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Preface

Hydroinformatics has emerged over the last decade to become a recognised and
established field of independent research activities within the hydrological and en-
vironmental science communities. Hydroinformatics is not just an application of In-
formation and Communications Technologies (ICT) to water resources, hydraulics,
hydrology or environment. It strives to provide an amalgamation of water science
with modern technologies for the purposes of satisfying social requirements. The
European Geosciences Union (EGU) held its first dedicated session on Hydroin-
formatics in 2005 at the Vienna Meeting; that same meeting voted to establish the
Hydroinformatics Sub-Division and Technical Committee (part of the Hydrological
Sciences Division). The aim of that original session was to provide an active forum
in which to demonstrate and discuss the integration and appropriate application of
emergent computational technologies in a water modelling context. The initial pro-
posal for this book arose at that meeting out of a desire to collect together a range of
different contributions from academics and practitioners working in various sectors
across the field; there were no other published compendiums at that point which at-
tempted to span the latest set of methods or topics of hydrological interest that were
presented at our meeting. The starting point for the selection of authors was the
session itself. Further contributors were invited to submit papers in order to bolster
particular sections and provide a representative selection of research across the main
thematic areas: neural networks, fuzzy logic, global and evolutionary optimisation,
emerging technologies and model integration.

This book is aimed at hydrologists, scientists, students and practitioners inter-
ested in a set of techniques derived largely from artificial and computational intel-
ligence to solve a range of problems in hydrology. We hope that this book will pro-
mote the field of Hydroinformatics and bridge the gap between theory and practice.

We would like to thank the chapter authors for their interesting contributions
and the many reviewers who have helped to make this a useful and high-quality
publication. We would also like to thank the publication team at Springer for their
efficient services.

Nottingham, UK Robert J.Abrahart
Leeds, UK Linda M. See
Delft, The Netherlands Dimitri P. Solomatine
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Part I
Hydroinformatics: Integrating Data

and Models



Chapter 1
Some Future Prospects in Hydroinformatics

M.B. Abbott

Abstract This chapter reviews more recent developments in hydroinformatics,
contrasting the developments in engineering practice and those currently predomi-
nant in academia. The possibility is considered of whether a major part of current
academic research corresponds to a degenerating research programme in the sense
established by Lakatos. It is then indicated how the industrial and the academic
developments can be reintegrated, as exemplified by a new approach, called the
Waterknowledge Initiative. The modus operandi of the production and operation of
the deliverables of the Initiative is explained, including the new institutional and
business developments through which they may most appropriately come to pres-
ence. The notion of a global knowledge provider is introduced correspondingly.

Keywords Hydroinformatics · industry · academia · fifth-generation modelling ·
Waterknowledge Initiative · agriculture

1.1 Introduction

The present situation in hydroinformatics is increasingly marked by a discrep-
ancy between the activities proceeding in industrial practice and those occurring
in academia. The roots of this discrepancy may be traced to the social–economic
pressures exerted upon practice on the one hand, and the often very different pres-
sures exerted upon academic teaching and research on the other. The possibility
must then be considered of whether a major part of current academic research
corresponds to a degenerating research programme in the sense established by
Lakatos (e.g. Lakatos, 1976/1979). It is then necessary to consider how the in-
dustrial and the academic developments can be reintegrated, as will be exempli-
fied here by a new approach, called the Waterknowledge Initiative. This is de-

M.B. Abbott
Knowledge Engineering BVBA, Avenue Francois Folie 28, Box 28, 1180 Brussels, Belgium, and
European Institute for Industrial Leadership, Château Latour de Freins, 1180, Brussels, Belgium,
www.eiil.net., e-mail: knowledge.engineering@skynet.be

R.J. Abrahart et al. (eds.), Practical Hydroinformatics. Water Science 3
and Technology Library 68, c© Springer-Verlag Berlin Heidelberg 2008



4 M.B. Abbott

voted to elaborating and applying a fifth generation in modelling practice whereby
web-based access to and instantiation and operation of numerical modelling systems
are woven together with web-facilitated access to the most supportive and immedi-
ately relevant, human-expert knowledge and understanding. It will be explained why
the production of this Initiative must be conceived as essentially sociotechnical con-
structs. The modus operandi of the production and operation of the deliverables of
the Initiative must also be explicated, including the new institutional and business
developments through which they may most appropriately come to presence. The
notion of a global knowledge provider can then be introduced correspondingly. This
contribution thus modifies as well as updates an earlier overview of Abbott (2004).

1.2 Hydroinformatics in Engineering Practice

Hydroinformatics was born when numerical modelling and data collection and pro-
cessing came into a synergic relation at the end of the 1980s (Abbott, 1991). By that
time, the field of numerical modelling had expanded its range from one that was
restricted to the modelling of flows of water exclusively to a much wider ranging
field that combined flows and all that these flows transported with them or other-
wise influenced, which increasingly included living creatures that had, in turn, their
own means of motion (Abbott and Warren, 1974). Data collection had expanded its
range of activities similarly, passing from recordings of water levels and velocity
distributions to recordings and samplings of distributions of sediments, chemical
substances and aquatic vegetation and other forms of aquatic life, including marine,
– and even to movements of human populations over daily and other cycles (Abbott
et al., 1977). This development was driven by engineering practice applied to many
construction and management projects, of which the largest and most prominent
were associated with the flood protection of the city of Venice, the rail and motor-
way link across the Great Belt and the similar link between Denmark and Sweden
across the Sound (Øresund, in Danish). The levels of investment involved in these
last constructions alone, of some eight billion euros, justified large investments in
modelling and measuring equipment with its surveillance, control and data acquisi-
tion (SCADA) systems and radio-linked, online and so real-time operating systems.
The advantages of using a hydroinformatics approach became increasingly evident
as these projects progressed, while these advantages attained to a new dimension in
the last of these great engineering works due to the admission of the general public,
whether through their interest groups or individually, into the chains of decision-
making processes throughout the project. The extension of hydroinformatics onto
this sociotechnical dimension as projected already in Abbott (1996) was realised
for the first time in this project in such a way as to make the project publicly accept-
able in the first place and a success in every other place. In the concluding words of
Thorkilsen and Dynesen (2001), representing the owners of the project:

With regard to the subject of the present paper, the role of hydroinformatics in the comple-
tion of the Øresund Fixed Link, hydroinformatics certainly took an important place, right



1 Some Future Prospects in Hydroinformatics 5

from the beginning of the feasibility phase right through to its completion. It was fully
integrated into the planning and design, as well as the execution and control phases of the
project. Its significance, which may prove relevant for similar or other kinds of future con-
struction projects having water and environmental sides to them, may be summarised as
follows:

1) The environmental monitoring and modelling programme that emerged from the con-
cerns of many organisations and the public generally was accordingly directed to the
purpose of dissemination of environmental information, as well as to the needs of the
construction process itself, and institutional arrangements were made correspondingly.
This emergence of a complex of aims and methods, of public aspirations and government
legislation, of citizen groups and institutional arrangements, of criteria and controls, of
instrument networks and modelling tools, and, most generally, of people and technical
equipment, was prepared by and remains the ongoing subject of hydroinformatics.

2) It seems reasonably established that without the promises held out by the development of
hydroinformatics already in the 1990s, the transport link between Denmark and Sweden
could only have been realised with great difficulties, despite its being backed by pow-
erful political interests. Of course, without the political support it would never have
succeeded either, regardless of any amount of development in hydroinformatics. The
success of the project was the result of a synergy between these two streams of develop-
ments. It was a consequence of a synergy between a new kind of political will and new
kinds of sociotechnical means.

3) From the point of view of hydroinformatics, the Øresund project marked the transition
from an emphasis on information technology to an emphasis on communication tech-
nology. Although exceedingly rudimentary and limited compared with the potentialities
of currently ongoing developments based on new telecommunications technologies, the
[internetted information and knowledge serving] EAGLE system can be seen as a pre-
cursor of presently planned and future decision support systems that can be distributed
across the internet (see, for example, Abbott and Jonoski, 2001).

4) These developments not only served the interests of the general public but also provided
substantial advantages to the contractors and others who were concerned with the con-
struction. For example, the dredging works were able to proceed with a high degree of
efficiency, while the widespread use of hydroinformatics and GPS systems substantially
reduced the costs of the placing of rock armour, the tunnel elements, bridge piers and
other structural elements. There were thus important business advantages, much less ne-
gotiation and very little litigation as compared with similar large infrastructural projects
carried out elsewhere in Europe.

5) An important consequence of this situation was that the link was built to specification,
its construction and operation satisfied all environmental conditions, it was constructed
within its original budget and it was completed six months ahead of schedule. This was
a compliment to all parties concerned, but also to the achievements of hydroinformatics
as a new discipline in this field.

It is a long quotation, but it sums up very well the development in hydroinfor-
matics as currently applied in engineering practice.

1.3 Hydroinformatics in Academia

Hydroinformatics in academia has for the most part taken another track from that
followed in engineering practice, having been much more occupied with a range



6 M.B. Abbott

of techniques that have been directed towards transforming existing data sets into
new actionable knowledge. Starting with artificial neural networks in the 1980s and
extending through such technologies as those of genetic programming and support-
vector machines, hydroinformatics has taken up what is still sometimes called a
sub-symbolic paradigm, and it has attempted to extend this paradigm to cover a
wide range of problems arising in the aquatic environment. This nomenclature
arose from an earlier period that was associated with a succession of paradigms
that were concerned with what was called artificial intelligence (AI) and then
one particular development in that field that acquired the sobriquet of Good Old-
Fashioned AI (GOFAI) which was based on representing intelligent behaviour by
sequences of symbols, construed as rules and facts, so that it constituted a symbolic
paradigm. Although showing that such devices could not by themselves imitate hu-
man behaviour constructively, Dreyfus pointed out (loc. cit. p. 5) that some rule-
based devices that preceded the sub-symbolic devices, but necessarily worked to-
gether with their human-intelligent users, as exemplified already in 1970 by M.I.T.’s
MATHLAB and Stanford’s DENDRAL, were already at that time (and their suc-
cessors still are) successful, and this was and remains possible because these de-
vices themselves ‘achieve success precisely because they are restricted to a nar-
row domain of facts, and thus exemplify what Edward Feigenbaum, the head of
the DENDRAL project has called knowledge engineering’. In effect, the work-
ings of these systems cannot be separated in practice from the knowledge of the
persons who are using them, whereby the much more flexible knowledges of the
users actively complement the knowledge encapsulated as rules into the systems
themselves.

By the time that hydroinformatics took up sub-symbolic methods, Hubert Dreyfus
(1992) could write with confidence that

After fifty years of effort. . . however, it is now clear to all but a few diehards that this at-
tempt to produce general intelligence has failed. This failure does not mean that this sort
of AI is impossible; no one has been able to come up with such a negative proof. Rather,
it has turned out that, for the time being at least, the research programme based upon the
assumption that human beings produce intelligence by using facts and rules has reached a
dead end, and there is no reason to think that it could ever succeed. Indeed. . . GOFAI is a
paradigm case of what philosophers call a degenerating research programme.

A degenerating research programme, as defined by Imre Lakatos [1976/1978], is a sci-
entific enterprise that starts out with great promise, offering a new approach that leads to
impressive results in a limited domain. Almost inevitably researchers will want to try to
apply the approach more broadly, starting with problems that are in some way similar to the
original one. As long as it succeeds, the research programme expands and attracts follow-
ers. If, however, researchers start encountering unexpected but important phenomena that
consistently resist the new techniques, the programme will stagnate, and researchers will
abandon it as soon as a progressive alternative approach becomes available.

Hydroinformatics came on the scene when the GOFAI paradigm was already
largely discredited, but it then came to take up as the successor of GOFAI in a big
way, and the viability of the programme of this successor has in turn been called
into question. In the words of Dreyfus, ‘The triumphal arrival of the neural-net rev-
olutionaries, also called connectionists, completed the degeneration of the GOFAI
programme [in that] computers running simulations of such nets do not count as
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physical symbol systems’. Dreyfus in turn quotes Paul Smolensky when he says,
‘In connectionist systems, knowledge is encoded not in symbolic structures, but
rather in the pattern of numerical strengths of the connections between processors’.
Thence the expression: ‘sub-symbolic paradigms’.

Now of course the range of sub-symbolic paradigms has extended way beyond
the already wide class of artificial neural networks (ANNs) and now covers all man-
ner of devices, many of which are sure to be described in this volume. In the case
of ANNs, Dreyfus explained why these must also be very limited indeed in their
capacity to represent, not to speak of reproducing, intelligent human behaviour. At
the same time, however, none of these devices so far necessitates the presence of hu-
man intelligence in its actual workings, although of course some intelligence may be
required to instantiate them and to make sense of their productions. They are thus
essentially technocratic systems, and as Dreyfus has shown in the case of ANNs,
this alone must limit their range of applications severely. As Dreyfus explained, the
basic problems had been adumbrated already by Pascal in the seventeenth century,
and we may add that they were already explicated in Chinese mathematics some
1000 years earlier (Chemla and Guo Shuchun, 2004).

The great achievements on the one hand of what we might, for want of a bet-
ter name, call engineering hydroinformatics seem nowadays to stand in sharp con-
trast with the relative paucity of commercially viable applications of sub-symbolic
paradigms in engineering and management practice. The question then naturally
arises of whether the sub-symbolic paradigm constitutes in its turn a degenerating
research programme of the kind for which GOFAI provides a paradigm case. As
soon as we pose this question, however, we are bound to recall many similar situa-
tions that have occurred in our own field over the last 50 or so years.

The most memorable of these for those whose memory goes back that far was the
dimensional analysis paradigm – one is tempted to write ‘syndrome’ – that swept
through hydraulics during the period that computational hydraulics was still in its
infancy and which was largely inspired by similar movements in other disciplines.
The journals of hydraulic research of the time had a regular quota of papers on this,
that or the other dimensional analysis of whatever hydraulic phenomenon the author
happened to be investigating, and doctoral theses were largely given over to great
discoveries of new dimensionless numbers correspondingly, and several of these
doctors became professors on this basis. Nowadays, of course, this era is all but
forgotten and the results, such as they were, are largely ignored as irrelevant. The
dimensionless numbers that we still use and still find useful originated for much the
greater part in an earlier era.

But of course hydraulics was not alone in such endeavours. Indeed in this respect
it is still apposite to repeat the observations of Klemeš (1986; see also Abbott, 1992)
on this unfortunate habit of hydrologists also of misappropriating techniques bor-
rowed from other disciplines:

Hydrology, having no solid foundation of its own and moving clumsily along on an assort-
ment of crutches borrowed from different disciplines, has always been an easy victim of
this practice. Every mathematical tool has left behind a legacy of misconceptions invariably
heralded as scientific breakthroughs. The Fourier analysis, as was pointed out by Yevjevich
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(in 1968), had seduced the older generation of hydrologists into decomposing hydrologic
records into innumerable harmonics in the vain hope that their reconstruction would facili-
tate prediction of future hydrologic fluctuations (fortunately few computers were available
at the time, so that the Fourier fever did not become an epidemic); various statistical meth-
ods developed for evaluation of differences in repeatable experiments have been misused
to create a scientific analysis of unrepeatable hydrologic events; linear algebra has been
used to transform the idea of a unit hydrograph from a crude but useful approximation of
a soundly based concept into a pretentious masquerade of spurious rigour now exercised in
the modelling of flood events; time series analysis has been used to remake inadequate 20-
year stream flow records into ‘adequate’ 1,000 year records, or even more adequate 10,000
year records; and the illusion of pattern recognition is now being courted in the vain hope
that it will lend legitimacy to the unscientific concept of mindless fitting that dominates con-
temporary hydrologic modelling. In all these cases, mathematics has been used to redefine
a hydrologic problem rather than to solve it.

From the point of view of practitioners in physics-based hydrologic modelling
using all the available resources of supporting modern-scientific disciplines, it seems
that many hydrologists continue to go to any lengths to avoid the hard thinking and
mathematical difficulties necessitated by a physics-based approach in this subject.
One of the escapes from the shear difficulty, and often algebraic drudgery (Matlab
notwithstanding!), of the physics-based approach is that of the so-called ‘conceptual
modelling’, and there are still many persons who try to represent the behaviour of
a complete catchment over all possible successions of meteorological events by a
few parameters in such a model. The physics-based modellers often refer to these
productions derogatively as ‘pots-and-pipes models’.

The now-classical analysis of such movements in the general case is that of Hei-
degger (1927/1962, pp. 165 and 168–179). He explained how such a paradigm can
be formed, or rather forms itself, within a community, and how it takes over the
thinking processes of those who are held within its spell within the community
concerned. It is important however to understand how and why hydroinformatics
proceeds in this way within most of academia and in another way again in the world
of engineering practice, and this can be done by considering the most flagrant dis-
crepancies, such as occur in the area of hydrology.

In 1996, Abbott and Refsgaard considered the marked discrepancies between
developments in hydrology which could in principle be catalysed by developments
in hydroinformatics and developments in those fields, like river engineering and
management and coastal engineering, where already at that time hydroinformatics
had triggered major advances. It had by then become clear that only distributed
physically based models could make use of the rapid advances in instrumentation,
SCADA systems with real-time data transmission, data assimilation modules, re-
motely sensed data and its interpretation systems, seamless GIS interfacing, ad-
vances in geodetic surveying incorporating GPS-based position-fixing equipment,
cartographic transformation packages, intranetted and extranetted communications
systems and the many other such developments that hydroinformatics had already
woven together to obtain such massive synergies in other areas. By way of an expla-
nation of this situation, four areas of difficulty were identified in the applications of
such physics-based systems in hydrology, which are given as follows (ibid, pp. 12
and 13):
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1. Data availability: A prerequisite for making full use of the distributed physically
based models is the existence and easy accessibility of large amounts of data, in-
cluding detailed spatial information on natural parameters such as geology, soil and
vegetation and man-made impacts such as water abstractions, agricultural practices
and discharge of pollutants.

In most cases, all such relevant data do not exist and even the existing data are
most often not easily accessible due to lack of suitably computerised databases. A
further complication in this regard is the administrative problem created by the fact
that these models, in addition to the traditional hydrometeorological data, require
and can make use of many other data sources, such as those arising from agricul-
tural, soil science and geological investigations.

Another important development gradually improving the availability of data is
the application of GIS technology, which is particularly suitable for couplings with
distributed hydrological models. In general, even engineering hydrology does not
attract the large investments in instrumentation, data networks and other facilities
that are already accepted as justified in hydraulics and coastal engineering applica-
tions.

2. Lack of scientific-hydrological understanding: With the introduction of a new
modelling paradigm and concurrent research in process descriptions, new short-
comings in the scientific-hydrological understanding have emerged, especially with
regard to flow, transport and water-quality processes at small scales and their up-
scaling to describe larger areas. [Some of the key scientific problems were high-
lighted in several chapters of Abbott and Refsgaard (1996).]

These scientific shortcomings have, on the one hand, constrained the practical ap-
plications of distributed hydrological models and, on the other hand, the existence
and application of such models have put a new focus on some of these problems,
thus contributing to advances in the scientific-hydrological understanding.

3. Traditions in hydrology and water resources understanding: The distributed
physically based model codes, as represented by the European Hydrologic Sys-
tem/Système Européen Hyrologique (SHE), constituted a ‘quantum jump’ in com-
plexity as compared with any other code so far known in hydrology. Moreover, it
used technologies, such as had been developed in computational hydraulics, with
which few hydrologists were familiar. Although the numerical algorithmic prob-
lems could be largely overcome through the development of the codes into user-
friendly fourth-generation modelling systems with well-proven algorithms, such as
the MIKE SHE, the problem was then only shifted back to one of comprehend-
ing the fully integrated complexity of the physical system that was being modelled
together with the constraints that were inherent in the modelling procedures. Very
few professional engineers and managers were, and still are, educated and trained
with the necessary integrated view of hydrological processes in anything like their
real-world physical complexity.

This difficulty is exacerbated by the very nature of hydrology itself, whereby
most professionals possess only a limited view of the physical processes involved.
Soil physicists, plant physiologists, hydrogeologists and others usually have only
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a very partial view on the whole system, while there are few organisations that
have available both the full range of such specialists and the more broader-ranging
professionals that are needed in many situations to exploit the potential of distributed
physically based codes to such a degree that this exploitation is economically
justified.

4. Technological constraints: In order to achieve a wide dissemination of mod-
elling technology to a considerable part of the professional community (and not
only to experienced hydrological modellers) experience from hydraulic engineer-
ing shows that fourth-generation systems (i.e. user-friendly software products) are
required. Furthermore, it is believed that fifth-generation systems are required to
realise their full potential in terms of practical applications. The fifth generation
systems [will be] hydroinformatics based. . .’.

Thus, although the further and more intensive development of physically realistic
computer-based hydrological modelling systems was seen to devolve upon develop-
ments in hydroinformatics, formidable institutional problems were seen already at
that time to be blocking these developments in many areas. These institutional prob-
lems have become increasingly serious since that time and have now, in their turn,
led to serious problems within the hydrologic community itself. These problems
appear as a divergence within the community concerning the very nature of hydro-
logic modelling and practice, and with this the role that hydrology has to play, or
indeed can play, in society as a whole. Such divisions strike at the heart of the sci-
entific foundations of hydrology, raising questions concerning its very nature as a
discipline based on the results of modern science.

1.4 Bringing Practice and Academia Back Together:
The Waterknowledge Initiative

This Initiative, which is now operational, is concerned in the most immediate and
pragmatic sense only with the construction, within an open-source environment, of
an Internet-enabled vehicle for accessing modelling systems, instantiating models
remotely using facilities provided by these systems in conjunction with proprietary
GIS and running these models by using other such facilities again, while doing all
of this with the Internet-enabled support of human experts. A further development
associated more with the analysis, design and construction of a disaggregated mod-
elling system using an agent-orientated architecture (see Abbott, 2004) was initiated
during 2006. This is being developed initially as a teaching and academic research
platform, but it obviously has important commercial potentialities. The work is pro-
ceeding around doctoral and other studies in Brussels, Cork, Delft and Exeter with
the author as the ‘owner’, in the established open-source sense, of the project (Ray-
mond, 1999, 2001). This provides the so-called ‘ABCDE core group’.

The view of the project only in terms of a delivery vehicle for such sociotech-
nical modelling services needs however to be extended in order to take account of
changes occurring in the purposes for which models will have to be employed in the
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quite near future, and the present contribution is directed to explicating something
of this new world of applications of modelling services. This is then further to say
that the systems – or more precisely ‘constructs’ – have in this case to be con-
ceived within many different operating environments, and these must come to differ
in several important respects from our present, more uniform operating environ-
ments. The new operating environments with which this Initiative is concerned are
then conditioned by several other factors than those occurring within the modelling
community itself. There is no longer any question of an internal mutation occur-
ring spontaneously within the hydroinformatics community itself, but one that is
determined, and even forced, by circumstances that are far outside the control of
this community. This development, forced for the most part by external social and
technological advancements, is called the fifth generation of modelling (see Abbott,
Tumwesigye et al., 2006 and Tumwesigye, 2005).

Since the notion of a forcing process may at first appear somewhat far removed
from our present purposes, it may be apposite to introduce it through its most imme-
diate consequence in our own field of modelling in hydraulics. This may be exem-
plified very simply by the displacement – although not necessarily replacement – of
physical modelling by numerical modelling. It may then be recalled that the flows
of water occurring in the waters of the physical model were made more visually ap-
parent by placing illuminated objects upon their surfaces and photographing these
light sources cinematographically as they moved, so as to provide traces of the wa-
ter movements. In this way, the physical models provided what are called in semi-
otics metonymic structures. The eyes and mind of the experienced modeller then
transformed these metonymic structures into metaphors that conveyed such mean-
ings as eddy formations, vortex streets and tidal races. In the first decades of nu-
merical modelling, before the development of graphical user interfaces, numerical
models produced only sequences of numbers, which were ill-suited to the model-
interpretation capabilities of all but a few experts. In this situation, the market for nu-
merical models was quite severely restricted and physical models remained viable.
However, as soon as graphical user interfaces were introduced that could provide
similar devices to those provided by the physical models, such as patterns of mov-
ing blobs and their traces and patterns of arrows, and so metonymic structures and
thus devices that enabled almost anyone to generate the corresponding metaphors in
their own minds, the days of the predominance of the physical model were for the
most part themselves ‘numbered’. Thus, what is important to understand here is that
the physical model was not displaced from its dominant position by the numerical
model as such, but it was displaced by the graphical user interface of the numerical
model – which is really quite another thing again.

As the results of model simulations become directed to new classes of end users,
such as through projections from 3G telephones of expected crop developments
under different water consumption and distribution scenarios on the walls of the
homes of individuated (and often illiterate) farmers using the predictions of mass-
customised advice-serving systems, so the nature of the modelling exercise – the
way in which it functions – must change correspondingly (see Abbott et al., 2006;
Gesso, 2005). The move from two-dimensional colour representations of results
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to pseudo-three-dimensional colour representations using the devices of projection,
with their realism heightened by the use of highlights and shadows and by placing
the observer in an orbit around the phenomenon of interest – a development that
has been developed extensively over 10 years now – indicates the continuation of
this tendency as the range of end users for such simulacra has continued to expand.
Once again, these must be woven into the activities of the human agents within
whose minds the decisive metaphors must come most immediately to presence.
In mass-customised advice-serving systems used in agriculture, aquacultural and
public health applications in rural areas, these are called the rural communicators
(Abbott 2000; Abbott and Jonoski, 2001; Gesso, 2005). These are the communica-
tors and interpreters of the proffered advice and the elicitors of local, indigenous
social and experiential knowledge. The present contribution is intended also to di-
rect attention to these means of accessing the great new markets of users of the
productions of models so as to provide some orientation on the development of the
knowledge-promoting and knowledge-developing services involved.

Thus, the Waterknowledge Initiative is directed to laying the foundations for con-
structs that may be directed to becoming the most advanced and therewith the most
cost-effective operations of their kinds. It proposes to achieve this goal by support-
ing the web-based access and exploitation of electronically encapsulated knowledge
with parallel but interacting means to draw upon an adaptive network of genuine in-
ternational expertise and other sources of knowledge and understanding in a variety
of efficient and correspondingly economic ways. It is thus directed to the longer-
term development of the initial delivery vehicle and supporting services even as
other contributions have been and continue to be prepared to cover the shorter-term
objectives. As an immediate consequence, the Initiative is directed simultaneously
to the development of new business models, understanding that without commer-
cially sustainable developments its innovations will be stillborn. Inseparable from
this is the latent ambition of the larger business organisations to become global
knowledge providers, providing web-based software services and brokering expert
knowledge support also over the web on a worldwide basis.

This more general development is directed in the longer term to supporting and
indeed enabling the analysis, design, installation and development of online and
real-time construction, operating and management systems that will be highly adap-
tive to changing conditions, such as may occur slowly over years in some cases and
over a few hours, or in extreme cases even over some minutes, in other cases. In
many and probably in most cases, such systems will be under constant development
in order to accommodate changes occurring in the area of interest as at the same
time they will in many cases be updating themselves constantly and automatically
in order to accommodate changes that they are themselves registering and analysing.
Such systems will thus be highly dynamic and strongly self-referencing.

These systems not only will be applicable to the real-time operation of water en-
vironments of course, but will be invaluable adjuncts to the planning and the imple-
menting of investments in flood prevention and flood reduction, land-improvement
and amelioration projects. For example, the move away from ‘hard’ structural pro-
tection, as afforded by dykes, and more towards flood amelioration by the intentional
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flooding of upstream areas (with of course adequate warnings, safety precautions
and compensations, as well as the installation of safe areas, such as mounds, raised
structures and suitably prepared housing) will make it possible to reduce down-
stream flooding but will require careful synchronisations of individual flooding
events. We shall refer to this process as one of sacrificial flooding because it intro-
duces in this area the (often ritualistic) orderings in time of sacrificial acts in general.
Similarly, and by way of another example, the ongoing and intensified introduction
of online water-quality measuring and monitoring systems with their SCADA sys-
tems providing permanent online communications to decision-enhancing facilities
of all kinds, as directed in turn to all manner of ‘decision-makers’ including the
general population, will provide greatly enhanced warning facilities and associated
customised advice. Such facilities will also of course provide an increasing support
to future industrial, residential and infrastructural investments by providing scenar-
ios of future water-quality situations under, for example, normal, flood and drought
situations as a basis for the issuance of construction and operating licences and
permits. Thus, these online and real-time installations will provide the essential pre-
requisites for all future socio-economic developments in the water sectors of our
societies. They correspond to the more general drift of societies away from knowl-
edge communities composed primarily of ‘knowers’ to knowledge communities that
are composed predominantly of ‘consumer of knowledge’, commonly described as
a mutation from a modern condition of society to a post-modern condition of society
(e.g. Lyotard, 1979/1986).

It follows from these and other examples that the designs of integrated systems of
this kind cannot be made on the basis of technical data and technical considerations
alone: they also necessitate a thorough appraisal of the social, including the socio-
economic and political, environments within which the particular systems will have
to operate as these change in time and space as human activities in river basins, for
example, change and develop correspondingly. Since the social and political envi-
ronments will be themselves in turn increasingly influenced by the changes wrought
in the water sector, we come into the presence of often closely interacting, and in-
deed interwoven, social and technical developments – developments that are said to
be implected in the language of object theory – so that we are again in the presence
of the sociotechnical.

By the same token and as another example again, although one model of the
consequences of this changing environment may be appropriate at one time, such
as during the night in a residential area, it will often not be appropriate at another
time, such as during the day when most persons in the area are working elsewhere.
Thus, it will often be necessary to identify the ways in which activities in a basin,
for example, may develop on the basis of specific habitual, infrastructural and man-
agerial interventions while also identifying the consequences of these interventions
for the populations and the lands within the basin. These consequences will com-
monly include the actions and reactions of the populations concerned, whether at
the level of individuals or of social groups, as well as the reactions of and with
physical and biological processes occurring within the areas concerned. These de-
velopments are in turn related to developments in web-based and satellite-enabled
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mobile telephone technologies and – as the most challenging issues of all – their
most appropriate modes of application and corresponding business arrangements.

It follows also that the Waterknowledge-generated projects will not normally be
directed to providing the means to implement design, implementation and manage-
ment procedures directed to one complete and final situation, but will instead be
directed primarily to the installation of systems that will monitor the changing inter-
acting social and technical environments occurring within the basin under whatever
is the current operating strategy, while constructing extrapolations of the changing
socio-economic and more general social conditions in order to evolve a new strategy
that adapts to the changing one while still leading development in an overall desir-
able direction. The approach that is envisioned here is then incremental, sequential,
reflexive and evolutionary rather than being first discontinuous and afterwards static.
Such a system has of course to be ‘set-up’, or rather instantiated, for the existing
situation, but then in such a way that it can monitor the parameters that define its
further operation and estimate the best future courses of action at that and future
times as indicated by these changing parameters.

This incremental, sequential and evolutionary approach is being applied also to
the productions of the Waterknowledge Initiative itself, in that its constructs may be
instantiated so as to comprehend only some parts and some aspects of water-related
activities, being extended as required by changing circumstances as these become
increasingly relevant and significant.

A system of this kind is commonly divided into its human components and its
technical components, and this habit persists even when it is understood that these
two components are so connected and intertwined, or again ‘implected’ that they
cannot be properly separated in their operations. Such a system is then commonly
described as an essentially sociotechnical system. However, to the extent that this
system is extended to include the actions and reactions of the populations involved,
it will usually not remain internally consistent, since there will commonly be sev-
eral and even many different interests and intentions within the social groups that
are involved and the ‘system’ that is proposed here has to accommodate itself to
this situation. As already adumbrated, in strictly scientific terms this means that the
operation and management problem cannot be posed as one of ‘a system’ at all in
many applications, in that its parts may sometimes not be mutually consistent due
to human attitudes and activities that are not consistent the one with the other, and
in this case, as introduced earlier and as already employed here, we speak instead of
an essentially sociotechnical construct. Obviously any so-called ‘master plan’ must
take account of inconsistencies in human behaviour if it is to be at all realistic, so
that one really ought to keep to this last terminology. Since however the word ‘sys-
tem’ is so widely used (even if, in its strict scientific sense, it is here being misused!)
we shall for the most part keep to it in this contribution.

In a similar vein, the term ‘water resources’ is still employed even while un-
derstanding, following the seminal work of Heidegger (1963/1977), that this is
commonly used with strongly performative intentions, whereby the whole world
of nature is regarded as something existing only as a ‘standing reserve’ for human
exploitation and not as something existing in its own right. This was emphasised
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from the beginning in the Hydroinformatics of Abbott (1991), but hydroinformatics
as a discipline seems largely to have forgotten the admonitions of that work. Thus,
we shall continue here to speak of ‘water resources’ even as we understand the dan-
gers inherent in speaking in this way of what truly pertains to nature most generally
and not to mankind exclusively.

At the same time, it is well understood that many and possibly most of the prob-
lems experienced downstream in river basins generally have their origins in inap-
propriate agricultural practices. Consequently, an important part of the applications
of systems of the kind considered here will be given over to the operation and man-
agement of water resources for agricultural purposes and for determining the proper
relation of these agricultural processes to those operational strategies and manage-
ment practices that are directed more towards urban areas. This is envisaged as the
greatest of all markets for modelling services, involving millions of end users, and it
must also be analysed appropriately, and so in a sociotechnical way. It then appears
that this development, and probably the development of hydroinformatics generally,
will migrate to Asia, where it will be closer and better integrated with its main mar-
kets. Correspondingly, the first commercially viable demonstrators provided by the
Waterknowledge Initiative was presented at the Yangtze Forum in April 2007.

1.5 Concluding Remarks

Although the programme proposed here must appear ambitious, it can be carried out
for a large part with relatively little extra expense if the expertise that is available
in the fields concerned is properly identified and engaged. Although the accent at
the moment is on the use of models to analyse and design structural methods for
providing flood prevention and to reduce water pollution, this priority is expected
to change with increased rapidity over the next decade, with a greater emphasis on
‘softer’ and more natural methods covering much wider fields of application. This
tendency is expected to spread further in education also. The new role of modelling
that proceeds through this endeavour must then be self-evident.
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Chapter 2
Data-Driven Modelling: Concepts,
Approaches and Experiences

D. Solomatine, L.M. See and R.J. Abrahart

Abstract Data-driven modelling is the area of hydroinformatics undergoing fast
development. This chapter reviews the main concepts and approaches of data-driven
modelling, which is based on computational intelligence and machine-learning
methods. A brief overview of the main methods – neural networks, fuzzy rule-based
systems and genetic algorithms, and their combination via committee approaches –
is provided along with hydrological examples and references to the rest of the book.

Keywords Data-driven modelling · data mining · computational intelligence · fuzzy
rule-based systems · genetic algorithms · committee approaches · hydrology

2.1 Introduction

Hydrological models can be characterised as physical, mathematical (including
lumped conceptual and distributed physically based models) and empirical. The lat-
ter class of models, in contrast to the first two, involves mathematical equations that
are not derived from physical processes in the catchment but from analysis of time
series data. Examples include the unit hydrograph method, linear regression and
ARIMA models. Recent developments in computational intelligence, in the area of
machine learning in particular, have greatly expanded the capabilities of empirical
modelling. The field which encompasses these new approaches is called data-driven
modelling (DDM). As the name suggests, DDM is based on analysing the data about
a system, in particular finding connections between the system state variables (input,
internal and output variables) without explicit knowledge of the physical behaviour
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Fig. 2.1 General approach to modelling

of the system. These methods represent large advances on conventional empirical
modelling and include contributions from the following overlapping fields:

• artificial intelligence (AI), which is the overarching study of how human intelli-
gence can be incorporated into computers.

• computational intelligence (CI), which includes neural networks, fuzzy sys-
tems and evolutionary computing as well as other areas within AI and machine
learning.

• soft computing (SC), which is close to CI, but with special emphasis on fuzzy
rule-based systems induced from data.

• machine learning (ML), which was once a sub-area of AI that concentrates on
the theoretical foundations used by CI and SC.

• data mining (DM) and knowledge discovery in databases (KDD) are focused
often at very large databases and are associated with applications in banking,
financial services and customer resources management. DM is seen as a part of
a wider KDD. Methods used are mainly from statistics and ML.

• intelligent data analysis (IDA), which tends to focus on data analysis in medicine
and research and incorporates methods from statistics and ML.

Data-driven modelling is therefore focused on CI and ML methods that can be
used to build models for complementing or replacing physically based models. A
machine-learning algorithm is used to determine the relationship between a system’s
inputs and outputs using a training data set that is representative of all the behaviour
found in the system (Fig. 2.1).

Once the model is trained, it can be tested using an independent data set to deter-
mine how well it can generalise to unseen data. In the next section, the main DDM
techniques are discussed.

2.2 An Overview of Data-Driven Modelling Techniques

This section describes the most popular computational intelligence techniques used
in hydrological modelling, including neural networks, fuzzy rule-based systems,
genetic algorithms, as well as approaches to model integration.
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2.2.1 Neural Networks

Neural networks are a biologically inspired computational model, which is based
on the way in which the human brain functions. There has been a great deal writ-
ten on this subject; see, e.g. Beale and Jackson (1990) and Bishop (1995). Neural
network models are developed by training the network to represent the relationships
and processes that are inherent within the data. Being essentially non-linear regres-
sion models, they perform an input–output mapping using a set of interconnected
simple processing nodes or neurons. Each neuron takes in inputs either externally or
from other neurons and passes it through an activation or transfer function such as
a logistic or sigmoid curve. Data enter the network through the input units arranged
in what is called an input layer. These data are then fed forward through succes-
sive layers including the hidden layer in the middle to emerge from the output layer
on the right. The inputs can be any combination of variables that are thought to be
important for predicting the output; therefore, some knowledge of the hydrological
system is important.

The hidden layer is the essential component that allows the neural network to
learn the relationships in the data as shown originally in Rumelhart et al. (1986);
these authors popularised also the backpropagation algorithm for training a feed-
forward neural network but the principle was first developed by Werbos in 1974
(see Werbos, 1994). This configuration is also referred to as a multilayer percep-
tron (MLP) and it represents one of the most commonly used neural networks
(Kasabov, 1996). The backpropagation algorithm is a variation of a gradient de-
scent optimisation algorithm that minimises the error between the predicted and
actual output values. The weighted connections between neurons are adjusted af-
ter each training cycle until the error in the validation data set begins to rise. The
validation data set is a second data set that is given to the network to evaluate during
training. If this approach is not used, the network will represent the training data
set too well and will then be unable to generalise to an unseen data set or a testing
data set. Once the networks are trained to satisfaction, it can be put to operation
when the new input data are passed through the trained network in its non-training
mode to produce the desired model outputs. In order to validate the performance of
the trained network before it is put into real operation, however, the operation mode
is usually imitated by using the test data set. An important way to help promote
generalisation to unseen data is to ensure that the training data set contains a repre-
sentative sample of all the behaviour in the data. This could be achieved by ensuring
that all three data sets – training, validation and test – have similar statistical prop-
erties. Note that the test set cannot be used to change the properties of the trained
model.

The use of ANNs has many successful applications in hydrology, in modelling
rainfall-runoff processes: Hsu et al. (1995); Minns and Hall (1996); Dawson and
Wilby (1998); Dibike et al. (1999); Abrahart and See (2000); Govindaraju and
Ramachandra Rao (2001); replicating the behaviour of hydrodynamic/hydrological
models of a river basin where ANNs are used to provide optimal control of a reser-
voir (Solomatine and Torres, 1996); building an ANN-based intelligent controller
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for real-time control of water levels in a polder (Lobbrecht and Solomatine, 1999);
and modelling stage-discharge relationships (Sudheer and Jain, 2003; Bhattacharya
and Solomatine, 2005).

Section two of the book specifically deals with neural network applications in
different areas of hydrology. In Chap. 3, Abrahart and See provide a guide to neural
network modelling in hydrology. The next six chapters are applications of neural
networks to rainfall-runoff modelling. Dawson demonstrates how neural networks
can be used to estimate floods at ungauged catchments (Chap. 4). Jain decomposes
the flood hydrograph into subsets and trains a neural network on each individual
subset (Chap. 5). Coulibaly considers the behaviour of neural networks on nonsta-
tionary time series (Chap. 6). See et al. examine the behaviour of the hidden neurons
of a neural network as a way of providing physical interpretation of a neural network
rainfall-runoff model (Chap. 7). De Vos and Rientjes look at the effects of modify-
ing the objective function used by neural network rainfall-runoff models (Chap. 8),
while Toth considers the influence on flow forecasts when changing the temporal
resolution of the input and output variables (Chap. 9). The final two chapters are ap-
plications of neural networks in groundwater (Mohammadi, Chap. 10) and sediment
modelling (White et al., Chap. 11).

2.2.2 Fuzzy Rule-Based Systems (FRBS)

Fuzzy rule-based systems use fuzzy logic for inference. Fuzzy logic is based on
fuzzy set theory in which binary set membership has been extended to include par-
tial membership ranging between 0 and 1 (Zadeh, 1965). Fuzzy sets, in contrast to
their crisp counterparts, have gradual transitions between defined sets, which allow
for the uncertainty associated with these concepts to be modelled directly. After
defining each model variable with a series of overlapping fuzzy sets, the mapping of
inputs to outputs can be expressed as a set of IF-THEN rules, which can be entirely
specified from expert knowledge, or from data. However, unlike neural networks,
fuzzy models are prone to a rule explosion, i.e. as the number of variables or fuzzy
sets per variable increases, there is an exponential increase in the number of rules,
which makes it difficult to specify the entire model from expert knowledge alone
(Kosko, 1997). Different automated methods for optimising fuzzy models are now
available (Wang, 1994), including neural networks and genetic algorithms.

The fuzzy sets and rules are referred to as the fuzzy model knowledgebase. Crisp
inputs to the model are first fuzzified via this knowledgebase, and a fuzzy inference
engine is then used to process the rules in parallel via a fuzzy inference procedure
such as max-min or max-product operations (Jang et al., 1997). The fuzzy solution
surface resulting from the execution of the rulebase is defuzzified to produce the
system output(s). Fuzzy IF-THEN rules can also be comprised of functional conse-
quents, usually of a linear or polynomial form, in a formulation referred to as a TSK
model (Takagi and Sugeno, 1985; Sugeno and Kang, 1988). The crisp inputs are
fuzzified according to the fuzzy set definitions, combined via the inference engine,
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and the functional consequents are weighted by the memberships that result from
the execution of the rules. The overall result is a weighted average of the equations
as more than one rule can fire positively during a single pass of the rulebase.

Fuzzy logic has found multiple successful applications, mainly in control the-
ory (see, e.g. Kosko, 1997). As mentioned previously, fuzzy rule-based systems
can be built by interviewing human experts, or by processing historical data and
thus forming a data-driven model. The basics of the latter approach and its use in
a number of water-related applications can be found in Bárdossy and Duckstein
(1995). FRBS were effectively used for drought assessment (Pesti et al., 1996),
prediction of precipitation events (Abebe et al., 2000), analysis of groundwa-
ter model uncertainty (Abebe et al., 2000), control of water levels in polder ar-
eas (Lobbrecht and Solomatine, 1999) and modelling rainfall-discharge dynamics
(Vernieuwe et al., 2005).

Part III of the book deals specifically with fuzzy systems applications in hydrol-
ogy. Mujumdar provides an overview of fuzzy logic-based approaches in water re-
source systems (Chap. 12). Examples of fuzzy rule-based flood forecasting models
are then presented by Bardossy (Chap. 13) and Jacquin and Shamseldin (Chap. 14),
while Cluckie et al. (Chap. 15) consider the use of an adaptive neuro-fuzzy inference
system in the development of a real-time flood forecasting expert system. Finally,
the section ends with Chap. 16 by Makropoulos et al. who examine the use of fuzzy
inference for building hydrological decision support systems.

2.2.3 Genetic Algorithms (GAs) in Model Optimisation

Genetic algorithms (GAs) (or, more widely, evolutionary algorithms) are non-linear
search and optimisation methods inspired by the biological processes of natural se-
lection and survival of the fittest (Goldberg, 1989). They do not belong to the class
of data-driven models, but since they are widely used in optimising models, we con-
sider them here as well. Genetic (evolutionary) algorithms are typically attributed to
the area of computational intelligence.

Unlike other methods such as hillclimbing and simulated annealing, a GA, like
other randomised search algorithms such as Adaptive Cluster Covering (Solomatine,
1999), exhibits implicit parallelism, considering many points at once during the
search process and thereby reduces the chance of converging to a local optimum.
GAs also use probabilistic rules in the search process, and they can generally out-
perform conventional optimisation techniques on difficult, discontinuous and mul-
timodal functions. Despite their unique and adaptive search capabilities, there is no
guarantee that GAs will find the global solution; however, they can often find an
acceptable one quite quickly. A detailed introductory survey can be found in Reeves
and Rowe (2003).

The basic unit of a GA is the gene, which in biological terms represents a given
characteristic of an individual, such as eye colour. In a GA, a gene represents a
parameter that is being optimised. An individual or chromosome is simply the com-
bined set of all the genes, i.e. all the parameters needed to generate the solution. To
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start the search, a population of these individuals or strings is randomly generated.
Each string is then evaluated by a fitness or objective function according to some
measure of performance. This represents the success of the solution and is analo-
gous to the survival ability of an individual within the population. In order to evolve
better performing solutions, the fittest members of the population are selected and
exposed to a series of genetic operators, which produce offspring for the next gener-
ation. The least fit solutions, on the other hand, will die out through natural selection
as they are replaced by new, recombined individuals.

The main genetic operator is crossover in which a position along the bit string is
randomly chosen that cuts two parent chromosomes into two segments, which are
then swapped. The new offspring are comprised of a different segment from each
parent and thereby inherit bits from both. The occurrence of crossover is determined
probabilistically; when crossover is not applied, offspring are simply duplicates of
the parents, thereby giving each individual a chance of passing on a pure copy of its
genes into the gene pool. The second main genetic operator is mutation, which is
applied to each of the offspring individually after crossover. Mutation can alter the
bits in a string, but with an extremely low probability. Crossover allows the genetic
algorithm to explore new areas in the search space and gives the GA the majority
of its searching power while mutation exploits existing areas to find a near optimal
solution and essentially provides a small amount of random search to ensure that no
point in the search space has a zero probability of being examined. The newly gener-
ated offspring are then placed back into the population, and the exercise is repeated
for many generations until a set of user-specified termination criteria are satisfied,
such as exceeding a preset number of generations or if no improved solution is found
after a given period of time. Over many generations, a whole new population of pos-
sible solutions, which possess a higher proportion of the characteristics found in the
fitter members of the previous generation, is produced.

GAs are a very useful tool for handling difficult problems where conventional
techniques cannot cope, or alternatively, they can be used to improve existing meth-
ods through hybridisation. For example, fuzzy logic rule-based models can be en-
tirely optimised by a GA in a completely inductive approach, or expert knowledge
can be used to specify the rules or membership functions, leaving the GA to op-
timise only the unknown parts of the model. See Cordón and Herrara (1995) and
Karr (1991) for more details of fuzzy logic model optimisation using a GA. GAs
can be also used to optimise other data-driven models like neural networks (Yao and
Liu, 1997); this approach was also used by Parasuraman and Elshorbagy (Chap. 28
in this volume).

Part IV of the book is devoted to examples of hydrological optimisation by ge-
netic algorithms. Savic, in Chap. 17, provides an overview of global and evolution-
ary optimisation in hydrology and water management problems. Tsai considers the
use of a GA in a groundwater problem (Chap. 18). Efstratiadis and Koutsoyiannis
(Chap. 19) and Khu et al. (Chap. 20) look at two different multi-objective versions
of evolutionary optimisation algorithms for model calibration (in the latter chapter,
in order to reduce the number of model runs, a meta-model for the error surface
approximation is used). Jain in Chap. 21 considers the calibration of a hydrological
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model using real-coded GAs. In Chap. 22, Solomatine and Vojinovic compare a se-
ries of different global optimisation algorithms for model calibration. In the final
chapter of this section by Heppenstall et al., a cooperative co-evolutionary approach
is demonstrated that evolves neural network rainfall-runoff models.

2.2.4 Other Approaches

In addition to neural networks and fuzzy rule-based systems, there are other data-
driven methods that have been used successfully to solve hydrological problems.
These methods are still less known if compared to ANN and FRBS, and the chapters
covering these are in Part V entitled “Emerging Technologies”. Methods that are
currently finding a lot of researchers’ attention are listed below:

• Genetic Programming and evolutionary regression
• Chaos theory and non-linear dynamics
• Support vector machines

Additionally, machine-learning methods for clustering and classification are of-
ten used to support regression methods considered above, as well as methods of
instance-based learning (IBL), used for both classification and regression.

Genetic programming (GP) is a method for evolving equations by taking various
mathematical building blocks such as functions, constants and arithmetic opera-
tions and combining them into a single expression and was originally developed
by Koza (1992). Evolutionary regression is similar to GP but the goal is to find a
regression equation, typically a polynomial regression, where the coefficients are
determined through an evolutionary approach such as a GA. Examples of hydrolog-
ical applications include the work by Khu et al. (2001), who applied GP to real-time
runoff forecasting for a catchment in France, and Giustolisi and Savic (2006) who
used evolutionary regression for ground water and river temperature modelling.

Classification is a method for partitioning data into classes and then attributing
data vectors to these classes. The output of a classification model is a class label,
rather than a real number like in regression models. The classes are typically cre-
ated such that they are far from one another in attribute space but the points within a
class are as tightly clustered around the centre point as possible. Examples of clas-
sification techniques include k-nearest neighbour, Bayesian classification, decision
tree classification (Witten and Frank, 2000) and support vector machines (SVM)
(Vapnik, 1998).

There are many examples of applying classification methods in hydrology. For
example, Frapporti et al. (1993) used fuzzy c-means clustering to classify shallow
Dutch groundwater sites, Hall and Minns (1999) used a SOFM to classify catch-
ments into subsets on which ANNs were then applied to model regional flood fre-
quency. Hannah et al. (2000) used clustering for finding groups of hydrographs on
the basis of their shape and magnitude; clusters are then used for classification by ex-
perts. Harris et al. (2000) applied clustering to identify the classes of river regimes.
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Velickov et al. (2000) used self-organising feature maps (Kohonen networks) as
clustering methods, and SVM as a classification method in aerial photograph in-
terpretation with the purpose of subsequent construction of flood severity maps.
Solomatine et al. (2007) used decision trees and k-NN in classification of river flow
levels according to their severity in a flood forecasting problem in Nepal. Zhang and
Song (2006) used a combination of SOF and ART networks for special pattern iden-
tification of soil moisture. In this volume, Parasuraman and Elshorbagy (Chap. 28)
used clustering before applying ANNs to forecasting streamflow.

In instance-based learning (IBL), classification or prediction is made by combin-
ing observations from the training data set that are close to the new vector of inputs
(Mitchell, 1997). This is a local approximation and works well in the immediate
neighbourhood of the current prediction instance. The nearest neighbour classifier
approach classifies a given unknown pattern by choosing the class of the nearest ex-
ample in the training set as measured by some distance metric, typically Euclidean.
Generalisation of this method is the k-nearest neighbour (k-NN) method. For a dis-
crete valued target function, the estimate will just be the most common value among
k training examples nearest to xq. For real-valued target functions, the estimate is
the mean value of the k-nearest neighbouring examples. Locally weighted regres-
sion (LWR) is a further extension in which a regression model is built on k-nearest
instances.

Applications of IBL in water-related problems mainly refer to the simplest
method, viz k-NN. Karlsson and Yakowitz (1987) showed the use of this method in
hydrology, focusing however only on (single-variate) time series forecasts. Galeati
(1990) demonstrated the applicability of the k-NN method (with the vectors com-
posed of the lagged rainfall and flow values) for daily discharge forecasting and
favourably compared it to the statistical ARX model. Shamseldin and O’Connor
(1996) used the k-NN method for adjusting the parameters of the linear perturbation
model for river flow forecasting. Toth et al. (2000) compared the k-NN approach to
other time series prediction methods in a problem of short-term rainfall forecasting.
Solomatine et al. (2007) considered IBL in a wider context of machine learning and
tested their applicability in short-term hydrologic forecasting.

Chaos theory and non-linear dynamics can be used for time series prediction
when the time series data are of sufficient length and carry enough information about
the behaviour of the system (Abarbanel 1996). The main idea is to represent the
state of the system at time t by a vector in m-dimensional state space. If the original
time series exhibits chaotic properties, then its equivalent trajectory in phase space
has properties allowing for accurate prediction of future values of the independent
variable. Hydrological examples include the work by Solomatine et al. (2000) and
Velickov et al. (2003), who used chaos theory to predict the surge water level in the
North Sea close to Hook of Holland. For two-hourly predictions, the error was as
low as 10 cm and was at least on par with the accuracy of hydrodynamic models.
Babovic et al. (2000) used a chaos theory-based approach for predicting water lev-
els at the Venice lagoon, and Phoon et al. (2002) for forecasting hydrologic time
series.
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Support vector machines (SVM) is a relatively new important method based on
the extension of the idea of identifying a line (or a plane or some surface) that
separates two classes in classification. It is based on statistical learning theory ini-
tiated by V. Vapnik in the 1970s (Vapnik, 1998). This classification method has
also been extended to solving prediction problems, and in this capacity was used in
hydrology-related tasks. Dibike et al. (2001) and Liong and Sivapragasam (2002)
reported using SVMs for flood management and in prediction of water flows and
stages. Chapter 26 by Yu et al. provides a recent example of flood stage forecasting
using SVM.

2.3 Combination and Integration of Models

2.3.1 Modular Models

Since natural processes are complex, it is sometimes not possible to build a single
global model that adequately captures the system behaviour. Instead the training
data can be split into a number of subsets, and separate specialised models can be
built on each subset. These models are called local or expert models, and this type
of modular model is sometimes called a committee machine (CM) (Haykin, 1999).
Two key decisions must be made when building a CM. The first is how to split the
data and the second is how to combine the individual models to produce a final
output.

The group of statistically driven approaches with “soft” splits of input space is
represented by mixtures of experts (Jordan and Jacobs, 1995), bagging (Breiman,
1996) and boosting (Freund and Schapire, 1997).

Another quite popular approach is to build an ensemble of models and to com-
bine the model results by some averaging scheme; this approach is widely used in
meteorology.

Yet another group of methods does not combine the outputs of different models
but explicitly uses only one of them, i.e. the most appropriate one (a particular case
when the weights of other expert models are zero). Such methods use “hard” splits
of input space into regions. Each individual local model is trained individually on
subsets of instances contained in these regions, and finally the output of only one
specialised expert is taken into consideration. This can be done manually by experts
on the basis of domain knowledge. Another way is to use information theory to per-
form such splits and to perform splitting progressively; examples are decision trees,
regression trees, MARS (Breiman et al., 1984) and M5 model trees (Quinlan, 1992).

These machine-learning techniques use the following idea: split the parameter
space into areas (subspaces) and build a separate regression model in each of them.
Tree-based models are constructed by a divide-and-conquer method. The set T is
either associated with a leaf, or some test is chosen that splits T into subsets cor-
responding to the test outcomes and the same process is applied recursively to the
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subsets. If models in the leaves are of zero order (numeric constants) then this model
is called a regression tree (Breiman et al., 1984); if the models are of first order (lin-
ear regression models) then the model is referred to as an M5 model tree (Quinlan
1992; “M5” stands for “Model trees, version 5”). The splitting criterion in both al-
gorithms is based on treating the standard deviation of the output values that reach
a node as a measure of the error at that node, and calculating the expected reduc-
tion in this error as a result of testing each attribute at that node. Solomatine and
Dulal (2003) used M5 model trees in rainfall-runoff modelling of a catchment in
Italy.

Note that to denote a combination of models (or modular models), various au-
thors use different terms: in machine learning these are typically mixtures of experts
and committee machines; when other models are combined the term “data fusion”
is often used – see, for example, an earlier chapter by Abrahart and See (2002)
where six alternative methods to combine data-driven and physically based hydro-
logic models were compared.

Two chapters in Part V of the book deal with such modular approaches that lately
are becoming more and more popular. Solomatine starts off the part in Chap. 24 with
an overview of modular models. Stravs et al. then provide an example of precipita-
tion interception modelling using M5 model trees (Chap. 25).

It is also possible to use a combination of models in a given solution. If these
models work together to create a single solution they are referred to as hybrid models.
If, on the other hand, this combination of models is not used to model the same pro-
cess but instead they work with each other, then this combination is referred to as
a complementary model. Examples of hybrid models include a study by See and
Openshaw (2000) where several types of models were combined using an averaging
scheme, a Bayesian approach and two fuzzy logic models; the combination of phys-
ically based models using a fuzzy model (Xiong et al., 2001); and the combination
of data-driven models of various types trained on subsets of the original data set
(Solomatine and Xue, 2004). Examples of complementary models include updating
a physically based model using a neural network (Shamseldin and O’Connor, 2001;
Lekkas et al., 2001; Abebe and Price, 2004). Solomatine et al. (2007) built an ANN-
based rainfall-runoff model where its outputs were corrected by an instance-based
model.

2.3.2 Integration of Models

The final section of the book deals specifically with model integration and differ-
ent hydrological examples. The focus here is on the technological developments
in the area of model integration, i.e. the integration of models and a variety of
data sources. The chapters by Fortune and Gijsbers and by Werner describe the
architectures of modern model integration frameworks (OpenMI and Delft-FEWS,
respectively). The chapter by Xuan and Cluckie addresses the issue of uncertainty
propagation in the integrated model including numerical weather prediction and
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hydrologic components. Betts et al. describe an integrated modelling framework
implemented for the Yangtze River basin in China. Finally, the chapter by O’Kane
addresses the issue of incorporation of data into models and of “social calibration”
of models – involving stakeholders with the best knowledge of the aquatic system in
question, rather than purely numerical calibration without an insight – which is es-
pecially important when models are to be used in education and in real-life-decision-
making frameworks. An extensive study of flooding in the polder landscape of the
Lower Feale catchment in Ireland is used as illustration of the principle.

2.4 Conclusions

Data-driven modelling and computational intelligence in general have proven their
applicability to various water-related problems: modelling, short-term forecasting,
data classification, reservoir optimisation, building flood severity maps based on
aerial or satellite photos, etc. Data-driven models would be useful in solving a practi-
cal problem or modelling a particular system or process if (1) a considerable amount
of data describing this problem is available; (2) there are no considerable changes to
the modelled system during the period covered by the model. Such models are es-
pecially effective if it is difficult to build knowledge-driven simulation models (e.g.
due to lack of understanding of the underlying processes), or the available models
are not adequate enough. It is of course always useful to have modelling alternatives
and to validate the simulation results of physically based models with data-driven
ones, or vice versa.

The developers and users of data-driven models should realise that such models
typically do not really represent the physics of a modelled process; they are just de-
vices used to capture relationships between the relevant input and output variables.
However, such devices could be more accurate than process models since they are
based on objective information (i.e. the data), and the latter may often suffer from
incompleteness in representing the modelled process.

A contemporary trend is to combine data-driven models, i.e. combining models
of different types and which follow different modelling paradigms (thus constituting
hybrid models), including the combination with physically based models in an op-
timal way. One of the challenges for hydroinformatitians in this respect is to ensure
that data-driven models are properly incorporated into the existing modelling and
decision support frameworks.
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Chapter 3
Neural Network Hydroinformatics: Maintaining
Scientific Rigour

R.J. Abrahart, L.M. See and C.W. Dawson

Abstract This chapter describes the current status of neural network hydrological
modelling. Neural network modelling is now a regular feature in most peer-reviewed
hydrological and water resource publications. The number of reported operational
models is, nevertheless, restricted to a small handful of diverse implementations lo-
cated in different parts of the world. The social and institutional reasons for this fun-
damental mismatch are discussed, and a requirement for stronger scientific rigour
in modelling and reporting is highlighted. Eight potential guidelines for the devel-
opment of a stronger scientific foundation are provided.

Keywords Neural network · scientific method · hydrological modelling

3.1 Black Art or Hard Science?

Flooding is a major worldwide issue; effective warning systems can save lives and
prevent unnecessary damage. Such systems are also the cheapest safeguarding op-
tion since major flood prevention works are very expensive and not always success-
ful. The forecasting and modelling of river regimes to deliver effective management
and sustainable use of water resources is also of particular concern in regions that
experience water shortages. It is important to harness modern technologies that can
be used to improve the capture, storage and release of hydrological assets. The ar-
tificial neural network (NN) offers untapped opportunities that could benefit hydro-
logical modellers, both now and in the future. The number of reported operational
implementations, however, remains limited to a handful of specialist situations and

R.J. Abrahart
School of Geography, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

L.M. See
School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK

C.W. Dawson
Department of Computer Science, Loughborough University, Leicestershire, LE11 3TU, UK

R.J. Abrahart et al. (eds.), Practical Hydroinformatics. Water Science 33
and Technology Library 68, c© Springer-Verlag Berlin Heidelberg 2008



34 R.J. Abrahart et al.

the socio-theoretical reasons for this knowledge transfer gap must be appreciated;
for a water treatment example of the practical difficulties involved in implementing
an operational model, see Zhang et al. (2004a,b).

Hydrological modelling is a procedure wherein one or more phases of the hy-
drological cycle are represented using a simplified scheme or model. Traditional
hydrological modelling is part art and part science. Execution of the modelling pro-
cess is considered to span both philosophical domains since the model designer
must combine established knowledge of observed physical processes with concep-
tual representations of those unknown principles that control the mechanisms which
are being modelled (James, 1970). The latter will include making appropriate deci-
sions on the use of internal components and measurement records and the manner
in which such items are interconnected. The challenge in most cases is to find a
meaningful relationship between the two approaches. Hydroinformatics is also part
art and part science. It offers a strong medium through which both approaches can
be combined. It is a branch of informatics that uses information and communication
technologies to address important problems related to the equitable and efficient use
of water for many different purposes. The numerical simulation of water flows and
related processes remains a central component, with a strong focus being placed
on technological developments and the appropriate application of related tools in a
social context.

Hydroinformatics has a strong interest in the use of techniques originating from
the field of artificial intelligence. NN modelling is a major component; support vec-
tor machines and evolution-based algorithms form two other related components.
Hybrid approaches are also popular. Such tools might be used with large collections
of observed data sets for the purposes of data mining and knowledge discovery,
or on output data sets generated from existing conceptual or distributed-process
models, for the purposes of generating a more efficient and effective emulator, e.g.
providing a faster or more robust version of the original model for operational pur-
poses. The nature of the modelling procedures involved is often less dependent on
the development or improvement of conceptual relationships and instead maintains
a strong focus on the execution of complex computational procedures. However,
perhaps more important would be the different underlying reasons for producing a
model since such matters will inform decisions on the nature of the route that is to
be followed. It is axiomatic that hydrological models can be developed to serve a
number of different purposes, and two main competing objectives can be identified:
(i) the provision of accurate forecasts and predictions for operational management
purposes; and (ii) the development of models for scientific reasons such as hypoth-
esis testing operations or to assist in the process of knowledge acquisition through
the mechanisms of model construction and development.

The last decade and a half has witnessed a major upsurge in the trialling and
testing of NN modelling procedures across a broad range of different disciplines.
Time series forecasting has been a particular focus of interest with efficient and
effective models having been developed in several different areas of hydrological
science. The extent of their hydrological application is vast, with reported imple-
mentations that range from traditional rainfall-runoff modelling operations (Riad
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et al., 2004) and groundwater level prediction (Giustolisi and Simeone, 2006) to the
regional downscaling of climate change predictions (Dibike and Coulibaly, 2004).
Numerous extended summaries and reviews exist, and the interested reader is
referred to the following: Maier and Dandy (2000), American Society of Civil
Engineers (2000a,b), Dawson and Wilby (2001) and Rajurkar et al. (2004). Two
edited compilations have also been published: Govindaraju and Rao (2000) and
Abrahart et al. (2004).

Daniell (1991) provides the first recorded paper on the use of NN tools for
hydrological modelling, listing 10 potential applications in hydrology and water
resources. Two illustrative examples were also offered: (i) a ‘security of supply’ in-
vestigation that predicted per capita water consumption demands based on climate
data sets; and (ii) a ‘regional flood estimation procedure’ that used catchment pa-
rameters to estimate flood frequency distributions, i.e. log Pearson Type 3 Average
Recurrence Interval. The scientific press has thereafter experienced an incremental
growth in hydrological publications related to the development and application of
experimental solutions. Important papers in this process were the pioneering explo-
rations of French et al. (1992) on the emulation of a space–time mathematical model
that produced simulated rainfall patterns, Minns and Hall (1996) on the emulation
of a conceptual model with a nonlinear reservoir that produced simulated discharge
sequences and Hsu et al. (1995) on modelling the rainfall-runoff relationship for a
medium-size river in the USA.

NNs provide a novel and appealing solution to the problem of relating input vari-
ables to output variables for the purposes of hydrological modelling. It is important
to establish from the outset that NN models are no more ‘neural’ than physical mod-
els are ‘physical’: the inspiration behind an artificial neural network is biological;
physical models are inspired from observed processes; both types of model can be
implemented in the manner of hardware (electro-mechanical surrogates) or software
(computer code); and it is axiomatic that model builders should opt to adopt the rel-
evant terminologies that stem from their originating fields – methodological similar-
ities, subject estrangement and the potential for outright confusion notwithstanding.
These tools offer efficient and effective solutions for modelling and analysing the
behaviour of complex dynamical systems. The broad range of traditional modelling
operations, to which neural solutions could be applied, can be expressed in terms
of the following scientific procedures: function approximation, pattern recognition,
classification and processing, e.g. filtering, smoothing, compression.

Zhang et al. (2004b) highlight several advantages related to the use of such tools
in environmental science and engineering. The power to represent a set of complex
nonlinear relationships that are contained in an input–output data set, but without
the need for a priori knowledge on the exact nature of such relationships, is a major
factor. The power of such tools to generalise to unseen data sets is another. Sev-
eral other properties distinguish neural solutions from standard algorithmic or rule-
based approaches. The power and skill to discover relationships from data sets is
important. Each model is trained to represent the implicit but nonetheless concealed
internal relationships that exist within a given data set. Individual networks offer
great modelling flexibility: their capacities to extract and represent different levels
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of generalisation are important; likewise their capabilities to operate on different
types and mixed types of input or output material, e.g. nominal data; fractal dimen-
sion; use of binaries to mark the start and end of rainfall (Hall and Minns, 1993); use
of additional outputs that preserve or monitor global features, related to the overall
structure, or to particular aspects of a data set (French et al., 1992); use of alterna-
tive representations that produce better modelling solutions, e.g. Fourier series pa-
rameters instead of actual hydrological variables (Smith and Eli, 1995). Numerous
potential opportunities for scientific activities related to other, perhaps lesser appre-
ciated, properties might also be exploited: e.g. self-organised development, faster
processing speeds and their ‘ability to scale’, i.e. a generic solution can be used to
support larger or smaller data sets, or could be increased or decreased in size, or
operational processing capabilities, to meet different challenges.

Each solution will also possess inherent operational advantages related to the use
of parallel computational structures and distributed memories that are realised in
terms of fault-tolerant properties such as ‘robustness’ and ‘graceful degradation’. To
provide a robust solution each model must exhibit a consistent or stable behaviour
and be insensitive to potential uncertainties in the construction and parameterisation
process, e.g. problems related to measurements that cannot be obtained with suf-
ficient accuracies or in the calibration of relationships that do not remain constant
over long(er) periods. To be reliable and trusted an operational model must also ex-
hibit the properties of ‘graceful degradation’; a gradual and progressive reduction
in overall performance such that the model continues to operate and function in a
normal manner, but provides a reduced level of service, as opposed to taking in-
correct actions or crashing, i.e. total stoppage of processing activities occurs. NN
applications can also be developed and deployed quickly and easily with very little
programming owing to the existence of a number of user-friendly software packages
and ongoing research into model protocol development. Moreover, for flood fore-
casting purposes, neural solutions and generic packages offer practical advantages
related to operational costs and socio-economic resources that would be of potential
interest in developing countries: e.g. parsimonious requirements, rapid development
process and open source code (Shamseldin, in press).

However, all that glisters is not gold. NN tools are not perfect, can be misused,
and should be seen as an adjunct to more traditional approaches. Established prob-
lems include overfitting, overtraining and chance effects (Livingstone et al., 1997).
NN models develop ‘data reliant’ solutions: requiring representative data sets of
sufficient quantities and qualities to permit the automated capture of important re-
lationships – but offering no rules as to what might be considered a set of right or
wrong inputs and outputs (Zhang et al., 2004ab; Sha, 2007; Sahoo and Ray, 2007).
The act of building a neural solution is also something of a black art on two counts:
(i) no fixed rules or regulations exist regarding the development of individual mod-
els; (ii) intuition and personal experience are important factors in the construction
process. Each modeller applies their individual set of trial and error procedures,
until at some point in the development process, it is possible to select a ‘winning
solution’. Reed and Marks (1999) refer to the model development process as ‘neu-
ral smithing’, i.e. drawing analogies to the act or art of forging and working metals,
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such as iron, into a desired shape. NN development and testing operations neverthe-
less involve the purposeful application of recognised computational algorithms in
an organised scientific manner. Thus, useful solutions will be forged; but it is not a
‘black art’ since no magical spells, that harness occult forces or evil spirits, to pro-
duce the desired effects are involved! Total freedom in the model building process
does not, however, generate high levels of end user trust; nor does it offer a preferred
solution to a specific hydrological modelling issue that others might be willing to
acknowledge as a suitable replacement for more established and accepted methods.

Moreover, in certain quarters, concerns have been expressed that further inves-
tigation into the use of such tools might prove to be a hydrological modelling cul-
de-sac (Wilby et al., 2003, p. 164). NN models are difficult to interpret and offer no
explanations for their answers; most neural investigations have also (to date) done
little or nothing to build upon existing hydrological knowledge, or to provide greater
understanding of hydrological processes per se. It is perhaps logical to expect some
degree of natural distrust in solutions that are not transparent, not based on theoret-
ical support, and offer no statements regarding the reasons for their answers. Trust
is nevertheless about a set of individual beliefs:

• in the scientific principles and modelling approaches that were used to develop a
model;

• in the scientists and programmers who constructed it; and
• in the institutions or companies that market it.

Established reputations and personal acquaintances with conventional tools and
methods are thus an important part of the ‘confidence equation’, whereas poor un-
derstanding and limited knowledge of strange and unfamiliar products will erect
barriers to progress. It is also questionable as to whether or not the scientific appli-
cation of neural solutions should be ‘demonised through association’ with the ide-
ological shortfalls of black box modelling. This chapter is not the place to present
a philosophical or historical account on the nature and potential benefits of black
box modelling. However, the physical relationship that exists between observed hy-
drological processes and behaviours, and the internal components of a neural so-
lution is a topic of great interest: see, for example, the chapter in this volume by
See et al. (2008), or the reported findings of Wilby et al. (2003), Jain et al. (2004),
Sudheer and Jain (2004) and Sudheer (2005).

3.2 Building Stronger Foundations

NNs are at a critical stage in their ‘product development cycle’. Expressed in terms
of ‘crossing the chasm’ (Moore, 2002): the early adaptors and innovators have
opened up a market; the majority now need to be catered for; some will never be
convinced about the benefits of change. To meet the requirements of a different mar-
ket it is argued that important adjustments are needed to further the art and science
or application and practice of NN hydrological modelling. The honeymoon period
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has ended! NN should no longer be viewed as novel or innovative mechanisms;
peer-reviewed papers need no longer start with a prolonged introduction or attempt
to explain their inner workings or related procedural issues such as the backprop-
agation of error algorithm. These items are explained in numerous standard texts
which should henceforth be referred to in a manner similar to that used for other
numerical tools and procedures in different sectors of the hydrological modelling
world, e.g. conceptual or statistical modelling.

The main obstacle to wider acceptance and broader use of such tools within the
different hydrological modelling communities is perhaps at this stage in the cycle
related to the large number of simplistic ‘button-pushing’ or ‘handle-churning’ exer-
cises that are still being reported – although submission rejection rates are starting to
increase as the peer review process becomes more discerning. Neurohydrologists it
appears are also still attempting to crack small nuts with large sledgehammers! They
are applying powerful state-of-the-art tools in a traditional manner and performing
limited conventional implementations, i.e. something that existing and more estab-
lished, or perhaps better or equal, traditional methods are well equipped to do. In
many cases, traditional inputs are used to produce traditional outputs, with no in-
novations being attempted. The extent to which the acclaimed advantages of such
tools are exploited, or even subject to comprehensive evaluation in the hydrological
sciences domain, instead remains scant. The construction of emulators and the de-
velopment of modelling solutions based on a committee approach are two cases in
point that are in dire need of more comprehensive testing. The content of reported
applications is nevertheless now starting to be improved such that the route to publi-
cation requires a change in mindset, exhibiting a reawakening of the need and desire
to explore, discover or perform fresh adventures and innovations in hydrological
modelling.

Of equal concern is the fact that numerous reported applications have focused on
reporting the numerical differences obtained from a set of simplistic curve-fitting ex-
ercises; different models developed on different algorithms or different architectural
configurations are fitted to various data sets and an assortment of metrics is used to
select some sort of ‘winner’. The point of such activities is to record the level of
improvement that results from comprehensive testing, although such improvements
are often marginal, and of limited scientific meaning or hydrological merit. Few sci-
entific insights are acquired and little methodological progress is achieved. This is
not a purposeful activity: it lacks imagination; it lacks direction; and serves only to
reinforce the status quo in that a strong attraction remains to what is perceived as
being important vis-à-vis traditional roles and values. It also provides a depressed
or diminished view of potential developments in this field. The eventual outcome
of such activities is also open to disapproval and bad press: perhaps, for example, a
neural approach based on traditional inputs offers limited improvement in terms of
evapotranspiration estimation procedures (Koutsoyiannis, 2007; Kisi, 2007b); but,
on the other hand, if a generic solution can provide similar levels of response to a
dedicated mathematical model what does that tell us about the mathematical model,
i.e. in what way does the domain knowledge which is encapsulated in the mathe-
matical model count or affect the nature of that model?
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It is sometimes difficult to see what the scientific contribution of a specific paper
is or to what extent that paper furthers either NN science or hydrological modelling.
Lots of people are still searching for some magical number of hidden units, related
to this or that particular model, which produced a better score on this or that partic-
ular data set. This operation, however, equates to a particular form of optimisation
and, as might perhaps be expected, few useful findings have so far emerged. There
is also a worrying trend in that most reported investigations correspond to ‘local
case studies’ based on one or perhaps two catchments. Yet the application of in-
novative methodologies to one or two isolated catchments or data sets seldom, if
ever, produces universal insight(s). Moreover, the result from one investigation can-
not be compared with the findings of another in a direct sense since, although the
specified problem might well be similar in certain respects, it is no longer identical.
The specific challenge(s) in each individual scenario will be different such that it is
impossible to differentiate with precision the extent to which the published result is
based on the method as opposed to the ‘problem situation’. Most published inves-
tigations are instead designed to unveil the potential merit(s) of some specific tool
or method. Parallel comparisons are often performed against conceptual models,
linear solutions or persistence forecasts, with certain advantages being highlighted,
but since each product is in most cases somewhat unique no common set of rules or
guidelines has resulted. Everyone is still forced to begin their opening explorations
from the same initial starting point! Furthermore, most investigations are not re-
peated, no confirmation studies are performed on identical data sets and reported
methodologies are seldom revisited or applied to a different set of catchments or
data sets in a purposeful and constructive manner.

The scientific method nevertheless demands that effective comparisons are es-
tablished and for confirmation studies to be performed. It forms part of a set of tools
and procedures that are used (i) to acquire fresh knowledge and (ii) for the pur-
poses of correcting or integrating a set of previous findings. The basic expectation
is one of completeness: comprehensive documentation, methodologies and data sets
should be made available for careful scrutinisation. Thus, independent scientists and
researchers should be offered sufficient access and equal opportunities to perform
detailed confirmation studies. For proper verification:

• Experiments must be repeatable: it should be possible for others to perform the
same experiment.

• Findings must be reproducible: it should be possible for others to obtain the same
result.

For an illustration of such activities in action, the interested reader is referred to
the discussions of Aksoy et al. (2007) and Kisi (2007a). If the reported experiments
cannot be repeated, or the reported findings confirmed, it also devalues the original
investigation on two counts since the user is required to place excessive reliance on
personal trust models (developed through direct or indirect one-on-one relationships
with people and products) and each such outcome must be viewed as an isolated or
individualistic ‘single-case-based’ result (Barlow and Hersen, 1984). The two most
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important functions of single-case-based studies are as ‘awareness demonstrators’
and for the generation of ‘fresh ideas’, for later, more rigorous, experimentation.

It is also important to consider different goals. Hydrological modelling requires
consistent measures of merit and trust. Hillel (1986, p. 42) advocated that hydro-
logical modelling solutions should be ‘parsimonious’ – each model should contain
a minimum number of parameters that can be measured in the field; ‘modest’ –
the scope and purpose to which a specific model can be applied must not be over-
stated; ‘accurate’ – the correctness of the forecast or prediction need not be better
than the correctness of the input measurements; and ‘testable’ – the limits within
which the model outputs are valid can be defined. Most papers are focused on one
aspect of merit and trust: the production of more accurate outputs. However, as men-
tioned earlier, other qualities and issues are also important with respect to practical
operational implementations. Yet mechanistic properties such as ‘robustness’ and
‘graceful degradation’ will not in all cases have an optimal relationship with model
output accuracies and so must be treated as independent properties that impart a set
of constraints. Environmental modelling investigations into the changing nature of
NN outputs related to the provision of degraded inputs are reported for hydrologi-
cal forecasting in Abrahart et al. (2001) and for sediment transfer in Abrahart and
White (2001). For more detailed discussion on the requirements constraint issue the
interested reader is referred to Alippi (2002).

From this bewildering situation of different targets and trajectories arises a press-
ing need for fundamental experiments that can help settle substantive issues within
the hydrological sciences. Koutsoyiannis (2007) is to be commended for providing
a spirited account of hydrological concerns that beset the wider acceptance of NN
approaches among scientists and practitioners. The need for two different sorts of
publication are identified: (i) papers that assess their hydrological limitations or use-
fulness under differing circumstances; and (ii) papers that engage with or provide
counter reasoning about specific published points (e.g. Abrahart and See, 2007a,b).
The authors must present their findings in terms of its contribution to the advance-
ment of either science or engineering. The nature of the hydrological issues in-
volved should be clear; as should the hydrological interpretation and meaning of
their reported findings. Each investigation should encompass a worthwhile topic of
research and be something that is of wider interest to an international scientific au-
dience. Each paper should address a specific scientific hypothesis or research ques-
tion. Each paper must explain to what extent a particular set of research questions
have been answered. It should discuss the extent to which general principles can be
extracted from the reported experimental results, or point to a requirement for sub-
sequent experiments. In short – it must be clear what has been discovered. It must
state what important lessons have been learnt. It must relate individual outcomes or
some superior performance measure for the best solution to specific hydrological
characteristics of different test data sets. It is likewise clear that poor results should
not be ‘swept under the carpet’.

Han et al. (2007, p. 223) commented that the large number of unsolved ques-
tions continues to hinder the application of such tools among practising hydrol-
ogists. This is best exemplified by considering the limited number of operational
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applications that have been developed. A final challenge surrounding the use of
NN methods is that such tools are relatively new and vastly different from conven-
tional approaches. As such, it is often summarily dismissed by experimenters who
do not wish to apply new approaches, even in cases where the use of a specific set
of technologies has been proven. The continued testing and evaluation of differ-
ent technologies and toolsets, in conjunction with an increased number of reported
successful applications, will enable this challenge to be addressed. The rest of this
chapter attempts to engage in one particular aspect of that debate through the devel-
opment of some testing and reporting guidelines that could support NN hydrological
modelling.

3.3 Future Reporting Requirements

The present challenge is to build on our initial reported successes. Borrowing from
the vernacular – it equates to ‘crossing the chasm’; bridging the gulf that arises be-
tween innovators and early adopters on the one hand and mainstream users on the
other. There are a number of different ways in which this can be achieved. The tra-
ditional process for disseminating information about the latest tools and techniques
is twofold: (i) students are trained in the most recent methods; (ii) the acclaimed
virtues of different methods are substantiated through meaningful investigations
reported in high-quality journals, some of which are now open-access resources.
The literature is full of NN hydrological modelling papers as more and more peo-
ple start to experiment with this technological toolbox of potential solutions and to
learn different ways of realising its untapped potential. NN hydrological modelling
has, however, reached the end of the beginning: strong technological barriers and
steep learning curves have both been defeated – such that harder scientific questions
can henceforth be tackled from an informed position. Fresh entrants will continue
to encounter one major ‘stumbling block’ that is often referred to in terms of an
apparent contradiction: ‘the only rule is that there are no rules’. To address this
point various attempts have been made to provide some basic hydrological mod-
elling guidelines on the development process: e.g. Dawson and Wilby (1998) and
Maier and Dandy (2000). The main challenges in the next phase of this progressive
transition to mainstream acceptance can be put into two groups: to establish signifi-
cant questions that will help push back the boundaries of science and to exploit, or
delimit, the various benefits and drawbacks that are on offer. Thus, at issue is the
requirement for published papers to report on substantive matters. Each paper must
offer meaningful scientific or operational contributions to hydrological modelling,
i.e. simple demonstrations or curve-fitting comparisons applied to different, perhaps
unique, data sets are no longer sufficient. Each paper should instead possess at least
the following desirable characteristics:

1. Each paper should possess a clear aim and provide sound findings expressed
in terms of an explicit contribution to hydrological science. The individual na-
ture and overall impact of each scientific or operational contribution must be
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transparent to the reader. The reported findings must be related to previous
investigations in that field based on an assessment of similarities and differences
in methodologies or data sets. Each paper must describe the manner in which its
contribution moves things forward. It must go above and beyond existing mate-
rial that is already reported in the literature. Papers that report the simple appli-
cation of similar tools to a different catchment are no longer innovative; papers
that report identical findings on similar or identical data sets should be viewed
as confirmation studies and published as supporting material in appropriate out-
lets. The conclusions should be related to the original aims and objectives of
each individual paper and provide some meaningful consideration of hydrolog-
ical factors or catchment properties. The conclusions must also summarise the
main contribution of that paper to either scientific understanding or hydrological
modelling procedures per se.

2. Each paper must provide a comprehensive account of current and previous stud-
ies on that topic. It must also be a critical review; there is a trend in recent pa-
pers to provide nothing other than a long string of references related to previous
reported applications or other relevant material. The cited papers are doubtless
related in some manner or other to the topic of investigation, but it is important
to explain what was being studied in each previous paper and to highlight the
main similarities and differences involved, i.e. between the studies that are be-
ing cited and the one that is being reported. It is likewise important to discuss
the potential range of alternative approaches to solving particular problems. This
will enable current research to be placed in context and in so doing demonstrate
that the reported investigation both draws upon existing knowledge and thereafter
expands it.

3. Each paper should provide a hydrological description of the study area(s) and
modelling data set(s). The extent to which each data set and subset that is used
in the modelling process offers (or handicaps) a comprehensive or meaningful
representation of the processes that are being modelled is important. This is-
sue is of particular concern with small data sets that have a higher potential for
sampling bias, i.e. the chances of obtaining a poorer overall representation are in-
creased. Each hydrological modelling subset must be described using a range of
different numerical indicators; popular descriptive statistics would include mini-
mum, maximum, mean, standard deviation, skewness and kurtosis. The analysis
should also be extended to include a consideration of input drivers as well as
output predictands. The full details for each catchment should include a descrip-
tion of important hydrological factors and a map that shows the location of the
different stations that were used in the modelling exercise. It is important for
the results to be contextualised in terms of hydrological considerations related
to different data sets and pertinent catchment properties, e.g. strong snowmelt
component.

4. Models and approaches should be tested over a range of conditions to establish
the level of reliance that can be placed on individual results. Identical methods
and procedures should be used to develop models on multiple catchments or
data sets since the uniqueness of a given site or set of measurement records
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is important. It is possible that different findings could result from different
catchments or data sets, and it is essential to ascertain the extent to which find-
ings are consistent across individual hydrological scenarios and different scales
of interest. It is also the case that one-step-ahead forecasts equate to near lin-
ear modelling situations. This is not that challenging. If no second catchment is
available it is possible to extend the forecasting horizon and offer a comparison
of one-step-ahead (near linear) and four-step-ahead (more nonlinear) solutions.
It would also be good to test the relationship between model generalisation capa-
bilities and model skill under different situations. For example, are the developed
models performing better on certain types of catchment? It would also be desir-
able to consider transferring a model developed on one catchment to a different
catchment or to experiment with models developed on multiple catchments to
discover to what extent a common solution can be obtained.

5. Each paper should provide a detailed report on pre-project planning operations.
This would include reporting on the type of model that was to be applied and
providing a justification for that selection. It would also need to offer some rea-
sons for choosing the final architectural configuration and, if applicable, provide
some basic details on experiments performed using different architectures. The
range of results from such experiments would provide some indication of the ex-
tent to which the final model is in fact superior to other potential models, i.e. is
the selection process significant or perhaps the result of random operators and
non-significant differences? It is also important to establish if a standard soft-
ware package was used and if so which one, e.g. SNNS, TRAJAN, MATLAB.
If the authors developed their own software program it is important to determine
to what extent that program has been subjected to alpha or beta testing, or tested
against other programs, and thus ascertain to what extent the reported software
outputs can be trusted. It would be good in such cases if the source code or model
could be supplied on the web for cross testing.

6. Each paper must provide a full account of the operational procedures involved.
Elaboration on the methods used for pre-processing the data sets, prior to train-
ing, as well as post-processing of the output data set is required. Papers should
explain in detail how the main drivers were selected, providing theoretical or nu-
merical justification for that selection. The choice of data sampling and reason-
ing behind the splitting of data into different data sets for training, validation and
testing must be explained and justified – with particular reference as to whether
or not the data set that is used for model testing purposes provides a fair and
rigorous evaluation of its overall capabilities. It must also provide a full report
on the training programme; to include a consideration of the activities that were
used to produce the required optimal or sub-optimal solution; a consideration of
the procedures that were used to prevent overfitting or underfitting; and a consid-
eration of the computational algorithm that was employed to adjust the weights.
Full details and a justification for each item should be included. Important fac-
tors such as parameter settings, optimisation criteria, stopping criteria, and the
pattern of weighted connections should also be reported and discussed even if a
set of defaults options are used.
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7. Testing should include the use of multiple performance statistics and compar-
isons. Several recognised evaluation metrics are available and can be used to
assess different aspects of model skill, peak flow, drought conditions, total
throughput, etc. HydroTest can be used to calculate several different performance
statistics as discussed in Dawson et al. (2007) [www.hydrotest.org.uk]. It is also
essential that model performance be evaluated in terms of qualitative techniques
such as visual inspection of output hydrographs. This permits more detailed in-
terpretation and hydrological insight than is otherwise possible with the use of
traditional global statistics. It is also important to perform a comparison against
other models. NN results should be compared with different mechanisms such as
conceptual models or other state-of-the-art solutions. Linear regression compar-
isons should also be performed so as to evaluate the extent of the nonlinearities
involved. It is not otherwise possible to establish the relative performance of the
NN model, in terms of how challenging a specific application is, since it is some-
what illogical to fit a complex nonlinear solution to a near linear problem and
expect the outputs to be vastly better than that produced using a simple linear
model. The fact that a neural solution can adapt to different situations is impor-
tant, but the potential demand for such modelling complexities remains an open
question. The need to establish measures of confidence or uncertainty remains
a major challenge since models that appear to perform well when judged us-
ing a set of global performance statistics may also be highly uncertain in their
predictions.

8. The data sets and models used should be provided online in an open-access envi-
ronment. This will empower other researchers to repeat published experiments
and reproduce identical confirmations, providing formal benchmarks against
which subsequent research can be compared. The power of the web can also be
harnessed in other ways; published papers in open-access (or traditional) jour-
nals offer highlighted snippets of the actual results. If scientists and practition-
ers could be encouraged to store all modelling inputs and outputs in open-access
repositories, such activities would ensure maximum impact across the board. The
speed at which the science and practice of a discipline is advanced would be ac-
celerated; duplication of effort would be avoided; gaps in understanding would
be highlighted; numerical comparisons would be made easier, thus effectively
and efficiently reusing published results; and everything would be grounded to a
common framework of investigation. Lack of access to essential resources would
no longer be an impeding factor; full open access would facilitate meta-analysis
of models and their outputs for knowledge discovery and extraction.

3.4 Final Thoughts

Hard science involves tackling difficult problems; it is not about taking simple op-
tions or shortcuts; it is not about performing numerous automated curve-fitting ex-
ercises. It requires the development of purposeful solutions, in complex situations,
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or under challenging conditions. Hard science relies on the use of experimental
procedures, quantifiable data sets and the scientific method. The focus is on pro-
ducing accurate and objective findings, on producing results that can be rigorously
tested and proven. NN hydrological modelling has progressed to the point at which
the mere existence of a neural solution to a particular problem is no longer inter-
esting. Hard science is required. Long-term interest in related research can only be
sustained if neural applications (i) can be shown to outperform conventional algo-
rithms, exhibiting clear superiorities on important aspects in specific fields of in-
vestigation; (ii) can compete on a different basis through doing non-standard tasks
that will permit their true powers to be exploited; (iii) can do the same things but in
a manner that requires other qualities to be present in an operational solution, e.g.
robustness; (iv) or can be used in situations where attempting a specific procedure
using other means is either not possible or not worthwhile. The eight guidelines
suggested above should help towards sustaining interest in this field of research.

Hydroinformatics also has a strong social component. Hydrologists have a nat-
ural reluctance to share their data sets; the present problem of needing to run NN
models on multiple catchments offers NN modellers the chance to help overcome
one major barrier to progress by taking a lead role in the formation of a ‘collective
modelling environment’ comprising open-access repositories for international data
sets and archived model outputs. Placing digital deliverables on a download site for
other scientists to draw upon would ensure maximum impact of individual outputs
and provide a common ground for subsequent investigations as opposed to the cur-
rent slow and somewhat piecemeal approach that is limited to the publication of key
findings in journals.

NN models could also be put on the web in a real-time environment – if practi-
tioners could be encouraged to use such tools in the field then perhaps wider accep-
tance might follow. There is no great copyright issue in terms of the final product; no
intellectual property rights are tied up in software coding; and the provision of trans-
parent open source neural solutions computational algorithms and procedures in a
generic solution would of course lead to and thus better all-round science (Harvey
and Han, 2002).

To conclude, it is important to stress that future challenges for neural modellers
are neither simple nor straightforward. The fight for recognition and funding is not
over; it is just starting. Hard science awaits us and sceptics abound. Two immortal
quotations nevertheless spring to mind:

We choose to go to the moon in this decade, and do the other things – not because they are
easy; but because they are hard; because that goal will serve to organize and measure the
best of our energies and skills; because that challenge is one that we’re willing to accept;
one we are unwilling to postpone, and one we intend to win – and the others, too.

President John F. Kennedy, Rice University Speech, 13 Sept. 1962

We shall not fail or falter; we shall not weaken or tire . . . Give us the tools and we will finish
the job.

Sir Winston Churchill, BBC radio broadcast, 9 Feb. 1941
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Chapter 4
Neural Network Solutions to Flood Estimation
at Ungauged Sites

C.W. Dawson

Abstract Artificial neural networks are universal approximators that have seen
widespread application in a number of fields in science, engineering, medicine and
finance. Since their re-popularisation in the mid-1980s, they have been applied suc-
cessfully to a number of problems in hydrology. However, despite their widespread
use, these tools have only been applied in a limited number of studies to the problem
of estimating flood magnitudes in ungauged catchments. Using data from the Cen-
tre for Ecology and Hydrology’s Flood Estimation Handbook, this chapter aims to
show how neural network models can be developed to predict 20-year flood events
and the index flood (the median of the annual maximum series) for ungauged catch-
ments across the UK. In addition, the chapter provides a discussion of how different
choices in the use of the available data can significantly affect the accuracy of the
models that are developed.

Keywords Artificial neural networks · flood estimation · ungauged catchments ·
Flood Estimation Handbook

4.1 Introduction

Although artificial neural networks (ANNs) have been applied in a number of hydro-
logical studies since the early 1990s (for example, see the reviews of ASCE 2000;
Dawson and Wilby, 2001), they have only been used in a limited number of
cases for predicting flows in ungauged catchments (examples include Dastorani and
Wright, 2001; Dawson et al., 2005; Dawson et al., 2006). In this chapter, this par-
ticular problem domain is used to explore how the composition of training data
can have a significant impact on model performance (e.g. see Han et al., 2007) by
exploring the importance of utilising all available data for network calibration. In
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order to achieve this aim, three experiments are discussed in which the data used for
training the ANNs are systematically reduced according to previous studies. The
original data set for the first set of reported experiments consists of 850 catchments
(as used in Dawson et al., 2006). A second set of experiments was undertaken with a
subset of these catchments consisting of 719 data points based on the Hi-Flows data
of the EA (2006). Finally, a much smaller data set of 88 catchments was used as
per the study of Ashfaq and Webster (2002) (based on the Institute of Hydrology’s
Flood Estimation Handbook).

It is not the intention of this chapter to provide a detailed overview of artificial
neural networks as these details are provided in numerous other texts and papers.
However, for completeness it is worth noting that the network used in this study
was the popular multilayer perceptron (MLP) trained using error backpropagation.
In this case, the transfer function used throughout was the sigmoid function, the
learning rate was set to 0.1 and momentum was included at a level of 0.9. These
values were selected based on previous experience.

The remainder of this chapter is structured as follows. Section 4.2 discusses the
data that were used in this study and how these data were processed for modelling.
Section 4.3 discusses the experiments that were performed and how the results of
these experiments were analysed. Section 4.4 discusses the results of the experi-
ments and Section 4.5 provides the conclusions from this work.

4.2 Data Sets

The data set used in this investigation was obtained from the Flood Estimation Hand-
book CD-ROM (Reed and Robson, 1999) which contains data for 1,000 catchments
in mainland Britain, Northern Ireland, the Isle of Wight and Anglesey. These data
were provided in three separate files for each site – file #1 contains the catchment
descriptor data; file #2 contains annual maximum series (AMS) data and file #3 con-
tains peaks-over-threshold data (not used in this study). The AMS covers a range of
years, with some files containing over 100 years of data while others contain only 5
or 6 years of data. From an analysis of the data sets, 16 descriptors were chosen as
predictors from the catchment descriptor files:

• DTM AREA – catchment drainage area (km2)
• BFIHOST – base flow index
• SPRHOST – standard percentage runoff
• FARL – index of flood attenuation attributable to reservoirs and lakes
• SAAR – standard period (1961–1990) average annual rainfall (mm)
• RMED-1D – median annual maximum 1-day rainfall (mm)
• (RMED-2D) – median annual maximum 2-day rainfall (mm)
• RMED-1H – median annual maximum 1-hour rainfall (mm)
• SMDBAR – mean soil moisture deficit for 1941–1970 (mm)
• PROPWET – proportion of time when soil moisture deficit < 6mm during

1961–1990
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• LDP – longest drainage path (km)
• DPLBAR – mean distance from each node on a regular 50 m grid to the catch-

ment outlet (km)
• ALTBAR – mean altitude of catchment above sea level (m)
• DPSBAR – mean of all inter-nodal slopes in catchment (m/km)
• ASPVAR – variation of slope directions in catchment
• URBEXT1990 – extent of urban and suburban land cover in 1990 (%).

Using the annual maximum series for each catchment, the 20-year flood event
estimates for each catchment were derived based on the method of Shaw (1994) in
which a Gumbel Type 1 distribution is assumed. In order to provide some consis-
tency and accuracy in the derivation of this flood event, only those catchments with
at least 10 years of AMS data were selected. This reduced the available number of
catchments from 1,000 to 850 for the first stage of the modelling. In this case, the
20-year flood event is estimated as

QT = Q̄+K(T )SQ (4.1)

where

K(T ) = −
√

6
π

(
γ + ln ln

[
T (X)

T (X)−1

])
(4.2)

in which Q̄ is the mean of the annual maximums, SQ is the standard deviation of the
annual maximums, K(T ) is a frequency factor, T (X) is the return period in years
and γ is 0.5772. For the 20-year flood event, this reduces to

QT = Q̄+1.8658SQ (4.3)

As noted in Dawson et al. (2006), other distributions could be used but from
reported experience most distributions yield comparable results. Since the purpose
of this study was to evaluate the effectiveness of neural network solutions to model
20-year flood events, it did not matter which of the comparable distributions was
selected since the neural networks would in all cases be modelling a pseudo-20-
year flood event. The index flood was also calculated from the AMS as the median
of these data.

4.3 Experiments

Three sets of experiments were undertaken during the course of this study. First,
all the available data (850 catchments) were used to train and evaluate ANNs for
predicting the 20-year flood event and the index flood. A cross-validation approach
was used in this part of the study whereby three data sets are used. The first data set
is used to train a number of ANNs (with different numbers of hidden nodes and for
different training periods or epochs) – the training data. The second data set is used
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to validate the ANNs produced and select the one that is most ‘accurate’ according
to some criteria (in this case the root mean squared error – RMSE – was used).
The third data set is used for final testing of the selected ANN model – testing the
model against an unseen sample of the data. From the 850 catchments available, 424
(50%) were chosen at random for training, 213 (25%) were chosen at random for
validation and 213 (25%) were chosen at random for testing (this mirrors the work
of Dawson et al., 2006). In this study, based on past experience, networks were
trained with 3, 5, 10, 15, 20, 30 hidden nodes for between 500 and 10,000 epochs
(in steps of 500).

