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Preface

Two professors of Geophysics Late Prof. Prabhat Kumar Bhattacharyya and
Late Prof. Amalendu Roy developed the courses on Potential Theory and
Electromagnetic Theory in 1950s for postgraduate students of geophysics in
the Department of Geology and Geophysics, Indian Institute of Technology,
Kharagpur, India. The courses had gone through several stages of additions
and alterations from time to time updating during the next 5 decades. Prof.
Bhattacharyya died in 1967 and Prof. Amalendu Roy left this department
in the year 1961. These subjects still remained as two of the core subjects
in the curriculum of M.Sc level students of geophysics in the same depart-
ment. Inverse theory joined in these core courses much later in late seventies
and early eighties. Teaching potential theory and electromagnetic theory for
a period of 9 years in M.Sc and predoctoral level geophysics in the same
department enthused me to write a monograph on potential theory bringing
all the pedagogical materials under one title “Potential Theory in Applied
Geophysics”. I hope that the book will cater some needs of the postgrad-
uate students and researchers in geophysics. Since many subjects based on
physical sciences have some common areas, the students of Physics, Applied
Mathematics. Electrical Engineering, Electrical Communication Engineering,
Acoustics, Aerospace Engineering etc may find some of the treatments useful
for them in preparation of some background in Potential Theory. Every dis-
cipline of science has its own need, style of presentation and coverage. This
book also has strong bias in geophysics although it is essentially a mono-
graph on mathematical physics. While teaching these subjects, I felt it a
necessity to prepare a new book on this topic to cater the needs of the
students. Rapid growth of the subject Potential Theory within geophysics
prompted me to prepare one more monograph with a strong geophysics bias.
The areal coverages are different with at the most 20 to 30% overlap. Every
book has a separate identity. Students should go through all the books because
every author had his own plans and programmes for projecting his angle of
vision.
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This book originated mainly from M.Sc level class room teaching of three
courses viz. Field Theory – I (Potential Theory), Field Theory -II (Electro-
magnetic Theory) and Inverse theory in the Department of Geology and
Geophysics, I.I.T., Kharagpur, India. The prime motivation behind writing
this book was to prepare a text cum reference book on Field Theory (Scalar
and Vector Potentials and Inversion of Potential Fields).This book has more
detailed treatments on electrical and electromagnetic potentials. It is slightly
biased towards electrical methods. The content of this book is structured as
follows:

In Chap. 1 a brief introduction on vector analysis and vector algebra is
given keeping the undergraduate and postgraduate students in mind. Because
important relations in vector analysis are used in many chapters.

In Chap. 2 I have given some introductory remarks on fields and their clas-
sifications, potentials, nature of a medium, i.e. isotropic or anisotropic, one,
two and three dimensional problems, Dirichlet, Neumann and mixed boundary
conditions, tensors, differential and integral homogenous and inhomogenous
equations with homogenous and inhomogenous boundary conditions, and an
idea about domain of geophysics where treatments are based on potential
theory.

In Chap. 3 I briefly discussed about the nature of gravitational field. New-
ton’s law of gravitation, gravitational fields and potentials for bodies of sim-
pler geometric shapes, gravitational field of the earth and isostasy and guiding
equations for any treatment on gravitional potentials.

In Chap. 4 Electrostatics is briefly introduced. It includes Coulomb’s law,
electrical permittivity and dielectrics, electric displacement, Gauss’s law of
total normal induction and dipole fields. Boundary conditions in electrostatics
and electrostatic energy are also discussed.

In Chap. 5 besides some of the basics of magnetostatic field, the similarities
and dissimilarities of the magnetostatic field with other inverse square law
fields are highlighted. Both rotational and irrotational nature of the field,
vector and scalar potentials and solenoidal nature of the field are discussed.
All the important laws in magnetostatics, viz Coulomb’s law, Faraday’s law,
Biot and Savart’s law, Ampere’s force law and circuital law are discussed
briefly. Concept of magnetic dipole and magnetostatic energy are introduced
here. The nature of geomagnetic field and different types of magnetic field
measurements in geophysics are highlighted.

In Chap. 6 most of the elementary ideas and concepts of direct current
flow field are discussed. Equation of continuity, boundary conditions, different
electrode configurations, depth of penetration of direct current and nature of
the DC dipole fields are touched upon.

In Chap. 7 solution of Laplace equation in cartisian, cylindrical polar and
spherical polar coordinates using the method of separation of variables are
discussed in great details. Bessel’s Function, Legendre’s Polynomials, Associ-
ated Legendre’s Polynomial and Spherical Harmonics are introduced. Nature
of a few boundary value problems are demonstrated.
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In Chap. 8 advanced level boundary value problems in direct current flow
field are given in considerable details. After deriving the potentials in different
layers for an N-layered earth the nature of surface and subsurface kernel func-
tions in one dimensional DC resistivity field are shown. Solution of Laplace
and nonlaplace equations together, solution of these equations using Frobe-
neous power series, solution of Laplace equations for a dipping contact and
anisotropic medium are given.

In Chap. 9 use of complex variables and conformal transformation in
potential theory has been demonstrated.A few simple examples of transfor-
mation in a complex domain are shown. Use of Schwarz-Christoffel method
of conformal transformation in solving two dimensional potential problem of
geophysical interest are discussed in considerable detail. A brief introduction
is given on elliptic integrals and elliptic functions.

In Chap. 10 Green’s theorem, it’s first, second and third identities and
corollaries of Green’s theorem and Green’s equivalent layers are discussed.
Connecting relation between Green’s theorem and Poisson’s equation, esti-
mation of mass from gravity field measurement, total normal induction in
gravity field, two dimensional nature of the Green’s theorem are given.

In Chap. 11 use of electrical images in solving simpler one dimensional
potential problems for different electrotrode configurations are shown along
with formation of multiple images.

In Chap. 12 after an elaborate introduction on electromagnetic waves and
its application in geophysics, I have discussed about a few basic points on
Electromagnetic waves, elliptic polarization, mutual inductance, Maxwell’s
equations, Helmholtz electromagnetic wave equations, propagation constant,
skin depth, perturbation centroid frequency, Poynting vector, boundary con-
ditions in electromagnetics, Hertz and Fitzerald vector potentials and their
connections with electric and magnetic fields.

In Chap. 13 I have presented the simplest boundary value problems in
electromagnetic wave propagations through homogenous half space. Bound-
ary value problems in electromagnetic wave propagations, Plane wave prop-
agation through layered earth (magnetotellurics), propagation of em waves
due to vertical oscillating electric dipole, vertical oscillating magnetic dipole,
horizontal oscillating magnetic dipole, an infinitely long line source are dis-
cussed showing the nature of solution of boundary value problems using the
method of separation of variables. Electromagnetic response in the presence
of conducting cylindrical and spherical inhomogeneities in an uniform field
are discussed. Principle of electrodynamic similitude has been defined.

In Chap. 14 I have discussed the basic definition of Green’s function and
some of its properties including it’s connection with potentials and fields,
Fredhom’s integral equations and kernel function and it’s use for solution of
Poisson.s equation.A few simplest examples for solution of potential problems
are demonstrated. Basics of dyadics and dyadic Green;s function are given.

In Chap. 15 I have discussed the entry of numerical methods in poten-
tial theory. Finite difference, finite element and integral equation methods are
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mostly discussed. Finite difference formulation for surface and borehole geo-
physics in DC resistivity domain and for surface geophysics in plane wave
electromagnetics (magnetotellurics ) domain are discussed. Finite element
formulation for surface geophysics in DC resistivity domain using Rayleigh-
Ritz energy minimization method, finite element formulation for surface geo-
physics in magnetotellurics using Galerkin’s method, finite element formula-
tion for surface geophysics in magnetotellurics using advanced level elements,
Galerkin’s method and isoparametric elements are discussed. Integral equa-
tion method for surface geophysics in electromagnetics is mentioned briefly.

In Chap. 16 I have discussed on the different approaches of analytical
continuation of potential field based on the class lecture notes and a few
research papers of Prof. Amalendu Roy. In this chapter I have discussed the
use of ( a) harmonic analysis for downward continuation, (b) Taylor’s series
expansion and finite difference grids for downward continuation, (c) Green’s
theorem and integral equation in upward and downward continuation, (d)
Integral equation and areal averages for downward continuation, (e) Integral
equation and Lagrange’s interpolation formula for analytical continuation.

In Chap. 17 I have discussed a few points on Inversion of Potential field
data. In that I covered the following topics briefly, e.g., (a) singular value
decomposition(SVD), (b) least squares estimator,(c) ridge regression estima-
tor, (d) weighted ridge regression estimator, (e) minimum norm algorithm
for an underdetermined problem, (f) Bachus Gilbert Inversion, (g) stochas-
tic inversion, (h) Occam’s inversion, (i) Global optimization under the fol-
lowing heads, (i) Montecarlo Inversion (ii) simulated annealing, (iii) genetic
algorithm, (j) artificial neural network, (k) joint inversion.The topics are dis-
cussed briefly.Complete discussion on these subjects demands a separate book
writing programme. Many more topics do exist besides whatever have been
covered.

This book is dedicated to the name of Late Prof.P.K.Bhattacharyya and
Late Prof. Amalendu Roy, our teachers, and both of them were great teachers
and scholars in geophysics in India. Prof.Amalendu Roy has seen the first
draft of the manuscript. I regret that Prof. Amalendu Roy did not survive
to see the book in printed form. I requested him for writing the chapter on
“Analytical Continuation of Potential Field Data” He however expressed his
inability because of his poor health condition. He expired in December 2005 at
the age of 81 years. I am grateful to our teacher late Prof. P. K. Bhattacharya
whose inspiring teaching formed the basis of this book. He left a group of
student to pursue research in future to push forward his ideas.

Towards completion of this monograph most of my students have lot
of contributions in one form or the other. My students at doctoral level
Dr. O. P. Rathi, Chief Geophysicist, Coal India Limited, Ranchi, India,
Dr. D. J. Dutta, Senior Geophysicist, Schlumberger Well Surveying Corpo-
ration, Teheran, Iran, Dr. A. K. Singh, Scientist,Indian Institute of Geo-
magnetism, Mumbai, India, Dr. C. K. Rao, Scientist, Indian Institute of
Geomagnetism, Mumbai, India, Dr. N. S. R. Murthy, Infosys, Bangalore,
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India, and masters level Dr. P. S. Routh, Assistant Professor of Geophysics,
University of Boise at Idaho, USA, Dr. Anupama Venkata Raman, Geo-
physicist, Exxon, Houston, Texas, USA, Dr. Anubrati Mukherjee, Schlum-
berger, Mumbai, India, Dr. Mallika Mullick, Institute of Man and Enviroment,
Kolkata, India, Mr. Priyank Jaiswal, Graduate Student, Rice University,
Houston Texas, USA, Mr. Souvik Mukherjee, Ex Graduate student, Uni-
versity of Utah,Salt Lake City, USA Mrs. Tanima Dutta, graduate student
Stanford University, USA have contributions towards development of this vol-
ume. My classmate Dr. K. Mallick of National Geophysical Research Institute,
Hyderabad have some contribution in this volume. In the References I have
included the works of all the scientists whose contributions have helped me in
developing this manuscript. Those works are cited in the text.

The author is grateful to Dr. P. S. Routh, my son in law, for critically going
through some of the chapters of this book and making some useful comments.
I am grateful to my elder daughter Dr. Baishali Roy, senior geophysicist,
Conoco Phillip, Houston, Texas, USA, for computer drafting of many dia-
grams of this book, collecting some reference materials and purchasing a few
books for me, needed to write this monograph. I am grateful to my younger
daughter Miss Debanjali Roy, research student, University of Miami, Florida,
USA for collecting some literatures for me from the University library. I am
grateful to Mr. Priyank Jaiswal, graduate student Rice University, Houston
Texas for making arrangement for my visit to Rice University Library. I am
grateful to Mr. M. Venkat at Katy, Texas for offering me car ride upto Rice
University Library for an extended period. I am grateful to Mr. Subhobroto
Sarkar, senior computer engineer, Dell,Salt lake Kolkata for his help in scan-
ning the diagrams. His all round help in providing softwares to computer main-
tenance is gratefully acknowledged. I am grateful to Ms Lilly Chakraborty and
Mr. Sudipta Saha of Printek Point, Technology Market, IIT, Kharagpur for
typing the first draft of the manuscript. Second draft of the manuscript was
typed jointly by Mr. Dilip Kumar Manna, Technology Cooperative Stores,
IIT, Kharagpur and Mr. Rana Roy and his associates at High Tech Point,
Jadavpur University Calcutta. I am grateful to Mr. S. P. Hazra, Department
of Mining Engineering, Mr. Tapan Sarkar, Department of Geology and Geo-
physics and Mr. Mukti Ram Bose, Department of Electrical Communication
Engineering and Radar Centre, all from IIT, Kharagpur for drafting many
diagrams of the book. I am grateful to my wife for her patience and tolerating
the troubles she faced for bringing home considerable amount of work and
using a part of home as office space.

I am grateful to the Director, IIT, Kharagpur and Dean, Continuing Edu-
cation Programme, IIT, Kharagpur for financial support regarding prepa-
ration of the first draft of the book. . . The author is grateful to the Vice
Chancellor, Jadavpur University for sanctioning an office room in the Depart-
ment of Geological Sciences such that this type of academic programme can
be pursued. I am grateful to Council of Scientific and Industrial Research,
New Delhi, India for sanctioning the project titled “Development of a new
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magnetotelluric software for detection of lithosphere asthenosphere boundary”
(Ref.No.21(0559)/02-EMR-II ) to pursue the academic work as an emeritus
scientist.

I hope students of physical sciences may find some pages of their interest.

September, 2007 Dr. K.K.Roy
Emeritus Scientist

Department of Geological Sciences
Jadavpur University

Kolkata-700032, India
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1

Elements of Vector Analysis

Since foundation of potential theory in geophysics is based on scalar and vector
potentials, a brief introductory note on vector analysis is given. Besides pre-
liminaries of vector algebra, gradient divergence and curl are defined. Gauss’s
divergence theorem to convert a volume integral to a surface integral and
Stoke’s theorem to convert a surface integral to a line integral are given. A
few well known relations in vector analysis are given as ready references.

1.1 Scalar & Vector

In vector analysis, we deal mostly with scalars and vectors.
Scalars: A quantity that can be identified only by its magnitude and

sign is termed as a scalar. As for example distance temperature, mass and
displacement are scalars.

Vector: A quantity that has both magnitude, direction and sense is termed
as a vector. As for example: Force, field, velocity etc are vectors.

1.2 Properties of Vectors

(i) Sign of a vector. If A�B is vector �V then B�A is a vector –�V
ii) The sum of two vectors (Fig. 1.1)

−→
AB +

−→
BC =

−→
AC. (1.1)

Here −→
AB +

−→
BC =

−→
BC +

−→
AB. (1.2)

iii) The difference of two vectors

�A− �B = �A+
(
− �B

)
. (1.3)
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x

y

A

B

C

Fig. 1.1. Shows the resultant of two vectors

iv)
�A = b �C (1.4)

i.e., the product of a vector and a scalar is a vector.
v) Unit Vector:

A unit vector is defined as a vector of unit magnitude along the three
mutually perpendicular directions �i,�j,�k. Components of a vector along
the x, y, z directions in a Cartesian coordinate are

�A =�iAx +�jAy + �kAz . (1.5)

vi) Vector Components: Three scalars Ax, Ay, and Az are the three compo-
nents in a cartisian coordinate system (Fig. 1.2). The magnitude of the

vector A is |A| =
√

Ax
2 + Ay

2 + Az
2.

When A makes specific angles α, β and γ with the three mutually per-
pendicular directions x, y and z, cosines of these angles are respectively
given by (Fig. 1.3)

Fig. 1.2. Shows the three components of a vector in a Cartesian coordinate system
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Fig. 1.3. Shows the direction cosines of a vector

cosα =
Ax

A
, cosβ =

Ay
A

and cos γ =
Az
A
. (1.6)

In general cos α, cos β, cos γ are denoted as lx, ly and lz and they are
known as direction cosines.

vii) Scalar product or dot product: The scalar product of two vectors is a
scalar and is given by (Fig. 1.4)

A.B = AB cos θ (1.7)

i.e. the product of two vectors multiplied by cosine of the angles between
the two vectors. Some of the properties of dot product are

a) A.B = B.A,

b) �i.�j = �j.�k = �k.�i = 0 and (1.8)

c) �i.�i =�j.�J = �k.�k = 1.

Here i, j, k are the unit vectors in the three mutually perpendicular direc-
tions.

d) A.B = AxBx + AyBy + AzBz. (1.9)

viii) Vector product or cross product:
The cross product or vector product of two vectors is a vector and its
direction is at right angles to the directions of both the vectors (Fig. 1.5).

A

B

θ

Fig. 1.4. Shows the scalar product of two vectors
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A x B

A

B

ψ

Fig. 1.5. Shows the vector product of two vectors

|A × B| = AB sin ψ (1.10)

where ψ is the angle between the two vectors A and B.

Some of the properties of cross product are

a) �A × �B = −�B × �A,
b) �A × �A = 0,
c) �i×�j = �k,
d) �j × �k =�i,
e) �k ×�i =�j, (1.11)

f) �i ×�i = 0,
g) �j ×�j = 0,
h) �k × �k = 0 and (1.12)

i) �A× �B = (AyBz −AzBy)�i+ (AzBx −AxBz)�j + (AxBy −AyBx)�k.

In the matrix form, it can be written as

�A × �B =

∣∣∣∣∣∣

�i �j �k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
. (1.13)

1.3 Gradient of a Scalar

Gradient of a scalar is defined as the maximum rate of change of any scalar
function along a particular direction in a space domain. The gradient is a
mathematical operation. It operates on a scalar function and makes it a vector.
So the gradient has a direction. This direction coincides with the direction of
the maximum slope or the maximum rate of change of any scalar function.

Let φ(x, y, z) be a scalar function of position in space of coordinate x, y, z.
If the coordinates are increased by dx, dy and dz, (Fig. 1.6) then

dφ =
∂φ
∂x

dx +
∂φ
∂y

dy +
∂φ
∂z

dz. (1.14)
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u

u+du 

P(x,y,z)

P(x+dx, y+ dy, z+dz)

Fig. 1.6. Change of position of a scalar function in a field

If we assume the displacement to be dr, then
−→
dr =�idx +�jdy + �kdz. (1.15)

In vector algebra, the differential operator ∇ is defined as

�∇ =�i
∂

∂x
+�j

∂

∂y
+ �k

∂

∂z
(1.16)

and the gradient of a scalar function is defined as

grad φ =�i
∂φ
∂x

+�j
∂φ
∂y

+ �k
∂φ
∂z
. (1.17)

The operator ∇ also when operates on a scalar function φ(x, y, z), we get

�∇φ =�i
∂φ

∂x
+�j

∂φ

∂y
+ �k

∂φ

∂z
(1.18)

where ∂φ
∂x ,

∂φ
∂y and ∂φ

∂z are the rates of change of a scalar function along the
three mutually perpendicular directions. We can now write

Fig. 1.7. Gradient of a scalar function, the direction of maximum rate of change of
a function: Orthogonal to the equipotential lines or surface
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dφ =
(
�i
∂φ

∂y
+�j

∂φ

∂y
+ �k

∂φ

∂z

)(
�idx +�jdy + �kdz

)
(1.19)

= (∇φ).dr

where dr is along the normal of the scalar function φ(x, y, z) = constant. We
get the gradient of a scalar function as dφ = (∇φ).dr = 0, when the vector
∇φ is normal to the surface φ = constant. It is also termed as grad φ or the
gradient of φ. (Fig. 1.7).

1.4 Divergence of a Vector

Divergence of a vector is a scalar or dot product of a vector operator ∇ and
a vector �A gives a scalar. That is

∇ · �A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

= div �A. (1.20)

This concept of divergence has come from fluid dynamics. Consider a fluid of
density ρ(x, y, z, t) is flowing with a velocity V (x, y, z, t). and let V = vρ.v
is the volume. If S is the cross section of a plane surface (Fig. 1.8) then V.S
is the mass of the fluid flowing through the surface in an unit time (Pipes,
1958).

Let us assume a small parallelepiped of dimension dx, dy and dz. Mass
of the fluid flowing through the face F1 per unit time is Vydx dz = (ρv)y
dx dz(S = dxdz).

Fluids going out of the face F2 is

Fig. 1.8. Inflow and out flow of fluid through a parallelepiped to show the divergence
of a vector
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Vy+dydx dz =
(

Vy +
∂Vy
∂y

dy
)

dx dz. (1.21)

Hence the net increase of mass of the fluid per unit time is

Vydx dz −
(
Vy +

∂Vy
∂y

)
dxdz =

∂Vy
∂y

dxdydz. (1.22)

Considering the increase of mass of fluid per unit time entering through the
other two pairs of faces, we obtain

−
(
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

)
dxdydz = −(∇.V)dx dy dz (1.23)

as the total increase in mass of fluid per unit time. According to the principle
of conservation of matter, this must be equal to the rate of increase of density
with time multiplied by the volume of the parallelepiped.

Hence

−(∇.V)dx dy dz =
(
∂ρ
∂t

)
dx dy dz. (1.24)

Therefore
∇.V = −∂ρ

∂t
. (1.25)

This is known as the equation of continuity in a fluid flow field. This concept
is also valid in other fields, viz. direct current flow field, heat flow field etc.
Divergence represents the flow outside a volume whether it is a charge or a
mass. Divergence of a vector is a dot product between the vector operator ∇
and a vector V and ultimately it generates a scalar.

1.5 Surface Integral

Consider a surface as shown in the (Fig. 1.9). The surface is divided into the
representative vectors ds1, ds2, ds3.... etc (Pipes, 1958).

Let V1 be the value of the vector function of position V1(x, y, z) at dsi.
Then

Lim
Δs→0
n→∞

n∑
i=1

VidSi =
∫∫

V.dS. (1.26)

The sign of the integral depends on which face of the surface is taken positive.
If the surface is closed, the outward normal is taken as positive.

Since
d�S =�i dSx +�j dSy + �k dSz , (1.27)

we can write
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Fig. 1.9. Shows the surface integral as a vector

∫∫

S

V.ds =
∫∫

S

(Vx dsx + Vy dsy + Vz dsz). (1.28)

Surface integral of the vector V is termed as the flux of V through out the
surface.

1.6 Gauss’s Divergence Theorem

Gauss’s divergence theorem states that volume integral of divergence of a
vector A taken over any volume V is equal to the surface integral of A taken
over a closed surface surrounding the volume V, i.e.,

∫ ∫ ∫

V

(
∇. �A

)
dv =

∫ ∫

S

�A.ds. (1.29)

Therefore it is an important relation by which one can change a volume inte-
gral to a surface integral and vice versa. We shall see the frequent application
of this theorem in potential theory.

Gauss’s theorem can be proved as follows. Let us expand the left hand
side of the (1.29) as

∫ ∫

V

∫
(∇.A) dv =

∫ ∫ ∫ (
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
dxdydz

=
∫ ∫

V

∫
∂Ax
∂x

.dxdydz +
∫ ∫

V

∫
∂Ay
∂y

dxdydz

+
∫ ∫

V

∫
∂Az
∂z

dxdydz. (1.30)
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Fig. 1.10. Shows the divergence of a vector

Let us take the first integral on the right hand side. We can now integrate
the first integral with respect to x, i.e., along a strip of cross section dy dz
extending from P1 to P2.(Fig. 1.10).

We thus obtain
∫ ∫

v

∫
∂Ax
∂x

dxdydz =
∫

s

∫
[Ax (x2, y, z) −Ax (x1, y, z)] dydz. (1.31)

Here (x1, y, z) and (x2, y, z) are respectively the coordinates of P1 and P2. At
P1, we have

dy dz = −dSx,

and at P2

dy dz = dSx. (1.32)

Because the direction of the surface vectors are in the opposite direction.
Therefore ∫ ∫

v

∫
∂Ax
∂x

dxdydz =
∫

s

∫
Ax dSx. (1.33)

where the surface integral on the right hand side is evaluated on the whole
surface. This way we can get

∫ ∫

v

∫
∂Ay
∂y

dxdydz =
∫

s

∫
Ay dSy and (1.34)

∫ ∫

v

∫
∂Az
∂z

dxdydz =
∫

s

∫
Az dSz . (1.35)
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If we add these three components, we get Gauss’s theorem
∫ ∫

v

∫
(∇.V)dv =

∫

s

∫
(Ax dSx + Ay dSy + Az dSz) =

∫

s

∫
A.dS. (1.36)

1.7 Line Integral

Let A be a vector field in a space and MN is a curve described in the sense
M to N. Let the continuous curve MN be subdivided into infinitesimal vector
elements (Fig. 1.11)

dl1, dl2, dl3 −−−−−−− dln..

The sum of these scalar products, is

N∑
M

�Ar
−→
dlr =

N∫

M

A.dl. (1.37)

This sum along the entire length of the curve is known as the line integral of
A along the curve MN. In terms of Cartesian coordinate system, we can write

N∫

M

A.dl =

N∫

M

(Axdx+Aydy +Azdz). (1.38)

Let A be the gradient of φ, a scalar function of position, then

�A = �∇φ (1.39)

and
N∫

M

A.dl =

N∫

M

(∇φ)dl =

N∫

M

(
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz

)
. (1.40)

Fig. 1.11. Shows the paths of movement for line integral of a vector
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Since
∂φ
∂x

dx +
∂φ
∂y

dy +
∂φ
∂z

dz = dφ, (1.41)

we get
N∫

M

A.dl =

N∫

M

dφ = φN − φM (1.42)

where the value of φM and φN are the values of φ at the points M and N.
Therefore, the line integral of the gradient of any scalar function of position
φ around a closed curve vanishes. Because if the curve is closed, the point M
and N are coincident and the line integral is equal to φM − φN and is equal to
zero. In other words ∫

MON

A.dl +
∫

NPM

A.dl = 0.

Hence ∫

MON

�A.dl = −
∫

NPM

�A.dl. (1.43)

This concept of line integral with a vector function, which is a gradient of
another scalar function, is used later to define potential in a scalar potential
field.

1.8 Curl of a Vector

Curl or circulation of a vector operates on a vector and generates another
vector (Fig. 1.12). It is written as ∇ × �A, i.e., it is a cross product of the
vector operator ∇ and a vector A. Curl of a vector can be explained using
the concept of line integral. If A is a vector, the curl or rot of A (circulation
or rotation) is defined as the vector function of space obtained by taking the
vector product of the operator ∇ and �A and its direction is at right angles to
the original vector. It is written as ∇× �A. So we can write

curl �A = �∇× �A = �i

(
∂Az
∂y

− ∂Ay
∂z

)
+�j

(
∂Ax
∂z

− ∂Az
∂x

)

+ �k

(
∂Ay
∂x

− ∂Ax
∂y

)
. (1.44)

It can be written in a matrix form as

∇× �A =

∣∣∣∣∣∣

�i �J �k
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣
. (1.45)
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A

Curl A

Fig. 1.12. Shows the circulation of a vector

If A = ∇φ, then

∇× A =∇× (∇φ) =�i
(
∂2φ
∂y∂z

− ∂2φ
∂z∂y

)

+�j
(
∂2φ
∂z∂x

− ∂2φ
∂x∂z

)
+ �k

(
∂2φ
∂x∂y

− ∂2φ
∂x∂y

)
= 0. (1.46)

Curl of a vector is zero if that vector can be defined as a gradient of another
scalar function.

1.9 Line Integral in a Plane (Stoke’s Theorem)

To show the connection between line integral and curl of a vector, let us
compute the line integral of a vector field �A around an infinitesimal rectangle
of sides Δx and Δy lying in the xy plane as shown in the (Fig. 1.13).

Fig. 1.13. Shows the line integral in a plane to explain stokes theorem
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We can compute
∮

A.dl around the rectangle writing down the contribu-
tions towards this integral from different sides as follows:

Along AB → AxΔx

Along BC →
(
Ay +

∂Ay
∂x

Δx

)
Δy

Along CD → −
(
Ax +

∂Ax
∂y

Δy
)

Δx (1.47)

Along DA → −AyΔy.

Here Δx and Δy are infinitesimally small. Adding the various contributions,
we obtain ∮

ABCD

A.dl =
(
∂Ay
∂x

− ∂Ax
∂y

)
ΔxΔy (1.48)

It can be written as ∮

ABCD

A.dl =
(
�∇× �A

)
z
dsxy (1.49)

where ∇× �Az is the z-component of the curl of �A and dsxy is the area of the
rectangle ABCD.

If we take a closed surface s in the xy plane (Fig. 1.14) and the space is
divided into several rectangular elements of infinitesimally small areas, the
sum of the line integrals of the various meshes is given by

Fig. 1.14. Shows that the vectors only on the boundary remains and the vectors
inside get cancelled
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∞∑
r=1

∮

r

A.dl =
∞∑
r=1

(∇×A)z dsxy. (1.50)

Contributions to the line integrals of the adjoining meshes cancel each other.
Only the line integrals in the periphery remain.

Hence ∞∑
r=1

∮

r

A.dl =
∮

c

A.dl (1.51)

and ∮
A.dl =

∫ ∫

s

(∇× A)z dsxy. (1.52)

This relation is valid for all the components. Therefore we can write
∮

A.dl =
∫ ∫

(∇× A)ds. (1.53)

This is Stoke’s theorem. It states that surface integral of a curl of a vector
is equal to the line integral of the vector itself. It is a mathematical tool to
convert surface integrals to line integrals and vice versa.

1.10 Successive Application of the Operator ∇
In vector analysis, for successive application of operator ∇, we can take the
vector ∇× �B for ∇×∇× �A. where �B is ∇× �A. If we expand this equation
in cartisian coordinate, we get

�∇× �A =

∣∣∣∣∣∣∣∣

�i �j �k

∂
∂x

∂
∂y

∂
∂z

�Ax �Ay �Az

∣∣∣∣∣∣∣∣
. (1.54)

Here Ax, Ay and Az are respectively the x, y and z components of A in a
cartisian coordinate. Equation (1.54) is

Curl �A =�i

(
∂Az
∂y

− ∂Ay
∂z

)
+�j

(
∂Ax
∂z

− ∂Az
∂x

)
+ �k

(
∂Ay
∂x

− ∂Ax
∂y

)
(1.55)

and curl �B is

∇×∇× �A =

∣∣∣∣∣∣∣

�i �j �k
∂
∂x

∂
∂y

∂
∂z(

∂Az

∂y − ∂Ay

∂z

) (
∂Ax

∂z − ∂Az

∂x

) (∂Ay

∂x − ∂Ax

∂y

)

∣∣∣∣∣∣∣
(1.56)
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⇒�i
{
∂

∂y

(
∂Ay
∂x

− ∂Ax
∂y

)
− ∂

∂z

(
∂Ax
∂z

− ∂Az
∂x

)}

+�j
{
∂

∂z

(
∂Az

∂y
− ∂Ay

∂z

)
− ∂

∂x

(
∂Ay

∂x
− ∂Ax

∂y

)}

+ �k
{
∂

∂x

(
∂Ax

∂z
− ∂Az

∂x

)
− ∂

∂y

(
∂Az

∂y
− ∂Ay

∂z

)}
(1.57)

⇒�i

{
∂Ay
∂y∂x

− ∂2Ax
∂y2

− ∂2Ax
∂z2

+
∂2Az
∂z∂x

}

+�j
{
∂2Az

∂z∂y
− ∂2Ay

∂z2
− ∂Ay

∂x2
+
∂2Ax

∂x∂y

}

+ �k
{
∂2Ay

∂y∂x
− ∂2Az

∂x2
− ∂2Az

∂y2
− ∂2Ay

∂y∂z

}
. (1.58)

The ith component can be written as

⇒�i
{
∂

∂x

(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)
−
(
∂2Ax

∂x2
+
∂2Ax

∂y2
+
∂2Ax

∂z2

)}
. (1.59)

Writing the �j th and �k th component as in (1.59), we can write

∇×∇× �A = ∇
(
∇. �A

)
−∇2 �A

or curl curl �A = grad div �A −∇2�A. (1.60)

Equation (1.60) is an important relation and is used quite often in electro-
magnetic theory.

1.11 Important Relations in Vector Algebra

Some important relations in vector algebra, needed in potential theory, are
presented in this section. A couple of relations are derived in the text. The
other relations can be derived. They are

i) �a.�b ×�c = �b.�c ×�a = �c.�a × �b (1.61)

ii) �a ×
(
�b ×�c

)
= (�a.�c)�b −

(
�a.�b

)
�c (1.62)

iii)
(
�a × �b

)
.
(
�c × �d

)
= �a.�b ×

(
�c × �d

)
(1.63)

= �a.
(
�b.�d�c − �b.�c�d

)

= (�a.�c)
(
�b.�d

)
−
(
�a.�d

)(
�b�c
)



16 1 Elements of Vector Analysis

iv)
(
�a × �b

)
×
(
�c × �d

)
=
(
�a × �b.�d

)
�c −

(
�a × �b.�c

)
�d (1.64)

v) �∇ (φ + ψ) = ∇φ + ∇ψ (1.65)

vi) �∇ (φψ) = φ∇ψ + ψ∇φ (1.66)

vii) �∇.
(
�a + �b

)
= �∇.�a + �∇.�b (1.67)

viii) �∇. (φ�a) = φ∇.�a + �a.∇φ (1.68)

ix) �∇.
(
�a × �b

)
= �b.�∇.�a −�a.�∇× �b (1.69)

x) �∇×
(
�a + �b

)
= �∇×�a + �∇× �b (1.70)

xi) �∇× (φ�a) = φ�∇�a + ∇φ ×�a (1.71)

xii) �∇
(
�a.�b

)
= (�a.∇)�b +

(
�b.∇

)
�a +

(
�a ×

(
∇× �b

)
+ �b × (∇×�a)

)
(1.72)

xiii) �∇×
(
�a × �b

)
= �a.∇.�b − �b∇.�a +

(
�b.∇

)
�a − (�a.∇)�b (1.73)

xiv) �∇×
(
�∇× �A

)
= ∇∇. �A−∇2 �A (1.74)

xv) �∇× (∇φ) = 0 (1.75)

xvi) �∇.�∇×�a = 0. (1.76)
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Introductory Remarks

In this chapter the basic ideas of (a) fields and their classifications (ii) poten-
tials (iii) boundary value problems and boundary conditions (iv) dimensional-
ity of a geophysical problem (v) nature of a medium in earth science (isotropy
and anisotropy, homogeneity and inhomogeneity) (vi) Tensors (vi)Nature of
equations encountered in solving geophysical problems (vii) Areas of geo-
physics controlled by potential theory are introduced.

2.1 Field of Force

At any point in a medium, an unit mass or an unit charge or an unit magnetic
pole experiences a certain force. This force will be a force of attraction in
the case of a gravitational field. It will be a force of attraction or repulsion
when two unit charges or two magnetic poles of opposite or same polarity
are brought close to each other. These forces are fields of forces (Figs. 2.1,
2.2, 2.3).

A body at a point external to a single body or a group of bodies will
experience force(s) of attraction in a gravitational field. These forces will be
exerted by a body or a group of bodies on a mass placed at a point. Every
mass in the space is associated with a gravitational force of attraction. This
force has both a direction and a magnitude. For gravitational field, the force
of attraction will be between two masses along the line joining the bodies
(Fig. 2.1). For electrostatic, magnetostatic and direct current flow fields, the
direction of a field will be tangential to any point of observation. These forces
are the fields of forces. These fields are either global fields or are man made
artificial local fields. Thus we arrive at a conception of a field of force.

These fields are used to quantitatively estimate some physical properties
at every point in a medium. Important physical fields used by geophysicists
are (i)Gravitational field, (ii) Magnetostatic field, (iii) Electromagnetic field,
(iv) Direct current flow field, (v) Electrostatic field, (vi) Heat flow field, (vii)
Fluid flow field, (viii) Earth’s natural electromagnetic field etc. Each of these
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Fig. 2.1. Shows the gravitational attraction at a point P due to the masses m1, m2,
m3, and m4

Fig. 2.2. Shows the magnetic field due to a bar magnet and the forces of attraction
and repulsion in the vicinity of two unlike and like magnetic poles

Fig. 2.3. Shows the electrostatic field due to a point charge
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fields is associated with one or two physical properties e.g., gravity field is
associated with density or density contrasts of the earth’s materials, direct
current flow field is associated with electrical resistivity or electrical conduc-
tivity, electrostatic field is associated with dielectric constant and electrical
permittivity, magnetostatic field is associated with magnetic permeability and
electromagnetic field is associated with electrical conductivity, electrical per-
mittivity and magnetic permeability of a medium. Physicists and geophysicists
use these fields to determine certain physical properties or their variations in
a medium. Mathematically they are expressed as a function of space.

2.2 Classification of Fields

These fields can be classified in many ways. Some of these classifications are
as follows:

2.2.1 Type A Classification

(i) Naturally occurring fields
(ii) Artificially created man made fields

Gravitational field, earth’s magnetic field due to dynamo current in the core of
the earth, earth’s extraterrestrial electromagnetic field originated due to inter-
action of the solar flare with the earth’s magnetosphere, electric fields gener-
ated due to electrochemical and electrokinetic activities within the earth at
shallow depths are naturally occurring fields. These fields are present always.
No man made sources are needed to generate these fields. They are receiving
energy from one form of the natural source or the other.

Direct current flow fields, electromagnetic field, are mostly artificial man
made fields. Artificial source of energy is required to generate these fields. Nor-
mally we use batteries(cells) or gasoline generators to generate these powers
for sending current through the ground.

2.2.2 Type B Classification

(i) Scalar potential field
(ii) Vector potential field

Scalar potential fields are those where the potentials are scalars but a field,
being a gradient of potential is a vector. Gravitational field, direct current
flow field, electrostatic field, heat flow field, stream lined fluid flow fields are
scalar potential fields. In a vector potential field, both the potential and field
are vectors. Magnetostatic field and, electromagnetic fields have both scalar
and vector potentials (see Chap. 5 and Chaps. 12, and 13)
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2.2.3 Type C Classification

(i) Static field
(ii) Stationary field
(iii) Variable field

Electrostatic field is a static field (see Chap. 4) where the charges do not move
and stay at a particular point. Direct current flow field and magnetostatic
fields are stationary fields (see Chaps. 5 and 6) where the charges are moving
at a constant rate so that both the electric and magnetic fields of constant
magnitude are generated. Electromagnetic field is a time varying field where
both magnitude and direction of electric and magnetic vectors are changing
constantly depending upon the frequency of the variable field (see Chap. 12).

2.2.4 Type D Classification

(i) Rotational field (Fig. 2.2a)
(ii) Irrotational field (Fig. 2.1)

If curl of a vector is zero, then the field is an irrotational field. Gravitational
field, direct current flow fields are irrotational fields, e.g,

curl �E = ∇× �E = 0
curl �g = ∇× �g = 0.

Here �E is the electric field (see Chaps. 4 and 6) −→g is the acceleration due to
gravity (see Chap. 3). If curl of a field vector is non zero, then it is a rota-
tional field. Magnetostatic field and electromagnetic field are rotational fields
because the curl of a field vector is not zero. Here curl�H = �J in magnetostatics
(see Chap. 5) and curl�H = �J+ ∂�D

∂t in electromagnetics (see Chap. 12). �H, �J, �D
and ∂ �D

∂t are respectively the intensity of the magnetic field, the current den-
sity, (see Chap. 6), the displacement vector (see Chap. 4) and d�D

∂t displacement
current vector (see Chap. 12).

2.2.5 Type E Classification

(i) Conservative field (Fig. 2.4)
(ii) Non-conservative field

If potential difference between two points in a field is independent of the path
through which an unit charge or an unit mass moves from a point A to a point
B, (Fig. 2.4) it is called a conservative field (see Sect. 2.3). In a conservative
field when an unit charge or an unit mass move around a close loop, the net
work done by the mass or charge will be zero.Otherwise the field will be a
non-conservative field.
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Fig. 2.4. Work done to move from P1 to P2 is independent of paths followed

2.2.6 Type F Classification

(i) Solenoidal
(ii) Nonsolenoidal field

A force field, which has zero divergence through out the entire region of investi-
gation, is called a solenoidal field. Gravity field, direct current flow field, steady
state heat flow and fluid flow fields in a source free region are solenoidal field.
Magnetostatic field is always a divergence free or solenoidal field (Figs. 2.5
and 2.6). For a magnetostatic field, div �B = 0 or div �H = 0 is always true and
is therefore a solenoidal field. For a gravitational and an electrostatic fields
div �g and div �E will be zero if they do not contain any mass or charge as the
case may be in the space domain. (see Chaps. 3, 4, 5).

Potential (discussed later in this chapter) problem, that include the source
function, satisfy Poisson’s equation. These fields are not divergence free. They
are called non-solenoidal field. To solve boundary value problems in potential
theory using finite element or finite difference method in a direct current
domain we generally use Poisson’s equations (see Chap. 15).

2.2.7 Type G Classification

(i) Newtonian potential field
(ii) Non Newtonian potential field

Newtonian potentials are those, which satisfy 1
r relation. The potential at a

point is inversely proportional to the first power of the distance (Sect. 2.3).
Gravitational potential φ = GM

R is a Newtonian potential where φ is the
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Source free
region

masses
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Fig. 2.5. (A). Shows the region devoid of any masses; (B). Shows the region con-
taining masses; (C). Shows the region containing charges

potential at a point due to a mass M at a distance R from the point of
observation and G is the universal gravitational constant.(see Chap. 3).

Non-Newtonian potentials are those which do not satisfy 1
r variation of

potential with distance. The potentials at a point due to a line source and
a dipole source are non-Newtonian potentials that way. Potentials are log-
arithmic for a line source and follow inverse square law for a dipole source
(see Chaps. 3, 4, 6). But all electro chemical and electrokinetic potentials are
non-Newtonian potentials.

2.2.8 Type H Classification

(i) Dipole field
(ii) Non dipole field

+

-

Fig. 2.6. Shows the field due to an electric dipole
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Fig. 2.7. Shows the field due to a magnetic dipole

Dipole fields are those where potentials are inversely proportional to the
square of the distance. Fields generated by a loop carrying current and two
very closely placed current electrodes generate dipole fields (Figs. 2.6 and
2.7). Fields generated by two widely separated sources are non-dipole fields.
Gravitational fields, direct current flow fields with widely separated current
electrodes are non-dipole fields.

2.2.9 Type I Classification

(i) Laplacian fields
(ii) Non Laplacian fields

Gravity, electrostatic, direct current flow fields in a source free regions satisfy
Laplace equation ∇2φ = 0; where φ is the potential at a point (Chaps. 3, 4,
6, 7). Non Laplacian fields include extra nonlaplacian terms in a differential
equation.

(1) Scalar potential fields, where the sources are included, satisfy the Poisson’s
equation. For example, the gravitational field, electrostatic and direct cur-
rent flow field satisfy the following Poisson’s equations:
(i) ∇2φg = 4πGm (Gravity Field)
(ii) div gradφ = ∇2φ = − ρ

∈ (Electrostatic Field)
(iii) div�E = div gradφ = ∇2φ = −ρ (Direct Current Flow Field)

For mathematical modelling, Poisson’s equations are used for solution
of boundary value problems in geophysics. In a source free region they
satisfy Laplace equation.

(2) Potential problems for a transitional earth where a physical property
changes continuously along a particular direction generates a non-
Laplacian terms in the governing equation (see Chap. 8) Laplacian and
non-Laplacian equations are solved together with the introduction of
proper boundary conditions.

(3) For electromagnetic field, the guiding equations are Helmholtz wave equa-
tions. Electric field, magnetic field, scalar and vector potentials satisfy
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the equation ∇2F = γ2 F where F stands for magnetic field, electric field,
vector potentials and or scalar potential. γ is the propagation constant
(see Chap. 12). For γ = 0, i.e., for zero frequency, the Helmholtz equation
changes to a Laplace equation. So electromagnetic field is a non-Laplacian
field.

(4) A large number of non-Laplacian potentials exist and are being used by the
geophysicists. These potentials are known as self-potentials and they are of
electrochemical and electrokinetic origin. Potentiometers used for measur-
ing Laplacian potentials can also measure these self-potentials. Important
members of this family are (i) liquid junction potential, (ii) membrane
potential, (iii) oxidation-reduction potential, and (iv) electrode potential
of electrochemical origin and (i) streaming potential, (ii) eletrofiltration
potential and (iii) thermal potentials of electrokinetic origin. A source
of energy is required to generate these potentials. In the case of direct
current field a battery or a generator is used to create the field. For self-
potentials, electrochemical cells are generated within the earth to sustain
the flow of current for a long time. These electrochemical cells originate
at the contact of the two different electrolytes of different chemical activ-
ities or they may be at different oxidation-reduction environment. These
redox cells of oxidation-reduction origin sustain flow of current across an
ore body for many years In any thermodynamic system there is always
some free energy which can be easily converted into work. Some poten-
tials are generated when one form of energy is converted into another
form of energy. For example, mechanical energy is converted into electri-
cal energy for generation of streaming potential in a fractured rock zone
inside a borehole. Due to maintenance of high pressure in a borehole, the
mud filtrate enters into the formations through fractures and generates
streaming potentials. For electrofiltration potentials, gravitational energy
is converted into electrical energy. When fluid moves through a porous
medium under a gravity gradient, the potentials are developed and can
be measured. Thermal gradients in a geothermal area generate potentials
where thermal energy is converted to an electrical energy. Geothermal
gradient cells are created. These potentials satisfy Nerst equation, Han-
derson’s equation and Oxidation-Reduction equations. They form a big
group of non-Laplacian potentials. Self-potentials as such is a major topic
in geophysics and fairly lengthy discussion is necessary to do any justice
to this topic.

