
sophisticated navigation process would be an invaluable tool for understanding
fundamental processes and for practical site investigation.

To maximize the system’s flexibility, we have further designed the IGW
environment to allow the modeler to adjust the degree of steering at any
time, from extremely fine to very coarse. Specifically, the IGW environment
is designed such that an investigator can visually step through:

• the “inner iterations” or the iterative process of solving a sparse matrix
system which provides an intuitive feel for the rate of iterative convergence
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Fig. 7. Real-time Hierarchical Modeling. IGW allows investigating a complex
groundwater system across multiple spatial scales. A user can obtain high resolution
dynamics in areas of critical interest (e.g., around wells, contamination hotspots) by
developing a hierarchy of groundwater models of increasingly higher resolution and
smaller domain. IGW automatically couples the model hierarchies, with the parent
model dynamically providing the boundary conditions for its “children” which in
turn provide the boundary conditions for their own “children”. (Source: Li et al.,
2006)

and the performance of the matrix solver. In many cases, this pinpoints
visually and directly the cause of many commonly encountered numeri-
cal problems (e.g., slow convergence or divergence caused by bad inputs,
localized singular characteristics, localized extreme heterogeneity, locally
very thin geological layer);

• the “outer iterations” or the iterative process of solving the nonlinear gov-
erning groundwater equations (e.g., for unconfined aquifers) which is useful
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Fig. 8. Real-time 3D Hierarchical Modeling. IGW hierarchical modeling be-
comes most advantageous for simulating groundwater systems in three-space di-
mensions, enabling efficient solution of detailed horizontal and vertical dynamics.
A typical hierarchical modeling effort begins with a regional, coarsely discretized
2D or a multi-layer quasi-3D model and then progressively “zooms” into localized
“hotspots” of critical interest with full 3D details. Hierarchical modeling allows mod-
eling large systems in high resolution without having to solve large matrix systems
[Li et al., 2006].

for helping a scientist to obtain an intuitive feel for the nonlinear aquifer
dynamics. This also helps pinpoint directly and visually possible sources
of common numerical problems associated with nonlinear iterations (e.g.,
solution divergence or slow convergence caused by highly nonlinear, locally
de-saturated aquifer dynamics);

• the hierarchical modeling process which provides an intuitive feel for the
connection among flow and transport processes at different spatial scales
(e.g., among regional scale, local scale, site-scale, and local hotspots);

• the time increments which is set as the default steering mode. It allows
scientists and engineers to visualize “instantly” the aquifer and plume
dynamics in a naturally animated fashion. This also provides flexibility
and efficiency in the flow and transport simulations and allows cutting
adaptively the time-step size when the simulation becomes difficult (e.g.,
when a plume moves close to a localized heterogeneity or an area in which
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Fig. 10. Integrated, Dynamic 3D Visualization and “Data Fusion”. IGW
allows a user to investigate the complex interplay between geology, hydrology, flow
system, and solute transport migration in aquifer systems. IGW provides automatic,
customizable, 3D integrated visualization of geologic framework, monitoring net-
work, scattered data, hydraulic head distribution, velocity vectors, and contaminant
plumes.

a sharp change in the velocity occurs) and increasing it when the difficulty
passes; and,

• the stochastic model realizations which allows scientists and engineers to
visualize how heterogeneity translates into uncertainty because of data lim-
itation and plausible realizations of flow and plume dynamics. The on-line
recursive analysis dramatically decreases the extremely long turnaround
time in integrated stochastic modeling. An investigator is able to visual-
ize quickly probabilistic characterizations of the groundwater system that
is updated with each additional realization. Although it often takes thou-
sands or even tens of thousands of realizations before the final Monte Carlo
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simulation converges [Li et al., 2004], one can in most cases obtain a fairly
good qualitative feel of the general mean behavior of the system dynamics
and the spread around the means after just 20 to 30 realizations.

4 Summary and Conclusion

We have focused in this chapter on the overall groundwater-modeling para-
digm because we feel the way we model is becoming increasingly incompatible
with today’s computer technologies and especially those of the future. The
new “parallel” paradigm provides seamless data routing and dynamic fusion
of flow and transport modeling, visualization, mapping, and analyses, and
enables one to truly capitalize on the recent technological revolution.

With 4 GHz desktops available now, 8 GHz microprocessor technology
in the labs and faster than 15 GHz technology clearly in sight, actively-
visualized subsurface flow dynamics and contaminant hydrogeology incorpo-
rating dynamically-linked, intelligently-integrated technology promises
potentially significant scientific, economic, and societal benefits. Combined
with the hierarchical patch dynamics modeling methodologies [Li et al., 2006],
IGW allows, for many problems, real-time modeling and visualization. The
new paradigm eliminates the long standing fragmentation in the modeling
process and significantly narrows the gap between what is technologically
possible and what is practically implementable. Our actual ability to model,
to investigate, and to discover can increase in pace with the rapidly advancing
computer technologies. We envision that, with the new “parallel” modeling
paradigm and the possible realization of a 50 to 500 GHz capability in approx-
imately 5 to 10 years (Moravec, 1998), scientists and engineers may soon be
able to model and investigate three-dimensional flow and transport dynamics,
complex interactions, and coupled processes with fewer assumptions and in
greater details.
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1 Introduction

Properties of porous media, such as hydraulic conductivity and porosity, are
intrinsically deterministic. However, due to the high cost associated with direct
measurements, these properties are usually measured only at a limited number
of locations. The number of direct measurements is definitely not enough to
infer the true parameter fields. This problem is further complicated by the
fact that medium properties exhibit a high degree of spatial heterogeneity.
This combination of significant spatial heterogeneity and a relatively small
number of direct observations leads to uncertainty in characterizing medium
properties, which in turn results in uncertainty in estimating or predicting
the corresponding system responses (such as hydraulic head). Fortunately, it
is relatively easy to measure the system responses, which can be used to infer
medium properties. With newly developed measurement techniques such as
remote sensing and in-situ permanent sensors, more observations on system
responses become available.

Large efforts have been made to take the advantage of all available
observations, both the limited number of direct measurements of medium
properties and a larger amount of observations of system responses, to
obtain better estimates of the primary parameters of the porous media,
thereby reducing the uncertainty associated with model predictions. In hy-
drology, many inverse models have been developed for aquifer characteriza-
tion [2, 4, 12, 14, 18, 19, 23, 29, 31, 35, 37]. Review and comparison of some
of these inverse models can be found in [11, 26, 36, 41]. In these models, the
best estimate of a medium property is obtained by minimizing the mismatch
between the estimated values and observed ones. However, these models are
not capable of incorporating measurements dynamically, which means that,
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sition, Studies in Computational Intelligence (SCI) 79, 43–68 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



44 Z. Lu et al.

if new data are available at a time, one has to run the inverse models again
from the very beginning.

Recently, a number of sequential inverse methods (history matching in pe-
troleum enginnering) have been proposed, which is basically extended from
the optimal control theory of Kalman filter. These methods include Extended
Kalman filter (EKF), Ensemble Kalman filter (EnKF), and their variants.
The common ground of these methods is their capability of incorporating
observations sequentially, which results in a significant reduction of the num-
ber of data dealt at any given time. An up-to-date system, consisting of a
best estimate and the corresponding uncertainty represented by a state er-
ror covariance matrix, is always provided by these sequential methods. The
fundamental difference among these methods is the way by which the state er-
ror covariance matrix is estimated. The EKF uses the first-order linearization
approach and needs to keep track of the whole covariance function, which is
computationally expensive for large-scale problems. The EnKF employs the
Monte Carlo method, in which the covariance matrix is updated from a small-
sized ensemble (a small number of realizations). Some literature shows that
for large-scale highly nonlinear problems the EnKF is superior to the EKF in
terms of both efficiency and accuracy [6, 7, 17].

The EnKF is conceptually simple, easy to implement, and capable of ac-
counting for different types of models and observation noises, and its compu-
tational cost is relatively low compared to other approaches. The method has
been used in a large number of applications in various fields such as meteorol-
ogy, oceanography, hydrology, and reservoir engineering [6, 7, 13, 20, 27, 28].
The size of the ensemble is crucial for the EnKF, because the standard de-
viation of the sampling errors of the Monte Carlo method converges very
slowly at a rate inversely proportional to the square root of the sample size.
To reduce the sampling error by a factor of two, the number of Monte Carlo
simulations has to be increased by a factor of four. If the observations are
not perfect, the sampling error also appears in the ensemble of observations,
since the EnKF needs a set of perturbed observations to model the observa-
tion noise. In general, a small ensemble induces a large sampling error, which
tends to underestimate the state error covariance; a large ensemble leads to
computational inefficiency.

Many methods have been proposed to reduce the sampling error associ-
ated with the small-sized ensemble in the EnKF. Ensemble square root filter
attempts to avoid the perturbed observations by using different Kalman gains
to update the ensemble mean and the deviation from the ensemble mean [34].
Anderson and Anderson [1] used a parameter to broaden the ensemble spread.
Double Ensemble Kalman filter divides the ensemble into two parts, and uses
the Kalman gain calculated from one ensemble to update the other. These
methods showed promising results even with relatively small number of en-
semble members. On the other hand, these methods are application-dependent
and some parameters are difficult to quantify. Extra effort may need to tune
these parameters in order to obtain reasonable results.
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For high-resolution, large-scale problems, the dimension of the state in
general is fairly large. One major problem of various Kalman filter methods
comes down to how to efficiently approximate the state error covariance func-
tion in each update with a dimension-reduced approach. The EnKF is one
type of dimension-reduced approaches since the number of ensemble mem-
bers is in general smaller than the dimension of the state. There are other
attempts that estimate the state error covariance matrix by selecting some
principal modes of the state vector, for instance, singular evolutive extended
Kalman filter (SEEK) [30], reduced rank square root filter (RRSQRT) [33],
and partially orthogonal ensemble Kalman filter (POEnKF) [16].

Recently, Zhang et al. [40] developed a KL-based Kalman filtering scheme
(KLKF), which is a type of dimension-reduced Kalman filtering method based
on the Karhunen-Loève (KL) expansion of a medium property and orthogonal
polynomial decompositions of dependent variables. In the KLKF method, the
covariance of the medium property is efficiently approximated by a small set
of eigenvalues and eigenfunctions attributed to the mean square convergence
of the KL decomposition. Compared to the full covariance matrix, the finite
number of modes used to approximate the covariance represents a significant
reduction in random dimensions. In this updating procedure, the forward
problem is solved with a moment method based on Karhunen-Loève decom-
position (KLME), from which the mean and covariance of the state variables
can be constructed, when needed. The statistics of both the medium proper-
ties and system responses are then updated with the available measurements
at the current time using the auto- and cross-covariance obtained from the
forward step. They used a synthetic 2-D example to demonstrate the capa-
bility of this new method for a stationary conductivity field and compared
the results with those from the EnKF method. Their numerical results show
that the KLKF method is capable of significantly reducing the required com-
putational resources with satisfactory accuracy, which indicates the potential
applicability of this approach to high-resolution, large-scale predictive models.

This chapter is organized as follows: The problem being addressed is de-
scribed in detail in Section 2. Section 3 provides some basic concepts and
formulations of the data assimilation methods. The Karhunen-Loève decom-
position for both stationary and nonstationary hydraulic conductivity fields
is given in Section 4. The KL-based moment method for solving the first-oder
head and head covariance is outlined in Section 5. In Section 6, the KL-based
Kalman filtering scheme is introduced, including a detailed description on up-
dating hydraulic conductivity, head field, and eigenvalues of eigenfunctions
of the conditioning covariance. The KLKF method is illustrated using a syn-
thetic example in Section 7, with a detailed discussion on the accuracy and
efficiency of the method as compared with the EnKF method. The chapter
concludes in Section 8 with a short summary and discussion.
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2 Statement of the Problem

We consider transient fluid flow in a heterogeneous porous medium satisfying
the following governing equation:

∇ · [Ks(x)∇h(x, t)] + g(x, t) = Ss
∂h(x, t)

∂t
, (1)

subject to initial and boundary conditions:

h(x, 0) = H0(x), x ∈ D, (2)

h(x, t) = H(x, t), x ∈ ΓD, (3)

Ks(x)∇h(x, t) · n(x) = −Q(x, t), x ∈ ΓN , (4)

where Ks(x) is the hydraulic conductivity, h(x, t) is the pressure head, g(x, t)
is the source/sink term, Ss is the specific storage, H0(x) is the initial head in
the domain D, H(x, t) is the prescribed head on Dirichlet boundary segments
ΓD, Q(x, t) is the prescribed flux across Neumann boundary segments ΓN ,
and n is an outward vector normal to the boundary Γ = ΓD ∪ ΓN . Here the
hydraulic conductivity is considered as a spatially-correlated random variable,
while specific storage Ss is treated as a deterministic constant because of its
relatively small variability. For simplicity, it is assumed that both initial and
boundary conditions are deterministic.

Since Ks is a random function, the flow equations become stochastic partial
differential equations, which can be solved through several approaches, such
as Monte Carlo simulations, the moment-equation approach [38], and the KL-
based moment method (KLME) [21, 22, 39]. All Kalman filter methods need
to solve the forward problem, i.e., (1)-(4). The EnKF uses the Monte Carlo
simulations to obtain the covariance of the state variable (pressure head),
while the KLKF uses the KLME to conduct forward modeling. It has been
shown that the KLME method is computationally more efficient than the
Monte Carlo simulations [22], which makes it possible to develop an efficient
algorithm that takes advantages of both the Kalman filter and the KLME
methods.

The hydraulic conductivity is assumed to follow a log normal distribution
(see a detailed review in [32]), and we work with the log-transformed variable
Y (x), given as:

Y (x) = lnKs(x) = 〈Y (x)〉 + Y ′(x), (5)

where 〈Y (x)〉 is the ensemble mean of Y (x), representing a relatively smooth
unbiased estimate of the unknown random function Y (x), and Y ′(x) is the
zero-mean fluctuation.

Suppose we have NY direct measurements of the log hydraulic conductiv-
ity Y1, Y2, . . . , YNY

, taken at locations x1, x2, . . . ,xNY
, and Nh pressure head

measurements located at χ1, χ2, . . . ,χNh
, measured at some time intervals.

As mentioned earlier, many inverse models are not capable of dynamically
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updating parameter fields. In the following sections, we describe an efficient
algorithm to characterize medium properties by dynamically incorporating
these measurements when they become available. During this data assimila-
tion process, the stochastic differential flow equation is solved forward with
time; while the mean and fluctuation of the hydraulic conductivity are modi-
fied together with the computed pressure head to honor all the observations
at various times.

3 Basic Concepts of Data Assimilation

Data assimilation is a dynamically-updating process, in which estimates
of model parameters and state variables are updated by requiring consis-
tency with observations and governing flow equations. With newly developed
measurement techniques such as remote sensing and in-situ permanent sen-
sors, more observations become available. However, observations from these
techniques are usually indirectly related to model parameters, which are of
the most interest in hydrological applications. Moreover, measurements may
be corrupted by noise from either known or unknown sources. A suitable
approach is necessary to reconcile information from multiple sources. The
Kalman filter is a widely used sequential data assimilation method for ob-
taining a least squares estimation of the state vector of the system [8]. It is
capable to take into account various types of observations when they become
available.

The Kalman filter addresses the general problem of estimating the state
vector S ∈ �n, which represents the state of the system, including model para-
meters (e.g., hydraulic conductivity) and dependent variables (e.g., hydraulic
head). There are two major stages in the Kalman filter procedure, forecast
and assimilation [3]. The forecast stage updates the state vector S and the
covariance matrix P:

Sf (i) = Φ Sa(i − 1) + e1(i), (6)
Pf (i) = Φ Pa(i − 1)ΦT + R1(i), (7)

where i is the time step, superscripts f and a stand for forecast and assim-
ilation stages, respectively, Φ is a linear transition matrix that forwards the
state vector at time i− 1 to the current time i, and e1 represents the process
error, which is a random vector with zero mean and covariance R1. The fore-
cast model will keep on running with time until new observations become
available. Once new data are available, the assimilation stage starts, which
can be expressed mathematically as

G(i) = Pf (i)HT
[
H Pf (i)HT + R2(i)

]−1
, (8)

d(i) = H St(i) + e2(i), (9)
Sa(i) = Sf (i) + G(i)

[
d(i) − H Sf (i)

]
, (10)

Pa(i) = [I − G(i)H]Pf (i), (11)
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where H is a measurement operator that relates the state vector and observa-
tions d, superscript T stands for matrix transpose, and e2 is the measurement
error that has a zero mean and error covariance matrix R2. The first step in
the assimilation stage is to compute the Kalman gain G(i) using (8), and then
observations d are taken using (9). The next step is to compute a posterior
estimate of the state vector in (10) by incorporating new observations, and
then update a posterior error covariance from (11).

The standard Kalman filtering scheme as described above requires com-
puting and storing the error covariance matrix of state variables, which is
computationally expensive for large-scale problems (say, with millions of or
even more grid nodes). To alleviate this problem, ensemble Kalman filter
(EnKF), a variant of Kalman filter, has been developed [6]. In the EnKF, one
keeps track of a limited number of realizations, rather than the covariance
matrix as in the standard Kalman filter. At each update, the required subset
of the covariance matrix is then obtained from these realizations. Owing to
its conceptual simplicity, relative ease in implementation, and the ability to
account for possible model noises/errors, the EnKF has been found useful in
a large number of applications in various fields such as meteorology, oceanog-
raphy, hydrology, and reservoir engineering [7, 13, 27, 28]. The computational
cost of the EnKF is relatively low (if only a small number of realizations is
used) compared to other Kalman filters. The EnKF is essentially a Monte
Carlo method, depending on the number of realizations. The goodness of the
covariance function approximated from an ensemble strongly depends on the
number of realizations used in the ensemble, and the appropriate number of
realizations may depend on the nature of the problems and may not be known
a priori.

One major problem of various existing Kalman filtering methods is how
to efficiently compute and store the covariance function in each update. Their
substantial requirement on computational resources prevents us from applying
them to high-resolution, large-scale simulation problems.

In this chapter, we introduce an efficient, dimension-reduced Kalman filter-
ing scheme based on Karhunen-Loève expansions of the medium property and
orthogonal polynomial decompositions of the state variable [40]. The covari-
ance of the medium property is effectively approximated by a small number
of eigenvalues and eigenfunctions using the Karhunen-Loève (KL) decompo-
sition. The same number of first-order head fields (modes) are solved and
stored in each update. Compared to the full covariance matrix in the EnKF,
the finite number of head modes used to approximate it represents a signif-
icant reduction in random dimension. The reconstruction of the covariance
functions from the KL decomposition of Y (x) and the first-order head modes
can be done whenever needed. In each update, the forward problem is solved
using an efficient KL-based moment method [39] that gives a set of functions
from which the mean and covariance of the state variables can be constructed,
when needed. The statistics of both the medium property and the system re-
sponses are then efficiently updated with the available measurements at this
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time using the auto- and cross-covariances obtained from the forward mod-
eling. The KL-based Kalman filter (KLKF) will significantly reduce required
computational resources (both computational time and storage) and allows
us to efficiently incorporate continuous observations into high-resolution pre-
dictive models for flow and transport in large-scale problems.

4 Karhunen-Loève Decomposition

For a stochastic process Y (x, ω) = lnKs(x, ω), where x ∈ D and ω ∈ Ω
(a probability space), the covariance function CY (x,y) = 〈Y ′(x, ω)Y ′(y, ω)〉
is bounded, symmetric, and positive definite, thus it can be decomposed as
[9, 10, 39].

CY (x,y) =
∞∑

m=1

λmfm(x)fm(y), (12)

where m is the index of modes, λm and fm are eigenvalues and deterministic
eigenfunctions, respectively. The eigenvalues and eigenfunctions can be solved
from the following Fredholm equation∫

D

CY (x,y)f(y)dy = λf(x). (13)

The set of eigenfunctions are orthogonal and form a complete set∫
D

fn(x)fm(x)dx = δmn, (14)

where δmn is the Kronecker delta, δmn = 1 for m = n and 0 otherwise. In
addition, it can be shown from (12) that the summation of all eigenvalues
equals the total variability of Y (x),

∑∞
n=1 λn =

∫
D

σ2
Y (x)dx. One may sort

the set of eigenvalues λm in a non-increasing order, and the corresponding
eigenfunctions then exhibit a decreasing characteristic scale as the index m
increases [9, 39]. The stochastic process Y (x) then can be expanded as:

Y (x) = 〈Y (x)〉 +
∞∑

m=1

ξm

√
λmfm(x), (15)

where ξm are orthogonal random variables, i.e., 〈ξm〉 = 0 and 〈ξmξn〉 = δmn.
In the case of normally distributed Y , ξm are standard Gaussian random
variables. It has been shown that the KL expansion, i.e., (15), is of mean
square convergence and may be well approximated with a finite summation.
By truncating (15), one in fact ignores some small-scale variability of Y . The
number of modes required for accurately approximating Y ′(x) depends on the
ratio of the correlation length to the dimension of the domain [39]. In many
cases, the magnitude of eigenvalues decays very fast, which means that Y can
be approximated using a small number of terms.
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Note that stationarity of the process Y (x) is not required in the above
derivation. Suppose the simulation domain D is partitioned into K non-
overlapping subdomains D = ∪K

k=1Dk and Dm ∩ Dn = φ for m 	= n, where
φ stands for the null set, and accordingly the log hydraulic conductivity field
can be written as

Y (x) = lnKs(x) =
K∑

k=1

Yk(x)ψk(x), (16)

where Yk(x) = lnKs(x) is a spatial random function defined in subdomain
Dk, and ψk(x) is a deterministic indicator function given as ψk(x) = 1 for
x ∈ Dk and ψk(x) = 0 otherwise. Lu and Zhang [25] developed an algorithm
for computing eigenvalues and eigenfunctions for the nonstationary hydraulic
conductivity field. The procedure can be summarized as follows:

• Equation (13) is solved for each individual zone Dk to obtain eigenvalues
{λ(k)

n , n = 1, 2, . . .} and eigenfunctions {f (k)
n (x), n = 1, 2, . . .};

• Extend the domain of f
(k)
n (x) from Dk to the entire domain D by defining

f
(k)
n (x) = 0 for x /∈ Dk;

• Merge K sets of eigenvalues together {λ(k)
n , k = 1,K, n = 1, 2, . . .} and

sort them in a non-increasing order (denoting the sorted series as λk,
k = 1, 2, . . .);

• Arrange the set of merged eigenfunctions {f (k)
n , k = 1,K, n = 1, 2, . . .}

based on the sorted eigenvalues and denote the new set of eigenfunctions
as fk(x), k = 1, 2, . . ..

The KL decomposition of the mean-removed stochastic process Y ′(x) for both
stationary and non-stationary hydraulic conductivity fields can be written as

Y ′(x) =
∞∑

n=1

ξn

√
λnfn(x). (17)

The hydraulic conductivity field conditioned on some direct measurements
is a special kind of nonstationary field. Lu and Zhang [21] developed a method-
ology to efficiently update eigenvalues and eigenfunctions of the covariance of
the hydraulic conductivity field. Since the set of eigenfunctions are complete,
the basic idea of this updating scheme is to express the conditional eigenfunc-
tions as linear combinations of the unconditional eigenfunctions and derive
equations for the coefficients of these linear combinations. By doing so, the
problem of finding the eigenvalues and eigenfunctions of a conditional covari-
ance function C

(c)
Y (x,y) reduces to the problem of finding the eigenvalues and

eigenvectors of an NY × NY symmetric matrix, where NY is the number of
conditioning points, which in general is small. The computational cost of find-
ing conditional eigenvalues and eigenfunctions in this way is much less than
that of directly solving (13). This updating scheme is a critical component of
the KLKF method described in Section 6.
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5 KL-based Moment Equations

The Kalman filtering method requires to compute the covariance matrix of
the system response, i.e., the P matrix in (6)-(11). In the EnKF, this is accom-
plished by running a series of forward modeling using a number of realizations.
In the KLKF method, the covariance of head is derived from forward mod-
eling using the KL-based moment method (KLME). The KLME has been
described in detail in [21, 22, 39]. For completeness, a brief description is
given as follows.

Since the dependent variable h(x, t) is a function of the input variabil-
ity σ2

Y (x), one may formally express h(x, t) as an infinite series h(x, t) =∑∞
m=1 h(m)(x, t), where the order of each term in this summation is with re-

spect to σY , the standard deviation of Y . We only keep the first two terms in
this series, and the KLKF method described here is based on the first-order
approximation of the pressure head. By substituting the expansions of h(x, t)
and Y into (1), we obtain the governing equations for zeroth-order pressure
head h(0)(x, t)

∇ ·
[
KG(x)∇h(0)(x, t)

]
+ g(x, t) = Ss

∂h(0)(x, t)
∂t

, (18)

h(0)(x, 0) = H0(x), x ∈ D, (19)
h(0)(x, t) = H(x, t), x ∈ ΓD, (20)

KG(x)∇h(0)(x, t) · n(x) = −Q(x, t), x ∈ ΓN , (21)

and for the first-order pressure head term h(1)(x, t),

∇ ·
[
KG(x)∇h(1)(x, t)

]
+ g(1)(x, t) = Ss

∂h(1)(x, t)
∂t

, (22)

h(1)(x, 0) = 0, x ∈ D, (23)
h(1)(x, t) = 0, x ∈ ΓD, (24)

KG(x)∇h(1)(x, t) · n(x) = Q(x, t)Y ′(x), x ∈ ΓN , (25)

where KG is the geometric mean of the Ks, and

g(1)(x, t) = SsY
′(x)

∂h(0)(x, t)
∂t

+ KG(x)∇Y ′(x) · ∇h(0)(x, t) − g(x, t)Y ′(x).

(26)

Equations for higher-order mean head and head covariance can be found in
[21, 22, 24, 39].

Equations (18)-(21) are the governing equations and initial and boundary
conditions for the zeroth-order conditional mean head. In the conventional
moment method, the equations for the first-order (in terms of σ2

Y ) head co-
variance can be derived from (22)-(25) upon multiplying these equations by
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h(1)(χ, τ) and taking the ensemble mean. It has been shown that the conven-
tional moment method is computationally expensive, especially for large-scale
problems [22]. In fact, to solve the pressure head covariance up to the first
order (in σ2

Y ) using the conventional moment-equaiton method, it is required
to solve the sets of linear algebraic equations with N unknowns (N being
the number of nodes in the numerical grid) for 2N times: N times for solv-
ing the cross-covariance CY h and N times for the covariance Ch. Solving the
pressure head covariance with higher-order corrections is possible, but the
computational effort is very demanding. For instance, solving the pressure
head covariance up to the second order in terms of σ2

Y requires solving sets of
linear algebraic equations with N unknowns for N2 times.

In the KLME method, instead of dealing with h(1) directly from (22)-(26),
we further assume that the first-order head can be exprssed as a polynomial
expansion in terms of the orthogonal random variables ξm:

h(1)(x, t) =
∞∑

m=1

ξmh(1)
m (x, t), (27)

where h
(1)
m are deterministic, first-order head with mode m. After substituting

this expansion and the KL decomposition of the log hydraulic conductivity,
i.e., (17), into (22)-(26) and recalling the orthogonality of random variables
ξm, we obtain sets of governing equations for deterministic coefficients h

(1)
n :

∇ ·
[
KG(x)∇h(1)

n (x, t)
]

+ g(1)
n (x, t) = Ss

∂h
(1)
n (x, t)
∂t

, (28)

h(1)
n (x, 0) = 0, x ∈ D, (29)

h(1)
n (x, t) = 0, x ∈ ΓD, (30)

KG(x)∇h(1)
n (x, t) · n(x) = Q(x, t)

√
λnfn(x), x ∈ ΓN , (31)

where

g(1)
n (x, t) =

[
Ss

∂h(0)(x, t)
∂t

− g(x, t)
]√

λnfn(x)

+KG(x)
√

λn∇fn(x) · ∇h(0)(x, t). (32)

Here the source term g
(1)
n and the flux bounday term in the right side of

(31) represent the effect of heterogeneity of the hydraulic conductivity. Note
that (28)-(32) are driving by terms that are proportional to

√
λn. Since

√
λn

decreases quickly, the first-order head h(1) in (27) can be approximated by
a limited number of terms, say M terms. It is worthy to point out that the
zeroth-order head equation and the M sets of equations for coefficients h

(1)
n

(totally there are M +1 sets of equations) have the exactly same structure as
the original flow equation. By changing the input parameters, the KL-based
moment equations can be solved easily with existing flow simulators, such as
MODFLOW [15].
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Once the coefficients h
(1)
n , n = 1,M , are solved, we only need to store an

M ×N matrix rather than an N ×N full matrix Ch. The head covariance as
well as the cross-covariance between the head and the log hydraulic conductiv-
ity, which are required in the data assimilation process, can be approximated
up to first order in terms of σ2

Y whenever needed:

CY h(x;y, τ) =
M∑

m=1

√
λmfm(x)h(1)

m (y, τ), (33)

Ch(x, t;y, τ) =
M∑

m=1

h(1)
m (x, t)h(1)

m (y, τ). (34)

The accuracy of the KLKF method highly depends on how well one can ap-
proximate CY h and Ch from (33)-(34). Zhang and Lu [2004] showed that,
when the unconditional variability σ2

Y is small, these first-order approxima-
tions are close to the true solutions. However, if the variability σ2

Y is large
(say, σ2

Y > 2.0), higher-order corrections are needed unless the correlation
length is small. In the latter case, first-order solutions are sufficiently accu-
rate, although in this case, the number of modes should be relatively large
[Zhang and Lu, 2004]. In general, the number of required modes depends on
the dimensionless size (in terms of the correlation length) of the domain. It is
our experience that 100 modes are enough for most of the cases we examined.

6 KL-based Data Assimilation Methodology

The data assimilation process consists of a series of updating steps, each of
which represents the time when observations become available and/or the up-
dating process is operated. In this section, the time symbol t is suppressed,
because the discussion is based on any fixed assimilation step. Similar to the
EnKF, the KLKF requires to compute covariance functions CY , CY h, and
Ch, as presented in (12), (33), and (34). This implies that the eigenvalues and
eigenfunctions, as well as the first-order term h

(1)
n have to be updated at each

assimilation step, which in turn requires updating the mean hydraulic con-
ductivity field and the zeroth- and first-order head terms. Certainly, because
of conditioning, at each updating step, the covariance function of the log hy-
draulic conductivity is nonstationary and its eigenvalues and eigenfunctions
have to be solved numerically. It is well-known that solving eigenfunctions
numerically is computationally very expensive for large-scale problems. For
this reason, Zhang et al. [40] developed an algorithm that requires solving
the eigenvalue problem at the first time step and then efficiently updating
eigenvalues and eigenfunctions at the sequential assimilation steps.
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6.1 Updating Mean Hydraulic Conductivity Field

At each update step, for the given observations described in Section 2, the
updated mean and covariance of Y upon incorporating new observations can
be derived from the cokriging technique:

Y (0)(c)(x) = Y (0)(x) +
NY∑
i=1

αi(x)
[
Yobs(xi) − Y (0)(xi)

]

+
Nh∑
i=1

βi(x)
[
hobs(χi) − h(0)(χi)

]
, (35)

and

C
(c)
Y (xi,yj) = CY (xi,yj) −

NY∑
n=1

αn(xi)CY (xn,yj) −
Nh∑
n=1

βn(xi)CY h(yj ,χn),

(36)
where the quantities with (without) superscript (c) stands for the values after
(before) incorporating observations at this time step, and αi(x) and βi(x) are
weighting functions, representing the relative importance of each measurement
Yobs(xi) and hobs(χi) in predicting the value of Y (0)(c)(x) at location x. The
observations Yobs(xi) and hobs(χi) may include noises:

Yobs(xi) = Y t(xi) + ζiεY , i = 1, NY (37)
hobs(χi) = ht(χi) + ζiεh, i = 1, Nh (38)

where Y t(xi) and ht(χi) are unknown true values at observation locations, ζi

are Gaussian random variables with zero mean and unit variance, and εY and
εh are the standard deviations of measurements errors of the log hydraulic
conductivity Y (x) and pressure head h(χ), which are assumed to be known.

The weighting functions in (35) are solutions of the following cokriging
equations:

NY∑
i=1

αi(x)CY (xi,xj) +
Nh∑
i=1

βi(x)CY h(xj ,χi) = CY (x,xj), j = 1, NY , (39)

NY∑
i=1

αi(x)CY h(xi,χj) +
Nh∑
i=1

βi(x)Ch(χi,χj) = CY h(x,χj), j = 1, Nh. (40)

Note that coefficients αi and βi are location-dependent, which means that
equations (39)-(40) need to be solved for N times, where N is the number
of nodes in the domain. Follow [21], αi and βi can be directly related to
the eigenvalues, eigenfunctions, and the first-order head h(1). Since the set of
eigenfunctions (no matter they are unconditional or conditional) is complete,
αi(x) and βi(x) can be expanded on the basis of these eigenfunctions:
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αi(x) =
∞∑

k=1

αikfk(x), (41)

βi(x) =
∞∑

k=1

βikfk(x). (42)

Substituting (41)-(42) into (39)-(40), multiplying fm(x) on the both sides of
the resulted equations, and integrating the equations with respect to x over
the domain D, we obtain equations for αim and βim

NY∑
i=1

αimCY (xi,xj) +
Nh∑
i=1

βimCY h(xj ,χi) = λmfm(xj), j = 1, NY , (43)

NY∑
i=1

αimCY h(xi,χj) +
Nh∑
i=1

βimCh(χi,χj) =
√

λmh(1)
m (xj), j = 1, Nh,

(44)

where the cross-covariance CY h, auto-covariance of pressure head Ch, and
auto-covariance of the log hydraulic conductivity CY are given by (33), (34),
and (12), respectively. All these auto- and cross-covariance functions depend
on simulated time and thus need to be updated at each assimilation step. It
should be noted that (43)-(44) are solved only M times (in general M << N),
where M is the number of modes needed to approximate Y with a desired
accuracy. In addition, solving αim and βim will facilitate updating eigenvalues
and eigenfunctions, as described later.

6.2 Updating Pressure Head Fields

The zeroth-order pressure head can be updated with both types of observa-
tions in the same manner:

h(0)(c)(x) = h(0)(x) +
NY∑
i=1

µi(x)
[
Yobs(xi) − Y (0)(xi)

]

+
Nh∑
i=1

ηi(x)
[
hobs(χi) − h(0)(χi)

]
, (45)

where µi(x) and ηi(x) are subject to:

NY∑
i=1

µi(x)CY (xi,xj) +
Nh∑
i=1

ηi(x)CY h(xj ,χi) = CY h(xj ,x), j = 1, NY , (46)

NY∑
i=1

µi(x)CY h(xi,χj) +
Nh∑
i=1

ηi(x)Ch(χi,χj) = Ch(x,χj), j = 1, Nh. (47)
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Coefficients αim, βim, µi, and ηi in (43)-(44) and (46)-(47) can be computed
through solving a set of linear algebraic equations with the same coefficient
matrix. However, the condition number of this coefficient matrix could be
extremely large, especially after several assimilation steps, because assimilat-
ing observations will result in a great reduction of (co)variance. Due to the
ill-conditioned matrix, the truncation error will easily be amplified reflect-
ing on the anomalies. Dietrich and Newsam [5] analyzed the cause of the
ill-conditioning and proposed that adding a relaxation term (or an explicit
error matrix) to the coefficient matrix can resolve this problem. In general, a
relatively large relaxation term slows down the rate of convergence but with
the price of losing information, while a small value may lead to numerical
instability. The error matrix can be obtained through a maximum likelihood
approach for the purpose of improving the conditioning and minimizing the
loss of information. Yeh et al. [37] added a relaxation term to the diagonal
components of the matrix to reduce the condition number of the matrix, and
the relaxation term is a fraction of the maximum value of the coefficient ma-
trix. In the example shown in Section 7, a constant relaxation term is added
to the diagonal components of Ch, which will be discussed further with illus-
trative examples.

Similarly to the zeroth-order head term, the first-order pressure head is
updated by:

h(1)(c)(x) = h(1)(x) −
NY∑
i=1

µi(x)Y ′(xi) −
Nh∑
i=1

ηi(x)h(1)(χi). (48)

Because both Y ′ and h(1) can be expanded based on ξm, by substituting (17)
and (27) into (48), instead of updating h(1) directly, the coefficients h

(1)
m can

be updated as:

h(1)(c)
m (x) = h(1)

m (x) −
NY∑
i=1

µi(x)
√

λmfm(xi) −
Nh∑
i=1

ηi(x)h(1)
m (χi). (49)

It can be shown that to the first order, (49) recovers the usual cokriging
equation for the head covariance similar to (36).