The second set of experiments involved reducing the available 850 catchments
to that recommended by the Hi-Flows data of the Environment Agency (2006). In
this case, only 719 catchments were available for training and testing and were split
randomly into three data sets as follows; 360 (50%) were used for training, 179
(25%) were used for validation and 180 (25%) were used for final testing.

The final set of experiments involved a much smaller data set still – consisting
of 88 catchments based on the study of Ashfaq and Webster (2002). In this case,
all the data were used to train the neural networks, and the results of the ‘best’
network are presented when evaluated against the test data of the 850-catchment
approach and against the test data of the 719-catchment approach. The purpose of
this experiment was to see if reasonable networks can be trained when limited data
are available.

Table 4.1 summarises some statistics for selected variables from each of the
training data sets used in each of the experiments. As one would expect, the 850-
catchment training data set has the biggest range of catchment variables that should
help during training. However, it is worth noting that the 719-catchment training
data contain the largest 20-year flood event and index flood.

Table 4.1 Statistics for selected variables for training data sets

DTMAREA BFIHOST SAAR LDP URBEXT Index 20-year
(km2) (mm) (km) (%) flood flood event

(cumecs) (cumecs)

850 catchments (424 for training)

Min 1.07 0.18 547 2.69 0.000 0.32 0.61
Max 9,951 0.97 3,473 273.09 0.432 751.11 1,288.80
Mean 409.58 0.50 1,088 40.13 0.023 82.18 138.56

719 catchments (360 for training)

Min 1.55 0.17 555 1.79 0.000 0.43 0.66
Max 8,234.81 0.96 2,846 265.52 0.403 951.06 1,533.94
Mean 419.43 0.49 1,076 41.54 0.027 90.72 155.47

88 catchments (all for training)

Min 8.36 0.24 577 5.65 0.000 1.17 2.86
Max 556.56 0.90 2,808 74.93 0.377 367.24 609.94
Mean 184.24 0.49 1,084 29.74 0.034 63.82 111.82
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4.3.1 Error Measures

Three error measures were used to calculate the performance of the ANNs in this
study. These are calculated according to the following equations:

MSRE =
1
n

n

∑
i=1

(
Qi − Q̂

Qi

)2

(4.4)

CE = 1−

n
∑

i=1
(Qi − Q̂i)2

n
∑

i=1
(Qi − Q̄)2

(4.5)

RMSE =

√√√√ n
∑

i=1
(Qi − Q̂i)

2

n
(4.6)

where Qi is the observed flood event, Q̂i is the modelled flood event, Q̄ is the mean
of the observed flood events and n is the number of flood events that have been
modelled. These statistics were calculated using the hydrological testing web site:
HydroTest (www.hydotest.org.uk). Discussion of the relative merits of each of these
measures is beyond the scope of this chapter. However, the interested reader is di-
rected to Dawson et al. (2007) for a thorough discussion of these measures.

4.4 Results

Table 4.2 presents a summary of the results from the three experiments undertaken
in this study. In the following two sections, the results of the 20-year flood event
models and the index flood models are discussed in turn.

Table 4.2 ANN performance for flood events during testing

T -year MSRE CE RMSE (cumecs)

20-year

850 catchments 2.26 85.60 68.56
719 catchments 40.10 83.48 92.81
88 catchments v 850 1.43 60.31 113.80
88 catchments v 719 3.95 64.70 135.65

Index flood

850 catchments 1.98 90.48 34.16
719 catchments 38.91 90.76 41.49
88 catchments v 850 5.41 73.37 57.14
88 catchments v 719 21.86 69.46 75.42
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4.4.1 Twenty-Year Flood Event Models

From the 850-catchment models, the most accurate ANN according to the validation
data set was one trained for 1,800 epochs with five hidden nodes (more discussion
of why this parsimonious model was selected can be found in Dawson et al., 2006).
The accuracy of this model when evaluated with the test data is shown in Table 4.2.
From the 719-catchment models, the most accurate ANN according to the validation
data was a network with 10 hidden nodes trained for 8,000 epochs. Finally, the
‘best’ ANNs produced using the 88-catchment data were one with 30 hidden nodes
trained for 1,000 epochs (evaluated using the 850-catchment test data) and one with
five hidden nodes trained for 3500 epochs (evaluated using the 719-catchment test
data).

Table 4.2 shows that the 850-catchment model is the most accurate according to
the CE and RMSE error measures with the 719-catchment in second place. What
is somewhat surprising is the accuracy of the 88-catchment model when evaluated
using the 850-catchment test data according to the MSRE statistic. In this case the
88-catchment is the most accurate while the 719-catchment returns a very poor per-
formance. Looking at these results graphically – Fig. 4.1 shows a scatter plot of
the ANN modelled 20-year flood event versus the derived 20-year flood event dur-
ing testing for the 719-catchment trained model. The graph appears to show rea-
sonable approximation by the ANN model across all catchments except for one
outlier – the River Findhorn at Forres which appears to be significantly underes-
timated by the ANN. The River Findhorn is a medium-sized catchment (781km2)
with an urban extent of 0.0001% (base flow index: 0.434; average annual rainfall:
1,065 mm; longest drainage path: 100.13 km; mean slope: 119.83 m/km; and has ex-
tensive blanket peat cover that drains the Monadhliath Mountains). Thirty-two years
of AMS data were available for this catchment and it is classified as natural (Insti-
tute of Hydrology, 1993). In these circumstances, one would expect the observed
data to be sufficient to provide a reasonable estimation of the 20-year flood event. A
similar catchment to this – the River Dee at Polhollick – with an area of 697km2 and
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urban extent of 0.0001% (base flow index: 0.458; average annual rainfall: 1,231 mm;
longest drainage path: 62.68 km; mean slope: 224.44 m/km; and described as being
a mountain, moorland and pastoral catchment) has a 20-year flood event of 501
cumecs compared with 1,171 cumecs for the River Findhorn. This is also described
by the Hydrometric Register as natural and thus provides a good comparison of the
flood magnitude that might be expected.

Figure 4.2 shows a comparable chart to Fig. 4.1 but for the ANN trained us-
ing the smaller 88-catchment data set. While this model produces a lower MSRE
statistic than the other two ANN models, the figure shows that it produces signifi-
cant errors in the prediction of higher flood events and seems to have an upper limit
of around 400 cumecs. This is not surprising if one examines the (small) training
data set. In this training set, the maximum 20-year flood event available is 609.94
cumecs – around half the amount of the 850-catchment training data (1,288.80
cumecs). The 88-catchment ANN is therefore only ‘used to’ smaller events and
this perhaps explains why it has a relatively small MSRE statistic.

4.4.2 Index Flood Models

For the index flood from Table 4.2 it can be seen that the most accurate of the
three models is the 850-catchment-based ANN (according to all three error mea-
sures). This is followed by the 719-catchment-based ANN (according to the CE and
RMSE statistics), although this has a relatively poor MSRE value compared with the
88-catchment-based ANN.

An examination of the training data statistics (Table 4.1) perhaps shows why the
719-catchment model returns a relatively poor MSRE statistic for both the 20-year
flood event and the index flood. For the 719-catchment model, the mean of the 20-
year flood event for the training data is 155.47 cumecs. This is higher than the mean
for the 850-catchment training data and the 88-catchment data. The 719-catchment
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model is thus been trained using relatively higher flood events and thus has more dif-
ficulty modelling lower events during testing. This leads to a relatively poor MSRE
statistic which penalises errors at lower levels. The same explanation applies to the
index flood which also shows a much higher mean value for the training data than
either of the other two training sets.

4.5 Conclusions

In this chapter, we have explored the use of different-sized data sets in the devel-
opment of ANN models for predicting 20-year flood events and the index flood
in UK catchments based on 16 predictor variables. The results show that limit-
ing the available data can have an adverse affect on the accuracy of the ANNs
developed. In addition, the ‘quality’ of the data that are used (for example, the
range of events covered) for training also affects the accuracy of the models de-
veloped. One should therefore utilise as much of the available data as possible
in the development of such models which are, after all, heavily data dependent.
Further work is needed into investigating ways of speeding up training by reduc-
ing data sets in a more appropriate way that does not limit their information con-
tent. This might involve clustering techniques that enable smaller cross-section
samples to be taken from the entire data set while still retaining the information
available.
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Chapter 5
Rainfall-Runoff Modelling: Integrating
Available Data and Modern Techniques

S. Srinivasulu and A. Jain

Abstract The rainfall-runoff process is a highly complex, nonlinear, and dynamic
physical mechanism that is extremely difficult to model. In the past, researchers
have used either conceptual or systems theoretic techniques in isolation. This chap-
ter presents an approach that combines data and techniques to develop integrated
models of the rainfall-runoff process. Specifically, results from five different models
are presented and discussed. The results obtained are encouraging and demonstrate
the need to make special efforts in rainfall-runoff modelling in order to achieve im-
proved results.

Keywords Hydrologic modelling · data decomposition · conceptual modelling ·
genetic algorithms · neural networks.

5.1 Background

Water is essential for all kinds of life on Earth. The total available water is estimated
to be about 1386 million cubic kilometers (MKm3), out of which only 10.6 MKm3 is
available as fresh water on land, and the rest is contained either in the oceans (97%)
or in the form of frozen ice on mountain tops and glaciers (Subramanya, 1997).
The fresh liquid water that is useful for human beings is available as surface water
in rivers and reservoirs or as groundwater in aquifers. The total available amount
of fresh liquid water has remained constant over the years, but water demands are
increasing at a rapid rate due to population growth, economic developments, urban-
ization, and other factors. Thus, if the available water resource is not utilized effi-
ciently and effectively, the demand for water will soon exceed its available supply.
A key component in the planning, development, design, operation, and management
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of water resources is the availability of accurate river flow forecasts. Runoff fore-
casts are normally made through the development of runoff forecast models that use
only hydrological data, or through rainfall-runoff models that use both hydrological
and meteorological data. In this chapter, the literature in the area of rainfall-runoff
modelling is reviewed, and a new methodology is proposed that integrates the avail-
able data with modern techniques for the purpose of achieving improved accuracies
in runoff forecasts.

5.2 Rainfall-Runoff Modelling

The rainfall-runoff process is an extremely complex physical process that is not
understood clearly (Zhang and Govindaraju, 2000). The approaches used for rainfall-
runoff modelling cover a wide range of methods from black-box models to very
detailed deterministic/conceptual models (Porporato and Ridolfi, 2001). The deter-
ministic/conceptual models need a thorough understanding of the physics involved,
a large amount of data for calibration and validation purposes, and are computation-
ally demanding. There is an abundance of literature available in the area of rainfall-
runoff modelling using deterministic/conceptual methods. Recently, artificial neural
networks (ANNs) have been proposed as efficient tools for modelling complex phys-
ical systems. The application of ANNs to the field of rainfall-runoff modelling,
which is popularly known as hydroinformatics, started in the 1990s. Karunanithi
et al. (1994) applied the NN approach to flow prediction for the Huron River and
compared its performance with that of an analytical nonlinear power model in terms
of accuracy and convenience. Hsu et al. (1995) found ANNs to be more efficient
and provided a better representation of the rainfall-runoff process in the Leaf River
basin near Collins, Mississippi, USA, in comparison to the linear ARMAX time se-
ries and the Conceptual Rainfall-Runoff (CRR) models. Smith and Eli (1995) and
Minns and Hall (1996) used a synthetic domain and data for predicting hourly flows.
Tokar and Johnson (1999) investigated the sensitivity of the prediction accuracy to
the content and length of the training data in ANN daily runoff forecasting. Jain and
Indurthy (2003) performed a comparative analysis of the event-based rainfall-runoff
modelling techniques and found that the ANN models consistently outperformed
conventional approaches such as the unit hydrograph and regression analysis. The
reported ANNs provided a better representation of an event-based rainfall-runoff
process, in general, and estimated the peak discharge and time to peak discharge, in
particular. Rajurkar et al. (2004) presented an approach for modelling the rainfall-
runoff process by coupling a simpler linear (black box) model with an ANN model.
The versatility of the approach was demonstrated with satisfactory results for data
of catchments from different geographical locations.

It is clear from the reported literature that ANNs have received a great deal of
attention by researchers working in the area of hydroinformatics. However, there
are certain issues that either have not been explored or have been investigated
only partially. This chapter aims to focus on three main issues: (a) integration of
modelling techniques, (b) integration of models developed on data divided into
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different classes, and (c) training issues of ANN models. In most of the studies re-
ported so far, the techniques available for rainfall-runoff modelling, whether con-
ceptual or based on ANNs, have been used in isolation. It may be possible to
achieve better model performance by integrating the modelling techniques. Fur-
thermore, the rainfall-runoff process is an extremely complex, nonlinear, dynamic,
and fragmented physical process, and the functional relationships between rainfall
and runoff can be quite different for low, medium, and high magnitudes of runoff.
Some researchers have attempted to achieve improved model performance using
data decomposition techniques (e.g. Zhang and Govindaraju, 2000; Abrahart and
See, 2000; Hsu et al., 2002; and Anctil and Tape, 2004). Most of the studies involving
data decomposing have focused on either statistical or soft decomposing techniques.

The data decomposition based on physical concepts may provide increased ac-
curacies in runoff forecasts. The rising limb of a flood hydrograph is influenced by
varying infiltration capacities, catchment storage characteristics, and the nature of
the input. i.e. intensity and duration of the rainfall. On the other hand, the falling
limb of a hydrograph is influenced more by the storage characteristics of the catch-
ment and meteorological characteristics to some extent. Therefore, the use of a sin-
gle ANN or a single technique to represent the input–output mapping of the whole
flood hydrograph may not be as efficient and effective as compared to develop-
ing two different mappings representing the two limbs of the hydrograph. In fact,
one can go a step further and divide the rising limb (or a falling limb) into differ-
ent components and develop different models for different components to investi-
gate if the prediction accuracies improve. Finally, the third issue being dealt with
here is that of training of an ANN rainfall-runoff model. Most of the ANN appli-
cations reported for rainfall-runoff modelling have employed the backpropagation
(BP) training algorithm proposed by Rumelhart et al. (1986) or its variations. Curry
and Morgan (1997) concluded that the use of gradient search techniques, employed
in the BP algorithm, often results in inconsistent and unpredictable performance of
the neural networks. Many researchers have found that ANN rainfall-runoff mod-
els trained using BP method are biased towards a certain magnitude of flows (e.g.
Hsu et al., 1995; Ooyen and Nichhuis, 1992; Tokar and Markus, 2000; and Jain
and Srinivasulu, 2004). There appears to be a need to explore alternative training
methods to overcome such limitations.

The objectives of this chapter are to present a case study of rainfall-runoff mod-
elling that aims at (a) integrating conceptual and neural techniques, (b) decomposing
data corresponding to a flood hydrograph using physical concepts so as to permit the
development of a separate model for each class, (c) employing a real-coded genetic
algorithm (RGA) for ANN training and comparing its performance with BP trained
models and (d) comparing the results of the integrated ANN models with a CRR
model and a black-box type ANN model in terms of certain standard statistical per-
formance evaluation measures. The approaches proposed in this chapter are tested
using the observed data derived from the Kentucky River Basin. The chapter begins
with a brief description of the study area and model performance statistics employed
to evaluate various models. The development of various types of models is presented
next before discussing the results and making concluding remarks.
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5.3 Study Area and Model Performance

5.3.1 Study Area and Data

The data derived from the Kentucky River Basin were employed to train and test all
the models developed in this study. The drainage area of the Kentucky River at Lock
and Dam 10 (LD10) is approximately 10,240 km2 and the time of concentration of
the catchment is approximately 2 days. The data used in this study comprise the
average daily streamflow (m3/s) from the Kentucky River at LD10, and daily aver-
age rainfall (mm) from five rain gauges (Manchester, Hyden, Jackson, Heidelberg,
and Lexington Airport) scattered throughout the Kentucky River catchment. A total
length of 26 years of data (1960–1989 with data in some years missing) was avail-
able. The data were divided into two sets: a training data set consisting of the daily
rainfall and flow data for 13 years (1960–1972) and a testing data set consisting of
the daily rainfall and flow data of 13 years (1977–1989).

5.3.2 Model Performance

The performance of the models developed in this study was evaluated using six
different standard statistical measures: threshold statistic (TS), average absolute rel-
ative error (AARE), the Pearson coefficient of correlation (R), Nash-Sutcliffe effi-
ciency (E), normalized mean bias error (NMBE), and normalized root mean squared
error (NRMSE). The TS and AARE statistics have been used by the authors exten-
sively in the past (Jain et al., 2001; Jain and Ormsbee, 2002). The NMBE statistic
indicates an over-estimation or under-estimation in the estimated values of the phys-
ical variable being modelled, and provides information on long-term performance.
The NRMSE statistic provides information on short-term performance by allow-
ing a term-by-term comparison of the actual differences between the estimated and
observed values. The equations to compute TS, AARE, NMBE, and NRMSE are
provided here:

TSx =
nx

N
×100% (5.1)

AARE =
1
N

N

∑
t=1

∣∣∣∣QO(t)−QP(t)
QO(t)

∣∣∣∣×100% (5.2)

NMBE =

1
N

N
∑

t=1
(QP(t)−QO(t))

1
N

N
∑

t=1
QO(t)

×100% (5.3)
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NRMSE =

(
1
N

N
∑

t=1
(QP(t)−QO(t))2

)1/2

1
N

N
∑

t=1
QO(t)

(5.4)

where nx is the total number of flow data points predicted in which the absolute rela-
tive error (ARE) is less than x%, N is the total number of flow data points predicted,
QO(t) is the observed flow at time t, and QP(t) is the predicted flow at time t. The
threshold statistic for the ARE levels of 1, 5, 25, 50, and 100% were computed in
this study. The TS and AARE statistics measure the ‘effectiveness’ of a model in
terms of its ability to accurately predict flow from a calibrated model. The other
statistics, R, E, NMBE, and NRMSE, quantify the ‘efficiency’ of a model in cap-
turing the extremely complex, dynamic, nonlinear, and fragmented rainfall-runoff
relationships. A fuller discussion on the merits of these different measures can be
found in Dawson et al. (2007).

5.4 Model Development

Five different models of the rainfall-runoff process are presented in this chapter. The
first two models are the standalone models that employ the ANN and conceptual
techniques in isolation. The first model (called the ANN model in this chapter) uses
a multilayer perceptron (MLP) neural network trained using the BP algorithm on the
raw rainfall and runoff data. The second model is a conceptual model in which infil-
tration was modelled using the Green-Ampt equations (Chow et al., 1988), the soil
moisture was modelled using the law of conservation of mass, evapotranspiration
was modelled using the Haan (1972) method, and the complex rainfall-runoff pro-
cess in the catchment was modelled by assuming it to be a linear reservoir. The third
model uses a self-organizing map (SOM) to first divide the rainfall-runoff data into
different classes and then develop different MLP neural network models. The fourth
model (called the Integrated-BP model) decomposes the rainfall and runoff data
corresponding to a flow hydrograph into four segments and then develops different
models for different segments. The fifth model (called the Integrated-GA model) is
the same as the fourth model except that the ANN model components were trained
using a RGA.

The ANN model consisted of three layers: an input layer, a hidden layer, and
an output layer. The inputs to the ANN model were decided based on the cross-
correlation analyses of the rainfall and runoff data. Five significant inputs were
identified: total rainfall at times t, t−1, and t − 2 {P(t), P(t − 1), and P(t − 2)}
and the observed flow values at times t–1 and t − 2 {Q(t − 1) and Q(t − 2)}. The
only neuron in the output layer represented the flow at time t {Q(t)} being mod-
elled. The number of hidden neurons was determined based on trial and error. Four
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hidden neurons were found suitable based on error minimization criteria. The stan-
dard BP algorithm was used for training. The stopping criteria were decided based
on experience so as to prevent over-training or under-training. Once the training step
was over, the trained ANN model was used to calculate the runoff response using
training and testing data sets. The structure of the conceptual model is outlined in
Jain (Chap. 21). The remaining models employed effective rainfall calculated using
the Green-Ampt method as inputs instead of the total rainfall. The third model pre-
sented here employed a SOM to first classify the effective rainfall-runoff data into
four separate categories. Once the input output space was divided into four classes
using a SOM, the data from each class were used to develop independent ANN
models using supervised training with BP. The input architecture of the individual
ANN model was decided using a cross-correlation analysis between input and out-
put data sets of the corresponding class of observations from the training data set.
The following inputs were found to be important for the four classes: P(t), P(t −1),
P(t−2), Q(t−1), and Q(t−2) for class 1; P(t), P(t−1), Q(t−1), and Q(t−2) for
class 2; P(t), Q(t −1), and Q(t −2) for class 3; and P(t), Q(t −1), and Q(t −2) for
class 4. Thus, the ANN architectures of 5-N1-1, 4-N2-1, 3-N3-1, and 3-N4-1 were
explored for the four classes, respectively. The optimum number of hidden neurons
for the four classes was determined to be 4, 3, 3, and 3 through trial and error. Once
the model structures for the individual classes were identified, they were used to
calculate runoff for both the training and testing data sets. The development of the
integrated models is described next.

5.4.1 Integrated Models

The integrated models were developed by dividing the effective rainfall and runoff
data associated with a flood hydrograph into the different segments corresponding to
the different dynamics. This approach of decomposing a flood hydrograph is based
on the concept that the different segments of a flood hydrograph are produced by
the different physical processes in a catchment. Since the rising and falling limbs
in a flood hydrograph are produced by the different physical processes in a catch-
ment, the first step in decomposing a flood hydrograph can be to separate the data
into two categories corresponding to the rising and falling limbs, respectively. This
can be achieved by breaking the flood hydrographs using the peak flow value for
each flood hydrograph where the slope of the flow hydrograph changes sign. The
effective rainfall and runoff data before the peak from all the flood hydrographs
in a data set can be combined together for the rising limb, and the data after the
peak of all the flood hydrographs can be combined together for the falling limb.
The next step is to sub-divide the data on the rising limb (or the falling limb) corre-
sponding to the different dynamics into different classes. The question(s) that need
to be answered are as follows: Into how many segments should the rising limb (or
the falling limb) be divided and how? Answering such question(s) is not simple as
it would depend on the hydrological and meteorological characteristics associated
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with a catchment. This task can be made simple by choosing a flow value on the
rising limb (or the falling limb) and calculating certain error statistics in predicting
the flood hydrographs. In the present study, the rising and falling limbs were di-
vided into two segments each using a trial and error method to minimize three error
statistics, namely the t-statistic, NMBE, and NRMSE in predicting the flow hydro-
graphs. The flow values of 11.33 m3/s (400 ft3/s) and 70.8 m3/s (or 2500 ft3/s) were
found suitable for dividing the rising and falling limbs, respectively. Using these
flow values, the effective rainfall and runoff data were separated into four differ-
ent classes. Once the effective rainfall and runoff data associated with the flood
hydrographs have been divided into different segments, the next step is to develop
models to capture the fragmented functional relationships inherent in each data set
using a different technique. The ANN technique was found suitable to model the
segments of the flow hydrograph close to the peak, and a conceptual technique
was found suitable to model the initial and final segments of a flow hydrograph
away from the peak. The concept of flow recession was used to model the seg-
ments of a flood hydrograph away from the peak. The computation of the flow at
time t, Qt , using the concept of flow recession can be represented by the following
equations:

Qt = Kt Qt−1 (5.5)

Kt =
Qt−1

Qt−2
(5.6)

where Qt is the flow at time t, and Kt is the recession coefficient for the flow at time t
that can be determined adaptively at each time step. The value of Kt at the beginning
of a flood hydrograph can be computed using the observed flood data of the previous
flow hydrograph. It is to be noted that the concept of flow recession can be used to
model not only the falling limb of a flood hydrograph but also the segments of the
rising limb of a flood hydrograph. This is possible as the shape of a flow hydrograph
at the beginning of the rising limb can be assumed to be close to the mirror image
of the flood hydrograph at the final segment of the falling limb. The rising segment
just before the peak and the falling segment just after the peak were modelled by
ANNs trained using the BP algorithm. The input architecture of the ANN models
was decided using a cross-correlation analysis between input and output data sets
of the corresponding class of observations from the training data set. The following
inputs were found to be important based on these analyses: P(t), P(t −1), P(t −2),
Q(t −1), and Q(t −2) for modelling the rising segment of the flow hydrograph just
before the peak; and P(t), Q(t −1), and Q(t −2) for modelling the falling segment
of the flow hydrograph just after the peak. The optimum numbers of hidden neurons
were determined to be 4 and 3 for the rising and falling segments, respectively. The
values of 0.01 and 0.075 for the learning coefficient and the momentum correction
factor, respectively, were used to train all the ANN models/components in this study.
The Integrated-BP model used the BP algorithm and the Integrated-GA model used
a RGA to train the ANN components on the rising and falling limbs. Once the model
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structures for the individual classes were finalized and trained, they were used to
calculate runoff of both the training and testing data sets.

5.5 Results and Discussions

The results in terms of various statistics are presented in Table 5.1. A number in
bold represents the best performance in terms of a particular statistic (within that
column) either during training or testing. The results indicate that the integrated
models perform better than the individual models. The performance of the ANN
model was good in terms of R, E, and NRMSE but was very poor in terms of TS
and AARE. On the other hand, the performance of the conceptual model was good
in terms of TS and AARE but was not so good in terms of R, E, and NRMSE.

Thus, there appears to be a trade-off when selecting a model developed on a sin-
gle technique. The SOM model obtained the best R and E values of 0.9804 and
0.9612, respectively, during training but did not perform as well as the Integrated-
GA model in terms of TS and AARE. The Integrated-GA model obtained the best
TS values for all ARE levels during both training and testing. It also obtained the
best AAREs of 16.47% during training and 17.96% during testing. Although the
ANN model obtained the best R, E, and NRMSE during testing, it performed the
worst in terms of TS and AARE. In the experience of the author, ANN models in
hydrology tend to perform very well in terms of global error statistics (R, E, and
RMSE, etc.) but are very poor in estimating runoff values accurately in terms of
TS and AARE. The global error statistics are biased towards high-magnitude runoff
due to the square of the deviations or its variations in the expressions while the TS
and AARE are unbiased statistics that are relative in nature. A robust model will
capture the complex, dynamic, nonlinear, and fragmented physical rainfall-runoff
process not only in terms of global statistics but also in terms of unbiased statistics

Table 5.1 Performance evaluation statistics during training

Model TS1 TS5 TS25 TS50 TS100 AARE R E NMBE NRMSE

During training

ANN 2.97 13.59 53.47 70.42 83.15 54.45 0.9770 0.9544 1.52 0.347
Conceptual 6.10 8.87 68.52 89.26 97.81 23.57 0.9363 0.8436 8.95 0.639
SOM 4.27 22.06 72.27 90.89 98.44 20.80 0.9804 0.9612 0.12 0.320
Integrated-BP 6.25 26.70 74.71 88.55 95.40 23.85 0.9780 0.9570 −0.06 0.339
Integrated-GA 6.31 28.71 79.73 94.22 99.24 16.47 0.9785 0.9575 −0.76 0.335

During testing

ANN 2.68 12.96 54.43 70.40 80.57 66.78 0.9700 0.9410 0.75 0.388
Conceptual 4.84 18.32 67.89 88.66 97.59 24.68 0.9332 0.8344 9.46 0.649
SOM 2.59 13.73 61.75 86.17 97.61 26.51 0.9620 0.9100 9.63 0.478
Integrated-BP 7.01 28.07 72.34 89.62 97.62 21.63 0.9678 0.9366 0.65 0.402
Integrated-GA 7.12 28.22 76.14 93.13 99.28 17.96 0.9686 0.9389 0.26 0.397
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Fig. 5.1 Scatter plot from simple conceptual model

such as TS and AARE, which is required by water resource planning, design, and
management activities. The results obtained in this study demonstrate that the inte-
grated models that exploit the advantages of both conceptual and ANN techniques
are much better than their individual counterparts.

The graphical results are shown in Figs. 5.1–5.4. Figures 5.1 and 5.2 show the
scatter plots during the 13-year testing period obtained from the conceptual and
Integrated-GA models, respectively. It can be seen that the wide spread around the

Fig. 5.2 Scatter plot from Integrated-GA model
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Fig. 5.3 Observed and estimated flows for 1986 from simple ANN model

Fig. 5.4 Observed and estimated flows for 1986 from Integrated-GA model

ideal line from the conceptual model has been significantly reduced in the integrated
model trained using a RGA. Figures 5.3 and 5.4 show the time series plots of the
observed and estimated runoff during a sample year (1986) taken from the testing
data set for the ANN and Integrated-GA models, respectively. It is very encouraging
to note that the problem of over-estimating the low-magnitude flows from the ANN
model during the summer months (see days 100–300 in Fig. 5.3) is significantly
overcome by the Integrated-GA model (see Fig. 5.4). These results demonstrate
that the integration of data and modelling techniques can significantly improve the
overall performance in rainfall-runoff modelling.
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5.6 Summary and Conclusions

This chapter presents a new approach for integrating available data and modern
modelling techniques for developing better models of the complex rainfall-runoff
process. Two different approaches based on data decomposition are investigated.
The first approach uses the self-organizing capability of SOM models for data
classification and then develops different MLP neural network models for four dif-
ferent classes. The second approach decomposes the rainfall and runoff data corre-
sponding to a flood hydrograph into four classes based on physical concepts before
developing a combination of conceptual and ANN models for different segments
of the flow hydrograph. The results from an ANN and a conceptual model are also
presented for comparison purposes. Three-layer feedforward ANNs with BP were
employed to develop all ANN models. A real-coded GA was also employed in the
integrated model to assess its capability in developing a better generalization of
the rainfall-runoff process. Rainfall and flow data derived from the Kentucky River
Basin were used to test the proposed methodologies.

The results obtained in this study indicate that the conceptual and ANN models
were good based on certain types of statistics yet poor when considering others.
The integrated models developed on (both SOM and physically based) decomposed
data performed better than the individual models developed on a single technique.
The integrated model that decomposed the data corresponding to a flood hydro-
graph into four classes, modelled segments away from peak using the concept of
flow recession and modelled segments closer to peak using ANNs trained by RGA
was found to be the best for rainfall-runoff modelling for the data considered in this
study. The rainfall-runoff process in the Kentucky River Basin was found to have
four different classes corresponding to different dynamics in the underlying physi-
cal processes; however, different catchments with different climatic and hydrologic
conditions may have different numbers of classes corresponding to different dy-
namics involved since each catchment is unique in its response to rainfall. This
study is able to demonstrate that it is possible to achieve improved performance in
rainfall-runoff modelling by specialized efforts focused in the direction of integrat-
ing available data and modern modelling techniques. More research is needed in
this direction to verify the reported findings here in order to improve the accuracy
of runoff forecasts required by current water resource applications.
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Chapter 6
Dynamic Neural Networks for Nonstationary
Hydrological Time Series Modeling

P. Coulibaly and C.K. Baldwin

Abstract Evidence of nonstationary trends in hydrological time series, which result
from natural and/or anthropogenic climatic variability and change, has raised a num-
ber of questions as to the adequacy of conventional statistical methods for long-term
(seasonal to annual) hydrologic time series forecasting. Most conventional statisti-
cal methods that are used in hydrology will suffer from severe limitations as they
assume a stationary time series. Advances in the application of artificial neural net-
works in hydrology provide new alternative methods for complex, nonstationary
hydrological time series modeling and forecasting. An ensemble approach of com-
petitive recurrent neural networks (RNN) is proposed for complex time-varying hy-
drologic system modeling. The proposed method automatically selects the most op-
timally trained RNN in each case. The model performance is evaluated on three
well-known nonstationary hydrological time series, namely the historical storage
volumes of the Great Salt Lake in Utah, the Saint-Lawrence River flows at Corn-
wall, and the Nile River flows at Aswan. In each modeling experiment, forecasting
is performed up to 12 months ahead. The forecast performance of the proposed
competitive RNN model is compared with the results obtained from optimal multi-
variate adaptive regression spline (MARS) models. It is shown that the competitive
RNN model can be a good alternative for modeling the complex dynamics of a hy-
drological system, performing better than the MARS model, on the three selected
hydrological time series data sets.
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6.1 Introduction

The forecasting of environmental time series variables requires modeling of the un-
derlying physical mechanism responsible for their generation. In practice, many
real-world dynamical systems exhibit two distinct characteristics: nonlinearity and
nonstationarity in the sense that statistical characteristics change over time due to
either internal or external nonlinear dynamics. Explicit examples of such series are
the historical storage volumes of the Great Salt Lake (GSL), the Saint-Lawrence
River (SLR) flow records, and the Nile River flow records. Large or regional hydro-
systems are inherently dynamic and subject to climatic variability and change. The
evidence of nonstationarity of some existing long hydrological records has raised
a number of questions as to the adequacy of the conventional statistical methods
for long-term regional water resources forecasting. The fundamental assumption in
most empirical or statistical approaches (Box and Jenkins, 1976) is stationarity over
time. Therefore, nonstationary time series have to be reduced to being stationary, for
example through differencing. This procedure has the disadvantage of amplifying
high-frequency noise in the data (Young, 1999). The simplest alternatives to linear
regression methods are dynamic regression models (Young, 1999). Although these
methods may indeed be useful for the analysis of nonstationary time series, their
inherently static regression feature cannot fully explain many complex geophysical
data sets. The identification of a nonlinear dynamical model that relates directly to
the underlying dynamics of the system being modeled remains a challenging and
active research topic. Owing to the difficulty of identifying an appropriate nonlinear
model structure, very few nonlinear empirical models have been proposed in the
literature for complex hydrological time series modeling (Coulibaly et al., 2000a).
In watershed and aquifer system modeling, recent attempts have resorted to non-
linear data-driven methods, specifically artificial neural networks (ANNs). These
tools are found to be more suited to nonlinear input–output mapping, and recent
reviews reveal that more than 90% of ANN applications in water resources mod-
eling used standard feedforward neural networks (FNNs) (Coulibaly et al., 1999;
Maier and Dandy, 2000; ASCE Task Committee, 2000). Even though an optimal
FNN model can provide accurate forecasts for simple rainfall-runoff problems, it
often yields sub-optimal solutions even with lagged inputs or tapped delay lines
(Coulibaly et al., 2001). Standard FNNs are not well suited for complex tempo-
ral sequence processing owing to their static memory structure (Giles et al., 1997;
Haykin, 1999). FNNs are similar to nonlinear static regression models in that they
are unable to adapt properly to the temporal relationship of real-world data. A
promising class of ANNs for nonstationary time series modeling is dynamically
driven recurrent neural networks (RNNs) (Haykin and Li, 1995; Haykin, 1999). In
theory, a RNN can learn the underlying dynamics of a nonstationary environment if
the training sample is representative of the time-varying behavior of the system that
is being modeled (Haykin, 1999). However, designing such a network for nonlin-
ear forecasting of physical nonstationary time series is a difficult task because (1)
traditional gradient-descent learning methods are unstable, and have to be properly
adapted; and (2) the network needs to learn online and adapt to statistical variations
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of the time series while simultaneously performing its filtering role. Recent attempts
in using RNNs for nonstationary time series forecasting have demonstrated the po-
tential of the method for modeling complex time-varying patterns (Saad et al., 1998;
Iatrou et al., 1999; Coulibaly et al., 2000a). However, none of these applications has
considered nonstationary hydrological time series.

The purpose of this chapter is to introduce a dynamic RNN approach for the
forecasting of nonstationary hydrological time series. The proposed method uses an
ensemble of parallel and competitive sub-networks (or “subnets”) to directly iden-
tify the optimal dynamic model for the system being considered. The performance
of the method is assessed against that of an optimal multivariate adaptive regres-
sion spline (MARS) model (Friedman, 1991; Lall et al., 1996) in experiments based
on complex hydrological time series modeling for three physically different hydro-
climatic regions.

The reminder of the chapter is organized as follows. Section 6.2 provides a brief
description of the experimental data, related studies, and a wavelet analyses of the
data sets. In Sect. 6.3, we describe the dynamic RNN and the ensemble competi-
tive approach. In Sect. 6.4, results from the modeling experiment are reported and
discussed. Finally, in Sect. 6.5, our conclusions are presented.

6.2 Experimental Data Sets and Wavelet Analyses

Three hydrological time series that have been analyzed extensively by numerous
authors (Eltahir, 1996; Bernier, 1994; Sangoyomi, 1993) and whose statistical char-
acteristics have been shown to change over time (i.e., corresponding to the term
“nonstationary process” used here) are considered. These are the monthly flow
records of the Nile River at Aswan, from 1871 to 1989, the monthly flows of the
Saint-Lawrence River (SLR) at Cornwall, from 1861 to 1999, and the bi-weekly
storage volumes of the Great Salt Lake (GSL), from 1847 to 1999. The selected hy-
drological series were also proven to exhibit significant linkages with low-frequency
(interannual or decadal) climatic variability indices. It has been reported that the
underlying mean of the Nile River flow is both time and El-Niño/Southern Oscil-
lation (ENSO) dependent, resulting in a nonstationary process (Eltahir, 1996). The
changes in the mean of the SLR flows have been analyzed by Bernier (1994), who
showed that the 1861–1991 annual flows of the SLR can be divided into three pe-
riods (1861–1891, 1892–1968, 1969–1991) with significantly different means. The
nonlinear time-varying dynamics of the GSL have been documented by Sangoy-
omi (1993) and Lall et al. (1996). Furthermore, the connection between the climatic
signals and the fluctuations in the volume of the GSL has been proven and is well
documented by Lall and Mann (1995) and Mann et al. (1995). Figure 6.1 shows the
deviations from the historical mean for the three hydrological series under study.
It appears that globally the selected time series exhibit long-term (greater than 10
years) as well as low-frequency (interannual to decadal) downward and/or upward
trends in addition to their inherent seasonal fluctuations. Prior to 1900, there are
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Fig. 6.1 Deviations of annual hydrological records from their historical means

essentially positive deviations from the historical mean of the series, whereas af-
ter 1900 the negative deviations are relatively dominant up to 1999, except for
SLR flows in the period 1969–1999 and the GSL in the period 1985–1990. More
specifically, there are apparent periodical patterns in each series from 1900 on-
wards. These visual structures are supported by more rigorous statistical analysis
(Lall and Mann, 1995; Eltahir, 1996; Bernier, 1994). Nevertheless, to further assess
the complexity of the selected time series, a Morlet wavelet analysis of the selected
hydrological time series is carried out.

Wavelet analysis. The theoretical basis for using the wavelet transform to ana-
lyze a time series that contains nonstationary power at different frequencies has been
documented by Daubechies (1990). The Morlet wavelet is a complex nonorthogonal
wavelet function which has been shown to be particularly well adapted for analyz-
ing nonstationary variance at different frequencies within hydrologic and geophys-
ical time series (Foufoula-Georgiou and Kumar, 1995; Torrence and Campo, 1998;
Coulibaly et al., 2000a; Labat et al., 2000). In this analysis, the wavelet analy-
sis toolkit kindly provided by Torrence and Campo (1998) (at URL: http://paos.
colorodo.edu/research/wavelets/) is used.

With the wavelet analysis, localized time-scale variations can be seen within the
GSL volume series (Fig. 6.2). It should be noted that only the structures (or com-
ponents) corresponding to the highest wavelet coefficient are shown. The contour
lines in Fig. 6.2b enclose structures of greater than 95% confidence for a red-noise
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Fig. 6.2 (a) The GSL bi-weekly volume series used for the wavelet analysis. (b) The local wavelet
power spectrum of the GSL bi-weekly volume series using the Morlet wavelet. The contours en-
close structures of greater than 95% confidence for a red-noise process with a lag-1 coefficient
of 0.98. The dashed curve depicts the cone of influence beyond which the edge effects become
important

process with a lag-1 coefficient of 0.98. In Fig. 6.2b, the Morlet wavelet power
spectrum indicates distinct periodic processes (or components) characterized by a
variable period (ranging from 0.5 to 32 years). In addition to the persistent annual
component, there are different multi-annual components. From 1870 to 1920, there
is a clear shift from a period of around 4 years to a period of the order of 8–14 years
(specifically from 1875 to 1920), while from 1920 to 1999, the shift is from longer
to shorter periods. It also appears that larger GSL volumes (> 30×109 m3) can be
associated with the 2–4 year processes observed during 1870–1890 and 1985–1990
which in turn can be related to the strong El-Niño (ENSO) events observed at these
time periods (Torrence and Campo, 1998).

Similarly, the Morlet wavelet spectra for the SLR and the Nile River flows are
depicted in Fig. 6.3. The contour lines in Fig. 6.3a,b enclose structures of greater
than 95% confidence for a red-noise process with a lag-1 coefficient of 0.90 and
0.61 for the Nile and the SLR monthly flows, respectively. The wavelet power
spectra reveal more localized (in time) processes specifically before the year 1920,
while from 1920 onwards, only the power spectrum of the SLR flows exhibits a
longer period (∼24 year) component. The annual structure is visible in both spec-
tra, but with striking ruptures for the SLR flow (Fig. 6.3b). The annual compo-
nent clearly disappears in 1965–1970, while intraannual structures appear in the
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Fig. 6.3 (a) The local wavelet power spectrum of the Nile River monthly flow using the Morlet
wavelet. The contours enclose structures of greater than 95% confidence for a red-noise process
with a lag-1 coefficient of 0.90. (b) The local wavelet power spectrum of the SLR monthly flow
using the Morlet wavelet. The contours enclose structures of greater than 95% confidence for a
red-noise process with a lag-1 coefficient of 0.61. Other features are identical to Fig. 6.2b

last two data decades (1975–1995). Note that the year 1970 has been recently iden-
tified as a possible change point in the Canadian Southeastern streamflow which
highlights the nonstationarity of the streamflow time series in that region (Anctil
and Coulibaly, 2004). Different studies have shown that the multi-annual (or low-
frequency) components revealed by the wavelet analysis of streamflows can be re-
lated to climatic fluctuations (Coulibaly et al., 2000a; Anctil and Coulibaly, 2004)
by performing cross-wavelet (or covariance) analysis. However, this is beyond the
objective of our analysis. Here the wavelet analysis is used to highlight the time-
scale variability of the hydrological time series, and the results show that the selected
hydrological time series are nonstationary since their variance changes in frequency
and intensity through time.

6.3 Ensemble of Competitive Dynamic Recurrent
Neural Networks

The main objective of this part of the study is to identify an optimal dynamically
driven recurrent neural network (RNN) that can capture the complex time-varying
structure of nonstationary hydrological series without any data pre-processing or
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Fig. 6.4 Schematic of the ensemble of competitive recurrent neural networks. TDL, time delay
line; LMBP, Levenberg Marquardt Backpropagation; BPTT, Backpropagation through time; BR,
Bayesian regularization

transformation. The proposed model is essentially an ensemble of time delay RNNs
(Fig. 6.4) (Coulibaly and Baldwin, 2005). The network consists of three layers: an
input layer with a time delay line (TDL), a hidden layer with three independent mod-
ules (or “subnets”) of recurrent (or state) nodes, and a competitive output layer. Each
sub-network (or “subnet”) contains three state nodes (selected by trial and error) that
feed back into themselves through a set of synchronous delay lines or context units
(Fig. 6.4). This recurrence facility confers on the subnet dynamic properties which
make it possible for each module to have internal memory. The recurrent dynamic
of the state nodes allows the information to be recycled over multiple time steps,
and thereby to discover temporal information contained in the sequential input that
is relevant to the target function. Thus, each subnet (or module) can be viewed as
a single time delay RNN with an inherent dynamic memory (related to the context
units) and a static memory structure (related to the input delay line). It is basically
an Elman-type RNN (Elman, 1990) with an input delay line.

Given an input variable x(t), the delay line operating on x(t) yields its past values
x(t − 1), x(t − 2), . . ., x(t − p) where p = 3 is the optimal delay memory order

selected by trial and error in this case. Therefore, the input signal s(t)
i to a node i of

a subnet is given by the convolution sum

s(t)
i =

p

∑
k=0

w(k)
i x(t−k) +bi = wix(t) (6.1)

where wi is the weight vector for node i and x(t) denotes the vector of delayed values
from the input time delay line. It is important to note that the use of time delay in
this context is different from the “sliding or moving window” method because the
input signal to the activation function consists of the convolution summation of the
sequences of the input variable and synaptic weights of the node plus a bias bi. More
precisely, the connection weight wi is a vector rather than a single value as used in
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the sliding (or moving) window approach commonly used for temporal processing
with feedforward neural networks.

The recurrence equation that defines the temporal dynamics of the RNN typi-
cally filters the weighted sum of the inputs and states through a nonlinear mapping
function. This equation has the general form:

S(t+1) = Φ
(

I(t),S(t),W,Θ
)

(6.2)

where S(t) is the state vector representing the values of all the state nodes at time
t, I(t) is the input vector at time t, Φ(.) denotes a logistic function characterizing
the hidden nodes, W is a set of weight matrices defining the weighted connections
between the subnet layers, and Θ is a set of biases on the state nodes. Note that
(6.2) is typically a standard definition of the {state – input – next-state} mapping
found in the definitions of both finite state automata (Kohavi, 1978) and nonlinear
dynamical system models (Narendra and Parthasarathy, 1990). Finally, the output
of each sub-network depends not only on the connection weights and the current
input signal but also on the previous states of the network, as follows:

y(t)
j = AS(t) (6.3)

with
S(t) = Φ

(
WhS(t−1) +Wh0I(t−1)

)
(6.4)

where y(t)
j is the output of a subnet assuming a linear output node j, A is the weight

matrix of the output layer node j connected to the hidden nodes, the matrix Wh

represents the weights of the h (h = 1, . . .,3) hidden nodes that are connected to
the context units, and Wh0 is the weight matrix of the hidden units connected to
the input nodes. Each subnet in the network is a typical state-space model since
(6.4) performs the state estimation and (6.3) the evaluation. Here, the RNN model is
developed using the Neural Network Toolbox 3 (The Mathworks Inc., Natick, MA).

A major difficulty when using time delay RNNs is the training complexity be-
cause the computation of ∇E(w), the gradient of the error E with respect to the
weights, is not trivial since the error is not defined at a fixed point but rather is
a function of the network’s temporal behavior. Here, to identify an optimal train-
ing method and also minimize the computational cost, each module (or subnet) of
the network is trained with a different algorithm, in parallel, using the same de-
layed inputs. The network specifically makes use of (1) an adapted recursive form
of Levenberg-Marquardt backpropagation (LMBP; Hagan and Menhaj, 1994); (2) a
variant of backpropagation through time (BPTT; Williams and Peng, 1990) which
is considered the best online technique for practical problems (Pearlmutter, 1995);
and (3) a variation of Bayesian regularization (BR; Jones and MacKay, 1998).

Finally, the competitive output layer stores all the outputs of the subnets, com-
putes a vector of probabilities for each subnet, and selects the output that has the
maximum probability of being correct given the target pattern. The output layer
is similar to the competitive output layer used in probabilistic neural networks
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(Coulibaly et al., 2001). The performance of the optimal (or “winning”) network is
assessed using the root mean squared error (RMSE) and the model efficiency index
(R2) (Nash and Sutcliffe, 1970). Given that all the outputs are automatically stored,
a comparative performance study can also be completed. To further assess the fore-
cast improvement obtained with the optimal RNN model as compared to the best
MARS model, a mean error decrease (MED) is used. The MED is the average de-
crease (%) in the RMSE of the optimal RNN model as compared to the best MARS
model. The MED is also referred to herein as the model forecast improvement.

Two model calibration experiments are performed using two different methods
of data division (i.e., split-sampling). First, the proposed network is trained (or cal-
ibrated) using about 95% of each of the hydrological data sets, and the validation
is performed on the last five years of each series. The same calibration and valida-
tion sets are used for identification and evaluation of the MARS benchmark models
that provide relative performance comparisons. The practical objective is to pro-
vide long-term (12-months-ahead) forecasts of monthly flows and bi-weekly lake
volumes. The temporal distribution of flow and volume throughout the year is par-
ticularly important for water resources planning and management.

6.4 Results and Discussion

The root mean squared error (RMSE) and the model efficiency index (R2) are used to
evaluate the model performance. In general, a R2 value greater than 0.9 indicates a
very satisfactory model performance, while a R2 value in the range 0.8–0.9 indicates
an acceptable (or good) model, and values less than 0.8 indicate an unsatisfactory
model (Shamseldin, 1997). Note that only the 12-month-ahead forecasts are of con-
cern as specified in the previous section, and are thus analyzed in detail hereafter.
Figure 6.5 shows the average R2 index statistics for the validation period 1995–1999
for the SLR and GSL, and 1985–1989 in the case of the Nile River. From Fig. 6.5, it
can be seen that the optimal methods for modeling the three complex time series are
the RNN trained with either the BR or the BPTT. However, the overall best training
algorithm appears to be the BR. The LMBP appears to be the least suitable for mod-
eling the three time series. These results indicate that the performance of even pow-
erful online RNN training methods can be case dependent. A salient advantage of
the proposed ensemble competition RNN method is that it can directly identify the
optimal RNN model for each hydrological time series in any case. Furthermore, the
ensemble competition approach significantly reduces (∼60%) the computing time
as compared to an individual training of each subnet. However, it appears that for the
SLR flows, even the optimal algorithm (BR) does not provide good forecasts (since
R2 < 0.8). This may be due to the more complex nonstationary structure of the SLR
flows characterized by periodic ruptures of the annual process (Fig. 6.3b). For the
GSL volume forecasting, the BPTT and BR algorithms provide slightly similar and
good results (0.8 < R2 ≤ 0.9), while the LMBP is clearly inefficient in this case.
The Nile River flows can be effectively predicted by any of the three algorithms
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Fig. 6.5 Comparative model efficiency index for the three sub-networks

(Fig. 6.5). However, the best model still appears to be the RNN trained with BR
(termed RNN-BR) whatever the system in this case. The poor performance of the
LMBP may be due to the complex and inaccurate approximation of the second-order
derivatives. These results may also indicate that the LMBP is less suitable for time
delay RNN training than the BR and the BPTT algorithms.

Thus, the ensemble competition approach automatically selects the optimally
trained network, and thereby provides the best results for each hydrological time se-
ries being modeled. To further assess the performance of the proposed method, the
best RNN model identified (namely RNN-BR) is compared to an optimal MARS
model using the corresponding validation RMSE and R2 statistics (Table 6.1). The
MARS model is developed using S-PLUS Software (Insightful Corporation, Seattle,
WA) and the same calibration and validation data sets used with the RNN model.
It appears from Table 6.1 that the optimal RNN model outperforms the MARS
model for all three time series. For the GSL storage volumes, the optimal RNN
model (RNN-BR) and the best MARS model have respectively a R2 index value
of 0.91 and 0.87, indicating that the RNN-BR model provides “very satisfactory”
forecasts while the MARS model results are “fairly acceptable”. However, for the
Nile River flows, the RNN-BR, and the MARS are, respectively, “fairly accept-
able” (R2 = 0.86) and “unsatisfactory” (R2 = 0.64). Conversely, for the SLR flows,
none of the proposed methods are satisfactory (R2 < 0.8). However, the RNN-BR
forecasting RMSE is less than 10% of the mean monthly flow of the SLR for the
validation period (Table 6.1), while the MARS model RMSE for the SLR flows is
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Table 6.1 Model validation statistics for 12-month-ahead forecasts

Model GSL volume
Mean:
19.557×109 m3

Nile River flow
Mean: 6.9765×
109 m3/month

SLR flow
Mean: 7528m3/s

RMSE
(109 m3)

R2 MED(%) RMSE
(109 m3/
month)

R2 MED(%) RMSE
(m3/s)

R2 MED(%)

RNN-BR 0.70 0.91 53 2.43 0.86 64 455 0.78 41
MARS 1.49 0.88 6.90 0.64 770 0.31

RNN-BR, recurrent neural networks with Bayesian regularization; MARS, multivariate adaptive
regression splines; RMSE, root mean squared error; R2, model efficiency index; MED, mean error
decrease; GSL, Great Salt Lake; SLR, Saint-Lawrence River.

about twice that of the optimal RNN. This clearly indicates a good potential of the
dynamic RNN for complex hydrological time series forecasting assuming that an
appropriate training method is found.

In general, the optimal RNN provides significant forecast improvement in terms
of mean error decrease (MED) (Table 6.1), exceeding 40% for all three series as
compared to the corresponding values of the best MARS model. For the GSL vol-
umes and the Nile River flows, the average forecast improvement is about 53 and
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64%, respectively, while for the SLR flow, the average forecast improvement is
about 41%. However, despite the significant improvement of the SLR flow fore-
casts, the forecasting results remain on the border of acceptable (R2 = 0.78). This
may indicate that additional explanatory variables (e.g., precipitation, climatic in-
dices) should be included. In this case, the ensemble competition approach appears
particularly useful to assess the system complexity before resorting to the provision
of additional information.

To further assess the model forecasting accuracy, plots of observed and predicted
flow for the SLR are shown in Fig. 6.6. Neither the RNN-BR nor the MARS per-
forms very well particularly for peak flows. However, it appears that the RNN-BR
model performs well for low flow forecasting as compared to the MARS model.
Although neither of the two models provides very good flow forecasts, it appears
that the proposed method has a considerable potential for an improved long-term
(12-month-ahead) forecast of the SLR flows. It is anticipated that the use of addi-
tional information such as precipitation and El-Niño (ENSO) indices would improve
the model forecasting performance. The GSL storage volumes and Nile River flows
are shown in Figs. 6.7 and 6.8, respectively. It appears that the RNN-BR performs
very well for high as well as low lake volumes (Fig. 6.7) as compared to the MARS
model. For the Nile River flows (Fig. 6.8), the proposed method is less accurate in
predicting the peak flows than the low flows. As regards the other two cases, the
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RNN-BR model appears to be significantly better than the MARS model for the
modeling of the Nile River flows.

To summarize, the optimal model directly identified provides significant forecast
improvement over the MARS model with a dramatically reduced (∼60% less) com-
putational time. Therefore, the proposed method can be a good practical alternative
for the modeling of complex hydrological systems. The proposed approach can be
extended to include more recent RNN training algorithms such as the real-coded
genetic algorithm (Blanco et al., 2001), and/or the extended Kalman filter method
(Sum et al., 1999). Furthermore, it could also be improved by considering recently
proposed data division techniques (Bowden et al., 2002), as well as additional ex-
plicative input variables.

6.5 Conclusions

An optimally trained dynamic RNN can be an effective method for modeling nonsta-
tionary hydrological time series. The proposed method allows a fast identification of
an optimal time delay RNN model for complex hydrological system modeling. The
optimum RNN-based model proposed in this study shows very promising results
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for improving nonstationary hydrological time series forecasting without any data
preprocessing (e.g., differencing or trend removal). Significant improvements are
shown in the GSL storage volume and the Nile River flow forecasts as compared
with those of the MARS model. However, the optimal RNN model does not pro-
vide satisfactory forecasts for the SLR flows, indicating that additional explanatory
variables should be considered in this case. This study shows the promising poten-
tial of the dynamic RNN method in this context. Furthermore, it is anticipated that
the method could be improved by including exogenous explanatory input variables
such as low-frequency climatic indicators, as well as by considering other recent
RNN training algorithms and data division techniques.
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Chapter 7
Visualisation of Hidden Neuron Behaviour
in a Neural Network Rainfall-Runoff Model

L.M. See, A. Jain, C.W. Dawson and R.J. Abrahart

Abstract This chapter applies graphical and statistical methods to visualise hidden
neuron behaviour in a trained neural network rainfall-runoff model developed for the
River Ouse catchment in northern England. The methods employed include plotting
individual partial network outputs against observed river levels; carrying out corre-
lation analyses to assess relationships among partial network outputs, surface flow
and base flow; examining the correlations between the raw hidden neuron outputs,
input variables, surface flow and base flow; plotting individual raw hidden neuron
outputs ranked by river levels; and regressing raw hidden neuron outputs against
river levels. The results show that the hidden neurons do show specialisation. Of the
five hidden neurons in the trained neural network model, two appear to be modelling
base flow, one appears to be modelling surface flow, while the remaining two may
be modelling interflow or quick sub-surface processes. All the methods served to
provide confirmation of some or all of these findings. The study shows that a careful
examination of a trained neural network can shed some light on the sub-processes
captured in its architecture during training.

Keywords Neural networks · hidden nodes · physical interpretation
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7.1 Introduction

Neural networks (NNs) are often criticised for their black box nature, i.e. they
transform a set of inputs to a required set of outputs with no knowledge of the
physical processes involved. This aspect of neural networks has discouraged their
widespread use despite ample evidence in the literature of good model perfor-
mance, rapid model development times and speed of processing once trained (Hsu
et al., 1995; Minns and Hall, 1996; Khonder et al., 1998; Tingsanchali and Gautam,
2000; Chang et al., 2002; Rajurkar et al., 2002; Baratti et al., 2003; Campolo
et al., 2003; Agarwal and Singh, 2004). If the internal processing of neural net-
works could be visualised and understood, this might be one step towards encour-
aging their use in an operational environment. Interest in this area is not new but
previous work has, in most cases, been restricted to the process of rule extraction
(e.g. Andrews et al. 1995; Benitez et al. 1997; Lozowski et al. 1996) or the use
of sensitivity analysis to provide improved understanding (Sudheer, 2005). More
recently, exploration in hydrology has switched to an investigation of the func-
tional behaviour of the hidden processing units (Wilby et al., 2003; Jain et al.,
2004; Sudheer and Jain, 2004), which has suggested that hidden node specialisation
exists. Moreover, individual hidden units might be related to hydrological processes.

In this chapter, a neural network model is developed for the Ouse catchment in
northern England using historical levels and precipitation. The outputs correspond-
ing to the hidden neurons are then examined for hidden neuron functional behaviour.
A basic neural network structure is first provided to indicate the different hidden
neuron outputs that can be examined. This is followed by a short description of the
previous research in this area by Wilby et al. (2003), Jain et al. (2004) and Sudheer
and Jain (2004) along with the methods adopted in this study. The results are dis-
cussed in light of what can be inferred about the behaviour of the hidden processing
units. The chapter ends with a series of recommendations for further studies into the
physical interpretation of neural networks.

7.2 Hidden Neuron Outputs

A basic feedforward neural network with one hidden layer is shown on the top
of Fig. 7.1. Each layer consists of a number of processing units or neurons con-
nected via weights. Data enter the network through the input units (X1 . . .Xn), which
are then passed forward through the hidden layer to emerge from the output unit
(O), where the network is used to predict a single output. Each hidden neuron first
computes an intermediate value that comprises the weighted sum of all its inputs
I = ΣWji Xj. This value is then passed through an activation or transfer function
such as a logistic or sigmoid function. More information on neural network archi-
tecture can be found in Haykin (1999).

In order to examine the internal behaviour of a NN it is possible to inspect four
different outputs, as shown in Fig. 7.1, where i is the number of hidden units:
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Fig. 7.1 Neural network architecture and possible hidden node outputs

• the raw hidden neuron outputs (Hi)
• the weighted hidden neuron outputs (Hiwi)
• the partial network outputs (Oi,) comprising the contributions from the hidden

neurons Hi to the total output O (see grey shaded neurons in Fig. 7.1(b) for an
example)

• the total network output (O).

Ideally, one would also like to examine the partial contributions from more than
one hidden neuron (e.g. O1,2 which represents the sum of the weighted partial con-
tributions from hidden neurons 1 and 2). However, this is not possible because sum-
ming the individual weighted Oi terms violates the principle of superposition. In
order to do this, we suggest a fourth method outlined in more detail in Sect. 7.4.

7.3 Previous Studies

In this section, the earlier methodologies that were used in previous studies to exam-
ine hidden unit behaviour are presented. The first study by Wilby et al. (2003) used
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precipitation, evaporation and discharge data for the groundwater-dominated Test
River Basin in Hampshire to develop a conceptual and neural network rainfall-runoff
model. Three experiments were undertaken in which the level of information pre-
sented to the neural networks was progressively decreased to determine the extent to
which the model could emulate hydrological processes with different sets of infor-
mation. In the first experiment, the neural network was developed using seven inputs
with known correlations to daily discharge including moving averages. The second
experiment used 12 inputs to reflect current daily and lagged inputs but without
smoothing of the data inputs. This experiment was designed to examine the effect
of antecedent hydrological conditions on hidden unit specialisation. In the third and
final experiment, the neural network was developed using the same inputs as the
conceptual hydrological model, i.e. only current values of daily precipitation and
potential evapotranspiration, so no use was made of antecedent or smoothed values.
The partial network outputs from each hidden unit (Oi) were then plotted against
actual discharge to see what physical processes could be detected. The experiments
showed that when the neural network model was provided with antecedent precip-
itation and evaporation, partial output associated with two of the hidden units was
suggestive of base flow and quick sub-surface flow components. The third hidden
unit appeared to map seasonal variations in soil moisture deficit.

Jain et al. (2004) and Sudheer and Jain (2004), in contrast to the previous study,
reported experiments based on examining the raw hidden unit outputs (i.e. Hi). Jain
et al. (2004) used a neural network trained with backpropagation to model the Ken-
tucky River watershed in the United States at the ‘Lock and Dam 10’ Gauging Sta-
tion on a 1-day time step for the periods 1960–1972 (training data set) and 1977–
1989 (testing/validation data set). Trial and error procedures were used to determine
the number of hidden neurons needed to model the rainfall-runoff process. The final
chosen network had a 5:4:1 architecture and the hydrological function modelled was

Qt = F(Qt−1,Qt−2,Pt ,Pt−1,Pt−2)+ et

where Qt and Pt are observed river discharge and precipitation at time t, respectively,
and et is the model error term. The authors found that the raw hidden unit outputs
H1, H2 and H4 had a strong negative correlation with past river discharge records. It
was suggested that these units might be modelling either the base flow or the surface
flow component of the rainfall-runoff process. H3 outputs had a strong negative
correlation with present and past rainfall and so might be modelling effective rainfall
or infiltration processes.

The hidden neuron output values were also matched against five components sim-
ulated in a deterministic conceptual rainfall-runoff model: total computed flow, base
flow, surface flow, soil moisture content and actual incremental infiltration. Each of
the hidden unit outputs exhibited a negative correlation with total computed dis-
charge. The strongest negative correlations with regard to other variables were: H1

and H4 with base flow; H2 and H4 with surface flow; H1 and H4 with soil moisture;
H3 and H4 with incremental infiltration. Such division was considered to be consis-
tent with their previous results in terms of correlations of His with the inputs, and it
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was therefore concluded that H1 might be a base flow component, H2 a quick surface
flow component, H3 a rainfall infiltration component and H4 a delayed surface flow
component.

The final study by Sudheer and Jain (2004) involved the use of a neural network
to model the Narmada River watershed in India at the Mandala Gauging Station on
a 1-hour time step for the monsoon seasons of 1989–1991 (training data set) and
1992–1993 (testing/validation data set). Trial and error procedures were used to test
a set of models that contained between 2 and 10 hidden units and the final archi-
tecture was a 6:3:1 NN with the following inputs: Qt−1, Qt−2, Qt−3, Qt−4, Qt−5

and Qt−6. The three hidden neurons seemed to divide the activation function space
into three parts as hypothesised by them. The raw hidden neuron outputs (H1 −H3)
were ranked by discharge and plotted in the form of a rank curve or a flow dura-
tion curve. The rank curves of individual hidden neurons suggested that the neural
network might be attempting to develop a set of hierarchical sub-domains in which
specific hidden neurons were matched to specific subsets of the discharge record:
H1 to higher magnitudes; H2 to lower magnitudes; and H3 to medium magnitudes.
The relationship between the hidden unit outputs and the discharge record was also
reported to be positive for H1 and H2 and negative for H3.

The first paper considered the relative difference between partial network out-
puts (Oi) and observed measurement records. No attempt was made to examine
the contribution from more than one hidden node. The last two papers consid-
ered the relative difference between the raw hidden unit outputs (Hi) and observed
measurement records. This chapter will apply the methods proposed by Wilby
et al. (2003), Jain et al. (2004) and Sudheer and Jain (2004) to the Ouse River catch-
ment. An additional method based on multiple linear regression analysis is then
suggested that allows one to take contributions from more than one hidden node
into account.

7.4 Study Area Data and Methodology

The data set used in this study comes from a set of stations on the River Ouse
catchment in North Yorkshire, northern England (Fig. 7.2). This large catchment
of over 3000km2 contains an assorted mix of urban and rural land uses with dis-
sected uplands in the west that experience substantial precipitation, to cultivated
lowlands in the east. Further details of this catchment are provided in Abrahart
et al. (2005).

The City of York, which is situated near the catchment outlet, is prone to flooding
problems. The neural network model developed as part of the study predicts river
level at the Skelton hydrological gauging station, which is situated 5.5 km upstream
of York. The lead time for prediction is 6 hours and input data are as follows: the
river level at Skelton and three upstream gauging stations (US1 to 3) as well as data
from five rain gauges (RG1 to 5). Data are sampled at 6 hourly intervals. Input data
lags were correlated with the outputs to determine the optimal input data set. The
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Fig. 7.2 Location of the catchment

model inputs are as follows: U1T−1, U2T−1, U3T−2, R1T−5, R2T−5, R3T−5, R4T−6,
R5T−5, QT−1 where T − 1 represents one previous time step of 6 hours and the
output is QT . No moving averages were used in this experiment. The data set used
consists of historical records for the winter period (October–March) for 1993/1994.

A feedforward neural network with five hidden nodes and nonlinear activation
functions was trained with backpropagation and momentum. Five hidden nodes
were chosen so that a sufficient number was available for specialisation of differ-
ent hydrological processes. Four different methods were then used to examine the
hidden node behaviour:

1. Partial network outputs vs. observed values: the observed values of discharge and
rainfall were plotted against O1−O5 as undertaken by Wilby et al. (2003). The
flows were also separated into base and surface flow components and correlations
undertaken with the partial network outputs.

2. Raw hidden neuron output correlations: the raw hidden neuron outputs were cor-
related against model inputs, surface flow and base flow as undertaken by Jain
et al. (2004).

3. Raw hidden neuron outputs ranked by observed discharge values: the values of
raw hidden neuron outputs H1−H5 were ranked against observed values of dis-
charge as performed previously by Sudheer and Jain (2004).
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4. Linear regression and examination of the residuals: the raw hidden node outputs
H1−H5 were regressed against observed river level, adding each output sequen-
tially according to the strength of the relationship with the river level. The residu-
als were then plotted to examine the progressive contribution of the hidden nodes.

7.5 Results and Discussion

7.5.1 Partial Network Outputs vs. Observed Values

The partial network outputs from hidden neurons 1–5 and the observed river levels
were plotted against time as shown in Fig. 7.3 (for a subset) and as scatterplots in
Fig. 7.4. The flow was also separated into base flow and surface flow components
using the local minimum method with the Web-Based Hydrograph Analysis Tool
(WHAT) developed by Lim et al. (2005). These separated flows were then further
correlated against the partial network outputs, O1−O5. These correlations are pro-
vided in Table 7.1.

It can be observed from Fig. 7.3 that the partial network output O2 has the least
variation over time and O4 has the largest. Furthermore, O4 operates at the high-
est magnitudes whereas all other partial network outputs (O1−O3 and O5) operate
at comparable levels, with O2 enveloping all the others. A close look at Fig. 7.4
suggests that the dependence of O1 and O2 on O is similar in nature. Similarly, the
behaviour of O3 and O5 appears to be similar, while the behaviour of O4 stands

Fig. 7.3 Plot of contributory outputs O1−O5 against observed river level for a subsection of the
data
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Fig. 7.4 Scatterplots of O1−O5 against river level

out as different from the rest. These patterns indicate that the hidden neurons corre-
sponding to O1 and O2 may be modelling the same or a similar hydrological sub-
process. Likewise, the hidden neurons O3 and O5 may be modelling the same or
a similar hydrological sub-process while O4 appears to be modelling a completely
different one.

Next we look at the magnitudes of the correlations of O1−O5 with surface and
base flow to investigate further which hidden neuron is more associated with one
of these two sub-processes. From Table 7.1, it is clear that O1 and O2 (which are
modelling the same or a similar sub-process) are strongly correlated with base flow
but are poorly correlated with surface flow. Although other partial network out-
puts are also strongly correlated with base flow (O3−O5), they are also reasonably
or strongly correlated with surface flow. This suggests that the hidden neurons
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Table 7.1 Correlation coefficients for O1−O5 with base and surface flow components

Contributory node Surface flow component Base flow component

O1 0.2931 0.7249
O2 0.2459 0.6526
O3 0.4918 0.7055
O4 0.7405 0.5263
O5 0.5324 0.7406

corresponding to O1 and O2 are modelling base flow. The strong correlation of O4

with surface flow indicates that the hidden neuron corresponding to O4 is modelling
surface flow (as its correlation with base flow is the weakest from among all Oi).
Furthermore, the correlations of O3 and O5 (which seem to have similar behaviour)
with base flow and surface flow are moderate, indicating the hidden neurons cor-
responding to them may be modelling interflow. In summary, it may be said that
O1 and O2 are capable of capturing the long-term memory effects in the catchment
(since base flows take longer to appear at the catchment outlet), which are mostly
prevalent in the saturated sub-surface zone of the catchment. Similarly, O4 is capa-
ble of modelling the short-memory effects (surface flow) in the catchment. Since O3

and O5 are operating somewhere in between, they may be modelling the unsaturated
zone dominated by interflow or quick sub-surface flow.

7.5.2 Correlations with Raw Hidden Neuron Outputs

Correlation coefficients were calculated to determine the relationships between the
raw hidden neuron outputs, H1−H5, and the model inputs as shown in Table 7.2.
Unlike the findings of Jain et al. (2004), there was less observable specialisation in
the hidden neurons. All hidden nodes are strongly correlated with the level at Skel-
ton as well as the values at upstream stations but correlations are generally lower for
the rainfall. Also presented in Table 7.2 are the correlations of H1−H5 with surface
and base flows. It may be noted that H4 has the highest correlation with surface flow
confirming the earlier finding that H4 is modelling surface flow. Furthermore, H1

and H2 have strong correlations with base flow and the weakest correlations with
surface flow indicating that they are modelling base flow. This is further strength-
ened by the poor correlations of H1 and H2 with all five rainfall inputs. The correla-
tions of H3 and H5 with surface and base flow are moderate confirming that they are
modelling interflow or the unsaturated zone of sub-surface processes. This is fur-
ther strengthened by the fact that H3 and H5 are moderately correlated with rainfall,
which affects soil moisture. In fact the correlation of H3 with rainfall is the highest,
suggesting that it is strongly related to soil moisture.
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Table 7.2 Correlation coefficients for H1−H5 and the model inputs

Input H1 H2 H3 H4 H5

Q −0.8217 −0.7825 −0.9017 0.8714 −0.9334
US1 −0.6914 −0.6461 −0.8465 0.9432 −0.8877
US2 −0.7145 −0.6754 −0.8551 0.9021 −0.9374
US3t−1 −0.7637 −0.7385 −0.8777 0.8668 −0.8340
RG1t−4 −0.2936 −0.2875 −0.4944 0.4877 −0.3205
RG2t−4 −0.3266 −0.3115 −0.4801 0.4480 −0.2211
RG3t−4 −0.1845 −0.2081 −0.3576 0.1363 −0.1591
RG4t−5 −0.1971 −0.2088 −0.1569 0.1320 −0.1414
RG5t−4 −0.2888 −0.3073 −0.5555 0.3840 −0.3083
QSt −0.5272 −0.4960 −0.7002 0.8466 −0.7265
QBt −0.8417 −0.8079 −0.8401 0.6630 −0.8610

Note: Q, US1, US2 and US3 represent river levels; RGs represent rainfall; and QS and QB repre-
sent surface flow and base flow, respectively.

7.5.3 Raw Hidden Neuron Outputs Ranked by Observed Values

Figure 7.5 contains the ranked raw hidden neuron outputs (H1−H5) plotted against
river level. It can be noticed that the hidden neuron H4 operates at high levels,
which confirms the role of this neuron in modelling surface flow. H5 operates at
medium levels, which suggests that this neuron may be modelling interflow. H1

and H2 operate at low levels and therefore do appear to be modelling surface flow.

Fig. 7.5 Plots of H1−H5 ranked against river level
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Conclusions about H3 are more difficult to make from this analysis as it appears
to be operating in a similar range to H1 and H2. The maximum values of the
ranges in which the hidden neurons operate are 0.285, 0.138, 0.289, 0.917 and
0.521 for H1−H5, respectively. This clearly suggests that H1 and H2 are modelling
base flow, H3 and H5 are modelling interflow and H4 is modelling surface flow.
Therefore, the three methods investigated so far appear to corroborate with each
other very well. The fourth method of linear regression and analysis of residuals is
presented next.

7.5.4 Linear Regression and Examination of the Residuals

The observed river level was regressed using stepwise linear regression against val-
ues of H1−H5. The resulting equations are (in stepwise order)

Level = −11.927+5.702∗ H5 [R2 = 0.881]

Level = −9.853+3.404∗ H5 +1.061∗ H4[R2 = 0.930]

Level = −7.217+1.104∗ H5 +1.331∗ H4 +0.852∗ H1[R2 = 0.976]
Level = −2.589+1.097∗ H5 +1.305∗ H4 +1.201∗ H1 −1.870

∗ H2[R2 = 0.976]
Level = −1.750+0.909∗H5 +1.246∗H4 +1.212∗H1 −2.632

∗ H2 +0.749∗ H3[R2 = 0.977]

These equations were applied to the data and the residuals were plotted against
the river level. By adding in the effect of the hidden nodes one at a time, we may
be able to understand more about their individual behaviours. Figure 7.6 provides
three plots of the residuals. The first is based on only H5 and it shows that the
scatter at high-magnitude flows is less as compared to that at low-magnitude flows.
This indicates that H5 may be modelling high or moderate magnitude flow (surface
or interflow), which partially agrees with the earlier findings.

The second graph on the right of Fig. 7.6 shows the effect of when H4 and
H1 are added. This has significantly reduced the over and underprediction at both
low and high levels. This is unsurprising given that H4 is thought to model sur-
face flow and therefore contributes to better predictions at high levels while H1 is
thought to model base flow, thereby improving the low flow predictions. Finally,
the third figure shows the residuals using all hidden neurons. There is very little
difference except to reduce overprediction at medium to low levels. Therefore, the
results of the regression also confirm the earlier findings but not as strongly as the
other methods.
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Fig. 7.6 Plot of residuals for (a) H5 against observed flow (b) with the addition of H1 and H4
(c) and with all hidden nodes in the regression equation

7.6 Conclusions

Four different methods were used to visualise hidden neuron specialisation in a
trained neural network rainfall-runoff model, which was developed for the River
Ouse catchment in northern England. The methods investigated included plotting
partial network outputs against observed river levels; separating the level into base
flow and surface flow components for correlation with partial network outputs; ex-
amining the correlations of raw hidden neuron outputs with input variables, sur-
face flow and base flow components; plotting individual raw hidden neuron outputs
ranked by river levels; and regressing raw hidden neuron outputs against river levels.
The results showed that the hidden neurons do show specialisation: two of the hid-
den neurons appear to be modelling base flow, one appears to be strongly modelling
surface flow, while the remaining two may be modelling quick sub-surface flow or
interflow. All the methods investigated served to provide confirmation of some or
all of these findings.

The results also seemed to indicate that the second and possibly third hidden
neurons were doing very little overall. This might provide an argument for reducing
the number of hidden nodes to three or four and repeating the exercise to determine
the effect on specialisation in relation to different hydrological sub-processes. It
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would also be useful to develop a conceptual model that calculates soil moisture,
infiltration, etc. to determine whether these hydrological processes are captured by
the hidden nodes.
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Chapter 8
Correction of Timing Errors of Artificial Neural
Network Rainfall-Runoff Models

N.J. de Vos and T.H.M. Rientjes

Abstract In this study, multi-layer feedforward artificial neural network (ANN)
models were developed for forecasting the runoff from the Geer catchment in
Belgium. The models produced a good overall approximation of the hydrograph,
but the forecasts tended to be plagued by timing errors. These were caused by the
use of previous discharge as ANN input, which became dominant and effectively
caused lagged forecasts. Therefore, an aggregated objective function was tested that
punishes the ANN model for having a timing error. The gradient-based training al-
gorithm that was used had difficulty with finding good optima for this function, but
nevertheless some hopeful results were found. There seems to be a trade-off between
having good overall fit and having correct timing, so further research is suggested
to find balanced ANN models that satisfy both objectives.

Keywords Artificial neural network, rainfall-runoff modelling, timing errors,
objective functions

8.1 Introduction

River discharge forecasts are required for successfully managing the consequences
of hydrological extremes. Forecasting models are often catchment-scale models that
simulate the transformation of rainfall into river runoff. Because this transformation
involves a number of interacting processes that are complex and spatially/temporally
variable, such simulation is not an easy task. One approach to rainfall-runoff mod-
elling is to use the so-called data-driven techniques, which are based on extract-
ing and re-using information that is implicitly contained in hydrological data, and
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Fig. 8.1 Multi-layer feedforward ANN for rainfall-runoff modelling

which do not directly take into account the physical laws that underlie the rainfall-
runoff transformation (as knowledge-driven models such as physically based and
conceptual models do).

In this study, we have investigated the popular data-driven approach of artificial
neural network (ANN) modelling for forecasting river runoff (see Fig. 8.1). ANNs
are mathematical models that consist of simple, densely interconnected elements
known as neurons. An ANN receives input signals that are propagated and trans-
formed through the network’s neurons towards the output neuron(s). One of the key
transformations performed by an ANN is multiplication with weights that express
the strength of connections between neurons. During a training procedure, the net-
work weights, and therefore the model’s response, are adapted to sample informa-
tion that is presented to the network. The goal is to minimise an objective function
that expresses the difference between the ANN response to sample input and target
output data.

An ANN is able to simulate rainfall-runoff processes by mapping the transfor-
mation from catchment inputs and/or states (e.g. rainfall, evaporation, soil moisture
content) to outputs (e.g. river discharge or water levels). Since the middle of the
1990s, there have been numerous studies on this approach to rainfall-runoff mod-
elling (e.g. Hsu et al. 1995; Smith and Eli 1995; Minns and Hall 1996;
Shamseldin 1997; Campolo et al. 1999; Abrahart and See 2000; Toth et al. 2000;
Dibike and Solomatine 2001; Anctil et al. 2004; Jain and Srinivasulu 2004; De Vos
and Rientjes 2005), but it remains a topic of ongoing research.

The ability to exploit the total information content of ANN inputs depends
strongly on the training of the network. First, a training algorithm must be able
to search the parameter space extensively and efficiently. Second, the objective
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Table 8.1 Numerical performance measures used in this study
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function that is used for evaluating model performance should be appropriate for
the application under investigation. Singular objective functions based on squared-
error-based performance measures, such as the mean squared error (MSE) and the
Nash–Sutcliffe coefficient of efficiency (CE), see Table 8.1, are commonly used in
rainfall-runoff modelling. However, not all differences between modelled and ob-
served hydrograph characteristics such as timing, volume and magnitudes can be
adequately expressed by a single performance measure. The aspect of model eval-
uation in the training of ANNs for rainfall-runoff modelling has hitherto received
little attention.

In this research, we investigate the evaluation of ANN rainfall-runoff models dur-
ing the training phase and the consequences of choosing certain objective functions.
A variety of numerical performance measures, which are employed in both model
training and validation, are shown in Table 8.1. They are discussed in more detail in
Sect. 8.3.

8.2 Study Site and Data

The River Geer (Fig. 8.2) is located in the north of Belgium, northwest Europe,
and contributes to the River Meuse. The river’s catchment size is 494 km2. The
mean annual rainfall is approximately 810 mm, and the perennial river has discharge
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Fig. 8.2 Geer River basin (Belgium)

ranging from 1.8 m3/s in dry periods to 10 m3/s during wet periods. The measure-
ment data sets that were available for the period 1993–1997 included hourly rainfall
and daily evaporation at station Bierset, and hourly streamflow at the catchment
outlet at Kanne. Figure 8.3 shows the hourly catchment discharge at Kanne in com-
bination with the rainfall at Bierset for the complete period. These time series were
divided into 55% for training, 25% for cross-validation and 20% for validation, as
noted in Fig. 8.3. All three fragments of the time series start with a period of con-
stant low discharge and rainfall. Some descriptive statistics of the discharge in the
three periods are presented in Table 8.2.

A number of simulated time series that can be considered indirect indicators of
the hydrological state of a catchment were also used as ANN inputs. These include
time series of the non-decaying moving average of the discharge (Qma) and the
rainfall (Pma). By trial and error we found that memory lengths of 192 hours (8
days) and 480 hours (20 days) for the Qma and Pma, respectively, produced the
best results. Lastly, a number of simulations using the simple soil moisture reser-
voir component of the GR4J lumped conceptual rainfall–runoff model (Edijatno
et al. 1999; Perrin et al. 2003) were performed to produce a time series of estimated
soil moisture (SM). The hourly rainfall time series and temporally downscaled evap-
oration time series served as input to the GR4J soil moisture model component. The
only parameter that needed to be defined is the reservoir’s maximum capacity A, of
which a value of 400 mm produced the best results in this study.
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Fig. 8.3 Hourly runoff (Kanne) and rainfall (Bierset) from 1 January 1993 to 31 December 1997

Table 8.2 Descriptive statistics of the (a) precipitation data, (b) discharge data

(a)

Min Max Mean St. dev. Skewness Kurtosis

Training 0.00 107.6 2.80 5.72 5.14 53.1
Cross-validation 0.00 35.6 2.28 4.81 3.33 13.1
Validation 0.00 51.1 2.03 4.39 4.00 23.9

(b)

Min Max Mean St. dev. Skewness Kurtosis

Training 1.10 14.55 2.61 1.08 3.15 16.8
Cross-validation 0.96 8.96 2.09 0.98 2.83 11.6
Validation 1.10 8.84 1.74 0.78 3.71 18.8

8.3 Methods

8.3.1 Artificial Neural Network Design

The type of ANN used in this study is the static multi-layer feedforward network.
Static networks do not have the dimension of time incorporated in the network archi-
tecture, as opposed to dynamic networks, which use feedback connections or local
memories in neurons. These static ANNs are nevertheless able to represent the dy-
namics of a system in the network model by using the so-called tapped delay lines,
which present a sequence of time series values (e.g. P(t) ,P(t −1) , . . . ,P(t −m))
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as separate network input signals. P(t) represents an input variable in time and m
is the size of the time window. The number of input units thus increases with the
size of this window. Linear correlation between different input variable time series
and the target output discharge time series was used to find optimal windows for
all input variables. Our ANN models use values of P from t–5 to t–19, along with
the last three known values of Q, SM, Qma and Pma as model inputs to forecast
Q at t + 1. The inputs for forecasts with higher lead times are identical, but with a
shifted time window for P. The best ANN topology that was found through trial and
error is one hidden layer with four neurons (resulting in a 27-4-1 ANN). Because
the hyperbolic tangent transfer functions that are used in the ANN neurons become
saturated at a certain range, all input data are linearly scaled to a range of −1 to 1.
The output of this transfer function is bounded to the range of −1 to 1, which is why
the output data were scaled to a range of −0.8 to 0.7. The reason for setting these
ranges narrow is to enable the ANN to extrapolate beyond the training data range.
The output data range is asymmetrical because it is more likely that the upper bound
of the training data range is exceeded than the lower bound.

8.3.2 Training

The Levenberg–Marquardt algorithm was used for ANN training. This quasi-
Newtonian algorithm proved to give fast and accurate results. We followed the com-
mon practice of initialising the ANN weights randomly at the start of each training
trial. The goal of this randomisation is to force the training algorithm to search other
parts of the parameter space, thereby enabling a more robust overall optimisation
procedure and increasing the overall chances of finding a global error minimum. A
result of this approach is that, because of algorithm imperfections, the performance
of an ANN is often different for each training trial, even if it is trained using the
same algorithm (De Vos and Rientjes 2005). This is why the results are presented
over 50 training trials, thus enabling more reliable conclusions to be drawn.

8.3.3 Model Evaluation

Table 8.1 lists the numerical performance measures used in this research, some of
which were used as objective functions in the training of ANNs. The Nash–Sutcliffe
coefficient (CE) and the Persistence Index (PI) are based on squaring the residuals
and in practice they are therefore more focused on peak flows than on low flows. The
mean squared logarithmic error (MSLE) is used because it weighs low flows more
than squared-error measures. It is based on the logarithmic function used by Hogue
et al. (2000). The timing error (TE) used is defined as the time shift of the entire fore-
cast time series for which the CE is at a maximum, and is therefore a measure of the
overall timing error of the model. The time shifts over which this check is performed
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varied from −20 to +20 time steps. The peak error (PE) expresses the maximum
error of the simulated time series (which usually occurs during peak flows). The
bias (B) is a measure of a model’s tendency to underestimate or overestimate flows.

Training was also done using a number of aggregated objective functions, which
consist of the simple product of two or more of the singular functions used above.
In aggregated objective functions that use the TE, we have multiplied the other error
with a factor TEf equal to 500 if the TE is non-zero and equal to 1 if the TE is zero.
The value of 500 was selected by trial and error from a set of arbitrarily chosen
numbers. This way we penalise the model for having a TE other than zero. The idea
for this method is taken from Conway et al. (1998) who used a genetic algorithm to
train ANN models for predicting solar activity.

8.4 Results

The ANN performance results in terms of mean and standard deviation over the best
40 out of 50 training trials for lead times of 1 and 6 hours are presented in Tables 8.3a
and 8.4a. The 10 worst-performing trials were deleted because they are outliers that
are not representative for the ANN model behaviour. The single ‘best’ results out of
these trials are shown in Tables 8.3b and 8.4b. The ANNs are trained by five different
training objective functions that are shown in the left hand column and performance
results over the validation period are presented for all six numerical performance
measures of Table 8.1. The models trained on CE and MSLE perform quite well
since both the high flows and the low flows are adequately simulated judging from
these two criteria. These two objective functions yield similar model performance,
and it appears there is a significant correlation between both functions. This is likely
due to the fact that the time series shows no clear dry and wet periods but instead
a regular seasonal pattern is observed, which is why the ANN model and algorithm
do not make a clear distinction between the CE and the MSLE as training objective
functions.

However, the simulations with CE and MSLE as objective functions show that
the ANN model has problems with the correct timing of forecasts (see TE and PI).
The one-step-ahead forecasts suffer from a TE that is as big as the lead time and the
PI is close to zero or even negative, indicating that the model is barely any better
than a simple persistence model. What the model in fact does is nothing more than
presenting the latest measured discharge, which is an input to the ANN model, as a
forecast for the lead time.

This phenomenon is illustrated in more detail in Fig. 8.4, which shows forecast
results for various lead times, evaluated in terms of CE (shown on the ordinate), and
for various shifts in time of the forecasted versus the observed time series (shown
on the abscissa). The CE at zero shift corresponds to the actual performance of
the models. The predicted time series is subsequently shifted in time against the
observed time series, after which CE is recalculated. The time shift at which the CE
coefficient is maximised is the TE. This is done for a number of different lead times
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Fig. 8.4 MSE-trained ANN model performance for various lead forecast times, in terms of both
Nash–Sutcliffe coefficient and timing error

(the different lines). The idea for this method of timing evaluation is taken from
Conway et al. (1998). What Fig. 8.4 shows is that the prediction lag increases with
the lead forecast time (i.e. the peaks are further to the left for longer lead times),
but not proportionally. This can also be seen in Table 8.4, where the six-step-ahead
forecast suffers not from a TE of −6, but only an average of −1. What also can be
clearly observed is the dramatic decrease in CE for longer lead times, which can be
read from the vertical line at a time shift of 0. The above proves that the training
on MSE or CE can be inadequate and that there is much to be gained by correcting
ANN models for timing errors (De Vos and Rientjes 2005).

As mentioned before, the main cause of this timing error is that previously ob-
served values of discharge are often used as ANN model inputs, since they are con-
sidered indicators of the hydrological state. Such data, however, introduce an au-
toregressive model component in the ANN model, which becomes dominant when
the discharge time series show high autocorrelation (see De Vos and Rientjes 2005).
This causes the ANN model to produce a forecast that is very similar to the last
known discharge, effectively causing timing errors in the predictions.

The results in Tables 8.3a and 8.4a for the models trained using the TE factor in
the objective function show an improvement in timing only at the cost of a degra-
dation of most other performance measures. In Tables 8.3b and 8.4b the ‘best’ per-
forming ANNs based on expert judgement of all objective functions are presented.
These results are promising since some trained networks with a lead time of 6 hours
are capable of making correctly timed forecasts, while maintaining reasonably good
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performance in terms of other statistics. Thus, it proves that for six-step-ahead fore-
cast models, in which the influence of the last recorded observation is less than in the
one-step-ahead models, it is possible to find good optima that have correct forecast
timing in combination with good overall fit. The one-step-ahead forecasts seemed
not to be affected by the measures to prevent timing errors.

Unfortunately, the training algorithm has more difficulty in finding optima when
implementing timing in the objective function. This is probably due to the intro-
duction of the multiplication factor TEf, which makes the gradients of the objective
functions extremely irregular. The use of optimisation algorithms that do not rely on
gradients (e.g. a genetic algorithm, as used by Conway et al. 1998) might alleviate
this problem.

8.5 Conclusions

The ANN models for a mesoscale catchment used in this study were shown to be
capable of making reasonably good forecasts of runoff values for lead times of 1
and 6 hours. The overall fit of the forecasted versus observed runoff was good, but
correct timing remains a problem for ANN models, especially when previous dis-
charge values are used as model input. This introduces an autoregressive component
that can become dominant, effectively causing timing errors in the forecast (De Vos
and Rientjes 2005).

The use of a timing error statistic during ANN training as a method of increasing
timing accuracy of ANN rainfall-runoff model forecasts is only partly effective: the
performance according to other performance measures is decreasing. There seems to
be a trade-off between the objectives of correct timing and good overall fit. However,
some parameter sets were found that indicate the possibility of finding an acceptable
compromise between the two. Further research is therefore suggested in the field of
training ANN rainfall-runoff models.
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Chapter 9
Data-Driven Streamflow Simulation:
The Influence of Exogenous Variables
and Temporal Resolution

E. Toth

Abstract Data-driven modelling approaches, like artificial neural networks, are par-
ticularly sensitive to the choice of input and output variables. This study focuses
on the size of the temporal observation interval of input and output data in a river
flow prediction application, analysing the simulation performances when consid-
ering increasing time aggregations of different input variables. The analyses are
carried out on the data registered in a medium-sized (1,050 km2) watershed located
on the Apennine mountains, where hourly meteorological data and streamflow mea-
surements are available over an 8-year period.

Four modelling approaches are considered for the prediction of river flow in the
closure section: (1) without exogenous inputs, (2) with the additional input of past
precipitation data, (3) with the additional input of past streamflow data measured in
the upstream section, (4) with the additional input of both past precipitation and past
upstream flow. For each modelling approach, using both (a) input data and output
data at the same time scale and (b) input data at a temporal resolution finer than that
of the output data, optimal modelling networks are identified and forecast perfor-
mances are compared. The results highlight how the simulation improves with the
addition of exogenous inputs, in particular upstream flow data, and with the use of in-
put data at a temporal resolution finer than that of the output data. The results also show
how both such benefits increase for larger temporal aggregation of the forecasts.

Keywords Streamflow modelling. neural networks. temporal resolution. input
saliency

9.1 Introduction

Black-box (or system theoretic) models are living a period of renaissance in hy-
drological fields, due to the introduction of artificial neural networks (ANNs). The
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appeal of the use of ANNs as black-box models lies mainly in their capability to flex-
ibly reproduce the highly non-linear nature of the relationship between hydrological
variables, and also when such relationships are not explicitly known a priori. Since
the real-time framework gives more importance to the simplicity and robustness of
the model implementation rather than to an accurate description of the various inter-
nal sub-processes, it is certainly worthy considering ANN models as powerful tools
for real-time short-term runoff forecasts.

In hydrological applications of ANNs, some studies have been dedicated to the
prediction of river flows with no exogenous inputs, that is with only the use of past
flow observations measured in the same stream section where forecasts are issued
(e.g. Atiya et al. 1999; Abrahart and See 2000; Nagesh Kumar et al. 2004). In these
cases, the ANNs are used as univariate time series analysis techniques, forecast-
ing the future discharge (output) on the basis of the last observed values (input).
The majority of the applications for river flow prediction consists of modelling the
rainfall-runoff transformation, adding precipitation observations to past flows: ex-
tremely encouraging results have been obtained in the literature on both real and
synthetic rainfall-runoff data (Minns and Hall 1996; Campolo et al. 1999; Zealand
et al. 1999; Abrahart et al. 2001; Dawson and Wilby 2001; Cameron et al. 2002;
Hsu et al. 2002; Laio et al. 2003; Solomatine and Dulal 2003; Jain and Sriniva-
sulu 2004; Moradkhani et al. 2004; Toth and Brath 2007). ANNs have also been
successfully, although less frequently, used as flood propagation models, where the
streamflow observed in upstream cross-sections (and sometimes also downstream,
especially in case of tidal influence) is provided as input (Karunanithi et al. 1994;
Imrie et al. 2000; Chang and Chen 2003; Deka and Chandramouli 2005).

This work presents a comparison of the performances obtainable when providing
both precipitation and upstream flow data as inputs to an ANN. It is important to
underline that this kind of application is possible (and easily implemented) due to
the flexibility and simplicity characterising the management of input and output
variables in ANNs, whereas the use of upstream flows would hardly be feasible in a
traditional rainfall-runoff model.

The results of a series of ANN implementations for river flow forecasting are
presented, analysing on one hand the benefit allowed by the use of different input
exogenous variables and on the other hand the influence of the variation of the tem-
poral scale of the input data. In fact, when predicting the streamflow over a future
temporal interval, it is possible to provide either past data measured at the same
temporal interval as input or, when available, data at a finer temporal resolution. In
the first case, the model searches for a relationship between the lagged values of the
same variable. This might be an advantage in the use of time series analysis tech-
niques, like ANNs, which allow for the identification of the properties of the series
to predict its future evolution. On the other hand, in the second case, there might
be a gain in the use of input data of higher quality, which is at a finer resolution,
describing in more detail the recent past of the hydro-meteorological forcing taking
place in the river and the watershed.

Four modelling approaches are considered for the prediction of river flow at the
closure section of the mountain part of the Italian Reno River watershed: (1) without
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the use of exogenous input, i.e. feeding the network only with past streamflow data
measured at the closure section; (2) with the additional input of past precipitation
data; (3) with the additional input of past streamflow data measured in the upstream
section; and (4) with the additional input of both past precipitation and past upstream
flow. For each modelling approach using both (a) input data and output data at the same
time scale and (b) input data at a temporal resolution finer than that of output data,
optimal modelling networks are identified and forecast performances are compared.

9.2 Case Study and Data Sets

The case study herein considered is referred to the Reno River basin, located in
the Apennines Mountains in north-central Italy (Fig. 9.1). The drainage area of the
mountain part of the watershed, closed at the river cross-section of Casalecchio, just
upstream of the city of Bologna, is 1,050 km2 and the main stream is around 76 km
long. The average elevation is 635 m above sea level, the highest peak and the outlet
being at an altitude of 1,900 and 63 m above sea level, respectively.

Mountain areas cover the major part of the basin and consist primarily of soils
and rocks of sedimentary origin (clay and loam), characterised by a low permeabil-
ity which tends to decrease with increasing altitude, while in the terminal section
there are highly permeable alluvial fans. The vegetation cover on the mountain areas
consists primarily of broad-leaved woods, while in the lower part of the basin there
are also farmlands and urbanised areas. Because of their low permeability and their
extension with respect to the total catchment surface, mountain areas contribute re-
markably to the formation of flood flows. The majority of precipitation events occur

Fig. 9.1 The Emilia-Romagna region and the Reno river watershed, with the location of raingauges
(o) and streamgauges (x)
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from October to April, November being the wettest month, with the runoff regime
closely following the precipitation trend.

The period of observation of the available data set covers 8 years from 1 January
1993 to 31 December 2000. The hydro-meteorological data set consists of hourly
discharge at the closure section of Casalecchio and at the internal section of Ver-
gato (where the drainage area is 497 km2), and the hourly mean precipitation values
obtained from precipitation depths measured at 13 rain gauges, even if not all are
simultaneously operative for the whole observation period.

In the applications presented in Section 9.3, the entire hydrological year
1994–1995 (from 1 September 1994 to 31 August 1995, for a total of 8,760 hourly
observations) that includes the flood event with the highest peak (1,507 m3/s) in
the data set is used in the calibration procedure. The subsequent continuous record
(from 1 September 1995 to 31 December 2000) is used for validation purposes: the
validation data include the second highest peak (1,274 m3/s) and consist of a total
of 46,776 hourly observations. The calibration period of one hydrological year (be-
ginning at the end of the dry season) and the inclusion of the maximum flood event
should allow the model to learn the dominant features of the entire hydrological
cycle during both dry and wet seasons and also the conditions leading to extreme
events. It should be underlined that a validation period of such length (more that 5
years of hourly data, for a calibration period of only 1 year) is certainly an exacting
test for the modelling approaches.

The spatial average of hourly rainfall depths, P, was estimated with an inverse
squared distance weighting of the rain gauge observations.

Hourly precipitation and streamflow data were successively aggregated over a
3- and 6-h time span, respectively, in order to test the performances of ANNs for pre-
dicting streamflow at varying temporal scales as described in the following sections.

9.3 Artificial Neural Networks for Streamflow Prediction

Artificial neural networks (ANNs) distribute computations to processing units called
neurons, grouped in layers and are densely interconnected. Three different layer
types can be distinguished: an input layer, connecting the input information to the
network (and not carrying out any computation), one or more hidden layers, act-
ing as intermediate computational layers, and an output layer, producing the final
output. In correspondence of a computational node, each one of the entering val-
ues is multiplied by a connection weight. Such products are then all summed with a
neuron-specific parameter, called the bias, which is used to scale the sum of products
into a useful range. The computational node finally applies an activation function to
the above sum producing the node output. Weights and biases are determined by
means of a non-linear optimisation procedure (training) that aims at minimising a
learning function expressing a closeness between observations and ANN outputs,
in the present case the mean squared error. A set of observed input and output data
pairs (called a target to be distinguished from the network final output), i.e. the train-
ing data set, is processed repeatedly, changing the parameters until they converge to
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values such that each input vector produces outputs as close as possible to the de-
sired target vectors.