2.2.10 Type J Classification

(i) Global field
(ii) Local field

Gravity field is a global field, which is present in the entire universe. It includes
different stars, planets and satellites. Magnetic field of the earth and earth’s
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natural electromagnetic field of extra terrestrial origin, heat flow field etc. are
global fields.

Fields generated by artificial man made sources for geophysical exploration
are local fields. Direct current flow field and electromagnetic fields generated
by man made sources are local fields.

2.2.11 Type K Classification

(i) Microscopic field
(ii) Macroscopic field

Inter atomic and inter molecular fields are microscopic fields. Understanding
of these fields is in the domain of physics. Geophysicists are interested in
studying these macroscopic fields.

2.3 Concept of Potential

If we have a vector �F and a small element of length
−→
dl along which one wants

to move in a field then the amount work done is given by force multiplied
by distance i.e., �F.

−→
dl. If we move from point P1 to P2 (Fig. 2.8) then the

work down is
P2∫
P1

�F.
−→
dl. If this work done is path dependent, then the field is

non-conservative. Otherwise it is a conservative field.
Here

dw =

P2∫

P1

�F.
−→
dl (2.1)

where dw is the element of work done and it is the change in potential energy.
Potential at a point in a field is defined as the amount of work done to bring
an unit mass or charge from infinity to that point. Potential energy at P2 –
Potential energy at P1 will be the amount of work done to move from P1 to
P2 (Fig. 2.9). The potential difference

φ2 − φ1 =

P2∫

P1

�F.
−→
dl (2.2)

=
∫ P

P1

m
r2
.dr =

∣∣∣−m
r

∣∣∣
r2

r1
= m

(
1
r1

− 1
r2

)
(2.3)

The potential difference depends upon the end points and not on the path.
If φ = 0, when the reference point is at infinity, φ2 = m

r . Therefore the
potential at a point at a distance r is m

r multiplied by a constant. These
constants vary from one type of field to the other. Next three chapters deal
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F

F

F

F

F

dl F

P1

P2

Fig. 2.8. Shows the path of movement of an unit mass or an unit charge in an
uniform gravitational or electrostatic field

with these constants. Potential at any point in a gravitational field due to a
given distribution of masses is the work done by attraction of masses on a
particle of unit mass as it moves along any path from infinite distance up to
the point considered.

For a scalar potential field, the principle of superposition is valid. Principle
of superposition states that the potential at a point due to a number of mass
or charge distributions can be added algebraically. Potential at a point due to
the combined effect of volume, surface, linear distributions and several discrete
point masses is

ψ

P1

P2

C

A

ds

Fig. 2.9. Shows the work done to move from point P1 to P2 in the field �F ; ds is
the elementary movement making an angle Ψ at that point
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Fig. 2.10. Shows the gravitational attraction at a point due to volume, surface, line
and point distribution of masses

φ =
∫ ∫

ν

∫
ρdν
r

+
∫

s

∫
σds
r

+
∮

l

λdl
r

+
n∑

i=1

mi
r

(2.4)

where ρ, σ, λ are respectively the volume, surface and linear density of mass.
mi is the ith particle in a family of n number of particles.(Fig. 2.10).

2.4 Field Mapping

The direction of the field lines due to gravitational field, magnetostatic field,
electrostatic field, direct current flow field are shown in the Figs. 2.1, 2.2, 2.3,
2.7 and 2.8. Figure 2.11 shows a section of a field line where a small element
dl is chosen. Here

fy
fx

= tanψ =
dy

dx
(2.5)

where fy and fx are the components of the field lines along the y and x
directions.

Ψ is the angle made by the field lines at the point dl with the x axis.

x

y

dx

dy

Fig. 2.11. Shows that the field vector at any point is tangential to the field direction
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Field Lines

Equipotential
lines

Fig. 2.12. Shows the orthogonal nature of field lines and equipotential lines

Therefore, equation for a field line is

dx

fx
=
dy

fy
(2.6)

For a movement of an unit charge or an unit mass making an angle α with
the direction of the field, the element of the potential will be −dφ = �f.

−→
dl =

�f
−→
dl cos α (Fig. 2.11) where α is the angle between �f and

−→
dl. When α = 0,

�f =
(
∂φ
∂l

)
max

and φ = constant when α = π/2. This shows that the field
lines and equipotential lines are at right angles in a conservative field and the
gradient of a potential is

−grad φ = �amax∇φ = Lim
Δl→0

(
Δφ
Δ�

)

max

(2.7)

where �amax is the unit vector along the direction of field line. Figure 2.12 shows
the nature of field lines and equipotential lines for an uniform field where
theoretically the source and sink are at infinite distance away. Figure 2.13
shows the nature of the field lines and equipotential lines for a point source
and sink at finite distance away.

and equation for the equipotential surface is

dφ(x, y, z) = 0 (2.8)

x

y

Fig. 2.13. Field lines and equipotential lines for a point source and sink at a finite
distance away
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In a spherical polar co-ordinate system (Fig. 2.14) (see Chap. 7), the vectors
are denoted in the direction of R, θ and ψ. The unit vectors are �aR,�aθ,�aψ.

Here −→
dl = �aR.dR+ �aθ.Rdθ + �aψR.Sinθ.dψ (2.9)

and the field components are

fR = − ∂φ
∂R

, fθ = − 1
R
∂φ
∂θ

fψ = − 1
R Sinθ

∂φ
∂ψ

. (2.10)

In a cylindrical polar co-ordinate system (Fig. 2.15) r2 = ρ2 + z2 in (ρ, ψ, z)
system. In this system the unit vectors are

−→
dl = �aρ. �dr + �aψ.rdψ + �az.dz (2.11)

So the field components are

fρ = −∂φ
∂ρ
, fψ = −1

ρ
∂φ
∂ψ

and fz = −∂φ
∂z

(2.12)

Equations for field lines in spherical polar and cylindrical polar co-ordinates
are respectively given by

dR

fR
=
Rdθ

fθ
=
RSin θdϕ

fψ
(2.13)

Fig. 2.14. Shows the layout of the spherical polar coordinates
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(ρ, ψ,

ψ

Fig. 2.15. Shows the layout of the cylindrical polar coordinates

and
dρ

fρ
=
ρdψ

fψ
=
dz

fz
. (2.14)

In the case of a point mass

φ = −G
m
R

and f = −G
m
R2

(2.15)

Equipotential surface for a point source is given by

G
m
R

= Cons tan t. Therefore,R = Constant (2.16)

For a point mass or a point source of charge, the equipotential surface will be
spherical. In a plane paper the equipotential surface is a circle with the centre
at m and radius R. In the xy plane

f = −G
m

x2 + y2
(2.17)

fx = −G
mx

(x2 + y2)3/2
(2.18)

fy = −G
my

(x2 + y2)3/2
(2.19)

Therefore,
dy
dx

=
y
x

or y = mx (2.20)

i.e., the field lines are radial lines passing through the centre.
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2.5 Nature of a Solid Medium

A solid medium is said to be an homogeneous and isotropic medium when any
physical property is same at every point as well as in every direction x, y, z
of the medium. If a physical property (say electrical conductivity or electrical
permittivity or magnetic permeability or moduli of elasticity) are different at
different points and they are different in different directions, the medium is
an inhomogeneous and anisotropic medium. Let ρ1 and ρ2 be the resistivities
along the three mutually perpendicular directions x,y and z at two point A
and B in a medium. (Fig. 2.16). Then for

(a) an homogeneous and isotropic medium

(i) ρ1 = ρ2 (ii) ρ1x = ρ1y = ρ1z = ρ2x = ρ2y = ρ2z (2.21)

(b) an inhomogeneous and isotropic medium

(i) ρ1 �= ρ2 (ii)ρ1x = ρ1y = ρ1z and ρ2x = ρ2y = ρ2z (2.22)

(c) an homogeneous and anisotropic medium

(i) ρ1 = ρ2 (ii) ρ1x �= ρ1y �= ρ1Z (iii) ρ2x �= ρ2y �= ρ2z (2.23)

(iv) ρ1x = ρ2x, ρ1y = ρ2y and ρ1z = ρ2z

(d) an inhomogeneous and anisotropic earth

(i) ρ1 �= ρ2 (ii) ρ1x �= ρ1y �= ρ1z �= ρ2x �= ρ2y �= ρ1z. (2.24)

For a homogeneous and isotropic medium (Fig. 2.16a), electrical conductivity
or electrical permittivity are scalar quantities. For an inhomogeneous and
anisotropic earth, these properties become 3 × 3 tensors. For a homogeneous
and isotropic earth �J

(
= σ �E

)
is in the same directions as �E (see Chap. 6). For

Fig. 2.16(a,b). Show models of homogenous and isotropic and inhomogenous and
anisotopic medium
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an anisotropic medium (Fig. 2.16b), �J has the directive property and generally
the direction of �J and �E are different. Therefore for a rectangular coordinate
system, the modified version of Ohm’s law can be written as:

Jx = σxx Ex + σxy Ey + σxz Ez

Jy = σyx Ex + σyy Ey + σyz Ez (2.25)
Jz = σzx Ex + σzy Ey + σzz Ez

where σik may be defined as the electrical conductivity in the direction κ
when the current flow is in the direction i. It is a 3 × 3 tensor.When σik =
σki,. conductivity of an anisotropic medium is a symmetric tensor having six
components.

2.6 Tensors

Any physical entity which are expressed using n subscripts or superscripts is a
tensor of order n and is expressed as T123456.....n. Any physical property of the
earth, say electrical conductivity σ or electrical permittivity ∈ or magnetic
permeability μ is a scalar in a perfectly homogeneous and isotropic medium.
In an inhomogeneous and anisotropic medium scalars become tensors. As for
example in a direct current flow field (see Chap. 6), �J = σ�E in a homogeneous
and isotropic medium where �J is the current density in amp/meter2, σ is the
electrical conductivity in mho/meter and �E is the electric field in volt/meter.
In an inhomogeneous and anisotropic medium �J = σij

�E where �J is no more
in the same direction as �E and σ is replaced by σij to accommodate the
effect of change in direction and magnitude. σij is a tensor of rank 2. The
effect of direction dependence is given in equation (2.25). This tensor σij has
9 components with i = x, y, z and j = x, y, z for cartisian coordinate in an
Euclidean geometry. Here σxy is the electrical conductivity for current density
along the x direction and contribution of electrical field in the y direction. The
directional dependence changes a scalar to a tensor of rank 2 which can be
expressed in the form of a matrix. So a tensor of rank or order n can be written
as Ti1i2i3i4....in . With this brief introduction about the nature of a tensor, we
discuss very briefly some of the basic properties of a tensor.

The fundamental definition involved in tensor analysis is connected with
the subject of coordinate transformation. Let us consider a set of variables
(x1, x2, x3) which are related to another set of variables (z1, z2, z3) where 1, 2,
3 are superscripts. The relation between the two variables is of the form

z1 = a1
1x

1 + a1
2x

2 + a1
3x

3

z2 = a2
1x

1 + a2
2x

2 + a2
3x

3

z3 = a3
1x

1 + a3
2x

2 + a3
3x

3

(2.26)

where the coefficients are constants. In this case two sets of variables (x1, x2, x3)
and (z1, z2, z3) are related by a linear transformation. This transformation can
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be written as

zr =
n=3∑
n=1

ar
nx

n where r = 1, 2, 3. (2.27)

Equation (2.27) can be written as

zr = ar
nun for r = 1, 2, 3. (2.28)

So we can define a nine component second order tensor as tij for i = 1, 2, 3 and
j = 1, 2, 3 in the unprimed frame and nine components in the primed frame if
the components are related by the coordinate transformation law.

Tij = μik.μjiTiJ (2.29)

In the present context we redefine scalars and vectors as follows. A physical
entity is called a scalar if it has only a single component say α in the coordinate
system xi and measured along ui and this component does not change when
it is expressed in x/i and it is measured along u/i , i.e.

α(x, y, z) = α/(x/i , y
/
i , z

/
i ) (2.30)

A scalar is a tensor of zero order. A physical entity is called a vector or
a tensor of first order if it has 3 components ξi and if these components are
connected by the transformation of coordinate law

ξ1
i = uikξk (2.31)

where uik = Cos
(
u1

i , ui

)
.

This relation can also be written in the matrix form as ξ1
i = uξ where ξ1, u,

ξ contain the elements of the (2.29).
Contravariant vector : Let physical entities has the values α1,α2,α3 in the

coordinate system x1, x2, x3 and these quantities change to the form ᾱ1, ᾱ2, ᾱ3

in the coordinate system x̄1, x̄2, x̄3. Now if

ᾱm =
∂x̄m

∂xi
αi for m = 1, 2, 3, i = 1, 2, 3 (2.32)

then the quantities α1,α2,α3 are the components of a contravariant vector or
a contravariant tensor of the first rank with respect to the transformation

x̄r = Fr(x1, x2, x3) = x̄r(x1, x2, x3) for r = 1, 2, 3 (2.33)

in an euclidean space. The curvilinear coordinate space
(
x̄1
1, x̄1

2, x̄3
)

are created
by (x1, x2, x3) by transformation of coordinates.

Covariant vector : If a physical entity has the values α1, α2, α3 in the sys-
tem of coordinate (x1, x2, x3) and these values changes to the form (ᾱ1, ᾱ2, ᾱ3)
in the system of coordinates (x̄1, x̄2, x̄3) and if

ᾱm =
∂xi

∂x̄m
αi (2.34)

Then α1, α2, α3 are the components of covariant vector or tensor of rank 1.
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A tensor in which both contravariant and covariant components are present
is called a mixed tensor. As for example

ᾱm
n =

∂x̄m

∂xi
.
∂xj

∂x̄n
αi

j (2.35)

is a mixed tensor of rank 2. Kronecker delta δm
n is a mixed tensor of rank 2.

It is defined as

δm
n =

{
1 if m = n
0 if m �= n

(2.36)

Since earth is an anisotropic and inhomogenous medium, for problems related
to anisotropic earth, tensors are used.

2.7 Boundary Value Problems

Solution of boundary value problems is one of the important subjects in math-
ematical physics. For determining potentials or fields at any point within a
closed domain R, bounded by a surface S, it is necessary that the problem
satisfy certain boundary conditions or some boundary conditions are imposed
on the surface or within the medium to get the necessary solution. In most
potential problems, certain arbitrary constants or coefficients appear in the
solution. These constants are evaluated applying the boundary conditions. In
fact through these boundary conditions geometry of the problem enter into
the solution. Detailed discussions and use of boundary conditions are avail-
able in Chaps. 6, 7, 8, 9, 11, 12, 13, 15. The boundary conditions are more
in electromagnetic methods than in direct current methods. Almost every
Maxwell’s equation generates a boundary condition(see Chap. 12). Applica-
tion and nature of boundary conditions are different in different problems.
Only some of the approaches used in mathematical geophysics are discussed
in this book. Boundary conditions applied in solving problems in complex
variables are of different types(see Chap. 9) An important task in solving
problems in potential theory is to bring the source and perturbation potentials
in the same mathematical form before the boundary conditions are applied.
Solved examples in Chaps. 7, 8 and 13 are some of the demonstrations in
this direction. For mathematical modelling, we often encounter three types of
boundary value problems, viz., Dirichlet’s problems, Neumann problems and
mixed (Robin /Cauchy) problems.

2.7.1 Dirichlet’s Problem

In a closed region R having a closed boundary S, while solving Laplace equa-
tion ∇2φ = 0 (see Chap. 7) some prescribed values are assigned to the
boundaries. When potentials are prescribed on the boundaries, the problems
are called Dirichlet’s problems and the boundary conditions are Dirichlet’s
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boundary conditions. Potential at any boundary can be zero or a function of
distance or a constant. If potential at the said boundary is zero then it is a
homogeneous boundary condition. Otherwise the boundary condition is inho-
mogeneous. Within the boundary, which is well behaved on these regions and
takes some prescribed values on the boundary say φ (x, y, z) = 0. (Fig. 2.17a),
the problems are called Dirichlet’s problem. As for example potential at an

Fig. 2.17a,b,c. Show the direchlet, neumann and mixed boundary conditions
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infinite distance from a source is zero. Therefore if we make the working
domain to be arbitrarily very large we can prescribe φ(x, y, z) = 0 everywhere
on the boundary because potentials die down to zero at infinite distance from
the point source following 1

r law (see Chaps. 3, 4, 6, 9, 15).

2.7.2 Neumann Problem

For solution of Laplace or Poisson’s equation, if the normal derivatives of
potentials are prescribed on the boundaries then the problems are called Neu-
mann problems and the boundary conditions are Neumann boundary condi-
tions. Application of Neumann boundary condition is shown in Chaps. 8, 9
and 15. (Fig. 2.17b). Like Dirichlet’s boundary conditions, Neumann bound-
ary conditions can be homogenous or inhomogenous.

2.7.3 Mixed Problem

If φ is prescribed on certain parts of a boundary and ∂φ
∂n is prescribed on rest

part of the boundary, then the problems is called a mixed or Robin problem.
Most of geophysical problems are mixed problems where φ is defined on one
part and ∂φ

∂n is defined on rest of the boundary. Figure (2.17c) shows a domain
of the earth where the top surface is the air-earth boundary. Since the contrast
in resistivity at the air-earth boundary is very high, therefore, ∂φ

∂n , the normal
derivative of potential, will always be zero. Other boundaries are pushed away
from the working area to force the potential φ to be zero.

For solution of the Poisson’s equation or Laplace equation, the potentials
and their derivatives make the condition k ∂φ

∂n + hφ = 0. Application of mixed
boundary condition is shown in Chap. 15.

2.8 Dimension of a Problem and its Solvability

For interpretation of geophysical field data, one has to go through the solution
of forward and inverse problems. Proper selection of a forward problem is a
very important step to begin with. The geophysicists need helps from potential
theory for solution of forward problems. An homogeneous and isotropic full
space problem is a zero dimensional problem because the physical property
does not change in any direction. An homogeneous and isotropic half space
has two media with different physical properties and having a sharp boundary
between them. An assumed homogeneous earth with an air earth boundary
is a homogeneous half space. A layered earth generates an one-dimensional
problem because physical property varies only along the vertically downward
direction. Therefore all the potential and nonpotential problems related to
layered earth are one dimensional problems,.(Fig. 2.18a,b).When a physical
property varies along the x and z direction and remain same along the y
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Fig. 2.18a. A sketch for zero dimensional problem

direction, the problem is called a two dimensional problem. Here x, y, z are
arbitrary mutually perpendicular directions. An infinitely long cylinder of cir-
cular or rectangular or arbitrary shaped cross section placed horizontally at
a certain depth from the surface of the earth or exposed on the surface of
the earth is an ideal example of a two dimensional problem. Many such earth
models with much more complicated geometry are regularly used for inter-
pretation of geophysical data. (Fig. 2.18c) When a physical property varies
along the x and z direction and the cylindrical structure has limited length
along the y direction, the problem is termed as a two and a half dimensional
problem

(
2 1

2D problem
)
.

When a physical property varies in all the three directions, the problems
are called three-dimensional problems (3-D problem). (Fig. 2.18d) For most of
the one-dimensional problems closed form analytical solutions are available.
For solution of the two and three dimensional problems finite element, finite
difference, integral equation, volume integration

Fourier methods are used. These are numerical methods (Chap. 15). Many
of the two dimensional problems have complete analytical solution. Partly
numerical and partly analytical techniques are used for solution of some prob-
lems (see Chaps. 7, 8, 9).

With the advent of numerical methods and high speed computers, the
domain and solvability of the forward problems have increased significantly
and it is no longer restricted to bodies of simpler geometries only.

Fig. 2.18b. A sketch for one dimensional problems
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Fig. 2.18c. A sketch for a two dimensional problem

Fig. 2.18d. A three dimensional body where physical property changes in all the
three mutually perpendicular directions

2.9 Equations

2.9.1 Differential Equations

A first order ordinary differential equation

dy
dx

+ p(x)y = r(x) (2.37)

is a linear differential equation. Important features of this equation is that
it is a linear in y and dy

dx where p and r are any given function of x. If the
right hand side r(x) = 0 for all x in a working region, the equation is said
to be homogeneous. Otherwise it is inhomogeneous. An ordinary differential
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equation may be divided into two large classes, viz., linear and non–linear
equations.

A second order differential equation

d2y
dx2 + p(x)

dy
dx

+ q(x)y = r(x) (2.38)

is called a homogeneous equation if r(x) = 0.
The equation is non linear if it can be written as

x

(
d2y
dx2 +

(
dy
dx

)2
)

+ 2
dy
dx

y = 0. (2.39)

An ordinary differential equation of nth order can be written as

dny

dxn + Pn−1(x)
dn−1y
dxn−1 + . . . . . . ..+ P1

dy
dx

+ Po(x)y = r(x) (2.40)

where r, Po,P1,P2 . . .Pn are functions of x. In a similar way this equation can
be homogeneous and inhomogeneous. Partial differential equations are those
where the functions, involved, depend on two or more independent variables.
They are used for solving many problems of physics, viz., problems of potential
theory, electromagnetic theory, heat conduction and fluid flow theory, solid
mechanics etc. We use these partial differential equations for solving boundary
value problems of different branches of mathematical physics.

A partial differential equation is linear if it or its partial derivative is of
first degree independent variables. Otherwise it is nonlinear. If each term of
this type of equation contains dependent variables or one of its derivatives,
the equation is said to be homogeneous. Otherwise they are inhomogeneous.

An equation of the form

A
∂2u
∂x2

+ 2B
∂2u
∂x∂y

+ C
∂2u
∂y2

= F(x, y, u,
∂u
∂x
,
∂u
∂y

(2.41)

is a normal form of partial differential equation. The equation is said to be
elliptic if AC−B2 > 0, parabolic if AC−B2 = 0 and hyperbolic if AC−B2 < 0.
Here A,B,C may be function of x, y, z. As for example Laplace equation

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

= 0 (2.42)

is an elliptic equation. Heat conduction equation

∂u
∂t

= C
∂2u
∂x2

(2.43)

is a parabolic equation and wave equation

∂2u
∂t2

= C2 ∂
2u
∂x2

(2.44)

is a hyperbolic equation.
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2.9.2 Integral Equations

The theory of Integral equations deals with the equations in which an
unknown function occurs under the integral sign. The subject was devel-
oped by V. Volterra (1860–1940), E.I. Fredhom (1866–1927) and D. Hilbert
(1862–1943).

If an external force is applied to a linear system and is described by a
function f(x) (a ≤ x ≤ b), then the result or the output is given by the system
which can be written as

f(x) =

b∫

a

G(x, ξ)f(ξ)dξ (2.45)

where G(x, ξ) is a Kernel function or a Green’s function which is specified
by the given system. Integral equation (IE) has a major role in geophysical
forward modeling. Here a certain class of integral equations are introduced.
Integral equations appear in a certain class of diffusion and potential problems
in geophysics. IE has a major success in handling three dimensional problem
both in potential (scalar and vector) and non potential problems. If both
the upper and lower limits of an integral are constant then the equations
are Fredhom type. If one of the limits is an independent variable, then the
equations are Volterra type. An integral equation is said to be linear if all the
terms occurring in the equations are linear. These integral equations can be
of first, second and third kind as follows :

(i) Fredhom’s integral equation of the first kind.

b∫

a

K(x, t)f(t)dt = g(x) (2.46)

(ii) Fredhom’s integral equation of the second kind

b∫

a

K(x, t)f(t)dt = g(x) + f(x) (2.47)

(iii) Fredhom’s integral equation of the third kind

b∫

a

K(x, t)f(t)dt = λf(x) (2.48)

(iv) Volterra’s integral equation of the first kind
x∫

a

K(x, t)f(t)dt = g(x) (2.49)
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(v) Volterra’s integral equation of the second kind

x∫

a

K(x, t)f(t)dt = g(x) + f(x) (2.50)

(vi) Volterra’s integral equation of the third kind

x∫

a

K(x, t)f(t)dt = λf(x) (2.51)

In Fredhom’s integral equations, the upper and lower limits are respec-
tively ‘b’ and ‘a’ where ‘a’ and ‘b’ are constants. In Volterra’s integral equa-
tion the upper and lower limits are respectively ‘x’ and ‘a’ where x is an
independent variable and ‘a’ is a constant. Here f(t) is an unknown function
to be determined. K(x,t) and g(x) are known functions. K(x,t) is known as the
Kernel function. Equation of the third kind is a homogeneous version of the
second kind and it defines an eigen value problem. These integral equations of
second kind can be solved either iteratively or using Gauss quadrature method
of numerical integration or by series expansion method. Further discussion on
integral equation is available in Chap. 15. Eigen value is defined in Chap. 17.

2.10 Domain of Geophysics in Potential Theory

Potential theory as such is a vast subject and is used by physicists, geophysi-
cists, electrical engineers, electrical communication engineers, mathematicians
working in fluid dynamics, complex variables, aerodynamics, acoustics, elec-
tromagnetic wave theory, heat flow, theory of gravity and magnetics etc. This
subject forms the basis of many branches of science and engineering. Only a
part of geophysics, controlled by potential theory, includes gravity, magnetic,
electrical electromagnetic heat flow and fluid flow methods.. Seismic methods
in geophysics and nuclear geophysics are out of bound of potential theory.
All potentials of electrochemical and electrokinetic origin strictly do not come
under potential theory.

Primary task of a geophysicist is to understand the data collected from
the field and interprete them in the form of an acceptable geological model
within the limit of finite resolving powers of different geophysical potential
fields For proper execution of this task, geophysicists have to frame the earth
models and have some ideas about the nature of field response. To have this
understanding, geophysicists solve forward problems for different branches of
geophysics using potential theory (Scalar and Vector potentials). Therefore
potential theory, equipped with different mathematical tools, forms the basis
for solution of forward problems. Potential theory is a must to understand
the behaviour of the geophysical data. Inverse theory comes next as a tool
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for interpretation. Advent of inverse theory revolutionized the entire proce-
dure for interpretation of geophysical data. It became possible due to very
rapid development of computer science, software technology and numerical
methods in mathematical modelling. The phenomenal developments in sci-
ence and technology in these areas during the last three decades improved
the power of vision of geophysicists to look inside the earth. In this book,
besides some introduction on gravitational field, magnetostatic field, electro-
static field, direct current flow field and electromagnetic field, we introduced
(i) the solution of Laplace equation and its contribution towards solving dif-
ferent type of boundary value problems, (ii) complex variable and its role
in solving two dimensional potential problems (iii) Green theorem and its
application in solving potential problems (iv) concept of images in potential
theory (v) electromagnetic theory and vector potentials and their contribution
towards solving the electromagnetic boundary value problems (vi) finite ele-
ment and finite difference and integral equation methods towards solving two
and three dimensional potential problem (vii) Green’s function (viii) analyti-
cal continuation of potential fields and (ix) inversion of potential field data.

Scientists of other disciplines of physical sciences and technologies may
find interest .in some of these topics.



3

Gravitational Potential and Field

In this chapter we included some of the preliminaries of the gravitational
potentials and fields, viz, Newton’s law of gravitational attraction, gravita-
tional fields and potentials, universal gravitational constant and acceleration
due to gravity, the nature of earth’s gravitational field, gravitational potentials
and fields for bodies of simpler geometries and the basic guiding equations of
the gravitational field. A few points about the nature of the earth’s grav-
ity field and the basic preliminaries regarding data handling are mentioned.
Advanced topics, viz, spherical harmonics Green’ theorem, Green’s equivalent
layers and analytical continuation of potential field are given respectively in
Chaps. 7, 10 and 16.

3.1 Introduction

Sir Isaac Newton first published Philosophiae Naturalis Principia Mathemat-
ica in 1687. In that he gave ideas both about the law of gravitation as well as
the laws of forces. It was realised that (i) gravitational force is always a force
of attraction, (ii) It is not only a global force it is an universal force present in
the entire universe, (iii) It is one of the weak forces, (iv) It has some relation
with mass of a body, (v) principle of superposition is valid for gravitational
fields, (vi).centrepetal and centrifugal forces do exist, (vii) movement of plan-
ets round different stars and movement of satellites round different planets
are controlled by the gravitational force of attraction. Two important physi-
cal parameters, viz, ‘G’ and ‘g’ came in the fore front for further advancement
although mass of a body, its density, has some direct relation with the force of
gravitation was realised. Lord Cavendish experimentally determined the value
of ‘G’, the universal gravitational constant, in his laboratory by measuring the
force of attraction between two lead balls placed at a certain precise distance
and published the value of ‘G’ in 1798 to be 6.754×10−11 m3kg−1s−2 (MKS or
SI unit) which was refined later as 6.672× 10−11 MKS unit. Accelaration due
to gravity was first measured by Galileo in his famous experiment by dropping
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objects from the leaning tower of Pisa. The numerical value of ‘g’ was found
to be around 980 cm/ sec2. In honour of Galileo the unit 1 cm/ sec2, the unit
of acceleration due to gravity was termed as ‘Gal’ or ‘gal’. It was understood
right from the beginning that the force of gravitation is global and the gravita-
tional force is always a force of attraction and the entire network of billions of
stars, planets and satellites are controlled by the force of gravitation. Kepler’s
three law’s i.e., (i) orbit of each planet is an ellipse with sun at one of the foci
(ii) orbital radius of the earth sweeps out equal areas in equal interval of time
and (iii) the ratio of square of the planet’s period of revolution to the cube of
the semi major axis of the orbit is a constant for all the planets and could be
explained from Newton’s law of gravitation.

Next round of researches in this area were centred around accurate evalu-
ation of the absolute value of ‘g’, the acceleration due to gravity, and G, the
universal gravitational constant. Soon it became known to the physicists that
the time period of oscillation of a simple pendulum, which executes simple
harmonic motion, is connected to the acceleration due to gravity g through
the relation T = 2π

√
l/g where l is the distance between the pivotal point

of the hinge to the centre of the mass and T is the time period of oscilla-
tion. Although expression looks very simple several stages of developments
and generation of compound pendulum was necessary for accurate measure-
ment of ‘g’. It could be known, as soon as the value of ‘g’ is known that ‘g’
is a latitude dependent quantity and shape of the earth is nearly a spheroid
with definite ellipticity. It was known right from the beginning that mass and
density of a body are interrelated and they have connection with the gravity
field of the earth. Therefore both the mass and the mean density of the earth
could be known from ‘G’ and ‘g’.

Much later geophysicists came forward for accurate measurement of minute
variation of the value of ‘g’ due to minor variations of densities of rocks and
minerals. Precision of measurement has gone up to such a level that practical
unit of measurement of variation of the gravity field was reduced to milli-
gal (10−3). The minute variations of gravity is termed as ‘Δg’, the gravity
anomaly and the precision instruments are named gravimeters. Gravimeters
measure the minute variations in ‘g’ rather than their absolute values. Preci-
sion level is heading towards microgal level in 21st century. The ultra sensi-
tive gravimeters are used for geodetic survey, crustal studies and geophysical
exploration.In this chapter a brief outline of the gravitational potential and
field are given. Some of the topics of gravitational potentials and fields are
included in Chaps. 10 and 16.

3.2 Newton’s Law of Gravitation

Newton’s law of gravitation states that “Every particle in the universe attracts
every other particle with a force which is directly proportional to the product
of the masses of the particles and inversely proportional to the square of
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the distance between them.” Therefore, Newton’s law of gravitation can be
stated as

�F α
m1 m2

r2

which can be written as
F = G

m1m2

r2
(3.1)

where F is the force of attraction between the two masses m1 and m2 placed
at a distance r from each other and G, the constant of proportionality, is the
universal gravitational constant. Here m1 and m2 are the two masses separated
by a distance r. This G is the force of attraction between the two particles of
unit mass separated by a unit distance. The acceleration due to gravity is ‘g’.
Its unit is cm/ sec2 or Gal. The unit Gal is introduced in honour Galileo. The
practical unit is milligal = 10−3 gal. Assuming the earth as a spherical body
of density ρ and radius ‘r’, the force of attraction between the earth and a
body of mass M is given by

G
MeM

r2
= Mg (3.2)

where Me is the mass of the earth and is equal to = 4
3πr3ρ and ρ is the mean

density of the earth (ρ = 5.67 gms/cc approx). Here g is the acceleration due
to gravity and is approximately equal to g = 981 cm/ sec2. In C.G.S Unit

G =
3g

4πρr
=

1
15, 500, 000

(approx) (3.3)

=6.664 × 10−8 cm/g. sec2(CGS unit)

6.664 × 10−11 m/kg. sec2(M.K.S. Unit) (3.4)

G is in dyne – cm2/gm2 that is equivalent to Newton. Cavendish first exper-
imentally determined the value of G as mentioned.

Gravitational field is a naturally existing conservative, solenidal (in a
source free region), irrotational, global and scalar potential field of very large
dimension. Two masses separated by a great distance can experience a force
of attraction what little be the magnitude of that force. Gravitational force
exits between all the celestial bodies. It is a weak force. But the force is always
a force of attraction and the direction of the force is along the line joining the
centres of two masses m1 and m2 (Fig. 3.1) at P (x, y, z) and at Q (ξ,η, ζ)
where r is the distance between the two point masses. �r the directional force
vector which is expressed as the distance between the two masses can be
written as

�r =�i (x − ξ) +�j (y − η) + �k (z − ζ) (3.5)

For an unit point mass m2, gravitational field due to a point mass is given by

Lim
m2→1

F = −G
m
r2
.�r
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Fig. 3.1. Gravitational attraction at a point P due to a point mass m at a point Q
at a distance r from P

where �r is the direction of the unit vector. Gravitational field is a scalar
potential field i.e., the potential is a scalar and the field is a vector. They
are related by the relation �E = −gradφ. Many authors use negative sign to
express,

�F = −G
m1m2

r2
�r (3.6)

As mentioned already gravitational field, is always an irrotational field i.e.
curl �g = 0.

Absolute values of densities or their variations in crust mantle silicates,
originated due to thermal processes inside the earth as well as due to tec-
tonic evolution, are responsible generation of global gravity map. Purpose of
investigation fixes the scale of measurement.

3.3 Gravity Field at a Point due to Number
of Point Sources

Suppose the masses m1,m2,m3 and m4 are distributed in a space and their
distances from the point of observation P are respectively given by r1, r2, r3,
r4 etc (Fig. 3.2). Let the gravitational attraction at the point P for the masses
be g1, g2, g3 and g4 respectively. Since this will be a vector field, the total
field can be determined by resolving the components of forces along the three
co-ordinates axes.

Let ξi,ηi and ζi be the co-ordinates of the ith particle and mi be its mass.
The force acting at the point P due to mi is mi

r2i
. The components of the force

along the x, y and z directions are respectively given by

gix =
mi

r2i
x =

mi

r2i
.
x− ξ

ri
(3.7)

giy =
mi

r2i
y =

mi

r2i
.
y − η

ri
(3.8)

giz =
mi

r2i
z =

mi

r2i
.
z − ζ

ri
. (3.9)
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Fig. 3.2. Gravitational attraction at a point P due to masses m1, m2, m3 and m4

Therefore, the total gravitational field components gx, gy, gz using principle
of superposition are given by

gx =
n∑

i=1

mi
(x − ξ1)

r3i
, gy =

n∑
i=1

mi
(y − ηi)

r3i

and

gz =
n∑

i=1

mi
(z − ζi)

r3i
. (3.10)

Here
g =

√
g2
x + g2

y + g2
z . (3.11)

That gives the expression for gravitational force of attraction at a point due
to n number of isolated discrete point masses.

3.4 Gravitational Field for a Large Body

Let us assume an arbitrary shaped large solid three dimensional body of den-
sity ρ. Let us take a point of observation P at coordinates (x, y, z) and an
elementary mass at Q having coordinates (ξ,η, ζ) within the body (Fig. 3.3).
The elementary volume dν = dξdηdζ. We can divide the body into number of
elementary volumes. The volume density of source is Lt

Δv→0
ρ = Δm

Δv where ρ

is the density of the body. For a small volume dv, its mass is ρdv. The field
due to the entire mass along the x, y, and z directions are given by

gx =
∫ ∫

ν

∫
ρ (x − ξ) dξdηdζ[

(x − ξ)2 + (y − η)2 + (z − ζ)2
]3/2

(3.12)
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Fig. 3.3. Gravitational attraction at the point P due to a large solid mass

gy =
∫ ∫

ν

∫
ρ (y − η) dξdηdζ[

(x − ξ)2 + (y − η)2 + (z − ζ)2
]3/2

(3.13)

gz =
∫ ∫

ν

∫
ρ (z − ζ) dξdηdζ[

(x − ξ)2 + (y − η)2 + (z − ζ)2
]3/2

(3.14)

3.5 Gravitational Field due to a Line Source

Let AB is a line source of mass having linear density λ where λ = Lt
Δl→O

Δm
Δl

(Fig. 3.4). The line is put in the xy plane such that the centre of the line is
at the origin. Let the line be divided into a number of segments dξ. Thus the
field components along the x direction is given by

Fig. 3.4. Gravitational field at an external point P due to a line source of finite
length
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Fx =
λdξ

(x − ξ)2 + y2
.

x − ξ√
(x − ξ)2 + y2

(3.15)

and

Fy =
λdξ

(x − ξ)2 + y2
.

y√
(x − ξ)2 + y2

. (3.16)

Therefore, the total fields Fx and Fy for the entire linear mass are given by

Fx = λ
a∫

−a

(x − ξ) dξ[
(x − ξ)2 + y2

]3/2
(3.17)

Fy = λ
a∫

−a

y dξ[
(x − ξ)2 + y2

]3/2
(3.18)

Let
cos α =

y{
(x − ξ)2 + y2

}1/2

and

− sin α dα = − 2y (x − ξ) dξ

2
[
(x − ξ)2 + y2

]3/2
.,

therefore

Fx =
λ

y

α2∫

α1

sinα dα =
λ

y
(cosα2 − cosα1)

=
λ
y

⎡
⎣ y√

(x + a)2 + y2

− y√
(x − a)2 + y2

⎤
⎦ (3.19)

Similarly for

Fy = λ

⎡
⎢⎣ ydξ[

(x − ξ)2 + y2
]3/2

⎤
⎥⎦ (3.20)

Let

tan α =
x − ξ

y
, and sec2 αdα = −dξ

y
.

since sec3 α = 1
y3

(
(x − ξ)2 + y2

)3/2

, we get
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Fy = −λ
y

α1∫

α2

cosαdα =
λ
y

[sin α1 − sin α2]

=
λ
y

⎡
⎣ x − a√

(x − a)2 + y2

− x + a√
(x + a)2 + y2

⎤
⎦ (3.21)

Now

F =
√

F2
x + F2

y

=
λ
y

[2 − 2 cos α1 cos α2 − 2 sin α1 sin α2]
1/2

=
λ
y

[2 − 2 cos (α1 − α2)]
1/2

=
√

2
λ
y

[
2 sin2 (α1 − α2)

2

]1/2

= 2
λ
y

sin
(
α1 − α2

2

)

= 2
λ
y

sin

∧
APB

2
(3.22)

Therefore, the direction of the gravitational force of attraction is along the

bisector of the triangle
∧

APB.

3.6 Gravitational Potential due to a Finite Line Source

Although once field due to a finite line source is known, the gravitational
potential at a point is known also. However a separate section is given to
highlight a few points of principle.

A line source AB of length L is taken along the z-direction (Fig. 3.5). In
a cylindrical co-ordinate, the potential will not depend upon the azimuthal
angle ψ but on r and z. Take a small element dζ. Its mass is λdζ where λ
is the linear density. Since the gravitational potential is −Gm

R where m and
r are respectively the mass and distance of the point of observation. We can
write

φ = −Gλ
l∫

−l

dζ[
r2 + (z − ζ)2

]1/2
(3.23)

Let

z − ζ = r tan θ, so
−dζ = r sec2 θdθ
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Fig. 3.5. Gravitational potential at a point due to a finite line source

Therefore

φ = Gλ ln [sec θ + tan θ]l−l

φ = Gλ

⎡
⎣ln

⎧⎨
⎩

z − l
r

+

√
r2 − (z − l)2

r

⎫⎬
⎭− ln

⎧⎨
⎩

z + l
r

+

√
r2 + (z + l)2

r

⎫⎬
⎭

⎤
⎦

φ = −Gλ ln
(z + l) +

√
r2 + + (z + l)2

(z − l) +
√

r2 + + (z − l)2
(3.24)

When φ = Constant

K = e−φ/Gλ =
z + l +

√
r2 + (z + l)2

z − l +
√

r2 + (z − l)2
(3.25)

This is an equation for the equipotential surface and (3.25) can be rewritten
with a few steps of algebraic simplification in the form.

(K − l)2

(K + l)2
.
(z

l

)2

+
(K − l)2

4K
.
( r

L

)2

= 1. (3.26)

This is an equation of an ellipse. The semi major and minor axes are respec-
tively given by

K + 1
K − 1

.l and
2
√

K
K − 1

l.

The eccentricity is e =
√

1 − b2

a2 and the foci are at ±l.
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The field components are

fr = −∂φ
∂r

= Gλ.
1
r

⎡
⎣ z + l√

r2 + (z + l)2
− z − l√

r2 + (z − l)2

⎤
⎦ (3.27)

fz = −∂φ
∂z

= −Gλ
1
r

⎡
⎣ r√

r2 + (z + l)2
− r√

r2 + (z − l)2

⎤
⎦ (3.28)

The total field of f =
√

f2r + f2z describes hyperbolas (Fig. 3.6). For a very long
wire where

l → α, gz = O and gr = −Gλ
2
r

(3.29)

Here the field is proportional to 1
r . Hence the potential is

φ = λ
∫

gdr + Constant

= 2Gλ ln r + Constant

= −2Gλ ln
(

r0
r1

)
(3.30)

It implies that the potential becomes zero at infinity. Therefore for a line
source potential is logarithmic potential and field varies inversely with dis-
tance. For a finite line source the equipotentials are ellipses and the eccentric-
ity of the ellipse die down with distance from the source. At infinite distance
the eccentricity of the ellipse will be zero and the ellipse will turn into a circle.
The field lines will be radial For an infinitely long line source the field lines
and equipotential lines will form a square or rectangular grids

Fig. 3.6. Field lines and equipotential lines due to a line source of finite length
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3.7 Gravitational Attraction due to a Buried Cylinder

Vertical component of gravitational attraction at unit mass at the point of
observation ‘P’ due to a small element ‘dl’ at a distance ‘l’ from ‘Q’, the
shortest distance of the cylinder from the point of observation is (Fig. 3.7)

dgz =
G dm Sinθ

r2
.
R
r

= Gλ dl Sinθ.
R
r
. (3.31)

Here dm is the elementary mass of the thin strip dl, λ is the linear density of
the cylinder and is equal to πa2λ for unit length where ‘a’ is the radius of the
cylinder and G is the universal gravitational constant. Vertical gravitational
attraction due to a cylinder of infinite length is

gz = GλSinθR

α∫

−α

dl
(R2 + l2)3/2

(3.32)

= 2 Gπa2λ
z

(x2 + z2)
. (3.33)

Fig. 3.7. Gravitational anomaly on the surface due to a buried cylindrical body of
finite length
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3.8 Gravitational Field due to a Plane Sheet

Let us assume a plane sheet in the xy plane and is symmetrical around the
axis OP vertical to the plane of the paper (Fig. 3.8).We assume an elementary
area ds on the plane sheet. Let

σ = Lim
ΔS→0

Δm
ΔS

where Δs is the surface area of an infinitesimally small surface area in the
plane sheet and Δm be its mass.

For a small area ds, the mass of the area is σds. The gravitational field
due to this small element at P is σds

r2 . Vertical component of this field is given
by fz = σds

r2 cos α and the component at right angles to z direction is σds
r2 sin α.

Since the point of observation P is symmetrically placed with respect to the
plate, the vertical components of the field will get added up. The components
perpendicular to the z-direction will get cancelled. The vertical component of
the field is

fz =
∫ ∫

σds cos α
r2

=
∫

σdω = σω (3.34)

where
ds cos θ

r2
= dω.

Here dω is the solid angle subtended by the elementary mass at the P, ω is
the total solid angle subtended by the plate at the point P. The field at the
point P is equal to the density multiplied by the solid angle subtended at the
point P. For an infinitely large sheet ω = 2π.

fz = 2πσ (3.35)

and. the field is independent of the distance of the point of observation from
the plate.

Fig. 3.8. Gravitational field on the vertical axis of a square horizontal plate
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3.9 Gravitational Field due to a Circular Plate

In this section, we shall derive the expression for the gravity field due to
circular plate. Let us choose the polar co-ordinate (r, ψ). The field at a point
P along a vertical line crossing the plane of the plate at right angles for the
elementary mass is σrdrdψ

R2 . where σ is surface density (Fig. 3.9). Therefore,
the vertical component of the field is

Δfz =
σrdrdψ

R2
cos α. (3.36)

Other components will vanish because of symmetry of the problem. Hence

fz =

a∫

o

2π∫

o

σrdr
R2

dψ.
z
R

[
∵ cos α =

z
R
,R2 = r2 + z2

]

=

a∫

o

2π∫

o

σzrdrdψ
(r2 + z2)3/2

(3.37)

= 2πσz

a∫

o

rdr

(r2 + z2)3/2
= 2πσz

[
− 1√

r2 + z2

]a

o

= 2πσz
[
1
z
− 1√

z2 + a2

]
= 2πσ

[
1 − z√

z2 + a2

]
.