6.3 Updating Eigenvalues and Eigenfunctions

Because of the non-stationality of the covariance matrix given in (36), the
conditional eigenvalues and eigenfunctions have to be solved numerically. Here
we follow the method in [21] with some modification to incorporate the influ-
ence of the pressure head measurements. By definition, the eigenvalues λ

(c)
m

and their corresponding eigenfunctions f
(c)
m can be solved from (13) upon

replacing CY by the conditional covariance function C
(c)
Y . Because of high

computational cost in solving (13), this equation will be solved only at the
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first assimilation step and the eigenvalues and eigenfunctions for any sequen-
tial step will be derived from the results at the previous step. Since the set
of eigenfunctions fm(x) computed at the previous assimilation step is com-
plete, the eigenfunctions f

(c)
m (x) at the current step (after assimilating new

measurements) can be expanded in terms of fm(x) as:

f (c)
m (x) =

M∑
p=1

dmpfp(x), m = 1,M (50)

where the coefficient matrix D = (dmp)M×M is to be determined. Substituting
this expression and (36) into (13), multiplying fm(y) on the both sides of the
derived equation, and integrating it with respect to y over the domain D,
yields:

λmdm −
M∑

k=1

(
NY∑
i=1

αikλmfm(xi) +
Nh∑
i=1

βikh(1)
m (χi)

)
dk = λ(c)

m dm,m = 1,M

(51)
It can also be expressed in a succinct matrix form as:(

A − λ(c)I
)
D = 0, (52)

where

akm = λmδkm −
M∑

k=1

(
NY∑
i=1

αikλmfm(xi) +
Nh∑
i=1

βikh(1)
m (χi)

)
(53)

are components of A = (akm)M×M , λ(c) = diag(λ(c)
1 , . . . , λ

(c)
M ), and I is an

M×M identical matrix. Therefore, the problem of finding the eigenvalues and
eigenfunctions of a nonstationary covariance matrix C

(c)
Y (x,y) of size N × N

reduces to the problem of finding the eigenvalues λ(c) and eigenvectors d of an
M × M matrix for M times, where N is the number of grid nodes, and M is
the number of modes. Note that the number of grid nodes N is usually much
larger than the number of modes M . Once D is solved, conditional eigenvec-
tor f

(c)
m corresponding to each conditional eigenvalue λ

(c)
m can be constructed

using (50). The updated eigenvalues and eigenvectors as well as the updated
pressure head terms in (45) and (49) are fed into the KLME forward model.
Since directly solving the Fredholm equation is computationally expensive, the
proposed algorithm for updating conditional eigenvalues and eigenfunctions
at each updating step has a significant advantage, and we only need to solve
the Fredholm equation at the first time step rather than at each assimilation
step.

6.4 Karhunen-Loève Based Kalman Filter

The methodology described in the previous section has a different format than
the traditional Kalman filter, where the Kalman gain and the updating step
are formulated as:
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G = PfHT [HPfHT + R]−1, (54)

Sa = Sf + G[d − HSf ], (55)

where K is the Kalman gain, H is the observation operator, R is the obser-
vation error covariance matrix, d is the observation vector, Sf is the forecast
state vector, Sa is the updated state vector, and Pf is the covariance ma-
trix of the forecast state vector. In fact, the cokriging based updating scheme
is exactly the same as the traditional Kalman filter. If we define the state
vector as S = (Y (y1), . . . , Y (yN ), h(y1), . . . , h(yN ))T , the Kalman gain can
be constructed with the coefficients αi(x), βi(x), µi(x), and ηi(x) described
before:

G =
[
Gα Gβ

Gµ Gη

]
2×N,NY +Nh

(56)

where Gα = (α1, . . . , αNY
), Gβ = (β1, . . . , βNh

), Gµ = (µ1(, . . . , µNY
), and

Gη = (η1, . . . , ηNh
). Note that each of αi, βi, µi, and ηi is a vector of N × 1.

The major difference between the KLKF approach and the cokriging
method is that the KLKF is a sequential or inline method, while cokriging is
a statistical interpolation method, which only operates at a fixed time. Some-
times cokriging is performed iteratively to account for the possible nonlinear
effects in order to obtain a reasonable estimation, but the iteration is still
based on a certain time [37]. The KLKF uses the KLME method for advanc-
ing the system with time, and incorporates the observations at the time when
they become available and update the system at the same time. After the cur-
rent assimilation step, the updated system responses are taken as the initial
conditions for the next forward step. The updated model that runs until the
next set of observations become available, at which the updating step will be
performed again.

7 Illustrative Examples

In this section, a synthetic two-dimensional example is used to demonstrate
the applicability of the KLKF method in estimating the hydraulic conductivity
field by assimilating both pressure head and hydraulic conductivity measure-
ments. The results are then compared with those from the EnKF method in
terms of both the computational cost and accuracy [40].

The flow domain is a square of size Lx = Ly = 800 [L] (where L is any
consistent length unit), uniformly discretized into 40× 40 square elements, as
shown in Figure 1. A pumping well and an injection well are placed at (240 [L],
160 [L]) and (540 [L], 560 [L]), respectively, with a volumetric flow rate of
150 [L3/day]. Both wells are active throughout the entire simulation period
with constant flow rates. The two lateral boundaries are no-flow boundaries,
while the left and the right are Dirichlet boundaries with prescribed pressure
head of 202 [L] and 198 [L], respectively. Storage coefficient is assumed to be a
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Fig. 1. The flow domain and the ob-
servation locations for ln Ks (9 squares)
and h (both squares and diamonds
symbols).
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Fig. 2. The reference log hydraulic
conductivity field.

constant and taken as 0.0001. The log hydraulic conductivity field is treated as
a spatially-correlated Gaussian random field with zero mean and unit variance.
The unconditional hydraulic conductivity field is also assumed to be second-
order stationary characterized by a separable exponential covariance function

CY (x1,x2) = CY (x1, y1;x2, y2) = σ2
Y exp

[ |x1 − x2|
λx

− |y1 − y2|
λy

]
, (57)

where σ2
Y = 1.0 is the unconditional variance of Y , and λx = 200 [L] and

λy = 100 [L] are correlation lengths in x and y directions, respectively.
In this synthetic example, an unconditional realization of the log hydraulic

conductivity field is generated under given statistics using a random field gen-
erator based on the KL decomposition [39]. This field is then considered as
the “true” field, called the reference field, as shown in Figure 2. Nine samples
are taken from this reference field at selected locations as shown in Figure 1
(in blue) and these samples are considered as direct measurements of the
log hydraulic conductivity field. A forward transient simulation is conducted
using the reference hydraulic conductivity field. For this model setup, the
fluid flow reaches steady state at about t = 10 [day]. This period is chosen
as the duration of the total simulation time, which is then subdivided into
50 equally-sized time intervals with a size of 0.2 [day]. Twenty-five pressure
head measurements are then taken at selected locations (both blue and red
points in Fig. 1) at elapsed time t = 0.2 + 0.6k, k = 0, 1, . . . , 16. It is assumed
that the hydraulic conductivity measurements are error-free, while the pres-
sure head observations are noisy and the measurement error follows a normal
distribution N(0, 2.5 × 10−3). The hydraulic conductivity measurements are
assimilated with the first set of pressure head measurements at t = 0.2 [day],
and after that only pressure head measurements are assimilated every 0.6 day.
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The statistics (mean, variance, and correlation lengths) of the unknown
hydraulic conductivity field are usually inferred from its direct measurements.
It is often that the number of measurements is not sufficient to infer the true
statistics. As a consequence, in the KLKF method, the initial statistics of
the hydraulic conductivity field are taken as 〈Y 〉 = 0.0, σ2

Y = 1.2, λx = 220
[L], and λy = 120 [L], which are slightly different from the those statistics
used in generating the reference field. Initial eigenvalues and eigenfunctions
are solved using these statistics, and the impact of the number of modes has
been explored by approximating Y and h(1) with 50, 100, and 200 modes. For
the purpose of comparison, the EnKF method is also implemented with the
same initial statistics as in the KLKF method, and results from the EnKF
with 100, 200, and 1000 realizations are compared with those from the KLKF
to assess the accuracy and efficiency of the KLKF method.

7.1 Comparison of Accuracy

Two measures are commonly used to evaluate the accuracy of the Kalman
filtering schemes. The root mean square error (RMSE) is used to compare the
estimated Y field with the reference field, which is given as:

RMSE =

√√√√ 1
N

N∑
i=1

[Y ∗(xi) − Y t(xi)]
2
, (58)

where Y ∗ stands for the estimated value, Y t stands for the true reference
value, and N is the number of grid nodes.

Another measure is ensemble spread, which is the averaged variation of
the ensemble and is defined as

Spread =

√√√√ 1
N

N∑
i=1

V AR(xi), (59)

where V AR(xi) is the ensemble variance. If the EnKF estimates the uncer-
tainty of the state vector properly, the ensemble spread should be close to the
RMSE.

Figure 3(a) compares the RMSE of the KLKF and the EnKF methods
with a various number of realizations (or modes). The KLKF is operated
with a relaxation term ε = 0.3 for the cases with 50, 100, and 200 modes. It
is seen from the figure that with 100 principal modes the KLKF can properly
propagate the statistics of the real randomness, and the estimate is as good
as that from the EnKF method with 1000 realizations. The result from only
50 modes is not very stable, but it is comparable with the EnKF with 200
realizations. The KLKF with 100 and 200 modes give similar behavior of the
RMSE, which means that adding more modes beyond 100 modes may not
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Fig. 3. (a) RMSE and (b) Ensemble spread of the KLKF and the EnKF as a
function of time for various number of modes and ensemble sizes.

significantly improve the results. It is important to note that for this case the
EnKF with 100 realizations begins to diverge after the first assimilation step.

Figure 3(b) illustrates the ensemble spread of the EnKF with respect to
time, in comparison to the uncertainty estimated by the KLKF. Comparing
the values shown in Figure 3(b) with the corresponding values in Figure 3(a),
the ensemble spread systematically underestimates the real deviation due to
the limited size of the ensemble numbers. For instance, the EnKF with 100
realizations fails to reduce the RMSE after the first assimilation step, while the
ensemble spread keeps decreasing, indicating that the ensemble is converging
to a wrong solution. The estimated uncertainty of the KLKF with 200 modes
is equivalent to that of the EnKF with 1000 realizations, which results in the
similarity of their corresponding RMSE shown in Figure 3(a). However, the
RMSEs of the KLKF with 200 modes and 100 modes are close, and the KLKF
with 200 modes has a better estimate of the real deviation, which shows the
potential to further incorporate new observations.

The relaxation term used in the KLKF reduces the condition number of the
coefficient matrix in (43)-(44) and (46)-(47), and therefore improves stability
of the KLKF solution. Numerical experiments [40] show that the performance
of the KLKF is sensitive to the choice of relaxation term when the number of
modes is small, for instance 50. However, reasonable results can be achieved by
cautiously choosing the relaxation term for the KLKF with 50 modes (shown
in Figure 3(c)). With larger number of modes, the KLKF has satisfactory
performance as long as the relaxation term is changing within a reasonable
range. Sensitivity of model results on the relaxation term has been investigated
in [40]. In the KLKF approach, the log hydraulic conductivity measurements
are used only at the first assimilation step, and the relaxation term is only
added to the diagonal terms of the pressure head covariance matrix. If the
direct measurements are assimilated with the pressure head observations at
every assimilation step, it is expected that a relaxation term needs to be added
to the diagonal components of both log hydraulic conductivity and pressure
head covariance matrices.
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Fig. 4. The estimated mean ln Ks fields (a) KLKF with 100 modes, (b) KLKF with
200 modes, and (c) EnKF with 1000 realizations.

Zhang et al. [40] also investigated the impact of incorrect initial statistics
(comparing to those used in generating the reference field) on the final assim-
ilation results. Their study indicates that the impact is minor if the number
of modes included in the KLKF method is enough, for example, 100 modes.

The contours of the log hydraulic conductivity fields estimated from the
KLKF method with different numbers of modes are shown in Figure 4. Also
compared in the figure is the estimated field using the EnKF method with
1000 realizations. Compared to the reference field (Fig. 2), the contours from
the KLKF are smoother. The KLKF with 50 modes (not shown here) fails to
catch the right locations of the major pattern of the reference field, while the
KLKF with 100 modes almost identifies every primary structure. The con-
tour of the EnKF also recovers the major pattern with more details than the
KLKF fields. However, these small features do not exactly replicate those of
the reference field. The contours of the associated log hydraulic conductiv-
ity variance are shown in Figure 5. Comparing the KLKF results with 100
modes and 200 modes reveals that the variance of the estimated ln Ks field is
higher if more modes are included in data assimilation. The major patterns
of estimated fields from the KLKF and the EnKF are close. For the EnKF,
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Fig. 5. The estimated ln Ks variance (a) KLKF with 100 modes, (b) KLKF with
200 modes, and (c) EnKF with 1000 realizations.

although the log hydraulic conductivity measurements are only assimilated at
the first assimilation step, the variances remain lowest at those locations. How-
ever, this feature is not very obvious in the KLKF, which may be attributed
to the effect of the relaxation term.

Figure 6 compares the reference field and the estimated log hydraulic con-
ductivity field from the KLKF with 100 modes at several elapsed times. The
figure shows that with time (and available observations), the estimated field
becomes closer to the reference field.

In order to test the predictability of the model using the estimated hy-
draulic conductivity field, we run a deterministic flow simulation from the
t = 0 [day] to t = 20 [day] using the final estimated log hydraulic conductivity
field (at 10th day) from the KLKF with 100 modes as the initial input. The
calibrated pressure head at t = 5 [day] and the predicted head at t = 20 [day]
are illustrated in Figure 7 (dashed contour lines) as compared to the reference
pressure head field (solid contour lines), which is computed using the reference
hydraulic conductivity field. Apparently, both head fields match very well.
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Fig. 6. Comparison between the estimated ln Ks from the KLKF with 100 modes
and the reference at different times. (a) 0.2 day, (b) 2.0 day, (c) 5.0 day and (d) 10.0
day.
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Fig. 7. Comparison of the pressure head fields computed using the reference ln Ks

field (solid lines) and those computed using the estimated mean ln Ks field from K
LKF with 100 modes (dashed lines). (a) pressure head at day 5 and (b) pressure
head at day 20.
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7.2 Computational Efficiency

If M modes are used in the KLKF, the flow equation needs to be solved for
M +1 times (once for the zeroth-order head term h(0)(x) and M times for the
first-order head terms h

(1)
m (x)), while for the EnKF with the ensemble size of

K, the similar equation needs to be solved for K times. Since the CPU time
for solving the pressure head term in the KLKF is about the same as that
for one realization in the EnKF method, the computational efficiency for the
two methods simply depends on how many modes in the KLKF method (or
realizations in the EnKF method) are needed to approximate the statistics
of the state. The illustrative example showed that the KLKF can achieve
satisfactory estimation with a relatively small computational cost.

8 Summary and Conclusion

The Kalman filter based sequential data assimilation methods have been
widely used in solving the inverse problem recently. These methods are capa-
ble of updating the system parameters continuously and sequentially with the
availability of the measurements of the system responses. In these methods,
both the best estimate and the corresponding uncertainty are advanced with
time. A major problem associated with these existing Kalman filter based
methods is the high computational cost in updating the state error covariance
matrix. In this chapter, the Karhunen-Loève based Kalman filter (KLKF) is
introduced. The hydraulic conductivity field is treated as a random spatial
function and is decomposed using the KL expansion. The pressure head is
expanded using the perturbative polynomial expansion. On the basis of these
expansions, the higher-order terms are truncated and the KLKF is based on
the first-order approximation of the pressure head. The KLKF utilizes only
a small number of principal modes to propagate the statistics of the state
vector, which greatly reduces the computational cost. The forward step can
be solved accurately and efficiently using the Karhunen-Loève based moment-
equation method (KLME), which can be solved in parallel using any existing
flow model. The data assimilation step is operated based on the state statistics
given by the forward step and the observations. A synthetic two-dimensional
example shows that the KLKF method is better than the EnKF method in
terms of both computational efficiency and accuracy. The example indicates
that the estimated conductivity field using the KLKF method with 100 modes
is reasonably close to the true reference conductivity field and the pressure
head predicted using the estimated field agrees well with the reference head
field.
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9 Nomenclature

Ch = covariance of pressure head h
CY = covariance of Y = lnKs

CY h = cross-covariance between Y and h
D = the simulation domain (or its size)

Dm = subdomain
d = observation vector

e1, e2 = error vectors
f, fm, f

(k)
n = eigenfunction
G = Kalman gain
g = source/sink

g
(k)
n = nth mode of the kth-order source/sink
H = prescribed head at constant head boundary

H0 = initial head in the domain
H = observation operator

h(k) = kth-order pressure head
h

(k)
n = nth mode of the kth-order pressure head
I = identical matrix

K = number of subdomains
Ks = hydraulic conductivity
KG = geometric mean of the hydraulic conductivity
M = number of modes
N = number of grid nodes

NY = number of log hydraulic conductivity observations
Nh = number of pressure head observations
n = an outward unit vector normal to external boundaries
P = covariance matrix of the state vector

R1,R2 = covariance matrix of error vectors e1, e2

S = state vector
Ss = specific storage

t = time
x,y = Cartesian coordinate vectors
xi = measurement locations of hydraulic conductivity
Y = log hydraulic conductivity
Y ′ = zero-mean fluctuation of Y
Yk = log hydraulic conductivity in zone k
ΓD = Dirichlet boundary segments
ΓN = Neumann boundary segments
Φ = linear transfer matrix

αi, βi = weight coefficients in cokriging estimate of Y
δmn = Kronecker data

εY , εh = standard deviation of measurments errors on Y and h
ζ = standard Gaussian random variable
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λ, λm, λ
(k)
n = eigenvalue

λx, λy = correlation lengths in x and y directions
µi, ηi = weight coefficients in cokriging estimate of h

ξm = orthogonal Gaussian random variables
σ2

Y = variance of the log hydraulic conductivity
χi = head measurement locations
ψk = indicator function for zone k

Subscript
Obs = observation

en = ensemble

Superscript
(c) = conditioned
f = forecast
u = updated
T = transpose
t = true
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Trajectory-Based Methods for Modeling
and Characterization

D.W. Vasco

Berkeley Laboratory, University of California

1 Introduction and Background

Given the increasing data flow associated with characterizing and modeling
natural hydrological systems there is a need for efficient data analysis tools.
New experimental techniques such as multi-level samplers and crosswell pres-
sure tomography produce extensive sets of hydrologic observations. Further-
more, integrating geophysical and remote sensing data can produce a massive
array of measurements. Relating these data to flow properties in the subsur-
face and using them for characterization can be a computational challenge.
In this chapter I discuss trajectory-based methods for integrating transient
head, tracer, multi-phase flow, and associated geophysical data. The tech-
niques, which are similar to ray methods in geophysics, are motivated by two
methodologies outlined in this chapter. The first methodology, implemented
in the frequency-domain, is along the lines of methods associated with elastic
and electromagnetic wave propagation [26, 28, 30]. The second approach, the
method of multiple scales is somewhat more general, applicable to nonlinear
and diffusive propagation, and has been applied to gas dynamics and shock
propagation [2]. The techniques described have connections with other meth-
ods used in the modeling of fluid flow. For example asymptotic approaches
have been used to describe solute transport in the limit of long times, giving
for example traveling wave solutions [19, 22, 46, 47]. Furthermore, stream-
line modeling is a trajectory-based, physically-motivated technique which is
extremely useful in modeling tracer transport and multiphase flow [10, 25].

A trajectory-based methodology does offer some computational advan-
tages over purely numerical modeling of flow and transport. Moreover, the
methodology also offers insight into the problem of inverse modeling. For ex-
ample, in the trajectory-based approach the modeling is broken into two dis-
tinct steps: (1) the computation of a travel time, (2) the computation of the
time-varying amplitude function. This sub-division provides additional flexi-
bility when one turns to inverse modeling. That is, one can use travel times
as a datum for characterization. There is some advantage associated with the
D.W. Vasco: Trajectory-Based Methods for Modeling and Characterization, Studies in

Computational Intelligence (SCI) 79, 69–103 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



70 D.W. Vasco

use of travel times. First, the inverse problem associated with travel times
is quasi-linear and thus convergence is less of an issue [7]. Furthermore, the
inversion of travel times typically involves much less computation than does
amplitude inversion. Thus, a useful strategy invokes an initial travel time in-
version followed by an amplitude inversion. Trajectory-based modeling also
provides, in the form of the trajectories, an easy way to visualize the relation-
ship between observations and the region of the subsurface which influences
the observations.

2 Methodology

Natural systems are plagued by a number of characteristics which preclude
a straight-forward mathematical analysis. First and foremost, the Earth is
highly heterogeneous with properties which may vary by orders of mag-
nitude. Thus, techniques which rely upon constant coefficients or spatially
invariant properties are not applicable for modeling processes in the subsur-
face. Secondly, under commonly encountered conditions, nonlinear behavior
is important. This is particularly true for activities of interest such as mul-
tiphase flow and finite deformation within the Earth. Thirdly, most natural
systems consist of complex, coupled processes which interact over a range of
space and time scales. Fourth, many processes are not well characterized and
must be described by laboratory-derived, non-analytical methods which are
largely empirical. Thus, no closed-form equations are available to describe the
specific phenomena.

The preceding factors have motivated many to dispense with analytic so-
lutions in favor of purely numerical approaches [38]. Here I shall pursue semi-
analytical solutions because they provide insight into the relationship between
observations and properties of the medium. The approach I take relies on a
power series representation in terms of a parameter, such as frequency. The
series is such that, as the parameter approaches a limiting value, usually zero,
higher order terms in the series asymptotically approach zero. Thus, only the
first few terms of the series are necessary for an accurate representation. The
advantage of an asymptotic approach is that the technique provides solutions
even in the presence of three-dimensional, smoothly-varying heterogeneity,
and nonlinearity. Furthermore, the components of the solution have useful
physical interpretations, which I discuss below.

While asymptotic methods rely on the limiting behavior of an expansion
parameter and cannot match the generality of a fully numerical treatment,
the methods do have a wide range of applicability. This is not always fully
appreciated, and there is the general impression that asymptotic methods are
only useful for modeling high-frequency hyperbolic wave propagation [1]. In
fact, techniques, such as the method of multiple scales, are general and can
be used to model a variety of physical processes in the presence of large-
amplitude yet smoothly-varying heterogeneity. I have found that solutions
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derived using the method of multiple scales represent a wide range of behav-
iors including diffusive pressure propagation [56], hyperbolic propagation of
non-diffusive and non-dispersive tracer [52], as well as mixed-behavior and
nonlinear propagation associated with multiphase flow [49]. Recently, I have
also used the technique to study broadband electromagnetic wave propagation
[51], which can be of a diffusive, hyperbolic or mixed character, depending on
the frequency range.

2.1 Frequency Domain Approach

The first approach is based upon an expansion in frequency and follows a
Fourier transformation of the governing equation. The Fourier transform is a
linear operator given by [4]

U(x, ω) =
1
2π

∫ ∞

−∞
u(x, t)eiωtdω. (1)

Because of its reliance on the Fourier transform, the technique is applicable
to processes governed by linear partial differential equations with spatially
varying but time-invariant coefficients. Depending on the application one is
generally interested in solutions for either large or small values of frequency, ω.
For illustration, I consider the case in which ω is large. An asymptotic solution
is a series representation in inverse powers of ω. A fairly general form for an
asymptotic solution u(x, ω) is

U(x, ω) = exp [iωr(x) − ωαs(x)]
∞∑

n=0

Un(x)ω−λn (2)

where r(x), s(x), and Un(x) are functions to be determined, α and λn are
real numbers with λn+1 > λn [15]. For now, disregard the details of the ex-
pansion, I shall consider them in the applications below. The main point is
that for large ω, the series will be dominated by the first one or two terms. As
seen below, using the asymptotic power series one can derive a semi-analytic
expression for U(x, ω) valid in a three-dimensional, heterogeneous medium.
The functions Un(x) are successive amplitude corrections which are required
for increasingly higher order accuracy in ω. The functions r(x) and s(x) rep-
resent a generalized arrival time or phase, related to the moment at which the
disturbance reaches the point x. Note that the series is capable of representing
both oscillatory and decaying solutions depending on the presence or absence
of r(x) and s(x), respectively. Thus, the method can be applied to both hy-
perbolic and parabolic differential equations, meaning that it can be used to
model non-dispersive tracer transport as well as transient head [24, 28]. One
could also maintain such flexibility by setting r(x) equal to zero and allowing
s(x) to be complex.
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2.2 The Method of Multiple Scales

As described in [2], the method of multiple scales is useful in a variety of
settings, from modeling linear hyperbolic wave propagation to the study of
nonlinear, dispersive, and diffusive waves. The crucial assumption is that there
is a propagating front, separating the material which has not yet experienced
the disturbance from the material through which the disturbance has already
passed. The front defines a rapid or sharp jump in some quantity or quan-
tities, for example pore pressure, volumetric change, and/or saturation. The
definition of ‘sharp’ is relative to the scale-length of the variation in material
properties. I can represent the time and space scale of the front variation by
l. Similarly, the variation in background quantities, such as heterogeneity, is
over a time and space scale L, where L � l. I represent the ratio l/L by a
dimensionless parameter ε and require that 0 < ε � 1. I may define slow
variables, in both space and time, in terms of the ratio ε:

X = εαx (3)
T = εαt (4)

where α is a rational number. The quantity α is chosen such that the non-
linearity balances the dispersion and dissipation [2]. Formally, an asymptotic
solution of a governing equation is a power series representation of the field,
in terms of the scale parameter ε

u(X, T ) =
∞∑

n=1

Un(X, T, θ)εn. (5)

The unknown quantities in equation (5), the phase or travel time θ(X, T )
and the amplitude corrections Un(X, T, θ), are found by substituting the series
into the governing differential equation and examining terms of various orders
in ε. The low-order components in ε are of special interest because they dom-
inate for a relatively sharp front i.e. for ε = l/L � 1.

3 Application of the Frequency Domain Approach
to Transient Head Observations

Using the frequency domain approach I derive a trajectory-based solution for
transient head [56]. This solution was used to invert data from two interfer-
ence tests and image the conductivity distribution associated with a vertical
fracture [20, 56].

3.1 The Equation Governing Drawdown

In an inhomogeneous medium the equation describing the space x and time t
evolution of head h(x, t) is
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K(x)∇2h(x, t) + ∇K(x) · ∇h(x, t) = S(x)
∂h(x, t)

∂t
(6)

where K(x) denotes the hydraulic conductivity and S(x) denotes the specific
storage [3, 13] which has units of inverse length. In the frequency domain,
after applying the Fourier transform to equation (6), one has

∇2H(x, ω) + Λ(x) · ∇H(x, ω) − iωκ(x)H(x, ω) = 0 (7)

where Λ is the gradient of the logarithm of conductivity,

Λ(x) = ∇ ln K(x), (8)

which vanishes for constant K(x), and

κ(x) =
S(x)
K(x)

(9)

is the inverse of the diffusivity. For large values of ω the head variation will be
dominated by κ. Conversely, for small values of ω (low-frequency) the head
variation is sensitive to the gradient of the logarithm of conductivity and
insensitive to the storage.

3.2 Asymptotic Solutions for Head

As noted above, an asymptotic solution to equation (7) is a power series in
inverse powers of ω, a specific case of equation (2),

H(x, ω) = e−
√−iωσ(x)

∑
n=0

∞ An(x)
(
√−iω)n

(10)

for r(x) = 0, α = 1/2, λn = n/2, Un(x) = An(x)
√−i

−n
, and s(x) =

√−iσ(x).
This form may be deduced on physical grounds, by considering a large argu-
ment expansion of the solution to the diffusion equation for a homogeneous
medium, a modified Bessel function of zeroth order [58].

In order to obtain explicit expressions for σ(x) and An(x), the sum (10) is
substituted into equation (7). The operators in equation (7) may be applied
term by term to the series. The subsitution of the expansion (10) into equation
(7) produces an expression containing an infinite number of terms. Each term
will contain

√−iω to some power and I may consider the sets of terms for
any given order. However, when ω is large, the first term in the series

H(x, ω) = A0(x)e−
√−iωσ(x) (11)

or its time-domain equivalent, obtained by inverse Fourier transforming
equation (11),

h(x, t) = A0(x)
σ(x)

2
√

πt3
e−σ2(x)/4t, (12)
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[56, 58], will accurately represent the solution to equation (7). I find that
the functions σ(x) and A0(x) are determined by the terms of order (

√−iω)2

and
√−iω respectively. For this reason, I consider terms of each order in the

sub-sections that follow.

3.3 The Eikonal Equation, Trajectories, and the Arrival Time
of the Maximum Drawdown

If I consider terms of highest order in
√−iω, those of order (

√−iω)2, I arrive
at a scalar, nonlinear, partial differential equation for the phase σ(x)

∇σ(x) · ∇σ(x) − κ(x) = 0. (13)

Equation (13), known as the eikonal equation, governs many types of prop-
agation processes [26, 28] and there are efficient numerical methods for its
solutions [41]. The eikonal equation relates the phase function σ(x) to the
flow properties S(x) and K(x), as contained in κ(x) [equation (9)].

I may solve equation (13) directly, using the method of characteristics
[8]. In the method of characteristics, solutions are developed along particu-
lar trajectories, the characteristic curves, which are denoted by X(l), where
l is a parameter signifying position along the curve. The equations for the
characteristic curves are a set of four ordinary differential equations

dX
dl

= p (14)

dσ

dl
=

√
κ (15)

where p = ∇σ [8]. For a coordinate system with one axis oriented along p I
may write (14) as

dr

dl
= −p (16)

where p = |p| and r denotes the distance along the axis aligned with p. From
equation (15), I can write the phase function as an integral

σ(x) = −
∫

Σ(x)

√
κdl (17)

where Σ(x) is the trajectory from the injection well to the observation point x.
The trajectory is found by solving the ray-equations (14) using a numerical
technique. The method for determining the trajectory X(l) from a source
point to a given observation point is known as the shooting method for a
two-point boundary value problem [37].

A physical interpretation of σ(x) is possible, starting from the asymptotic
solution h(x, t), given by equation (12). Differentiating equation (12) with
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respect to time, and setting the resulting expression to zero, gives a condition
for the vanishing of the slope. This condition is satisfied at the peak of the
pulse and occurs at the time Tpeak which is given by Tpeak = σ2/6 [56, 58].
Thus, σ =

√
6Tpeak, the function σ(x) is related to the arrival time of the peak

pressure associated with a propagating pressure pulse. It has been noted [56]
that, for a step function source, σ(x) corresponds to the peak of the derivative
of the head variation. One can use this relationship to compute the phase
function σ(x) from the output of a numerical flow simulator. Specifically, by
computing the arrival time of the peak value for each grid block one can obtain
the distribution of σ(x) over the simulation grid. In effect, one is solving the
Eikonal equation (13) using the output of a numerical simulation. From the
distribution of σ(x) it is straight-forward to find the trajectories [see equation
(14)] using a second-order Runge-Kutta technique known as Heun’s method
which is accurate yet simple to implement [55]. Such a hybrid approach is
useful when combining trajectory-based inversion techniques with numerical
simulation.

3.4 The Transport Equation for the Amplitude Variation
of Drawdown

Considering terms of order
√−iω in the asymptotic expansion (10) I find,

after making use of equation (13), the following relationship between σ(x)
and A0(x)

∇ · ∇σ(x)A0(x) + 2∇σ(x) · ∇A0(x) + Λ(x) · ∇σ(x)A0(x) = 0. (18)

In order to integrate equation (18) I introduce the variable γ such that

dγ =
ds√
κ(x)

(19)

and the unit vector l which points along ∇σ. Equation (18) may be rewritten
as an ordinary differential equation along the trajectory Σ

2
d ln(A0)

dγ
+

d ln(K)
dγ

+ ∇ · ∇σ = 0. (20)

I may integrate equation (20) along the trajectory from γ0 to γ

A0(γ) = A0(γ0)

√
K(γ0)
K(γ)

exp
(
−1

2

∫ γ

γ0

∇ · ∇σdγ

)
(21)

where A0(γ0) is the initial pressure amplitude at the source and K(γ0) is the
conductivity at the source.
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3.5 Trajectory-Based Characterization and Transient
Pressure Data

Up to this point I have addressed the forward problem in which observable
quantities, such as hydraulic head, are computed given a model of sub-surface
flow properties. Now I wish to discuss the inverse problem in which a model of
sub-surface flow properties is obtained from a set of observations. Typically,
due to factors such as non-uniqueness, non-linearity, and errors in the obser-
vations, this is a much more difficult problem [35, 44]. For example, due to the
nonlinearity of the inverse problem, repeated solution of the forward problem
is required. That is, one must either find a model which fits the observations
using a stochastic method such as simulated annealing [12] or use an iterative
optimization method such as the Levenburg-Marquardt algorithm. Iterative
optimization methods generally converge much more rapidly than stochas-
tic techniques. However, iterative updating schemes require the calculation
of model parameter sensitivities or the Jacobian matrix [5, 42, 60]. Model
parameter sensitivities relate small changes in subsurface properties to small
changes in the time-lapse measurements. More formally, if the conductivity
in the jth grid block of a reservoir model is perturbed by δKj and the cor-
responding perturbation in the ith observation is δdi, the sensitivities (Mij)
relate the perturbations

δdi =
∑

j

MijδKj . (22)

Calculating sensitivities is often a tremendous computational undertaking and
a bottleneck for most inversion algorithms. Techniques for computing sensitiv-
ities range from purely numerical perturbation methods to adjoint-state and
the sensitivity equation techniques. These techniques involve either consid-
erable computation or extensive programming. The computational burden is
often compounded by the tremendous amount of data that new measurement
techniques and geophysical surveys can provide. Trajectory-based methods
provide semi-analytic expressions for travel times and amplitudes. These ex-
pressions may be used to derive semi-analytic sensitivity estimates [52].

Arrival Time Matching

In order to conduct an iterative inversion I need to relate a perturbation in flow
properties to a perturbation in the observations, in this case a perturbation
in the arrival time. To this end, consider equation (17) and consider the effect
of a perturbation in κ(x),

δσ(x) = −
∫

Σ(x)

δ
√

κdl. (23)
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Using the definition of κ(x), equation (9), I can write

δ
√

κ = − 1
2
√

κ

[
∂κ

∂K
δK +

∂κ

∂S
δS

]
(24)

or

δ
√

κ = −1
2

[√
κ

K
δK +

√
κ

S
δS

]
. (25)

In order to simplify the discussion, only perturbations in conductivity are
considered and, after substituting the appropriate form of (25), equation (23)
reduces to

δ
√

T = −
∫

Σ

√
κ(s)

K(s)
δK(s)ds. (26)

In the general case, there will be a trade-off between storage and conductivity
which is difficult to resolve using arrival times alone. One possibility is to
consider low frequency variations in head amplitude, variations associated
with small ω. Such variations are primarily sensitive to conductivity, as is
evident in equation (7). Thus, by cycling between high and low frequency
data it may be possible to resolve spatial variations in both conductivity and
storage.

In an actual inversion of field data one usually considers the discrete equiv-
alent of equation (26) in which the Earth model is composed of a set of grid-
blocks or cells. For example, most numerical simulators utilize a discrete grid
of N cells for their computations, with each cell representing a sub-volume
of the model. For each of the cells there is an average conductivity value Kj

where j runs from 1 to N . Similarly, there will be a set of M residuals, δ
√

Ti,
in this case the square roots of the arrival times. Thus, given background val-
ues for Kj , equation (26) becomes a linear equation relating a perturbation
in conductivity to a perturbation in the ith root arrival time

δ
√

T i =
N∑

j=1

MijδKj (27)

with the coefficient matrix Mij given by

Mij = −
√

κj

Kj
δsij (28)

where sij represents the length of trajectory i in cell j and κj and Kj are the
average values of κ(x) and K(x) in cell j. The quantity that I minimize is the
sum of the squares of the misfit

||δd − MδK|| =
M∑
i=1

⎛
⎝δ

√
T i −

N∑
j=1

MijδKj

⎞
⎠

2

(29)
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where || · || denotes the L2 norm of a vector. For a set of transient head
curves I will have an associated linear system of equations which I may solve
for perturbations in conductivity. Because the system of equations is extremely
sparse, this is efficiently accomplished using the LSQR algorithm of [34]. Note
that, due to the non-linearity of the inverse problem, I must iteratively solve
the system for a series of perturbations to the initial model.

In addition to minimizing the misfit to the data I also included penalty
terms to regularize (stabilize) the inversion. Inclusion of such penalty terms is
standard practice for hydrological and geophysical inversions [35, 44]. I include
terms which penalize large parameter deviations from a prior model and mod-
els which are not smoothly varying. The underlying motivation is that, in the
absence of strong data constraints, the solution should stay close to the initial
model. Also, because of the smoothing nature of hydrologic data I do not
expect to resolve rapid spatial variations in flow properties. I have described
this particular approach elsewhere [48] and will only outline the mechanics of
the procedure here. The penalty terms most often take the form of quadratic
functions on the set of models, for example model perturbation vector norm,
the size of the perturbations from the prior model, is measured by

||δK|| =
N∑

j=1

(δKj)2 (30)

and model roughness, a measure of spatial variability, is given by

||LδK|| =
N∑

j=1

(∇δKj)2 (31)

where L is a spatial difference operator which computes the spatial gradient
of the model by differencing adjacent block values [35]. Solving the regularized
inverse problem entails finding those elements of δK which minimize the sum

||δd − MδK|| + ||δK|| + ||LδK||. (32)

The necessary equations for a minimum are an augmented linear system of
the form [48] ⎛

⎝M
I
L

⎞
⎠ δK =

⎛
⎝ δd

0
0

⎞
⎠. (33)

Amplitude Matching

The next stage of the inversion involves matching the amplitudes of the head
variations. The arrival time matching produces a starting model for this part
of the inversion. In my experience, the convergence of amplitude inversion
algorithm is more sensitive to the starting model. Furthermore, amplitude
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matching is much more computationally intensive than is the arrival time in-
version, and any reduction in the number of amplitude iterations is helpful.
Therefore, it is a real advantage to have the arrival time result as a starting
point. Due to space limitations I will not discuss amplitude matching fur-
ther except to say that the sensitivities follow from the asymptotic solution
(12) [56].