The following network characteristics were chosen for all the ANN applications
described in the paper:

• Architecture: multi-layer feedforward networks formed by only one hidden layer
(according to the “Universal Approximation Theorem”, see Hornik et al. 1989);

• Training algorithm: the quasi-Newton Levenberg–Marquardt backpropagation
algorithm (Hagan and Menhaj 1994), minimising the mean squared error learn-
ing function; in order to prevent the training algorithm being trapped in a local
minimum, each ANN is trained starting from 10 different initial networks, ran-
domly initialised, of which the best-performing network on the training data set
is chosen as the trained network;

• Activation functions: a tan-sigmoidal unit was chosen for the hidden layer:

f (x) =
2

(1+ e−2x)
−1 (9.1)

where x is the input to the node, i.e. the weighted sum of the outputs from previ-
ous nodes and the bias of the node, and f (x) is the node output. A linear transfer
function was instead chosen for the output layer: it was, in fact, preferred to
choose an output activation function suited to the original distribution of targets,
that in the present case are unbounded, rather than to force the data, with a stan-
dardisation or rescaling procedure, to conform to the output activation function.

As far as the number of input and hidden nodes is concerned, the investigation
of the performances of several combinations of input and hidden layer dimensions
will be described in the following sections.

In the present work, a total of 24 ANNs were designed, with differing input
variables and at different time scales. Each neural network output consists of a con-
tinuous series of one-step-ahead streamflow predictions at 1-, 3- or 6-h time scales
in the closure section of the case study watershed (Casalecchio).

To test the value of different hydro-meteorological knowledge that may be pro-
vided as input to predicting the river flow, four kinds of models were considered:

ANNs are first used without exogenous input. Only the last discharge values
measured in the closure section are provided as inputs to the networks, thus testing a
univariate time series analysis technique. Analysing the performance of the forecasts
provided for the validation set, the optimal number of inputs may be identified,
i.e. the number of past discharge observations that seem to mainly influence future
occurrence.

The optimal number of past discharge values identified in the application without
exogenous input is then provided as input to the ANNs, along with exogenous input
of a different nature, namely:

• past rainfall values, thus testing a rainfall-runoff approach; the introduction of
other input variables in the rainfall-runoff transformation, like temperature or
evapotranspiration estimates or the period of the year, was initially considered,
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but the results indicated no improvement in comparison with the use of precipi-
tation data alone;

• past discharge values measured in the inner, upstream river section, thus testing
a flood propagation model;

• both past rainfall and past upstream flow.

To analyse the influence of the time resolution of the input data, the four mod-
elling approaches described above were applied using
(a) input data and output data at the same time scale (1-, 3- and 6-h time steps)
(b) input data at a temporal resolution finer than that of the output data (input vari-

ables at a 1-h time scale for 3-h output and either 1- or 3-h input variables for a
6-h output).

As with the large majority of rainfall-runoff models based on ANNs, no application
is designed in which the past flow observations are not included as inputs. In fact,
the response time of the river depends on the state of saturation of the basin, which
is a function of the history of the hydrological processes in the antecedent period.
Since the model is not run in a continuous way, where the state of the catchment
may be represented by the moisture content in various water retention stores, the only
information available on the condition of the basin before the forecast instant, and
therefore on the capability of the system to respond to the current rainfall perturbation,
is the ongoing runoff in the forecasting section (see Campolo et al. 1999).

9.3.1 Implementation of ANNs with No Exogenous Input

9.3.1.1 Input and Output at the Same Time Resolution

In the first experiment, three neural networks were designed to produce river flow
predictions at, respectively, 1-h (Q1h

t ), 3-h (Q3h
t ) and 6-h aggregations (Q6h

t ), pro-
viding a number of past flows as inputs, measured at the same time step, varying
from 1 to 8, therefore corresponding to networks with 1–8 input nodes and one out-
put node. For each number of input nodes, networks were tested with a number of
hidden nodes varying from 1 to 12. The performances of the obtained flow predic-
tions on the validation set were evaluated in terms of the Nash–Sutcliffe efficiency
coefficient (Nash and Sutcliffe 1970):

NS = 1− ∑(Qt −Q∗
t )

2

∑(Qt −Qm)2 (9.2)

where Q∗
t is the streamflow forecast at time t, Qt is the value of the corresponding

observed flow and Qm is the mean observed value.
The comparison of the efficiency coefficients for the validation data (shown for

all the best identified architectures in Table 9.1) indicated that the best predictions
are obtained with a small number of past streamflow values in input, NI Q, i.e. two
past values (Q1h

t−1,Q1h
t−2) for 1-h data and one past value (Q3h

t−1 and Q6h
t−1) for 3- and

6-h time steps.
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Table 9.1 Networks with no exogenous input

Out In Out/in resolution NI Q NH NS eff

Q1h
t Q1h

t−1,...,t−NIQ Out: Δt = 1h, In: Δt = 1h 2 6 0.981
Q3h

t Q3h
t−1,...,t−NIQ Out: Δt = 3h, In: Δt = 3h 1 2 0.850

Q6h
t Q6h

t−1,...,t−NIQ Out: Δt = 6h, In: Δt = 6h 1 2 0.684
Q3h

t Q1h
t−1,...,t−NIQ Out: Δt = 3h, In: Δt = 1h 3 10 0.931

Q6h
t Q1h

t−1,...,t−NIQ Out: Δt = 6h, In: Δt = 1h 1 2 0.835
Q6h

t Q3h
t−1,...,t−NIQ Out: Δt = 6h, In: Δt = 3h 1 2 0.782

Configuration and NS coefficients of the best forecasting networks for the validation set: output
(Out) and input (In) variables and corresponding temporal resolutions, number of input (NI Q) and
hidden (NH) nodes, NS efficiency coefficient.

9.3.1.2 Inputs at a Finer Resolution than the Output

In the second experiment, future streamflow at 3- and 6-h time steps is modelled
feeding the network with past streamflow values observed at a temporal resolution
finer than that of the output data, i.e. past 1-h flow values for predicting 3-h flows
and past 1- and 3-h values for predicting 6-h flows. Networks with 1–8 input nodes
and 1–12 hidden nodes were trained on the calibration data and used for simulation
of the validation data.

Table 9.1 shows also the configuration of the networks that, with these input
variables, allowed the highest efficiency coefficients for the validation period.

In the applications described in the following sections, the optimal number of
past flow observations in the forecast stream section identified in the applications
described in the present section is provided as inputs to the ANN, along with exoge-
nous input data, assuming that such lag corresponds to the number of past values
that mainly influence future occurrence.

9.3.2 Implementation of ANNs with Precipitation Input

First, both past streamflow (Q) and past areal precipitation (P) data are given as in-
puts to the networks at the same temporal resolution as the modelled output. The
number of past precipitation values was varied from 1 to 10, while the number of
past flow values is the one identified in Sect. 9.3.1, i.e. two past flows for Q1h

t , and
one past flow for Q3h

t and Q6h
t . For each combination of inputs, networks were tested

with a number of hidden nodes varying from 1 to 12. Table 9.2 shows the config-
uration and the performance of the networks that, with the addition of a varying
number of past precipitation data (and a varying hidden layer dimension), produced
the highest efficiency coefficients.

Second, the past streamflow and past precipitation data are given as inputs to
the networks at a temporal resolution finer than that of the modelled output. Past
precipitation values varying from 1 to 10, along with the number of past flow values
identified in Sect. 9.3.1 (Table 9.1), are provided as inputs. Table 9.2 shows the
configurations that produced the highest efficiency coefficient with such inputs.
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Table 9.2 Networks with precipitation input

Out In NI Q NI P NH NS eff

Q1h
t Q1h

t−1,...,t−NIQ P1h
t−1,...,t−NIP 2 4 2 0.981

Q3h
t Q3h

t−1,...,t−NIQ P3h
t−1,...,t−NIP 1 2 2 0.878

Q6h
t Q6h

t−1,...,t−NIQ P6h
t−1,...,t−NIP 1 3 2 0.821

Q3h
t Q1h

t−1,...,t−NIQ P1h
t−1,...,t−NIP 3 4 6 0.940

Q6h
t Q1h

t−1,...,t−NIQ P1h
t−1,...,t−NIP 1 8 4 0.877

Q6h
t Q3h

t−1,...,t−NIQ P3h
t−1,...,t−NIQ 1 2 2 0.848

Configuration and NS coefficients of the best forecasting networks for the validation set: output
(Out) and input (In) variables, number of past streamflow (NI Q) and precipitation (NI P) input
nodes, number of hidden nodes (NH), NS efficiency coefficient.

9.3.3 Implementation of ANNs with Upstream Flow Input

Table 9.3 shows the results obtained with the best-performing architectures when
feeding the networks with both downstream (Q) and upstream (QU) flow data, pro-
viding a number of past upstream flow values as inputs varying from 1 to 10, along
with the number of past flows measured at the closure section already described.
The input vectors are always formed by upstream and downstream flow data at the
same temporal aggregation: first the same and then finer than the resolution of the
target predictions.

Table 9.3 Networks with upstream flow input

Out In NI Q NI QU NH NS eff

Q1
t Q1h

t−1,...,t−NIQ QU1h
t−1,...,t−NIQU 2 2 4 0.988

Q3h
t Q3h

t−1,...,t−NIQ QU3h
t−1,...,t−NIQU 1 8 6 0.960

Q6h
t Q6h

t−1,...,t−NIQ QU6h
t−1,...,t−NIQU 1 8 6 0.852

Q3h
t Q1h

t−1,...,t−NIQ QU1h
t−1,...,t−NIQU 3 6 4 0.978

Q6h
t Q1h

t−1,...,t−NIQ QU1h
t−1,...,t−NIQU 1 10 6 0.950

Q6h
t Q3h

t−1,...,t−NIQ QU3h
t−1,...,t−NIQU 1 3 6 0.921

Configuration and NS coefficients of the best forecasting networks for the validation set: output
(Out) and input (In) variables, number of past streamflow (NI Q) and upstream flow (NI QU) input
nodes, number of hidden nodes (NH), NS efficiency coefficient.

9.3.4 Implementation of ANNs with Both Precipitation
and Upstream Flow Input

Finally, the architectures and the performance of the ANNs that consider all the
available hydro-meteorological variables as inputs, i.e. past downstream flows (Q),
past precipitation (P) and past upstream flows (QU), are provided in Table 9.4.
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Table 9.4 Networks with precipitation and upstream flow input

Out In NI Q NI P NI QU NH NS eff

Q1h
t Q1h

t−1,...,t−NIQ P1h
t−1,...,t−NIP QU1h

t−1,...,t−NIQU 2 4 6 4 0.988
Q3h

t Q3h
t−1,...,t−NIQ P3h

t−1,...,t−NIP QU3h
t−1,...,t−NIQU 1 2 6 2 0.964

Q6h
t Q6h

t−1,...,t−NIQ P6h
t−1,...,t−NIP QU6h

t−1,...,t−NIQU 1 3 2 8 0.869
Q3h

t Q1h
t−1,...,t−NIQ P1h

t−1,...,t−NIP QU1h
t−1,...,t−NIQU 3 4 2 8 0.975

Q6h
t Q1h

t−1,...,t−NIQ P1h
t−1,...,t−NIP QU1h

t−1,...,t−NIQU 1 8 10 6 0.964
Q6h

t Q3h
t−1,...,t−NIQ P3h

t−1,...,t−NIQ QU3h
t−1,...,t−NIQU 1 2 6 2 0.950

Configuration and NS coefficients of the best forecasting networks for the validation set: output
(Out) and input (In) variables, number of past streamflow (NI Q), precipitation (NI P) and upstream
flow (NI QU) input nodes, number of hidden nodes (NH), NS efficiency coefficient.

A number of past upstream flow values varying from 1 to 10, along with the number
of past flow and precipitation values identified in Sect. 9.3.2 (Table 9.2), were tested
as inputs.

9.4 Results and Discussion

9.4.1 The Effects of Adding Exogenous Inputs

Figure 9.2 shows the comparison of the efficiency coefficients obtained with and
without the exogenous variables, for a temporal resolution of the input data both (a)
equal to and (b) higher than that of the output data.

The value of the hydro-meteorological knowledge contained in precipitation and
upstream flow measures is manifest, for either input resolutions equal to or higher

Fig. 9.2 Nash–Sutcliffe coefficients for the validation forecasts, for temporal resolution of input
data both (a) equal to and (b) higher than that of the output data, with and without exogenous
inputs



122 E. Toth

than that of the forecasted variable. When predicting streamflow at an hourly time
step, the gain observed by the addition of exogenous inputs is minor, whereas such
knowledge becomes crucial for larger temporal aggregations of the output variables.

The forecast performances are better when adding streamflow from the upstream
section as input than when providing to the network the precipitation data alone,
indicating that the information on past upstream flows is more salient, at least as
far the examined outputs are concerned, than that of past precipitation data. The
additional gain obtained when using both upstream and precipitation measurements
is marginal in comparison to the use of upstream data alone.

9.4.2 The Effects of Altering the Temporal Resolution
of the Input Data

When comparing the efficiency coefficients obtained when forecasting future 3- and
6-h streamflow values in Fig. 9.3, it is evident that, for any choice of endogenous
and exogenous variables, a remarkable improvement is observed when using input
data at a finer resolution.

It may be observed that the benefits of using input data at temporal resolutions
finer than the output data are larger with no exogenous input and it grows for in-
creasing output temporal aggregation.

Fig. 9.3 Nash–Sutcliffe coefficients for the validation forecasts of 3-h (Out= Q 3h) and 6-h flows
(Out=Q 6h), for temporal resolution of input data equal and higher than that of output data (a) with
no exogenous input, In Q, and with the addition of inputs of, respectively, (b) past precipitation, In
Q, P, (c) past upstream flows, In Q, QU and (d) both precipitation and upstream flows, In Q, P, QU
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One may question whether the improvement gained by using input data at a finer
temporal resolution is due solely to the persistence property of the streamflow series:
in fact, the last observation measured with a shorter time step is temporally nearer to
the forecast instant. It is therefore interesting analysing the performances obtainable
by setting the forecast equal to the last (more updated) streamflow observation at
the finer time step. Three additional models are thus implemented, where future
streamflow at a larger time step is set equal to the last observation measured at finer
resolution, that is

– Persistent A) Q3h
t = Q1h

t−1
– Persistent B) Q6h

t = Q1h
t−1

– Persistent C) Q6h
t = Q3h

t−1.

Each of the persistent models is compared with the best-performing ANN having
as inputs the past flows measured at the corresponding finer time step, that is 1 h for
Persistent A and B and 3 h for Persistent C (see Fig. 9.4).

Fig. 9.4 Nash–Sutcliffe coefficients for the validation forecasts of 3- and 6-h flows obtained by
Persistent models and by ANNs with temporal resolution of input data finer than that of the output
data, with no exogenous input

It can be seen that the predictions resulting from ANNs are always consistently
better than the persistent models, especially for 6-h streamflow predictions. The
comparison is presented for ANNs without exogenous input only, since persis-
tent models are even largely outperformed by ANNs with exogenous input, which
always provide better results in comparison with the use of past streamflow val-
ues alone.

9.5 Conclusions

This chapter analyses the value of the inclusion of different hydro-meteorological
variables as inputs to ANNs providing streamflow prediction at the closure section
of a mid-sized case study watershed. The experiments consider the use of mean
areal precipitation data over the watershed and of flow measures in an upstream
river section in addition to the endogenous input (streamflow measures in the closure
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section). They also examine the influence of the observation time scale of the input
variables.

The results highlight the significance of the hydro-meteorological knowledge
contained in precipitation and upstream flow measures, for input resolution either
equal to or higher than that of the forecasted variable. The gain allowed by the ad-
dition of exogenous input increases for larger temporal aggregation of the output
variables, and the information on past upstream flows seems more salient than that
of past precipitation data.

As far as the resolution of input data is concerned, it may be observed that a
remarkable benefit is achieved when using input data at a temporal resolution finer
than the output data. Such benefits are larger when no exogenous data are provided
as inputs to the networks and they grow for increasing temporal aggregation of the
predicted streamflow.

References

Abrahart RJ, See L (2000) Comparing neural network and autoregressive moving average tech-
niques for the provision of continuous river flow forecasts in two contrasting catchments.
Hydrological Processes 14(11):2157–2172

Abrahart RJ, See L, Kneale PE (2001) Investigating the role of saliency analysis with a neural
network rainfall-runoff model. Computers & Geosciences 27:921–928

Atiya AF, El-Shoura SM, Shaheen SI, El-Sherif MS (1999) A comparison between neural-network
forecasting techniques – Case study: River flow forecasting. IEEE Transactions on neural net-
works 10(2):402–409

Cameron D, Kneale P, See L (2002) An evaluation of a traditional and a neural net modelling ap-
proach for flood forecasting for an upland catchment. Hydrological Processes 16(5):1033–1046

Campolo M, Andreussi P, Soldati A (1999) River flood forecasting with a neural network model.
Water Resources Research 35(4):1191–1197

Chang F, Chen Y (2003) Estuary water-stage forecasting by using radial basis function neural
network. Journal of Hydrology 270:158–166

Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Progress
in Physical Geography 25(1):80–108

Deka P, Chandramouli V (2005) Fuzzy neural network model for hydrologic flow routing. Journal
of Hydrologic Engineering 10(4):302–314

Hagan MT, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE
Transactions on Neural Networks 5(6):989–993

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal ap-
proximators. Neural Networks 2:359–366

Hsu K, Gupta HV, Gao X, Sorooshian S, Imam B (2002) Self-organizing linear output map
(SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water
Resources Research 38(12) doi:10.1029/2001WR000795

Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: gen-
eralisation beyond the calibration range. Journal of Hydrology 233:138–153

Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using
integration of deterministic, real-coded genetic algorithms and artificial neural network tech-
niques. Wat Resources Research 40 doi:10.1029/2003WR002355.

Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction.
Journal of Computing in Civil Engineering 8(2):201–220



9 Data-Driven Streamflow Simulation 125

Laio F, Porporato A, Revelli R, Ridolfi L (2003) A comparison of nonlinear flood forecasting
methods. Wat Resources Research 39(5) doi:10.1029/2002WR001551

Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrological Sci-
ence Journal 41(3):399–417

Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting us-
ing self-organizing radial basis function artificial neural networks. Journal of Hydrology
295:246–262

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part 1. A discus-
sion of principles. Journal of Hydrology 10:282–290

Nagesh Kumar D, Srinivasa Raju K, Tathish T (2004) River flow forecasting using recurrent neural
networks. Water Resources Management 18:143–161

Solomatine DP, Dulal KN (2003) Model trees as an alternative to neural networks in rainfall–runoff
modelling. Hydrological Sciences Journal 48(3):399–411

Toth E, Brath A (2007) Multistep ahead streamflow forecasting: Role of calibration data in con-
ceptual and neural network modeling. Water Resources Research 43, W11405, doi:10.1029/
2006WR005383.

Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial
neural networks. Journal of Hydrology 214:32–48



Chapter 10
Groundwater Table Estimation Using
MODFLOW and Artificial Neural Networks

K. Mohammadi

Abstract The use of numerical models to simulate groundwater flow has been
addressed in many research studies during the past decade. The main drawback
with these models is their enormous and generally difficult or costly data require-
ments. On the other hand, artificial neural networks (ANNs) are offering a simple
but precise solution to many simulation problems. In this chapter, the applicability
of ANN models in simulating groundwater levels has been investigated. In order to
be able to use ANN models for aquifers with limited data, MODFLOW was used to
simulate the groundwater flow and the calibrated model was then applied to gener-
ate hundreds of data sets for the training of the ANN model. Another purpose of this
chapter is to identify ANN models that can capture the complex dynamics of water
table fluctuations, even with relatively short lengths of training data. MODFLOW
outputs and measured water table elevations were used to compare the performance
of the ANN models. The average regression coefficients for multi-layer perceptrons
and time lag recurrent neural networks were 0.865 and 0.958, respectively.

Keywords Groundwater modeling · artificial neural network · MODFLOW

10.1 Introduction

Groundwater models provide a scientific and predictive tool for determining appro-
priate solutions to water allocation, surface water–groundwater interaction, land-
scape management, or impact of new development scenarios. For many practical
problems of groundwater hydrology, such as aquifer development, contaminated
aquifer remediation, or performance assessment of planned water supply projects,
it is necessary to predict the water table and its fluctuations during the year. The
use of numerical models to simulate groundwater flow has been addressed in many
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research studies over the past few decades. The main drawback with these models
is their enormous and generally difficult or costly data requirements. On the other
hand, artificial neural networks (ANNs) are offering a simple but precise solution
to many simulation problems. ANNs are computational modeling tools that have
recently emerged and found extensive acceptance in many disciplines for model-
ing complex real-world problems. ANNs may be defined as structures comprised of
densely interconnected adaptive simple processing elements (called artificial neu-
rons or nodes) that are capable of performing massively parallel computations for
data processing and knowledge representation (Basheer and Hajmeer, 2000).

Neurocomputing does not require algorithm or rule development, a feature that
often significantly reduces the quantity of software that must be developed. Con-
sequently, the last decade has seen an uncharacteristically rapid growth of applica-
tions in virtually all disciplines, including sensor processing, pattern recognition,
data analysis, and civil engineering. The development of the ANN has provided a
powerful tool for nonlinear approximations. It offers a black-box approach in which
a multi-layered ANN with enough neurons can approximate almost any nonlinear
input–output mapping at any required accuracy. The ANN develops a solution by
training on examples given to it. An ANN learns to solve a problem by developing a
memory capable of associating a large number of input patterns with a resulting set
of outputs or effects (Hsu et al., 1995). The only problem with these models is their
dependency on data for training. Training is the process of updating the internal rep-
resentation of the ANN model in response to external stimuli so that the ANN can
perform a specific task. This includes modifying the network architecture, which in-
volves adjusting the weights of the links, pruning or creating some connection links,
and/or changing the firing rules of the individual neurons (Schalkoff, 1997). ANN
learning is performed iteratively as the network is presented with training examples,
similar to the way we learn from experience.

In the aquifer system modeling context, the ANN approach was first used to pro-
vide maps of conductivity or transmissivity values (Rizzo and Dougherty, 1994;
Ranjithan et al., 1993) and to predict water retention curves of sandy soils (Schaap
and Bouten, 1996). More recently, ANNs have been applied to perform inverse
groundwater modeling for the estimation of different parameters (Morshed and
Kaluarachchi, 1998; Lebron et al., 1999). Coulibaly et al. (2001) applied ANNs
to predict water table depth fluctuations using past input delay neural networks
(IDNN), recurrent neural networks (RNN), and radial basis function (RBF) neu-
ral networks. They concluded that RBF neural networks could not simulate depth to
water table very well, but the other two methods produced reasonable results.

MODFLOW (McDonald and Harbaugh, 1989) is one of the most popular ground-
water modeling programs in existence. Some reasons for this popularity may be (1)
the program is applicable to most types of groundwater modeling problems; (2) the
original packages in the program are well structured and documented; (3) the source
code is in the public domain and thus can be checked for errors and modified by
anyone with the necessary mathematical and programming skills; (4) the program
is accepted by regulatory agencies and in litigation; and (5) ongoing modifications
of the program continue to increase its capabilities (Winston, 1999).
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In this chapter, the applicability of ANN models in simulating groundwater level
has been investigated. In order to be able to use an ANN model for aquifers with lim-
ited data, MODFLOW was used to simulate the groundwater flow and then the cal-
ibrated model was applied to generate hundreds of data points for the ANN model.
Using the generated data, the ANN model was trained. Another purpose of this
chapter is to identify ANN models that can capture the complex dynamics of water
table fluctuations, even with relatively short lengths of training data. MODFLOW
outputs and measured water table elevations were used to compare the performance
of the ANN model.

10.2 Materials and Methods

10.2.1 Study Area

Chamchamal plain with an area of 195.46km2 located in the west of Iran is selected
for this study. Chamchamal plain is surrounded by a karstic formation, where the
recharge is a major source of groundwater, as well as rainfall, infiltration from two
major rivers in the area, and return flow from irrigation. The average annual rainfall
is 598.25 mm. Gamasiab and Dinavar rivers are flowing east–west and north–south
with an average of 32.8 and 11 cubic meters per second, respectively. Return flow
from irrigation is about 40.16 million cubic meters per year which is calculated from
a balance equation. The bedrock is mostly karst formation. There are 10 observation
wells in the area where depth to the water table is measured monthly. Chamchamal
has an unconfined aquifer with transmissivity between 230 and 3000m2 per day and
with average specific yield about 3.5%. The main discharge parameters in the area
are withdrawal wells, evaporation, and drainage canals.

10.2.2 MODFLOW Simulation Model

A grid consisting of 276 rectangles with dimensions of 0.5 × 0.5, 1 × 1, and
0.5× 1km was selected for the study area. Figure 10.1 shows the aquifer bound-
ary, model grids, and the location of observation wells. The center of the cell was
the representative point of each cell, and all data and information were discretized
at these points. The data were interpolated into the desired cells using ArcGIS 8.1,
and PMWIN 5.3 was used to simulate the water table fluctuations.

MODFLOW was calibrated on 1 year of available data. The average values of
input data for September 1986 were used to calibrate the model in the steady-state
condition. The resulting calibrated values were then used as initial conditions for
the unsteady state model for the period of 1 year.

From 1986 to 1998, water surface elevations were measured monthly but there
was no information regarding recharges and discharges. Data and information in the
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Fig. 10.1 Chamchamal aquifer and location of observation wells

year 1998 were used to verify the calibrated model. Figure 10.2 shows the com-
parison between observed and calculated water surface levels (WSL) in September
1986. In addition, Fig. 10.3 shows a comparison between observed and calculated
WSL in one of the observation wells in the year 1998 as an example.

The calibrated model was run 144 times to produce the necessary input and out-
put data for the ANN model. The input data were precipitation, river flow, irrigation,
return flow from wells, well discharge, evaporation, recharge from karstic bedrock,
drainage, underground water inflow and outflow, and the output was water table ele-
vation in observation wells. Table 10.1 shows the different combinations of the input
data for different ANN models.

10.2.3 ANNs: An Overview

In general, relationships between precipitation, the nearby surface water, well dis-
charges, evaporation, and return flow from irrigation, etc., are likely to be nonlin-
ear rather than linear. However, owing to the difficulties of identifying nonlinear
model structure and estimating the associated parameters, only very few nonlinear
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Fig. 10.2 Comparison between observed and calculated water surface level using PMWIN in
September 1998

Fig. 10.3 Comparison between observed and MODFLOW simulated water surface level (WSL) in
well no. 1 during the verification period
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Table 10.1 Input data combination for different ANN models

Input parameter Model number

1 2 3 4 5 6 7

Precipitation + + + + + + +
Rivers flow + + + + + +
Irrigation + + + + + + +
Return flow from wells + + + +
Recharge from bedrock + +
Evaporation + + + + + + +
Drainage + + + + +
Underground inflow + +
Underground outflow + +
Well discharge + + + + + + +

empirical models, such as stochastic differential equations and threshold autoregres-
sive self-exciting open-loop models, have been recently proposed for shallow water
table modeling (Coulibaly et al., 2001). Therefore, a dynamic predictive model that
can cope with a persistent trend and the time-varying behavior of a semiarid aquifer
system is still very desirable for improving water resource management and reliable
water supply planning.

Recent literature reviews reveal that artificial neural networks, specifically feed-
forward networks, have been successfully used for water resource modeling and
prediction (Coulibaly et al., 2001; Maier and Dandy, 2000). In this study, two ANN
approaches namely a multi-layer perceptron (MLP) trained with backpropagation
(BP) and time lag recurrent neural networks (TLRN) will be presented for the Cham-
chamal aquifer.

10.2.3.1 A Multi-layer Perceptron (MLP) Trained with Backpropagation

A MLP uses a set of input and output patterns. An input pattern is used by the sys-
tem to produce an output which then is compared with the target output. If there is
no difference, then no learning takes place. Otherwise the difference “propagates”
backwards through the network and the weights are changed to reduce the differ-
ence. The objective is to minimize the overall network error for all input patterns in
the training set.

10.2.3.2 Time-Lagged Recurrent Neural Networks (TLRN)

The goal in this type of ANN is to forecast a multivariate time series using past
values and available covariates. The first obvious approach to modeling these data is
to fit standard statistical models (i.e., multivariate ARMA models, Kalman filtering,
vector autoregression, smoothing). All of these models, however, assume regular
dependence structures, which are locally smooth and linear.
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Fig. 10.4 Structure of a TLRN model

For groundwater level fluctuation data, the structural relationships and the depen-
dence structures are likely to be nonlinear. In a regular approach, static feedforward
ANNs were employed to model nonlinear relationships in water table level forecast-
ing. The approach in TLRNs differs in that the temporal nature of the data is taken
into account. In TLRNs, one adds cycles to the feedforward network structure to
produce ANNs with a sort of memory.

The most studied TLRN network is the gamma model (Lefebvre and Principe,
1998). The gamma model is characterized by a memory structure that is a cascade
of leaky integrators, i.e., an extension of the context layer of the Jordan and Elman
nets (Fig. 10.4). The signal at the taps of the gamma memory can be represented by

x0 (n) = u(n) (10.1)

xk (n) = (1−μ)xk (n−1)+ μxk−1 (n−1) k = 1, . . .,K (10.2)

where xk is the data point, n is number of signals, and k is the memory depth. Note
that the signal at tap k is a smoothed version of the input, which holds the value of
a past event, creating a memory. The point in time where the response has a peak
is approximately given by k/μ , where μ is the feedback parameter. This means that
the neural network can control the depth of the memory by changing the value of
the feedback parameter, instead of changing the number of inputs. The parameter
μ can be adapted using gradient descent procedures just like the other parameters
in the neural network. However, since this parameter is recursive, a more powerful
learning rule needs to be applied. A backpropagation through time (BPTT) algo-
rithm was used to do this adaptation. For more information regarding all algorithms
used in Table 10.2, see Lefebvre and Principe (1998).

10.2.4 Methodology

In this study, MATLAB 5.3 and NeuroSolution softwares were used to develop
the multi-layer perceptron (MLP) and TLRN models, respectively. The proposed
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Table 10.2 Multi-layer perceptron networks for simulating observation wells individually

Well ANN Epoch Topology Learning Transfer MSE NMSE R2

no. model rule function

1 MLP 1000 7-4-4-1 Momentum Tanh Learning 0.010 0.042 0.956
Testing 0.174 0.503 0.874

2 MLP 276 8-5-1 Momentum Tanh Learning 0.0099 0.038 0.960
Testing 0.042 0.121 0.922

3 MLP 1000 7-4-4-1 Delta Bar
Delta

Tanh Learning 0.020 0.100 0.898
Testing 0.196 0.857 0.537

4 MLP 94 7-4-1 Momentum Tanh Learning 0.010 0.040 0.960
Testing 0.028 0.092 0.943

5 MLP 1000 6-8-7-1 Conjugate
Gradient

Tanh Learning 0.021 0.131 0.868
Testing 0.160 0.704 0.701

6 MLP 648 8-8-5-1 Momentum Tanh Learning 0.010 0.043 0.956
Testing 0.049 0.141 0.927

7 MLP 1000 7-4-4-1 Momentum Tanh Learning 0.013 0.069 0.931
Testing 0.145 0.717 0.374

8 MLP 1000 7-7-8-1 Momentum Tanh,
Linear

Learning 0.013 0.082 0.916
Testing 0.045 0.228 0.791

9 MLP 1000 9-7-8-1 Momentum Tanh,
Linear

Learning 0.013 0.056 0.943
Testing 0.029 0.116 0.915

10 MLP 155 8-4-1 Momentum Tanh Learning 0.010 0.035 0.964
Testing 0.010 0.034 0.964

networks could not substitute the MODFLOW model as one single model, but for
every individual observation well, the designed model simulated the water table
fluctuation very well. ANN topology is problem dependent and whatever type of
ANN model is used, it is important to determine the appropriate network architec-
ture in order to obtain satisfactory generalization capability. An understanding of
the topology as a whole is needed before the number of hidden layers and the num-
ber of processing elements (PEs) in each layer can be estimated. In order to find the
best structure, different numbers of hidden layers were tested. In addition, various
transfer functions and memory models were trained and tested to obtain an optimum
network. The chosen network’s topology for each case will be discussed in the next
section. Three selection criteria were used to compare the networks which were the
mean squared error (MSE), the normalized mean squared error (NMSE), and the
coefficient of determination (r2).

In order to overcome the difficulties with the first algorithm, TLRN models were
tested to simulate the whole groundwater system with one ANN model. Different
input parameters, as shown in Table 10.1, were tested to find the minimum effective
input set.
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10.3 Results and Discussion

An MLP network was used to estimate the water table in each observation well.
MODFLOW outputs were used for training and testing the ANN model. In each
model, the effective parameters were selected using a trial and error method.
Seventy-five percent of the 144 data points were used for training and the rest for
testing the model. After testing different network topologies, the best network for
each well is shown in Table 10.2. As can be seen in most cases, the ANN could
predict the water table very well and the r2 values are high.

There are, however, two problems with these networks. First, there is no single
model with similar input parameters that can predict water tables in all observation
wells. Second, these models are static and do not consider inputs and outputs from
previous time steps (unless these are introduced explicitly). Therefore, as shown
in Fig. 10.5 for instance, at some points the difference between the observed and
calculated output is too high.

TLRN models do take into account the lagged inputs and in this respect compare
favorably with MLP networks. Figures 10.6 and 10.7 show the water surface level
in observation well no. 1 to show the comparison between the calculated data from
MODFLOW and TLRN model outputs with 10 and 4 input parameters, respectively.

One year of available data was used to calibrate MODFLOW and it was then
used to produce 144 data points to train the ANN models. A multi-layer perceptron
trained with the backpropagation algorithm was used to estimate the water table in
every observation well. In addition, two TLRN models were constructed, one with
all available input parameters and one with minimum effective input parameters, to
estimate water tables in all 10 observation wells. Considering computational costs
and data requirements, the results shown in Table 10.3 indicate that a TLRN model
can be effectively used in the field of groundwater simulation.

Fig. 10.5 Comparison of MODFLOW and MLP model results for the testing data set – well no. 1
(Table 10.1)
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Fig. 10.6 Comparison of MODFLOW and TLRN with 10 input variables for the testing data set –
well no. 1 and model no. 6 (Table 10.2)

Fig. 10.7 Comparison of MODFLOW and TLRN with four input variables for testing data set –
well no. 1 and TLRN network (model no. 5, see Table 10.2)
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10.4 Conclusions

In this research, several mathematical models were tested to simulate the water
surface level of Chamchamal plain. A commonly used simulation model, MOD-
FLOW, and two different artificial neural network algorithms were used in this
study. All models could estimate the water table with reasonable accuracy but the
ANN models needed less input data and took less time to run, indicating advantages
of ANNs over other common numerical models. The only drawback with ANN
models is related to their dependency in having enough input and output data to
train them.
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Chapter 11
Neural Network Estimation of Suspended
Sediment: Potential Pitfalls and Future
Directions

R.J. Abrahart, L.M. See, A.J. Heppenstall and S.M. White

Abstract This chapter examines two neural network approaches for modelling
suspended sediment concentration at different temporal scales: daily-record and
flood-event. Four daily-record models are developed for the USGS gauging station
at Quebrada Blanca near Jagual in Puerto Rico previously used by Kisi (2005) for
estimating suspended sediment concentration: comparisons with that earlier inves-
tigation are presented. The flood-event approach is trialled on records for the EA
gauging station at Low Moor on the River Tees in northern England. The power
of neural networks to perform different types of modelling operation and to de-
velop reasonable results in the two test cases is highlighted. Event-based modelling
of mean suspended sediment concentration is a novel concept that warrants further
trialling and testing on different international catchments or data sets.

Keywords Sediment modelling · neural network · hysteresis

11.1 Introduction

The timing and pattern of sediment movement in response to rainfall is of interest
to many different types of stakeholder and manager. The range of interested parties
is vast and spans a broad set of interrelated fields. Major participants would include:
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• scientists trying to understand catchment hydrology, contaminant transport, water-
quality trends or the harmful effects of pollutants on fisheries, waterfowl habitats
and stream ecologies (Milner et al., 1981; Ottaway et al., 1981; De Vries and
Klavers, 1994; Horowitz, 1995; Newcombe and Jensen, 1996; Marks and Rutt,
1997);

• policy-makers and concerned citizens worried about potential environmental im-
pacts related to: establishing forests and the harvesting of timber (Stott and
Mount, 2004); road construction (Fransen et al., 2001; MacDonald et al., 2001)
or use of snow-fencing to trap drifting snow and so produce increased river dis-
charge volumes (Sturges, 1992);

• resource managers interested in the control of soil erosion and loss (Walling,
1999); or the effects of that process on the infilling of lakes and reservoirs –
reducing drinking water storage capacities and causing operational problems for
scour valve releases (Labadz et al., 1995);

• commercial organisations involved in generating hydroelectric power from glacial
meltwater streams (Østrem, 1975; Fenn et al., 1985).

The recent surge of interest in suspended sediment estimation is also related to
the current requirement for efficient and effective models that can be used to as-
sess the potential impact of environmental change: modelling past, present and fu-
ture sediment movement is an important component in such undertakings. Land use
changes that lead to flood events of increased magnitude and duration can be very
instrumental, especially under unstable channel conditions, for the production of in-
creased sediment concentrations. Examples of elevated sediment deliveries related
to land use changes include clearance of natural vegetation to provide land for cul-
tivation (Morgan, 1986); channelisation for land drainage and flood control (Simon
and Hupp, 1986); plus silvicultural or reservoir impacts (US Environmental Protec-
tion Agency, 1980; Lopes et al., 2001; Rosgen, 1996; Rosgen, 2001). The opposite
situation holds for programmes that attempt to restore natural vegetation, such as
the conversion of farmland into forestland and grassland, which can be used to con-
trol gully erosion-induced sediment yield (Hao and Qiangguo, 2006). The potential
impact of changing climatic conditions related to global warming and its effect on
the processes of sediment production and transportation is another major driver.
Walling and Fang (2003) report that it is difficult to disentangle the influences of
climate change from that of other factors that affect catchment conditions: however,
they offer clear evidence that sediment loads in some rivers are changing; whilst
others show little sign of significant temporal trends. More frequent storms or more
violent weather will nevertheless produce a larger number of extreme events, i.e. the
type of event that is most influential in controlling erosion and sediment transport,
especially in semi-arid regions (Coppus and Imeson, 2002).

The mechanism of sediment transport in natural streams and rivers is a complex
process that is difficult to model in a traditional or conventional manner. No direct
or indirect empirical model of sediment transport has received universal acceptance
and the challenge to discover a superior solution continues to thwart scientists and
practitioners. Typically such estimates are based on a simple relationship that is es-
tablished between sediment and discharge: no allowance is made for climatic factors,
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or catchment characteristics and conditions, in terms of differing temporal or spatial
variability. To model an exact rating relationship under such circumstances is quite
difficult, however, due to (i) the broad scatter of points that is created and (ii) the pres-
ence of hysteresis. The sediment concentrations for a given level of discharge on the
rising limb of the hydrograph, can be higher or lower than the sediment concentrations
for a given level of discharge on the falling limb, depending on the relative position of
the sediment source to the point of measurement and on the amount of sediment that
is available for transportation. This often produces large levels of scatter, in complex
data sets that possess only partially significant correlations between sediment and dis-
charge (Chikita et al., 2002). Figure 11.1 illustrates modelling difficulties related to
the production of a sediment rating curve for manual samples collected at 19 points
spread across 11 rivers in northern England (Aire, Calder, Derwent, Don, Nidd, Ouse,
Swale, Trent, Tweed, Ure and Wharfe). The monitoring period spanned 1993–1997;
samples were collected at irregular intervals and sought to encompass a broad spread
of different event types. This regional model demonstrates several important sediment
modelling issues: (i) that simple models can be developed on intermittent sampling;
(ii) that broad numerical approximations can be developed on spatial and temporal
aggregations; and (iii) that low accuracies can be expected due to the natural scatter
of points.

The most common form of hysteresis is the clockwise loop caused by early sedi-
ment depletion (Lenzi and Marchi, 2000). This implies that sediment concentration
peaks before river discharge, as sufficient sediment is not available to meet trans-
port capacity at higher discharge rates. An anticlockwise loop (discharge leading
sediment) is thought to demonstrate activation of more distant sediment supplies.
The complexities of modelling such relationships will also be influenced by two
other important factors: (i) some rivers will exhibit different behaviours at different
points in time and (ii) most sediment–discharge relationships are heteroscedastic,
i.e. greater variability occurs at higher levels of discharge; lower levels exhibit more
regular relationships. This challenging situation has resulted in a long track record
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Fig. 11.1 Sediment rating curve: traditional model of a regional relationship developed on 19
sampling sites spread over 11 rivers in northern England (1993–1997)
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of model outputs that are highly inaccurate at peak discharge rates. This is due
in part to the use of aggregated temporal measurements that present a ‘dampened
response’. However, from a pragmatic viewpoint, such tools can nevertheless pro-
vide accurate and reliable annual and longer term estimates of load since the errors
are averaged out (Horowitz, 2003; Crowder et al., 2007). The demand for better
sediment modelling methodologies that can support shorter period daily, weekly,
monthly or quarterly requirements has in consequence escalated (Horowitz, 2003;
White, 2005).

The two sediment-related attributes that are typically estimated for a river and
perhaps equate to separate modelling problems are (i) relative sediment concentra-
tion and (ii) absolute sediment load. The two measurements are of course inter-
changeable and conversion is performed with the aid of discharge data sets. Each
item could be modelled at different temporal resolutions ranging from instantaneous
records or daily averages to seasonal budgets or annual totals. The main benefit
of predicting sediment concentration records, however, occurs at shorter intervals
where it more useful; whereas the main benefit of computing total sediment loads is
over longer periods due to lower error. It is also possible to model a continuum of
temporal intermediaries but with strategic tradeoffs occurring in terms of (i) regula-
tory requirements; (ii) sampling capabilities; and (iii) acceptable error.

11.1.1 Estimation of Short-Term Dynamic Time Series Records

Individual records, at one end of this scale, can be used to predict time series con-
centrations for pollution monitoring purposes, to evaluate ecological thresholds or
to perform ecosystem health appraisal of rivers and estuaries. Model outputs could
be concurrent predictions or short period forecasts of suspended sediment. There
is, however, often no clear relationship at this scale of measurement between in-
stantaneous suspended sediment and concurrent river discharge records due to the
activation or exhaustion of sediment supplies. It produces a scatter of points that
contains a strong hysteresis element, expressed in different relationships related to
the rising and falling limbs of each flood hydrograph – something that is difficult to
encapsulate. The dynamic role of sediment in fluvial ecosystems and estuarine wet-
lands is nevertheless of great importance with respect to the environmental aspects
of sediment transport. It impacts on both river systems and at sink points – such
as natural or artificial bodies for water and sediment storage. Nutrient fluxes are of
particular concern since nutrients perform a critical role in determining the ecology
of rivers, lakes and estuaries. Transported sediments can also have contaminants (in-
cluding nutrients) bound to them such that an assessment of contaminant flux and
delivery will require prior estimates to be made of sediment input or throughput. The
need to produce estimations at high(er) temporal resolutions for unsampled sites is
paramount. For example, to deal with problems related to excess sediment or its
presumptive biological impact the US Clean Water Act of 1972 requires estimated
total maximum daily loads (Keyes and Radcliffe, 2002).
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11.1.2 Estimation of Long-Term Throughputs or Delivered Loads

The use of aggregated records, at the other end of the scale, supports lower temporal
resolution modelling of total throughput (flux) or delivered load (input) computed
over long(er) periods, e.g. solutions developed on mean annual data sets that might
span several decades. There is a much clearer relationship at this scale of measure-
ment between suspended sediment and river discharge records due to the averaging
effect. It is easier to model such relationships using linear, concave or convex so-
lutions. However, the exact nature of that modelled relationship might change over
time, thus creating problems for longer term forecasts of sediment load (Crowder
et al., 2007). Model outputs could be used to support the assessment of potential
loads on engineering structures, or related to environmental damage that might re-
sults from the impact of accumulated pollutants on biological communities, such
as local marine life and coral reefs (Bellwood et al., 2004; Warne et al., 2005).
The sedimentation of reservoirs and channels is a relevant international issue; so
too is the need for planning and management of dredging activities, to meet either
downstream navigation requirements (Hansen et al., 2002) or for flood protection
purposes, e.g. the regular maintenance of smaller streams and ditches. Total load
estimates can be used to manage material resources, such as impounded water bod-
ies, so as to minimise sediment trapping or water-quality problems. Effective mod-
elling could maximise the potential benefits and economic life of major structures
and river regulation schemes. It is also important in the design stage since reser-
voirs are required to accommodate their incoming sediment, i.e. to provide what
is termed ‘dead storage’ – excess capacity that will be filled over a specified pe-
riod. The use of inadequate models during the specification process can have seri-
ous repercussions: insufficient storage capacities will result in inadequate resources
(underestimation); whereas the provision of unused storage capacities will entail
wasted resources (overestimation). The need to develop reliable annual estimates
for pollution monitoring and control purposes also looks destined to expand. For
example, annual mean concentration is likely to be used as a target under the EEC
Water Framework Directive and is already used under the EEC Fisheries Directive
(target level set at 25 mg l−1).

11.1.3 Estimation of Mean Sediment Concentrations
per Flood Event

Somewhere towards the middle of this continuum lies the potential estimation of
mean sediment concentration for individual flood events, i.e. for a rainfall-related
sequence of individual temporal records. For most rivers in Europe, between 70%
and 90% of sediment load is moved in the top 20% of discharge magnitudes, i.e.
during high and peak flood events. The sediment–discharge relationship is highly
skewed, but through an understanding of sediment flux and the manner in which it
varies over different events, it should be possible to improve our estimates of both
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short-term sediment concentration and long-term sediment load. The flood-event
approach that is proposed at the end of this chapter is quite demanding since it re-
quires continuous recording of instantaneous discharge and sediment concentration
measurements throughout each flood event. However, using an event based approach
allows the hysteresis problem to be sidestepped, and might provide a route for the
identification of different event types that possess a distinct hysteretic behaviour. It
is also anticipated that subsequent investigations will produce models that require
less detailed data sets and offer better predictive capabilities.

It is important to recognise that different issues at different scales could be re-
solved using different methods. Merritt et al. (2003) reviewed numerous models
and concluded that empirical and conceptual methodologies might perhaps be com-
bined in a constructive manner to help overcome the less well suited approaches
of more complex theoretical or physics-based solutions. The extent to which com-
plex distributed models offer substantial advantages over simple lumped models
is also doubtful in cases where the real spatial and temporal distributions are not
considered. The use of empirical and conceptual methodologies will instead offer
practical operational benefits, e.g. simple transparent solutions, that are easier to
understand, and can be implemented in a fast and efficient manner. Moreover, for
practical reasons, the rapid assessment of erosion rates or sediment movement must
in most cases be made without recourse to detailed and expensive field monitoring
programmes, thus forcing modellers to accept less demanding methods. The asso-
ciated development of lower cost methods requiring fewer samples has in recent
times been the main focus of interest: the motivation behind such methods is ba-
sic economics, e.g. development of improved rating curve estimators and statistical
sampling procedures that will reduce the number of samples required to obtain ac-
ceptable estimates (Thomas, 1985, 1991; Thomas and Lewis, 1993, 1995). The need
to develop minimalist empirical approaches that are sensitive to catchment charac-
teristics, anticedent conditions and climatic control, and will also will permit the
investigation of sediment source strengths, remains a long-term goal.

The hydrologist has as a result at his/her disposal a recognised set of numeri-
cal procedures that can be used to estimate various parts of the sediment supply
and sediment transfer system. More than 20 such techniques for relating suspended
sediment to discharge have in fact been reported. The most common method is to
develop a simple linear regression model (or its power function equivalent) that
relates log suspended sediment concentration (independent variable) to log water
discharge (dependent variable). The resultant sediment rating curve can thereafter
be expressed in one of two standard formats – as a linear regression model:

Log St = Log a+b Log Qt (11.1)

or as a power function model:
St = aQb

t (11.2)

The shortfalls of such methods are well documented and comparisons of ac-
tual and predicted sediment concentrations indicate that substantial under-prediction
could result, e.g. see Ferguson (1986), Walling and Webb (1988) and Asselman



11 Neural Network Estimation of Suspended Sediment 145

(2000). Numerous methodological modifications have been proposed and applied
to compensate for such errors. These include the development of compound mod-
els fitted to distinct seasonal or hydrological groupings, the application of mathe-
matical correction factors, the use of non-linear regression equations (Duan, 1983,
Ferguson, 1986; Walling and Webb, 1988; De Vries and Klavers, 1994; Phillips
et al., 1999; Asselman, 2000; Holtschlag, 2001; Crowder et al., 2007) and the imple-
mentation of robust iterative local regression techniques (Krishnaswamy et al., 2001).
More recent studies have investigated the potential advantages of using machine
learning algorithms, e.g. neural network (NN) and M5 model tree (M5MT) ap-
proaches; several different types of NN have in fact been used to conduct sediment
modelling experiments (Abrahart and White, 2001; Jain, 2001; Cigizoglu, 2002a,b;
Cigizoglu, 2004; Nagy et al., 2002; Agarwal et al., 2005; Kisi, 2004; Kisi, 2005;
Cigizoglu and Kisi, 2006).

NN modelling has introduced a major shift in focus: numerous different mod-
elling opportunities can be realised. The sediment rating solutions that are being
trialled and tested no longer equate to the production of a simple mathematical re-
lationship, that is developed between concurrent sediment and discharge records, in
the manner of a traditional log–log linear regression or power function model. It is of
course possible to model a single-input single-output relationship using such meth-
ods and to develop the required curvilinear solutions. NN might also be capable of
avoiding difficult issues surrounding the requirement to perform a logarithmic trans-
formation in the case of a zero recorded sediment measurement. The neural solution
might contain strong non-linear properties, near linear properties or some mixed
grouping of both types of relationship. It would not, however, address or resolve the
two major modelling difficulties that confront traditional methods: a broad scatter of
points and the hysteresis effect. To help overcome such issues some experimenters
have resorted to using different sets of predictors for the estimation of current sed-
iment, combining their current discharge input with some mix of lagged discharge
and lagged sediment records. Cigizoglu (2002b) for instance used combinations of
current and lagged discharge inputs to predict suspended sediment concentration
and was to some extent successful in capturing certain aspects of the hysteresis
loop. Figures 11.2 and 11.3 show that different curves were approximated but the
end result is nevertheless an averaging mechanism; the major trajectories are not
well captured and everything is reduced to a single loop solution. Cigizoglu and
Kisi (2006) instead experimented with a mixed set of different input drivers for the
prediction of current suspended sediment load: current discharge, past discharge
and past sediment records were considered. The justification for selecting appropri-
ate input drivers must nevertheless be twofold: logic on the one hand dictates the
requirement for a causal relationship between predictor and predictand; numerical
testing on the other can be used to reveal the strength and direction of some plau-
sible ‘indirect association’. The later option for selecting and using past sediment
records as inputs to a data-driven model, irrespective of potential benefits, has, how-
ever, generally led to a poorer result. Moreover, it is important to stress that the
use of past sediment records as an input to the modelling process makes no oper-
ational sense: each solution requires one or more past sediment inputs such that a
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Fig. 11.2 Sediment modelling outputs for the River Tees at Low Moor, 26 February–17 March
2000: (1) observed hysteresis; (2) neural network; (3) sediment rating equation (Cigizoglu, 2002b;
reproduced with permission from the Turkish Journal of Engineering and Environmental Sciences)

full set of observed measurements would be required to run the model. However,
good sediment data sets are seldom available, and the short-term need for sediment
concentrations versus the long-term need for total loads must also be considered.
If a short-term estimation was required for pollution control purposes the need for
a current discharge input would mean that the related environmental damage from
suspended sediment had already occurred. If the requirement was related to some
long-term purpose the need to possess a full set of existing records would mean that
such items could of course be summed to give a total. Two other issues are also
important: extended temporal forecasts beyond the present are not supported since

Fig. 11.3 Sediment modelling outputs for the River Swale at Thornton Manor, 14–25 December
1994: (1) observed hysteresis; (2) neural network; (3) sediment rating equation (Cigizoglu, 2002b;
reproduced with permission from the Turkish Journal of Engineering and Environmental Sciences)
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no relevant future sediment values exist; solutions cannot be transferred to similar
rivers or to different periods, if no observed suspended sediment records are avail-
able for use as inputs to the sediment prediction model.

The rest of this chapter considers two different examples of sediment modelling:
daily-record modelling of standard data sets, to highlight various issues in develop-
ing and comparing a set of simple curve fitting procedures, and event-based mod-
elling that overcomes the hysteresis problem by using selected inputs that drive the
sediment supply process. The two different methods are contrasted in terms of op-
erational issues and demands.

11.2 Daily-Record Scale Modelling

Four daily-record suspended sediment models were developed for a small catchment
on the island of Puerto Rico, located in the north-eastern corner of the Caribbean
Sea. This island has a tropical marine climate, experiencing uniform temperature,
high humidity and variable rainfall. Mountains and adjacent foothills cover most of
the land. The humid tropical environment and mountainous terrain are conducive
to high rates of sedimentation (Warne et al., 2005). Local variation is related to
the interaction of topographic factors and the prevailing trade winds; hurricanes are
both frequent and severe (Boose et al., 2004). Daily-record modelling was applied
to sediment and discharge data sets for a United States Geological Survey (USGS)
gauging station in Puerto Rico: Quebrada Blanca near Jagual (QB; Fig. 11.4; USGS
Station No. 50051150; latitude 18◦09′40′′N; longitude 65◦58′58′′W). Figure 11.5
contains a sediment–discharge plot of the calibration data set; the SRC model that
is fitted to this scatter of points provides a typical example of excess demands being
placed on a simple power law function (Hicks and Gomez, 2003). The model offers
a reasonable fit to the mass of lower level records, but a poor fit to the most important
higher magnitude discharges, the latter frequently comprising a short tail of sparse
points on the right-hand side of a log–log plot. The reported experiments mimic one
of two earlier reported modelling applications (Kisi, 2005); modelling input data
sets and architectural configurations identified as optimal in that earlier paper were
used in the current studies to permit a direct comparison of modelling methodologies
and related outputs.

This follow-on modelling exercise sought to extend the earlier reported stud-
ies in two ways: (i) through the inclusion of a superior learning algorithm and
(ii) by means of a reinterpretation of modelling outcomes. Further details on the
relevant data sets and original selection procedures can be found in that earlier
paper. The gauging station, at an elevation of 130 m, monitors a small upstream
drainage area (8.42km2/3.25 square miles). Daily river discharge (m3 s−1) and
suspended sediment concentration (mg l−1) records were downloaded from the
USGS: http://webserver.cr.usgs.gov/sediment. Models were developed on data for
the 1994 water year (365 daily values from October 1993 to September 1994);
testing was performed on data for the 1995 water year (October 1994–September
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Fig. 11.4 USGS gauging station at Quebrada Blanca on the island of Puerto Rico

1995). Table 11.1 lists four different input combinations that were used to predict
the suspended sediment concentration records St , i.e. suspended sediment in mg l−1

on day t. D1 and D2 use different discharge inputs to predict suspended sediment;
whereas D1S and D2S include past sediment records. The last two models in this
list offer diagnostic support but are otherwise less useful since (i) they rely on
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Fig. 11.5 SRC model of sediment–discharge relationship developed on training data set for
Quebrada Blanca (October 1993–September 1994)
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Table 11.1 NN inputs and architectures (Kisi, 2005)

Experiment Model inputs Neural network architecture
(input:hidden:output)

D1 Qt 1:2:1
D2 Qt and Qt−1 2:2:1
D1S Qt and St−1 2:2:1
D2S Qt , Qt−1 and St−1 3:2:1

continuous sediment records at the site and (ii) no operational requirement for this
type of solution has so far emerged.

NN solutions were developed on the four different input combinations using sym-
biotic adaptive neuro-evolution (SANE: Moriarty and Miikkulainen, 1998). Neu-
roevolution is the use of genetic algorithms to train artificial neural networks. For
each set of inputs a population of candidate solutions is evolved and a winner se-
lected. Model development is based on the concept of ‘cooperative coevolution’
(Horn et al., 1994; Potter, 1997). This approach advocates the evolution of a pop-
ulation of hidden neurons in contrast to the more traditional approach of evolving
a population of functional networks. Each individual member in the hidden neuron
population can be viewed as a partial solution. To create a complete and optimal
solution, each individual must form connections with other hidden neurons in that
population. Individuals are thus organised into groups that optimise different parts
of the solution space, doing so in cooperation with other groups. Established genetic
operators such as mutation and crossover are used to evolve different types of hidden
neuron specialisation. This approach has several advantages over the use of tradi-
tional methodologies: cooperation results in a faster and more aggressive search of
the solution space; evolution of neuron specialisation preserves diversity in the can-
didate population; and, since convergence does not tend towards a particular peak,
the resultant sub-optimal solutions can readily adapt to changes. The cooperative co-
evolution algorithm is incorporated into two software packages: SANE-C (research
code) and JavaSANE (platform-independent code that requires minimum effort to
implement novel applications in fresh domains).1 Further examples of related appli-
cations in the water sector include Heppenstall et al. (2008), Abrahart et al. (2007)
and Dawson et al. (2006).

JavaSANE neural network (JSNN) models were developed on root mean squared
error (RMSE). Numerous candidate solutions were evolved and for each input sce-
nario a best model selected, the criterion for selection being RMSE calculated on its
training data set. That model was then used to make predictions for the test data set.
Kisi (2005) provides a set of comparative statistics derived for a neuro-fuzzy sys-
tem (NFNN: Jang, 1993; hybrid combination of artificial neural network and fuzzy
logic); a backpropagation neural network (BPNN: Rumelhart et al., 1986; training
was stopped after 10,000 epochs); a traditional sediment rating curve (SRC; (11.1)
and (11.2)); and a multi-linear regression model (MLR). JSNN and BPNN models

1 http://nn.cs.utexas.edu/pages/software/software.html
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used identical structures; reported output differences are thus a direct reflection of
the different training procedures and learning algorithms that were used. Neuroevo-
lution modelling is acknowledged to produce sub-optimal populations in which the
potential dangers of overfitting are substantially reduced. Thus no ‘early stopping
procedure’ or ‘cross-validation data set’ is required for model development purposes
(Giustolisi and Laucelli, 2005); BPNN models developed with no strong regard for
such issues should in contrast be questioned and tested since their solutions will
have a high potential to overfit.

The power of each method to model specific combinations of inputs was eval-
uated using the test data set and compared to the reported findings of Kisi (2005);
Tables 11.2–11.4 provide RMSE, r-squared (R-Sqd) and relative error in total sed-
iment (RETS) statistics. The neural solutions on most occasions tended to provide
similar levels of fit which is to be expected since the demands of the reported exper-
iment were somewhat limited; the question of minor numerical differences being
meaningful or not is an important issue in such cases. It is indeed possible that
the final ordering of such tight outcomes might be some facet of peculiarities re-
lated to the manner in which the material was presented, or to random runtime

Table 11.2 RMSE for test period (water year 1995)

Exp NFNN∗ BPNN∗ JSNN SRC∗ MLR∗

D1 17.96 27.32 18.36 53.11 29.99
D2 21.40 21.40 18.14 – 29.99
D1S 19.68 36.30 17.72 – 29.80
D2S 21.97 21.59 21.20 – 29.80

∗ From Kisi (2005). Best score for each data set is in bold.

Table 11.3 R-Sqd for test period (water year 1995)

Exp NFNN∗ BPNN∗ JSNN SRC∗ MLR∗

D1 0.929 0.821 0.920 0.816 0.894
D2 0.887 0.865 0.934 – 0.894
D1S 0.907 0.754 0.925 – 0.891
D2S 0.883 0.888 0.930 – 0.890

∗ From Kisi (2005). Best score for each data set is in bold.

Table 11.4 RETS for test period (water year 1995)

Exp NFNN∗ BPNN∗ JSNN SRC∗ MLR∗∗

D1 10.9 # 7.9 −83.0 #
D2 # 9.2 −11.3 # #
D1S # # 7.3 # −31.0
D2S # # −17.4 # −31.0

∗ From Kisi (2005); ∗∗ best model not identified; # not provided. Best score for each data set is in
bold. Numbers expressed in percentage format.
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processes, arising out of program mechanics. It must nevertheless be stressed that
this modelling exercise is not about implementing a set of simple curve fitting ex-
ercises or about selecting an overall winner with the best statistics. It is about in-
vestigating the different toolkits on offer for the purposes of learning from such
experiences; about their similarities and differences in terms of gains or losses; and
about the specific nature of individual solutions developed under controlled condi-
tions. The results in this context can be summarised as follows:

D1: NFNN was the best performing sediment rating curve model in terms of
RMSE and R-Sqd; JSNN was a close second. BPNN was a fair bit poorer.
NFNN, with its ‘divide and conquer’ four-rule mechanics, is found to pro-
vide a better approximation for the scatter of points. JSNN equated to a
better parameterised version of BPNN.

D2: JSNN was the best performing two-input discharge model in terms of
RMSE and R-Sqd; it was also the best overall performing model in terms
of R-Sqd. JSNN was also a clear winner; NFNN and BPNN produced a
set of similar but much weaker numerical statistics. JSNN with its supe-
rior calibration procedures is thus found to accommodate the additional
discharge input in a more meaningful manner. The inclusion of a past dis-
charge input had mixed effects on the other two neural models; NFNN
statistics worsened, whilst BPNN statistics improved. Potential gains re-
lated to a traditional architecture could perhaps be explained in terms of
stronger pattern detection and knowledge extraction capabilities or supe-
rior non-linear modelling properties.

D1S: JSNN was the best performing mixed input model in terms of RMSE
and R-Sqd; it was also the best overall performing model in terms of
RMSE. JSNN with its superior development procedures was once again
able to accommodate the additional material in a more meaningful man-
ner. NFNN and BPNN were both much poorer vis-à-vis D1; showing that
the additional input was confusing matters. NFNN performed better vis-
à-vis D2; BPNN performed worse vis-à-vis D2. NFNN and its rule-based
components seemed better able to counter the input noise related to the
incorporation of past sediment records; BPNN was less able to deal with
sediment-related noise, but more able to incorporate the hydrological rela-
tionships contained in past discharge records. JSNN model outputs for the
D1S test data set are provided in Fig. 11.6.

D2S: JSNN was once again the best performing mixed input model in terms
of RMSE and R-Sqd, but with RMSE being much higher than in D1S.
This suggests that the use of a second discharge input did not improve the
model, contrary to what happened in the case of moving from D1 to D2.
NFNN and BPNN are close seconds providing near-identical measures of
performance on both statistics, similar to what happened in the case of D2.
NFNN lost ground vis-à-vis D1S; BPNN gained ground. The use of addi-
tional input variables does not in such cases appear to have had a consistent
impact; such findings are perhaps indicative of previous development pro-
cedures having focused on dissimilar aspects of the captured relationship.
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Fig. 11.6 JSNN daily-record model outputs for DS1 test data set. Note: model tends to underesti-
mate some of the larger peaks, a problem also encountered by Kisi (2005). This can be attributed
to: (i) having a small number of peak events in the training data set and (ii) the use of a global
model. It is possible to address both issues with computational procedures such as boosting or the
use of local modelling techniques (Anctil and Lauzon, 2004)

The statistical closeness of the final models is of particular interest since it
is possible to speculate that using more inputs places the greatest demands
on each model; thus modelling more complex situations has perhaps forced
the solutions to address similar aspects of that relationship and to converge
towards some sort of ‘common ground’.

RETS: Table 11.4 has several missing numbers: Kisi (2005) provided total sedi-
ment assessments for the best model of each type but not for all contenders.
JSNN was the best performing model overall; the best result was obtained
for JSNN on D1S; the second best result for JSNN was on D1. The two
values are rather similar and much better than either the best BPNN (D2)
or best NFNN (D1). BPNN (D2) had poorer RMSE and R-Sqd statistics
than NFNN (D1) but nevertheless produced a better overall total. The best
models also produced an overestimated total; whereas JSNN for D2 and
D2S provided underestimations and perhaps such results can be linked to
the inclusion of a past discharge input which appears to have reduced the
overall level of sediment output.

MLR: Abrahart and See (2007a,b) recommend the construction of a linear model
to provide a standard against which the requirement for a non-linear
modelling solution can be tested. If a linear model offers an acceptable
solution it should be operationalised. However, it is also the case that non-
linear tools could thereafter be used for the identification of neglected non-
linearities (Curry and Morgan, 2003). The result for all MLR models was
near identical; the addition of a second discharge input made no difference
at all; the addition of a past sediment input produced a minor drop in the
reported metrics. This result suggests that limited notice is being taken of
anything other than present discharge. However, it should be noted that
MLR produced a similar result to BPNN in terms of RMSE for D1and
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a better result in terms of R-Sqd for D1, D2 and D2S. It was also better
than NFNN in terms of R-Sqd for D2. The bearing of particular models on
different input scenarios is thus questioned.

11.3 Flood-Event Scale Modelling

In European rivers the sediment transfer process is normally constrained by sup-
ply rather than by the ability of the river to transport material. The spatial and
temporal impact of rainfall drivers on such factors produces a non-linear hydro-
logical relationship between suspended sediment concentration and river discharge,
relationships that often demonstrate hysteresis at the event level. From such under-
standings arises a simple proposition: if hysteresis and related scatter, are considered
to be event scale properties, perhaps this scale of hydrological activities is the one
at which sediment transport modelling should occur. For management purposes it is
axiomatic that sediment models must be able to predict into the future; practical con-
siderations will also require model inputs that are known or easily calculated. Two
potential modelling options for operational event-level sediment estimation can be
identified. The modeller could for instance attempt:

1. to perform a classification of individual flood events according to type and dura-
tion; thereafter producing and assigning to the different class groups some esti-
mate of average sediment throughput per unit time or total sediment delivered; or

2. to develop an event-based model in which important characteristics that drive the
sediment supply process are used to predict some measure of average sediment
throughput per unit time or total sediment delivered. The modelling inputs in
such cases could be simple variables that were selected to act as proxies for dif-
ferent factors that are understood to control sediment supply; the output could be
mean sediment concentration per unit period. This is a simplification of the sed-
iment supply and delivery process: if inputs are not instantaneous measurements
of precipitation or discharge, and outputs are not instantaneous measurements of
suspended sediment concentration, it is possible that the resultant model would
be missing the highest peaks that are more challenging to predict. However, the
main purpose of such activities is not process modelling per se, it is the pro-
duction of an operational management solution – so this simplification can be
justified.

‘Option 2’ is explored in this chapter and some initial experiments to develop
an event-based model are presented. The flood event model was constructed on ob-
served data sets for the Environment Agency (EA) gauging station at Low Moor
on the River Tees in northern England (Fig. 11.7; EA Station No. 25009; OS Grid
Ref NZ365105; latitude 54◦29′21′′N; longitude 1◦26′31′′W). It is the lowest down-
stream recording point on that river. The Tees Barrage was completed in 1994 and
this gauge is situated at the former tidal limit. The Tees is a major river with an
upstream drainage area of 1,264 km2. Headwaters in the west cover a steep upland
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Fig. 11.7 EA gauging station at Low Moor on the River Tees in Northern England

area that is underlain by Carboniferous geology; lowlands in the east are underlain
by Permian and Triassic rocks. There is a strong west–east precipitation gradient,
rising to some 2,000 mm pa or more in the highlands and decreasing to 600 mm pa
in the lowlands. High drainage densities in the extensive uplands, coupled with high
precipitation rates, lead to a runoff-dominated regime that exhibits large and very
rapid variations in discharge. Large events are responsible for much of the sediment
that is delivered. Each item or feature in the above list is a major factor that, in com-
bination with others, would be expected to exert a control on suspended sediment
concentration. These factors are also the ones that are most likely to change in the
future under global warming. The selection of appropriate drivers for an event-based
model must be drawn from that list.

Fifteen-minute turbidity measurements were collected over a period of more than
3.5 years which preceded, included and continued after the major flood events of
winter 2000–2001. Two periods were involved: (i) December 1999–April 2001 and
(ii) December 2001–February 2003. The turbidity measurements were augmented
by automatic pumped-sampling, during high discharge events, with samples being
analysed for suspended sediment. The resultant concentration data set was used
to calibrate the turbidity sensor allowing a long-term 15-minute suspended sedi-
ment concentration data set to be established. Concurrent river discharge measure-
ments allowed sediment loads to be estimated. Prior to the winter 2000–2001 floods
the river appeared to be in equilibrium with a well-constrained relationship exist-
ing between suspended sediment concentration and discharge in individual events.
However, during the winter 2000–2001 floods, the relationship between suspended
sediment concentration and discharge was realigned. The revised relationship ex-
hibited much higher concentrations at the same levels of discharge – in contrast to
previous observed measurements. It was hypothesised that this modification was due
to the activation of fresh sediment sources, situated close to the river network, and
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justified by observation of a number of river bank collapses. Post-flood measure-
ments also indicate that the relationship drifted back towards its previous position
as the new sediment sources were exhausted. Two types of hysteresis behaviour dur-
ing that period can be observed in the Tees: clockwise and anticlockwise rotations.
There are also several different groups of behaviour occurring within the data set.
Prior to the very wet winter of 2000–2001, sediment peaks lagged discharge peaks;
after that period sediment peaks lead discharge peaks; their relationship then tends
back towards that occurring in pre-flood events.

For the purposes of the reported experiment, an event is defined as starting at
the beginning of the day on which the rate of rise in the hydrograph exceeded
0.75 m3 s−1. Mixed combinations of different catchment variables that could act as
proxies for factors that are understood to control the supply of sediment were anal-
ysed. Ten inputs were thereafter selected and used to predict event mean sediment
concentration (mg l−1):

• Event duration in hours
• Peak discharge in m3 s−1

• Total discharge in m3 s−1

• Baseflow Index
• Total flow for 7 and 30 days before the event (mm; units selected so as to be

consistent with catchment precipitation inputs)
• Precipitation duration in hours
• Precipitation at three rain gauges across the catchment in mm: Cow Green,

Dartington and Lartington.

This selected mix of different inputs was considered to provide a good start-
ing point. The model attempts to integrate several different types of measurement:
recognised scientific drivers, calculated hydrological indices and other relevant ma-
terial that is contained in raw measurement data sets. Like its counterparts this model
uses simple and readily available inputs that are well understood. It also maintains
the ability to differentiate between different hydrological conditions and catchment
properties, which affect the supply and delivery of sediment, and offers a level of
detail that could be useful for monitoring and evaluation purposes. The inclusion
of a date input, expressed as a fraction of the year, was considered – but not im-
plemented – in this initial trial. It is anticipated that different variables or different
combinations could be used to develop an improved model but for the moment the
main interest is in ‘proof of concept’.

TNNS (Trajan Neural Network Simulator2) was used to develop and implement
a standard BPNN. Following removal of flood events with missing variables the data
set was reduced to 86 cases; 28 occurred before the extreme floods of autumn 2000;
4 occurred during the flooding period; and a further 54 occurred subsequent to that
catastrophic sequence of events. Initial testing was performed on a simple model:
10:5:1 architecture; each processing unit was connected to all processing units in
each adjacent layers; a full set of initial connections was maintained throughout.

2 http://www.trajan-software.demon.co.uk/
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No transfer function is applied in the input layer and unaltered inputs are passed as
direct outputs to units in the next layer. Each processing unit in the hidden layer and
output layer contained a logistic transfer function that had a sigmoid operator. The
data set was standardised to a common scale: 0.0–0.8. This was designed to per-
mit extrapolation and remove possible upper-end saturation of the sigmoid transfer
function situated inside the output unit.

The BPNN was thereafter trained on 30 events (28 preceding major floods/plus
first two major floods) with cross-validation and early stopping operations being
performed using 56 subsequent events (next two major floods plus 54 post-flood
events). The network was trained for 12,000 iterations using low levels of learning
rate (0.2) and momentum (0.1). Figure 11.8 shows the training and cross-validation
error plots. The optimum solution was considered to have occurred at 4,000 epochs;
no independent test data set was available so a full set of results is instead provided
for pre-flood and post-flood data sets. Figure 11.9 provides a combined scatter plot
of the training and cross-validation data sets for the 4,000-epoch model. The error
between the observed and predicted values indicates that the model is better at pre-
dicting mid-range event mean concentrations, as opposed to predicting outputs at
either end of the observed range, but especially in the case of two cross-validation
data set higher magnitude events that were well off target. The R2 of the training
data set is 0.88; for the cross-validation data set it is 0.33. However, if the two out-
lier events that were so poorly predicted are not included, then this second statistic
is increased to 0.66.

The two events that were not well predicted contained the highest sediment con-
centrations of the whole data set; whereas their concurrent discharge measurements
were both situated towards the lower end of the recorded values. It is important
at this stage to remember that suspended sediment concentration in the recorded
events was not a direct measurement; it was estimated from a turbidity data set using
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turbidity–concentration rating curves that were themselves developed on measure-
ments related to a previous event. The concentration values are as a result somewhat
less reliable in comparison to the discharge records: the two instances in question
also make little or no real physical sense. The model nevertheless attempted a rea-
sonable extrapolation to cover major events in the cross-validation data set and was
able to accommodate the two major outliers in a not too unreasonable manner. It
should likewise be noted that this modelling exercise provided a very severe test of
neural modelling capabilities since:

• the network was trained on events of only one behaviour type; but was used to
predict two different types of event, i.e. pre- and post-major flood situations;

• the number of samples in the training data set was very small;
• the model used raw material – no data cleansing operations were used to exclude

events of questionable data quality; and
• inclusion of exceptional magnitudes associated with major outliers in the stan-

dardisation procedure will have handicapped the production of a decent spread
of suspended sediment output records.

11.4 Final Thoughts

NN solutions can be used to model suspended sediment concentration records and it
is clear that different types of solution can be developed to meet different operational
requirements. The selection of an appropriate method boils down to a simple matter
of selecting the right approach to support one or more particular demands. It is sug-
gested that the future of sediment modelling for operational purposes requires a shift in
mindset from the way things are currently done. The established method of producing
sediment rating curves revolves around a simple generalisation that can serve many
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purposes, but in the face of unprecedented climate and land use changes, it is quite
unreasonable to expect such a mechanism to cope with the demands that are being
placed upon it, i.e. relationships will change and are likely to be highly non-linear. It
is thus argued that simple linear or non-linear generalisations will not be the best way
forward. NN ‘mimics’ of simple linear or non-linear solutions will likewise suffer the
same fate, or worse, since their power to extrapolate and venture into unfamiliar terri-
tories is poor. Perhaps this approach could support the modelling of historical annual
averages for larger rivers or be applied to small basins that possess no strong hysteresis
loops, or loops of different types, related to inconsistencies in sediment sourcing.

Event-based modelling offers one potential route forward. It incorporates event
scale features and characteristics. It sidesteps the problems of hysteresis and scatter.
The discussion that is presented in this chapter also suggests that neither discharge
records nor discharge and sediment data sets will be sufficient to detect and model
event behaviours. Including a range of proxy factors in an innovative neural model –
appears to perform well – even predicting event mean sediment concentration for
larger events with different internal behaviour. The next step in our research is to
perform a scientific prototyping of events using such proxy factors, that is to test out
‘Option 1’. However, perhaps events could be better modelled under situations of
climate change using modelling inputs that account for climatic variability. It is also
the case that other variables might be needed to account for natural or anthropogenic
induced land use changes. There is much to be explored.

In overall terms the hydrological scientist or practitioner still needs to accept that
neural solutions have a lot to offer; to understand the tasks that such tools are good at;
and to engage in the process of discovering how to exploit the untapped opportunities
that exist to do something different. Lots of modelling potential exists for mixing and
matching different types of input; for building models of situations that are poorly
defined; for resolving difficult situations in cases where an exact mathematical re-
lationship is not known, etc. Numerous papers have demonstrated the development
of reasonable time series models: but do such models offer realistic operational so-
lutions? There is a clear use for simple rating curve type functions but that should
not be the end of the road. There is also a clear need for more ‘thinking outside the
box’. The reported modelling of mean sediment concentration per event is but one
example of the endless possibilities that could be explored. It would also be great
to test this novel procedure on different river systems – but good event-based data
sets to support such investigations are for the moment still few and far between!
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Chapter 12
Fuzzy Logic-Based Approaches in Water
Resource System Modelling

P.P. Mujumdar and S. Ghosh

Abstract Recent research in modelling uncertainty in water resource systems has
highlighted the use of fuzzy logic-based approaches. A number of research con-
tributions exist in the literature that deal with uncertainty in water resource sys-
tems including fuzziness, subjectivity, imprecision and lack of adequate data. This
chapter presents a broad overview of the fuzzy logic-based approaches adopted in
addressing uncertainty in water resource systems modelling. Applications of fuzzy
rule-based systems and fuzzy optimisation are then discussed. Perspectives on the
scope for further research are presented.

Keywords Fuzzy logic · fuzzy optimization · water resources systems

12.1 Introduction

Hydroinformatics is a cross-disciplinary field of study which includes applications
of data mining, artificial intelligence (AI), expert systems, artificial neural networks
(ANN), optimisation and evolutionary algorithms, fuzzy logic, grey systems theory,
decision support systems (DSS), uncertainty and risk analysis to problems within
the broad areas of hydraulics, hydrology and water resources. This chapter focuses
on applications of fuzzy logic, a branch of hydroinformatics which deals with un-
certainty due to imprecision.

The concept of “fuzzy sets” was introduced by Lotfi Zadeh in 1965 to address
uncertainty due to imprecision, fuzziness or vagueness. In introducing the concept,
Zadeh (1965) states, “The notion of a Fuzzy Set provides a convenient point of
departure for the construction of a conceptual framework which parallels in many
respects the framework used in the case of ordinary sets, but is more general than the
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latter and, potentially, may prove to have a much wider scope of applicability, partic-
ularly in the fields of pattern classification and information processing”. Essentially,
such a framework provides a natural way of dealing with problems in which the
source of imprecision is the absence of sharply defined criteria of class membership
rather than the presence of random variables. The possibilities of applying fuzzy set
concepts in modelling water resource systems were discussed in an early paper on
the subject by Hipel (1983). Fuzzy set-based models have since been developed to
address imprecision in widely varying areas from atmospheric circulation (Bardossy
et al., 1995) to ground water management (Guan and Aral, 2005).

A fuzzy set is a set of objects without clear boundaries or without well-defined
characteristics. In contrast to a crisp set in which an element either fully belongs to
the set or does not belong at all, a partial membership of an element is possible in
a fuzzy set. A membership function (MF) of a fuzzy set is a function – normally
represented by a geometric shape – that defines how each point in the input space
is mapped to a membership value between 0 and 1. If X is the input space (e.g.
possible concentrations of a water quality indicator) and its elements are denoted by
x, then a fuzzy set A (e.g. a set of “high water quality”) in X is defined as a set of
ordered pairs:

A = {x,μA(x)|x ∈ X} (12.1)

where μA(x) is called the membership function of x in A. Thus, the membership
function maps each element of X to a membership value between 0 and 1. A
membership function can be of any valid geometric shape. Some commonly used
membership functions are of a triangular, trapezoidal and bell shape (Kosko, 1996;
Ross, 1995).

In the following sections, applications of fuzzy rule-based models and fuzzy op-
timisation are presented.

12.2 Fuzzy Rule-Based Modelling

A fuzzy rule system is defined as the set of rules which consists of sets of input
variables or premises A, in the form of fuzzy sets with membership functions μA,
and a set of consequences B, also in the form of fuzzy sets. Typically, a fuzzy if-then
rule assumes the form:

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the variables X and Y ,
respectively. The “if” part of the rule “x is A” is called an antecedent or premise, and
the “then” part of the rule “y is B” is called the consequence. In the case of binary or
two-valued logic, if the premise is true then the consequence is also true. In a fuzzy
rule, if the premise is true to some degree of membership, then the consequence is
also true to that same degree. The premise and consequence of a rule can also have
several parts, for example,

if x is A and y is B and z is C, then m is N and o is P, etc.
An important step in applying methods of fuzzy logic is the assessment of the

membership function of a variable in various fuzzy sets. As an example, in reservoir
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operation models, the membership functions required are typically those of inflow,
storage, demand and release, and the corresponding fuzzy sets may be those of high
inflow, low release, etc. When the standard deviation of a variable is not large, it is
appropriate to use a simple membership function consisting of only straight lines,
such as a triangular or a trapezoidal membership function. Kosko (1996) observed
that the fuzzy controller attained its best performance when there is an overlapping
in the adjacent membership functions. A good rule of thumb is that the adjacent
fuzzy sets should overlap approximately 25%.

The fuzzy logic-based modelling of a reservoir operation (Panigrahi and
Mujumdar 2000; Russel and Campbell, 1996; Shrestha et al., 1996) operates on an
“if-then” principle, where “if” is a vector of fuzzy explanatory variables or premises
such as the present reservoir pool elevation, the inflow, the demand and time of
the year. The “then” is a fuzzy consequence such as release from the reservoir. In
modelling the reservoir operation with fuzzy logic, the following distinct steps are
followed: (a) fuzzification of inputs, where the crisp inputs such as the inflow, reser-
voir storage and release are transformed into fuzzy variables; (b) formulation of the
fuzzy rule set, based on an expert knowledge base; (c) application of a fuzzy oper-
ator, to obtain one number representing the premise of each rule; (d) shaping of the
consequence of the rule by implication; and (e) defuzzification.

Singh and Mujumdar (2002) further studied the sensitivity of reservoir operating
policies derived with a fuzzy logic approach, to changes in the membership func-
tions and to the methods of defuzzification. Considering the commonly used fuzzy
membership functions such as the triangular, trapezoidal and the bell-shaped mem-
bership functions, and defuzzification methods such as the centroid, mean of max-
imum (MOM), largest of maximum (LOM) and the smallest of maximum (SOM),
the fuzzy membership functions were tuned to reproduce as closely as possible, a
long-term, steady-state operating policy derived from stochastic dynamic program-
ming (SDP), for a case study in India. Figure 12.1 shows typical membership func-
tions for such an application. More recently, Akter and Simonovic (2004) have dealt
in detail with construction of fuzzy membership functions to represent uncertainties
in penalty functions and release targets in a short-term reservoir operation problem.

Fuzzy rule-based systems are also applied in the areas of contaminant trans-
port (Dou et al., 1999) and diffuse pollution (e.g. Binoy and Mujumdar, 2003).
Dou et al. (1999) captured the underlying physical processes of solute transport
by fuzzy rules. The rules are derived from a training set obtained from different
test runs of the SWMS 2D (Simunek et al., 1994) model which simulates water
flow and solute transport in two-dimensional variably saturated media. Fuzzy rules
operate between two adjacent cells at each time step. Solute concentration of the
upper cell and solute concentration difference between two adjacent cells are used
as premises. For a given time step, the solute flux between the two cells is taken
as the response, which is combined with the conservation of mass to update the
new solute concentration for the new time step. A fuzzy inference system is used
by Binoy and Mujumdar (2003) to obtain reasonable estimates of diffuse pollution
from agricultural runoff using limited available information. Annual average use of
herbicide per unit area, extent of herbicide applied area and herbicide application
season are considered as fuzzy input sets and observed herbicide concentration at



168 P.P. Mujumdar and S. Ghosh

Fig. 12.1 Typical membership functions in a fuzzy rule-based model for reservoir operation

the basin outlet as the fuzzy output set. Fuzzy rules are generated from the available
data sets from which combined rule bases are formed. These rules are then used for
mapping the input space to the output space using a defuzzification procedure. This
method learns from historical information. Other applications of fuzzy rule-based

Table 12.1 Some applications of fuzzy rule-based systems

Application Issues addressed Representative literature

Hydro-climatology Classification of
circulation patterns

Bardossy et al. (1995); Ozelkan
et al. (1998)

Reservoir operation Formulation of fuzzy
rules for reservoir
operation, implication
and defuzzification

Russel and Campbell (1996);
Shrestha et al. (1996);
Panigrahi and Mujumdar
(2000); Teegavarapu and
Simonovic (1999); Fontane
et al. (1997)

Water quality modelling Diffuse pollution Binoy and Mujumdar (2003)
Contaminant transport Dou et al. (1999)

Others Ground water recharge Coppola, Jr. et al. (2002)
Infiltration estimation Bardossy and Disse (1993)
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systems include estimation of infiltration (Bardossy and Disse, 1993), real-time
flood forecasting (Yu and Chen, 2005), classification of the atmospheric circula-
tion pattern (Bardossy et al., 1995; Ozelkan et al., 1998) and estimation of ground
water recharge (Coppola, Jr. et al., 2002). Table 12.1 provides a broad overview of
applications of fuzzy rule-based systems.

12.3 Fuzzy Decisions and Fuzzy Optimisation

The concept of a fuzzy decision was first introduced by Bellman and Zadeh (1970).
The imprecisely defined goals and constraints are represented as fuzzy sets in the
space of alternatives. The confluence of fuzzy goals and fuzzy constraints is defined
as the fuzzy decision. Considering a fuzzy goal, F , and a fuzzy constraint, C, the
fuzzy decision, Z, is defined as the fuzzy set resulting from the intersection of F and
C. Figure 12.2 shows the concept of a fuzzy decision. Mathematically,

Z = F ∩C (12.2)

The membership function of the fuzzy decision Z is given by

μZ(x) = min[μF(x),μC(x)] (12.3)

The solution x∗, corresponding to the maximum value of the membership func-
tion of the resulting decision Z, is the optimum solution. That is,

μZ(x∗) = λ ∗ = max
x∈Z

[μZ(x)] (12.4)

Fig. 12.2 Fuzzy decision
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Goals and constraints are treated identically in fuzzy optimisation. Representing
the fuzzy goals and fuzzy constraints by fuzzy sets Fi, i = 1, 2, . . .,nF the resulting
decision can be defined as

Z =
nF⋂
i=1

Fi (12.5)

In terms of the corresponding membership functions, the resulting decision for
the multi-objective problem is

μZ(X) = min
i

[μFi(X)] (12.6)

where X is the space of alternatives. The optimal solution X∗ is given by

μZ(X∗) = λ ∗ = max
X∈Z

[μZ(X)] (12.7)

The space of alternatives X (i.e. the decision space) is restricted by precisely de-
fined constraints known as crisp constraints (e.g. mass balance of flows at a junction
in a river network for a water allocation problem; minimum waste treatment level
imposed on the dischargers by the pollution control agency for a waste load alloca-
tion problem). Incorporating these crisp constraints, g j(X) ≤ 0, j = 1,2, . . ., nG, the
crisp equivalent of the fuzzy multi-objective optimisation problem can be stated as
follows (Zimmermann, 1978; Kindler, 1992):

Max λ (12.8)

Subject to

μFi(X) ≥ λ ∀i (12.9)

g j(x) ≤ 0 ∀ j (12.10)

0 ≤ λ ≤ 1 (12.11)

12.3.1 Application to a Water Quality Management Problem

Water quality management of a river system may be viewed as a multi-objective
optimisation problem with conflicting goals of those who are responsible for main-
taining the water quality of the river system (e.g. pollution control agencies), and
those who make use of the assimilative capacity of the river system by discharg-
ing the waste to the water body (e.g. industries). The goal of the pollution control
agency (PCA) is to ensure that the pollution is within an acceptable limit by impos-
ing certain water quality and effluent standards. On the other hand, the dischargers
prefer to make use of the assimilative capacity of the river system to minimise the
waste treatment cost.

Concentration level of the water quality parameters i at the checkpoint l is de-
noted as Cil . The pollution control agency sets a desirable level, CD

il , and a minimum
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permissible level, CL
il , for the water quality parameter i at the checkpoint l (CL

il <CD
il ).

The quantity of interest is the concentration level, Cil , of the water quality parameter,
and the fraction removal level (treatment level), ximn, of the pollutant. The quanti-
ties ximn are the fraction removal levels of the pollutant n from the discharger m to
control the water quality parameter i.

The fuzzy goal of the PCA (Eil) is to make the concentration level, Cil , of the
water quality parameter i at the checkpoint l as close as possible to the desirable
level, CD

il so that the water quality at the checkpoint l is enhanced with respect to
the water quality parameter i, for all i and l. The fuzzy goals of the dischargers Fimn

is to make the fraction removal level ximn as close as possible to the aspiration level
xL

imn for all i,m and n.
The membership function corresponding to the decision Z is given by

μZ(X) = min
i,m,n

[
μEil (Cil),μFimn(ximn)

]
(12.12)

where X is the space of alternatives composed of Cil and ximn. The corresponding
optimal decision, X∗, is given by its membership function:

μZ(X∗) = λ ∗ = max[μZ(X)] (12.13)

The membership function for the fuzzy goal Eil is constructed as follows.
The desirable level, CD

il , for the water quality parameter i at checkpoint l is as-
signed a membership value of 1. The minimum permissible level, CL

il , is assigned
a membership value of zero. The membership function for the fuzzy goal Eil is
expressed as

μEil (Cil) =

⎧⎪⎪⎨
⎪⎪⎩

0 Cil ≤CL
il[

Cil −CL
il

CD
il −CL

il

]αil

CL
il ≤Cil ≤CD

il

1 Cil ≥CD
il

(12.14)

Using a similar argument, the membership function for the goal Fimn is written as

μFimn(ximn) =

⎧⎪⎪⎨
⎪⎪⎩

0 ximn ≤ xL
imn[

xM
imn − ximn

xM
imn − xL

imn

]βimn

xL
imn ≤ ximn ≤ xM

imn

1 ximn ≥ xM
imn

(12.15)

These membership functions may be interpreted as the variation of satisfaction
levels of the PCA and the dischargers. The indices αil and βimn determine the shape
of the membership functions. αil = βimn = 1 would result in linear membership
functions.

The optimisation model is formulated to maximise the minimum satisfaction
level, λ , in the system. The model is expressed as

Max λ (12.16)
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Subject to

μEil (Cil) ≥ λ ∀i, l (12.17)

μFimn (ximn) ≥ λ ∀i,m,n (12.18)

CL
il ≤Cil ≤CD

il ∀i, l (12.19)

xL
imn ≤ ximn ≤ xM

imn ∀i,m,n (12.20)

xMIN
imn ≤ ximn ≤ xMAX

imn ∀i,m,n (12.21)

0 ≤ λ ≤ 1 (12.22)

The crisp constraints (12.19)–(12.21) determine the space of alternatives. The
constraint (12.19) is based on the water quality requirements set by the PCA through
the desirable and permissible limits of the water quality parameters i. The aspira-
tion level and maximum acceptable level of pollutant treatment efficiencies set by
the dischargers are expressed in constraints (12.20) and (12.21). The constraints
(12.17) and (12.18) define the parameter λ as the minimum satisfaction level in the
system. The objective is to find X∗ corresponding to the maximum value λ ∗ of the
parameter, λ . Note that the concentration levels Cil are related to the decision vector
X through a water quality transport model. The optimum value λ ∗ corresponds to
the maximised minimum (max–min) satisfaction level in the system. The upper and
lower bounds of λ reflect two extreme scenarios in the system. The upper bound,
λ = 1, indicates that all the goals have been completely satisfied and therefore rep-
resents a no-conflict scenario. The lower bound, λ = 0, indicates that at least one

Table 12.2 Some applications of fuzzy optimisation

Application Issues addressed Representative literature

Water resource allocation Rationalisation of water use Kindler (1992)
Water quality management Imprecision in standards of

PCA and goals of
dischargers

Lee and Wen (1996, 1997);
Sasikumar and
Mujumdar (1998);
Mujumdar and
Sasikumar (2002); Ghosh
and Mujumdar (2006b)

Reservoir operation Multi-person multi-objective
fuzzy decision making for
flood control

Yu et al. (2004)

Imprecision in crop yield
response

Jairaj and Vedula (2003);
Suresh and
Mujumdar (2004)

Uncertainty modelling in
short-term reservoir
operation

Akter and
Simonovic (2004)
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goal has a zero satisfaction level and therefore represents a conflict scenario. Any
intermediate value of λ represents the degree of conflict that exists in the system.
The fuzzy LP formulation aims at achieving a fair compromise solution by reducing
the degree of conflict in the system. A low value of λ ∗ indicates that a conflict sce-
nario cannot be avoided in the system. The existence of a conflict scenario in water
quality management problems is due to the compound effect of the conflicting ob-
jectives of the PCA and the dischargers, and the relatively low assimilative capacity
of the river network.

The solution X∗ is referred to as the best compromise solution to the multi-
objective optimisation problem. Many variants of this formulation have been pre-
sented in Sasikumar and Mujumdar (1998), Mujumdar and Subba Rao (2004) and
Subba Rao et al. (2004).

Table 12.2 gives a broad overview of some applications of fuzzy optimisation in
water resource systems.

12.4 Scope for Further Research

Applications of fuzzy logic and fuzzy set theory for modelling uncertainty in water
resource systems are relatively recent. For realistic applications, simultaneous ac-
counting of two major sources of uncertainty, viz, uncertainty due to randomness
and that due to imprecision or fuzziness, in a single integrated model is useful. De-
velopments in fuzzy systems theory have opened up the question of precision – or,
indeed the lack of it – in our ability to assign probabilities to critical events. Repre-
sentation of knowledge in conventional decision analysis is in the form of precisely
specified probability distributions and is the same no matter how weak the informa-
tion source for this knowledge is. The concept of imprecise/fuzzy probability (e.g.
Tonn, 2005) addresses this problem of excessive precision, and a number of methods
incorporating this concept have emerged in other fields. Applications of the fuzzy
probability concept are, however, yet to be developed in the area of water resource
systems.

Kindler and Tyszewski (1995) identify a fundamental problem of the application
of fuzzy set theory as that related to identification of membership functions. Studies
addressing this specific problem in various areas of water resources are essential.
Uncertainty in the membership functions themselves may increase model output
uncertainty. One way of addressing uncertainty in the membership functions is to
treat the membership parameters as interval grey numbers (i.e. intervals with known
lower and upper bounds but unknown distribution information), and formulate the
model as a grey fuzzy programming problem (e.g. Karmakar and Mujumdar, 2004).
Karmakar and Mujumdar (2006) have presented a multi-objective grey fuzzy opti-
misation model to minimise the system uncertainty with maximisation of the goal
fulfillment level, defined as an interval grey number.

A relatively straightforward extension of the methods described in this chapter is
the neuro-fuzzy approach, which is a combination of fuzzy computing and artificial
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neural networks (e.g. Nayak et al., 2005; Dixon, 2004). Parameter optimisation in
the fuzzy logic model is performed by a combination of backpropagation and least
squares methods by Nayak et al. (2005) for a flood forecasting problem. Other re-
cent applications of fuzzy logic in water resources include use of fuzzy clustering
and fuzzy regression. Fuzzy clustering is used for regionalisation (Rao and Srini-
vas, 2006) and prediction of rainfall from a General Circulation Model (Ghosh
and Mujumdar, 2006a). Fuzzy regression is applied in rainfall-runoff modelling
(Ozelkan and Duckstein, 2001) and for regressing resistivity of a compacted soil
liner with its permeability (Bardossy et al., 1990). These research areas are still
nascent and a large potential exists for useful contributions. New research areas
may also need to be developed for applications of possibility theory (Dubois and
Prade, 1997) and fuzzy control theory (Mrozek and Plonka, 1997).

12.5 Concluding Remarks

Traditional approaches to addressing uncertainty in mathematical models have lim-
ited applications for large water resource systems with complex interactions among
several critical segments. In most water resource system models, setting up of goals,
limits on constraints, standards for non-violation and even objective functions intro-
duce uncertainty due to subjectivity and imprecision. Recent interest in addressing
uncertainty in water resource systems is due not only to randomness but also to im-
precision, subjectivity and human judgement, and lack of data/information has lead
to the use of fuzzy systems theory. This chapter provides a broad overview of some
applications of the fuzzy systems techniques in typical water resource problems.

Although most fuzzy system models are not very complex computationally,
fuzzy rule-based problems suffer from the curse of dimensionality, with the number
of fuzzy rules increasing rapidly with an increase in the number of fuzzy variables
and number of fuzzy sets used for each variable. A major research concern in the
use of fuzzy systems theory is the development of appropriate membership functions
for a given problem setting. This issue is analogous to, although not as amenable as,
identifying an acceptable probability distribution for a random variable.
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Chapter 13
Fuzzy Rule-Based Flood Forecasting

A. Bardossy

Abstract Fuzzy rules have been applied to different hydrological problems – in this
chapter their application to flood forecasting is presented. They can express non-
linear relationships between variables in a form that is easy to understand. Models
for forecasting peak discharge and daily discharge are shown. Data available online
were selected as the basis for the fuzzy rule arguments. Fuzzy rules were derived
from observed flood events using a combinatorial optimisation technique – in this
case simulated annealing. The methodology is applied to the Ipoly/Ipel River in
northern Hungary and southern Slovakia and to the Upper Neckar catchment in
south Germany. Daily forecasts using different information are presented. A split-
sampling and cross-validation comparison with the Wiener filter and nearest neigh-
bour methods shows that the fuzzy forecasts perform significantly better. An adaptive
rule estimation method for possible operational forecasting is also presented.

Keywords Fuzzy rules · flood · forecasting

13.1 Introduction

The purpose of this chapter is to present the development of a flood forecasting method
using fuzzy rules. Flood forecasting is one of the most important operational hydro-
logical tasks. A large number of flood forecasting methods are available. Forecasts
can be based on the following:

• Rainfall-runoff modelling combined with flood routing
• Direct use of the available information (functional or black box relationships).