Fig. 3.9. Gravitational field on the vertical axis of a horizontal circular plate
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3.10 Gravity Field at a Point Outside on the Axis
of a Vertical Cylinder

To compute gravitational field at a point P on the axis of a cylinder at a
point outside it, we assume an elementary mass σρdρdψ dz inside the cylinder
(Fig. 3.10). Here R is the radius of the cylinder. hu and hd are the depths,
from the surface, to the top and bottom planes of a cylinder of length or
height H. σ is the volume density of mass.

Fig. 3.10. Gravitational field on the axis of a vertical solid cylindrical body at a
point outside the body



3.10 Gravity Field at a Point Outside on the Axis of a Vertical Cylinder 57

The gravitational attraction due to an elementary mass at the point P
outside the cylinder and on its axis is

dg =
G dm

r2
= G

σρdρdψdz
r2

(3.38)

where dv = ρdρdψdz. ρ is the radial distance of the elementary mass from
the axis of the cylinder. Since only the vertical component is of interest.

So

dgz = dg cos θ = dg
z
r

=
Gσρdρ.dψzdz

r3
. (3.39)

The total gravitational attraction of the cylinder at the point P is given by

Δgz = Gσ
R∫

ρ=o

hd∫

hu

2π∫

ψ=o

ρdρdψzdz

(ρ2 + z2)3/2
(3.40)

⇒ Gσ
2π∫

o

dψ
hd∫

hu

zdz

R∫

o

ρdρ
(ρ2 + z2)3/2

(3.41)

⇒ 2πGσ
hd∫

hu

zdz

R∫

o

ρdρ
(ρ2 + z2)3/2

⇒ 2πGσ
hd∫

hu

zdz

∣∣∣∣∣−
1

(ρ2 + z2)1/2

∣∣∣∣∣
R

o

(3.42)

⇒ 2πGσ

⎡
⎣

hd∫

hu

dz −
hd∫

hu

zdz
(R2 + z2)

⎤
⎦

R

o

⇒ 2πGσ
hd∫

hu

zdz
(

1
z
− 1√

R2 + z2

)

⇒ 2πGσ
[
(hd − hu) −

√
R2 + h2

d +
√

R2 + h2
u

]
(3.43)

So

Δgz = 2πGσ
[
H −

√
R2 + h2

d +
√
R2 + h2

u

]
. (3.44)

Case I

If the point of observation is located right on the upper surface of the cylinder.
Then hu = O, hd = H and
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Δgz = 2πGσ
[
H −

√
R2 + H2 + R

]
. (3.45)

Case II

When R >> H
Δgz = 2πGσH. (3.46)

This is the expression for Bouguer gravity anomaly due to the plate.

Case III

When R << H
Δgz = 2πGσR. (3.47)

This is the expression for a gravitational field for H → ∞. i.e., for colum-
nar structures like volcanic pipe or a long cylindrical intrusions like mantle
xenoliths etc.

3.11 Gravitational Potential at a Point due
to a Spherical Body

Let a small elementary circular shell is assumed in a spherical body at a
distance ‘a’ from the centre of the sphere (Fig. 3.11).The point of observation
P is at a distance R from the centre of the sphere and ‘r’ from the elementary
mass.

So
dm = ρa2 sin θ d θ da d ψ

where ρ is the density of the material of the spherical body (spherical shell or
solid sphere). The gravitational potential at a point P is given by

Fig. 3.11. Gravitational potential and field at a point P outside a spherical body
(solid or hollow)
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φp = −G
2π∫

o

π∫

o

ρa2 sin θ dθ da dψ√
a2 +R2 − 2aR cos θ

(3.48)

where
r2 = a2 + R2 − 2aR cos θ

and
rdr = aR sin θ d θ.

So
φp = −2πGρ

a
R

da
∫

dr. (3.49)

Case I

When the point P is outside the sphere

φ0 = −2πGρ
a

R
da

R+a∫

R−a
dr

= −4πGρ
a2

R
da. (3.50)

Since the total mass of the shell = 4πρa2da, the potential φp = −Gm
R as if

the mass of the spherical shell is put at the centre.

Case II

If the point of observation P is inside (Fig. 3.12)

φi = −2πGρ
a

R
da

a+R∫

a−R
dr = −4πGρ ada (3.51)

= −Gm
a where m is the total mass of the shell.

Fig. 3.12. Computation of potential at a point P within a spherical shell of outside
radius a and inside radius b
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When the outer and inner radii of the shell are respectively ‘a’ and ‘b’, the
mass is M = 4

3π
(
a3 − b3

)
ρ.

Therefore the potential outside is

φ0 = −4πGρ
R

a∫

b

a2 da = −4π
3

Gρ
R

[
a3 − b3

]
= −G

M
R
. (3.52)

The potential at internal point

φi = −4πGρ
a∫

b

ada = −2πGρ
(
a2 − b2

)
. (3.53)

Since a2−b2 = Constant, the field inside
(
∂ρi
∂r = 0

)
is zero for the solid sphere.

φi = 2πGρa2 = Constant. Therefore, the field inside will be zero.
The gravitational potential at any point inside a solid body is determined

by the mass internal to the point inside the sphere of radius ‘a’. The mass out-
side does not have any effect on the potential. It shows that the gravitational
field at the centre of the earth is zero.

Case III

When the point of observation ‘P’ is within the spherical shell
For the point P outside, the potential

φ0 =
4
3

πGρ
R3 − b3

R
(3.54)

and for inside
φi = 2πGρ(a2 − R2). (3.55)

So the total potential φ in the material itself is

φtotal = φ0 + φi = −4
3

πGρ
(

R3 − b3

R

)
− 2πGR

(
a2 − R2

)

= −4πGρ
[
1
2
a2 − 1

3
b3

R
− 1

6
R2

]
. (3.56)

The gravity field

gm = − ϕn
∂R

= −4
3
πGρ

[
− b3

R2
+R

]
= −4

3
πGρ

[
−R

3 − b3

R2

]
. (3.57)

We can now examine the continuity of the potentials at the boundaries

(i) when R < b
φp = 2πGρ

(
a2 − b2

)
(3.58)
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Fig. 3.13a. Potential at a point inside a spherical shell due to mass of the spherical
shell

(ii) when b < R < a

φp = −4πGρ
(

1
a2

− 1
3

b3

R
− 1

6
R2

)
(3.59)

(iii) when R > a

φp = −4
3

πGρ
a3 − b3

R2
. (3.60)

When R = b, potentials for case (i) and (ii) becomes 2πGρ(a2 − b2) and
when R = a, the potentials for case (ii) and (iii) becomes

−4
3

πρG
a3 − b3

a
.

Therefore, the potential remains same inside the boundary. As soon as the
point of observation comes out on the surface, the potential and field intensi-
ties decreases with distance as follows (Fig. 3.13a and Fig. 3.13b):

Fig. 3.13b. A curtoon of variation of ‘g’ both outside and inside the air-earth
boundary, g = 0 at the centre of the earth as well as in the outer space;maximum
value of g is at a certain depth from the surface
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(i) for R < b
gp = 0

(ii) for b < R < b

gp = −4
3

πGρ
R3 − b3

R2
(3.61)

Both potential and gravitational field are continuous across the boundary.

3.12 Gravitational Attraction on the Surface due
to a Buried Sphere

Gravitational attraction upon unit mass at a point P on the surface due to a
buried sphere of radius R, density σ and buried at a depth z is given by

G
M
r2

=
4
3

πGR3σ
(z2 + x2)

(3.62)

where M( = 4
3 πR3σ) is the mass of the spherical body and r =

√
z2 + x2. The

vertical component of the gravitational attraction will be equal to (Fig. 3.14)

gz = G
M
r2
.
z
r

=
4
3

πGR3σ.
3

(z2 + r2)3/2
. (3.63)

Gravitational force will be maximum at the origin i.e., at z = 0 and x = 0
on the surface. The value will die down symmetrically on both the sides of

Fig. 3.14. Gravitational anomaly on the surface due to a buried spherical body of
radius R
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the spherical mass with increasing distance x from the origin. For further
studies the readers are referred to the works of Blakely(1996), Talwani and
Ewing(1961), Radhakrishnamurthy(1998) Telford et al (1976) and Dobrin and
Savit(1988).

3.13 Gravitational Anomaly due to a Body
of Trapezoidal Cross Section

Gravitational attraction on the surface at a point P due to a body of rect-
angular cross section present within the depth extent of z2 and z1(z2 > z1)
(Fig. 3.15) is given by

Δgp = 2Gρ
z2∫

z1

x2∫

x1

z dx dz
x2 + z2

(3.64)

where G is the universal gravitational constant and ρ is the density contrast
of the body with the surrounding host rocks

For a two dimensional body of trapezoidal cross-section as shown in the
Fig. 3.15.

RQ = rdθ = dx Sinθ (3.65)

The gravitational anomaly due to a two dimensional body of trapezoidal cross
section is given by

Δgρ = 2Gρ
∫ ∫

z
x2 + z2

dx dz. (3.66)

Since z = rSinθ, and z
x2+z2 = r Sinθ

r2 = Sinθ
r ,

we get

Δgρ = 2Gρ
∫ ∫

Sinθ
r

dx dz (3.67)

= 2Gρ
θ2∫

θ1

z2∫

z1

dθ dz. (3.68)

Fig. 3.15. Gravitational anomaly due to a two dimensional body of trapezoidal
cross section
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Fig. 3.16. Enlarged view of a trapezoidal cross section of a body and the direction
of line integral

Line integral along the trapezoidal cross section (Fig. 3.16) is given by

∮
θdz =

θ2∫

θ1,z1

θdz +

z2∫

z1,θ1

θdz +

θ1∫

θ2,z2

θdz +

z1∫

z2,θ1

θdz (3.69)

= 0 + θ2(z2 − z1) + 0 + θ1(z1 − z2)
= (z2 − z1)(θ2 − θ1). (3.70)

3.13.1 Special Cases

Case I Gravitation Attraction Due to a Two Dimensional
Horizontal Slab

Figure 3.17 shows the geometry of the problem. Gravitational anomaly at the
point P.

Δgρ = 2Gρ

⎡
⎣

B∫

A

θdz +

C∫

B

θdz +

D∫

C

θdz +

A∫

D

θdz

⎤
⎦ (3.71)
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Fig. 3.17. Gravitational attraction at the point P due to a two dimensional hori-
zontal slab

= 2Gρ

⎡
⎣

π∫

0,z1

θdz +

π,z2∫

π,z1

θdz +

π,z2∫

π,z2

θdz +

π,z2∫

π,z1

θdz

⎤
⎦ (3.72)

= 2Gρ[0 + π(z2 − z1) + 0 + 0]
= 2πGρ(z2 − z1). (3.73)

Case II Gravitational Anomaly Due to a Fault with a Small Throw

Figure 3.18 shows the geometry of the figure. The gravitational anomaly at
the point P is

Δgρ = 2Gρ

⎡
⎣

θ∫

0,z1

θdz +

z2∫

z1,θ

θdz +

0∫

z2,θ

θdz +

z1∫

z2,0

θdz

⎤
⎦ (3.74)

= 2Gρ[0 + θ2(z2 − z1) + 0 + 0] (3.75)

= 2Gρθh = 2Gρh tan−1 z
x
. (3.76)

Fig. 3.18. Gravitational anomaly due to a fault with a small throw
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Case III Gravitational Anomaly due to a Body of Rectangular
Cross Section

Figure 3.19 Show the geometry of the problem. Gravitational anomaly at a
point P is given by

Δgρ =2Gρ

⎡
⎣

θ1∫

θ2,z1

θdz +

θ2,z2∫

θ1,z1

θdz +

θ3∫

θ4,z2

θdz +

θ2,z1∫

θ3,z2

θdz

⎤
⎦ (3.77)

=2Gρ

⎡
⎣0 +

z2∫

z1

tan−1 z
x
dz + 0 +

z2∫

z2

tan−1 z
x2

dz

⎤
⎦ (3.78)

=2Gρ [z2 (θ4 − θ3) + z1(θ2 − θ1)

−1
2

(
x1 ln

x2
1 + z2

2

x2
1 + z2

1

+ x2 ln
x2
2 + z2

1

x2
2 + z2

2

)]
. (3.79)

Since
∫

tan−1 x
adx = x tan−1 x

a − a
2 ln(a2 + x2)

Case IV Gravitational Attraction at a Point on the Surface due to
a Thin Plate

Figure 3.20 shows the geometry of the problem. Gravitational anomaly at the
point P due to the thin plate of finite length is given by

Δgρ = 2Gρ [z2(θ4 − θ3) + z1(θ2 − θ1)]
= 2Gρ [Δż(θ1 − θ2)]
= 2Gρtθ (3.80)

where θ is the angle made by the plate at the point of observation P. t (= Δz)
is the thickness of the plate.

Fig. 3.19. Geometry of the buried prism of rectangular cross section and the point
of observation on the surface
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Fig. 3.20. Geometry of a buried thin slab and the point of observation on the
surface

Case V Gravitational Attraction at a Point on the Face of a Two
Dimensional Ridge

Figure 3.21 shows the geometry of the problem. Gravitational attraction at a
point P on the face of a two dimensional ridge is given by

Δgρ =2Gρ

⎡
⎣
⎧
⎨
⎩

∞∫

x1,z1

θdz +

z2∫

z1,∞
θdz +

x2∫

∞,z2

θdz +

x1,z1∫

x2,z2

θdz

⎫
⎬
⎭

+

⎧
⎨
⎩

x0,z0∫

x1,z1

θdz +

∞∫

x0,z0

θdz +

z1∫

zo,∞
θdz +

x1∫

0,z1

θdz

⎫
⎬
⎭

⎤
⎦ (3.81)

=2Gρ [{0 + 2π(z2 − z1) + 0 + (2π − α)(z1 − z2)}
+ {(π − α)(zo − z1) + 0 + 0 + 0}] (3.82)

=2Gρ[(z2 − z1)(2π − 2π + α) + (π − α)(zo − z1)] (3.83)

=2Gρ[α(z2 − z1 − zo + z1) + π(zo − z1)] (3.84)

=2Gρα(z2 − zo) − 2πGρ(z1 − zo). (3.85)

Fig. 3.21. Geometry of a ridge and the point of observation on the ridge surface
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Case VI Gravitational Attraction on the Surface due to a Buried
Two Dimensional Body of Hexagonal Cross Section.

Figure 3.22 shows the geometry of the problem. Here gravitational attraction
at a point P due to an elementary strip of hexagonal cross section is given by

Δgρ =
∮

θdz. (3.86)

In segment BC

z = x tan θ = (x − ai) tan ψ1

= x tan ψ1 − ai tan ψi. (3.87)

From the (3.87) we get

x = ai tan ψi/(tan ψi − tan θ) (3.88)

and
z = x tan θ =

ai tan θ tan ψi

tan ψi − tan θ
, (3.89)

therefore
ΔgBC = 2Gρ

∮
ai

tan θ tan ψi

tan ψi − tan θ
dθ. (3.90)

The total gravity anomaly will be

Δg = ΔgBC + ΔgCD + ΔgDE + ΔgEF + ΔgFA + ΔgAB (3.91)

ΔgBC = ai sin φi cos φi

[
θi − θi+1 + tan ψ1 ln

cos θi(tan θi − tan ψi)
cos θi+1(tan θi+1 − tan ψi)

]

(3.92)

Fig. 3.22. Geometry of a buried two dimensional cylindrical structure of hexagonal
cross section and the point of observation on the surface
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Since

θi = tan−1 zi

xi
, θi+1 = tan−1 zi+1

xi+1

ψi = tan−1 zi+1 − zi

xi+1 − xi

and

ai = PC/ = QC/ = xi+1 − zi+1 Cot ψi = xi+1 + zi+1
zi − zi+1

xi+1 − xi
. (3.93)

Therefore the final expression for the gravitational anomaly for a prism with
n number of face is given by

Δgρ =2Gρ
n∑

i=1

[
xizi+1 − zixi+1

(xi+1 − xi)2 + (zi+1 − zi)2

]
(xi+1 − xi) (θi − θi+1)

+ (zi+1 − zi) ln
ri+1

ri

]
. (3.94)

3.14 Gravity Field of the Earth

Gravity field of the earth is a global naturally existing field which attracts any
mass having a definite density and weight towards the centre of the earth. One
can measure this field or it’s variations on the surface of the earth, in the air,
in the ocean, inside a borehole or inside a mine. Thus the different branches of
gravity measurements, viz., aerogravity, marine gravity, borehole gravity and
surface gravity have developed. In surface gravity also (i) survey for geodesy,
(ii) survey for crustal studies (iii) survey for oil exploration and (iv) survey
for mineral exploration have altogether different dimensions. That is why in
a square grid gravity survey the distance between the two consecutive gravity
stations can be around 100 km for geodetic survey to 10 meters for mineral
survey.

Normal gravity field of the earth varies from 978.0327 gal at the equator to
981.2186 gal at the pole (Wilcox 1989). Point to point variation of the gravity
field is termed as gravity anomaly Δg and its’ unit is milligal.

Gravity data need a few corrections before they can be used for routine
interpretation using forward modelling and inversion. The corrections are

(i) Free air correction
(ii) Bouguer correction
(iii) Terrain correction
(iv) Latitude correction
(v) Tidal correction
(vi) Isostatic correctiom
(vii) Drift correction
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3.14.1 Free Air Correction

Earth, s normal gravity field varies inversely as the square of the distance.
Therefore, hills and valleys bring variations in the earth’s gravitational force
of attraction. Gravity at a height ‘h’ at any latitude can be represented by
truncated Taylor’s series expansion

G(R + h) = g(R) + h∂g(R)/∂R+ · · · · · · · · · · · · (3.95)

It generates the free air correction as

G(R +h) = g(R)− (0.30855+ .00022 cos2ψ)h + 0.073× 10−6h2 −−− (3.96)

where h is in meters and the gravity field is in milligal. For routine free air
correction 0.3086h milligal is added to the gravity value. It only depends upon
the distance of the point of observation from the centre of the earth.

3.14.2 Bouguer Correction

Bouguer correction accounts for the attraction of the assumed plate at an
assumed point in a datum plane from the point of observation on the surface.
Through Bouguer correction, all the gravity data are brought back to the
same datum plane. Earth materials below the observation point will generate
an additional force of attraction at the datum point which was not taken
care of in free air correction. The earth materials present below the point
of observation and above the assumed datum plane is given an approximate
shape of a plate of certain thickness and infinitely large radius. For reducing
all the gravity data to the same datum plane the Bouguer correction is always
substracted from the gravity data. It’s value is 0.04188 ρ where ρ is the density
of the slab (see Sect. 3.9)

3.14.3 Terrain Correction

Rugged topography in a hilly terrain with rapid variation in elevation causes
an extra correction to be added. Terrain correction is always added both
for hills and valleys because the presence of positive and negative masses
will always align the force of attraction vector in the same direction. Mass
excess in the hill and mass deficiency in the valley will dictate the quan-
tum of correction to be applied. Details are available in Dobrin and Savit
(1988).

3.14.4 Latitude Correction

Spheroidal shape of the earth with its equatorial bulge and centrifugal force
for rotation of the earth around it’s axis and revolution of the earth around
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the sun in its orbit generates the latitude correction. It’s latitude dependence
is expressed by the equation(Heiskanen and Vening Meinsz 1958)

g(ψ) = 978.049(1 + 0.0052884Sin2ψ − 0.0000059Sinψ (3.97)

where‘ψ’ is the latitude on the surface of the earth. This is the international
gravity formula. The radius of the spheroidal earth is given by

R(ψ) = 6378.388(1− 0.0033670Sin2ψ + 0.0000071Sin22ψ). (3.98)

The normal gravity formula for geodetic reference system is as follows

g(ψ) = 978.0327(1 + 0.0053024 Sin2ψ − 0.00000071 Sin22ψ). (3.99)

For routine latitude correction needed for geodetic survey as well as for surveys
related with crustal studies the latitude correction used is ≈ 1.307 Sin2ψ.

3.14.5 Tidal Correction

Sensitive gravimeters respond to the position of the sun and moon with respect
to the earth and the values of g varies with the tides in the ocean. It may be
a fraction of a milligal but it is measurable.

3.14.6 Isostatic Correction

Isostatic correction originated due to the presence of lateral variation of den-
sity within the earth, s crust. After the said corrections are applied, the
Bouguer anomaly for particular reference plane should have been zero in large
scale mapping and keeping aside the local variations in densities .In realities
it is was observed that negative Bouguer anomaly exists near the mountains
and positive anomaly exits near the oceans.

Two scientists named G.B. Airy and J.H. Pratt proposed two different
models for the crust. Airy’s model suggests that crust is thick near the moun-
tains and mountains have roots and it is thiner below the ocean bottoms and
here the crust has antiroots. The density of the crust is assumed to be the
same. Pratt assumed a variable density model and this variation in density
has direct relation with the elevation of the ground from the mean sea level.
Depth of the ocean floor from the mean sea level causes increase in density.
Figures 3.23a.b show the Airy and Pratt’s isostatic models.

Isostatic correction is needed only for geodetic survey as well as for surveys
related to crustal studies. For routine exploration survey only free air, Bouguer
and terrain corrections are necessary. Drift correction is an instrument based
correction. Round the clock reading at one point can give the idea about drift
correction to be added or subtracted.
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Fig. 3.23. (a) Airy’s isostatic model; (b) Pratt’s mode

3.15 Units

G = cm/gmsec2 (CGS unit)
= m/kgsec2 (MKS unit)

g = cm/ sec2 and gal
Δg = milligal(10−3 gal)
ρ = gms/cc.

3.16 Basic Equation

The basic equations for the gravitational field are

(i) �g = −grad φg (3.100)

where φg is the scalar gravitational potential.
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(ii) Curl �g = 0 (3.101)

because the force of attraction is along the line joining the two masses.

(iii) div grad φg = ∇2φg = 4πGm (3.102)

when the region contains the mass. It satisfies Poisson’s equation. In a source
free region ∇2φg = 0 and it satisfies Laplace’s equation.
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Electrostatics

In this chapter a brief introduction on electrostatics is given. Coulomb’s law,
electrostatic potential, electrical permittivity, electrical fluxes and displace-
ment vector, Gauss’s theorem on total normal induction, electrostatic dipole
potential and field, Laplace and Poisson’s equations,. electrostatic energy,
boundary conditions and basic equations in electrostatics are given.

4.1 Introduction

It was known to the people for more than three centuries that if an insulator is
rubbed with a cloth it acquires a special property of attracting other objects.
It was said that the body got charged. As early as 1785 Coulomb first quan-
titatively measured the force of attraction or repulsion. It was observed that
when a glass rod is rubbed with a silk cloth, it acquires positive charge. Simi-
larly when an amber rod is rubbed with a black cotton cloth negative charge
originates. These positive and negative charges are arbitrary convensions. Sim-
ply these charges are found to be of opposite polarities. Electrostatics deals
with these immovable electric charges of opposite or same signs and the fields
created by these charges. The energy spent to rub an amber or a glass rod
is partly converted into electrical energy and partly into heat energy due to
friction. This electrical energy appears in the form of electrical charges. It is
observed that the number of charges in the glass rod is exactly same as that
in the silk cloth. It proves the total conservation of charges and energy remain
the same. Free energy (which can be easily converted into work) in any ther-
modynamic system was used to separate these two types of charges present
in a body. They originate from an uncharged neutral body. Like charges repel
and unlike charges attract. These electric charges remain static and generate
electric field. The subject electrostatics is one of the most fundamental sub-
jects in potential theory. Because some of the most fundamental concepts and
equations, used in electromagnetic theory, came from electrostatics.
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Fig. 4.1. Coulomb force of attraction between a positive and a negative charge
separated by a distance r

4.2 Coulomb’s Law

Coulomb’s law states that two point charges q and q′ separated by a distance
‘r’ will have (i) a force of attraction or repulsion directly proportional to the
product of the two charges and inversely proportional to the square of the
distance, (ii)the force of attraction or repulsion will be along the line joining
the two charges(Fig. 4.1), (iii) the constant of proportionality k = 1/4π ∈,
where ∈ is the electrical permittivity of the medium (Sect. 4.4) (iv) like charges
repel and unlike charges attract. The expression for electrostatic force is given
by

F = k
qq′

r2
. (4.1)

This is known as the Coulomb’s law of force and k is a constant. Units of q,r
and F are respectively in coulomb, meter and Newton,.

4.3 Electrostatic Potential

Potential at a point in an electrostatic field is the amount of work done to
bring an unit charge from infinity to that point. Since work done = force x
distance, we can write

Workdone = −
R∫

∞

�Fr d �dl. (4.2)

Since

F =
q

4π ∈ r2
for an unit charge. = −

R∫

∞

q

4π ∈ r2
dr. =

1
4π ∈ .

q

r
(4.3)

Therefore the potential at a point P2 at a distance r from a single charge q at
P1 is given by 1

4π∈ .
q
r (Fig. 4.2). The potential φ

(
= 1

4π∈
q
r

)
has only magnitude

and no direction and therefore it is a scalar potential. Potential at a point is
independent of the path followed.

The potential at a point P due to number of charges q1, q2, q3 . . . situated
at distances r1, r2, r3 is given by

φ =
1

4π ∈
(
q1
r1

+
q2
r2

+
q3
r3

+ . . . ..

)
. (4.4)
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Fig. 4.2. Work done for movement of the unit charge in the field

If there is a continuous distribution of charge throughout a region instead of
being located at discrete points, the region can be divided into elements of
volume Δv. Then each Δv contains charge ρΔv where ρ is the volume density
of charge in the volume element. The potential at a point is given by

φ =
1

4π ∈ .
∞∑
i=1

ρiΔvi
ri

(4.5)

where ri is the distance of the ith volume element from P. When the size of
these volume elements become infinitesimally small

φ =
1

4π ∈
∫
ρdv

r
. (4.6)

4.4 Electrical Permittivity and Electrical Force Field

If two opposite faces of an insulator (Fig. 4.3) are charged with potential
difference φ applying an external electric field, the charges on the two opposite
faces will be given by

φC = q (4.7)

where C is the capacitance of a dielectric and φ is the voltage across the two
faces. Capacitance between the two plates can be defined as the charges needed
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Fig. 4.3. Charging of a dielectric (capacitance) between the two opposite faces

for unit potential difference between the two opposite faces of a capacitor. Unit
of capacitance is farad. This name was chosen to honour Micheal Faraday. The
unit farad = 1 coul/volt. More practical units are microfarad (1 μf = 10−6 f)
and picofarad (1pf = 10−12f). Equation (4.7) can be written as,

C.
l

A
.

(
φ

l

)
=

q

A
(4.8)

Here l is the distance between the two opposite faces of a capacitor.
where ∈= C 


A . The capacitance of a body per unit length and unit
cross section is termed as electrical permittivity or electrical capacitivity of a
medium. Potential per unit width of the capacitor is the field �E So E = φ

l and
�D
(
= q

A

)
is the charge per unit area. It is termed as the dielectric flux den-

sity. It is also termed as the displacement vector. Its unit is Coulomb/meter2.
In a vacuum ∈=∈0= 8.854 × 10−12 farad/meter When an electric field is
applied between two opposite faces of a dielectric material, potential gener-
ated between the two opposite faces of the dielectric depends upon capacitance
of the dielectric. Dielectric constant is given by ∈k=∈0∈r where ∈0= 1

36πx109

and is the free space electrical permittivity of the medium. ∈r is the relative
electrical permittivity of the body with respect to the free space value. The
electrostatic field due to a point charge is given by,

�E =
1

4π ∈ .
q

r3
.�r (4.9)

The field lines for a point source (positive charge) and sink (negative charge)
are radial (Fig. 2.3) in a homogeneous and isotropic dielectric and the equipo-
tential surfaces will be spherical. The direction of force is along the line joining
the two charges irrespective of polarity of the charges.
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x

Fig. 4.4. Shows the electrostatic field due to two opposite charges in a homogeneous
and isotropic medium

4.5 Electric Flux

When an isolated positive or negative charge is placed in a homogenous and
isotropic dielectric medium , field lines originating from the source spread
along the radial direction with the charge at the centre (Fig. 2.3). In the case
of a negative charge the field lines will converge radially to the negative charge.
When a positive and a negative charge is placed in a dielectric medium the
field lines will start from a positive charge and will end up in a negative charge
as shown in Fig. 4.4. The field lines are the lines of forces or the flux lines. The
important properties of these electric flux are (i) these fluxes are independent
of the medium, (ii) the magnitude of these fluxes is solely dependent upon
the strength of the charge from which the flux lines come out, (iii) the electric
flux density must be inversely proportional to the square of the distance if the
flux source is covered by a bounded domain say a sphere. The flux lines will
be perpendicular to the spherical surface.

4.6 Electric Displacement ψ and the Displacement
Vector D

Faraday’s famous experiment on movement of electrostatic charges in different
spherical shells is as follows: A sphere with charge q is placed within another
spherical shell without touching it. The outer sphere is momentarily earthed
and when the inner sphere is removed, the charge on the outer shell is found to
be exactly the same as that in the inner sphere but of opposite sign. It is true
for all sizes of the sphere and for all dielectric constants of the media. There is
a displacement of charges from the inner sphere to those in the outer sphere.
The amount of displacement depends only upon the magnitude of the charge
q. Thus the displacement is in Coulomb i.e., Ψ = q. The electric displacement
per unit area at any point on a spherical surface of radius ‘r’ is the electric
displacement density �D. It is a vector because there is a definite direction for
this displacement. So,
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�D =
ψ

4πr2
=

q

4πr2
(4.10)

The unit is in Coulomb/meter2. The displacement per unit area at any point
depends upon the direction of the area and it is normal to the surface elements.
This displacement is along the direction of the field in a homogeneous and
isotropic dielectrics. Therefore we can again write,

�D =
q

4πr2
.�r (4.11)

�D =∈ �E. (4.12)

The vector D is also called displacement vector. We can define the flux Ψ =
D.ds where ds is the differential surface elements on the surface S.

In an anisotropic dielectric, the electrical permittivity becomes a tensor
and the connecting relation between D and E can be expressed as

Dx =∈11 Ex+ ∈12 Ey+ ∈13 Ez

Dy =∈21 Ex+ ∈22 Ey+ ∈23 Ez

Dz =∈31 Ex+ ∈23 Ey+ ∈33 Ez

and in the matrix form
⎡
⎣
Dx

Dy

Dz

⎤
⎦ =

⎡
⎣
∈11 ∈12 ∈13

∈21 ∈22 ∈23

∈31 ∈32 ∈33

⎤
⎦
⎡
⎣
Ex
Ey
Ez

⎤
⎦ (4.13)

4.7 Gauss’s Theorem

The total normal induction or total displacement of electric flux through any
closed surface, which enclosed the charges, is equal to the amount of charge
enclosed. From Fig. 4.5, the displacement or electric flux through the elemen-
tary surface ds is

dΨ = D ds cos θ (4.14)

where θ is the angle between D and �n. where �n is normal to the surface ds.
The total normal induction through the entire surface is given by

Ψ =
∮
�D ds cos θ (4.15)

where the integration is over the whole surface.
Solid angle dω is (Fig. 4.6)

dω =
ds cos θ

r2
(4.16)

and,
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q

D
ds

r

d

Fig. 4.5. Shows the normal induction through the surface ds when a charge q is
bounded by the surface S

ψ =
∮
Dr2d�. (4.17)

Substituting the value of D from (4.6), we get

ψ =
q
4π

∮
dω. (4.18)

Since the total solid angle subtended at the point O (occupied by the charge
q) by the closed surface is 4π, therefore

ψ = q. (4.19)

If there be n number of dielectric charge qi within the enclosed volume, the
total flux on the surface will be,

ψ =
n∑

i=1

qi. (4.20)

If the charges are distributed throughout the volume and ρ is the volume
density of charge then the total normal induction through the surface is

ψ =
∫

v

ρ dv. (4.21)

Fig. 4.6. Shows the solid angle subtended at the point o due to the surface ds
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Now (4.18) can be written as,

Ψ =
∮

D.ds. (4.22)

From (4.22), we can write,
∮
�D.d�s =

∫
ρdv. (4.23)

Applying Gauss’s divergence theorem, we can write
∫

v

div�Ddv =
∫

s

�D.�n.ds =
∫

v

ρdv (4.24)

div�D = ∇.�D = ρ. (4.25)

4.8 Field due to an Electrostatic Dipole

Both dipoles and bipoles consist of two poles. The difference lies in the distance
between the two poles. In an electrostatic dipole the distance between the two
poles is negligibly small in comparison to the distance of the observation point.
As a result the potential and field vary inversely as the square and cube of the
distance respectively. For bipole fields, the distance between the two charges
is comparable to the distance where we measure the field. As a result the
potential and field vary inversely as the first and second power of distance.

In this section, we shall develop the expressions for potentials and fields
for static field. Let the charges + q and −q separated by a distance ‘l’ are
placed along the z-axis. ql is the moment of the dipole. The point dipole is
defined as Lim

l→0
q→∞

ql = finite.

Figure 4.7 shows the location of the dipole. The point of observation P is
located at a certain point x, y, z in a cartesian coordinates. The vector l is
from +q to −q. The potential at P is given by

φ =
q

4π ∈
(

1
r1

− 1
r2

)
(4.26)

Substituting the values of r1 and r2, we get

φ =
q

4π ∈

[(
r2 +

l2

4
− lr cos θ

)−1/2

−
(

r2 +
l2

4
+ lr cos θ

)−1/2
]

=
q

4π ∈ .
1
r

[(
1 +

l2

4r2
− l

r
cos θ

)−1/2

−
(

1 +
l2

4r2
+

l
r

cos θ
)−1/2

]
(4.27)
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l

-q

r1

r2

r

P

Fig. 4.7. Shows the electrostatic dipole. P is the measuring point of potential and
field

=
q

4π ∈ .
1
r

[
1 − l2

8r2
+

l
2r

cos θ − 1 +
l2

8r2
+

l
2r

cos θ
]

+ . . . . (4.28)

=
q

4π ∈ .
1
r

[
l
r

cos θ + 12and higher order terms
]

=
ql

4π ∈ .
cos θ
r2

=
�P

4π ∈ .
cos θ
r2

where �P is the dipole moment. (4.29)

The expression for the dipole field is,

�E =
�P.�ar

4π ∈ .r3
. (4.30)

The field components in spherical and cartisian coordinates are respectively
given by

�Er = −∂φ
∂r

=
2�P

4π ∈ .
cos θ
r3

(4.31)

�Eθ = − ∂φ
r∂θ

=
�P

4π ∈ .
sin θ
r3

(4.32)

�EΨ = 0. (4.33)

The total field is

�P
4π ∈ r3

(�ar2 cos θ +�aθ. sin θ)

=
�P

4π ∈ .
z

(x2 + y2 + z2)3/2
. (4.34)

The components are
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�Ex =
�P

4π ∈ .
3xz

(x2 + y2 + z2)5/2
=

�P
4π ∈ .

3xz
r5

�Ey =
�P

4π ∈ .
3yz
r5

(4.35)

�Ez =
�P

4π ∈

{
3z2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2

}

=
�P

4π ∈
(

3z2

r5
− 1

r3

)
. (4.36)

For dipoles, the expressions for the potential can also be written as

φ =
1

4π ∈ .q
(

1
r1

− 1
r2

)

=
1

4π ∈ .ql

(
1
r1

− 1
r2

l

)

=
1

4π ∈ .
�P.Lim

l→0

∂

∂l

(
1
r

)
.

So the differential form of the expression for potential at a point due to a
dipole is given by

φ =
�P

4π ∈ .
∂

∂l

(
1
r

)
. (4.37)

The potential due to a single pole is φ = q
4π∈ .

1
r . For surface distribution of

single poles, the expression for the potential will be

φ =
∫ ∫

σds
r

(4.38)

where σ is the surface density of charge. For dipoles, the direction of the dipole
will be at right angles to the surface. If �P is the moment of the dipole per
unit area, �Pds is the moment of the dipole for a small area ds. Assume that
each dipole is normal to the surface. So the potential at a point p due to the
elementary surface ds. (Fig. 4.8) is

φ =
�Pds
4π ∈ .

∂

∂n

(
1
r

)
(4.39)

The total potential due to a surface distribution of dipoles is given by

φ =
∫ ∫ �Pds

4π ∈ .
∂

∂n

(
1
r

)
(4.40)

where the direction of the moment is at right angles to the direction of the
surface. Therefore
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Fig. 4.8. Dipole surface

φ =
∫ ∫ �P

4π ∈ .
ds cos θ
r2

=
�P

4π ∈
∫ ∫

dω =
�Pω

4π ∈ (4.41)

where ω is the solid angle subtented at the point P. �p is the dipole moment
due to the surface S.

4.9 Poisson and Laplace Equations

Starting from equation (4.25),i.e.

∇D = ρ,

we can write

∇.ε�E = ρ

⇒ ∇.�E =
ρ
∈ . (4.42)

Since
E = −∇φ,

therefore

∇.∇φ = − ρ
∈

⇒ ∇2φ = − ρ
∈ . (4.43)

This is known as the Poisson’s equation. In a free space where there is no
electrostatic source, (4.43) reduces to,

∇2φ = 0 (4.44)
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This is a Laplace equation These equations are of primary importance in
scalar potential field theory. In rectangular coordinates, Poisson or Laplace
equation is written as,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= − ρ

∈ or 0 (4.45)

depending upon whether the source is included in or excluded from the vol-
ume.

These are second order partial differential equations and are related to
the rate of change of potential in three mutually perpendicular directions. In
terms of electric field it can be written as

∇.�E =
ρ

∈ or 0. (4.46)

4.10 Electrostatic Energy

A capacitor gets charged when a voltage φ is established between the two
plates. The stored energy can be converted into heat by discharging the capac-
itor. The amount of energy stored can be calculated from the work done in
charging the capacitor.

Since the potential is defined as the work done in moving a unit charge
from infinity to a particular point, the work done by moving a small charge Δq
through the potential difference of φ is φΔq. The voltage φ can be expressed
as

φ =
q

C
. (4.47)

The work done in increasing charge in a capacitor by an amount dq is
q

C
dq. (4.48)

The total work done in charging the capacitor to q Coulomb is

Total work =

q∫

0

q

C
dq =

1
2
q2

C
. (4.49)

Stored energy in a charged capacitor is

=
1
2
q2

c
=

1
2
φq =

1
2
φ2C. (4.50)

Since �E = φ
l i.e., the potential per unit length and ∈= C l

A , we get the expres-
sion of the electrostatic stored energy as

1
2
φ2C =

1
2
.
2

E.
2

l. ∈ .
A

l
=

1
2
∈ E2l3. (4.51)

So the stored electrostatic energy per unit volume is
1
2
∈ E2. (4.52)
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4.11 Boundary Conditions

The normal component of �D is
∫

s

�D.�n.ds.

Applying Gauss’s divergence theorem, we get
∫
�D.�n.ds =

∫

v

div�D.dv =
∫

v

ρdv = q (4.53)

Here q is the total charge and ρ is the volume density of charge. Let us assume
an elementary thin cylinder with negligible thickness with two faces on two
sides of the boundary (Fig. 4.9). The normal component of the displacement
vectors will go out of this volume for normal induction. Therefore Dn1 and Dn2

will be in the opposite direction. From Gauss’s law of total normal induction
we can write

(D2.n2 + D1n1)Δa = wΔa (4.54)

where D1 and D2 are the displacement vectors, n1 and n2 are the normal
vectors from the bottom and top surfaces of the cylinder, Δa is the surface
area of the cylinder and w is the surface density of charge. Since q =

∫
v

ρdv =

ρΔl.Δa (where ρ is the volume density of charge), we get

w = ρΔl,

and
(D2 − D1).n = w (4.55)

This equation shows that normal component Dn of the vector �D is discontinu-
ous at an interface due to accumulation of surface charge of density w. On the
surface of a conductor, surface charge density dissipates quickly but on a sur-
face of an insulator accumulated charge does not dissipate so quickly. Hence

daDn1

111 ,,

222 ,,

Dn2

Fig. 4.9. Normal component of the displacement vector at the boundary between
the two media of different electrical permittivity
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across the interface involving all except the poorest conductors or dielectrics,
the normal component of �D is continuous across the boundary i.e.,

Dn1 = Dn2 (4.56)

Since the electrostatic potential is also continuous across the boundary.
The boundary conditions generally applied to solve an electrostatic problem
are

(i) φ1 = φ2

(ii) ∈1

(
∂φ

∂n

)

1

= ∈2

(
∂φ

∂n1

)

2

. (4.57)

4.12 Basic Equations in Electrostatic Field

1. �F =
1

4π ∈ .
q1q2
r2

Coulomb′slaw (4.58)

2. �F = q�E (4.59)

3. �E =
1

4π ∈ .
q

r3
.�r (4.60)

4. �E = Lim
Δq→o

ΔF
Δq

(4.61)

5. div �E =
qν
∈ where qν is the volume density of charge. or

∇2E =
qν
∈ Poisson’s equation (4.62)

6. �E = −gradφe. φe is the scalar potential in electrostatics (4.63)

7. ∇2�E = O Laplace equation is a source free region (4.64)

8. �D = ∈ �E (4.65)

9. div �D = ρ (4.66)
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10. Curl �E = 0 (4.67)

11. Potential due to a dipole =
�P

4π ∈
cos θ
r2

(4.68)

where �P is the dipole moment.

12. Field due to a dipole =
�P.�ar

4π ∈ r3
(4.69)
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Magnetostatics

In this chapter, some preliminaries of static magnetic fields, viz, Coulombs
law, Faradays law of electromagnetic induction, Magnetic Induction, Mag-
netic field, Lorentz force, Magnetic properties of the rocks, Biot and Savart’s
law, Ampere’s force law, Ampere’s circuital law, Magnetic vector potential,
Magnetic scalar potential, Magnetomotive force, Magnetostatic energy, Mag-
netic field due to a dipole source are discussed. Nature of the geomagnetic field
are outlined briefly. Besides some of the basics like solenoidal, rotational and
irrotational (low frequency approximation) nature of the magnetostatic field,
similarities and dissimilarities with other scalar potential fields like gravity,
electrostatic and direct current flow field are highlighted. Geomagnetic field
along with magnetostatics and time varying magnetic fields made major in
roads in the various branches of geophysics. A brief outline of that is given.

5.1 Introduction

Magnetic field originates when a charge moves. Therefore no magnetic field is
associated with electrostatics. Magnetic field has link with direct and alter-
nating current flow fields. Magnetism, (i.e., the property of certain metallic
objects, to attract or repel some other metallic objects,) was known to the
people for the last several hundred years.

The word magnetism came from the word Magnesia an ancient city of Asia
Minor. Certain rocks in the vicinity of this city had the property of attracting
metallic bodies. It was observed that a needle shaped load stone got deflected
along a particular direction irrespective of any arbitrary orientation and it
was used by mariners to find out the north-south direction. This kind of
movement in the needle is possible when a couple act on it. The presence of
a couple is possible, when a field exists in the north-south direction and the
needle has north and south polarity at the two ends. Thus the existence of
the geomagnetic field was conceptualised.
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In 1819 Oersted first observed that there is a close connection between the
flow of electric current through a wire and the generation of magnetic field.
In 1820 Biot and Savart first experimentally demonstrated the quantitative
aspect of strength of the magnetic induction B and magnetic field H. In the
same year Ampere proposed his force law i.e., the law for force between the
two coils carrying currents.

Magnetic field is a global and naturally occurring field like gravity field
and can be measured anywhere on the surface of the earth, in the air, in
the ocean bottom and inside a borehole. Both magnetic and gravity fields
show local perturbations due to local variations in magnetic susceptibili-
tiy and density. Geophysicists are interested about these local and global
perturbations.

Gravity field generates always a force of attraction but magnetic field, like
electrostatic field, can have either the force of attraction or repulsion according
to the law “like poles repel and unlike poles attract”. Magnetic field has con-
ceptual north and south poles, the way we have positive charge and negative
charge in electrostatics. In this particular aspect magnetostatic field has some
similarity with the electrostatics field i.e., both the fields satisfy Coulombs
law. Electrostatic field, magnetostatic field and gravity field follow inverse
square law. The fields vary directly with the product of charges or masses or
pole strengths and inversely as the square of the distance. The constants of
proportionality are different for different fields. Both in the case of electro-
static field and direct current flow field, we brought the concept of potential
and electromotive force using the line integral of force multiplied by distance.
Similar concept of magnetomotive force exists where the work is done in the
magnetic field and the line integral of the magnetic field times the distance
gives magnetomotive force. Magnetostatics has the concept of both scalar
and vector potentials as well as rotational and irrotational field. Irrotational
nature of the magnetic field comes from the low frequency approximation and
in a source free region.

Positive charge and negative charge in the case of electrostatics, source
and sink in the case of direct current flow field can generate both bipole and
dipole fields depending upon the separation of the two opposite charges or two
opposite current sources. Separation between the north pole and south pole
can generate bipole and dipole fields in magnetostatics. That way magneto-
static field has some similarities with the electrostatic field and direct current
flow field.

Magnetostatic field has significant dissimilarities with the other fields.
Magnetostatic field is always a bipole or a dipole field. An isolated north
pole or south pole does not exist. A coil carrying current or a thin sheet
of magnetic substances with negligible thickness have both north and south
poles.

Magnetostatic field is a solenoidal field. Divergence of the magnetic field
is always zero because the poles do not stay in isolation. In the case of elec-
trostatic field, direct current flow field, gravity field, heat flow field etc, if the
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Fig. 5.1. Magnetic field due to a linear conductor carrying current

area under consideration is a source free region, then they become solenoidal
field and satisfy Laplace equation. If the region under consideration con-
tains source, then the fields will be nonsolenoidal. These fields then satisfy
Poisson’s equation. So both the options are there in the said nonmagnetic
fields.