4 Application of the Method of Multiple Scales
to Tracer Transport

In this section I use the method of multiple scales to produce a trajectory-
based solution for tracer transport [52, 55]. That is, a chemical tracer is rapidly
introduced into a source well while the concentration, c(x, t), is measured in
surrounding boreholes. The governing equation is [3, 13],

ωc
∂c

∂t
= ∇ · (D∇c − Uc) (34)

where ωc is the kinematic porosity, D(x) is the dispersion tensor, and U is
the Darcy velocity which is given by

U = K · ∇h (35)

where K is the hydraulic conductivity tensor and h(x, t) is the hydraulic
head [3].

In the method of multiple scales I assume that the concentration varia-
tions corresponding to the well test are much more rapid, both in space and
time, than are variations in the background concentration and flow properties.
Typically, the background concentration of tracer is assumed to be negligible.
If I denote the scale associated with the background concentration by L and
the scale of variation in the concentration associated with the tracer test by l,
I am assuming that L � l. I represent the ratio l/L by the dimensionless
parameter ε and note that 0 < ε � 1. I may define slow variables, in both
space and time, in terms of the parameter ε

Xi = ε2xi (36)

T = ε2t.

The relationship between the slow and fast variables involves the square of ε.
Use of these particular time and space scales is necessary if one is to balance
the effects of advection or propagation against the effects of dispersion and
diffusion [2]. This generalization in scaling allows one to apply asymptotic
methods to dispersive and diffusive phenomena [16].
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Many of the ideas developed in the method of multiple scales [2] are re-
lated to the propagation of a disturbance. Indeed, locally I shall treat the
concentration variation much like a propagating wave-front. As such, I shall
consider such quantities as amplitude, wave number, frequency, and phase of
the front. Particularly important quantities are the amplitude and phase of
the propagating concentration variation. The local phase θ is a fast or rapidly
varying quantity which I define in terms of a slowly varying quantity, the
phase function ϕ(X, T )

θ =
ϕ(X, T )

ε
=

ϕ(ε2x, ε2t)
ε

. (37)

Formally, an asymptotic solution of equation (34) is a power series expan-
sion in terms of the scale parameter ε

c(X, T ) =
∞∑

n=1

cn(X, T, θ)εn. (38)

The unknown quantities in equation (38), the functions θ(X, T ) and cn(X, T, θ),
are determined by substituting the series into the governing equation for
concentration (34) and considering terms of various orders in ε. I shall be
particularly interested in the low-order components in ε, which dominate for
a rapidly varying concentration. Before substituting the series (38) into equa-
tion (34) I note that the partial derivative operators in (34) may be represented
in terms of derivatives with respect to the slow variables X and T and the
phase θ

∂

∂xl
= ε2

∂

∂X l
+ ε

∂ϕ

∂X l

∂

∂θ
(39)

∂

∂t
= ε2

∂

∂T
+ ε

∂ϕ

∂T

∂

∂θ
.

Hence, the temporal derivative in (34) takes the form

∂c

∂t
= ε2

∂c

∂T
+ ε

∂ϕ

∂T

∂c

∂θ
. (40)

Similar expressions are obtained for the spatial derivatives contained in the
gradient operator as applied to c(X, T ), U and D

∂c

∂xi
= ε2

∂c

∂Xi
+ ε

∂ϕ

∂Xi

∂c

∂θ
(41)

∂U
∂xi

= ε2
∂U
∂Xi

(42)

and
∂D
∂xi

= ε2
∂D
∂Xi

(43)
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respectively. Higher-order spatial derivatives are obtained by successive appli-
cations of (39). If I write (34) in terms of derivatives with respect to Xi, T ,
and θ I have

ωcε
2 ∂c

∂T
+ ωcε

∂ϕ

∂T

∂c

∂θ
= (44)

ε4∇ · (D∇c) + ε4D∇ · ∇c − ε4∇ · Uc

+ε3∇ · (D∇ϕ
∂c

∂θ
) + ε3∇ϕ · (D∇∂c

∂θ
)

−ε2U · ∇c + ε2∇ϕ · D∇ϕ
∂2c

∂θ2

−ε∇ϕ · U∂c

∂θ
.

Terms of Order ε: An Equation for the Phase

Substituting the asymptotic series (38) into equation (44) I find, to first order
in ε,

ωc
∂ϕ

∂T
+ ∇ϕ · U = 0. (45)

I may solve this equation directly, using the method of characteristics [8]. In
the method of characteristics, solutions are developed along particular trajec-
tories, the characteristic curves. I denote the characteristic curves by X(l),
where l is a parameter signifying position along the curve. The equations
for the characteristic curves are a set of ordinary differential equations, the
bi-characteristic equations,

dX
dl

= U (46)

dσ

dl
= ωc (47)

[8]. For a coordinate system with one axis oriented along U I can write (46) as

dr

dl
= U (48)

where U = |U| and r denotes the distance along the axis aligned with U.
Combining equations (47) and (48), I may write the ‘propagation time’ σ as
an integral

σ =
∫

Σ

ωc

U
dr (49)

where Σ is the trajectory from the injection well to the observation well. Note
that this expression for ‘propagation time’ is similar to that of [52, 55]. If I
incorporate Darcy’s law U = K ·∇h, as given by equation (35), the expression
for σ, equation (49), becomes

σ =
∫

Σ

ωc

|K · ∇h|dr. (50)
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Note that the integral depends on time through the time dependence of the
head gradient. Also, for a general conductivity tensor K, the trajectory is
not necessarily aligned with the head gradient. Rather, the trajectory follows
the vector projection of the head gradient onto the conductivity tensor. For
most tracer tests the head field has reached steady state or is maintained near
steady state so that I can neglect the time variation. Equation (50) describes
the evolution of a hypothetical front or discontinuity in tracer concentration
which would be realized if no dispersion or diffusion occurred [18]. It is about
this front that the tracer is dispersed and diffused.

Terms of Order ε2: An Equation for the Amplitude

If I consider terms of order ε2 in equation (44) I obtain the following expression

ωc
∂c1

∂T
+ ωc

∂ϕ

∂T

∂c2

∂θ
= −U · ∇c1 + ∇ϕ · D∇ϕ

∂2c1

∂θ2
−∇ϕ · U∂c2

∂θ
(51)

containing amplitude coefficients c1 and c2 of the expansion (38). However,
because the phase satisfies equation (45), terms containing c2 drop out and I
are left with

ωc
∂c1

∂T
+ U · ∇c1 −∇σ · D∇σ

∂2c1

∂θ2
= 0 (52)

an equation for the amplitude coefficient c1(X, T, θ), accurate to order ε2.
I can consider the coefficient ∇σ ·D∇σ in equation (52) to be a quadratic

form. By a theorem of linear algebra [32], this quadratic form is equivalent to

Q(X) = (ωd + αlU)y1
2 + (ωd + αtU)y2

2 + (ωd + αtU)y3
2 (53)

where
y = Ot∇σ (54)

and O is an orthogonal matrix [55]. I may write (52) in terms of Q(X)

ωc
∂c1

∂T
+ U · ∇c1 − Q(X)

∂2c1

∂θ2
= 0. (55)

Writing (55) in characteristic coordinates, given by (46) and (49), I arrive at

∂c1

∂σ
− Q(r)

∂2c1

∂θ2
= 0 (56)

where r is the position along the trajectory. I define the integral [18]

τ = −
∫

Σ

Q(r)dσ (57)
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or, because dσ = ωc/Udr

τ = −
∫

Σ

ωcQ(r)
U

dr. (58)

Writing equation (56) in terms of τ produces the heat equation

∂c1

∂τ
+

∂2c1

∂θ2
= 0. (59)

For an impulsive point source of unit amplitude (59) has the solution [6]

c(X, T ) =
1√
4πτ

exp(− (T − σ)2

4τ
). (60)

For a general time-varying injection, I convolve equation (60) with the par-
ticular source-time function.

Solution (60) represents the contribution from a single trajectory Σ. The
total tracer response is obtained by summing over all trajectorys from the
injection well to the observation well. That is, equation (60) signifies the con-
tribution from a single trajectory Σ between the boreholes. For the total
response at an observation well I must integrate the responses over all con-
tributing trajectories. If I parameterize the trajectories by a variable λ the
total response is given by the integral

c(X, T ) =
∫

1√
4πτλ

exp
[
− (T − σλ)2

4τλ

]
dλ. (61)

The variable λ may represent the angle at which the trajectory leaves the
observation well. Furthermore, it may be a vector variable in three-dimensions,
signifying two angles, or an angle and position along the wellbore, necessary
to specify a trajectory uniquely.

5 Application of the Method of Multiple Scales
to Multiphase Flow

The method of multiple scales is used to derive a solution for two-phase flow
in a heterogeneous subsurface [49, 53].

5.1 Governing Equations for Two-Phase Flow

My starting point is the set of simultaneous partial differential equations de-
scribing the flow of an aqueous (wetting) phase and a non-aqueous (non-
wetting) phase [3, 13, 36]
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∇ ·
[
ρwK(x)krw

µw
∇ (Pw(x, t) − ρwgz)

]
= φ(x)

∂(ρwSw)
∂t

(62)

∇ ·
[
ρnK(x)krn

µn
∇ (Pn(x, t) − ρngz)

]
= φ(x)

∂(ρnSn)
∂t

where Sw and Sn denote the saturations of the aqueous and non-aqueous
phases respectively. The relative permeabilities of the aqueous and non-
aqueous phases, which are functions of the saturations, are represented by
krw and krn while the hydraulic conductivity is given by K(x). The respec-
tive densities are ρw and ρn, the gravitational constant is g and the porosity
is φ(x). The pressure associated with the aqueous phase is Pw(x, t) while the
pressure for the non-aqueous phase is Pn(x, t), the respective viscosities are µw

and µn. The flow equations are coupled because the saturations for the two
phases must sum to unity

Sw + Sn = 1. (63)

Making use of the fact that Sn = 1 − Sw one may derive a single equation
describing the evolution of the aqueous phase saturation, which I shall denote
by S(x, t),

∇ · [K(x)F1(S) {Γz −∇Pc(S)} − F2(S)q] = φ(x)
∂S

∂t
(64)

where z is the unit vector in the direction of the gravity field, q denotes total
velocity, the sum of the velocities of the aqueous (qw) and non-aqueous (qn)
phases:

q = qn + qw, (65)

and F1(S) and F2(S) are specified functions of saturation. In particular, F1(S)
is given by

F1(S) =
1
µn

krn(S)krw(S)
krn(S) + µdkrw(S)

. (66)

Similarly, the function F2(S) is given by

F2(S) =
krw(S)

krn(S) + µdkrw(S)
(67)

and the capillary pressure is defined as

Pc(S) = Pn(S) − Pw(S).

The quantity µd denotes the ratio of viscosities µw/µn and Γ is the difference

Γ = gρw − gρn. (68)

In general, equation (64) must be solved numerically, using a method such as
integral finite differences [31, 38]. Here I derive an approximate asymptotic
solution which is valid when the background saturation and flow properties
are smoothly varying in a sense made more precise below. In this derivation
I will neglect capillary pressure effects. A full treatment, including capillary
pressure, was given in an earlier paper [49].
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5.2 An Asymptotic Solution for Two-Phase Flow

There are two assumptions invoked in the derivation of an asymptotic solution
for two-phase flow. First, it is assumed that the front or boundary separating
the injected phase from existing fluid in the aquifer is the result of a balance
between dispersive and diffusive effects and the non-linearity of two-phase
propagation. Secondly, it is assumed that the background saturation and flow
properties vary smoothly between known boundaries. That is, there may be
discontinuities, such as layering or faults, which are modeled as boundary con-
ditions, and smoothly varying properties between these interfaces. I represent
the time and space scale of the front saturation variation by l. Similarly, the
background variations are over a time and space scale L, where L � l. I repre-
sent the ratio l/L by a dimensionless parameter ε and require that 0 < ε � 1.
I may define slow variables, in both space and time, in terms of the ratio ε:

X = εαx (69)

T = εαt

where α is a rational number.
The quantity α is chosen such that the non-linearity balances the disper-

sion and dissipation [2, 43]. The formula determining α, which is based upon
dimensional arguments [2], is

α =
1

p − 1
+ 1, (70)

where p is the highest order of the derivatives in the governing equations
[2]. The argument is that, for a small perturbation, the most significant non-
linear term is of order ε2/L, assuming non-degeneracy. The effect of dispersion
and dissipation is of order ε/Lp. For dispersion and dissipation to balance non-
linearity one must have L ∼ ε−(α−1). The extra ε enters because, in addition to
the balance between non-linearity and dispersion and dissipation, I would like
the front properties to vary smoothly as a function of distance. For equation
(64) p equals 2 and the corresponding value of α is 2. I should note that the
exact form of the scaling is not unique. Other scalings are valid and will lead
to somewhat different formulations. See Korsunsky [27] for an example of two
possible choices of scaling in modeling ion acoustic waves.

Much of the formalism developed in the asymptotic approach [2], is based
upon concepts associated with a propagating front. For example, I shall con-
sider properties such as the amplitude and travel time of the moving front
[59]. The local travel time θ of the front is a rapidly-varying quantity which
is defined in terms of a smoothly-varying function, ϕ(X, T )

θ =
ϕ(X, T )

ε
=

ϕ(ε2x, ε2t)
ε

. (71)

Formally, an asymptotic solution of equation (64) is a power series repre-
sentation of the saturation distribution, in terms of the scale parameter ε
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S(X, T ) = s0(X, T ) +
∞∑

n=1

sn(X, T, θ)εn (72)

where s0(X, T ) is the background saturation distribution, which is assumed to
vary smoothly in both space and time. The unknown quantities in equation
(72), the functions θ(X, T ) and sn(X, T, θ), are found by substituting the
series into the governing equation for saturation (64) and examining terms of
various orders in ε. The low-order components in ε are of special interest for
they dominate for a relatively sharp saturation front e.g. for ε = l/L � 1.

Substituting the power series expansions into equation (64) and retaining
terms up to order ε2 results in the expression

ε∇ ·
[
K(x)

{
F1(s0) + ε

∂F1

∂S
s1

}
Γz
]
+ K(x)Γ

{
ε
∂F1

∂S

∂s1

∂θ
+ ε2

∂F1

∂S

∂s2

∂θ

}
∇ϕ · z

−εK(x)∇ϕ · ∂

∂θ

{
F1(s0) + ε

∂F1

∂S
s1

}

−ε∇ ·
[{

F2(s0) + ε
∂F2

∂S
s1

}{
q(s0) + ε

∂q
∂S

s1

}]

−∇ϕ · ∂

∂θ

[{
F2(s0) + ε

∂F2

∂S
s1 + ε2

∂F2

∂S
s2

}

·
{
q(s0) + ε

∂q
∂S

s1 + ε2
∂q
∂S

s2

}]

= εφ(x)
[
∂s0

∂T
+ ε

∂s1

∂T

]
+ φ(x)

∂ϕ

∂T

[
ε
∂s1

∂θ
+ ε2

∂s2

∂θ

]
. (73)

5.3 Terms of Order ε: An Equation for the Travel Time

Consideration of terms of order ε produces a differential equation for the travel
time, ϕ, [49]

∇ϕ · U − φ(x)
∂ϕ

∂T
= 0, (74)

where U is defined as follows

U = −K(x)
∂F1

∂S
Γz +

∂F2

∂S
q + F2

∂q
∂S

(75)

and the derivatives are evaluated with respect to the background saturation s0,
I may solve equation (74) directly, using the method of characteristics [8]. In
the method of characteristics, solutions are developed along particular tra-
jectories, the characteristic curves, which are denoted by X(l), where l is a
parameter signifying position along the curve. The equations for the charac-
teristic curves are a set of four ordinary differential equations
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dX
dl

= −U

dT

dl
= φ (76)

[8]. For a coordinate system with one axis oriented along U I may write (76) as

dr

dl
= −U (77)

where U = |U| and r denotes the distance along the axis aligned with U.
Combining equations (76) and (77), I can write the travel time as an integral

T = −
∫

Σ

φ

U
dr (78)

where Σ is the trajectory from the injection well to the observation well.
Note that, in many instances, one may associate the trajectories with

streamlines used to model tracer transport and multi-phase flow [9, 10, 25].
In particular, when the vector U, defined in equation (75), is primarily depen-
dent on q the trajectories coincide with streamlines. However, if q depends
significantly on saturation then the trajectories will deviate from streamlines.
Similarly, if gravitational forces are important, the path X(l) will deviate from
a streamline.

5.4 Terms of Order ε2: An Equation for the Saturation Amplitude

Considering terms of order ε2 in equation (73), leads to a nonlinear evolution
equation for the saturation amplitude [49]

Ω(s0)s1
∂s1

∂θ
+ ∇ · (Us1) − φ(x)

∂s1

∂T
= 0 (79)

where

Ω(s0) = −2∇ϕ · ∂q
∂S

∂F2

∂S
.

I rewrite equation (79) in characteristic coordinates defined by equations (76)

Ω(s0)s1
∂s1

∂θ
+

∂s1

∂l
+ ∇ · Us1 = 0 (80)

where ∇·U is a damping term due to gravitational forces and spatial variations
in relative permeability parameters. Next, I define the variable

τ =
∫

Ω(s0)dl (81)
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and rewrite equation (80) in terms of τ

s1
∂s1

∂θ
+

∂s1

∂τ
+ Φ(τ)s1 = 0 (82)

where I have defined
Φ(τ) =

∇ · U
Ω(s0)

. (83)

Equation (82) is a generalization of an equation describing the evolution of
a nonlinear wave [59]. Because equation (82) is a scalar differential equa-
tion which only depends on a single space-like variable, it may be solved
efficiently using a numerical scheme such as a Total Variation Diminishing
(TVD) algorithm [11].

6 Incorporating Geophysical Data

The trajectory based approach may be coupled with ray-based methods for
inverting geophysical data. The efficiency of the approach is advantageous in
this situation because the set of geophysical observations can be quite large.

6.1 Multi-phase Flow and Time-Lapse Seismic Data

A primary goal of almost every environmental and energy related application
is to understand the distribution of flow properties within the subsurface.
Important examples of such activities are: aquifer management, oil and gas
production, geothermal energy development, and CO2 sequestration. Unfor-
tunately, our ability to image flow properties in the subsurface remains rather
crude. Currently, flow properties are primarily estimated from borehole ob-
servations such as well pressures, tracer breakthroughs, and multiphase flow
data. These “point” measurements are of extremely limited spatial extent, be-
ing restricted to small intervals in instrumented boreholes. Geophysical obser-
vations provide an extensive complimentary source of information. However,
static geophysical data are indirectly related to flow properties in a rather
complex and incompletely understood fashion. Time-lapse geophysical data,
two or more geophysical surveys gathered at different times, are particularly
sensitive to changes in the state of fluids in the subsurface [14, 33]. For exam-
ple, in favorable situations it is possible to distinguish saturation and pressure
changes from time-lapse seismic data [21, 29, 45].

Efficient Sensitivity Computation

Time-lapse seismic data can be used to infer flow properties in the sub-surface.
Here I use the trajectory-based method for the modeling of multiphase flow
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outlined above [49, 55] to devise a highly efficient inversion scheme of time-
lapse data [54]. For time-lapse data one considers the state of the reservoir
at two distinct times T0 and T1. Quantities associated with each time are
denoted by super-scripts. For illustrative purposes, consider the case in which
seismic amplitude changes are primarily due to variations in saturation in
both time and space. I shall relate an update in the permeability model, δK,
to perturbations in seismic amplitude at times T0 and T1, denoted by δA0(Sij)
and δA1(Sij), respectively, where Sij denotes a vector of saturations for the
ij-th column of the reservoir, the vector index indicates the layer within the
column of grid blocks. Thus, the time-lapse difference takes the form of a
single summation over the perturbations in saturation within each of the k
cells of the ij-th column

δA1(Sij) − δA0(Sij) =
∑

k

(
∂A1

∂Sijk
δS1

ijk − ∂A0

∂Sijk
δS0

ijk

)
. (84)

The partial derivatives in (84) are computed by numerical differencing, hence
any waveform computation method may be used. A rock physics model, such
as Gassmann’s equations [17], connects the changes in seismic moduli to
changes in fluid saturations. Figure 1 displays the sensitivities associated with
a reflection from the top of a reservoir model. Note that peak sensitivities are
associated with saturation changes nearest to the interface, the uppermost
portion of the reservoir.

Fig. 1. Sensitivities relating a perturbation in saturation at a particular depth to a
perturbation in the amplitude of a seismic wave reflected off the top of the reservoir.
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The novelty of this approach involves the semi-analytic computation of
δS1

ijk which follows from the trajectory-based modeling of multiphase flow
[48, 53] and a solution of the amplitude equation (82),

δS1
ijk =

1
T 1

S′(T 1)
∫
Xijk

δΥ (x)dr (85)

where Xijk denotes the trajectory from the ijk-th cell to a point on the initial
position of the water front and the prime denotes the derivative with respect
to time. The sensitivities are trajectory-based, computed as line integrals over
the paths X1

ijk and X0
ijk in (85). The quantity Υ (r, t) is of the form

Υ (r, t) =
φ

|U(r, t)| , (86)

the inverse of the water front velocity, as given by equation (78). Equation
(86) provides a semi-analytic relationship between the water arrival time and
permeability K, porosity φ, fluid mobility κ, and the pressure field P in the
subsurface, because the water front velocity is given by [53]

|U(r, t)| = κK(r)|∇P (r, t)|. (87)

Equations (84), (85), (86), and (87) relate perturbations in time-lapse seismic
amplitudes to perturbations in reservoir flow properties. For a total mobility
(κ) which does not vary significantly, the perturbation of Υ (r, t) is of the form

δΥ (r, t) =
∂Υ

∂φ
δφ(r) +

∂Υ

∂K
δK(r) +

∂Υ

∂|∇P |δ|∇P (r, t)|. (88)

The partial derivatives may be calculated directly from the analytic form
for Υ (r, t) given by (86) and (87). It is clear from equations (86) and (87)
that porosity, φ(r), and permeability K(r), can trade-off. That is, I can only
resolve their ratio unambiguously. In order to isolate a single property, such as
permeability, we must make additional assumptions. This relationship, which
is most accurate for advection dominated flow, has been generalized to account
for the influence of capillary forces [49].

Iterative Inversion of Time-Lapse Seismic Amplitudes

I adopt an iterative linearized inverse method to match observed time-lapse
amplitude changes. That is, I start with an initial reservoir model and itera-
tively update the permeabilities in order to better fit the data. At each step
I solve a penalized least squares problem for the updates to the permeability
model [35]. The sensitivities are crucial in this iterative algorithm, for they
indicate the manner in which I should modify the permeabilities in order to
reduce the misfit. As noted above, the sensitivities are obtained by combin-
ing equations (85), (86), (87), and (88). The result is a linearized expression
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relating perturbations in time-lapse amplitude changes to perturbations in
reservoir flow properties.

Because of the tradeoff between porosity and permeability, evident in (88),
I cannot resolve both parameters unambiguously. Thus, I must either express
one parameter in terms of the other, e.g. permeability as a function of porosity
or, assume that the variation of one parameter is dominating the flow. For
example, permeability can vary by many orders of magnitude and can control
flow within a reservoir. The latter approach is adopted for all that follows.
That is, in the application below, I shall only consider variations in the inverse
of permeability, K−1. Using K−1 normalizes the sensitivities, eliminating the
K−2 which appears when the partial derivative of Υ (r, t) with respect to
K is calculated [see equation (88)]. This is similar to the use of ‘slowness’
rather than velocity in seismic travel time tomography. Given a collection
of amplitude changes, denoted by the vector δA1−0, by combining equations
(84), (85), (86), (87) and (88) I arrive at a system of linear equations relating
perturbations in time-lapse amplitude changes to perturbations in inverse
permeability

δA1−0 = Mδk−1 (89)

where δk−1 denotes a vector containing inverse permeabilities as elements,
and M is a matrix of sensitivity coefficients. I solve equation (89) using a
least-squares algorithm that is appropriate for sparse matrices [34].

The inverse problem is regularized through the addition of roughness and
model norm penalty terms. Such regularization is important because, in most
cases, the inverse problem is likely to be under-determined. Typically, there
are many more unknown reservoir parameters than there are data. This is par-
ticularly true when the full three-dimensional inverse problem is considered.
The trajectory-based sensitivities indicate that I can adjust the permeability
anywhere along the trajectory in order to fit the observations. The regulariza-
tion is designed to bias the updates towards smoothly varying permeability
variations. That is, because I cannot resolve small scale heterogeneity, I chose
to distribute the permeability updates smoothly over the entire trajectory if
possible. The norm penalty term biases the result in the direction of the prior
model. The roughness and norm penalty terms are quadratic forms, defined
over the model space [35]. The exact penalized misfit function is of the form

Π(k−1) = ||δA1−0 − Mk−1|| + Wn||k−1 − k−1
0|| + Wr||∇k−1|| (90)

where || · || signifies the L2 vector norm, and Wn and Wr are the norm and
roughness penalty weights, respectively [35]. The weights determine the im-
portance of satisfying the regularization relative to fitting the observations.

Application to Time-Lapse Seismic Amplitudes
from Bay Marchand, The Gulf of Mexico

The methodology has been applied to time-lapse seismic data from the Bay
Marchand field in the Gulf of Mexico (Figure 2). Starting from the initial
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Fig. 2. Time-lapse fractional amplitude changes at Bay Marchand. The fractional
amplitude change is defined by the ratio of amplitude change to the initial amplitude:
δA1−0/A0.

permeability model shown I iteratively updated the permeabilities in order
to better fit the amplitude changes. The squared misfit is reduced by 81% in
twelve iterations [54]. The final model, shown in Figure 3, contains generally
lower permeabilities in the central region of the reservoir. The lower perme-
abilities are required to slow down the arrival of the water in order to produce
the largest changes within the time interval between the two seismic surveys.

6.2 Transient Head and Tilt Data

In this sub-section I discuss a method for inferring flow properties from bore-
hole head and surface deformation data. In essence, the methodology is a
blending of techniques presented in Vasco et al. [56] and [57], combining some
of the advantages of each method. First, the surface deformation data are
used, along with downhole pressure measurements, to infer head variations
within the aquifer as a function of time. Second, the temporal variations in
head throughout the aquifer are used to define a head ‘arrival time’. As shown
in Vasco et al. [56] such arrival times may be related directly to flow properties.
Using this approach, I retain the quasi-linearity, efficiency, and robustness of
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Fig. 3. Permeability distribution resulting from an inversion of the time-lapse am-
plitude changes.

head arrival time inversion. In developing a coupled surface deformation and
borehole pressure inversion for flow properties I can utilize surface observa-
tions. Such observations are generally much less expensive and less intrusive
than are borehole measurements.

Estimation of Hydraulic Conductivity from Borehole Pressure
and Surface Deformation Data

Estimation of volume change The first step is to use the surface defor-
mation data to infer variations in hydraulic head or pressure. This aspect
has already been discussed thoroughly [57]. Essentially, this step requires the
solution of a set of linear equations. This is a linear inverse problem for a
discrete representation of reservoir volume change. Using linear poroelasticity
one may relate changes in pressure or hydraulic head to fluid volume changes
in a permeable region of the Earth. Thus, I may conduct a coupled inversion
of pressure or head measurements and surface deformation observations [57].
I will only state the final result, a system of linear equations relating volume
changes within each grid block of a reservoir model δvf (t) to pressure or head
measurements p(t) and surface deformation observations u(t)[

u(t)
p(t)

]
=
[
Υ
Π

]
δvf (t) (91)
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where the coefficients of the matrices Υ and Π are given elsewhere [50]. The
solution of the system of equations (91) is typically unstable with respect to
perturbations, numerical or otherwise, and some form of regularization is re-
quired. Thus, the system is solved using a regularized least squares algorithm,
as discussed in Vasco et al. [56, 57].

Mapping Estimates of Volume Change into Changes in Head
and Overburden Stress

Once estimates of the volume change within the reservoir are available, by
solving the system of equations (91), I map them into fluid pressure and
overburden stress changes. The mapping is described in more detail in Vasco
et al. [57] and is based on the work of Segall [40]. The fluid pressure is given
by

p(x, t) = Cνδvf (x, t) − B2

3ρ0

∫
V

Gii(x,y)δvf (y, t)dV (92)

where

Cν =
B2

ρ0

[
µ

2
3

(1 + νd)(1 + νu)
(νu − νd)

− 3Ku

]
, (93)

νu and νd are the undrained and drained Poisson’s ratios [39]. The pore pres-
sure estimates are converted to head using the definition

h =
p

ρg
+ z. (94)

Note that all of the mappings are linear, as is the inverse problem for volume
change, equation (91).

Determination of Flow Properties from Head Estimates

Given estimates of head and overburden pressure changes, I may now solve
for flow properties within the reservoir. The procedure for estimating flow
properties is based upon an asymptotic solution of the equation for head,
equation (12), as described in Vasco et al. [56] and Vasco and Finsterle [55].
The asymptotic solution shares many properties with ray methods which are
used in a wide range of imaging algorithms. In particular, the solution is
defined on a trajectory, or curve X(s), through the model, similar to an optical
ray. The scalar variable s is a measure of distance along the trajectory.

Due to the coupling between pressure changes within the overburden and
head changes within the reservoir, the results of Vasco et al. [56] must be
modified somewhat. The additional complication is due to the time derivative
of overburden pressure as a source term [50]. Because of this additional term,
the source is no longer a step-function, restricted to the wellbore, as was
assumed in Vasco et al. [56]. Rather, the bulk pressure term acts as a spatially-
distributed source with a time-varying magnitude. In an earlier paper [50] I
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show how the head variations are modified, or corrected, to account for time-
varying stresses in the overburden. One can then treat the corrected head
variation using techniques from Vasco et al. [56]. Typically, the corrections
will be small but they may be observable in particular circumstances.

For a step-function source, the corrected asymptotic solution for the time
derivative of head retains the form

ḣc(X, t) = Q0A0(X)
σ(X)
2
√

πt3
e−σ2(X)/4t (95)

[50] where the dot denotes differentiation with respect to time, A0 is the
amplitude associated with the trajectory, Q0 is the flow rate, and σ is the
‘phase’, which is defined as

σ =
√

6T (X) =
∫
X

√
κ(s)ds (96)

where T (X) is the travel time from the pumping well to the observation point,
and κ(s) is the ratio

κ(s) =
S

K
(97)

where S is the specific storage in equation (6) and K is the hydraulic conduc-
tivity. It was shown in Vasco et al. [56] and Vasco and Finsterle [55], following
Virieux et al. [58] that, for a constant rate pump test, the quantity T (X) is the
time at which the derivative of the head, ḣc, is a maximum. As noted above
and discussed in [55], it is possible to compute T (X), and correspondingly
σ(X), using a numerical simulator.

The arrival times of the drawdown are matched using an iterative, lin-
earized least squares approach [55, 56] which was introducted above [equa-
tions (23)-(33)]. Thus, one can derive a linearized relationship between the
perturbed arrival time and the perturbation in conductivity

δ
√

T = −
∫

Σ

√
κ(s)

K(s)
δK(s)ds. (98)

The path of integration is the trajectory Σ, extending from the pumping well
to the observation point. This curve is computed using the flow properties of
the initial model, K0(X). The integral in (98) is discretized by considering the
path length in each grid block and writing (98) as a sum over the segments
in each cell. The result is a linear constraint, relating the weighted sum of
conductivity perturbations in the grid blocks traversed by the cells to the
total travel time along the path.

There will be a set of arrival times, one for each of the grid blocks in the
reservoir model. The collection of linear constraints provided by the arrival
times may be written in matrix-vector form as

δT = MδK (99)
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where M is the matrix with coefficients determined by the discretization of
the integral (98), δK is a vector of conductivity updates for each grid block,
and δT is the vector of arrival time observations. The linear system (99)
is generally sparse. The non-zero coefficients of G correspond to the grid
blocks which are intersected by the trajectories. As discussed above, equation
(99) is augmented with additional equations corresponding to penalty terms
used to regularize the inverse problem. The conductivity updates δK are then
added to the background model K0. Then a numerical simulator is used to
compute an updated drawdown history in the new model. The head values
are corrected, as noted above, and discussed in [50], and new trajectories and
residuals are calculated. A new set of equations (99) is constructed and solved.
The entire process is repeated until the misfit converges to an acceptable value.

A Pump Test at the Raymond Field Site

The Raymond Quarry test site, in the foothills of the Sierra Nevada, served as
a natural laboratory for evaluating geophysical and hydrological techniques for
mapping fractures [23]. Because the major pathway for flow in many rock types
is through fractures, it is important to develop techniques for characterizing
flow and transport in fractures. Even if the geometry of a fracture is known,
say from intersections with various boreholes, the conductivity within the
fracture plane may vary by orders of magnitude. Therefore, it is essential that
one develop techniques to estimate fracture flow properties.

An extended production test, of approximately 2 hours duration, was con-
ducted on the morning of the 15th of August, 1995. Water was pumped from
well 00, the well located at the apex of an inverted V pattern of wells, at
a rate of 0.4 L/s. Vasco et al. [57] analyzed the tilt data that resulted from
that test. In particular, Vasco et al. [57] conducted a series of coupled inver-
sions of the head and tilt data in order to estimate the distribution of volume
change within the upper fracture zone as a function of time. The fracture
zone was sub-divided into a 15 by 15 grid of cells, each of which was allowed
to undergo a distinct fractional volume change. A regularized, least squares
inversion of the tilt and head data provided estimates of the 225 unknown
fractional volume changes [57]. Figure 4 shows the results of those coupled
inversions of head and tilt, for the first six minutes of pumping. These esti-
mates are the starting point for the current analysis. Specifically, I map the
fractional volume changes into fluid and overburden pressure variations using
equation (92). Next, I map the pressure changes into head and estimate the
time derivatives using a spline interpolation algorithm. The head derivatives
are corrected for the effects of overburden pressure changes, as described in
[50]. The corrections for overburden pressure changes proved to be small. The
resulting head slope variations for 15 grid blocks in the fracture zone model
are shown in Figure 5. Note the variation in amplitude and the arrival time
of the peak slope for each grid block. The estimated arrival times for all the
grid blocks are shown in Figure 6. I do not compute an arrival time esti-
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Fig. 4. Volume change within the fracture zone after the start of pumping

mate if the head variation is less than 10% of the peak variation. In Figure 6,
the arrival times of those cells are set to a maximum value of five minutes for
the purposes of plotting, but the arrival times are not used in the inversion
for conductivity. In Figure 6 one observes the rapid propagation of drawdown
to the south-southeast of the pumping well.

The arrival time estimates for the active grid blocks form the data I use
to infer conductivity variations within the fracture zone. The relationship be-
tween arrival time variations and conductivity updates to the fracture zone
model is given by equation (98). In all there were 50 arrival times, corre-
sponding to the active cells in Figure 6. The 50 equations defining the data
constraints, form a linear system for the updates to the conductivity model,
equation (99). These equations are augmented with equations penalizing the
model roughness [55, 56]. The resulting sparse system of linear equations is
solved using the LSQR algorithm [34].

Because the inverse problem is non-linear I iteratively refine the model
in a sequence of linearized steps. That is, I solve the system of equations
(99) for conductivity perturbations. The conductivity model is updated and
a new flow simulation is run. New trajectories and residuals form the basis
for another inversion step and another update. The process is repeated until
satisfactory convergence is achieved. After 15 or so iterations the misfit is
reduced by over two orders of magnitude. Furthermore, the misfit reduction
for each subsequent step is rather small. Therefore, after 25 iterations the
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Fig. 5. The interpolated head derivative for 15 grid-blocks

inversion is concluded. The initial fits are highly scattered but generally the
predicted arrival time is much too large, suggesting permeabilities which are
too low. After the inversion, the predicted arrival times are much closer to the
observed values.
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Fig. 6. Estimated arrival times for the array of grid-blocks. The open stars denote
well locations in which pressure sensors were deployed. The open circles denote the
locations of tiltmeters used in the pumping experiment.

The final conductivity model is shown in Figure 7. The main feature is an
elongated high conductivity zone which extends to the south of the pumping
well, sub-parallel to the eastern edge of the array of wells. The result agrees
with previous estimates [57], which are based on a completely different ap-
proach. The main difference is the absence of high conductivity feature to the
northwest of the pumping wells [57]. Perhaps this anomaly is not recovered
due to the lack of sufficient tilt data to the north.