Rainfall-runoff models are based on the knowledge of the most important hydro-
logical processes in a catchment. These processes are represented in a simplified form
in a mathematical model. The models describe the non-linear relationship between
input and output, using reasonable approximations.
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Direct relationships between input and output are assessed by making assumptions
about the possible relationships. Most of the traditional methods are based on linear
or linearisable assumptions. Recently, methods based on techniques such as chaos
theory, neural networks or fuzzy rules offer possibilities to incorporate non-linear
relationships in these models.

For the application of these models, the crucial point is that the online information
available is limited. Furthermore, the forecasting system should also work in the case
of missing data. In addition, forecasting has to be carried out quickly, leaving no time
for detailed analysis.

In rainfall-runoff modelling, limited available information leads to very uncertain
forecasts. Moreover, these models are often very vulnerable to missing data.

With direct estimation, fast and robust solutions can be obtained. However, these
methods often do not consider the physical background of the problem. Furthermore,
in cases which differ from those used as the model basis, they might deliver non-
realistic results.

The suggested approach essentially belongs to the second class but tries to incor-
porate as much information from the first step as possible.

The following techniques can be applied to the direct estimation of the flood peaks:

1. Linear regression (multiple)
2. Non-linear regression (multiple)
3. Nearest neighbour methods
4. Neural networks
5. Fuzzy rule-based systems

With very extensive and good quality observations, all these techniques would
perform very well. Unfortunately, this is seldom the case. Linear regression is a very
robust method of estimation. It requires a moderate amount of good quality data but
cannot cope with missing data. Non-linear regression also works well with a moderate
amount of good quality data. It is less robust than linear regression and cannot cope
with missing data.

Nearest neighbour type methods are local estimators using linear or non-linear
regression type models with (weighted) sub-samples of past observations for the as-
sessment of the forecast (Abarbanel, 1995). Like the previous methods, they cannot
cope with missing data. Neural networks are performing very well for large data sets
(Dawson and Wilby, 1998). Unfortunately, the number of observed flood events is
limited. Furthermore, the predictions cannot be explained.

Fuzzy rules can take the non-linear relationships of the variables into account.
As rules, they are case dependent – thus similar to the nearest neighbour methods.
However, the form of the relationship is more flexible and their advantage is that they
can easily cope with missing data and data of poor quality. The derived rules can be
understood easily, and expert knowledge can be incorporated.

The application of fuzzy rules for flood forecasting is described in the next sections.
The methodology is applied to two forecasting cases: peak water level forecasts on
the Ipoly/Ipel River and discharge forecasts on the Upper Neckar River.
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13.2 Fuzzy Rules

Fuzzy sets were first introduced in Zadeh (1965) and have been applied in various
fields, such as decision making and control. Basic definitions of fuzzy sets and fuzzy
arithmetic can be found in Zimmermann (1984) or Dubois and Prade (1980). A brief
review of the definitions of fuzzy sets, fuzzy numbers and fuzzy operations is given
below.

A fuzzy set is a set of objects without clear boundaries; in contrast with ordinary
sets where for each object it can be decided whether it belongs to the set or not, a partial
membership in a fuzzy set is possible. Formally, a fuzzy set is defined as follows:

Definition 1. Let X be a set (universe). A is called a fuzzy subset of X if A is a set of
ordered pairs:

A = {(x,μA(x));x ∈ XμA(x) ∈ [0,1]} (13.1)

where μA(x) is the grade of membership of x in A. The function μA(x) is called the
membership function of A. The closer μA(x) is to 1 the more x belongs to A – the closer
it is to 0 the less it belongs to A. If [0,1] is replaced by the two-element set {0,1}, then
A can be regarded as an ordinary subset of X . In this text, for simplicity, we use the
notion fuzzy set instead of fuzzy subset.

Definition 2. A fuzzy subset A of the set of real numbers is called a fuzzy number if
there is at least one z such that μA(z) = 1 (normality assumption) and such that for
every real number a, b, c with a < c < b

μA(c) ≥ min(μA(a),μA(b)) (13.2)

This second property is known as the quasi-convexity assumption, meaning that
the membership function of a fuzzy number usually consists of an increasing and
a decreasing part. Any real number can be regarded as a fuzzy number with a single
point support and is called a “crisp number” in fuzzy mathematics. The simplest fuzzy
numbers are the triangular fuzzy numbers.

Definition 3. The fuzzy number A = (a1,a2,a3)T with a1 ≤ a2 ≤ a3 is a triangular
fuzzy number if its membership function can be written in the form:

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a1

x−a1

a2 −a1
if a1 < x ≤ a2

a3 − x
a3 −a2

if a2 < x ≤ a3

0 if x > a3

(13.3)

A fuzzy rule consists of a set of premises Ai, j in the form of fuzzy sets with mem-
bership functions μAi, j and a consequence Bi also in the form of a fuzzy set:

If Ai,1 AND Ai,2 AND. . .AND Ai,J then Bi (13.4)
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A fuzzy rule system consists of I such rules. The applicability of a fuzzy rule for
a certain case depends on the “truth grade” or “truth value” of the certain rule, and
it depends also on the arguments (a1,. . .,aJ) to which the rule is to be applied. The
truth value is not a qualitative statement on the accuracy of a rule, but the degree to
which the rule can be applied to the particular case. The truth value corresponding to
the fulfillment of the conditions of a rule is called the degree of fulfillment (DOF) of
that rule. There are several different ways of calculating the DOF. A common method
used throughout this chapter is the product inference:

ν (Ai,1 AND Ai,2 AND. . .AND Ai,J) =
K

∏
k=1

μAi,J (aK) (13.5)

Fuzzy rules are usually formulated so that more rules can be applied to the same
situation expressed as a vector of premises. These rules not only have different conse-
quences but, depending on the conditions, also have different DOFs for the given input
(a1,. . .,aJ). Therefore, the overall response which can be derived from the rule system
has to be a combination of those individual rule responses, while taking into consider-
ation the individual DOFs. There are several ways of combining the fuzzy responses
of the different rules. The method used in this study is the normalised weighted sum
combination of responses (Bi,vi) for i = 1,. . .,I (where I is the number of rules) being
the fuzzy set B with the membership function:

μB(x) =

I
∑

i=1
νiβiμBi(x)

maxu

I
∑

i=1
νiβiμBi(u)

(13.6)

where

1
βi

=
+α∫

−α

μBi(x)dx (13.7)

This combination method delivers a fuzzy set as a response for each vector of
arguments. However, in order to calculate exact values as required in models, this
fuzzy response has to be replaced by a well-defined or “crisp” number. The procedure
of replacing the fuzzy response with a single value is called defuzzification. There are
several defuzzification methods; in this chapter, the fuzzy mean defuzzification was
chosen. The fuzzy mean (or centre of gravity) of a fuzzy set A defined on the real line
is the number M(A) for which:

M(A)∫
−α

(M(A)− t)μA(t)dt =
+α∫

M(A)

(t −M(A))μA(t)dt (13.8)

The advantage of this combination and defuzzification method is that the
calculation of the defuzzified response is extremely fast and simple. It can be
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shown (Bárdossy and Duckstein, 1995) that the fuzzy mean of the combined
response M(B) is

M(B) =

I
∑

i=1
νiM(Bi)

I
∑

i=1
νi

(13.9)

A detailed discussion on fuzzy rules can be found in Bárdossy and Duckstein
(1995).

13.3 Fuzzy Rules for Flood Forecasting

In order to use fuzzy rules for flood forecasting, the rule arguments and the rule re-
sponses must first be selected. The rule arguments consist of variables:

1. describing the present state of the catchment (rainfall, discharge)
2. describing the recent evolution in the catchment (discharge changes)
3. forecasts of flood-relevant external variables (rainfall, temperature).

The variables should be selected according to their direct (online) availability and
relevance to theforecast location.Dependingonthe typeofproblem, therule responses
can be

1. peak discharge (or water level)
2. discharge at a given temporal resolution
3. flood volumes.

The rules can be assessed directly from speculation. Unfortunately, the system
knowledge (which is based on experience) is usually difficult to quantify. Therefore,
methods for the assessment of rules from observational data are necessary. The fol-
lowing section describes a learning algorithm, which allows the derivation of rules
from data directly.

13.4 Learning Fuzzy Rules Using Simulated Annealing

Given a data set T , the goal is to describe the relationship between the variables x and
y using fuzzy rules.

T = (x1(t), . . .,xJ(t),y(t) t = 1, . . .,T ) (13.10)

The rule system consisting of I rules should deliver results such that the rule re-
sponse R should be close to the observed value:

R(x1(t), . . .,xJ(t)) ≈ y(t) (13.11)
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The fuzzy rules are formulated using predefined fuzzy sets for each variable j
{A j,1, . . .,A j,K j}. For flood forecasting, numerical variables are used; thus the possible
fuzzy sets are chosen to be triangular fuzzy numbers. The fuzzy rules are described in
the form:

IF x1 is A1,ki,1 AND. . .xJ is AJ,ki,J THEN y1 is Bli (13.12)

Here i is the index of the rule. The rule system can thus be described in the form of
a matrix consisting of natural numbers ki, j

R =
(

k1,1. . .k1,Jl1
kI,1. . .kI,JlI

)
(13.13)

where
1 ≤ ki, j ≤ Kj 1 ≤ li ≤ L

The goal is to find the best matrix. It is assumed that the rules are applied with a
product inference and a weighted linear combination of the results. This means that
for each vector (x1,. . .,xJ), the response is calculated as

ŷ =
∑
i

νi(x1, . . .,xJ)M(Bi)

∑
i

νi(x1, . . .,xJ)
=

∑
i

∏i μAi j M(Bi)

∑
i

∏ i(x1,...,xJ)
(13.14)

These calculations are done for each element of the training set. Then the results are
compared to the observed y(t)values. The performance of the rule system is calculated
using the observed and calculated values:

P = ∑
t

F(ŷ1(t),y(t)) (13.15)

Typically, F can be chosen as an lp measure:

F(ŷ1(t),y1(t)) = |ŷ(t)− y(t)|p (13.16)

Other performances such as a likelihood type measure or a performance related to
proportional errors can also be formulated. Once one has a measure of performance,
an automatic assessment of the rules can be established. This means that the goal is to
find the R for which the performance is the best:

P(R) → min (13.17)

The number of possible different rules is

∏ j Kj ×L

This means that the number of possible rule matrices is
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(
∏ j Kj ×L

I

)

which is usually a very big number. For example, in the case of a small rule system
with J = 3 arguments with Kj = 6 possibilities for each of them and considering one
rule response with five possibilities, the number of rule sets consisting of I = 5 rules
would be (

63 ×5
5

)
≈ 1.2×1013

Thus, one has no way of trying out each possible rule combination. Therefore,
optimisation methods have to be used to find “good” rule systems.

The method selected to find the rule system R with optimal performance P(R) is
based on simulated annealing using the Metropolis algorithm. The algorithm is as
follows:

1. The possible fuzzy sets for the arguments A j,k and the responses Bl are defined.
2. A rule system R is generated at random.
3. The performance of the rule system P(R) is calculated.
4. An initial annealing temperature ta is selected.
5. An element of the rule system is picked at random. Suppose the index of this

element is (i,h).
6. If h ≤ J, an index 1 ≤ h∗ ≤ Kh is chosen at random and a new rule system R∗ with

ki,h∗ replacing ki,h is considered.
7. If h > J, an index 1 ≤ h∗ ≤ L is chosen at random and a new rule system R∗ with

li,h∗−J replacing li,h−J is considered.
8. The performance of the new rule system P(R∗) is evaluated.
9. If P(R∗) < P(R), then R∗ replaces R.

10. If P(R∗) ≥ P(R), then the quantity

π = exp

(
P(R)−P(R)∗

ta

)

is calculated. With probability π , the rule system R∗ replaces R.
11. Steps 5–10 are repeated NN times.
12. The annealing temperature ta is reduced.
13. Steps 5–12 are repeated until the proportion of positive changes becomes less

than a threshold ε > 0.

The above algorithm yields a rule system with “optimal” performance. However,
the rules obtained might only reflect specific features of the training data set and not
the process to be modelled. This can be recognised by the number of cases for which
a given rule is applied. As an alternative, the degree of fulfillment of the rules can also
be considered. In order to ensure the transferability of the rules, the performance of
the rule system is modified, by taking the sum of the DOFs into account.
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P′(R) = P(R)∏
i

⎡
⎣1+max

⎛
⎝0,

⎛
⎝ν ′ −∑

t
νi(x1(t), . . .,xJ(t)

ν ′
i

⎞
⎠
⎞
⎠
⎤
⎦ (13.18)

where v′ is the desired lower limit for the applicability of the rules, in this case ex-
pressed by the sum of DOFs. If P′ is used in the optimisation procedure, then rules
which are seldom used are penalised. The degree of penalty depends on the grade to
which the desired limit v′ exceeds the actual sum of DOFs for a selected rule.

One of the most important things in assessing rules is the recognition that not
all arguments play an important role for each case. The role of an argument varies
according to the other arguments. This means that one has to consider the mem-
bership function μ(x) = 1 among the selected possibilities for each argument. This
makes it possible to formulate rules using only some of the arguments. This is an
advantage of fuzzy rule systems, as a functional representation always considers all
arguments.

Partial knowledge can be incorporated into the rule system by fixing some elements
of the matrix R. These fixed elements are not altered randomly in the algorithm. Thus
rules can be fixed, or rules of given structure can be identified.

Missing data or fuzzy data in the training set can also be considered. For each
missing value, a membership function identical to 1 is chosen. For fuzzy data, the
corresponding membership function is considered. The DOF is evaluated using the
fuzzy input as

μAi,k(x̂k) = max
x

min
(

μAi,k(x),μx̂k(x)
)

(13.19)

This means for each corresponding argument, the membership 1 is assumed for
missing data.

13.5 Application

The application of the methodology is presented for two case studies. In the first case,
flood peaks were forecasted; in the second, forecasts were done on all days where the
daily discharge exceeded a certain pre-defined level.

13.5.1 Ipoly/Ipel

The first case study area is the Ipoly/Ipel catchment, a sub-catchment of the Danube
River situated in northern Hungary and southern Slovakia. The catchment has an area
of 5010 km2. There are several gauges on the river. These are

1. Holisa (685 km2) distance from the outlet: 143 km
2. Nógrádszakál (1850 km2)
3. Balasagyarmat (2747 km2)
4. Visk (4687 km2)
5. Ipolytölgyes (5010 km2).
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Table 13.1 Cross-validation performance of fuzzy rule systems with different number of rules for
the forecast of peak water levels at Ipolytölgyes

Mean error (cm) Mean squared error (cm) Correlation

8 rules −0.17 41.82 0.81
9 rules −1.24 40.89 0.82
10 rules −3.13 42.80 0.79

Other stations and precipitation measurement locations are also situated in the
catchment. Unfortunately, only data (water levels) from the five gauges listed above
are available online.

For this catchment, a forecast of the peak water levels was obtained using fuzzy
rules. Water levels of 65 flood events from the time period 1990–1998 were used to
train the model. Input variables of the model were

• Peak water level at Holisa
• Water level at Nógrádszakál at the time of peak water level at Holisa
• Water level at Ipolytölgyes at the time of peak water level at Holisa.

The output was the peak water level at Ipolytölgyes. The peak in Holisa is 12–24 h
before that in Ipolytölgyes. The mean peak water level was 212 cm, the minimum
124 cm and the maximum 467 cm.

Different numbers of fuzzy rules were assessed. A cross-validation was conducted
in order to evaluate the performance. This means that for each event, rules were as-
sessed from all other flood events and then applied to the selected event. This way the
real performance of the model could be assessed. Table 13.1 shows the performance
of different rule-based systems using a different number of rules. The table shows that
the performance of the rule system does not improve by adding new rules. In fact more
rules mean that the system might capture features of non-typical events. This leads to
a worse performance on independent data sets.

13.5.2 Neckar

Data used as input for the fuzzy rules were

• Daily discharge of the previous two days at Plochingen
• Daily discharge of the previous two days at Horb
• Areal precipitation of the previous day
• Precipitation forecast (> 5mm or not)

Flood events from 20 years (1961–1980) were used for the assessment of the rules.
The partial series of the upper 8% of the data were only used since the goal was to
predict flood discharge. The rules were then applied to the 10 year period 1981–1990.
Table 13.2 shows the statistics of the selected flood events.
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Table 13.2 Statistics of the selected flood events on the Neckar catchment

Mean (m3/s) Standard deviation Maximum (m3/s)

1961–1980
1981–1990

113
120

70
76

1031
761

Table 13.3 Performance of the different methods in predicting daily discharge in the Neckar
catchment

Linear regression Nearest neighbour Fuzzy rules

Mean error (m3/s) −1.84 −2.00 −5.78
Mean squared error (m3/s) 61.57 59.56 51.24
Correlation 0.60 0.63 0.76

In order to compare the performance of the method with other techniques, the same
data were used for a forecast using the Wiener filter and a nearest neighbour method
(Abarbanel, 1995). Table 13.3 shows the results. The fuzzy forecasts are based on
eight rules. All values are calculated for the cross-validation case.

The performance of the fuzzy rules is far better than that of the other two methods.
Note that the low correlation is due to the fact that only the partial series containing
the flood events was used in the forecasting. The Wiener filter is a linear estimator. As
the rainfall-runoff process is highly non-linear, its relatively poor performance is not
surprising. The nearest neighbour method uses only a subset of similar flood events for
the forecast, and thus the estimator is only locally linear. Fuzzy rules can be regarded
as a blend of the previous methods – a non-linear forecast using rules instead of similar
data.

13.6 Summary and Conclusions

In this chapter, the applicability of fuzzy rules for flood forecasting was investigated.
The rules were assessed from observed flood events using a simulated annealing al-
gorithm. The performance of the models was defined as the mean squared error of the
prediction. The suggested methodology was applied to two catchments. The objective
in the first case was the estimation of the peak water levels, in the second the mean
daily discharge. A more detailed forecast using hourly data is also possible.

The model was compared to the Wiener filter and a nearest neighbour method,
and performed considerably better than both of these. The model could be applied
using a non-symmetric loss function expressing the worst consequences of a possible
underestimation of flood peaks. The method is based on observed data without any
preprocessing. Thus, it can also be used in an adaptive way.
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Chapter 14
Development of Rainfall–Runoff Models Using
Mamdani-Type Fuzzy Inference Systems

A.P. Jacquin and A.Y. Shamseldin

Abstract This study explores the application of Mamdani-type fuzzy inference sys-
tems (FIS) to the development of rainfall–runoff models operating on a daily basis.
The model proposed uses a Rainfall Index, obtained from the weighted sum of the
most recently observed rainfall values, as input information. The model output is the
daily discharge amount at the catchment outlet. The membership function parame-
ters are calibrated using a two-stage constrained optimization procedure, involving
the use of a global and a local search method. The study area is the Shiquan-3 catch-
ment in China, which has an area of 3092 km2 and is located in a typical monsoon-
influenced climate region. The performance of the fuzzy model is assessed through
the mean squared error and the coefficient of efficiency R2 performance indexes.
The results of the fuzzy model are compared with three other rainfall–runoff mod-
els which use the same input information as the fuzzy model. Overall, the results of
this study indicate that Mamdani-type FIS are a suitable alternative for modelling
the rainfall–runoff relationship.

Keywords Mamdani fuzzy inference systems · rainfall–runoff model

14.1 Introduction

Fuzzy inference systems (FIS) are data-driven non-linear input–output models that
describe the operation of a real system using a set of fuzzy rules. Each fuzzy rule m
is a proposition of the form

IF (x1 is A1,m)AND(x2 is A2,m)AND · · ·AND(xK is AK,m) THEN y is . . . (14.1)
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expressing the relationship between K input variables x1,x2, . . .,xK and the output
y, for a particular region of the input space. The terms Ak,m in the antecedents of
the rules (IF parts) represent fuzzy sets (Zadeh, 1965), used to partition the input
space into overlapping regions. The structure of the rule consequents (THEN parts)
depends on the type of FIS under consideration. In the case of Mamdani-type FIS
(Mamdani, 1974), the rule consequents have the form

y is Bm (14.2)

where Bm are fuzzy sets in the output space. Given a particular input (x1,x2, . . . ,xK),
the inference mechanisms of fuzzy logic (Zadeh, 1975) are used to obtain the output
of each rule and the overall response of the FIS. The number of rules needed to
adequately represent the real system depends on the complexity of its input–output
relationship. The resolution of the model can generally be improved by using a finer
partition of the input space, at the cost of increasing the number of fuzzy rules and
hence the complexity of the model.

The major strength of FIS over other data-driven modelling techniques is that FIS
represent knowledge about the system being modelled in a way that can be easily inter-
preted by humans. Each rule m in a Mamdani-type FIS expresses a tendency for input
vectors (x1,x2, . . . ,xK) in the region described by the fuzzy sets A1,m, A2,m, . . .,AK,m

to be associated with outputs y in the region defined by the fuzzy set Bm. Further-
more, knowledge provided by experts can be incorporated into the model in a natural
and transparent way, by translation of knowledge into fuzzy rules. For instance, one
of the rules describing the operation of a sluice gate that regulates the water level
upstream in a channel could be “IF (water level is HIGH) THEN (sluice gate posi-
tion is HIGH)”. Finally, FIS are very flexible modelling tools as their architecture
and the inference mechanisms can be adapted to the given modelling problem.

One of the main weaknesses of FIS is the curse of dimensionality (Kosko, 1997).
The curse of dimensionality refers to the situation where the number of fuzzy rules
that is necessary to model the input–output relationship increases exponentially with
the number of inputs. The use of too many rules would result in a non-parsimonious
model which can be very difficult to calibrate. The number of necessary rules can be
substantially reduced if clustering algorithms are used to detect the general trends
of data and the rules are allocated to the relevant regions of the input–output space
(see e.g. Babuska and Verbruggen, 1997; Delgado et al., 1998).

Although FIS have been widely applied in areas as diverse as control and deci-
sion making, their use in the field of hydrological sciences is rather limited. Previous
applications of FIS in hydrology include modelling the interdependence between
global circulation and precipitation (Galambosi et al., 1998; Pongracz et al., 2001),
flow routing (See and Openshaw, 2000; Chang et al., 2001; Bazartseren et al., 2003),
conceptual rainfall–runoff modelling (Hundecha et al., 2001), and river flow fore-
casting with time series models (Nayak et al., 2004, Gautam and Holz, 2001;
Vernieuwe et al., 2004). This study explores the application of Mamdani-type FIS
to the development of rainfall–runoff models operating on a daily basis, using a
systems-based approach. The study area is the Shiquan-3 catchment in west China.
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This paper is structured as follows. Section 14.2 explains the general structure
of Mamdani-type FIS. Section 14.3 describes the structure of the proposed fuzzy
rainfall–runoff model. Section 14.4 gives a brief description of the study area and
discusses the results of applying the model to the field data. Finally, the conclusions
of this study are given in Sect. 14.5.

14.2 Mamdani-Type Fuzzy Inference Systems

Fuzzy sets are a generalization of the classical concept of set theory. While mem-
bership in a classical set is defined in a binary manner (either non-membership or
full membership), membership in a fuzzy set is a question of degree. Each fuzzy
set Ak,m in (14.1) is described by its membership function μAk,m , which evaluates
the degree of membership (ranging from zero to one) of any value xk in the fuzzy
set. The membership value μAk,m(xk) is equal to unity if the membership of xk in the
fuzzy set Ak,m is complete, and it is equal to zero if xk does not belong to the fuzzy
set Ak,m. Thus, the feasible range of each input variable xk is divided into a series
of fuzzily defined and overlapping intervals Ak,m. Similarly, the fuzzy sets Bm are
described by membership functions μBm .

Several types of membership function can be used to describe the fuzzy sets in
the rule system. Gaussian-type membership functions given by

μ(z) = exp

[
− (z− c)2

2σ2

]
(14.3)

are a common choice (Chang et al., 2001; Gautam and Holz, 2001). In this case,
each membership function has two parameters, namely the centre c and the spread
σ . The use of Gaussian membership functions facilitates the theoretical analysis of
the FIS performance, because of the simplicity of their analytical expression. In ad-
dition, the fact that Gaussian membership functions are continuously differentiable
allows one to obtain differentiable model response surfaces and hence, under certain
conditions, a derivative-based algorithm can be used to calibrate the model. Finally,
as the support of Gaussian membership functions is infinite, they are more suitable
for modelling systems with unbounded input spaces than other membership func-
tion types. Asymmetrical Gaussian membership functions are more flexible than the
symmetrical Gaussian membership functions (14.3), as they have a different spread
in their left and right limbs. Their analytical expression is given by

μ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
− (z− c)2

2σ2
left

]
, z ≤ c

exp

[
− (z− c)2

2σ2
right

]
, z > c

(14.4)

The centres and spreads of the membership functions are the parameters of the
model that are estimated by calibration.
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Fig. 14.1 Functioning of a multiple-input single-output Mamdani-type FIS

Figure 14.1 shows a schematic diagram of the functioning of a typical multiple-
input single-output Mamdani-type FIS. The first stage in the inference process of a
TSK fuzzy model is the calculation of the degree of fulfilment of each rule, evalu-
ating the degree to which the input vector belongs to the region of the input space
defined by the antecedent fuzzy sets. Each degree of fulfilment DOFm is next com-
bined with the corresponding consequent fuzzy set Bm, using an implication op-
erator (logical connective THEN), to obtain the rule-implied fuzzy set Bm

∗ (i.e. the
response of the rule). The overall response of the FIS is a fuzzy set B∗, obtained from
the aggregation of the individual rule responses Bm

∗. Finally, the fuzzy response B∗

of the FIS is converted into a crisp (real) number by a process called defuzzification.
The degree of fulfilment is normally evaluated using a t-norm (see Piegat, 2001),

such as the minimum t-norm or the algebraic product, in the role of the AND con-
nective. If the algebraic product t-norm is used in the role of the AND connective,
the degree of fulfilment of each rule can be expressed as

DOFm(x) = μA1,m(x1) ·μA2,m(x2) · · · · ·μAK,m(xK) (14.5)

If Gaussian (symmetrical or asymmetrical) membership functions are used, to
model the antecedent fuzzy sets, the degree of fulfilment of a rule is never zero.
Therefore, each time an input vector is presented to the FIS, all the rules are activated
(even if only to a very small degree) and thus all of them contribute to the overall
model output.

Each fuzzy rule m describes an existing association between inputs in the region
defined by the multi-dimensional antecedent fuzzy set (with membership function
DOFm) and output values in the region of the output space defined by the output
fuzzy set Bm (with membership function μBm). This association can be mathemati-
cally described as a new fuzzy set Rm in the input (x)–output (y) space, with mem-
bership function

μRm(x,y) = I(DOFm(x),μBm(y)) (14.6)

where I represents an implication operator modelling the logical connective THEN.
A number of operators have been proposed for this purpose (see Cordón et al., 1997,
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2000), but most engineering applications of fuzzy inference systems use a t-norm,
in particular the minimum t-norm or the algebraic product, as implication operators.
If the algebraic product is used as the implication operator, the membership function
of the fuzzy set Rm is given by

μRm(x,y) = DOFm(x) ·μBm(y) (14.7)

For a given input x∗ = (x1
∗,x2

∗, . . . ,xK
∗), this membership function becomes a

function of only the output variable y, thus obtaining an implied fuzzy set Bm
∗ in

the output space. The membership function of the rule-implied fuzzy set is

μBm
∗(y) = DOFm(x∗) ·μBm(y) (14.8)

The overall FIS response B∗ is obtained from the aggregation of the individ-
ual rule responses Bm

∗. There are several possible choices of response aggregation
method (see e.g. Piegat, 2001), but the arithmetic sum of the individual member-
ship function values (selected in this study) is a convenient choice. In this case, the
membership function of the fuzzy response B∗ is given by

μB∗(y) =
M

∑
m=1

μBm
∗(y) (14.9)

where M is the number of rules in the FIS. The advantage of the arithmetic sum over
other operators is that the arithmetic sum explicitly considers the contributions of
agreeing rule outputs, through the summation of membership values corresponding
to outputs y in the region of agreement. The main drawback of using the arithmetic
sum for combining the rule responses is that the membership values μB∗(y) are not
guaranteed to be smaller than one. However, this is not a serious problem from the
point of view of the practical operation of the FIS.

Finally, a real number y∗, in some sense representative of the fuzzy set B∗, is
selected as the output of the FIS, through a process called defuzzification. Sev-
eral defuzzification methods have been proposed in the literature (see e.g. Cordón
et al., 1997, 2000), one of which is the centroid of the membership function μB∗ . As
demonstrated by Bárdossy and Duckstein (1995), small changes in the membership
function μB∗ produce small variations in the location of its centroid. Therefore, if the
membership functions in the antecedents are continuous, the fuzzy logic operators
(AND, implication, and aggregation) are continuous and the rule base is complete,
and the FIS response surface is continuous. This property of the centroid defuzzifier
makes it suitable for modelling real systems with continuous responses. Neverthe-
less, the centroid defuzzifier has some disadvantages. The main disadvantage of the
method is its generally high computational cost, as it involves numerical integration
of irregular functions. Another problem is that if only one rule is activated, the de-
fuzzified output becomes insensitive to changes in the input variables (Piegat, 2001).

Combining the algebraic product as implication operator, the arithmetic sum for
rule response aggregation, and centroid defuzzifier, the FIS final output results can
be calculated from
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y∗ =

M
∑

m=1
DOFm(x)Areambm

M
∑

m=1
DOF(x)Aream

(14.10)

where Aream is the area under the membership function μBm and bm is its centroid.
These quantities are constants of the model, i.e. they do not change as the input
vector varies. The simplicity of the latter expression for the final FIS output is a
result of the specific choice of fuzzy logic operators. Other combinations of fuzzy
logic operators lead to more complicated expressions, usually without an explicit
analytical solution. From (14.10), it is evident that the maximum possible FIS output
is equal to the maximum value bm in the rule system.

14.3 Proposed Fuzzy Model

The model proposed is a single-input single-output FIS, intended to simulate the
rainfall–runoff relationship on a daily basis. The fuzzy logic operators used during
the inference process are algebraic product as implication operator, arithmetic sum
for the aggregation of rule responses, and centroid defuzzification.

In order to reduce the number of rules necessary to model the rainfall–runoff
relationship, the number of inputs must be kept to a minimum. For this purpose,
the output of the simple linear model (Nash and Foley, 1982) is used to construct a
Rainfall Index RI, which is the only input variable of the model. This Rainfall Index
RI is intended to reflect the most recent precipitation forcing and, to some extent,
the current moisture condition of the catchment. The analytical expression for the
Rainfall Index is

RIi = Ga ·
L

∑
j=1

Pi− j+1 ·h j
a (14.11)

where RIi represents the Rainfall Index value at time step i, Pj is the rainfall mea-
surement at time step j, L is the memory length of the catchment, Ga is the gain
factor of the simple linear model (SLM), and h j

a is the jth ordinate of the discrete
pulse response function of the SLM such that

L

∑
j=1

h j
a = 1 (14.12)

The discrete pulse response ordinates h j
a of the SLM are obtained in a parametric

form, using the gamma distribution model of Nash (1957), as in the work of
Shamseldin (1997). The model output is the daily discharge amount Q at the catch-
ment outlet.

Prior to the application of the fuzzy models, the data are normalized with respect
to their maximum value during the calibration period, defining the normalized Rain-
fall Index RIn and the normalized discharge Qn. This transformation eliminates scale
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differences between catchments, as the input and the output data are contained in the
interval [0,1]. Following normalization, the general structure of the fuzzy rules is

IF(RIn is Am) THEN Qn is Bm (14.13)

As the outputs of the rule consequents are given in terms of the normalized vari-
able Qn, a denormalization step is necessary to convert them into non-normalized
discharge values:

Q = Qn ·Qmax (14.14)

where Qmax is the maximum discharge during the calibration period. The maximum
possible model output is equal to the maximum value of the product bmQmax en-
countered in the rule system. This maximum possible output can be either smaller
or greater than the maximum discharge during the calibration period Qmax, depend-
ing on whether the maximum value of bm in the rule system is greater or smaller
than unity. Similarly, the minimum discharge that the model is able to predict is
equal to the minimum value of the product bmQmax.

14.4 Application

The study area corresponds to the Shiquan-3 catchment in west China, located up-
stream of Wuhouzhen station in the Han River (the largest tributary of the Yangtze).
The Shiquan-3 catchment has an area of 3092 km2, mountainous topography, and
mixed forest natural vegetation. The area has a semiarid climate, influenced by sum-
mer monsoons. Figure 14.2 shows the seasonal variation of rainfall, evaporation, and
daily discharge amounts. Most of the rainfall occurs during summer, while the high-
est evaporation rates occur during the period June–August. The seasonal variation
of discharge exhibits a similar pattern to that of rainfall. The data used in the study
consist of daily mean areal rainfall and daily mean discharge at the catchment outlet
(expressed in equivalent depths of water) during the period 1973–1980. The first
6 years of the record are used as the calibration period, while the remaining data are
used for verification.

Asymmetrical Gaussian membership functions are used for the antecedent fuzzy
sets, while Gaussian-type membership functions are used to model the consequent
fuzzy sets. The objective function to be minimized during calibration of the model
is the mean squared error. The membership function parameters are calibrated us-
ing a two-stage constrained optimization procedure, involving the sequential use of
a global and a local search method. Attempts were made to obtain a first approx-
imation for the location of the membership functions using a variety of clustering
algorithms, such as the fuzzy c-means algorithm (Bezdek, 1981) and the Gustafson–
Kessel algorithm (Gustafson and Kessel, 1979). However, it was observed that bet-
ter results were obtained with the chosen optimization methodology. The number
of rules adopted in this study is three, because preliminary tests carried out by the
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Fig. 14.2 Seasonal variation of rainfall, evaporation, and discharge in the Shiquan-3 catchment,
smoothed by Fourier harmonic analysis

authors indicated that a further increase in the number of rules did not significantly
improve the performance of the FIS.

Figure 14.3 shows the optimized antecedent and consequent fuzzy sets. The fact
that the leftmost consequent fuzzy set has positive membership values for discharge
entries smaller than zero does not mean that the model may eventually predict negative
discharge values. The centre of this fuzzy set, determining the minimum discharge
that the model is able to produce, is in fact very small having a value close to zero.
Figure 14.4 shows how the model response is affected by a lower bound of about
0.4[mm]. Similarly, the centre of the rightmost fuzzy set gives the upper bound for the
discharge estimated by the model, which Fig. 14.4 shows to be nearly 39[mm].

Figures 14.5 and 14.6 show the observed and the fuzzy model estimated dis-
charge hydrographs for 1 year of the calibration period (1975) and 1 year of the ver-
ification period (1980). There is a tendency in the model response to underestimate
the medium- and high-range discharges. As shown in Fig. 14.4, the model response
function is normally below the observed discharge in the range above 15[mm]. How-
ever, no persistent trend in the sign of the model errors can be observed in the low
flow ranges, with the exception of the inability of the model to predict discharge
equal to zero.

The results of the fuzzy model are compared with those from three other rainfall–
runoff models, namely the SLM, the nearest neighbour linear perturbation model
(NNLPM) of Shamseldin and O’Connor (1996), and the neural network model N1
previously proposed by Shamseldin (1997), all of which use the same input in-
formation as the fuzzy model proposed here. The performance of the models was
evaluated using the R2 efficiency criterion of Nash and Sutcliffe (1970) given by
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Fig. 14.3 Optimized fuzzy sets for (a) normalized Rainfall Index and (b) normalized discharge

Fig. 14.4 Fuzzy model response function
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Fig. 14.5 Observed and fuzzy model estimated discharges during 1975 (calibration period)

Fig. 14.6 Observed and fuzzy model estimated discharges during 1980 (verification period)

R2 =
MSE0 −MSE

MSE0
×100% (14.15)

where MSE0 is the mean of the squares of the differences between the observed
discharges and the long-term mean during the calibration period and MSE is the
mean squared error. Table 14.1 summarizes the results obtained by the fuzzy model
and the benchmark models, during the calibration and the verification period. The
performance of the fuzzy model was significantly better than that of the naive SLM,
where the output is used as an input variable by the fuzzy model. The NNLPM ob-
tained the highest efficiency values, both in calibration and verification. In particular,
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Table 14.1 Summary of results of the fuzzy model and the benchmark models

Calibration Verification

Model MSE0 MSE R2 (%) MSE0 MSE R2 (%)

SLM

8.697

2.523 70.99

8.245

4.033 51.09
NNLPM 1.289 85.18 2.390 71.01
N1 1.619 81.38 2.717 67.04
Fuzzy model 1.548 82.20 3.076 62.69

the performance of the NNLPM during the verification period is notably better than
that of the fuzzy model. The neural network model N1 and the fuzzy model have
similar efficiency values.

14.5 Summary and Conclusions

This study explores the application of Mamdani-type FIS to the development of
rainfall–runoff models operating on a daily basis, using a systems-based approach.
The model proposed uses a Rainfall Index, obtained from the weighted sum of the
most recently observed rainfall values, as input information. The model output is
the daily discharge amount at the catchment outlet. Preliminary results obtained in
the Shiquan-3 catchment (west China) are presented.

The performance of the fuzzy model is assessed through the coefficient of effi-
ciency R2, in both the calibration and the verification period. The results of the fuzzy
model are compared with those from three other rainfall–runoff models, namely the
simple linear model, the nearest neighbour linear perturbation model, and a neural
network model, all of which use the same input information as the fuzzy model.
Overall, the results of this study indicate that Mamdani-type FIS are a suitable alter-
native for modelling the rainfall–runoff relationship. Further work should explore
alternative input vector structures that could help in improving the performance of
the model.

References

Babuska R, Verbruggen HB (1997) Constructing fuzzy models by product space clustering. In:
Fuzzy model identification, edited by H. Hellendoorn and D. Driankov, Springer-Verlag, Berlin,
pp. 53–90
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Chapter 15
Using an Adaptive Neuro-fuzzy Inference
System in the Development of a Real-Time
Expert System for Flood Forecasting

I.D. Cluckie, A. Moghaddamnia and D. Han

Abstract This chapter describes the development of a prototype flood forecasting
system provided in a real-time expert system shell called COGSYS KBS. Current
efforts on the development of flood forecasting approaches have highlighted the
need for fuzzy-based learning strategies to be used in extracting rules that are then
encapsulated in an expert system. These strategies aim to identify heuristic relation-
ships that exist between forecast points along the river. Each upstream forecast point
automatically produces extra knowledge for target downstream forecast points. Im-
portantly, these strategies are based on the adaptive network-based fuzzy inference
system (ANFIS) technique, which is used to extract and incorporate the knowledge
of each forecast point and generate a set of fuzzy “if–then” rules to be exploited
in building a knowledge base. In this study, different strategies based on ANFIS
were utilised. The ANFIS structure was used to analyse relationships between past
and present knowledge of the upstream forecast points and the downstream forecast
points, which were the target forecast points at which to forecast 6-hour-ahead wa-
ter levels. During the latter stages of development of the prototype expert system,
the extracted rules were encapsulated in COGSYS KBS. COGSYS KBS is a real-
time expert system with facilities designed for real-time reasoning in an industrial
context and also deals with uncertainty. The expert system development process
showed promising results even though updating the knowledge base with reliable
new knowledge is required to improve the expert system performance in real time.
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15.1 Introduction

In recent years, the utilisation of expert systems in real-time flood forecasting has
been an issue of considerable importance. The real-time flood forecasting systems
development process is essentially an experience-based process. An expert system
is defined as a system that uses human knowledge captured in a computer to solve
problems that ordinarily require human expertise (Turban and Aronson, 2001). Ex-
pert systems can represent that expertise or knowledge as a set of “if–then” rules.
Historically, despite numerous successes in the use of expert systems in different
fields, their widespread use in water resources has been limited. Expert systems are
principally logic processors rather than efficient numerical processors. For problems
that require a large number of input parameters, repetitive calculations or a confined
solution space, procedural programming approaches have significant advantages
over the rule-based programming approaches of most expert systems (Brachman
et al., 1983). Expert systems are not well understood by most professionals in
the field. For many areas of study in water resources, traditional programming ap-
proaches have served the profession admirably. Expert systems have been employed
where traditional approaches have failed, such as HYDRO, an expert system used
for determining parameters for use in watershed modelling (Reboh et al., 1982), and
“Aviso Watch” (WatchDog), an expert system developed and deployed to be inte-
grated with site-specific forecasting models to permit anticipation of future threats.
In general, expert systems are an attractive analysis tool (Palmer and Holmes, 1988)
that can encapsulate available knowledge for the benefit of future users.

The knowledge that can be encapsulated in hydroinformatic systems can only
be knowledge which represents rational reasoning skills (Amdisen, 1994). Heuristic
knowledge of incoming floods plays a key role in reducing flood damage, as does
better planning of non-structural measures such as forecasting system development
which helps in minimising the losses due to floods. Expert system applications that
perform reasoning in dealing with uncertainty are enhanced by the use of tech-
niques such as fuzzy logic, Bayesian logic, multi-valued logic and certainty factors
(Openshaw and Openshaw, 1997). One of the key issues that hydrologists often
face is the problem of scarce historical flood records imposing large uncertainty in
forecasting flood probabilities. The adaptive neuro-fuzzy inference system (ANFIS)
technique when used in the context of expert system development can improve the
decision-making process in a complex and dynamic environment such as floods.

15.2 Real-Time Flood Forecasting Techniques

Real-time data availability, progress in software and hardware technologies, devel-
opment of hydrological and hydraulic models, radar and remote sensing techniques,
state-of-the-art information and communication technologies, advanced technical
knowledge in different areas of hydrology and water resources and advances in arti-
ficial intelligence techniques bring many challenges for developing state-of-the-art
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real-time flood forecasting systems. The inevitable need to couple numerical mod-
elling activity from the mesoscale atmospheric to decision support system ends of
the “model train” brings about an increasing additional interest in the exploitation
of e-science technologies.

Many types of real-time flood forecasting techniques and models have been
developed, which reflect the inherently stochastic nature of such environmentally
driven processes and this has led to the recent interest in artificial neural network
(ANN) and fuzzy logic (FL) techniques. ANN and FL techniques that consider
the non-linearity in the rainfall–runoff process and the utilisation of soft comput-
ing techniques such as support vector machines (SVM), expert systems and genetic
algorithms (GA) can be grouped together under the general term of “artificial intel-
ligence”.

So far the expert systems approach in real-time flood forecasting has not been
seriously applied. In the literature, most applications for prediction are based on
Takagi–Sugeno models and neuro-fuzzy techniques. An expert system such as
“Aviso Watch” (WatchDog), which works much like the antivirus software on a
computer, is one of the more successful cases of an expert system application to
flood forecasting. By using rules that are specified by a rule editor and are fired by
an inference engine, “Aviso Watch” identifies flood threats and notifies a dispatcher
as well as disseminating information to other interested parties.

This chapter focuses on the process of forecasting water level and its time se-
quence at selected forecast points along a river during floods and is considered as
a “real-time flood forecasting” process. Since forecasting discharge in real time is
difficult and water level is the main concern in flood events, water level was chosen
as the forecast variable. ANFIS is a good example of computing applied to real-time
flood forecasting. It recognises patterns and adapts them to cope with the real-time
environment thanks to its neural learning ability. It then incorporates human knowl-
edge and expertise in the real-time decision-making process. ANFIS, as one of the
available fuzzy techniques, provides expert systems with a powerful approximate
reasoning capability. It provides an adaptive behaviour with a strong knowledge
representation characteristic inherent in fuzzy inference systems. The main idea be-
hind using the learning capabilities of a neural network in the ANFIS technique is
to generalise a Takagi–Sugeno–Kang model in order to tune the membership func-
tion parameters on the premise of the fuzzy rules as well as the estimation of the
coefficients of each local model on the consequent part of each rule.

Before assembling the ANFIS structure, data pre-processing was carried out to
refine data collected during the case study period from January 1997 to May 1999.
Apart from using standard interpolation methods for the reconstruction of missing
values, the main purpose of this step was to reduce the data size, filter the noise and
remove incorrect data. In addition, in order to split the data into three data sets for
training, testing and validating, suitable and non-repeated trends and patterns were
identified. In order to simplify the ANFIS model, principal components analysis
(PCA) was utilised to select suitable variables, reduce dimensionality and reproduce
the ANFIS model variability. Rainfall and discharge require more pre-processing
before they can be passed through the ANFIS model. Low-pass Butterworth digital
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filters with different orders and cut-off frequencies were also used to overcome the
computational problems caused by noise-corrupted data.

15.3 The ANFIS Model

A number of neuro-fuzzy systems have been developed but the most well known is
ANFIS (Jang, 1993); other approaches have been suggested by Nomura et al. (1992),
Halgamuge and Glesner (1994), Wang and Mendel (1992), Shi et al. (1996) and Shi
and Mizumoto (2000). ANFIS is one of the best trade-offs between neural and fuzzy
systems, providing smoothness and adaptability. It is a powerful tool to extract rules
from data as well as extraction of the impact of each input from this model. ANFIS
is based on a fusion of ideas from fuzzy systems and neural networks. It possesses
the advantages of both neural networks (e.g. learning abilities, optimisation abilities
and connectionist structures) and fuzzy systems (e.g. human “if–then” rule think-
ing and ease of incorporation of expert knowledge). The self-learning ability of the
ANFIS eliminates the use of complex mathematical models for flood forecasting
despite the long time required to train the ANFIS model. ANFIS can be used to ap-
proximate and prototype a dynamic flood forecasting model with multiple inputs to
provide the knowledge base for a real-time flood forecasting expert system. Other
authors have utilised the ANFIS technique in different applications.

ANFIS provides a hybrid combination of neural and fuzzy systems. First-order
Sugeno models containing 4, 27 and 32 rules were considered for the prototypes de-
veloped in this case study. Trapezoidal, Gaussian and generalised Bell membership
functions with 4, 2 and 3 parameters, respectively, and the product inference rule
were used at the fuzzification level. The firing strength was estimated as the fuzzifier
output for each rule. The firing strength of each of the rules was normalised. Using
the algebraic product aggregation method, defuzzification was carried out by the
product of the firing strengths and the corresponding linear functions. The parame-
ters defining the ANFIS membership functions, as well as the first-order polynomial
coefficients, were obtained through a supervised training process using input/output
data and the Matlab program. A description of the ANFIS model given the above
can be summarised by the following equation:

F =

R
∑
j

(
w j0 +w j1u1 + · · ·+w jnun

) R
∏
j

μA j (u1,u2, . . .,un)

R
∑
j

R
∏
j

μA j (u1,u2, . . .,un)
(15.1)

where F is the output, u1,u2, . . .,un are the inputs, μA j(u1,u2, . . .,un) are the mem-
bership functions and w j0,w j1, . . .,w jn are the adjustable coefficients. The gradient-
descent algorithm was used to determine the parameters in the conditions and the
least mean square algorithm was used to determine those in the consequent part.
Equation (15.1) is used to describe the combination of numerous simple local
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models and seeks to globally represent a system that may be highly non-linear. The
system is described by membership functions that define the nature of the contribu-
tion of each local model to the global model and then decompose the input space
into subspaces and consequently approximate the complex system in each subspace
by a simple linear local model.

In order to partition the input space, the grid partitioning method was used and
in some cases it could be taken as an initial state of partition for some adaptive
partitioning methods. The ANFIS technique provided a more transparent represen-
tation of the non-linear systems when there was an ill-defined input/output system
or the lack of a well-defined mathematical model. Owing to the dynamic nature of
hydrological processes such as floods, fuzzy rules and membership functions must
be adaptive to the changing environment and hydrological conditions of the catch-
ment of interest in order for the forecast flood to be better represented. The tuned
types and numbers of membership functions and fuzzy rules utilised could signifi-
cantly improve the performance of the ANFIS model. A main advantage of the AN-
FIS model was that it could be made more applicable by employing well-adjusted
membership functions and coefficients from the training process for the forecasting
application in real time as it can be treated as a set of piecewise linear regression
models. Figures 15.1 and 15.2 provide a schematic of the ANFIS network and the
learning algorithm.

Figure 15.2 illustrates the use of two sets of ANFIS parameters for the premise
(i.e. the non-linear parameters) and uses linear parameters for the consequent. The
former represents the fuzzy partitions used in the rules and the latter represents the
coefficients of the linear functions used in the rules. ANFIS uses a two-pass learning
cycle including forward and backward passes. In the forward pass, parameters of
the premise are fixed and parameters of the consequent are computed using a least
squared error algorithm. In the backward pass, consequent parameters are fixed and
parameters of the premise are computed using a gradient-descent algorithm.

In this study, the Matlab v.7 software package was used, which offers an adaptive
neuro-fuzzy inference system (ANFIS) function by using a hybrid algorithm.

The Welland and Glen catchment was used for the case study. It is located in
eastern England (1150 km2), drained by the Rivers Welland and Glen. The geol-
ogy and landscape of the area varies considerably from west to east. The flow

Fig. 15.1 An ANFIS network
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Fig. 15.2 The ANFIS learning algorithm

characteristics of the wetland area – known as the Fens – are complicated by a devel-
oped drainage system to protect it from flooding and to facilitate its drainage. Two
major flood relief channels are used to route flood water away from population cen-
tres and to reduce the high-flow impact, impacts of pumping (irrigation) and seepage
on river flow in the lower reaches. Flood control gates are also constructed on the
Welland and Glen catchment indicating the complexity of the river and catchment
system. The Welland and Glen catchment suffers from minor flooding in most years,
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Fig. 15.3 Schematic diagram of the River Welland and the River Glen

particularly in the upper reaches. The catchment experienced significant flooding
during March 1947 and Easter 1998 with villages and communication links affected
in the valleys of the West and East Glens with further flooding in the town of Stam-
ford and at other locations along the River Welland. A schematic of the river network
of the Welland and Glen catchment and the forecast points along the main river and
its tributaries is shown in Fig. 15.3.

15.4 Development Environment

The COGSYS KBS expert system shell was used in this study for reasons of perfor-
mance, flexibility and industrial availability. COGSYS KBS has been developed in
the face of heavy competition from Gensim’s G2. COGSYS employs objects such
as “super objects” (which create the knowledge engineer’s own knowledge base ob-
jects), elements and enclosures. Popular inference mechanisms for AI applications
compete with functional approaches and, more interestingly, with object-oriented
programming.

In this study, four prototype forecasting locations were developed based on a
selection of points taken from the existing forecast points at which the data were
of sufficient quality for the ANFIS models to be trained and tested. The first proto-
type was based on past and present knowledge of two upstream forecast points and a
downstream forecast point to forecast water level (5 hours ahead) at the downstream
site. In this prototype, suitable explanatory variables were selected on the basis of
principal components analysis (PCA) and cross-correlation analysis. These vari-
ables included decaying basin wetness and water level with different delay times. A
second prototype was employed to use past and present knowledge of three upstream
forecast points and the downstream forecast point in order to forecast 6-hour-ahead
water levels at this point. The third prototype employed was based on the fuzzifica-
tion of water level thresholds for a single forecast point upstream of Stamford town
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Fig. 15.4 Expert system development process and schematic of data flow diagram

in an attempt to reduce false alarms. The fourth and final prototype was developed
to use past and present knowledge of a single forecast point based on three inputs of
flow and water level with different delay times and a single output of 6-hour-ahead
forecast water level at that point. A brief flow chart of the expert system develop-
ment process and the data flow for this study is given in Fig. 15.4. The figure gives
a step-by-step process of how the expert system was developed. It also describes the
flow of data from the data pre-processing phase to the set-up phase for prototyping
in the COGSYS KBS expert system shell.

Table 15.1 summarises the input variables employed in the ANFIS learning
process and consequent prototyping in the COGSYS KBS expert system shell.
The numbers in front of each variable describe the variable selection and the pre-
processing steps on the input variables of the ANFIS models. The following is a
brief description of the procedure applied to pre-process the time series of rainfall,
discharge and water level:

a. A first-order low-pass Butterworth infinite impulse response (IIR) filter with cut-
off frequency at 0.25 rad/sec was used to remove noise from the water level time
series at Market Harborough and Jordan forecast points.

b. To calculate the decaying basin wetness, an r-value equal to 0.4 was determined
by a trial-and-error method. Then a forward-moving average decaying basin
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wetness with a time span equal to 168 hours was estimated by the smoothing
functions in the HEC-DSS software.

c. A first-order low-pass Butterworth infinite impulse response (IIR) filter with cut-
off frequency at 0.09 rad/sec was used to remove noise from the water level time
series at Ashley forecast point.

d. A central-moving average discharge with a time span equal to 59 time steps
for Tixover GS forecast point and a forward-moving average with a time span
equal to 20 time steps for Kates Bridge GS forecast point were estimated by the
smoothing functions in the HEC-DSS software.

e. A second-order low-pass Butterworth infinite impulse response (IIR) filter with
cut-off frequency at 0.1 rad/sec was used to remove noise from the water level
time series of Tixover forecast point.

f. A second-order low-pass Butterworth infinite impulse response (IIR) filter with
cut-off frequency at 0.08 rad/sec was used to remove noise from the water level
time series at Kates Bridge forecast point.

Table 15.1 shows the strong influence of water level as an input variable in each
model. Observed data were split into three data sets for training, testing and validation.
Training data have been used for learning purposes and testing data have been used
for validating the ANFIS model. To let the model learn the behaviour of data during
low flow and high flow (floods), the training data set was chosen so that it contained
the flood event that occurred in April 1998 in the Welland and Glen catchment.

15.5 The Graphical User Interface

A graphical user interface (GUI) is a computer program that employs icons and
graphics to display and manipulate data. In this study, the developed expert system
was supported by a graphical user interface in order to present information in an

Fig. 15.5 Graphical user interface for the validation of prototype no. 1
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easy to use format. The GUI was developed using Visual Basic. There are services
such as “display picture” and “display plot”, with CSV format for the inputs and
outputs. What appears on the screen is a main window indicating forecast points
under consideration and is composed of menus, buttons and entry fields. Figure 15.5
represents the designed graphical user interface for one of the prototypes.

15.6 Results and Conclusions

This chapter has presented the objectives behind this study, which would be crowned
by the development of a neuro-fuzzy system for each of the prototypes under con-
sideration. This study highlighted the novel development of an expert system to
real-time flood forecasting.

Table 15.2 shows the result of using ANFIS to forecast water level for the four
prototypes. The interpretation of the results indicates that the prototype expert sys-
tems are capable of offering acceptable performance. For the analysis and compari-
son of the results, two performance criteria were used in this study: the normalised
RMSE (root mean squared error) and CoE (Nash–Sutcliffe efficiency coefficient).

The ANFIS system converged rapidly to a solution with 4 epochs and an RMSE
of 0.020 for prototype no. 2. Figure 15.6a and b shows observed and 6-hour forecast

Table 15.2 Comparison of observed and forecast water level for the four prototypes

Prototype no. Epochs Training Testing Validation

RMSE CoE RMSE CoE RMSE CoE

1 92 0.010 0.996 0.087 0.964 0.051 0.978
2 4 0.005 0.9995 0.006 0.9995 0.020 0.9990
3 28 0.084 0.991 0.107 0.978 0.061 0.997
4 90 0.006 0.999 0.018 0.989 0.022 0.991

Fig. 15.6 The forecast performance of the testing data set for the prototype no. 4 (a) and the
validation data set for the prototype no. 2 (b)
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Table 15.3 Contingency table for evaluation of the accuracy of prototype no. 3

Observation

Alarm type Alarm status Training Testing Validation

Yes No Yes No Yes No

Flood watch Yes 50 0 107 0 3 1
No 2 255 3 93 0 95

Flood
warning

Yes 25 6 29 4 0 0
No 0 255 0 93 0 95

Severe flood Yes 71 0 33 0 1 0
No 4 255 1 93 0 95

water levels at Kates Bridge GS and Tixover GS forecast points. In prototype no. 3,
as can be seen in Table 15.3, an ANFIS model with four rules has reasonably
good accuracy. The adaptive learning behaviour of ANFIS indicated that this was a
promising approach to knowledge acquisition in development of expert systems in
real-time complex environments. A fusion system, which was based on the four AN-
FIS models developed in this study, can be utilised for real-time flood forecasting.
The proposed methodology was able to learn and also provide transparency through
its rules.
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Chapter 16
Building Decision Support Systems
based on Fuzzy Inference

C.K. Makropoulos, D. Butler and C. Maksimovic

Abstract Uncertainty and ambiguity are inherent properties of our understanding
of the world and our ability to communicate this understanding to others, in both a
quantitative and qualitative way. This fact makes uncertainty and ambiguity inherent
in decision making processes and thus decision support tools need to provide capa-
bilities for their effective handling. This paper presents an overview of a number of
decision support systems, integrating quantitative and qualitative criteria, primarily
by means of fuzzy inference as a tool for handling linguistic ambiguity and uncer-
tainty. The decision support systems discussed cover a wide range of spatial scales,
from local to regional, a number of different contexts, from urban to rural and ad-
dress a variety of objectives, from urban sustainability to regional environmental
protection. They have all been developed in the Urban Water Research Group of
the Civil and Environmental Engineering Department at Imperial College London,
over a period of 10 years. Despite their differences, the models discussed possess
common underlying methodological concepts and have been developed to some ex-
tent with similar “building blocks”. Issues of complementarities and added value
which result from both the conceptual and methodological approaches adopted are
explored and an indication of possible future directions is presented. It is concluded
that a flexible, component-based, rapid-prototyping method for developing decision
support systems capable of explicit handling of ambiguity and uncertainty through
fuzzy inference are fundamental to the development of tools, which can be adopted
in practice and can truly support inclusive decision making.
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16.1 Introduction

The natural complexity, ever-present in real life, is transformed into uncertainty
when building an abstraction of the real world, in other words, a model
(Makropoulos and Butler, 2004a). For simple systems, where cause-effect rela-
tionships are well understood and are easily quantifiable, closed form mathemat-
ical expressions can be used to provide insight in the way the system functions.
For complex systems, we can make a distinction between two cases: (a) the case
where significant data are available (e.g. through well regulated experiments), in
which case, model-free, or universal approximator methods (e.g. artificial neural
networks) provide a methodology for dealing with uncertainty through learning,
based on knowledge encapsulated in the data (Ross, 1995) and (b) the case where
only scarce data exist and where only ambiguous or imprecise information is avail-
able. The ability of data to capture the knowledge required to model a system would
tend to decrease with increasing system complexity. In the latter case, fuzzy logic
provides a framework for formally handling this uncertainty, which includes the no-
tions of ambiguity and imprecision rather than the more commonly addressed notion
of randomness (Makropoulos and Butler, 2004a). The imprecision therefore in fuzzy
systems is high particularly if there is a need for quantification of qualitative criteria
and synthesis of non-homogeneous information (technical, economical, social etc),
which are of major importance to the socio-technical contexts in which hydroinfor-
matics is often applied (Abbott, 2000). In these cases, lack of knowledge per se, is
coupled with scarce available data and ambiguous cause-effect relationships. In the
discussion that follows, five different decision support systems are presented, all of
which utilise fuzzy logic to handle, to some extent, imprecision and ambiguity and
make use of non-homogenous information, including preference and perceptions
of risk.

16.2 Decision Support Systems (DSS) in Context

Over the past 10 years, the need to integrate knowledge encapsulated in models,
databases and expert opinions into the decision making process and more impor-
tantly communicate this knowledge to relevant stakeholders has been repeatedly
stated within the hydroinformatics community (Price, 2000). Tejada-Guilbert and
Maksimovic (2001) emphasise the seven Is approach (first outlined by Butler and
Maksimovic (1999)) to environmental modelling: Integration (the development of
coordinated and integrated models); Interaction (or the search for the additive, cu-
mulative synergistic effects of complex systems); Interfacing (especially with the
public and the environment); Instrumentation (in terms of real time control, sensors
and non-invasive techniques); Intelligence (and the expansion of data, information,
and knowledge through Geographic Information Systems (GIS) and hydroinfor-
matics); Interpretation (the complementarity of data and judgement, and a wise
combination of structured reasoning and disciplined imagination); and, finally Im-
plementation (the capacity for true and concerted action and the transformation of
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policies into reasonable practice that combines corrective and proactive strategies
and tactics). The increasing user friendliness of GIS and the advent of general pur-
pose, rapid prototyping programming languages such as MATLAB recently pro-
vided a computational and presentational framework facilitating the implementation
of, at least some of, these principles.

We will briefly present below five tools, developed with these ideas in mind:

• The Urban Water Demand Management DSS
• The Catchment Pollution Assessment and Intervention Prioritisation DSS
• The New Urban Developments Screening Tool
• The New Urban Developments Optioneering Tool
• The New Urban Developments Site Suitability Assessment Tool

Although these tools cover a wide range of different domains and application
scales (see Fig. 16.1) there are important common elements in their conceptual and
developmental underpinnings:

• They are GIS-based or at least make significant use of spatial information in
terms of analysis and presentation and are thus spatially-relevant and customis-
able to site specific characteristics and constraints.

• They handle linguistic variables (Zadeh, 1975) by means of fuzzy inference sys-
tems (FIS) and can thus make use of qualitative and quantitative characteristics
and constraints.

• They are developed in a modular way, loosely coupling GIS, analytical engines,
spreadsheets and databases. This allows elements of the system to be significantly
updated without a need to re-code the entire system.

New InfrastructureExisting Infrastructure

Local
Scale

Regional
Scale

New Urban
Developments
Screening Tool

New Urban
Developments

Optioneering Tool

New Urban
Developments Site

Suitability Assessment
Tool

Catchment Pollution
Assessment and

Intervention
Prioritisation DSS

Urban Water Demand
Management DSS

Fig. 16.1 Application domains of the Decision Support Systems presented
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• They use MATLAB as the mathematical environment which allows for rapid pro-
totyping and development of “exploratory” tools and components, thus allowing
the testing of new ideas without the significant overheads in development time
required for coding a wide variety of knowledge-based, fuzzy inference, control
and optimisation algorithms in conventional computational languages, such as
FORTRAN.

• As a consequence of the above, the tools developed are experimental prototypes,
testing new ideas, mostly complementary to, rather in substitution of, commer-
cial, off-the-shelf software, a fact that is compatible, in our view, with the role of
academic research in hydroinformatics.

16.3 Presentation of the Tools

16.3.1 The Urban Water Demand Management DSS

This tool is a decision support system (Fig. 16.2) applied in the field of Water De-
mand Management (WDM) (Makropoulos and Butler, 2004b) to:

• Compare different water demand reducing scenarios (on the basis of water sav-
ings for a fixed investment or on a cost basis for a target water saving)

• Plan the site-specific implementation of these scenarios (identify where to apply
each technique to get maximum results on a house-by-house basis)

• Assess the investment needed to achieve a desired reduction or
• Identify the best composite scenario dependent on a desired investment scheme.

Fig. 16.2 Schematic of the
Urban Water Demand
Management DSS
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The decision process supported by the tool can be described as follows: The
user chooses which of available WDM strategies he/she wishes to take into account.
Each strategy is broken down into a number of attributes, which directly influence
its applicability in a given location. This decomposition to less complex elementary
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components whose effect on the suitability of the strategy’s application is easier
and safer to define can be thought of as a good example of defining fuzzy mem-
bership functions for complex ill defined sets (Despic and Simonovic, 1997). The
user chooses the attributes he/she wishes to take into account. This scalar approach
tackles to a certain degree the problem of having to make decisions under various
levels of data availability. Each selected attribute is imported into the system as a
raster GIS layer and is then transformed in a suitability map for the relevant strat-
egy to the extent that the attribute influences the strategy’s applicability (Fig. 16.3).
As the output is now homogenous (suitability maps in a [0,1] scale), the results of
heterogeneous input are now comparable. The process is performed through fuzzy
inference systems (both type-1 and type-2), which can analyse both singleton and
non-singleton input (Mendel, 2001; Makropoulos and Butler, 2004a).

The standardised suitability maps for each attribute of a given strategy are then
aggregated to provide one all-inclusive suitability map for the strategy’s applica-
tion. The user is presented with different options of aggregation including simple
additive weighting (with direct weight assignment) and ordered weighted averag-
ing (Yager, 1988). The later enables the incorporation of the decision maker’s at-
titude towards risk in the outcome in the aggregation process. The optimism or
pessimism of the decision maker is provided to the system as a user input and
appropriate weights are calculated to convey this level of risk aversion into the
aggregation outcome. The output strategy suitability maps for all strategies are
then imported into the optimisation module. An optimisation algorithm is then
employed to select a composite strategy. Optimisation includes a number of user
input parameters (e.g. overall desired investment cost, per capita water consump-
tion, cost for network rehabilitation per meter of network, cost for grey water re-
cycling scheme introduction per household and cost of introducing metering per
household). The multi-objective, evolutionary optimisation algorithm developed
and used (Makropoulos and Butler, 2005) maximises water savings per day using
overall investment cost as a constraint. The result is a combined strategy in the
form of a detailed proposed WDM application map (master-plan) on a house-by-
house level indicating the optimal location for installing (a) grey water recycling
devices, (b) metering or (c) identifying network areas prone to leakage for replace-
ment prioritisation.

16.3.2 The Catchment Pollution Assessment and Intervention
Prioritisation DSS

This Decision Support Tool is a multicriteria, data driven tool with an Excel
User Interface, combining MIKE Basin/GIS, Matlab and Excel/Visual Basic (see
Fig. 16.4). The tool uses Multi-criteria analysis (MCA) to evaluate decision scenar-
ios based on both environmental and economic criteria. It advises on recommended
environmental actions to meet desired scenarios at a catchment scale. The tool ac-
cepts as inputs: data on pollution sources (point or diffused, including agricultural
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Fig. 16.4 Schematic of the Catchment Pollution Assessment and Intervention Prioritisation DSS

loads and livestock numbers), water abstraction and consumption and desired tar-
get effluent concentrations at given nodes. The user specifies the cost functions for
a number of intervention options, the relative importance of a number of criteria,
standardised through a fuzzy inference process, and an optimisation algorithm in-
teractively runs the MIKE-Basin engine to achieve the required target concentration
while minimising the stated objectives (Matsouris et al., 2005; Legesi et al., 2006).

The results from MIKE-Basin are combined with results from an economic
model using a MCA approach based on fuzzy inference developed in MATLAB.
Finally, a scenario analysis is used to explore both prescriptive and predictive sce-
narios for decision making at a catchment level.

16.3.3 The New Urban Developments Screening Tool

This decision support tool assists the selection of appropriate areas for new urban
developments on the basis of sustainability criteria. The framework links diverse
elements of the decision process, including articulated objectives, criteria and indi-
cators as well as decision makers’ preferences. Data are handled in the form of GIS
raster files, structured in a series of rows and columns, forming cells. Each cell has
its own properties, linked to various physical and geographical attributes and can
be considered an “alternative” in the context of site suitability assessment, in that it
potentially represents a solution to the siting problem (Malczewski, 1999).
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Multi-criteria analysis is used to achieve a selection of the best alternatives based
on consistent application of expert judgment and user preferences. A set of user-
defined criteria are used to (a) narrow down the number of alternatives through a
screening process, and (b) evaluate the remaining locations in terms of their suit-
ability/sustainability. Criteria are divided into “crisp” and “fuzzy”. Crisp criteria,
also referred to as hard constraints, differentiate areas where development is fea-
sible from those where it is not. The rest of the criteria are treated as fuzzy. In
practical terms, each fuzzy criterion is linked to a relevant indicator (spatial at-
tribute) associated with a fuzzy inference system (FIS) using “IF. . . THEN” rules
(see for example, Makropoulos et al. (2003)). The input data are then analysed
to provide suitability outputs for each location. This process is repeated for ev-
ery criterion resulting in a set of different suitability values for any given loca-
tion. A weight is then attached to each criterion depending on its (user specified)
importance. Aggregation of the criteria yields a value for each location, repre-
senting its overall suitability. The users can create and apply their own scenar-
ios. Scenario variability can be expressed in terms of selected criteria and weight
assignment. Sensitivity analysis can thus be performed to quantify the impact
of different choices to the final outcome. By ignoring certain criteria and plac-
ing more importance on others, users can focus on different aspects of sustain-
ability and assess their impact on the siting of alternative urban development
schemes.

The tool is comprised of ArcView GIS, an analysis module developed in MAT-
LAB and a user interface created as an Excel spreadsheet. The user can specify the
required area for the new site, on the basis of which the tool identifies which loca-
tion within the entire study area is the most favourable and provides a breakdown
of the scores of the selected site with respect to the criteria (Fig. 16.5). The user
can therefore see the strong and weak points of the proposed site and modify his/her
weightings if needed.
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16.3.4 New Urban Developments Optioneering Tool

The New Urban Developments Optioneering Tool facilitates the selection of com-
binations of water managing strategies and technologies to support the delivery of
integrated, sustainable water management for new developments. The tool is based
on a water balance model which investigates the interactions between the major
urban water cycle streams. A knowledge base library including sustainable urban
water management options and technologies is included, containing data and in-
formation on the options’ characteristics and performance. The methodology used
for the comparison between various composite water management strategies and
the assessment of the overall sustainability of the solutions provided is based on a
sustainability criteria framework (Ashley et al., 2004).

The optioneering tool is then able to compare the performance of the various
water technologies that are stored in the Technology Library, applied at all possi-
ble scales – from a local Sustainable Drainage System (SUDS) solution at a single
household level, to a greywater recycling scheme for the entire development. A flow
chart representing the optioneering procedure can be seen in Fig. 16.6. The process
is driven by an evolutionary optimisation algorithm, which in turn evaluates the sus-
tainability criteria against a “benchmark system” performance while treating them
as fuzzy criteria (in the form of linguistic variables). This allows the presentation
of the composite solution’s sustainability evaluation as a spider diagram (Fig. 16.6),
facilitating negotiations between the decision makers and allows for the exploration
of what-if scenarios.

16.3.5 New Urban Developments Site Suitability Assessment Tool

The site suitability assessment tool deals with a specific type of urban water man-
agement problem: the object location problem which is defined by Makropoulos and
Butler (2005) as “the determination of optimum locations for facilities in a given
geographical area” with respect to technical, environmental social and economic
objectives. This tool operates at a site, rather than a regional level (as compared to
the screening tool). Initially, each facility, or technical option, is broken down into
a (superset) of criteria, which directly influence its applicability at a given location.
From this superset, the user chooses the criteria to be taken into account, subject
to data availability. Criteria that are to be handled as constraints are also identified
at this point and their cut-off points defined. Due to the heterogeneous scales with
which different attributes are measured, each selected attribute is imported into the
system as a map layer and is then standardized into a suitability map for the relevant
strategy. This is performed through a fuzzy inference system (FIS). For example,
the soil permeability criterion map of an infiltration option will be transformed into
a suitability map with respect to soil permeability.

The standardized suitability maps for each criterion of a given water manage-
ment option are aggregated to produce a composite suitability map for the option’s
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application. The decision-maker is presented with different options of aggrega-
tion techniques including ordered weighted averaging (OWA) and spatial ordered
weighted averaging (SOWA). An example of sensitivity of final results to decision-
maker risk perceptions (ranging from optimistic to pessimistic) can be seen in
Fig. 16.7. The SOWA technique (Makropoulos and Butler (2006)), has the major
advantage of being able to include within the aggregation process a spatially vari-
able risk index, which could be, for example, flood risk or health risk to sensitive
population. The risk index can be used, through a set of linguistic FIS rules, to “bias”
the applicability of specific options (e.g. “reduce” the applicability of constructed
ponds for drainage purposes “near” schools). The composite suitability map for the
option under evaluation then undergoes a “masking” process, imposing the selected
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Fig. 16.7 Composite suitability maps representing sensitivity of the OWA method to different
indicators of attitude towards risk

constraints. Based on the composite suitability maps, the tool provides the option
of making a final recommendation as to the best possible (optimal) solution to the
problem.

16.4 Discussion

The tools presented above utilise fuzzy inference to capture linguistic ambiguity
and “operationalise” it within the context of environmental decision making. They
all recognise the spatial character of (most of) the problems in this domain and
have strong GIS components. They are all based on a loose coupling architecture
resulting from file exchanges between separate, stand-alone, software, thus allowing
for rapid development and testing of new ideas without a significant programming
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overhead. Fuzzy inference engines, weighting and spatial analysis procedures have
been developed in a modular way to maximise the possibilities for re-use when
appropriate thus reducing the need to “re-invent” the wheel. The tools are strategic
in nature, and can be used for thinking, negotiation and option screening at early
stages of environmental planning. As such, these and other similar developments,
inhabit the “great divide” (Turner, 1997) between social systems (and their research)
and technical systems (and their modelling).

In our view, there is a growing need to overcome this divide in order to allow
informatic tools (and hydroinformatics in particular) to move more towards their
originally intended function of “augmenting the human intellect” (Engelbart, 1962),
by acting as “thinking environments”. Such thinking environments should be able to
allow for the rapid integration of different models (ideally in a pick n’ mix fashion)
as well as the integration of qualitative and quantitative information and knowledge
to provide support to a wide variety of problems, crossing traditional scientific do-
mains, linking for example, social drivers to technical system developments and
vice versa instead of the highly segmented approach still in use today. A key to
the success of such environments would be their ability to allow for rapid devel-
opment, to overcome the major problem of most DSS systems in use today, i.e.
their cost-ineffectiveness vis-à-vis the considerable time investment they require for
a usually case-specific end-product. This may require new collaboration and tool
development platforms (similar to the discussion lead by Abbott, Harvey and col-
leagues in wiki.waterknowledge.org (for a more detailed discussion on this issue,
see also Abbott’s paper in this volume)). It may also require the development and
integration within these tools of knowledge bases to facilitate the understanding
of issues related to the crossing of traditional domains and scientific barriers, and
would certainly suggest a need for stronger association of technological/natural sci-
ence exploratory and simulation tools with social science exploration and simulation
(including for example, agent-based modelling and dynamic systems modelling).
Within this context, knowledge representation and inference (including its linguis-
tic expressions and expert judgement encapsulation) become central to the success
of such an ambitious project.

16.5 Conclusions

The tools described above, attempt to provide for some Integration (in the form
of models, analytical engines, GIS and spreadsheets), explicitly address issues of
Interaction (between for example environmental interventions and their impact as
well as between interventions themselves), use GIS for Interfacing with the public
and other stakeholders and for communicating results, include Intelligent compo-
nents through primarily fuzzy inference, learning algorithms and evolutionary opti-
misation and support Interpretation through fuzzy inference assisted linguistic vari-
ables (Zadeh, 1975) and the incorporation of multicriteria techniques and ordered
weighted averaging (Yager, 1988). It can only be hoped that these elements, together
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with current and future developments in hydroinformatics, such as the ones dis-
cussed above, support a better Implementation process, by making the results more
relevant to the socio-technical context in which they are required to function. The
application of much of the work and the principles discussed here, both in research
and practice, for example in Bosnia and Herzegovina (Pistrika et al., 2006), seem to
support this claim and allow for an optimistic view of the future of knowledge-based
environmental decision support.
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Chapter 17
Global and Evolutionary Optimization
for Water Management Problems

D. Savic

Abstract Optimization is a type of modelling which provides solutions to prob-
lems that concern themselves with the choice of a “best” configuration or a set of
parameters that achieve some objective. The search for the “best” (maximum or
minimum) is called global optimization where the goal is to find the best solution
in nonlinear models that may have a multitude of local optima. Evolutionary opti-
mization is a term denoting algorithms that mimic natural evolution and “evolve”
better solutions through evolutionary mechanisms such as selection, reproduction,
crossover and mutation. They are particularly suited for water system applications
where the optimization problem often involves a mixture of discrete and continuous
decision variables or potential solutions that must be evaluated with complex sim-
ulation models, whose linearization or derivative calculations would be difficult or
impossible. Evolutionary optimization is a mature technology with a large number
of applications in a multitude of areas, including water engineering and manage-
ment. This chapter explains the basics of evolutionary optimization and illustrates
its use in many areas of water system management.

Keywords Evolutionary optimization · water supply management · groundwater
remediation · urban drainage system design · model calibration

17.1 Introduction

Providing effective decision support to improve planning, decision making and per-
formance of water systems is of critical importance to water managers. There are
many examples where lack of decision support for water-related problems has led
to huge environmental, social and economic costs to societies. The latest informa-
tion technology in the form of decision-support software can prove to be crucial for
minimizing such adverse effects. Environmental decision making now relies upon
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a portfolio of techniques and models to provide information for the managers and
politicians who will make decisions. With its focus on the application of informa-
tion and communication technologies to water system problems, hydroinformatics
provides an important pool of techniques and models used to aid decision making.
The main reason to rely on any model in a decision-making process is to provide
a quantitative assessment of the effects of decisions on the system being consid-
ered. A model also provides a fairly objective assessment as opposed to subjective
opinions of system behaviour. Thus, models should be used in support of decision
making. Optimization is just another type of modelling which provides solutions
to problems that concern themselves with the choice of a “best” configuration or
a set of parameters that achieve some objective. The search for the “best” (maxi-
mum or minimum) is also called global optimization where the goal is to find the
best solution in nonlinear models that may have a multitude of local optima. This
type of optimization is also called single-objective optimization because it finds a
single best solution corresponding to the minimum or maximum value of a single-
objective function that often lumps different objectives into one. Although this sim-
ple definition could lead to criticisms that emphasizing “find the best” leads users to
oversimplify real-world problems, it should be stressed that optimization is viewed
here as a tool for supporting decisions rather than for making decisions, i.e. should
not substitute decision makers nor the decision-making process!

Many real-world decision-making problems need to achieve several objectives:
minimize risks, maximize reliability, minimize deviations from desired levels, mini-
mize cost, etc. Single-objective optimization is useful as a tool which should provide
decision makers with insights into the nature of the problem, but usually cannot pro-
vide a set of alternative solutions that trade different objectives against each other.
On the contrary, in a multi-objective optimization with conflicting objectives, there
is no single optimal solution. The interaction among different objectives gives rise
to a set of compromised solutions, largely known as the trade-off, nondominated,
noninferior or Pareto-optimal solutions.

Over the course of the last two decades computer algorithms mimicking certain
principles of nature have proved their usefulness in various domains of application.
Researchers and practitioners have found especially worth copying those principles
by which nature has discovered “stable plateaus” in a “rugged landscape” of so-
lution possibilities. Such phenomena can be found in annealing processes, central
nervous systems and biological evolution, which in turn have lead to the following
optimization methods: simulated annealing, artificial neural networks and evolu-
tionary optimization (EO). This article will focus on EO and its use in supporting
decision makers faced with water management problems.

17.2 Evolutionary Optimization

Over many generations, natural populations evolve according to the principles first
clearly stated by Charles Darwin (Darwin, 1859). The main principles are those of
preferential survival and reproduction of the fittest members of the population. In
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addition, the maintenance of a population with diverse members, the inheritance of
genetic information from parents and the occasional mutation of genes characterize
natural systems. Evolutionary optimization encompasses general stochastic
artificial-evolution search methods based on natural selection and the aforemen-
tioned mechanisms of population genetics. This form of search evolves throughout
generations, improving the features of potential solutions by means of biologically
inspired operations (Michalewicz, 1999). Although it represents a crude simpli-
fication of natural evolution, EO provides efficient and extremely robust search
strategies.

The advantage of using EO over traditional optimization methods, such as gra-
dient descent methods or linear and nonlinear programming, is that they can solve
a wide variety of problems without needing to linearize the problem or requiring
derivative calculations of the objective function. If a simulation model capable of
providing a quantitative assessment of the effects of decisions on the system is
available, then an EO tool could be used to optimize the system being consid-
ered. This property is particularly important for water-related applications, where
the optimization problem often involves a mixture of discrete and continuous deci-
sion variables or potential solutions that must be evaluated with complex simulation
models, whose linearization or derivative calculations would be difficult or impos-
sible. In addition, EO sampling is global, rather than local, thus reducing the ten-
dency to become entrapped in local minima and avoiding dependency on a starting
point. However, these stochastic methods cannot guarantee global optimality with
certainty, although their robustness often makes them the best available method for
global optimization problems. Therefore, EO is well suited for analytical decision
support for complex water-related problems and thus can be easily incorporated into
a decision-support framework. On the other hand, if, for a certain problem, there
exists a mathematical programming methodology that can solve the problem sat-
isfactorily, the use of EO techniques is not recommended due to their usually slow
progress (as compared to classical mathematical programming methods). This chap-
ter presents a simple, binary genetic algorithm (GA) as one of the many pathways
EO researchers have followed in the last three decades. Other EO techniques are
just briefly outlined. A review is then made of EO applied to various water-related
decision-making problems.

17.3 Genetic Algorithms

Genetic algorithms are probably the best known type of EO methods. John Holland
(1975) proposed the theory behind GAs in 1975, which was further developed by
Goldberg (1989) and others in the 1980s. These algorithms rely on the collective
learning process within a population of individuals, each of which represents a
search point in the space of potential solutions. A variety of applications has been
presented since the first works and GAs have clearly demonstrated their capability
to yield good approximate solutions even in cases of complex multimodal, discon-
tinuous, nondifferentiable models.
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Fig. 17.1 Pseudo-code for a genetic algorithm

Genetic algorithms are used for a number of different application areas and the
complexity of the algorithm depends on the problem in hand. However, for the pur-
pose of illustration the following description of GAs is given under the assumption
that it is used for function optimization. The standard GA steps in the form of a
pseudo-code are shown in Fig. 17.1.

The analogy with nature is established by the creation within a computer of an
initial population of individuals (step 2 in Fig. 17.1) represented by chromosomes,
which is, in essence, a set of character strings that are analogous to the chromosomes
found in DNA. If a simple function optimization example is used to illustrate the
GA procedures, e.g. optimize f (x), a chromosome may represent a set of parameter
values xi (being optimized) generated at random within pre-specified bounds.

17.3.1 Coding

Standard GAs use a binary alphabet (characters may be 0s or 1s) to form chro-
mosomes. Parameters being optimized are coded using binary strings. Figure 17.2
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0 1 1 0 1 0 0 1 
g1 g2 g3 g4 g5 g6 g7 g8 

Fig. 17.2 A binary chromosome

shows a typical 8-character string, i.e. 8-bit chromosome (each bit is analogous
to a gene).

If only one real-valued parameter is coded in Fig. 17.2, then a decoded parameter
value may be calculated as

x = xmin +
xmax − xmin

27 −1

(
7

∑
i=0

gi ×2i

)

where xmin and xmax are the lower and upper bounds on parameter x. If the parame-
ters are discrete, then a total of 28 possible discrete values can be represented using
the 8-bit string. At this point it should be noted that not all EO algorithms restrict
representation to the binary alphabet which makes them more flexible and applica-
ble to a variety of decision-making problems.

17.3.2 Fitness and Selection

Once the initial population has been generated the individuals in the population then
go through a process of evolution. In nature, different individuals compete for re-
sources (food, water and shelter) in the environment. Some are better than others.
Those that are better are more likely to survive, attract mates, have and successfully
rear offspring and thus propagate their genetic material. The measure of how good
the individual is at competing in its environment is called the fitness of the indi-
vidual. Consequently, the selection of who gets to mate is a function of the fitness
of the individual. The selection operator has to be formulated to ensure that selec-
tion pressure is applied appropriately, i.e. that better individuals (with higher fitness)
have a greater likelihood of being selected for mating, but also to ensure that worse
individuals are not completely excluded (i.e. still have a small probability of being
selected) since they may contain some important genetic material. Tournament se-
lection is the most often used method of selecting individuals for mating in GAs. It
runs a “tournament” among a few individuals chosen at random from the population
and selects the winner (the one with the best fitness) for the reproduction phase. The
probability of an individual winning the tournament is proportional to its fitness.

17.3.3 Reproduction

In nature, sexual reproduction allows the creation of genetically radically different
offspring that still belong to the same species as their parents. A simplified look at
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Fig. 17.3 Single-point
crossover 1 1 1 1 0 0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Parent 1 Parent 2

crossover
point

head 1 tail 2 head 2 tail 1

offspring 1 offspring 2

what happens at the molecular level reveals that two chromosomes exchange pieces
of genetic information. This is the recombination operation, which is generally re-
ferred to as crossover because of the way that genetic material crosses over from one
chromosome to another (Fig. 17.3). During the reproductive phase of the GA (step
3 in Fig. 17.1), individuals are selected from the population and recombined, pro-
ducing offspring which will comprise the next generation. A single-point crossover
takes two individuals (parents in Fig. 17.3) and cuts their chromosome strings at
some randomly chosen point if a pre-specified probability is achieved. The newly
created head segments stay in their respective places while the tail segments are then
crossed over to produce two new chromosomes. If the crossover probability is not
achieved, the two parents are transferred to the mating pool unchanged.

17.3.4 Mutation

Mutation also plays a role in the reproduction phase, though it is not the dominant
role, as is popularly believed, in the process of evolution (Fig. 17.4). In GAs mu-
tation randomly alters each gene with a small probability, thus providing a small
amount of random search. If the probability of mutation is set too high, the search
degenerates into a random search. This should not be allowed and a properly tuned
GA is not a random search for a solution to a problem. As a simulation of a genetic
process a GA uses stochastic mechanisms, but the result is distinctly nonrandom
(better than random).

Fig. 17.4 A single mutation

Gene selected for mutation 
1 1 1 1 1 1

1 1 1 1 0 1

17.3.5 Multi-objective Evolutionary Optimization

Many real-world optimization problems involve multiple objectives that need to be
considered simultaneously. If these objectives are conflicting, as is usually the case,
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a single solution optimal for all the objectives cannot be found. As a consequence,
the assessment of the fitness of a set of solutions is not straightforward (compared
to single-objective optimization) and calls for a method that provides a formal defi-
nition of the qualitative notion of compromise. The vast majority of multi-objective
EO algorithms presented to date solve this predicament through the concept of
Pareto dominance, which is embedded in their ranking procedures. Each solution
of the Pareto-optimal set is not dominated by any other solution, i.e. in going from
one solution to another, it is not possible to improve on one objective (e.g. reduce
the risk) without making at least one of the other objectives worse (e.g. increase
cost). Pareto dominance is then used to classify the solutions generated and to drive
the search for a better set of nondominated solutions. The need to identify as many
solutions as possible within the Pareto-optimal range often represents a problem for
standard optimization techniques. By maintaining and continually improving a pop-
ulation of solutions, an EO algorithm can search for many nondominated solutions
at the same time (in a single run), which makes it a very attractive tool for solving
multi-objective optimization problems.

17.4 Other Evolutionary Optimization Algorithms

Genetic algorithms are not the only algorithms based on similarities with biologi-
cal evolution. Evolutionary programming (Fogel and Atmar, 1992), evolution strat-
egy (Schwefel, 1981), classifier system (Holland, 1975) and genetic programming
(Koza, 1992) are all techniques which draw their power from principles adopted
from natural processes.

Evolutionary programming and evolution strategy are stochastic optimization
techniques similar to GAs, but which do not use a binary representation for pa-
rameters being optimized and crossover as a search strategy. These optimization
techniques use a representation which follows from the problem, i.e. if parame-
ters are real-valued numbers then they are represented by a floating-point string
(chromosome). The mutation operation simply changes the solution parameters ac-
cording to a statistical distribution which weights minor variations in offspring as
highly probable and substantial variations as increasingly unlikely as the (global)
optimum is approached. Like GAs, the evolutionary programming and evolution
strategy techniques are useful for optimizing problem solutions when other tech-
niques like gradient descent or direct, mathematical programming methods are not
possible.

Classifier systems are cognitive systems which use adaptive techniques to evolve
(learn) rules of the type “IF–THEN”. A single rule is termed as a “classifier” and
a representation is chosen that makes it easy to manipulate rules by, for example,
encoding them into binary strings. A set of classifiers constitutes a population and
new rules evolve by employing a GA to generate a new set of rules from the current
population.
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Genetic programming is a technique for evolving programs to solve problems.
Therefore, the individuals of the population are programs and by manipulating them
in a GA-like manner new programs are generated. The process obviously needs new
ways of representation and even new programming languages (Koza, 1992).

Evolutionary optimization algorithms are currently popular tools and are being
applied to a wide range of water-related problems. Their appeal is their concep-
tual simplicity and an apparent applicability to problems where little knowledge is
available. The following section presents various application areas to which these
programs have been applied in the past.

17.5 Applications of Global and Evolutionary Optimization
to Water-Related Problems

There are many examples of genetic algorithms and evolutionary optimization algo-
rithms successfully applied to water-related optimization problems, with the number
of real-world applications steadily growing. The following is a nonexhaustive re-
view of applications, some of which have been used in practice while others remain
as research topics.

17.5.1 Water Supply Management

In the area of water supply management, most applications of evolutionary opti-
mization are for reservoir operations and control. Esat and Hall (1994) were the
first to demonstrate advantages of using a GA over standard dynamic programming
(DP) techniques in terms of computational requirements. Further studies by Oliveira
and Loucks (1997), Wardlaw and Sharif (1999), Merabtene et al. (2002), Cui and
Kuczera (2003) and Reis et al. (2005) followed, showing that the main advantages
of the EO (and hybrid) approaches were that (i) discretization of state and deci-
sion spaces were not required nor were the initial trial state trajectories needed; (ii)
complex reservoir systems need not be decomposed as in successive approximation-
based approaches; (iii) EO approaches have the ability to work with highly complex,
even discontinuous objective functions; and (iv) noninvertible systems can be easily
handled without introducing dummy state variables as in DP-based approaches.

17.5.2 Groundwater Remediation

Optimal design of a groundwater pump-and-treat system is a difficult task, espe-
cially given the computationally intensive nature of field-scale remediation design.
Genetic algorithms have been used extensively for remediation design because
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of their flexibility and global search capabilities. McKinney and Lin (1994) and
Ritzel et al. (1994) were the first to implement evolutionary optimization techniques
on groundwater remediation designs. While McKinney and Lin used a single-
objective GA to maximize the pumping rate from an aquifer, minimize the water
supply development cost and minimize the total aquifer remediation cost, Ritzel
et al. used a multi-objective GA to allow better consideration of different objec-
tives. Subsequently, many other authors developed further the GA approaches to
the pump-and-treat remediation method, including Aly and Peralta (1999), Yoon
and Shoemaker (1999), Smalley et al. (2000), Erickson et al. (2002) and Espinoza
et al. (2005).

17.5.3 Model Calibration

One of the earliest applications of EO model calibration problems is the work by
Wang (1991) who calibrated a conceptual rainfall–runoff model using a simple bi-
nary GA. Following that application, a number of papers appeared in the literature
applied to calibration of (i) rainfall–runoff models (Franchini, 1996; Ndiritu and
Daniell, 2001), (ii) urban drainage models (Liong et al., 2001; di Pierro et al., 2005),
(iii) water distribution models (De Schaetzen et al., 2000; Kapelan et al., 2003) and
(iv) groundwater models (Lingireddy, 1998; Solomatine et al., 1999), etc.

17.5.4 Urban Drainage System Design

Although EO algorithms seem well suited to urban drainage system infrastruc-
ture design, there have not been many applications in this area. Rauch and Har-
remoes (1999) discussed the potential of GA applications in urban drainage mod-
elling and highlighted model calibration and model predictive control as the main
applications. Yeh and Labadie (1997) applied a multi-objective GA to generate non-
dominated solutions for system cost and detention effects for a catchment in Taiwan
while Diogo et al. (2000) applied a GA to optimize the design of a tri-dimensional
urban drainage system. The application of EO to find cost-effective solutions to
sewer flooding has been reported by Long and Hogg (2005).

17.5.5 Water Distribution System Design

Water distribution system design optimization is one of the most heavily researched
areas in the hydraulics profession. Recently, EO algorithms have become the pre-
ferred water system design optimization technique for many researchers (Simpson
et al., 1994; Dandy et al., 1996; Savic and Walters, 1997) because they demonstrate
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good ability to deal with complex, nonlinear and discrete optimization problems.
Most of these early works have used pipe diameters as the only decision variables,
although storage tanks, pumps, etc. are also important decision variables. Further-
more, attaining acceptable system reliability has been a challenge in the optimal
design of water distribution networks. Tolson et al. (2004) used the first-order re-
liability method coupled with a genetic algorithm to find reliable optimal design
solutions to the water distribution system design problem. Kapelan et al. (2003) and
Babayan et al. (2005) came up with two different methods of incorporating robust-
ness/reliability into the design of the water distribution system based on efficient
use of EO algorithms. Multi-objective EO algorithms based on structured messy
GAs were first used by Halhal et al. (1997) to plan improvements of ageing wa-
ter distribution systems, while Vamvakeridou-Lyroudia et al. (2005) have combined
multi-objective EO algorithms with fuzzy reasoning for benefit/quality evaluation of
both design and operation of a water distribution system including tanks and pumps
as decision variables.

17.6 Conclusions

Typing in the words “genetic algorithms” into one of the popular Internet search
engines results in over 12 million hits! This shows that if genetic algorithms and
evolutionary optimization in general were a novelty only two decades ago, they are
certainly a mature technology now with an astonishingly large number of applica-
tions in a multitude of areas. The usefulness of these algorithms in solving diffi-
cult, less structured, real-world problems has made them a favourite choice among
the traditional methods, namely gradient search, random search and other methods.
However, where specialized techniques exist for solving a particular problem, they
are likely to outperform EO approaches in both speed and accuracy of the final re-
sult. Therefore, the appeal of EO techniques is in their conceptual simplicity, global
search capabilities and an apparent applicability to problems where little knowledge
is available (because they have the ability to explore and learn from the problem
domain). Various areas of water management have already benefited from the use
of EO as evidenced by the vast literature available in this domain.

There is, however, a need to emphasize that EO algorithms are “black box”
stochastic iterated search methods and rely on repeated evaluation of a large num-
ber of candidate solutions to the problem in question, which means they typically
need to incur the computational expense of thousands of simulations. This leads to
several issues which should be addressed by researchers in the future. For exam-
ple, hybridizing stochastic search with machine learning (Jourdan et al. 2005) has
shown the great promise to reduce the number of computationally expensive fitness
evaluations, with 40–50% time savings on large-scale problems coupled with reli-
ably better solutions, despite relatively naı̈ve configurations and algorithm design
choices in this initial work. Several other promising methodologies like the use of
parallel or grid computing or replacing computationally expensive fitness evaluators
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with approximate ones – surrogate modelling (Bandler and Madsen, 2001) and meta
modelling (Kleijnen and Sargent, 2000) – have also been suggested as a way for-
ward. Another example of a further research topic is the so-called hyperheuristics,
a technique for discovering algorithms which directly construct good solutions to a
class of problems – so far investigated on bin-packing, timetabling and scheduling
problems – in which an EO algorithm attempts to find a fast constructive algorithm
for the problem class in question. Further ideas and challenges for EO could be
found in Corne et al. (1999).

This chapter has explained the basics of EO and illustrated its use in many areas
of water system management. It is hoped that by introducing the reader to these
interesting examples one could grasp the idea of EO and their potential use with
greater ease.
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Chapter 18
Conditional Estimation of Distributed Hydraulic
Conductivity in Groundwater Inverse Modeling:
Indicator-Generalized Parameterization
and Natural Neighbors

F.T-C. Tsai and X. Li

Abstract This research develops an indicator-generalized parameterization (In-
dicator GP) method to improve the conditional estimation of spatially distributed
hydraulic conductivity in groundwater modeling. Indicator GP, which honors dis-
tinct pointwise hydraulic conductivity measurements, integrates a natural neighbor
(NN) interpolation method and Voronoi tessellation (VT) through a set of data in-
dicators. The indicators use binary values to determine the selection of measured
hydraulic conductivity data in the parameterization method. With Indicator GP, hy-
draulic conductivity is conditionally estimated between the Voronoi zones and the
NN interpolated (smoothed) field. The conditional estimation is greatly improved
beyond any specific parameterization method. Indicator GP is used to identify the
distribution of hydraulic conductivity by finding the optimal binary values of data
indicators such that the misfit between observed and calculated groundwater head
observations is minimized. As a consequence, the identification problem is formu-
lated as an integer nonlinear programming (INLP) problem, which involves ground-
water modeling and leads to a complicated combinatorial optimization problem. We
use a genetic algorithm (GA) to globally search for the optimal value of data indi-
cators. A GA tremendously reduces the problem complexity and improves the in-
verse solution. We demonstrate the potential of using Indicator GP in groundwater
inverse modeling via a numerical model where a synthetic hydraulic conductivity
distribution is unknown and needs to be identified. The results show that using GA
and Indicator GP outperforms both VT and NN methods, avoids the local optimum,
captures the non-smoothness of heterogeneity, and gives a small misfit value with
reasonable estimation error.
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18.1 Introduction

Hydraulic conductivity estimation in groundwater modeling is essential for the
purposes of gaining a better understanding of aquifer characteristics and improv-
ing groundwater modeling reliability. It is generally understood that identification
of a hydraulic conductivity value at each location is nearly impossible when only a
limited amount of data (e.g., hydraulic conductivity measurements and groundwater
head observations) are available. The approximation of the spatially distributed hy-
draulic conductivity is necessary and is usually conducted through parameterization
methods (McLaughlin and Townley, 1996).

Current parameterization schemes are typically either a zonation method or an
interpolation method, which result in either piecewise constant distribution (zones)
or a smooth continuous distribution, respectively. However, geological formation
processes do not constrain the hydraulic conductivity to be a smooth distribution
or zonation structure. Presumption of both types of distributions is unrealistic and
will mislead the consequence of estimation. Improving the existing parameterization
technique is necessary in order to improve the hydraulic conductivity representation.
Recently, a generalized parameterization (GP) method was developed to integrate
a zonation structure and an interpolation method to improve the identification of
hydraulic conductivity in a deterministic field (Tsai and Yeh, 2004).