Magnetostatic field is a rotational field (Figs. 5.1, 5.2). The curl of a mag-
netic field is not zero where as curl of gravity, electrostatic, direct current flow,
heat flow fields etc. are zero. These fields are irrotational field. Time varying
electromagnetic field also is a rotational field. In the absence of any current
source magentostatic field can also be an irrotational field. Geomagnetic field,
because of its low frequency approximation, becomes an irrotational field and
satisfy Laplace equation.

Fig. 5.2. Magnetic field due to a bar magnet
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Amongst all the static and stationary fields only magnetostatics has the
concept of vector potential. This is also one of the major differences with
other fields. These vector potentials received greater attention while solving
the electromagnetic boundary value problems.(see Chap. 13) in geophysics.

Magnetic lines of forces are continuous where as the electric field in elec-
trostatics starts from a positive charge and ends in a negative charge; current
flow lines in direct current flow field starts from a source and ends in a sink. In
this respect also magnetic field has dissimilarities with the electrostatic field
and the direct current flow field. The concept of bipole and dipole exists in
magnetostatics, electrostatics and DC field. A coil carrying current is called a
magnetic dipole. A coil carrying alternating current is termed as an oscillating
magnetic dipole. Magnetostatic field, electromagnetic field, gravity field can
be measured in the air. Aeromagnetic, aeroelectromagnetic and aerogravity
methods are standard geophysical airborne tools. For direct current flow how-
ever galvanic contact of both current and potential measuring probes with the
ground or any other medium of finite conductivity is necessary. Therefore DC
flow field does not have any airborne counterpart.

In the case of Geomagnetic field, div B = 0(see in this chapter) leads
to div H = 0 since B = μH(see this chapter).Hence H = −gradΦ where Φ
is a scalar potential. Geomagnetic field also satisfies Laplace equation (see
Chap. 7). Since J, the current density in the air is negligible and ∂D/∂t the
displacement vector is zero, curlH = 0. Therefore geomagnetic field becomes
an irrotational and a scalar potential field in all respect and becomes similar
to gravity, electrostatics and DC field.

Different forms of origin of the magnetic fields are shown in the following
figures. Figure 5.1 shows the origin of the magnetic field due to a linear con-
ductor(a long straight wire). Here the magnetic field is encircling the current
carrying conductor. The magnetic lines of forces are continuous without any
break any where showing the rotational nature of the magnetic field. Here
magnetic field is at right angles to the direction of flow of current.

Figure 5.2 shows the nature of the magnetic field created due to a bar
magnet. It is interesting to note that magnetic field does not originate at the
north pole nor it ends in a south pole. Magnetic lines of forces enter in a bar
magnet near a point known as south pole and goes out of the magnet from a
point known as north pole. These north poles and south poles are fictitious
poles and do not exist in reality. These lines of forces are also continuous.

Figure 5.3 shows that magnetic field is created by an electromagnet. If a
current carrying coil is wound round a metallic conductor of electricity ,the
conductor becomes a magnet and the nature of the magnetic field will be
similar to that of a bar magnet.

Figure 5.4 show the nature of magnetic field due to flow of current through
a solenoid or a coil with n number of turns. All the magnetic lines of forces
will pass through the core of a solenoid.

Figure 5.5 a and b show the nature of the magnetic field due to flow of
current through two rectangular coils in opposite directions. Direction of the
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Fig. 5.3. Magnetic field created by an electro magnet

Fig. 5.4. Show the nature of the magnetic field due to a solenoid carrying current

Fig. 5.5. Magnetic fields created due to flow of current in the opposite directions
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magnetic field vector will depend upon the direction of flow of current through
two rectangular coils.

Figure 5.6 shows a vertical section of the magnetic field due to a circular
coil carrying current. The plane of the coil is horizontal but the direction
of the magnetic vector is vertical. That is why a horizontal coil carrying
current is termed as a vertical magnetic dipole. When alternating current
flows through the coil it is termed as an oscillating vertical magnetic dipole.
When the plane of the coil is vertical and the direction of the field vec-
tor is horizontal the dipole is termed as horizontal magnetic dipole. The
direction of the magnetic vector will be at right angles to the plane of the
coil.

Figure 5.7 is presented as one of the examples of the nature of distortions of
the field lines due to a bar magnet in the presence of another uniform magnetic
field. Difference in the orientations of a bar magnet and the external fields can
create different patterns of distortions.

Figure 5.8 shows the formation of a couple of force in a magnetic needle
in the presence of an external field. This couple acts on the magnetic needle
and reorient it along the north south direction as discussed. Mariner compass
used was based on this principle.

Fig. 5.6. Magnetic field created due to a magnetic dipole (a loop of wire) carrying
current
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Fig. 5.7. The magnetic field due to a bar magnet in the presence of an external
uniform field

Fig. 5.8. Deflection of the magnetic needle in the presence of a magnetic field
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5.2 Coulomb’s Law

The concept of magnetic poles, magnetic pole strength ‘m’, two opposite
nature of magnetic poles viz., north pole, south pole, force of attraction and
repulsion and inverse square law of force exist in magnetostatics. If the two
poles m1 and m2 are separated by a distance r then the force of attraction or
repulsion is given by

�F = K
m1m2

r2
(5.1)

where K is the constant of proportionality. This constant of proportionality
is given by 1

4πμ instead of 1
4π∈ as in the case of electrostatics. μ is termed as

magnetic permeability. In a free space or in a non-magnetic rock μ = μ0. μ0

is termed as the free space magnetic permeability and is equal to 4π × 10−7

henry/meter. The force of attraction or repulsion will be along the line joining
the two poles.

Fig. 5.9. Force of attraction between a north and a south pole placed at a distance r

5.3 Magnetic Properties

5.3.1 Magnetic Dipole Moment

The major difference in the nature of the electrostatic and magnetostatic field
is (i) the magnetic poles do not exist in isolation. Magnetic poles always exist
in dipole form in nature what little be the distance between the two poles. Two
poles of pole strength ‘m’ and separated by a distance l will have magnetic
dipole moment

�P = ml.�r (5.2)

The dipole moment is a vector and is directed along the line joining the two
poles. �r is a unit vector along the direction of the line joining the two poles.
Fig. (10.a and b) show the orientations magnetic dipoles in a nonmagnet and
a magnet.

5.3.2 Intensity of Magnetisation

A magnetic body experiences a force when placed in a magnetic field. The
intensity of magnetization is proportional to the external field and direction
is along the direction of the external field. Intensity of magnetization is the
magnetic moment per unit volume i.e.,

I =
�p
v
.F (5.3)

where v is the volume of the magnetic body.
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Fig. 5.10. Shows (a) random orientation of magnetic dipoles in a nonmagnet (b)
oriented dipoles in a magnet

5.3.3 Magnetic Susceptibility (Induced Magnetism)

Some substances acquire magnetic properties when they are brought in a
magnetic field. This magnetism in a rock or mineral or ore body or metallic
alloy are induced magnetism. Magnetism vanishes in some cases when they
are withdrawn from a magnetic field. In some cases substances may retain
some magnetic field even after they are withdrawn from the inducing field
.Third group of substances have their magnetic properties irrespective of their
presence in or absence from a magnetic field. Intensity of magnetization is the
induced magnetic moment per unit volume. It is directly proportional to the
strength of the inducing magnetic field H and is given by

I = KH (5.4)

The constant of proportionality K is termed as magnetic susceptibility There-
fore intensity of magnetisation has direct relation with the susceptibility of
rocks. It is also a measure of the degree to which a body is magnetised.
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Higher the concentration of magnetites or other ferrimagnetic minerals in a
rock higher will be the magnetic susceptibility and higher will be the inten-
sity of magnetisation. Some ferromagnetic materials viz.,magnetite, ferrite,
permalloy mu metals have higher magnetic susceptibility. Magnetic perme-
ability is connected with the magnetic susceptibility through this relation (K,
the susceptibility of a magnetic substance).

μ = 1 + 4πK (5.5)

5.3.4 Ferromagnetic, Paramagnetic and Diamagnetic Substances

Diamagnetism

Diamagnetic substances are those whose magnetic susceptibilities are very
small negative quantities. In the presence of an external inducing magnetic
field spinning of orbital electrons are in the opposite direction to the induc-
ing field. Magnetic field within the body vanishes as soon as it is withdrawn
from the inducing magnetic field. In diamagnetic substances, the magnetic
moment of all atoms is zero. They are generally called non magnetic sub-
stances. The common naturally occurring diamagnetic substances are quartz,
graphite, gypsum, marbel etc.

Paramagnetism

Paramagnetic substances have very small positive magnetic susceptibility.
In the presence of an external magnetic field the spinning electrons in
an atom partially align themselves parallel to the inducing field. Param-
agnetism is a temperature dependent phenomenon. Therefore the spinning
electrons get disordered in the presence of high temperature. Paramagnetic
substances also lose their magnetism in the absence of external magnetic field.
But these substances have net magnetic moment in the absence of exter-
nal magnetic field. Pyrites, Zinc Blende and Hematites are paramagnetic
substances.

Ferromagnetic Substances

Materials which show strong magnetic effect in the presence or absence of
external magnetic field are ferromagnetic substances. Ferromagnetic sub-
stances have very high positive magnetic susceptibility. Orbital electrons
get quickly aligned towards the direction of the external magnetic field.
Magnetic induction will be very high in a ferromagnetic substance. There-
fore they distort the external magnetic field considerably. Ferromagnetic
substances have three subgroups. They are (i) ferromagnetic (ii) antiferro-
magnetic and (iii) ferrimagnetic. In ferromagnetic substance the magnetic
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dipoles align themselves parallel to one another quickly in the presence of
an external magnetic field. In antiferromagnetic substance the dipoles align
themselves antiparallel to one another and the net magnetic effects are can-
celled.
Ferrimagnetic substances are those where a material has unequal magnetic
moment in the opposite direction. Therefore they have a net magnetic moment
(5.11). Because of partial cancellation ferrimagnetic substances are less mag-
netic than ferromagnetic substances.

Metals like Iron, cobalt nickel and metallic alloys like mu metals, permalloy
are materials of higher magnetic permeability and magnetites and titanomag-
netites are highly permeable ferrimagnetic ore forming minerals and hematite
is a paramagnetic substance.

Ferromagnetic substance gets easily and strongly magnetized in the pres-
ence of an external magnetic field. Disoriented and nonaligned magnetic
dipoles get quickly aligned even in the presence of a relatively weaker magnetic
field (Fig. 5.11). Magnetic induction or flux cut will be very high through fer-
romagnetic substances. Therefore perturbation of magnetic field will be very
high in the vicinity of a ferromagnetic substance. Often the sensitive mag-
netic instruments are made insensitive to measure the strong perturbation
field for exploration of magnetite. Ferromagnetic substance had a big role
to play towards discovery of the earth’s magnetic field. As mentioned load
stone or magnetite needles were used by the mariners towards determining
the north direction. Another big contribution of the ferromagnetic substances
is the use of mu metals or ferrites , highly permeable specially made metallic
alloys, in framing a core of a highly sensitive induction coils for measuring
very very feeble magnetic field variations. Magnetic field variations of period
10,000 seconds can be detected and measured with a supersensitive induction
coils.

Fig. 5.11. Magnetic dipoles in a (a) ferromagnetic (b) antiferromagnetic and (c) fer-
rimagnetic substances
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5.4 Magnetic Induction B

Magnetic flux B is the number of magnetic lines of forces created by a source
of magnetic field. Its unit is Weber. Magnetic flux density or magnetic induc-
tion is the number of lines of forces cut per unit area. Its unit is Weber/Square
meter or tesla. The direction of B is at right angles to the plane of the loop
when the flux cut is maximum. When the loop is in the same plane and is
oriented along the direction of the flux, the flux cut will be minimum. Mag-
netic substances will have higher concentration of flux lines as shown in the
Fig. 5.12. Higher the magnetic permeability or magnetic susceptibility higher
will be the concentration of magnetic flux lines. Material which get magnetized
in the presence of a magnetic field are magnetic substances. Magnetic flux den-
sity or magnetic induction is a vector. The magnetic flux can be written as

φ =
∫

s

�B.�n.ds (5.6)

where B is the magnetic induction vector, n is the direction of the normal to
the plane of a coil (Fig. 5.13) or the magnetic substance. ds is a small element
of the area got induced. Magnetic induction is connected to the magnetic field
strength by the relation

B = μH (5.7)

where μ is the magnetic permeability. So higher the magnetic field inten-
sity and magnetic permeability, higher will be the magnetic induction. High
magnetic permeability mu metal cores are used inside a coil to enhance the
detectibility of a weak magnetic field as mentioned.

A magnetic body when placed in an external magnetic field H, it gets
magnetized and generates field H′ of its own. Magnetic Induction is defined
as the total field within this body and is given by

B =H + H′ = H + 4πK
=(1 + 4πK)H = μH. (5.8)

Variation of B with H is a nonlinear behaviour. It generates a loop known as
hysteresis loop. With gradual increase in H, the field strength, the magnetic
induction reaches saturation and show no further increase in B.

Fig. 5.12. Magnetic induction in a magnetic substances; concentration of flux lines
in a higly magnetically permeable substance
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Fig. 5.13. Magnetic flux in a solenoid

That generates the first part of the curve (Fig. 5.14). When the applied
magnetic field is reduced to zero, magnetic induction do not reduce to zero but
come to a positive magnetic induction ‘or’ known as residual magnetism. All
magnetic substances have positive residual magnetism after the withdrawal
of the primary field. If the magnetic field is applied in the negative direction,
the magnetic induction will come down to zero. The sector ‘oc’ is termed
as the coercive force, i.e., the field necessary to bring the magnetic induction
in the substance to zero. The rest of the loop can be obtained by decreasing
and increasing the inducing magnetic field. So B-H curve generates a loop
known as hysteresis loop.

Fig. 5.14. B-H curve: Hysteresis loop
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5.5 Magnetic Field Intensity H

From Coulombs law of magnetic force (5.1) we can define the magnetic field
strength H as the force on a unit pole of strength m’ located at a distance r
from the source. The magnetic field due to a point pole of unit pole strength
is given by

Magnetostatic field H =
I

m′
=

1
4πμ

.
m
r3
�r (5.9)

It is assumed that m′ or the unit pole is not large and near the point of mea-
surement m′ << m. In electromagnetic unit, it is in oersted i.e., dynes/unit
pole. It is shown that the magnetic flux density at a distance r for a wire
carrying current I is

�B =
μI
2πr

and �H =
I

2πr
(5.10)

The magnetic field strength �H is thus expressed in terms of current flowing
through the wire. The unit of H is ampere/meter or ampere-turns per meter.
Equation (5.10) tells that magnetic field is independent of the permeability of
a medium. It only depends upon the strength of the current and the distance
of the point of observation from the wire carrying current.

5.6 Faraday’s Law

Faraday’s law of electromagnetic induction states that the voltage induced
in a coil, when a bar magnet is brought near by, is proportional to the
rate of change of number of lines of forces or the rate of change of flux
cut by the coil (Fig. 5.15 a,b,c). If a bar magnet is quickly brought near
the coil or quickly withdrawn, the induced voltage will be more. If the rel-
ative position of the magnet and coil remains same there will be no volt-
age even if the coil and the magnet are quite close. One can verify this
observation attaching a galvanometer to the ends of a coil and allowing a
bar magnet to approach towards the coil or to recede from the coil. This is
Faraday’s law of electromagnetic induction. The induced e.m.f (electromotive
force).

φ =
∂N
∂t

= L
dI
dt

(5.11)

where N is the number of lines of forces and L the constant of proportionality,
between the rate of change of current and the flux, is the self inductance. We
can write

T∫

0

φdt =
∫

LdI = L
∫

dI = LI (5.12)
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and magnetic flux

ψ =

T∫

0

φdt = LI. (5.13)

From (5.13) we can write ψ
A = L I

A where A is the area of the coil and ψ
A = B

and it is the magnetic flux density or magnetic induction.
We can write

ψ
A

= L
l
A

(
I
l

)
(5.14)

⇒ B = μH. (5.15)

Here μ = L l
A i.e. the inductance per unit length and unit cross section is the

magnetic permeability and its unit is henry/meter. The unit of inductance is
henry. An inductance on a coil generates extra impedance in the circuit.

Figure 5.15(a, b, c) show the generation of current in a single turn of coil
or on an n turn solenoid due to movement of the magnet with respect to
the coil. Polarity of the bar magnet also changes the direction of the flow
of current. Figure 5.16 show the development of current and voltage in a
secondary inductive circuit when an alternating current passes through the
primary circuit. The currents are generated in the secondary circuit due to
flux linkage with the primary circuit. The rate of change of number of lines
of forces due to the flow of alternating current in the primary circuit caused
the variable flux linkage.

These diagrams in 5.15 a, b, c, 5.16 and 5.17 show the nature of the
magnetic field distribution and the close linkage between electricity and mag-
netism. Faraday’s law of electromagnetic induction should come under time
varying magnetic field section. Since some of the basics of magnetostatics are
explained using this law, it is included in this chapter.

Fig. 5.15(a, b, c). Show the generation of electric current in a coil when a bar
magnet is approaching towards or receding from a single term coil or a solenoid
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Fig. 5.16. Shows the current build up with time when a direct current is allowed
to pass through an inductor

Fig. 5.17. Shows the generation of current in the secondary circuit due to flux
linkage when an alternating current flows through the primary circuit

5.7 Biot and Savart’s Law

Oersted (1820) discovered that a field is generated surrounding a wire when
current is allowed to flow through it. This field is capable of deflecting a
magnetic needle. It was established that magnetic field is created when cur-
rent passes through a wire. So a connecting link between the electricity and
magnetium was established. Immediately after this discovery, Biot and Savart
experimentally established a relation between the flow of current in a filament
of wire and the value of the magnetic induction B. It is given by

d�B =
μo

4π
.
I
−→
dl ×�r
r3

(5.16)

where d�l is a small filament carrying current I, r is the distance of the point
Q, the mid point of the current element dl from the point of observation P. �r
is also the direction of the vector from the point Q to P. d�B is the elementary
magnetic flux, for the current carrying filament d�l. Using the vector product
we can write (5.16) as

d�B =
μo

4π
I
−→
dlSinθ
r2

(5.17)
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where μo is the free space magnetic permeability. Free space magnetic per-
meability is assumed for vacuum, air and non magnetic materials. In SI unit
μo = 4π×10−7 henry/meter. Sin θ is the angle made by the vector �r with the
vector

−→
dl. Therefore the magnetic induction �B due to flow of current through

the entire wire is given by

B =
μo

4π

∮
I dl Sinθ

r2
. (5.18)

The direction of �B is at right angle to the plane containing both
−→
dl and �r

(Fig. 5.18). This is the first form of Biot and Savart law.
Since B = μoH, the intensity of the magnetic field can be expressed as

H =
∮

I dl × r
4πr2

. (5.19)

This is the second form of Biot and savart’s law
Since I = dq

dt , i.e., the rate of flow of charge and the velocity �V = dl
dt , i.e., dt

is the time required for the charge to move a distance dl. Since dq, �V = I.dl.
we can write (5.19) as

d�B =
μo

4π
.
dq(�V × r)

r3
(5.20)

This is the third form of Biot and Savart law.
For a volume distribution of current through a conductor of three dimen-

sional nature (Fig. 5.19), the magnetic field is given by

H =
1
4π

∫ ∫

v

∫ �Jv ×�r
r3

dv (5.21)

Fig. 5.18. Magnetic field at a point at a distance r from a loop carrying current;
the direction of the field is at right angle to the plane containing the current element
vector and the position vector r
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Fig. 5.19. Magnetic field created due to volume distribution of current through a
medium of finite conductivity

This is the fourth form of Biot and Savart law and it has direct application
in Magnetic Induced Polarisation (MIP) (Seigel, 1974) and Magnetometric
Resistivity (MMR) (Edward 1974) methods in geophysics.

5.8 Lorentz Force

Point in a region of space has a magnetic field if a charge (positive or negative)
moving in the region experiences a force by virtue of its movement. This force
acts at right angles to the force field. This force may be described in terms of
a field vector �B called the magnetic induction or magnetic flux density. For
a stationary charge, the force acting on it, is �F = q�E where q is the charge
and �E is the electric field. When a charge starts moving with a velocity �V a
force known as Lorentz force acts on the charge. This force acts at right angles
to the velocity vector �V . This is the magnetic field, which originates due to
flow of charge. Therefore the force due to electrostatics and magnetostatics
are jointly given as the vector sum as

�F = q
(
�E + �V x�B

)
. (5.22)

Equation (5.22) shows that electric field and magnetic field are at right angles
to each other. The differential form of the force due to the magnetic field is
given by

�ΔF = ρ.Δv.�V x�B (5.23)

where ρ is the volume density of charge and Δv is the elementary volume.
Since

�J = ρ.�V , (5.24)

Δ�F = �J × �B dv (5.25)
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and the magnetic force field �F is

�F =
∫

v

�J × �B.dv. (5.26)

When θ is the angle between the direction of flow of charge and the direction
of the magnetic field, the Lorentz force will be

F = ρvB sin θ (5.27)

Figure 5.19 shows the direction of the magnetic field at a point P on a plane
with respect to the coordinate axis x y z. The value of the magnetic field is

B =
μ0ρ

4πr3
(
�V x�r

)
(5.28)

where μ0 is the free space magnetic permeability, r is the distance of the point
P from the linear conductor.

5.9 Ampere’s Force Law

Oersted discovered in 1819 that there is a connection between the electricity
and magnetism. He first observed that an wire carrying current is capable of
deflecting a magnetic needle. Soon after this discovery Ampere proposed his
force law. It states that two complete circuits carrying current are capable of
exerting force on one another (Fig. 5.20). He first experimentally demonstrated
that the force exerted between the two coils carrying current is given by

d�F2 =
μo

4π
.I2dl2 ×

[
I1

−→
dl1 × �R21

R3
21

]
(5.29)

where d�F2 is the force exerted on the coil 2 due to the flow of current coil 1.
Therefore total force acting on the coil 2 due to the flow of current in coil 1
is given by

F2 =
μo

4π

∫

c

I2dl2 ×
∫

c

I1
−→
dl1 × �R21

R3
21

. (5.30)

Applying Biot and Savart law, we can write

F2 =
μo

4π

∫
I
−→
dl2 × �B (5.31)

where �B is the magnetic flux density.F21 the force in the circuit C2 is

F21 = μI2
∮

c2

ds2 × H21 (5.32)
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Fig. 5.20. The force of attraction between the two coils

and

H21 =
I1
4π

∮

c1

ds1 ×−→r12
r2

(5.33)

is the magnetic field strength due to the current I1, in C1. It is also known as
Biot and Savart’s law.

5.10 Magnetic Field on the Axis of a Magnetic Dipole

A coil or a loop carrying current is termed as a magnetic dipole. When the
same loop will carry alternating current it will be termed as an oscillating
magnetic dipole. If the plane of the coil is horizontal but the direction of the
magnetic field vector is vertical it is termed as the vertical magnetic dipole.
Similarly if the plane of the coil is vertical but the direction of the magnetic
field vector through the centre of the circular coil is horizontal it is termed as
an horizontal magnetic dipole.

Figure 5.21 show that a circular loop of radius r is in a horizontal plane
and flow of current through it is I.

For the small element
−→
dl carrying current I, we get

−→
dl = rdψ−→aψ (5.34)

where ψ is the azimuthal angle and −→aψ is the unit vector along the azimuthal
direction. The distance vector R is the distance between the point of obser-
vation P and the mid point of the linear element dl of the coil. Vectorially we
can write

�R = −r−→aρ + z−→az (5.35)

where r is the radius of the coil and �aρ is the unit vector along the radial
direction. z is the vertical distance of the point of observation from the centre
of the loop in the plane of the dipole. �az is the unit vector along the vertical
z direction. Then the vector product of

−→
dl and �R is given by

−→
dl × �R = rdψ�aψ(−r�aρ + z�ar) = (r2�az + rz�aρ)dψ. (5.36)
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Fig. 5.21. Magnetic field on the axis of a magnetic dipole

Therefore, from Biot and Savart’s law, the magnetic flux density can be writ-
ten as

�B =
μoIr

2

4π

2π∫

0

�azdψ
(r2 + z2)3/2

+
μoI rz

4π

2π∫

0

�aρdψ
(r2 + z2)3/2

=
μoI r2

2(r2 + z2)3/2
�az. (5.37)

On the axis of the loop, the magnetic flux density has only z-component.
Therefore, the magnetic flux at the centre of the loop is

�B =
μoI
2r
.�z. (5.38)

When the point of observation is in the far zone, i.e. z >> r, the magnetic
flux density at the centre of the coil is given by

�B =
μoIr

2

2z3
�az. (5.39)

That shows that the magnetic field due to a magnetic dipole is inversely
proportional to the cube of the distance. Thus it is shown in Chaps. 4, 6
and in this chapter that dipole field dies down inversely as cube of the
distance
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5.11 Magnetomotive Force (MMF)

The way we defined the potential difference or the electromotive force, as the

line integral
a∫
b

�E.dl where �E is the electric field and dl is the element of length

through which current flows, we bring the concept of magnetomotive force in
an analogous way.

The line integral

�F =

a∫

b

�H.dl (MMF) (5.40)

is defined as the magnetomotive force between the points a. and b. For a
circular path around the wire. H = I

2πr (5.10). Thus for a circular path the
magnetomotive force

�F =
∮
�H.dl = I (5.41)

This is also known as the Ampere’s circuital law or the Ampere’s work law.
Thus the concept of work is brought here also in the case of magnetostatic
field. The important difference between the rotational and irrotation field is,
for a closed circular path when the point ‘a’ coincide with ‘b’, we get

a∫

b

�E.dl = φa − φb = 0 (5.42)

and
a∫

b

�H.dl = I. (5.43)

For a toroidal coil with n number of turns in a circular ring of radius R, the
magnetomotive force will be

�F = n I. (5.44)

In this case, we can write

H =
F

2πr
=

n I
2πr

=
n I
l
. (5.45)

Therefore the unit of the magnetic field can also be written as ampere
turns/meter.

5.12 Ampere’s Law

(i) Ampere’s work law, as discussed in the previous section, states that the
magnetomotive force around a closed path is equal to the current enclosed by
the path, i.e.,



5.13 Div B = 0 113

∫
�H.�dl = I (amperes) (5.46)

This law can also be presented in the following form
Since Current I =

∫
�J.�n.ds where �J (see Chap. 6) is the current density,

applying Stoke’s theorem, we can write
∫

curl �H.ds =
∫
�H.dl =

∫
�J.�n.ds (5.47)

Therefore,
curl �H = �J (5.48)

That shows that the magnetostatic field is a rotational field where curl of a
magnetic field is nonzero.

5.13 Div B = 0

Div �B = 0 (5.49)

Since magnetic poles cannot be present in isolation, the magnetic field lines
always complete a closed circuit (Fig. 15.1). Figures 15.2, 15.3, 15.4 show the
nature of the magnetic lines of forces due to a bar magnet, a coil carrying
direct current and a long solenoid carrying direct current.

Any magnetic field lines entering a region with or without any source will
always go out of the region. Therefore div �B will always be zero. From Biot
and Savart’s law, we get

d �B =
μ
4π
Idlx�ar
r2

(5.50)

where
r2 = (x − ξ)2 + (y − η)2 + (z − ζ)2 (5.51)

Here

�ar = �ax.
x − ξ

r3
+�ay

y − η

r3
+�az

(z − ζ)
r3

(5.52)

We write (5.50) as

�B =
μ
4π

∫ �dl x �ar

r2
.�J.ds (5.53)

=
μ
4π

∫ �J x �ar

r2
dv. (5.54)

From (5.54) we can write

div �B =
μ
4π

∫
div

(
�J x �ar

r2

)
. (5.55)
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Since
div

(
�A x �B

)
= �B curl �A − �A curl �B (5.56)

Therefore

div �B =
μ
4π

∫ (
�ar

r2
curl �J − �J curl

�ar

r2

)
dv. (5.57)

When a current is flowing along a linear conductor curl �J = 0 and

div �B = − μ
4π

∫ (
�J curl

�ar

r2

)
dv. (5.58)

Now

curl
(
�ar

r2

)

x

=
∂

∂y

(
z − ζ
r3

)
− ∂

∂z

(
y − η

r3

)
= 0, (5.59)

because
∂

∂y

(
z − ζ
r3

)
= 0

and
∂

∂z

(
y − η

r3

)
= 0.

Therefore
div �B = 0. (5.60)

5.14 Magnetic Vector Potential

Since div �B = 0 always and the divergence of curl of a vector is always zero,
we can write

�B = curl�A (5.61)

where �A is termed as a vector potential because curl operates on a vector and
generates another vector. Since a field is obtained from the spatial derivative
of a vector potential, we can write the expression for the vector potential as

d�A =
μIdl
4πr

(5.62)

where I�d l is the current element and r is the distance from the current element
where the vector potential is measured. Expression for vector potential for
current flow through a complete circuit is given by

A =
∫

μIdl
4πr

. (5.63)

For a flow of current through a three dimensional conductor, where current is
not restricted to flow through a filament or a wire

A =
∫ ∫ ∫

v

μ �J dv
4πr

. (5.64)

More information on vector potential are available in Chaps. 12 and 13.
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5.15 Magnetic Scalar Potential

In a current free region J (the current density)= 0,we get

Curl B = 0.

Once the magnetic induction becomes curl free, it can always be written in
terms of a gradient of a scalar potential where B = −μ0Δφ and H = −ΔΦ
where Φ is the magnetic scalar potential.

Magnetic scalar potential is the work done to bring an unit magnetic pole
from infinity to a point at a distance ‘r’ from source of magnetic pole of
strength ‘m’.The magnetic potential can be expressed as

φ =
1

4πμ
m
r
. (5.65)

Magnetic field will be the space derivative of magnetic potential. Magnetic
field H = −gradφ. We can write

φ = −
r∫

∞

�H.dl =
m

4πμr
(5.66)

where ‘r’ is the distance of the point of observation from the source. Since the
magnetic monopoles do not exist in isolation, the field is generally estimated
due to a magnetic dipole. Magnetic field at a point P due to a magnetic dipole
(Fig. 5.22) is given by

φ =
m
r1

− m
r2

= m
{

1
(r2 + l2 − 2lr cos θ)1\2

− 1
(r2 + l2 + 2lr cos θ)1\2

}
. (5.67)

For magnetic dipole r, the distance of the point of observation is much greater
than the dipole length (r � l). Therefore

φ =
2ml Cosθ

r2
≈ M Cosθ

r2
. (5.68)

(see Chap. 4). Here M is the magnetic dipole moment. The radial and
azimuthal component of the magnetic field are respectively given by

Hr = −∂φ
∂r

= −m

[
r + l Cosθ

(r2 + l2 + 2rl Cosθ)3/2
− r − l Cosθ

(r2 + l2 − 2rl Cosθ)3/2

]
(5.69)

Hθ = −1
r
∂φ
∂θ

= m

[
l Sinθ

(r2 + l2 + 2rl Cosθ)3/2
− l Sinθ

(r2 + l2 − 2rl Cosθ)3/2

]
(5.70)

for r >> 1.
After simplification, one gets
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Fig. 5.22. Magnetic field at a point outside due to a magnetic dipole

Hr =
2M Cosθ

r2
(5.71)

and
Hθ =

M Sinθ
r2

. (5.72)

Therefore, the expression for the total field due to a magnetic dipole is

H =
(

2M Sinθ
r3

)
�r +

(
M Sinθ

r2

)
�θ. (5.73)

Since the magnetic field is a dipole field, Poisson’s equation for magnetic scalar
potential is

∇2φ = 4π.∇.M(r)

where M is the magnetic dipole moment.

5.16 Poisson’s Relation

Magnetic potentials and fields can be estimated from gravitational potential
using Poisson’s relation. This relation can be expressed as

φ = − 1
Gρ

∂φ/

∂λ
(5.74)
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where φ is the magnetic potential, φ/ the gravitational potential, λ the direc-
tion of the magnetic polarisation, I the magnetic polarisation, ρ the density of
a medium and G the universal gravitational constant. Horizontal component
of the magnetic field is given by

Hx = −∂φ
∂x

=
I

Gρ

∂

∂x

(
∂φ/

∂λ

)
. (5.75)

If a magnetic body is polarised along the vertical Z direction, the x component
of the magnetic field can be written as

Hx = −∂φ
∂x

=
I

Gρ

∂

∂x

(
∂φ/

∂z

)
(5.76)

and the vertical component is

Hz = −∂φ
∂z

=
I

Gρ

(
∂2φ/

∂z2

)
(5.77)

here

Φ = Magnetic scalar potential
Φ

′
= Gravitational potential

r = Direction of the magnetic polarization
I = Magnetic polarization
ρ = Density of the body
G = Universal Gravitational Constant

5.17 Magnetostatic Energy

Magnetostatic energy in a circuit can be estimated in terms of the amount
of work done to establish current I by the electromotive force generated by
change in the magnetic flux in a circuit. Magnetic field in a solenoid is given
by

H = nI/l (5.78)

in ampere turns/meter. Here I is the current flowing through the solenoid, l
is the length of the solenoid and n is the number of turns in the solenoid.

The voltage generated in a coil is, according to Faraday’s law,

φ = −N
dψ
dt

(5.79)

where φ is proportional to dψ
dt . Here ψ = AB where A is the area of the coil

and B is the magnetic induction. Therefore
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φ = −nAdψ
dt
. (5.80)

Since total work done in a circuit for flow of current I due to voltage φ is

w = −
t∫

0

φIdt

= −
t∫

0

nA
dψ
dt

=

H∫

0

μlA HdH. (5.81)

Substituting B = μH,ψ = AB and H = nI
l , we get

w = μLA
H2

2
. (5.82)

Therefore magnetostatic energy per unit volume is

1
2

μH2. (5.83)

Both the concepts of electrostatic and magnetostatic energy are needed to
explain the Poynting vector in electromagnetics (see Chap. 12).

5.18 Geomagnetic Field

Detailed research work on the history of development of Geomagnetism and
Palaeomagnetism had been published by Merrill and Mcilhenny (1996). The
points to be highlighted from their work, in this brief discussion, are as follows:
(i) People knew about geomagnetism as early as 6th century B.C., (ii) Earliest
magnetic compass came in China as early as 1st century A.D., (iii) First
observation on magnetic declination was made in China during 720A.D., (iv)
Magnetic Inclination was discovered by George Hartmann in 1544, (v) Henry
Gellibrand first discovered the variation of declination of the earth’s magnetic
field, (vi) In 1546 Gerhard Mercator first realized that earth magnetic pole
lies on the surface of the earth and he could fix these poles, (vii) Alexander
Von Humbolt first made a global magnetic survey and could establish that
intensity of the magnetic field varies with latitude. The field is strongest at the
pole and weakest at the equator, (viii) In 1600 Willium Gilbert first proposed
that earth as a whole acts like a big magnet (ix) In 1838 Gauss first proposed
the mathematical form of the earths magnetic field. He could pin point the
position of the geomagnetic poles. These positions are the best fitting dipoles
cutting the surface of the earth.

William Gilbert(1540–1603) in his Treatise ‘De magnet’ first mentioned
about the existence of the magnetic field of the earth and that the origin
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of the magnetic field of the earth lies in the interior of the earth. Geomag-
netic stable field of global presence originates due to dynomo current in the
earth’s core composed most probably of iron, nickel and sulphur. Both iron
and nickel are good conductors. The observation regarding the rotation of the
magnetic needle(load stone) along a definite direction of a magnetite needle
led to the discovery of the earth’s magnetic field as mentioned. Even magnetite
ores could be unearthed in the sixteenth and seventeenth century recording
deflections of magnetite needles. Now it is understood that geomagnetic field
originates due to the dynamo current in the core of the earth and it can
be approximated as magnetic dipole oriented approximately along the north
south direction The axis of the magnetic dipole is tilted about 11.5◦ with
respect to the axis of rotation of the earth. 80% of the earth’s relatively stable
magnetic fields are of internal origin. It varies very slowly. About 19% of the
field is of internal origin of non dipole nature. The magnetic north and south
poles are located at 78 1

2

◦N, 69 1
2

◦W and 78 1
2

◦ S, 111 1
2

◦ E. Figure 5.23 shows
the angle between the geographical north and the magnetic north. It is termed
as declination D. The angle made by the total field with the horizontal is the
inclination of the field. Therefore we can write

T2 = H2 + Z2 (5.84)

where T is the total field, H and Z are respectively the horizontal and vertical
component of the magnetic fields. I is the inclination angle made by the total
field with the horizontal component, D is the declination made by the magnetic
north with that of the geographical north. Here (Fig. 5.23).

H = T cos I
Z = T sin I

tan I = Z/H
HX = Hcos D (5.85)
HY = Hsin D

Isogonic, isoclinic and isodynamic maps are respectively the contour maps of
equal declination, equal inclination and equal values of H or Z.

About 1% of the earth’s quasistatic and time varying magnetic fields are
of extra terrestrial origin and get superimposed on the earth’s stable mag-
netic field. Inclination of the Earth’s magnetic field is downward throughout
the entire northern hemisphere and its inclination is upward throughout the
southern hemisphere. Magnetic poles are those where the magnetic field is
vertical. Geomagnetic poles are the extension of the magnetic dipole axis on
the surface of the earth. Although they are very close to each other but they
do not exactly coincide. Magnetic field of dipole and nondipole origin exist
upto 30,000km to 40,000km from the surface of the earth. The total space
above the surface of the earth on both the sides of north and south pole is
known as the magnetosphere (Fig. 5.24). Recent space research has revealed
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Fig. 5.23. Geomagnetic field showing magnetic lines of forces. It shows the geo-
graphic north, magnetic north inclination and declination of the total magnetic field

that magnetosphere get compressed on the sun side due to the interaction
of the solar flares composed of near and far ultraviolet rays, hard and soft
x-rays, gamma rays, electrons and protons in the form of solar plasma, cosmic
rays and particles in the magnetosphere. As a result magnetic field exists only
upto 2 to 3 times the radius of the earth during day time, i.e., on the sun side.
Magnetosphere extends upto 8 to 10 times the earth’s radius on the dark side
of the earth and it extends with a tail known as magneto tail. Figure 5.25.
Magnetic field ceases to exist in the space above the magnetosphere. This
zone is known as the magnetopause. The other important zones of the mag-
netosphere are (i) Ozonosphere at a height of 23 to 25 km above the surface
of the earth which absorbs most of the ultra violet rays (ii) Ionosphere(D,E.F
layers) at different heights within the range of 60 to 250km from the surface
of the earth which absorb most of the x rays and gamma rays to get ionized
(iii) Van Allen radiation belts are two daughnut shaped conducting zones are

Fig. 5.24. Nature of the assumed Geomagnetic field showing the magnetic lines of
forces and magnetosphere
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Fig. 5.25. Interaction of the solar flares with the magnetosphere; creation of com-
pressed magnetosphere, Van Allen radiation belts, ionosphere, ozonosphere and mag-
netopause on the day side and magnetotail on the night side

ionized by the highly penetrating gamma rays and x rays. These radiation
belts are at heights of and half times to three times the radius of the earth

Variable solar flares with variable intensities of rays and particles generate
time varying magnetic fields. These magnetic fields are superimposed on the
permanent and stable geomagnetic field of the earth.

5.18.1 Geomagnetic Field Variations

Major long term variations of the earth’s magnetic field are as follows:

(a) Solar Quiet Day Variations(Sq Field)

Solar quiet day variations are those where solar emissions, which are primar-
ily responsible for variation of the magnetic field, are minimum. Geomagnetic
field remains more or less stable for a few days at a stretch. These days are
known as solar quiet days and variations are known as Sq variations. The
variations are periodic over solar quiet days. Their magnitudes are dependent
upon the season of the year and latitude and are also stronger in the summer
than in the winter. These fields are found to be stronger in higher latitude
than in the equatorial zone. Earths main field and the conducting ionosphere
constitutes the ionosphere dynamo and creates current in the E-layer. Major
part of the Sq variations come from the ionospheric currents and their vari-
ations. The other 10% of the Sq variations come from the compression of
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the magnetosphere happens due to interaction of the solar flares with the
magnetosphere.

If sun remains quiet(lower level solar emissions), geomagnetic field also
remains quiet. All permanent geomagnetic observatories all over the world
are recording these variations. The magnitude of the Sq variations may be of
the order of 40 to 60 nanotesla (nT).

(b) L variations

Geomagnetic variations which are associated with lunar time are called L
variations. These are much weaker variations and the magnitude is of the
order of 2 nT. It is interesting to note that day time L variations are stronger
than night time variations.

(c) D and Dst variations

These variations are observed due to enhancement in solar flares. Both rays
and particles are emitted at an enhanced rate which causes increase in strength
of the magnetic field and cause magnetic storms . Magnetic storms originate
during the strong and enhanced solar flares. The strength of the magnetic
field rises to a certain peak and then decreases gradually.

Magnetic storms have certain periodicity. It is possible to predict the onset
of magnetic storms. Disturbance day variations of both horizontal and vertical
components of the magnetic field cause auroras in higher latitudes. Enhance-
ment of the magnetic fields creates night time glow in the sky termed as
aurora Borealis and aurora Australis respectively in northern and southern
polar regions. Time varying magnetic field becomes stronger during solar dis-
turbance day variations and generate geoelectric and geomagnetic pulsations
and micropulsations. Besides these variations of the geomagnetic field of out-
side origin, there are several high frequency components of the geomagnetic
field variation.

Those variations are geomagnetic and geoelectric micropulsations, pulsa-
tions. There are several classification of these micropulsations namely Pc, Pi,
Pp, Pg etc. They do not come under magnetostatics. Electromagnetic the-
ory is applicable for these field signals. Long period variations collected from
permanent geomagnetic observatories are used for Geomagnetic Depth Sound-
ing (GDS)(Schmucher 1976) to find out the electrical conductivity of earths
mantle and core. Pulsations and micropulsations and spherics are used for
magnetotelluric sounding (Cagniard 1953) to study the electritrical conduc-
tivity of the earths crust and uppermost mantle. Detailed Spherical Harmonic
Analysis (see Chap. 7) show that 99% of the earths magnetic field are of inter-
nal origin. 80% of that are of deeper dipole origin. Nineteen percent are of
shallower non dipole origin. One percent are of extraterrestrial origin which
constitutes the time varying part of the earths natural electromagnetic field
discussed in Chap. 13.
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For further studies the readers are referred to Keller and Frischknecht
(1966), Telford et al (1981), Parasnis (1966), Dobrin and Savit (1988), Blakely
(1996), Radhakrishnamurthy (1998), Jackson (1999), Wangsness (1979), Jor-
don and Balmain (1993), Guru, B. and Hiziroglu (2005).

5.19 Application of Magnetic Field Measurement
in Geophysics

Magnetic field has made a major inroad in geophysics It has multifaceted
applications in various branches of both solid earth and applied geophysics.
It is interesting to note that noise in one branch of geophysics becomes a
signal in the other. Different branches of geophysics related to magnetic field
measurements are (i) Ground Magnetic Method: It is used for (a) min-
eral exploration, (b) basement mapping for oil exploration (c) mapping the
contacts of felsics and mafics (d) mapping volcanics and dyke swarms etc. (ii)
Airborne Magnetic Method: It is used for(a) mapping the major tectonic
settings of a geological terrain (b) quick coverage of accessible and inacces-
sible areas for mineral exploration (iii) Geomagnetic Depth Sounding
(GDS): Long period variations of the earth’s magnetic field are continuously
recorded in permanent geomagnetic observatories all over the world. These
geomagnetic signals are interpreted to find out the electrical conductivity of
mantle and core of the earth (iv) Magnetovariational Sounding (MVS):
Here we measure the short and long period variations of the earth’s mag-
netic field to find out the electrical conductivity of the earth’s crust and
upper mantle (v) Magnetotelluric Sounding (MT): In this branch of
geophysics we measure both the time varying electric and magnetic com-
ponents of the earth’s natural electromagnetic field and try to find out the
electrical conductivity of the earth’s crust and upper mantle (vi) Audiofre-
quency Magnetotellurics (AMT) Relatively high frequency components
of the earth’s natural electric and magnetic field originated due to thunder
storm activities in between the earth ionosphere wave guide are measured
and used for mapping of shallow structures and mineral exploration. (vii)
Audiofrequency Magnetic Method (AFMAG): High frequency spherics
are recorded for mineral exploration. (viii) Magnetic Induced Polarisation
(MIP): Here secondary magnetic field, originated due to depolarisation cur-
rent flow within a polarisable medium, when the primary current is switched
of in time domain induced polarization, is measured. (ix) Magnetometric
Resistivity Method (MMR): In this method primary magnetic field per-
turbation due to flow of electric current through the ground in the presence
of shallow lateral structural heterogeneities are detected (x) Very Low Fre-
quency Method (VLF): In this method very low frequency magnetic fields
are measured due to primary signals from distant broad casting stations to
detect some subsurface structures. Time varying magnetic fields are measured
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in MT,AMT, AFMAG and VLF. They strictly do not come under Magneto-
statics. (xi) In Palaeomagnetism, magnetic field fossilized and frozen in
geological past, are measured. This information is useful for studying (i) con-
tinental drift (ii) rifting of the continents (iii) polar wondering etc.

5.20 Units

The unit of magnetic flux ψ is Weber
1weber = 1 joule/ampere
= 10−5 oersted
1Oersted = 1 dyne/unit pole
The unit of B is Weber/meter2

1weber/meter2 = 104 gauss
The unit of inductance L is henry
1henry = 1joule/(ampere)2

The unit of magnetic permeability μ is henry/meter
1henry/meter = 1newton/(ampere)2

The unit of magnetic field intensity H is ampere/meter or ampere
turns/meter

Unit of magnetic field intensity is also expressed as tesla
1tesla = 1weber/(meter)2 = 1 volt second
Practical unit of measurement of magnetic field is in nanotesla or

10−9 tesla or in gamma. For most geophysical measurements of
the magnetic field, gamma or nanotesla are generally used as units
of measurement.