7 Discussion and Conclusions

In this chapter I have shown how asymptotic techniques can be used to de-
velop semi-analytic solutions for modeling flow and transport. The asymp-
totic approach results in solutions which are defined on trajectories or paths
through the medium. There are several advantages associated with these types
of solutions, particularly when considering the inverse problem of infering flow
properties from sets of observations. For example, the closed form solutions
may be used to derive semi-analytic expressions for model parameter sen-
sitivities. Furthermore, because the solutions are defined along trajectories
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Fig. 7. Conductivity estimates resulting from an inversion of the arrival times in
Figure 6. The quantity ‘log conductivity multiplier’ denotes a scalar multiplier of
the logarithm of the conductivity.

through the model, the order of computation and memory usage scales as
roughly the number of grid blocks intersected by the model. For an nx by ny

by nz grid of cells, the computation is of the order of
√

nx
2 + ny

2 + nz
2. For a

fully numerical method, such as finite differences, the computation may scale
as nx ×ny ×nz. Another advantage of the asymptotic or trajectory-based ap-
proach is that the problem de-couples into an arrival time matching problem
and an amplitude matching problem. The arrival time matching problem is
quasi-linear and generally involves much less computation than does ampli-
tude matching [7]. Thus, an arrival time inversion can provide a useful start-
ing model for amplitude matching [52]. The computational advantages should
prove particularly helpful when utilizing geophysical data sets which can be
quite large. In addition, the techniques should prove useful when considering
more complicated physics, such as coupled flow and reactive transport. These
are the areas where future work should prove fruitful and may provide an
important complement to fully numerical techniques.
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1 Introduction

Geological models derived from static data alone often fail to reproduce the
dynamic response from the aquifers, for example transient pressure or tracer
response or from petroleum reservoirs, for example multiphase production
history such as water cut or gas-oil ratio. Reconciling geologic models to the
dynamic response of the reservoir is critical for subsurface characterization
and building reliable reservoir performance models. Available information on
subsurface heterogeneity can be broadly categorized into two major types:
static and dynamic. Static data are time-invariant direct or indirect measure-
ments of reservoir properties, such as cores, well logs, and 3-D seismic data.
With recent advances in reservoir characterization, these data can now be in-
tegrated efficiently into coherent 3-D reservoir descriptions (Dubrule, 1998).
Dynamic data are the time dependent measurements of flow responses such as
pressure, flow rate, fractional flow and, with the use of 4-D seismic, time-lapse
saturation and pressure. Integration of dynamic data generally leads to an in-
verse problem and requires solution of the flow equations several times using
an iterative procedure (Hyndman et al., 1994; Kitanidis, 1995; Mclaughlin and
Townley, 1996; Medina and Carrera, 1996; Anderman and Hill, 1999; Vasco
and Datta-Gupta, 1999; Yeh and Liu, 2000; Oliver et al., 2001). The process
is commonly referred to as “history matching” and is usually the most tedious
and time-consuming aspect of subsurface flow and transport simulation study.

Streamline models offer some unique advantages in history matching
(Vasco et al., 1999; Datta-Gupta et al., 2002; He et al., 2006). In this chapter
we will explore the properties of streamline models that make them partic-
ularly attractive for the integration of production data into high resolution
geologic models. The streamline approach has provided an extremely effi-
cient means for computing parameter sensitivities which define the relation-
ship between subsurface parameters and production response (Datta-Gupta
et al., 2001). The streamline-based sensitivity computation has been extended
to include gravity, changing field conditions and more recently to fractured
A. Datta-Gupta et al.: The Role of Streamline Models for Dynamic Data Assimilation in
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reservoirs (He et al., 2002; Al Harbi et al., 2005). With the streamline method,
the sensitivities can be computed analytically using a single flow simulation.
Because the sensitivity calculations involve evaluation of 1-D integrals along
streamlines, the method scales very well with respect to model size and is thus,
well suited for production data integration into highly detailed geologic mod-
els. Most of the previous applications of streamline-based history matching
have been limited to two-phase water-oil flow under incompressible or slightly
compressible conditions. This is partly because of the lack of availability of a
rigorous compressible formulation for streamline simulation and the associated
analytic sensitivity computations for compressible and three-phase flow.

In this chapter, we first discuss the generalization of streamline models to
compressible flow using a rigorous formulation while retaining most its com-
putational advantages. Our formulation fully accounts for the compressibility
effects on the flow and transport calculations but requires only minor modi-
fications to existing streamline models. This is accomplished by introducing
an ‘effective density’ of the total fluids along the streamlines (Cheng et al.,
2006; Osako and Datta-Gupta, 2007). This density captures the changes in the
fluid volume with pressure and can be conveniently and efficiently traced along
streamlines. Our approach preserves the 1-D nature of the saturation calcu-
lations and all the associated advantages of the streamline models. Next, we
generalize the streamline-based history matching to compressible and three-
phase flow including water, oil and gas phases. Specifically, we formulate an-
alytic expressions for the sensitivity of water cut and gas-oil ratio to reservoir
properties, in particular, permeability. Again, the sensitivities are simple 1-D
integrals along streamlines and can be computed using a single forward sim-
ulation. For history matching, we use a generalized travel time inversion that
has been successfully applied to many field cases involving two-phase flow.
Our work here generalizes the approach to three phase flow by incorporating
matching of both water cut and gas-oil ratio. Finally, we briefly discuss the
role of streamline models in uncertainty assessment via a multistage sampling
algorithm.

2 Streamline Simulation: Background
and Generalization to Compressible Flow

Streamline models have seen resurgence in interest because of their ability
to efficiently simulate fluid flow and transport through highly detailed geo-
logic models (Datta-Gupta, 2000). Streamline simulators approximate three-
dimensional fluid flow calculations by a sum of one-dimensional solutions along
streamlines. The choice of streamline directions for the one dimensional calcu-
lations makes the approach extremely effective for modeling convection dom-
inated flows in the reservoir. This is typically the case when heterogeneity
dominates the flow behavior. The streamlines are generally distributed in
space with higher resolution than the underlying spatial grid, thus providing
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excellent transverse resolution in regions of fast flow. Transport calculations
along streamlines are decoupled from the underlying grid and can be carried
out with little or no intrinsic time-step limitations (Bratvedt et al., 1996; King
and Datta-Gupta, 1998).

2.1 Background

We will first review the current streamline formulation before discussing its
extensions to compressible flow. At a fundamental level, all streamline tech-
niques are based upon a coordinate transformation from physical space to a
coordinate system following the flow directions. This transformation is based
upon the bi-streamfunctions and an additional time of flight coordinate. Fol-
lowing Bear (1973) we define a streamline which is everywhere tangential to
the velocity field, by introducing the bi-streamfunctions Ψ and χ,

�u = ∇ψ ×∇χ (1)

Note that the incompressibility assumption is implicit in this representa-
tion because of the vector identity,

∇ • (∇ψ ×∇χ) = 0 (2)

A streamline is defined by the intersection of a constant value for Ψ with
a constant value for χ. An important concept in streamline simulation is the
‘time of flight’, τ , which is defined simply as the travel time of a neutral tracer
along the streamlines (Datta-Gupta and King, 1995),

τ(x, y, z) =
∫

φds

|�u| (3)

Or, in a differential form as follows

�u · ∇τ = φ (4)

Streamline techniques are based upon a coordinate transformation from
the physical space to the time of flight coordinate where all the streamlines can
be treated as straight lines of varying lengths. This coordinate transformation
is greatly facilitated by the fact that the Jacobian of the transformation takes
an extraordinarily simple form,∥∥∥∥∂(τ, ψ, χ)

∂(x, y, z)

∥∥∥∥ = (∇ψ ×∇χ) • ∇τ = �u • ∇τ = φ (5)

We now have the following relationship between the physical space and
the time of flight coordinates,

φdx dy dz = dτdψ dχ (6)
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Clearly, the coordinate transformation provides a simple representation
for the pore volume in streamline coordinates; this is an essential feature to
maintain the material balance.

Spatial gradients along streamlines assume a very simple form in the time
of flight coordinates. Using the (τ, ψ, χ) coordinates the gradient operator can
be expressed as,

∇ = (∇τ)
∂

∂τ
+ (∇ψ)

∂

∂ψ
+ (∇χ)

∂

∂χ
(7)

Because �u is orthogonal to both ∇ψ and ∇χ,

�u • ∇ = φ
∂

∂τ
(8)

Convection-driven flow now reduces to one dimensional spatial gradients
along streamlines. For instance, let us consider the conservation equation for
single phase tracer transport under incompressible flow conditions,

φ
∂C

∂t
+ �u • ∇C = 0 (9)

This expression can be transformed into the τ coordinate using Eq. (8),

∂C

∂t
+

∂C

∂τ
= 0 (10)

After this coordinate transformation, the three dimensional fluid flow has
been decomposed into a series of one dimensional (in τ) evolution equation for
tracer concentration along streamlines (Datta-Gupta and King, 1995). This
equation is just as valid in one, two and three dimensions, and for homoge-
neous and heterogeneous media. The τ transformation includes all of these
effects. All that is required for implementation is the velocity field and the
calculation of the line integral (see Eq. (3)). The velocity field is typically ob-
tained numerically using finite-difference method which makes the approach
completely general. The streamline trajectories and the time of flight calcu-
lations are generally carried out using the Pollock algorithm (Pollock, 1988)
and its extensions (Cordes and Kinzelbach, 1992; Jimenez et al., 2005).

2.2 Effective Density and Compressible Streamlines

For compressible multi-phase flow in porous media, the conserved quantity is
a total multi-phase mass flux. Accordingly, we redefine the bi-streamfunctions
to incorporate the compressibility effects (Bear, 1973; Cheng et al., 2006).

ρ�u = ∇ψ ×∇χ (11)



The Role of Streamline Models for Dynamic Data Assimilation 109

where ρ represents an ‘effective density’ of the total fluids. For incompressible
flow, we set ρ = 1 and we return to the standard incompressible streamline
formulation. We can develop Eq. (11) further by recognizing that ρ�u represents
a conserved flux.

0 = ∇ • (∇ψ ×∇χ) = ∇ • (ρ�u) (12)
= �u • ∇ρ + ρ∇ • �u

= φ
∂ρ

∂τ
+ ρ∇ • �u

In Eq. (12) we have used the operator identity �u • ∇ = φ ∂
∂τ to move

from the physical space to the streamline time of flight coordinate τ . This
coordinate transformation remains the same as that for incompressible flow
as discussed later. The velocity field �u is typically obtained from a finite
difference solution and within each grid cell ∇ • �u = c, a constant. Eq. (12)
now reduces to an ordinary differential equation that can be easily integrated
to obtain the variation of ρ along streamlines.

ρ = ρ0e
−(c τ

φ ) (13)

The value for the effective density can be traced along each streamline
starting from the injectors where ρ0 = 1 and where the initial volumetric flux
∆Q = ∆ψ ∆χ is assigned to a streamline. This volumetric flux will vary along
the streamline. It is now given by 1

ρ∆Q and the Darcy velocity is given by
�u = 1

ρ ∇ψ×∇χ. Both depend upon the effective density. In the limit of small
compressibility or small transit time, Eq. (13) has a simple approximation
ρ ≈ ρ0−ρ0

τ
φc. This near linear variation with τ will be evident in the example

given later.
For compressible flow, another modification needs to be made. This

involves the Jacobian of the transformation from (x, y, z) to (τ, ψ, χ), to mod-
ify the relationship of volumes. This volumetric identity is used when map-
ping fluid volumes from streamlines to cells whenever streamlines need to
be updated to account for changing conditions (Datta-Gupta, 2000). Correct
treatment of this term is important to minimize mass balance errors. The
generalization of Eq. (5) is now∥∥∥∥∂(τ, ψ, χ)

∂(x, y, z)

∥∥∥∥ = (∇ψ ×∇χ) • ∇τ = ρ�u • ∇τ = ρφ (14)

Note that the operator identity in Eq. (8) still applies. However, in terms
of volume we have,

φ dx dy dz =
1
ρ
dτ dψ dχ (15)

The only remaining change in the formulation arises when developing the
one dimensional transport equations along each streamline, where there is
now an additional source/sink term in the 1-D equation to account for fluid
expansion and compression along streamlines.
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2.3 Compressible Streamline Formulation: An Illustration
of the Method

We illustrate the basic steps in compressible streamline simulation using wa-
terflood in a 2-D homogeneous 1/4 five-spot pattern under compressible flow
conditions and compare the results with the current incompressible stream-
line formulation. The well configuration consists of a single water injection
well and a single producing well and oil is the only mobile phase initially. We
assume black-oil properties which imply that both water and oil are compress-
ible and there is no interphase mass transfer between them. The water mass
conservation equation for two-phase black oil is given by (Lake, 1989),

φ
∂

∂t

(
Sw

Bw

)
+ ∇ •

(
Fw�ut

Bw

)
= 0 (16)

In Eq. (16), Bw is the water formation volume factor accounting for water
compressibility and Fw represents the fractional flow of water. Expanding the
divergence operator we get,

φ
∂

∂t

(
Sw

Bw

)
+

Fw

Bw
∇ • �ut + �ut • ∇

(
Fw

Bw

)
= 0 (17)

Now, transforming to streamline time of flight coordinates using, �ut•∇ = φ ∂
∂τ ,

and setting ∇ · �ut = c, we obtain

∂

∂t

(
Sw

Bw

)
+

∂

∂τ

(
Fw

Bw

)
= − c

φ

Fw

Bw
(18)

It is clear that compressibility effects generate source/sink terms along
streamlines which account for fluid expansion/compression. Note that c is
spatially varying along the streamline and can be obtained by mapping di-
vergence of flux computed for each grid cell onto the streamline. For incom-
pressible flow, Bw is constant and c = 0 everywhere and the right hand term
vanishes resulting in the two-phase incompressible equation (Datta-Gupta and
King, 1995).

Figure 1a shows the pressure distribution computed using finite-difference.
The velocity field obtained from the pressure distribution is used to trace
streamlines and compute the time of flight. Note that the Pollock algorithm
(1988) is sufficiently general for this purpose and is not limited to incompress-
ible flow. However, unlike incompressible flow, streamlines can now originate
and terminate anywhere in the domain. The streamline time of flight for this
1/4 five-spot example is shown in Fig. 1b at t = 200 days. While tracing
streamlines, we also compute the divergence of flux at each grid cell (Cheng
et al., 2006) and the results are shown in Fig. 1c.

Next we calculate the effective densities along streamlines using Eq. (13).
The tracing of the effective density along streamlines is shown in Fig. 2a.
A contour of the ‘local’ changes in effective density (∆ρ for each grid cell) is
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Fig. 1. Contour plots of pressure, time of flight and cell divergence of flux for
waterflood in a 1/4 five-spot pattern

(a) Tracing effective density (b) ‘local’ changes in effective density

Fig. 2. The tracing of effective density and contour showing changes

shown Fig. 2b. A value of less than unity indicates expansion of the fluid in
the grid cell and vice versa. Note that the changes in effective density are a
function of fluid compressibility, porosity and time of flight. The relatively low
values at the stagnant corners reflect the large cell time of flight there. We can
view the relative densities as scale factors for the time of flight, ‘accelerating’
or ‘retarding’ the particle transport along streamlines (see Eq. (15)).

The oil rate at the producing well for the compressible streamline calcula-
tions is shown in Fig. 3. For validation purposes, we have also shown the results
from a commercial finite difference simulator. There is very good agreement
between streamline and finite difference calculations. Finally, to demonstrate
the effects of fluid compressibility, we have also superimposed the results from
incompressible streamline formulation. Clearly, the compressibility effects are
too large to be ignored for this case.

3 Role of Streamline Models in History Matching
and Data Assimilation

In this section, we will discuss the role of streamline models in improving
the workflow for history matching high resolution geologic models. There are
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Fig. 3. Impact of compressibility on oil production rate

many possibilities for the choice of parameters for a history match. These
include porosity, permeability, fluid properties, relative permeabilities, fault
transmissibilities, fluid contacts, aquifer strength, and so on. The reservoir
response can be water cut data, pressure measurements, tracer response, 4-D
seismic etc. The key parameters in a history match are not always appar-
ent. Also, the parameter and data uncertainties are often unknown and the
constraints on the parameters are not well-defined. All these make field scale
history matching a challenging and time consuming task.

Current industry practice in history matching generally follows a hierar-
chical workflow to account for uncertainties at various scales (Charles et al.,
2001). To start with, typically a geologic model screening is carried out to
identify the impact of large-scale features such as reservoir structure, fluid
contacts, reservoir architecture/stratigraphy, and aquifer support on the pro-
duction response. This step consists of performing flow simulations through
a suite of realizations representing large-scale subsurface uncertainties. Best
practice is to retain a sufficient number of conceptually distinct models to
span these uncertainties. Streamline models are very useful at this model
screening step because of their computational efficiency. The outcome of this
step is a selected set of realizations that will undergo a more detailed history
match. At this stage, the detailed history match will involve adjusting spa-
tially variable properties such as permeability, porosity or facies distribution.
This step involves localized changes and is typically the most time-consuming
aspect of the workflow. Again, streamline models are quite advantageous at
this stage. The spatial patterns defined by the streamlines can ‘assist’ in guid-
ing these localized changes. In addition, streamline-based calculations may be
performed to rapidly calculate sensitivities, which will allow an ‘automatic’
inversion. Streamline models can be used for both ‘assisted’ and ‘automatic’
history matching at this detailed stage as will be described below. At the last
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stage, we can examine the impact of physical properties or physical property
model parameters around any specific history match (or matches). This stage
typically involves adjusting physical properties such as the relative permeabil-
ities and fluid properties. Because typically there are only a few parameters
involved here, we can conveniently examine their significance using experi-
mental design, which is a statistical technique that defines the most effec-
tive combinations of parameters to span the uncertainty space (Charles et al.,
2001). The goal here is to minimize the number of simulations and at the same
time to extract the maximum information within specified parameter ranges.
Experimental design is typically followed by the creation of a ‘response sur-
face’ and an ‘analysis of variance’ to examine the impact of model parameters
on the production response. Again, streamline models can be helpful in the
construction of the response surface because of their computational efficiency.
The discussion that follows mainly focuses on the adjustment of spatially
distributed properties, in particular permeability, for history matching using
streamline models.

3.1 Streamline-based Assisted History Matching

Assisted history matching utilizes the streamline-based identification of
injector-producer relationships to facilitate history matching (Emmanuel and
Milliken, 1998; Agarwal and Blunt, 2003; Cheng et al., 2004). The method
can be used with the actual simulation being performed by either finite dif-
ference or streamline simulator. The main steps in assisted history matching
are: (i) simulation of production response using either a streamline or a finite-
difference simulator (ii) tracing of streamlines and computation of the time
of flight; (iii) use of streamlines to assign grid blocks or regions to each pro-
ducer; (iv) computation of the mismatch between the observed and computed
production response at each well; (v) updating the grid block or regional prop-
erties manually to improve the history match on a well-by-well basis. The use
of streamlines leads to simple and unambiguous changes in the model. Also,
because the changes are targeted and usually small, the geologic continuity
tends to be preserved.

We now illustrate the procedure using a synthetic example. Figure 4a shows
a 2D permeability field (50 × 50 grid) and the water cut response at four
producing wells in a 5-spot pattern. We will treat this as our reference data.
The initial or the prior model for permeability and the water cut responses are
shown in Fig. 4b. The initial model was generated using the same variograms
and histogram as the reference model. Thus, visually it appears quite close
to the reference model, although the details are different. The flow responses,
however, are quite different from the reference model.

Figure 5 shows the streamlines for the initial model. Streamlines are used
to help assign grid cells to wells and to group the cells. From these streamlines,
we know which grid cells to change to history match a particular well. This is
illustrated for producer 4. In addition, from the time of flight we know which



114 A. Datta-Gupta et al.

Fig. 4. (a) Reference permeability field and water cut response (b) Initial perme-
ability field and water cut response
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Fig. 5. An illustration of assisted history matching using streamlines

streamlines contribute to early stages (A), middle stages (B), and later stages
(C) of the water cut. We can adjust permeability in cells covered by stream-
lines marked ‘A’ to match early breakthrough, and change those associated
with ‘B’ and ‘C’ to match middle and later stages of water cut. Thus, assisted
history matching (AHM) can accelerate the history matching process signifi-
cantly. However, the method is still largely manual and requires considerable
trial and error.

Difficulties in assisted history matching arise when there are changing
field conditions such as infill drilling that will drastically alter the streamline
patterns. The method then becomes less intuitive. Also, attempts to match
some wells can cause matches in other wells to deteriorate because of the
coupled nature of the flow field. Because, the permeability changes are made
along streamlines, the method can introduce tube-like artifacts in the geologic
model (Wang and Kovscek, 2000; Caers et al., 2002). Also, the approach
will have difficulties in resolving features that are transverse to the dominant
direction of the streamlines.

3.2 Streamline-based Inverse Modeling

Streamline-based automatic history matching or production data integration
utilizes streamline-derived sensitivities to update geologic models based on
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production data (Vasco et al., 1999; Datta-Gupta et al., 2002; He et al., 2006).
The sensitivities quantify the influence of reservoir properties on the produc-
tion data. These sensitivities provide the fundamental relationships that allow
us to invert the production data, measured at the wells, into modified reservoir
properties between the wells.

The major steps are: (i) streamline-based flow simulation (ii) quantification
of the production data mismatch; (iii) streamline-based analytic sensitivity
computations and, (iv) updating of reservoir properties via inverse modeling.

To illustrate the procedure, we use the same synthetic example used for
assisted history matching. The sensitivities relating the production data to
changes in grid block permeability at the four producers are shown in Fig. 6.
These sensitivities are calculated along the streamlines analytically during
flow simulation and involve negligible computational cost. The details are
discussed in the next section. Unlike assisted history matching, there is now
no need to manually intervene to examine the streamline patterns to make
changes to the model. The sensitivities can be used in conjunction with the
iterative minimization algorithms to match the production data (Mclaughlin
and Townley, 1996; Menke, 1989; Tarantola, 1987).

Figure 7 shows the updated permeability distribution, the matches to the
water cut data and the permeability changes from the initial model to obtain
the match. Clearly, the water cut responses are in good agreement.

a b c d

Fig. 6. Streamline-derived sensitivities for the four producing wells

1

32

4

-2000 2000 -1000 1000 0

Fig. 7. Updated permeability field, water cut matches and changes in the perme-
ability from the inversion
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4 Streamline-based Inverse Modeling: Mathematical
Background

In this section we discuss the mathematical details related to the quantifica-
tion of data misfit and sensitivity computations in streamline-based inverse
modeling. The sensitivity calculations include single and two-phase incom-
pressible flow and three-phase compressible flow. We will demonstrate that
the spatial patterns for the sensitivity analyses for the two-phase and the
three-phase cases are closely related to that of single phase flow, and so we
will cover it first. We will also cover in detail the travel time inversion of
production data, and contrast it with more traditional ‘amplitude’ inversion.

4.1 Quantifying Data Misfit: Amplitude vs. Travel Time Inversion

Production data integration typically involves the minimization of a least
squares functional representing the difference between the observed data and
the calculated response from a simulator. The production data misfit is most
commonly represented as follows

Ep =
Nw∑
j=1

Ndj∑
i=1

wij

(
ycal

j (ti) − yobs
j (ti)

)2
i = 1, . . . , Ndj j = 1, . . . , Nw (19)

In the above equation, yj denotes the production data, for example water
cut or tracer response at the producing well j, Ndj represents the number of
observed data at well j, and Nw is the number of producing wells respectively.
The wij are a set of weights that can be used to increase or decrease the
influence of the data or to account for measurement errors. We will refer to
Eq. (19) as ‘amplitude inversion’. Instead, the ‘travel time inversion’ attempts
to match the observed data and model predictions at some reference time, for
example the breakthrough time or the peak arrival time. Thus, we will contrast
the production response along the time axis. Figure 8 illustrates the amplitude
vs. travel time inversion for tracer response in a well.

There are several advantages of travel time inversion compared to ampli-
tude inversion. It can be shown that the amplitude inversion is highly non-
linear compared to travel time inversion which has quasi-linear properties
(Cheng et al., 2005). As a result, the travel time inversion is more robust and
is less likely to be stuck in local minima. This is well known in the geophysi-
cal literature and in seismic tomography (Lou and Schuster, 1991). However,
because the travel time inversion entails matching only a single data point,
e.g., the breakthrough time or the peak response, the overall match to the
production data may be less than satisfactory.

We can actually combine the travel time inversion and amplitude inversion
into one step via the ‘generalized travel time inversion’ (He et al., 2002). In
this approach, we seek an optimal time-shift ∆t of the data at each well so as
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Fig. 9. An illustration of the calculation of generalized travel time

to minimize the production data misfit at the well. This is illustrated in Fig. 9
where the calculated tracer response is systematically shifted in small time
increments towards the observed response and the data misfit is computed for
each time increment. The optimal shift will be given by the ∆t that minimizes
the misfit function,

E (∆t) =
Nd∑
i=1

[
ycal (ti + ∆t) − yobs (ti)

]2
(20)

Or, alternatively, we can maximize the coefficient of determination given
by the following

R2 (∆t) = 1 −
∑[

ycal (ti + ∆t) − yobs (ti)
]2

∑[
yobs (ti) − yobs

]2 (21)

Thus, the ‘generalized travel time’ at well j is given by the optimal time
shift, ∆t̃j that maximizes the correlation coefficient as illustrated in Fig. 9b.
By defining the generalized travel time, we retain the desirable properties of
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the travel time inversion and at the same time accomplish amplitude matching
of the production data. It is important to note that the computation of the
optimal travel time shift does not require any additional flow simulation. It
is carried out by post-processing the data at each well after the production
response has been computed. The overall production data misfit for all wells
can now be expressed in terms of a generalized travel time misfit summed over
all wells.

E =
Nw∑
j=1

(
∆t̃j
)2 (22)

It can be shown that the generalized travel time misfit reduces to the more
traditional ‘amplitude misfit’ as we approach the solution (He et al., 2002).

4.2 Streamline-based Sensitivity Computations

We have already discussed how sensitivities are integral to streamline-based
production data integration. Now we will show how, with streamline mod-
els, parameter sensitivities can be computed using a single flow simulation.
Because the streamline-based sensitivity computations involve evaluation of
line integrals along streamlines, the method scales very well with model size,
making it well-suited for history matching high resolution geologic models.

Sensitivity to tracer travel time

We will first derive an expression for the sensitivity of the tracer travel time
with respect to permeability and porosity for single phase incompressible flow.
This tracer travel time is identical to the time of flight. The time of flight
sensitivities can then be related to sensitivities of the tracer concentration
or amplitude sensitivities. We start by rewriting the definition of the time of
flight in terms of ‘slowness’,

τ =
∫
ψ

s (x) dr (23)

where the integral is along the streamline trajectory Ψ , and x denote the
position vector. The slowness s is defined as the reciprocal of the interstitial
velocity v(x), which is Darcy velocity divided by porosity,

s (x) =
1

|v (x)| =
φ (x)
|u (x)| (24)

Using Darcy’s law, the slowness can now be written as,

s (x) =
φ (x)

λrt k (x) |∇P | (25)
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Because s is a composite quantity involving reservoir properties, its first
order variation will be given by,

δs (x) =
∂s (x)
∂k (x)

δk (x) +
∂s (x)
∂φ (x)

δφ (x) (26)

where the partial derivatives are

∂s (x)
∂k (x)

≈ −φ (x)
λrt (k (x))2 |∇P | = − s (x)

k (x)
(27)

∂s (x)
∂φ (x)

=
1

λrtk (x) |∇P | =
s (x)
φ (x)

(28)

In these variations, we are referring to changes in the magnitude of the
permeability, i.e., changes for which the permeability anisotropy is preserved.
The approximation in Eq. (27) and Eq. (28) is that the local perturbations in
permeability generate negligible pressure changes (Eq. (28) is exact because
steady state pressure distribution is independent of porosity). The implication
of this assumption is that streamlines do not shift because of these small
perturbations.

Now it is possible to calculate the change in travel time δτ to the change
in slowness by integration along each streamline trajectory

δτ =
∫
ψ

δs (x) dr =
∫
ψ

[
− s (x)

k (x)
δk (x) +

s (x)
φ (x)

δφ (x)
]

dr (29)

The tracer travel time sensitivity along a single streamline, Ψ with respect
to permeability and porosity for a particular grid block at location x follows
from Eq. (29) by simply carrying out the integral from the inlet to the outlet
of the streamline within the grid block,

∂τ (ψ)
∂k (x)

=

outlet∫
inlet

[
− s (x)

k (x)

]
dr = − s (x)

k (x)
∆r (30)

∂τ (ψ)
∂φ (x)

=

outlet∫
inlet

[
s (x)
φ (x)

]
dr =

s (x)
φ (x)

∆r (31)

where ∆r is the arc length of the streamline within the grid block. Notice that
the sensitivity of the grid block permeability and porosity will be obtained by
summing the contributions of all streamlines passing through the grid block.

For a conservative tracer with an injection concentration history given by
C0(t), the response at the producer is given by the delay associated with the
tracer travel time or time of flight along the streamline,
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C (t) = C0

⎛
⎜⎝t −

∫
ψ

s (x)dr

⎞
⎟⎠ (32)

The overall tracer response at the producer will be the sum of such contri-
butions from all streamlines reaching the producer, diluted by the flux from
those streamlines (Datta-Gupta and King, 1995). Using Eq. (32), we can derive
an expression for sensitivity of tracer amplitude to porosity and permeability
via chain rule and the travel time sensitivities (Vasco and Datta-Gupta, 1999).

Figures 10 and 11 compare the analytic sensitivities for tracer concentra-
tion in a 1/4 five-spot with the numerical perturbation method where each
grid block was perturbed individually to compute the sensitivities. The numer-
ical perturbation approach requires M + 1 simulations where M = NX ·NY
is the number of grid blocks compared to a single flow simulation for com-
puting the analytic sensitivities. Overall, the agreement is very good. The
slight differences for permeability sensitivities can be attributed to the sta-
tionary streamline assumptions in the analytic sensitivity computation. Be-
cause the pressure and streamline trajectories are not affected by porosity
changes, the agreement between the analytic and numerical sensitivities is
exact for this case.
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Fig. 10. Comparison of permeability sensitivities obtained using numerical per-
turbation and streamline models. Early time is at approximately 0.8 pore volumes
injected, and mid-time is at approximately 1.2 pvi (Vasco and Datta-Gupta, 1999)
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Fig. 11. Comparison of porosity sensitivities using numerical perturbation and
streamline models. Early time is at approximately 0.8 pore volumes injected, and
mid-time is at approximately 1.2 pvi (Vasco and Datta-Gupta, 1999)

The spatial pattern of the sensitivity depends upon the time at which
it is calculated. Before breakthrough, the sensitivity in the domain is every-
where zero. After breakthrough, the non-zero sensitivity will spread as more
streamlines breakthrough. At late times, the dominant sensitivity will be in
the near-stagnant regions.

Two Phase Flow: Sensitivity of Saturation Front Arrival Times

Consider two-phase incompressible flow of oil and water described by the
Buckley-Leverett equation in the streamline time of flight coordinates (Datta-
Gupta and King, 1995),

∂Sw

∂t
+

∂Fw

∂τ
= 0 (33)

The saturation velocity of a given saturation contour Sw along a streamline
Ψ is given by the slope of the fractional flow curve,(

∂τ

∂t

)
Sw

=
dFw

dSw
or τ (Sw, t;ψ) = τ (ψ)

/
dFw

dSw
(34)



122 A. Datta-Gupta et al.

In Eq. (34), τ (Sw, t;ψ) denotes the arrival time of saturation Sw, to be
distinguished from τ (ψ), the arrival time of tracer. For saturations below the
shock saturation, dFw/dSw is replaced by the shock speed. We can now relate
the sensitivity of the saturation arrival time to that of the tracer time of flight.

∂τ (Sw, t;ψ)
∂k (x)

=
∂τ (ψ)
∂k (x)

/
dFw

dSw
(35)

∂τ (Sw, t;ψ)
∂φ (x)

=
∂τ (ψ)
∂φ (x)

/
dFw

dSw
(36)

The Buckley-Leverett speed can be calculated in any of three ways,
depending upon the underlying calculation. If we are studying a problem
amenable to an analytic treatment, then dFw/dSw is evaluated exactly. If
we are using a streamline simulator, possibly with unsteady state flow ef-
fects, then dFw/dSw is approximated using the instantaneous saturation at
the producing well, at the time of interest (He et al., 2002). Finally, if a finite
difference calculation is being used, then the grid block saturation at the well
is used. As in the case of tracer transport, the amplitude sensitivities for water
cut response can be obtained via chain rule.

Two Phase Flow: Sensitivity Calculations for General Flow
Geometry

The water cut sensitivity calculations become considerably more complicated
for unsteady state flow involving rate changes, infill drilling etc when stream-
lines vary with time. One approach would be to resort to the numerical so-
lution of the 1-D sensitivity equations along streamlines. These sensitivity
equations can be derived by taking a direct derivative of the finite difference
equations for the saturation evolution with respect to the variations in the
reservoir parameters. There will be one such set of sensitivity equations to
solve for each streamline for each time step (He et al., 2002; Gautier et al.,
2001). In practice, the solution of these sensitivity equations can add signifi-
cantly to the computational burden.

A more efficient alternative is obtained from an amplitude match via the
generalized travel time inversion as discussed before. This requires computing
the sensitivity of the generalized travel time for the water cut response as
illustrated in Fig. 12.

Now, consider a small perturbation in reservoir properties, δm such that
it results in a time-shift δτ for the entire computed water cut response at the
producing well, that is, every data point has a common time-shift. We then
have the following relationship for the observation times (t1, . . . , tNd

)

δτ = δτi =
[

∂τi

∂m

]T

δm, i = 1, . . . , Nd (37)
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Fig. 12. Illustration of the generalized travel time calculation for the water cut

where m represents the reservoir parameter vector. Summing Eq. (37) over
all the data points, we can arrive at the following simple expression for the
sensitivity of the travel time shift with respect to the reservoir parameter (He
et al., 2002),

∂τ

∂m
=

1
Nd

Nd∑
i=1

(
∂τi

∂m

)
(38)

Also, based on the definition of the generalized travel time, we have the
following

∂∆t̃

∂m
= − ∂τ

∂m
(39)

The negative sign in Eq. (39) reflects the sign convention adopted for
defining the generalized travel time shift which is considered positive if the
computed response is to the left of the observed data as shown in Fig. 12. We
now obtain a rather simple expression for the sensitivity of the generalized
travel time with respect to reservoir parameters as follows

∂∆t̃

∂m
=

1
Nd

Nd∑
i=1

(
∂τi

∂m

)
(40)

In the above equation, the travel time sensitivity (∂τi/∂m) is given by
Eq. (35) and Eq. (36). Notice that the travel time sensitivity calculation re-
quires the derivative of the fractional flow, which is generally evaluated at the
saturation of the outlet node for the streamline at the time of interest. This
is an approximation that seems to work even under changing field conditions
that require streamline updating (Cheng et al., 2004; He et al., 2002).

Three Phase Black Oil Case: Travel Time Sensitivities for Water
cut and Gas-Oil Ratio

Three phase black oil properties assume that all three phases, water, oil and
gas are compressible. In addition, gas can exist as a free phase or can be
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dissolved in oil. Using the compressible streamline formulation discussed be-
fore, we can re-derive the equations for travel time and generalized travel
time sensitivities for three-phase flow. Cheng et al. (2006) gave the following
expression for travel time sensitivities for matching the water cut,

∂τ (Sw, Sg, t;ψ)
∂m

=
(

∂τ (ψ)
∂m

) ∂
∂τ

(
Sw

Bw

)
∂
∂τ

(
Fw

Bw

)
− Fw

Bw

1
ρ

∂ρ
∂τ

=
(

∂τ (ψ)
∂m

) ∂
∂τ

(
Sw

Bw

)
∂
∂τ

(
Fw

Bw

)
+ Fw

Bw

c
φ

(41)

Similarly, the travel time sensitivity expression for gas-oil ratio (GOR)
matching is given as follows (Cheng et al., 2006),

∂τ (Sw, Sg, t;ψ)
∂m

=
(

∂τ (ψ)
∂m

) ∂
∂τ

(
Sg

Bg
+ SoRs

Bo

)
∂
∂τ

(
Fg

Bg
+ FoRs

Bo

)
+
(

Fg

Bg
+ FoRs

Bo

)
c
φ

(42)

In Eq. (42), S0 and F0 represent the saturation and fractional flow of
oil. Similarly, Sg and Fg represent the saturation and fractional flow of the
gas phase and Rs is the solution gas-oil ratio representing the amount of
dissolved gas in the oil. Note that Eq. (41) reduces to the incompressible case
(Eq. (35)) when ρ and Bw are constants. Also, the divergence free condition
for incompressible flow requires, c = 0. As in the incompressible case, all the
saturation dependent terms in Eqs. (41) and (42) are approximated using
the instantaneous saturation at the producing well, at the time of interest.
The spatial derivatives in τ are approximated using a backward difference.