This study focuses on the GP method and its theoretical development when a ran-
dom field of hydraulic conductivity is considered. First, an indicator-generalized pa-
rameterization (Indicator GP) is introduced to conditionally estimate the hydraulic
conductivity field. Indicator GP introduces the data indicators to all sampled hy-
draulic conductive measurements to determine the selection of a set of sample data
for conditional estimation in the GP method. Second, the Voronoi tessellation (VT)
and natural neighbor (NN) interpolation methods are adopted in the Indicator GP.
The conditional variance of estimation error using Indicator GP is then derived.
Third, a genetic algorithm (GA) is used to search for the optimal binary value of
the data indicators by minimizing the misfit of groundwater head observations to
obtain the best conditional estimation of hydraulic conductivity. Last, a numerical
example demonstrates the advantage of using GA to find the global optimal solution
and shows that Indicator GP is better than any single parameterization method.

18.2 Indicator-Generalized Parameterization (Indicator GP)

Consider m sample data of hydraulic conductivity (K) from an aquifer (Ω). The
natural logarithmatic K value (i.e., π = ln(K)) will be analyzed in this study under
the assumption of the log-normal distribution of hydraulic conductivity. We first
construct m distinct zones as shown in Fig. 18.1 by honoring the sample data such
that each sample data represents a distinct zone, denoted as (Ω(i)), i = 1,2, . . . ,m.
Therefore, Ω = Ω(1) + Ω(2) + · · ·+ Ω(m). For example, an estimate at a location x0

is determined by.
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Fig. 18.1 Sample locations, a zone structure, and an interpolation method

π Zonation (x0) =
{

π k|x0 ∈ Ω(k)
}

(18.1)

The zonal values are assigned to be the corresponding sampled values. To avoid
confusion, the zonation method in (18.1) should be distinguished from other zona-
tion studies in groundwater inverse modeling (e.g., Carrera and Neuman, 1986)
where the zonal values are identified through an inverse procedure. In (18.1), the
number of zones is the same as the number of sample data of hydraulic conduc-
tivity. The zonal values are determined by the sampled values. In the case that two
adjacent sample sites have the same sampled K values, two zones are still considered
according to (18.1).

As shown in Fig. 18.1, an interpolation method can also be selected to interpolate
the sampled values in space to obtain a smooth distribution of hydraulic conductivity
as follows:

π Interpolation (x0) =
m

∑
j=1

φ jπ j (18.2)

where φ j are the basis functions according to the chosen interpolation method and
∑m

j=1 φ j = 1. Equation (18.2) can also represent a functional-based interpolation
method, e.g., algebraic polynomials and trigonometric polynomials, which are pop-
ular in statistical learning theory (Cherkassky and Mulier, 1998). However, the
functional-based interpolation methods do not honor the sampled values and are
beyond the scope of the present work.

An indicator-generalized parameterization (Indicator GP) method is developed
to integrate the designated zone structure and interpolation method through m data
indicators as follows:

π IGP (x0) =
m

∑
j=1

j �=k(x0)

(π j −π k(x0))φ jI j +π k(x0) (18.3)

where {I1, I2, . . . , Im} have binary values {0,1}, and k(x0) represents the kth sample
data index for the unsampled location x0 in the kth zone.
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The data indicators determine the selection of a set of sample points for estima-
tion. If an indicator value is one, the corresponding sampled site is considered in the
estimation at x0. A sample data point is not used in the estimation if its indicator
value is zero. An unsampled location x0 in the k th zone always has the sample
data πk(x0) in the estimation. According to (18.3), the Indicator GP conditionally
estimates a mixed distribution of hydraulic conductivity between the zone structure
({I1, I2, . . . , Im} ∈ {0}) and the smooth distribution ({I1, I2, . . . , Im} ∈ {1}).

In the past, the parameterization method concentrated on finding the best ba-
sis functions, e.g., the kriging method where the basis functions (kriging weights)
are obtained by minimizing the conditional variance (Delhomme, 1979). However,
the kriging method may overly smooth hydraulic conductivity heterogeneity. The
kriged field may not result in good agreement with groundwater observations when
groundwater hydrology is considered. Other than finding the best basis functions,
this study focuses on the natural neighbor (NN) interpolation method and investi-
gates its geostatistical property.

18.3 Geostatistics of Indicator GP with Natural Neighbors

The Indicator GP is applicable to many existing interpolation methods. Regardless
of the zone shape, the Indicator GP is also applicable to many zone structures that
honor the sample values and partition the hydraulic conductivity distribution into
m zones according to the m sample data. This study employs an NN interpolation
method and Voronoi tessellation (VT) in the Indicator GP.

18.3.1 Voronoi Tessellation

Voronoi tessellation is a zonation method that neutrally partitions a region into zones
according to the nearest sample location. In a two-dimensional field as shown in
Fig. 18.2(a), VT determines the zone Ω j (first-order Voronoi cell) according to

Ω j = Ω(x j) = {x|d(x,x j) < d(x,xl), ∀l �= j, l = 1, . . . ,m} (18.4)

where d(x,x j) =
√

(x−x j)T(x−x j) is the Euclidean distance between the unsam-
pled location x and the sample location x j. Again, each Voronoi cell includes only
one sample data point. VT was originally developed by mathematicians (Voronoi,
1908) and subsequently rediscovered in many fields, e.g., the Thiessen method in
meteorology and hydrology. VT was also used to find the optimal equivalent zona-
tion structure in the parameter structure identification problem (Tsai et al., 2003).

There are many zonation methods that can be employed to partition the hydraulic
conductivity field into zones when additional geophysical information is available.
However, if geophysical information is not available, Voronoi tessellation can be
considered as an objective zonation method due to its neutral creation of zones.
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Fig. 18.2 (a) Voronoi tessellation based on the sample locations. (b) Natural neighbor coordinate

18.3.2 Natural Neighbor Interpolation

Consider that the first-order Voronoi cells (Ω j) are originally created by the sample
data as shown in Fig. 18.2(a). Another first-order Voronoi cell (Ω0) is created by an
unsampled location x0, which overlaps parts of the first-order Voronoi cells of the
sample data as shown in Fig. 18.2(b). A second-order Voronoi cell Ω0 j is defined as
the overlapping area of Ω0 to Ω j according to the following

Ω0 j = {x|d(x,x0) < d(x,x j) < d(x,xl), ∀l �= j,0, l = 1, · · · ,m} (18.5)

The sampled location x j is defined as a natural neighbor of x0 if the second-
order Voronoi cell Ω0 j (the overlapping area) exists. The NN interpolation method
is developed with the basis functions based on the natural neighbor coordinates
defined as φ j = Ω0 j

/
Ω0 (Sibson, 1981; Sambridge et al., 1995; Tsai et al., 2005).

For those sampled sites which are not the natural neighbors of x0, it shows φ j = 0.
The NN interpolation method is

π NN(x0) =
nn

∑
j=1

Ω0 j

Ω0
π j (18.6)

where {nn} represents the number of the natural neighbors of x0, and
nn
∑
j=1

Ω0 j
/

Ω0 = 1.

18.3.3 Conditional Estimation and Conditional Variance
Using Indicator GP

Consider π = ln(K) is an intrinsic field with a semivariogram γ(xi,x j) between any
two locations xi and x j. The semivariogram is defined as γ(xi,x j) = 1

2 σ2[π(xi)−
π(x j)] = 1

2 σ2[π i −π j]. The Indicator GP will be used to estimate the intrinsic field
of hydraulic conductivity. From the geostatistical viewpoint, (18.3) is regarded as
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the conditional estimation (or conditional mean) conditioned on the sample data
(Dagan, 1982). Consider that the estimation error is defined to be the discrepancy
between the true value and the estimated value by Indicator GP, i.e., e = π −π IGP.
The expectation of the estimation error is

E [e] = E [π −π IGP] = E [π]−

⎧⎪⎨
⎪⎩

nn

∑
j=1
j �=k

φ jE
[
π j −π k(x0)

]
I j +E

[
π k(x0)

]
⎫⎪⎬
⎪⎭ (18.7)

By definition, the intrinsic field has a constant mean (statistical homogeneity)
throughout the region, i.e., E [π] = E [π j] , j = 1, . . . ,nn. Therefore, E

[
π j −π k(x0)

]
= 0 and E [π] = E

[
π k(x0)

]
in (18.7). The unbiasedness E[e] = 0 and statistical ho-

mogeneity using Indicator GP are attained regardless of the data indicator values.
Especially, the intrinsic field is valid even though the zone structure is used as the
conditional estimation.

The estimation error variance (conditional variance) is obtained as follows:

σ2
IGP [e] =σ2 [π −π IGP] = 2

nn

∑
i=1
i �=k(x0)

φiγ̃(xi,x0)Ii (18.8)

−
nn

∑
i=1
i �=k(x0)

nn

∑
j=1
j �=k(x0)

φiφ j γ̃(xi,x j)IiI j +2γ
(
xk(x0),x0

)

where
γ̃ (xi,x0) = γ (xi,x0)− γ

(
xi,xk(x0)

)
− γ

(
x0,xk(x0)

)
and

γ̃ (xi,x j) = γ (xi,x j)− γ
(
xi,xk(x0)

)
− γ

(
x j,xk(x0)

)

Equation (18.8) represents the conditional variance for a mixed distribution between
the natural neighbor interpolated distribution and the Voronoi zone structure. To
avoid confusion, the conditional variance in (18.8) should be distinguished from the
kriging variance because the basis functions φ j are not the kriging weights in this
study. For the NN interpolation method (I j = 1, ∀ j), the conditional variance is

σ2
NN = 2

nn

∑
i=1
i �=k(x0)

φiγ̃(xi,x0)−
nn

∑
i=1
i �=k(x0)

nn

∑
j=1
j �=k(x0)

φiφ j γ̃(xi,x j)+2γ
(
xk(x0),x0

)
(18.9)

For the Voronoi zone structure, the conditional variance is the variogram σ2
VT = 2γ .

One can show that the conditional variance of Indicator GP is bounded between that
of the NN and VT methods, i.e., σ2

NN ≤ σ2
IGP ≤ 2γ .
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18.4 Identification of Optimal Indicator Values
by Genetic Algorithm

An inverse procedure has to be implemented to identify the optimal conditional
mean of hydraulic conductivity such that the misfit between simulated and ob-
served groundwater heads is minimized. Traditional geostatistical inversion em-
phasizes the parameter identification in the semivariogram model (Kitanidis and
Vomvoris, 1983). However, many studies have indicated that the semivariogram
model parameter identification has little improvement on the modeling agreement
to groundwater observations. The semivariogram model parameters can be reason-
ably estimated merely using the experimental semivariogram. In this study, we will
show that the data indicator identification is able to significantly reduce the misfit to
groundwater observations. The optimal values of the data indicators are identified
through the minimization of the estimated standard deviation of groundwater heads:

min
Ip∈{0,1}

[
1

L−m

L

∑
j=1

(
h j(Ip)−hobs

j

)2
]1/2

(18.10)

where the decision variables are indicator values Ip, p = 1,2, . . . ,m; L is the num-
ber of groundwater head observations hobs

j ; and h j(Ip) is the calculated groundwater
heads through a groundwater model. The estimated standard deviation in (18.10)
considers the m degrees of freedom due to estimating m unknown Ip (Yeh and
Yoon, 1981).

The inverse problem posed in (18.10) is a binary integer nonlinear programming
(BINLP) problem, which involves groundwater modeling and which leads to a com-
plicated combinatorial optimization problem. Although the cutting plane algorithm
and branch-and-bound method have been proved to be very efficient in integer lin-
ear programming (ILP) (Papadimitriou and Steiglitz, 1998), these two methods are
anticipated to be not efficient in solving (18.10) because a great number of gradient
evaluations through groundwater flow forward modeling are necessary. In addition,
many local optima may exist. From our experience, a GA will be suitable for solv-
ing this BINLP because a GA is a derivative-free heuristic method and is able to
search for a global optimum with multiple searching points (Salomon, 1998).

To adopt GA to our problem, a binary chromosome is designed to represent a
feasible solution of (18.10). A chromosome includes m parameters, each of which
has 1 bit representing a data indicator with a value of zero or one. Therefore, a total
number of possible solutions are 2m. A GA searches for a global optimal solution
using a set of processes and operators analogous to bio-evolution processes (e.g., se-
lection, crossover, mutation, reproduction, and replacement) to improve/maximize
the fitness of chromosomes generation by generation (Goldberg, 1989). To our in-
verse problem, the fitness is given as the negative value of the objective function in
(18.10) for the maximization purpose:
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fitness = −
[

1
L−m

L

∑
j=1

(
h j(Ip)−hobs

j

)2
]1/2

(18.11)

Another interpretation of the inverse problem in (18.10) is to search for the opti-
mal number and location of the sample data with the value Ip = 1 among the m
sample locations. As presented in Section 18.3, the more the indicators with Ip = 1,
the smaller the conditional variances. Understanding the impact of the number of
Ip = 1 to the misfit value and to the estimation uncertainty according to the condi-
tional variances is important. Therefore, in addition to obtaining the global optimal
solution of data indicators using GA in one shot, this study also transforms the orig-
inal inverse problem into a stepwise procedure where we systematically increase the
number of Ip = 1. Given the number of Ip = 1, the location optimization problem
for the indicators with Ip = 1 is posed as the following:

min
Ip∈{0,1}

[
1

L−m

L

∑
j=1

(
h j(Ip)−hobs

j

)2
]1/2

(18.12)

subject to
1 ≤ � j ≤ m; j = 1,2, . . . ,n ≤ m and � j is an integer (18.13)

Ip = 1 for p ∈ � j and Ip = 0 for p /∈ � j (18.14)

where the decision variables are � j , j = 1,2, . . . ,n, the location indices of the in-
dicators with Ip = 1; and n is the number of Ip = 1. Again, using traditional
combinatorial optimization methods to solve this integer nonlinear programming
(18.12–18.14) may not be efficient. Instead, a GA can cope with this problem
very easily. In this study, we design a new chromosome to consider the location
indices {� j}. The length of the chromosome is n. In summary, a GA tremen-
dously reduces the complexity of the inverse problems in (18.10) and (18.12–
18.14) and is able to obtain the global or near-global optimum solution. Specific
information about the GA parameters will be given in the following numerical
example.

18.5 Conditional Estimation of Hydraulic Conductivity

18.5.1 Synthetic Confined Aquifer

In the numerical example, a true distribution of hydraulic conductivity (range
from 2 to 10 m/day) as shown in Fig. 18.3(a) is given in a two-dimensional con-
fined aquifer, which has a bend of high K values extending from northeast to
southwest. Hydraulic conductivity decreases from the high K bend to the north-
west and the southeast. This numerical example will be used to investigate the
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Fig. 18.3 (a) The true K distribution, pumping wells (squares with pumping rates, m3/day), and
groundwater head boreholes (triangles). (b) The K sampled locations (pluses) and Voronoi tessel-
lation and (c) the semivariogram

indicator GP method against the Voronoi zone structure and the NN interpolation
method.

The specific information about this numerical experiment is given in Table 18.1.
Six pumping wells with corresponding constant pumping rates (the squares and val-
ues in Fig. 18.3(a)) are operated for a stress period of 30 days. MODFLOW-2000
(Harbaugh et al., 2000) is used to conduct the groundwater flow simulation, and
groundwater heads are collected every day at 11 observation locations. A total of
330 head observations are obtained to which a Gaussian noise term with zero mean
and a constant standard deviation is added, where σh = 0.01m represents the ob-
servation error. In addition, 60 hydraulic conductivity values are sampled at the
sampled locations shown in Fig. 18.3(b). A Voronoi zone structure is created based
on these sampled locations. The experimental semivariogram is obtained using the
60 ln(K) values as shown in Fig. 18.3(c) and is described using a Gaussian model:
γ(d) = 1.56 ·Gau(d/1609), where d is the distance lag (m).

Table 18.1 Characteristics of the synthetic aquifer

Aquifer Confined

Dimensions 3200 m by 3200 m
Boundaries AD: constant head (h = 40m)

AB,BC, and CD: impervious
Hydraulic conductivity (K) 2–10 m/day
Specific storage 10−4 m−1

Number of pumping wells 6 (squares in Fig. 18.3(a))
Number of head observation boreholes 11 (triangles in Fig. 18.3(a))
Number of K measurements 60 (pluses in Fig. 18.3(b))
Discretization 64 rows by 64 columns
Stress period 30 days
Time steps 30
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18.5.2 Genetic Algorithm

This study adopts a GA solver (Houck et al., 1995) to search for the best 60 binary
values of data indicators Ip such that the misfit to the groundwater head observa-
tions is minimized. The fitness in GA is given in (18.11). The total number of head
observations is L = 330 and the degrees of freedom in the estimation problem are
m = 60. Given a chromosome, the hydraulic conductivity distribution is calculated
by Indicator GP (18.3). We link MODFLOW with GA as a simulation-optimization
model to obtain the simulated head observations and to evaluate the fitness. For each
GA run, we assign 50 chromosomes in one population to be evolved for 100 gener-
ations. The probability for the simple crossover is 0.6 and for the binary mutation is
0.05. A normalized geometric selection method (Houck et al., 1995) is used with a
selection probability 0.08. The optimal indicator values are obtained when the GA
fitness has no further improvement over one GA run in which the chromosomes are
evolved over 100 generations.

18.5.3 Results of Conditional Estimation of Hydraulic Conductivity

Before conducting the GA, the Voronoi zone structure and NN interpolated distri-
bution, as shown in Fig. 18.4(a) and (b), are used to obtain the misfit values as the
baseline. The degree of freedom is zero in (18.10) because no estimation is made.
The misfit value is 0.0823 m and 0.0863 m for the VT and NN methods, respectively.

We use GA to obtain the optimal binary values of data indicators in one shot.
After 7 runs of the GA (35,000 fitness evaluations; note: the total number of enu-
merations is 260 = 1.15× 1018), the best solution of the binary data indicators is
selected from the ultimate generation with a minimum misfit value of 0.0355 m,
which is much smaller than that by VT and NN. There are 25 data indicators with
Ip = 1 and 35 data indicators with Ip = 0. The conditional estimation of Indicator GP
and the locations of the optimal 0–1 data indicators are shown in Fig. 18.4(c). The
optimization results show that Indicator GP significantly improves the fitting of the
head observations because Indicator GP allows the optimal adjustment of sampled

(a) (b) (c)
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0

Fig. 18.4 The conditional estimation of hydraulic conductivity using (a) VT, (b) NN, and
(c) Indicator GP (black dots: Ip = 1 and open circles: Ip = 0)
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data influences through the data indicators while the VT and NN methods predeter-
mine the conditional estimations. Again, the conditional estimation of Indicator GP
is reasonable because the estimation honors the sampled data and the distribution is
between the Voronoi zones and NN interpolated field.

18.5.4 Conditional Variances of Estimation Error
and Estimation Uncertainty

The conditional variances of estimation error of the VT, NN, and Indicator GP meth-
ods are calculated according to (18.8). As shown in Fig. 18.5, the VT gives the
largest conditional variances because only the nearest sampled location is used for
estimation. The NN distribution has the smallest conditional variances, where the
relatively high variances are present at the boundary. The Indicator GP gives small
conditional variances between that of VT and NN.
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Fig. 18.5 Conditional variance distribution of (a) VT, (b) NN, and (c) Indicator GP

In summary, Indictor GP is able to honor sampled data, minimize the misfit to
the observations, and identify a reasonable conditional estimation with small condi-
tional variances.

18.5.5 Misfit and Estimation Uncertainty vs. Quantity of Data
Indicators with III ppp === 111

The stepwise procedure is implemented to evaluate the impact of Ip = 1 on the mis-
fit and estimation uncertainty. In the stepwise procedure, the GA optimizes the lo-
cations of the Ip = 1 data indicators to have the minimum misfit value when the
number of Ip = 1 is predetermined. As shown in Fig. 18.6, the misfit value of In-
dicator GP is always smaller than that of the VT and NN methods regardless of
the number of Ip = 1. The minimum misfit is found when the number of Ip = 1 is
25, which is consistent with the GA results in the previous discussion. The overall
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Fig. 18.6 Misfit and estimation uncertainty vs. the number of Ip = 1

estimation uncertainty is considered in terms of the sum of the conditional variances
∑64

i=1 ∑64
j=1 σ2

i j. The estimation uncertainty monotonically decreases with the increas-
ing number of Ip = 1. Debate on a good representation of conditional estimation may
be raised to find a trade-off between the small misfit value and small estimation un-
certainty. Some statistical information criteria (e.g., Carrera and Neuman, 1986) can
be adopted to determine the best trade-off.

18.6 Conclusions

This study has developed an indicator-generalized parameterization method for a
better representation of the conditional estimation of hydraulic conductivity in a
random field. We have combined the Voronoi zone structure and a natural neighbor
interpolation method to capture non-smoothness of heterogeneity. The conditional
variance of estimation error using Indicator GP has been derived for an intrinsic
field of log-hydraulic conductivity. The complexity of the inverse problem of identi-
fying the optimal binary values of data indicators has been tremendously eliminated
by using a genetic algorithm. It concludes that the Indicator GP is able to find the
optimal conditional estimation of hydraulic conductivity between that of the VT and
NN methods with the minimal misfit value of groundwater head observations. The
estimation error of the Indicator is bounded between that of the VT and NN meth-
ods. A trade-off between the small misfit value and the small estimation uncertainty
needs further study.
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Chapter 19
Fitting Hydrological Models on Multiple
Responses Using the Multiobjective
Evolutionary Annealing-Simplex Approach

A. Efstratiadis and D. Koutsoyiannis

Abstract Most complex hydrological modeling schemes, when calibrated on a sin-
gle observed response (e.g., river flow at a point), provide poor predictive capability,
due to the fact that the rest of the variables of basin response remain practically un-
controlled. Current advances in modeling point out that it is essential to take into
account multiple fitting criteria, which correspond to different observed responses
or to different aspects of the same response. This can be achieved through multiob-
jective calibration tools, thus providing a set of solutions rather than a single global
optimum. In addition, actual multiobjective optimization methods are rather ineffi-
cient, when real-world problems with many criteria and many control variables are
involved. In hydrological applications there are some additional issues, due to un-
certainties related to the representation of complex processes and observation errors.
The multiobjective evolutionary annealing-simplex (MEAS) method implements an
innovative scheme, particularly developed for the optimization of such problems. Its
features and capabilities are illustrated by solving a challenging parameter estima-
tion problem, dealing with hydrological modeling and water resource management
in a karstic basin in Greece.

Keywords Parameter estimation · conjunctive hydrological models · evolutionary
multiobjective optimization · irregular pareto front · model uncertainty

19.1 Introduction

The parameter estimation procedure of hydrological models aims toward a faith-
ful reproduction of observed outputs, in addition to establishing “behavioral” (i.e.,
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realistic, reliable and stable) parameters. In addition, it is recognized that model-
ing schemes with more than five to six parameters, when calibrated on a single
observed response (typically, a river flow time series at a single point), often pro-
vide poor predictive capacity (Wagener et al., 2001). This is due to the fact that
the rest of the basin responses remain practically uncontrolled, thus leading to non-
realistic representation of the physical processes (Rozos et al., 2004). Given that
hydrological models tend to be too complex and, thus, non-parsimonious in pa-
rameters, it is essential to consider multiple fitting criteria, corresponding to differ-
ent observed responses (a “joint-calibration” approach, according to Kuczera and
Mroczkowski, 1998) or to various aspects of the same response, by means of multi-
ple error measures, data split, etc. Current advances review the calibration problem
from a multiobjective point-of-view, where various fitting criteria are introduced
as elements of a vector objective function, thus leading to a set of optimal solu-
tions rather than a single global optimum (Yapo et al., 1998; Madsen, 2000; Khu
and Madsen, 2005). Such an analysis provides insight into the manner in which the
model needs to be improved and into the confidence that can be ascribed to the
model predictions (Gupta et al., 1998).

In this chapter, a short presentation of a new multiobjective optimization method,
the multiobjective evolutionary annealing-simplex (MEAS) algorithm, is given, fo-
cused on hydrological problems. The methodology is applied within a complex case
study, involving the parameter estimation procedure for a combined hydrological–
water management model. Through this study, characteristic issues of multiobjec-
tive calibration are highlighted, and its practical use is emphasized, as guidance to
the best-compromise parameter set.

Apart from the introduction (Sect. 19.1), the chapter contains five sections. Sec-
tion 19.2 is a synoptic review of current advances of multiobjective optimization.
Section 19.3 explains the fundamentals of the MEAS algorithm. Section 19.4 deals
with the case study, whereas Sect. 19.5 summarizes the conclusions and discusses
the applicability of the multiobjective calibration approach in complex hydrological
applications.

19.2 Overview of Multiobjective Optimization Techniques

19.2.1 Problem Formulation and Definitions

A multiobjective calibration problem can be stated as the simultaneous optimiza-
tion (for convenience and without loss of generality, minimization) of m numerical
criteria (objective functions) with respect to a vector of control variables x ∈ X , i.e.,

minimize F(x) = [ f1(x), f2(x), . . ., fm(x)] (19.1)

where X ∈ Rn is the feasible control space.



19 Fitting Hydrological Models on Multiple Responses 261

Generally, the criteria represented by the components fi(x) of the objective func-
tion are conflicting and, therefore, a feasible point cannot simultaneously optimize
all of them. Thus, we look for acceptable trade-offs rather than a unique solution,
according to the fundamental concept of Edgeworth–Pareto optimality (commonly
referred to as Pareto optimality), introduced within the theory of welfare economics
at the end of the nineteenth century. In particular, we define a vector of control vari-
ables x∗ to be Pareto optimal if there does not exist another feasible vector x such
that fi(x) ≤ fi(x∗) for all i = 1, . . .,m and fi(x) < fi(x∗) for at least one i. The above
definition implies that x∗ is Pareto optimal if there is no feasible vector that would
improve some criterion without causing a simultaneous deterioration of at least one
other criterion.

The concept of Pareto optimality leads to a set of feasible vectors, called the
Pareto set and symbolized X∗ ⊂ X ; all Pareto-optimal vectors x∗ ∈ X∗ are called
non-inferior or non-dominated. The image of the non-dominated set in the objective
space is called the Pareto front, symbolized F∗. From a mathematical point-of-view,
and in the absence of further information, all non-dominated solutions are assumed
equivalent.

19.2.2 Classical Approaches

Optimization problems involving multiple and conflicting objectives have been tra-
ditionally handled by combining the objectives into a scalar function and, next,
solving the resulting single-optimization problem. The combination schemes, usu-
ally referred to as aggregating functions, are the oldest mathematical programming
approaches, since they are derived from the Kuhn–Tucker conditions for non-
dominated solutions. Aggregation functions may be linear (the well-known weight-
ing method) or non-linear (e.g., the goal-programming method); both may be used
within any global optimization algorithm to provide a unique point of the Pareto
set. By changing the arguments of the aggregating function (e.g., the weight-
ing coefficients), one can obtain representative points of the Pareto set. But this
procedure is computationally inefficient; moreover, when optimization criteria are
non-commeasurable, it is necessary to provide some information on the range of
objectives, to avoid having one of them dominate the others. For a comprehensive
review of classical methods and their application in water resource problems, the
reader may refer to the book of Cohon (1978).

19.2.3 Multiobjective Evolutionary Algorithms

The main advantage of evolutionary methods is their ability to provide multiple
Pareto-optimal solutions in a single run. Since evolutionary algorithms work with a
population of points, they can be adapted to maintain a diverse set of solutions.
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The first pioneering studies appeared in the mid-1980s; the most representative
example is the vector-evaluated genetic algorithm (VEGA) of Schaffer (1984),
where the selection mechanism of a typical genetic algorithm was modified to
spread the search toward different regions of the Pareto set, by dividing the popu-
lation into subsets and switching objectives. But the fundamental concept of Pareto
dominance was incorporated later, in the mid-1990s (Fonseca and Fleming, 1993;
Srinivas and Deb, 1994; Horn et al., 1994). These methods employ ranking pro-
cedures, where individuals are evaluated according to the principle of Pareto opti-
mality, thus conducting search toward the Pareto front; in addition, fitness sharing
techniques are used to maintain population diversity, thus favoring the generation
of well-distributed sets. We should classify to the same category the MOCOM-UA
method of Yapo et al. (1998), which is an extension of the well-known SCE-UA
algorithm of Duan et al. (1992), employing a Pareto ranking procedure within a
simplex-based searching pattern. More recent advances (e.g., Zitzler and Thiele,
1999; Knowles and Corne, 2000; Deb et al., 2002; Zitzler et al., 2002) give further
emphasis on efficiency, by using faster ranking techniques, clustering methods and,
primarily, elitism mechanisms to retain the non-dominated solutions found so far.
Coello (2005) presents a brief evaluation of the relevant research in multiobjective
evolutionary optimization. An extended database regarding relative references and
software tools can be found at http://www.lania.mx/∼ ccoello/EMOO/.

19.2.4 Some Drawbacks in Calibration Problems

Currently, there is an increasing interest in applying multiobjective evolutionary
algorithms in hydrological applications, most of them referring to calibration studies
(Ritzel et al., 1994; Cieniawski et al., 1995; Yapo et al., 1998; Madsen, 2000; Reed
et al., 2001; Erickson et al., 2002; Khu and Madsen, 2005). It is recognized that
the task is computationally demanding, especially in the case of complex models
with many parameters. Moreover, the performance of evolutionary methods with
continuous parameters is rather inefficient, due to the generating schemes that are
adopted from genetic algorithms. For instance, it has been detected that crossover
operators based on the exchange of coordinate values of “parents” usually lead to
redundant “offspring” (Solomatine, 1998).

It is also important to notice that within a multiobjective calibration procedure,
not all trade-offs may be acceptable from the engineering point-of-view. For exam-
ple, one should reject parameter sets providing extreme performance (i.e., too good
against some criteria, but too bad against some other), albeit being mathematically
acceptable according to the concept of dominance. Finally, despite the efforts of
some researchers to incorporate users’ preferences as to narrow the search (e.g., us-
ing constraints or penalty functions), a systematic procedure helping to “capture” the
best-compromise solution is missing. Note that such a unique parameter set might
be necessary in real-world problems for operational purposes (i.e., forecasting).
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19.3 The Multiobjective Evolutionary Annealing-Simplex
Algorithm

19.3.1 Main Concepts

The multiobjective evolutionary annealing-simplex (MEAS; Efstratiadis, 2008;
Efstratiadis and Koutsoyiannis, 2005) method briefly presented here is a general-
purpose tool that places emphasis on the specific features of hydrological models.
The algorithm embodies two phases: in the evaluation phase a fitness measure is
assigned to all population members, whereas in the evolution phase new individuals
are generated on the basis of their fitness values.

The algorithm seeks behavioral parameter sets, by introducing the concept of
“suitability”, denoting a physically reasonable Pareto subset. Particularly, the user
specifies acceptable thresholds for fitting criteria, to avoid the generation of ex-
treme solutions. Hence, only part of the Pareto front is approximated in an attempt
to “surround” the best-compromise set. The ranking procedure, which guaran-
tees the preservation of representative non-dominated solutions, is based on the
strength-Pareto approach (Zitzler and Thiele, 1999; Zitzler et al., 2002), where
some modifications are employed to better handle problems with more than two
criteria.

The population is evolved according to a simplex-annealing approach (Press
et al., 1992, pp. 451–455); offspring generation is implemented on the basis of a
downhill simplex pattern, whereas an adaptive annealing cooling schedule is used
to control the degree of randomness during evolution. Most of the generating mech-
anisms are adapted from an earlier single-optimization version of the method, which
has been proved effective and efficient for a broad class of water resource problems
(Efstratiadis and Koutsoyiannis, 2002; Rozos et al., 2004).

19.3.2 Initialization

For each control variable (parameter), the user specifies two ranges: an “external”
range that may correspond to the physical limits of parameters and an “internal”
range that corresponds to more realistic limits, according to the modeler’s experi-
ence and intuition. The initial population is uniformly sampled within the internal
range, whereas search can be expanded to the external one. Thus, the optimization
procedure is protected from being trapped in the boundaries of an arbitrarily spec-
ified “reasonable” search space. The population size N is a user-defined constant
and, due to the necessity of building a simplex, must be at least equal to n + 1,
where n is the dimension of the search space (i.e., the number of parameters). It is
obvious that the larger the population size, the better the approximation of the Pareto
front.
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19.3.3 Evaluation Procedure

At each generation, a penalty value p(i) is assigned to each individual i, according
to its “relative” position in the objective space, i.e., its position against all the other
individuals. It includes two components: (a) a dominance term and (b) a suitability
term.

The dominance term is a real positive number with integral and fractional parts
computed separately as explained below. For each individual, the integral part (rank)
is computed by taking into account both dominating and dominated points, through
a two-step procedure. First, a “strength” value is assigned that is equal to the number
of dominated points by the evaluated point. Next, the rank is computed by summing
the strength values of all dominators. An example is given in Fig. 19.1. By def-
inition, non-dominated points have zero rank. It can be proved that this scheme,
adapted from the SPEA and SPEA-II methods, not only provides a large variety of
rank values (larger than any other known ranking algorithm), but also incorporates
a sort of “niching” mechanism, thus preserving population diversity (Zitzler and
Thiele, 1999).

According to the Pareto optimality definition, if one point outperforms another
one against some but not all criteria, then the two alternatives are indifferent; thus
they should have the same rank value. Yet, in high-dimensional problems, it is neces-
sary to review the concept of dominance as the only evaluation principle; otherwise
the optimal front becomes too extended, even almost identical to the objective space,
as reported by Coello (2005). To avoid this, a “discard” mechanism is implemented
among indifferent solutions, by comparing them on the basis of each specific cri-
terion. According to this, a fractional term, proportional to the average number of

Fig. 19.1 An example of assigning strength (in parenthesis) and rank values
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criteria against which the individual is superior, is added to the rank measure, thus
resulting in an increasing variety of performance values.

On the other hand, the suitability term is assigned to favor the generation of solu-
tions with intermediate performance that are of significant interest in case of some
practical applications (including model calibration problems). This is done by intro-
ducing a constraint vector e = (e1, . . . , em), standing for the boundaries of a desirable
(physically acceptable) region of the objective space. The computational procedure
is as follows. First, the maximum dominance value, dmax, within the population is
computed. Next, each individual is checked to see whether it lies within the de-
sirable region. If fi j > e j for the jth criterion, a distance penalty is added to the
dominance term. All non-suitable individuals are further penalized by adding dmax,
thus becoming worse than any other suitable individual, either dominated or not.

19.3.4 Selection Through a Simulated Annealing Strategy

An evolutionary scheme is employed, where the population is changed when a sin-
gle “offspring” is produced. The individual to “die” is picked from a randomly se-
lected “mating” sub-population comprising n+1 points (a simplex), on the basis of
a simulated annealing strategy. The latter is implemented by adding to the penalty
measure, p(i), a stochastic component, s(i) = rT , where r is a uniform random
number in the range [0,1] and T is the system’s state of search known as “temper-
ature” (large temperature means dominance of the random component). The sum
p(i)+s(i) stands as an objective function to minimize, which is updated at each gen-
eration. A similar scheme was successfully implemented within the single-objective
version of the method.

The temperature, which is initially set equal to the difference between the max-
imum and minimum fitnesses among the population, is automatically regulated to
ensure convergence toward the Pareto front. Each time a non-dominated point is
found, it is slightly reduced by a factor λ , whereas it is not allowed to be less than
a limit β , thus avoiding early convergence. The larger the temperature, the most
probable the acceptance of an “uphill” transition, i.e., a movement in the opposite
direction of the current non-dominated front, which makes search more flexible,
thus enabling a detailed exploration of the search space.

19.3.5 Evolution Procedure

After selecting the individual to die, a recombination procedure is implemented,
following a simplex-evolving pattern. It is based on the well-known local opti-
mization algorithm of Nelder and Mead (1965), in which some modifications were
made to handle the peculiarities of multiobjective search. Specifically, four transi-
tions are provided, i.e., reflection, multiple expansion, outside contraction and inside
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Fig. 19.2 Feasible simplex transitions in the 2D search space

contraction (Fig. 19.2). The multiple expansion transition is a line-minimization
procedure, implemented through subsequent trials, thus ensuring a fast exploration
of the convex regions of the search space. On the other hand, the shrinkage transi-
tion of the original Nelder–Mead scheme is abandoned, because the question is to
maintain a well-distributed set, instead of converging to the unique global extreme.

If any of the possible simplex transitions are successful, the offspring is generated
through mutation. The algorithm provides two types of mutation: a quasi-random
scheme, on the basis of the statistical characteristics of the actual population, and
a pure random scheme, based on a uniform sampling of the entire feasible space.
The search is interrupted when the number of function evaluations exceeds a user-
specified limit, provided that all population members are non-dominated and lie
within the desirable objective region.

19.4 Case Study

19.4.1 Description of the Study Area

The Boeoticos Kephisos river basin lies on the Eastern Sterea Hellas, north of
Athens, and drains a closed area (i.e., without an outlet to the sea) of 1956km2

(Fig. 19.3). The catchment geology comprises heavily karstified limestone, mostly
developed on the mountains, and alluvial deposits, covering the plain areas . Due to
its karstic background, the watershed has a significant groundwater yield. The main
discharge points are large springs in the upper and middle parts of the basin that
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Fig. 19.3 The surface (left) and groundwater (right) schematization of the Boeoticos
Kephisos basin

account for more than half of the catchment runoff. Moreover, an unknown amount
of groundwater is conducted to the sea.

The hydrosystem serves multiple water uses. Specifically, through an extended
drainage network, the entire surface resources are diverted to the neighboring Lake
Yliki, one of the major water storage projects of Athens, which is characterized by
significant losses to the sea due to its karstic background. In addition, important
supply boreholes are located at the middle course, just upstream of the Mavroneri
springs; these are activated in case of emergency and affect significantly the flow
regime of the groundwater system. In addition to drinking water, the surface and
groundwater resources of the basin are used for irrigation; the total annual demand
is more than 220hm3.

19.4.2 The Modeling System

The hydrosystem has been extensively studied in the past (Rozos et al., 2004),
but the simulation presented here was implemented through a newly developed
computer-based tool, named HYDROGEIOS, which integrates a conjunctive (i.e.,
surface and groundwater) hydrological model within a systems-oriented water man-
agement scheme (Efstratiadis et al., 2007) and implements multicriteria model
fitting. The modeling scheme follows a semi-distributed approach, aiming at esti-
mating the available water resources at characteristic sites (nodes) of the river basin
and the underlying aquifer. Regarding the methodological concept, parameters are
assigned on the basis of the main physical characteristics affecting the hydrolog-
ical processes. This favors the maintenance of a parsimonious structure, since the
parameterization is consistent with the available data.

Geographical input data include the river network, the sub-basins upstream
of each river node and the aquifer discretization in polygonic cells, represent-
ing conceptual groundwater tanks. Additional layers of distributed geographical
information, such as geology, land cover and terrain slope, are used to define the hy-
drological response units (HRUs); the latter are spatial components that correspond



268 A. Efstratiadis and D. Koutsoyiannis

to areas of homogenous hydrological characteristics. On the other hand, input data
for artificial components include water abstraction facilities, aqueducts and demand
points. Dynamic data include precipitation and potential evapotranspiration series,
given at a sub-basin scale, and target demand series, referring to water needs as well
as to various water management constraints (e.g., flow preservation).

Various modules are combined to represent the key processes in the water-
shed, i.e., (a) a conceptual soil moisture accounting model with six parameters
per HRU; (b) a groundwater model, based on a modified finite-volume numeri-
cal method, where two parameters are assigned to each groundwater tank (Rozos
and Koutsoyiannis, 2006); and (c) a water management model, inspired from graph
theory, which estimates the optimal hydrosystem fluxes, satisfying both physical
constraints and target priorities and simultaneously minimizing costs (Efstratiadis
et al., 2004). Model outputs include discharges through the river network, spring
flows, groundwater levels and water abstractions. The program provides a variety of
goodness-of-fitting criteria, which may be combined following both a single- and a
multi-objective calibration approach, through the MEAS algorithm.

19.4.3 Input Data and Schematization

As illustrated in Fig. 19.3 (left), the river network comprises a main branch, divided
into four segments, and five sub-basins upstream of or in between the corresponding
nodes. HRUs are produced as the union of two geographic layers; the first repre-
sents three categories of geological formations, whereas the second represents two
categories of terrain slope. Finally, 35 cells represent the groundwater flow field
(Fig. 19.3, right). Some are virtual cells, simulating either in-basin outflow sites
(springs) or accumulating tanks, draining the basin leakages to the sea.

For the above schematization, the total number of unknown parameters is more
than 100. Thus, it is essential to use multiple criteria within calibration, to avoid
model over-parameterization and properly representing important characteristics of
the physical system that are reflected in the observations. The latter refer to system-
atic (daily) discharge measurements at the basin outlet (Karditsa tunnel) and sparse
(one to two per month) measurements downstream of the six main karstic springs;
these raw data were used to construct the monthly hydrographs at seven discharge
points, for a 10-year period (Oct. 1984–Sep. 1994).

19.4.4 Model Setup

Initially, model parameters were estimated through a single-optimization approach,
based on a weighted objective function, where the coefficients of efficiency (CE)
for the seven hydrographs (usually referred as Nash–Sutcliffe measure), as well as
other fuzzy performance measures, were aggregated. The latter refer to penalty mea-
sures, assigned to reproduce flow intermittencies and to prohibit abnormal trends
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regarding the simulated groundwater levels. A combined strategy was employed,
coupling both automatic and manual calibration methods. This was significantly
time-consuming, whilst leading to a satisfactory best-compromise parameter set.
Rozos et al. (2004) provide a comprehensive explanation of this hybrid calibration
procedure, employed within an earlier version of the model, applied for the same
study area. The model was calibrated on the first 6 years (Oct. 1984–Sep. 1990)
and validated on the other 4 years (Oct. 1990–Sep. 1994). One full simulation run
accounted for about 0.5 s, on a Pentium IV computer.

Next, a multiobjective calibration approach was implemented, by separating the
seven CEs (each representing a fitting measure of simulated and observed time se-
ries) and selecting the most important parameters to optimize; these were the soil
moisture capacity and recession rates for percolation, for the six HRUs, and the
conductivities of the virtual cells representing spring dynamics. The rest of the pa-
rameters were assumed known, by assigning the optimal values obtained from the
aforementioned single-objective calibration scenario. Hence, a challenging multiob-
jective optimization problem was formulated, comprising 18 control variables and
7 error functions to minimize, defined as fi = 1−CEi. A population size of 100
and a limit of 5000 trials were set. Two multiobjective calibration scenarios were
examined. In the first one, the objective space was left unrestricted, whereas in the
second one the objective space was restricted, by accepting only positive values of
the CE for all measurement sites.

19.4.5 Results and Discussion

Figure 19.4 shows some characteristic trade-off curves for the first multiobjective
calibration scenario, representing specific cross-sections of the Pareto front (note
that by taking into account more than two criteria, i.e., m > 2, the Pareto front is
a hypersurface in the m-dimensional objective space; thus, non-dominated points
do not lie on a common curve). Some of the cross-sections have a particularly ir-
regular shape, either very steep, thus leading to an almost right angle, or asym-
metrically spread. These are strong indications of unacceptable trade-offs, since a
small improvement of some criteria results in significant degradation of other ones.
Indeed, as shown in Fig. 19.6, the range of some determination coefficients is too
extended, containing even high negative values, which obviously correspond to non-
behavioral parameter sets. The inadmissible trade-offs mainly refer to the significant
karstic springs of Melas and Polygyra, for which there is too little knowledge about
the flow generation mechanism (however, it was important to include these springs
in the calibration, even for reproducing their average hydrological regime). For in-
stance, negative correlations between the spring runoff and the precipitation high-
light the complexity of the related physical processes. Uncertainties are also due
to observation errors, e.g., spring hydrographs that were estimated on the basis of
sparse measurements. Therefore, the irregularities of the Pareto front, which made
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Fig. 19.4 Characteristic trade-offs for multiobjective calibration scenario 1 (unrestricted objective
space)

it so difficult to detect the best-compromise parameter set, are explained by the ill-
posed model structure and data.

The assumption of a bounded objective space, by accepting only positive de-
termination coefficient values (scenario 2), resulted in a much narrower range of
optimal trade-offs, as illustrated in Fig. 19.5. Interestingly, these bounds enclose the

Fig. 19.5 Characteristic trade-offs for multiobjective calibration scenario 2 (restricted objective
space)
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Fig. 19.6 Minimum and maximum coefficients of efficiency obtained by the two multiobjective
calibration scenarios and best-compromise values obtained by the single-objective optimization
scenario

best-compromise values obtained by the single-objective optimization scenario for
all control sites except the basin outlet, where the optimal value found is slightly
better than the extreme of the Pareto front. The picture is similar for both the cali-
bration and validation periods (Fig. 19.6).

An important issue to mention is that, in contrast to the Pareto front, the Pareto
set, i.e., the set of the optimal parameter vectors, was much less scattered. This in-
dicates the sensitivity of the parameters, especially those representing groundwater
conductivities, whose physical limits fluctuate in a wide range of orders of mag-
nitude, in contrast to the surface model parameters that are of the same order of
magnitude. It is a well-known problem of conjunctive hydrological modeling, also
appearing in the multi-response calibration approach.

19.5 Conclusions

The MEAS algorithm is an innovative technique, suitable for hydrological prob-
lems, which combines (a) a fitness evaluation procedure based on a strength-Pareto
approach and a suitability concept, (b) an evolving pattern based on the down-
hill simplex method and (c) a simulated annealing strategy that controls random-
ness during evolution. It provides innovations, such as the double boundaries of
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the search space and the concept of feasibility in the objective space, thus helping
experts to effectively handle problems of irregularly conflicting criteria.

When calibrating hydrological models that generate distributed fluxes, it is neces-
sary to take advantage of all available data reflecting the basin responses, by fitting
their parameters on multiple observations. The application of the HYDROGEIOS
model to the Boeoticos Kephisos basin is a characteristic example of how to treat
such problems. The case study indicated that multiobjective calibration may be a
useful tool for (a) exploring structural and data uncertainties that are encapsulated
in the Pareto front irregularities, (b) investigating acceptable trade-offs between the
fitting criteria and (c) guiding the search toward promising (from a hydrological
point-of-view) areas of both the objective and the parameter space. The easy im-
plementation of the method and the limited computational effort (5000 trials were
sufficient to capture the best-compromise solution, earlier detected after a not in-
considerable number of single-objective optimizations) were a real surprise. A next
step may be the incorporation of the multiobjective search routines into a gener-
alized methodological framework, where the parameter estimation procedure will
be implemented in an interactive manner, to better account for the hydrological
experience.
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Chapter 20
Evolutionary-based Meta-modelling:
The Relevance of Using Approximate
Models in Hydroinformatics

S.-T. Khu, D. Savic and Z. Kapelan

Abstract This chapter examines various applications of evolutionary computation
(EC)-based meta-models to augment or replace the conventional use of numerical
simulation and optimisation within the context of hydroinformatics. Evolutionary
computation-based optimisation techniques are increasingly used in a wide range
of water and environmental applications either as optimisation, analysis or design
tools. However, despite the advances in computer power, it may still be impractical
to rely exclusively on computationally expensive (time-consuming) simulation for
many real-world complex problems. The meta-model investigated in this chapter
can take various forms and, when coupled with a genetic algorithm, forms a fast and
effective hybridisation. Three examples, including calibration of a rainfall–runoff
model, modified Monte Carlo sampling of a kinematic wave model and the design
and robust rehabilitation of water distribution models, are then used to illustrate the
concept of EC-based meta-models. The proposed meta-model reduces the number
of simulation runs required in the numerical model considerably, thus making the
optimisation and statistical analysis of computationally intensive simulation models
viable.
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20.1 Introduction

Population-based evolutionary computational (EC) methods such as evolutionary
algorithms (EA) (which include genetic algorithms, evolutionary strategies, evo-
lutionary programming, etc.), shuffled complex algorithms, and simulated anneal-
ing are powerful search algorithms that can be used for optimisation. These al-
gorithms are increasingly used as optimisation tools for a wide range of water
and environmental simulation models. Examples of EC applications can be found
in the design and operation of pipe network systems (Dandy et al., 1996; Savic
and Walters, 1997); groundwater monitoring/containment (Ritzel and Eheart, 1994;
Cieniawski et al., 1995); design and modelling of urban drainage systems (Rauch
and Harremoes, 1999; Liong et al., 2001); calibration of river basin and urban wa-
ter models (Duan et al., 1992; Liong et al., 1995; Savic and Walters, 1997) and
many others. However, the main weakness in using EC-based search methods for
design, calibration or operational control is that they require a large number of fit-
ness evaluations, thereby rendering them unsuitable when computationally intensive
simulation models are required.

It is not uncommon for large environmental simulation models to run for sev-
eral hours or longer, such as that of running extended period simulation for water
distribution networks, 3D flood inundation models or 3D coastal/tidal models and
simulation models for integrated surface and sub-surface flows in a large catchment.
With a typical EC run requiring thousands (if not tens of thousands) of model eval-
uations, it is currently infeasible or impracticable to perform full optimisation of
these computationally intensive models.

To this end, there are basically three approaches to resolve the problem of using
EC for computationally intensive optimisation. They are (i) using faster algorithms;
(ii) utilising more computing power; and (iii) using approximate fitness functions.
The first approach exploits the flexibility of EC to develop more efficient techniques
requiring less function evaluations and, hence, less model evaluations. Typical meth-
ods of this approach are hybridisation of EA with some form of heuristics or local
search (Deb and Beyer, 2001; Keedwell and Khu, 2003, Kapelan et al. 2003) and en-
hancement to EA operators (reproduction and selection) (Liong et al., 2001; Salami
and Hendtlass, 2003). The second approach uses the inherent parallel computing
capability of EA and allows simultaneous multiple model simulations on multiple
processors (Kohlmorgen et al., 1999; Rivera, 2001). Hence the computational time
required can be reduced proportionally to the number of co-processors used for par-
allel computing (subject to limitations of the slowest processor). The third method is
the use of an approximate fitness function coupled or integrated with EA. To reduce
the computational cost of model evaluations/simulations, surrogate evaluation tools
such as fastest (but less accurate) models or simpler performance estimation through
proxies may be used in place of the time-consuming simulations. These approximate
or surrogate tools are commonly known as meta-models (Kleijnen, 1975).

This chapter reviews the different types of meta-modelling techniques currently
available and different schemes of coupling meta-models with evolutionary com-
putation in the wider engineering context. A generic framework for an EC-based
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meta-model (ECMM) is formulated and their potential to replace a conventional
scheme of numerical simulation and optimisation is investigated. The meta-model
investigated in this chapter is an artificial neural network that when coupled with
a genetic algorithm forms a fast and effective hybridisation. Three examples, in-
cluding calibration of a rainfall–runoff model, modified Monte Carlo sampling of a
kinematic wave model and the design of a water distribution network model under
uncertainty, are used to illustrate a range of applications of EC-based meta-models
in the field of hydroinformatics.

This chapter starts by reviewing different meta-models and EC-based
meta-model frameworks, followed by illustrations of the concept of EC-based meta-
modelling using three examples. Finally Sects. 20.5–20.7 will give concluding
remarks and some discussions on current research issues related to EC-based meta-
modelling and ways to enhance the acceptance of ECMM in the field of hydroinfor-
matics.

20.2 Meta-models

Meta-models have been in existence for a long time (Kleijnen, 1975) and are widely
used by the engineering design community to reduce the time required for full sim-
ulation (or testing of a prototype). For example, Gu (2001) reported that in Ford
Motor Company, one crash simulation on a full passenger car may take up to 160
hours and that they had successfully implemented a meta-model to reduce the crash
simulation time significantly.

Meta-models, otherwise known as surrogate or approximate models, are essen-
tially a “model of the model” which may be used to approximate the simulation
model. In general, a meta-model utilises some form of simplified (multivariate)
function to approximate the underlying system using points that have already been
evaluated and is considered to be a fast surrogate model compared to the exact eval-
uation model. The simplified function may be (i) linked to the processes to be mod-
elled; (ii) some simplified solution(s) to the complex problem; (iii) a mathematical
model of the input and output causal relationship; and/ or (iv) a surrogate generated
due to inherency or proximity (Jin et al., 2001).

In general, the formulation of a meta-model involves the following three steps
(Jin et al., 2001):

a) Experimental design – a means to generate data points for evaluation. Some ex-
amples are design of experiments (DoE), Latin hypercube importance sampling
(LHS), and random selection

b) Model choice – the selection of a surrogate function as an approximator. Some
examples are polynomial/or regression models, radial basis functions (RBF), ker-
nel smoothing, kriging, rules and decision trees

c) Model fitting – tuning of the surrogate function to match the data points
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Each of the steps may have many options and the choice of option at each step
gives rise to different meta-models. For example, generating data using fractional
factorial design and fitting the data onto a second order polynomial function using
the method of least squares regression gives rise to the meta-model known as “re-
sponse surface methodology” (RSM), while measured data fitted onto a network of
artificial neurons using least squares with back-propagation gives rise to an “artifi-
cial neural network” (ANN) as a meta-model. The reader interested in meta-models
which use approximate fitness functions can refer to Simpson et al. (2001) for a
complete discussion.

The basic approach of constructing a meta-model may be generalised as follows:

• Select a surrogate function (meta-model) which can be used to approximate the
“Simulator”;

• run the “Simulator” for a small number of runs;
• construct the meta-model and adjust the variables within the model to fit the run

results from the ”Simulator”;
• make necessary adjustments by performing additional “Simulator” runs; and
• update the meta-model either periodically or heuristically (based on certain

rules).

Meta-modelling has been widely used in mechanical and aerospace design
(Simpson et al., 2001), structural optimisation (Barthelemy and Haftka, 1993),
manufacturing quality control (Li et al., 2003) and many others. Jin et al. (2001)
compared four types of meta-models (RSM, RBF, kriging and multivariate adaptive
regression splines) and presented the advantages and disadvantages of each tech-
nique using multi-criteria and multiple test problems. RBF was found to be the best
performing algorithm, but data sampling has significant impact on the construction
of the meta-model. If the data are not sampled correctly, the meta-model will not be
a good representation of the simulation model it is trying to emulate, and therefore,
the results of meta-models will not be accurate. This can be overcome, to a certain
extent, by meta-models that are robust to noise.

Meta-models have also been successfully applied to model a variety of water
and environmental problems. RSM has been applied to predict numerical geophysi-
cal models (Tatang et al., 1997), reconstruction and interpolation of effluent plumes
in an estuary (Riddle et al., 2004) and the calibration of an urban drainage model
(Liong et al., 1995). Kriging has been used to model the spatio-temporal pollutant
deposit trend through the atmosphere (Haas, 1998), the spatial distribution of heavy
metals in a river basin (Ouyang et al., 2002) and shallow water waves in an estu-
ary (Gorman and Neilson, 1999). Artificial neural networks are probably the most
widely used meta-models in all fields of hydrology and environmental engineering.
ANNs have been used in hydrologic modelling (see Part II of this book for further
examples), as well as any other applications such as modelling the input–output be-
haviour of wastewater treatment plants (Belanche et al., 1999); deforestation simula-
tion (Mas et al., 2004); prediction of pollutant trends in urban areas (Lu et al., 2004);
algae growth and transport modelling (Whitehead et al., 1997).
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20.3 EC-Based Meta-models

As stated in the introduction, one possible way of overcoming the problem of
time-consuming simulations in optimisation applications is to use meta-models in
place of the simulation model. Many researchers, especially in engineering design,
have examined strategies to integrate different meta-models with GAs. Emmerich
et al. (2002) used kriging as the meta-model and found that kriging provided local
error estimation which enabled assessment of the solution reliability. Giannakoglou
et al. (2001) used a RBF network as a meta-model coupled with a GA to optimise
an airfoil shape design. Poloni et al. (2000) used a hybridisation of a GA, ANN
and local search method to optimise the design of a sailing yacht fin keel. The ANN
acted as a surrogate model for the 3D Navier–Stokes simulation of the fin keel while
cruising. Wilson et al. (2001) used RSM and kriging as a meta-model to explore the
design space and capture the Pareto front during multiobjective design of an inno-
vative grasper for minimal invasive surgical operations.

The concept of approximation in optimisation is not new (Barthelemy and
Haftka, 1993) and recently, there has been a comprehensive survey of fitness ap-
proximation in evolutionary computation used by the engineering simulation and
design community (Jin, 2005). According to Jin (2005), there are at least three cat-
egories of such EC-based meta-models and they are formulated through (i) problem
approximation; (ii) function approximation; and (iii) evolutionary approximation.
In problem approximation, the original problem statement is replaced by one which
is approximately the same as the original problem, but which is easier to solve. An
example would be to replace dynamic wave routing with kinematic wave routing or
to replace 3D solvers with 1D-(quasi)2D solvers to enhance the computational ef-
ficiency. In function approximation, an alternate and explicit method of evaluating
the objective function is constructed. Examples of function approximation are krig-
ing (commonly used in geo-hydrology) and artificial neural networks (commonly
used in surface hydrology). Evolutionary approximation is specific for evolutionary
algorithms whereby the fitness of offspring is estimated based on the fitness of their
parents without the need to run the simulation software again. Among these three
fitness approximation methods function approximation is the most commonly en-
countered approach in meta-models and in some areas (such as aerospace engineer-
ing), function approximation is synonymous to meta-modelling. Problem approxi-
mation is usually very context specific hence difficult to generalise and requires the
complete understanding of the different types of models available for the particular
application. Application of evolutionary approximation to hydroinformatics is at its
infancy stage, with most of the research work very much restricted to computer sci-
ence applications at the moment. However, Yan and Minsker (2004) and Kapelan
et al. (2003) have started to combine evolutionary approximation with fitness ap-
proximation to improve the performance of their meta-models on engineering opti-
misation problems.

The most direct way of integrating meta-models with a GA is to replace the “Sim-
ulator” with the meta-model completely during evaluation of the objective func-
tion in the GA. However, in order to construct the meta-model, a small number of
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runs of the “Simulator” are required. This is the experimental design mentioned in
Sect. 20.2 and can be performed either using the Taguchi method, Design of Exper-
iments, the response surface methodology or even using a GA. Liong et al. (2001)
detailed one such method using fractional factorial design with central composite
design to provide an initial population for the GA.

Figure 20.1 gives an outline framework of how EC may be integrated with meta-
models. The solid links refer to essential or basic linkages that are present in most
EC-based meta-models and the dotted lines refer to optional linkages. In the next
section, three examples of EC-based meta-models developed by the authors will
be briefly discussed. Continual reference will be made to Fig. 20.1 to highlight the
essential linkages.

START

Generate initial pop

Management
control

“Simulator”

Generate new pop.
through evolution

Convergence?

STOP

simulate

YES

NO

Meta-model

problem
approximator

Fitness
approximator

evolutionary
approximator

approximate

Fig. 20.1 Framework of an evolutionary computation-based meta-model (ECMM)

20.4 Application Examples

20.4.1 Example 1: Calibration of a Rainfall–Runoff Model

Khu et al. (2004) proposed an EC-based meta-model for the calibration of a rainfall–
runoff model. This example demonstrates a scheme where a GA–ANN meta-model
is used to calibrate the MIKE11/NAM model and the meta-model is constantly
updated with the latest information, with the interval of updating governed by
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heuristics. A GA is used to search for the optimal objective function in much the
same way as any optimisation routine. The ANN chosen for this implementation
is the radial basis function (RBF). The reason for choosing a RBF is that training
and retraining (updating) the network is very efficient and simple. With sufficient
training and updating, RBF can be used to map (and adapt) to the response surface
of the objective function and used as a fast surrogate for the NAM model at regular
intervals. As the GA search progresses, the response surface of the objective func-
tion tends to change and therefore, the RBF model needs to be self-adapting to the
changing landscape. The updating strategy is based on probabilistic elitism where
the best solutions have higher chances of being incorporated as updating points for
the RBF. In this manner, the ANN is trained using the latest good solutions after
each GA generation. A sensitivity analysis was conducted to determine the training
sample, sampling frequency and updating size and frequency. It was found that a
training sample of 300 individuals, a sampling frequency of every generation and
an updating size of 5 individuals every generation performed best.

The above EC-based meta-model was used to calibrate the MIKE11/NAM
rainfall–runoff model which simulates runoff from the Danish Tryggevaelde catch-
ment. The objective was to determine suitable parameter values to simulate runoff
from 1979 to 1993 from continuous daily rainfall during this period (Fig. 20.2). This
period is further divided into three 5-year periods: calibration period, 1984–1988;
validation period 1, 1979–1983; and, validation period 2, 1989–1993. A simple GA
was used to determine the optimal parameter values while the RBF was used to map
the objective function.

The EC-based meta-model was tested using two different objective functions
with each objective function designed to examine a feature of the runoff:

(i) Average root mean square error for peak flow events, RMSEpeak, given by

RMSEpeak =
1

Mp

Mp

∑
j=1

[
1
N

n j

∑
i=1

[Qobs,i −Qsim,i(θ)]2
]1/2

(ii) Root mean square error for low flow events, RMSElow, given by

RSMElow =
1

Ml

Ml

∑
j=1

[
1
N

n j

∑
i=1

[Qobs,i −Qsim,i(θ)]2
]1/2

Qobs,i is the observed discharge at time i, Qsim,i is the simulated discharge, Mp

is the number of peak flow events, Ml is the number of low flow events, n j is the
number of time steps in peak/low event no. j and θ is the set of model parameters to
be calibrated. Peak flow events were defined as periods with flow above a threshold
value of 4.0m3/s, and low flow events were defined as periods with flow below
0.5m3/s.

Figure 20.3 and Table 20.1 show the results of the proposed ECMM compared
to those obtained from running the simple GA without the RBF. As can be seen
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(a) 

(b) 

(c) 

Fig. 20.2 Observed hydrographs for (a) calibration period; (b) validation period 1; and (c) valida-
tion period 2
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Fig. 20.3 LH1000 denotes the “full sampling” case solution, i.e. the solution obtained using the
standard NSGAII (Deb et al. 2000) with 1000 Latin hypercube (LH) samples. Solutions labelled
“LH x MA y” are the rNSGAII Pareto optimal solutions with x samples and a minimum chromo-
some age MA equal to y (MA is the rNSGAII algorithm parameter – see Kapelan et al. (2005)
for more details). The referenced solutions are the corresponding, single-objective, deterministic
problem solutions from the research literature (hence this representation with a single point)

from Table 20.1, the ECMM managed to outperform the GA during calibration runs
for both peak flow events and low flow events on all accounts. When it comes to
validation, the performance of the ECMM is comparable with those of the GA for
both data sets. From Fig. 20.2, we noted that some of the peak flow events were
of slightly higher magnitude compared with those during calibration. Thus good
performance by the ECMM provides the modeller with reasonable confidence in
the use of the ECMM for predicting previously unseen and slightly out-of-range
data.

Table 20.1 Calibration and validation results for the average RMSE of peak and low flow events

Calibration data
(1984–1988)

Validation data
set 1 (1979–1983)

Validation data
set 2 (1989–1993)

GA ECMM GA ECMM GA ECMM

RMSE (m3/s)

Best RMSE 1.1750 1.1687 1.1724 1.1836 1.0485 1.1325
Worst RMSE 1.2378 1.2178 1.2564 1.2516 1.3945 1.3672
Mean 1.2016 1.1966 1.2303 1.2165 1.2005 1.2386
STD 0.0184 0.0175 0.0292 0.0227 0.0964 0.0798

RMSE (m3/s) Best RMSE 0.1345 0.1323 0.2065 0.1752 0.0986 0.1043
Worst RMSE 0.1782 0.1697 0.2491 0.2516 0.1470 0.1519
Mean 0.1543 0.1451 0.2215 0.2196 0.1217 0.1164
STD 0.0119 0.0110 0.0140 0.0210 0.0166 0.0159
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20.4.2 Example 2: Modified GLUE Uncertainty Analysis

Another potential usage of ECMMs is the evaluation of risk and uncertainty. Cur-
rently, different sampling approaches have been devised to perform fast and effective
sampling. Monte Carlo sampling (MCS) is commonly regarded as the most accurate
approach but it requires thousands, if not tens of thousands, of model evaluations.
Importance sampling, Metropolis algorithms, the Latin hypercube method, etc. are
fast alternatives but they approximate the statistical properties of the MCS samples.
Recently, Khu and Werner (2003) proposed the use of an EC-based meta-model
(GA–ANN) to select regions of interest for sampling. Their method required only
about 10% of the samples compared to the MCS method. A brief description of their
approach is given below.

The method proposed by Khu and Werner (2003) was targeted specifically at re-
ducing the number of simulation runs required under the generalised likelihood un-
certainty estimation (GLUE) framework (Beven and Binley, 1992). GLUE utilises
Monte Carlo sampling to estimate the uncertainty level and confidence limits of
estimated parameters. In GLUE, the likelihood that a given parameter set is a
good simulator of the system is a function of the model performance expressed
in terms of the objective function chosen. All parameter sets performing below a
pre-determined threshold are considered non-behavioural and removed from further
analysis. This threshold is linked with the objective function and thus can only be
evaluated through model simulation.

A practical problem with the GLUE procedure is that for models with a large
number of parameters, the sample size from the respective parameter distribution
must be very large to achieve a reliable estimate of model uncertainties. Moreover,
depending on the level of acceptance of model behaviour, there may be a large
number of redundant model runs. This posed two problems: (a) it is not feasible to
perform GLUE if the simulation run is time consuming and (b) even when time is
not a constraint, the efficiency of the sampling (measured according to the number
of redundant runs) may be low for high threshold levels.

One possible remedy is of course to use meta-models in place of the actual sim-
ulation, but this means that the meta-model should be very accurate in order to
estimate uncertainty in the model. Another possible remedy is to use an EC-based
meta-model to estimate model performance of all sampling points from the MCS
and select only those within the behavioural threshold for further evaluation. In
Khu and Werner (2003), a GA was used to generate sufficiently good samples us-
ing the parameter space instead of random or stratified sampling. It also ensured that
promising areas of the parameter space were sampled more densely. The typical GA
search requires only a small fraction of those required by MCS. After that, an ANN
was applied to map the response surface generated by the points selected by the
GA. The MCS sampling points were projected onto the response surface and only
those points that fell within the behavioural threshold were selected. Therefore, the
number of model simulations can be reduced substantially.

The above methodology was applied to two rainfall–runoff models: the Nash–
Cascade model and the Storm Water Management Model (SWMM). It was found
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Table 20.2 Comparison of the number of model simulations required in applying GLUE and
ECMM procedure

Gamma function model SWMM model

GLUE procedure Procedure
based on
ECMM

GLUE procedure Procedure
based on
ECMM

Initial runs required, Nmc 2500 250 25000 2500
Number of extra

runs required,
Nsel

– 571–723 – 2425–2503

Total number of runs
required, Ntot

2500 821–973 25000 4925–5003

Number of runs
generating
behavioural
points, Nbeh

628 (average) 502–575 2586 2306–2354

that the ECMM required only 40% and 20% of the simulation runs for the Nash–
Cascade model and SWMM, respectively, when compared to GLUE (Table 20.2).
It was also shown that the number of redundant simulations was low compared to
GLUE. Moreover, as seen in Table 20.2, the number of model runs that generated
behavioural results (which are essential model runs) was very similar for both the
ECMM and GLUE, indicating that the quality of the ECMM is comparable to that
of GLUE. This study showed that the EC-based meta-model can also be effective in
risk and uncertainty estimation.

20.4.3 Example 3: Optimal Design/Rehabilitation of Water
Distribution Systems Under Uncertainty

In this example, the water distribution system (WDS) design/rehabilitation problem
is solved as a multiobjective optimisation problem under uncertainty. The two ob-
jectives are (1) minimise the total design/rehabilitation cost and (2) maximise WDS
robustness. The WDS robustness is defined as the probability of simultaneously sat-
isfying minimum pressure head constraints at all nodes in the network. Decision
variables are the alternative design/rehabilitation options for each pipe in the net-
work. Two sources of uncertainty considered are future water consumption and pipe
roughness coefficients. Uncertain variables are modelled using any probability den-
sity function (PDF) assigned in the problem formulation phase.

A conventional approach to solving the above optimisation problem would
be to use some standard multiobjective optimisation method, e.g. the NSGAII
(Deb et al., 2000) and a large number of Monte Carlo samples to accurately es-
timate fitness of each potential solution (i.e. WDS design). This approach, how-
ever, is extremely computationally demanding. To overcome this problem, a new
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methodology was developed. The new methodology is based on a modified NSGAII
algorithm named rNSGAII (robust NSGAII). In rNSGAII, each solution’s fitness is
estimated using the Latin hypercube sampling technique (McKay et al., 1979) with
a very small number of samples (typically 5–50). Obviously, such a small number
of samples allows only for a very rough fitness approximation to be made. How-
ever, at the same time, the rNSGAII algorithm enables breeding of the solutions
(i.e. chromosomes) which are robust enough to survive over multiple generations.
As a consequence, each chromosome’s fitness can be calculated as the average of all
past fitness values over that chromosome’s age. Therefore, even if a small number of
samples are used for each fitness evaluation, the fitness is effectively evaluated using
a larger number of samples (100–1000 if the chromosome survived for example for
20 generations). Once the rNSGAII run is stopped, each point on the non-dominated
Pareto front is re-evaluated using a large number of Monte Carlo samples (100,000
in the case study shown here).

Actually, the effective number of samples is even larger because the rNSGAII
exploits the fact that the GA search process is of a stochastic nature with a pop-
ulation of solutions evaluated at each generation. It is a well-known fact that GA
determines (near) optimal solution by combining highly fit building blocks of popu-
lation chromosomes. As the search progresses, the population is likely to have more
and more chromosomes containing highly fit building blocks. As a consequence, a
relatively large number of indirect evaluations of these building blocks are likely to
be found in the population even if a small number of samples are used to evaluate
each chromosome’s fitness.

The rNSGAII methodology was tested and verified on a New York tunnels
reinforcement problem (Kapelan et al., 2005). The following four cases were
analysed: (1) uncorrelated, normally distributed demands with 10% coefficient of
variation; (2) uncorrelated, normally distributed demands with 30% coefficient of
variation; (3) uncorrelated, normally distributed demands with 10% coefficient of
variation and uncorrelated, uniformly distributed pipe roughness values and (4) cor-
related, normally distributed demands with 10% coefficient of variation (correlation
coefficient between any two demands assumed equal to 0.50). The results obtained

Table 20.3 The rNSGAII algorithm computational times (minutes)1,2

Number of samples Ns Cases 1 and 2 Case 3 Case 4

5 4.2 5.1 N/A
10 7.8 9.1 N/A
20 15 17 27
50 33 37 44
1000 340 400 500

1 Optimisation runs performed on a PC with a 2.6 GHz AMD FX-55 processor, 1 GB RAM and
the MS Windows XP Pro operating system; 2 Total number of deterministic (i.e. Epanet2 simula-
tion) model evaluations in each rNSGAII run is equal to 2 ·Npop ·Ngen ·Ns where Npop is the GA
population size (200 here) and Ngen is the number of GA generations before convergence (500
here).
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indicate that the new methodology is capable of identifying accurately the robust
Pareto optimal solutions (see Fig. 20.3 and Kapelan et al., 2005 for more details)
whilst significantly reducing the overall computational effort (when compared to
the “full sampling” case with 1000 samples, see Table 20.3).

20.5 Challenges in Current Implementation

All the above application examples utilise some form of surrogate model to approx-
imate the simulation model. In the case of applications (1) and (2), an ANN was
used, but it is well known that an ANN requires a minimum number of training
data for a good response surface mapping. One would expect that there is an opti-
mal number of training data points required at the beginning of the EC optimisation
routine to train the ANN, thus leading to a minimum number of total simulations.
There has yet to be some guidelines on this minimum number of training data points
even though the work of Yan and Minsker (2004) has addressed some related issues.
In the case of application (3), sampling was performed using the Latin hypercube
method. Even though we used a very small number of samples and it worked well
in the example, there needs to be guidelines on the optimal sample size. The sample
size is one of the most critical parameters in the proposed rNSGAII method since it
directly affects the computational efficiency of the method.

Despite the extensive works in evolutionary-based meta-models, little effort is
spent on overcoming the problem of “changing landscape”. During the process of
optimisation, the region of the GA search will constantly change and it is reason-
able to assume that the meta-model will have to be suitably modified to account
for such changes. As the search progresses more information on the objective func-
tion will be obtained and a suitable mechanism should be implemented to utilise
this additional information and update the meta-model. Quite recently, researchers
have started working with EC-based meta-models to investigate the usage of evo-
lution control as a mechanism to overcome the problem of “changing landscape”.
Evolution control (Jin and Branke, 2005) refers to the setting of some fixed rules
that regulate the use of approximate models and compares them with the original
simulation model. The first application example seemed to indicate that elitist sam-
pling and updating holds promising results for dealing with this problem but more
investigation is required.

20.6 Future Research Directions

Evolutionary computation-based meta-modelling as an optimisation technique for
computationally intensive models is a research area that has not yet attracted suffi-
cient attention in the water resources and environmental modelling community. The
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authors would like to highlight several promising topics for future research, some
of which were highlighted by Jin (2005):

(i) Develop meta-models for problems with nonlinear constraints. Many water sys-
tems applications, especially design problems, are heavily constrained. In such
problems the objective function space will be highly undulating with pockets of
infeasible solutions. Many existing meta-models are not able to map surfaces
with discontinuities and voids. Hence, there is a need to develop meta-models
capable of dealing with such problems.

(ii) Extend meta-modelling to be used within multiple objective optimisation and
multi-criteria decision support approaches. Recently Yang et al. (2002) pre-
sented an interesting and novel EC-based meta-model known as adaptive ap-
proximation in single and multi-objective optimisation (AASO-AAMO) for the
design of a 10-bar truss problem. The AASO-AAMO method differed from the
framework so far in that adaptive updating of the meta-model is only carried out
after the EC optimisation has converged. Their results indicate that the amount
of computational savings could be as high as 99%. It would be extremely inter-
esting to apply AASO-AAMO to a number of calibration and design problems
in water and environmental systems.

(iii) Risk-based optimisation/dynamic stochastic optimisation. The third example in
this chapter demonstrated a feasible way to use EC-based meta-modelling for
uncertainty estimation. However, it remains a challenge to the research com-
munity to extend this concept to other risk-based or stochastic optimisation
problems.

20.7 Conclusions

This chapter discusses the concept of meta-models and the integration of evolution-
ary algorithms and meta-models. It can be seen that there is a significant advantage
in using meta-models for water and environmental system simulation, design and
calibration. The chapter also explores various ways of linking optimisation routines
with meta-models to form EC-based meta-models. The meta-model investigated in
this chapter is the artificial neural network and, when coupled with a genetic algo-
rithm, forms an effective and efficient optimisation routine. Three examples were
then discussed.

This chapter also highlighted one major problem for evolutionary-based meta-
modelling: that is how to ensure that the meta-model is constantly relevant as the
search progresses. To overcome this problem, a number of strategic and periodic
schemes of updating the meta-model may be used. The first example illustrated one
such possible updating strategy that is unique to EC-based meta-models and showed
that they are indeed feasible. Other methods of updating are also possible as indi-
cated by examples 2 and 3. Furthermore, this chapter highlights several challenges
encountered in the three examples and also lists several future research directions
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for EC-based meta-modelling. In conclusion, we hope to have demonstrated that
ECMM is very relevant to the field of hydroinformatics.
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Chapter 21
Hydrologic Model Calibration Using
Evolutionary Optimisation

A. Jain and S. Srinivasulu

Abstract Hydrologic models are key inputs to many water resource system projects.
In the past, classical optimisation techniques have been employed for hydrologic
model calibration and it is only since the 1990s that evolutionary optimisation is
being employed for this purpose. This chapter presents a comprehensive literature
review of hydrologic model calibration using classical and evolutionary optimisa-
tion and presents a case study of the application of a real-coded genetic algorithm
to calibrate a conceptual rainfall–runoff (CRR) model. The rainfall and flow data
for a 26-year period derived from the Kentucky River catchment of area in excess
of 10,000 km2 were used for this purpose. The performance of the calibrated CRR
model was evaluated using five different standard statistical parameters. The results
obtained in this study indicate that the real-coded genetic algorithm can be a very
efficient tool for hydrologic model calibration and needs to be explored further by
the researchers and hydrologists in catchments of varying hydrologic and climatic
conditions.

Keywords Hydrologic modelling · genetic algorithms · model calibration ·
evolutionary computing · global optimisation

21.1 Introduction

Water is a scarce natural resource. Due to its limited availability, and an increase
in water demand due to population and industrial growth, mankind’s existing wa-
ter resources need to be utilised in a sustainable manner. This calls for the effi-
cient planning, design, operation and management of existing and proposed water
resource systems, which require mathematical models of the various components
of the hydrologic system. One of the important hydrologic processes that need to

A. Jain
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur – 208 016, UP,
India, e-mail: e-mail:ashujain@iitk.ac.in

S. Srinivasulu

R.J. Abrahart et al. (eds.), Practical Hydroinformatics. Water Science 291
and Technology Library 68, c© Springer-Verlag Berlin Heidelberg 2008



292 A. Jain and S. Srinivasulu

be modelled is the rainfall–runoff process. Many rainfall–runoff models of varying
degrees of sophistication and complexity are described in the literature, and the
choice of a model normally depends upon the data available and the practical ap-
plication intended. Regardless of the kind of model, the first step in its use is the
determination of its parameters. The model parameters are normally determined
through model calibration or field measurements. In model calibration, optimisa-
tion techniques can be adopted to determine the optimal set of parameters using
known rainfall and streamflow data.

Various sub-components of the rainfall–runoff process, such as infiltration, evap-
otranspiration, surface and groundwater flows, etc. are highly complex, non-linear
and dynamic in nature, which makes the optimisation problem of hydrologic model
calibration complex and non-linear. Duan et al. (1992) have reported that the prob-
lem of hydrologic model calibration can be ill-posed, highly non-linear, non-convex
and multi-modal involving numerous optima. Such optimisation problems need
heuristic solutions based on competitive evolution and probabilistic principles. His-
torically, researchers have employed classical optimisation methods for hydrologic
model calibration and it is only since the 1990s that evolutionary techniques are
being used for this purpose. The objective of this chapter is to review the literature
available in the area of conceptual rainfall–runoff (CRR) model calibration and then
present a case study that employs the soft computing technique of a real-coded ge-
netic algorithm (GA) for hydrologic model calibration. The chapter begins with an
extensive review of available literature on the calibration of hydrologic models. This
is followed by a brief description of the CRR model used in the case study before
presenting the results and making concluding remarks.

21.2 Review of Hydrologic Model Calibration

Historically, parameter estimation of hydrologic models has been performed using
manual methods of trial and error. In manual methods of hydrologic model cali-
bration, parameters are initially estimated, and time series plots are visually exam-
ined to find a match between the estimated and observed runoff hydrographs until
all of the parameters are suitably determined. The US National Weather Service’s
River Forecast System based on soil moisture accounting (SMA-NWSRFS) was
probably one of the earliest hydrologic models that employed a manual calibration
technique. Another approach to model calibration has been the “automatic calibra-
tion method” that employs digital computers. Dawdy and O’Donnel (1965) used
an automatic calibration method to calibrate mathematical models of catchment be-
haviour. Other important examples employing automatic methods for hydrologic
model calibration include Jackson and Aron (1971), Clarke (1973) and Johnston
and Pilgrim (1976). Johnston and Pilgrim (1976) presented a detailed search tech-
nique for parameter optimisation of catchment models. Eight different parameters
of the Boughton rainfall–runoff model (Boughton, 1965) were estimated using sim-
plex and Davidon optimisation methods. They concluded that in spite of achieving
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rapid initial reductions in the objective function values, solutions approached several
widely different apparent optima. James and Burges (1982) presented an extensive
study on the selection, calibration and testing of hydrologic models using automatic
methods. Sorooshian et al. (1983) reported the effect of data variability and the
length of the record on model performance while evaluating the maximum like-
lihood parameter estimation technique for calibrating the SMA-NWSRFS model.
They stressed the need for carefully selecting the objective function type and the
quality of data employed for calibration and concluded that a properly chosen ob-
jective function can enhance the possibility of obtaining unique and conceptually
realistic parameter estimates.

Sorooshian et al. (1993) reported that many earlier attempts of using automatic
calibration methods to calibrate the Sacramento soil moisture accounting (SAC-
SMA) model of the NWSRFS failed to obtain a unique set of parameters. Duan
et al. (1993) proposed a robust, effective and efficient method for global optimi-
sation called shuffled complex evolution (SCE-UA) for hydrologic model calibra-
tion. Sorooshian et al. (1993) applied a global optimisation method for automatic
calibration of the SAC-SMA model. They investigated the consistency with which
the two global optimisation methods, SCE-UA and the multi-start simplex (MSX)
methods, were able to find the optimal parameter set during calibration of the SAC-
SMA model. The SCE-UA method was found to perform consistently better than
the MSX method. Duan et al. (1992) also applied the SCE-UA method to calibrate
the SIXPAR rainfall–runoff model using synthetic rainfall–runoff data. Most of the
earlier studies used lumped hydrologic models to demonstrate the suitability and ef-
ficiency of the various optimisation methods. Refsgaard (1997) emphasised the dif-
ferent requirements for calibration and validation of lumped and distributed models.
Different steps in the calibration of the MIKE-SHE distributed hydrologic model
were illustrated through a case study on the 440 km2 Karup catchment in Denmark.

Most of the studies discussed above used classical optimisation problem solu-
tion methodologies. The rainfall–runoff process is a highly complex, dynamic and
non-linear process and the mathematical models attempting to model it involve high
degrees of complexity. As such, the method of estimating the optimal set of model
parameters needs to be very robust because of the presence of one or more of the fol-
lowing difficulties in the search for the global optima: (a) there may be several major
regions of attraction into which a search strategy may converge; (b) each of these
major regions of attraction may contain many local optima that may be either close
to or far away from the global solution; (c) the error function surface may not be
smooth and could vary in an unpredictable manner; and (d) the model parameters
may exhibit varying degrees of sensitivity and large non-linear inter-dependence.
Any non-linear optimisation problem with the above characteristics must be solved
with a global optimisation strategy that is based on the following concepts: (a) com-
bination of deterministic and probabilistic approaches; (b) systematic evolution of
the solution in the direction of global improvement and the concept of competitive
evolution (Duan et al. 1993). Wang (1991) was probably one of the first researchers
to employ this form of competitive evolution technique using a GA. He used a GA
to calibrate the Xinanjiang rainfall–runoff model for the Bird Creek catchment. In
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determining the optimal set of model parameters with a GA, 10 different GA runs
were carried out. Each run started from different initial randomly selected solutions,
and with 5,000 function evaluations, 8 out of the 10 runs were able to locate the
global solution. Since the other two runs were also very close to the eight best solu-
tions, it was argued that the GA method provided an efficient and robust means for
the calibration of hydrologic models. Kuczera (1997) reported that the estimation
of catchment model parameters is a difficult task due to ill-posed questions, the ex-
istence of multiple local optima and a heavy computational burden and emphasised
the need to confine the search space to a subspace within which the global optimum
is likely to be found. He compared four probabilistic search algorithms: SCE-UA,
GA, multiple random start using a simplex search algorithm and multiple random
start using a quasi-Newton local search method. In the Kuczera (1997) study, SCE-
UA was found to be the most robust and the most efficient method for hydrologic
model calibration. The GA performed better than SCE-UA initially but floundered
near the optimum and could not be relied upon. This may have been due to prob-
lems associated with the binary-coded strings that are employed in a traditional
GA. Savic et al. (1999) presented a genetic programming approach to hydrologic
modelling for the Kirkton catchment in Scotland. The results obtained were com-
pared with an optimally calibrated conceptual model and an artificial neural network
(ANN) model. The GA and ANN data-driven approaches were found to be surpris-
ingly similar in their consistency considering the relative size of the models and the
number of variables involved. Recently, Ndiritu and Daniel (2001) proposed an im-
proved genetic algorithm (IGA) for rainfall–runoff model calibration and function
optimisation. The standard binary-coded GA was improved using three different
strategies to deal with the occurrence of multiple regions of attraction. The perfor-
mance of the proposed IGA was compared with the SCE-UA method using three
different types of optimisation problems. The IGA was reported to be about 2 times
less efficient, 3 times more efficient and 34 times less efficient than the SCE-UA
method for the SIXPAR hydrologic model calibration, the Hartman function and the
Griewank function optimisation, respectively. Their study highlighted the fact that
in spite of attempts at modifying existing GA procedures, the efficiency of the opti-
misation of hydrologic model calibration could be improved only marginally. Apart
from GAs, some researchers have employed other types of randomised search or
global optimisation algorithms, e.g. clustering-based algorithms (Solomatine 1998)
and simulated annealing (Skaggs et al. 2001).

There appears to be a shift in the emphasis of researchers from classical meth-
ods towards the evolutionary approaches for the calibration of hydrologic models.
However, most of the studies reported earlier employed the binary-coded GA in
which binary strings are used to represent possible solutions. The GA that employs
real-valued strings is called a real-coded GA. The real-coded GA uses the decision
variables directly to compute the fitness values while the binary-coded GA uses a
mapping of binary digits on to real space to calculate the fitness values. This chap-
ter presents a case study which employs a real-coded GA for the calibration of a
CRR model. A brief description of the CRR model used in the case study is pro-
vided first.
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21.3 Conceptual Rainfall–Runoff Model

In a CRR model, a simplified conceptual representation of the underlying physics is
adopted instead of using the equations of mass, energy and momentum to describe
the process of water movement. The development of a CRR model is a two-step
process, which is responsible for modelling the non-linear, dynamic and complex
nature of the rainfall–runoff process. The first step is the calculation of infiltration
and other losses and the estimation of effective rainfall, and the second step is the
transformation of the effective rainfall into runoff through an operator which sim-
ulates the behaviour of the catchment being considered. A schematic of the hydro-
logic system adopted in this study is shown in Fig. 21.1.

Total rainfall, represented by P, is considered as an input to the hydrologic sys-
tem. A portion of the total rainfall infiltrates into the soil and appears at the outlet
as a base flow (QG) after passing through subsurface storage. The remaining por-
tion of the total rainfall, effective rainfall (ER), runs through the surface storage and
appears at the outlet as surface flow (QS). The CRR model consists of the follow-
ing components: (a) a base flow component, (b) an infiltration component, (c) a soil
moisture accounting (SMA) component and (d) a surface flow component. The base
flow component was modelled using the concept of flow recession in a catchment;
infiltration was modelled using the Green–Ampt method; and the SMA component
was modelled using a simple mass balance to update the soil moisture continuously.

Total
Rainfall

P

Sub-Surface
Flow

Component

Surface Flow
Component

F

ER QS

QG

Q

Fig. 21.1 Schematic of the simplified hydrologic system
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The details of these three components are not included here for brevity and can be
found in Jain and Srinivasulu (2004). The surface flow component is described in
detail in the following section.

21.3.1 Surface Flow Model Component

The total observed flow at the outlet of a catchment can be thought of as the sum
of surface flow and subsurface flow components. This can mathematically be repre-
sented as follows:

QOt = QSt +QGt (21.1)

where QOt is the observed flow at time t, QSt is the surface flow component at time
t and QGt is the base flow component at time t.

The surface flow (QSt) from the catchment can be derived by simulating the
catchment to be a linear reservoir. The inflow (ERt) to the surface flow system can
be routed through the linear reservoir to compute QSt using a modified version of
Singh (1988) as follows:

QSt = C1

(
ER∗

t−1 +ERt

2

)
+C2 QS∗

t−1 (21.2)

K1 =
Qt−2

ΔQt−2
(21.3)

ΔQt−2 =
Qt−1 −Qt−3

2
(21.4)

C1 =
2Δt

2K1 +Δt
(21.5)

C2 =
2K1 −Δt
2K1 +Δt

(21.6)

where C1 and C2 are the linear reservoir routing coefficients, ER∗
t−1 is the updated

amount of inflow coming into the surface storage at time (t −1), ERt is the effective
rainfall coming into the surface storage at time t, QS∗

t−1 is the updated amount of
surface flow at time t −1, K1 is an attenuation constant that can be determined from
historical flow data using Clark’s method (Singh 1988) and Δt is the time interval of
the model. QS∗

t−1 can be computed from past observed stream flow and base flow,
using the following equation:

QS∗
t−1 = QOt−1 −QGt−1 (21.7)

where QOt−1 is the observed streamflow at time (t–1) in m3/s and QGt−1 is the
computed base flow at time (t–1) in m3/s. Further, the updated value of ER∗

t−1 to
be used in (21.2) can be estimated by using the same equation in inverse direction
written at a previous time step as follows:
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ER∗
t−1 = 2

(QS∗
t−1 −C2 QS∗

t−2)
C1

−ER∗
t−2 (21.8)

The surface flow on the rising limb was modelled using (21.2) through (21.8).
The total flow on the rising limb was calculated in accordance with (21.1). The
falling limb of the flow hydrograph can be modelled using an adaptive decay model,
which can mathematically be expressed as follows:

Qt = KftQOt−1 (21.9)

Kft =
QOt−1

QOt−2
(21.10)

where Qt is the modelled streamflow at time t on the falling limb (m3/s), Kft is the
decay coefficient on the falling limb at time step t and QOt−2 is the observed stream
flow at time t −2 on the falling limb (m3/s).

The CRR model employed in this study consists of a total of nine parameters:
one parameter in the base flow model; four parameters in the infiltration model (K,
ψ , η and S); two parameters in the SMA model; and two parameters in the surface
flow model (K1 and Kf). The parameters KGt , K1 and Kft can be determined using
past flow data adaptively and need not be calibrated. Thus, only six parameters (four
for infiltration and two for SMA) need to be calibrated.

21.4 Model Application and Results

The CRR model presented above was applied to the Kentucky River Basin, USA.
The daily rainfall and river flow data derived from the Kentucky River Basin (see
Fig. 21.2) were employed to calibrate and validate the CRR model. The drainage
area of the Kentucky River at Lock and Dam 10 (LD10) near Winchester, KY, is ap-
proximately 10,240 km2. The data used include average daily streamflow (m3/s) for
the Kentucky River at LD10 and daily average rainfall (mm) from five rain gauges
scattered throughout the Kentucky River Basin. The total length of the available
rainfall–runoff data was 26 years. The data were divided into two sets: a calibration
data set of 13 years (1960–1972) and a validation data set of 13 years (1977–1989).
The statistical properties (mean and standard deviation) of the calibration and vali-
dation sets were comparable.

The two parameters of the SMA model were estimated using regression analysis
and their details can be found in Jain and Srinivasulu (2004). The four Green–Ampt
parameters (K, ψ , η and S) were determined using a real-coded GA in this study.
The real-coded GA offers certain advantages over the traditional binary-coded GA:
(a) it allows the search for an optimal solution in a continuous real-valued search
space; (b) high precision can be easily achieved in the real-coded GA without hav-
ing to increase the size of the population; (c) it avoids positional bias in carrying out
the single-point crossover operator; and (d) it is more flexible and robust in searching
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Fig. 21.2 Kentucky River Basin

for a global solution around the Hamming Cliff and creating feasible children solu-
tions. More details of real-coded GAs can be found in Deb and Agarwal (1995) and
Deb (2000).

In determining the Green–Ampt parameters using a real-coded GA, an objec-
tive function in the form of some error function that needs to be minimised can be
formulated. In the present study, the objective function was the mean squared error
(MSE) as follows:

E =
1
N

N

∑
t=1

(Q(t)−QO(t))2 (21.11)

where E is the error function to be minimised in the optimisation formulation, Q(t)
is the estimated flow at time t, QO(t) is the observed flow at time t and N is the total
number of data points in the observed flow series during calibration. The real-coded
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GA parameters ηc = 2, ηm = 20; crossover probability Pc = 0.9; and mutation prob-
ability Pm = 0.01 and a population size of 40 were used. While carrying out the
search for global solutions, the GAs were continued until fitness values converged
to the specified tolerance level or the maximum number of function evaluations was
reached. In an attempt to achieve the global optimal solution, 20 different runs start-
ing with different initial populations were carried out and all of them resulted in sim-
ilar solutions indicating that a near-global solution was reached. The best solution
out of the 20 solutions is reported here. The parameters of the Green–Ampt equa-
tions corresponding to the best solution are K = 0.1999 mm/hour, ψ = 201.267 mm,
η = 0.09686 and S = 305.42 mm.

Once the CRR model has been calibrated, it can be employed to calculate daily
streamflow in the Kentucky River during both calibration and validation periods.
Then, performance evaluation indices can be computed for the two 13-year calibra-
tion and validation periods. Five different performance evaluation parameters were
used in this study for this purpose. These are average absolute relative error (AARE),
correlation coefficient (R), Nash–Sutcliffe coefficient of efficiency (E), normalised
root mean squared error (NRMSE) and normalised mean bias error (NMBE). The
equations to calculate these statistical measures and their overview can be found in
Jain and Srinivasulu (2004). The computed values of the performance evaluation
measures are presented in Table 21.1.

It can be noted from Table 21.1 that values of R in excess of 0.93 and E in
excess of 0.83 obtained for both calibration and validation data sets indicate a very
good model performance. The NMBE values around +8.9% indicate that the model
tends to over-predict the flow slightly, which may be due to the structure of the
surface flow component that is linear in nature. AARE values around 20% for both
calibration and validation data sets also indicate good model performance. These
results confirm that the real-coded GA is able to provide a very good calibration
of the hydrologic process in the Kentucky River Basin. The performance of the
real-coded GA-determined parameters is represented graphically in the form of a
scatter plot of the observed and estimated flows during validation in Fig. 21.3. The
scatter plot indicates a uniform departure from the ideal line at all magnitudes of
flow barring a few outliers.

Table 21.1 Performance statistics from the CRR model

Statistic Calibration Validation

AARE 23.57 24.68
R 0.9363 0.9332
E 0.8436 0.8344
NRMSE 0.639 0.649
NMBE 8.951 9.462
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Fig. 21.3 Scatter plot of observed and computed flows for the validation period

21.5 Summary and Conclusions

The calibration of hydrologic models has been a difficult task for researchers and
practicing hydrologists. The efforts at determining the parameters of a CRR model
have ranged from manual methods of trial and error in earlier days to the very so-
phisticated methods of soft computing today. This chapter presents a brief review
of the relevant literature and a case study of the use of a real-coded GA for hy-
drologic model calibration. A CRR model consisting of a total of nine parameters
was employed, of which the four Green–Ampt parameters were calibrated using a
real-coded GA. The performance of the calibrated CRR model was evaluated on the
calculated flows for the two 13-year calibration and validation data sets using five
different statistical measures.

The performance of the hydrologic model calibrated using a real-coded GA was
found to be excellent in terms of R and E and very good in terms of AARE, NRMSE
and NMBE statistics. The results obtained in this study indicate that the real-coded
GA offers a suitable alternative to the problem of hydrologic model calibration.
The real-coded GA needs to be further exploited by researchers working in hy-
drology and closely related areas. The CRR model employed in the present study
was a lumped model. It would be interesting to investigate the performance of a
real-coded GA in the calibration of a distributed hydrologic model. It would also
be interesting to compare the performance of a real-coded GA with the traditional
binary-coded GA and its other variations in hydrologic model calibration. Also, the
use of different error functions in the GA optimisation may lead to improved per-
formance in hydrologic model calibration. A sensitivity analysis that evaluates the
effect of changes in each calibrated parameter on the model performance also needs
to be carried out. It is hoped that future research efforts will focus in some of these
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directions and thereby help to improve the performance of both existing and planned
water resource systems.
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Chapter 22
Randomised Search Optimisation Algorithms
and Their Application in the Rehabilitation
of Urban Drainage Systems

D.P. Solomatine and Z. Vojinovic

Abstract Urban drainage systems constitute a very significant portion of all assets
in urban areas. Their structural integrity and functional efficiency represent key pa-
rameters for the safe transfer and disposal of surface runoff and domestic/trade dis-
charge. Hydroinformatics tools can help in dealing with the optimal rehabilitation
of such systems. An approach that links the hydrodynamic model of a drainage sys-
tem with the multi-criteria global evolutionary optimisation engine that takes into
account the performance indicators relevant for rehabilitation decisions is being de-
veloped. This paper presents the tools and the optimisation algorithms used, and a
simple case study demonstrating the effectiveness of the approach.

Keywords Urban drainage asset management · system rehabilitation · global
optimisation

22.1 Introduction

22.1.1 New Possibilities in Optimisation

For many years, in the 1970s and 1980s, water engineers were mainly using optimi-
sation techniques in reservoir optimisation and, to some extent, in real-time control.
Other problems where optimisation could have been used were posed but in practice
only small-scale problems could be solved with the techniques and tools that were
at the disposal of water engineers and managers.
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The information technology revolution has changed the situation dramatically.
Modern methods of optimisation and the available inexpensive computing power
make it possible to solve problems that were not even posed 10–15 years ago.
In a water context many such methods are being developed and used by the hy-
droinformatics community. The problems where an objective function cannot be
expressed analytically (and indeed there are many of them) are nowadays solved
by the use of direct optimisation methods. Such methods, instead of using an-
alytical expressions for gradients are based on direct calculations of the func-
tion and in some sense the search for an optimum generally follows the direction
of the gradient vector. These methods require a large number of objective func-
tion evaluations, where each evaluation involves a run of a mathematical model,
and their application in engineering practice became possible only after the ar-
rival of inexpensive powerful computers. A group of methods generally referred
to as randomised search methods is the most popular group of direct optimisation
methods.

Note also that many problems are typically multi-extremum and so a straight-
forward application of gradient-based methods (searching for a local optimum) is
not adequate. Methods oriented at finding the global optimum (contrasted to finding
a local one) are called global optimisation methods. Randomised search methods
belong to this group.