1gamma = 10−5 gauss

5.21 Basic Equations in Magnetostatics

1. div �B = 0 (Solenoidal field) (5.86)

2. �B = μ�H (5.87)

3. Curl �H = �J (Rotational field) (5.88)

4. Curl �H = 0 (5.89)

(Low frequency approximation in Geomagnetic field)
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5.
�B =

μo

4π

∫ �I.
−→
dl Sinθ

r2
(Biot and Savart Law) (5.90)

6. �A =
∫ ∫ ∫

v

μ�Jdv
4πr

(Vector potential) (5.91)

7. I =
∫
�H.dl (Ampere’s Circuital Law) (5.92)

8. F12 = μ =
I1I2
4π

∮ ∮
dl1 × (dl2 × r2)

r22
(Ampere’s force law) (5.93)

9. F = q(E + �V × �B) (Lorentz force). (5.94)

10. �H =
nl
I

(5.95)

11. �B = Curl �A (5.96)
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Direct Current Flow Field

In this chapter some parts of the direct current flow field preliminaries used in
geophysics are discussed. Topics include the nature of the direct current flow
field and the approaches for measurement of potentials, depth of penetration
of direct current in a homogenous and isotropic medium, potentials and fields
due to a point source, line source, bipole and dipole sources, boundary condi-
tions in direct current flow field. Most of the basic equations of direct current
flow field are mentioned. Relatively advanced topics on D.C. boundary value
problems are given in Chaps. 7, 8, 9, 11 and 15.

6.1 Introduction

Direct current flow through a medium of finite conductivity or resistivity due
to a point or a line source of current generates scalar potential field, where the
electric field can be expressed as the negative gradient of the potential. The
field and potential at a point created by a point source has similarity with
those obtained for electrostatic or gravitational field, i.e., it follows 1

r2 and 1
r

laws respectively in a homogeneous and isotropic medium. The current from
a point source flows radially outward and the equipotential lines are circular
in a plane surface (Fig. 6.1).

It is a man made local field in most of the cases. Quasistatic telluric current
flow fields of global presence follow direct current flow field equations. This
field can be divergence less or solenoidal in a source free region (Fig. 6.2a, b).

A certain region R in a direct current flow field in the absence of any source
or sink satisfies Laplace equation. In the presence of one or more than one
source, DC flow field satisfies Poisson’s equation. Both bipolar and dipolar
fields are generated in a direct current flow domain. It is an irrotational or
curl free field. In that respect it is similar to gravity, electrostatic, stream
line fluid flow and, heat flow fields. For direct current flow field, principle of
superposition and principle of reciprocity are valid. Principle of superposition
states that potential at a point due to a number of current sources and sinks
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Fig. 6.1. Field lines and equipotential lines due to a point source of current in a
homogenous and isotropic medium

will get added and subtracted due to presence of current sources and sinks at
the point of observation.

This property generated a series of electrode configurations in direct cur-
rent flow field. We generally send current through two current electrodes and
measure the potential difference through another pair of electrodes known as
potential electrodes. There are about 12/13 electrode configurations used reg-
ularly by the geophysicists. They are (i) Two electrode (Pole-pole) (ii) Three
electrode (Pole-dipole) (iii) Wenner (iv) Schlumberger (v) Collinear dipole-
dipole (vi) Unipole system (vii) Seven electrode (Laterolog) (viii) Equatorial
dipole (ix) Parallel dipole (x) Perpendicular dipole (xi) Azimuthal dipole (xii)
Axial dipole. Different electrode configurations have their different areas of
applicability Fig. 6.3 a, b, c, d, e, f and g shows the layout of the different
electrode configurations.

The principle of reciprocity states that if we interchange the positions of
current and potential electrodes, the potential difference measured between
the two potential electrodes in these two cases will remain the same. Theoreti-
cally it is true. In actual field practice with the increase in electrode separation
some differences between the two sets of measurements are observed because
of entry of voltage due to telluric or earth currents and other noises in the
measurement. In electrostatics the electric displacement is connected to the
electric field and the connecting scalar is ∈ (4.4); the electrical permittivity is

Fig. 6.2a. Source free region in an uniform field
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Fig. 6.2b. Source free region in a point source generated bipole field

expressed in farad/meter. In magnetostatics, the magnetic induction is con-
nected to the magnetic field through a scalar μ (5.13) i.e., the magnetic per-
meability. It is expressed in henry per meter. In direct current flow field, the
current density, i.e., the current per unit area is connected to the electric field
through a scalar σ (6.9), the electrical conductivity. It is expressed in mho/m
or Siemen. These scalars become tensors for an anisotropic medium. These
three equations in conjunction with the Maxwell’s (12.62 to 12.66) equations
form the basis of electromagnetic theory.

In direct current flow field, the physical property, we try to measure is elec-
trical conductivity or electrical resistivity. Electrical resistivity is reciprocal of
electrical conductivity. Of all the physical properties of the earth, measured
by geophysicists, electrical conductivity is the most sensitive parameter. A
little perturbation, in a medium through which current flows, can change the
value of the electrical conductivity by several order of magnitude. The ratio
of the extreme values of resistivity or conductivity is of the order of 1015 or
more.

The boundary conditions in direct current flow field are (i) potential must
be continuous across the boundary i.e., φ1 = φ2 and (ii) normal component of
the current density must be continuous across the boundary,i.e., Jn1 = Jn2 .
The boundary value problems also must satisfy (i) Dirichlet (ii) Neumann or
(iii) mixed, Robin or Cauchy’s boundary conditions.

Since this book includes elaborate treatments on direct current potential
and field theory in Chap. 7 and Chap. 8 only a very few points, in preliminary
level, are discussed in this chapter. Application of direct current methods in
geophysical exploration is beyond the scope of this book and are available
in Alpin et al (1966), Keller and Frieschknecht (1966), Bhattacharya and
Patra (1968), Koefoed (1979), Zhdanov and Keller (1994). Advanced theories
however are given in Chaps. 8 and 15. Some treatments are also available in
Chaps. 9 and 11.
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Fig. 6.3. (a) Two electrode configuration (normal log arrangement) with one cur-
rent electrode A and one potential electrode B; the other current electrode for return
current path and the other potential electrode are far away from this electrode set
up; (b) Three electrode configuration (Lateral log arrangement) with one current
and two closely spaced potential electrodes, the other return current electrode is
placed far away from this set up; (c) Four electrode configuration (Wenner elec-
trode arrangement); A and B are two current electrodes and M and N are potential
electrodes; these electrodes are equidistant from one another; (d) Four electrode con-
figuration (Schlumberger electrode arrangement), A and B are current electrodes,
closely spaced M and N are potential electrodes; (e) Four electrode configuration
(Collinear dipole-dipole configuration) with current dipole AB may have wide sep-
aration from potential dipole MN; (f) Seven electrode configuration (Latero log
arrangement) with central focussing current electrode, two bucking current elec-
trodea A1 and A2; two pairs of potential electrodes M1N1 and M2N2; the return
current electrode is far away from this set up; (g) Four electrode configuration
(Unipole method); here two current electrodes are sources for current focussing; two
closely spaced potential electrodes are used to measure pure anomaly; return current
electrode is far away from this set up
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Fig. 6.4. Flow of direct current through two opposite faces of a rectangular
parallelepiped

6.2 Direct Current Flow

In direct current flow field, the flow of current is stationary. Let a constant
current I flows through a homogeneous and isotropic medium.

We know that current I can be taken as the rate of flow of charge i.e.
I = dq

dt . At any point in the medium, I cannot be defined but J can be defined.
A small area ΔS is chosen normal to the flow of current. The amount of
current flows through the face in a time Δt is given by (Fig. 6.4)

ΔI = qv
ΔS.Δl

Δt
(6.1)

where Δl is the distance traveled by the charges and qv is the volume density
of charge. From (6.1) we get

ΔI
ΔS

= qv
Δl
Δt

(6.2)

⇒ �J = qv�v (6.3)

where �J is the current density and �v is the velocity. The expression for the
current is given by

I =
∫
�J.�n.ds (6.4)

where �n is the normal vector.

6.3 Differential form of the Ohm’s Law

Ohm’s law is defined as temperature remaining same the potential generated
between the two points of a conductor has direct proportionality with the
current flowing through the ground.

So I = (φ1 − φ2)
1
R

(6.5)
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where I is the current flowing through this medium φ1 and φ2 are the potentials
at two points in the medium and R, the constant of proportionately is the
resistance offered by the ground. Here

R = ρ
l

A
(6.6)

where ρ is the specific resistivity, l is the length and A is the cross sectional
area for the flow of current. Specific resistivity of a medium is defined as
the resistivity offered by the two opposite faces of an unit cube. The unit
of resistance is Ohm. The unit of resistivity is Ohm-meter. The reciprocal
of resistance is conductance (C). Its unit is mho. The reciprocal of resistiv-
ity is conductivity (σ). Its unit is mho/meter. From (6.5 and 6.6), we can
write

C = σ
A

L
= σ

ΔS
Δl

. (6.7)

Here ΔI =
ΔS
ΔI

. (−Δφ) .σ (6.8)

⇒ ΔI
ΔS

= −Δφ
Δl

.σ

⇒ �J = σ�E. (6.9)

6.4 Equation of Continuity

Since, the stationary electric fields are conservative, the electric field is
expressed as the gradient of a scalar potential (Φ) i.e.,

E = −∇Φ. (6.10)

Combining equation (6.9) with equation (6.10), we get

J = −σ∇Φ. (6.11)

Applying the principle of conservation of charge over a volume, which states
that charges can be neither created nor destroyed, although equal amount of
positive and negative charges may be simultaneously created. From (6.8) we
can write

I =
∮

s

�J.
→
n.ds (6.12)

and this outward flow of positive charge must be balanced by a decrease of
positive charge (or an increase of negative charge) within a closed surface. If
the charge inside a closed surface is denoted by qi, then the rate of decrease
is – dqi/dt and the principle of conservation of charge requires



6.5 Anisotropy in Electrical Conductivity 133

I =
∮

s

�J.�n.ds = −dqi
dt
. (6.13)

The negative sign indicates the direction of the current flow. The (6.13) is
the continuity equation. By changing the surface integral to a volume integral
using divergence theorem, we get

∮

s

J.ds =
∫

vol

(∇.J) dv. (6.14)

Writing qi =
∫ ∫ ∫

qdv, where qv is the volume density of charge, we can write
∫

vol

(∇.J) dv = − d
dt

∫

vol

qvdv (6.15)

where qv is volume charge density. For outflow of current through a volume,
the derivative can be written as a partial derivative and the (6.15) becomes

∫

vol

(∇.J) dv =
∫

vol

−∂qv
∂t

dv (6.16)

Since, the expression is true for any volume, however small, it is true for an
incremental volume,

(∇.J)Δv = −∂qv

∂t
Δv (6.17)

and the point form of the continuity is

(∇.J) = −∂qv

∂t
. (6.18)

∇.J =
∂q
∂t

δ (x) δ (y) δ (z) . (6.19)

6.5 Anisotropy in Electrical Conductivity

For an homogeneous and isotropic medium, the current density J and the
electric field E are assumed to be in the same plane. If the electric field (Ex)
and conductivity (σxx) are along the x-direction, then current density along
the x direction is Jx1. In general, however, not only the field Ex but also
the fields Ey and Ez may give rise to current densities in the x-direction in an
anisotropic medium. If the additional, current densities are proportional to the
fields Ey and Ez, then σxy and σxz are proportionality constants respectively.
The total current density in the x-direction is the sum of these three terms.
In general, therefore, we can write,
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Jx = σxxEx + σxyEy + σxzEz

Jy = σyxEx + σyyEy + σyzEz (6.20)
Jz = σzxEx + σzyEy + σzzEz.

The conductivity of a medium (σ) must be a tensor of rank 2, which in Carte-
sian coordinates will have the nine components:

σ =

⎛
⎝
σxx σxy σxz
σyx σyy σyx
σzx σzy σzz

⎞
⎠ . (6.21)

If the conductivity tensor is symmetric, the off-diagonal terms will have sym-
metrically equal values i.e., σxy = σyx, and so on. If two of the coordinate
directions are selected to lie in the direction of maximum and minimum con-
ductivity, (the principal directions of the conductivity tensor), the off-diagonal
terms will become zero and σ can be shown as a diagonal matrix.

σ =

⎛
⎝

σxx 0 0
0 σyy 0
0 0 σzz

⎞
⎠ . (6.22)

In isotropic materials, the three principal values of conductivity are all equal
and in effect, conductivity becomes a scalar quantity. In isotropic materials,
the electric field vector and the current density vector are collinear, i.e. cur-
rent flow, is along the direction of applied electric field. In anisotropic media
(the equipotential surfaces are no longer normal to the direction of current
flow). Here three principal values of the conductivity tensor are not equal.
Coincidence of directions occur only when the electric field is directed along
one of the principal directions of the tensor conductivity.

6.6 Potential at a Point due to a Point Source

Potential at a point due to a point source of current I at a distance ‘r’ and in
a homogeneous and isotropic medium of resistivity ρ can be derived from the
solution of Laplace equation in a spherical coordinate (see Chap. 7) as

φ =
Ip

4π
.
I

r
. (6.23)

Therefore in a homogeneous and isotropic medium, the current lines will be
radial and equipotential lines will be circular Fig. 6.1. The nature of current
and equipotential lines due to (i) a source and a sink of strength +I and −I
(ii) two sources of strength +I and +I are shown in Figs. 6.5 and 6.6 respec-
tively. The nature of the current lines and field lines for bipole and dipole
fields for +1 and −1 are respectively given in Figs. 6.5 and 6.7.
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Fig. 6.5. Current lines and equipotential lines due to a current source and a sink

Fig. 6.6. Field lines and equipotential lines due to two sources placed at a certain
distence

Fig. 6.7. Field lines and current lnes due to two closely spaced source and sink
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Potential at a point due to a point source at a distance r on the surface of
the earth is

φ =
Iρ

2π
.
1
r

(6.24)

since the solid angle subtended by a point current electrode on air earth
boundary is 2π. For Wenner electrode configuration, the potential difference
between the two potential electrodes M and N due to two current electrodes
placed at A and B is given by (Fig. 6.3 c and d)

Δφ =
Iρ

2π

[(
1

AM
− 1
BM

)
−
(

1
BN

− 1
AN

)]
(6.25)

= Iρ
2π .

1
a where ‘a’ is the distance between the electrodes. Here for Wenner

configuration AM = MN = NB = a. Therefore

ρ = 2πa
Δφ
I

(6.26)

where 2πa is the geometric factor for Wenner configuration. Similarly geo-
metric factors for all the electrode configurations cited, can be determined.
Numerical value of a geometric factor increases with electrode separation, the
farthest distance between the two active electrodes. For an inhomogeneous
medium, the resistivity ρ in (6.26) will change to ρa, the apparent resistivity.
Apparent resistivity is defined as the true resistivity of a fictitious homogenous
medium when the response from an inhomogenous earth is same as that from
a fictitious homogenous medium. For Schlumberger electrode configuration
the expression for the apparent resistivity is

ρa = (π/4)((L2 − l2)/l)(ΔΦ/I) (6.27)

where L, the distance between the two current electrodes, the distance between
two potential electrodes is l, I, the current flowing through the medium and
ΔΦ the potential difference measured between the two potential electrodes.

We defined Geometric factor K = 2π

( 1
AM− 1

BM )−( 1
BN− 1

AN ) as the exact

geometic factor. We brought the idea of approximate geometric factors while
discussing the geometric factors for dc dipole configurations. It has a dimen-
sion of length for some cases. Geometric factor can be variable in the case of
laterolog - 7 configuration and can be negative for certain zones of parallel
dipole and wenner gamma or collinear dipole-dipole configurations. In general
geomertric factor is mostly an electrode separation dependent quantity.

6.7 Potential for Line Electrode Configuration

Let us consider an infinitely long line electrode through which a current I per
unit length is being sent through the half space (Parasnis 1965).
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Fig. 6.8. Cylindrical annular space for a long line electrode

Figure 6.8 shows an annular semi cylinder of unit length with the electrode
at the axis and having internal and external radii r and r + dr. If ρ is the
resistivity of the homogeneous ground; resistance of the annular cylindrical is
dR = ρ drπr . Since current is passing out of the cylindrical annular shell, the
potential drop across it is

dφ = −IdR = −IP
π
.
dr

r
. (6.28)

Integrating φ = −IP
π

ln r + C. (6.29)

Therefore, potential at a point due to a line electrode is a logarithmic poten-
tial. For φ = 0 at r = ∞, we have C = C∞ where C∞ is an infinite constant.
Therefore the potential will be infinite at infinite distances. If φ = 0 at r = 1,
then C = 0. Here potential will be positive for r less than 1 and negative for
r greater than 1. Potential will be −∞ as r → ∞. Let r1 and r2 be the dis-
tances of an observation point from two infinitely long line electrodes. These
electrodes are a source and a sink.

The potential from positive and negative electrodes will be of opposite
sign. If we choose C = C∞, the total potential at the point will be

φ =
Iρ

π
ln
r1
r2
. (6.30)

The potential difference between the two points P1 and P2 in a field created
by two line electrodes is given by (Fig. 6.9)

Δφ = φ1 − φ2 =
Iρ

π

{
In

(
r2
r1

)
− In

(
r4
r3

)}
(6.31)

=
Iρ

π
In

(
r2r3
r1r4

)
(6.32)

since the infinity constants cancel each other. The potential expressed in
(6.32) is finite at all the finite distances and tends to zero when both r2
and r1 tends to infinity. Potentialis are also zero when r1 = r2, i.e., along
the vertical plane midway between the source and sink. Surface potential is
given by
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Fig. 6.9. Shows the potential difference measured between the two points of obser-
vation P1 and P2 between a line source and a line sink C1 and C2 each of length l
and are planted on the ground at a distance L

φ =
Iρ

π
ln
L− x

L+ x
(6.33)

where 2L is the distance between the two electrodes and x is measured from
the midpoints of C1C2.

6.7.1 Potential due to a Finite Line Electrode

A line electrode of length 2b through which current I per unit length is being
supplied to a homogeneous ground of resistivity ρ (Fig. 6.10). We determine
the potential at a point P whose perpendicular distance from the electrode is
x and which is situated on a profile of measurement at a distance y from the
centre O of the electrode.

A small element of the line electrode, having a length dλ, at a distance λ
from O can be treated to be a point electrode through which a current I dλ
is being propagated to the ground. Potential at P will then be

dφ =
Iρ

2π
dλ

{x2 + (λ− y)2}1/2
. (6.34)

Integrating between the limits −b and +b, the potential of the entire line
electrode will be

φ =
Iρ

2π

{
sin h−1

(
b− y

x

)
+ sin h−1

(
b+ y

x

)}
. (6.35)
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Equation (6.35) generates elliptic equipotential lines (Fig. 6.11). Therefore
current lines will be hyperbolic.

Integral transform of Roy and Jain (1961) can be stated as follows. Let a
point electrode in the vicinity of a two dimensional structure striking in the
y direction, produce a potential φ (x, y) along a profile in the y-direction. The
profile goes through a point P at a distance x from the electrode. Then the
transform

φ (x) =

∞∫

−∞
φ (x, y) dy (6.36)

generates the potential, that would be produced at P by a line electrode
parallel to the profile but placed in the position of point electrodes. The
total current in the point electrode is the current per unit length of the line
electrode. Figure 6.12 shows the variation of potential with distance due to a
point and a line electrode.

6.8 Current Flow Inside the Earth

Potential at a point M (Fig. 6.13) in a semi infinite medium of resistivity ρ
due to a source +I and sink (−I) on the surface of the earth is given by

φm =
ρI
2π

(
1
r1

− 1
r2

)
(6.37)

where

r1 =
√

(L/2 + x)2 + y2 + z2 (6.38)

r2 =
√

(L/2 − x)2 + y2 + z2 (6.39)

where L is the electrode separation. Here.

Fig. 6.10. A finite line electrode of length 2b carrying current I
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Fig. 6.11. Current lines and equipotential lines due to a line current source of finite
length

Fig. 6.12. Shows the variation of potential with distance from a point and a line
electrode

Fig. 6.13. Shows the nature of direct current flow through a homogeneous medium
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�Jx = −1
ρ

∂φ

∂x

�Jy = −1
ρ

∂φ

∂y
(6.40)

�Jz = −1
ρ

∂φ

∂z

are the current densities along the x, y and z directions when current is flowing
through a homogenous medium. Here

�Jx =
I

2π

[
L
2 + x

r31
−

L
2 − x

r32

]
(6.41)

�Jy =
I

2π

[
y

r31
− y

r32

]
(6.42)

�Jz =
I

2π

[
z

r31
− z

r32

]
(6.43)

�J =
√
J2
x + J2

y + J2
z . (6.44)

If we bring the point M on the YZ plane then x = 0 and r1 = r2. Jx reduces
to the form.

Jx =
IL

2π
1

(L/2)2 + y2 + z2
. (6.45)

Current density on the surface on the earth at z = 0 is given by

J0 =
I

π
.

4
L2

(6.46)

and at a depth h is

Jh =
Il

2π
.

1√(
L
2

)2
+ h2

. (6.47)

The ratio of the current density at a certain depth h and that on the surface
is given by

Jh
Jo

=
1[

1 + (2h/L)2
]3/2

. (6.48)

Figure 6.14 shows the variation of current density with depth in Jh

Jo
vs hL plot.

Flow of current upto the depth h is given by
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Fig. 6.14. Shows the variation of current density with depth in a xz plane passing
through y = 0 at the centre of the electrode configuration

Fig. 6.15. Amount of current flows through the earth with depth and the relation
with electrode separation
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Ih =
IL

2π

α∫

y=−α

h∫

z=0

dydz[(
h
2

)2
+ y2 + z2

]3/2
(6.49)

=
IL

π

h∫

0

dz(
L
2

)2
+ z2

=
2I
π

tan−1 2h
L

(6.50)

Ih
I

=
2
π

tan−1 2h
L
. (6.51)

This gives the total amount of current flowing between the surface at any
particular depth. Figure 6.15 shows the variation of In

I with h/L. It is observed
that most of the current is concentrated near the surface.

6.9 Refraction of Current Lines

Direct currents get refracted across a contact of two media of different resis-
tivities and follow ‘tan’ law unlike ‘sine’ law for seismic or elastic waves. Two
homogeneous and isotropic media of resistivity ρ1 and ρ2 are having a hori-
zontal contact Fig. 6.16 of infinite horizontal extent.

Current with a current density J1 is incident on the horizontal surface at an
angle θ1. JX1 and JZ1 are respectively the horizontal and vertical components.
This current element is at an angle θ2 with the vertical.

Fig. 6.16. Shows the refraction of the current lines at the boundary between the
two media having resistivity ρ1 and ρ2
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Now for direct current flow field, the potential must be continuous across
the boundary i.e., ϕ1 = ϕ2 and the normal component of the current densities
Jn1 and Jn2 must be continuous across the boundary.

In terms of electric field, we can write,

E1 = E2 and σ1En1 = σ2En2 . (6.52)

From (6.52), we can write

Jx1ρ1 = Jx2ρ2 and Jz1 = Jz2 . (6.53)

From the two equations, we get

ρ1 (Jx1/Jz1) = ρ2 (Jx21/Jz2) ⇒ ρ1 tan θ1 = ρ2 tan θ2. (6.54)

6.10 Dipole Field

Figure 6.7 shows the nature of the direct current flow field for DC dipoles
when the distance between the two current electrodes are significantly less
in comparison to the distance where we measure the field. The essential dif-
ferences between a dipole and a bipole field are (i) dipole fields die down at
a much faster pace. DC dipole potential varies as 1

r2 with distance and field
varies as 1

r3 with distance. Expression for dipole fields and potential are pre-
sented in Chap. 4. Expressions for potentials in dipoles in electrostatic field
and direct current flow fields are analogous. (Chap. 4, (4.30) and (4.31)). Only
q the charge strength is replaced by current strengths I and ∈, the electrical
permittivity is replaced by electrical conductivity σ.

D.C. dipole fields are being used by the geophysicists primarily to have
informarion of the subsurface from a relatively greater depth. Deeper probing
is possible by sending more current through the earth and measuring poten-
tials far away from the current dipole.

Direct current dipole-dipole configurations for measuring the electrical
resistivity of the earth’s crust is known from the works of Alpin et al (1950),
Jackson (1966), Keller et al (1966), Anderson and Keller (1966), Zohdy (1969),
Alfano (1980).

Important D.C. dipole configurations for deeper probing (sounding) are,
(I) equatiorial (ii) azimuthal (iii) parallel (iv) perpendicular and (v) axial.
dipoles (Fig. 6.17 a, b, c, d, and e). Important D.C dipole configuration for
studying the lateral heterogeneites is the collinear dipole dipole configuration
(Fig. 6.18). Figure 6.18 also shows the data plotting points in the pseudosec-
tion form.

In bipole-dipole configuration, the length of the current dipole AB may be
much larger than the potential dipole MN (Fig. 6.17).
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Fig. 6.17. Show the DC dipole configuration; (a) Parallel dipole configuration where
current dipole and potential dipole are parallel; the line joing the midpoints of
the current and potential electrode is making an angle θ not equal to 90◦; (b)
Perpendicular dipole configuration; here potential dipole is at right angles to the
current dipoles at all dipole angles; (c) Radial dipole configuration: Here potential
dipole is in the same line which joins the midpoints of the current and potential
electrodes at all dipole angles; (d) Azimuthal dipole configuration; here potential
dipole is at right angles to the line joining the mid points of the current and potential
dipoles; (e) Equatorial dipoles; here the current and potential dipoles are parallel
and the dipole angle is 90◦

For dipole dipole system AB should be nearly equal to MN. Equato-
rial dipole and azimuthal dipoles are used quite frequently in dipole survey
because these data can directly be converted to Schlumberger data and can be
interpreted.

The general expression for the geometric factor for all the electrode con-
figurations is

K =
2π

1
AM − 1

BM − 1
AN + 1

BN

(6.55)

The approximate geometric factors for different bipole-dipole configurations
are

Kparallel =
2πr3

L
.

1
3 cos2 θ − 1

(6.56)

Kperpendicular =
2πr3

3L
.

1
sin θ cos θ

(6.57)
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Fig. 6.18. Shows the collinear dipole dipole configuration; here current and poten-
tial electrode pairs are in the same line; electrode separations are increased with
higher values of n; pseudo net is for plotting data

Kradial =
πr3

L cos θ
. (6.58)

Kazimuthall =
2πr3

L sin θ
. (6.59)

(Aplin 1950, Bhattacharyya and Patra, 1968 and Koefoed, 1979)
Here θ is the dipole angle. L and r are respectively the current dipole

length and the dipole separation. The percentage discrepancy

δ =
Kactual −Kapproximate

Kactual
× 100%

between the actual and approximate geometric factors (6.55 to 6.59) can be
very high in some cases. This discrepancy is significant for bipole-dipole sys-
tem. For dipole -dipole system, when AB ∼= MN, this discrepancy δ goes down
significantly. Figure 6.19 shows the decrease in the percentage discrepancy δ
computed for an homogenous earth model as well as for parallel dipole con-
figuration for MN = 300 meters, ρ = 1000 ohm – meters for different current
dipole lengths and dipole separations and current sent through the ground
was assumed to be one ampere.

Discrepancy between the actual and approximate geometric factor reduces
down significantly with increasing dipole separation OO’ where O and O′ are
the mid points of the current and potential dipoles.

DC dipole field measurement is essentially an attempt to measure a man
made field obtained by a generator driven power at a far of point. Difficult
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Fig. 6.19. Shows the discrepancy between the exact and approximate geometric
factor in the case of parallel dipole for different current dipole lengths and dipole
separations (OO’); This figure is for homogenuous and isotropic half space and dipole
angle 75◦

field logistics to layout several kilometers of field cables for deeper probing in
case Schlumberger or Wenner array could be avoided by separating the current
and potential dipoles as two independent units. Advent of sophisticated and
accurate global positioning system (GPS), distance communication system
and mobile telephones significantly reduced the ground hazards in measuring
dipole fields and subsequent data analysis specially for earth’s crustal.studies.

Cultural noise problem is significantly low in this case in comparison to
what one expects for audiofrequency magnetotelluric survey.

Parallel dipole configuration does not work at dipole angle nearly 55◦

(Keller 1966, θ = 53◦44′, Zohdy 1969, θ = 54◦44′, Alpin et al 1950,
θ = 54◦44′8′′, Das and Verma, 1980 θ = 54◦–55◦). At this angle Ex, the
parallel current dipole component of the electric field is zero. Therefore, any
measurement in the vicinity of this dipole angle is unreliable. It is now realised
that not only one should avoid θ = 53◦, there is a big zone from θ = 35◦ to
θ = 65◦, where parallel dipole does not work. It is termed as the prohibitive
zone (Fig. 6.20) for parallel dipole. Permitted zones for parallel dipole system
are θ = 0◦ to 35◦ and 65◦ to 90◦. Therefore, the recommended prescription
for use of bipole-dipole configurations for various dipole angle are (Fig. 6.21):
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Fig. 6.20. Shows the different working zones for parallel and perpendicular dipoles;
Parallel dipole works for dipole angle 0◦ to 35◦ and 70◦ to 90◦ and perpendicular
dipole works best within the dipole angle 35◦ to 70◦

Fig. 6.21. Shows the variations of potentials for different dipole angles and different
dipole configurations in a homogeneous and isotropic half space; it is an approxi-
mate guideline for choice of DC dipoles for different dipole angles, computation of
potentials is made for current dipole length = 3 km, potential dipole length = 300
meter and dipole separation R = OO′ = 5km
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(i) Radial, perpendicular and parallel dipole for 20◦ ≤ θ ≤ 35◦

(ii) Perpendicular, radial and azimuthal for 35◦ ≤ θ ≤ 65◦

(iii) Perpendicular, parallel, redial and azimuthal for 65◦ ≤ θ ≤ 75◦

(iv) Radial and parallel dipoles for 0◦ ≤ θ ≤ 20◦

(v) Azimuthal and parallel for 75◦ ≤ θ ≤ 90◦

Bipole-dipole configuration is preferable than that of dipole-dipole for deep
crustal studies. Geometric factors generally used for computation of apparent
resistivities in dipole sounding (6.56 to 6.59) should not be used for small
(00′ < 4AB) dipole separation. Combination of parallel and perpendicular
dipoles have some logistic advantage in the actual geological ground condi-
tion. Once one knows the orientation of the current dipole, orientation of the
potential dipoles are also known. In a rugged and dense forest region accurate
measurement of dipole angle may be difficult. Measurement of DC dipole field
will regain its proper place after significant improvements in field logistics as
mentioned and developments in interpretation softwares. Fairly detailed expo-
sitions of potential theory related to the direct current flow field are given in
Chaps. 7, 8, 9, 11 and 15.

6.11 Basic Equations in Direct Current Flow Field

1. �j = σ �E (6.60)

2.
→
E = −gradeφ (6.61)

3.
→
E =

I

4πσ
.
1
r3
→
r (6.62)

4.
→
φ =

I

4πσ
.
1
r
(Point source) (6.63)

5. φ =
→
PCosθ

4πσr2
for DC dipoles.(Dipole source) (6.64)

6. φ = −Iρ
π

ln r (line source) (6.65)

7. div
→
E = 0 or ∇2φ = 0 (Laplacian field) (6.66)

8. div ∇2φ = ρ (Poissonian field) (6.67)

9. Curl
→
E = 0 (6.68)

10. div j = −∂q
∂t

(6.69)

11. Jn1 = Jn2 (6.70)

12. ρ1 tan θ1 = ρ2 tan θ2 (6.71)
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6.12 Units

σ → mho/meter(Siemen)
ρ→ Ohm–meter
R→ Ohm
�J → Amp/meter2

φ→ V olt/Millivolt
�E → V olt/meter
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Solution of Laplace Equation

In this chapter solutions of Laplace equation in cartisian, cylindrical polar
and spherical polar coordinates using the method of separation of variables
are discussed in considerable details. The nature of solution of boundary value
problems in potential theory is introduced. The nature of Bessel’s function ,
modified Bessel’s function, Legendre’s Polynomial and Associated Legendre’s
Polynomial are shown. A brief discussion on Spherical Harmonics is given.

7.1 Equations of Poisson and Laplace

The electric displacement vector is �D =∈ �E { (4.4.)} where �D is the electric
displacement, �E is the electric field and ∈ is the electrical permittivity of
a medium. In addition to the constitutive relation, we use the Gauss’s flux
theorem of total normal induction on a closed surface due to a charge inside
the enclosed volume and it is given by

∫

s

�Dn.ds =
∫
div �D.dv = q =

∫
ρdv (7.1)

where ρ is the volume density of charge and dv is the infinitesimal volume.
Hence

∇.D = ρ (7.2)
⇒ ∇.(∈ E) = ρ
⇒ ∇.(− ∈ ∇φ) = ρ
⇒ − ∈ div grad φ = ρ

⇒ ∇2φ = − ρ
∈ (7.3)

= 0 when ρ = 0.
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In a source free region (Fig. 6.2 a and b)

− ∈ ∇2φ = 0. (7.4)

For a nonhomogenous but isotropic dielectric (7.4) becomes

∂

∂x

(
∈ ∂φ
∂x

)
+

∂

∂Ψ

(
∈ ∂φ
∂y

)
+

∂

∂x

(
∈ ∂φ
∂x

)
= 0. (7.5)

For a homogenous and isotropic dieletric

∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

= 0. (7.6)

For three principal axes anisotropy (7.5) will be

∂

∂x

(
∈xx

∂φ
∂x

)
+

∂

∂y

(
∈yy

∂φ
∂y

)
+

∂

∂z

(
∈zz

∂φ
∂x

)
= 0. (7.7)

7.2 Laplace Equation in Direct Current Flow Domain

When current is flowing out of a closed region, the flow of charge will be
guided by the relation

div�J = −∂ρ
∂t

(7.8)

where ρ is the volume density of charge in Coulomb/meter3 and �J is current
density in ampere/meter2. Since this relation satisfies the law of conserva-
tion of charge, it is termed as the equation of continuity. In a source free
region

div�J = 0 (7.9)

where �J = σ �E = −σgradφ, where φ is the potential (in volt) and �E is the
electric field in volt/meter. Equation (7.9) can be written as

div (σ grad φ) = 0 (7.10)
⇒ grad (σ) grad φ + (σ)div grad φ = 0. (7.11)

For an homogeneous and isotropic medium (7.11) reduces to Laplace equation

∇2φ = 0. (7.12)

Non Laplacian character of (7.11) is demonstrated in Chap. 8.
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Fig. 7.1. A cuboid with curve sides to represent the curvilinear coordinates

7.3 Laplace Equation in Generalised Curvilinear
Coordinates

Laplace equations in cartesian, cylindrical polar and spherical polar coordi-
nates can be expressed from the expression of Laplace equation in generalized
curvilinear coordinates (Fig. 7.1).

In orthogonal curvilinear coordinate, the Laplace equation is

∇2φ =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂φ
∂u1

)
+

∂

∂u2

(
h1h3

h2

∂φ
∂u2

)

+
∂

∂u3

[
h1h2

h3
.
∂φ
∂u3

]]
. (7.13)

Here the value of h1, h2, h3 and u1, u2 and u3 can be expressed as :

(a) In cartesian coordinates (Fig. 7.2)

u1 = x, u2 = y and u3= z
h1 = 1, h2 = 1, and h3= 1 (7.14)

Fig. 7.2. A three dimensional elementary volume in Cartisian coordinatea (x,y,z)
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(b) in cylindrical polar coordinates (Fig. 7.3)

u1 = ρ, u2 = Ψ and u3= z
h1 = 1, h2 = ρ and h3= 1 (7.15)

(c) In spherical polar coordinates (Fig. 7.4)

u1 = r, u2 = θ and u3 = ψ
h1 = 1, h2 = r, and h3 = r sin ψ. (7.16)

Therefore, the expressions for the Laplace equation in three coordinate sys-
tems are respectively given by

(a)

∇2φ =
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

= 0 (7.17)

in Cartesian coordinate, where φ = f(x, y, z).
(b)

∇2φ =
1
ρ

[
∂

∂ρ

(
ρ
∂φ
∂ρ

)
+

∂

∂Ψ

(
1
ρ
∂φ
∂Ψ

)
+

∂

∂z

(
ρ
∂φ
∂z

)]
= 0

⇒ 1
ρ
∂

∂ρ

(
ρ
∂φ
∂ρ

)
+

1
ρ2

(
∂2φ
∂Ψ2

)
+
∂2φ
∂z2

= 0 (7.18)

in cylindrical polar coordinates where φ = f(ρ,ψ, z.).

Fig. 7.3. A three dimensional elementary volume in cylindrical polar coordinates
(r, ψ, z)
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Fig. 7.4. A three dimensional elementary volume in spherical polar coordinates
(r, θ, ψ)

(c)

∇2φ =
1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂φ

∂r

)
+

∂

∂θ

(
sin θ

∂φ

∂θ

)

+
∂

∂Ψ

(
1

sin θ
∂φ
∂ψ

)]
= 0

⇒ 1
r2

[
∂

∂r

(
r2
∂φ

∂r

)
+

1
sin θ

.
∂2φ

∂θ2
+

1
sin2 θ

.
∂2φ

∂ψ2

]
= 0 (7.19)

in spherical polar coordinates where φ = f(r, θ,ψ). Most of the geophysical
problems, dealing with scalar potential field satisfy Laplace equation in a
source free region i.e. the region which excludes the source (field exists but
not the source) (Fig. 2.5 a and 6.2 a,b). Therefore, the solution of Laplace
equation forms a significant part of the potential theory in geophysics. In this
chapter we shall deal with the solution of Laplace equation by the method of
separation of variable in (i) cartesian (ii) cylindrical polar and (iii) spherical
polar coordinates depending upon the nature of the problems. One has to
choose the proper coordinate system for solving a particular problem A few
simpler problems are included.
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7.4 Laplace Equation in Cartesian Coordinates

The solution of the Laplace equation by the method of separation of variables
in cartesian coordinate is demonstrated in this section.When potential φ is a
function of x, y and z where X, Y, Z are independent variables, we can write:

φ = X (x) Y (y) Z (z) (7.20)

and
∂φ
∂x

= YZ
∂X
∂x

(7.21)

or,
∂2φ
∂x2

= YZ
∂2X
∂x2

. (7.22)

Substituting these values in (7.17) we get

∇2φ =
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

= 0 (7.23)

Y Z
d2X

dx2
+ ZX

d2Y

dy2
+XY

d2Z

dz2
= 0. (7.24)

Dividing the whole (7.24) by XYZ, we get:

1
X
.
d2X
dx2 +

1
Y
.
d2Y
dy2 +

1
Z
.
d2Z
dz2 = 0. (7.25)

The sum of these terms will never be zero unless each individual terms are
constants and the sum of these constants is zero i.e., if

1
X
.
d2X
dx2 = α2

1
Y
.
d2Y
dy2 = β2

1
Z
.
d2Z

dz2
= γ2

(7.26)

then
α2 + β2 + γ2 = 0. (7.27)

We shall now examine the nature of the expressions for potentials for their
dependence on the different axes:

7.4.1 When Potential is a Function of Vertical Axis z, i.e., φ = f(z)

The Laplace equation reduces down to ∂2φ
∂z2 = 0 and the solution is

φ = cz + d (7.28)
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where c and d are two arbitrary constants. Here potential is increasing with z,
i.e., higher the value of z, higher will be the potential. One encounters this kind
of situation while computing gravitational potentials due to a hypothetical
infinite plate. Here

�E = − ∂φ
∂Z

= c (7.29)

i.e., the field is constant at any distance from the plane.

7.4.2 When Potential is a Function of Both x and y, i.e., φ = f(x, y)

Putting φ = X (x) Y (y)
The Laplace equation reduces down to:

1
X
.
d2X
dx2 +

1
Y
.
d2Y
dy2 = 0. (7.30)

If
1
X
.
d2X
dx2 = α2, then

1
Y
.
d2Y
dy2 = −α2. (7.31)

And if
1
X
.
d2X
dx2 = −β2, then

1
Y
.
d2Y
dy2 = β2. (7.32)

Therefore, we can write:

d2X
dx2 − α2X = 0

d2Y
dy2 + α2Y = 0 (7.33)

The solutions are:
X = eαx, e−αx, cosh αx, sinh αx (7.34)

and
Y = eiαy, e−iαy, cos αy, sin αy

The most general solution of Laplace equation for these two equations are:

φ =
∞∑

n=0

(
an eαnx + bn e−αnx

)
(cn cos αn y + dn sin αn y) (7.35)

and

φ =
∞∑

n=o

(an cos βn y + bn sin βny) (cn cosh αnx + dn sinh αnx) (7.36)
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7.4.3 Solution of Boundary Value Problems in Cartisian
Coordinates by the Method of Separation of Variables

Let us find out the potential at any point in a two dimensional space when
the size of the conductor and the potentials on the boundaries are prescribed.

Problem 1

A rectangular block of a conductor of thickness ‘b’ is placed in the xy plane.
The prescribed values at different boundaries are:

x = ∞, φ = 0

x = 0, φ = P cos
πy
b

′

y = −b
2
, φ = 0

y = +
b
2
, φ = 0

Find the potential at any point in the rectangular plate.
Figure (7.5) shows the nature of the problem. Since φ = 0 at x = ∞, the

general solution of the two dimensional potential problem takes the form:

φ =
∞∑

n=0

bn e−αn x (cn cosh αn y + dncinαn y) . (7.37)

Applying the second boundary condition, we get :

P cos
πy
b

=
∑

(c′n cos αny + d′n sin αny) (7.38)

where c′n = bncn and d′n = bncn . These are arbitrary constants to be deter-
mined from the boundary conditions. Since the source potential contains ‘cos’
term, we have to drop the ‘sin’ terms from the solution. Therefore, the expres-
sion for the potential reduces to:

Fig. 7.5. A two dimensional Dirichlet’s problem with potentials prescribed in all
the boundaries
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φ =
∑

c′ne
−αnx cos αny. (7.39)

Applying the third boundary condition, we get:

0 =
∑

c′ne−αnx cos
αnb
2
. (7.40)

Therefore

cos
αnb
2

= 0

⇒ αn =
nπ
b

where n = 1, 3, 5, 7, . . . . . . . . . . . . ..

The expression for the potential changes to the form

φ =
∑

c′ne−
nπ
b x cos

nπ
b .y . (7.41)

Applying the second boundary condition, (7.41) becomes:

P cos
πy
b

= c′n cos
nπy
b

=
(

c′1 cos
πy
b

+ c′3 cos
3πy
b

+ c′5 cos
5πy
b

+ . . . . . .

)
. (7.42)

Equating the coefficients of cos πy
b on both the sides, one gets:

P = c′1 for n = 1, therefore c′3 = c′5 = c′7 = c′9·········· = 0.

Therefore the final solution of the problem is:

φ = P e−
πx
b cos

πy
b
. (7.43)

Problem 2

A finite rectangular conductor of length ‘a’ and width ‘b’ is placed in the
xy plane placing the corner A of the rectangle at the origin. The prescribed
potentials at the boundaries are as follows (Fig. 7.6)

Φ = 0 at x = 0
φ = 0 at x = a
φ = 0 at y = 0
φ = f(x), at y = b

Find the potential at any point on the plate. The solution of the Laplace
equation :

∂2φ
dx2 +

∂2φ
dy2 = 0 (7.44)
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Fig. 7.6. A two dimensional potential problem with potentials prescribed in all the
boundaries

are

(i) eαx, e−αx, sin αy, cos αy
(ii)

sin αx, cos αx, eαy, e−αy (7.45)

and the general solution of the problem is written as :

φ =
∞∑
n=o

(An cosαnx+Bn sinαnx)
(
Cne

αny +Dne
−αny

)
. (7.46)

Values of these arbitrary constants are determined using the boundary con-
ditions.

Applying the first boundary condition, we get:

0 = ΣAn

(
Cneαny + Dne−αny

)
. (7.47)

The right hand side expression of (7.47) will be zero when An = 0. Therefore
the general expression for the potential reduces to

φ =
∞∑

n=0

Bn sin αnx
(
Cneαny + Dne−αny

)
. (7.48)

Applying the second boundary condition, we get:

0 = Σ sin αna
(
C′ne

αny + D′ne−αny
)

(7.49)

where C′n = BnCn and D′n = BnDn.
Equation (7.49) will be 0 if sin αna = 0

⇒ αna = nπ

⇒ αn =
nπ
a
. (7.50)

φ =
∑

Sin
nπx
a

(
C′ne

nπy
a + D′ne−

nπy
a

)
. (7.51)
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Applying the third boundary condition, we get:

0 =
∑

sin
nπx
a

(C′n + D′n) . (7.52)

Equation (7.52) will be 0 if,

C′n + D′n = 0
⇒ C′n = −D′n. (7.53)

Hence the expression for the potential becomes

φ =
∑

sin
nπx
a

C′n
(
e

nπy
a − e

−nπy
a

)

=
∑

F′n sin
nπx
a

sinh
nπy
a

(7.54)

where, F′n is a new constant.
Now applying the fourth boundary condition, we get:

f(x) =
∑

F′n sinh
nπb
a
. sin

nπx
a
. (7.55)

Multiplying both the sides by sin mπx
a and integrating from a to 0, we get:

a∫

o

f (x) sin
mπx

a
dx =

∑ a∫

o

F′n sin h
nπb
a
. sin

nπx
a

sin
mπx

a
dx. (7.56)

Since
a∫

o

sin nx sin mx dx = 0 for m �= n

=
a
2

for m = n,

therefore, from (7.55), one can write

F′n =
2
a
.