Again, the sensitivities can be computed using a single flow simulation.
Figure 13 compares the water cut sensitivities with respect to permeability for
a 1/4 five-spot pattern using the streamline and the numerical perturbation
methods for a black-oil case. The sensitivities for GOR are shown in Fig. 14.
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Fig. 13. Comparison of the numerical and analytical sensitivity in a 1/4-five spot
pattern at a water cut of 0.5
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Fig. 14. Comparison of the numerical and analytical sensitivity in a 1/4-five spot
pattern at a GOR of 4 Mscf/STB

It is obvious that the streamline-based sensitivities are only approximations
because of the underlying assumptions of stationary trajectories. However, the
trends are very similar. The analytic sensitivities are aligned along streamlines
as expected.

It is worth amplifying upon the impact of the differences seen between
the numerical and analytic calculations. The purpose of this calculation is
to determine the sensitivities for an optimization procedure. The experience
of Cheng et.al. (2006) is that the numerical sensitivities are sufficiently well
approximated by the analytic calculations that the black oil history match
converges. We will see this in the results section as well, in that a sufficient
good approximation is all that is required for the history matching purposes.

4.3 Data Inversion

After the parameter sensitivities are computed, there are various approaches
in the literature for the integration of production data via inverse model-
ing (Tarantola, 1987; Menke, 1989). These can be broadly classified into ‘de-
terministic’ and ‘Bayesian’ methods. Both methods have been successfully
applied to history matching of field data. In this work, we have adopted
a Bayesian formulation whereby we minimize the following penalized misfit
function (Vega et al., 2004; Tarantola, 1987),

J(m) =
1
2

(m − mp)
T

C−1
M (m − mp) +

1
2
[
∆t̃
]T

C−1
D

[
∆t̃
]

(43)

In Eq. (43), ∆t̃ is the vector of generalized travel time shift at the wells;
CD and CM are the data error covariance and the prior model parameter
covariance, respectively. The minimum in Eq. (43) can be obtained by an
iterative least-squares solution to the linear system (Vega et al., 2004),[

C−1/2
D G
C−1/2

M

]
δm =

[
C−1/2

D

(
∆t̃
)

C−1/2
M (mp − m)

]
(44)
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where G is the sensitivity matrix containing the sensitivities of the general-
ized travel time with respect to the reservoir parameters and mp represents
the prior model. We use an iterative sparse matrix solver, LSQR, for solving
the augmented linear system in Eq. (44). The LSQR algorithm is well suited
for highly ill-conditioned systems and has been widely used for large-scale to-
mographic problems in seismology (Paige and Saunders, 1982). An important
consideration in the solution of Eq. (44) is the calculation of the square-root
of the inverse of the prior covariance matrix. We have used a numerical sten-
cil that allows for an extremely efficient computation of C

−1/2
M (Vega et al.,

2004).

5 Application and Results

In this section, we demonstrate the application of the compressible streamline
formulation and the streamline-derived sensitivities for inversion of multi-
phase production data, namely water cut and gas-oil ratio in three-phase flow
conditions. Two examples are presented. The first one is a synthetic case to
validate the approach. The second one is more involved and is included to
demonstrate the feasibility of the approach for field-scale applications.

5.1 Inversion of Three-phase Flow Data: A Synthetic Example

This synthetic case involves reconstruction of a reference permeability field
based on three-phase production history. We match water cut and GOR from
a 9-spot pattern with the reference permeability distribution (Fig. 15).

The mesh size used is 21× 21× 1. The reference permeability distribution
consists of a low-permeability trend towards north and a high-permeability
trend towards south. The water cut and GOR responses from the reference
permeability field obtained from flow simulation are shown in Figs. 16 and 17.
We treat these as the observed data.
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Fig. 15. History matching 3-phase flow for a 9-spot heterogeneous case: initial and
final permeability field
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Fig. 16. History matching 3-phase flow for a nine-spot heterogeneous case: water
cut match

Next, starting from a homogeneous initial permeability field we jointly
match the water cut and GOR via our proposed generalized travel time inver-
sion. The permeability for each grid block is treated as an adjustable parame-
ter for this example (a total of 441 parameters). A comparison of the initial
and final updated water cut matches is shown in Fig. 16, and that of GOR is
in Fig. 17. Overall, the matches to the production data are quite satisfactory.
The final permeability distribution is shown in Fig. 15. Clearly, the final per-
meability model captured the large-scale trend of the reference permeability
field. The production data integration process here is very efficient and takes
only a few iterations to converge.



128 A. Datta-Gupta et al.

Well 1

1

2

3

0 500 1000 1500
1

2

3

0 500 1000 1500
Time, days

0 500 1000 1500
Time, days

0 500 1000 1500
Time, days

G
O

R
, M

S
C

F
/S

T
B

reference initial updated Well 2

Time, days

G
O

R
, M

S
C

F
/S

T
B

1

2

3

0 500 1000 1500
Time, days

G
O

R
, M

S
C

F
/S

T
B

reference initial updated Well 3
reference initial updated

Well 4

1

2

3

4

5

6

G
O

R
, M

S
C

F
/S

T
B

0 500 1000 1500
Time, days

1

2

3

4

5

G
O

R
, M

S
C

F
/S

T
B

0 500 1000 1500
Time, days

1

2

3

4

5

6

G
O

R
, M

S
C

F
/S

T
B

reference initial updated Well 5
reference initial updated

Well 6
reference initial updated

Well 7

1

2

3

4

G
O

R
, M

S
C

F
/S

T
B

0 500 1000 1500
Time, days

1

2

3

4
G

O
R

, M
S

C
F

/S
T

B

reference initial updated
Well 8 reference initial updated

Fig. 17. History matching 3-phase flow for a 9-spot heterogeneous case: gas/oil
ratio match

5.2 Inversion of Three-phase Flow Data: A Field-scale Example

We have used the benchmark ninth SPE (Society of Petroleum Engineers)
comparative study to demonstrate the feasibility of the streamline-based ap-
proach for field-scale application of our approach (Killough, 1995). The ninth
SPE comparative study investigates a bottom waterflood in a dipping reser-
voir with natural water encroachment from an aquifer. The reservoir (Fig. 18)
is represented by a 24 × 25 × 15 mesh with rectangular coordinates. The di-
mensions of the grid blocks are 300 feet in both the X- and Y-directions. Cell
(1,1,1) is at a depth of 9000 feet subsea at the center of the cell top. The
remaining cells dip in the X-direction at an angle of 10 degrees. Values of
porosity and thickness can be found in the paper by Killough (1995). The to-
tal thickness from Layers 1 to 13 is 209 feet (16 feet per layer in average), and
Layers 14 and 15 have thickness of 50 and 100 feet respectively. The oil/water
contact is 9950 feet subsea. There is no free gas initially in the reservoir.
After 900 days of production, there is considerable free gas saturation in the
reservoir (Fig. 18).

A total of 26 wells, 1 water injector (I1) and 25 producers (named as P2
to P26) were included in the simulation model. The injector was completed
from layers 1 through 11. All producers except producers 9, 17, 23, and 26
are completed in layers 1 to 13. Producers 9, 17, 23, and 26 are completed
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Fig. 18. Gas saturation distribution at the end of simulation time (900 days)
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Fig. 19. Shift time and amplitude misfit reduction for joint water cut and GOR
matching for SPE9 problem

in layers 1 to 5 so that no well will be perforated in the water leg. The
water injector was injecting at a maximum bottomhole pressure of 4500 psia
at a reference depth of 9110 feet subsea, and the producers were producing
with a constant reservoir volume rate of 1800 RB/D and a minimum flowing
bottomhole pressure of 1000 psia. The initial permeability field for inversion
was generated via geostatistiscal simulation using data at the 26 well locations.

Figure 19 shows the convergence of the inversion algorithm. In 5 iterations,
all misfit indices dropped appreciably. The misfit indices being the total misfit
(GOR plus water cut shift time misfit), GOR shift time misfit, water cut shift-
time misfit, GOR amplitude misfit, and water cut amplitude misfit. Most of
the wells have a satisfactory match at the end of the inversion.

Figure 20 compares the initial permeability model and the updated (de-
rived) model for the bottom five layers (Layers 11–15). The scale used is
logarithmic and the minimum permeability is 0.003 md and the maximum is
10054 md. From a casual look, it is hard to discern the changes made to the ini-
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Fig. 20. Initial and derived (updated) permeability models for the SPE9 problem
(bottom 5 layers)

Fig. 21. Comparison of the “derived-initial” permeability difference and the “true-
initial” permeability difference (bottom 5 layers)

tial model. This is because the inversion algorithm is designed to preserve the
geologic continuity and the initial geologic features to the maximum possible
extent. However, a careful comparison reveals many differences between the
initial and the updated geologic models.

In Figure 21 the differences represent ‘changes made’. This is to be com-
pared with the ‘changes needed’ which is the difference between the reference
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Fig. 22. (a) Streamline and time-of-flight distribution at the beginning of the sim-
ulation and (b) is the same at the end of the simulation for the SPE9 case

and the initial permeability model. We see that there is clearly very close
agreement, particularly in regions where the permeability needs to be reduced
(negative changes).

As might be expected, there are also some discrepancies. However, these
are mostly in areas where the streamline density is low (Fig. 22) and there is
not enough information to guide the changes (for example, near the boundary
or in the areas where there is no well), or in the areas near the aquifer. For
this field-scale case with 9000 parameters, it took about 50 minutes and 5
iterations to get a good history match using a PC with 1.5 GHz Pentium-4
processor.

6 Uncertainty Assessment Using Streamline Models

Traditional history matching usually generates a single matched model with
unknown reliability, particularly for non-linear problems involving multiphase
flow. Because of its computational efficiency, streamline-based history match-
ing is well-suited for uncertainty assessment by generating multiple realiza-
tions of reservoir models that are conditioned to production data. The validity
of the uncertainty quantification will strongly depend upon the distribution of
these realizations, that is, whether they adequately represent the underlying
uncertainties. In the context of the Bayesian inversion, the solution to the
inverse problem is the posterior probability distribution itself. So, the prob-
lem of uncertainty quantification is closely tied to the appropriate sampling
of multiple reservoir models from the posterior distribution. Such sampling is
non-trivial because the posterior distribution has very high dimension (equal
to the number of parameters) and is known only within a proportionality
constant (un-normalized) (Tarantola, 1987). Furthermore, the posterior dis-
tribution can be both non-Gaussian and multi-modal. This makes rigorous
sampling from the posterior distribution extremely computationally demand-
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ing. The common practice has been to resort to approximate sampling meth-
ods that can severely underestimate uncertainty. A comparative analysis of
various approximate sampling schemes is given by Liu and Oliver (2003).

One of the rigorous approaches to sample the posterior distribution is
through the use of the Markov Chain Monte Carlo (MCMC) algorithm (Omre
and Lødøen, 2004). The MCMC methods are designed to generate a sequence
of realizations that are samples from a target probability distribution. The
difficulties with MCMC are that it might require long transitions or many
iterations before samples converge to the appropriate distribution. For pro-
duction data integration, we want to sample realizations from the posterior
distribution, that is, pm|d (.) ∝ exp(−J(m)), where J(m) is the misfit func-
tional in Eq. (43). For each proposed realization of model parameters, for
example, the permeability distribution, the computation of the acceptance
probability requires flow simulation to compute pm|d (.). This can translate
to thousands of simulations, particularly if the acceptance rate is low.

Efendiev et al. (2005) proposed a two-stage MCMC using an approximate
likelihood calculation to improve the acceptance rate during MCMC sampling.
Their approach does not compromise the rigor in traditional MCMC sampling.
Instead, a pre-screening based on approximate likelihood calculations elimi-
nates most of the rejected samples and the exact MCMC is performed only
on the accepted proposals, with a higher chance of acceptance and without
sacrificing the convergence characteristics. The approximate likelihood calcu-
lations should be fast and typically involves a linearized approximation around
an already accepted state rather than an expensive computation such as a flow
simulation.

Streamline models are particularly well-suited for this purpose because
the analytic sensitivities provide a convenient means for computing the ap-
proximate likelihood function. For example, for a proposed transition δm =
m∗ − mi, we can relate the change in model parameters to the change in
forward model response using the sensitivity matrix, δd = Gδm. Thus we
can compute the first-stage acceptance probability based on the sensitivities
computed from the previous accepted stage and without any flow simulation.
A new simulation is performed only if the proposal is accepted at the first
stage. This dramatically reduces the number of flow simulations required and
makes production data integration and uncertainty assessment using MCMC
feasible for field-scale applications.

Another recent development has been streamline-assisted EnsembleKalman
Filter (EnKF) for continuous reservoir model updating (Arroyo-Negrete et al.,
2006). The EnKF is a Monte-Carlo approach that works with an ensemble
of reservoir models (Naevdal et al., 2005). Specifically, the method utilizes
cross-covariances between measurements and model parameters computed di-
rectly from the ensemble members to sequentially update the reservoir mod-
els. For practical field applications, the ensemble size needs to be kept small
for computational efficiency. However, this leads to poor approximations of
the cross-covariance matrix and loss of geologic realism through parameter
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overshoots, specifically by introducing localized patches of low and high per-
meabilities (Gu and Oliver, 2005). This difficulty is compounded by the strong
non-linearity of the multiphase history matching problem.

Streamline trajectories and streamline-based sensitivities can be used in
conjunction with the EnKF to modify the cross-covariance matrix to eliminate
spurious covariance calculations arising from limited sample size. In particular,
we can use flow-relevant information from streamlines to reduce the influence
of distant observation points on model parameter updates (Arroyo-Negrete
et al., 2006). It can be shown that the effect of such ‘covariance localization’
is to increase the effective ensemble size leading to an efficient and robust
approach for history matching and continuous reservoir model updating. The
streamline-assisted EnKF has been found to be quite general and avoids much
of the problems in the traditional EnKF associated with instabilities, over-
shooting and loss of geologic continuity during model updating (Devegowda
et al., 2007).

7 Summary and Conclusions

In this chapter we have highlighted the unique features of streamline mod-
els that make them particularly well-suited for production data integration
into high resolution geologic models. Streamline models can be used for both
‘assisted’ and ‘automatic’ history matching and also in conjunction with
finite-difference models. The unique information content in streamline tra-
jectories, the time of flight and the streamline-derived sensitivities, allow for
targeted changes in the geologic model to match production history. The
changes are constrained to the prior model and thus geologic continuity is
preserved.

We also examined the relative merits of ‘travel time’ vs. ‘amplitude match-
ing’ for production data integration. In particular, the traditional amplitude
inversion leads to a highly non-linear inverse problem with difficulties in sta-
bility and convergence. On the other hand, the travel time inversion is quasi-
linear which makes it more robust and well-suited for field applications. One
of the most important strengths of streamline models is their ability to com-
pute parameter sensitivities analytically using a single flow simulation. This
is the single-most important feature that makes streamline models extremely
well-suited for history matching high resolution geologic models via inverse
modeling. The sensitivities are simple integrals along streamlines and can be
easily calculated for single phase. These results generalize easily to two phase
incompressible flow and also for the three-phase black oil case.

We have briefly discussed uncertainty quantification during history match-
ing using Markov Chain Monte Carlo (MCMC) methods. In particular, we
have seen that the streamline models allow for an efficient multistage MCMC
with higher acceptance rates while preserving the rigor of sampling from the
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posterior distribution. Finally, we introduce the role of streamlines for flow-
relevant covariance localization during sequential data assimilation using the
Ensemble Kalman Filter.
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Information Fusion in Regularized Inversion
of Tomographic Pumping Tests

Geoffrey C. Bohling

Kansas Geological Survey, University of Kansas

Summary. In this chapter we investigate a simple approach to incorporating geo-
physical information into the analysis of tomographic pumping tests for character-
ization of the hydraulic conductivity (K) field in an aquifer. A number of authors
have suggested a tomographic approach to the analysis of hydraulic tests in aquifers
– essentially simultaneous analysis of multiple tests or stresses on the flow system
– in order to improve the resolution of the estimated parameter fields. However,
even with a large amount of hydraulic data in hand, the inverse problem is still
plagued by non-uniqueness and ill-conditioning and the parameter space for the in-
version needs to be constrained in some sensible fashion in order to obtain plausible
estimates of aquifer properties. For seismic and radar tomography problems, the pa-
rameter space is often constrained through the application of regularization terms
that impose penalties on deviations of the estimated parameters from a prior or back-
ground model, with the tradeoff between data fit and model norm explored through
systematic analysis of results for different levels of weighting on the regularization
terms. In this study we apply systematic regularized inversion to analysis of tomo-
graphic pumping tests in an alluvial aquifer, taking advantage of the steady-shape
flow regime exhibited in these tests to expedite the inversion process. In addition,
we explore the possibility of incorporating geophysical information into the inver-
sion through a regularization term relating the estimated K distribution to ground
penetrating radar velocity and attenuation distributions through a smoothing spline
model.

1 Introduction

A number of investigators (Neuman, 1987; Tosaka et al., 1993; Bohling,
1993; Gottlieb and Dietrich, 1995; Butler et al., 1999; Yeh and Liu, 2000;
Vesselinov et al., 2001a, 2001b; Bohling et al., 2002; Liu et al., 2002; Brauch-
ler et al., 2003; Zhu and Yeh, 2005) have proposed hydraulic tomography as a
means for obtaining higher-resolution estimates of distributions of aquifer flow
and transport properties than can be obtained from traditional aquifer tests.
Hydraulic tomography involves performing a sequence of pumping or slug
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tests stressing different vertical intervals in an aquifer and measuring pressure
or head responses at a number of different observation locations. This testing
sequence yields a dataset that has “sampled” the aquifer over a number of
different streamlines or flowpaths, similar to the crossing raypath pattern used
in seismic or radar tomography (Aster et al., 2005). Simultaneous inversion of
the entire dataset allows the development of an estimated distribution of hy-
draulic properties at a higher resolution than can be obtained from traditional
approaches such as large-scale pumping tests (Butler, 2005).

Even with a large amount of data from multiple tests in hand, the inverse
problem is still plagued by the non-uniqueness (numerous property distrib-
utions produce essentially the same observed response) and ill-conditioning
(small changes in the data produce large changes in estimated parame-
ters) that plague many parameter estimation problems in the earth sciences
(Carrera and Neuman, 1986; Parker, 1994; Aster et al., 2005). As a result, the
parameter space for the inversion needs to be restricted in a sensible fashion
in order to obtain plausible parameter estimates. A common approach to re-
stricting the parameter space in groundwater flow and transport problems is
zonation, where the properties are restricted to constant values within pre-
specified zones, based on a geological model and auxiliary information such
as drillers’ logs or geophysical well logs. Another approach is to condition
the inversion on a prior model developed through geostatistical estimation or
simulation techniques. Carrera et al. (2005) provide a recent review of various
approaches to incorporating auxiliary information into the hydrogeological
inverse problem.

A number of investigators have proposed the incorporation of geophysical
information in the groundwater inverse problem, as summarized in the recent
volume edited by Rubin and Hubbard (2005). In these studies, estimated dis-
tributions of geophysical properties derived from geophysical surveys are used
to infer information regarding the distribution of hydrogeological parameters,
either by providing information about the spatial structure of those parame-
ters (in other words, to help develop an appropriate zonation for the hydroge-
ological inverse problem) or through the exploitation of presumed functional
relations or correlations between the geophysical and hydrogeological parame-
ters. Due to the lack of universally valid deterministic relationships between
geophysical and hydraulic parameters, the incorporation of geophysical in-
formation is necessarily a site-specific endeavor, usually based on statistical
relationships between geophysical parameters and limited measurements of
hydraulic parameters (Hyndman and Tronicke, 2005).

Bohling et al. (2007) present an analysis of a set of tomographic pumping
tests in an alluvial aquifer based on layered zonations of the aquifer hydraulic
conductivity (K) derived from crosshole ground penetrating radar surveys.
These zonations were based on a cluster analysis of radar velocity and atten-
uation profiles, similar to the approach presented by Tronicke et al. (2004).
In this study, we examine the same data as Bohling et al. (2007) using a
different approach, attempting to exploit possible quantitative correlations
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between K and the radar velocity and attenuation. Rather than specifying
the nature of the functional relationship in advance, we incorporate the geo-
physical data through a regularization term in the objective function for the
hydraulic inversion. This regularization term penalizes deviations between the
current K estimates and a best-fit adaptive smoothing spline model relating
those estimates to the radar velocity and attenuation. In other words, the
term measures how well the estimated K distribution can be represented as
a smooth function of the geophysical parameters, without requiring an a pri-
ori specification of the exact nature of the functional relationship. Increasing
the weight on this regularization term will force the K distribution to more
closely match the distributions of the geophysical parameters. Thus, this ap-
proach requires an a posteriori assessment of the plausibility of the resulting
relationship between K and the geophysical attributes.

To serve as a background for the regularization relative to geophysical
parameters, we first examine regularized inversion relative to a uniform back-
ground model, applying zeroth-order Tikhonov regularization, a technique
commonly employed in geophysical tomography (Aster et al., 2005), to the
hydraulic tomography problem. This follows the suggestion of Tonkin and Do-
herty (2005) and Doherty (2003), who encourage the use of Tikhonov regular-
ization in hydrogeological inverse problems. This kind of regularization results
in a constrained least squares inversion, a method that has been employed for
decades in groundwater inverse problems. However, in keeping with a more
geophysical approach to the problem we here emphasize a systematic explo-
ration of the tradeoff between data fit and deviations from the prior model.
We then extend the approach with a regularization term incorporating the
geophysical information.

2 Experimental Setup

Here we will briefly summarize the tomogrpahic pumping tests examined in
this study. A more detailed description is provided in Bohling et al. (2007)
and Butler (2005) provides an overview of various kinds of hydraulic tests
performed at the test site. The tests were performed at the Kansas Geological
Survey’s Geohydrologic Experimental and Monitoring Site (GEMS), in the
Kansas River valley in northeast Kansas, USA. The alluvial aquifer at the
site consists of approximately 10.5–11 meters of highly transmissive sand and
gravel overlain by approximately 11 meters of silt and clay. The silt and clay
serve to confine the alluvial aquifer over the time periods involved in the
hydraulic tests at the site. The overall average hydraulic conductivity of the
site, derived from large-scale pumping tests and from Cooper-Jacob (Cooper
and Jacob, 1946) analyses of the data described here (Bohling et al., 2007)
is approximately 130 m/day or 0.15 cm/s, a value in the expected range for
clean sand (Freeze and Cherry, 1979).
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We performed a series of 23 tomographic pumping tests by isolating and
pumping intervals in two wells, each 11 centimeters in diameter. The two
wells, Gems4N and Gems4S, are separated by about 10 meters, as shown in
Fig. 1, with Gems4N on the north end and Gems4S on the south end of the
vertical cross-section of aquifer that is the focus of this investigation. We per-
formed 11 tests with pumping in Gems4N and 12 with pumping in Gems4S,
each involving pumping over a 0.6-meter interval. The sequence of tests, num-
bered from the bottom up in each well, is represented by the line segments
on the left and right sides of Fig. 1. During each pumping test, drawdowns
were measured using pressure transducers installed in two multichamber PVC
samplers located between Gems4N and Gems4S. Each multichamber sampler
consists of a central chamber and six surrounding chambers. Each of these
six chambers contains a sampling port at a different depth, giving a total of
12 sampling ports over the vertical section, whose locations are also shown
in Fig. 1. The six pressure transducers employed for these tests were located
either in the even- or odd-numbered sample ports, numbered from the bottom
up, during each pumping test. The tests using odd-numbered sample ports
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Fig. 1. GEMS tomographic test setup. Lines on left and right indicate sequence
of pumping intervals in two different pumping wells, Gems4N and Gems4S, and
circles indicate drawdown observation points. Tests indicated with black lines used
six observation points marked in black and tests marked in gray used observation
points marked in gray.
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are represented in black in Fig. 1 and those using even-numbered ports are
represented in gray.

Each test involved 900 s (15 min) of pumping followed by a recovery period
of equal duration and an additional 15 or more minutes of preparation for the
next test. This allowed ample time for drawdowns to return to static (pre-test)
levels between tests.

During each test, drawdowns were measured at a rate of 2 samples per
second for the duration of pumping and recovery. Figure 2 shows a subset
of the data, measurements at two-second intervals over the interval from 20
seconds to 70 seconds after initiation of pumping, for the 12 pumping tests
in Gems4S. Each panel in Fig. 2 shows the data obtained at the six sampling
ports in each test, with the tests numbered from the bottom up as in Fig. 1.
Each line of points represents the drawdown from a different sampler, with
the largest drawdowns in each test corresponding to samplers closest to the
pumping interval. The data from the 11 tests with pumping in Gems4N are
similar in character. An obvious feature of these data is that they display a
roughly constant and common slope and roughly constant differences between
drawdowns at different samplers in each test. This is the signature of a steady-
shape flow regime (Kruseman and de Ridder, 1990; Bohling et al., 2002). Apart
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Fig. 2. Data from 12 tests in Gems4S. Test sequence is as indicated in Fig. 1. Each
line of points is a sequence of observations from one of the 6 observation points used
in each test.
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from some changes in slope that we attribute to interference from variations
in pumping at neighboring high-capacity wells, the drawdown data continue
to exhibit the same steady-shape behavior (uniformly increasing drawdown
and constant drawdown differences) throughout the 900 s pumping interval for
each test. The next section discusses how we can take advantage of the steady-
shape flow regime to reduce the computational effort involved in analyzing
these data.

For all of the parameter estimation runs described in this paper we have
analyzed the 20–70 second data, at two-second intervals, from the six ob-
servation ports measured in each of the 23 tests, a total of 3588 drawdown
observations. Two motivations for selecting this particular time interval are
that earlier data exhibit oscillations due to inertial effects (Butler and Zhan,
2004) and later data in some tests are influenced by changes in pumping at
the neighboring high-capacity wells, mentioned above.

As a point of reference for the K distributions developed in this study, we
use a K profile developed from an induced gradient tracer test, GEMSTRAC1,
performed at the site, very close to the vertical profile represented in Fig. 1,
as described in Bohling et al. (2007) and in more detail in Bohling (1999).
For this test we injected tracer into a well a few meters to the northeast of
Gems4N and tracked the movement of tracer through a sampling network be-
tween the injection well and a discharge well about 1 meter east of Gems4S.
An estimated profile of vertical variations in flow velocity was developed from
analysis of the tracer breakthrough curves at the samplers, assuming flow and
transport were primarily horizontal during the tracer test. This velocity profile
was converted into a vertical profile of relative K, assuming that the verti-
cal distribution of flux to the discharge well was proportional to the vertical
distribution of K, and then into an absolute K profile through multiplication
by the estimated large-scale average K at the site (0.15 cm/s). Analysis of
the tracer test was complicated by several factors, most notably our inability
to introduce the tracer in a uniform fashion throughout the entire aquifer
thickness. Specifically, most of the tracer was drawn immediately into high-K
zones lower in the aquifer, resulting in an under-sampling of the upper por-
tions of the aquifer. Consequently, the GEMSTRAC1 K profile is probably
too smooth in the upper half of the aquifer. Furthermore, the conversion of the
tracer velocity profile to a K profile is complicated somewhat by unaccounted
for variations in porosity. Nevertheless, as described in Bohling et al. (2007),
several lines of evidence have now converged on a fairly common depiction of
the vertical K distribution in the aquifer at the site and the GEMSTRAC1
profile serves as a reasonable representative of all those results.

3 Analysis Methodology

Flow to a partially-penetrating pumping well in a confined aquifer is governed
by the radial flow equation derived from Darcy’s law and conservation of mass
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(Bohling and Butler, 2001):
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where h is the hydraulic head, r is the radial distance from the center of the
pumping well, z is the vertical coordinate, Kr is the hydraulic conductivity
in the horizontal (radial) direction, Kz is the hydraulic conductivity in the
vertical direction, and Ss is the specific storage of the aquifer. The inner
(pumping well) boundary over the pumping interval can be expressed as(
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where rw is the radius of the pumping well, Q is the pumping rate, and b is
the vertical thickness of the pumping interval. In the simplest case, the left-
hand side of Equation 2 is zero for z values outside the pumping interval. The
numerical model employed in this study actually incorporates a representation
of the wellbore, including the packers isolating the pumping interval, into
the model grid, allowing for simulation of delayed responses due to wellbore
storage (in the transient case) and the impact of the presence of a highly
conductive wellbore. This complicates the expression of the inner boundary
condition, but is somewhat immaterial to the discussion here. In this study,
the upper and lower boundaries of the aquifer are represented as zero-flux
boundaries and the outer boundary, placed a very large radial distance from
the pumping well to minimize its impact, is a zero-drawdown boundary. In
the following we will actually analyze drawdowns, rather than heads. The
drawdown is given by the initial or reference head minus the head at any
given point and time, so that drawdowns increase in response to pumping.

As discussed in Bohling and Butler (2001), a logarithmic transformation
of the radial coordinate,

r′ = ln (r/rw) (3)

allows the radial flow equation to be recast as a two-dimensional Cartesian
flow problem, and that is the approach employed in this study. For increased
flexibility and convenience in analysis, we have developed a set of Matlab rou-
tines implementing a two-dimensional (radial-vertical) flow model very similar
to the Fortran program described in Bohling and Butler (2001), including both
transient and steady-state simulation options. For the steady-state option, the
right-hand side of Equation 1 is zero and no time-stepping is involved. The
code uses a standard node-centered finite difference grid in the transformed
(Cartesian) space, with harmonic averages of grid cell K values used to rep-
resent cell-face conductivities. The logarithmic transformation of the radial
coordinate produces a physical-space grid whose radial cell widths increase
exponentially away from the pumping well. This telescoping grid in the radial
direction reflects the physics of radial flow, with successively larger volumes
of aquifer controlling the head response as the cone of depression expands
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outward (Butler, 1990). It also easily allows placement of the outer radial
boundary, which is something of an artificial characteristic of the model, well
away from the pumping well, reducing its impact. We have used a grid with 70
nodes with a spacing of 0.15 meters in the vertical and 60 nodes with a spacing
of 0.2 along the transformed (logarithmic) radial coordinate. The model grid
is 10.67 meters thick in the vertical direction, with the base (lower edge of
the bottom cell) corresponding to datum (z = 0) in Fig. 1 and other figures.
For the tests with pumping in Gems4N, the origin of the radial coordinate
corresponds to the location of Gems4N and expands to the right in Fig. 1, and
similarly for the tests in Gems4S, with the radial grid expanding to the left.

As discussed in Kruseman and de Ridder (1990), many confined aquifer
systems rapidly reach steady-shape or transient steady state (as they call it)
conditions soon after the initiation of pumping. Under these conditions, the
aquifer volume within a certain radial distance of the pumping well is no longer
contributing water from storage, but is simply serving as a conduit for wa-
ter drawn from further away. In this case, the drawdown configuration inside
that radial distance – let us say, in the region of investigation – has reached a
constant shape and the gradients within the region are no longer changing. In
fact, the gradients, and thus the differences in drawdown between any pair of
locations, have reached their final steady-state values, even though drawdown
is still increasing, in a spatially uniform fashion, over time. The system within
the region of investigation can be conceptualized as a steady-state system re-
sponding instantaneously to a time-varying head boundary at some arbitrary
radius. As described in Bohling et al. (2002), the attainment of steady-shape
conditions allows a considerable reduction in the computational effort required
for pumping test analysis: Observed differences in drawdown from different
locations but common measurement times can be compared to drawdown
differences extracted from a steady-state model. Bohling et al. (2007) demon-
strate that steady-shape conditions are obtained within about 20–30 seconds
at all observation locations for the GEMS tomographic pumping tests and
that steady-shape analyses yield very similar K estimates to fully transient
analyses in a fraction of the computing time.

The steady-shape approach is used for all of the analyses presented here.
Each test involves 26 observation times and six observation locations. For
each observation time, the observed differences between the 15 possible pairs
of observation locations are compared to the corresponding drawdown differ-
ences predicted by a steady-state model. Because these differences are roughly
constant over time, as dictated by the steady-shape conditions, the 26 observa-
tion times essentially yield 26 repeat measurements of each pairwise difference,
yielding a total of 390 observed drawdown differences for each test, and 8970
observed drawdown differences over the set of 23 tests.

The primary objective function for all the analyses employed here is there-
fore the sum of squared differences between observed drawdown differences
and the corresponding drawdown differences predicted by a steady-state model
using the current estimate of the K distribution:
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‖dobs − dprd‖2
2 =

n∑
i=1

(di,obs − di,prd)
2 (4)

where di,obs and di,prd are the ith observed and predicted drawdown differ-
ences, and the sum runs over the n = 8970 observations from the 23 tests.
The left-hand side is the vector representation of the same sum, which will
be referred to hereafter as the residual norm. With the drawdown differences
expressed in centimeters, the residual norm is expressed in squared centime-
ters. To this objective function we add the regularization terms described in
the following sections.

We have used the function lsqnonlin, from Matlab’s optimization tool-
box, to minimize the objective function in each case. This function uses a
trust region-based Newton minimization algorithm described in Coleman and
Li (1996). For the analyses described here, we have provided the lsqnonlin
function with a handle to a function returning the vector of residuals between
observed and predicted drawdown differences, augmented by the “model resid-
ual” components representing the regularization terms. In the absence of a
function handle returning the Jacobian (sensitivity) matrix for the problem,
lsqnonlin uses a finite-difference approximation to the Jacobian.

The fitting parameters in all cases are actually expressed as a vector of
deviations of the natural logarithm of hydraulic conductivity K, in cm/s, from
a reference model, that is as

Y ′ = Y − Y0 = lnK − lnK0 (5)

where K0 represents the reference model. For the zeroth-order Tikhonov reg-
ularization, the regularization terms added to the objective function represent
the sum of squared values of Y ′, referred to as a the model norm, multiplied
by a regularization parameter.

Even before adding the regularization terms we restrict the parameter
space for the inversion significantly by imposing a layered zonation on the
model: The 70 cells in the vertical direction are partitioned into 35 layers,
each 0.3 meters (two grid cells) in thickness, so that the parameter vector
consists of the Y ′ values associated with these 35 layers. While restricting the
investigation to a characterization of the K field in terms of strictly vertical
variation may seem relatively modest compared to the aims of tomography,
this represents a logical first step in analyzing these tests for several reasons.
First, within the lateral distance (about 10 meters) investigated by these tests,
we would expect vertical variation to be the predominant aspect of hetero-
geneity in the K field. Secondly, as in geophysical tomography, we expect this
test configuration to be primarily sensitive to vertical variation. Finally, the
geophysical data that we have available consist of vertical profiles of radar
velocity and attenuation from a zero-offset radar profile run between Gems4N
and Gems4S, so that a layered representation of the K field allows a more
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natural means to exploit that geophysical information. Analysis of the tomo-
graphic pumping test using a less restrictive representation of the K field is
underway.

It is to be noted that the steady-shape analysis does not involve the aquifer
specific storage, Ss. In fact, the establishment of steady-shape conditions dic-
tates that the drawdown differences in the region of investigation are no longer
sensitive to the storage properties of that region. In addition, we have assumed
that Kz = Kr since we have not seen evidence of significant anisotropy at this
site.

In the next section we investigate addition of a regularization term to
the inversion problem to incorporate a priori information on the K model,
represented in terms of a uniform background model, and then incorporate
the available geophysical information through representation of the estimated
Y = lnK values as an arbitrary smooth function of the geophysical parame-
ters, in Sect. 5.

4 Regularization Relative to Uniform Model

In this section we apply zeroth-order Tikhonov regularization relative to a
uniform background model to the analysis of the tomographic pumping tests.
Tikhonov regularization is commonly applied in geophysical tomography, as
described in Aster et al. (2005). Tonkin and Doherty (2005) discuss the use
of Tikhonov regularization for inverse problems in hydrogeology. Aster et al.
(2005) point out that Tikhonov regularization is very much like Bayesian
approaches for incorporating a priori model information into the inversion,
but without the explicit formulation in terms of a probabilistic model.

In this analysis we have used a background model of Y0 = lnK0 =
ln(0.15 cm/s) = −1.9 and the objective function is formulated as

F (Y ′) =
n∑

i=1

(di,obs − di,prd)
2+

35∑
j=1

(
αY ′

j

)2 = ‖dobs − dprd‖2
2+α2

∥∥LY′∥∥2

2
(6)

where α is the regularization parameter. The vector representation on the right
expresses the model norm in terms of a matrix, L, multiplying the vector of
parameters. For zeroth-order regularization, this matrix is simply the identity
matrix. For zeroth-order regularization, increasing α increases the penalty
on deviations from the reference model, Y0. Higher orders of regularization
penalize deviations of the estimated parameters from a smooth model. For
first-order regularization, an L matrix yielding first differences of Y ′ would be
employed, penalizing variations in the (approximate) first spatial derivative of
Y ′, whereas L would be the finite-difference approximation to the Laplacian,
yielding second differences, for second-order regularization. Rather than sim-
ple first- and second-order differences, the regularization term could also be
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expressed in terms a spatial covariance model, in order to impose an expected
spatial correlation structure on the estimates (Doherty, 2003).