A family of randomised search methods called evolutionary and genetic algo-
rithms (abbreviated as GA, EA or EGA) has become quite popular during the last
15 years (Michalewicz, 1999). Their success is fully deserved and can be explained
by their methodological appeal, relative simplicity, robustness and the existence of
a well-organised community (see the chapter by Savic in this volume). The recent
developments in hybrid EAs, in particular memetic algorithms, have led to consid-
erable improvements in the effectiveness of this class of algorithms.

There are many other algorithms following the idea of randomised search: simu-
lated annealing, particle swarm optimisation, ant colony optimisation, adaptive clus-
ter covering and others. There are many examples of their successful use in many
areas, and the choice of a particular algorithm is often based on the experience
and preferences of a researcher or an engineer and not on a detailed investigation
of effectiveness (accuracy) and efficiency (speed) of a particular algorithm. Due to
the power of modern computers such an approach is often justified since the addi-
tional research costs much more than running a computer for several extra hours.
(For example, the relative inefficiency of standard GAs is often ignored by practi-
tioners since “GAs are popular and work relatively well anyway”, and, indeed, this
is true). This of course does not mean that there is no need to build better algo-
rithms since for complex problems running time can be very significant (days and
weeks), and, obviously, a more efficient and reliable algorithm should be typically
preferred to a slower one (even if the latter is well known and being used by many
people).

In this chapter we have used the adaptive cluster covering algorithm (ACCO)
(Solomatine, 1995, 1999), which has proved to be an effective and efficient tool for
solving many global optimisation problems.
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22.1.2 Two Important Optimisation Problems
in Water Management

Two important problems that are considered in this chapter can be mentioned in the
context of optimisation: automatic calibration of complex models and optimisation
of pipe networks.

The calibration problem is a typical problem where the objective function cannot
be expressed analytically (since its value is always a result of running a model),
and which can only be solved by using direct optimisation (Wang, 1991; Babovic
et al., 1994; Cieniawski et al., 1995; Solomatine, 1995; Savic and Walters, 1997;
Franchini & Galeati, 1997).

The problem of water distribution pipe network optimisation was posed long ago
and a number of approaches based on gradient-based optimisation were suggested
to solve it (Alperovits & Shamir, 1977; Yates et al., 1984; Kessler & Shamir, 1989).
However, the complexity of the problem does not allow for neat analytical formu-
lation of the objective function and constraints so that its accurate solution became
possible only in the 1990s when computers became powerful enough to run ran-
domised search algorithms (Simpson et al., 1994; Dandy et al., 1996; Savic &
Walters, 1997; Abebe & Solomatine, 1998).

During the last years more and more problems are posed as multi-objective op-
timisation problems, and the two aforementioned problems are not exceptions. In
water management there are many conflicting interests and objectives, and this
leads to natural formulations with several criteria. There are specialised methods
for solving such problems (e.g. Deb et al., 2002), but often there is a tendency
to update them to make them more effective in solving water-related engineering
problems (see, e.g. Tang et al., 2005). An increasing number of papers is appear-
ing lately on multi-objective optimisation of water distribution networks (Prasad
and Park, 2004; Kapelan et al., 2005). In this chapter we use both single- and
multi-objective approaches.

22.1.3 Motivation

The main motivation for writing this chapter was the growing understanding of the
second author that the problems of urban drainage need the application of adequate
optimisation methods and tools. The basis for this chapter was the experience of
the first author with optimisation methods in solving water-related problems includ-
ing pipe network optimisation, and the experience of the second author in solving
practical problems of urban water management using hydrodynamic models and
his initial experience in posing and solving problems of optimal rehabilitation of
drainage networks using traditional branch-and-bound methods.

The problem of the multi-objective approach to optimal rehabilitation of drainage
networks has not yet received adequate attention in the scientific and engineering
community. Such an approach was indeed discussed by Rauch and Harremoes (1999),
but it was not actually applied to a drainage network. Diogo et al. (2000) consider the
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(single-objective) optimal layout and design of urban drainage systems for sewage
and storm water; they used dynamic programming, alongside simulated annealing
and genetic algorithms to solve the discrete combinatorial optimisation problem.

This chapter makes a contribution to solving the optimal rehabilitation problem.
Single- and multi-objective approaches to its solution based on the use of ran-
domised search optimisation methods employed earlier in other hydroinformatics-
related studies are demonstrated.

22.2 Wastewater Pipe Networks and Their Optimisation

Wastewater system rehabilitation is usually implemented based on several struc-
tural and hydraulic indicators that centre around the concept of levels of service.
As presented in Vojinovic and Solomatine (2005a; 2006), the methodology to do
that should consider the following aspects: full utilisation of the existing system’s
capacity prior to undertaking improvement works, reduction of pollution affecting
local receiving waters as well as main watercourses and groundwater, reduction of
infiltration/inflow in the network and its adverse impact on wastewater treatment,
prevention of local system surcharges affecting properties and the environment,
prevention of structural collapses and damage to other subsurface infrastructures
and the prevention of the pollution of water supply systems, due to infiltration of
wastewater and minimisation of expenditure.

All the aforementioned aspects are almost equally important for sustainable ur-
ban water management; therefore, finding the right balance between the extent of
remedial works requirements (i.e. the target level of the system’s performance) and
capital expenditure is one of the greater challenges for those concerned with urban
water systems.

In the approach discussed in this chapter, the above problem is posed as a
fully fledged multi-objective optimisation problem, taking into account most of the
aforementioned factors. It deals with determining the optimal pipe diameters for
a network with a predetermined layout that needs remediation given the specific
constraints. This problem belongs to the group of multi-extremum (global) optimi-
sation methods mentioned in the Introduction. The MOUSE system (developed by
DHI Water & Environment) is used as the wastewater pipe network modelling tool.

The objective of selecting an optimal set of remedial measures (i.e. remedial
works optimisation) of a pipe network system is to identify the vector of some
values x = {x1, . . .,xn}, which are not known a priori (x could be a set of options
characterising the possible remedial works, for example pipes upgrades). This is
achieved by feeding the model input data, and subsequently calculating the total
cost of the works required. The remedial works optimisation problem can be posed
in two ways: (1) as a single-criterion optimisation problem, in the case of a single
output variable (e.g. the total cost of remedial works) and (2) as a multi-criteria
optimisation problem – when there are several output variables (e.g. the total cost
of remedial works and the total system surcharge/overflow volume, etc.).
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22.2.1 Multi-Objective Setting of an Optimisation Problem

A problem characterised by several variables (x1, . . .,xn) is considered. In most
real-life optimisation (we will consider minimisation) problems a solution x∗ =
{x1

∗, . . .,xn
∗} is sought such that several objective functions (criteria) f1, f2, . . ., fm

are minimised. Typically these objectives are conflicting and there are no such solu-
tions, so a solution is sought that would at least bring low values to the objectives.
Finding a compromise between different objectives is the central problem in multi-
objective optimisation.

In the context of drainage system rehabilitation, vector (x1, . . .,xn) could repre-
sent various system improvements (upgrades of particular pipes, new storage tanks,
etc.), and objectives could be costs of remedial works, flood damage, risk of failure,
etc. Since such objectives are conflicting, the set of necessary remedial works identi-
fied with respect to one objective (e.g. costs) would not necessarily optimise another
objective (e.g. the total surcharge in the system or the potential flood damage).

There are several ways of dealing with multi-objective problems; we will men-
tion the three most widely applied:

• A number of “good” solutions are found that bring low (but not minimum) values
of several objectives, and these solutions are presented to a decision maker who
has to choose one solution, a “compromise” (see e.g. Deb et al., 2002).

• Several objective criteria are combined into one, for example in the form of a
weighted sum, or by minimising the distance in the objective space from the
solution to the “ideal point”, and a single-criterion problem is solved.

• Optimisation is performed with respect to one objective, whereas constraints are
imposed on the values of all other objectives (for minimisation problems, upper
bounds) (as was done, e.g. by Solomatine & Torres (1996)). An optimal solution
is the one minimising the selected objective given all constraints are satisfied (in
the case of minimisation, this means that the objective value is below the chosen
upper bound).

22.2.2 Single-Objective Setting of an Optimisation Problem

In the case of one objective the problem becomes a standard optimisation problem
studied already for dozens of years. Very often such a problem has constraints and
one of the ways of taking them into account is using a penalty function p(x) with a
high value outside the specified constraints, so that the function to be minimised is
f (x)+ p(x) (for the simplicity of narration the function to be minimised will still be
denoted as f (x)). Typically the exact value of the optimum vector cannot be found
exactly, or this requires too much computer time, so it is reasonable to be satisfied
with finding its estimate, and correspondingly, the minimum estimate. Typically, in
the wastewater system optimisation problem, the function f characterises the total
cost of remedial works.
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In the wastewater system remedial works optimisation problem, the formula for
the system performance criterion includes the values of the modelled output which
is a result of running a computer program and typically is not analytically defined, so
known efficient gradient-based methods cannot be used. There is also no guarantee
that f (x) has a single extremum, and therefore such a problem has to be solved by
the methods of global (multi-extremum) optimisation.

22.3 Global Search and Methods of Computational Intelligence

22.3.1 Multistart of Local Searches

The basic idea of the family of multistart methods is to apply a procedure oriented
at searching for a single extremum (referred to as local search) several times, and
then to choose an assessment for the global optimiser. There are various ways of
choosing the initial points for the local search procedures, for example to choose
them randomly, or to apply the Multi-level Single Linkage (MLSL) by Rinnooy
Kan and Timmer (1987). Multistart can also be based on the clustering beforehand,
i.e. creating groups of mutually close points that hopefully correspond to relevant
regions of attraction (Torn and Zilinskas, 1989) of potential starting points. The
region (area) of attraction of a local minimum x∗ is the set of points in X starting
from which a given local search procedure P converges to x∗. In an ideal case, the
multistart methods aim at starting this local search procedure exactly once in every
region of attraction. However, there is no guarantee for that, and it may be necessary
to apply the global, rather than local search in each area.

In the GLOBE tool used in this study (Solomatine, 1999) three methods of mul-
tistart are implemented – Multis that uses the local derivative-free optimisation
method of Powell–Brent (Press et al., 2003), M-Simplex that uses the simplex de-
scent method (Nelder and Mead, 1965) (both use random selection of the starts) and
ACCOL, which combines multistart with clustering.

22.3.2 Randomised Search Methods

The most popular approach to global optimisation is, however, based on randomised
search. Since derivatives cannot be calculated, global search methods are said to em-
ploy direct search, i.e. the straightforward calculation of the function values at dif-
ferent points of the search space. The procedure of generating these points often (but
not always) uses methods of randomisation. Such an approach needs much more
computational power than traditional gradient-based methods and became popular
only due to increased capacity of widely available personal computers and work-
stations. Several representatives of the global search methods are covered below.
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For an extensive coverage of various methods the reader is referred to Torn and
Zilinskas (1989) and Pinter (1995).

The simplest scheme of obtaining an optimiser assessment, a pure direct random
search (pure random search, Monte Carlo search or direct search) draws N points
from a uniform distribution in X and evaluates f in these points; the smallest func-
tion value found is the minimum f ∗ assessment. If f is continuous, then there is an
asymptotic guarantee of convergence, but the number of function evaluations grows
exponentially with n. An improvement would be to generate evaluation points in a
sequential manner so that the already known function values are taken into account
when the next point is chosen.

Price (1983) proposed several versions of the algorithm called controlled random
search (CRS) in which the new trial point in search (parameter) space is generated
on the basis of a randomly chosen subset of previously generated points. The basic
idea is that at each iteration, a simplex (in three-dimensional space, it is a tetrahe-
dron) is formed from a sample and a new trial point is generated as a reflection of
one point in the centroid of the other points in this simplex; if the worst point in the
initially generated set is worse than the new one, it is replaced then by the latter. The
ideas of CRS algorithms have also been further extended by Ali and Storey (1994)
producing CRS4 and CRS5.

A popular method of direct search was proposed by Nelder and Mead (1965),
which we used as the base procedure in the M-Simplex multistart method; how-
ever, this method was found by many researchers to be quite effective in finding
global minima as well. It is also used as the base procedure in the shuffled com-
plex evolution (SCE) method (Duan et al., 1992), which is popular in water-related
applications.

The family of evolutionary algorithms is based on the idea of modelling the
search process of natural evolution, although these models are crude simplifications
of biological reality. Evolutionary algorithms are variants of randomised search
and use terminology from biology and genetics. These are covered in more detail
by Savic in this volume. Applications of evolutionary algorithms, especially GAs,
in water-related optimisation have been widely reported, see e.g. early papers by
Wang (1991), Cieniawski et al. (1995) and Savic and Walters (1997).

22.3.3 Adaptive Cluster Covering

The adaptive cluster covering (ACCO) algorithm (Solomatine (1995, 1999) is a
workable combination of generally accepted ideas of reduction, clustering and
covering:

1. Clustering. Clustering (identification of groups of mutually close points in search
space) is used to identify the promising subdomains to continue the global search
(by active space covering) in each of them.

2. Covering the shrinking subdomains. The random covering of each subdomain is
applied, i.e. the values of the objective function are assessed in the points drawn
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from a uniform or some other distribution. Covering is repeated multiple times
and each time the subdomain is progressively reduced in size.

3. Adaptation. Adaptive algorithms are updating their algorithmic behaviour de-
pending on the new information revealed about the problem under consideration.
In ACCO, adaptation is in shifting the subregion of the search, shrinking it and
changing the density (number of points) of each covering – depending on the
previous assessments of the global minimiser.

4. Periodic randomisation. Due to the probabilistic character of point generation,
any strategy of randomised search may simply miss a promising region for search
(similar to the situation when local search procedures may miss the global mini-
mum). In order to reduce this danger, it is reasonable to re-randomise the initial
population, i.e. to solve the problem several times, and/or to re-randomise some
populations at intermediate steps.

The version of ACCO used here is the ACCOL algorithm – it combines ACCO
with multiple local searches using the Powell–Brent procedure.

22.4 Problem Formulation

The constraints in the problem can be grouped into the following: the dynamic na-
ture of the system, uncontrolled surcharge (i.e. overflows) and economic drivers (the
total cost of remedial works involved). The system dynamics constraint is handled
by the hydrodynamic network simulation model. The optimisation package handles
only box-type constraints on the parameters, i.e. upper and lower bounds on each
parameter, and therefore, the penalty functions are used to handle the system sur-
charge constraint. The economic constraint imposes the reduction of the parameter
space to a discrete one. GLOBE has an option to fix the resolution of the parameter
space to be searched. This can be adjusted by the number of available pipe sizes and
each parameter can take values from one of the pipe sizes. This number is used as
an index for the choice of diameters; therefore, the search algorithms will search for
the optimal set of pipe indices instead of the optimal set of diameters. This approach
has the following technical advantages: (a) search algorithms will not waste com-
putational time looking for diameters in a real parameter space and (b) the solutions
obtained will not be split pipe solutions.

The problem is posed as a multi-objective problem with the two objective
functions:

1. Minimisation of the total flood damage related to surcharge
2. Minimisation of the total network rehabilitation costs

The corresponding equations are given below:
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f2 = Min Δ
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where the expression Q/Qf is a surcharge indicator, Q is the actual maximum dis-
charge and Qf is the capacity of the pipe at full section; values greater than one
indicate the grade of surcharge in the pipe. In (22.2) (L∗C) represents the cost of
the pipe replacement. The max superscript means “maximum value expected” –
this ensured normalisation of the functions. No additional constraints have been im-
posed; however, constraints due to hydraulic conditions are internally imposed in
the hydrodynamics model.

In the single-objective formulation the objective function to be minimised was
expressed as the weighted sum of the two cost components:

C = w f1 +(1−w) f2 (22.3)

In the test cases considered in this study we used w = 1 (note that the contributing
functions are normalised). Other ways to combine the multiple objectives mentioned
above will be considered in future studies.

22.5 Tools Used

The tools used in the proposed approach are MOUSE for hydrodynamic modelling
(Danish Hydraulic Institute), GLOBE for single-objective optimisation and NSGAX
for multi-objective optimisation.

Optimisation tool GLOBE. In order to apply global optimisation techniques
to the present problem, a PC-based system GLOBE has been utilised. GLOBE
(Solomatine 1995, 1999, http://www.ihe.nl/hi) can be configured to use an external
program as the supplier of the objective function values. The number of independent
variables and the constraints imposed on their values are supplied by the user in the
form of a simple text file. The three modules (i.e. programs) such as the MOUSE
model and two transfer programs (i.e. processors) are activated from GLOBE in a
loop. It iteratively runs an executable program that receives potential solutions gen-
erated by the search algorithms and returns a corresponding value of the objective
function. Currently, GLOBE includes the following nine algorithms: several ver-
sions of controlled random search (Price, 1983; Ali and Storey, 1994) GA, Multis,
M-Simplex, ACCO, ACCOL, adaptive cluster descent (ACD) and adaptive cluster
descent with local search (ACDL) (Solomatine, 1999).

Optimisation tool NSGAX. This tool implements NSGA-II, the multi-objective
optimisation algorithm of Deb et al. (2002), and uses C code downloaded from
the web site of the Kanpur Genetic Algorithms Laboratory (KanGAL). They were
modified to call an external function to calculate the objective function values based
on the model run.
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Pipe network simulation tool MOUSE. The MOUSE pipe flow model used here
(a product of DHI Water & Environment) is a computational tool for simulations
of unsteady flows in pipe networks. The computation is based on an implicit, finite
difference numerical solution of basic one-dimensional, free surface flow equations
(Saint-Venant). This algorithm provides a solution in multiple connected branched
and looped pipe networks. The computational scheme is applicable to vertically
homogeneous flow conditions, which occur in pipes ranging from small-profile col-
lectors for detailed urban drainage, to low-lying, often pressurised sewer mains,
affected by the varying water level at the outlet. Both subcritical and supercritical
flows are treated by means of the same numerical scheme that adapts according to
the local flow conditions.

22.5.1 Algorithmic and System Setup

Based on the ideas outlined by Vojinovic and Solomatine (2005a,b; 2006), the fol-
lowing steps are used to calculate the cost of one set of remedial works (Fig. 22.1):

1. The values generated by GLOBE (or NSGAX) are read from the parameter file
and converted to indices of pipe sizes that represent one network.

2. The actual rehabilitation cost of the network f2 is calculated based on the length
and cost per unit length corresponding to the diameter of each pipe.

Calcuate total
flood damage

related to
surcharge

Extract
surcharge

from output
file

Run
Network

Simulation
Model

Update
input file of

MOUSE
(*.und file)

Actual cost
of the

network
rehabilitation

Calculate total
combined cost
of the solution

(in case of
single-objective)

Corresponding
pipe sizes from

the
pipe database

Input Output

OPTIMIZATION SOFTWARE

STOP

START

Optimal
solution

obtained?

File with
potential

solution (pipe
indices)

File with
objective

functions values

MOUSE

Fig. 22.1 Problem setup using optimisation software GLOBE and NSGAX
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3. The MOUSE input file is updated (only diameters are changed).
4. The MOUSE model is run.
5. From the output file of the simulation, the nodal surcharges are extracted and

summed representing the total system surcharge.
6. The surcharge cost f1 is calculated based on the degree of the total system sur-

charge (if any).
7. The total objective function C = g( f2, f2) value is calculated (in the case of a

single-objective approach and using GLOBE), using, e.g. (22.3).
8. The values f2, f2 (in the case of the multi-objective approach), or the values of C

(in the case of a single-objective approach) are written to the response file, which
is then read by GLOBE or NSGAX.

Additionally, in this study, in order to reduce the problem dimension and hence
the computational burden, we run MOUSE prior to optimisation a number of times
to determine the critical pipes where a surcharge threshold is exceeded. Only such
pipes are subsequently included in the optimisation process.

22.6 Case Study

The methodology has been tested on several real networks. One of them, a simpli-
fied combined sewer subsystem of an urban catchment in Japan, is reported in this
chapter (Fig. 22.2). The considered system contains 12 pipes, 12 nodes and 1 outlet.
A design rainfall event of a 1 in 5 year return period was applied for evaluation of
remedial options and the system’s upgrade. One hydrodynamic simulation for this
system using this particular event was found to last around 3 minutes. A 1.4 GHz
PC was used.

The problem of remediation was posed as indicated above. In the single-objective
setting the composite objective function combined the flood damage and the reha-
bilitation costs by weighting them (22.3) and the ACCO algorithm was used. In the
multi-objective setting two objectives were considered: total flood damage related
to surcharge and the total network rehabilitation costs (both to be minimised).

The single-objective optimisation served as a sort of “feasibility study” for the
subsequent multi-objective optimisation and helped to identify pipes corresponding
to the exceeded surcharge threshold. Only those pipes were included in the optimi-
sation process, so that out of 12 pipes only 4 pipes were optimised.

22.7 Results

Since one MOUSE model run takes around 3 minutes, the algorithm was first tested
in the single-objective setting on a limited number of model runs (between 40 and
50), and for that purpose its parameters had to be set accordingly (see Solomatine,
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Fig. 22.2 Network under study

1999). Even when such limited optimisation was employed, the total cost dropped
50% from the initial value.

A limited investigation of the effectiveness (how well it solves the problem) and
efficiency (how fast it is solving the problem) of the optimisation algorithm was un-
dertaken. Figure 22.3 presents the plot showing how fast (i.e. after how many model
runs) the total cost associated with the network remediation is going down (the first
cost value is recorded after six initial model runs by the ACCO algorithm). The full
investigation of comparative effectiveness of various single-objective optimisation
algorithms is yet to be done.

In a multi-objective setting, using NSGA-II a more comprehensive study was un-
dertaken. We tested several population sizes – 20, 32 and 64. Crossover probability
was 1, and the mutation probability was chosen to be 1/np, where np is the number
of pipes to optimise.

For each population set four runs were performed; using different seeds for the
random number generator, the selected indicators were averaged for each population
size and each optimiser. Table 22.1 shows the averaged performance indicators for
various population sizes.

Table 22.1 Summary of the NSGA-II results

Population size # Solutions in the Pareto layer # Function evaluations Runtime (min)

20 18.00 440 26.4
32 27.25 468 25.3
64 44.25 785 45.8
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Fig. 22.3 Composite cost value (non-normalised) as a function of the number of model runs in
single-objective optimisation

Two solutions taken from the NSGA-II Pareto front are presented in Table 22.2.
It can be seen how the change of diameter influences the trade-off between the two
objective functions.

We have also calculated and analysed the metrics traditionally used in multi-
objective optimisation – hypervolume and ε-indicator, which will be reported else-
where due to lack of space.

Multi-objective optimisation does not answer the question of which solution is
the best, but only provides a decision maker with a set of alternatives. If one com-
pares these two solutions using a combined criterion (22.3) then solution 2 would
be the preferred choice. If, however, one is interested in the minimum-cost solution,
which does not lead to flood damage larger than a predefined threshold, then solu-
tion 1 could be chosen since its implementation is more than five times cheaper than
that of solution 2.

Table 22.2 Values of variables and objective functions for the two different Pareto vectors

Solution Pipe ID Catalogue # Diameter (mm) Objectives

Initial Final Cost Surcharge

1 0078 1l1 1 225 225 0.0095 0.7190
K003 1l1 1 225 225
K006 1l1 1 225 225
K007 2l1 2 225 470

2 0078 1l1 2 225 470 0.1160 0.0081
K003 1l1 4 225 692
K006 1l1 3 225 575
K007 2l1 2 225 470



316 D.P. Solomatine and Z. Vojinovic

22.8 Conclusions

In this chapter, an approach to optimisation of wastewater system remedial works
was presented. In this approach, the search for an optimal solution was performed by
either a single-objective method (e.g. ACCO or other methods implemented in the
global optimisation tool GLOBE) or a multi-objective optimisation method (NSGA-
II). The dynamic nature of the wastewater pipe network system was replicated with
commercially available hydrodynamic software, MOUSE. The method was tested
on simple systems and this (still preliminary) work suggests a strong potential for
this approach to find the optimal solution and achieve economic benefits when com-
pared to the approaches traditionally applied by engineers.

Further research will be aimed at testing the methodology on a larger system, and
at designing algorithms that would be computationally less demanding. Attention
should also be given to using practitioners’ knowledge in formulating the objec-
tive functions (e.g. rehabilitation phased in time), and explicitly taking into account
specific urban drainage system features during optimisation.
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Chapter 23
Neural Network Hydrological Modelling:
An Evolutionary Approach

A.J. Heppenstall, L.M. See, R.J. Abrahart, and C.W. Dawson

Abstract Neural networks are now extensively used for rainfall–runoff modelling.
Considered a “black box” approach, they allow non-linear relationships to be mod-
elled without explicit knowledge of the underlying physical processes. This method
offers many advantages over earlier equation-based models. However, neural net-
works have their own set of issues that need to be resolved, the most important of
which is how to best train the network. Genetic algorithms (GAs) represent one
method for training or breeding a neural network. This study uses JavaSANE, a
system that advances on traditional evolutionary approaches by evolving and opti-
mising individual neurons. This method is used to evolve good performing neural
network rainfall–runoff solutions for the River Ouse catchment in the UK. The re-
sults show that as lead times increase, the JavaSANE networks outperform conven-
tional feedforward networks trained with backpropagation.

Keywords Genetic algorithms · neural networks · rainfall–runoff modelling

23.1 Background

Hydrological systems are complex entities containing numerous non-linear processes
which are often interrelated at different spatial and temporal scales. This complexity
presents substantial problems in both understanding and modelling hydrological pro-
cesses. This is particularly problematic in the area of rainfall–runoff modelling (Zhang
and Govindaraju, 2000). The development of mathematical models to understand
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this system occupies a substantial amount of the literature where efforts are concen-
trated on attempting to capture the characteristics of the underlying physical processes
through the use of equations of mass and momentum (Jain and Srinivasulu, 2004).
However, many of these models have varying degrees of success being limited by
the need for large quantities of high-quality data as well as detailed calibration and
optimisation methods.

Due to the constraints of these physically – based models, attention has shifted
to the use of “black box” methods such as neural networks. Neural networks can be
used to develop relationships between input and output variables that form part of a
process without having explicit knowledge of the underlying physics. These models
are now extensively used to perform rainfall–runoff modelling (see other chapters
in this book on neural network modelling for many good examples). This uptake is
due to the advantages that they possess over traditional modelling solutions. These
include inherent capabilities such as learning, adapting and generalising to unseen
data sets as well as performing distributed parallel processing. Neural networks also
offer associative memory storage and exhibit robustness and fault-tolerant charac-
teristics (Kasabov, 1996). However, these tools are not without their disadvantages.
These include a need for large data sets, long training times, lack of guidance on
architecture and parameter settings and the potential to overfit. Furthermore, there
is a tendency to employ the same objective function, generally sum-squared error,
which may not always be the most appropriate for rainfall–runoff modelling.

An important element in developing a successful neural network model lies in
the method used for training the network. Methods that have been investigated range
from the momentum correction factor (Raman and Sunilkumar, 1995) to the com-
monly used backpropagation training algorithm (Rajurkar et al., 2002). However,
research by Hsu et al. (1995) suggested that the results of these training methods
were both inconsistent and unpredictable due to their inability to capture the non-
linearity in the rainfall–runoff process. This is in part related to the inability of such
methods to search for the global optima within a solution space that is both discon-
tinuous and has significant variations over the input space.

This chapter will briefly describe genetic algorithms and how they are imple-
mented in the package called JavaSANE, which has been used to evolve neural
network rainfall–runoff models for the River Ouse catchment in the UK. Neural net-
works trained with backpropagation and multiple regression models were developed
in parallel to provide a comparison. The results of applying these three methods are
presented as well as a discussion of the potential benefits and problems associated
with using a genetic approach.

23.2 Genetic Algorithms

The training of a neural network is essentially a non-linear optimisation problem
whereby the objective is to minimise the global error at the output level. A tool that
is widely used for solving complex non-linear optimisation problems is the genetic
algorithm (GA).
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Fig. 23.1 The crossover and mutation operators applied to candidate solutions of a combinatorial
problem (after Flake, 2001)

GAs are modelled on natural evolutionary processes, known as genetic oper-
ators. These manipulate individuals in a population over several generations to
improve their fitness. A detailed introductory survey can be found in Reeves and
Rowe (2003).

In a GA, the properties of each individual are represented in an encoded form
known as a chromosome (or genome). Chromosomes are combined or mutated to
breed new individuals. Crossover of two chromosomes models the sexual repro-
duction occurring in nature. An offspring’s chromosome is created by joining seg-
ments chosen alternately from each of two parents’ chromosomes which are of fixed
length. Selection is the process of choosing the chromosomes to be recombined.
Mutation is the alteration of one or more parts of the chromosome with a random
probability. These operators are illustrated in Fig. 23.1 while a simple schematic of
how a GA operates is provided in Fig. 23.2. The algorithm is very simple with the
main functions contained in the innermost loops. These include the process of selec-
tion, crossover and mutation. The main difference between GAs and other classical
optimisation search techniques is simply that the GA works with a population of
possible solutions, whereas the classical optimisation techniques work on a single
solution.

Fig. 23.2 Basic structure of a GA (after Flake, 2001)
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GAs have previously been combined with neural network solutions in a number
of different ways. These include the evolution of a set of neural network weights
(with or without further training using a gradient descent mechanism), the evolu-
tion of entire neural network solutions and the automatic calibration of rainfall–
runoff models (Abrahart et al., 1999; Franchini, 1996; Jain and Srinivasulu, 2004;
Shamseldin and O’Connor, 2001; Wang, 1991; Whitley et al., 1990). In these ap-
plications the GAs were used to converge a population into a simple individual
“best solution”.

23.3 Cooperative Coevolution and JavaSANE

The methodology presented here represents an advance on the classic GA ap-
proach by evolving a population of neurons rather than a population of neural net-
works. This is the basis of the SANE (symbiotic adaptive neuro-evolution) system
(Moriarty and Miikkulainen, 1998) and is constructed from the notion of cooperative
coevolution (Horn et al., 1994; Potter, 1997).

Cooperative coevolution emphasises the role of the individual neuron as a partial
solution within a population of neurons. To develop a complete solution (i.e. the op-
timal network), individuals are first evolved via the genetic operators of mutation,
crossover and selection. The neurons are then combined to optimise one part of the
solution space whilst cooperating with other partial solutions through the develop-
ment of connections with other neurons.

As a result of applying genetic operators to individual neurons, convergence to-
wards a single type of individual is avoided and diversity is preserved within the
population. This avoids convergence towards a suboptimal peak and allows the pop-
ulation to adapt to changes. Other advantages that cooperative coevolution has over
traditional GA solutions are speed and efficient search of the solution space.

A Java version of the SANE system has recently been developed called JavaSANE.
JavaSANE contains important modifications to the cooperative coevolutionary
method. One of these modifications is the creation of records or “blueprints” of the
most effective neuron combinations that occur within the current population. These
are used to build neural networks in the next generation and concentrate the search
efforts towards finding optimal neural network solutions. The main advantage of
evolving network blueprints is the potential to exploit the best networks discovered
during the evolution process. This results in the best neuron combinations being re-
combined to form fresh, and potentially better, collections of neurons. Evolution at
the blueprint level thus provides a very aggressive search procedure.

JavaSANE therefore maintains and evolves two populations: a population of neu-
rons and a population of network blueprints. Each individual neuron in the popula-
tion specifies a set of connections that need to be made within a neural network.
The neuron evolution searches for effective partial networks, while the blueprint
evolution searches for effective combinations of the partial networks. Each indi-
vidual in the neuron population represents a hidden neuron in a one-hidden-layer
feedforward network. Neurons encode the weighted connections and where the
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connections should be made and connect to the input and output layer. The basic
steps in the algorithm are:

1. Specify the number of network input neurons, network hidden neurons, network
output neurons, maximum neuron population, maximum blueprint population
and maximum number of iterations (fixed).

2. Select a certain number of neurons from the population using a blueprint.
3. Create a neural network from a mixture of selected neurons.
4. Evaluate the network.
5. Set the blueprint fitness value to be the network evaluation score.
6. Repeat steps 2–4 for each individual in the blueprint population.
7. Assign each neuron the sum of the fitness evaluations of the best five networks

in which it participated.
8. Kill weaker performing blueprints and neurons.
9. Breed new members based on crossover and mutation operations.

10. Repeat steps 2–10 until a maximum number of specified iterations has been
completed.

23.4 Models of the River Ouse

Three types of models were developed for the River Ouse catchment at Skelton (see
Abrahart et al. (2007) for background details to this study area):

• JavaSANE neural network models (JSNN)
• Neural network models trained with backpropagation (BPNN)
• Multiple linear regression models (MLR)

Four lead times were chosen in order to look at the performance over longer
time steps: T+6 hours, T+12 hours, T+18 hours and T+24 hours. Each model was
developed on a training data set covering one historical winter period (1993/94)
and evaluated using two independent test data sets (Test 1 covering a normal winter
period (1994/95) and Test 2 covering a drought period in 1995/96). Historical data
for model development were available for the gauging station at the prediction point
(Skelton, Q) as well as three upstream stations (Crakehill (U1), Skip Bridge (U2)
and Westwick (U3)) and five rain gauges (Tow Hill (R1), Arkengartdale (R2), East
Cowton (R3), Osmotherly (R4) and Malham Tarn (R5)). The model inputs were
determined using correlation analysis and are listed in Table 23.1.

Table 23.1 Model inputs and outputs

Model inputs Output

U1T, U2T, U3T−6, R1T−24, R2T−24, R3T−24, R4T−30, R5T−24, QT QT+6
U1T, U2T, U3T, R1T−18, R2T−18, R3T−18, R4T−24, R5T−18, QT QT+12
U1T, U2T, U3T, R1T−12, R2T−12, R3T−12, R4T−18, R5T−12, QT QT+18
U1T, U2T, U3T, R1T−6, R2T−6, R3T−6, R4T−12, R5T−6, QT QT+24
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JavaSANE was run on its default settings with six hidden neurons and sum-
squared error (SSE) as the optimisation function. The model does not require a
cross-validation data set so the best model was selected based on overall perfor-
mance on the training data set. Neural networks trained with backpropagation were
similarly trained on only the training data set and allowed to run for a long time (i.e.
20,000 epochs). Multiple linear regression models were developed using the same
set of inputs and again using only the training data set. The resulting models were
then applied to the Test 1 and Test 2 data sets.

A suite of goodness-of-fit tests was employed to examine the performance of
each solution. These included root mean squared error (RMSE) defined in me-
tres, coefficient of efficiency (CE) (Nash and Sutcliffe, 1970), mean absolute error
(MAE) in metres and the r-squared (r2). The results are provided in Table 23.2 and
were produced using the HydroTest website (Dawson et al., 2007).

Table 23.2 Training, Test 1 and Test 2 statistics for different models. Shading denotes the best
performing model within a given test data set

Lead time Data set Model RMSE MAE CE r2

T+6 Test1 MLR 0.2597 0.1646 0.9947 0.9496

BPNN 0.1807 0.1269 0.9731 0.9875

JSNN 0.2240 0.1513 0.9587 0.9798

Test2 MLR 0.1362 0.1132 0.9509 0.9683

BPNN 0.1272 0.1001 0.9572 0.9892

JSNN 0.1495 0.1135 0.9409 0.9823

T+12 Test1 MLR 0.3075 0.2000 0.9221 0.9270

BPNN 0.2650 0.1803 0.9422 0.9450

JSNN 0.3141 0.2169 0.9187 0.9206

Test2 MLR 0.1534 0.1214 0.9377 0.9563

BPNN 0.1685 0.1298 0.9248 0.9474

JSNN 0.1940 0.1552 0.9003 0.9456

T+18 Test1 MLR 0.4313 0.2898 0.8465 0.8488

BPNN 0.4334 0.2758 0.8450 0.8536

JSNN 0.4792 0.3529 0.8104 0.8234

Test2 MLR 0.2387 0.1986 0.8490 0.9031

BPNN 0.2187 0.1372 0.8733 0.8813

JSNN 0.2921 0.2089 0.7738 0.8205

T+24 Test1 MLR 0.4789 0.3219 0.8105 0.8127

BPNN 0.5936 0.4161 0.7089 0.8422

JSNN 0.5614 0.4083 0.7396 0.8671

Test2 MLR 0.2817 0.2277 0.7895 0.8542

BPNN 0.5272 0.4053 0.2629 0.7335

JSNN 0.2718 0.1760 0.8041 0.9095
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23.5 Results and Discussion

Table 23.2 clearly shows that the performance statistics exhibits a general degra-
dation across all models as the lead times increase from T+6 to T+24. There
is no overall winning model, a reflection of the increasing difficulties involved in
modelling longer lead times. At T+6 and T+12, the BPNN outperforms the other
models. The solutions here are simple and linear suiting the more efficient gradient
descent method of optimisation. At longer lead times the situation is more mixed
and no single model is the best performer overall.

Figure 23.3 shows the behaviour of the models with regard to RMSE for the dif-
ferent lead times and for the Test 1 and Test 2 data sets. For the Test 1 data set the
BPNN solution produces its best performance at T+6 and T+12. However, a clear
crossover occurs at longer lead times where both the MLR and JSNN models out-
perform the BPNN at T+24. This reflects the increasing complexity of the solution
and the inability of the BPNN to cope. A similar phenomenon can be seen for the
Test 2 data set.

Figures 23.4–23.6 show scatterplots of the actual vs predicted values for the Test
1 and Test 2 data sets. The plots on the left correspond to T+6 while those on the
right are for a lead time of T+24. Examination of the MLR at T+6 highlights the
models’ poor performance at the upper ends; this is most likely where the non-
linear part of the relationship exists. The situation worsens at T+24. The BPNN
handles this non-linearity at T+6 but the widespread nature of the points around the
line of perfect agreement at T+24 shows that the model is not performing as well.
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Fig. 23.3 RMSE of different models as the lead time increases
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Fig. 23.4 Actual vs predicted normalised river levels from the MLR models for T+6 (left) and
T+24 (right) for the Test 1 (top) and Test 2 (bottom) data sets

0

1

2

3

4

5

6

7

8

9

4v

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

44

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

4

Fig. 23.5 Actual vs predicted normalised river levels from the BPNN models for T+6 (left) and
T+24 (right) for the Test 1 (top) and Test 2 (bottom) data sets



23 Neural Network Hydrological Modelling 327

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 4 5 7 8 963

Fig. 23.6 Actual vs predicted normalised river levels from the JSNN models for T+6 (left) and
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The JSNN model is generally undershooting at the upper ends but is able to handle
the non-linearity of the relationship, especially at T+24 where it is clearly the best
performing model.

A final way to examine the behaviour of the model is through looking at a time
series plot. Figure 23.7 shows the three model predictions for a lead time of T+6
for the Test 2 data set. Both the MLR and BPNN models overpredict at low flows.
The BPNN in particular overpredicts the peaks. However, the JSNN model fits the
data better at all levels but tends to underpredict the higher peaks.

23.6 Conclusions

This chapter has presented an adaptive coevolutionary approach for rainfall–runoff
modelling. The results presented above demonstrate the potential of the JavaSANE
toolbox. In each of the experiments performed, the solutions captured the main pat-
terns of the rainfall–runoff relationship. Degradation in results between T+6 and
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T+24 hour predictions was found reflecting the difficulty in modelling longer lead
times. These results were compared with a conventional feedforward neural network
trained using backpropagation. It was found that the backpropagation model did not
perform as well as the models developed using JavaSANE. The solutions obtained
by JavaSANE were produced using the default settings. There is clearly room for
improvement of results with further experimentation of JavaSANE’s parameters.

There are several clear benefits to adopting JavaSANE. Within rainfall–runoff
modelling, there is a tendency to use the same objective function. JavaSANE has the
ability to employ one of several alternative objective functions such as relative error
or CE. This diversity strengthens the modelling approach and could (ultimately) re-
sult in more accurate predictions/forecasts. Through the use of blueprints storing the
most effective neuron combinations, JavaSANE is able to search larger areas of the
solution space more quickly than traditional evolutionary algorithms. Furthermore,
the approach can be implemented effectively with both large and small data sets,
and validation data are not required.

In terms of usability, JavaSANE is extremely simple to operate, individual
parameters can be adjusted with ease and new objective functions quickly incorpo-
rated. Furthermore, JavaSANE is constructed using the platform-independent lan-
guage, Java; this allows the program to be run easily on any operating system that
has the Java virtual machine installed.

Perhaps one of the more interesting scientific aspects of this method could lie
in the hydrological interpretation of hidden neurons. This is an area of growing
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interest in which specialist neurons are identified and their respective roles are
matched against recognised catchment processes (Wilby et al., 2003; Jain et al., 2004;
Sudheer and Jain, 2004). The neurons in the cooperative coevolution method are en-
couraged to evolve into different individual and collective specialisations; therefore
it is important to establish whether or not these specialisations are (a) different from
those found in a conventional neural network model and (b) whether or not it is
possible for the hidden neurons to provide pertinent information with regard to the
real hydrological processes that occur within the actual river basin concerned.

JavaSANE is a powerful addition to the hydrologists’ tool box. Its advantages
and potential for rainfall–runoff modelling have been outlined here. However, this
approach is not limited to this area of hydrological modelling but can be exploited
in other application domains such as groundwater modelling, water quality and sed-
iment estimation.

References

Abrahart, R.J., See, L., Kneale, P.: Using pruning algorithms and genetic algorithms to optimise
network architectures and forecasting inputs in a neural network rainfall-runoff model. Journal
of Hydroinformatics 1 (1999) 103–114.

Abrahart, R.J., See, L.M., Heppenstall, A.J.: Neuroevolution applied to river level forecasting un-
der winter flood and drought conditions. Journal of Intelligent Systems 16 (2007).

Dawson, C.W. Abrahart, R.J., See, L. HydroTest: a web-based toolbox of statistical measures for
the standardised assessment of hydrological forecasts. Environmental Modelling and Software
27 (2007) 1034–1052.

Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos,
Complex Systems and Adaptation. MIT Press, Cambridge MA, 4th edn. (2001).

Franchini, M.: Use of a Genetic Algorithm Combined with a Local Search Method for the Au-
tomatic Calibration of Conceptual Rainfall-runoff Models. Hydrological Sciences Journal. 41
(1996) 21–39.

Horn, J., Goldberg, D.E., Deb, K.: Implicit Niching in a Learning Classifier System: Nature’s Way.
Evolutionary Computation 2 (1994) 27–66.

Hsu, K.L., Gupta, H.V. and Sorooshian, S.: Artificial neural networks modeling of the rainfall-
runoff process, Water Resources Research. 31 (1995) 2517–2530.

Kasabov N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering.
MIT Press, Cambridge, Massachusetts (1996).

Jain, A., Sudheer, K.P., Srinivasulu, S.: Identification of physical processes inherent in artificial
neural network rainfall runoff models. Hydrological Processes 18 (2004) 571–581.

Jain, A., Srinivasulu, S.: Development of effective and efficient rainfall-runoff models using inte-
gration of deterministic, real-coded genetic algorithms and artificial neural network techniques.
Water Resources Research W04302 (2004).

Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and adaptive coevo-
lution. Evolutionary Computation. 5 (1998) 373–399.

Nash, J.E., Sutcliffe, J.V.: River flow forecasting through conceptual models, I, A discussion of
principles. Journal of Hydrology 10 (1970) 282–290.

Potter, M.A.: The Design and Analysis of a Computational Model of Cooperative Coevolution.
PhD Thesis, George Mason University (1997).

Rajurkar, M.P., Kothyari, U.C., Chaube, U.C.: Artificial neural networks for daily rainfall-runoff
modeling. Hydrological Sciences Journal 47 (2002) 865–877.



330 A.J. Heppenstall et al.

Raman, H., Sunilkumar, N.: Multivariate modeling of water resources time series using artificial
neural networks. Hydrological Sciences Journal 40(2) (1995) 145–163.

Reeves, C.R., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives. Kluwer Academic
Publishers, 1st edn. (2003).

Shamseldin, A.Y., O’Connor, K.M.: A non-linear neural network technique for updating of river
flow forecasts. Hydrology and Earth System Sciences 5 (2001) 577–597.

Sudheer, K.P., Jain, A.: Explaining the internal behaviour of artificial neural network river flow
models. Hydrological Processes 18 (2004) 833–844.

Wang, Q.J.: The genetic algorithm and its application to calibration of conceptual rainfall-runoff
models. Water Resources Research 27 (1991) 2467–2471.

Wilby, R.L., Abrahart, R.J., Dawson, C.W.: Detection of conceptual model rainfall runoff processes
inside an artificial neural network. Hydrological Sciences Journal 48(2) (2003) 163–181.

Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks: Optimizing
connections and connectivity. Parallel Computing 14 (1990) 347–361.

Zhang, B., Govindaraju, S.: Prediction of watershed runoff using Bayesian concepts and modular
neural networks, Water Resources Research, 36(3) (2000) 753–762.



Part V
Emerging Technologies



Chapter 24
Combining Machine Learning and Domain
Knowledge in Modular Modelling

D.P. Solomatine

Abstract Data-driven models based on the methods of machine learning have
proven to be accurate tools in predicting various natural phenomena. Their accu-
racy, however, can be increased if several learning models are combined. A modular
model is comprised of a set of specialized models each of which is responsible for
particular sub-processes or situations, and may be trained on a subset of the train-
ing set. This paper presents the typology of such models and refers to a number of
approaches to build them. An issue of combining machine learning with domain
expert knowledge is discussed, and new approaches are presented.

Keywords Local models · modular models · committees · neural networks · flood
forecasting

24.1 Introduction

Most natural phenomena are composed of a number of interacting sub-processes,
so a model of a phenomenon should consist of several components, either process
(physically-based) models, or data-driven. In the case of data-driven modelling the
training examples can be divided into several groups, and separate specialised mod-
els built for each of them. Such partitioning can be performed using clustering tech-
niques, or algorithms and rules based on domain expert knowledge. These models
we will call modular models (MM), and their components will be called modules,
or local models. Note that various authors use different terms to denote the com-
bination of models (modular models): committee machines (Haykin, 1999), com-
bining classifiers (Kuncheva, 2004), mixtures of experts (Jordan and Jacobs, 1995),
multi-models, or gated networks. Another term, “data fusion”, typically refers to
the process of combining data from various sources (sensors) in order to arrive at a
better understanding of the studied environment. This term is sometimes also used
to denote the combination of information flows generated by various models, e.g.
Abrahart and See (2002).
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In the context of hydroinformatics, several researchers have reported the useful-
ness of combining several models. Typically, however, such models are responsible
for the whole process under question, an ensemble of the models is built, and their
outputs are combined. See and Openshaw (2000) used a hybrid multi-model ap-
proach to river flow forecasting; they combined artificial neural networks (ANNs),
fuzzy rule-based systems and ARMA models in an ensemble using several averag-
ing and Bayesian methods. Xiong et al. (2001) used a non-linear combination of
the forecasts of rainfall–runoff models using fuzzy logic. Abrahart and See (2002)
used six alternative methods to combine data-driven and physically-based hydro-
logic models. Georgakakos et al. (2004) analysed the advantages of multi-model
ensembles where each model is a hydrologic distributed model with the same struc-
ture but different parameters. Toth and Brath (2002), and Abebe and Price (2004)
combined models in a different way, using ANNs for updating the forecasts made
by a physically-based model.

Only very recently, however, has an explicitly modular approach to water-related
modelling been undertaken. Among the latest publications in this area the follow-
ing can be mentioned. Solomatine and Xue (2004) demonstrated an approach where
separate data-driven catchment models were built for various hydrologic regimes
(identified on the basis of hydrologic domain knowledge); these specialized models
were also modular (M5 model trees) but the modules were generated using ma-
chine learning algorithms. Wang et al. (2006) used a combination of ANNs for
forecasting daily streamflow: different networks were trained on the data subsets
determined by applying either a threshold discharge value, or clustering in the space
of inputs (several lagged discharges only but no rainfall data, however). Jain and
Srinivasulu (2006) used a similar approach – decomposing the flow hydrograph by
a certain threshold value and then building separate ANNs for each regime. Corzo
and Solomatine (2006, 2007) used a more sophisticated approach by applying spe-
cialized algorithms for the hydrograph analysis to separate baseflow from the excess
flow and then building a combination of ANN-based models which was optimized
by a genetic algorithm. All studies demonstrated the higher accuracy of the modular
models if compared to overall “global” models.

The increased attention to the multi-model approach in data-driven modelling
calls for some sort of typology of such models and for developing better algorithms
where domain knowledge can be taken into account. In this paper a typology of
modular models is suggested, ways to optimize the process of building modular
models is presented, and the problem of incorporating more domain knowledge into
such models is addressed.

24.2 Methods of Combining Models

In the context of data-driven modelling, the model is calibrated (trained) on a partic-
ular set of examples, or instances (training data set). This means that the modules of
MM have to be trained on particular subsets of this data set (possibly intersecting),
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Fig. 24.1 Partitioning data sets and combining the outputs

and there are two major decisions to be made: (A) which module should receive
which training example (partitioning problem), and (B) how the outputs of the mod-
ules should be combined to form the output of the final output of the system (com-
bining problem). Accordingly, two decision units A and B must be built, or one
unit performing both functions. Such a unit can be called an integrating unit, or in
the case of using ANNs, the term gating network is used. Note that the function-
ing of units A and B could be different during training and operation. Figure 24.1
illustrates this principle. Note also that such an architecture can be made dynamic
and adaptive, i.e. accommodating to the changing environment, e.g. by learning dif-
ferent switching strategies by unit A, or by its periodic retraining as new data are
collected.

The following sections introduce five types of MMs with respect to the way that
partitioning and combining is performed.

24.2.1 Hard Partitioning

The training set is partitioned into subsets (the input space can be partitioned accord-
ingly), and for each of them an individual local expert model is trained. In operation,
the input vector is processed only by one of the models and its output becomes the
output of the overall model.

One way to do this is to use information theory to perform such splits and to
perform splitting progressively; examples are: decision trees, regression trees (of-
ten referred to as CART – classification and regression tree), MARS (Breiman
et al., 1984) and M5 model trees (Quinlan, 1992) (considered in Sect. 24.3).

Another method, used in time series analysis, is based on automatic identification
of different dynamic regimes in the process, for example by applying hidden Markov
models, and then building different expert models for each regime. An example of
such an approach is reported by Velickov (2003) (note that the reported version
of the method uses the weighted combination of expert models and in this sense
belongs to the class of ensemble models as well.)
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24.2.2 Hard Partitioning with a Soft Combination
of Models (Fuzzy Committee)

Hard partitioning leads to a problem of compatibility at the boundaries between par-
titions. This issue calls for the introduction of smooth weighting schemes to com-
bine outputs of the local expert models. One of the ways is of course to use the
statistical approaches mentioned above. It is however possible to combine hard and
soft partitioning by introducing a more transparent combining scheme.

This can be done by weighting the relevant model outputs for the input vectors
that are close to the boundary. Such weighting can also be formulated with the use
of fuzzy logic and the following framework of a fuzzy committee can be proposed
(Fig. 24.2):

1. Perform hard partitioning of the training set into subsets and of the input space
into regions.

2. Train individual local models for each subset.
3. For each example, assign the values of the membership functions (degree of be-

longing) corresponding to each model. The functions should be constant over
the “central” part of the region, starting to decrease in the proximity of the re-
gion boundary, and decreasing to zero beyond the boundary; an option is to use
a simple trapezoidal shape.

4. For the new input vector, calculate the output value as the combination of the out-
puts of all models weighted by the corresponding membership function values.

The weighted combination of global models is quite widely used, but the com-
bination of local models is less common – see e.g., Kasabov and Song (2002). The
presented framework would allow for combining the advantage of local modeling
with the smooth combination of models at the boundaries between the regions. The
shapes of the membership functions have to be optimized, for example by minimiz-
ing the overall model error.

Note that the introduced principle of the fuzzy committee approach is to address
the problem of “fitting” the local models and in this respect it differs from the com-
bination of classifiers based on the fuzzy integral (Kuncheva 2004).

Fig. 24.2 MMs with hard
partitioning have incom-
patibilities when switching
between models. A solution is
to assign models to member-
ship functions and implement
a fuzzy committee
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24.2.3 Ensembles

MM becomes an ensemble model if the data are not partitioned at all. The individual
models are trained on the whole training set and their outputs are combined using
a weighting scheme where the model weights typically depend on model accuracy
(see e.g., Kuncheva, 2004; Georgakakos et al., 2004).

24.2.4 Statistical Soft Partitioning

Statistically-driven approaches with “soft” splits of the input space are repre-
sented by mixtures of experts (Jacobs et al., 1991), bagging (Breiman, 1996)
and boosting represented by a popular boosting algorithm AdaBoost (Freund and
Schapire, 1997). A new version of AdaBoost for regression is AdaBoost.RT by
Shrestha and Solomatine (2006) where other mentioned methods are introduced
as well.

24.2.5 Instance-Based Learning

Instance-based learning is based on the combination of training examples and thus
constructing a local approximation to the modelled function that applies well in
the immediate neighbourhood of the new query instance encountered (k-NN, local
weighted regression and other instance-based learning methods).

In the next section popular models based on hard partitioning are discussed in
more detail, along with suggested methods of their improvement.

24.3 Popular Models Using Hard Partitioning: Regression
and M5 Model Trees

24.3.1 Existing Algorithms

Regression and model trees represent an important class of machine learning mod-
ular models. They use the following idea: split the parameter space into areas (sub-
spaces) and build a separate regression model of zero or first order for each one. If
models in the leaves are of zero order (numeric constants) then this model is called
a regression tree (Breiman et al., 1984); if the models are of first order (linear re-
gression models) then the model is referred to as an M5 model tree (Quinlan 1992;
“M5” stands for “Model trees, version 5”). Tree-based models are constructed by
a divide-and-conquer method. The set T is either associated with a leaf, or some
test is chosen that splits T into subsets corresponding to the test outcomes and the
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same process is applied recursively to the subsets. The splitting criterion for the M5
model tree algorithm is based on treating the standard deviation of the output values
that reach a node as a measure of the error at that node, and calculating the expected
reduction in this error as a result of testing each attribute at that node.

In the case of numeric inputs the rules (boolean tests) ai used to split the data set
have the form “xi < C” where i and C are chosen to minimize the standard deviation
in the subsets resulting from the split. Mn are local specialised models built for
subsets filtered down to a given tree leaf. In fact, the resulting model can be seen as
a committee of linear models that are specialized on subsets of the training set, each
of which belongs to a particular region of the input space (Fig. 24.3).

This idea is not new: a combination of specialized models (“local” models) is
used in modelling quite often. One can find a clear analogy between model trees
(MTs) and a combination of linear models already used in dynamic hydrology in the
1970s – see e.g., a paper on multi-linear models by Becker and Kundzewicz (1987).
However, the M5 model tree approach based on the principle of information the-
ory makes it possible to generate the models automatically according to the overall
quality criterion; it also allows for varying the number of models.

Each leaf in a model tree represents a local model and in principle is (locally)
more accurate than a global model (even a non-linear one, e.g. a neural network)
trained on the whole data set. The linear regression method is based on an assump-
tion of linear dependencies between input and output. In a M5 model tree a step

Fig. 24.3 Building a tree-like modular model. Rules a1.a4 are used to partition the data. Models
M1.M5 are data-driven models (linear regression models in the case of an M5 model tree) built on
subsets filtered down to this particular node
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towards non-linearity is made – by building a model that is locally linear, but over-
all is non-linear. MTs may serve as an alternative to non-linear models like ANNs
(which are global models) and are often almost as accurate as ANNs but have some
important advantages:

• training of MTs is much faster than ANNs, and it always converges;
• the results can be easily understood by decision makers;
• by applying pruning (that is making trees smaller by combining sub-trees in one

node) it is possible to generate a range of MTs – from an inaccurate but simple
linear regression (one leaf only) to a much more accurate but complex combina-
tion of local models (many branches and leaves).

Probably the first application of M5 model trees in hydrologic forecasting was
reported by Kompare et al. (1997). Solomatine and Dulal (2003) used M5 model
trees in rainfall-runoff modelling of a catchment in Italy and found that its accuracy
was at least as high as that of an ANN.

24.3.2 A Non-Greedy Approach to Building Model Trees
(M5opt Algorithm)

Standard M5 adopts a greedy algorithm which constructs a model tree with a non-
fixed structure by using a certain stopping criterion. M5 minimizes the error at each
interior node, one node at a time. This process is started at the root and is repeated
recursively until all or almost all of the instances are correctly classified. In con-
structing this initial tree M5 is greedy, and this can be improved. In principle, it
is possible to build a fully non-greedy algorithm; however, the computational cost
of such an approach would be too high. In the M5opt algorithm, introduced by
Solomatine and Siek (2004a, 2006), a compromise of combining greedy and non-
greedy approaches was adopted (Fig. 24.4).

M5opt enables the user to define the level of the tree up to which the non-greedy
algorithm is applied, starting from the root. If a full exhaustive search is employed
at this stage, all tree structures and all possible attributes and split values are tried;
an alternative is to employ a randomized search, for example, a genetic algorithm.
The levels below are then constructed using the greedy M5 algorithm. This principle
still complies with the way that the terms of linear models at the leaves of the model
tree are obtained from split attributes of the interior nodes below these leaves before
the pruning process. M5opt has a number of other attractive additional features: ini-
tial approximation (M5 builds the initial model tree in a way similar to regression
trees where the split is performed based on the averaged output values of the in-
stances that reach a node; the M5opt algorithm builds linear models directly in the
initial model tree); and compacting the tree (improvement to the pruning method of
M5). Examples of using this method for building hydrologic models are given in
Solomatine and Siek (2006).
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Fig. 24.4 M5opt algorithm:
combination of exhaustive
and greedy optimization of a
model tree

24.4 Complementary Models

In contrast to the modular models where each sub-model is focussing on modelling
certain sub-process, the so-called complementary models are the combinations of
models that do not model the same process but instead complement or work with
each other. For example, a DDM may be used to correct errors in a physically-based
model or alternatively errors in another DDM. This type of approach has been em-
ployed by Shamseldin and O’Connor (2001) in which ANNs were used to update
runoff forecasts; the simulated flows from a model and the current and previously
observed flows were used as input, and the corresponding observed flow as the tar-
get output. Updates of daily flow forecasts for a lead-time of up to four days were
made. It was reported that ANN models gave more accurate improvements than
autoregressive models. Lekkas et al. (2001) showed that error forecasting provides
improved real-time flow forecasting, especially when the forecasting model is poor.
Abebe and Price (2004) used this approach to correct the errors of a routing model
of the River Wye in the UK by an ANN. Solomatine et al. (2007) built an ANN-
based rainfall-runoff model where its outputs were corrected by an instance-based
model.

24.5 Domain Knowledge in Building a Modular Model

24.5.1 Degrees of Involving a Domain Expert

An important issue in modelling is the optimal use of domain knowledge, and mod-
ular modelling is not an exception. Models are devices that have to be built with
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the active participation of domain experts and the latter typically try to introduce
as much domain knowledge into the models as possible. Experts typically are ex-
pected to ensure that the data are right, to specify the “hidden” processes, to choose
model types, to ensure modeling is an iterative process, and of course to interpret
the results. Machines (machine learning) are expected to build models on the prop-
erly selected data sets. Ideally, humans and machines should constitute “modelling
hybrids”. (Here we assume that humans are the carriers of domain knowledge.)

This is also true for modular models when the expert input (domain knowledge)
is expected not only in determining the model type, but also, possibly, in the way
the data are partitioned.

A machine learning algorithm minimizes the training (cross-validation) error
considering it as the ultimate indicator of the algorithms performance, so is purely
data-driven. Domain experts, however, may have additional considerations in as-
sessing the model skill, and want to have certain control over the decisions (A) and
(B) in Fig. 24.1 and over the choice of models used in each unit. The challenge
is to integrate the background domain knowledge into a machine learning algo-
rithm by allowing the user to determine some important structural properties of the
model based on physical insight, and leaving more tedious tasks to machine learn-
ing. Fig. 24.5 shows several levels of involvement of a human expert in building
MMs. One possibility, fully machine-driven (like the M5 or M5opt algorithms) has
been already considered. The other two possibilities are discussed below.

Machine

Fig. 24.5 Methods of building a modular model, with various levels of involving a human domain
expert

24.5.2 Partitioning Rules Partly Based on Domain Knowledge

For various machine learning algorithms introduction of a domain expert may have
different forms. For example, for building linear models with hard partitioning, a
version of the M5 algorithm, M5flex, has been recently developed by Solomatine
and Siek (2004b). In this version, a domain expert is introduced by making a deci-
sion about the splits at important nodes (Fig. 24.6). This method enables the user
to determine split attributes and values in some important (i.e. top-most) nodes, and
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Fig. 24.6 M5flex algorithm:
more control is given to a
domain expert in the splitting
process at important nodes

then the M5 machine learning algorithm takes care of the remainder of the model
tree building. In the context of flood prediction, for example, the expert user can
instruct the M5flex to separate the low flow and high flow conditions to be mod-
elled separately. Such models can be more suitable for hydrological applications
than ANNs or standard M5 model trees. The inclusion of a domain expert makes
it possible to make the models more realistic and to increase their accuracy. The
reader is referred to the examples in Solomatine and Siek (2004b).

24.5.3 Models Fully Based on Domain Knowledge for Partitioning
and Model Selection

It is also possible to allow a domain expert to construct the rules performing the
hard partitioning of the training set, and to select the model types. Note that the
models (modules) may not necessarily be only data-driven, and may include expert
judgement. If an overall model uses various types of models, it can be called a hybrid
model.

Xiong et al. (2001) combined several physically-based forecasting models with
the help of a fuzzy system. Solomatine et al. (2007) built a committee on the basis
of several types of data-driven models including instance-based models, M5 model
trees and neural networks.

In a study by Solomatine and Xue (2004) the flow predictions in the Huai river
basin (China) were made on the basis of previous flows and precipitation, and a
committee hybrid model was built. The problem was to predict Qt+1 flow one day
ahead. The following notations are used: flows on the previous and current day as
Qt−1 and Qt respectively; precipitation on the previous day as Pt−1 ; moving average
(2-days) of the precipitation two days before as Pmov2t−2 ; moving average (3-days)
precipitation four days before as Pmov3t−4.
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As a first step a domain expert was asked to identify several hydrological condi-
tions (rules) used to split the input space into three regions; they are given below:

1. Qt−1 = 1000m3/s (high flows)
2. Qt−1 < 1000m3/s AND Qt = 200m3/s (medium flows)
3. Pt−1 > 50 AND Pmov2t−2 < 5 AND Pmov3t−4 < 5 (flood condition due to the

short but intensive rainfall after a period of dry weather).

For each of these regions separate local models were built (M5 model trees and
ANNs). Note that the model tree is also a modular model, so here a combination
of domain knowledge data partitioning is complemented by the machine learning-
based partitioning. This approach combined the best features of both, and seems to
be very promising.

Yet another example of building a modular model where domain knowledge is
explicitly used is the one considered by Corzo and Solomatine (2006, 2007); in it,
various methods of baseflow separation are applied and then separate models are
built for different flow components.

24.6 Conclusions

Data-driven modelling and computational intelligence methods have proven their
applicability in modelling various water-related processes considered in the context
of hydroinformatics. Since such processes are typically very complex, the modular
approach to their modelling allows more accurate local modelling of sub-processes
to be performed. The studies conducted recently demonstrate the effectiveness of
such an approach.

The area of modular modelling has great promise also due to the fact that mod-
ular models allow for better incorporation of domain knowledge into the modelling
process. In newly developed algorithms (e.g., M5flex) an expert has the possibility
to intervene at important stages of model building, and such combination of machine
learning with domain knowledge not only improves the model quality but also their
acceptance by decision makers.

A future is seen in using hybrid models to combine models of different types and
following different modelling paradigms, including combination with physically-
based models. A challenge here is to build optimal and adaptive model structures
with the adequate involvement of domain experts.
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Chapter 25
Precipitation Interception Modelling Using
Machine Learning Methods – The Dragonja
River Basin Case Study

L. Stravs, M. Brilly and M. Sraj

Abstract The machine learning methods M5 for generating regression and model
tree models and J4.8 for generating classification tree models were selected as the
methods for analysis of the results of experimental measurements in the Dragonja
River basin. Many interesting and useful details about the process of precipitation
interception by the forest in the Dragonja River basin were found. The resulting
classification and regression tree models clearly show the degree of influence and
interactions between different climatic factors, which importantly influence the pro-
cess of precipitation interception.

Keywords Precipitation interception · forest hydrological cycle · the Dragonja
River basin · machine learning · decision trees · M5 method · J4.8 method

25.1 Introduction

Hydrological science studies the circulation of water in nature, its phenomena,
distribution on the earth, movement and physical-chemical characteristics (Chow,
1964). It mainly deals with circulation of water between the atmosphere, surface of
the earth and its water systems (Brilly and Sraj, 2000). Forest hydrology studies the
circulation of water in forested areas. It studies the course and ways of transition of
water from the atmosphere through the forest ecosystem into the ground, ground-
water and surface waters and its return back to the atmosphere (Smolej, 1988).

Precipitation is the main source of water in the hydrological cycle. Mostly, it
is represented by rain and snow; however, in the coastline and in mountainous,
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Fig. 25.1 Components of the forest hydrological cycle (Sraj, 2003a)

forested areas horizontal precipitation occurs, i.e. fog. In forested areas (Fig. 25.1)
precipitation may be intercepted by the forest canopy and returned to the atmosphere
via evaporation, or channeled downwards via throughfall, which is a portion of the
rainfall that falls directly through gaps in the canopy or arrives on the ground as
crown drip, or stemflow, which is the process that directs a portion of rainfall down
tree branches and stems. Precipitation intercepted by the forest canopy (Sraj, 2003b)
can be expressed as:

Ei = P− (Tf +Sf) (25.1)

where:

Ei . . . precipitation interception;
P . . . total precipitation amount above the forest canopy;
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Tf . . . throughfall (sum of direct throughfall and crown drip);
Sf . . . stemflow.

Amount of intercepted precipitation (Mikos et al., 2002) depends on vegetation
and climatic factors:

– canopy capacity, which depends upon the class of species, size, shape and veg-
etational age, area and leaf orientation (coniferous trees intercept 20–40%, and
deciduous trees 20–25% precipitation; the higher the vegetation age, the higher
the intercepted precipitation (Geiger et al., 1995)).

– vegetational density (interception increases with tree density).
– intensity, duration and frequency of precipitation (smaller intensity or short du-

ration results in a higher evaporation rate from the canopy, intensity of evapora-
tion rate is highest at the beginning of storms, frequently occurring precipitation
reduces interception).

– precipitation type (with coniferous species the water equivalent of intercepted
snow exceeds the value of intercepted liquid precipitation).

– climate conditions (higher temperatures cause higher evaporation rate, the wind
can have high influence on evaporation).

– periods in the course of the year (growing period, dormant period).

Based upon research, Ovington (1954) concluded that the quantity of intercepted
precipitation may vary between 6 and 93%, i.e. in different conditions a very differ-
ent interception rate may be achieved. The two most widely used modelling methods
to estimate precipitation interception losses are process-based models of intercep-
tion and evaporative loss, and empirical or semi-empirical regression models. In the
field of precipitation interception modelling Rutter et al. (1971) were the first to
move away from a site-specific empirical regression approach to estimate the inter-
ception loss. Rutter’s model is a numerical model based on the water balance of the
canopy and trunks and requires extensive climatic and canopy drainage data. The
change in amount of water stored in the canopy is determined by the proportion of
the rain that hits the canopy, the drainage from the canopy and evaporation of inter-
cepted water (Schellekens et al., 1999). Gash (1979) proposed a simpler analytical
model of precipitation interception based on Rutter’s numerical model, in which
he considered rainfall to occur as a series of discrete events and assumed for the
canopy to have sufficient time to dry between events. Gash’s model requires prior
estimation of the canopy structure parameters.

In cooperation with the Vrije Universiteit, Amsterdam, extensive research of the
hydrological processes in the Dragonja River basin was performed. The Dragonja
River basin was chosen as an experimental river basin because intense natural
reforestation has been identified in the last decades. This has caused a decrease
in minimal and maximal flows of the Dragonja River, while at the same time no
noticeable precipitation and temperature regime changes have been identified. The
main intention of the research was to analyse the impact of reforestation on the wa-
ter balance of the entire river basin and to determine the importance of individual
climate factors influencing it.
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Experimental equipment for measurements of the individual components of
the forest hydrological cycle was set up. The machine learning methods M5 for
generating regression and model tree models and J4.8 for generating classifica-
tion tree models were selected as the methods for analysis of the results of ex-
perimental measurements in the Dragonja River basin. Successful applications
of the machine learning techniques in modelling of hydrological processes like
floods, debris flows and other water-related processes are well known (Stravs
et al., 2004; Solomatine and Dulal, 2003). While usage of neural networks has
already been widely researched and explored in the field of hydrological science
(Govindaraju and Ramachandra Rao, 2000), new emerging methods from the frame-
work of artificial intelligence like decision trees, instance-based learning, fuzzy
based systems (Stuber and Gemmar, 1997), chaos theory and others have not gained
much attention in the field of hydrology yet. Generally, machine learning methods
are used for generating forecasting models or for generating descriptive models from
which new knowledge about the modelled process can be learned.

25.2 River Basin Characteristics

The Dragonja River basin (Fig. 25.2) with a drainage area of 90.5 km2 is situated
in the southwest of Slovenia, on the Northern part of the Istria Peninsula. It flows
from East to West to the North Adriatic Sea (the Piran Bay). On its mouth, there is
a RAMSAR protected wetland (Secovlje salt pans), to which also the rivers Drnica
and Jernejski potok flow. The Drnica used to be the tributary of the Dragonja, but
after regulation of the Dragonja at its outflow to the sea, they became separated. The

Fig. 25.2 The Dragonja River basin
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surface runoff area of the Secovlje salt pans is 142 km2, extending over Slovenia
(116 km2) and Croatia, the bordering state. Close to the Dragonja outflow to the
sea, there are two karstic springs (Buzini and Gabrijeli) with a karstic river basin
area. It mostly extends to Croatia (73 km2 large area). Taking into consideration all
river basin sub-units of the Secovlje salt pans, the area has 215 km2 (Fig. 25.2).

The river basin consists of long flat ridges (up to 400 m a.s.l.) above the deep
and narrow river valleys, where the majority of settlements have developed. There
are 5860 inhabitants; depopulation has been noticed from 1960 on, but in the late
1990s it stopped (Globevnik, 2001). The area has rural character. The land, typically
owned by one family, is traditionally very small; therefore there are hardly any large
hillside farms. Larger farms can be found in the river valley at its outflow to the
sea. Today, a few new plantation areas on the hills have developed (vineyards, olive
groves).

The average annual temperature is 14◦C on the coast and 10◦C on the continental
side. The average yearly precipitation on the sea coast is 900 mm, whereas on the
eastern side of the river basin it is 1200 mm. The hydrological characteristics of the
Podkastel water station (87 km2) are (Globevnik, 2001):

– annual mean flow (1971–1995): 1.16 m3/s;
– autumn high water peaks: 98 m3/s.

The Slovenian coastal area is well known for its water supply shortages, espe-
cially in the summer season when the hydrological conditions are usually quite
critical.

25.3 Methods

25.3.1 Measurements

Two forest plots (400 m apart and both at around 200 m a.s.l.) in the 30–35 year-
old forest above the confluence of the Dragonja River and the Rokava River were
selected as areas where thorough experimental measurements of individual compo-
nents of the forest hydrological cycle (Fig. 25.1) would be performed; the first plot
(1420 m2) was on the north facing slope in the Rokava River basin and the second
one (615 m2) on the south facing slope in the Dragonja River basin.

Precipitation above the canopy, throughfall and stemflow were measured on both
research plots. Rainfall above the canopy was measured with a tipping bucket rain
gauge and with a totalizator (manual gauge) for control (Fig. 25.3). Throughfall
was measured with two steel gutters in combination with ten manual gauges, which
were emptied and moved randomly (Fig. 25.3). Stemflow was measured on two of
the most typical species in each plot: on the north plot on oak and hornbeam trees
and on the south plot on ash and oak trees.
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(a) (b)

Fig. 25.3 Measurements of precipitation above the canopy (left) and throughfall (right)

All quantities were measured automatically with a 10-minute log time. Air tem-
perature and relative humidity, wind direction and average wind speed were also
measured at the nearby meteorological stations Kubed and Borst.

25.3.2 Modelling Methods

Machine learning generated models are mostly used for forecasting or prediction
and for extracting new knowledge about the observed processes. In our case we
used the machine learning methods M5 and J4.8 as they are implemented in the
WEKA system (Witten and Frank, 2000), developed at the University of Waikato,
New Zealand, to generate classification and regression tree models to analyse the
impact of reforestation on the water balance of the entire river basin and learn more
about the climate and other factors influencing it.

The basic idea of generating tree-like models is to develop simple, transparent
models that are easy to use and interpret. The reason behind the choice of the
decision trees for modeling the hydrological process of precipitation interception
is obvious – we needed the result in the form and structure that can be easily inter-
preted and the resulting model that can uncover the empirically derived patterns of
the underlying process.

By feeding the machine learning method with enough relevant input and output
data of the modelled process it can automatically learn the patterns underlying the
modelled process from the data only and it can divide the input data space (in ma-
chine learning theory called attributes) into subspaces where certain characteristic
similarities or patterns exist.

Decision trees are generated through an iterative splitting of data into subspaces
of the whole attribute space, where the goal is to maximize the distance between
groups at each split (Breiman et al., 1984; Quinlan, 1986, 1992; Kompare, 1995;
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Mitchell, 1997; Witten and Frank, 2000; Solomatine and Dulal, 2003). Basic com-
ponents of a decision tree are the decision nodes, branches and leaves. The decision
process starts with the top decision node (also called root node), which specifies a
test to be carried out. The answer to this root node test causes the tree to split into
branches, each representing one of the possible answers. Each branch will lead ei-
ther to another subsequent decision node or to the bottom of the decision tree, called
a leaf node.

Results of the modelling are decision tree models, which are a way of represent-
ing a series of rules that lead to a class value, numerical value or linear equation,
and are therefore classified into:

– classification trees with class values as leaves of the model;
– regression trees with constant numerical values as leaves of the model;
– model trees with linear equations as leaves of the model.

25.3.3 Data

In the period of one year 369 events were recorded out of which 173 were recorded
on the south plot and 196 on the north research plot. Events were separated by
the rainless periods in which canopies could dry up. For each event the following
attributes were available:

– plot orientation (North, South);
– rainfall quantity (expressed in mm);
– rainfall duration (hours);
– rainfall intensity (mm per hour);
– average air temperature (◦C);
– relative humidity (%); and
– average wind speed (metres per second).

Precipitation above the canopy for single events varied from 0.2 to 100.2 mm,
duration of rainfall varied from 5 minutes to almost 40 hours and rainfall intensity
varied from 0.15 to 44 mm/h.

25.4 Results

Three decision tree models connecting some of the measured factors influencing
the precipitation interception process in the Dragonja River basin and precipitation
interception rate were developed.

In case #1 a classification tree (Fig. 25.4) was generated where attributes of each
event were: plot orientation, rainfall quantity, duration and intensity, air temperature
and relative humidity, and average wind speed. The output data or the modelled vari-
able was precipitation interception percentage (relative to the precipitation amount
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above the canopy for each event) classified into 7 classes; R 0 meaning 0% inter-
ception loss, R 1 20, R 21 40, R 41 60, R 61 80, R 81 99 and R 100 meaning
100% interception loss.

From the resulting model (Fig. 25.4) we can learn that for events with less than
2.4 mm of rainfall and with duration shorter than 10 minutes 100% of the precipita-
tion (class value R 100 on Fig. 25.4) is intercepted. This means that under such con-
ditions no groundwater recharge or surface or subsurface runoff occurs. For events
with less than 2.4 mm of rainfall, duration longer than 10 minutes and average tem-
perature of the event less than 14◦C, then approximately 50% of the precipitation
above the canopy is intercepted. If the average temperature of an event with less
than 2.4 mm of rainfall and duration longer than 10 minutes is higher than 14◦C,
then once again, almost all of the precipitation is intercepted (class value R 81 99 –
from 81 to 99%). For events with rainfall amount ranging from 2.4 to 7.0 mm ap-
proximately half of the rainfall is intercepted (class value R 41 60 – from 41 to
60%). At events with more than 7 mm of rainfall, average wind power and rainfall
intensity also influence the precipitation interception by the forest canopy. It is in-
teresting to note that the generated model does not distinguish the differences in the
process of precipitation interception between north and south research plots, which
was expected. This could also be a result of different climatic conditions recorded

Fig. 25.4 Generated classification tree for case #1 (J4.8 method) – numbers in brackets of each
leaf of the classification tree following the class value mean the number of instances that reached
the leaf (left) and the number of incorrectly classified instances (right) in the model evaluation
process
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on each of the research plots resulting in different values of average air temperature,
relative humidity and wind speed actually describing different climate conditions
for each of the research plots.

The resulting classification tree (Fig. 25.4) correctly classifies 56% of the
instances if it is evaluated on the training set and correctly classifies 48% of the in-
stances in the process of 10-fold cross validation. More accurate classification trees
were also generated, which correctly classify up to 65% of the instances if they are
evaluated on the training set and correctly classify up to 55% of the instances in
the process of 10-fold cross validation. However, they were pruned so that higher
structural and explanatory transparency of the resulting models was achieved.

In cases #2 and #3 a regression tree (Fig. 25.5) was generated where attributes
of each event were: plot orientation, rainfall quantity, duration and intensity, air
temperature and humidity, and average wind speed. The class was the precipitation
interception percentage (relative to the precipitation amount above the canopy for
each event), this time in the form of a numerical value ranging from 0 to 100%.
The difference between the resulting regression trees for cases #2 and #3 is in the
complexity of the resulting regression tree (Figs. 25.5 and 25.6).

From the resulting models, especially from the pruned regression tree of case #3,
we can learn that for events with less than 2.5 mm of rainfall and air temperature
lower than 14.2◦C, 81.2% of the rainfall is intercepted by the forest canopy if the
event is shorter than 1.67 hours, and 47.2% of rainfall is intercepted if the event is
longer than 1.67 hours. But if the temperature of the event with less than 2.5 mm
of rainfall is higher than 14.2◦C almost all precipitation is intercepted (95.5%). For
events with more than 2.5 and less than 7.5 mm of rainfall, 42.8% of precipitation

Fig. 25.5 Generated regression tree (M5 method) – more complex (case #2) regression tree
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Fig. 25.6 Generated regression tree (M5 method) – pruned regression tree (case #3)

is intercepted, and for events with rainfall amount higher than 7.5 mm 23.2% of
rainfall is intercepted. The obtained regression tree of case #2 unveils some addi-
tional specific details for events with more than 7.5 mm of rainfall when wind speed
becomes an important factor. If the average wind speed for such events is less than
3.5 m/s, approximately 10% less water is intercepted compared to events with aver-
age wind speed higher than 3.5 m/s.

25.5 Conclusions

Many interesting and useful details about the process of precipitation interception by
the forest in the Dragonja River basin were found. In most cases, rainfall events with
up to approximately 2.5 mm of rainfall contribute almost nothing to the recharge of
groundwater at the Dragonja river basin and the Dragonja river discharge, with the
exception of rainfall events longer than 1.67 hours and temperature lower than 14◦C.
The generated models also show that approximately 23 to 43% of the water at events
with more than 2.5 mm of rainfall is intercepted by the forest as a direct consequence
of natural reforestation in the last few decades.

The classification and regression tree models clearly show the degree of influence
and interactions between different climatic factors, which importantly influence the
process of precipitation interception. If the results obtained on both research plots
are representative enough for the whole river basin where the process of reforesta-
tion occurred in the last decades, we can conclude that the impact of the land use
change on the water balance of the Dragonja River basin is quite significant. In terms
of water supply approximately one third of the water is lost in the river basin areas,
which are covered by the forest.

The generated models captured the important properties of the processes of the
forest hydrological cycle at the Dragonja River basin. Results were in the context
of what was expected and known about the precipitation interception process. Fur-
thermore, many significant details about the process in this particular river basin
were uncovered in a really short modelling time. We can conclude that the usage
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of machine learning methods for generating descriptive models like decision trees
reduces the manpower and time spent in the process of extracting new knowledge
about the processes that were measured and studied.

Usage of machine learning methods like decision trees for generation of struc-
turally transparent and explanatory models from the data has offered great promise
in helping scientists to uncover patterns hidden in their data. However, the devel-
opment of models is only one of the steps in the acquisition of new knowledge; the
selection, collection and preparation of data, the guidance of the model development
and the interpretation of the generated models by the scientists who understand the
modelled processes are equally important.
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Chapter 26
Real-Time Flood Stage Forecasting Using
Support Vector Regression

P.-S. Yu, S.-T. Chen and I-F. Chang

Abstract The support vector machine, a novel artificial intelligence-based approach
developed from statistical learning theory, is used in this work to develop a real-
time stage forecasting model. The orders of the input variables are determined by
applying the hydrological concept of the time of response, and a two-step grid
search method is used to find the optimal parameters, and thus overcome the dif-
ficulties of constructing the learning machine. Two structures of models used to
perform multiple-hour-ahead stage forecasts are proposed. Validation results from
flood events demonstrate that the proposed model can accurately forecast the flood
stages one to four hours ahead. Moreover, two statistical tests are used to analyze
the forecasting errors.

Keywords Flood forecasting · water stage · support vector regression

26.1 Introduction

The river stage, which can be measured directly and easily, is a more useful variable
than discharge in forecasting floods, because the river stage triggers the authori-
ties’ issuance of a flood warning. Therefore, the river stage forecasting model has
attracted increasing attention because of its usefulness in flood forecasting. Some re-
cent studies in which hydrologic approaches are used to forecast river stages are as
follows. See and Openshaw (1999, 2000) applied soft computing approaches to fore-
cast river level, and integrated conventional and artificial intelligence-based mod-
els to provide a hybrid solution to the river-level problem. Krzysztofowicz (2002)
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used Bayesian forecasting to produce a short-term probabilistic river stage forecast.
Thirumalaiah and Deo (1998), Liong et al. (2000), Bazartseren et al. (2003), Chang
and Chen (2003), and Chau (2004) have also used the artificial neural network
(ANN) approach, which is a popular data-driven model, to forecast river stage.
Data-driven models based on artificial intelligence methods, such as neural net-
works, are favored and practically applicable in flood stage forecasting. This study
uses the support vector machine (Vapnik 1998), a novel artificial intelligence-based
method developed from statistical learning theory, to establish a real-time flood
stage forecasting model.

The support vector machine (SVM), which is based on the structural risk mini-
mization (SRM) principle, theoretically minimizes the expected error of a learning
machine and so eliminates the problem of overfitting. Although SVM has been used
in applications for a relatively short time, this learning machine has been proven to
be a robust and competent algorithm for both classification and regression in many
disciplines. Recently, the application of SVM has attracted attention in the water
sector. Studies in which the SVM approach has been applied in hydrological mod-
eling and forecasting are reviewed below.

Dibike et al. (2001) applied SVM to model the rainfall–runoff process using
daily data, and demonstrated that the SVM model outperforms the neural network
model. Sivapragasam et al. (2001) performed one-lead-day rainfall forecasting and
runoff forecasting using SVM, in which the input data are pre-processed by singu-
lar spectrum analysis. Liong and Sivapragasam (2002) applied SVM to flood stage
forecasting and concluded that the accuracy of SVM exceeds that of ANN. Choy
and Chan (2003) used support vectors of the SVM to determine the structure of the
radial basis function networks to model the relationship between rainfall and river
discharge. Yu et al. (2004b) proposed a scheme that combined chaos theory and
SVM to forecast the daily runoff. Bray and Han (2004) applied SVM to forecast
runoff. Sivapragasam and Liong (2004) used a sequential elimination approach to
identify the optimal training data set and then performed SVM to forecast the water
level. Sivapragasam and Liong (2005) divided the flow range into three regions, and
employed different SVM models to predict daily flows in high, medium and low
regions.

In this study, SVM was used to establish a stage forecasting model, whose input
vector accounts for both rainfall and river stage, to forecast the hourly stages of the
flash flood. First, the study area was Lan-Yang Creek in northeastern Taiwan, and
the rainfall and the river stage variables were chosen to account for the locations
of stations and the attributes of the river basin. Most applications of SVM have
depended on manual trial and error to determine the structure and the parameters of
the model. Bray and Han (2004) demonstrated the difficulty of finding the optimum
model structure and its parameters using an exhaustive search because of the many
possible combinations. The orders of the input variables were determined based on
the hydrological concept of the time of response, and a two-step grid search method
was applied to find the optimal parameters to solve this problem and establish the
structure of the model more systematically.

Then, two model structures, with different relationships between the input and
output vectors, were presented to perform one- to four-hour-ahead stage forecasts in
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real time. The results show that the proposed forecasting models with both structures
yield similar accurate stage forecasts. Lastly, two statistical tests were undertaken on
the error series of the forecasting models. The results of tests demonstrate that some
error series are insignificant and appear as white noise, but some are not. This might
suggest that the forecasting can be enhanced by some error correction scheme.

26.2 Support Vector Machine

SVM, which employs the structural risk minimization (SRM) principle, is a new
approach for classification and regression. The methodology of support vector re-
gression (SVR) is briefly described below (Vapnik 1999; Dibike et al. 2001; Liong
and Sivapragasam 2002).

26.2.1 Linear Support Vector Regression

The support vector regression for the linear case finds a linear regression function
that can best approximate the actual output vector y with an error tolerance ε . The
decision function can be expressed as

f (w,b) = w · x+b (26.1)

where w and b are the parameter vectors of the function. The tolerated errors within
the extent of the ε-tube, as well as the penalized losses Lε when data are outside of
the tube, are defined by Vapnik’s ε-insensitive loss function as

Lε(yi) =
{

0 for |yi − (w · xi +b)| ≤ ε
|yi − (w · xi +b)|− ε for |yi − (w · xi +b)| > ε (26.2)

Formally, this regression problem can be expressed as the following convex op-
timization problem.

min
w,b,ξ ,ξ ∗

1
2 w2 +C

l
∑

i=1
(ξi +ξ ∗

i )

subject to yi − (w · xi +b) ≤ ε +ξi

(w · xi +b)− yi ≤ ε +ξ ∗
i

ξi,ξ ∗
i ≥ 0, i = 1,2, . . . , l

(26.3)

where ξi and ξ ∗
i are slack variables that specify the upper and the lower training

errors subject to an error tolerance ε , and C is a positive constant that determines
the degree of penalized loss when a training error occurs.

In this optimization problem, most data points are expected to be in the ε-tube.
If a data set (xi, yi) is outside the tube, then an error ξi or ξ ∗

i exists, which is to
be minimized in the objective function. SVR avoids underfitting and overfitting the
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training data by minimizing both the regularization term w2/2 and the training error

term C
l
∑

i=1
(ξi +ξ ∗

i ) in (26.3).

Introducing a dual set of Lagrange multipliers, α i and ᾱi, enables the optimiza-
tion problem to be solved more easily in the dual form, by applying the standard
quadratic programming algorithm:

min
α i,ᾱi

1
2

l
∑

i, j=1
(α i − ᾱi)(α j − ᾱ j) < xi · x j >

+ε
l
∑

i=1
(α i + ᾱi)−

l
∑

i=1
yi(α i − ᾱi)

subject to
l
∑

i=1
(α i − ᾱi) = 0

0 ≤ α i ≤C, i = 1,2, . . . ,n
0 ≤ ᾱi ≤C, i = 1,2, . . . ,n

(26.4)

where < xi ·x j > is the inner product of xi and x j. After the Lagrange multipliers, α i
and ᾱi, have been determined, the parameter vectors w and b can be estimated under
Karush–Kühn–Tucker (KKT) conditions (Fletcher, 1987), which are not detailed
herein. Therefore, the approximate function can be expressed as

f (xi) =
l

∑
i, j=1

(−α i + ᾱi) < xi · x j > +b (26.5)

The values (−α i + ᾱi), corresponding to the data concerning the inside of
the ε-insensitive tube, are zero. Hence, only the remaining nonzero coefficients
(−α i + ᾱi) are involved in the final decision function, and the data that have nonzero
Lagrange multipliers are called the support vectors. Simply, support vectors are
those data that “support” the definition of the approximate function, whereas other
data can be regarded as redundant. Finally, the approximate function can be rewrit-
ten as,

f (xi) =
l

∑
i=1

(−αk + ᾱk) < xi · xk > +b (k = 1,2, . . . ,n) (26.6)

where xk stands for the support vector and n is the number of support vectors.
Another advantage of formulating the optimization problem in the dual form is

shown in (26.6), in which the input vectors are multiplied as dot products. SVM
can easily handle any increase in the input variables or the number of data in the
input vectors, because the dot product of the two vectors can be calculated without
difficulty. This feature is also useful in dealing with nonlinear SVR, as described
below.

26.2.2 Nonlinear Support Vector Regression

In most real-world problems, linear function approximation is of limited practical
use. The solution is to map the input data in higher dimensional feature space, in
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Fig. 26.1 Nonlinear SVR with ε-insensitive tube

which the training data may exhibit linearity, and then to perform linear regression
in this feature space. Let xi be mapped into a feature space by a nonlinear function
φ(xi); the decision function becomes

f (w,b) = w ·φ(x)+b (26.7)

Similarly, the nonlinear regression problem can be expressed as the following
optimization problem. Figure 26.1 presents the concept of nonlinear SVR, corre-
sponding to (26.8):

min
w,b,ξ ,ξ ∗

1
2

w2 +C
l
∑

i=1
(ξi +ξ ∗

i )

subject to yi − (w ·φ(xi)+b) ≤ ε +ξi

(w ·φ(xi)+b)− yi ≤ ε +ξ ∗
i

ξi,ξ ∗
i ≥ 0, i = 1,2, . . . , l

(26.8)

The dual form of the nonlinear SVR can then be expressed as

min
α i,ᾱi

1
2

l
∑

i, j=1
(α i − ᾱi)(α j − ᾱ j) < φ(xi) ·φ(x j) >

+ε
l
∑

i=1
(α i + ᾱi)−

l
∑

i=1
yi(α i − ᾱi)

subject to
l
∑

i=1
(α i − ᾱi) = 0

0 ≤ α i ≤C, i = 1,2, . . . ,n
0 ≤ ᾱi ≤C, i = 1,2, . . . ,n

(26.9)

Little knowledge may be available as a basis for selecting an appropriate nonlin-
ear function φ(xi), and further, the computation of < φ(xi) ·φ(x j) > in the feature
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space may be too complex to perform. An advantage of SVM is that the nonlinear
function φ(xi) need not be used. The computation in the input space can be per-
formed using a “kernel” function K(xi,x j) =< φ(xi) · φ(x j) > to yield the inner
products in the feature space, circumventing the problems intrinsic in evaluating the
feature space. Functions that meet Mercer’s condition (Vapnik 1999) can be proven
to correspond to dot products in a feature space. Therefore, any functions that sat-
isfy Mercer’s theorem can be used as a kernel. The following radial basis function
kernel was used in this work:

K(xi,x j) = exp
(
−γ

∣∣xi − x j
∣∣2) (26.10)

Finally, the kernel function allows the decision function of nonlinear SVR to be
expressed as follows:

f (xi) =
l

∑
i=1

(−αk + ᾱk)K(xi,xk)+b (26.11)

26.3 Study Area and Data Sets

Lan-Yang Creek, which encloses an area of 979 km2, is located in the northeast of
Taiwan. The length of the mainstream is about 73 km, and the slope of the bed is
around 1/55. The mean annual precipitation is approximately 3,256 mm. Hourly
water stage data (m) from two water level stations, Lan-Yang Bridge and Niu-
Tou, and hourly rainfall data (mm) from rainfall stations were collected in this
work. Simultaneous records obtained from water level stations for 19 flood events
were extracted from these data collected from 1990 to 2004. Among these events,

Fig. 26.2 Lan-Yang Creek
basin
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13 (904 data) were used for calibration, and 6 (560 data) were used for valida-
tion. Figure 26.2 shows the locations of the water level stations and ten rainfall
stations, from which rainfall data were used to calculate the average rainfall, us-
ing the Thiessen polygon method, in the area between Niu-Tou and the Lan-Yang
Bridge.

26.4 Model Construction

26.4.1 Determining the Input Vector

The water stage during a flood is a response to the stimuli of the routed streamflow
from the upstream channel and the runoff from the rainfall–runoff process. Hence,
multiple inputs were chosen as the observed stage at Niu-Tou and the observed
rainfall in the area between Niu-Tou and the Lan-Yang Bridge. The observed stage
at the Lan-Yang Bridge was also used as an input, because these data are strongly
correlated with the data concerning future stage. Therefore, the input vector refers
to three variables, including the stage at Niu-Tou, SN; the stage at Lan-Yang Bridge,
SL; and the average rainfall of the intervening area, R.

Systematically determining both the orders and the parameters at the same time
is prohibitively computationally burdensome, as identified by Bray and Han (2004).
Therefore, the orders of the input variables are initially determined based on the
hydrological modeling technique. Similar methods, including the time lag method
and cross-correlation analysis, have been used by Solomatine and Dulal (2003),
along with the average mutual information.

Two methods, both based on the idea of the time of response, were used to de-
termine the order for the variable of stage at Niu-Tou, SN. The first is to calculate
the coefficient of correlation with different time lags n between the stage series
SN(t −n) and SL(t), with respect to each flood event. The time lag from Niu-Tou to
Lan-Yang Bridge is 3.31 hours, as determined by averaging the values of the calibra-
tion events. The other method is based on significant feature points, such as the peak
point and the turning points, of the stage hydrograph. The time of response is the
time between two corresponding feature points in SN(t) and SL(t). In some cases,
in which the hydrographs are smooth, only the peak point is identified, without a
turning point. Based on this method, the average time is 3.33 hours. Consequently,
the order of variable SN was set to three. That is, the input vector of the SVR model
included SN(t −1), SN(t −2), and SN(t −3).

The order of rainfall R was determined from the time of concentration accord-
ing to the same concept as determining the order of variable SN. The time of
concentration used herein is measured between the center of the rainfall hyeto-
graph and the peak stage. The average time of concentration that pertains to cal-
ibration events is 5.28 hours, so the order of input R is set to five. Accordingly,
R(t − 1), R(t − 2), R(t − 3), R(t − 4), and R(t − 5) are included in the input
vector.
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The order of the stage variable at Lan-Yang Bridge, SL, could not be similarly
determined. Therefore, the time series model, an autoregressive model, was used
to determine the order. The stage time series pertaining to the calibration data
at Lan-Yang Bridge can be identified as an AR(3) model, so the order of input
SL is three and that SL(t − 1), SL(t − 2), and SL(t − 3) are included in the input
vector.

The input vector of the SVR model contains 11 elements. That is, the forecasting
model can be expressed as

SL(t +1) = fSVR[SL(t +1−mL), R(t +1−mR), (26.12)

SN(t +1−mN)]

where mL = 1,2,3; mR = 1,2,3,4,5, and mN = 1,2,3. In (26.12), the function fSVR

indicates the SVR model expressed explicitly as in (26.11), and t stands for the
time index. At the “present” time t, available observations can be used in the input
vector [SL(t +1−mL), R(t +1−mR), SN(t +1−mN)] to forecast the output variable
SL(t +1) at “future” time t +1.

26.4.2 Normalizing Input Variables

Because the collected absolute water stage may not provide appropriate information
to distinguish floods, the stage variable used in this work is the stage increment,
relative to the initial stage at the time when the rainfall starts. That is, the value of
initial stage, pertaining to each event, is subtracted from the stage series, and these
differences are used in the SVR model.

The stage and the rainfall have different units and their values do not repre-
sent the same quantities, so all input variables were normalized to the interval
from zero to one, according to the calibration data. This scheme can prevent the
model from being dominated by the variables with large values, and is commonly
used in data-driven models, such as ANNs. Bray and Han (2004) also showed that
the SVM with normalized input data from zero to one outperforms that with un-
scaled input data. Therefore, the SVR model was fed normalized data, and then the
model output stages were returned to their original scale. The initial water stage
was added to these data to obtain stage forecasts that could be compared to the
measurements.

26.4.3 Calibrating Parameters

The parameters that dominate the nonlinear SVM are the cost constant C, the
radius of the insensitive tube ε , and the kernel parameters γ . The grid search
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method was applied to calibrate these parameters more effectively and systemat-
ically to overcome the potential shortcomings of the trial and error method. The
grid search method is a straightforward and exhaustive method. This method may
be time-consuming, so Hsu et al. (2003) suggested the application of a two-step
grid search method, applied on exponentially growing grids of parameters. First, a
coarse grid search was used to determine the best region of these three-dimensional
grids. Then, a finer grid search was conducted to find the optimal parameters. The
root mean squared error (RMSE) was used to optimize the parameters. The opti-
mal parameters (C,ε,γ) = (26.91,0.004,0.105) were obtained at RMSE = 0.035 m,
and the percentage of support vectors = 52.2%. The analyses and calculations of
SVR herein were performed using LIBSVM software, developed by Chang and
Lin (2001). Based on these derived parameters, (26.12) was used to perform one-
hour-ahead stage forecasting.

26.4.4 Multiple-Hour-Ahead Forecasting Model

Equation (26.12) can be used as a dynamical model to provide stage forecasts two
to four hours ahead to perform multiple-hour-ahead forecasting, as follows:

SL(t +2) = fSVR[SL(t +2−mL), R(t +2−mR), (26.13)

SN(t +2−mN)]

SL(t +3) = fSVR[SL(t +3−mL), R(t +3−mR), (26.14)

SN(t +3−mN)]

SL(t +4) = fSVR[SL(t +4−mL), R(t +4−mR), (26.15)

SN(t +4−mN)]

where mL = 1,2,3; mR = 1,2, . . .,5, and mN = 1,2,3. Equations (26.13)–(26.15)
cannot be immediately applied because R and SN data are absent at “future” times
t + 1 to t + 3, whereas the SL data at “future” times are forecasts. Forecasting
models can be constructed to forecast R and SN, and thus overcome this diffi-
culty. A simple scheme called naı̈ve forecasting, by which the most recent obser-
vation is substituted for the forecasts, is employed. In the application of (26.12)–
(26.15) to forecast stages one to four hours ahead, the optimal parameters (C,ε,γ) =
(26.91,0.004,0.105) are identically used. Such a model structure, from (26.12) to
(26.15), is called model structure A.