1
sinh mπb

a

a∫

o

f (x) sin
mπx

a
dx. (7.57)

Hence, the general solution of the problem is

φ =
∑

Fn sin
mπx

a
sinh

nπy

a
. (7.58)
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Fig. 7.7. A break up of a two dimensional problem into four parts to make it a
easily solvable problem

Problem 3

Find the potential at any point inside a rectangular conductor of length ‘a’
and width ‘b’ placed in the xy planes when the following boundary conditions
are prescribed, i.e., for (Fig. 7.7)

x = 0, φ = f1(x)
y = 0, φ = f2(x)
x = a, φ = f3(x)
y = b, φ = f4(x)

This problem can be solved by breaking the problem into four problems similar
to that discussed in the previous section, get the potential at a point for four
problems and add them up. Since the potentials are scalars and the principle
of superposition is valid, we can get

φ = φ1 + φ2 + φ3 + φ4. (7.59)

7.5 Laplace Equation in Cylindrical Polar Coordinates

Laplace equation in cylindrical coordinate is :

∇2φ =
∂2φ
∂ρ2

+
1
ρ
∂φ
∂ρ

+
1

ρ2
.
∂2φ
∂ψ2

+
∂2φ
∂z2

= 0 (7.60)
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where the coordinates are ρ (along the radial direction), Ψ (along the
azimuthal direction) and z (along the vertical direction). Applying the method
of separation of variables we can write :

φ = R(ρ)Ψ(ψ)Z(z)

where, R, Ψ and Z are respectively the functions of ρ, Ψ and z only. Therefore,
from (7.60) we can write

ΨZ
d2R

dρ2
+

ΨZ
ρ

dR

dρ
+

1
ρ2
RZ

d2Ψ
dψ2

+Rψ
d2Z

dz2
= 0. (7.61)

Now dividing the equation by RΨZ, we get

1
R

d2R

dρ2
+

1
Rρ

dR

dρ
+

1
ρ2
.
1
Ψ
.
d2Ψ
dψ2

+
1
z
.
d2Z

dz2
= 0. (7.62)

Let us choose
1
Z

d2Z
dz2 = α2. (7.63)

Multiplying the (7.62) by ρ2, we get :

ρ2

R
.
d2R

dρ2
+
ρ

R
.
dR

dρ
+ α2ρ2 +

1
Ψ
.
d2Ψ
dψ2

= 0. (7.64)

We, next put
1
ψ
.
d2Ψ
dψ2

= −β2 (7.65)

and obtain :
ρ2

R
.
d2R
dρ2

+
ρ
R
.
dR
dρ

+ α2ρ2 − β2 = 0 (7.66)

which can be rewritten as

d2R
dρ2

+
1
ρ

dR
dρ

+

(
α2 − β2

ρ2

)
R = 0. (7.67)

This equation is known as Bessels equation.
Alternately, we can have the second set of equations as follows:

1
Z
.
d2Z
dz2 = −α2 (7.68)

1
ψ
.
d2Ψ
dψ2

= −β2 (7.69)

d2R
dρ2

+
1
ρ
.
dR
dρ

−
(

α2 +
β2

ρ2

)
R = 0 (7.70)

Equation (7.70) is a modified Bessels equation.
Now let us examine the dependence of potential function on ρ, ψ, z and

the corresponding changes in the expressions for potentials.
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7.5.1 When Potential is a Function of z ,i.e., φ = f(z)

The Laplace equation takes the form

d2φ
dz2 = 0, or φ = Az + B (7.71)

where A and B are constants. The potential at a point is gradually increasing
with z. This is the potential function due to an infinite plate, discussed in the
previous section.

7.5.2 When Potential is a Function of Azimuthal Angle Only
i.e., φ = f(ψ)

The Laplace equation changes to the form

d2φ
dψ2

= 0, or φ = Cψ + D (7.72)

where C and D are constants. A circular resistance carrying current can create
this type of potential functions.

7.5.3 When the Potential is a Function of Radial Distance,
i.e., Φ = f(ρ)

The Laplace equation becomes

∂2φ
dρ2

+
1
ρ
∂φ
∂ρ

= 0 (7.73)

⇒ ∂

∂ρ

(
ρ
∂φ
∂ρ

)
= 0

ρ
∂φ
∂ρ

= N, ∂φ =
∂ρ
ρ

+ N

Therefore the solution of this equation is :

φ = M1nρ + N (7.74)

where M and N are constants to be determined from the boundary conditions.
Let us take an example.

Problem

Two infinitely long cylinders of radius ‘a’ and ‘b’ are placed co-axially. The
potentials at the outer boundary at radius ‘b’ and the inner boundary at
radius ‘a’ are respectively 0 and Vo. Find the potential at any point in the
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Fig. 7.8. Potential inside a cylinderical shell when the potentials are prescribed in
the inner and outer boundaries

annular space between the two cylinders (Fig. 7.8) Applying the boundary
conditions, we get:

0 = M1n b + N
Vo = M1n a + N (7.75)

Therefore, Vo = M1n a
b ,

M =
VO

ln
(

a
b

) and N =
VO

ln
(

a
b

) . ln b (7.76)

The potential at any point at a radial distance ρ from the axis of the coaxial
cylindrical bodies is given by

=
VO

ln (a/b)
ln ρ − VO ln b

ln (a/b)

= VO
ln (ρ/b)
ln (a/b)

. (7.77)

7.5.4 When Potential is a Function of Both ρ and ψ,
i.e., φ = f(ρ, ψ)

The Laplace equation becomes

∂2φ
dρ2

+
1
ρ
∂φ
∂ρ

+
1

ρ2
.
∂2φ
∂ψ2

= 0. (7.78)

Applying the method of separation of variables i.e.,

φ = R(ρ)Ψ(ψ)

we get two equations
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1
ψ
.
d2Ψ
dψ2

= −n2 (7.79)

and
d2R
dρ2

+
1
ρ
.
dR
dρ

− n2

ρ2
R = 0. (7.80)

The solution of the (7.79) is

φ = (Acos nψ + B sinnψ). (7.81)

The solution of the (7.80) can be determined as follows:
Multiplying the (7.80) by ρ2, we get

ρ2 d2R
dρ2

+ ρ
dR
dρ

− n2R = 0. (7.82)

Let
θ = logρ

e, then ρ = eθ

So,

dR
dρ

=
dR
dθ
.
dθ
dρ

=
dR
dθ
.e−θ

⇒ d2R
dρ2

=
d
dρ

(
dR
dρ

)
=

d
dρ

(
e−θ dR

dθ

)

= e−θ d
dθ

(
e−θ dR

dθ

)

= e−θ
(

e−θ d2R
dθ2 − e−θ dR

dθ

)

= e−2θ
(

d2R
dθ2 − dR

dθ

)

Substituting these values one gets

d2R
dθ2 − dR

dθ
+

dR
dθ

− n2R = 0

or,
d2R
dθ2 − n2R = 0

or,

R = A1enθ + A2e−nθ

= A1ρn + A2ρ−n (7.83)

Therefore, the general solution of Laplace equation when Φ = f(ρ,ψ), is

φ =
∞∑
1

(An cos nψ + Bn sin nψ)
(
Cnρn + Dnρ−n

)
. (7.84)
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Problem 1

An infinitely long cylinder of dielectric constant ∈2 is placed in a medium
of dielectric constant ∈1 with the axis of the cylinder oriented along the z-
direction. The cylinder is placed in an uniform field, i.e., the source and sink
are assumed to be at infinity (Fig. 7.9).

Find the potential at any point both inside and outside the cylindrical
body.

In a direct current flow field, we assume a cylindrical conductor of electrical
conductivity σ2 is placed in an homogeneous medium of conductivity σ1. The
boundary value problem will essentially remain the same. The field is assumed
to be perpendicular to the axis of the cylinder and is assumed to be parallel
to the x-axis.

Since
E = −gradφ = −∂φ

∂x
(7.85)

where φ is the potential function. We get

Ex.x = −φ + Constant. (7.86)

Therefore, the source potential is :

φo = −Ex.x + A

where A is a constant and x is the of the point assumed origin. A is dropped
while computing the perturbation potential. In an uniform field Ex, in a
medium of dielectric constant, ∈1 and in the presence of an anomalous body
of contrasting physical property ∈2, an anomalous or perturbation potential
will be generated. It will be added up to the source potential in an uniform
field. This perturbation potential will gradually die down with distance of the
point of observation from the centre of the cylinder,the anomalous body.

Fig. 7.9. An infinately long cylinder of dielectric constant ∈2 is placed in a medium
of dielectric constant; ∈1 in the presence of an uniform field
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Potential at a point both outside and inside a cylinder can be written as:

φ1 = φo + φ′(potential outside)
φ2 = φo + φ′′(potential inside) (7.87)

Here φ′ and φ′′ are the perturbation potentials outside and inside the body.
The perturbation potential part also must satisfy Laplace equation.

Therefore
∇2φ′ = 0 and ∇2φ′′ = 0 (7.88)

assuming the radius vector is at an angle ψ with the x-axis

φo = −Eox = −Eoρ cos ψ (7.89)

where Ψ is the angle between the radius vector ρ and the x-axis. Since the
source potential has a cos Ψ term, the perturbation potential will also have
cosΨ terms only. The general expression for the perturbation potential, when
it is a function of ρ and Ψ and independent of z, reduces down to

φ′ =
∞∑

n=o

fn cos nψ, ρ−n(potential outside) (7.90)

Here ρ is the radial distance from the axis of the cylinder. Since the pertur-
bation potential will gradually die down with distance from the centre of the
cylinder Dnρ−n will be the appropriate potential function for outside region.
Similarly, the perturbation potential inside the body will be given by Cnρn as
the appropriate potential function. Hence

φ′′ =
∞∑

n=o

gn cos nψρn. (7.91)

Because when ρ tends to zero, Dnρ−n in (7.84) tends to infinity. Since poten-
tial inside a body, when placed in an uniform field, cannot be infinitely high
Therefore, ρ−n cannot be a potential function inside the body. Here fn = AnDn

and gn = AnCn We can now write down the potentials outside and inside the
body respectively as:

φ1 = −Eρ cos ψ +
∞∑

n=0

fn cos nψρ−n

and

φ2 = −Eρ cos ψ +
∞∑

n=0

gn cos nψρn.
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Fig. 7.10. Field line distortions in the presence of a cylinder of contrasting dielectric
constant

Applying the boundary conditions :

i)
φ1 = φ2

and
ii)

∈1

(
∂φ

∂ρ

)

1

= ∈2

(
∂φ

∂ρ

)

2

(7.92)

at ρ = a. i.e., on the surface of the cylinder of radius ‘a’, we get
∑

fn cos nψ, a−n =
∑

gn cos nψ, an

and

− ∈1 E cosψ +
∑

(−n) fn cosnψ, a−(n+1) ∈1

= − ∈2 E cosψ +
∑

ngn cosnψ an−1 ∈2 . (7.93)

Since the source potential contains cos Ψ, the perturbation potential will
also have the cos ψ term, therefore n = 1. The summation sign vanishes and
we obtain, ultimately

f1a−1 = g1a

and
− ∈1

�E + f1a−2 ∈1= − ∈2
�E + g1 ∈2 . (7.94)

From (7.94) the values of the arbitrary constants f1 and g1 are obtained respec-
tively as :

g1 = �E.
∈2 − ∈1

∈2 + ∈1
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and
f1 = �Ea2∈2 − ∈1

∈2 + ∈1
(7.95)

in terms of the contrast in physical properties, size of the body and strength
of the uniform field. Potentials both outside and inside the body can now be
written as :

φ1 = − �Eρ cosψ + �Ea2.
∈2 − ∈1

∈2 + ∈1
. cosψ.ρ−1potential outside (7.96)

and
φ2 = − �Eρ cosψ + �E

∈2 − ∈1

∈2 + ∈1
. cosψ.ρ.potential inside (7.97)

Equations (7.96) and (7.97) can be written in the form

φ1 = −E
(

1 + K
a2

ρ2

)
ρ cos ψ

and
φ2 = −E(1 + K)ρ cos ψ (7.98)

where K = ∈1−∈2
∈1+∈2

, the reflection factor.
Since the potential is dependent on ρ and ψ, the field inside the body can

be written as :
�E1 = +�aρ

(
−∂φ
∂ρ

)
+�aψ

(
− ∂φ

ρaψ

)
. (7.99)

Therefore, the fields on both inside and outside the body are respectively
given by

�E1 = +�aρ.�E
(

1 − K
a2

ρ2

)
cos ψ −�aΨE.K

a2

ρ2
sin ψ

⇒ �E1 = +�aρ.E cosψ − EK
a2

ρ2
(�aρ cosψ − �aψ sinψ) . (7.100)

And

�E2 = −�aρ �E (1 +K) cosψ + �aψ �E (1 +K) sinψ

= �E (1 + K)
(−�aρ. cos ψ +�aψ sin ψ

)

= E (1 + K)�ax. (7.101)

Here �aρ,�aΨ are the unit vectors along the radial and azimuthal direction and
�ax is the unit vector along the x direction (Fig. 7.10).

Here
�ax = −�aρCosψ +�aψSinψ (7.102)

Equation (7.101) shows that the field inside the body is parallel to the external
and uniform field. Figure 7.11 shows the nature of distortions in the uniform
field and equipotentials due to presence of an infinitely long cylinder of con-
trasting physical property.
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Fig. 7.11. Bessel’s function of first kind and 0,1,2,3,4 order

7.5.5 When Potential is a Function of all the Three Coordinates,
i.e., φ = f(ρ, ψ, z)

The next problem is to obtain the generalised solution of the Laplace equation
in cylindrical coordinates when the potential function (φ) is dependent on all
the three coordinates ρ, ψ and z.

Laplace’s equation in cylindrical coordinates is

∂2φ
∂ρ2

+
1
ρ
∂φ
∂ρ

+
1

ρ2
.
∂2φ
∂ψ2

+
∂2φ
∂z2

= 0. (7.103)

Using the method of separation of variables, discussed in the previous section,
we have

φ = R(ρ)Ψ(ψ)Z(z)

We obtain the three equations

d2Ψ
dψ2

+ n2Ψ = 0 (7.104)

d2Z
dz2 − m2Z = 0 (7.105)

d2R
dρ2

+
1
ρ

dR
dρ

+
(

m2 − n2

ρ2

)
R = 0 (7.106)

where R, Ψ or Z are respectively the functions of ρ, ψ or z only. The solutions of
equations 7.104 and 7.105 are discussed in the previous section. Equation 7.106
can be rewritten in the form

d2R
d (mρ)2

+
1

(mρ)
.

dR
d (mρ)

+

(
1 − n2

(mρ)2

)
R = 0. (7.107)
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Equation 7.107 is of the form

d2y
dx2 +

1
x

dy
dx

+
(

1 − n2

x2

)
y = 0 (7.108)

or,

x2 d2y
dx2 + x

dy
dx

+
(
x2 − n2

)
y = 0. (7.109)

It is a Bessel’s equation of order n. The standard approach for solution of this
type of second order differential equation is to assume a power series. It is
known as Frobenius power series.

7.5.6 Bessel Equation and Bessel’s Functions

Let us take Y in the power series form as

Y = xP(ao + a1x + a2x2 + . . . ..)

= xP
∞∑
O

aSxS =
∞∑
O

aSxP+S, (7.110)

dy
dx

=
∑

aS (P + S) xP+S−1 and

d2y
dx2 =

∑
aS (P + S) (P + S − 1) xP+S−2. (7.111)

Substituting these values in (7.109), we get

Y =
∑[

aS (P + S) (P + S − 1) + aS (P + S) − aSn2
]
xS

+
∑

aSxS+2 = 0. (7.112)

The following steps are necessary to evaluate the co-efficients as:.

i) Equating the co-efficient of xo, when S = 0, we get

ao

(
P2 − n2

)
= 0. (7.113)

Since ao is kept arbitrary at this stage and non-zero, therefore

P2 − n2 = 0
P = ±n.

ii) Equating the co-efficient of x1 when S = 1, we get :

a1

[
(P + 1)P + (P + 1) − n2

]
= 0

⇒ a1

[
(P + 1)2 − n2

]
= 0. (7.114)

Substituting P = n, we get a1[(n + 1)2 − n2] = 0. Since the second factor
cannot be zero even if n = 0, therefore a1 = 0.
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iii) Equating the co-efficient of x2 and higher order terms, we get :

aS

[
(P + S) (P + S − 1) + (P + S) − n2

]
+ aS−2 = 0 for S ≥ 2

Therefore,
aS = − aS−2

(P + S)2 − n2
. (7.115)

Since ao is arbitrarily chosen to be not equal to zero, therefore P2 = n2 or,
P = ±n. Hence the order of equation is either n or −n. We then have

a1

[
(n + 1)2 − n2

]
= 0.

Now, since
(
(n + 1)2 − n2

)
�= 0, therefore a1 = 0. One gets the same result

by choosing P = −n, i.e., a1 = 0, for P = −n also. Hence, we write

aS = − aS−2

S (S + 2n)
. (7.116)

Since
a1 = 0.

therefore,
a3 = a5 = a7 = . . . . . . .. = 0.

With non-zero ao, one gets

a2 = − ao

2 (2 + 2n)
= − ao

22 (n + 1)

a4 = − a2

4 (4 + 2n)
= − a2

22.2 (n + 2)

= +
ao

24.2. (n + 1) (n + 2)

a6 = − a4

6 (6 + 2n)
= − a4

23.3. (n + 3)

= +
ao

26.2.3. (n + 1) (n + 2) (n + 3)

and
a2S = (−1)S

ao

22S.s! (n + 1) (n + 2) . . . . . . (n + S)
. (7.117)

Now from Frobeneous power series

Y = xP ΣaSxS

one gets a2S to be the co-efficient of xn+2S (∵ P = n).
Therefore,

a2S =
(−1)S .2n.ao

22S+n..S! (n + 1) (n + 2) . . . . . . (n + S)
(7.118)
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where n is an integer. We can write the (7.118) as

a2S =
(−1)S .2nΓ (n + 1)

22S+nS!Γ (n + S + 1)
. (7.119)

So far ao was kept arbitrary. Now we are assigning a certain value to ao i.e.,

ao =
1

2nΓ (n + 1)
(7.120)

such that

Y = xn

[
1

2nΓ (n + 1)
−

(
x
2

)2
2nΓ (n + 1)

+

(
x
2

)4
2n.2!Γ (n + 3)

− . . . ..

]
. (7.121)

Since all the terms are defined now, we can write the (7.121) as

Y =
∞∑

S=O

(−1)S
(

x
2

)2S+n

S!Γ (n + S + 1)
. (7.122)

Here Γ(n + 1) etc. are gamma functions.
For many of the physical problems n is put as an integer, therefore we can

rewrite the formula as :

Y =
∞∑

S=O

(−1)S
(

x
2

)2S+n

S! (n + S)!
. (7.123)

It is denoted as Jn, the Bessel’s function of order n. Hence

Y = CJn(x) (7.124)

We got the solution taking P = n. A similar solution can be obtained for
P = −n.

Therefore the general solution is

Y = C Jn(x) + D J−n(x) (7.125)

where n is an integer, it can be very easily shown that

Jn(x) = (−1)nJ−n(x)
= F Jn(x)

where Jn (x) is the Bessel’s function of order n and is given by

Jn (x) =
∞∑

S=O

(−1)S xn+2S

2n+2SS!Γ (n + S + 1)
. (7.126)
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Now let

Y = φ (x) Jn (x) ,
Y′ = φ′Jn (x) + φ′Jn(x)
Y′′ = φ′′Jn + 2φ′J′n + φJ ′′n (x).

Substituting the values in the original equation, we have

φ′′Jn + 2φ′J ′n + φJ ′′n +
φ′

x
Jn +

φ

x
J ′n + φJn − n2

x2.
φJn = 0. (7.127)

We can isolate the part

φ
[
J′′n +

1
x
J′n +

(
1 − n2

x2

)
Jn

]
= 0.

This is equal to zero because Jn is the solution of the differential equations
and

Equation 7.127 reduces to the form

φ′′Jn + 2φ′J ′n +
φ′

x
.Jn = 0. (7.128)

Rewriting the (7.128), we get

φ′′ +
(

2J ′n
Jn

+
1
x

)
φ′ = 0

or
dφ′

φ′
+
(

2
J ′n
Jn

+
1
x

)
φ′ = 0.

Integrating, one gets

log φ′ + 2 log Jn + log x = log E

or
φ′ =

E
x J2

n

or
φ = E

∫
dx

x J2
n

+ G. (7.129)

This part is termed as Yn. It is

Yn = E Jn

∫
dx

x J2
n

+ G Jn. (7.130)

This is the Bessel’s function of nth order and second kind. Hence the general
solution of the Bessel’s equation is
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Y = CJn(x) + DYn(x) (7.131)

where Jn and Yn are respectively the Bessel’s function of the first and second
kind and of nth order.

The most general solution of the Laplace equation in cylindrical co-
ordinates is

φ = [A cosmψ + B sinmψ] [C Jn (mρ) + D Yn (mρ)][
KenZ + Le−nZ

]
(7.132)

where A, B, C, D, K, L are co-efficients, generally determined from the bound-
ary conditions. For some type of boundary value problems, these co-efficients
may turn out to be the Kernal functions in Frehdom’s integral equations, to
be discussed later.

In most of the problems of geophysical interest, the potential generally
becomes independent of ψ, when φ = f(ρ,Z), the Bessel’s equation reduces to
the form

Y = C Jo(x) + D Yo(x) (7.133)

where Jo and Yo are the Bessel’s function of first and second kind and of order
zero.

For φ = f(ρ, z), the expression for the potential simplifies down to

φ = [C Jo (mρ) +DYo (mρ)]
[
KemZ + Le−mZ

]
(7.134)

The general expressions for Jo and Yo are respectively, given by

Jo =
∞∑

S=o

x2S

22S (S!)2
(7.135)

Jo = 1 − x2

(2!)2
+

x4

24 (2!)2
− x6

26 (3!)2
+ . . . . . .

= 1 − x2

22
+

x4

22.42
− x6

22.42.62
+ . . . . . . . (7.136)

and

Y0 =
2
π

[
ln

x
2
J0 +

x2

22
− x4(1 + 1/2)

24(2!)2
. . . . .

]
(7.137)

⇒ Yo =
2
π

[(
ln

γx

2

)
−
∞∑

S=o

(−1)S
x2S

22S (S!)

(
1 +

1
2

+
1
3

+ . . . .
1
n

)]

where

γ = Lim
(

1 +
1
2

+
1
3

+ . . . .+
1
n
− log n

)
(7.138)

= 0.5772157 and is known as Euler’s Constant.
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Fig. 7.12. Bessel’s function of second kind and 0,1,2,3,4 order

Figures 7.11 and 7.12 shows the behaviour of Jo and Yo for increasing val-
ues of x. Both the functions behave as damped oscillatory functions for larger
values of x and the oscillatory characters die down with distance. These points
are taken into consideration before choosing them as potential functions. For
larger values of x, Jo and Yo can be computed approximately as

Jo (x) =

√
2

πx
cos

(
x − π

4

)

and

Yo (x) =

√
2

πx
sin

(
x − π

4

)
(7.139)

as x → ∞.
For large values of x, the oscillatory behaviour vanishes, the potential

functions become zero at infinity. In a source free region, where potential
function φ satisfies Laplace equation, has a finite value at x = 0. Therefore
for most of the geophysical problem Jn or Jo are treated as more appropriate
potential functions. Yo = ∞ at x = 0. Therefore near the vicinity of a source
Yo can be taken as a potential function.

7.5.7 Modified Bessel’s Functions

If we take
d2Z
dz2 + m2Z = 0
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instead of
d2Z
dz2 − m2Z = 0 (7.140)

the Bessel’s equation changes to the form

d2y
dx2 +

1
x

dy
dx

−
(

1 +
n2

x2

)
y = 0. (7.141)

This equation is called the modified Bessel’s equations and is of the form The
(7.142) can be rewritten in the form

d2y
d (ix)2

+
1

i2x
dy

d (ix)
+

[
1 − n2

(ix)2

]
y = 0 (7.142)

The solution of (7.142) is Jn(ix) and Yn(ix). We can write Jn(ix) as

Jn (ix) =
∞∑

S=o

(−1)S (ix)n+2S

2n+2SS!Γ (n + S + 1)

= in
∞∑

S=o

(−1)S xn+2S

2n+2SS!Γ (n + S + 1)
. (7.143)

We, therefore, define the modified Bessel’s function of the first kind as

In (x) = i−nJn (ix) =
∞∑

S=o

(−1)S .xn+2S

2n+2SS!Γ (n + S + 1)
(7.144)

i.e.
In(x) = i−nJn(ix).

Modified Bessel’s function of the second kind and nth order Kn(x), is

Kn (x) = i−nJ−n (ix) . (7.145)

Therefore, the general solution of the modified Bessel’s equation is

Cn In(x) + Dn Kn(x). (7.146)

When a potential function is independent of ψ, n will be 0, we get the modified
Bessel’s equation as

d2y
dx2 +

1
x

dy
dx

− y = 0 (7.147)

and the solution is
Y = Co Io(x) + Do Ko(x)

where,

Io (x) =
[
1 +

x2

22
+

x4

22.42
+

x6

22.42.62
+ . . . . . .

]
(7.148)
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and

Ko (x) = − Io ln
( γx

2

)
+

x2

22

+
x4

24. (2!)2

(
1 +

1
2

)
+

x6

26. (3!)2

(
1 +

1
2

+
1
3

+ . . . . .

)
. (7.149)

Figures 7.13 and 7.14 show the behaviours of Io and Ko with x. At larger
distances from the source, one can write

In (x) =
(

1
2πx

) 1
2

ex (7.150a)

and

Kn (x) =
( π

2x

) 1
2

e−x (7.150b)

as x → ∞.
The general solution of Laplace equation

∂2φ
∂ρ2

+
1
ρ
∂φ
∂ρ

+
∂2φ
∂z2

= 0 for φ = f(ρ, z) (7.151)

i.e. when potential is independent of ψ, the azimuthal angle, the expression
for the potentials using Bessels functions and modified

Bessel’s functions are

φ =
∞∑
1

(
Aemz + Be−mz

)
[CJ0(mρ) + DY0(mρ)] (7.152)

Fig. 7.13. Modified Bessel’s function of the first kind and of zero order I0 and its
variation with x
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Fig. 7.14. Variation of modified Bessel’s function of the second kind and zero order
with x

or,

φ =
∞∑
1

(A cos mz + B sinmz) [CI0(mρ) + DK0(mρ)]. (7.153)

Instead of taking the potential functions in the form of A cos mz, B sin mz, we
can always express the potential functions in the complex form eimz where the
real and imaginary parts can be separated. We now define two new functions
of the form

H1
0(mρ) = J0(mρ) + i Y(mρ)

and
H2

0(mρ) = J0(mρ) − i Y(mρ) (7.154)

This two functions are called Henkel’s functions of the first and second kind.
Henkel’s functions are also the potential functions and the general solution
for the Laplace equation in cylindrical co-ordinates can also be written as

Φ =
∑(

Aemz + Be−mz
) [

CH1
0(mρ) + DH2

0(mρ)
]

(7.155)

Here

H(1)
0 (x)
x→∞

=

√
2

πx
ei(x−π/4)

and

H(2)
0 (x)
x→∞

=

√
2

πx
e−i(x−π/4). (7.156)
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We find that as
ρ → 0, J0 → 1, Y0 → ∞, I0 → 1, K0 → ∞ and H0 → ∞. And for ρ → ∞,

J0 → 0, Y0 → 0. I0 → ∞, K → 0 and H0 → 0. Therefore, remembering
the behaviours of these Bessel’s function we have to choose the proper poten-
tial function dictated by the nature of the boundary value problems. Bessels
function of the first kind are generally used. However in problems where mod-
ified Bessel’s function are needed both first and second kind of are used in
the geophysical problems as will be shown in the later chapters. Bessels func-
tions of imaginary and fractional orders are also used in solving geophysical
problems(see Chap. 8 and 13).

7.5.8 Some Relation of Bessel’s Function

From

Jn(x) =
α∑

s=0

(−1)s
(x

2

)n+2s

Π(s)Π (n + s)
(7.157)

we get, taking J/n (x) = d
dxJn (x),

xJ/n (x) =
α∑

s=0

(−1)s (n + 2S)
Π (s)Π (n + s)

.
(x

2

)n+2s

(7.158)

= n Jn + x
α∑

s=1

(−1)s

Π(s − 1)Π (n + s)
.
(x

2

)n+2s−1

. (7.159)

If in (7.159), we put S = r + 1, we obtain

xJ/n = nJn − x
α∑

r=0

(−1)r

Π(r)Π (n + 1 + r)

(x
2

)n+r+1

(7.160)

= nJn − xJn+1. (7.161)

In the same way we can prove that

x J/n + nJn = xJn−1. (7.162)

If we add (7.161) and (7.162) and get

2 J/n = Jn−1 − Jn+1. (7.163)

If we put n = 0, we have
J/0 = −J1. (7.164)

If we multiply (7.162) by x−n−1, we get

x−nJ/n = x−n−1n Jn − x−n Jn+1. (7.165)
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Hence
d
dx

(
x−n Jn

)
= −x−n Jn+1. (7.166)

Similarly, it can be proved that

d
dx

(xnJn) = xnJn−1. (7.167)

If we substract (7.165) from (7.162), we get

2Jn

x
= Jn−1 + Jn+1. (7.168)

Expression for Jn(x) when n is half and odd integer will be as follows.
If we put n = 1

2 , in the general series for Jn(x), we obtain

J 1
2

(x) =
α∑

s=0

(−1)5

Π(s)Π
(
s + 1

2

)
(x

2

)2s+ 1
2
. (7.169)

Since
Π (r) = rΠ (r − 1)

and
Π(s) = S, if S = 1, 2, 3.

We have

Π
(

1
2

)
=

√
π

2
and

sin x
x

=
(

1 − x2

3!
+

x4

5!
− . . . . . . . . . .

)
.

Hence

J 1
2

(x) =

√
2

πx
sin x. (7.170)

if

n = −1
2
, J− 1

2
(x) =

√
2

πx
cos x. (7.171)

From the recurrence formulae, we get for n = 1
2

1
xJ 1

2
(x) = J− 1

2
(x) + J 3

2
(x)

J 3
2

(x) =
1
x
J 1

2
(x) − J− 1

2
(x) (7.172)

=

√
2

πx

(
sin x

x
− cos x

)
. (7.173)



7.6 Solution of Laplace Equation in Spherical Polar Co-ordinates 183

7.6 Solution of Laplace Equation in Spherical Polar
Co-ordinates

Lapalce equation ∇2φ = 0 in spherical polar co-ordinates where φ = f(r, θ,Ψ)
is given by (Fig. 7.15)

∇2φ =
∂

∂r

(
r2
∂φ
∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂φ
∂θ

)
+

1
sin2 θ

∂2φ
∂ψ2

= 0 (7.174)

This equation can be solved applying the method of separation of variable
choosing

φ = R(r)Θ(θ)Ψ(ψ)

where R, Θ and Ψ are respectively the functions of r, θ and ψ only.

7.6.1 When Potential is a Function of Radial Distance r i.e.,
φ = f(r)

When potential is a function of r i.e., φ = f(r) only and is independent of θ
and Ψ. The Laplace equation reduces to

∂

∂r

(
r2
∂φ
∂r

)
= 0 (7.175)

⇒ r2
∂φ
∂r

= C1 where C1 is a constant. (7.176)

From the (7.176), we can get

φ = C2 − C1

r
(7.177)

where C2 is another constant. This is the potential at a point at a distance r
from the source due to a point source of current. Since the potential will be
zero at r = ∞. Therefore C2 = 0, and the potential reduces to

Fig. 7.15. Spherical polar coordinate
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φ = −C1

r
(7.178)

Since

�E = −gradφ = −C1

r2
and I =

∫
�J.�n.ds

=
∫

σ�E.�n.ds = −σ
∫

C1

r2.
ds = −σ

C1

r2
4πr2

= −4πσC1. Hence C1 = − I
4πσ

and
φ =

I
4πσ

,
1
r

=
Iρ
4π
. =

1
r
. (7.179)

where ρ is the resistivity of the medium and ρ=.
1
σ .

This is the expression for potential at a point at a distance ‘r’ from a point
source in an homogeneous and isotropic full space. The solid angle subtended
at the source point is 4π. For an air-earth boundary, when the point electrode
is on the surface the potential at a point at a distance ‘r’ from a point source
is

φ =
Iρ

2π
.
1
r

(7.180)

where the solid angle subtended at a point source is 2π on the surface of a
homogeneous and isotropic half space.

7.6.2 When Potential is a Function of Polar Angle, i.e., φ = f(θ)

When potential is independent of r and Ψ and is a function of θ only (Fig. 7.15)
the Laplace equation reduces to

1
sin θ

.
∂

∂θ

(
sin θ − ∂φ

∂θ

)
= 0. (7.181)

From (7.181), we get

sin θ
∂φ
∂θ

= C2. (7.182)

Integrating (7.182), we get

φ = C1 + C2 ln tan
θ
2

(7.183)

Here the equipotentials form cones at the centre.
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7.6.3 When Potential is a Function of Azimuthal Angle i.e.,
ϕ = f(ψ)

Here potential is a function of Ψ only, the Laplace equation is

1
Sin2θ

∂2φ
∂ψ2

= 0

=>
∂2φ
∂ψ2

= 0 or φ = A + Bψ. (7.184)

7.6.4 When Potential is a Function of Both the Radial Distance
and Polar Angle i.e., φ = f(r, θ)

And is independent of the azimuthal angle, the Laplace equation is

∂

∂r

(
r2
∂φ
∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂φ
∂θ

)
= 0 (7.185)

⇒ ∂2φ
∂r2

+
2
r
∂φ
∂r

+
1
r2
∂2φ
∂θ2 +

1
r2

cot θ
∂φ
∂θ

= 0. (7.186)

Now applying the method of separation of variables, we get φ(r, θ) = R(r)Θ(θ)
where R and Θ are functions of r and θ only. We have

∂φ
∂r

= Θ
dR
dr

;
∂2φ
∂r2

= Θ
d2R
dr2

and
∂2φ
∂θ2 = R

d2Θ
dθ2 .

Substituting these values in the Laplace equation, we get

Θ
d2R
dr2

+
2Θ
r

dR
dr

+
R
r2

d2Θ
dθ2 +

R
r2

Cotθ
dΘ
dθ

= 0. (7.187)

Dividing (7.187) by R and

Θ
1
R

d2R
dr2

+
2
rR

dR
dr

+
1

r2Θ
d2Θ
dθ2 +

1
r2Θ

Cotθ
dΘ
dθ

= 0. (7.188)

Equation (7.188) can be rewritten as
[
r2

R
d2R
dr2

+
2r
R

dR
dr

]
+

1
Θ

[
d2Θ
dθ2 + Cotθ

dΘ
dθ

]
= 0 (7.189)

⇒
[
r2

R
d2R
dr2

+
2r
R

dR
dr

]
= − 1

Θ

[
d2Θ
dθ2 + Cotθ

dΘ
dθ

]
= n2. (7.190)

These two independent equations are function of r and θ respectively and are
equal. They are written as

r2
d2R
dr2

+ 2r
dR
dr

− n2R = 0 (7.191)
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and

− 1
Θ

[
d2Θ
dθ2 + Cotθ

dΘ
dθ

]
= n2. (7.192)

For solving (7.191), we take

R (r) = rα, then
dR
dr

= αrα−1 and
d2R
dr2

= α (α − 1) rα−2.

Substituting these values in (7.191), we get

r2
[
α (α− 1) + rα−2

]
+ 2r

[
αrα−1

]− n2rα = 0. (7.193)

⇒ α (α − 1) 2α − n2 = 0 ⇒ α2 + α − n2 = 0

⇒ α =
−1 ±√

1 + 4n2

2
.

Therefore, the two roots are

α1 = −1
2

+

√
1
4

+ n2 and α2 = −1
2
−
√

1
4

+ n2. (7.194)

If α1 = α, then α2 = −(α + 1), therefore the two solution are R(r) = rα and
r−(α+1) taking α = n, the general solution of the first equation is

R =
(

Arn +
B

rn+1

)
(7.195)

where A and B are arbitrary constants to be determined from the boundary
conditions.

The second differential equation is

− 1
Θ

[
d2Θ
dθ2 + Cotθ

dΘ
dθ

]
= (n + 1) (7.196)

⇒ d2Θ
dθ2 + Cotθ

dΘ
dθ

+ n(n + 1)Θ = 0

⇒ 1
sin θ

.
d
dθ

(
sin θ

dΘ
dθ

)
+ sin θ.n(n + 1)Θ = 0 (7.197)

⇒ d
dθ

(
sin θ

dΘ
dθ

)
+ sin θ.n(n + 1)Θ = 0.

Let μ = cos θ, Then d
dθ = d

dμ .
dμ
dθ = −Sin θ d

dμ
Substituting, these values

− sin θ
d
dμ

[
sin θ (− sin θ)

dΘ
dμ

]
+ sin θn (n + 1)Θ = 0

=
d
dμ

(
sin2 θ

dΘ
dμ

)
+ n (n + 1) = 0. (7.198)
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Since sin θ =
√

1 − μ2, (7.199) changes to the form

d
dμ

[(
1 − μ2

) dΘ
dμ

]
+ n (n + 1)Θ = 0 (7.199)

⇒ (
1 − μ2

) d2Θ
dμ2

− 2μ
dΘ
dμ2

+ n (n + 1)Θ = 0. (7.200)

This is termed as the Legendre’s differential equations. It is written as

(
1 − x2

) d2y
dx2 − 2x

dy
dx

+ n (n + 1) y = 0. (7.201)

7.6.5 Legender’s Equation and Legender’s polynomial

To solve the (7.201), we use Frobeneous power series and put

Y = a0 + a1x + a2x2+
= Σ as xs. (7.202)

Substituting this value of Y in (7.202), we get

Σass (s − 1) xs−2 − Σass (s − 1) xs − Σ2as sxs

+ Σn (n + 1) as xs = 0 (7.203)

⇒ Σass (s − 1) xs−2 + Σ[n (n + 1) − s (s + 1)] asxs = 0. (7.204)

If we put S = 2 and equate the co-efficients of x0, we get

a2 = −n (n + 1)
2

a0. (7.205)

Equating the co-efficient of x1, we get

a3 = − (n− 1) (n+ 2)
2.3

.a1. (7.206)

Equating the Co efficient of x2, we get

a4 = −
[
n2 + n − 6

]
a2

3.4

=
(n − 2) (n + 3)

3.4
n (n + 1)

2
a0

⇒ (n − 2) (n + 3) (n + 1) (n)
2.3.4.

a0. (7.207)

Here a0 and a1 are two arbitrary constants is terms of which we can collect
the terms and present in the following way
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y = a0

[
1 − n (n + 1)

∠2
x2 +

n (n − 2) (n + 1) (n + 3)
∠4

x4 − . . . . . . . . . . . . ..

]

+ a1x
[
1 − (n − 1) (n + 2)

∠3
x2 +

(n − 1) (n + 2) (n − 3) (n + 4)
∠5

x4 − . . . ..

]
.

(7.208)

Till now we have not made any restriction on ‘n’ . But for most of the physical
problems, n is an integer. When n is even, i.e. 0, 2, 4, . . . . . . . . . . . . .. the first
series terminates after a few terms. When n is odd the second series terminates
after a few terms. Therefore, we get one polynomial and one infinite series.
For n = 0,

y0 = a0 + a1x
[
1 +

x2

3
+

x4

5
+ . . . . . .

]
(7.209)

For n = 1

y1 = a1x + a0

[
1 − x2 − x4

3
− x6

5
− . . . . . .

]
(7.210)

For n = 2

y2 = a0

(
1 − 3x2

)
+ a1x

[
1 − 2

3
x2 − x4

5
− 4x6

35
+ . . . . . .

]
(7.211)

Therefore the general solution must be constituted of an infinite series and a
polynomial. If we take the polynomial part, we can write

y0 = a0, y1 = a1x, y2 = a2

(
1 − 3x2

)
, y3 = a1x

(
1 − 5x2

3

)
. (7.212)

The polynomial part of the solution can be written as

Y0 = 1 = P0 (x) ,Y1 = x = P1 (x) ,Y2 =
1
2
(
3x2 − 1

)
= P2 (x)

Y3 =
1
2
(
3x3 − 3x2

)
= P3 (x) . (7.213)

These polynomials are known as the Legendre’s polynomial (Fig. 7.16). These
polynomials are termed as the Legendre’s function’s of the first kind. The
infinite series is the Legendre’s function of the second kind and is denoted by
Q.

When
n = 0,Q0 (x) = tanh−1x =

1
2

ln
1 + x
1 − x

.

When
n = 1,Q1(x) = x Q0(x) − 1.

When
n = 2,Q2 (x) = P2 (x)Q0 (x) − 3

2
x.



7.6 Solution of Laplace Equation in Spherical Polar Co-ordinates 189

Fig. 7.16. Conical equipotential surface for θ dependence

Similarly one can have the value of Qn (x) for any value of n. The solution of
the Legendre’s equation is

α∑
n=0

{AnPn (x) + BnQn (x)} . (7.214)

Therefore the general solution of the Laplace equation in spherical co-ordinates
can be written as

φ =
α∑
0

(
Anrn +

Bn

rn+1

)
(CnPn (cos θ) + DnQn (cos θ))

(EnCosmΨ + Fn Sin mψ) (7.215)

Now
Pn(1) = 1,Pn(−1) = (−1)n,Pn(0) = 0,

Qn(1) = ∞,Qn(0) = 0,Qn(−1) = ∞. In general Pn behaves as a better
potential function. Therefore in potential theory involving spherical polar co-
ordinates Legendre’s polynomials are used in general as potential functions.
These polynomials in the Table 7.1 are Legendre’s polynomials from 0 to 6th
degree. Each of these polynomials satisfy Legendre’s differential equations for
any value of n. The general expression of the Legendre’s polynomial Pn(x) is
given by

Pn(x) =
N∑

r=0

(−1)r
(2n − 2r)!

2nr!(n − r)!(n − 2r)!
xn−2r (7.216)
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Table 7.1.

n Pn(x)
0 P0(x) = 1
1 P1(x) = x
2 P2(x) = 1/2(3x2 − 1)
3 P3(x) = 1/2(5x3 − 3x)
4 P4(x) = 1/8(35x4 − 30x2 + 3)
5 P5(x) = 1/8(63x5 − 70x3 + 15x)
6 P6(x) = 1/16(231x6 − 315x4 + 10x2 − 5)

where N = n
2 when n is even and N = (n − 1)/2 when n is odd. Figure (7.17)

shows that the Legendre’s polynomials are orthogonal to each other. The
Radriques’ formula for the Legendre’s polynomial is

Pn(x) =
1

2nn!
.
dn

dxn (x2 − 1)n (7.217)

where n is the degree of the polynomial.
One can prove that (Ramsay 1940),

1∫

−1

Pn(x)Pm(x)dx =

{
0, if n �= m

2
2n+1 if n = m

. (7.218)

Fig. 7.17. Legendre’s polynomial for P(0) to P(6)
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The general expression for the Legendre’s function of the second kind is given
by

Qn(x) =
r=∞∑
r=0

2n(n + 1)!(n + 2r)!
r!(2n + 2r + 1)!

x−h−2r−1 (7.219)

Qn(x) is an infinite series as mentioned and is generally not used as a potential
function. So the general solution of the Legendre’s equation

Y = A Pn(x) + BQn(x) (7.220)

reduces to
Y = A Pn(x).

Problem 1

Find out the nature of distortion of the potential field when a sphere of elec-
trical permittivity ∈2 is placed in a medium ∈1 in the presence of an uniform
field (Fig. 7.18).

A spherical body of electrical permittivity ∈2 is placed in a medium of
electrical permittivity ∈1 in the presence of an uniform field E0 along the z
direction. Here the perturbation potential will be a function of r and θ.

Hence

φ = −E0 Z + Constant.
= −E0 r cos θ + Constant. (7.221)

This is the expression for the potential in an uniform field. When we
introduce the anomalous body, having different physical property, in the field,
the perturbation potential will get added in the vicinity of the body. The
perturbation potentials outside and inside the body will be different and are
given by

φ1 = φ0 + φ′

and
φ2 = φ0 + φ′′ (7.222)

where φ0 is the source potential, φ′ and φ′′ are respectively the perturbation
potentials outside and inside the body.

In the medium 1, i.e., outside the body, the perturbation potential is

φ′ =
∞∑

n=1

An
1

rn+1
Pn (cos θ). (7.223)

Since the potential outside dies down with distance, 1
rn+1 is the solution and

Pn(cos θ) is a better potential function. The potential inside is given by
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Fig. 7.18. Distorsion in current flow field in the presence of a spherical body

φ′′ =
∞∑

n=1

BnrnPn (cos θ). (7.224)

Therefore, potentials both outside and inside are given by

φ1 =
∞∑

n=1

An.
1

rn+1
.Pn (cos θ) − E0r cos θ (Potential outside) (7.225)

and

φ2 =
α∑

n=1

Bn.rn.Pn (cos θ) − E0r cos θ(Potential inside). (7.226)

Applying the two boundary conditions, i.e.,

i) φ1|r=a = φ2|r=a,

ii) ∈1

(
∂φ1
∂r

)
1

∣∣∣
r=a

= ∈2

(
∂φ
∂r

)
2

∣∣∣
r=a

where ‘a’ is the radius of the sphere, we get

∑
An.