Aster et al. (2005) recommend the use of L-curve plots to examine the
tradeoff between the residual norm and the model norm with variations of
the regularization parameter, α. Figure 3 shows such a plot for the zeroth-
order regularized inversion of the tomographic pumping test data. For this
analysis we used 16 α values ranging from 0.001 to 1.0 in equal logarithmic
increments and, for each value of α, performed five different inversions starting
from a different initial estimate for Y ′. The initial Y ′ vectors were populated
with zero-mean Gaussian random numbers with a small standard deviation,
in order to test the sensitivity of the inversion process to small variations
in the initial estimates. Thus, Fig. 3 contains five points, corresponding to
the five inverse results, for each value of α. Ideally, the L-curve will show
a distinct “corner”, pointing towards the origin of the plot, and this corner
point represents the optimal balance between data fit and model deviations
(Hansen, 1992). The plot in Fig. 3 does show a reasonably well defined corner,
corresponding to a residual norm of 260 cm2 and a model norm of 46, which
are obtained for α = 0.1.

Figure 4 shows the residual norm versus α, demonstrating that the model
norm ceases to decrease significantly as α decreases below 0.1. Taken together,
Figs. 3 and 4 seem to indicate that 0.1 is a reasonable value for the regulariza-
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Fig. 3. L-curve for zeroth-order Tikhonov regularized inversion of tomographic
pumping tests using layered zonation. Lines drawn for alpha = 0.1, with residual
norm of approximately 260 cm2 and model norm of 46 (squared deviations of lnK
from reference value).
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Fig. 4. Residual norm versus regularization parameter for zeroth-order Tikhonov
regularized inversion of the tomographic pumping tests.

tion parameter, representing the maximum amount of model regularization
that can be achieved without significant degradation of the model fit.

To illustrate the tradeoff between residual norm and model norm, Figs. 5
and 6 show the crossplots between observed and predicted drawdown differ-
ences and the corresponding K profiles developed for four values of α, 0.06,
0.10, 0.16, and 0.25, and one of the five “realizations” of the inversion, namely
that starting from the third of the five initial vectors. The background model
of K = 0.15 cm/s is represented by the vertical line in each panel of Fig. 6, and
the damping effects with increasing regularization are clear in the plot. Note
that the estimates tend to stay closer to the background value in the upper
and lower portions of the aquifer. The data are less sensitive to the K val-
ues in these regions due to the decreased “coverage” of the test configuration
(Fig. 1) near the top and bottom of the aquifer. Therefore, the regularization
term exerts more influence in these areas.

Figure 7 shows the K profiles developed from the inversion runs starting
from the five different initial Y ′ vectors, together with the K profile developed
from the GEMSTRAC1 tracer test. These five profiles have many features in
common, demonstrating that the inversion results are not overly sensitive
to small variations in the initial vectors. The standard deviation of the ran-
dom values in these initial vectors is about 0.1, in log space, compared to
standard deviations of about 1.2 for the final Y ′ profiles, so that the initial
“noise” is about 1/10th the level of the final level of variability in each profile.
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Fig. 5. Observed and predicted drawdown differences for “realization 3” using dif-
ferent values of the regularization parameter, α (“alpha” in the panel captions).

An important result of comparing estimated profiles for different starting vec-
tors, and across different levels of regularization, as in Fig. 6, is to see which
features appear consistently, as these can be taken as the features which are
most demanded by the data. The double-peaked structure of high-K zones
between about 4 and 5.5 meters above datum is reasonably consistently re-
produced in the profiles in Fig. 7, and this structure probably corresponds
with the double-peaked structure in the GEMSTRAC1 profile, although with
a bit of a depth shift. In addition, the high-K peak just above 2 meters above
datum in the GEMSTRAC1 profile seems to be matched by corresponding
peaks in the tomography profiles for trials 1, 3, and 4, although this peak is
obscured by extended regions of high K in the lower portions of the profiles
for realizations 2 and 5.

The tomography profiles show considerably more structure in the upper
portion of the aquifer than does the GEMSTRAC1 profile. In fact, the GEM-
STRAC1 tracer test did not sample the upper portion of the aquifer ade-
quately, due to the fact that most of the tracer was drawn into the high-K
zones lower in the aquifer. Therefore, the upper portion of the GEMSTRAC1
K profile is probably smoother than it should be. Another reason for the
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Fig. 6. Corresponding K profiles for the data fits shown in Fig. 5.
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Fig. 7. Profiles of five different zeroth-order Tikhonov regularized inversion results
for α = 0.1, together with the K profile developed from the GEMSTRAC1 tracer
test (gray curve).
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difference in character between the GEMSTRAC1 K profile and the tomog-
raphy profiles is that the GEMSTRAC1 profile was essentially developed in
“arithmetic K” space, rather than “log K” space, and consequently does not
show the same level of variability at the low K end as is exhibited in the
tomography profiles.

As discussed in Doherty (2003), the reference model, Y0, could be gener-
ated in a number of ways and needn’t be a simple uniform model. For example,
the fitted Y ′ values could represent deviations from a model generated through
stochastic simulation or kriging from existing data.

5 Regularization Relative to Geophysical Attributes

Figure 8 shows the K profile derived from the GEMSTRAC1 tracer test to-
gether with vertical profiles of radar velocity and attenuation derived from
a zero-offset survey between Gems4N and Gems4S. Bohling et al. (2007) de-
scribe the acquisition of the radar data in more detail. In that work we em-
ployed the radar data to assist in the zonation of the flow model employed in
analyzing the tomographic pumping tests, on the presumption that the elec-
tromagnetic and hydraulic properties of the aquifer sediments are governed
to some extent by the same underlying lithologic variations. Based on cluster
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Fig. 8. GEMSTRAC1 K profile compared to velocity and attenuation profiles ob-
tained from a zero-offset radar survey between Gems4N and Gems4S.
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analysis of the radar velocity and attenuation data, we defined four more
coarsely layered zonations, with five, seven, ten, and thirteen layers, and esti-
mated K values for those zones in the pumping test analysis. Comparisons to
K profiles developed using equal-thickness zonations with comparable num-
bers of layers and with other hydraulic test data from the site seems to indi-
cate that the radar data does indeed contain useful information regarding the
hydraulic structure of the aquifer.

Here we will attempt to exploit more direct quantitative correlations that
might exist between K and the radar properties by incorporating the velocity
and attenuation profiles into our estimation of the 35-layer K profile through
a regularization term specifying our desire for the estimated Y = lnK profile
to be nicely represented as a smooth function of the radar attributes. Prior to
doing so, we should ask ourselves what relationships we might expect to see
between these properties and what relationships, if any, seem to be indicated
by the available data. A glance a Fig. 8 gives the impression of a positive corre-
lation between the GEMSTRAC1 lnK profile and both of the radar property
profiles, at least in the lower half of the aquifer. In fact, the collocated profiles
are not as strongly correlated as one might guess from Fig. 8. Considering
the entire sequence where radar data are available, from 2.3 to 10.7 meters
above datum, there is a linear correlation of 0.16 between lnK and radar
velocity and 0.44 between lnK and attenuation. Considering only data below
7 meters, the correlations change to 0.41 between lnK and velocity and 0.21
between ln K and attenuation. As mentioned above, it is possible that the
GEMSTRAC1 profile is smoother than it should be in the upper portion of
the aquifer, so the latter results may be more representative of the “true”
relationship between the properties.

However, the observed correlation between lnK and velocity is opposite in
sign to what one might initially expect based on general physical principles.
As a first approximation, radar velocity is inversely proportional to the square
root of the dielectric constant or relative permittivity of the medium (Annan,
2005) and the square root of the dielectric constant is expected to increase
in proportion to the porosity in a water-saturated medium (Wharton et al.,
1980). Therefore, higher velocities would generally be taken as an indication
of lower porosity and vice-versa. All other factors being equal, one generally
expects K to increase with increases in porosity. Thus, the observed positive
correlation between ln K and radar velocity is opposite to initial expectations.
However, it could very well be that there is not a simple monotonic relationship
between porosity and K at GEMS, due to the influence of other factors such
as sorting and sediment fabric.

Increasing radar attenuation is generally taken as an indication of increas-
ing electrical conductivity and in clay-free, coarse-textured sediments one ex-
pects to see increasing conductivity with increasing porosity (Lesmes and
Friedman, 2005). Therefore, a positive correlation between lnK and attenua-
tion is not unexpected.
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To incorporate the radar velocity and attenuation into the lnK estima-
tion without needing to specify the exact form of the relationship between
these properties in advance, we have added a regularization term that pe-
nalizes deviations between the current estimate of the Y = lnK profile and
that predicted from radar attributes using a smoothing spline model. We also
retain the regularization relative to a uniform background model, Y0, with the
corresponding regularization parameter fixed at α0 = 0.1, as developed in the
previous section. It is quite possible that the optimal value of α0 would change
with the addition of the regularization term relative to geophysical properties,
but for simplicity we do not explore that option here. The complete objective
function is now given by

F (Y ′) = ‖dobs − dprd‖2
2 + α2

0

∥∥LY′∥∥2

2
+ α2 ‖(Y′ + Y0) − f (v, γ;Y′ + Y0)‖2

2

(7)

where α now represents the regularization parameter relative to the geophys-
ical parameters and f (v, γ;Y′ + Y0) represents the smoothing spline model
approximation of Y = Y′ + Y0 based on the radar velocity and attenuation,
v and γ. It is important to emphasize that this smoothing spline model relates
the current estimate of Y, as the response variable, to the radar attributes, as
predictor variables, and is therefore re-estimated at each step of the inversion
process. The spline function does not depend in any way on “hard” K data or
previously existing estimates of K (such as those from GEMSTRAC1), but is
instead developed in an iterative fashion as part of the inversion process.

In this work we have used the thin-plate smoothing spline implemented
in the tpaps function in Matlab’s spline toolbox. As described in Hastie et al.
(2001), a thin-plate spline builds an approximation of the response variable
(Y in this case) from a set of radial basis functions centered on the predic-
tor variable (v and γ) data points, with a smoothing parameter chosen to
optimize the balance between model fit and model smoothness, measured in
terms of the second derivative of the modeled response function. In this study,
the predictor variables, v and γ, represent standardized versions of the radar
velocity and attenuation, each scaled to zero mean and unit standard devia-
tion to equalize their weight in the developed model. The model relates the
estimated Y values to the standardized radar attributes, v and γ, for the 28
model layers encompassed by the radar profiles and is developed to minimize
the following residual sum of squares:

RSS (f, p) = p

28∑
i=1

{Yi − f (vi, γi)}2 + (1 − p) R (f) (8)

where R (f) is the integral of the second derivative of f(v, γ). The tpaps func-
tion uses an ad-hoc procedure for estimating the smoothing parameter, p,
based on the distribution of data points in predictor variable space. In this
particular case, the selected smoothing parameter is p = 0.23.

Other nonparametric smoothing models, such as neural networks or locally-
weighted regression (Hastie et al., 2001) could also be used in place of a
smoothing spline and the response function could easily incorporate multiple
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variables, if additional geophysical (or other) attributes were available. In
addition, we have used a smoothing function relating lnK only to the collo-
cated values of radar velocity and attenuation, interpolating the radar profiles
to the centers of the 28 model layers covered by the geophysical profiles (with
the seven K zones at the bottom of the aquifer remaining “unregularized”).
The smoothing function could also be formulated to incorporate spatially
lagged or averaged geophysical attributes if that were deemed appropriate.

Regardless of the exact nature of the smoothing function, increasing the
regularization parameter, α, will force the estimated Y values to more closely
match the characteristics of the geophysical attributes. Because the form of
the relationship is not specified in advance of the inversion, an a posteriori
assessment of its plausibility, after the inversion is complete, is required.

We have run a series of inversions using the objective function expressed
in Equation 7, with 16 α values again ranging from 0.001 to 1.0 in equal log
increments, and with the background model regularization parameter, α0,
fixed at 0.1. As before, we have run five different inversions, starting from
the same set of five initial Y ′ vectors, for each value of α. Figure 9 shows
the trade-off between the drawdown difference residual norm and the spline
fit residual norm for these runs and Fig. 10 shows the plot of the drawdown
difference residual norm versus α. In this case, as α increases, placing more
weight on the third term in Equation 7, the developed lnK profile will more
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Fig. 9. “L-curve” for regularization relative to spline function of geophysical pa-
rameters. The lines indicate the results for α = 0.25, with a drawdown difference
residual norm of 657 cm2 and a spline fit residual norm of 2.23.
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Fig. 10. Drawdown difference residual norm versus regularization parameter for
regularization relative to geophysical parameters.

strongly reflect the radar attributes, reducing the spline fit residual norm and
(most likely) increasing the sum squared residual between observed drawdown
differences and those precdicted by the flow model. Unfortunately, as shown
in Fig. 9, this tradeoff does not follow a clear L shape in this case, making
it somewhat difficult to select an appropriate value of α. For the sake of
demonstrating the ability of the proposed technique to imbue the Y estimates
with the characteristics of the geophysical data, we will focus on the results
for α = 0.25, even though this is probably too strong a regularization. The five
results for α = 0.25 on Fig. 9 show an average drawdown difference residual
norm of 657 cm2 and a spline fit residual norm of 2.23. It is clear from Fig. 10
that a choice of α = 0.25 represents a fair amount of degradation in data fit
relative to smaller values of α, meaning we have selected a value that is fairly
strongly weighted towards regularization.

Figures 11 and 12 examine the tradeoff between data fit and regularization
in detail, again for the inversions starting from the third of five different initial
Y ′ vectors. The degradation in data fit and the increasing conformance of the
K profile to the geophysical parameters with increasing α is quite clear in
these figures. Figure 13 compares the K profile (on a log scale) for α = 0.25
to the profiles of the radar velocity and attenuation, demonstrating that the
regularization has strongly imbued the estimated K profile with the character
of the geophysical attributes, especially the radar velocity. Indeed, one might
say that this log K profile looks too much like the velocity profile and that
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Fig. 13. Estimated K profile (solid line, left panel) for trial 3 with α = 0.25 together
with spline model prediction of K profile (gray dashed line, left panel) and radar
velocity and attenuation profiles (next two panels).

a lesser degree of regularization might be appropriate. The high-K zone near
the top of the aquifer, where the tomogrpahic pumping test sampling is less
dense, is inherited directly from the velocity profile. The log K profile shown
in Fig. 13 shows a fairly strong linear correlation, 0.60, with the radar velocity
and a moderate negative correlation, −0.25, with the radar attenuation. Thus,
both of these relationships are opposite to initial physical expectations, as
described above. Nevertheless, as discussed in Hyndman and Tronicke (2005),
relationships between hydrologic and geophysical parameters are both and
uncertain and non-unique, and therefore need to be developed on a site-specific
basis. Additional investigation would be required to determine the plausibility
of the relationships developed here, but both the GEMSTRAC1 profile and
the results presented in Bohling et al. (2007) indicate the presence of a positive
correlation between K and radar velocity at this site. In contrast, the log K
profile developed using a regularization parameter of 0.1 (first panel of Fig. 12)
exhibits a correlation of 0.27 with the radar velocity, more in keeping with
that displayed by the GEMSTRAC1 profile, and essentially no correlation
with the radar attenuation. This may in fact represent a more reasonable
level of regularziation.

The dashed gray line in the left panel of Fig. 13 represents the spline model
prediction of log K as a function of the radar attributes. Again, it is important
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Fig. 14. Smoothing spline relationship developed between log K and radar at-
tributes for K field estimated using α = 0.25, trial 3.

to keep in mind that the spline model relates the log K values estimated by
the inversion (solid line in the left panel of Fig. 13) to the radar attributes and
that the inversion has been strongly encouraged to produce a log K distribu-
tion that can be nicely represented as a spline function of the radar attributes.
The differences between the spline model representation of K and the K val-
ues estimated by the inversion are dictated by the other two terms in the
objective function – namely the data misfit and the deviations from a uni-
form background log K model. Figure 14 shows the smoothing spline model
itself. The points in this plot represent the log K estimates from the inversion
process (those represented by the solid line in the left pane of Fig. 13) plot-
ted versus the corresponding values of scaled radar velocity and attenuation
for the 28 model layers with radar data. The surface represents the resulting
smoothing spline model. This function is nonlinear and non-monotonic along
both predictor variable axes, demonstrating the ability of the proposed tech-
nique to accommodate fairly arbitrary relationships between hydrologic and
geophysical parameters.

Figure 15 shows the log K profiles developed from the five different Y ′

starting vectors using α = 0.25. Not surprisingly, all five profiles look quite a
bit like the radar velocity profile, demonstrating the reduction in variability
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Fig. 15. Five inversion results using α = 0.25 for regularization relative to the
geophysical parameters, along with the GEMSTRAC1 K profile.

that one would hope to obtain from incorporation of geophysical data, at the
cost of imposing perhaps too strong a dependence on that data in this case.

6 Conclusions

In this study we have investigated a simple approach for fusing hydrogeological
and geophysical information by direct inclusion of the geophysical informa-
tion in a regularization term representing our desire for the hydrogeological
parameters estimated in an inverse analysis to reflect the spatial character
of geophysical parameters. Rather than specifying the functional form of the
relationship in advance, we have used a smoothing spline model to represent
the relationship between the hydrogeological parameter, in this case the log-
arithm of hydraulic conductivity, lnK, and the geophysical parameters, radar
velocity and attenuation. At each step of the hydrologic inversion, the smooth-
ing spline model sees the current estimate of lnK as the response variable to
be modeled as a function of velocity and attenuation and thus the inclusion
of this regularization term tends to drive the developing lnK profile towards
one that can be represented as a smooth function of the geophysical parame-
ters, the more so as the regularization parameter increases. In fact, with a
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large enough regularization parameter, the estimated hydrologic parameters
can be forced to be almost a replica of the geophysical parameters, mean-
ing that this approach requires a careful assessment of the tradeoff between
data fit and regularization and of the plausibility of the developed relation-
ships, based on prior expectations derived from available field data or physical
models. Nevertheless, this method provides a simple means for incorporating
geophysical information into hydrogeological estimation problems, especially
where limited field data are available for developing a relationship between
hydrogeological and geophysical parameters in advance of the inversion.

The use of a non-parametric, adaptive model relating the hydrogeolog-
ical and geophysical parameters allows the development of fairly arbitrary
relationships between these parameters as the inversion proceeds. All we ask
is that the relationship be smooth in some fashion; the character of the re-
lationship could in fact vary from one portion of the geophysical parameter
predictor variable space to another. Other adaptive models, such as neural
networks or locally weighted regression models, could be used in place of a
smoothing spline model and the method could be extended to incorporate any
number of auxiliary parameters.
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1 Introduction

Floods account for about 15% of the total death toll related to natural disas-
ters, wherein typically more than 10 million lives are either displaced or lost
each year internationally (Hossain, 2006). Rainfall is the primary determinant
of floods and its intimate interaction with the landform (i.e., topography, veg-
etation and channel network) magnified by highly wet antecedent conditions
leads to catastrophic flooding in medium (i.e., 1000 ∼ 5000 km2) and large
(i.e., >5000 km2) river basins. Furthermore, floods are more destructive over
tropical river basins that lack adequate surface stations necessary for real-time
rainfall monitoring – i.e., the ungauged river basins (Hossain and Katiyar,
2006) (see Figure 1, left panel).

However, flood prediction is becoming ever more challenging in these
medium-to-large river basins due to the systematic decline of in situ rain-
fall networks world-wide. The gradual erosion of these conventional rainfall
data sources has lately been recognized as a major concern for advancing hy-
drologic monitoring, especially in basins that are ungauged or already sparsely
instrumented (Stokstad, 1999; Shikhlomanov et al., 2002). As a collective re-
sponse, the hydrologic community has recently established partnerships for
the development of space-borne missions for cost-effective, yet global, hy-
drologic measurements. The most pertinent example in the context of flood
prediction is the Global Precipitation Measurement (GPM) mission for global
monitoring of rainfall (Smith et al., 2007). Hence, there is no doubt that the
hydrologic community as a whole will gradually become dependent on GPM
for a substantial part of its rainfall data needs for hydrologic research and
operational monitoring.
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Fig. 1. Left panel – global distribution of in-situ rainfall gages showing the sparse
and unevenness in the underdeveloped world (source: http://www.cpc.noaa.gov).
Right Panel – Constellation of anticipated GPM satellites. The larger satellite on
the left represents the core with a radar on board, while the rest carry polar orbiting
PMW sensors (source: http://gpm.gsfc.nasa.gov).

GPM now beckons hydrologists as an opportunity to improve flood pre-
diction capability in ungauged basins. However, before the potential of GPM
can be realized, there are a number of hydrologic issues that must be ad-
dressed. Our success in leveraging the GPM to improve flood prediction will
depend largely on the recognition of these issues and the feedback provided
by hydrologists on the assessment of satellite rainfall data to the satellite data
producing community (Hossain and Lettenmaier, 2006). The purpose of this
chapter is to articulate these hydrologic issues that require further research
and highlight the recent progress made in understanding them in the hope
that satellite rainfall data can be used in hydrologic models more effectively
in future.

2 Overview of Satellite Rainfall Remote Sensing
and GPM

The heritage of GPM originated two decades ago when Infrared (IR) ra-
diometers on geostationary satellites were launched to provide high reso-
lution measurement (Griffith et al., 1978). While geostationary IR sensors
have substantial advantages in that they provide essentially continuous ob-
servations, a major limitation is that the quantity being sensed, cloud top
temperature, is not directly related to precipitation (Huffman et al., 2001).
Subsequently, space-borne passive microwave (PMW) radiometers evolved as
a more dependable alternative (in terms of accuracy) a decade later. PMW
sensors work on the principle that naturally emitted radiation in the mi-
crowave frequencies greater than 20 GHz is dictated by the composition of
atmospheric hydrometeors. PMW sensors are considered more accurate un-
der most conditions for precipitation estimation over land than their IR
counterparts.
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In 1997, the Tropical Rainfall Measuring Mission (TRMM), the first
space-borne active microwave (AMW) precipitation radar (TRMM-PR), was
launched. Although radar generally is the most accurate remote sensing tech-
nique for precipitation estimation, radar technology is costly, and TRMM-PR
has limited spatial coverage (at latitudes between about 35◦ S and 35◦ N)
with a sampling frequency about once per day. Therefore, the constellation
of PMW sensors continue to represent a compromise between IR sensors and
TRMM-PR in terms of sampling frequency, accuracy, and global coverage.
GPM is therefore being planned now as a global constellation of low earth
orbiting satellites (some of them existing) carrying various PMW sensors
(Smith et al., 2007). It will essentially be an extension of the TRMM mis-
sion in space and time, which would provide near-global coverage of land
areas, and would formally incorporate a means of combining precipitation
radar with PMW sensors to maximize sampling and retrieval accuracy. The
GPM Core satellite will be similar in concept to the TRMM satellite, and
will house precipitation radar of improved accuracy as well as a PMW sensor
(Figure 1, right panel). Through this configuration, GPM aims to provide co-
herent global precipitation products with temporal resolution ranging from 3
to 6 hours and spatial resolution in the range 25–100 km2 (Smith et al., 2007;
also http://gpm.gsfc.nasa.gov).

A major benefit offered by the GPM program would be the increased
availability of microwave rainfall data that will be cooperatively provided
from multiple platforms by several independent programs at a high tempo-
ral resolution (∼3 hours). It must however be noted by the hydrologist that,
the microwave overpasses yield only instantaneous rainfall estimates rather
than accumulated rainfall totals that are typically used as input in hydrologic
models. Caution and thoughtful preprocessing are needed before investigating
the usefulness of satellite rainfall data for flood prediction (discussed in detail
later). Furthermore, hydrologists need to be cognizant of the current avail-
ability of a large number of ‘combined’ satellite algorithms that function on
the basis of both geostationary IR and PMW data. It is currently not known
what role IR-based algorithms, if any, will continue to play for flood predic-
tion during the GPM-era as the frequency of the more accurate PMW data
increases many folds. Promising newer algorithms that combine the IR data
more intelligently and yet manage to retain the strength of PMW algorithms
should be kept in the hydrologist’s shortlist of potential input data sources
over ungauged basins (Joyce et al., 2004).

3 Current Knowledge Gaps on Satellite-Based Flood
Prediction

3.1 The Process-Based Knowledge Gap

Understanding the current knowledge gaps on satellite based flood prediction
is critical to successful application of satellite rainfall data over regions lacking
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access to a conventional rainfall data source. The central theme on the current
knowledge gap deals with the hydrologic implications of uncertainty of the
satellite rainfall estimates. This satellite estimation uncertainty manifests as
a result of the mismatches in the identification of rainy and non-rainy areas
by the satellite algorithm, while considerable hydrologic implication exists for
this uncertainty due to the spatial scaling properties of the river basin (Wood
et al., 1990). The focus of this chapter is however, mostly on the former issue
(i.e., satellite rainfall uncertainty) in an independent manner, even though
we recognize that the basin scaling properties would play a definitive role in
dictating the optimal use of satellite rainfall data for flood prediction.

Although there are several sources of uncertainty that complicate our un-
derstanding of flood prediction accuracy (see for example, Georgakakos et al.,
2004), the principal source of uncertainty is, undoubtedly, rainfall (Kavetski
et al., 2006a, 2006b; Hossain et al., 2004a, 2004b; Krzyzstofowicz, 1999, 2001).
In a recent study, Syed et al. (2004) corroborated this further by demonstrat-
ing that 70%-80% of the variability observed in the terrestrial hydrologic cycle
is, in fact, attributed to rainfall. For the case of satellite rainfall estimation,
this uncertainty can lead to unacceptably large uncertainties in runoff simula-
tion (Nijssen and Lettenmaier, 2004). Thus, if satellite rainfall data are to be
critically assessed of the opportunities they possess for river flood prediction
over large ungauged basins, it is important that we first understand the error
propagation that is associated with satellite-estimated rainfall.

An error propagation of satellite rainfall estimates for flood prediction
applications requires the derivation of the probability distribution of sim-
ulated stream flow involving the following three components: (1) a proba-
bilistically formulated satellite rainfall model that can simulate realistic and
equi-probable random traces of satellite-like rainfall estimates; (2) a determin-
istic or probabilistic hydrologic model for the rainfall-runoff transformation
to floods; and (3) a Monte Carlo (MC) framework linking (1) and (2). The
fully random MC sampling can be currently considered the most preferred
method for such uncertainty analysis due to ever-increasing computing power
(Hossain et al., 2004c). Other reasons for the widespread preference of MC
techniques are their lack of restrictive assumptions and completeness in sam-
pling the error structure of the random variables (Beven and Freer, 2001;
Kremer, 1983).

However, the traditional MC approach to modeling stream-flow error prop-
agation exhibits limited physical insight of the role played by each hydrologic
process control comprising the flood phenomenon. This is because the hydro-
logic model in a typical MC uncertainty assessment would be applied as a
black-box unit for transforming the rainfall to runoff. While the more sophis-
ticated physically-based and fully distributed hydrologic models are capable
of simulating the individual water cycle components in the continuum of space
and time, the problem of identifying the make up of streamflow as a function
of various runoff components nevertheless persists. The derived runoff error
distribution is thus consequently marginal, regardless of the type of hydrologic
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model use (conceptual-lumped or physically-based and distributed) because of
its functional integration over the major hydrologic processes on the land sur-
face. This distribution can not be isolated into components that can be linked
directly to the individual hydrologic process controls or the nature of its phys-
ical representation (such as, infiltration, base flow, evaporation, etc.). To the
best of our knowledge, there has not been any successful attempt to relate
the marginal distribution of streamflow simulation error to these individual
process controls. Existing literature provides little indication of a coherent
agenda to explore the role of hydrologic process controls in the context of
advancing satellite-based flood prediction over ungauged river basins.

But how exactly does the study of flood prediction uncertainty as a func-
tion of hydrologic process controls and satellite rainfall estimation error help
in serving the greater scientific agenda of protecting mankind from the flood-
ing hazard? For any given river basin, flood prediction needs are unique (e.g.,
one may be interested in stream-flow prediction at the basin outlet or distrib-
uted simulation of water levels for the entire river network). A hydrologist is
faced with a wide variety of geology, soils, initial wetness, vegetation, land use
and topographic characteristics that affect the relationship between rainfall
and runoff in the most unique ways. This relationship consequently affects
the relationship between rainfall estimation error and runoff simulation error.
While detailed information on the land surface may not always be available,
especially for ungauged basins, approximate characteristics such as dominant
overland flow mechanism (saturation excess vs. infiltration excess), extent of
evapotranspiration (low vs. high vegetation), flow regime in channels (low-
mild vs. steep channel slopes) are reasonable to be known a priori. Thus, if
the role played by each hydrologic process control in transforming the rainfall
estimation error to stream-flow error could be understood, then, ideally, one
would be better poised to wisely select a hydrologic model with “commensu-
rate” process representation that yields “acceptable” error propagation. These
would allow the hydrologist to make an informed decision on his choice for a
hydrologic model for flood mitigation purposes in an ungauged basin on the
basis of the quality of satellite rainfall data available to him.

3.2 The Scale-Based Knowledge Gap

Another knowledge gap that we must recognize in the context of flood pre-
diction is the complexity of the error structure of satellite rainfall data. Un-
like radar rainfall estimation, where after careful quality control and error
adjustments, the residual error is associated primarily with a random com-
ponent that usually has modest space-time correlation, satellite precipita-
tion retrieval uncertainty is associated with correlated rain/no-rain detection
and false alarm error characteristics as well as systematic and random rain
rate error components with non-negligible spatio-temporal correlation lengths.
Hossain and Anagnostou (2006a) have recently demonstrated the complex na-
ture of this satellite error structure using a ground validation site over the
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Oklahoma Mesonet region. Furthermore, different satellite rainfall algorithms
would have different error characteristics, while the combined multi-sensor al-
gorithms may be expected to have a more complex error structure depending
on the type of calibration data used in the making. Nonetheless, most attempts
to characterize errors in satellite precipitation retrievals to date portray the
error structure using metrics that can be argued as overly simplistic, and ulti-
mately misleading relative to the hydrologic potential of GPM. For instance,
error metrics limited to ‘bias’ and ‘random error’ parameters have been used
to define the minimum success criteria of GPM and other community efforts
like the Pilot Evaluation of High Resolution Precipitation Products (PEHRP,
Turk et al., 2006). For flood prediction, these metrics are probably not ade-
quate, even though they may serve a very useful purpose at meteorological
scales. The desire for progression to finer (spatial) scales in satellite precipi-
tation estimation is in fact counter-balanced by increasing dimensionality of
the retrieval error, which has a consequently complex effect on the propaga-
tion through land surface-atmosphere interaction simulations. This in turn
has tremendous implications for the spatial and temporal scales at which hy-
drologic models can reasonably be implemented, or rather, the scale at which
optimal data use is feasible.

As an example, consider the dynamic process of vertical soil moisture
transport. The water flux in soil is governed by the cumulative effect of infil-
tration, runoff, gradient diffusion, gravity, and soil water extraction through
roots for canopy transpiration. All these processes exhibit dynamic variability
in the ranges of minutes to hours over scales of cm2 to km2. However, satellite
precipitation algorithms of today cannot hope to resolve these resolutions. It
is even doubtful if the future space-borne precipitation remote sensing can
independently deliver the rainfall data at the resolution where surface hydrol-
ogy is dominant, which is at considerably smaller space-time scales than the
typically coarser meteorologic scale at which satellite data is produced. As a
minimum, there is a need to understand the spatial resolution to which satel-
lite products can realistically be disaggregated (see Margulis and Entekhabi,
2001 and Venugopal et al., 1999 for example) and to estimate the resulting er-
ror structure, and its interaction with hydrologic models which produce flood
forecasts. The scale incongruity between meteorological process data and its
hydrologic application represents a competing trade off between lowering the
satellite retrieval error versus modeling land-vegetation-atmosphere processes
at the finest scale possible. While much remains to be done to define these
trade-offs towards optimal use of satellite rainfall data in hydrologic models,
it may well not be possible to implement GPM products at scales as fine as
those cited above (e.g., 5 km), and that the 25-100 km resolutions suggested
by Smith et al. (2007) may perhaps be more realistic and reliable for the
hydrologist for flood prediction.

A major problem encountered in application of satellite rainfall data is
that the frequency of complex mis-matches (with the ground-truth) increases
as the satellite rainfall data is progressively reduced in scale (as alluded earlier
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Fig. 2. Successful and unsuccessful rain and no-rain detection by MW and IR
sensors referenced with TRMM-PR observations.

in Section 3.1). We can demonstrate this phenomenon through an example on
the detection performance of two types of satellite rainfall types. Figure 2
demonstrates typical detection capabilities for rain and no-rain for two dif-
ferent sensors (PMW – left panel; IR-right panel) using the most accurate
space-borne rainfall data derived from the TRMM Precipitation Radar (PR)
as ‘ground-truth’ (data product name 2A25). The presence of definitive spa-
tial structures of detection of rain and no-rain as a function of sensor-type is
clearly evident. This detection capability is also known to be strongly influ-
enced by scale and rainfall rates (Hossain and Anagnostou, 2006a).

The success in resolving the scale incongruity to a level practically feasible
for flood prediction will therefore rest on the feedback between hydrologists
and meteorologists (the typical algorithm and data producers). Even though
the efforts at addressing hydrologic prediction uncertainty (Beven and Binley,
1992) are probably as mature as the efforts to characterize uncertainty of re-
mote sensing of rainfall (North and Nakamoto, 1989), both efforts have evolved
independently. This lack of feedback can be attributed to the absence of proper
metrics and frameworks that are interpretable by both end-user hydrologists
and producer meteorologists. Two satellite rainfall algorithms with similar
bias and root mean squared error (RMSE) can have much different error
propagation properties when used in hydrologic models (Lee and Anagnostou,
2004). Thus hydrologists today are therefore left with inadequate metrics to
identify optimal data use and thereby communicate to the data producers on
the desired minimum criteria for a satellite mission to be effective in flood
prediction at pertinent scales and geographic location.
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4 Modeling Satellite Rainfall Error Complexity

Current satellite error models target mostly PMW sensor retrievals focusing
primarily on the sampling uncertainty due to the low frequency of satellite
overpasses (for a detailed review see Astin, 1997; Steiner et al., 1996; Bell,
1987; Bell et al., 1990; Steiner et al., 2003; Gebremichael and Krajewski,
2004). Recently, Hossain and Anagnostou (2004a,b) have provided evidence
that a detailed decomposition of the satellite rainfall error structure with
explicit formalization of the uncertainty in rainy/non-rainy area delineation
can contribute to improving our understanding of the implications of satellite
estimation error on land surface simulation parameters for fine-scale hydro-
logical processes (such as floods and soil moisture dynamics). There are also
other notable models formulated recently to characterize the error structure
of satellite rainfall data that may be of interest to the hydrologist to advance
satellite based flood prediction (Bellerby and Sun, 2005; Teo, 2006).

Motivated by the current state of the art in error modeling and the chal-
lenges faced by the need for high-resolution satellite rainfall data in hydrology,
a mathematical formalization of a space-time error model, named SREM2D,
was recently developed by Hossain and Anagnostou (2006a). SREM2D had the
following design objectives in mind during its conceptualization: (1) It should
function as a filter wherein the hydrological implications of fine-scale compo-
nents of the satellite precipitation error structure can be explicitly determined
by coupling it with a hydrological/land surface model; Thus, SREM2D-based
experiments should provide the much needed focus to meteorologists for the
development of next-generation of satellite rainfall products with enhanced
societal applications; These experiments should also help hydrologist identify
the optimality criterion for using a given satellite rainfall dataset in a hydro-
logic model; (2) It should be modular in design with the capability to allow
uncertainty assessment of any satellite rainfall algorithm; (3) It should be
conceptualized in an algorithmic fashion so that it is easy to code numeri-
cally by a user wishing to make use of the model for his/her own scientific
agenda. SREM2D uses as input “reference” rain fields of higher accuracy
and resolution representing the “true” surface rainfall process, and stochas-
tic space-time formulations to characterize the multi-dimensional error struc-
ture of satellite retrieval. The algorithmic approach of SREM2D is aimed at
generating realistic ensembles of satellite rain fields from the most definitive
“reference” rain fields that would preserve the estimation error characteris-
tics at various scales of aggregation. By propagating the simulated ensembles
in a hydrologic model, SREM2D would therefore allow the understanding of
the implications of satellite rainfall error structure and scale complexity on
streamflow simulation.

The major dimensions of error structure in satellite estimation modeled by
SREM2D are (1) the joint probability of successful delineation of rainy and
non-rainy areas accounting for a spatial structure; (2) the temporal dynamics
of the conditional rainfall estimation bias (rain > 0 unit); and (3) the spatial
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structure of the conditional (rain > 0 unit) random deviation. The spatial
structure in SREM2D is modeled as spatially correlated Gaussian random
fields while the temporal pattern of the systematic deviation is modeled using
a lag-one autoregressive process. The spatial structures for rain and no-rain
joint detection probabilities are modeled using Bernoulli trials of the uniform
distribution with a correlated structure. This correlation structure is gener-
ated from Gaussian random fields transformed to the uniform distribution
random variables via an error function transformation. There are nine error
parameters in total. Complete details on SREM2D can be found in Hossain
and Anagnostou (2006a).