Another model structure, which does not require future observations as inputs,
is presented to perform multiple-hour-ahead forecasting. The available observations
were input to (26.12), and were used to predict directly two- to four-hour-ahead
stages. The equations are as follows:
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Table 26.1 Calibration results of structure B

Model Optimal parameters (C, ε , γ) RMSE (m) Pct. (%) of support vectors

fSVR (26.91, 0.004, 0.105) 0.035 52.2
f2SVR (2.83, 0.006, 0.297) 0.058 48.7
f3SVR (1.41, 0.006, 0.297) 0.084 57.8
f4SVR (1.19, 0.008, 0.707) 0.097 55.3

SL(t +2) = f2SVR[SL(t +1−mL),R(t +1−mR), (26.16)

SN(t +1−mN)]

SL(t +3) = f3SVR[SL(t +1−mL),R(t +1−mR), (26.17)

SN(t +1−mN)]

SL(t +4) = f4SVR[SL(t +1−mL),R(t +1−mR), (26.18)

SN(t +1−mN)]

where mL = 1,2,3; mR = 1,2, . . .,5, and mN = 1,2,3. The functions f2SVR, f3SVR

and f4SVR are, respectively, the SVR functions for forecasts two to four hours
ahead. Such a model structure, (26.12) and (26.16)–(26.18) together, was called
model structure B. Notably, for one-hour-ahead forecasting, model structure A is
equivalent to model structure B. Table 26.1 lists the optimal parameters for model
structure B, optimized using the aforementioned two-step grid search method for
calibration events, along with the RMSE of calibration results and the percentage
of support vectors. Notably, the percentages of support vectors of these six cali-
brated SVR models are around 50%. This consequence is consistent with that in the
literature: Mattera and Haykin (1999) and Cherkassky and Ma (2004) mentioned
that the SVR model performs optimally when the percentage of support vectors is
about 50%.

26.5 Forecasting Results

26.5.1 Stage Forecasting

After the forecasting models had been established, both SVR model structures were
used to forecast stages pertaining to six validation events at Lan-Yang Bridge. The pro-
posed SVR models were used to forecast stage one to four hours ahead. Figure 26.3
presents the forecasted stage hydrographs for a validation event. Table 26.2 sum-
marizes the forecasts. The forecasting results are good, and are only slightly poorer
than the calibration results as identified by the values of RMSE, which demonstrate
that model structure B performs better in two-hour-ahead forecasting, whereas model
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Fig. 26.3 Forecasting results

Table 26.2 Validation results

Lead time (hour) RMSE (m)

Structure A Structure B

1 0.056 0.056
2 0.102 0.101
3 0.146 0.146
4 0.186 0.218

Values in bold indicate better performance
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structure A is superior in four-hour-ahead forecasting. The RMSE values of both
model structures are close, suggesting that both model structures yield similarly good
forecast.

26.5.2 Test of Error Series

Forecasting generally yields an error. If a forecasting model accurately describes a
real system, the values of the error series will be small, random, and uncorrelated,
and the error series will appear as white noise, with a mean of zero. There-
fore, two statistical tests – the mean value test and the white noise test – are
applied to investigate the error series (Mujumdar and Kumar 1990; Yu et al.
2004a).

26.5.2.1 Mean Value Test

The mean value of an error series of a forecasting model is desired to be around
zero, if the performance of the model is to be statistically satisfactory. Student’s
t-test is usually used to determine these errors. Consider a variable T (e),

T (e) = ē

/√
σ2

n
(26.19)

where ē is the mean of the error series, σ2 the variance of the series, and n the
number of data in the series. Assume that T (e) follows a Student’s t-distribution
t (α,n−1). If |T (e)| is less than a critical value K = tα/2(n−1) with a significance
level α , then the mean value of the error series is considered to be around zero.

26.5.2.2 White Noise Test

The Portmanteau test is performed here to test whether the error series is white
noise. The variable w(e) is defined as

w(e) = (n−n1)
n1

∑
k=1

(
Rk

R0

)2

(26.20)

where n1 is set to 15% of the number of data, such that n1 = 0.15n; Rk is the covari-
ance with time lag k, and R0 is the covariance with zero time lag. w(e) is assumed
to follow a chi-square distribution χ2

α (n1). If w(e) is less than a critical value of the
chi-square distribution with a significance level α , then the error series is considered
to follow a white noise process.
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Table 26.3 Events that pass the tests

Lead time (hour) Mean value test White noise test

Structure A Structure B Structure A Structure B

1 3 3 4 4

2 2 2 3 3

3 2 2 3 2

4 2 2 3 1

The statistical tests were conducted pertaining to six validation events. The
numbers of events whose error series can pass the tests (with a significance level
α = 0.05) are listed in Table 26.3. The results show that the characteristics of er-
rors from two model structures are similar. However, model structure B is infe-
rior in three- and four-hour-ahead forecasting, because fewer events performed by
model structure B can pass the white noise test. The results are analogous to that
in Table 26.2 as identified by RMSE. We can observe that less than half the cases
pass the tests. It indicates that in spite of good forecasting results of the proposed
models, the errors are not shown as a white noise process for some cases. This may
suggest that some amendment can be made to update the forecasting. The updating
method of error correction can be considered as an appropriate approach to refine
the stage forecasts.

26.6 Conclusion

SVR is used as a method to establish the flood stage forecasting model, using data
collected from storm and typhoon events in Lan-Yang Creek, Taiwan. This work
proposed an easy and systematic method for selecting the orders of the variables
and the model parameters. The model parameters were calibrated using a two-step
grid search method, and the orders of the input variables were investigated based on
the hydrological concept of the time of response. These derived orders were used
to propose two model structures to enable multiple-hour-ahead stage forecasts. The
validation results reveal that both proposed model structures can easily predict the
flood stage forecasts one to four hours ahead. Nevertheless, the statistical tests of
error series indicate that some updating schemes, such as error correction, can be
applied to potentially enhance the stage forecasting.
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Chapter 27
Learning Bayesian Networks from
Deterministic Rainfall–Runoff Models
and Monte Carlo Simulation

L. Garrote, M. Molina and L. Mediero

Abstract A mixed approach based on the combination of deterministic physically
based models and probabilistic data-driven models for flood forecasting is pre-
sented. The approach uses a Bayesian network built upon the results of a deter-
ministic rainfall–runoff model for real-time decision support. The data set for the
calibration and validation of the Bayesian model is obtained through a Monte Carlo
simulation technique, combining a stochastic rainfall generator and a determinis-
tic rainfall–runoff model. The methodology allows making probabilistic discharge
forecasts in real time using an uncertain quantitative precipitation forecast. The vali-
dation experiments made show that the data-driven model can approximate the prob-
ability distribution of future discharge that would be obtained with the physically
based model applying ensemble prediction techniques, but in a much shorter time.

Keywords Flood forecasting · rainfall–runoff modelling · Bayesian networks ·
Monte Carlo simulation

27.1 Introduction

Real-time flood forecasting remains one of the most important challenges in op-
erational hydrology. Although many different forecasting models have been devel-
oped and implemented in operational contexts, a consensus has not been reached
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regarding the best methodological approach. Practical approaches range from sim-
ple linear regression models to sophisticated ensemble prediction techniques using
physically based distributed hydrological models. Despite all these theoretical and
practical developments, limitations in forecast capability seriously affect the over-
all flood warning service quality. Problems like model adequacy, data assimilation
and model calibration, real-time updating and operation, etc. are still very active
research topics.

Three main lines of development have been pursued in the past: (1) physically
based deterministic models, (2) statistical and stochastic models and (3) data-driven
methods. All of them claim important successes, but they also exhibit weaknesses.
Deterministic hydrological models range from simple, lumped, conceptual models
to complex, distributed, physically based models. The most important strength of
deterministic models is the support that they receive from practitioners. The deter-
ministic approach remains the chosen option in the majority of operational systems.
One of the reasons is that deterministic models are close to practitioners because
they reproduce their intuitive reasoning about physical processes in the basin. How-
ever, deterministic models are not easy to include in operational systems. Calibration
is very difficult (Beven and Binley, 1992), they are too rigid, cannot be updated eas-
ily and do not show their uncertainty explicitly. These limitations have been partially
solved by the ensemble prediction technique (Day, 1985). A statistical distribution
of input and model parameters is sampled to produce a large number of simulations
which are summarized in a probabilistic forecast that describes the distribution of
future conditions.

Stochastic methods use statistical techniques to infer model structure and esti-
mate model parameters from historical records from past events. They range in so-
phistication from simple linear regression models to complex non-linear real-time
filters built on dynamical system models. Stochastic models can incorporate uncer-
tainty explicitly and many recursive updating techniques have been developed to
correct model parameters, system state or both, based on data observed in real time
(Brath and Rosso, 1993). The most significant drawback of stochastic models is that
they rely on sophisticated mathematical techniques which are beyond the training
of most practitioners on duty in flood forecasting centres.

A number of methods have been developed, which are based primarily on ob-
servational data and use some form of computational intelligence technique, such
as neural networks or fuzzy representations. These data-driven methods are com-
putationally more flexible and more efficient than complex physically based mod-
els for real-time use. Often, such models exhibit better predictive capabilities than
more conventional approaches. However, their lack of physical interpretation lim-
its the possibility for the end user to participate in model development. It is not
easy to include the modeller’s expert judgement or the local knowledge about the
basin in data-driven models, since model structure and parameters are usually based
exclusively on numerical data. Important qualitative factors, such as basin size,
morphology, topography, slope, drainage network characteristics, geology, lithol-
ogy, pedology, land use, infrastructure, etc. which are well known to the practitioner,
are very difficult to incorporate because they cannot be translated into numerical
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data. Furthermore, their application to flood forecasting is also limited because
basins with long data sets for calibration or validation of these types of models
are relatively scarce.

27.2 Methodology

In this chapter, a mixed approach based on the combination of deterministic physi-
cally based models and probabilistic data-driven models is presented. The approach
uses a Bayesian network built upon the results of a deterministic rainfall–runoff
model for real-time decision support. The knowledge of basin managers is encoded
in the calibrated model. However, the structure of a deterministic model is not
well suited for real-time forecasting because it does not facilitate model update or
uncertainty estimation. For this reason, a probabilistic data-driven model is used
to operate in real time. The data-driven model is calibrated with simulation results
generated by the deterministic model through a Monte Carlo experiment.

A Bayesian network is a kind of data-driven model where the joint probability
distribution of a set of related variables is inferred from observations. The network
is defined on a set of qualitative random variables U = {X1,X2, . . . ,Xn}. A Bayesian
network forms a directed acyclic graph where each node is a qualitative variable Xi

defined on a finite domain and each link R(i, j) represents the direct causal influence
from variable Xi to variable Xj. The degree of influence between variables is ex-
pressed in terms of conditional probabilities between parent and child nodes in the
network, P

(
Xi|Xu1 ,Xu2 , . . . ,Xuk

)
, where {u1,u2, ..,uk} is the set of causes (parent

nodes) of node i (child node).
The computational mechanism in Bayesian networks is an elaborated process

derived from Bayes’ theorem, a rule for updating the belief of a hypothesis h in
response to evidence e:

P(h|e) =
P(e|h)P(h)

P(e)

The solution algorithm of Bayesian networks allows the computation of the ex-
pected probability distribution of output variables conditioned to the probability
distribution of the input variables. The complete inference process receives as in-
put a set of random variables with known probability distributions for their values
and propagates this evidence to update the belief of a set of goal variables, ob-
taining a probability distribution for the goal variables consistent with the known
values, the causal relations and the conditional probabilities established in the net-
work. The solution may be obtained, for instance, with the algorithm proposed by
Pearl (1988), which was defined for networks with certain restrictions in the topol-
ogy (networks called polytrees). Although the general problem of inference in un-
constrained belief networks is NP-hard (Cooper, 1990; Dagum and Luby, 1993),
other methods (Lauritzen and Spiegelhalter, 1988; Neapolitan, 1990) have been pro-
posed for multiple connected Bayesian networks without the topology restrictions
of polytrees. The causal representation of Bayesian networks is very appropriate
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Table 27.1 Elementary networks to describe hydrologic processes

Process Variables Causal relations

Runoff generation Rainfall: R Net rainfall:
N Moisture
content: M

P(Ni
t |Ri

t ,Mi
t),

P(Mi
t |Ri

t−1, Mi
t−1)

Runoff concentration Net rainfall: N
Discharge: Q

P(Qi
t |Qi

t−1, Ni
t−1, . . .,Ni

t−k)

Discharge propagation Discharge i: Qi

Discharge j: Q j
P(Qi

t |Qi
t−1, Q j

t , Q j
t−1)

to construct models for prediction and diagnosis. For example, they have been suc-
cessfully applied in complex domains such as medical diagnosis (Heckerman, 1991;
Shwe and Cooper, 1991).

The Bayesian model presented here is described in Garrote and Molina (2004)
and Molina et al. (2005). Hydrologic processes (runoff generation, runoff concen-
tration, discharge propagation, etc.) are described through causal relations. The most
relevant causal relations among variables are selected and described in a graph. Sev-
eral examples of elementary networks describing basic hydrologic processes are
presented in Table 27.1.

27.3 Deterministic Model Calibration

The proposed methodology has been implemented and tested in several basins con-
trolled by two flood forecasting centres in Spain: Valencia and Málaga. Results from
the Málaga application are presented here, corresponding to two basins: Guadal-
horce and Guadalmedina, which are located upstream of the city of Málaga. The
topography of the basins is steep in the headwaters, and very flat in the lowlands that
consist mainly of irrigated land and urban areas. Both basins are subject to recur-
rent flooding problems, and have one or more reservoirs that are operated for water
supply and flood control. The Basin Authority (Cuenca Mediterránea Andaluza) is
responsible for reservoir operation and the Regional Government coordinates civil
defence operations.

A fairly conventional deterministic rainfall–runoff model based on Hortonian
runoff generation and the unit hydrograph was selected to test the approach. Model
choice was based on simplicity, conditioned by the preferences of operators on duty
in the flood forecasting centre of Málaga. Runoff generation was simulated with the
Soil Conservation Service (SCS) curve number model (Mockus, 1972). Runoff con-
centration was simulated with the synthetic SCS unit hydrograph (Snider, 1973).
A total of 16 episodes were available for the case study basins, although basin
response was significant only in a few cases (three to five) in each subbasin. Param-
eter estimation was difficult, since all subbasins exhibited very irregular behaviour.
For instance, Fig. 27.1 shows data of total precipitation versus total runoff in four
subbasins, compared with theoretical predictions for different values of the curve
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number model parameter. The large variability observed in the data can be attributed
to model inadequacy, variability in the basins’ initial conditions, uncertainty in rain-
fall or runoff estimation (in fact, in several episodes, the estimated runoff was larger
than the estimated rainfall) or several other factors.

The effect of the variability is that it is impossible to find a single set of model
parameters that would fit all the observations. For instance, the results of model
calibration for four episodes in the Limonero basin are presented in Fig. 27.2, show-
ing the best fit obtained for every episode. Values of the curve number parameter
range from 70 to 81 and values of the lag time range from 7 to 10 hours. There-
fore, after the calibration process, model parameters remained uncertain and were
considered random variables.

Results of the calibration process are summarized in Table 27.2, where the range
of values of model parameters is presented. Since only a few episodes were used
for model calibration, there was no indication regarding the probability distribution
of model parameters. A uniform probability distribution in the estimated range was
selected for sampling in the Monte Carlo experiment presented in the next section.

Table 27.2 Summary of calibration results for the deterministic model

Basin Runoff generation
curve number

Runoff concentration
lag time (h)

Guadalteba 70–85 9.5–10.5
Guadalhorce 65–90 17–19
Conde de Guadalhorce 50–80 9.5–10.5
Casasola 75–90 3.5–4.5
Cártama 65–90 11–13
Campanillas 75–90 1–1.5
Guadalhorce final 65–90 1.5–2.5
Limonero 70–80 7–10

27.4 Monte Carlo Simulation

The data set for the calibration and validation of the Bayesian model is obtained
through a Monte Carlo simulation technique, combining a stochastic rainfall gen-
erator and the deterministic rainfall–runoff model. The stochastic rainfall generator
simulates the generation and evolution of convective rainfall cells with exponential
decay. The model is organized as a set of spatial rainfall generation entities (convec-
tive cells or frontal systems) that move over the basin topography according to the
synoptic meteorological situation. Model input includes a list of descriptors of the
synoptic meteorological situation and a simple mechanism to generate the storm ve-
locity field. The rainfall generation entities are created randomly through a spatial
Poisson process. Every entity originates an elliptical bell-shaped rainfall field in
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Fig. 27.3 User interface of the rainfall simulator and time series of synthetic rainfall at selected
locations

its area of geographical influence. The parameters that govern rainfall cell density,
creation rate, maximum rainfall intensity, size and temporal evolution are random,
and are sampled from probability distributions during the Monte Carlo simulation.
Total rainfall field is the sum of the contribution of all rainfall generation entities,
plus added white noise to introduce more randomness in the process. The result is
a rainfall field that produces time series at specific locations which are similar to
values observed in rain gauges. A computer application implementing the model
generates synthetic rainfall series at selected locations in the basin. A sample screen
of the user interface showing cell size and position in an intermediate time step is
presented in Fig. 27.3, together with three time series of rainfall generated in one
model realization.

The stochastic rainfall model was run to generate 3,000 hours of synthetic rainfall
series in storms of different duration in the same location as the actual rain gauges in
the basin. The deterministic rainfall–runoff model was run with the synthetic rainfall
series and random parameters to generate time series of discharge at the basin outlet.
A total of 100 model runs were performed for each synthetic storm. Model results
were used to obtain time series of rainfall, net rainfall and discharge at the nodes
of the Bayesian network. The result of the Monte Carlo simulation experiment is
a large database which is consistent with the prior knowledge of basin behaviour
encoded in the deterministic model and with the results of the calibration process,
which incorporates actual observations and expert judgement.

27.5 Bayesian Model Learning

The database of simulated events contains a variety of basin behaviours expressed in
numerical values which are used for the learning process of the Bayesian network.
The first step is to convert numerical values into qualitative values in the discrete
domains of the Bayesian network variables. The probability distribution of model
results for each combination of qualitative values of the independent variables is
then estimated by analysing the simulation results. This process is illustrated in
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3<Rt–4<5

5<Rt–2<10

Fig. 27.4 Sample data analysis for a group of model results

Fig. 27.4, where model results for net rainfall are shown for the combination of a
value of rainfall in the interval [3,5] for time step t−4 and [5,10] for time step t−2.

The former analysis is applied in a moving window that samples the entire se-
ries of simulated results. Results obtained for all instances of the same combina-
tion of values of the independent variables are collected and analysed, to obtain the
probability distribution of the dependent variable. For instance, histograms of fre-
quencies of discharge forecasted in three time steps into the future are presented in
Fig. 27.5. These distributions are converted into qualitative values using the corre-
sponding membership functions. The qualitative time series thus generated are used
in the learning process of the Bayesian network. For each combination of values
for independent variables the distribution of the corresponding value for the depen-
dent variable is estimated through conditional probabilities. If a sufficient number
of cases are generated, conditional probabilities are estimated applying the classical
formula of frequencies.

For the causal relation: Xu1 ,Xu2 , . . . ,Xun → Xi, the conditional probability
P(Xi = x|Xu1 = x1, . . . ,Xun = xn) is estimated with the equation

P(Xi = x|Xu1 = x1, . . . ,Xun = xn) =
N (Xi = x,Xu1 = x1, . . . ,Xun = xn)

N (Xu1 = x1, . . . ,Xun = xn)

where N(X = x) indicates the number of cases in the sample where the variable X
gets the value x.

A set of about 300,000 cases produced by simulation was used in the learning
process of each Bayesian network. The number of cases was adjusted verifying that
a sufficient number of instances for all combinations of discrete values for each set



384 L. Garrote et al.

F
or

ec
as

t 
at

 t
 +

 1
h

F
or

ec
as

t 
at

 t
 +

 3
h

F
or

ec
as

t 
at

 t
 +

 5
h

D
is

ch
ar

ge
 (

m
3 /s

)
D

is
ch

ar
ge

 (
m

3 /s
)

D
is

ch
ar

ge
 (

m
3 /s

)

Frequency

Frequency

Frequency

F
ig

.2
7.

5
H

is
to

gr
am

of
si

m
ul

at
ed

di
sc

ha
rg

e
in

th
re

e
tim

e
ho

ri
zo

ns



27 Learning Bayesian Networks 385

of cause nodes should be present. This guarantees that the Bayesian network learned
from all physically possible situations.

Once the conditional probabilities were estimated, a process of network valida-
tion was applied to verify the adequateness of network structures and the usefulness
of their predictions. This involved comparing different Bayesian networks describ-
ing a single process in order to select the best representation using objective cri-
teria. There are several measures of model performance proposed in the literature
of Bayesian networks, such as conditional entropy (Herskovitz and Cooper, 1990)
or mutual information (Friedman et al., 1999). With the help of these types of
parameters, the quality of the Bayesian networks was estimated. The global process
of network definition and calibration was repeated until a satisfactory performance
was obtained, using the conclusions of the evaluation to refine part of the models.

27.6 Application

The Bayesian model presented has been included in a decision support system called
SAIDA (Spanish acronym for Intelligent Agents Society for Decision-making dur-
ing Floods). SAIDA is a computerized system based on artificial intelligence tech-
niques that provides assistance in flash flood situations for basin control centres
(Cuena and Molina, 1999). The goal of the system is to support an effective con-
versation between an operator and a computerized system for decision support pur-
poses. The key idea of SAIDA is to place emphasis primarily on decision issues.
Classical simulation and forecasting issues are kept in the background, although
they can be activated at the user’s request.

The main function of SAIDA is to inform basin managers and civil protection
officials of the development of a flood situation and to suggest possible lines of
action. The objective is to select the most relevant information in every situation and
present it in a clear and concise way to the decision-making centre. The operator can
quickly understand the current situation, can identify the main problems that have
to be solved and can be briefed on the actions that could be taken to minimize the
risks and reduce the problems.

SAIDA uses Bayesian networks to make probabilistic forecasts of the time evo-
lution of representative variables related to the flood threat. A sample of the forecast
is presented in Fig. 27.6, which shows the mean value and the probability distribu-
tion of forecasted discharge in four time steps into the future, using the qualitative
domain selected for the variable. Each of the categories in the domain corresponds
to a scenario relevant for decision making, and has a list of actions associated with
it. The decision maker is provided with an estimation of the probabilities of reaching
each of those scenarios in several time horizons.

The individual Bayesian network models are combined in an “influence net-
work”, a computational structure that relates hydrologic variables through Bayesian
networks. The forecasts are presented on a geographical display as coloured icons
associated to relevant hydrologic variables or problem areas in the river network, as
shown in Fig. 27.7. By activating a problem area, the operator can obtain a descrip-
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Discharge

Time step

Probability
distribution

Measured
value

Mean value

Fig. 27.6 Probabilistic predictions of the Bayesian model for four time steps

tion of the relationship between relevant hydrologic variables related to the problem
and a probabilistic forecast of the time evolution of those variables in qualitative
terms.

This approach is useful for making predictions in complex basins with short re-
sponse times, because Bayesian networks can make inference using the probability
distribution of variables directly. The ensemble prediction technique could also pro-

Fig. 27.7 Example of influence diagram for the Guadalhorce River basin
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vide this type of decision support information, but it is computationally unfeasible,
because a large number of combinations are needed in order to cover the ensemble.
Bayesian networks present two main advantages. First, the computational burden
is carried out in advance, not during the flood. The number of simulations is not
conditioned by the time window available to make the forecast. Secondly, the com-
putational effort is divided into individual steps. The influence network is used to
establish relations among variables in basins of complex topology, using the indi-
vidual Bayesian networks. In a large basin, the computational effort required grows
linearly with the number of subbasins, not exponentially, as in the case of ensemble
prediction.

27.7 Conclusion

A methodology to calibrate Bayesian networks using a deterministic rainfall–runoff
model was presented. The methodology allows the user to make probabilistic dis-
charge forecasts in real time using an uncertain quantitative precipitation forecast.
The approach is based on the generation of cases for Bayesian network learning
through a Monte Carlo experiment, using a stochastic rainfall generator and a deter-
ministic rainfall–runoff model with random parameters. The validation experiments
made show that the data-driven model can approximate the probability distribution
of future discharge that would be obtained with the physically based model applying
ensemble prediction techniques, but in a much shorter time.

The computational structure of the Bayesian network also allows for an efficient
user interface for real-time decision support. The Bayesian model described has
been included in the SAIDA decision support system, to provide the user with a
quick estimate of the general situation in the basins and a probability distribution of
expected damage in problem areas. All this computing structure can be integrated
in a geographical overview that is easy to understand by decision makers and which
can provide information on the current situation and possible evolution of areas of
interest.
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Chapter 28
Toward Bridging the Gap Between Data-Driven
and Mechanistic Models: Cluster-Based Neural
Networks for Hydrologic Processes

A. Elshorbagy and K. Parasuraman

Abstract The emergence of artificial neural network (ANN) applications in
hydrology, among other data-driven techniques, has created a new chapter in this
field of science that has been termed “neurohydrology” (Abrahart, 1999). However,
the number of operational solutions is still limited because most of the practi-
tioners and many researchers have difficulty accepting ANNs as a standard tech-
nique. This chapter presents an attempt to bridge the gap between ANN models
and mechanistic hydrologic models using cluster-based ANN models. A novel spik-
ing modular neural network (SMNN) model is proposed, configured, and trained in
a way that assigns different sub-components of the hydrologic processes to corre-
sponding sub-components of the developed SMNN model. The modular nature of
the SMNN helps to find domain-dependent relationships. The proposed model con-
figuration reflects the ability of the ANN technique to mimic mechanistic models
in terms of their sensible internal structure and the way they model various hydro-
logic processes. The meteorological data, including air temperature, ground temper-
ature, wind speed, relative humidity, and net radiation, from a semi-arid region in
northern Alberta, Canada, are used in this chapter to estimate actual evapotranspi-
ration (AET). The estimated AET is contrasted against the values measured by an
eddy covariance system. The results of the SMNN model, which uses an unsuper-
vised clustering technique to group the input data into a definite number of clusters,
are compared with the results of another modular ANN model that relies on a super-
vised clustering technique, and with a traditional global feedforward ANN model.
The estimates of AET using the Penman–Monteith model are also presented for ref-
erence and comparison purposes. The SMNN model provided the best performance
and was shown to be effective in discretizing the complex mapping space into sim-
pler domains that are easier to learn.
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28.1 Introduction

In the last decade, artificial neural network (ANN) applications have come to
represent a large portion of the water resources research literature. The presence
of a large number of ANN applications in water resources can be attributed to
various reasons. The ability of ANNs to behave as universal approximators (Hornik
et al., 1989; Elshorbagy et al., 2001), the higher accuracy of predictions com-
pared to other techniques (Hsu et al., 1995; Elshorbagy et al., 2000a; Abrahart
and See, 2000), the ease of use especially when the understanding of the underly-
ing physics is not readily available (Jayawardena and Fernando, 1998; ASCE Task
Committee on Artificial Neural Networks in Hydrology, 2000), and the fascina-
tion that users have in this technique are possibly the main reasons for adopting
ANNs in water resources. The ANN-related research in the water resource lit-
erature ranges from pure applications for studying various hydrologic processes
(Bastarache et al., 1997; French et al., 1992) to the introduction of new network
types and network training algorithms (Hsu et al., 2002; Parasuraman et al., 2006),
and includes important state-of-the-art reviews (Maier and Dandy, 2000), to at-
tempts at devising methodologies for the determination of optimum model inputs
to ANN models (Bowden et al., 2005).

The continuous and persistent flow of ANN applications to hydrology and water
resources, along with the emergence of various training algorithms, has contributed
to the creation of a new chapter in hydrology that has been termed “neurohydrol-
ogy.” However, regardless of the maturity of neural networks as a science and the
related improvement of its associated training algorithms, the technique remains
in its infancy when it comes to real-world usage and adoption by water resource
practitioners or decision makers. This may reflect a lack of confidence in the tech-
nique and the gap between researchers and practicing engineers. This problem stems
partly from the fact that such tools are perceived to ignore the physics and partly
because they are black-box models that induce relationships only from the data.
Practitioners, concerned with the opaqueness of the technique, fail to recognize any
similarity between ANNs and mechanistic (process-based) models. ANNs are seen
to be ignoring seasonality in the process, lacking sensible internal structure, and
not filtering inputs based on any physical grounds. Until these issues are addressed,
neurohydrology will remain a research endeavor that lacks real-world validation.

The aim of this chapter is to address some of the issues contributing to the
opaqueness of ANNs in hydrology and to present a methodology for pattern recog-
nition and the clustering of inputs, both prior to and within ANN modeling. The
proposed supervised and unsupervised clustering could help make the behavior, the
inputs, and the internal structure of the ANN model more sensible to process-based
oriented users and decision makers.
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28.2 Problems of ANN Applications in Water Resources

The main problems and concerns about the applications of ANNs to water resources
issues, which have been and still are core areas of research, can be briefly presented
under the following eight categories:

1. Identification of the optimum set of inputs. In spite of recent notable efforts
made to address this issue (Bowden et al., 2005), the question of how and on
what basis the optimum set of inputs can be selected remains open. One pos-
sible approach is to match the set of inputs used by a process-based model
counterpart, and let the ANN model filter out some of the inputs.

2. Choice of global or module-based configuration. Zhang and Govindaraju (2000)
and Parasuraman and Elshorbagy (2007) partitioned the input space and
thereafter developed a separate ANN model for each component, whereas Hsu
et al. (2002), Hong et al. (2005), and Parasuraman et al. (2006) devised ANN
models that could cluster the input space before modeling. Nevertheless, solid
criteria or guidelines to select either a universal or a modular ANN model in
each case are still non-existent.

3. Determination of the most appropriate network architecture. There are cases
of reported success using recurrent neural networks (RNNs) (e.g., Coulibaly
et al., 2001) but although such models can capture the dynamics of the hydro-
logic processes they nevertheless fail to provide clear practical advantages over
the fully connected feedforward networks (Hochreiter and Schmidhuber, 1997).
To date, there are no guidelines on which type of networks to employ in differ-
ent cases.

4. Selection of the best transfer function. Sigmoidal-type transfer functions are the
most commonly used functions in ANN applications (Maier and Dandy, 2000).
However, Moody and Yarvin (1992) found that non-sigmoidal transfer functions
perform best when the data are noiseless and contain highly non-linear rela-
tionships. This finding is supported by the promising performance of wavelons
(Parasuraman and Elshorbagy, 2005), rather than neurons, for learning the
highly non-linear signals and processes.

5. Deciding on the training algorithm. The error function is usually minimized
using iterative first order (gradient descent) or second order (Newton’s method)
techniques. Genetic algorithms (GA) have been employed recently to im-
prove the performance of ANNs (Jain and Srinivasulu, 2004; Parasuraman and
Elshorbagy, 2007; Dawson et al., 2006). Traditional GA-trained ANN models
can suffer from slow convergence, which casts some doubts on the practical
advantages.

6. Combining or separating network outputs. Even though most practical applica-
tions would involve more than one variable of interest to be predicted, such a
problem has not been adequately addressed in the literature. Most process-based
hydrologic models have the capability of simulating more than one output (e.g.,
runoff and evapotranspiration). Therefore, ANN models cannot be compared to
process-based models or appeal to process hydrologists without being able to
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predict more than one output simultaneously. While minimizing multiobjective
error functions for multiple variables, trade-off decisions become more com-
plex and lead to inevitable compromise with regard to the prediction accuracy
of the outputs.

7. Assessment of the performance of ANN models. Jain and Srinivasulu (2004) ar-
gue that absolute relative error (ARE) is the best measure since it is drastically
different from the measure that is used during training (e.g., MSE). Elshorbagy
et al. (2000a) developed the pooled mean squared error (PMSE) to assess the
performance of the ANN model. They proved that it is an efficient measure
because it combines the properties of both MSE and ARE in one measure.
It also helps avoid obtaining contradictory conclusions based on various error
measures.

8. Interrelation of the previous problems. Apparently, the most complicated prob-
lem among the set of previously mentioned problems is the fact that they are in-
terrelated. None of these problems can be solved independently from all others.
Problem 1 is related to problems 2, 3, and 6. Problem 3 is related to problems 4
and 5, while problem 4 is related to problems 2 and 5. It should not be forgotten
that each one of the first six problems is related to problem 7.

This chapter focuses on problem 2, by aiming to address the issue of using input
clustering to achieve a sensible network structure and to improve the overall per-
formance of the ANN model. The main objectives are thus twofold: to take a step
toward bridging the gap between mechanistic and data-driven models; and to raise
the hopes of developing more conceptually sensible ANN models.

28.3 Methodology

28.3.1 Supervised k-Mean Clustering and Modeling Using
a Modular Neural Network (SkCNN)

In this chapter, a methodology is developed for modeling a multiple-input–single-
output (MISO) process using a cluster-based neural network model. The method-
ology can be extended for multiple-input–multiple-output (MIMO) processes. The
following section gives a detailed explanation of the proposed and adopted
methodology.

The concept of clusters or patterns in hydrology has been studied by Panu and
Unny (1980), Booy and Morgan (1985), Elshorbagy et al. (2000b), and others.
Mining of such patterns would help to produce more intelligent models. The first
step in modeling hydrologic data using ANNs requires that the training data set
should be clustered if the data points are not uniformly distributed (Shi, 2002).
The number of clusters may be determined by constructing a periodogram (Panu
et al., 1978). An alternative way to determine the optimal number of clusters is by
trial and error (Roiger and Geatz, 2002). In the proposed methodology, clustering is
achieved using the k-means algorithm as follows: (i) the total number of clusters, k,
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is arbitrarily chosen; (ii) k instances (data points) within the data set are chosen at
random to be the initial cluster centers; (iii) the remaining instances are assigned to
their closest cluster centers based on Euclidean distance; (iv) the center (mean) of
each cluster is calculated based on the instances in that cluster; and (v) if the current
mean values are identical to the mean values of the previous iteration, the process is
terminated. Otherwise, using the current means as cluster centers, steps (iii)–(v) are
repeated.

Once clustering is achieved, each cluster is modeled using an individual neural
network. Training is carried out using the Bayesian-regularization method. Once
individual training is accomplished, the cluster-based neural network models are
tested. Testing is performed by first assigning each testing instance to a specific
cluster based on the proximity of the testing instance to the cluster centers. Secondly,
the ANN model developed for the cluster under consideration is used to evaluate the
testing instance. In the case of MISO processes, the training data are clustered based
on their distribution in multi-dimensional coordinate space [inputs (I1, I2,. . . ), out-
put (Q)]. A coordinate mapping of the training data can be visualized by plotting
I(n) vs. Q(n); thus, a cluster center is represented by a point in the coordinate space.
For testing, the proximity of each testing instance to different cluster centers is de-
termined based on input sequence alone because the output sequence is considered
to be unknown.

28.3.2 Unsupervised Clustering and Modeling Using Spiking
Modular Neural Networks

The structure of the SMNNs (Parasuraman et al., 2006) is shown in Fig. 28.1. The
input layer consists of j input neurons (x1,x2,x3, . . .,x j), where j is equal to the
number of input variables. The input layer neurons are connected to the spiking
layer, which serves as the memory of the system, learning and storing different input
patterns that can be used in classifying future input vectors based on patterns learned
during the training process.

In the spiking layer, clustering of the input space is achieved by unsupervised (or
self-organized) learning. Self-organized learning consists of repeatedly modifying
the synaptic weights of a neural network in response to activation patterns and in ac-
cordance with prescribed rules, until a final configuration appears (Haykin, 1999).
Furthermore, self-organizing networks can learn to detect regularities and correla-
tions in the input space, and accordingly adapt their future responses to certain input
patterns.

Self-organization in networks can be achieved in two ways: (1) competitive learn-
ing, which produces a competitive network and (2) the self-organizing map (SOM)
(Demuth and Beale, 2001). In competitive learning, the neurons of the network com-
pete among themselves to be active (spike), the winner of which is called a winner-
takes-all neuron (Haykin, 1999). SOMs are a special case of a self-organizing
system because they learn to recognize groups of similar input vectors in such a
way that neurons, which are topologically near to each other in the neuron layer
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Fig. 28.1 Structure of a spiking-modular neural network (SMNN)

respond to similar input vectors. A SOM is therefore characterized by the formation
of a topographic map of the input patterns in which the spatial locations of the neu-
rons in the lattice are indicative of intrinsic statistical features contained in the input
patterns (Haykin, 1999). Hence, the main difference between competitive learning
and the SOM is that while the former learns only the distribution, the latter learns
both the distribution and the topology (neighboring neurons) of the input space.

The weights of the self-organizing networks are initialized to the center of the in-
put ranges. Once initialized, the neurons of the self-organizing network are trained
by the Kohonen learning rule (Kohonen, 1989) to identify the clusters in the input
space and allow the connection weights of the neuron to learn an input vector. Each
neuron in the self-organizing network competes to respond to an input vector. Prox-
imity of inputs to each neuron is determined based on Euclidean distance (dc) as
given in (28.1):

dc=1..m =

[
J

∑
j=1

(x j −wc j)
2

]0.5

(28.1)

where m denotes the number of clusters and wc j represents the connection weight
linking the jth input variable and cth neuron of the self-organizing network. In the
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case of competitive learning, the neuron whose weight vector is most similar to that
of the input vector is updated to be even more similar. However, in self-organizing
maps, along with the most similar neuron, the neurons in the neighborhood of the
most similar neuron are also updated to be even more similar. The result of such
training leads to a neural network model where the winning neuron is more likely
to win the competition the next time a similar vector is presented, and less likely
to win when a very different input vector is presented. For a given input vector, the
neuron which represents the cluster that is closest to the input vector produces an
output value of 1 (spikes), while the remaining neurons output 0. More information
on self-organizing networks can be found in Demuth and Beale (2001) and Kohonen
(1989).

Following classification of the input space, mapping of inputs to the correspond-
ing outputs has to be carried out. In this study, mapping of inputs to outputs is
achieved by neural networks and because these networks associate input patterns to
outputs, they are termed associator neural networks. The associator neural networks
are similar to feedforward neural networks.

SMNN performance employing both competitive learning and self-organizing
maps is tested. The first solution uses a competitive network to provide the spik-
ing layer and will be referred to as SMNN(CN). The second variant uses a SOM to
provide the spiking layer and will be referred to as SMNN(SOM). Since compet-
itive networks learn only the distribution of the input space, whereas SOMs learn
both the distribution and topology of the input space, comparison of the two ap-
proaches would demonstrate the effect of topology learning on the performance
of SMNNs.

28.3.3 Network Training and Generalization

A traditional global feedforward neural network (FFNN) and the associator neural
networks in the cluster-based models were trained using the Bayesian-regularization
backpropagation algorithm. This algorithm aims to improve the generalization prop-
erty of neural networks, by developing solutions that contain smaller weights and bi-
ases, and with a smoother response that is less likely to result in overfitting (Demuth
and Beale, 2001). Hence, along with minimizing the mean-squared error (MSE),
the cost function in the Bayesian-regularization backpropagation algorithm (28.2)
involves minimizing the mean of the sum of squares of the network weights and bi-
ases. This minimization function decreases the chances of overfitting by minimizing
the values of the network connection weights and biases, which in turn leads to a
smoother response function (surface). In (28.2), yi and y

′
i represent the measured

and computed counterparts; N and n represent the number of training instances
and the number of network parameters, respectively. The success of the regular-
ization depends on the choice of an appropriate value of the regularization param-
eter, α . In this study, the method by MacKay (1992) is adopted, where the optimal
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α is determined automatically within a Bayesian framework. A systematic search
of different network configurations and user-adjustable parameters was carried out
to ascertain the optimal network architecture, with the objective of minimizing the
cost function. The optimal network architecture is the one which results in the least
cost function:

MSE REG =
1
N

N

∑
i=1

(
yi − y′i

)
+(1−α)

(
1
n

n

∑
j=1

w2
j

)
(28.2)

28.3.4 Performance Evaluation

Since no single evaluation measure is suitable for evaluating the predictive abilities
of ANN models (Sudheer and Jain, 2003), a multicriteria assessment is carried out
in this study to evaluate the relative performance of different models. The criteria
employed in this study include root-mean-squared error (RMSE), mean relative er-
ror (MRE), correlation coefficient (R), and coefficient of efficiency (E). The RMSE
and the MRE provide different types of information about the predictive capabil-
ities of the model. RMSE is more sensitive to errors at high values and outliers,
whereas MRE provides a more balanced perspective of the goodness of fit at mod-
erate values (Karunanithi et al., 1994). The correlation coefficient (R) evaluates the
linear correlation between the observed and computed values, and the coefficient
of efficiency (E) evaluates the skill of the model in predicting values away from
the mean. The RMSE, MRE, R, and E statistics are defined by (28.3), (28.4), (28.5),
and (28.6), respectively, where N represents the number of instances presented to the
model; yi and y

′
i represent measured and computed counterparts; and y represents the

mean of the corresponding variable:

RMSE =

[
1
N

N

∑
i=1

(
yi − y′i

)2

]0.5

(28.3)

MRE =
1
N

N

∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣ (28.4)

R =

N
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i=1
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(
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)
√
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2
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(28.5)

E = 1−

N
∑

i=1
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2

N
∑
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(yi − yi)

2
(28.6)
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28.4 Case Study

South Bison Hill (SBH), a waste overburden pile located north of Fort McMurray,
Alberta, Canada, is considered in this study. SBH was constructed with waste-rock
material from oil sands mining in stages between 1980 and 1996. It covers an area of
2 km2, rises 60 m above the surrounding landscape, and has a large flat top several
hundred meters in diameter. To reclaim the overburden so that it can sustain vegeta-
tion, the underlying shale is covered by a 0.2 m layer of peat on top of a 0.8 m layer
of till. The top is dominated by foxtail barley; also present are other minor species
such as fireweed. Estimation of the evapotranspiration (ET) from the reconstructed
watershed is of vital importance because it plays a major role in the water balance of
the system.

Micrometeorological techniques were used to directly measure ET and the
surface energy balance. A mast located in the approximate center of SBH was
equipped to measure air temperature (AT), relative humidity (RH), ground temper-
ature (GT), all-wave net radiation (Rn), and wind speed (WS). All instruments were
connected to a data logger sampled at 10 seconds and an average or a cumulate
record was logged every half-hour. The energy balance of the surface is given by

Rn = LE+H +G+ ε (28.7)

where LE is the latent heat flux (evaporation when divided by the latent heat of
vaporization), H the sensible heat flux, G the ground heat flux, and ε the residual
flux density, all expressed in W/m2. LE and H were measured directly via the open-
path eddy covariance (EC) technique (Leuning and Judd, 1996). G was measured
using a CM3 radiation and energy balance (REBS) ground heat flux plate placed
at 0.05 m depth. Latent heat fluxes were corrected for changes in air density (Webb
et al., 1980) and sensible heat fluxes were calculated using the sonic virtual tempera-
ture (Schotanus et al., 1983). Flux measurements were also removed during periods
of rainfall and during periods of unexpected change in state variables. No gap filling
was performed. The training sets consist of 500 instances of hourly data (between
20 May 2003 and 9 June 2003), whereas 247 instances of hourly data (between 18
June 2003 and 28 June 2003) comprise the testing set.

28.5 Results and Analysis

The performance of different models in modeling LE (i.e., AET) as a function of AT,
RH, GT, Rn, and WS is given in Table 28.1. Using the trial-and-error method, the
optimal number of clusters for all the cluster-based models is found to be eight,
and the optimal number of hidden neurons in the associator neural networks is
found to be four, i.e., ANN(5,4,1), which was the same network configuration for
the global FFNN model. In general, the neural network models performed better
than the Penman–Monteith (PM) method in estimating the EC-measured hourly LE
flux (Table 28.1, the performances of the best models are provided in bold). For
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Table 28.1 Performance statistics of different models in estimating LE as a function of AT, GT,
RH, WS, and Rn

Model Training Testing

RMSE MRE R E RMSE MRE R E

PM 88.1 4.9 0.76 –0.06 92.5 3.2 0.74 –0.18
FF-NN 37 2.4 0.9 0.81 73.4 1.5 0.69 0.26
SkCNN 16.8 1.3 0.98 0.96 77.3 3.3 0.6 0.18
SMNN (CN) 32.2 2.2 0.93 0.86 70.2 1.2 0.71 0.32
SMNN (SOM) 33.4 2.0 0.92 0.85 73 1.3 0.67 0.27

training and testing periods, the PM estimates resulted in an E of −0.06 and −0.18,
respectively. This indicates that the model predictions are worse than predictions us-
ing a constant equal to the average observed value. When comparing different neural
network models, during training, the k-means supervised-cluster based model per-
formed better than other models. However, during testing, the performance of that
model deteriorated considerably, which is indicative of overfitting. During testing,
the SMNN(CN) model outperformed other models in terms of RMSE, MRE, and
E statistics. From Table 28.1, it can be noticed that there is considerable variability
between the training and testing RMSE statistics. This variability in RMSE statis-
tics is due to the following reason: the median of the LE data set during training
and testing are 34.1 W/m2 and 61.2 W/m2, respectively. Since the median gives a
measure of central tendency, it implies that, compared to the training data set, the
testing data set is dominated more by higher values of evapotranspiration. Roughly,
the values of LE in the testing data set are two times (61.2/34.1) higher than the val-
ues of LE in the training data set. Since squared error statistics gives more weight
to high values, RMSE during testing is approximately twice as high as the RMSE
during training, preserving the ratio between the medians. This indicates that the
neural network models are not overtrained.

From the above discussions, it can be concluded that the SMNN(CN) model
performed better than the other models. The better performance of the supervised-
cluster based model during training and significant performance deterioration dur-
ing testing may be attributed to the following reason: during training, clustering is
based on both the inputs and the output, and during testing, clustering is based on
the inputs alone as the output is considered to be unknown. In order to test the ro-
bustness of the adopted clustering, a confusion matrix (Roiger and Geatz, 2002) is
generated to check the classification correctness. The classification correctness can
be evaluated by initially clustering the data with the input sequence alone and then
comparing the cluster instances with the corresponding instances when clustering
is carried out with both input and output sequences. For this case study, which had
eight clusters, approximately 20% accurate clustering has been achieved. Any im-
provement in the accuracy of clustering is expected to improve the prediction accu-
racy of the supervised-cluster based model. In order to test the above hypothesis, the
study is extended to test the performance of a supervised-cluster based ANN model
if 100% exact clustering is achieved. In this case, presuming that the output is known
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a priori, clustering during testing is carried out using both the inputs and the output.
The RMSE, MRE, R, and E statistics of this model are 27.90 W/m2, 0.90, 0.95, and
0.89, respectively, which is a significant improvement over the performance of the
actual supervised-cluster based model. This reinforces the earlier discussed heuris-
tic that an improvement in classification accuracy could significantly improve the
performance of the supervised-cluster based model.

28.5.1 Optimal Combination of Input Parameters

The process of evapotranspiration is controlled by different factors at different
scales – vapor pressure deficit and stomatal processes are the driving variables at
the scale of a single leaf or tree, whereas radiation is the driving variable at the re-
gional scale (Jarvis and McNaughton, 1986). Hence, in this study, an effort has been
made to determine the minimum number of inputs in modeling EC-measured LE at
an hourly scale (the half-hour measurements were aggregated to hourly scale). Dif-
ferent combinations of inputs were tested with the objective of minimizing (28.2).
Results indicate that using net radiation and ground temperature alone as the inputs
for neural network models can result in better prediction accuracy. Although most
of the evaporation models use a water vapor pressure gradient to estimate evapora-
tion, inclusion of RH as one of the inputs for the neural network model does not
improve the performance of the model because RH is a redundant variable for all
tested neural network models, which have already learnt the signal of RH that is
embedded in the signal of GT, due to strong land–atmosphere interaction. This reit-
erates the findings of Lakshmi and Susskind (2001) and Wang et al. (2004), where
it is reported that evaporation is not sensitive to atmospheric humidity since the
land surface states contain the signals of near-surface atmospheric conditions as a
result of strong land–atmosphere interaction. This research finding is of significant
importance because it would reduce the dependence on the input variables whose
measurements are intricate.

Table 28.2 shows the performance of different models in estimating LE as a func-
tion of GT and Rn. The performances of the best models are provided in bold.
Similar to the previous case, the optimal number of clusters and the architecture
of associator neural networks are found using the trial-and-error method. The op-
timal number of clusters for all the cluster-based models is found to be four and
the optimal architecture of the regular FFNN and the associator neural networks

Table 28.2 Performance statistics of different models in estimating LE as a function of GT and Rn

Model Training Testing

RMSE MRE R E RMSE MRE R E

FF-NN 43.7 2.9 0.86 0.74 67.2 1.5 0.72 0.38
SkCNN 24.3 0.7 0.96 0.92 64.8 1.1 0.76 0.42
SMNN(CN) 43.9 3.3 0.86 0.74 64.4 1.1 0.74 0.43
SMNN(SOM) 43.9 3.5 0.86 0.74 65.9 0.9 0.73 0.40
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is found to be ANN(2,4,1). Comparing Tables 28.1 and 28.2, it is found that in
general, although there is an increase in training error when Rn and GT alone are
used to model LE, the testing results show improvement. This indicates that the gen-
eralization property of the neural network models increases when GT and Rn alone
are used as inputs, provided that the same data subsets are used for training/testing
the models under consideration. The SMNN(CN) model performed relatively better
than the other models in terms of RMSE and E. However, compared to the pre-
vious case, the difference in performance among the cluster-based models is not
that significant because the number of clusters in this case is less. The classifica-
tion accuracy of the supervised-cluster based model was 48%. The performance of
the supervised-cluster based model is also evaluated when 100% classification ac-
curacy is achieved. The RMSE, MRE, R, and E statistics of the supervised-cluster
based model with 100% classification accuracy are 31.86 W/m2, 0.54, 0.93, and
0.86, respectively.

In general, this study finds that the neural networks outperform the widely
adopted PM method in estimating EC-measured LE. When the regular FFNNs

Fig. 28.2 Plots showing the performance of different cluster-based models in decomposing the
complex mapping space into simpler domains
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were compared with their cluster-based equivalents, the cluster-based models per-
formed better than the FFNNs. Among the cluster-based models, the SMNN(CN)
performed better than other models. The superiority of the SMNN(CN) is more
when compared to the supervised-cluster model, which indicates that the clustering
technique is more important than inclusion or exclusion of topology during the net-
work training. In order to appreciate the clustering achieved by each of the cluster-
based models, a plot showing how the different cluster-based models delineated the
mapping space is shown in Fig. 28.2. From the figure, it can be seen that both the
SMNN(CN) and SMNN(SOM) have relatively well-defined cluster boundaries, as
compared to the supervised-cluster based model. Figure 28.2 also demonstrates that
cluster-based models are effective in decomposing the complex mapping space into
simpler sub-domains that can be learnt with relative ease by the individual associator
neural network models.

28.6 Conclusions

This chapter investigated the performance of modular or cluster-based ANN mod-
els in modeling the complex eddy covariance-measured actual evapotranspiration.
Various cluster-based models using supervised and unsupervised clustering tech-
niques have been developed and compared with traditional global feedforward
ANN models and the Penman–Monteith equation. It has been found that the un-
supervised clustering-based ANN model, named spiking modular neural networks,
outperformed other models in modeling the complex hydrologic process of evapo-
transpiration. The results of the analysis presented in this chapter help highlight the
importance of developing efficient clustering techniques for hydrologic processes.
When the input space that is used to estimate evapotranspiration is perfectly parti-
tioned, a significant improvement in the prediction accuracy is achieved. It is recom-
mended that more attention should be diverted toward a consideration of clustering
techniques. Addressing the issue of clustering will not only help improve the pre-
diction accuracy but contribute toward bridging the gap between mechanistic and
data-driven hydrologic models.
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Chapter 29
Applications of Soft Computing
to Environmental Hydroinformatics
with Emphasis on Ecohydraulics Modelling

Q. Chen and A. Mynett

Abstract Owing to the high complexity and the non-linearity of ecosystems and
the rapid development of technology in spatial data survey, soft computation is
more and more widely used in ecohydraulics models. Soft computing is a broad
field which includes cellular automata (CA), individual-based models (IBM) and
box-based models with respect to paradigms, and artificial neural networks (ANN),
fuzzy logic (FL), genetic algorithms (GA), chaos theory and rule-based method
with respect to techniques. This chapter will concentrate on the use of CA and
rule-based techniques to ecohydraulics models. Application cases include mod-
elling of population dynamics, algal bloom forecasting and aquatic ecosystem
succession.

Keywords Soft computation · cellular automata · rule-based methods ·
ecohydraulics models

29.1 Introduction

Limited by computation capacity and available ecological survey data, most of the
conventional ecohydraulics models are aggregated and conceptually based. For ex-
ample, in the Lotka–Volterra model, populations (May, 1975) are expressed by
biomass instead of the number of individual species. In the Michaelis–Menten
growth model, the Monod curve is taken as the basic concept (Jørgensen, 1994).
These models are usually based upon Newton’s second law of motion and the
first and second laws of thermodynamics, and employ partial difference equations
(PDFs) to describe physical processes (Abbott and Minns, 1998). The variables of
the models are continuous in time and space, and the formulations strictly follow
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the conservations of mass, momentum and energy. Such model paradigms and tech-
niques have been playing important roles in the progress of ecological research and
are still fundamental tools (Jørgensen, 1994).

However, the aggregated models mostly fail to take into account the effects of
individual difference, spatial heterogeneity or local interactions. They sometimes
do not even contain any spatial information, e.g. the Lotka–Volterra (LV) model;
yet these properties can be crucial to the ecosystem dynamics (DeAngelis and
Gross, 1992; Chen, 2004).

With respect to processes, it has been widely recognized that knowledge of the
mechanisms of ecosystem dynamics is usually very limited owing to high complex-
ity and non-linearity (Recknagel et al., 1994; Recknagel, 1997; Lee et al., 2003).
In addition, the majority of the understanding is qualitative rather than quantitative
that is difficult to formulate in PDFs (Chen, 2004).

Following the rapid development of computational power, in particular high-
performance computation, detailed simulations have become cheaper and more
available. The widespread use of advanced survey technologies makes it possible
to implement large-scale and high-resolution data collection. Accordingly, more
emerging techniques characterized by soft computing have been developed and ap-
plied in broad disciplines, and new interdisciplinary subjects such as ecoinformatics
and hydroinformatics (Abbott, 1991) have even been established.

Soft computing is a broad field. Regarding paradigms, it consists of cellular au-
tomata, individual-based and box-based schemes. Cellular automata schematize the
space into a regular lattice according to the principal spatial scale of the studied sys-
tem. Each cell has some properties and takes a value from finite states. The value is
updated in discrete time steps through the predefined local evolution rules that are
functions of the current state of the cell itself and its neighbouring cells. Cellular
automata are similar to the Eulerian approach in classical fluid mechanics and are
suitable in simulating plant dynamics.

An individual-based model takes each species as the studied object to describe
its properties (age, gender, size, etc.) and actions. It is similar to a Lagrangian ap-
proach in classical fluid mechanics and is advantageous in simulating species with
spontaneous motions such as fish and animals.

Box-based models divide the studied space into boxes based on their different
behaviour or mechanisms. The boxes are usually different in geometry. Within one
box the system is considered homogeneous. Each box implements its own dynami-
cal equations. Communication (mass and energy flows) takes place from box to box
instead of individual species.

Compared to conventional model paradigms, they are usually discrete in time,
space and model variables. They take each spatial unit or individual species as the
target to investigate the evolution in time and the motion in space to obtain the global
patterns of the system.

With respect to techniques, soft computation can be characterized by artifi-
cial neural networks, fuzzy logic, evolutionary algorithms and genetic program-
ming. In comparison to conceptual methods, these techniques usually take empirical
knowledge as a reference, and discover new rules from the collected data which are
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used to supplement the insufficiency of our understanding (Weiss and Indurkhya,
1998; Witten and Frank, 2000).

Soft computing is also widely used in ecohydraulics research. Chen and Mynett
(2003b) applied a CA to model prey–predator population dynamics and analysed
the related system stabilities. Chen et al. (2002) used CA to simulate the competitive
growth and colonization of two underwater macrophytes and explained the result-
ing ecosystem succession in Lake Veluwe, the Netherlands. Morales-Chaves (2004)
investigated the growth and spread of zebra mussels in the Mississippi River by
individual-based models. Salski and Sperlbaum (1991) and Chen and Mynett (2003a)
successfully applied fuzzy logic to model eutrophication, and Recknagel et al. (1994)
used ANN to forecast algal blooms. Baptist (2005) derived the vegetation-induced
roughness formula from experimental data by genetic programming. Meanwhile,
applications of chaos theory in ecohydraulics modelling are under rapid develop-
ment as well (Jørgensen, 1994).

Despite these contributions, the application of soft computing in the ecohy-
draulics field is still at an infant stage compared to other fields. It is expected that
soft computing characterized by discrete paradigm and data mining will play more
and more important roles in ecosystem studies (Yue, 2003; Yue and Fan, 2004;
Li and Ma, 2004). This chapter will concentrate on the application of the CA
paradigm and rule-based technique to ecohydraulics modelling.

29.2 Cellular Automata Model Paradigm

Cellular automata were first proposed by Von Neumann (1949), and the computa-
tional theory was established by Wolfram in the 1980s (Wolfram, 1984a,b). The re-
search has been almost entirely oriented towards the mechanism of self-organization
and self-repair, until the development of Conway’s Game of Life, which contains
some ecological relevance.

Cellular automata are discrete mathematical systems which consist of a regular
lattice of sites (cells or automata). Each site has properties and states. The states
are updated in discrete time steps according to local evolution rules, φ , which are
functions of the state of the cell itself and its neighbours. The cell size and time
step are determined by the principal time and space scales of the studied ecosystem.
CA often exhibit “self-organizational” behaviour. Even starting from complete dis-
order, the simple components can act together to produce complicated patterns of
behaviour and their evolution can spontaneously generate an ordered structure. The
evolution of CA is usually irreversible.

Figure 29.1 illustrates a one-dimensional and a two-dimensional CA system
with the nearest neighbours, respectively. The corresponding rules of evolution
are expressed as (29.1) and (29.2). The rules can be deterministic, stochastic or
empirical (Chen et al., 2002). According to the definition, a CA system can be
characterized by:
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Fig. 29.1 Cellular automata (left: 1D, right: 2D)

1. Parallelism, which means all cell states are updated simultaneously
2. Homogeneity, which states that all cells follow the same evolutionary rules
3. Locality, which implies a cell can only gather information from its nearest

neighbours and can only affect its direct neighbours

at+1
i = φ(at

i−1,a
t
i,a

t
i+1) (29.1)
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(29.2)

Similar to an individual-based paradigm, CA have inherent fusion with object-
oriented programming technology so that it is easily implemented in parallel compu-
tation. Therefore, CA can be broadly applied to simulations of large-scale ecosystems
(Engelen et al., 1993; Wootton, 2001). The following section will demonstrate the
development of EcoCA, a model applying CA to simulate population dynamics of
a prey–predator system.

EcoCA (Minns et al., 2000; Chen and Mynett, 2003b) is a two-dimensional
stochastic CA model which has three different cell states: empty, prey and preda-
tor. The state of each cell (at

i, j) is exclusive; this means that at each time step, only
one of the three states can exist in one cell. The evolution is based on the current
cell state, the number of cells that are occupied by a predator (Npd) and the number
of the neighbouring cells occupied by a prey (Npy). The evolution rules φ define
the probability that a cell will become prey (Ppy) or predator (Ppd) or be empty (0)
at the next time step. These evolution rules take into account reproduction, mor-
tality, food availability, loneliness and overcrowding (29.3). After the probability
is calculated, a random selection process is used to determine the transition of the
cell state.

P = φ(at
i, j,Npd ,Npy) (29.3)

Figure 29.2 shows two snapshots from an EcoCA simulation and Fig. 29.3
presents a time series of the two populations and the phase dynamics. Because of
the shortage of monitored population data, the Lotka–Volterra model (29.4) was cal-
ibrated by the outputs of EcoCA and the results (Fig. 29.4) are then used to evaluate
the performance of EcoCA:
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Fig. 29.2 Snapshots of the spatial patterns of prey–predator population dynamics simulated by
EcoCA (left: initial condition; right: t = 600)

Fig. 29.3 Population dynamics and phase dynamics simulated by EcoCA

Fig. 29.4 Population dynamics and phase dynamics simulated by the LV model

dP
dt

= aP−bP2 −αPQ (29.4)

dQ
dt

= −cQ+βPQ

in which P = biomass of prey; Q = biomass of predator; a = growth rate of prey;
b = carrying capacity; c = mortality rate of predator; α = functional response of
prey on predator; and β = functional response of predators to prey. The cyclic be-
haviour is purely dependent on the initial conditions and the parameters.

It can be seen that although started from random initial conditions, the system
shows strong self-organizational properties and produces eminent spatial patches
after evolution (Fig. 29.2). The population dynamics are not as strictly periodic as
in the Lotka–Volterra model (Fig. 29.4), but the cyclic behaviours are well captured,
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as shown in Fig. 29.3. Drifting is constantly induced between orbits in contrast to the
phase trajectories of the LV model. This is because of the embedded stochastic pro-
cess in the EcoCA model, which is completely absent in the LV model. Therefore,
it can be concluded that the EcoCA model can reproduce the overall behaviours of
the LV model well.

It can be seen from Fig. 29.2 that the EcoCA model not only simulates the total
population, but also provides their spatial distributions. Such information has been
acknowledged to be lacking in the LV model because (29.4) contains no space vari-
able. This means that the LV model cannot be used to analyse the spatial dynamics
of ecosystems.

However, research has proved that spatial configuration is extremely important
to habitat networks and ecosystem stability (Duel et al., 2002a,b; Baptist, 2005).
Chen and Mynett (2003b) applied the EcoCA model to investigate the stabilities
of a prey–predator system, and discovered that it is determined not only by critical
population size, but also by their spatial distribution. Even with the same population
size, different spatial configurations can lead to coexistence, predator extinction and
extinction of both. In comparison, the LV model can only analyse the stabilities in
line with critical population size.

Fig. 29.5 Patterns of population dynamics under different harvest strategies (a: top-left,
b: top-right, c: bottom-left, d: bottom-right; t = 300)
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It is known that the harvest strategy is very important to population manage-
ment such as sustainable fishing and aquatic culture. Therefore the EcoCA model
has been used to study the different harvest schemes and four scenarios were sim-
ulated: (a) no harvest, (b) 15% harvest of prey, (c) 15% harvest of predator and (d)
15% harvest of both species. The criterion to execute a harvest is initiated when the
population density is higher than 25%; otherwise harvest ceases at this time step.
Figure 29.5 gives the simulation results of these four strategies. From the simula-
tions and the analyses of population time series, it is found that a reasonable harvest
of both species can increase their productivities, hence the whole system outputs,
and enhance the system stability. The worst scenario is to harvest only the prey. The
management strategy can be ranked as d > a > c > b, which cannot be achieved
through the LV model (Azar et al., 1995).

29.3 Rule-Based Model Technique

A rule-based technique is a method that falls in between fuzzy logic and data min-
ing. It takes experts’ knowledge as the primary reference to set up the basic rules,
and then supplements it with new rules discovered from the available data. The
rule-based method has attracted great interest within the aquatic ecosystem mod-
elling community. Chen and Mynett (2003a; 2004) have applied the rule-based tech-
nique to model algal blooms in the Taihu Lake, China and the North Sea. Baptist
et al. (2002) used the method to simulate vegetation succession in the floodplain of
the lower River Rhine. Due to the difficulty in describing the functional (physiolog-
ical) responses of species to environmental factors, rule-based techniques can be a
suitable method for habitat modelling (Jorde et al., 2001; Duel et al., 2002).

There are usually three main steps to build up the rules: defining the characteristic
values of the variables, formulating the evolution rules and compacting the rules.
The characteristic values can be defined according to experimental results or data
analysis. In the P− I curve (Fig. 29.6) obtained from an experiment: when I ≤ I1,
irradiance is limited; when I ≥ I2, irradiance is toxic (photoinhibition). Therefore,
I1 and I2 can be the characteristic values for variable I (Chen, 2004). However, in
most cases, there is a lack of such experimental results, whilst some field-monitored
data may be available. It is possible to apply partitioning analysis or cluster analysis
to derive the characteristic values (MacQueen, 1967; Chen, 2004). The right-hand
side of Fig. 29.6 shows a partitioning analysis of inorganic nitrogen and phosphate
data collected from the Noodwijk 20 station (Chen and Mynett, 2004) in the North
Sea; the mean value of each group can be taken as the characteristic value.

Step two is the formulation of the evolution rules. To do this, expert knowl-
edge in the format of model rules must first be structured and these rules will
serve as the basic rule base. New rules will be derived through feature reason-
ing (Chen and Mynett, 2002) and case reasoning (Chen and Mynett, 2004). For
feature reasoning, clustering analysis is applied and each cluster represents a rule
(Boogaard et al., 1998; Chen and Mynett, 2003a). For case reasoning, each record
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Fig. 29.6 Methods to determine characteristic values of model parameters (left: experiment,
right: partitioning analysis)

is transformed into an intermediate rule, and rules that conflict with the basic rule
base are then eliminated. After that, insignificant rules as determined by statistical
analysis are removed. Finally, the remaining intermediate rules are weighted accord-
ing to their reoccurrence frequencies and then added into the basic rule base.

The final step is to compact the rule base. The rule base increases exponen-
tially with the number of variables and the classes of each variable. This increases
the complexity of the model and the difficulty of calibration. A large rule base
is also hard to interpret, which results in losing the original advantages of the
rule-based technique. To compact the rule base obtained in step 2, combination of
similar rules and increase of significance criterion are applied (Krone and Taeger,
2001).

The following case study is used to illustrate the application of the rule-based
technique to algal bloom modelling. Affected by the inflow from the River Rhine,
vernal algal blooms dominated by diatom and Phaeocystis globosa (P. globosa)
occur often in the Dutch coastal waters. The blooms are not toxic, but are harmful
because of the resultant loss of bivalves and recreation. Funded by the EU FP5
program Harmful Algal Blooms Expert System (HABES), a rule-based model was
developed (Blauw, 2004; Chen and Mynett, 2004, 2006a,b).

According to the lab experiments and field monitoring, it was initially esti-
mated that nutrient and light requirements for colonial blooms of P. globosa were
> 0.0062 mg/l inorganic phosphorus and > 100Wh/m2 day−1 irradiance (Peperzak
et al., 2002). Relatively high growth rates (>0.5 day−1) seem to occur at salinity levels
of 20–35 psu and a temperature range of 7–22◦C (Riegman et al., 1992). The diatom
is the competing species which is mainly governed by the availability of silica.

By integrating experts’ knowledge and the analysis of data from 1990–2000, a
rule-based model was set up for forecasting P. globosa blooms (Chen and Mynett,
2006a), which is presented in Table 29.1.

Here Z is the mixing depth that can be computed by a 1D vertical turbulence model
(Baptist, 2005) and Zcr is the critical depth that is determined by instant irradiance (I0).
The attenuation coefficient (kd), the maximum growth rate (umax), the loss rate (l) and
the half-saturation irradiance (ks) can be calculated according to (29.5) by Newton’s
method. D is the turbulence diffusion coefficient and Dcr is the critical turbulence
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Table 29.1 Rule-based foresting model for P. globosa bloom

Rule 1 Rule 2 Rule 3 Rule 4 Default

Z > Zcr
D < Dcr
SiO2 > 1.17
Y = [0.947]∗

Z <= Zcr
D < Dcr
T <= 10.24
PO4

3− >= 0.42
Y = [0.667]

T >= 14.64
PO4

3− <= 0.42
SiO2 <= 1.17
Y = [0.650]

T >= 10.24
SiO2 > 1.17
PO4

3− > 0.42
Y = [0.958]

N

∗ The values in the brackets are the probabilities; Y = bloom, N = not bloom

diffusion given by (29.6). SiO2 is the silica concentration, T is water temperature and
PO3−

4 is phosphate concentration. The model has an accuracy of 78%:

f (zcr) =
I0(1− e−kdzcr)

kdzcr
− ksl

umax − l
(29.5)

Dcr <
I2
0 (umax − l)2(um − l)

π2k2
s l2k2

d

(29.6)

Since the mixing depth is mainly determined by tide, irradiance and wind, it shows
strong seasonality. It is therefore pre-computed and archived in a lookup table. The
few physical and chemical parameters needed by the model can be monitored online
with a buoy so the derived rule-based model can be used in real-time operation.

29.4 Rule-Based Cellular Automata for Modelling Algal Blooms

The dynamics of the EcoCA model is purely dependent on geometric relations be-
tween neighbouring cells, and the rules of the EcoCA do not account for any phys-
ical or biological processes. The rule-based model for P. globosa is developed on
a point data set, which cannot explain large-scale phenomena. There are many sys-
tems, in particular ecosystems where the dynamical behaviour is operating at a large
scale but the detailed mechanisms and their statistical properties remain unclear. For
these reasons, the rule-based technique and cellular automata paradigm are inte-
grated to investigate the phenomena where local interactions play a significant role
in global patterns. The following case study demonstrates the application of such
rule-based cellular automata (RCA) to model algal bloom in the Dutch coast.

29.4.1 Description of the Study Area

The study focuses on the near-shore area of the Dutch coast (Fig. 29.7). The water
depth is between 0 and 30 m, and the water temperature varies from 5 to 22◦C,
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Fig. 29.7 Study area and monitoring stations in the Dutch coast (left) and the computation grid
(right)

and the irradiance is between 132 and 1700 Wh/m2day−1. The concentrations of
inorganic nitrogen and phosphorus are between 0.007 and 1.246 mg/l and 0 and
0.073 mg/l, respectively. The biomass concentration (in chlorophyll a) is from 0.1
to 90.2 μg/l. The discharge from the River Rhine at the Maassluis station is between
−2744 and 4649 m3/s, with a mean of 1382 m3/s. The water is usually well mixed
except for temporary weak stratification caused by salinity. The RCA model is to
forecast algal bloom (defined by chlorophyll a ≥ 30μg/l) basing on the monitored
irradiance data and the nutrient concentrations data computed by Delft3D-WAQ,
which is a well-developed three-dimensional water quality model from WL | Delft
Hydraulics.

29.4.2 Model Development

A curvilinear grid (Fig. 29.7) is used in the model and the calculation of nitrate and
phosphate concentrations was realized through the processes in the library config-
uration tool (PLCT) of the Delft3D-WAQ (Chen, 2004). The boundary conditions
are provided by the monitored data from the stations (Fig. 29.7) as a block function
where a constant value is given between two consecutive observations. The initial
conditions were configured through linear interpolation of the monitored data.

The rule-based model developed by Chen and Mynett (2004) was introduced to
predict algal biomass on the basis of the calculated nutrient concentrations from
the Delft3D-WAQ. The membership functions of nitrate and chlorophyll a (Chla)
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Fig. 29.8 Membership function of model variable and output (left: total inorganic nitrogen, right:
chlorophyll a)

concentrations are shown in Fig. 29.8. The other variables include mean water col-
umn irradiance, water temperature and ortho-phosphate concentration. Chlorophyll
a concentration at the last time step (Chlat−1) is also used as the model input.

The time step (Δt) for hydrodynamic computation was 5 min, and the simulation
completed a full tidal cycle, which was then repeatedly used for a year. The Δt was
aggregated into 7 days in the rule-based model for algal biomass estimation.

The cellular automata module was directly implemented on the curvilinear grid,
which of course did not strictly follow the original definition of CA where square
grids are used. However, this approximation can be acceptable as the geometry of
the cells does not have much variation in the nearest neighbours. The Moore neigh-
bourhood configuration (Wolfram, 1984b) was applied in the CA model and the
local evolution rules were formulated in general as

St+1
i, j = f

(
∗St+1

i, j ,∑∗St+1
N

)
(29.7)

where St+1
i, j is the state of cell (i, j) at time step t +1, ∗St+1

i, j is the state of the cell (i,

j) at time step t + 1 which is initially estimated without local interactions, ∑∗St+1
N

is the preliminarily estimated states of the eight neighbouring cells and f are local
evolution rules. In this study, the state S takes the value of the set SChl–a ∈ (L,M,H).
Supposing ∗St+1

i, j = p, the rules f are defined as

St+1
i, j =

{
p if over 3 neighbours hold∗St+1

neighbour = p

0.5(p+q) if over 3 neighbours hold∗St+1
neighbour = q

p,q ∈ SChl−a (29.8)

29.4.3 Model Results

Some of the modelled results of chlorophyll a concentrations in year 1995 are given
in Fig. 29.9 which presents the output at peak-bloom period. The spatial pattern
shows that the algal blooms are centred on or near the shore area. The reason is
that the residual flow of river discharge is from the South to the North following the
coastal line due to the effects of the Coriolis force, so the nutrient concentrations are
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Fig. 29.9 Model results of phosphate concentrations before algal bloom by Delft3D-WAQ and
algal biomass concentrations by RCA

higher along the coast. It can also be seen that the blooms are more severe near the
Noordwijk transect and the Wadden Sea area because of the discharge from the land.

By examining the observations in 1995, the first peak bloom at the station Noor-
wijk 10 (Fig. 29.7) appeared on 3 May with a chlorophyll a concentration of
58.2 μg/l. The modelled bloom timing (30 April) and intensity (48 μg/l) are very
close to the observations.

To further evaluate the RCA mode, the computed chlorophyll a concentrations
along the Noordwijk transect, where the most consistent and also the best data sets
were available, during the bloom period in 1995 were compared with the observa-
tions in Fig. 29.10. In addition, the time series of chlorophyll a concentrations at
the station Noordwijk 10 in 1995 from the observations and the RCA model are
presented in Fig. 29.11.

With respect to the spatial variations of chlorophyll a concentration along the
Noordwijk transect, the results of the RCA model agree well with the observations
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Fig. 29.10 Chlorophyll a concentrations along the Noodwijk transect in bloom period of 1995
from observations (3 May) and RCA model (30 April)
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Fig. 29.11 Time series plots of chlorophyll a concentrations at the station Noordwijk 10 in 1995
from observations and RCA model

(Fig. 29.10). From the time series plot of algal biomass concentration at the station
Noordwijk 10 (Fig. 29.11), it is seen that the RCA model is also able to capture the
temporal variations.

For the time being, it is difficult to quantitatively evaluate the modelled spatial
patterns. However, it could be possible in future to use satellite images for such
comparison.

The development and application of rule-based cellular automata are still at the
initial stages. However, the preliminary research outputs indicate that the cellu-
lar automata paradigm has enhanced the capture of patchy dynamics (Chen and
Mynett, 2006b).

29.5 Discussion and Conclusions

Although soft computing is becoming more and more widely applied in ecohy-
draulics modelling, and already demonstrates certain advantages in some cases as
shown by the examples in this chapter, it does not mean that soft computing can take
over from conventional methods that are mainly characterized by physical-based
description and partial differential equations. The key issue nowadays is to select
proper methods from a variety of available tools according to the particular prob-
lems of interest (Chen and Ouyang, 2005a,b). In general, the selection of a paradigm
or method depends on three main factors: the research objectives, understanding of
the problem and the availability of data.

With respect to modelling techniques, if knowledge of the mechanisms is suf-
ficient and data are limited, a conceptual model can be an appropriate choice. If
knowledge is limited but enough data are available, data mining could be the most
suitable method. When only a limited amount of both data and knowledge are avail-
able, rule-based methods taking experts’ experience as a reference point is a suitable
alternative (Duel et al., 2002; Lee et al., 2002).
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Following the rapid development and widespread use of information technol-
ogy in ecological research, large-scale and high-resolution ecosystem data are more
easily available. Meanwhile, parallel computation makes detailed spatial simula-
tion realistic. Therefore, spatially explicit models such as CA and IBM are largely
facilitated by these developments and have become a promising research field in re-
cent years. The future of ecohydraulics modelling lies in the integration of different
paradigms and techniques at multiple and proper spatio-temporal scales.
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Chapter 30
Data-Driven Models for Projecting Ocean
Temperature Profile from Sea Surface
Temperature

C.D. Doan, S.Y. Liong and E.S. Chan

Abstract Knowledge on tidal fluctuations and sea temperature profiles, in addition
to other forcings, is absolutely essential in ocean model simulations. This chap-
ter demonstrates the application of one of the data-driven techniques, genetic pro-
gramming (GP), to sea temperature profile simulations. A GP model was trained to
simulate sea temperature profiles based solely on corresponding sea surface tem-
peratures. Training and verification results show that a trained GP could simulate
observed data very well.

Keywords Genetic programming · sea surface temperature · South China Sea ·
boundary forcing · ocean circulation model

30.1 Introduction

With a large population concentrated along the shore of Southeast Asian waters,
there is increasing concern over the environment in the region resulting from in-
dustrialization, for example. A good understanding of the complex dynamics of air
motion, waves, currents and their interactions is significant for both scientific and
practical reasons.

The Southeast Asian waters, Fig. 30.1, include the South China Sea, the Java
Sea, the Sulu Sea and the Sulawesi Sea. It includes large shallow regions and deep
trenches, and has a complex geometry and it is connected to deep marginal seas by
some straits. The northeastern part of South China Sea adjoins a deep-sea basin up
to 5000 m in depth. This basin is separated from the main body of the Pacific by
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Fig. 30.1 Southeast Asian waters and location of study area

the Luzon Strait and connected to the East China Sea through the Taiwan Strait.
It is situated between the Asian continent, Borneo, the Philippines and Formosa
(Taiwan). In the southern part, the Java Sea is joined to the Indian Ocean by the
Lombok Strait, which is a shelf sea with depths less than 200 m. Other connections
of waters include the Sulawesi Sea to the Pacific Ocean and Flores Sea to Banda Sea.

Based on limited observation data sets of the physical parameters of the wa-
ter column, both cool and warm anomalies were detected in South China Sea.
Dale (1956) and Nitani (1970) found a cool anomaly in the central Vietnamese
coast and northwest of Luzon in summer; Soong et al. (1995) also detected a
cool anomaly in central South China Sea in the winter period through analyses of
TOPEX/POSEIDON data; the warm anomaly was also reported in the central South
China Sea in late spring (Chu and Tseng, 1997) where most of the measurements
are, in general, irregular in time and space.
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With a series of limitations and the high cost of field measurements, numerical
simulation models solving time-dependent flows have been demonstrated to be quite
effective and relatively very economical. Numerical simulation models have proven
to be an important tool in understanding seasonal ocean circulations, the seasonal
thermal structures and in establishing a nowcast system for regional seas. There are
already a series of studies that are capable of adequately resolving the Southeast
Asian waters. Metzger et al. (1992) and Metzger and Hurlburt (1996) looked at the
region and compared upper layer current and sea level from their global models with
observation data; Murray et al. (1990) focused on observations and modelling in the
vicinity of Lombok Strait; Masumoto and Yamagata (1991) investigated the current
systems in the equatorial Pacific Ocean east of Philippines; Chu and Chang (1997,
1999) studied the seasonal thermodynamics in South China Sea using the Princeton
Ocean Model (POM) with limited boundary conditions, a monthly mean climato-
logical wind stress data set (Hellerman and Rosenstein, 1983) and bi-monthly vari-
ation of mass transport at the open boundaries (Wyrtki, 1961); Ningsih et al. (2000)
simulated tide- and wind-driven circulation in the Java Sea. The wave–current inter-
action effect is also taken into account. The hydrodynamic results are employed to
simulate the trajectory of water particles in the region. An in-house POM (Princeton
Ocean Model) based ocean model, SEAOM (SouthEast Asian Ocean Model; Zhang
and Chan, 2002), introduced several features such as surface wave stress and wave–
current interaction terms. Recently SEAOM has been further extended to take better
boundary input data, tidal time series and sea temperature data for initial input data
and, later, for data assimilation.

The main objective of this chapter is to present the novel application of one of the
data-driven techniques, genetic programming, GP (Koza, 1992; Langdon, 1998), to
generate sea temperature profiles with relatively high performance accuracy.

30.2 Genetic Programming

Genetic programming is a member of the evolutionary algorithm family. Evolution-
ary algorithms (EA) are based upon Darwin’s natural selection theory of evolution
where a population is progressively improved by selectively discarding the not-so-
fit population and breeding new children from a better population. EAs work by
defining a goal in the form of a quality criterion and then use this goal to measure
and compare solution candidates in a stepwise refinement of a set of data struc-
tures that returns an optimal or nearly optimal solution after a number of iterations.
Evolutionary strategies (ES), genetic algorithms (GA) and evolutionary programs
(EP) are three early variations of evolutionary algorithms whereas GP is a relatively
recent variant (Liong et al., 2002)

GP is a domain-independent automatic programming technique evolving solu-
tions to a given problem (Koza, 1992). The solution may be accurate or approximate
depending upon the level of noise in the data set for which a solution is sought. It
uses optimization techniques to evolve simple programs mimicking the way humans
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construct programs by progressively rewriting them. Trial programs are repeatedly
modified in the search for better or fitter solutions (Langdon, 1998).

The problem of finding a function in symbolic form, that fits a given set of data,
is called symbolic regression. The aim of symbolic regression is to determine a
functional relationship between input and output data sets. Symbolic regression is
error-driven evolution and it may be linear, quadratic or higher order polynomial.

30.2.1 Basic Operations in Symbolic Regression

A population in GP consists of computer programs. To ease the process of creating
new programs from two parent programs, the programs are represented by parse tree
structures composed of a function set and a terminal set. The functions are mathe-
matical or logical operators and terminals are constants and variables. The GP trees
are dynamically modified by genetic operators in order to optimize its fitness value
during the evolving process. Genetic operators include selection, crossover and mu-
tation, and each operator is applied to selected individuals. Selection is the process
of copying individuals into the next generation of the population probabilistically
selected based on fitness value. Crossover operator interchanges randomly selected
subtrees of each chosen parent pair to generate syntactically correct offsprings. In
the mutation operation, a single parental program is probabilistically selected from
the population based on fitness. Many types of mutations are possible and only two
kinds are outlined here. In the first kind a function or a terminal can only be replaced
by a function or a terminal. In the second kind an entire subtree can be replaced by
another subtree generated by the same random process used to generate the initial
population.

The following three examples serve to illustrate parse tree and GP operations.
Figure 30.2 shows how an expression such as {

√
(b2 −4ac) − b}/2a is repre-

sented as a parse tree. In Fig. 30.3 a crossover operation is demonstrated. It
should be noted that bold parts of two parent trees in Fig. 30.3 representing
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Fig. 30.3 Crossover operation in GP

expressions {
√

(b2 −2a)− b}/2a and (
√

b2 − 4ac)/4ac (which are both incor-
rect) exchange each other to create two children representing two new expressions
{
√

(b2 −4ac)−b}/2a (the correct solution) and (
√

b2−4ac)/2a. Figure 30.4 illus-
trates one possible mutation operation in GP. The bold-faced subtree “(4*a*c)” of a
parent tree representing expression {

√
(b2 −4ac)− b}/4ac is replaced by subtree

“(2*a)” to form the correct expression {
√

(b2 −4ac)−b}/2a.
The search process in GP is guided by a fitness function. The definition of a fit-

ness function is the most important aspect in GP and it depends upon the problem
domain. The performance of GP largely depends upon how well the fitness func-
tion represents the objective or goal of the problem at hand. The main generational
loop of a run of GP consists of the fitness evaluation, selection and the genetic op-
erations discussed above. Each individual program in the population is evaluated to
determine how fit it is at solving the problem. Programs are then probabilistically se-
lected from the population based on their fitness to participate in the various genetic
operations, with reselection allowed. While a fitter program has a better chance of
being selected, even individuals known to be unfit are allocated some trials in a
probabilistic way.
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Fig. 30.4 Mutation operation in GP

30.3 Sea Temperature Profile Projected from Sea
Surface Temperature

This section demonstrates the application of genetic programming to projecting the
sea temperature profile based solely on sea surface temperature. The typical ocean
temperature profile (in low to middle latitudes) is depicted in Fig. 30.5. The top part
of the ocean is the surface layer (or mixed layer). In this layer, driven by wind and
wave-breaking, the heat provided by the sun is well mixed. The middle part of the
ocean is called the thermocline layer. In this layer, the temperature reduces rapidly
with depth. The third part of the ocean is the deep layer. The deep ocean is not well
mixed; it is made up of horizontal layers of equal density. Much of this deep ocean
water is between 0 and 3◦C.

A temperature profile is required as the boundary and initial conditions for the
hydrodynamic ocean model simulation. However, apart from sea surface tempera-
ture (SST), which can be obtained from the orbiting satellite, the rest of the profile
is not available unless they happened to be measured. This chapter investigates the
application of GP to simulating the ocean temperature profile from SST for a given
location.
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Fig. 30.5 Typical ocean temperature profile

The study region covers an area measuring 7◦ by 7◦C on the eastern portion of
the South China Sea domain as shown in Fig. 30.1. The area ranges from 114.5 E to
120.5 E and from 15.5 N to 21.5 N.

A root mean squared error, RMSE, and a Nash–Sutcliffe index, R2, are used as
goodness-of-fit measures. They are expressed as

R2 = 1− ∑n
i=1 (xi − x̂i)

2

∑n
i=1 (xi − x̄)2 (30.1)

RMSE =

√
1
N ∑(y− ŷ)2 (30.2)

where y = observed value, ŷ = predicted value, ȳ = mean of the observed values and
N is the number of data points considered.

Monthly averaged ocean temperature in May taken from the Levitus98 database
is used in this study (http://www.cdc.noaa.gov/cdc/data.nodc.woa98.html). Typically,



428 C.D. Doan et al.

Table 30.1 Depth level in the Levitus98 database

Level Depth Level Depth Level Depth

1 0 9 150 17 800
2 10 10 200 18 900
3 20 11 250 19 1000
4 30 12 300 20 1100
5 50 13 400 21 1200
6 75 14 500 22 1300
7 100 15 600 23 1400
8 125 16 700 24 1500

the data are available at 24 depth levels up to 1500 m. Depth levels of Levitus98 data
are given in Table 30.1.

The availability of data in the study area is given in Fig. 30.6. The data at points
1 and 2 are reserved for validation purposes.

116.5 E 120.5 E119.5 E117.5 E 118.5 E

21.5 N

20.5 N

19.5 N

18.5 N

17.5 N

Data AvailableNo data

114.5 E 115.5 E

16.5 N

15.5 N

Data not up to 1500 m depth

1

2

Fig. 30.6 Data availability in the study area
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The task is to establish an equation with prediction capability of the sea tempera-
ture profile, T , at any location. The following relationship between T , at a particular
location and depth, and sea surface temperature (SST) and its exact location (depth,
longitude and latitude) is proposed:

T = f (Sea Surface Temperature, Depth, Longitude, Latitude) (30.3)

Genetic programming is then trained to relate the dependent variable, temperature
T at a given depth and location, with the four independent variables as expressed in
(30.3). All variables are non-dimensionalized with respect to their individual maxi-
mum value prior to training. GP is first trained to yield the optimal relationship for
the region under consideration. The GP configuration is

• Population size 50
• Number of generations 200
• Maximum number of levels 10
• Operators used in computation were addition (+), subtraction (−), multiplica-

tion (∗), division (/), square root, log, power and exponential

The GP software used is GPLAB, a genetic programming toolbox for MATLAB
written by Sara Silva (http://gplab.sourceforge.net/). Equation (30.4) shows the GP-
trained equation selected in this study:

T =
1

7.396X1+
(

X3
X2X4

)1/4
(30.4)

where

X1 =
Depth

Max(Depth)
;X2 =

Longitude
Max(Longitude)

X3 =
Latitude

Max(Latitude)
;X4 =

SST
Max(SST)

It is noted that the above equation is only one of numerous equations generated
by GP. All equations are ranked based on their performances on the training data
set. Equations ranked very high in their performances may not necessary be chosen
when they carry little or no physical interpretation. The following is an example of
an equation with high performance and yet not chosen:

T = −0.1642+ e(2X3+X1+0.285−eX4 − e(3X2+2X3+X4) +2X4 (30.5)

It should also be noted that several transformation options are available, e.g. (1)
dividing all the data by their corresponding maximum values; (2) dividing all the
data by their corresponding range (maximum value – minimum value); (3) logarith-
mic transformation; etc. Evaluations show that transformation with the maximum
value yields simpler equations and good performances as well.
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The domain used in this study is from 114.5 E to 120.5 E and from 15.5 N to
21.5 N. Thus, the transformed values of X2 (latitude) are from 0.95 to 1, and X3
(longitude) from 0.72 to 1. Splitting the second term in the denominator of (30.4)

into
(

X3
X2

)1/4×
(

1
X4

)1/4, the effect of location (X2, X3) at the same water depth (X1)

and SST (X4) on temperature is not dominant. The reason is the term
(

X3
X2

)1/4 ranges
only from 0.92 to 1. It should be noted that in the domain considered in this study,
the temperatures of the same depth at two locations (that differ by only 0.5◦ from
each other) are not very different.

The trained GP is then validated on sea temperature profiles at various points in
the same domain in the month of May; it is noted that these validation data are ex-
tracted from the Levitus98 database. Performance accuracy levels for both training
and validation are very high and given in Table 30.2.

The trained GP is then subjected to a further test with measured data taken from
an expedition AsiaEx (Denner et al., 1999). The AsiaEX project was a joint in-
ternational project between 18 major institutions in the period from 1997 to 2001.
Essentially, the project measured some of the ocean characteristics at two sites: one
in the South China Sea (SCS) while the other was in the East China Sea (ECS). At
the SCS location, the CTD (Conductivity Temperature Depth) equipment is used to
measure salinity, temperature and depth. At the ECS location, the ADCP (Acoustic
Doppler Current Profile) equipment is used to measure the speed and direction of
the ocean currents.

The data used in this paper are the measured temperature at the SCS site located
between Dongsha Island (formerly Pratas Island) and Kao-hsiung (Taiwan), which
is in the same domain as the Levitus98 study area but for two different time stages in
the month of May, as shown in Table 30.3. Table 30.3 and Fig. 30.7 show the high
performance accuracy (R2 of over 0.98) of GP-simulated sea temperature profiles
against their counterparts from observations.

The good agreement between the simulated and the observed data is very en-
couraging. The study will look into the applicability of the approach to other sea

Table 30.2 Prediction accuracy of GP for Levitus98 data

Nash index (R2) RMSE

Training 0.9911 0.0286
Validation: Point 1 0.9923 0.0262
Validation: Point 2 0.9920 0.0287

Table 30.3 Performance accuracy of GP: AsiaEx data

Time period Period R2 RMSE

1 3/05/01–8/05/01 0.98986 0.49075
2 14/05/01–16/05/01 0.98586 0.60059



30 Projecting Ocean Temperature Profile from Sea Surface Temperature 431

(a) Temperature profile for data collected between 3 and 8 May 2001

(b) Temperature profile for data collected between 14 and 16 May 2001

Fig. 30.7 Comparison between GP-simulated and measured temperature profiles (a) Temperature
profile for data collected between 3 and 8 May 2001 (b) Temperature profile for data collected
between 14 and 16 May 2001
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regions through validation with observed data. Should the comparisons be of the
same order of magnitude as that shown here, one can then extract the readily
available sea surface temperatures, observed by orbiting satellites (Topex/Poseidon;
http://www.saa.noaa.gov/nsaa/ products/welcome), to derive the required sea tem-
perature profile.

30.4 Conclusions

This chapter first discussed the need for good input data, such as sea temperature
profiles and tidal elevations, for ocean model simulations and then demonstrated the
application of genetic programming on sea temperature profile simulation.

Comparisons between data-driven simulated and observed data were performed.
Results show very close agreement. The high accuracy in projecting sea temperature
profiles allows ocean model users to couple the readily available satellites’ observed
sea surface temperature data with a GP-trained model to predict the required sea
temperature profiles.
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Chapter 31
Uncertainty Propagation in Ensemble Rainfall
Prediction Systems used for Operational
Real-Time Flood Forecasting

I.D. Cluckie and Y. Xuan

Abstract Advances in mesoscale numerical weather prediction make it possible
to provide quantitative precipitation forecasts (QPF) along with many other data
fields at increasingly higher spatial resolutions. It is currently possible to incorpo-
rate high-resolution NWPs directly into flood forecasting systems in order to obtain
an extended lead time. It is recognised, however, that direct application of rainfall
outputs from the NWP model contributes considerable uncertainty to the final river
flow forecasts as the uncertainties inherent in the NWP are propagated into hydro-
logical and hydraulic domains and can also be magnified by the scaling process.
As more and more “modern” flood forecasting systems are adopting this coupled
approach, it is necessary to study uncertainty propagation and interaction between
the NWP and the real-time flood forecast system model cascade, which terminates
technically with the decision support system (DSS).

In this study, analysis is conducted to investigate the uncertainties in rainfall pre-
dictions that form the primary perturbation in a coupled NWP-hydrological model
context. The ensemble method is used to account for both uncertainties due to incor-
rect/inaccurate initial conditions and those derived from model structure. Conven-
tional statistics are employed to show variations over domains as well as point-wise
targets. An adapted empirical orthogonal function analysis based upon principal
components (EOF/PCA) is used to measure the diversity of ensemble members,
which in turn provides a way to reconstruct a composite scenario that embodies
most of the significant characteristics of ensemble forecast fields. The analyses of
a typical ensemble QPF case over the catchment scale reveals that, although the
NWP-based QPF can generally capture the rainfall pattern, uncertainties in rainfall
at the scale of model grid relative to the catchment scale were always significant.
Therefore, a cautious approach should be taken before the QPF, either deterministic
or ensemble based, is injected into a flood forecasting system. Detailed results are
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discussed and comments made regarding the uncertainty propagation and the us-
ability of the NWP-based QPF in the context of real-time flood forecasting systems.

Keywords Flood forecasting · short-range ensemble numerical weather prediction ·
uncertainty propagation

31.1 Introduction

With advances in numerical weather prediction (NWP) in recent years as well as in-
creases in computing power, it is now possible to generate very high-resolution rain-
fall forecasts at the catchment scale and therefore more flood forecasting systems are
tending to utilise quantitative precipitation prediction (QPF) from high-resolution
NWPs in order to extend the forecast lead time; this is particularly so in the flash
flooding area where the model performance is highly dependent on the rapid avail-
ability of knowledge of rainfall distribution in advance (De Roo et al., 2003, Ferraris
et al., 2002). Many efforts have been made to utilise the QPF in the context of real-
time flood forecasting in which one or more “state-of-the-art” QPFs stemming from
different methods are to be integrated into the whole system. However, the effects of
QPF uncertainty on the whole system can be easily appreciated either intuitively or
by case studies (De Roo et al., 2003; Cluckie et al., 2004a,b). Indeed, recent research
on integrating QPF directly into the real-time flood forecasting domain reveals that
directly coupling the QPF with the hydrological model can result in large bias and
uncertainty (Ferraris et al., 2002). In this chapter, the uncertainties of rainfall pre-
diction from the NWP are analysed in the context of application within a real-time
flood forecasting system and some conclusions are provided to guide the future full
integration of NWP-derived QPFs within the system. This provides a contribution
to the whole system modelling philosophy that is currently prevalent in the flood
risk management sector.

31.1.1 Generation of Rainfall Predictions for the Real-Time Flood
Forecasting Domain

The weather models, which are routinely run in national weather centres, have
such a coarse spatial resolution that hydrological models have difficulty applying
the result from them as an effective input. The so-called downscaling procedure is
needed to bridge the scale gap between the large-scale weather forecast domains and
catchments-sized flood forecasting domains. In this study, a dynamical-downscaling
approach is applied to resolve the dynamics over 2 km grids. The forecasts/analyses
from global weather models are used to settle the initial and lateral boundary con-
ditions (IC/LBC) of a mesoscale model which is able to benefit from the resolvable
terrain features and physics at higher resolutions. This sort of mesoscale model is
often referred to as a local area model (LAM) and can most effectively be coupled
with the hydrological modelling process.
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31.1.2 Uncertainty Issues and Ensemble Prediction

Lorenz (1963, 1993) introduced the concept that the time evolution of a nonlinear,
deterministic dynamical system, to which the atmosphere (essentially a boundary
layer process) and the equations that describe air motion belong, is very sensitive
to the initial conditions of the system. The uncertainties inherited in the larger scale
model, which provides the parent domain with the IC and LBC, can also be prop-
agated to the nested mesoscale models. Given the large number of degrees of free-
dom of the atmospheric phase state, it is impractical to generate directly solutions
of the probabilistic equations of initial states. The ensemble forecast method runs
the model separately over a probabilistically generated ensemble of initial states,
each of which represents a plausible and equally likely state of the system. Each
ensemble projects them into future phase space and, as such, can be represented by
the statistics of the ensemble.

As far as a flood forecasting model is concerned, both the amount and the dis-
tribution of rainfall can significantly affect the final outputs. The results of flood
forecasting, however, could be disastrous if the rainfall forecasts were applied with-
out recognising field displacement problems, as the rainfall event could have been
either missed or mistakenly overestimated, i.e., the uncertainties may become more
significant when the focus has changed from large weather model domains to much
smaller catchment scales (Ferraris et al., 2002, Cluckie et al., 2004a and b). Further-
more, numerical models tend to smooth the rainfall field (and other variables) and as
such often cannot efficiently reproduce sub-grid variability, which plays a key role
in the runoff generation process.