1
an+1

Pn (cos θ) =
∑

BnanPn (cos θ) (7.227)

and

− ∈1 E0 P1 (cos θ)+ ∈1

∑
An.− (n + 1) .

1
an+2

.Pn (cos θ)

= − ∈2 E0P1 (cos θ)+ ∈2

∑
Bnna

−(n+1)Pn (cos θ). (7.228)
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Since the source potential is E0 r cos θ and cos θ can be expressed as P1(cos θ),
it became possible to bring the source and perturbation potentials in the same
format before the boundary conditions are applied. Here P1 is the Legen-
dre’s polynomial of the first order. Since the source potential is in Legendre’s
polynomial of first order, the order will remain the same in the perturbation
potential also. Therefore n = 1. So the equations (7.227) and (7.228) simplifies
down to

A1

a2
= B1 a (7.229)

− ∈1
�E0 −A1

2 ∈1

a3
= − ∈2

�E0+ ∈2 B1. (7.230)

From these two equations, the values of A1 and B1, are

A1 = B1 a3 (7.231)

and

A1 = �E0a
3 ∈2 − ∈1

∈2 +2 ∈1
(7.232)

B1 = �E0
∈2 − ∈1

∈2 +2 ∈1
. (7.233)

Substituting the values of A1 and B1, in (7.225) and (7.226), we get

φ1 = −E0r cos θ + E0
∈2 − ∈1

∈2 +2 ∈1

a3

r2
cos θ(Potential outside) (7.234)

and

φ2 = E0r cos θ + E0
∈2 − ∈1

∈2 +2 ∈1
r cos θ(Potential inside). (7.235)

= −E0
3 ∈1

∈2 +2 ∈1
.r cos θ.

The fields inside the body are

Er = −
(
∂φ2

∂r

)
= E0

3 ∈1

∈2 +2 ∈1
cos θ (7.236)

and

Eθ = −
(
∂φ2

r∂θ

)
= −E0

3 ∈1

∈2 +2 ∈1
sin θ. (7.237)

Therefore, the field inside the body can be written as

�E = (�ar cos θ − �aθ sin θ) �E0
3 ∈1

∈2 +2 ∈1

= �az .
3 ∈1

∈2 +2 ∈1

�E0. (7.238)

Hence the field inside will be parallel to the field outside.
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Corollary

Potential at a point on the surface of the earth due to a buried spherical
inhomogeneity of conductivity σ2 is placed in a medium of conductivity σ1 in
the presence of an uniform field in direct current domain.

This is the same problem as given in the previous section. Here the direct
current is flowing from a source at infinite distance to generate the uniform
field (Fig. 7.19).

The potential will be symmetrical with respect to the polar axis. So the
potential will be independent of the azimulhal angle Ψ.

The solution of the problem is

φ =
∑[

Anrn + Bnr−(n+1)
]
Pn (cos θ). (7.239)

The constants An and Bn can be found out from the boundary conditions.
φ1 = φ2 and 1

ρ1

∂φ1

∂r = 1
ρ2

∂φ2

∂r . at r = a where ‘a’ is the radius of the sphere.
Since

�J =
�E
ρ

= − 1
ρ1

∂φ0

∂x
therefore φ0 = −�Jρx (7.240)

The potentials outside and inside the body are given by

φ1 = −Jρ1x +
∞∑

n=1

Bnr−(n+1)Pn (cos θ) − Potential outside

φ2 = −Jρ1x +
∞∑

n=1

AnrnPn (cos θ) − Potential inside. (7.241)

Applying the boundary condition we get

Fig. 7.19. Distortion of the equipotential lines due to the presence of a spherical
inhomogenity in an uniform field
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∑
Bna−(n+1)Pn (cos θ) =

∑
AnanPn (cos θ) (7.242)

and

−Jρ1 +
∑

Bn.− (n + 1)a−(n+2),Pn = −Jρ1

ρ2

.ρ1 +
ρ1

ρ2

∑
An

nan−1.Pn (cos θ) .

(7.243)
Since the source potential has P1 terms, (the Legendre’s polynomial of the
first order) the perturbation potential also will have only P1 terms. Only A1

and B1 will exist and other terms, viz A2,A3 . . .An,B2, B3 . . .Bn are all zero.
Therefore

A1 = Jρ1

ρ1 − ρ2

ρ1 + 2ρ2

and B1 = Jρ1

ρ1 − ρ2

ρ1 + 2ρ2

.a3 (7.244)

Hence the potentials outside and inside are given by

φ1 = −Jρ1r cos θ + Jρ1

ρ1 − ρ2

ρ1 + 2ρ2

a3

r2
. cos θ (7.245)

φ2 = −Jρ1r cos θ + Jρ1

ρ1 − ρ2

ρ1 + 2ρ2

.r cos θ (7.246)

= −�J 3ρ1ρ2

ρ1 + 2ρ2

r cos θ.

Problem 2

Find the potentials at a point on the surface of the earth in the presence of
a buried spherical inhomogeneity of resistivity ρ2 in a half space of resistivity
ρ1 due to point source of current.

A sphere of radius ‘a’ and resistivity ρ2 is placed at a depth Z (i.e., the
depth to the centre of the sphere from the surface i.e. air earth boundary)
in a medium of resistivity ρ1 (Fig. 7.20). The distances between the current
electrode at A and potential electrode at P is R, the electrode separation.
The distance from the source to the center of the sphere and from ‘O’ to ‘P’
are respectively ‘d’ and ‘r’. ∠AOP is the angle subtended by A and P at the
center ‘O’. We have to determine the angle θ for each move of the current and
potential electrodes together or separately.

To solve this problem, we shall first consider the medium to be a homoge-
nous and isotropic free space. A spherical body of resistivity ρ2 and radius ‘a’
is embedded in a medium of resistivity ρ1. Once the problem is solved in full
pace, the air earth boundary can be brought.

Considering the effect of image, the potential can be doubled and the
solution can be obtained within 5 % error.

The perturbation potential function is

φ =
∑(

Anrn + Bnr−(n+1)
)

Pn (cos θ) (7.247)
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Fig. 7.20. Two electrode response due to a buried spherical body having conduc-
tivity contrast with the host rock; Geometry of the problem is shown

in this problem also. Figure (7.20) shows the geometry of the problem and the
location of the current and potential electrodes. In a full space the potential
at P due to a current electrode at A is given by

φ0 =
Iρ1

4π
.
1
R

(7.248)

where R = AP. Here R2 = r2 + d2 − 2rd cos θ. So

1
R

=
1√

r2 + d2 − 2rd cos θ

⇒ 1
R

=
1

d
√

1 + r2

d2 − 2 r
d cos θ

(7.249)

Let u = r
d and x = cos θ, Then

1√
1 + r2

d2 − 2 r
d cos θ

=
1√

1 + u2 − 2ux
(7.250)

Let ν = 2ux − u2

So,
1√

1 + r2

d2 − 2 r
d cos θ

=
1√

1 − ν
= (1 − ν)−

1
2

After binomial expansion and substituting the values of ν we get

= 1 + u x +
u2

2
(
3x2 − 1

)
+ (7.251)
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Since

P0 (x) = 1,P1 (x) = x,P2 (x) =
1
2
(
3x2 − 1

)
,P3 (x) =

1
2
(
5x3 − 3x

)
,

we can write

1√
1 + r2

d2 − 2 r
d cos θ

= P0 (x) u0 + P1 (x) u1 + P2(x)u2 + P3 (x) u3

=
∑

Pn (x) un =
∑

Pn (x)
( r

d

)n

. (7.252)

So, the source potential is

φo =
ρ1I
4π

1
d

∞∑
n=0

Pn (cos θ)
( r

d

)2

.

Therefore the potential inside and outside assuming full space condition is

φ1 =
Iρ1

4π
.
1
d

∞∑
n=0

( r
d

)n

Pn (cos θ) +
∞∑

n=1

Bnr−(n+1)Pn (cos θ)

(Potential outside) (7.253)

and

φ2 =
Iρ1

4π
.
1
d

∞∑
n=0

( r
d

)n

Pn (cos θ) +
∞∑

n=0

AnrnPn (cos θ).

(Potential inside) (7.254)

Now applying the boundary conditions, at r = a where ‘a’ is the radius of the
sphere.

Iρ1

4π
.
1
d

∑(a
d

)n

Pn (cos θ) +
∑

Bna−(n+1)Pn (cos θ)

=
Iρ1

4π
.
1
d

∑(a
d

)n

Pn (cos θ) +
∑

AnanPn (cos θ). (7.255)

From the first boundary conditions, i.e., φ1 = φ2 at r = a

1
ρ1

.
Iρ1

4π

∑ n an−1

dn+1
.Pn (cos θ) +

1
ρ1

∑
− (n + 1)Bna−(n+2).Pn (cos θ)

=
1
ρ2

Iρ1

4π

∑ n an−1

dn+1
Pn (cos θ) +

1
ρ2

∑
nAnan−1Pn (cos θ). (7.256)

From the second boundary conditions, i.e., Jn1 = Jn2 at r = a, we write the
nth term (these boundary conditions hold good for all the terms) as follows
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I
4π

nan−1

dn+1
− (n + 1)

Bn

ρ1

a−(n+2) =
1
ρ2

[
ρI
4π
.
nan−1

dn+1
+ nAnan−1

]

⇒ I
4π
.
nan−1

dn+1
− ρ1

ρ2

I
4π
.
nan−1

dn+1
=

1
ρ1

(n + 1)Anan−1 +
1

ρ2

n Anan−1

⇒ 1
4π
.
n an−1

dn+1

[
ρ2 − ρ1

ρ2

]

= Anan−1

[
ρ2n + ρ2 + ρ1n

ρ1ρ2

]

⇒ An =
Iρ1

2π
.

(ρ2 − ρ1)
ρ2n + ρ1n + ρ2

.
1

dn+1
= ρn.

Iρ1

4π
.

1
dn+1

(7.257)

where

ρn =
(ρ2 − ρ1) n

(ρ2n + ρ1n + ρ2)
.

Bn = Ana2n+1 =
Iρ1

4π
.

ρn

dn+1
.a2n+1.

Therefore
φ2 =

ρ1I
4πR

+
∑ 1ρ

4π
.

1
dn+1

ρnrnPn (cos θ). (7.258)

and

φ1 =
Iρ1

4π
.
1
R

+
Iρ1

4π

∞∑
n=1

ρn

a2n+1

dn+1
.

1
rn+1

Pn (cos θ).

(Potential outside) (7.259)

Now if we bring the air earth boundary, we get

φ1 =
Iρ1

2π

[
1
R

+
∞∑

n=0

ρn.
a2n+1

dn+1
.

1
rn+1

Pn (cos θ)

]
. (7.260)

With this approximation the solution can be obtained within 5% error. Once
the response for two electrode configuration is obtained (Fig. 7.21), one can
compute the response for any other electrode configuration since the principle
superposition is valid.

7.6.6 When Potential is a Function of all the Three Coordinates
Viz, Radial Distance, Polar Angle and Azimuthal
Angle,i.e., φ = f(r, θ, ψ)

When potential is a function of all the three coordinates, i.e. = f(r, θ,ψ), the
Laplace equation in spherical polar coordinate (7.174) can be solved applying
the method of separation of variables in the form
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Fig. 7.21. Two electrode apparent resistivity anomaly on the surface due to a buried
spherical inhomogeneity

φ = R(r)Θ(θ)Ψ(ψ) (7.261)

It can be rewritten as
φ = R(r)S(θ,ψ). (7.262)

Keeping the surface components together. Equation (7.174) changes to the
form

1
R

d
dR

[
r2

dR
dr

]
= − 1

SSinθ
∂

∂θ

[
Sinθ

∂S
∂θ

]
− 1

SSin2θ
∂2S
∂Ψ2

. (7.263)

Equation (7.174) breaks into two parts as discussed earlier

d
dR

[
r2

dR
dr

]
− Rn(n + 1) = 0 (7.264)

1
Sinθ

∂

∂θ

[
Sinθ

∂S
∂θ

]
+

1
Sin2θ

∂2S
∂φ2 + Sn(n + 1) = 0. (7.265)

The solutions of (7.191) are in the form rn and r−(n+1) as discussed earlier.
Now

S(θ,Ψ) = Θ(θ)Ψ(ψ). (7.266)

Therefore (7.263) can be rewritten in the form
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Sinθ
Θ

d
dθ

[
Sinθ

∂Θ
dθ

]
+ Sin2θn(n + 1) = − 1

ψ
d2ψ
dψ2

. (7.267)

Both sides of this (7.267) are equated to a constant m2. We get two differential
equations as follows :

d2ψ
dψ2

+ m2ψ = 0. (7.268)

and
d
dθ

[
Sinθ

dΘ
dθ

]
+ Θ

[
n(n + 1)Sinθ −

(
m2

Sinθ

)]
= 0 (7.269)

The solutions of (7.268) are sin mΨ and cos mψ.
Equation (7.269) is termed as the Associated Legandre’s equation. The

solution of this equation are Pm
n (Cos θ) and Qm

n (Cos θ). Here Pm
n (Cos θ) and

Qm
n (Cos θ) are known as the Associated Legendre’s function of the first kind

and second kind. It has already been mentioned that Qm
n (Cos θ) is an infinite

series and is generally not considered for solution of any kind of potential
problem. Therefore, the most general solution of Laplace equation in spherical
polar coordinate is

φ(r, θ,Ψ) =
∞∑

n=0

n∑
m=0

[(
Am

n rn + Bm
n

1
rn+1

)

(Cm
n Cos mψ + Dm

n Sin mψ)
]

Pm
n (Cosθ) (7.270)

This series expansion of the general solution of the Laplace equation in spheri-
cal polar coordinate is termed as spherical harmonic expansion as discussed in
the next section. Here n is the degree and m is the order of the Associated Leg-
endre’s polynomial. When m = 0, Associated Legendre Polynomial changes to
Legendre Polynomial. The coefficients Am

n ,Bm
n ,Cm

n ,Dm
n , are generally deter-

mined either from detailed spherical harmonic analysis or by applying suitable
boundary conditions depending upon the nature of the problem.

7.6.7 Associated Legendre Polynomial

If a Legendre Polynomial in spherical polar coordinate depends both on colat-
itude and longitude, the polynomial is termed as Associated Legendre Polyno-
mial. Associated Legendre Polynomial is denoted by Pm

n (θ) or Pn,m(θ) where
n is the degree and m is the order of the polynomial. If we differentiate the
Legendre equation

(1 − x2)
d2y
dx2 − 2x

dy
dx

+ n(n + 1)y = 0 (7.271)

m times, with respect to x, we get

(1 − x2)
d2ξ
dx2 − 2x(m + 1)

dξ
dx

+ (n − m)(n + m + 1)ξ = 0 (7.272)
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where

ξ =
dmy
dxm =

dmPn(x)
dxm (7.273)

If we take
η = ξ(1 − x2)m/2

then it can be shown that (7.272) changes to the form

(1 − x2)
d2η
dx2 − 2x

dη
dx

+
[
n(n + 1) − m2

1 − x2

]
η = 0 (7.274)

This is the Associated Legendre equation. It is observed that

η = (1 − x2)m/2
dm

dxm Pn(x) (7.275)

This η is the Associated Legendre Polynomial and is denoted by Pm
n (x) or

Pm
n (θ). Therefore

Pm
n (x) = (1 − x2)m/2

dm

dxm Pn(x). (7.276)

7.7 Spherical Harmonics

A function is said to be harmonic if the function and its first derivative are
continuous within the domain and it satisfies Laplace equation ∇2φ = 0. Many
such functions exist which satisfy these conditions and many of those functions
can be expressed in series forms. Harmonic functions which satisfy Laplace
equation in spherical polar coordinates (r, θ,ψ) are called spherical harmonics
where the potential function is dependent upon the radial direction, latitude
or colatitude and longitude or the azimuthal direction. Harmonics which are
functions of r, θ,ψ are called spherical solid harmonics in a three dimensional
space. Harmonics on the surface, which are function of θ and ψ are called
spherical surface harmonics. If φ is a spherical harmonics of degree n, then it
satisfies the following two conditions

∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

= 0 (7.277)

and
x
∂φ
∂x

+ y
∂φ
∂y

+ z
∂φ
∂z

= nφ. (7.278)

A spherical surface harmonics is the set of values of solid spherical harmon-
ics takes on the surface of unit radius with its origin at the centre. Equa-
tion (7.174) is the Laplace equation in spherical polar coordinate. Now if the
potential φ = Hn = rnSn where Hn is the solid spherical harmonics and Sn

is the surface spherical harmonics. Sn is a function of φ and Ψ alone and of
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degree n. From (7.264) and (7.265). it can be shown that ‘r’ dependence part
of the Laplace equation can be written in the form

∂2(rΨ)
∂r2

= r
∂2(rn+1Sn)

∂r2
= n(n + 1)rnSn (7.279)

After removing the rn part, the radial component, the surface component of
the Laplace equation in spherical coordinate changes to the form.

1
Sin2ψ

∂2Sn

∂θ2 +
1

Sinψ
∂

∂ψ
(Sinψ

∂Sn

∂ψ
) + n(n + 1)Sn = 0. (7.280)

Every spherical surface harmonics of degree n satisfies this equation and every
solution of this equation is a surface harmonics of degree n (Macmillan, 1958).

7.7.1 Zonal, Sectoral and Tesseral Harmonics

A spherical harmonic which can be expressed as a function of r and θ and
independent of Ψ the longitude, is a zonal harmonic (Fig. 7.22). Legendre
polynomials Pn(θ) of degree n are independent of Ψ and are zonal harmonics.

The guiding equation for zonal harmonics is

(1 − μ2)
d2Pn

dμ2
− 2μ

dPn

dμ
+ n(n + 1)Pn = 0 (7.281)

The zonal harmonics from degree 0 to 6 in the form suitable for hand compu-
tations are given as

P0 = 1
P1 = μ

P2 =
3
2

μ2 − 1
2

P3 =
5
2

μ3 − 3
2

μ

P4 =
7
2
.
5
2
.μ4 − 5

2
.
3
2

μ2 +
3
2
.
1
4

(7.282)

P5 =
9
2
.
7
4
.μ5 − 7

2
.
5
2
.μ3 +

5
2
.
3
4
.μ

P6 =
11
2
.
9
4
.
7
6

μ6 − 9
2
.
7
4
.
5
2

μ4 +
7
2
.
5
2
.
3
4
.μ2 − 5

2
.
3
4
.
1
6

A few points about zonal harmonics are :

(a) Zonal harmonics are orthogonal (Fig. 7.17)
(b) Zeros of zonal harmonics are real and they all lie between 0 and 1.
(c) A recurrence relation of the Legendre polynomial or zonal harmonics is

Pn+1 − 2μPn + P′n+1 = Pn (7.283)

where primed P ′ is the first derivative of P.
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Fig. 7.22. Nature of the zonal harmonics

(d) The general formula for Legendre polynomial or zonal harmonics is

Pn(Cosθ) =
n∑

J=0

(−1)J
(2n − 2J − 1)

[n − 2j][n − 2j − 1][2j]n−2j
(7.284)

(e) Legendre polynomial or zonal harmonics are better potential functions.
(f) On the surface, Pn vanishes along the n circles of latitude θ. One of which

is the equator.

Legendre polynomial is used for analysing a set of data collected on the
surface of a spherical earth when the function is dependent only on the latitude
or colatitude. If the surface harmonics is dependent both on θ and ψ, then
more powerful orthogonal polynomials are used. They are Associated Legendre
Polynomial and can be denoted by

Pn,m(θ) = Sinmθ
∂m

∂(Cosθ)m
Po(Cosθ) (7.285)

where m is the degree and n is the order of the Legendre Polynomial. Asso-
ciated Legendre polynomials are more powerful in the sense that Legendre
Polynomial is only a special case of Associated Legendre Polynomial. Because
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when m, the order is zero, i.e., when the dependence on longitude vanishes
ALP changes to LP as mentioned.

The general solution of surface harmonics is

φ(θ,ψ) =
∞∑

m=0

∞∑
n=0

[(
Cn,mCos mψ + Dn,mSin mψ

)
Pn,m(θ)

]
(7.286)

The surface harmonics φ(θ,Ψ) is represented by an infinite sum of Asso-
ciated Legendre Polynomials, sines and cosines. Here Pn,m(θ)Cos mΨ and
Pn,m(θ)Sin mψ are the components of the surface spherical harmonics. If
m = 0, the surface harmonics depends only on the colatitude and is called
a zonal harmonics as mentioned already. If n = m, it depends on the longi-
tude ψ, it is then termed as the sectoral harmonics. If m > 0 and n > m,
then the harmonics is termed as tesseral harmonics(Figs. 7.23, 7.24).Tesseral
harmonics are those which becomes zero both in latitude and longitude. In a
spherical polar coordinate system we express the harmonic function of degree
n or order k as

φ(θ,ψ) = rneikθ, SinkψPk
n (7.287)

where Pk
n is the Legendre Polynomial of degree n, and order k, SinkΨ shows

the longitudinal dependence, eikθ is the dependence on colatitude and rn is
the radial dependence part. If we remove rn, the surface harmonics part can
be written as

φ(θ,ψ) = eikθSinkψPk
n. (7.288)

Fig. 7.23. Nature of the sectoral harmonics
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Fig. 7.24. Nature of the tesseral harmonics

The real and imaginary parts of (7.288) is given by

Real part of φ(θ,ψ) = SinkψPk
nCos kθ

Imaginary part of φ(θ,ψ) = SinkψPk
nSin kθ

}
(7.289)

These real and imaginary parts are the two Tesseral harmonics.
Fairly detailed description on the procedures for determining the spheri-

cal harmonic components are available in Blakely (1996). Materials for fur-
ther studies on spherical harmonics are available in Macmillan (1958), Kellog
(1953) and Ramsay (1940).
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Direct Current Field Related
Potential Problems

In this chapter the basic nature of DC resistivity boundary value problems
mostly in one dimensional domain are demonstrated. Nature of the surface
and subsurface kernels for an N-layered earth in DC field domain, nature of
boundary value problem with cylindrical symmetry needed in borehole geo-
physics, nature of boundary value problems where resistivity or conductivity
varies continuously along the vertical or horizontal direction in the presence of
both Laplacian and nonlaplacian terms are discussed. The last two problems
are on the potential problems for dipping contacts and layered anisotropic
beds.

8.1 Layered Earth Problem in a Direct Current Domain

Direct current field related potentials in a layered earth model can be eval-
uated as follows. Figure 8.1 shows the geometry of the problem. We assume
the earth to be horizontally layered and the number of layers is N. ρ1, ρ2,
ρ3, . . . . . . ..ρN, are the resistivities of the first, second, third and Nth layer
and h1, h2, h3 are their corresponding thicknesses. Thickness of the last layer
is assumed to be infinity. Potential at a point due to a point source of Current
I will have cylindrical symmetry, over a layered earth therefore, the Laplace
equation in cylindrical coordinates are chosen. Since potential is independent
of the azimuthal angle, therefore, the Laplace equation in cylindrical coordi-
nates reduce down to

∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

= 0 (8.1)

and the general solution of the equation from (7.153) is

φ =

∞∫

0

(
A(m) e−mz + B (m) emz

)
Jo (mr) dm. (8.2)
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ρ1

ρ2

ρ3

ρi

ρn ϕn

ϕ1

ϕ2

ϕ3

ϕi

h1

h2

h3

hi

hn

Current Electrode Potential Electrode

Fig. 8.1. N – Layered earth model

The potential at a point due to a point source at a distance r from the point
source of Current I on the surface of the earth (from 7.181) is given by

φ0 =
Iρ
2π
.
1
r
. (8.3)

While dealing with the air earth boundary, we often use the term half space
problem because the electrical resistivity of the air is infinity. The earth has
finite resistivity. The solid angle subtended at the current source is 2π. For
surface geophysics, when measurements are taken on the surface of the earth,
Iρ
2π becomes the multiplication factor. In well logging or borehole geophysics
when electrode is placed inside a borehole, potential at a point at a distance
r from the source is Iρ

4π .
1
r as shown in the next section. Equation (7.180).

For surface geophysics, the potential due to a point source on the surface
of an N-layered earth is

φ0 =
Iρ
2π

1

(r2 + z2)1/2
(8.4)

where r and z are respectively the radial and vertical distances from the source
and R =

√
r2 + z2. Potentials in the different layers can, therefore, be written

as

φ1 = φo + φ′1
φ2 = φo + φ′2
....................
....................

φi = φo + φi

φN = φo + φ′N′

where φo is the source potential and φ′1, φ′2, φ′3 . . . ..φ
′
N are the perturbation

potentials in different media. Potential at the ith media can be written as
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φi =
Iρ1

2π
.

1

(r2 + z2)1/2
+

∞∫

0

(
Ai (m) e−mz + Bi (m) emz

)
Jo (mr)dm (8.5)

where Ai and Bi are the arbitrary constants determined from the boundary
conditions. At the air earth boundary, the current density vector �J

(
= σ�E

)

cannot cut across the air earth boundary because resistivity of air is infinitely
high. Therefore, 1

ρ1

∂φ1
∂z = 0 at z = 0 where ρ1 and φ1 are respectively the

resistivity and potential of the first medium.

(
∂φ

∂z

)

z=o

=

⎧⎨
⎩

Iρ1z

2π (r2 + z2)1/2
+

∞∫

o

(−A1e
−mz +Bmz1

)
Jo (mr)mdm

⎫⎬
⎭
z=o

=

∞∫

0

(B1 − A1) Jo (mr)mdm = 0 (8.6)

Since the relation is true for any value of r,

B1 = A1. (8.7)

Therefore, expression for potential in the first medium is

φ1 =
Iρ1

2π
.

1

(r2 + z2)1/2
+

∞∫

0

A1 (m)
(
emz + e−mz

)
Jo (mr) dm. (8.8)

Last layer thickness hN is infinitely high.
In this layer the perturbation potential decays down with depth. There-

fore, e−mz will be the appropriate potential function and the expression for
potential in the last layer is

φN =
Iρ1

2π
.

1

(r2 + z2)1/2
+

∞∫

0

e−mzJ0 (mr) dm. (8.9)

To get the expressions for the unknown functions A1(m),A2(m) . . .AN(m), it
is necessary to apply the boundary conditions (i) φi = φi+1 and (ii) Jni = Jni+1

at each boundary. Before applying the boundary conditions, it is necessary to
bring the source and perturbation potential in the same format. This is an
important task in these boundary value problems. This point is highlighted for
all the problems discussed in this volume. In this problem, we use the Weber
Lipschitz identity to bring the source potential and perturbation potential in
the same format, i.e.,

1
r

=

∞∫

0

e−mzJo (mr) dm. (8.10)

Substituting q = Iρ
2π ,
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we can write the expression for potentials in different media as,

φ1 = q

∞∫

0

e−mz Jo (mr) dm +

∞∫

0

A1

(
e−mz + emz

)
Jo (mr) dm

φ2 = q

∞∫

0

e−mzJo (mr) dm +

α∫

0

(
A2 e−mz + B2 emz

)
Jo (mr) dm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φi = q

∞∫

0

e−mzJo (mr) dm +

α∫

0

(
Ai e−mz + Bi emz

)
Jo (mr) dm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φN = q

∞∫

0

e−mzJo (mr) dm +

α∫

0

AN e−mzJo (mr) dm (8.11)

Applying the boundary conditions at each boundary i.e.,

φi = φi+1

and
1
ρi

(
∂φi

∂z

)
=

1
ρi+1

(
∂φi+1

∂z

)
at z = hi, (8.12)

one gets

A1

(
e−mh1 + emh1

)− A2e−mh1 − B2emh1 = 0

A1ρ2

(
emh1 − e−mh1

)−A2ρ1e
−mh1 +B2ρ1e

mh1 = q (ρ1 − ρ2) e−mh1

Aie−mhi + Bi emhi − Ai+1 e−mhi − Bi+1 emhi = 0

ρi+1

(−Ai e−mhi + Bi emhi
)

+ ρi

(
Ai+1 e−mhi − Bi+1 emhi

)

= q
(
ρi+1 − ρi

)
e−mhi

AN−1 e−mhN−1 + BN−1 e−mhN−1 − AN e−mhN−1 = 0

− AN−1ρN e−mhN−1 + BN−1ρN emhN−1 + ANρN−1 e−mhN−1

= q
(
ρN − ρN−1

)
emhN−1 (8.13)

From this system of equations, it is possible to find out potential at a point
in any medium for an N-layered earth due to a point source. The factors Ais
and Bis are to be determined from the boundary conditions. They are termed
as the kernel functions because they carry information about all the 2N-1
layer parameters. Here ρ1 to ρN are the layer resistivities and h1 to hN−1 the
thicknesses. Thickness of the Nth layer is infinitely high.
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8.1.1 Cramer’s Rule

Cramer’s rule for evaluation of determinants states that if we have a set of
linear equations

a11x1 + a12x2 + a13x3 + . . . . . . . . . . . . . . . . . . . . . . . .+ a1nxn = k1

a21x1 + a22x2 + a23x3 + . . . . . . . . . . . . . . . . . . . . . . . .+ a2nxn = k2

an1x1 + an2x2 + an3x3 + . . . . . . . . . . . . . . . . . . . . . . . .+ annxn = kn (8.14)

and if determinant of the coefficients is not equal to zero, i.e., if

|a| =

∣∣∣∣∣∣∣∣

a11 a12 . . . . . . .. a1n

a21 a22 . . . . . . .. a2n

. . . . . . . . . .. . . . . . . . . . . . . .
an1 an2 . . . . . . ann

∣∣∣∣∣∣∣∣
�= 0 (8.15)

then

x1 =
|D1|
|a| , x2 =

|D2|
|a| . . . . . . . . . . . . ..xn =

|Dn|
|a| (8.16)

where Dr is the determinant formed by replacing the elements a1r, a2r, . . . . . . . . .
anr of the column of |a| by k1, k2, k3 . . . . . . . . . kn.

8.1.2 Two Layered Earth Model

For a two layered earth problem, resistivity and thickness of the first layer
are ρ1 and h1. Resistivity of the second layer is ρ2.h2, the thickness of the
second layer is infinitely high. Equations for potentials in the two media can
easily be obtained from (8.11) and (8.13). Only the kernels A1 and A2 are to
be evaluated and they can be expressed as the ratio of the two determinants.
Let the denominator of the quotient be D2, thus

D2 =
∣∣∣∣

xh1 + x−h1 −xh1

ρ2

(−xh1 + x−h1
)

ρ1x
h1

∣∣∣∣ (8.17)

obtained from (8.13) where u = x2 = e−2m.
Let

D2 = P2(x) + H2(x)

Then

P2 (x) =
∣∣∣∣
xh1 −xh1

−ρ2x
h1 ρ1x

h1

∣∣∣∣
= (ρ1 − ρ2)x

h1 = −(ρ2 − ρ1)u
h1

= (ρ2 + ρ1)k1uh1 = −(ρ2 + ρ1)P2(u) (8.18)

where P2(u) = k1uh1 and
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k1 =
ρ2 − ρ1

ρ2 + ρ1

.

k1 is termed as the reflection factor. Similarly

H2 (x) =
∣∣∣∣

x−h1 −xh1

ρ2x
−h1 ρ1x

h1

∣∣∣∣
= (ρ2 + ρ1) = (ρ2 + ρ1)H2(u) (8.19)

where H2(u) = 1.H2(u) is introduced to generate the Kernel function in the
form of a recurrence formula for an N-layered earth. For a two-layer earth D2

becomes
D2 = (ρ2 + ρ1) [H2 (u) − P2 (u)] . (8.20)

Surface Kernel A1

For a two-layer earth, the numerator of the quotient of the (8.13) obtained
from (8.11) is given by

N21 =
∣∣∣∣

0 −xh1

(ρ2 − ρ1) xh1 ρ1x
h1

∣∣∣∣ . (8.21)

By adding the second column of the determinant with the first column, we
get

N21 = −P2(x) = (ρ2 + ρ1)P2(u) (8.22)

Therefore the Kernel A1 for a two layer earth is

N21

D2
= q

P2 (u)
H2 (u) − P2 (u)

. (8.23)

This is a surface kernel because for surface geophysics where the measurements
are taken on the surface of the earth, we are mostly interested in A1.

Subsurface Kernel A2

For the Kernel A2, the numerator N22 from (8.13) is given by

N22 =
[

xh1 + x−h1 0
ρ2

(−xh1 + x−h1
)

(ρ2 − ρ1) xh1

]
. (8.24)

Let
N22 = (N22)1 + (N22)2

where

(N22)1 =
[

xh1 0
−ρ2x

h1 (ρ2 − ρ1) xh1

]

and
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(N22)2 =
[

x−h1 0
−ρ2x

−h1 (ρ2 − ρ1) xh1

]
. (8.25)

By adding the first column of (N22), to its second column it can be shown
that (N22)1 = −P2(x) = (ρ2 + ρ1)P2(u) and

(N22)2 = (ρ2 + ρ1) k1 = (ρ2 + ρ1) [1 + k1 − H2 (u)]

where H2(u) = 1. Therefore, we can write down the expression for subsurface
Kernel A2 as

A2 =
N22

D2
= q

[
1 + k1

H2 (u) − ρ2 (u)
− 1

]
. (8.26)

8.1.3 Three Layered Earth Model

For a three layered earth, the kernels to be determined from the (8.13) are
A1, A2, B2 and A3. Only A1 is the surface kernel. The denominator D3 of
(8.13) can be written as

D3 =

⎡
⎢⎢⎣

xh1 + x−h1 −xh1 −x−h1 0
ρ2

(−xh1 + x−h1
)

ρ1x
h1 −ρ1x

−h1 0
0 xh2 x−h2 −xh2

0 −ρ3x
h2 ρ3x

−h2 ρ2x
h2

⎤
⎥⎥⎦ . (8.27)

Let D3 = P3(x) + H3(x)
where

P3 (x) =

⎡
⎢⎢⎣

xh1 −xh1 −x−h1 0
−ρ2x

h1 +ρ1x
h1 −ρ1x

−h1 0
0 xh2 x−h2 −xh2

0 −ρ3x
h2 ρ3x

−h2 ρ2x
h1

⎤
⎥⎥⎦ (8.28)

and

H3 (x) =

⎡
⎢⎢⎣

x−h1 −xh1 −x−h1 0
ρ2x
−h1 ρ1x

h1 −ρ1x
−h1 0

0 xh2 x−h2 −xh2

0 −ρ3x
h2 ρ3x

−h2 ρ2x
h2

⎤
⎥⎥⎦ . (8.29)

Let us now consider the determinant P3 (x). Multiplying the third row by ρ2

and adding it to the fourth row, we get

P3 (x) =

⎡
⎢⎢⎣

P2 (x) −x−h1 0
−ρ1x

−h1 0
0 xh2 x−h2 −xh2

0 − (ρ3 − ρ2) xh2 (ρ3 + ρ2) x−h2 0

⎤
⎥⎥⎦ . (8.30)

Developing it with respect to the last column, we get

P3 (x) = −xh2

∣∣∣∣∣∣
−x−h1

P2 (x) ρ1x
−h1

0 (ρ3 − ρ2)xh2 (ρ3 + ρ2)x−h2

∣∣∣∣∣∣
. (8.31)
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Developing next with respect to the last row, we get

P3 (x) = (ρ3 + ρ2) P2 (x) + (ρ3 − ρ2) x2h2

∣∣∣∣
xh1 −x−h1

−ρ2x
h1 −ρ1x

−h1

∣∣∣∣
= (ρ3 + ρ2)

[
P2 (x) − k2x2h2H2

(
x−1

)]
(8.32)

where

H2

(
x−1

)
=

∣∣∣∣
xh1 −x−h1

ρ2x
h1 ρ1x

−h1

∣∣∣∣ . (8.33)

It differs from the determinant H2 (x) only in the power of x. Here k2, the
reflection factor at the boundary between the second and third layer is equal
to

k2 = (ρ3 − ρ2)/(ρ3 + ρ2).

Therefore,

P3 (x) = − (ρ2 + ρ1) (ρ3 + ρ2)
[
P2 (u) + k2uh2H2

(
u−1

)]
(8.34)

= − (ρ2 + ρ1)(ρ3 + ρ2)P3(u)

where

P3 (u) =P2 (u) + k2uh2H2

(
u−1

)

= k1uh1 + k2uh2 . (8.35)

Similarly

H3 (x) = xh2

∣∣∣∣∣∣
−x−h1

H2 (x) −ρ1x
−h1

0 − (ρ3 − ρ2)xh2 (ρ3 + ρ2)x−h2

∣∣∣∣∣∣

= (ρ3 + ρ2)H2 (x) + (ρ3 − ρ2)x2h2

∣∣∣∣
x−h1 −x−h1

ρ2x
−h1 −ρ1x

−h1

∣∣∣∣
= (ρ3 + ρ2)

[
H2 (x) − k2x2h2P2

(
x−1

)]
(8.36)

where

P2

(
x−1

)
=

∣∣∣∣
x−h1 −x−h1

−ρ2x
−h1 ρ1x

−h1

∣∣∣∣
= (ρ2 + ρ1)(ρ3 + ρ2)H3(u). (8.37)

Here

H3 (u) = H2 (u) + k2uh2P2

(
u−1

)

= 1 + k1k2uh2−h1 (8.38)

and
D3 = (ρ2 + ρ1) (ρ3 + ρ2) [H3 (u) − P3 (u)] . (8.39)
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Surface Kernel A1

For the Kernel A1, in a three layered earth model the numerator of the quo-
tient from (8.13) is given by

N31 =

∣∣∣∣∣∣∣∣

0 −x−h1 −x−h1 0
(ρ2 − ρ1) xh1 ρ1x

h1 −ρ1x
−h1 0

0 xh2 x−h2 −xh2

(ρ3 − ρ2) xh2 −ρ3x
h2 ρ3x

−h2 ρ2x
h2

∣∣∣∣∣∣∣∣
(8.40)

The value of this determinant is

N31 = −P3(x) = (ρ2 + ρ1)(ρ3 + ρ2)P3(u)

Therefore
A1 =

N31

D3
= q

P3 (u)
H3 (u) − P3 (u)

. (8.41)

Subsurface Kernel A2

The numerator for the kernel A2 may be written from (8.13) as

N32 =

∣∣∣∣∣∣∣∣

xh1 + x−h1 0 −x−h1 0
ρ2

(−xh1 + x−h1
)

(ρ2 − ρ2) xh1 −ρ1x
−h1 0

0 0 x−h2 −xh2

0 (ρ3 − ρ2) xh2 ρ3x
−h1 ρ2x

h1

∣∣∣∣∣∣∣∣
(8.42)

= (N32)1 + (N32)2

where

(N32)1 =

∣∣∣∣∣∣∣∣

xh1 0 −x−h1 0
−ρ2x

h1 (ρ2 − ρ1)xh1 −ρ1x
−h1 0

0 0 x−h2 −xh2

0 (ρ3 − ρ2)xh2 ρ3x
−h2 ρ2x

h1

∣∣∣∣∣∣∣∣
(8.43)

and

(N32)2 =

∣∣∣∣∣∣∣∣

x−h1 0 −x−h1 0
ρ2x
−h1 (ρ2 − ρ1)xh1 −ρ1x

−h1 0
0 −xh2 x−h2 −xh2

0 ρ3x
h2 ρ3x

−h2 ρ3x
h2

∣∣∣∣∣∣∣∣
. (8.44)

(N32)1 can be shown to be equal to

= −P3(x) = (ρ2 + ρ1)(ρ3 + ρ2)P3(u). (8.45)
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(N32)2 = xh2

∣∣∣∣∣∣
−x−h1

(N22)2 −ρ1x
−h1

0 (P3 − ρ2)xh2 (ρ3 + ρ2) x−h2

∣∣∣∣∣∣

= (ρ3 + ρ2) (N22)2 − (ρ3 − ρ2) x2h2

∣∣∣∣
x−h1 −x−h1

ρ2x
−h1 −ρ1x

−h1

∣∣∣∣
= (ρ3 + ρ2)

[
(N22)2 + k2x2h2P2

(
x−1

)]

= (ρ2 + ρ1) (ρ3 + ρ2)
[
1 + k1 − H2 (u) − k2uh2 − P2

(
u−1

)]

= (ρ2 + ρ1) (ρ3 + ρ2) [1 + k1 − H3 (u)]
= (ρ2 + ρ1) (ρ3 + ρ2) [(1 + k1) B23 (u) − H3 (u)] (8.46)

where
B23(u) = 1.

Therefore

N32 = (ρ2 + ρ1) (ρ3 + ρ2) [(1 + k1) B23 (u) − H3 (u) + P3 (u)] (8.47)

and the kernel A2 can be written as

A2 = q
[
(1 + k1) B23 (u)
H3 (u) − P3 (u)

− 1
]
. (8.48)

Subsurface Kernel B2

The determinant N33 for the numerator of the Kernel B2 is

N33 =

∣∣∣∣∣∣∣∣

xh1 + x−h1 −xh1 0 0
ρ2

(−xh1 + x−h1
)

ρ1x
h1 (ρ2 − ρ1) xh1 0

0 xh2 0 −xh2

0 −ρ3x
h2 (ρ3 − ρ2) xh2 ρ2x

h2

∣∣∣∣∣∣∣∣
(8.49)

= (N33)1 + (N33)2

where

(N33)1 =

∣∣∣∣∣∣∣∣

xh1 −xh1 0 0
−ρ2x

h1 ρ1x
h1 (ρ2 − ρ1) xh1 0

0 xh2 0 −xh2

0 −ρ3x
h2 (ρ3 − ρ2) xh2 ρ2x

h2

∣∣∣∣∣∣∣∣
= 0 (8.50)

(N33)2 =

∣∣∣∣∣∣∣∣

x−h1 −xh1 −xh1 0
ρ2x
−h1 ρ1x

h1 ρ3x
h1 0

0 xh2 0 −xh2

0 −ρ3x
h2 0 ρ2x

h2

∣∣∣∣∣∣∣∣
= (ρ2 + ρ1) (ρ3 + ρ2) (1 + k1) k2uh2 (8.51)

where 2ρ2
ρ2+ρ1

= 1 + k1. If we take
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D23(u) = k2u
h2 ,

we can write
N33 = (ρ2 + ρ1)(ρ3 + ρ2)(1 + k1)D23(u)

and
B2 = q (1 + k1)

D23 (u)
H3 (u) − P3 (u)

. (8.52)

Kernel A3

The numerator of this kernel N34 is

N34 =

∣∣∣∣∣∣∣∣

xh1 + x−h1 −xh1 −x−h1 0
ρ2

(−xh1 + x−h1
)

ρ1x
h1 −ρ1x

−h1 (ρ3 − ρ1) xh1

0 xh2 x−h2 0
0 −ρ3x

h2 ρ3x
−h2 (ρ3 − ρ2) xh2

∣∣∣∣∣∣∣∣
= (ρ2 + ρ1) (ρ3 + ρ2) [(1 + k1) (1 + k2) − H3 (u) + P3 (u)] (8.53)

Hence

A3 =
q (1 + k1) (1 + k2)

H3 (u) − ρ3 (u)
− 1. (8.54)

8.1.4 General Expressions for the Surface and Subsurface Kernels
for an N-Layered Earth

After deriving the expressions for the surface and subsurface kernels upto a
three layered earth, we write down the recurrence formulae for the kernels
for an N-layered earth and write down the expressions for the potentials in
different media.

(i) Surface Kernel A1 for an N-layered earth can be Written as

A1 = q
PN (u)

HN (u) − PN (u)
(8.55)

where
PN (u) = PN−1 (u) + kN−1uhN−1HN−1

(
u−1

)

and
HN (u) = HN−1 (u) + kN−1uhN−1PN−1

(
u−1

)
(8.56)

where
P2(u) = k1uh1

and
H2(u) = 1.
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(ii) Kernels A2 and B2 of the Second Layer

The expressions for the Kernels A2 and B2 are respectively given by

A2 = q

[
(1 + k1)B2N (u)
HN (u) − PN (u)

− 1
]

(8.57)

and

B2 = q
[
(1 + k1)D2N (u)
HN (u) − PN (u)

]
(8.58)

where

B22(u) = 1 D22(u) = O

B23(u) = 1 D23(u) = k2uh2

B24(u) = B23(u) + k3uh3D23(u−1)

D24(u) = B23(u) + k3uh3B23(u−1) (8.59)

B2N (u) = B2(N−1) (u) + kN−1uhN−1D2(N−1)

(
u−1

)

D2N (u) = D2(N−1) (u) + kN−1uhN−1B2(N−1)

(
u−1

)
. (8.60)

(iii) The Expressions for the Kernels Ai and Bi for ith Layer can
be Written as

Ai = q

⎡
⎢⎢⎣

{
i−1∏
s=1

(1 + kS)
}

BiN

HN (u) − PN (u)
− 1

⎤
⎥⎥⎦ (8.61)

and

Bi = q

⎡
⎢⎢⎢⎣

{
i−1∏
s−1

(1 + kS)
}

DiN

HN (u) − PN (u)

⎤
⎥⎥⎥⎦ (8.62)

where
i−1∏
S=1

(1 + ks) = (1 + k1) (1 + k2) (1 + k3) . . . . . . (1 + ki−1)

and
ks =

ρs+1 − ρs

ρs+1 + ρs

.