5 Current Progress on Closing the Knowledge Gap

5.1 On Scale-Based Knowledge Gap

Comparison of SREM2D-simulated satellite rainfall with actual satellite rain-
fall data produced by NASA (IR-3B41RT; Huffman et al., 2007) has shown
that a complex and multi-dimensional error modeling technique (such as
SREM2D) can preserve the estimation error characteristics across scales with
marginal deviations. Upon comparison with less complex and commonly ap-
plied error modeling strategies, it was also shown that these (simpler) ap-
proaches typically underestimated sensor retrieval error standard deviation
by more than 100% upon aggregation, which, for SREM2D, was found to
be below 30% (Hossain and Anagnostou, 2006a). More recent studies have
further demonstrated that understanding of the hydrologic implications of
satellite-rainfall data overland can be significantly improved through the use
of SREM2D in a hydrologic error propagation framework. This is a promising
finding as it would allow a more reliable investigation of the optimality crite-
rion for using satellite rainfall data in hydrologic models. Two aspects were
examined in detail: (1) soil moisture dynamics and (2) ensemble rainfall data
generation. For understanding the impact of satellite rainfall uncertainty on
soil moisture dynamics, the Common Land Model (CLM; Dai et al., 2003)
was coupled with SREM2D to propagate ensembles of simulated satellite rain
fields for the prediction of soil moisture at 5 cm depth region. It was observed
that SREM2D captured the spatiotemporal characteristics of soil moisture
uncertainty with higher consistency than a simpler bi-dimensional error mod-
eling strategy (Figure 3, upper panels; Hossain and Anagnostou, 2005b). In
a subsequent follow-up study, further insights were revealed from the pursuit
of the scientific query: Can a multidimensional satellite rainfall error model
perform realistic ensemble generation of satellite rainfall data of improved ac-
curacy for a satellite retrieval technique? Using as reference, ground radar
(WSR-88D) rainfall fields, the scale-dependent multidimensional error struc-
ture for satellite rainfall algorithms was determined. Next, by reversing the
definition of reference and corrupted rain fields produced by SREM2D, the in-
verse multidimensional error structure of WSR-88D rainfall fields with respect
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Fig. 3. Hydrologic implications of using a multidimensional satellite rainfall error
modeling strategy such as SREM2D.

to the satellite rainfall data was identified. SREM2D was then run in the in-
verse mode to generate reference-like realizations of rainfall. The accuracy
of inverse-SREM2D rainfall ensemble was observed to be consistently higher
than the simpler inverse error-modeling scheme for the IR-3B41RT product
(Figure 3, lower panels).

Because most attempts to characterize errors in satellite precipitation re-
trievals to date portray the error structure of satellite rainfall estimates us-
ing metrics that are overly simplistic, and ultimately misleading relative to
the true hydrologic potential of satellite rainfall data, a complex and multi-
dimensional error modeling strategy that is compatible with the dynamic
nature of land surface hydrologic processes is needed to advance optimal data
use in hydrologic models.

Upper Panels

Temporal correlogram of error field for near surface (5 cm) soil moisture sim-
ulated by CLM driven by simulated satellite rainfall data based on two error
modeling schemes—SREM2D (left panel) and SIMP (right panel). The solid
line represents the true soil moisture error dynamics on the basis of actual
IR-3B41RT data. The dashed line represents the range of soil moisture error
dynamics based on simulation by error model. SIMP represents the commonly
used error modeling strategy in literature based on simple error statistics
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(From Hossain and Anagnostou, 2005b; Reprinted with kind permission from
American Geophysical Union).

Lower Panels

Ensemble envelopes (i.e. uncertainty range) of satellite-retrieved cumulative
hyetographs (dotted lines) for two error-modeling schemes—SREM2D (left
panel) and SIMP (right panel). Solid line represents “true” rainfall cumula-
tive hyetograph from WSR-88D estimates, while the dashed line is the rain-
fall cumulative hyetograph from actual IR-3B41RT data. (From Hossain and
Anagnostou, 2006b; Reprinted with kind permission from the Institution of
Electrical and Electronic Engineers).

5.2 On Process-Based Knowledge Gap

Use of a Modular Hydrologic Modeling Platform

In order to understand the implication of satellite rainfall error on hydrologic
processes, we recently developed an open-book watershed model (Figure 4).
The design was modular wherein specific hydrologic processes could be con-
veniently altered or added to make a process-based understanding of satellite
rainfall error propagation (as discussed in Section 3.1). A square-grid volume
domain was used where the individual processes of overland flow and infiltra-
tion to the subsurface were linked to simulate the response of the unsaturated
zone to rainfall (Figure 1). In the open-book model, the generated surface and
subsurface runoff were calculated at each time-step from knowledge of the
time-varying infiltration (or recharge to the soil) and by keeping track of the
soil water storage for each grid volume at every timestep. The overland flow
was then routed along the direction of steepest gradient for each grid surface
until it laterally drains into the main channel. The streamflow was modeled as

Fig. 4. Geometric representation of the open-book watershed topography. Here, the
depth to bedrock basically refers to the assumed depth of the effective soil column.
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a 1-D kinematic flow using Manning’s equation. Evapo-transpiration and 2-D
saturated zone flow were assumed insignificant in our conceptualizations as
our goal was to focus primarily on streamflow simulation at the timescales of
flooding where the surface and the unsaturated zones are considered hydrolog-
ically the most dynamic regions. A point to note herein is that the ‘Depth to
bedrock’ shown in Figure 4 is basically the depth of the effective soil column.
Complete details on the open-book watershed model can be found in Katiyar
and Hossain (2007).

The Hydrologic Process Conceptualizations

To understand the role played by specific hydrologic process control concep-
tualization, three types of rainfall-runoff conceptualizations were considered
for computing excess rainfall over a grid volume (see Figure 5). These concep-
tualizations were: (1) A simple statistical parameterization to compute excess
rainfall; (2) A linear storage-discharge conceptualization for surface and sub-
surface runoff generation; (3) A non-linear storage-discharge conceptualiza-
tion for surface and subsurface runoff generation. The overland and river flow
components of the model remained the same. These process conceptualiza-
tions employed basically a mass-balance approach and are presented briefly
as follows.

For the statistical model, the precipitation p(t) was partitioned into infil-
tration to the soil water store as ap(t), and surface runoff (quickflow/overland
flow) as (1− a)p(t). The subsurface flow draining from the grid volume’s soil
water store is assumed insignificant (at flooding timescales) and the soil water
storage is updated at each time-step on the basis of the recharge only. When
it equaled the maximum storage capacity of Sb (computed as Dφ; D is depth
of effective soil column and φ is porosity), all precipitation was consequently
transformed as surface runoff with no recharge.

For the linear storage-discharge conceptualization, the following water bal-
ance equation was used for each grid volume,

Excess Rainfall

L0

Fig. 5. Overland flow routing from excess rainfall over pixels/zones.
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ds(t)
dt

= p(t) − qse(t) − qss(t) (1)

where, S(t) is the soil water storage, p(t) is the precipitation, qse(t) is the
overland saturation-excess flow and qss(t) is the sub-surface flow at time t.
The qss(t) and qse(t) were computed as follows,

qss =
S(t) − Sf

tc
if S(t) > Sf (2a)

qss = 0 if S(t) < Sf (2b)

where, Sf is the soil moisture storage at field capacity (defined by the soil
type) and tc is the grid response time to subsurface flow. tc is approximated
from Darcy’s law assuming a triangular groundwater aquifer and hydraulic
gradient approximated by ground slope.

tc =
Lφ

2Ks tan β
(2c)

Herein, L is the grid size, Ks the saturated hydraulic conductivity and
β is the grid slope. The sub-surface flow draining out from each grid vol-
ume is not routed within the soil medium for the same reason that it would
comprise an insignificant component of the total flood volume. However, this
model conceptualization represented a complexity level higher than the previ-
ous statistical parameterization because of the use of mass balance equation
and physically-based watershed parameters to identify the saturation excess
runoff. The overland saturation excess flow qse(t) was computed as follows,

qse =
S(t) − Sb

∆t
if S(t) > Sb (3a)

qse = 0 if S(t) < Sb (3b)

where Sb is the soil’s storage capacity computed as Dφ (D is effective soil
column depth and φ is porosity).

Finally, for the non-linear storage-discharge conceptualization, the subsur-
face runoff in the linear model was reformulated as follows,

qss =
[
S(t) − Sf

a

] 1
b

ifS(t) > Sf (4a)

qss = 0 if S(t) < Sf (4b)

Here, parameter b defines the degree of non-linearity in the storage-
discharge relationship, while a replaces tc in Equation (2a). Figure 6 sum-
marizes all three process conceptualizations to showcase the gradual increase
in model complexity.
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Fig. 6. The three rainfall-runoff process conceptualizations in the order of increasing
complexity from left to right. The process difference is shown along with the model
name.

The Error Propagation Framework

SREM2D was coupled to the open-book models to understand the response
of satellite rainfall error to spatial scaling on river flow prediction uncertainty.
We used, as our reference, quality-controlled ground radar (WSR-88D) rain-
fall data over the Oklahoma Mesonet region. Satellite rainfall error parame-
ters were derived for satellite rainfall algorithm (3B41RT) that is produced by
NASA (Huffman et al., 2007) on a real-time basis. SREM2D was then used to
corrupt radar rainfall fields in a space-time framework to simulate satellite-like
rain estimates. The satellite rainfall error propagation in streamflow predic-
tion was assessed in a MC framework for the three model types across two
spatial scales of aggregations −0.25 degree and 0.50 degree. The 15 MC real-
izations of SREM2D generated rainfields that were propagated through each
open-book model conceptualization yielded corresponding uncertainty limits
in streamflow simulation.

Two contrasting issues were considered in the error propagation. If either
the uncertainty limits were predicted too narrowly or the whole ensemble en-
velope is biased (i.e., the reference streamflow is consistently outside the pre-
diction error bounds), then a comparison with in-situ/reference measurements
would suggest that the combined rainfall-model complexity structure was in-
valid for the satellite rainfall error. If, on the other hand they were predicted
too widely, then it could be concluded that the hydrologic modeling structure
had little predictive capability. The dichotomous nature of ‘structural valid-
ity ’ and ‘predictive ability ’ was quantified by the Exceedance Probability (EP
in Equation (5)) and Uncertainty Ratio (UR in Equation (6)), respectively,
as follows:

EP =
Number of times reference streamflow exceeds the uncertainty limits

Total number of timesteps
(5)
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Table 1. UR and EP values as a function of spatial scale and process conceptual-
ization.

0.25 degree 0.50 degree

UR EP UR EP
Statistical Model
0.588 0.607 0.670 0.3064
% Change upon aggregation to 0.5 degree +14.0% −40.0%
Linear Model
0.492 0.514 0.594 0.450
% Change upon aggregation to 0.5 degree +20% −12.5%
Non-Linear Model
0.561 0.557 0.668 0.476
% Change upon aggregation to 0.5 degree +19% −14.5%

UR =
Uncertainty in runoff volume simulation (beween uncertainty limits)

Observed Runoff Volume
(6)

Table 1 summarizes the findings of the error propagation experiment as a
function of scale and hydrologic process conceptualizations. The global picture
that emerges from this table can be summarized as follows:

(1) statistical parameterization for excess rainfall results in increased sensi-
tivity of satellite rainfall error to streamflow prediction uncertainty; this
sensitivity, however, responds favorably to scaling towards improving the
model’s structural validity at larger scales of aggregation;

(2) inclusion of a linear/non-linear reservoir for subsurface flow representa-
tion visibly smoothens the hydrologic simulations and reduces the runoff
simulation uncertainty;

(3) insignificant beneficial impact is observed through the inclusion of non-
linearity in the storage-discharge relationship and it may so be that the
scale of application is already so large that satellite rainfall error is insen-
sitive to any further increase in process complexity;

(4) there is strong indication that hydrologic process complexity plays a de-
finitive role in accurately capturing streamflow variability on the basis of
model driven by downscaled satellite input data.

While the findings represented a useful first step, our study has limi-
tations like any other investigation. Hence, it is important to extend the
investigation involving a wider range of research objectives and more com-
plex hydrologic process representation. Examples of extension could be: (1)
repeat the investigation using real-world watersheds in a range of climatic
conditions, distributed hydrologic models and elevation data and thereby
understand the utility of the open-book approach as a physically consis-
tent proxy for investigating optimality criteria; (2) increase the complexity
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of the hydrologic processes through more physically-based process equations
(i.e., Richards equation or Green and Ampt for infiltration; energy-balance
method for representation of evapo-transpiration etc.); and finally, (3) ex-
plore scaling behavior at finer space-time resolutions (<0.25 degree and <1
hourly). Currently the Land Information System of NASA (LIS) provides the
hydrologic state of the land at 0.5 hour 1 × 1 km2 resolution using satellite
datasets that are subsequently ingested for numerous societal applications
such as weather prediction, agricultural planning, army operations etc (Ku-
mar et al., 2006). We hope that extension of our work along these directions
can consequently help us achieve a firmer understanding of the optimality
criteria for use of remotely-sensed rainfall data from space-borne platforms in
hydrologic models.

6 Concluding Remarks

For advancing the use of satellite rainfall data for flood prediction, there can
be two major issues related to rainfall data uncertainty that hydrologists need
to recognize in the context of flood prediction– i) the role played by hydro-
logic process controls; and ii) the role played by scale. We have highlighted
the progress made by us on the understanding of these two issues. Much work
remains to be done towards a more complete understanding on optimal use of
satellite rainfall data in hydrologic models. It is however, equally important
to initiate the work in anticipation of a successful leveraging of GPM. We
have argued in this chapter, as has been argued previously by others, that
unless there is a shift in paradigm, the conventional assessment frameworks
and metrics for estimation of rainfall from satellite sensors will probably re-
main inadequate for hydrologic purposes such as flood prediction. We also
argued that greater emphasis must be placed on development of hydrologi-
cally relevant precipitation estimation algorithms, and that this will require
involvement of a broader cross-section of the hydrologic community. We there-
fore hope that identification of these key issues, as discussed in this chapter,
will usher a new era for hydrologists working on optimal use of satellite rainfall
data in anticipation of GPM.

We would like to close this chapter with a candid discussion of the limita-
tions and disclaimers associated with our study that readers should be aware
of. For example, while we have predominantly focused on floods, the choice
of appropriate error metrics would most probably be dictated by the flood
type (high/extreme floods versus low/frequent floods). Furthermore, the hy-
drologic implication of satellite rainfall error would be strongly influenced by
the hydrologic variable (or predictand) in question. Again, this chapter fo-
cused on floods, while soil moisture, which plays a critical role in partitioning
of rainfall into runoff, would not have the same implication as streamflow.
The reader is referred to the work of Hossain and Anagnostou (2005a, 2005b)
where a detailed investigation has been carried out for soil moisture.
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Summary. Open space in urban areas is very rare and new infrastructure is in-
creasingly constructed in the subsurface. These constructions may temporarily affect
urban groundwater systems during construction and permanently after completion.
As regards these impacts together with ancient contaminated industrial sites, par-
ticular focus was placed on determining the data required to understand changes
affecting groundwater flow and transport. The extended knowledge of groundwater
flow regimes could lead to reducing and minimizing, as far as possible, the neg-
ative impacts throughout the construction phases, and to developing sustainable
groundwater use and management tools.

The consideration of subsurface heterogeneity is often based on pumping tests,
leading to a characteristically large-scale zoning of aquifer parameters. This study
compares groundwater modeling results from integrating large-scale zoning of aquifer
parameters on the one hand, and a sedimentary structure-based heterogeneous de-
scription of the aquifer properties on the other.

This approach was applied to an ongoing subsurface highway construction north-
west of the city of Basel, Switzerland – an area formerly contaminated by industrial
activities. Today, urban groundwater resources are extensively used by industry. An
integrated multidisciplinary approach was chosen to predict, mitigate or prevent
environmental problems, as well as to ensure groundwater supply throughout con-
struction. It includes integration of geological and hydrological data and results into
a groundwater management system comprising: (1) extensive groundwater monitor-
ing; (2) development of a database application facilitating lithofacies-based inter-
pretation of drill-core data; (3) geostatistical analyses of the aquifer’s heterogeneity
and simulations of hydraulic parameter distributions as well as; (4) regional and lo-
cal high-resolution groundwater modeling. The combination of techniques presented
exemplifies the fusion of quantitative and qualitative geological and hydrological
information of different quality.

J. Epting et al.: Integrated Methods for Urban Groundwater Management Considering Subsur-

face Heterogeneity, Studies in Computational Intelligence (SCI) 79, 183–218 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



184 J. Epting et al.

1 Introduction

Urban areas are characterized by an increasing number of constructions be-
low the surface or even below the groundwater table, resulting in signifi-
cant changes in groundwater quality and dynamics of both local and regional
groundwater flow regimes. This includes a reduction of cross-sectional ground-
water flow and aquifer-storage capacities. To develop concepts and methods
for sustainable groundwater use in urban areas, environmental impact assess-
ments not only have to include above-ground impairments, such as ground
motions with effects on existing buildings and infrastructures, as well as noise
exposure and air pollution, but also the negative impacts on groundwater
flow regimes. The term groundwater flow regime comprises groundwater flow
paths, velocities and budgets for a defined region in a temporal context.
Among the various other possible sources of groundwater pollution observed in
urban environments, subsurface construction may be a source of interference
of a previously balanced urban groundwater flow regime.

Numerous urban areas in Central Europe and North America are located
in flood plains of rivers canalized last century. Coarse gravelly sediments of
braided rivers form one particular, frequently occurring environment within
these valley fills. In most practical engineering studies, the subsurface is still
represented as homogeneous or at least one consisting of a set of homogeneous
layers. Groundwater flow and solute transport processes within these coarse,
permeable sediments are strongly influenced by subsurface heterogeneities and
require detailed knowledge of aquifer properties, such as hydraulic conductiv-
ity, porosity and dispersivity, together with their spatial distribution. This
heterogeneity originates from sediment sorting processes in a dynamic en-
vironment of aggradational and erosional processes typical of braided river
deposits (Huggenberger and Regli, 2006). Hydraulic conductivity variations
over several magnitudes are of key importance for groundwater flow and
solute migration (Rehfeldt et al., 1993; Adams and Gelhar, 1992; Gelhar,
1986). Since continuous 3D information on hydraulic properties cannot be
obtained in fluvial sediments, different methods have been developed to map
aquifer properties. Koltermann and Gorelick (1996) distinguish three main
types of methods: (1) Structure-imitating methods using any combina-
tions of Gaussian and non-Gaussian statistically and geometrically-based re-
lationships to match observed sedimentary patterns. (2) Process-imitating
methods consisting of aquifer calibration techniques, which solve governing
equations of fluid flow and transport, as well as geological process mod-
els combining mass and momentum conservation principles with sediment
transport equations. (3) Descriptive methods using different field meth-
ods to translate the resulting geological sedimentary structure models into
hydrofacies models with characteristic aquifer properties. All these methods
have already been applied in coarse glacio-fluvial gravel deposits typical of
braided river environments (e.g. Bridge and Lunt, 2006; Nowak and Cirpka,
2006; Rubin et al., 2006; Teles et al., 2004; Regli et al., 2004; Huggenberger
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and Aigner, 1999; Weissmann et al., 1999; Rauber et al., 1998; Carle et al.,
1998; Fogg et al., 1998; Deutsch and Wang, 1996; Webb and Anderson, 1996;
Koltermann and Gorelick, 1996; McKenna and Poeter, 1995; Jussel et al.,
1994; Webb, 1994; Bridge, 1993; Ashmore, 1993; Paola et al., 1992; Heller
and Paola, 1992; Brierley, 1991; Anderson, 1989; Miall, 1985; Ashmore and
Parker, 1983; Allen, 1978, Miall, 1978). However, for reasons of complexity
of the aquifer structures in these coarse-grained sediments and effects on hy-
draulic property distribution, stochastic modeling was rarely applied to prac-
tical problems (Dagan, 2002). The literature only provides a few examples
of investigations conducted on adequately instrumented field sites and related
risk analysis (e.g. river-groundwater interaction, Rhine/Wiese sand and gravel
aquifer, Switzerland, Regli et al., 2003; bacterial and virus transport and at-
tenuation processes in Dornach, Munich gravel plain aquifer, Germany, Flynn,
2003; hierarchical geostatistics and multifacies systems, Boise Hydrogeophys-
ical Research Site, Idaho, USA, Barrash and Clemo, 2002; physical scale
modeling of the Ashburton River gravels, Canterbury Plains, New Zealand,
Ashworth et al., 1999, 2004; flow and contaminant transport in quaternary
gravel deposits, Steisslingen, Germany, Klingbeil et al., 1999; sand and gravel
pit in Stoughton, Wisconsin, USA, Anderson et al., 1999; field study of dis-
persion in a heterogeneous aquifer, Columbus Site, Mississippi, USA, Boggs
et al., 1992; methodologies for groundwater driven health risk assessment in
heterogeneous aquifers, Maxwell and Kastenberg, 1999, Maxwell et al., 1998;
environmental research field site Horkheimer Insel, Germany, Teutsch and
Kobus, 1990; various studies on flow and transport in a sand aquifer, Borden
site, Canada, Sudicky, 1986, Mackay et al., 1986).

The generally scarce information on outcrop and the existing buildings and
infrastructures preventing high resolution Ground Penetrating Radar (GPR)
are important reasons for not considering heterogeneity in practical appli-
cations, particularly in urban areas. Therefore, drill-core descriptions with
the known disadvantages concerning data quality and sedimentary structure
recognition (Regli et al., 2002) are the only sedimentological data available.
In urban areas, large amounts of geological and hydrological data are gener-
ally available but spread in different institutions. Since localizing this data is
often difficult and its preparation for specific questions time-consuming, a Ge-
ological Database (GeoData) for northwestern Switzerland was set up (Kirch-
hofer, 2006). It comprises a systematic data collection, analysis of drill-core
data, and assessment of metadata from geological and hydrological reports.
GeoData can be linked to a Geographic Information System (GIS) to pro-
vide together with groundwater head and further hydrological data, a unique
data source suitable for empirical studies and hypothesis testing in the field
of quantitative information on urban hydrological questions. A method of
combined sedimentary structure and geostatistical analyses of drill-core data
was presented by Regli et al. (2002). The results of the analyses are used to de-
velop various simulations of stochastically generated aquifer properties, which
can subsequently be integrated into multilayer high-resolution groundwater
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models. The investigations center on determining to which extend available
drill-core descriptions may be used to describe heterogeneity in coarse river
systems and how the different strategies influence the understanding as well
as prediction of the impacts and changes on groundwater flow regimes.

This study describes subsurface heterogeneity investigations during ground-
water management of a subsurface highway construction (Fig. 1). During single
construction phases, considerable groundwater drawdown was necessary, lead-
ing to significant changes in the groundwater flow regime. The effect of open
sump drainage during construction of an emergency exit is presented. Further-
more, a comparison was established of the changes observed before and after this
construction phase. The three investigated situations reveal considerable differ-
ences in hydrological and operational boundary conditions and allow evaluating
the influence of alternating boundary conditions against the various aquifer
heterogeneity simulations. The results are also compared in the context of the
varying boundary conditions assuming: (1) uniform distribution of equivalent
aquifer parameters and (2) heterogeneous distribution of aquifer parameters
resulting from sequential indicator simulations based on drill-core data. The
results obtained are discussed on the basis of groundwater budgets, flow paths
and flow velocities.

Groundwater protection as well as policy and management aspects should
already be considered at the early stages of urban planning to reconcile the
various individual and often conflicting interests. The main objectives of en-
gineers and constructors are to complete construction with minimal effort as
regards guaranteed drawdown levels, inexpensive groundwater disposal and
safeguarding nearby groundwater use. The environmental and civil engineer-
ing offices involved rather focus on possible mobilization of contaminants and
changes in the groundwater flow regime during and after construction. How-
ever, to achieve a sustainable development of urban groundwater resources,
the sum of all impacts on groundwater flow regimes should be taken into ac-
count. The investigations focus on the applied aspects of data fusion within
the context of subsurface highway construction.

2 Settings

2.1 Hydrogeological Setting

Basel, located in northwestern Switzerland, borders both Germany and France.
The Rhine enters Basel from the east and changes its course at an angle in
northern direction (Fig. 1). The highway construction sections outlined in this
book chapter are located in the northern part of Basel to the left of the river
Rhine.

The shallow unconfined aquifer mainly consists of late Pleistocene gravel
deposited by the Rhine. The gravel deposits, interbedded with fine-grained,
flood plain sediments result in variable conductivity within the aquifer. The
thickness of the aquifer ranging between 15 and 35 m is underlain by an
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aquiclude composed of Oligocene mud to clay rich sediments. The general
slope and the main direction of the regional groundwater flow are from south-
west to northeast.

The river-groundwater interactions along the Rhine are an important ele-
ment of the regional groundwater flow regime. Depending on the hydrological
constraints, the river acts both as a receiving and an infiltrating stream.

The long-term average for yearly precipitation is 788mma−1, measured
during the 30-year period 1961–1990 at the Binningen meteorological sta-
tion (Fig. 1). Urbanization has led to an increase in impermeable surfaces,
thereby causing a reduction in direct groundwater recharge and generation of
additional surface runoff from precipitation. As a result, a large spatial and
temporal variability in recharge rates over short distances can be observed
(Huggenberger et al., 2006).

At the beginning of last century, to stabilize the river bank for harbor fa-
cilities an approximately 500-m long and 20-m deep sheet pile wall was driven
down to the bottom of the aquifer on the left river bank north of the main
course of the tunnel road (Fig. 1). It acts as a low-permeable barrier and re-
duces locally the interaction between river and groundwater. Regionally, it
forces the groundwater to flow either south or north of this wall, thereby cre-
ating an area of low flow velocity near the sheet pile wall, and a groundwater
divide running east to west behind the wall. Since the position of this ground-
water divide was shifted during the different construction phases, it provides
a key indicator for changes in the northern groundwater flow regime.

2.2 The Subsurface Highway Construction Project

The 3.2-km long subsurface highway connects the French highway A35 (Mul-
house – Basel) to the Swiss A2 (Basel – Gotthard – Milan). It is divided
into four sections, of which about 87% are tunnel constructions situated in
the gravel deposits; the remaining 13% are covered by the bridge across the
Rhine and the various tunnel entrances (Fig. 1).

The progressive shift of the construction sites, requiring different drainage
systems, affected the groundwater flow regime throughout construction. De-
pending on the excavation technique applied, complexity of the groundwater
drainage degree varied and was realized either as an open sump drainage, the
dewatering of residual groundwater in areas enclosed by sheet pile walls, or a
combination of both methods. Open sump drainages are generally associated
with major changes in groundwater flow regimes.

A significant change in the local groundwater flow regime in the northern
industrial area was caused by the open sump drainage during construction of
an emergency exit located north of the main track in the second section of
the highway (Figs. 1 and 2). Maximum extraction rates ranging between 15
and 20 ls−1 are relatively low. Nevertheless, on account of the small hydraulic
gradient in the adjacent industrial area to the north, the effect of this drainage
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on the regional groundwater flow regime was relatively large and resulted in a
change in groundwater flow paths and a shift of the local groundwater divide.

In some areas, the tunnel is permanently below the groundwater table
leading to a reduction of cross-sectional groundwater flow and aquifer-storage
capacities. Once the construction is completed, connectivity of the groundwa-
ter will be enhanced by technical measures, such as the installation of highly
permeable culverts as well as drawing sheet pile walls and slide pales.

2.3 Former Industrial Sites

Since Basel turned into a major industrial center for the chemical and phar-
maceutical industry in the 19th century, vast areas have been or are likely
to be contaminated (Fig. 3). In addition, other abandoned sites of small en-
terprises and numerous contaminated areas (fillings of former gravel pits) on
adjacent French territory lie close to the construction site (Fig. 1). A consid-
erable risk with regard to mobilization of contaminants will thus be caused by
groundwater extraction and drawdown of the groundwater table throughout
the different construction phases. A reversal of flow lines may lead to contam-
inated areas suddenly lying in the capture zones of the industrial groundwater
wells or within the groundwater drainage of the construction site. In the worst
case, contaminants could reach the extraction wells of the construction site
or those of the industrial groundwater users. The risk of such incidents would
require the development of concepts and methods for groundwater protection
and management, including installation of additional recharge wells.

Fig. 3. The industrial development in the 19th century. The photo illustrates the
small-scale groundwater model area. A perspective is given in Figure 1
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3 Conceptual Approach and Methodology

The conceptual approach and methodology used to answer a series of questions
generally arising in the context of urban subsurface road constructions include
the following points: (1) Is the available data sufficient to adequately inves-
tigate groundwater flow and transport, and what questions can be answered
with the existing data? (2) What additional data could improve predictions?
(3) How could data acquisition be optimized?

A regional-scale groundwater model was used, adapted and calibrated
regularly during the various construction site drainages and throughout con-
struction. Due to the numerous calibrations (at least two times per year) the
prediction capabilities of the groundwater model were continuously enhanced.
This facilitated optimizing extraction and recharge rates during construction
site drainages and detecting changes in the groundwater flow regime. Aquifer
parameters obtained from pumping tests are therefore of prime importance.
However, to adequately model groundwater transport, further knowledge of
subsurface heterogeneity and the distribution of aquifer parameters are es-
sential. This knowledge may to a certain degree be derived from drill-core
information, sedimentary structure analysis at outcrops and from geophysical
as well as hydraulic measurements.

The conceptual approach is given in Figure 4. The investigated area was
delineated and comprises an inventory of all relevant boundaries character-
izing the regional and local groundwater flow regime, including all possible
impacts. The following three-step approach for data fusion was chosen: (1)
determination of data requirements; (2) data processing and finally (3) data
evaluation. The presented example of data fusion first identified and collected
the required data and subsequently formulated the basic requirements for
setting up groundwater models with accurate boundary conditions. The data
required comprises hard and soft data. Hard, reliable data is derived for exam-
ple from outcrops and groundwater head measurements. Soft data is obtained
from drill-core descriptions and groundwater quality analyses. The first ele-
ment of the groundwater management system at this level of data fusion con-
sists in: (i) a dense groundwater-monitoring network where hydraulic heads
are measured and groundwater chemistry is analyzed regularly. The data ob-
tained is then processed in a second step. The second main element of the
groundwater management system comprises: (ii) a database together with the
development of an application facilitating lithofacies-based interpretation of
drill-core data. Export of this information can directly be deployed in the third
element of the groundwater management system consisting of: (iii) geostatis-
tical analyses of the aquifer heterogeneity leading to conditioned stochastic
aquifer simulations. The fourth element of the groundwater management sys-
tem consists in: (iv) regional and local high-resolution groundwater modeling.
The geostatistical simulations are integrated into the local groundwater mod-
els. The third and last step of data fusion finally comprises an evaluation of
the processed data. Assisted by a GIS, the simulation results are visualized to
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improve the understanding among engineers and all other stakeholders. The
four elements are described in detail in the following text.

3.1 Groundwater Monitoring Network

The network comprises a total of 44 observation wells instrumented by auto-
mated water-level loggers for continuous measurement of the hydraulic head
(Fig. 1). The hydrographs of this observation network are analyzed monthly.
A total of 21 observation wells are sampled regularly for groundwater quality
measurements. Furthermore, the extracted water for industrial groundwater
use and for settling tanks on the construction sites is sampled at regular in-
tervals. The monitoring program was adapted to the progress of the various
construction sections, to the current groundwater management requirements
and to the results obtained from groundwater modeling. Interpretation of
the changes observed in groundwater quality measurements together with the
modeling results allowed optimizing the localization of new observation wells.

3.2 Geological Database

GeoData (Kirchhofer, 2006) of the city of Basel includes some 3,000 drill-core
descriptions. It can be used for almost any question arising during setup and
operation of other elements of the groundwater management system. Appli-
cation of GeoData for calculation of the aquifer base, evaluation of aquifer
parameters and for lithofacies-based interpretation of drill-core data is sum-
marized hereafter.

Calculation of Aquifer Base and Evaluation of Aquifer Properties

The aquifer base in the large-scale groundwater model includes information on
more than 400 drill-cores, whereas the small-scale groundwater model includes
information on 71 drill-cores (Fig. 2).

Distribution of horizontal conductivity zones in the large-scale groundwa-
ter model was based on different type and quality data sets available from
GeoData including various pumping tests. Furthermore, additional informa-
tion from reports outlining regional geological questions, including pumping
test data, was used to determine hydraulic parameter distribution.

Combining Outcrop with Drill-Core Data for Sedimentary
Structure Analyses

Information on the architecture of the aquifer is required to adequately model
subsurface heterogeneity. Outcrop and drill-core information contains data
of different quality and resolution at different scales. Outcrops of natural
deposits above the groundwater table reveal distinct and coherent structural
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elements such as lenses and layers of different gravel types (Jussel et al., 1994;
Siegenthaler and Huggenberger, 1993; Huggenberger et al., 1988). Outcrop
investigations therefore provide extremely reliable hard data. However, out-
crops are restricted to one large excavation pit north of the investigation area
and, to some extent, to outcrops within the tunnel itself. Due to easy access
and visibility, undisturbed sedimentary structures and textures at the out-
crops could be examined in detail and the sedimentary structure patterns of
the investigation site defined. Definition of sedimentary texture types is based
on grain-size distribution and sediment sorting. Sediment structure types are
made up of one or a combination of two possibly alternating sediment texture
types.

Drill-core data provides limited information on the spatial distribution of
sedimentary structures and subsurface properties such as hydraulic conductiv-
ity, porosity and dispersivity. Drilling may destroy sedimentary structures and
smear the interface with adjacent layers. Typically, drill-core layer descriptions
are not very detailed and do not clearly indicate explicit sedimentary structure
types. Furthermore, the quality of individual drill-core descriptions varies con-
siderably depending on the geotechnical or sedimentological approach used,
thus permitting limited and speculative conclusions on sedimentary struc-
tures. Results on a drill-core scale have to be evaluated carefully, as fractures
common in a drill-core may not clearly reveal the overall flow on a field scale
for lack of interconnectivity or dominance of high permeable porous sedimen-
tary structure types. Breaks in cores may also be attributed to core drilling
and handling processes. Consequently, drill-core data is regarded as soft data.
The concept of determining sedimentary texture and structure types is based
on the concept developed for the Rhine gravel as described by Rauber et al.
(1998), Jussel et al. (1994), Siegenthaler and Huggenberger (1993). The inter-
pretation method of drill-core data is elucidated in Regli et al. (2002).

Sedimentary structure types of this area include: open-framework gravel
(OW), open-framework/bimodal gravel couplets (OW/BM), gray gravel (GG),
brown gravel (BG), alternating gray and brown gravel layers (GG/BG),
horizontally-layered or inclined, silty gravel (SG), sand lenses (SA), and silt
lenses (SI). Regli et al. (2002) and Huggenberger and Regli (2006) give a
detailed description of the sedimentary structure types.

Sedimentological drill-core descriptions of coarse gravel deposits provide
information on composition and texture of deposits. More specifically, details
of grain-size categories, sorting, composition of major constituents and propor-
tion of each grain-size fraction can be determined and information obtained
on color, chemical precipitation, thickness of a deposit, and its transition
through the underlying layer. The quality of the descriptions varies consid-
erably. Important sedimentary structure types, such as the highly permeable
OW, are generally overlooked due to smearing with overlying and underlying
layers during the drilling process. Occurrence and size of OW determine, how-
ever, variance and correlation length of the hydraulic conductivity in coarse
gravel deposits (e.g. Jussel et al., 1994). Consequently, an important gap ex-
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ists between outcrop and drill-core descriptions. The strong association of
OW to the related structure type OW/BM has led to the concept of a grad-
ual sedimentary structure-based interpretation of outcrop, drill-core and GPR
data. The method presented by Regli et al. (2002) allows a probability assess-
ment of drill-core layer descriptions representing defined sedimentary struc-
ture types.

Based on drill-core information, defined sedimentary structure pattern for
the investigation site and on the interpretation method for drill-core data,
GeoData allows analysis of sedimentary structure and provides data sets of
point information with arbitrary separation distances along drill-cores. The
point information includes space data (x-, y-, z-coordinates), probabilities of
sedimentary structure types (probability that a drill-core layer description
represents a defined sedimentary structure type) and an indication of the
most likely sedimentary structure type (Fig. 5).

3.3 Geostatistics

Modeling spatial data variability is the key to any subsurface simulation. A
variogram describes the spatial correlation of data as a function of the sepa-
ration vector h between two data points. Computation of the indicator vari-
ogram was based on the drill-core data. Indicator transformation at grid node
locations was set at unity for sedimentary structure types sk, k = 1, . . . , K,
with the highest probability values; otherwise it was set at zero (Deutsch and
Journel, 1998):

i (uα; sk) =
1, if s (uα) = sk

0, otherwise, (3.3.1)

where uα refers to a particular data location and s (uα) to a particular data
value.

Experimental indicator variograms were calculated after Eq. 3.3.2 for vari-
ous directions (azimuth, dip, plunge) using GEOSSAV (Regli et al., 2004), an
interface to selected geostatistical programs available from the Geostatistical
Software LIBrary, GSLIB (Deutsch and Journel, 1998):

γI (h; sk) =
1

2N (h)

N(h)∑
1

[i (u; sk) − i (u + h; sk)]2, (3.3.2)

where N (h) is the number of data pairs, i (u; sk) is the indicator at the start
or tail of the pair, and i (u + h; sk) is the corresponding end or head indicator.