31.2 The Mesoscale QPF Ensemble System

31.2.1 Model Configurations

The mesoscale ensemble QPF system consists of the mesoscale weather model –
PSU/NCAR mesoscale model (MM5) (Dudhia, 2003), the global analyses/forecast
data sets from the European Centre for Medium-range Weather Forecasts (ECMWF)
(Persson, 2003), and a post-processing system. Details of this system can be found
in the literature (Butts et al., 2005).

MM5 is configured to have four nested domains in this case study, of which
the grid size is 54 km, 18 km, 6 km, and 2 km from outermost to innermost domain
respectively, as seen in Fig. 31.1. The case study catchment is the Welland and Glen,
which is located on the east coast of the UK and experienced a severe flood event
during Easter 1998 (09 April to 12 April 1998). To simulate this flood-producing
rainfall event, data sets from the ECMWF were used, including 50 members of its
ensemble prediction system (EPS), operational forecasts, and one control run of
the EPS. All EPS members from ECMWF are then downscaled to the catchment
scale by MM5 with two different physics schema applied; therefore the mesoscale
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Fig. 31.1 Domain configuration (left, only inner three domains are shown) with the Welland and
Glen Catchment Terrain (in metres and 10 km background grids)

QPF will have 104 members, each of which embodies the unique realisation of the
assumed physics fields over the mesoscale domain.

MM5 was initialised at 12UTC on 09 April 1998 and provided a 24 h forecast
until 12UTC on 10 April. There were 27 gauge observations available in the vicinity
of the Welland and Glen catchment, from which the 24 h rainfall accumulation was
derived in order to evaluate the spread of the 24 h forecasts from the mesoscale
ensemble QPF system.

31.2.2 Analysis Approach

Conventional statistics were applied to analyse the model outputs in order to un-
derstand how the model performance and uncertainty was distributed over do-
mains. The conventional statistics were divided into two categories, which were
grid (points) orientated and area (aggregated) value orientated. It can be seen that
the grid-based statistics generated the pattern of the particular fields, whereas the
area-based provided the general evaluation of the fields that were later used as input
into lumped models.

The ensemble members were also transformed into empirical orthogonal func-
tions (EOF) that can provide insights into how individual members varied with each
other (Wilks, 1995). In the analysis, values of grids are seen as variables and the
entire ensemble data set is defined to be all variables sampled over the sampling
space, which refers to the ensemble case members.

31.2.3 Analysis of the Distribution over the Area

The operational run, control run, and the mean value of members are shown in the
top row of Fig. 31.2, together with three randomly selected members displayed in



31 Uncertainty Propagation 441

the middle. Not surprisingly, the patterns of the operational run and the control run
agree very well. The main structures were captured in the mean pattern with one
storm centre located towards the eastern border that was missed. The huge vari-
ability among ensemble members is clearly reflected by the three lower images, of
which the lower left predicts a very strong but small rainfall centre whilst missing
the other one almost completely.

The standard deviation, the coefficient of variation, and the skewness are shown
in the bottom row of Fig. 31.2. The standard deviation indicates that two heavy
rainfall centres are also the locations generating much uncertainty. The coefficient
of variation in this case implies that the middle of the eastern boundary is such
that a single member forecast cannot be accepted owing to its large error band. The
distribution of the skewness shows that the PDF of the ensemble over the domain
exhibits high heterogeneity with a highly skewed PDF occurring to the northeast of
the domain, which means that the majority of the ensembles predict small rainfall
while several members produced large values. It can also be concluded that models
are more sensitive to the coastal area than the inland area where there is another
storm centre.

Fig. 31.2 Rainfall forecast distribution over domain4 in mm (top two rows with the value range
shown in brackets) and indices to describe variation (bottom three figure). The unit of standard
deviation is mm whereas the remaining two are dimensionless. Horizontal and vertical axes of
each sub-figure are marked every 50 km
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Fig. 31.3 Rainfall distribution over the Welland and Glen catchment. (Unit: mm. The one titled
“ensemble max” shows the pessimistic forecast. Horizontal and vertical axes of each sub-figure are
marked every 10 km)

Rainfall fields are zoomed and cropped in Fig. 31.3 as the scale changes from
domain to the catchment. Note that the operational forecast and the members mean
are just the magnified versions of those shown previously and thus the pattern can be
identified more clearly. What is more interesting, however, is the pessimistic fore-
cast (the upper envelope of members) and the one interpolated from gauge data.
In practice, apart from the mean, the extreme forecast value is usually used to pro-
vide a risk-averse forecast. Compared with the “real” distribution, the ensemble max
has included the maxima of the gauges but failed to realise the distribution pattern;
the operational run has a comparable pattern, but the total rainfall amount over the
catchment only equals half of that observed.

31.2.4 Variations of Aggregated Value

It is customary in flood forecasting to use rainfall aggregated over the catchment
due to the fact that traditionally the vast majority of operational hydrological models
tend to use areal rainfall inputs, which is usually derived from limited ground-based
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measurements. Because of this, it may be more helpful to check the uncertainties in
the QPF in terms of area-averaged or catchment-averaged values.

Again, the quantities are compared for both domain and catchment, and the di-
mensions have been scaled to unity. It is preferred to analyse them under a time
frame so that a more meaningful dynamic series can be obtained. By doing this, a
familiar “spaghetti” diagram, as seen in Fig. 31.4, was utilised.

It is difficult to find pronounced trends from the two spaghetti diagrams given in
the top row in Fig. 31.4, but generally, spreads of both increase dramatically after
6 h and then stabilise until 24 h. The spread of the catchment case is larger and more
chaotic, while for the entire domain case each member appears to be staying on track
with minimum disruption. This is contrary to the intuition obtained from what was
shown in the distribution images (see Fig. 31.2), which indicate that the catchment is
in an area where the variation was small. Indeed, the spatial scaling issue comes into
play at this time, and the variation tends to increase when the area size decreases.
The comparison of the standard deviation of both cases confirms this expectation.
As seen in the lower left of Fig. 31.4, the variation of the catchment case exceeds its
counterpart from the whole domain.

A time-dependent tendency can be found in the Cv value shown in Fig. 31.4,
from which it can be seen that the normalised variation of the catchment is being
amplified while time increases. However, such a trend is not pronounced in the
whole domain case within a short forecast period. One reasonable explanation is that
for a large area, many more members and a longer elapsed time may be needed to
reveal this behaviour, while the scaling process may work as a non-linear magnifier
to expose such a trend at a much earlier time with fewer ensemble members.

Fig. 31.4 Areal rainfall forecast of entire domain and catchment (top: where solid lines marked
by triangles, stars and diamonds represent operational run, control run, and members mean, re-
spectively, and dotted lines represent ensemble members) together with the standard deviation and
coefficient of variation (lower: where dashed lines depict values from the domain run and solid
lines represent that from the catchment run)
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31.2.5 Empirical Orthogonal Function (EOF) Analyses

The empirical orthogonal function (EOF), also known as principal component anal-
ysis, is used to look at the variation across ensemble members. Although the ensem-
ble mean is able to provide a general averaged scenario, EOFs (or principal compo-
nents) not only present the spatial structure but also provide associated information
about how much variance can be accounted for.

Apart from the uncertainties propagated from the initial and lateral boundary con-
ditions that are settled by the large-scale weather models, the mesoscale model can
also contribute uncertainties of model structures; for instance, those of the moisture
physics schema. In this study, two ensembles are firstly built up by applying dif-
ferent model physics, which are Resiner 1 and Resiner 2 (see Dudhia et al., 2003),
and a grand ensemble including members from both is then generated. EOF anal-
yses were conducted over all three ensembles, which revealed some local features
related to the choice of model physics.

The first four leading EOFs are shown in Fig. 31.5, in which the brackets in each
subtitle indicate the fraction of the total variances that a particular mode can account
for. Clearly the leading EOFs have revealed statistically important spatial features;
for example, two storm centres, seen before, appeared in EOF1. It would be more
obvious to see this if a rainfall field was constructed based on the mode of the EOF,
like Figs. 31.6a to c. The mode accounted for the total variances (27%, 13%, 6%,
and 5%), however, are not significantly large, which means that there is a substantial

Fig. 31.5 First four leading scaled EOF contours in mm and the fraction of total variance they
account for (the zero contours are in dash-dot lines and positive/negative values are shown with
dash/dotted contours. Coloured shadow is used to emphasise the relative amplitude. Horizontal
and vertical axes of each sub-figure are marked every 50 km)
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spread of trajectories in the model phase space, or in other words, the four leading
modes can hardly produce a general scenario due to the uncertainty of predictions
across the members.

The variation of model outputs due to model structure perturbation can be found
by comparing panel a and b of Fig. 31.6, which are rainfall patterns reconstructed
from the first EOFs of the ensembles with two different model physics schema. More
importantly, one of the different localised features, which is the small storm centre
located across the south-east boundary of the catchment, has also been discovered
by gauge measurements but missed out by the ensemble mean (see previous discus-
sion). The pattern of panel (c) is from the grand ensemble including both types of
physics schema; therefore it has a bigger coverage that encompasses local variations
from both panels (a) and (b).

Since to some extent the fraction of the variance accounted for by the EOF mode
can be seen as a measure of the divergence of ensemble members in terms of orthog-
onal transformation, Fig. 31.6d reflects the fact that ensembles with physics option
1 spread more widely than those from option 2; furthermore, the grand ensemble
has the highest cross-member variations as it combines both options. However, the

Fig. 31.6 Reconstructed rainfall patterns in mm from the first leading EOF with physics option
1, option 2, and the mix option (a, b, and c). Horizontal and vertical axes of each sub-figure
are marked every 10 km) and the variance accounted by the EOF with different model physics
options (d)
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shape of the curve probably implies the upstream IC/LBC uncertainties overwhelm
those from model structure perturbations.

31.3 Conclusions

A mesoscale ensemble quantitative precipitation forecast system was established to
evaluate the propagation of uncertainty in the application of the QPF in a real-time
flood forecasting system. The grid-orientated statistics were applied to reveal the
variations across grid points and the spatial distribution. Aggregated values, such as
catchment mean precipitation, were also analysed focusing on the temporal evolu-
tion. Finally, the empirical orthogonal function analyses (EOF) was used to sum-
marise the uncertainties of model ensembles in general. From these analyses, the
following conclusions can be made.

A large amount of uncertainty exists in the rainfall distributions over both do-
mains and catchment scales; therefore, members of an ensemble may differ signifi-
cantly in terms of rainfall forecast distribution. Ensemble means are not necessarily
the best estimate regarding pattern. The distribution of this variation itself is non-
uniform; large variations/uncertainties tend to appear in the vicinity of heavy rainfall
areas, which can also have a strongly skewed PDF while stable areas tend to have
a more symmetric PDF. Aggregated rainfall values such as area-averaged rainfall
exhibits a spatial–temporal dependency. Variations tend to increase with decreases
in the domain size and grow with time.

At the catchment scale, rainfall patterns from deterministic runs and the ensem-
ble members mean were generally similar to that from interpolation of rain gauge
observations. Rainfall amounts, however, were severely underestimated for most
of the ensemble members, i.e. the spread was not able to encompass appropriately
what happened historically. Inefficient model physics or inadequacy of ensemble
members can both result in this problem.

The leading EOFs of an ensemble can represent the most significant spatial fea-
tures, which implies a practical value in generating a general scenario for operational
applications. Effects of model physics can be detected as well by the EOF and the
uncertainties due to mesoscale model physics are often overwhelmed by those prop-
agated from the upstream larger scale models. The reconstructed pattern from the
EOF may be more suitable to capture the real distribution than the ensemble mean.

The mesoscale QPF ensemble system has been shown to be a powerful tool by
giving not only a simple deterministic rainfall forecast but, more importantly, addi-
tional valuable information about uncertainty structure and its prognostic properties.

The case study provides initial guidance on these issues but to come to a more
general conclusion it will be necessary to address different issues associated with
different weather systems and model resolutions. Further work will focus on the
post-processing of the ensemble QPF that is able to produce refined distributions
and associated probabilities suitable for being directly integrated into an ensemble-
based flood forecasting system.
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Chapter 32
OpenMI – Real Progress Towards Integrated
Modelling

D. Fortune, P. Gijsbers, J. Gregersen and R. Moore

Abstract The case for integrated catchment management has been well made and
has become a core part of initiatives such as the EC Water Framework Directive.
Most water and environmental professionals expect that integrated modelling will
take a necessary role in decision support for catchment management, in both plan-
ning and operations. Indeed, there is a common assumption that such modelling ex-
ists and is regularly carried out. Yet a closer examination reveals that where model
integration does exist, it is in a hard-wired or entirely proprietary way. The shining
example is in the specialist and limited field of real-time flood forecasting, where
there are some notable implementations of integrated modelling, albeit with many
restrictions on the connections (or linkage) between models.

The widespread implementation of integrated modelling depends on the avail-
ability of a sufficiently flexible and powerful linkage mechanism for data exchange
between models, and indeed between models and user interfaces, databases and
other data-hungry processes. Until now, no such linkage has existed, and easy avail-
ability of integrated modelling has remained a dream. Under the EU Framework 5
HarmonIT Project, a remarkable collaboration between rival commercial software
specialists, with the help of some excellent academic, research and operational part-
ners, has developed the OpenMI standard for data interfaces. It is anticipated that
this standard will have far-reaching consequences for modelling and for hydroinfor-
matics in general.

An implementation of the standard has also been developed, along with sufficient
utilities to allow the standard to be tested to the point of scientific proof or proof of
concept. The main tests have involved the incorporation of the OpenMI data in-
terface in a range of model source codes, from widely used commercial codes to
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specialist research models. Various combinations of populated models were then
built and the data transfers tested.

This chapter presents an overview of the technical details of the OpenMI stan-
dard. It also briefly describes how existing modelling software can be made OpenMI-
compliant. The full specification can be downloaded from the OpenMI-website
www.openmi.org or can be downloaded from the documentation section of the
OpenMI environment software installation package (including source code) avail-
able from the CVS repository on sourceforge.net/projects/openmi.

The authors acknowledge that the availability of a suitable integration mecha-
nism is just the beginning. OpenMI now exists as a freely available, open-source
standard, but its long-term future needs to be secured for it to have lasting impact on
catchment management. Much research and development needs to be done to un-
derstand how best to implement integration between different sorts of models with
a variety of linkages. Should we expect a major shift from single-issue modelling
to integrated modelling? Does OpenMI offer new opportunities to modellers and to
water managers? The authors expect that the answer to both questions is “yes”, but
we will have to wait and see if OpenMI really does change modelling in practice.

Keywords Open source software · OpenMI · integrated modelling · HarmonIT

32.1 Introduction

Integrated water management requires an understanding of catchment processes and
the ability to predict how they will respond under different management policies.
Most traditional modelling systems have not been able to meet these requirements
as models have tended to represent individual processes and have been run indepen-
dently. Hence, their output may not reflect the interactions between different aspects
of the environment. Clearly, it is not practical to construct a single model that could
simulate all catchment processes and to do so would be wasteful of the large num-
ber of existing models. A better solution is to couple models and hence enable them
to exchange data as they run, thus allowing interactions to be represented in the
simulation.

In response to the need created by the Water Framework Directive from its in-
troduction of integrated water management, the HarmonIT project has developed
the Open Modelling Interface and Environment (the OpenMI) to allow models to
exchange data (HarmonIT, 2005a). This has been developed with the following
objectives in mind: (i) the standard should be applicable to new and existing mod-
els, requiring the minimum of change to the program code; (ii) the standard should
impose as few restrictions as possible on the freedom of the model developer; (iii)
the standard should be applicable to most, if not all, time-based simulation tech-
niques; and (iv) implementation of the standard should not unreasonably degrade
performance.
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32.2 OpenMI Concepts

The majority of model applications that are the result of a design process (as op-
posed to those that just evolved over time) have a common structure comprising a
user interface, input files, a calculation engine and output files. Typically, the user
interface enables the user to create or point to input files and allows the visualiza-
tion of the output or result files. The calculation engine contains the model algo-
rithms and becomes a model of a specific process, e.g. flow in the Rhine, once it has
populated itself by reading the input files. A model can compute output. If an en-
gine can be instantiated separately, it is an engine component. If, further, it supports
a well-defined interface, it becomes a component. Finally, if the engine supports
the OpenMI linkable component interface, then the engine is said to be OpenMI-
compliant. An engine component populated with data is a model component.

The OpenMI focuses on the run-time exchange of data between populated com-
ponents. These components can be data providers (e.g. models, databases, text
files, spreadsheets, pre/post-processors, data editors, in situ monitoring stations,
etc.) and/or data acceptors (e.g. models or online visualization tools). Thus, the
OpenMI potentially allows the development of a complete integrated modelling
system consisting of GUI, engines and databases. Determining when this level of
system integration will be achieved will depend on the adoption of OpenMI as a
component linkage standard by the environmental model and software development
community.

At the start of HarmonIT, the components were foreseen as running within
a framework, but gradually this concept was replaced by standardizing the run-
time interface of linkable components, thus allowing direct communication be-
tween components. The linkable component interface, described in the names-
pace org.OpenMI.standard, can be implemented in a variety of ways, of which the
OpenMI environment, developed by the HarmonIT project, is just one.

Essential to OpenMI is the distinction between quantities, element sets, time and
values. Elements can be non-geo-referenced or geo-referenced in 0/1/2/3D. The en-
tities are supported by metadata interfaces describing what the data represent, to
which location it refers, for which time (time stamp or time span) they are valid and
how they are produced.

The developers of OpenMI created a full software implementation, called the
OpenMI environment, in C# (.NET). A Java implementation is being developed
within the Seamless and Sensor projects (EU Framework 6). The focus of OpenMI
development was primarily oriented to data exchange issues. Hence, a wide range
of utilities is provided to enhance the implementation of the OpenMI interfaces
from typically legacy code. For example, a wrapper package provides facilities for
bookkeeping of links and data handling, such as buffering and spatial and temporal
mapping. Simple tools are available to define links, to run the system and to display
results.

OpenMI is based on the request–reply architecture concept. The basic workflow
is the following. At configuration time, metadata of a component is inspected to
identify and define the links between the components. At run-time a component is
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Fig. 32.1 The basis of OpenMI: the request–reply concept

requested by another component for values at a specific time and location (element
set) using the GetValues-function call (see Fig. 32.1). This providing component
is obliged to reply to this request and provide the data at the time and location as
requested. In order to reply, it may need to do internal computations to progress in
time. This computation may require external data that can be requested from other
components by a GetValues-call. Once the internal time progressed at or past the
requested time, data transformations can be applied to return the values at the exact
time, element set and units as requested.

The interface orientation of OpenMI does not prescribe the use of the OpenMI
environment as provided by the HarmonIT project. Hence, OpenMI can also be used
to glue model engines with existing modelling frameworks through the OpenMI in-
terface. OpenMI is expected to satisfy the modelling requirements of a wide group
of users in various engineering domains, such as model coders, model developers,
data managers and end users. The expected impacts are the simplification of the
model linking process, the ability to represent feedback loops and process interac-
tions, the establishment of a communication standard for modelling and a reduction
in development time for decision support systems.

32.3 The OpenMI Standard

32.3.1 The OpenMI: A Request and Reply Architecture

OpenMI is based on the ‘request and reply’ mechanism. It consists of communicating
components (source and target components) which exchange data in a pre-defined
way and in a pre-defined format. The OpenMI defines both the component interfaces
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and how the data are to be exchanged. The components are called linkable components
to indicate that the OpenMI involves components that can be linked together.

From the data exchange perspective, the OpenMI is a purely single-threaded ar-
chitecture where an instance of a linkable component handles only one data request
at a time before acting upon another request. A component at the end of the com-
ponent chain triggers the data process. Once triggered, components exchange data
autonomously without any type of supervising authority. If necessary, components
start their own computing process to produce the requested data. No overall con-
trolling functionality is needed to guide time synchronization. Sometimes a local
controller is needed to control convergence of data being exchanged.

32.3.2 Addressing General Linkage Issues

The OpenMI standard provides the following facilities for model linkage:

• Data definition: The base data model of the OpenMI describes the numerical
values to be exchanged in terms of quantities (what), element sets (where), times
(when) and data operations (how) (for details, see Fig. 32.5).

• Metadata defining potentially exchangeable data: Quantities, element sets and
data operations are combined in exchange for item definitions to indicate what
data can potentially be provided and accepted by a linkable component (for
details, see Fig. 32.6).

• Definition of actually exchanged data: A link describes the data to be ex-
changed, in terms of a quantity on an element set using certain data operations
(for details, see Fig. 32.6).

• Data transfer: Linkable components can exchange data by a pull mechanism,
meaning that a (target) component that requires input asks a source component
for a (set of) value(s) for a given quantity on a set of elements (i.e. locations)
for a given time. If required, the source component calculates these values and
returns them. This pull mechanism has been encapsulated in a single method,
the GetValues() method. Dependent on the status of the source component, a
call of the GetValues() method may trigger computation and, possibly, lead to
further requests for data from other components. An important feature is the
obligation that components always deal with requests in order of receipt.

• Generic component access: All functionality becomes available to other compo-
nents through one base interface, the linkable component interface (for details,
see Fig. 32.6). This interface needs to be implemented by a component for it
to become OpenMI-complaint. Two optional interfaces have been defined to
extend its functionality with respect to discrete time information and state man-
agement (for details, see Fig. 32.6). To locate and access the binary software
unit implementing the interface, the OMI file has been defined. The OMI file
is an XML file of a pre-defined XSD format, which contains information about
the class to instantiate, the assembly hosting the class and the arguments needed
for initialization.
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• Event mechanism: A lightweight event mechanism has been introduced (see
Fig. 32.6) to pass messages for call stack tracing, progress monitoring and to
flag status changes which might trigger other components (e.g. visualization
tools) to request for data via a GetValues()-call.

By convention a linkable component has to throw an exception if an internally ir-
recoverable error occurs. This exception is based on the Exception class as provided
by the development environment.

32.3.3 Utilization and Deployment Phases

An OpenMI linkable component provides a variety of services which can be utilized
in various phases of deployment. Figure 32.2 provides an overview of the phases that
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can be identified, and the methods which might be invoked at each phase. While the
sequence of phases is prescribed, the sequence of calls within each phase is not
prescribed.

The phases are

1. Initialization: This phase ends when a linkable component has sufficient knowl-
edge to populate itself with data and expose its exchange items.

2. Inspection and Configuration: At the end of the phase, the links have been de-
fined and created, and the component has validated its status.

3. Preparation: This phase enables you to prepare all conversion matrices before
the computation/data retrieval process starts.

4. Computation/execution: During this phase, the main code of the component is
executed. Typically, it represents the simulation of a process such as river flow.
This simulation may itself generate calls to other components.

5. Finish: This phase comes directly after the computation/data retrieval process
is completed. Code developers can utilize this phase to close their files and
network connections, clean up memory, etc.

6. Disposal: This phase is entered at the moment an application is closed. All
remaining objects are cleaned and all memory (of unmanaged code) is de-
allocated. Code developers are not forced to accommodate re-initialization of
a linkable component after Dispose() has been called.

Linkable components may support the dynamic addition and removal of links
at computation time. However, as described in the grouping of deployment phases,
this requirement is not enforced. Those who do not support this call at computation
time should throw an exception.

32.3.4 Other Features

In principle, the GetValues()-call stack of all linkable components is located in one
thread. Linkable components may internally use distributed computing techniques
to improve computational efficiency.

Code developers may create container components holding other components, as
long as the container implements the linkable component interface.

By separating various phases of deployment, code developers can choose when
to instantiate and populate the engines. Exchange item information can be obtained
from the engine, from files being parsed during the inspection phase or by dynamic
querying of linked components.

32.4 How Does It Work – An Example

To illustrate how it works, a very simple but complete example, presented in
Gregersen et al. (2005), will be used. The example addresses a conceptual lumped
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rainfall-runoff (RR) model which provides inflow to a river model. The populated
link class is shown in Fig. 32.3.

The sequence diagram in Fig. 32.5 shows the calling sequence for a configuration
with a river model linked to a rainfall-runoff model. The diagram demonstrates how
things would look if a “hard-coded” configuration was used. For normal usage of
OpenMI, a configuration editor would assist you in creating the configuration.

The sequence diagram has the following steps:

1. The river model object and the RR model object are instantiated. Then the
Initialize method is invoked for both objects. Models will typically read their
private input files when the Initialize method is invoked. Information about
name and location of the input files can be passed as arguments in the Initialize
method.

2. The river model is queried for InputExchangeItems and the RR model is
queried for OutputExchangeItems. The InputExchangeItems and OutputEx-
changeItems objects contain information about which combinations of Quan-
tities and ElementSets (locations) can be accepted by the components as input
or output, respectively.

3. A Link object is created and populated, based on the obtained lists of Inpu-
tExchangeItems and OutputExchangeItems. In this example, we are using a
hard-coded configuration. However, if a configuration editor was used, the
OutputExchangeItem and the InputExchangeItems would be selected by the
user using, e.g., a selection box.

Quantity: TargetQuantity
ID = ‘Flow’

Quantity: SourceQuantity
ID = ‘Discharge’

Link: RRtoriver
ID = ‘RR_RIVER’

Element: element
ID = ‘FlowPoints’

ElementSet: TargetElementSet
ID = ‘DischargePoints’

Element: element
ID = ‘kd83902’

ElementSet: SourceElementSet
ID = ‘FlowPoints’

Fig. 32.3 The populated link class
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4. The trigger component is created. This component is a very simple Linkable-
Component whose only purpose is to trigger the calculation chain.

5. Link objects are added to the LinkableComponents. This will enable the Link-
ableComponents to invoke the GetValues method in the LinkableComponent
to which they are linked.

6. The Prepare method is invoked in all LinkableComponents. This will make
each LinkableComponent do whatever preparations are needed before calcu-
lations can start.

7. Invoking the RunSimulation method in the trigger object starts the calculation
chain.

8. The trigger object invokes the GetValues method in the river model and the
river model will calculate until it has reached the EndTime specified in the
argument list.

9. Before the river model can make a time step, it must update its inflow bound-
ary condition. In order to do this, the GetValues method in the RR model is
invoked.

10. The RR model will repeatedly perform time steps until it has reached or ex-
ceeded the time for which it was requested for values. If the river model and
the RR model are not synchronous with respect to time stepping, the RR
Model must interpolate the calculated runoff in time before the values can be
returned.

11. The river model has now obtained its inflow boundary value and can perform
a time step. The river model will repeatedly invoke the GetValues() method
in the RR model and perform time steps until it has reached or exceeded the
EndTime, after which it will return control and values to the trigger object.

12. The trigger object returns control to the main program.
13. The main program will invoke the Finish and the Dispose method in all Link-

ableComponents. LinkableComponents will typically close output files when
the Finish method is invoked. The Dispose method will typically be used by
the LinkableComponents to de-allocate memory.

32.5 Meeting This Specification

32.5.1 Consequences of the OpenMI for a Model

The OpenMI enables model engines to compute and exchange data at their own
time step, without any external control mechanism. Deadlocks are prevented by
the obligation of a component – always to return a value whatever the situation.
When each model is asked for data, it decides how to provide it – it may already
have the data in a buffer because it has previously run the appropriate simulation
steps, or it might have to progress its own calculation, or it might have to estimate
via interpolation or extrapolation. If the component is not able to provide all the
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Main

River Model
:ILinkableComponent

RR Model
:ILinkableComponent

trigger
:ILinkableComponent

while (tRiver < EndTime)

while( tRR < tRiver )

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[13]

[4]

[12]

new

Initialize(properties)

new

Initialize(properties)

int:= InputExchangeItemCount()

[For (i = 0; i< InputExchangeItemsCount; i++)]: * IInputExchangeItem:= GetInputExchangeItem(i)

int:= OutputExchangeItemCount()

[for i = 0; i < OuputExchangeItemsCount; i++]:  IOutputExchangeItem:= GetOutputExchangeItem(i)

CreateLinkObject

new

AddLink(RRModelToRiverLink)

AddLink(RRModelToRiverLink)

AddLink(TriggerLink)

AddLink(TriggerLink)

Prepare()

Prepare()

RunSimulation()

IValueSet:= GetValues(time = EndTime, linkID)

IValueSet:= GetValues(time = tRiver, linkID)

PerformTimeStep

tRR = tRR + DtRR

PerformTimeStep

tRver = tRiver + DtRiver

Finish()

Dispose()

Finish()

Dispose()

Fig. 32.4 Sequence diagram (example rainfall-runoff – river)
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requested data, an exception will be raised. The exchange of data at run-time is
automated and driven by the pre-defined links, with no human intervention.

To become an OpenMI linkable component, a model has to

• be able to expose information (what, where) to the outside world on the mod-
elled variables that it can provide, or which it is able to accept;

• submit to run-time control by an outside entity;
• be structured in that initialization is separated from computation – boundary

conditions must be collected in the computation phase and not during initializa-
tion;

• be able to provide the values of the modelled variables for the requested times
and locations;

• be able to respond to a request, even when the component itself is time indepen-
dent; and if the response requires data from another component, the component
should be able to pass on the time as well in its own request;

• flag missing values and
• in the exceptional case that an entire value set is unavailable, throw an excep-

tion. Be aware that such exception will stop the entire computation process and
thus should be prevented.

32.5.2 Model Wrapping

The above-mentioned requirements do not match the nature of most legacy codes,
but most of it can be captured by wrapping. Figure 32.5 illustrates the OpenMI
wrapping pattern that is adopted in the implementation of the OpenMI environment.

org.OpenMI.Standard

<<Interface>>
ILinkableComponent

org.OpenMI.Utilities.Wrapper

LinkableEngine

MyLinkableModel

org.OpenMI.Utilities.Wrapper

<<Interface>>
IEngine

MyEngineWrapper

Implements

Implements

Access

Inherit

Access

Fig. 32.5 The engine wrapping pattern
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void Initialize(hastable properties);
bool PerformtimeStep();
void Finish;
ITime GetCurrentTime();
ITime GetInputTime(string QuantityID, string ElementSetID)
ITimeStamp GetEarliestNeededTime();
void SetValues(string QuantityID, string ElementSetID, IValueSet values);
IValueSet GetValues (string QuantityID, string ElementSetID)
double GetMissinghValueDefinition();
string GetComponentID();
string GetModelID();
string GetModelDescription();
double GetTimeHorizon();
int GetInputExchangeItemCount();
int GetOutputExchangeItemCount();
IInputExchangeItem GetInputExchangeItem(int exchangeItemIndex);
IOutputExchangeItem GetOutputExchangeItem(int exchangeItemIndex);

<<IEngine>>

Fig. 32.6 The internal IEngine interface

The wrapper uses an internal interface to access the engine. This interface,
IEngine (see Fig. 32.4), may be split in a section addressing the metadata issues and
in a run-time section for the numerical computation and associated data exchange.
For the computational part, this wrapping concept still requires that engine cores are
re-engineered according to the pattern as illustrated in Figs. 32.5, 32.6, 32.7.

Main
{

Open files

Read input files

Time step loop

close files

}

Main
{

}

Function Initialize
{

•Open files
•Read input files

}

Function PerformTimeStep
{

}

Function Finalize
{

•Close files
}

original engine revised engine

Fig. 32.7 Engine core re-engineering pattern
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32.6 Application Experiences

32.6.1 Software Code Migration

OpenMI has been released in the open source under LesserGPL license conditions
on Sourceforge (sourceforge.net/projects/openmi). This release includes a C#.NET
implementation of the interface standard as well as an implementation of a wide
range of utilities to make migration of computational engines easier.

By the time of writing, some six to eight commercial water simulation codes
have been migrated, covering the range of catchment, river, rural, urban, lake and
coastal applications. In addition, a variety of others are in the process of migration.
Furthermore, over ten research and non-commercial codes have been migrated in the
water domain, while various migration initiatives are undertaken in the agricultural
and nuclear domain. OpenMI has also shown its capabilities as an interface between
legacy code and modelling frameworks (e.g. the Invisible Modelling Environment,
TIME, an Australian framework, and DelftFEWS, a model independent framework
for operational support systems).

Most software developers have adopted the migration pattern as shown in
Fig. 32.3, using the utilities as provided on Sourceforge. In order to support the
internal IEngine interface (Fig. 32.4) most of them needed to re-engineer their code
as shown in Fig. 32.5. The effort involved in the migration has shown to depend
on the understanding of object-oriented principles and OpenMI, the structure and
size of the code, the methods of implementation and the ambition level (i.e. level
of model data made accessible). While the additional amount of code lines is often
very limited, the migration work may take considerable effort if a drastic code re-
structuring is required. In those cases, the need of restructuring often has shown to
be valuable also from the perspective of code structure, improved maintainability
and improved flexibility.

Taking all these considerations into account, the basic migration effort has shown
to vary from one week to a few months. Most software developers are happy to
spend this effort on an improved code structure. In some cases, code access has been
a problem. Migrating input or output data file has shown to be an appropriate and
easy way to connect inaccessible legacy code to other model codes via a one-way
OpenMI linkage. In those cases, reduced performance can be expected.

32.6.2 Performance Issues

While developing the OpenMI, performance has always been an issue carefully con-
sidered. If properly defined and implemented, only one GetValues-call is required
to transfer data for all linked computational elements. Furthermore, the Prepare
method has been introduced to allow data transformation matrixes to be computed
just before the simulation starts. Data between linkable components is typically ex-
changed in shared memory, as all classes implementing the ILinkableComponent
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are forced to reside in one single thread. Software developers are free to choose
their own implementation methods to obtain high performance within a component.
For example, internal parallelization might be applied if the computational effort
within a GetValues-call is substantial. Although the utilities as provided in open
source have not yet been optimized, tests have shown that limited time is required
for buffering, mapping and transferring the data, i.e. in the order of milliseconds or
less when a few thousand elements need to be mapped (Gregersen, 2005).

32.6.3 Applications with OpenMI

As a rather new technological opportunity, applications so far have mainly been fo-
cused on proving the advantages of a standardized interface to enable model linking.
Dudley et al. (2005) have demonstrated for an artificial catchment-lake setting the
applicability of OpenMI to link a variety of commercial codes from various vendors
to address integrated modelling opportunities for the EU-Water Framework Direc-
tive. This demonstration illustrated that once the data can be exchanged, the issues to
be dealt with are modelling issues, such as instabilities at the start of the simulation
due to incorrect initial conditions for the entire set of models.

While their demonstration dealt with an artificial catchment-lake setting, various
applications (of other companies) have shown the advantages of process interaction
in real case study areas. Most notably in creating new insight in urban water systems
are applications in Greece (Gavardinas et al. 2005) and in Belgium (Brussels, un-
documented), both achieved by linking commercially available software products.

In addition to applications in the field of process interaction between bio-physical
models, applicability has been proved for linkages to agent-based models, for
application with calibration and optimization techniques (HarmonIT, 2005b), for
visual DSS development (Dirksen et al. 2005) and for ensemble Kalman filtering
(Seyoum, 2005). Within the Framework 6 projects, Seamless, Sensor and Aquas-
tress, OpenMI provides the communication basis for the development of water, land
use and agricultural-related decision support systems.

While presenting OpenMI to an audience not involved in development, many out-
siders have made reservations on the applicability of OpenMI due to performance
issues. The applications so far have made clear that OpenMI increases the capabili-
ties of legacy models to simulate process interaction with other models. Developers
of OpenMI consider this achievement, and the opportunities it offers much more
valuable than a limited risk of low computational performance.

32.7 OpenMI Now and in the Future

The OpenMI is currently being applied by a range of software developers in the
catchment domain (sewers, open channels, hydrology, groundwater, waste water
treatment, water quality, socio-economics) and is starting to be adopted by the
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agricultural, estuarine and marine domain. These applications have highlighted how
little is known about how best to implement integration between different models
using a variety of linkages. There is much more work for the hydroinformatics com-
munity to do to really understand integrated modelling.

Initially, much of the research and development was carried out by software de-
velopers, but specialist model builders are now taking a larger role. New opportu-
nities for modellers have been identified in building and running sets of integrated
models, without needing constant input from software developers. It is hoped that
this will lead to growth in the activity of integrated modelling, to satisfy the re-
quirements to better represent cause and effect in catchments and other complicated
processes.

The concepts of the OpenMI have been shown to be very powerful, but the ex-
periences also have indicated the desire for further refinement of the interfaces to
support a persistent state (to enable hot starts), to improve performance, to improve
the element set definition for topology and the exact positioning of the data value, to
enable clustering of quantities, to address component-to-component connections in
relation to the link definition and to simplify the implementation of the interfaces.

It is foreseen that an update of the OpenMI is desirable to obtain a mature stan-
dard. A thread is started on the sourceforge.net/projects/openmi forum to stimulate
the development discussion on the OpenMI.

Nonetheless, confidence in the OpenMI concept is high enough, even with the
initial release, for a number of commercial system developers to incorporate the in-
terface in releases of their modelling products. And OpenMI is starting to be speci-
fied as an essential element in the architecture for software systems being built under
contract. To support this growing family of users, the core partners of the HarmonIT
consortium have committed themselves to set up an open organization (the OpenMI
Association) that will maintain the OpenMI and stimulate its development, support
and uptake by the modelling software community.

Acknowledgements The authors thank the EU for co-funding the HarmonIT – IT Frameworks
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References

Dirksen PW, Blind MW, Bomhof T, Nagandla S (2005) Proof of Concept of OpenMI for Visual
DSS development. In: Zerger A, Argent RM (eds) MODSIM 2005 International Congress on
Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand,
Dec. 2005, pp. 184–189. http://www.mssanz.org.au/modsim05/papers/dirksen.pdf

Dudley J, Daniels W, Gijsbers PJA, Fortune D, Westen S, Gregersen JB (2005) Applying
the Open Modelling Interface (OpenMI), In: Zerger A, Argent RM (eds) MODSIM 2005
International Congress on Modelling and Simulation. Modelling and Simulation Society
of Australia and New Zealand, Dec. 2005, pp. 634–640. http://www.mssanz.org.au/ mod-
sim05/papers/dudley.pdf

Gavardinas C, Fotopoulos F, Gijsbers PJA, Moore, RV (2005) OpenMI: A standard interface for
linking environmental models. EnviroInfo conference 2005, Brno, Czech Republic



464 D. Fortune et al.

Gregersen JB (2005) Some notes about OpenMI performance (internal note, see Sourcefourge
under source/mySourceCode/DHI)

Gregersen JB, Gijsbers PJA, Westen SJP, Blind M (2005) OpenMI: the essential concepts and their
implications for legacy software. Advances in Geo-sciences 4: 37–44

HarmonIT (2005a) The org.OpenMI.Standard interface specification. Part C of the OpenMI Doc-
ument Series. IT Frameworks (HarmonIT) ECFP5 Contract EVK1-CT2001-00090

HarmonIT (2005b) The org.OpenMI.Utilities technical documentation. Part F of the OpenMI Doc-
ument Series. IT Frameworks (HarmonIT) EC-FP5 Contract EVK1-CT2001-00090

Seyoum SD (2005) A generic tool for OpenMI-Compliant Ensemble Kalman Filtering. UNESCO-
IHE MSc.thesis WSE-HI.05-04



Chapter 33
Hydroinformatics – The Challenge for
Curriculum and Research, and the “Social
Calibration” of Models

J.P. O’Kane

Abstract The tools of hydroinformatics, understood as advanced commercially
maintained, modelling systems, together with their environmental data acquisition
systems, are expensive. Nevertheless, young engineers need exposure to them in a
critical academic context, if they are to make the best use of them in their future
practice. Selecting and matching models and new data to a given problem is the
first step. The second is avoiding numerical calibration as much as possible so that
the outcome is insight and not merely numbers. Every mismatch between a predic-
tion and a measurement raises the question, why? This may be due to errors in the
model, errors in the data, or errors in both the model and the data. There are no
other possibilities. Answering such questions improves the model. “Social calibra-
tion” of the model and its data involves those stakeholders with the best knowledge
of the aquatic system in question. They are shown animated graphical output from
the model for historical events and asked if they are true. When the answer is yes,
this step builds credibility and acceptance of the model. Only then may we use the
model to examine engineering alternatives that affect stakeholders. These thoughts
are reformulated as articles of a paradigm for computational hydraulics and hy-
droinformatics in the university with the goals of better research, curriculum, and
textbooks.

The paradigm requires case material for its realisation. Illustrative material is
taken from a very extensive study of flooding in the polder landscape of the lower
Feale catchment in the southwest of Ireland. The 15 polders of the lower Feale were
re-engineered in the 1950s to provide farmland free from flooding that generated
high-value agricultural output. However, in the last 50 years, the land has gradually
sunk, the marsh plants have returned, and flooding has increased. A large number
of engineering interventions were analysed using DHI modelling systems and DLR,
Campbell and OTT data acquisition systems, and has lead to several recommenda-
tions and conclusions.
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33.1 Introduction

Twenty years ago it was already clear that digital hydraulic and hydrological labo-
ratories would replace their physical counterparts for many tasks in hydraulic and
environmental engineering. Since then, the cost of running a digital laboratory has
fallen by several orders of magnitude placing enormous economic pressure on large
hydraulic facilities. The software that enables a digital laboratory shows a very large
variation in quality between US government-funded freeware and the top commer-
cial systems in Europe from DHI, EDF, WL, and WS. The best commercial systems
are now the tool of choice for large and complex civil engineering projects, not
only for hydraulic design but also where severe constraints have been placed on the
impact of the project on the aquatic environment.

The availability and deployment of hydroinformatics tools was an essential con-
dition for the political acceptability of a number of mega-projects in Scandinavia,
such as the Great Belt road- and rail-link project in the 1980s and its successor the
Øresund fixed link project (Abbott, 1991). There is no other way to achieve the goal
of zero impact in the aquatic environment.

33.2 The Role of the Universities

At the end of the book on computational hydraulics, Abbott and Minns (1998) raise
the question of the role of computational hydraulics, and more generally, hydroinfor-
matics, in the university, concluding that “Universities should concentrate on trans-
mitting, producing, and refining intrinsic knowledge, and not commercial codes.
The main benefit to the Universities [of commercially available hydroinformatics
tools] . . . is that they can reduce greatly, the amount of routine and repetitive work
used to obtain working models for study [and research] purposes by using profes-
sional, industry-standard modelling and other tools, tool-sets, languages, and work-
ing environments. By these means they are able to shift the focus of their work more
intensively to matters of intrinsic value this being the value that this knowledge is
experienced to contribute to the quality of life of the individual”. It stands in contrast
to “the social value of this same meaning-content of knowledge, . . . this being the
value that society as a whole perceives this knowledge to be worth in material terms,
such as is commonly represented in terms of an ‘exchange value’ or scarcity value.
. . . For example, a particular form of the Boussinesq equations, best suited to repre-
senting phenomena such as surf beats and oscillations of the wave-breaker line, has
a quite limited value in the eyes of society at large, but the value of the knowledge
which they provide concerning the design and construction of a harbour may have a
very considerable value indeed.” Consequently, “the aim of University teaching and
research, even when it makes use of the electronic encapsulation of knowledge, is
to arrive at a deeper understanding as a means of increasing the intrinsic value of
knowledge” (Abbott and Minns, 1998; pages 504, 513 and 515).
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33.3 A Paradigm for the Universities

The best modelling systems represent an effort on the order of at least a hundred
person-years of work. In addition, the experience of hundreds of applications to real
problems in a commercial environment supported by advice from an experienced
agent network, and regular user-group conferences, has continuously improved the
best modelling systems. A labour force of graduate students cannot compete with
this. Consequently, the first article of the paradigm for the university is to engage in
the virtuous circle of modelling in the appropriate way.

33.3.1 The Virtuous Circle of Modelling

The virtuous circle begins by identifying the best modelling systems for different
types of problem, acquiring them and learning to use them by applying them to
solve real problems. From this it is clear that data are the sine qua non of modelling
in practice, the second article of the paradigm. The circle will be closed at the end
of this section.

33.3.2 Matching Data and Models

The second article of the paradigm recognises that model’s proclaim, ex ante, what
data must be collected. Ex post, the same model interprets the data. The sampling
frequencies at selected points in space are the key decision variables in the design
of the data collection campaign. Many environmental monitoring agencies continue
to build useless databases because the sampling interval does not resolve the high-
frequency components of large amplitude, aliasing the frequency spectrum of the
signal of interest. A sampling interval of 15–30 min, or less, is essential in tidal
waters. Off-the-shelf, analogue-to-digital instruments can deliver this frequency for
many physical variables. But it is still a major research challenge in the case of
important chemical determinands, such as dissolved nutrients, for which there are
no ion-specific electrodes and for which wet analytical methods are required.

In the hierarchy of data, geometric data are most important, then data on the
forcing of the model within its domain, and finally data on the boundary conditions.
Boundary conditions cannot be disassociated from the model itself because they
may be interpreted as a simplified model of the water body outside the boundary.
Remotely sensed snap-shots of physical variables over the model domain provide
the initial, intermediate, and terminal conditions of the model.

33.3.3 Parsimonious, Physical, and Social Calibration

The third article of the paradigm is parsimonious calibration of model parameters.
In the case of groundwater levels and water potential in the unsaturated zone of the
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soil, for example, the inverse problem of calibration cannot be avoided because un-
derground spatial observations in three dimensions are very difficult to make. Resis-
tivity surveys, ground-penetrating radar, and point boreholes provide an invaluable
but still incomplete picture. Inverse problems are unstable in the sense that small
changes to the data can lead to large changes in the values of the identified parame-
ters of a model. Parsimonious calibration demands that we minimise this and avoid
it whenever possible. In the case of surface water levels, a goal of no adjustment
of model parameters is often appropriate; the mismatch between predictions and
measurements raises the fundamental questions of the fourth article. See below.

The third article of the paradigm also recommends “social calibration” of the model
and its data. In this step, those stakeholders, farmers, pilots of boats and vessels,
etc., with the best knowledge of the aquatic system in question, are shown animated
graphical output from the model for historical events and asked if they are true. When
the answer is “yes”, it builds credibility and acceptance of the model. In several cases
undertaken by the author and his students, both parties learn from this experience,
each pointing out features in the output that were unknown to the other party. In
such cases, the act of presentation in a social context facilitates the emergence of
new insights. See below. This process may be repeated a number of times leading
to several revisions to or adjustments of the model; when these are small, or minor
in extent, it is appropriate to speak of parsimonious social calibration – the ideal.

33.3.4 Insight

The fourth article of the paradigm is the goal of insight. The purpose of modelling is
not simply numbers, however they are displayed, but insight! Consequently, every
mismatch between measurement and prediction is subjected to the three questions
that exhaust all possibilities: Is the model wrong? Are the data wrong? Are both the
model and the data wrong? The first question builds on the analysis of simplified
models, especially the properties of the numerical scheme. The examination begins
with the linearised form and questions its stability, consistency, and convergence,
its attenuation of amplitude and shift in phase, and is followed by its extension to
the case when non-linearities and boundary conditions are present. The scalar wave
equation, the simplest model of advection, is the point of departure in many of these
analyses. Simplified re-scaled models can address the question whether physical and
chemical processes not in the model should be included.

Measurement systems require the same degree of concern, but concentrated on
questions of accuracy, precision, and aliasing. It is still very rare for each individual
measurement to be calibrated against a standardised reference quantity in a tele-
metered instrument providing its own quality assurance. This is especially true for
chemical determinands. The second question “are the data wrong?” or more pre-
cisely “can the necessary data of the required quality be acquired at all?” is currently
a bigger challenge for research compared to the first question about models built on
conservation laws.
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33.3.5 Closing the Virtuous Circle of Modelling
Through Reflection

The fourth article of the paradigm closes the virtuous circle through reflection, con-
firming the best modelling and measurement systems for different types of problem,
and the lessons learnt from their use in both academic and social environments to
solve a small number of selected real problems. This process of reflection is dif-
ferent to that in the commercial environment in the case of (a) the ICT system or
instrument developer – the toolmaker and (b) the consulting engineering practice or
government agency – the tool user, to use Cunge’s distinction. In the first instance,
academic reflection is not constrained by project or release deadlines. Academic re-
flection also has different goals: (a) to challenge the tool maker to make better tools
that go beyond current best practice and (b) to challenge the tool user to make bet-
ter use of existing tools. The first set of goals may be expected to produce research
topics for graduate students that go beyond the state of the art in both instruments
and ICT systems! The second set of goals will produce better textbooks to service a
modern curriculum for students of computational hydraulics and hydroinformatics.
Without access to the best tools and the freedom to test them in a research environ-
ment on real problems, academic engineers will be unable to achieve these goals.

33.4 Case Material

The paradigm requires case material for its realisation. Illustrative material is taken
from a very extensive study of flooding in the polder landscape of the lower Feale
catchment in the southwest of Ireland (Martin, 2002; Migliori, 2004). See also
Cunge et al. (1980).

33.4.1 The Problem

A winter flood event in the polderised landscape of the lower Feale is illustrated in
the aerial photograph taken from the southwest, with a schematic diagram of one of
73 sluiced culverts used for drainage (Fig. 33.1).

The problem is to re-engineer the system to mitigate surface flooding. In the
first phase of the project, an area of 230 km2 was modelled covering all 15 polders.
Dredging was proved not to solve the problem, but pumping would. In a second
phase, a pumping station was installed in one polder with the adjacent polder acting
as a control. The problem is to re-engineer the system to mitigate surface flooding
(Fig. 33.2).
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Fig. 33.1 The tidal river and its two backdrains are shown on the left with a section on the right

33.4.2 Instruments and Data

The geometry of the ground surface was obtained by acoustic depth surveys in
the tidal channels, dGPS traverses, and two over-flights with the HRSC-A high-
resolution, digital, multi-spectral (R,G,B,nR) stereo-camera developed by the
German Aerospace Agency (DLR) for the mission to Mars. This produced a geo-
referenced DEM on a horizontal grid of 1 m with 15 cm resolution in the vertical
direction and a relative accuracy of 20 cm in all three directions. A piece of the
DEM is shown in Fig. 33.3. Figure 33.4 shows one of the underground resistivity
sections which were calibrated with borehole measurements.

OTT and Campbell instruments provided measurements of surface and ground-
water levels, and evapo-transpiration, for the numerical model. Examples are shown
in Figs. 33.5 and 33.6.

33.4.3 The Models

The second-phase model (Migliori, 2004) has two sub-models. The first sub-model
is an extension of the first-phase model (Martin, 2002). They were built using
DHI’s Mike11 and MikeSHE modelling systems. The components are outlined in
Table 33.1, and their domains are shown in Fig. 33.7.

In Fig. 33.7 on the right-hand side, the triangles represent culverts on streams
that pass under a road separating the polders from the upland catchment, and sluiced
culverts through the embankments that protect the low-lying land from inundation
by the tide or the River Feale. The square is the location of the pumping station and
SVAT (soil–vegetation–atmosphere–transpiration) instrumentation. The two circles
are the location of pseudo-culverts, one for each polder that accounts for leakage
from the tidal channels into the backdrains. All these hydraulic devices are present
in the model.
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Fig. 33.2 The pumped [C2M] and control [C23] polders in the top left corner of the set of 15
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Fig. 33.3 The two DLR over-flights on the left, and part of the high-resolution DEM on the right
showing oxbows on the Feale as it enters the polder area

Fig. 33.4 Resistivity section in polder C2M
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Fig. 33.5 High-frequency measurements of surface water levels

Fig. 33.6 High-frequency measurements of groundwater levels following a dry period. A tidal
signal is present in groundwater gauge GWL1; the ground acting as a lowpass filter when levels
are low

33.4.4 Insight – Learning from the Models and the Data

The interaction between the pumps, rainfall-runoff, evapo-transpiration, tides and
flow in the River Feale is a complex set of feedback processes which can be ex-
amined in detail with the model. The model also predicts the variation in ground-
water level, surface ponding and runoff within the two polders, information of
value to farmers, the principal stakeholders. Figure 33.8 shows the agreement
achieved after considerable calibration. In contrast, very little calibration was re-
quired in the first-phase model where significant deviation between predictions of
tidal water levels and measurements lead to the discovery of an usual set of lo-
calised errors in the data associated with the change between summer time and
winter time.
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Fig. 33.7 The yellow and blue network on the left is the model from the first phase of the project
(Martin, 2002). The blue and red network is from the second phase model (Migliori, 2004)
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Fig. 33.8 Comparison between predicted (black) and observed (blue) groundwater level at station
GWL3. The range on the scale is 1.2 m. When the level exceeds 0.0 m, surface ponding is present

Fig. 33.9 Two snapshots from an animation at the same point in time: one with the pumping
station, the other without the station. It shows the effectiveness of pumping at the moment of
maximum flooding when pumps are not present during a test storm
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Animated flood maps were also produced for test storms. Two snapshots are
shown in Fig. 33.9. In the first phase of the project, similar animations, but calculated
in a much simpler manner without interaction with groundwater, were shown to
farmers. They were asked to find the fields on their farms that flood in the bird’s-eye
animation and to judge the realism of the animation for a recent flood event. This
lead to the discovery of minor errors and improved the model.

33.5 Conclusions

The chapter illustrates the paradigm for hydroinformatics in the university by show-
ing

• The importance of acquiring the best hydroinformatics tools in an academic
environment, for use on real problems without time constraints

• The necessity of combining high-quality data with state-of-the-art models
• How insight comes from systematic comparison of model predictions and mea-

surements while minimising parameter calibration
• How to use social calibration to profit from the experience of stakeholders,

building credibility for the models
• In this particular case that a third-phase model based on ODEs and using output

from the earlier models based on PDEs may deliver new insights – this work
has recently started with the goal of using wind mills to dewater the polders

• The importance of case material for new curriculum and textbooks in compu-
tational hydraulics and hydroinformatics. See for example Cunge et al. (1980),
Abbott and Basco (1989) and the papers in the international Journal of Hydroin-
formatics.
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Chapter 34
A New Systems Approach to Flood Management
in the Yangtze River, China

H. Betts, S. Markar and S. Clark

Abstract The Yangtze River Flood Control and Management Project (YRFCMP)
was established following an approach by the Government of the Peoples Republic
of China to the Australian Government in 1998 seeking assistance to improve its
flood management systems for the Yangtze River. The project was approved and
commenced under the auspices of the Australian Agency for International Devel-
opment (AusAID) through the Australian Managing Contractor (AMC – SAGRIC
International Pty Ltd) and the Changjiang (Yangtze) Water Resources Commission
(CWRC).

To achieve the project objectives of increasing the accuracy of flood forecasts,
extending flood warning time, and improving the flood management decision mak-
ing, the project developed a series of integrated hierarchical “intelligent” systems.
These included data acquisition, data transfer and management, flood forecasting,
numerical modelling, hydro-metrological, flood management information, and op-
tions analysis systems. These “intelligent” systems are encapsulated into an overall
decision support system (DSS) and accessed through a web-based visual display
system. The DSS integrates with other Chinese complementary data and informa-
tion systems and CWRC’s daily operations and flood management system.
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34.1 Introduction

China has experienced massive floods in the Yangtze basin for centuries and is a
serious source of concern for the Chinese authorities. The United Nations estimated
over 3,000 people lost their lives in the disastrous 1998 floods when some 15 mil-
lion people were rendered homeless, 5 million houses were destroyed, 22 million
hectares were inundated, and 1.8 million hectares of crops totally destroyed. The
total damage bill was estimated to exceed $US 20 billion (UNESCAP, 1999). Fol-
lowing these floods, the Chinese government sought Australia’s assistance to iden-
tify potential methods to improve its flood management capability in the upper and
middle reaches of the Yangtze basin between Chongqing above the Three Gorges
Dam and thence down to Jiujiang as indicated in Fig. 34.1.

A Design Mission sent to China identified two key problems: the uncertainty
in flood management decisions and the less than desired accuracy and lead time
in forecast flood discharges and water levels (GOA and GOPRC, 2000). It was
perceived that an “integrated and coordinated design that readily incorporates and
digests real-time, forecast and historic flood data” was needed. This meant the devel-
opment of “an integrated flood forecasting system; a flood response protocol system
that defined response activities; a flood damage estimation system that evaluated the
socio-economic costs of flood management options; a simple and effective inter-
nal consultation system for decision makers; and an effective visual display sys-
tem at multiple locations that can interrogate, analyse and present underlying data

Fig. 34.1 Project area
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to decision makers”. The prime objective was to “develop an effective reliable
and user-friendly decision support system for the upper and middle reaches of the
Yangtze River”. As this Hydroinformatics approach was new to China, it was set up
as a demonstration project.

The overall project commenced development in Wuhan in March 2001 and was
accepted as completed by the CWRC and AusAID in October 2005. This work
(Betts et al., 2005) included the supply and installation of automatic water level
and rainfall recorders which transmit their data by either satellite or telephone net-
work to regional sub-centres – the design and construction of a microwave link
between Danjiangkou and Xianfan in the Han River catchment, supply and instal-
lation of computer servers and database systems at CWRC headquarters in Wuhan
and at 13 sub-centres, supply of 20 DGPS for river gauging and a mini-computer
for climate modelling, the development of a new flood forecasting system (Markar
et al., 2005) incorporating and linking a series of hydrologic and hydraulic models
(Clark et al., 2004, 2005), and a decision support system (DSS).

34.2 Background

The Yangtze River, or Changjiang as it is known in China, 6,300 km long, is the
longest river in China and the third longest in the world. The Yangtze links west
and east China from the Tibetan Plateau to its estuary near Shanghai. The river
provides excellent navigation in the lower and middle reaches, which are centres
for agriculture and industrial activities and contribute more than 40% of the annual
Chinese gross national product. The region is continuing to expand and grow.

Each flood season, the CWRC in conjunction with other State and Provincial
agencies has to manage peak flows within the Yangtze main stem and ensure peak
water levels and discharges do not exceed prescribed limits. Decisions may have
to be taken to change the operation of key reservoirs, and when those options are
no longer possible, perhaps divert flood peaks into any of up to 35 detention basins
along the middle reaches of the Yangtze and some of its main tributaries. The most
important of these basins for flood control is the Jingjiang Basin, which covers some
920 km2 and is home to over 540,000 people. Flooding some of these basins involves
the evacuation of inhabitants and providing alternative housing for several months
and incurs extensive flood damage to agricultural land, villages, homes, and urban
and rural infrastructures.

There are significant social and financial costs associated with operating deten-
tion basins, especially if the basins are opened unnecessarily (Betts et al., 2005).
Conversely, if the basins are not opened during extreme flood conditions, significant
risks exist that levees along the Yangtze could be breached at critical locations. If a
levee fails in an uncontrolled way, then generally more extensive social and financial
hardship is imposed on the affected communities. Deciding to flood any detention
basin is a critical flood management decision. Such decisions become increasingly
more difficult as floodwaters approach critical levels. Relevant decision support,
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based on forecast scenarios, is required to guide the selection and implementation
of the most appropriate action.

Improved understanding of the Yangtze basin river system behaviour has been
achieved by enhancing data collection and modelling techniques to strengthen flood
forecasting in terms of lead time and accuracy. The project has improved the pre-
cision and reliability of flood flow predictions and provides earlier warnings of im-
pending flood risk. These in turn facilitate the flood control decision-making process
for the selection and operation of reservoirs, warning and evacuation of those at risk,
and the flooding of detention basins.

34.3 Information Systems Overview

The DSS developed by the project can be said to be vertically integrated in terms
of data collection, information development, and presentation. However, it can also
said to be horizontally integrated in terms of its functionality and absorption into the
work practices of the CWRC’s Bureau of Hydrology (BOH) and River Management
Bureau (RMB) as outlined in Fig. 34.2.

The DSS relies on both recorded information and a series of modelling outputs
that use hydro-meteorological data and flood management data stored in two sep-
arate databases. Operating within a web-based environment (using Microsoft’s In-
ternet Explorer) requires different approaches depending on the complexity of the
respective information tasks.

Fig. 34.2 Decision support system schematic layout
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Acronyms used in Fig. 34.2 include

• YFCH – DMCS is the Yangtze Flood Control Headquarters Decision Makers
Consultation System

• AMC is Australian Managing Contractor
• RMB is the River Management Bureau of the CWRC
• BOH is the Bureau of Hydrology of the CWRC
• DAS is data acquisition system
• FCISS is an existing RMB flood control information service system
• HMS is an existing BOH hydro-meteorological system

Component systems of the DSS are

• HMIS is the hydro-meteorological information system
• FFS is the flood forecasting system
• FMIS is the flood management information system
• OAS is the options analysis system.

34.4 System Architecture

The overall system can be accessed by client machines through a web server that
interrogates tables in two databases (Sybase in a UNIX environment) as shown in
Fig. 34.3.

Client PC

Web Server
(Windows 2003, IIS)

Client Workstation

Client Laptop

CWRC Flood Control LAN
The Web Server is

used for data
extraction, running
analysis utilities,
configuring and

running hydrologic
models, and hosting
the web interface of

the Flood
Forecasting System.

The clients
access the

FFS through
Internet

Explorer.

Sybase Database Server (UNIX)

Hydromet
Database

Flood Control
Structures
Database

The Database
Server contains

the real time
data, model

hierarchy,user
information and
modelling input
data and results
for both the FFS

and OAS
applications.

Firewall

Internet

Fig. 34.3 System architecture
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• The DSS website application is written using Active Server Pages (ASP) tech-
nology and hosted on a Windows 2003 server running Internet Information Ser-
vices Version 6;

• The model data, utility programs, and static files required by the applications
are stored on a separate share on the same web server that serves the website;

• The hydrological and flood control databases are Sybase Adaptive Server En-
terprise (ASE) databases stored on dedicated HP-INIZ servers;

• The systems can run on any version of the Windows operating system with the
ability to run Internet Explorer Version 5 or higher;

• The client systems require the MIKE-11 modelling package (DHI), Microsoft.
NET framework v1.1, and Sybase ASE OLE-DB driver configured to connect
to the database server;

• Users of the flood forecasting system (FFS) contained within the DSS can run
a series of 120 hydrologic models in series. The modelling is undertaken on
the web server with results being written to appropriate hydro-meteorological
database tables. In this system, the web server retrieves real-time records, as-
sembles the boundary files, and runs the models;

• The FFS also routes the results of the hydrologic forecast modelling through
three MIKE-11 hydraulic models using a purpose-designed and constructed hy-
draulic modelling interface. Due to the size of the models, run time and data
transfer constraints, this interface is installed on local client machines together
with the MIKE-11 software. The interface retrieves hydro-meteorological data
in forecasting mode, assembles boundary condition files, runs hydraulic mod-
els, and writes selected time series results to the database tables;

• The options analysis system also relies on hydraulic modelling but in this sys-
tem is used to analyse the hydraulic impacts of changed reservoir operations
and/or the deliberate flooding of one or more of 35 detention basins.

Further information on the each of the developed systems is contained in the
sections that follow.

34.5 DSS Operational Overview

34.5.1 General

The DSS consists of four sub-components: a hydro-meteorological information
system (HMIS), a flood forecasting system (FFS), a flood management informa-
tion system (FMIS), and an options analysis system (OAS). This chapter discusses
the HMIS, the FFS, and the OAS, the key outputs of the Yangtze DSS built by
YRFCMP.

Both the FFS and the OAS are underpinned firstly by the data acquisition and
communications systems (Betts et al., 2005), and secondly by numerical hydro-
logic and hydraulic modelling systems. More specifically, the FFS enables real-time
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hydro-meteorological data obtained throughout the Yangtze catchment to be utilised
by a series of hydrologic and hydraulic numerical models to produce 7-day fore-
casts of discharge and water levels throughout the upper and middle reaches of the
Yangtze River. On the basis of these forecasts and pre-defined warning, alert and
critical levels at various points in the Yangtze system, the OAS enables the identifi-
cation of potentially dangerous flooding conditions, and it allows the effectiveness
of various mitigation options available to managers to be investigated. The first of
these mitigation option measures to be investigated would typically be the use of
reservoirs to attenuate flooding from upstream areas. If these measures are not suf-
ficient, the effectiveness of operating detention basins in addition to reservoir op-
erations would be investigated. Once the decision has been made to actively utilise
mitigation measures (through the OAS), the impact of such mitigation measures
must be considered in future forecasts by the FFS.

The use of numerical models to provide this functionality is described in more
detail in the following sections.

34.5.2 Hydro-meteorological Information System

The HMIS can display real-time, historic flood and forecast water levels, flows, and
rainfall in map, graphical, or tabular form. Users have the ability to compare current
and historic information, create isohyetal maps, view weather links, calculate flood
volumes between dates or above user-defined flood levels or flows or critical flood
levels. Station icons are colour coded to indicate the severity of the prevailing condi-
tions. A calendar function/date picker also indicates the severity of water levels and
is used to identify critical periods of flooding when searching flood records. The
mapping system used in the DSS was especially developed to enhance download
speed. It has the usual mapping functionality, and it uses colour coded icons and
pop-up boxes to display data from the database thereby avoiding screen clutter.

34.5.3 Flood Forecasting System

34.5.3.1 General

The Yangtze River FFS is a web-based and fully integrated flood forecasting system,
the heart of which is the flood forecasting models, both hydrologic and hydraulic.
The flood forecasting system is described in detail in Markar et al. (2005).

Hydrologic models are used to forecast the tributary and local inflows into the
main stems of the Yangtze and Han Rivers, and the Dongting Lake System. Hy-
draulic models are then used to forecast discharge and flood levels along the main
stems of the Yangtze and Han Rivers, and the Dongting Lake System. The FFS links
all the hydrologic and hydraulic models used to forecast discharge and water levels
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in different parts of the Yangtze catchment into an integrated single catchment wide
system.

To date, over 120 hydrologic models for contributing tributary catchments and
3 hydraulic models for the Yangtze main stem and the Han River have been incor-
porated into the FFS to model the hydrologic and hydraulic behaviour of the upper
and middle reaches of the Yangtze River. Configuration data for these models, to-
gether with real-time hydro-meteorological data and rainfall forecasts are extracted
from a central database and converted to model input files. The models are then
run and the output files are stored, compared, and final forecast discharge and level
scenario selected and managed within the above fully integrated web-based FFS
framework.

34.5.3.2 Hydrologic Models

Figure 34.1 provides an overview of the contributing tributary catchments for which
hydrologic models have been constructed for the upper and middle reaches of the
Yangtze River.

From an operational perspective, the hydrologic models have been established
within the FFS in such a way as to provide the following key operational features
and functionality:

• Numerous tools for checking data from manual and automatic rainfall stations;
• Ability to vary the forecast period (7 days used as default);
• Ability to run no forecast rainfall, adopted forecast rainfall, and user forecast

rainfall scenarios;
• Use “hotstart” files to minimise time associated with producing forecasts;
• Ability to rapidly run multiple hydrologic models within a forecast area for

comparison purposes; and
• Numerous tabular, graphical, and map formats available for checking and com-

parison purposes.

34.5.3.3 Hydraulic Models

Figure 34.4 provides an overview of the middle reach hydraulic model (MRHM).
The hydraulic model for the upper reach consists of a single channel extending from
Chongqing to the Three Gorges Dam.

For real-time, operational forecasting purposes, the Danish Hydraulic Insti-
tute (DHI)’s MIKE-11 hydraulic modelling system has been utilised (http://www.
dhigroup.com/Software/WaterResources.aspx). A custom built interface has been
established to manage the operation of the hydraulic models. In essence, the in-
terface is a tool that simplifies and automates the use of the hydraulic model in a
real-time operational context.



34 Flood Management in the Yangtze River 487

Fig. 34.4 Middle reach hydraulic model

From an operational perspective, the hydraulic models have been established
within the FFS in such a way as to provide the following key operational features
and functionality:

• Automated boundary condition extraction of either tributary inflows or direct
runoff as predicted by the hydrologic models;

• Advanced tools for reviewing and modifying (if necessary) boundary condi-
tions, both during the hindcast and forecast periods;

• Ability to accurately reproduce the large variation in water levels (in excess of
60m+) experienced through the Three Gorges section of the upper reach;

• Ability to handle hydraulic structures with complex operating regimes (e.g. the
Three Gorges Dam and the entry gates to the larger detention basins);

• Ability to accurately reproduce the effects of the large lake systems (the Dongt-
ing Lakes) present within the middle reach;

• Facilities to automate the execution of the hydraulic models, including all po-
tential variations in hydrological scenarios (e.g. no forecast rainfall, adopted
forecast rainfall, and user forecast rainfall), for a number of different hydro-
logic modelling systems (e.g. any combination of URBS, XAJ, API models);

• Use of “hot start” files to minimise the time associated with producing forecasts;
• Facilities to utilise real-time observational data from key gauging stations (flow

and level observations) to “update” the hydraulic model predictions in order to
minimise model errors;
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• Advanced, graphical results viewing facilities to enable users to check the sim-
ulations (including real-time observations), compare the results of varying sim-
ulations, and once satisfied, export the adopted forecasts to the database.

34.5.3.4 FFS Outputs

The key output of the FFS is a set of predictions (both discharge and level) at over 70
gauging stations throughout the upper and middle reach of the Yangtze River sys-
tem. These predictions are written to the real-time hydro-meteorological database
and are available for subsequent use within the OAS.

34.5.4 Flood Management Information System

The Flood Management Information System is linked to the CWRC’s Flood Man-
agement Information Service System but also provides additional information such
as the socio-economic impacts and information on the maximum reductions of peak
water levels at over 40 locations within the river system whenever a particular basin
is flooded (derived by hydraulic modelling), and a detention basins status manage-
ment system. A socio-economic impact assessment procedure has been developed to
determine the expected level of flood damage and a social impact index whenever
detention basins are flooded. A literature review for the development of the socio-
economic impacts assessment procedure may be downloaded from the project web-
site www.yangtze.sagric.com. This information is also displayed in the OAS when
comparing flood control options. The detention basin management system (“Basin
Status” page) displays whether any basin is populated, people are evacuating, whether
a basin has been breached or is flooding, and allows the user to amend any element.
Such changes are also reflected in maps of the options analysis system (OAS).

34.5.5 Options Analysis System

34.5.5.1 General

The OAS has been developed as a tool to help decision makers assess the conse-
quences of different flood management options in terms of the number of people
to be evacuated, the cost of resulting flood damage, and the associated impact on
flood levels and discharge at key locations. It is discussed in more detail in Betts
et al. (2005).

More specifically, the OAS offers decision makers the following functions:

• A flood situation appraisal that shows the areas at greatest risk, suggests respec-
tive flood control options and allows high-level decision makers to amend those
options;
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• Allows users to rapidly investigate new reservoir release strategies or modify
existing reservoir release strategies to mitigate excess flow volumes;

• Allows users to rapidly investigate the impact of operating detention basins if
reservoir release strategies are insufficient;

• Quantifies the hydraulic and socio-economic impacts associated with flooding
a single basin or series of basins at up to 40 locations;

• Provides a recommended strategy of basins to be flooded, the sequence of flood-
ing, and a scheduling strategy according to existing or user-defined protocols;

• Provides the ability to reset strategies in accordance with current or forecast
circumstances;

• Provides the ability to modify the recommended (default) strategy or develop
alternate strategies;

• Once a strategy or strategies have been adopted, it allows detailed investigations
using the hydraulic model;

• The ability to store metadata associated with decisions and review those deci-
sions at a later time.

The same middle reach hydraulic model (MRHM) utilised within the FFS pro-
vides the basis for assessment of the impacts of potential mitigation strategies within
the OAS.

34.5.5.2 Reservoir Operations

The impact of reservoir operations is incorporated within the OAS as simply a
change in boundary condition to the MRHM. Within the middle reach, there are
six major boundary condition inflows (including the Three Gorges Dam) that may
be modified through reservoir operation.

In the first instance, the user may view boundary conditions (and implied reser-
voir operation) utilised in the forecasts produced by the FFS. If the user wishes to
investigate the impact of altering release strategies, the appropriate boundary condi-
tion is altered, the MRHM re-run, and the results compared.

The usual release strategy to be investigated would consist of allowing impound-
ment of more flood volume to attenuate hydrographs passed to the downstream
reaches. Note that it is also possible to investigate the consequences of pre-release
strategies that aim to create additional storage within the reservoirs for anticipated
future flooding from tributary catchments.

As the consequences of altering release strategies for reservoirs are far less dam-
aging than the potentially catastrophic use of detention basins, the use of release
strategies for flood mitigation purposes will always be investigated first.

34.5.5.3 Detention Basin Operations

There are over 35 detention basins within the middle reach of the Yangtze River and
the decisions as to which basins to operate and the timing of these operations are
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complex and vary from flood to flood. The CWRC has a set of operating “protocols”
for these basins that have been developed through many years of experience with
flooding in the middle reach of the Yangtze River. Figure 34.4 provides an indication
of the location of detention basins within the middle reach of the Yangtze River.

Note that for most basins, the “operation” of a basin involves firstly the evacua-
tion of the inhabitants followed by the destruction of a section of the dyke protecting
the basin, allowing floodwaters to enter. Once the dyke has been opened, there are
no means of controlling the flow until the levels within the basin equalise with those
outside. Also note that it can take weeks to months to drain a basin once it has been
flooded, imposing a severe cost in terms of displacement, lost production (indus-
try and agriculture), and reconstruction. This additional storage available within the
middle reach also changes the storage characteristics of the system, increasing the
available storage until the basin is once again sealed off.

There are two basins that are not opened by simply breaching the dykes: these
being the Jingjiang Basin and the Dujiatai Basin. Both of these basins have large
gate structures which enable the inflows to the basins to be controlled. Inflow may
also be minimised or stopped completely if conditions allow this.

The OAS provides the functionality to investigate the impact of operating de-
tention basins. In the first instance, operation of detention basins according to the
existing protocols is presented by the system. The user has the ability to alter the
timing of basin opening, and in the case of the gated basins, altering the rules of
operation to a certain degree. The user may also investigate the operation of other
basins as alternatives to those suggested by the established protocols.

These operations are undertaken in a two-step process as follows:

1. A rapid, assessment of the effectiveness of various “scenarios” is undertaken at
the website level, followed by

2. a detailed assessment of the most promising scenarios by detailed hydrody-
namic modelling.

34.6 Typical System Operation

The results of a trial operation of the system are illustrated in Fig. 34.5.
These results show the predicted conditions at Shashi (see Fig. 34.4 for location)

for a hypothetical flood emergency. The gauge observations at Shashi are an indica-
tor of the potential exposure of the Jingjiang dyke to flood damage. If water levels
at Shashi exceed the nominated critical level, the existing protocols indicate that the
gate to the Jingjiang basin is operated such that excess flood volume is diverted into
the basin in order to ensure the critical level at Shashi is not exceeded.

Four curves are shown in Fig. 34.5. The first curve corresponds to the water level
predictions at Shashi produced using the FFS. These show that the critical level is
predicted to be exceeded approximately 11/2 days after the time of forecast. It is then
necessary to investigate potential mitigation options using the OAS.
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Fig. 34.5 Hydraulic results (water level predictions at Shashi) of the FFS and OAS for a hypothet-
ical flood, trialing various reservoir and basin operation scenarios

The next three curves correspond to three different mitigation scenarios or cases
that the user investigated as follows:

a. Reservoir case: Using the Three Gorges Dam to restrict outflow to the Yangtze
at a rate such that levels do not exceed the critical level at Shashi

b. Detention basin only case: Using the Jingjiang detention basin to take excess
flow volume

c. Combination of reservoir and detention basin case: Using the Three Gorges
Dam as for (a) the Jingjiang basin and (b) in order to keep the predicted flood
level at Shashi below critical level.

All the different mitigation cases considered have relative benefits and disbenefits
or costs. Once these hydraulic results are exported to the OAS, the relative benefits
and disbenefits may be quantified and presented in the OAS system so that decision
makers can make an informed decision as to the best course of action.

More specifically, assessments may be made as to, amongst other things, the im-
plications of impounding water within the Three Gorges Dam to the extent implied
by (a) and (c). This may not be possible and would (in a real flood emergency) have
to be the subject of discussions with the dam operator. As an alternative, the use
of the Jingjiang detention basin without any flow mitigation from the Three Gorges
Dam implies significantly higher damage as significantly more volume has to be
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diverted to the Jingjiang detention basin. These benefits and costs are presented
within the OAS.

Finally, once a decision is made, the adopted mitigation option details (reservoir
release characteristics and detention basin operation details) are passed back to the
FFS for inclusion in future forecasts.

34.7 Conclusions

In the hydro-informatics components of the project, new systems and software were
developed using readily available technologies and applied in a manner that achieve
the major objectives of the project and were done so in a manner that had never been
attempted before.

Real-time, web-based systems have been established to firstly (through the FFS)
improve the reliability, accuracy, and lead times of forecast flood discharges and
flood levels along the upper and middle reaches of the Yangtze River, and secondly
(through the OAS) provide a tool to assist decision makers to maximise the effec-
tiveness of available flood mitigation measures.

It is now possible to produce 7-day flood forecasts with equal or better accuracy
and reliability than the pre-project 3-day forecasts, and with further refinement,
there is potential to make these forecasts even more accurate for most situations,
which recur annually.

Additionally, the included decision support system (DSS) now provides a far
more systematic and reliable means of managing floods and permits the CWRC
to better inform all flood management and “at-risk” communities of pending risk
and of the best management actions to be implemented to mitigate socially and
economically damaging flood impacts.

The project has determined that real-time hydrologic and hydraulic numerical
modelling is appropriate, accurate, and can be used to test semi-controlled flow
diversions into detention basins.

These Hydroinformatic systems have been accepted by the CWRC and are being
used on a daily basis through the flood season.

There is no doubt that the developed systems are replicable to other similar river
basin systems as the overall system design is modular and can be tuned to meet the
particular needs of each location or river system.

Originally intended as a flood forecasting and flood management system, the out-
puts can be used in the broader context of river basin management, orchestrating the
use of reservoirs in concert, and applied to reconsiderations of land use for flooding,
“higher” uses of land or the environment. It is also possible to adapt the existing
DSS platform for water quality monitoring, modelling, and management.
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Chapter 35
Open Model Integration in Flood Forecasting

M. Werner

Abstract Operational flood forecasting systems have an established role in
mitigating damage due to flooding through provision of timely flood warnings. Such
forecasting systems are at the interface between developing modelling techniques,
and practical use of these technologies, and therefore hold a clear challenge to hy-
droinformatics. Despite this challenge and significant attention from the hydroinfor-
matics research community, adaptation of forecasting systems to new techniques is
slow. This is partly due to most forecasting systems resulting from bespoke develop-
ment of an operational environment around an existing model or set of models. Once
established, adapting the system to changing needs is difficult both technically and
organisationally. As an alternative to the model centred bespoke development, an
open approach to integration of models is proposed. In this data centred approach,
an operational flood forecasting shell is applied to provide both the operational set-
ting of the forecasting system and an open framework through which models can
be easily integrated. The decoupling of the models employed and the organisational
setting facilitates adaptation of the forecasting system to both changing needs and
integration of new modelling techniques and data sources.

Keywords Open model integration · flood forecasting · organisational challenges

35.1 Introduction

Flood forecasting and warning systems are employed operationally with what can
be considered a simple objective. Through providing up to date, reliable informa-
tion on forthcoming flood events to both relevant authorities and the public at risk,
action can be taken to reduce damage due to the event. Operational flood forecast-
ing systems are therefore recognised as an effective method of flood risk mitigation
(Krzysztofowicz et al., 1992; Parker and Fordham, 1996; Haggett, 1998; Penning-
Rowsell et al., 2000; De De Roo et al., 2003). The lead time with which reliable
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information on forthcoming flood events can be provided plays an important role in
the effectiveness of the forecasting and warning systems, as the longer the lead time
the more effective any required response can be organised and executed.

To extend the lead time beyond that of the natural hydrological lag times, state-
of-the-art systems incorporate some form of (model based) flood forecasting (Parker
and Fordham, 1996). As a result of this clear need, significant research effort has ad-
dressed the development of modelling techniques for use in operational flood fore-
casting systems. Despite this research effort, illustrated in several papers included
in this volume, most operational flood forecasting systems adopt a somewhat con-
ventional modelling strategy, typically using a network of hydrological and perhaps
hydraulic models (see e.g. Bürgi, 2002; Moore and Jones, 1998; Grijsen et al., 1992;
Van Kalken et al., 2004). To understand the slow uptake of new research in mod-
elling techniques, the operational setting of forecasting systems must be explored, as
well as how systems that are used operationally have been developed. Most opera-
tional systems are tailor made, with their development centred around the particular
modelling technique used. Whilst this may provide fit for purpose forecasting sys-
tems, the disadvantage is that once established, it is relatively inflexible to changing
requirements or new research developments. The alternative is to adopt an open
approach to integration of models in flood forecasting. This provides a clear ad-
vantage as the open concept allows flexibility to modelling techniques used, while
maintaining continuity of the institutional process of forecasting.

In this chapter, the role of models within flood forecasting and warning is dis-
cussed and a flood forecasting platform that provides for such an open integration
of models is briefly presented. The chapter details how the flood forecasting plat-
form provides for the open approach, and discusses practical aspects of adopting
the open concept, both from the perspective of the end user and the developer of the
flood forecasting system.

35.2 Role of Models Within Flood Forecasting Systems

To understand the advantage of an open approach to model integration of mod-
els within flood forecasting systems, the role of these models is first studied.
Haggett (1998) describes the flood forecasting and warning processes as a series
of four stages (Fig. 35.1):

Detection Warning Response

Forecasting

Fig. 35.1 Principal components of a flood forecasting and warning system
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• Detection: This stage deals with real-time monitoring and data acquisition of
processes that could generate a flood at the site(s) of interest. This includes
hydrological and meteorological conditions, climate data, weather
radar, etc.

• Forecasting: In the forecasting stage, predictions are made of the levels and
flows, with particular attention given to the time of occurrence of threshold
crossings and magnitudes of flood peaks. Typically this involves the use of
hydrological models, driven using the real-time data gathered in the detection
phase and forecasts of meteorological conditions.

• Warning: The warning stage is key to the success of operational flood warning.
Using information from the detection and forecasting stages, the decision to
warn appropriate authorities and/or properties at risk must be taken. Issuing of
a warning may be initiated as a result of, e.g. a water level or a discharge having
crossed a threshold in the detection stage, or as a result of the crossing having
been predicted in the forecast stage.

• Response: Response to flood warnings issued is vital for achieving the aims of
operational flood warning. An appropriate response must be taken following a
warning to realise the potential of the warning system.

Although Fig. 35.1 shows an idealised schematic of the forecasting and warn-
ing process, it can be seen that the warning stage is primarily driven on the basis
of monitoring, i.e. a warning is only issued if a monitored quantity has exceeded
a threshold value. This is the structure of the most basic warning systems, where
an explicit forecasting step is not included and flood warnings are issued on the
basis of observations such as gauged rainfall and flows, combined with the judge-
ment and experience of the forecasters (Cluckie, 2000). The figure also shows that
if a forecasting stage is employed, then it is as a supporting step to the monitoring–
warning process. It is in the forecasting stage that models are used to help extend
the lead time with which warnings can be issued. Although the modelling tech-
nique used must be appropriately selected to reliably provide adequate information
on which any subsequent warning is issued, this discussion illustrates that the role
of models within flood forecasting and warning systems is a supportive one. This
supportive rather than dominant role is reflected in the criteria used by Parker and
Fordham (1996) in comparing the maturity of various operational flood warning
systems in operation across Europe. Most of these criteria address the dissemina-
tion of the flood warning and the organisational embedding of the system. Indeed
criteria were introduced to compare the importance of the flood warning step to the
flood forecasting step, with systems where the forecasting step dominated deemed
to be in an early stage of development, irrespective of how advanced the modelling
technique used.

Despite this apparent supportive role of models, analysis of many research pa-
pers on flood forecasting systems shows significant attention is often given to the
modelling techniques used and less to the process with which warnings are actually
issued. If models are used in the forecasting stage, then these must be considered
in the light of the complete process. Failure of flood warnings to reach the public,
or a large number of warnings issued to the public that prove to be false due to
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low accuracy of forecasts (Krzysztofowicz et al., 1992), will lead to performance
deterioration of the flood warning service as a whole.

Whatever the appropriate modelling technique that reliably fulfils the informa-
tion need of the flood warning stage, its application requires it to be integrated within
an operational flood forecasting platform. This must then be capable of providing
the required information clearly and concisely to the duty forecaster. A large number
of forecasters may be involved, particularly as flood forecasting is often a 24/7 pro-
cess. Additionally, these operational staff may not all be trained hydrologists. This
means that when used operationally, the focus must be on the information provided
on which possible issuing of a flood warning is assessed, and less on the merits of
the particular model that provides this information. In other words, the model must
be seen simply as a provider of information at one stage in the flood forecasting and
warning sequence.

35.3 Open Model Integration vs a Model Centred Approach

The discussion in the previous paragraph shows that the role of models in operational
flood forecasting is primarily supportive. Despite this, the traditional approach in es-
tablishing an operational system is to develop a hydrological model (using one or
more modelling concepts), and subsequently to develop an operational shell around
that model and its specific input/output data flow requirements. This evolution is
quite logical as significant effort may be involved in establishing reliable models,
and using these operationally is seen as a continuation of the development of the
model. If this strategy is followed, the forecasting system is considered to be model
centric. Additionally, the model can be considered to be closely linked to the flood
forecasting organisation. This is because the shell, which forms the interface to the
user(s), is specifically designed to cater for the requirements and processes of the
particular model. Figure 35.2 schematically depicts this relationship.

At the outset of setting up the forecasting system, the model centred approach
can be quite successful, and it often leads to rapid establishment of an operational
system. It does, however, have a number of disadvantages. The most apparent of
these is the versatility of the forecasting system as a part of the forecasting and

Flood Forecasting
and Warning
organisation

Shell

Model

Fig. 35.2 Schematic relationship between a model centred shell system and the organisation that
uses it
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warning process when faced with changing requirements. When these changing re-
quirements result in minor changes to the forecasting shell/model, the overall impact
may be minor. However, required changes may be more drastic. Extension of the re-
quired lead time with which warnings are to be issued will, for example, influence
the system as a whole. This means that the model may need review, perhaps even im-
plicating the suitability of the model and subsequently requiring a different concept.
A good illustration of this can be found in the case of the flood forecasting system
for the Rhine used in the Netherlands (Sprokkereef, 2001). At a lead time of two
days, the dominant process on which the forecast and subsequent warning is based
is routing, and the original model and forecasting shell included principally hydro-
dynamic routing, with runoff generation processes addressed simplistically. With
the extension of the lead time requirement to four days, the relevant processes to be
modelled have shifted towards the runoff generation. This has resulted in a system
of much higher complexity, and ultimately in the replacement of the entire forecast-
ing shell and modelling system (though the original hydrodynamic model has been
retained). Such replacement is not only a technical issue. It significantly impacts
the forecasters using the system operationally, as well as the established forecasting
procedures. Clearly the non-technical replacement process can be organisationally
difficult and will often be met with resistance.

An alternative to developing an operational forecasting system centred around
an existing model is to implement an “off-the-shelf” forecasting system. There are
a number of suppliers “off-the-shelf” systems, but these typically dictate the use
of a particular model, and should this not be the model originally invested in, then
application of the “off the shelf” system will mean losing these perhaps significant
material and knowledge investments. Additionally, organisations involved in fore-
casting may have close links with those involved in water resources and flood risk
assessment, and the available models may serve multiple purposes and need to be
managed as such. Developing additional models due to the constraints of a particular
operational forecasting system is then unfavourable.

To alleviate the impact of changing requirements, which possibly results in
changing the selection of suitable modelling techniques, an open approach to model
integration is proposed. In this approach, the forecasting shell is entirely indepen-
dent of the modelling techniques used, and it focuses on managing the forecasting
processes and the required data flows. Where there is a requirement for information
that is to be obtained from a hydrological/hydraulic process model, the shell sys-
tem prepares the data for that model, runs the model and retrieves results from the
model. Despite this close interaction with the model, it is important that the fore-
casting shell has no explicit knowledge about the model itself. Independence of the
shell system to the models used is paramount, as this allows interchanging mod-
els when requirements change, without extensive reworking of the shell itself. This
then guarantees that although the data provided to the forecaster may change as a
consequence of the changing requirements, the process on how forecasts are made
and disseminated stays the same. As a result, organisational changes are kept to
those functional changes caused by the change in requirements, and limit required
changes in managing the forecasting system as a part of the flood warning process.
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Fig. 35.3 Schematic relationship between an open model shell system and the organisation that
uses it

An additional advantage of the independence of the operational shell is that there
are no constraints on the models that are used. Should an existing model be avail-
able, with significant investment of knowledge and material, then this can be inte-
grated, thus maintaining those investments, where appropriate existing models and
newly developed models can be easily interchanged, or even used concurrently. This
recognises the growing realisation that no single model may provide the most reli-
able results under all conditions. It also allows for a more rapid introduction of new
techniques into actual operational systems. Figure 35.3 illustrates the independence
of the models to the organisation, schematically indicating that the models are now
integrated with the forecasting shell, but independent of the organisation.

35.4 An Approach to Open Model Integration:
The DELFT-FEWS Forecasting Shell

An example of a forecasting shell that provides such an open concept to model inte-
gration is the DELFT-FEWS system (see Werner et al., 2004 for a full description).
The architecture of the DELFT-FEWS system has been designed to provide an open
framework that allows a flood forecasting system to be established to cater for the
specific requirements of a forecasting authority. Through its modular structure it
can, however, be easily adapted when requirements change. The modular approach
has the advantage that many of the components used, such as the underlying mod-
els can be exchanged, without the need to change how the forecasting system is
operated by its users. This allows for a much more rapid adaptation to advances in
modelling techniques, without the added effort in organisational change. The sys-
tem includes a wide range of intrinsic modules that deal with generic processing
of data in the context of flood forecasting, including data validation, data manip-
ulation, spatial and temporal interpolation, etc. A more extensive overview of the
functionality provided is given in Werner et al. (2004).

The system provides a number of interfaces through which additional modules,
including new models and forecasting techniques can be integrated. The most
technologically advanced of these is that it allows users to extend the software
through registering new Java classes that implement a defined software interface.
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Although this gives the ultimate in openness and extensibility from a software
engineering point of view, a more simplistic method of integration of new mod-
els and forecasting techniques is of greater practical relevance. The concept is one
of a loosely coupled framework, where DELFT-FEWS makes the required inputs
to the model available to the model, a model run is then initiated and the re-
sults are again made available by the model for importing into DELFT-FEWS.
The format and protocols of communication between all models thus connected
has been established in a so-called Published Interface. This interface defines
the exchange of time series, states, parameter data, and metadata using XML-
formatted files. Provided a model to be integrated in the forecasting shell imple-
ments the protocols and interfaces defined, it can be run operationally from the
DELFT-FEWS shell, with the latter taking care of all operational data manage-
ment and task scheduling activities. In practice this means that for each of the
models run by the system, an adapter has been developed that picks up the XML-
formatted data and metadata and transforms this to the native formats required by
the model prior to the model run, and vice versa following completion of the run
(see Fig. 35.4). Whilst the concept is technically simple, efforts to limit model-
specific details to the model adapter and therefore keeping the data held in the
forecasting shell as generic as possible have proven successful. Over 30 different
models from a range of independent model suppliers have been integrated using
the approach, thus proving its versatility. Examples of these are given in the next
paragraph.

The advantage of a loosely coupled over a tightly coupled approach, which is
often seen as the ideal in integrated environmental simulation solutions, is that the
latter typically requires a lot of effort in integrating models, often with a require-
ment of the same programming language (Hoheisel, 2002). The loosely coupled
approach taken here is much more flexible through the use of the simple XML in-
terface. XML provides the advantage that for each of the data types to be exchanged
(e.g. time series, metadata), an XML schema has been defined against which the
XML data file can be validated. This means that if the XML-formatted data pro-
vided by the DELFT-FEWS system, as well as the XML-formatted data provided as
an output of the model, complies with the schema definitions, then the model can

Fig. 35.4 Exchange of data
between DELFT-FEWS and
proprietary module formats

Module Adapter

DELFTFEWS

XML

Native
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Native
formatModel
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be integrated. As the XML schemas form a part of the openly accessible published
interface, validation of the data exchange can be undertaken independently from
both DELFT-FEWS and the actual model and its adapter. Again this has impor-
tant organisational advantages, as the supplier of the model and of the operational
forecasting shell (DELFT-FEWS) can remain independent. Typically the module
adapter that implements the XML-published interface and maps this onto the pro-
prietary native format (see Fig. 35.4) is developed by the module supplier, without
necessarily needing to give open access to native module formats should this be un-
desired. The end user of the forecasting shell can even easily incorporate additional
models, without any involvement of the shell supplier, provided the data exchanged
can be shown to verify against the defined XML formats.

A third method of integration of models with the DELFT-FEWS shell system
is through the OpenMI interface described in the paper by Fortune et al. in this
volume (see also Gijsbers, 2004). This allows for all models that conform to this
emerging standard in model integration to be easily incorporated in the forecast-
ing shell, without the additional need of developing a model adapter. The variety of
models supporting this interface is, however, relatively limited, and implementation
of the interface requires significant software development capabilities.

35.5 Example of Models Used in Flood Forecasting Systems

Table 35.1 provides a list of selected operational forecasting systems currently in
use that utilise DELFT-FEWS as the forecasting shell. Each of the model types
listed is integrated with the shell using the loosely coupled approach in linking
models described above. From the perspective of the forecasting shell system, there
is no differentiation between these models other than the data passed and the ex-
ecutables called (note that in some cases the models are distributed 2D models,
requiring exchange of 2D data time series). Figure 35.5 shows the user interface
of the DELFT-FEWS forecasting shell used by the Institute for Inland Water Man-
agement and Waste Water Treatment (RIZA) to provide operational forecasts for
the Rivers Rhine and Meuse at numerous fluvial sites in the Netherlands. All the
operational systems listed in the table have a similar set up user interface and
although the range of models varies, a comparison of how the models are em-
ployed, the processing of data within the forecasting shell, as well as how the
systems are used operationally reveals that many of these are also very similar.
This shows that the open model approach taken in the DELFT-FEWS system al-
lows the process of forecasting to become largely independent of the actual model
used.

The forecasting system used by the Environment Agency (NFFS) is an example
of where the independence of the system with respect to the models employed al-
lows the system to progress in a way that would not have been possible when taking
the model centric approach. This system contains in fact eight independent regional
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Table 35.1 Selected operational forecasting systems using DELFT-FEWS as the flood forecasting
shell, and examples of the range of models used in each

Forecasting system Lead time (h) Models Forecasting system

National Flood
Forecasting System,
Environment
Agency (EA),
England and Wales

2–24 ISIS (WS and Halcrow)
Mike11 (DHI) PDM
(CEH Wallingford)
TCM (CEH
Wallingford) NAM
(DHI) MCRM (EA)
KW (CEH
Wallingford) DODO
(EA) TRITON (PlanB,
UK) PRTF (PlanB,
UK) POL-2D (POL)

1D hydrodynamic
1D hydrodynamic
Rainfall runoff
Rainfall runoff
Rainfall runoff
Rainfall runoff
Hydrological
routing
Hydrological
routing Coastal
lookup Transfer
functions 2D
hydrodynamic

FEWS- Rhine and
Meuse, (RIZA),
Netherlands

96–240 SOBEK (DH) HBV
(SMHI) MLR (RIZA)

1D hydrodynamic
Rainfall runoff
Linear regression

FEWS Kamp &
Donau, Austria

48 TU Modell (TU Vienna)
Flux (Scietec Austria)

Dist. rainfall runoff
1D hydrodynamic

FEWS Pakistan,
Federal Flood
Commission,
Pakistan

2–15 days SOBEK (DH)
Sacramento (DH)

1D hydrodynamic
Rainfall runoff

EFAS, JRC, EU 10 days LISFLOOD Dist. rainfall runoff

WS, Wallingford Software; DH, Delft Hydraulics; DHI, Danish Hydraulics Institute; POL, Proud-
man Oceanographic Laboratories; SMHI, Swedish Meteorological and Hydrological Institute; EA,
Environment Agency; JRC, Joint Research Centre

forecasting systems. The wide range of models used stems from the fact that the
originally disparate forecasting systems have been migrated onto the DELFT-FEWS
platform. Despite now having all these models operationally available, the objective
of the Environment Agency is to in time reduce the amount of models applied so
as to increase consistency on how forecasts are delivered. The selection of which
models and model types are to be preserved can now be taken on the grounds of
hydrological sensibility as well as management and maintenance considerations,
rather than within the constraints of technical limitations.

35.6 Conclusions

This chapter looks at the role of models within flood forecasting and warning.
The discussion points out that flood forecasting and the models employed to pro-
vide for these forecasts primarily have a supportive role in the warning process.
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Fig. 35.5 Main user interface of DELFT-FEWS as used by the Institute for Inland Water Manage-
ment and Waste Water Treatment (RIZA) in the Netherlands

As a consequence, the traditional model centric approach to establishing flood
forecasting systems has the disadvantage that it is inflexible to changing needs.
Changes such as a desired increase of forecasting lead time may result in the re-
quirement to use a different model or set of models, which in the model cen-
tric approach would result in replacement of the entire forecasting system. Such
replacement can have extensive organisational impact and will therefore be under-
taken only reluctantly. Application of an open forecasting shell avoids this disadvan-
tage of organisational change when the set of modelling tools used in forecasting
is revised. The open approach can be achieved through a published file exchange
format, with adapters developed to cater for the range of models to be integrated.
By ensuring the models and the forecasting shell remain independent, both techni-
cally and organisationally, the open nature of the shell can be guaranteed. This open
approach allows for the forecasting system to maintain its continuity as a support-
ive part of the flood warning process, while providing enough room for the mod-
els and tools used to be kept on par with the latest advances in modelling. These
advances need not be limited to traditional hydrological and hydraulic modelling
techniques, but can equally include new methods from hydroinformatics research,
thus providing an easy springboard to bring such techniques into the operational
arena.
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