To derive maximum benefit from available textural and structural infor-
mation, the aquifer structure was derived by sequential indicator simulation.
For a specific category, the indicator kriging estimate, i.e. the probability that
sk prevails at location u, is written as a linear combination of the n nearby
indicator-coded data (Deutsch and Journel, 1998):
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Fig. 5. Drill-core input mask for GeoData ( : or; : and). The information used
for sedimentary structure interpretation is highlighted
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[i (u; sk)]∗SK = [Prob {S (u) = sk| (n)}]∗SK

=
n∑

α=1

λα (u; sk) i (uα; sk) +

[
1 −

n∑
α=1

λα (u; sk)

]
F (sk)

, (3.3.3)

where F (sk) is the stationary prior probability of category sk, and the
λα (u; sk)’s are the indicator kriging weights corresponding to category sk,
which depend on the closeness of the data considered for the estimation.

The sequential indicator simulation principle is an extension of condition-
ing and comprises all data available within the neighborhood of a model cell,
including the original data and all previously simulated values. Sequential
indicator simulations are processed by a number of steps. An initial step es-
tablishes a grid network and coordinate system. This is followed by assigning
data to the nearest grid node. Where more than one data point may be used
at a node, the closest data point is assigned to the grid node. In a third step,
a random path through all grid nodes is determined. For a node on a random
path, adjacent data and previously simulated grid nodes are searched to allow
assessment of the conditional distribution by indicator kriging. Based on this
distribution, a simulated sedimentary structure is randomly drawn and set as
hard data before selecting the next node in the random path prior to repeat-
ing the process. By using this approach, the simulation grid is sequentially
built up. During the final step of the sequential indicator simulation, results
are checked to ensure that orientations and sizes of the simulated sedimentary
structures concur with those observed.

For groundwater modeling, the simulated sedimentary structure needs
to be transformed into hydraulic parameters. The generated sedimentary
structures are characterized by average and randomly selected hydraulic con-
ductivity and porosity values provided by average and standard deviations
calculated by Jussel et al. (1994) (Table 1). Files containing distributions of

Table 1. Hydraulic parameters of sedimentary structure types used in the charac-
terization of aquifer simulations (after Jussel et al. 1994). Refer to chapter 3.2 for
the abbreviations.

Sedimentary structure type

OW OW/BMGG BG GG/BG

horizontal

GG/BG

inclined

SG SA SI

Hydraulic

conductivity K

[mms−1]

100 10 0.15 0.02 0.08 0.1 0.008 0.26 0.005

Standard devia-

tion σln K,1[−]

0.8 0.8 0.5 0.6 0.8 0.8 0.5 0.4 0.4

Porosity n [%] 34.9 30 20.1 14.1 17 17 25 42.6 40

Local

longitudinal

dispersivity [mm]

25 30 25 30 30 30 3 0.3 0.05
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hydraulic conductivity, effective porosity and dispersivity values were gener-
ated and exported to groundwater models. According to sedimentological and
geostatistical analyses of the aquifer, each aquifer simulation corresponds to
various equiprobable representations of the subsurface at variable degrees of
uncertainty in hydraulic parameter values and geometry of the sedimentary
structures.

3.4 Groundwater Modeling

Regarding selection and setup of an appropriate groundwater model, it is
important to ensure that the chosen model and desired resolution are capable
of answering relevant questions simultaneously. When applying groundwater
models, one of the key requirements is high-quality, site-specific data (National
Research Council, 1990). Before setting up a groundwater model, groundwater
budgets and boundary conditions – the main components of a groundwater
system – must be identified and analyzed.

A large and a small-scale groundwater model combination were chosen for
this case study (Fig. 1 and Fig. 2). While the large-scale groundwater model
was used to simulate the regional groundwater flow regime throughout the en-
tire construction period of the tunnel road, analyses of aquifer heterogeneity
were integrated into the small-scale groundwater model. For selected construc-
tion phases, the large-scale groundwater model allowed to define boundary
conditions for the telescoped small-scale groundwater model. Both large and
small-scale groundwater models were simulated using the 3D finite difference
code MODFLOW (McDonald et al., 2000):

div
(
K · ⇀

∇h
)

+ W = Ss
∂h

∂t
, (3.4.1)

where K, are values of hydraulic conductivity along the x-, y-, and z-
coordinate axes, which are assumed to be parallel to the major axes of hy-
draulic conductivity (L/T); h is the hydraulic head (L); W is a volumetric
flux per unit volume representing sources and/or sinks of water, with W<0.0
for flow out of the groundwater system, and W>0.0 for flow in (T-1); Ss is the
specific storage of the porous material (L-1); and t is time (T). Eq. 3.4.1, when
combined with boundary and initial conditions, describes three-dimensional
groundwater flow in a heterogeneous and anisotropic medium, provided that
the principal axes of hydraulic conductivity are aligned with the coordinate
directions. The groundwater flow process solves Eq. 3.4.1 using the finite-
difference method in which the groundwater flow system is divided into a grid
of cells. Further, the solver package PCG2 (preconditioned Conjugate Gra-
dient) with modified incomplete Cholesky preconditioning was applied (Hill
1990).

The graphical user interface Processing Modflow (PMWIN) of Chiang
(2005) was used for the large-scale groundwater model. The graphical interface
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Groundwater Modeling System (GMS) of Environmental Modeling Systems
Inc. (2006) was applied to the small-scale groundwater model. Two different
graphical user interfaces were applied, as the large-scale model has already
been in operation with PMWIN since 2001, and the telescoped, small-scale
model has recently been operated with GMS.

Large-Scale Groundwater Modeling

The large-scale groundwater model covers an area of 2, 720m×2, 860m (about
8 km2; Fig. 1 and Fig. 2). The spatial discretisation resulted in cell sizes vary-
ing between 5m× 5m (near the construction site) and 30m× 30m in totally
132,500 cells. An approach with four horizontal layers was chosen to vertically
integrate the construction. Construction itself was integrated either as inac-
tive cells or as horizontal flow barriers with defined hydraulic conductivities.
During construction, progressive adjustments were made. The surface of the
aquifer base and distribution of horizontal hydraulic conductivity zones were
derived from different type and quality data sets available from GeoData.

The hydraulic conductivity values range between 3.1E−3ms−1 and 1.3E−
4ms−1. A 10:1 ratio between horizontal and vertical hydraulic conductivity
was chosen. Since the southern part of the model area has a broad steep slope
in the aquifer base without any detailed geological information, hydraulic con-
ductivity had to be estimated (Fig. 2). For all model runs, divergence of calcu-
lated and observed hydraulic heads is highest in this part and is in the order
of 1 m. However, the divergence for the remaining hydraulic heads averages in
0.2 m.

Based on a one-day test measurement of groundwater levels (Wagner et al.,
2001) model boundary conditions are of the first type (fixed head) along the
southern side, and of the third type (leakage) along the Rhine. The western
and northern boundaries are specified as no flow in a first phase and as general
head in a second phase, thus resulting in a groundwater outflow south and
a groundwater inflow north of the steep slope in the aquifer base. Hydraulic
conductivity of the riverbed was set at 5.0E−5m2s−1.

A total of 48 extraction wells were integrated, i.e. nine production wells and
one recharge well for industrial groundwater use, 35 wells extracting ground-
water along the various construction sections as well as three recharge wells.
The hydraulic head was continuously monitored in totally 44 observations
wells. As a routine procedure, the groundwater model was calibrated at least
biannually.

Small-Scale Groundwater Modeling

The small-scale groundwater model covers an area of 450m×300m (0.135 km2;
Fig. 1 and Fig. 2). The spatial discretisation resulted in totally 1,350 cells
of 10m × 10m cell size. For an appropriate vertical integration of aquifer
heterogeneity, an approach with 13 horizontal layers was chosen. Each layer
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is 2-m thick and the total maximum vertical thickness amounts to 26 m. The
interpolated surface of the aquifer base was then cut with the model grid,
thus resulting in partly inactive cells in the two lower model layers. Finally,
the interpolated aquifer properties (hydraulic conductivity, effective porosity
and longitudinal dispersivity) were assigned to the prepared grid.

The large-scale groundwater model provided the boundary conditions.
Model boundary conditions are of the first type (fixed head) along the north-
ern side, and of the second type (fixed flow) along the eastern, southern and
western side to account for the variable inflow and outflow rates across the
boundaries. The eastern side covers residual leakage of the Rhine through the
sheet pile wall, the southern side the groundwater flow beyond the tunnel
construction and the western side focuses on the regional groundwater flow
through this area.

Since hydraulic conductivity varies with scale of measurement, it can in-
crease to over several orders of magnitude. As larger blocks of the subsurface
are tested for subsurface flow, preferred pathways are encountered that in-
crease the measured average hydraulic conductivity value (Carrera, 1993). The
preferred pathways are provided by sedimentary structure heterogeneities,
fractures or flow conduits (Schulze-Makuch et al., 1999).

Distribution of hydraulic conductivity for the large-scale groundwater
model is derived from a series of pumping tests describing the average hy-
draulic conductivity for this region. A 2.0E−3ms−1 average value obtained
from this distribution is also used for the small-scale groundwater model of
uniform aquifer parameter distribution. Together with the median from the
geostatistical analyses, the scaling factors obtained for hydraulic conductivity
range between 13 and 20. Furthermore, the scaling behavior by an empirical
power law of the hydraulic conductivity proposed by Schulze-Makuch et al.
(1999) was employed:

K = 10c (V )m
, (3.4.2)

where K is the hydraulic conductivity, c is a parameter characteristic for a
geological medium that relates to geological variables such as average pore size
and pore interconnectivity in porous media, V is the volume of tested material
(used as scale measure), and m is the scaling exponent (slope of the line on
the log-log plot). For unconsolidated media and alluvium parameters, for c
and m values of −4.8 and 0.5, respectively, are proposed. The volume taken
account of in this case study for the small scale groundwater model amounts
to approximately 3.5E6m3. This results in a calculated hydraulic conductivity
value of 3.7E−3ms−1, which is in the same order of magnitude as the average
hydraulic conductivity of 2.0E−3ms−1 used in the large scale groundwater
model. When applied to the present study, the scaling factors range between
25 and 37. Finally, a decimal power-scaling factor 10 was chosen and a 10:1
ratio between horizontal and vertical hydraulic conductivity.
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Table 2. Water budgets across model boundaries, extraction rates of construction
site drainage and altitude of the specified head in the north. Flows are considered
“in” if they are positive and “out” if they are negative.

Flow budgets [m3d−1] Specified head [m asl]

East South West Wells North

March 23, 2003 −198.7 −691.2 +423.4 0.0 245.54 – 244.88
October 28, 2004 +60.5 +380.2 +691.2 −604.8 245.20 – 244.96
February 16, 2006 +34.6 +120.96 +155.2 0.0 244.71 – 244.56

The value for effective porosity is the determining parameter for the ad-
vective processes and the time scale of contaminant transport in the aquifer
(Graf and Schäfer, 2002). Porosity may also vary with scale, however, such
variations are assumed to be minimal compared to those encountered for
hydraulic conductivity and generally ranging over several orders of magni-
tude (Schulze-Makuch et al., 1999). Evaluations reveal that the 0.2 value
assumed for the uniform distribution of porosity from the large-scale ground-
water model is of the same order of magnitude as the value for the various
aquifer heterogeneity simulations. In unconfined aquifers, the value for the
specific yield is the same as the one for effective porosity. An empirical value
of 1.0E−4m−1 for sandy gravel was chosen for specific storage (Anderson and
Woessner, 1992).

Simulations were conducted for three sets of hydrological and operational
boundary conditions (Table 2): Set 1 considers boundary conditions for an
ordinary situation, preceding the major drawdown phases (March 23, 2003).
Set 2 covers the period with the most significant changes in the local ground-
water flow regime north of the industrial area and caused by the open sump
drainage during construction of an emergency exit located north of the main
track in Section 2 (October 28, 2004). Set 3 describes again boundary condi-
tions for an ordinary situation and accounts for low groundwater levels and
Rhine infiltration after the major drawdown phase (February 16, 2006).

Flow Velocities

GMS allows determining groundwater flow velocity and seepage velocity. The
velocity calculator uses three scalar data sets from which it creates a vector
data set. Head, porosity and hydraulic conductivity are the three input data
sets used. Furthermore, a vertical anisotropic factor has to be chosen. Darcy’s
law is applied to the calculations:

vs =
vd

n
=

ki

n
, (3.4.3)

where vs is the seepage velocity, vd is the Darcy velocity, n is the effective
porosity, k is the hydraulic conductivity, and i is the head gradient.
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In 3D, the equation is:

div
(
v + K · ⇀

∇h
)

= 0, (3.4.4)

where K, are values of hydraulic conductivity along the x, y, and z coordi-
nate axes, which are assumed to be parallel to the major axes of hydraulic
conductivity (L/T); h is the hydraulic head (L). To calculate the hydraulic
gradient vector the finite differences are computed by:

∂h

∂x
=

hi+1jk−hijk

xi+1jk−xijk
+

hijk−hi−1jk

xijk−xi−1jk

2
. (3.4.5)

The units of the calculated flow velocities are length over time (L/T).

4 Results

4.1 Outcrop and Drill-Core Analyses

The outcrop within the perimeter of the former industrial sites above the
groundwater table (Fig. 6) clearly reveals a prevalence of poorly sorted, clean
gravel without significant fine sediment fraction on top of the sequence. Be-
low, sets of gravel couplets were observed comprising OW and OW/BM inter-
spersed with thin layers of poorly sorted sometimes sandy clean gravel. The
Pleistocene Rhine gravel along the upper Rhine valley generally exhibits a
higher amount of high permeable structure types in the lowest part of the se-
quence. Based on the preservation potential of different sedimentary structure
types (Huggenberger and Regli, 2006) it is assumed that the gravel below the
groundwater table most likely follow this trend.

Separation to generate point information for sedimentary structure analy-
ses was set at 0.5-m distance. Therefore, a total of 1,999 data points were gen-
erated for all drill-cores. The fraction of sedimentary structure types, which is
derived in percentage, represents the initial probability density functions for
stochastic aquifer simulation (Table 3).

In relation to overbank deposits composed of SA and SI (see Fig. 6A), the
large GG and BG fractions are interpreted as products of significant sediment
aggradation during lower channel mobility of the former braided river system.
In fact, the last landscape-shaping flood events in this area date back 5,000
to 6,000 BC (Rentzel, 1994). Scour and trough fill deposits, mainly consist-
ing of sets of OW/BM couplet cross-beds (see Fig. 6B), are readily found in
outcrops. However, the percentage fraction in drill-cores appears to be highly
underestimated.

The results of relative sedimentary structure types of the present study are
compared with those of Jussel et al. (1994) and Regli et al. (2004) within the
context of the fluvial systems, methodological aspects and observed sedimen-
tary structures at the outcrops of the individual investigation sites (Table 4).
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Fig. 6. Sedimentary structures of Pleistocene Rhine gravel in Basel. A: flooding
dominated sequences in a section approximately parallel to the former flow direc-
tion. B: trough-fill dominated sequences approximately perpendicular to the former
flow direction (see Fig. 2 for location of outcrops). Refer to chapter 3.2 for the ab-
breviations
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Table 3. Parameters used for the sequential indicator simulation to define the
geometric anisotropy of the sedimentary structure types. Refer to chapter 3.2 for
the abbreviations. Values in italics are estimates; the isotropic nugget constants of
the sedimentary structure types are zero; the variogram models of the sedimentary
structure types are exponential; the dip and plunge of the sedimentary structure
types are established at zero degrees.

Sedimentary structure type

OW OW/BMGG BG GG/BG
horizontal

GG/BG
inclined

SG SA SI

Relative
fraction
amount [-]

0.004 0.05 0.49 0.26 0.01 0.03 0.12 0.04 0.002

Azimuth [◦] 300 270 320 300 300 280 330 260 300
Maximum hori-
zontal range [m]

2.5 16 9 16 20 20 14 4.3 4

Minimum hori-
zontal range [m]

1.5 5 9 15 10 15 8 3.2 2

Vertical range
[m]

0.1 2.5 1.5 1.5 1.5 1.5 2.5 0.6 0.1

Table 4. Comparison of relative fraction amounts of different sedimentary structure
types in different case studies. Refer to chapter 3.2 for the abbreviations; a) Jussel
et al. (1994), average distribution of sedimentary structure types in fluvio-glacial
deposits of ten gravel pits located in the Rhine, Reuss, Aare, Limmat, and Thur
valleys (northeastern Switzerland); b) Regli et al. (2004), GPR data interpretation in
the area of the confluence of the rivers Rhine and Wiese (northwestern Switzerland).

Sedimentary structure type

OW OW/BM BG GG/BG
horizontal

GG/BG
inclined

SG SA SI

Current case
study

0.004 0.05 0.49 0.26 0.01 0.03 0.12 0.04 0.002

Jussel et al.a) 0.028 0.053 0.095 0.158 0.577 0.044 – 0.05 0.004

Regli et al.b) 0.02 0.06 0.13 0.05 0.50 0.05 0.03 0.04 0.01

The investigation site of the present study is located distal of aggradational
areas of the Rhine. The present study focuses mainly on drill-core descriptions
and some outcrops analyses. Jussel et al. (1994) investigated average distrib-
utions of sedimentary structure types in fluvio-glacial deposits of ten gravel
pits located in the Rhine, Reuss, Aare, Limmat, and Thur valleys in north-
eastern Switzerland. The sites are mainly located proximal to aggradational
areas of the rivers, and the investigations centered on outcrop analysis. Regli
et al. (2004) examined gravels in the confluence system of Rhine and Wiese
in Basel, northwestern Switzerland. The investigations are focused on GPR
data interpretation and some drill-cores.
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According to Jussel et al. (1994) and Regli et al. (2004), the relative
amount of OW is clearly higher than that observed in the present case study.
We actually expected a larger amount of OW and OW/BM from the topo-
graphic position within the vertical record of the site and from the larger
amounts of SA facilitating lateral migration (Church, 2002). Owing to destruc-
tion of sedimentary structures and mixing of different units during drilling,
we conclude that OW is underestimated for sedimentary structure analysis
from drill-core descriptions. The relative amount of OW/BM is similar in
all three case studies. This sedimentary structure type indicates trough struc-
tures. The larger GG amount may be explained by GG dominance near the top
of the vertical section caused by the Rhine abandoning this area in 6,000 BC
and subsequent lack of river dynamics. Compared to data from outcrops and
GPR, differentiation is considerably more difficult between GG, BG, GG/BG-
horizontal and GG/BG-inclined in the various drill-cores of the present study.
The sums of the relative amounts of these different sedimentary structure
types are, however, of similar range in all case studies. The fact that the GG
fraction predominates in the present case study is attributed to predominat-
ing aggradational processes or at least to lower fluvial system dynamics. This
is supported by the theory that proximal regions and confluence systems are
highly energetic and dynamic fluvial systems. Compared to the other two
investigations, the relatively higher amount of fine-grained structure types,
such as SG, SA and SI in the present case study, indicates slightly large-scale
inundations of the entire floodplain.

4.2 Geostatistical Analyses

Variogram Computation

Table 3 includes the resulting parameters of variogram computation for the
nine sedimentary structure types identified at the investigation site. Azimuth
(both dip and plunge are zero degrees) and the ranges corresponding to
maximum and minimum horizontal and vertical spatial correlation distances
(Journel and Huijbregts, 1989) characterize the geometric anisotropy of the
sedimentary structure types. The results of the variogram analyses, providing
orientation of the sedimentary structures, represent the main flow direction
of the Rhine during sediment aggradations. The relatively wide spatial corre-
lation ranges from a few meters up to a few tens of meters for the different
sedimentary structure types, may be greatly influenced by the density of the
data sampled from the drill-core information.

Aquifer Simulation

A sequential indicator simulation is presented in Figure 7. The regular model
grid is defined by 45 × 30 × 13 cells of 10m × 10m × 2m cell size. Each
simulated sedimentary structure distribution is termed an aquifer realization.
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Fig. 7. Realization of sequential indicator simulation representing the distribution
of sedimentary structure types identified at the investigation site. Refer to chapter
3.2 for the abbreviations

In each model run, the resulting probability density functions of the sedi-
mentary structure types deviate less than ±10% from the initial probability
density functions, which represent the expected volumetric fractions of the
sedimentary structure types over the entire model domain. At least 100 or
1,000 runs are necessary to determine statistical moments and their confidence
limits by Monte Carlo type modeling. In our case, the number of aquifer re-
alizations was limited and the effects of subsurface heterogeneity along with
changing boundary conditions illustrated qualitatively. A total of three differ-
ent simulations were prepared, comprising different distributions of hydraulic
conductivity, porosity and longitudinal dispersivity. These three simulations
were again calculated for mean and distributed aquifer parameters, thus re-
sulting in six realizations. These six realizations were then integrated into
the small-scale groundwater model using three sets of hydrological and op-
erational boundary conditions. For the three sets of boundary conditions, an
equivalent uniform distribution of aquifer parameters over the entire model
grid was also considered. Finally, a total of 18 simulations could be evaluated
and compared.

4.3 Groundwater Modeling

Groundwater Flow Regime

Figure 8A-F illustrates the head distribution and flow paths for the three
modeled boundary conditions, assuming uniform distribution of aquifer pa-
rameters (to the left) and for one of the simulations of the heterogeneously
distributed aquifer parameters (on the right). The situation on March 23, 2003
(Fig. 8A&B) reflects the groundwater flow regime before the major construc-
tion phases and describes an ordinary situation. Note the backwater effect
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Fig. 8. Visualization of hydraulic head distributions (A, B, C: 0.05 m resolution;
D: 0.1 m resolution; E, F: 0.01 m resolution) and flow paths illustrated by particle
tracks (distance between two arrow heads indicates 100-day travel time) for three
modeled situations for Layer 11. While the results for A, C and E are derived from
a uniform distribution of aquifer properties, those for B, D and F are derived from
a heterogeneous distribution of aquifer properties

behind the sheet pile wall and the diversion of flow paths. The situation
on October 28, 2004 (Fig. 8C&D) reflects the groundwater flow regime dur-
ing construction of the emergency exit. Note the inflow running towards the
construction site drainage. The situation on February 16, 2006 (Fig. 8E&F)
reflects the groundwater flow regime after completion of the emergency exit
with the overall low groundwater levels. Note the low gradient of the hydraulic
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heads, the Rhine infiltration and, beyond the southern model boundary, the
effect of the construction site drainages and industrial groundwater use.

A distinct influence of the current boundary conditions can be observed.
The situation in March 2003 is balanced. However, the effect of both construc-
tion site drainage in October 2004 and Rhine infiltration and construction site
drainages outside the model domain with their influence along the southern
model boundary in February 2006 is clearly visible. Integration of aquifer
heterogeneities leads to an undulating progression of hydraulic heads.

Flow paths, visualized by particle tracks, reveal that high conductivity
zones have a similar effect as optical lenses. The high hydraulic conductivity
units (i.e. OW) are identifiable as they “focus” on the flow lines. Due to the
complex interspacing of sedimentary structures, correlations between zones
of high particle concentration and their associated sedimentary structure are
visible only in a few places as illustrated in Figure 8D, i.e. in the center of
the model domain where particle tracks are bundled when entering a high
conductivity zone. Overall flow velocities are low especially during the low
groundwater levels in February 2006.

Note that although the hydraulic conductivity field is complex and hetero-
geneous, the resulting hydraulic head field is relatively smooth. In contrast,
the local velocity field, as reflected by the movement of particles through the
system, is quite complex and reflects more clearly the heterogeneity of the
system.

Water Budgets

The total flow budget was calculated for each sedimentary structure type.
However, only those model layers were taken into account which do not dry
out during the modeling process. The evaluation was limited to layers seven to
eleven in model calculations of the boundary condition of March 23, 2003 and
October 28, 2004. Due to low groundwater levels of the boundary condition on
February 16, 2006, the evaluation was restricted to layers eight to eleven only.

Figure 9 illustrates the relative amounts of flow budgets through the indi-
vidual sedimentary structure types for one simulation of heterogeneously and
uniformly distributed aquifer parameters. Note that the groundwater mainly
flows through the GG and BG sedimentary structure types. As regards the
heterogeneous distribution of aquifer parameters, the flow budgets of the more
conductive sedimentary structure types OW and OW/BM are higher than
those of the corresponding flow budgets of same cells, revealing uniform dis-
tribution of aquifer parameters. Also note that the three modeled boundary
conditions show little influence on the overall distribution of the flow budgets.

Drill-core layer descriptions generally include mixed information of vary-
ing sedimentary structure types (Regli et al., 2002). Moreover, only a small
number of indications of OW strata may often be identified in drill-core layer
descriptions. Nevertheless, many outcrop observations reveal that OW and
OW/BM occur frequently. Consequently, hydrogeological models based on
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Fig. 9. Relative amounts of flow budgets through the individual sedimentary struc-
ture types diagramed for one aquifer heterogeneity simulation and for the uniform
distribution of aquifer parameters. To facilitate comparison, relative flow budgets for
the uniform distribution were calculated for the same cells as characterized by the
sedimentary structure types for the heterogeneity simulation. Water budget values
for the following sedimentary structure types were excluded in the graph: SI ranging
between 0.1 and 0.5% and GG/BG-horizontal ranging between 1.1 and 1.6%. Refer
to chapter 3.2 for the abbreviations

drill-core data may reproduce effective hydraulic conductivities, but they un-
derestimate their standard deviations (Huggenberger and Regli, 2006). To
assess the influence of larger amounts of sedimentary structure types OW
and OW/BM, their relative amount was increased steadily. While the original
simulations considered OW and OW/BM amounts of about 5.4%, the linear
increase of these sedimentary structure types eventually totaled 54.0%. To al-
low a comparison of the different simulations and resulting flow budgets, the
northern, fixed head model boundary was converted to fixed flow. Figure 10
illustrates the results of these simulations. By increasing OW and OW/BM
amounts, a linear influence on the overall distributions of relative flow budgets
was observed:

y = 6.05x + 13.61 (R2 = 0.99). (4.3.6)

However, considering merely OW, results in an increase in relative flow
budgets capable of being described by a power law:

y = 2.74e0.24x (R2 = 0.97). (4.3.7)

It should be noted, that these equations are adequate for this case study
only and will differ from those of other case studies.
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Fig. 10. Relative amounts of flow budgets through the individual sedimentary struc-
ture types diagrammed for the modeled boundary condition on March 23, 2003. The
graph illustrates the distribution of flow budgets assuming a successive increase in
relative abundance of the sedimentary structure types OW and OW/BM. Note that
by increasing the relative amounts of water budgets for both OW and OW/BM, a
linear influence is observed. However, an increase in the relative amounts of water
budgets for OW alone results in an exponential influence. Water budget values for
the following sedimentary structure types were excluded in the graph: SI ranging
between 0 and 0.1%; SG ranging between 1.3 and 6.3%; GG/BG-horizontal ranging
between 0.2 and 1.8% and GG/BG-inclined ranging between 1.0 and 5.0%. Refer to
chapter 3.2 for the abbreviations

Flow Velocities

As a result of the high spatial variability of aquifer parameters, heterogeneities
in the aquifer structure strongly affect transport behavior and also lead to a
corresponding variability in the distribution of flow velocities through the indi-
vidual sedimentary structure types. In fact, heterogeneity leads to small head
variations, whereas those of velocities and travel time to large ones, as instinc-
tively prognosticated when considering a layered aquifer with flow parallel to
the bedding: although vertical heterogeneity does not produce any variations
in the head distribution over the vertical, velocities may vary significantly
from one layer to the next (de Marsily et al., 2005). The wide range of flow
velocities is caused by uncertainty in hydraulic conductivity and flow paths.
De Marsily et al. (1998) produced similar results but used particle arrival
times to explain this effect.

The calculated average velocities vx, vy and vz (see section 3.4.2) were eval-
uated for each sedimentary structure type. However, only those model layers
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were taken into account that do not dry out during the modeling process or do
not comprise most of the inactive cells. The evaluation was thus restricted to
layers eight to eleven. Figure 11 illustrates the distributions of flow velocities
for boundary conditions on October 28, 2004.

Fig. 11. Distributions of flow velocities for the boundary conditions on October 28,
2004. Note that the velocity values for the specific sedimentary structure types and
the various layers lie within the same range, thereby revealing characteristic flow
velocities for sedimentary structure types. Note also that the relative high vertical
flow velocities in Layer 11 can be attributed to groundwater extractions. Refer to
chapter 3.2 for the abbreviations
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A comparison was established between the horizontal (vx, vy) and vertical
(vz) flow velocities for boundary conditions on March 23, 2003 and October
28, 2004. Highest average flow velocities on March 23, 2003 were observed in
the sedimentary structure types OW and OW/BM with horizontal velocities
ranging from 32.0 to 57.3md−1 and 4.3 to 6.1md−1, and averaging 42.9 and
5.2md−1. Lowest horizontal flow velocities were observed in the sedimentary
structure types SG and SI with velocities ranging from 7.0E-3 to 8.9E-3md−1

and 2.0E-4 to 5.4E-3md−1, and averaging 7.9E-3 and 3.3E-3md−1. An eval-
uation of vertical flow velocities reveals highest flow velocities in the sedi-
mentary structure types OW and OW/BM with velocities ranging from 22.8
to 79.6md−1 and 2.6 to 5.8md−1, and averaging 50.8 and 4.4md−1. Low-
est vertical flow velocities are observed in the sedimentary structure types
SG and SI with velocities ranging from 1.8E-3 to 4.8E-3md−1 and 1.1E-4 to
3.1E-3md−1, and averaging 3.6E-3 and 1.7E-3md−1. Highest flow velocities
on October 28, 2004 were again observed in the sedimentary structure types
OW and OW/BM with velocities ranging from 13.5 to 163.5md−1 and 1.1 to
4.6md−1, and averaging 61.7 and 3.3md−1. Lowest horizontal flow velocities
were observed in the sedimentary structure types SG and SI with velocities
ranging from 2.9E-3 to 7.8E-3md−1 and 6.4E-4 to 4.1E-3md−1, and averaging
5.0E-3 and 1.7E-3md−1. The results of October 28, 2004 further reveal con-
siderable differences in flow velocities of the individual layers. An evaluation of
vertical flow velocities is difficult due to the varying influence of groundwater
abstraction, especially in layer eleven.

A sedimentary structure type-dependent flow velocity can be observed for
both boundary sets. A comparison of the results of both boundary sets reveals
that the velocity values for the specific sedimentary structure type and the
various layers lie within the same range. As foreseen, this reveals character-
istic flow velocities for sedimentary structure types and boundary conditions.
However, compared to the results of October 28, 2004, the results of March
23, 2003 further indicate that this range is narrower and the differences more
distinct between flow velocities of the individual layers. This can be attributed
to the more balanced boundary conditions on March 23, 2003. However, al-
though flow velocities are noticeably affected by the various boundary condi-
tions, their distribution is dominated by the individual sedimentary structure
type.

5 Conclusions

This case study was conducted in an urban area recently subjected to major
changes in groundwater flow regime caused by subsurface tunnel road con-
struction. Groundwater investigations generally focus on the required draw-
down and dimensioning of construction site drainages. However, this approach
is unsatisfactory as contamination is an additional factor to be considered in
urban areas. To adequately evaluate potential mobilizations of contaminants,
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focus should be placed on aquifer heterogeneity. The presented methods, par-
ticularly their combination, exemplify quantitative data fusion as a practical
tool for urban hydrogeology. The applied techniques allow integrating data
of different quality into groundwater models. Furthermore, the potentials and
limitations of this approach have also been identified. Since sedimentological
information on the subsurface is often restricted to drill-cores, data on out-
crops and geophysical surveys in urban areas is generally scarce. This may
lead to one of the main constraints in geostatistical approaches, as it fails
to derive connectivity properties of the sedimentary structures and generates
disconnected ellipsoids of either high or low conductivity. Future work should
focus on the distribution and connectivity of high-permeability sedimentary
structure types (e.g. Proce et al., 2004).

The dynamics of the groundwater flow regime under changing spatial and
temporal constraints were simulated and evaluated on the basis of a regional
groundwater model. To prevent permanent negative impacts on the ground-
water flow regime, particularly on groundwater quantity and quality, as well
as irreversible deterioration of aquifer systems, recommendations for optimiz-
ing groundwater management are proposed and structural alternatives pro-
vided. Optimal dimension, operation and selection of sites appropriate for
recharge wells and culverts are evaluated and their applicability verified. The
modeling results are used to improve the groundwater monitoring system
subsequently adapted to project requirements. Aside from managing various
groundwater extraction and recharge operations, adequate groundwater pro-
tection (groundwater flow regime and quality) was also ensured. The ground-
water management system also helped to identify changes in groundwater
chemistry. Negative effects for industrial groundwater use could be minimized.
So far, installation of supplementary recharge or interception wells was not
necessary to ensure groundwater supply, or to prevent attracting contaminated
groundwater. Simulation results reveal that the subsurface construction after
completion does not significantly alter groundwater budgets or groundwater
flow velocities.

Furthermore, as regards contaminant transport on a local scale, the applied
techniques present an approach to quantify the effect of groundwater flow bud-
gets and velocities in the individual hydrofacies. Obviously, groundwater flow
in heterogeneous media occurs largely through interconnected highly perme-
able geological aquifer structures. Together with hydrological and operational
boundary conditions they govern the groundwater flow and transport regime.
However, the relative amounts of groundwater budgets through the individual
hydrofacies do not appear to alter significantly for the various boundary con-
ditions investigated. Moreover, single hydrofacies and their relative occurrence
determine the distribution of groundwater budgets. Furthermore, an underes-
timation of the occurrence of highly permeable OW and OW/BM sedimentary
structures and shift of relative amounts of groundwater budgets through the
various sedimentary structure types was investigated.
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When investigating contaminant transport, focus should be placed on rel-
evant boundary conditions and origin, particularly on the depth of relevant
substances. Modeling results reveal that the different sedimentary structures
and simulated layers vary considerably in water budgets, flow paths and ve-
locities. Investigations by Tompson and Gelhar (1990), Frind et al. (1988)
and others reveal that heterogeneity dominates the movement of a contami-
nant plume at an early stage, and that the initial configuration of the plume
influences its long-term evolution.

The outcrop in the investigation area clearly demonstrated the size of the
relevant sedimentary structure types which are in the order of several tens to
100 m. A lithological description (nature and shapes of sedimentary structure)
is required to describe as accurately as possible heterogeneity in sedimentary
structure models and their resulting properties. Optimized acquisition of geo-
logical recording of drill-core data and less destructive drilling methods (drill
cores in plastic liners) could significantly improve the characterization of sed-
imentary structure types. This includes more comprehensive hydrogeological
investigations, i.e. a systematic collection and interpretation of drill-cores as
a function of lithofacies as well as hydraulic and hydrogeochemical parame-
ters. Such innovations could involve tailored exports from geological databases
such as separation of sedimentary lithocomponents into light and dark-colored
components. Since color variations are assumed to be an indicator of organic
carbon content, they influence sorption capacities and sorption kinetics of the
material. These informations are of prior importance considering groundwater
transport processes.

However, numerous innovative technologies proposed for groundwater in-
vestigations face enormous implementation problems. As successful applica-
tion is often questioned, conventional and more expensive approaches, such
as extensive analytical programs, are favored. Applied and problem-oriented
investigations should focus on a more sustainable management of ground-
water resources in a sensitive urban environment. The described integrated
approach, incorporating sedimentological and geostatistical analyses as well
as groundwater modeling, may assist in meeting the challenges presented by
such a sensitive urban environment and lead to more target-oriented reme-
diation strategies. These include an evaluation of contaminated sites, risk
assessment of waste disposal and parameterization of numerical groundwater
models, thereby leading to the development of new approaches for complex
practical problems. Although the results of this study are case-specific, the
overall conceptual approach and methodologies used may be directly trans-
ferred to other urban areas.
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Graf H, Schäfer W (2002) Simulation des Nitrattransports im Einzugsgebiet eines Wasser-

werks. Grundwasser 4/2002:233–242
Heller P, Paola C (1992) The large-scale dynamics of grain-size variation in alluvial basins,

2: Application to syntectonic conglomerate. Basin Res 4:73–90
Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, the U.S.

Geological Survey. Modular Ground-Water Model—User guide to the observation, sen-
sitivity, and parameter-estimation processes and three post-processing programs: U.S.
Geological Survey Open-File Report 00-184, 210 pp

Huggenberger P, Regli C (2006) A sedimentological model to characterise braided river
deposits for hydrogeological applications. In: Sambrook-Smith GH, Best JL, Bristow
CS, Petts GE (eds). Braided Rivers: Process, Deposits, Ecology and Management. IAS
Special Publication 36:51–74

Huggenberger P, Epting J, Spottke I, Regli C, Zechner E (2006) Fluss-Grundwasser-
Interaktion, Interreg III Projekt A MoNit: Modellierung der Grundwasserbelastung
durch Nitrat im Oberrheingraben, Landesamt für Umwelt, Messungen und Naturschutz
Baden-Württemberg, Karlsruhe

Huggenberger P, Aigner T (1999) Introduction to the special issue on aquifer-sedimentology:
problems, perspectives and modern approaches. Sedimentary Geology 129:179–186

Huggenberger P, Siegentaler C, Stauffer F (1988) Grundwasserströmung in Schottern: Ein-
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