BiN (u) and DiN (u) are related through the recurrence relations given as
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Bii(u) = 1, Dii(u) = O,

Bi(i+1) (u) = Bii (u) + k1uh1Dii

(
u−1

)

Di(i+1) (u) = Dii (u) + k1uhiBii

(
u−1

)
(8.63)

and

BiN (u) = Bi(N−1) (u) + kN−1uhN−1Di(N−1)

(
u−1

)

DiN (u) = Di(N−1) (u) + kN−1uhN−1Bi(N−1)

(
u−1

)
. (8.64)

(iv) The Kernel Function AN for the Nth Layer is given by

AN = q

⎡
⎢⎢⎣

{
N−1∏
s=o

(1 + kS)
}

BNN (u)

HN (u) − PN (u)
− 1

⎤
⎥⎥⎦ (8.65)

where BNN(u) = 1, it should be noted that BN(N−1)(u) = 1. For the kernels
BiN and DiN where i stands for the ith layer and N stands for the total number
of layers.

8.1.5 Kernels in Different Layers for a Five Layered Earth

In this section we are presenting the values of the kernels PN (u), HN (u), BiN

(u) and DiN (u) for a five layered earth model. One can just write down the
expressions of the surface and subsurface kernels for any number of layers.

Let ρ1, ρ2, ρ3, ρ4, ρ5 are the restivities of the five layers and h1, h2, h3,
h4 and h5 are the thicknesses of the five layer where the last layer thickness is
infinitely large. From the general expressions for the kernels for an N-layered
earth, we can write the expressions for these surface and subsurface kernels
as follows:

A. Surface Kernels

(i) For the first layer (i = 1)
(a)

P2(u) = k1u
h1

H2(u) = 1 (8.66)

(b)

P3 (u) = P2 (u) + k2 (u)h2 H2

(
u−1

)

= k1uh1 + k2uh2

H3 (u) = H2 (u) + k2 (u)h2 P2

(
u−1

)

= 1 + k1k2uh2−h1 (8.67)
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(c)

P4 (u) = P3 (u) + k3u
h3H3

(
u−1

)

= k1u
h1 + k2u

h2 + k3u
h3 + k1k2k3u

h3−h2+h1

H4 (u) = H3 (u) + k3uh3P3

(
u−1

)

= 1 + k1k2uh2−h1 + k1k2uh3−h1 + k2k3uh3−h2 (8.68)

(d)

P5 (u) =P4 (u) + k4u
h4H4

(
u−1

)

= k1uh1 + k2uh2 + k3uh3 + k4uh4 + k1k2uh3−h2+h1

+ k1k2k4uh4−h2+h1 + k1k3k4uh4−h3+h1

+ k2k3k4uh4−h3+h2 (8.69)

H5 (u) =H4 (u) + k4uh4P4

(
u−1

)

= 1 + k1k2uh2−h1 + k1k3uh3−h1 + k1k4uh4−h1

+ k2k3uh3−h2 + k2k4uh4−h2 + k3k4uh4−h3

+ k1k2k3k4uh4−h3+h2−h1 (8.70)

B. Subsurface Kernels

(i) Kernels for the second layer (i = 2) are
(a)

B22(u) = 1
D22(u) = 0, (8.71)

(b)

B23 (u) = B22 (u) + k2uh2D22

(
u−1

)
= 1

D23 (u) = D22 (u) + k2uh2B22

(
u−1

)
= k2uh2 . (8.72)

(c)

B24 (u) = B23 (u) + k3uh3D23

(
u−1

)

= 1 + k2k3uh3−h2 .

D24 (u) = D23 (u) + k3uh3B23

(
u−1

)

= k2uh2 + k3uh3 . (8.73)
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(d)

B25 (u) = B24 (u) + k4u4D24

(
u−1

)

= 1 + k2k3uh3−h2 + k2k4uh4−h2 + k3k4uh4−h3 .

D25 (u) = B24 (u) + k4uh4B24

(
u−1

)

= k2uh2 + k3uh3 + k4uh4 + k2k3k4uh4−h3+h2 . (8.74)

(ii) Kernels for the third layer (i = 3) are
(a)

B33(u) = 1
D33(u) = 0. (8.75)

(b)

B34 (u) = B33 (u) + k3uh3B33

(
u−1

)
= 1

D34 (u) = D33 (u) + k3uh3B33

(
u−1

)
= k3uh3 . (8.76)

(c)

B35 (u) = B34 (u) + k4uh4D34

(
u−1

)
= 1 + k3k4uh4−h3

D35 (u) = B34 (u) + k4uh4B34

(
u−1

)
= k3uh3 + k4uh4 . (8.77)

(iii) Kernels for the fourth layer (i = 4)
(a)

B44(u) = 1 (8.78)
D44(u) = O,

(b)

B45 (u) = B44 (u) + k4uh4D44

(
u−1

)
= 1

D45 (u) = D44 (u) + k4uh4B44

(
u−1

)
= k4uh4 .. (8.79)

(v) Kernels for the fifth layer (i = 5)
(a)

B55(u) = 1
D55(u) = O. (8.80)

8.1.6 Potentials in Different Media

Substituting the values of surface and subsurface kernels, we can write the
expressions for the potentials in different media as
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φ1 = q

∞∫

0

e−mzJo (mr) dm + q

∞∫

0

PN (u)
HN (u) − PN (u)

(
e−mz + emz

)
Jo (mr) dm (8.81)

φ2 = q

∞∫

0

e−mzJo (mr) dm + q

∞∫

0

[
(1 + k1) B2N

HN (u) − ρN (u)
− 1

]

e−mzJo (mr) dm + q

∞∫

0

[
(1 + k1) D2N (u)
HN (u) − PN (u)

]
emzJo (mr) dm

q

∞∫

0

e−mzJo (mr) dm + q(1 + k1)

∞∫

0

[
E2(u)e−mz + F2(u)emz

]
Jo (mr) dm

(8.82)

φi = q

∞∫

0

e−mzJo (mr) dm + q
[

i

Π
s=1

(1 + ks)
]

∞∫

0

[
Ei (u) e−mz + Fi (u) emz

]
Jo (mr) dm (8.83)

φN = q

∞∫

0

e−mzJo (mr) dm + q
[
N−1

Π
s=1

(1 + ks)
]

∞∫

0

ENNe−mzJo (mr) dm (8.84)

where

Ei (u) =
BiN (u)

HN (u) − PN (u)

Fi (u) =
DiN (u)

HN (u) − PN (u)
(8.85)

and

ENN =
BNN (u)

HN (u) − PN (u)
.

Kernel A1 is regularly used by the geophysicists to compute the apparent
resistivity for an one-dimensional N-layered earth problem. Apparent resis-
tivity is defined as the resistivity of a fictitious homogeneous medium, which
generates the same potential in the potential electrodes as one gets for an
inhomogeneous earth. Apparent resistivity is expressed as ρa = KΔφ

I , where
K is the geometric factor, I is the current and Δφ is the potential difference
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between the two potential electrodes created by the direct current flow field.
For two electrode system, i.e. for one current and one potential electrodes
Δφ = φ, because the other potential electrode is kept away by about 10 time
the distance between current and potential electrodes. Once the expression for
potential for an N layered earth for two-electrode system is obtained, one can
compute potential for any other electrode configuration. Potential at a point
due to different sources and sinks can be added or subtracted as the case may
be (mentioned in Chap. 7). One can get deeper and deeper information about
the subsurface by gradual increase in electrode separation. Further details
about D.C. resistivity sounding, electrode configuration, concept of apparent
resistivity is outside the scope of this book. The readers may consult Keller
and Frisehknect (1966), Bhattacharya and Patra (1968), Koefoed(1979) and
Zhdanov and Keller (1994).

The constants in potential functions, which are determined applying
boundary conditions, are kernel functions because they contain information
about all the layer parameters. The expressions of the kernels are shown in
(8.66) to (8.85). There may be some applications of the subsurface kernels
in surface to borehole measurements. Researchers in Potential theory may be
interested to know in detail about the behaviours of these subsurface kernels
and their dependence on resistivities at the boundaries and layer thicknesses.
Both potentials and normal components of current densities will be contin-
uous across the boundaries. However refraction, reflection and transmission
of current lines may be studied with greater details for academic interest.
One gets potentials at all the subsurface nodes in finite element and finite
difference formulation of 2D/3D structures (Chap. 15). Therefore a compari-
son can be made between the subsurface potentials obtained analytically and
numerically. The researchers generally calibrate their finite element and finite
difference source codes against the responses obtained from an analytical solu-
tion. In this sector, the subsurface kernels may have some use. Behaviours of
the surface kernels can also be studied for electromagnetics and electromag-
netic transients.

Deriving recurrence relation of kernel functions for an N-layered earth in
one form proposed by Mooney et al (1960) is demonstrated here. There is
one more approach for deriving the kernel function in the recurrence form as
available in Zhdanov and Keller (1994).

8.2 Potential due to a Point Source in a Borehole
with Cylindrical Coaxial Boundaries

Borehole of radius ‘r’ contains drilling mud of resistivity ρ1. This cylindrical
mud column in the borehole (Fig. 8.2) is surrounded by a flushed zone of
resistivity ρ2. It is termed as the flushed zone because most of the pore fluids
are flushed out by the mud filtrate due to high pressure maintained in the
borehole. Radius of the outer boundary of the flushed zone is r2. The flushed
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zone is surrounded by uncontaminated zone of resistivity ρ3. Radii of the inner
and outer boundaries are respectively given by r2 and infinity. Thickness of the
bed is also assumed to be infinitely high so that the effects of shoulder beds are
negligibly small. Effect of the transitional invaded zone in between the flushed
zone and the uncontaminated zone is discussed in the next section where non-
laplacian equation will be involved in generating potential functions. Here
the potential φ is a function of r and z. In a source free region the potential
satisfies Laplace equation,

∇2φ = 0 (8.86)

i.e.,
∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

= 0

because the potential will have the axial symmetry.
Applying the method of separation of variables i.e. φ = R(r)Z(z), we get

∂φ
∂r

=
dR
dr
.Z

∂2φ
∂r2

= Z
d2R
dr2

(8.87)

d2φ
∂z2

= R
d2Z
dz2

and (8.87) changes to the form

Z
d2R

dr2
+

1
r

dR

dr
.Z +R

d2z

dz2
= 0 (8.88)

1
R

d2R
dr2

+
1
Rr

dR
dr

+
1
Z

d2Z
dz2 = 0 (8.89)

1
R

d2R
dr2

+
1
Rr

dR
dr

= − 1
Z

d2Z
dz

= m2. (8.90)

We get,
d2Z

dz2
+m2Z = 0. (8.91)

The solutions of this equation are sin mz and cos mz.
The solution of the second equation is

I0(mr) and K0(mr) (8.92)

where I0(mr) and K0(mr) are respectively the modified Bessel’s function of
first and second kind and of zero order. Since inside a borehole, the potential
will be independent of sign of Z, i.e. with respect to the source point, the
potential above or below the source point will be same provided the distance
from the source remains the same. Therefore cos mz will be the proper poten-
tial function and not sin mz. The general solution of the potential function is
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Fig. 8.2. Bore hole D.C. resistivity model with a current and a potential electrode
inside a borehole and with cylindrical coaxial boundaries

φ =

∞∫

0

A(m)J0 (mr) cosmz dm +

∞∫

0

B (m)K0 (m) cosmz dm (8.93)

where A(m) and B(m) are arbitrary kernel functions.
For this problem, the Weber Lipschitz’s integral can be written as

1√
r2 + z2

=
2
π

∞∫

0

K0 (mr) cosmz dm. (8.94)

Therefore, the potential due to a point source is

φ0 =
ρ1I
4π

.
1
R

=
ρ1I
4π

1√
r2 + z2

=
ρ1I
4π

.
2
π

∞∫

0

K0 (mr) cosmz dm

=
ρ1I
2π2

∞∫

0

K0 (mz) cosmz dm. (8.95)

Since I0(mr) will be the better potential function within the borehole or
medium 1. Therefore the potential in medium 1 is

φ1 = φ0 + φ/

where φ0 is the source potential and φ/ is the perturbation potential.
Here

⇒ φ1 =
ρ1I
2π2

⎡
⎣
∞∫

0

K0 (mz) cosmz dm +

∞∫

0

C0 (m)I0 (mr) cosmz dm

⎤
⎦ (8.96)
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where

C0(m) =
2π2

ρ2I
A0 (m) .

φ2 =
ρ2I
2π2

.
2π2

ρ2I

⎡
⎣
∞∫

0

A2 (m) I0 (mr) cosmz dm +

∞∫

0

B2 (m)K0 (mr) cosmz dm

⇒ φ2 =
ρ2I
2π2

∞∫

0

C2 (m)I0 (mr) cosmz dm

+

∞∫

0

D2 (m)K0 (mr) cosmz dm (8.97)

where

C2 (m) =
2π2

ρ2I
A2 (m)

D2 (m) =
2π2

ρ2I
B2 (m) .

φ3 =
ρ3I

2π2
.
2π2

ρ3I

⎡
⎣
∞∫

0

B3 (m)K0 (mr) cosmz dm

⎤
⎦

⇒ φ3 =
ρ3I
2π

.

∞∫

0

D3 (m)K0 (mr) cosmz dm (8.98)

where

D3 (m) =
2π2

ρ3I
B3 (m) .

∂φ2

∂r
=

ρ2I
2π2

⎡
⎣
∞∫

0

C2 (m) I/0 (mr)m cosmz dm

+

∞∫

0

D2 (m)K/
0 (mr) m cos mz dm

⇒ ∂φ2

∂r
=

ρ2I
2π2

⎡
⎣
∞∫

0

C2 (m) I1 (mr) − K1 (mr)D2 (m)

⎤
⎦m cos mz dm. (8.99)
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φ3 =
ρ3I
2π2

∞∫

0

D3 (m)K0 (mr) cos mz dm. (8.100)

∂φ3

∂r
=

ρ3I
2π2

∞∫

0

D3 (m)K/
0 (mr)m cos mz dm

= − ρ3I
2π2

∞∫

0

D3 (m) K1 (mr)m cos mz dm. (8.101)

The boundary conditions are:

(i)

φ1 |r=1 = φ2 |r=1

φ2 |r=r1 = φ3 |r=r2 .

The normal component of the current density should be continuous across the
boundaries. i. e.,

1
ρ1

∣∣∣∣
∂φ1

∂r

∣∣∣∣
r=r1

=
1
ρ2

∣∣∣∣
∂φ1

∂r

∣∣∣∣
r=r1

1
ρ2

∣∣∣∣
∂φ
∂r

∣∣∣∣
r=r2

=
1
ρ3

∣∣∣∣
∂φ
∂r

∣∣∣∣
r=r2

. (8.102)

Assuming the radius of the cylinder to be unity, we put φ1 = φ2 at r = 1 and

get ρ1I

2π2

[∞∫
0

K0 (mr) cos mz dm +
∞∫
0

C1 (m) I0 (mr) cos mz dm
]

=
ρ2I
2π2

⎡
⎣
∞∫

0

C2 (m) I0 (mr) cos mz dm +

∞∫

0

D2 (m)K0 (mr) cos mz dm

⇒
∞∫

0

{ρ1 [C1 (m) I0 (mr) + K0 (mr)] − ρ2 [C2 (m) I0 (mr)

+D2 (m) K0 (mr)]} cosmz dm = 0. (8.103)

Similarly at
r = r2, φ2 = φ3.
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Therefore

ρ2I
2π2

⎡
⎣
∞∫

0

C2 (m)I0 (mr2) cosmz dm +

∞∫

0

D2 (m)K0 (mr2) cosmz dm

⎤
⎦

=
ρ3I
2π2

⎡
⎣
∞∫

0

D3 (m)K0 (mr2) cosmz dm

⎤
⎦

⇒
∞∫

0

{ρ2 [C2 (m) I0 (mr2) + D2 (m)K0 (mr2)]

= ρ3D3 (m) K0 (mr2)} cosmz dm. (8.104)

From (8.103) and (8.104), the expressions within the bracket are zero, i.e.,

ρ2C2 (m) I0 (mr2) + ρ2D2 (m) K0 (mr2) − ρ3D3 (m)K0 (mr2) = 0.

To apply the other boundary condition, i.e., the normal components of the
current densities are equal at the boundaries i.e.

J1 = J2 at r = r1 and J2 = J3 at r = r2
∂φ1
∂r ,

∂φ2
∂r and ∂φ3

∂r are to be determined. Since �J = −σ∇φ,

∂φ1

∂r
=

ρ1I
2π2

⎡
⎣
∞∫

0

C1 (m) I/0 (mr) cosmz m dm +

∞∫

0

K/
0 (mr) cosmz m dm.

Since

I/0 (x) = I1 (x)

K/
0 (x) = −K1 (x)

therefore,

∂φ1

∂r
=

ρ1I
2π2

⎡
⎣
∞∫

0

{C1 (m) I1 (mr) − K1 (mr)}m cosmz dm

⎤
⎦ (8.105)

∂φ2

∂r
=

ρ2I
2π2

⎡
⎣
∞∫

0

C2 (m) I/0 (mr)m cosmz dm

+

∞∫

0

D2 (m) K/
0 (mr)m cos mz dm

⎤
⎦

⇒ ∂φ2

∂r
=

ρ2I
2π2

⎡
⎣
∞∫

0

{C2 (m) I1 (mr) − K1 (mr)D2 (m)m cos mz dm}
⎤
⎦ .

(8.106)
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Since

φ3 =
ρ3I
2π2

∞∫

0

D3 (m) K0 (mr) cosmz dm (8.107)

So

∂φ3

∂r
=

ρ3I
2π2

∞∫

0

D3 (m) K/
0 (mr)m cosmz dm

= − ρ3I
2π2

∞∫

0

D3 (m)K1 (mr)m cosmz dm. (8.108)

Using the boundary conditions, i.e., at r = r1 1
ρ1

∂φ1
∂r = 1

ρ2

∂φ2
∂r , we get

∞∫

0

[C1 (m) I1 (mr1) − K1 (mr1)] cosmz.m.dm

=

∞∫

0

[C2 (m) I1 (mr1) + D2 (m)K1 (mr1)] m cosmz dm (8.109)

⇒ C1 (m) I1 (mr1) − K1 (mr1) − C2 (m) I1 (mr1) + D2 (m)K1 (mr1) = 0.

Similarly at

r = r2,
1
ρ2

∂φ2

∂r
=

1
ρ3

∂φ3

∂r
,

hence
∞∫

0

{C2 (m) I (mr2) − D2 (m)K1 (mr2)} cosmz m dm

= −
∞∫

0

D3 (m)K1 (mr2) cosmz m dm

⇒ C2 (m) I1 (mr2) − D2 (m)K1 (mr2) + D3 (m) K1 (mr2) = 0. (8.110)

The four simultaneous equations with four unknowns are given by

ρ1C1 (m) I0 (mr1) + ρ1K0 (mr1) − ρ2I0 (mr1)C2 (m) − ρ2D2 (m)K0 (mr1) = 0
(8.111)

ρ2C2 (m) I0 (mr2) + ρ2D2 (m)K0 (mr2) − ρ3D3 (m)K0 (mr2) = 0 (8.112)
C1 (m) I1 (mr2) − K1 (mr2) − C2 (m) I1 (mr2) + D2 (m)K1 (mr2) = 0 (8.113)
C2 (m) I1 (mr2) − D2 (m) K1 (mr2) + D3 (m)K1 (mr2) = 0. (8.114)
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In borehole geophysics, we are mostly interested to find out potential on axis
of the borehole, i.e. in medium 1. Therefore for computation of potential
in borehole, we need to evaluate the kernel C1 (m) only. However the other
kernels C2 (m), D2 (m) and D3 (m) which are of academic interest in Potential
Theory can also be evaluated from these sets of equations. Equations 8.111,
8.112, 8.113 and 8.114 can be rewritten in the matrix form and

C1 (m) can be evaluated using Cramer’s rule.
Let

C1(m) =
N
Δ
,

where

N =

⎡
⎢⎢⎣
−ρ1K1 (mr) −ρ2I0 (mr) −ρ2K0 (mr) 0

0 ρ2I0 (mr2) ρ2K0 (mr2) −ρ3K0 (mr2)
K1 (mr) −I1 (mr) K1 (mr1) 0

0 I1 (mr2) −K1 (mr2) K1 (mr2)

⎤
⎥⎥⎦ . (8.115)

Determinant of the numerator N of C1 (m) is

N = (ρ3 − ρ2) (ρ3 − ρ2) K0 (mr1) K0 (mr2) [I1 (mr2)K1 (mr2)
−I1 (mr1)K1 (mr2)] + (ρ3 − ρ2) ρ3K0 (mr2) K1 (mr2)

+
(ρ2 − ρ1) ρ2

mr2
K0 (mr1)K1 (mr) . (8.116)

The denominator Δ is given by

Δ =

⎡
⎢⎢⎣

ρ1I0 (mr1) −ρ2I0 (mr1) −ρ1K0 (mr) 0
0 ρ2I0 (mr2) ρ2K0 (mr2) −ρ3K0 (mr2)

I1 (mr1) −I1 (mr1) K1 (mr1) 0
0 I1 (mr2) −K1 (mr2) K1 (mr2)

⎤
⎥⎥⎦ . (8.117)

After a few steps algebraic simplification while calculating the determinant
from (8.117), we get.

Δ = [I0 (mr1)K1 (mr2) + I1 (mr2) K0 (mr1)]
+ [I1 (mr1)K0 (mr2) + (μ2 − 1) (μ1 − 1) (mr2)]
+ I (mr2)K0 (mr2) + (mr2) (μ2 − 1)
+ I1 (mr1)K0 (mr1) (mr1) (μ1 − 1) + 1 (8.118)

where μ1 = ρ2
ρ1

and μ2 = ρ3
ρ2

. Thus the value of Co (m) = N/Δ can be
computed.

The expression for the potential in a borehole is given by

φ1 =
ρ0I
2π2

⎡
⎣
∞∫

0

K0 (mr) cosmz dm +

∞∫

0

C0 (m) I0 (mr) cosmz dm

⎤
⎦ . (8.119)
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From Weber – Lipschitz integral, we get

2
π

∞∫

0

K0 (mr) cosmz dm =
1√

r2 + z2
. (8.120)

At any point on the z axis where r = 0, we get

I0 (mr) = I0 (0) = 1.

Therefore,

φ1 |r=0 =
ρ1I
2π2

⎡
⎣
∞∫

0

K0 (mr) cosmz dm

+

∞∫

0

C0 (m) I0 (mr) cosmz dm

=
ρ1I
2π2

⎡
⎣ π

2Z
+

∞∫

0

C0 (m) cosmz dm

⎤
⎦ . (8.121)

This is the expression for potential at a point on the z axis due to a point
electrode. Since apparent resistivity of a medium is expressed as ρa = KΔφ

I .
where K is the geometric factor, Δφ is the potential difference between the
two potential electrodes and I is the current flowing through the ground. For
a two electrode configuration the geometric factor K = 4πL, where L is the
electrode separation and Δφ = φ, i.e. the potential measured at the potential
electrode M (Fig. 8.3).

The other potential electrode is theoretically at infinitely and practically is
at a distance about ten times the distance between the current and potential
electrodes. In practice the other electrodes are on the surface. The apparent
resistivity can be expressed as

ρa =
ρ1

2π2
.4πL

⎡
⎣ π

2Z
+

∞∫

0

C0 (m) cosmz dm

⎤
⎦

⇒ 2ρ1L
π

.
π
2Z

⎡
⎣2Z

π
+

∞∫

0

C0 (m) cosmz dm

⎤
⎦

⇒ ρ1L
Z

⎡
⎣1 +

2Z
π

+

∞∫

0

C0 (m) cosmz dm

⎤
⎦ .

Hence
ρa

ρ1

= 1 +
2L
π

∞∫

0

C0 (m) cos mL dm. (8.122)
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Fig. 8.3. Computed apparent resistivity curve in two electrode configuration bore
hole environment

8.3 Potential for a Transitional Earth

8.3.1 Potential for a Medium Where Physical Property Varies
Continuously with Distance

This section deals with the boundary value problems where resistivity of a
medium is assumed to vary continuously with depth or radial distance. The
place where physical property of the earth changes continuously with depth,
the nature of the boundary value problem changes because of the inclusion
of nonlaplacian terms. The resistivity ρ is assumed to be a function of depth
Z. There are some zones in the subsurface where resistivity varies continu-
ously with depth. As for example, in a hard rock area, weathered granite
overlies hard and compact granite. It may be a transitional zone where resis-
tivity increases continuously with depth. In a borehole the mud filtrate invades
through the porous and permeable zone because of high borehole pressure and
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an invaded zone is formed surrounding the borehole wall. It is always a tran-
sition zone, where resistivity varies continuously along the radial direction.

For a transitional earth ρ is either a function of z or r or both r, z. In this
section treatments for both ρ = f(z) and f(r) are given. When ρ = f(z), the
starting equation in a source free region and for an isotropic earth is

div�J = 0.
⇒ div(σ grad φ) = 0
⇒ σ div gradφ + gradσ grad φ = 0

⇒ ∇2φ +
1
σ

gradσ grad φ = 0. (8.123)

If we take cylindrical co-ordinates with z axis downward for φ = f(r, z), (8.123)
can be written as

σ∇2φ+
∂σ

∂r
.
∂φ

∂r
+
∂σ

∂z
.
∂φ

∂z
= 0. (8.124)

If we assume that ∂σ
∂r = 0, i, e., the lateral variation in conductivity or resis-

tivity is absent (8.124) changes to the form

∇2φ+
1
σ

∂σ

∂z
.
∂φ

∂z
= 0. (8.125)

Here conductivity varies continuously with depth (Fig. 8.4). Therefore, we can
write (8.125) as

∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
σ

∂σ

∂z
.
∂φ

∂z
+
∂2φ

∂z2
= 0. (8.126)

Using the method of separation of variables, we obtain

φ = R (r)Z(z)

d2R
dr2

+
1
r

dR
dr

− m2R = 0 (8.127)

d2Z

dz2
+

1
σ

dσ

dz
.
dZ

dz
−m2Z = 0. (8.128)

To solve this problem, we need to know the value of dσ
dz . Let the solution

of the second (8.128) be Z(m,z). The solution of the first equation is J0(mr)
and Y0(mr).Since J0(mr) is a better behaved potential function at r = 0, the
expression for the potential is

φ =

α∫

0

A(m)Z (mz) J0 (mr) dm. (8.129)

Now applying the first boundary condition i.e.

∂φ

∂z
= 0 at z = 0,
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we get

∂φ
∂z

=

α∫

0

A(m)Z′ (mz) J0 (mr) dm (8.130)

where
Z′ =

dZ (m, z)
dz

.

From this boundary condition, we can write

α∫

0

A(m)Z′ (m, 0) J0 (mr) dm = 0 at z = 0. (8.131)

Since
α∫
0

mJ0(mr)dm = 0 always from the theory of Bessel’s function, (Watson

1966), therefore

A (m)Z′ (m, 0) = A (m) Z′ (m, 0) = Cm.m

where Cm is a constant.
Hence

A (m) =
Cm.m

Z′ (m, 0)
(8.132)

and

φ (r, z) =

α∫

0

Cm.m
Z′ (m, 0)

Z (mz) J0 (mr)dm

= C

α∫

0

k (mz) J0 (mr)dm. (8.133)

Here k(m,z) is said to be the kernel of this integral.
For a homogeneous earth of resistivity ρ0,

φ (r,Z) =
ρ0I

2π
√

r2 + z2
=

Iρ0

2π

α∫

0

e−mZJ0 (mr) dm. (8.134)

(Weber Lipschitz identity)
e−mZ is the appropriate potential function because potential vanishes to zero
at infinite depth.

Therefore

φ (r, z) = C

α∫

0

e−mZJ0 (mr) dm (8.135)

where C = Iρ0
2π .
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Comparing this equation with the present problem, we get

φ (r, z) =
Iρ0

2π

α∫

0

k (m, 0) J0 (mr) dm (8.136)

where ρ0 = ρ right at the surface.
Since in surface geophysics, we take measurements on the surface,

φ (r, 0) =
Iρ0

2π

∞∫

0

k (m, 0) J0 (m, r) dm (8.137)

where

k (m, 0) =
m Z (m, 0)
Z′ (m, 0)

. (8.138)

The exact value of φ will depend upon Z. Three such cases, are discussed in
this section.

Problem 1

Expressions for the potential when the resistivity of the earth decreases, expo-
nentially with depth (Fig. 8.4).

The (8.128) changes to the form

d2Z
dz2 + β

dZ
dz

− m2Z = 0 (8.139)

This is a differential equation of a damped oscillatory circuit. The solution is

Z = e
−β+
√

β2+4m2
2 Z

or
e

−β−
√

β2+4m2
2 Z. (8.140)

The second value of Z satisfies the proper potential function, hence

Transitional Source

Fig. 8.4. A medium where electrical conductivity is varying continuously wit depth
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Z (m, z) = e
−β−
√

β2−4m2
2 Z (8.141)

or

Z′ (m, z) =
−β −

√
β2 − 4 m2

2
.Z (m, z) .

Since k (m, z) = m Z(m,z)
Z′(m,z)

φ (r, 0) =

α∫

0

k(m, 0)J0 (mr) dm (8.142)

where

k (m, o) = m

⎡
⎣β

2
−
√

β2

4
− m2

⎤
⎦ .

Problem 2

When electrical conductivity of the medium varies linearly with depth
(Fig. 8.4). Let

σ = σ0 + σ1Z = σ0

(
1 +

z
a

)

Here σ0 is the conductivity at the surface. Therefore,

1
a

=
1

σ0
.
dσ
dz

=
σ1

σ0
(8.143)

and (8.128) takes the form

d2 Z
dz2 +

σ1

σ0 + σ1z
dZ
dz

− m2 Z = 0 (8.144)

σ1 has the unit mho/m and a has the unit of length. If we put

σ0 + σ1Z = σ1ξ(z) (8.145)

or
ξ =

σ0

σ1
+ z = z + a

Then the (8.144) changes to the form

d2 Z

dξ2 +
1
ξ

dZ
dξ

− m2Z = 0 (8.146)

This is the modified Bessel’s equation of zero order and the solutions are
I0(mξ) and K0(mξ). Since I0(mξ) is not an appropriate potential function



8.3 Potential for a Transitional Earth 237

because I0 → ∞ for Z → ∞, K0(mξ) is a better potential function. Therefore
the solution of the (8.146) is

Z = A K0(mξ) = A K0(m(z + a)) (8.147)

Since

k (m, 0) =
K (ma)
K ′0 (ma)

Therefore

φ (r, 0) =
1

2πσ0

∞∫

0

K0 (ma)
K ′0 (ma)

J0 (mr) dm. (8.148)

Put ma = λ
Then

φ (r, 0) =
Iρ0

2πr
r

a

∞∫

0

K0 (λ)
K ′0 (a)

J0

(
λ
r

a

)
dλ. (8.149)

Here r
a is dimensionless and λ is the integration variable. For an homogeneous

earth
φ0 (r, 0) =

Iρ0

2πr
.

Therefore
φ (r, 0)
φ0 (r, 0)

=
r

a

∞∫

0

K0 (λ)
K ′0 (λ)

J0

(
λr

a

)
dλ (8.150)

Problem 3

When the electrical resistivity varies linearly with depth (Fig. 8.4)
Let

ρ = ρ0 + ρ1 z = ρ0(1 + z/b) (8.151)

The equation (8.128) takes the form

d2 Z
dz2 − ρ1

ρ0 + ρ1z
dZ
dz

− m2Z = 0. (8.152)

If we put ρ0 + ρ1Z = ρ1ξ, ξ = b + z, the (8.152) changes to the form

d2 Z

dξ2 − 1
ξ

dZ
dξ

− m2 Z = 0. (8.153)

Substituting Z = ξη, we get

d2η
dξ2 +

1
ξ

dη
dξ

−
(

m2 +
1

ξ2

)
η = 0. (8.154)
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The solutions of this modified Bessel’s equation in mξ are I1(mξ) and K1(mξ).
Since K1(mξ) is a better potential function.

therefore
Z = C(z + b)K1[m(z + b)]. (8.155)

Where C is constant and

Z′ (m, 0) = K1 (mb) + mbK′1 (mb)

and

φ (r, 0) =
Iρ0

2π

∞∫

0

mb K1 (mb)
K1 (mb) + mb (K′1 (mb))

J0 (mr)dm

=
Iρ0

2π

∞∫

0

mb K1 (mb)
K0 (mb)

J0 (mr)dm. (8.156)

Here

K0 (mb) = K1 (mb) + mb K′1 (mb) (Watson, 1966)

Iρ0

2π

∞∫

0

K′0 (mb)
K0 (mb)

J0 (mr) dm (8.157)

Putting λ = mb, we get

φ (r, 0) =
Iρ0

2πr
r
b

∞∫

0

K′0 (λ)
K0 (λ)

J0

(
λ

r
b

)
dλ. (8.158)

Problem 4 An Alternative Approach for Solution of φ (r,z)
When ρ = f(z)

When ρ the resistivity of the earth is a function of z only, the governing
equation in the Laplacian field is div�J = 0. It can be written as

∇.
(∇φ (r, z)

ρ (z)

)
= 0. (8.159)

Since
div�J =

∂Jx

∂x
+
∂Jy

∂y
+
∂Jz

∂z
= 0 (8.160)

we can write

∂

∂x

(
1

ρ (z)
�Ex

)
+

∂

∂y

(
1

ρ (z)
�Ey

)
+

∂

∂z

(
1

ρ (z)
�Ez

)
= 0

⇒ 1
ρ (z)

[
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

]
+

∂

∂z

(
1

ρ (z)

)
∂φ
∂z

= 0.
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Since
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

=
∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

(8.161)

when φ is independent of the azimuthal angle, hence (8.161) can be written
as

1
ρ (z)

(
∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

)
+

1
∂z

(
1

ρ (z)

)
∂φ
∂z

= 0 (8.162)

⇒ 1
ρ (z)

(
∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

)
− 1

(ρ (z))2
∂ρ
∂z

∂φ
∂z

= 0

⇒ ∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂z2

− ρ′ (z)
ρ (z)

.
∂φ
∂z

= 0. (8.163)

Applying the method of separation of variables and assuming φ(r1z) =
R(r)Z(z), we get

∂2φ
∂r2

=
∂2R
∂r2

Z (z)
∂2φ
∂z2

= R (r)
∂2Z
∂z2

∂φ
∂z

= R (r)
∂R
∂z
. (8.164)

Therefore

d2R
dr2

Z (z) +
1
r

dR
dr

Z (z) +
d2Z
dz2 R (r) − ρ′ (z)

ρ (z)
dZ
dz

R (r) = 0

d2R
dr2

Z (z) +
1
r

dR
dr

Z (z) = −d2Z
dz2 R (r) +

ρ′ (z)
ρ (z)

.
dZ
dz

R (r)

⇒ 1
R

(
d2R
dr2

+
1
r

+
dR
dr

)
= −

(
d2Z
dz2 − ρ′

ρ
dZ
dz

)
1
Z

= −λ2.

(8.165)

We get

d2R
dr2

+
1
r

dR
dr

+ λ2R = 0

⇒ r2
d2R
dr2

+ r
dR
dr

+ λ2r2R = 0. (8.166)

The second equation is

−
(

d2Z
dz2 − ρ′

ρ
dZ
dz

)
+ λ2Z = 0

⇒ −d2Z
dz2 +

ρ′

ρ
dZ
dz

+ λ2h = 0

⇒ Z ′′ − ρ′

ρ
Z′ − λ2h = 0. (8.167)
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Therefore, the general solution of the equation

φ (r, z) =

∞∫

0

A (λ)Z (z, λ)J0 (λr) dx. (8.168)

Since ∂φ
∂z at the air-earth boundary vanishes, we have.

∂φ

∂z
=

∞∫

0

A (λ) J0 (λ, r)Z ′ (z, λ) dλ = 0 (8.169)

where
Z′ (z, λ) =

dZ
dλ
.

We get

A (λ) =
B (λ)

Z′ (0, λ)
.

Since
∞∫

0

λJ0 (λr) dλ = 0, φ (r1, z) = B

∞∫

0

λJ0 (λr) k (z, λ) dλ (8.170)

where

κ (z, λ) =
Z (z, λ)
Z′ (z, λ)

.

From homogeneous earth analogy, we get

B =
Iρ0

2π

The solution of the equation is

φ (r, z) =
Iρ0

2π

∞∫

0

λ
Z (z, λ)
Z′ (0, λ)

.J0 (λ, r) dλ. (8.171)

8.3.2 Potential for a Layered Earth with a Sandwitched
Transitional Layer

In this section, a three layer earth is assumed in which the second layer is
a transitional layer where σ = f(Z) (Fig. 8.5). The conductivity of the first
and second layer are respectively σ1 and σ3. Thickness of the first and second
layer are respectively h1 and h2; thickness of the third layer is infinitely high.
Laplace equation is satisfied in the first and third layer. For the second layer
the non Laplacian governing equation is (Mallick and Roy, 1968).
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∇2φ+
1
σ

∂σ

∂z
.
∂φ

∂z
= 0. (8.172)

In the transitional layer, the conductivity is assumed to vary linearly with
depth; so we get

σ = σ1 +
σ2 − σ1

h2 − h1
(Z − h1) , (8.173)

σ = σ1 at Z = h1 and σ2 at Z = h.
The guiding equations for solving the potential problems for the first,

second and third layers are respectively given by

∇2φ1 = 0

∇2φ+
1
σ

∂σ

∂z
.
∂φ

∂z
= 0

∇2φ2 = 0 (8.174)

where φ1, φ and φ2 are the potentials in the three regions
Here

φ1 = q

∞∫

0

e−mzJ0 (mr) dm +

∞∫

0

A(m)
[
e−mz + emz

]
J0 (mr) dm (8.175)

φ2 =

∞∫

0

D(m) e−mzJ0 (mr)dm (8.176)

In the transitional zone

∂2φ
∂r2

+
1
r
∂φ
∂r

+
∂2φ
∂Z2

+
α

σ1 + α (z − h1)
∂φ
∂Z

= 0 (8.177)

where

α =
(σ2 − σ1)
(h2 − h1)

.

Fig. 8.5. A model of a three layer earth with middle layer as a transitional layer
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Applying the method of separation of variables φ = R(r) Z (z), one gets,

dR2

dr2
+

1
r

dR
dr

+ m2R = 0 (8.178)

and
d2Z
dz2 +

α
σ1 + α (Z − h1)

dZ
dz

− m2Z = 0. (8.179)

In the (8.179), we substitute

τ = σ1 + α(Z − h1).

One gets
dτ
dz

= α.

Therefore
dZ
dz

=
dZ
dτ
.
dτ
dz

= α
dZ
dτ

and (8.179) changes to the form

d2Z

dτ2
+

1
τ

dZ

dτ
− m2

α2
Z = 0. (8.180)

The solution of (8.180) is

φ =

∞∫

0

(B (m) Io (mτ/α) + C (m)Ko (mτ/α))Jo(mr)dm. (8.181)

Now the constants A (m), B (m), C (m) and D (m) are to be evaluated from
the boundary conditions.

φ1 = φ and
∂φ1

∂Z
=
∂φ
∂Z

at Z = h1

φ2 = φ and
∂φ
∂Z

=
∂φ2

∂Z
at Z = h2.

Applying the boundary conditions, we get

qe−mh1 + A (m)
[
e−mh1 + emh1

]
= B (m) I0

[mτ1
α

]
+ C (m)K0

[mτ1
α

]

(8.182)

−qe−mh1 +A (m)
[−e−mh1 + emh1

]
= B (m) I1

[mτ1
α

]
− C (m)K1

[mτ1
α

]

(8.183)

D (m) e−mh2 = B (m) I0
[mτ2
α

]
+ C (m)K0

[mτ2
α

]

(8.184)

−D (m) e−mh2 = B (m) I1
[mτ2
α

]
− C (m)K1

[mτ2
α

]

(8.185)



8.3 Potential for a Transitional Earth 243

For surface geophysics, we are interested in A (m). It can be shown that

A (m) =
γ−1
γ+1e−2mh1

1 − γ−1
γ+1e−2mh1

(8.186)

where

γ =
K0

[
mσ1
α

]
+ uI0

[
mσ1
α

]

K1

[
mσ1
α

]− uI1
[
mσ1
α

]

here

u = −K0

[
mσ2

α

]
+ K1

[
mσ2

α

]

I0
[
mσ2

α

]
+ I1

[
mσ2

α

] .

Substituting the value of A (m) and putting z = 0, one gets the value of
potential at a point on the surface of the earth as

φ1 (r, 0) =
I

2πσ1

⎧⎨
⎩

1
r

+ 2

∞∫

0

γ−1
γ+1e−2mh1

1 − γ−1
γ+1e−2mh1

J0 (mr)dm

⎫⎬
⎭ . (8.187)

8.3.3 Potential with Media Having Coaxial Cylindrical Symmetry
with a Transitional Layer in Between

Figure (8.6) explains the geometry of the problem. In borehole geophysics
an one dimensional problem will have cylindrical boundaries. The maximum
numbers of layers generally created are five. They include (i) borehole mud, (ii)
mud cake, (iii) flushed zone, (iv) invaded zone and (v) uncontaminated zone.
Figure (8.6) explains the presence of these different zones. However the readers
should consult any text book on borehole geophysics to understand these well
logging terminologies. In borehole geometry, these layers are coaxial cylinders.
The effect of mud cake is negligible in the normal (two electrode) or lateral
(three electrode) log response curves. Therefore, the problem is presented as
a four layer problem. However, it can be extended to any number of layers.
(Dutta, 1993, Roy and Dutta 1994).This problem is presented to show that
a differential equation, not having an easy solution, can be handled using
Frobeneous power series.

The problem is framed as a boundary value problem with a point source
of current on the borehole axis having cylindrical coaxial layered media with
infinite bed thickness. Invaded zone is present as one of those layers as a
transitional zone where nonlaplacian term appears. Potentials satisfy Laplace
equation in all the homogenous and isotropic media where resistivities are
assumed to be constant.

Potential in the medium 1 (i.e. in the borehole) is given by

φ1 =
RmI

2π2rm

∞∫

0

K0 (mr) cos mz dm +

∞∫

0

C1 (m) I0 (mr) cos mz dm. (8.188)

(Dakhnov, 1962) (Sect. 8.2).
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Fig. 8.6. A cross section of a borehole with transitional invaded zone

The first integral is a potential due to a point source. This expression is
obtained after applying the Weber Lipschitz identity. The second integral is
the perturbation potential. I0 (mr) and K0 (mr) are respectively the modified
Bessel functions of the first and second kind of order zero. Here the parameter
Rm is the resistivity of the borehole mud and rm is the radius of the borehole. m
is the integration variable, z is a point of observation in the assumed borehole,
r is the radial distance from the axis of the borehole. C1 (m) is the kernel
function to be evaluated applying suitable boundary conditions. Potentials in
the second and fourth media are given by

φ2 =

∞∫

0

C2 (m)K0 (mr) cos mz dm +

∞∫

0

C3 (m) I0 (mr) cos mz dm (8.189)

and

φ4 =

∞∫

0

C6 (m) K0 (mr) cos mz dm. (8.190)

For φ4 there is no integral involving I0 (mr) which tend to become infinite for
large values of the argument r.

Potential in the transitional invaded zone is derived from,

φ2φ3 +
1

σtr
grad σtr grad φ3 = 0 (8.191)
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where, σtr is the conductivity of the transition zone and grad σtr is non zero.
Simplification of the differential equation by a suitable substitution, like previ-
ous problems, was not possible in this case. Two different situations can exist
for the transition zone i.e., i) when Rt < Rx0 and ii) Rt > Rx0. Here Rt is the
resistivity ofthe uncontaminated zone or zone 4 and Rx0 is the resistivity of
the flushed zone or zone 2. Resistivities of these two zones are assumed to be
fixed. For these two cases, two different modes of solution are presented. In
the first case resistivity in the transition zone is varying linearly with radial
distance and in the second case conductivity has a linear gradient with radial
distance as shown in Part I and Part II.

Part 1: Potential Function in Transition Zone where Rt < Rx0

Since the potential is independent of the azimuthal angle, (8.191) reduces to
the form, taking σtr = 1/Rtr.

∂2φ
∂r2

+
1
r
∂φ3

∂r
+
∂2φ
∂z2

− 1
Rtr

∂Rtr

∂r
∂φ3

∂r
= 0 (8.192)

where, Rtr is the resistivity of the transition zone.
Applying the method of separation of variables, i.e., φ3 = R (r) Z (z),

(8.192) reduces to
d2Z
dz2 + m2Z = 0 (8.193)

and
d2R
dr2

+
1
r

dR
dr

− 1
Rtr

dRtr

dr
dR
dr

− m2R = 0. (8.194)

Equation (8.194) can be modified assuming linear transition in the invaded
zone, i.e.,

Rtr = Rx0 +
Rt −Rx0
rtr − rx0

(r − rx0) (8.195)

where, Rtr, the resistivity of the transition zone or invaded zone is a function
of radial distance r. rtr and rx0 are the radial distances of the boundaries
between (i) uncontaminated zone and invaded zone and (ii) invaded zone and
flushed zone, we write

Rtr = a1 + αr

where, a1 = Rx0 − αrx0 and α = Rt−Rx0
rtr−rx0

.
After a few steps of algebraic simplifications, (8.194) reduces to the form

d2R
dr2

+
a

r (a + r)
dR
dr

− m2R = 0. (8.196)

Here a (= a1/α) is also a constant. Equation (8.195) is solved by Frobenious
extended power series assuming
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R =
∞∑

p=0

Aprp+q (8.197)

(Kreyszig, 1985; Ayres, 1972). In this case (8.194), at r = 0, the coefficient of
dR/dr is not analytic and the extended power series method is considered for
solution.

Equation (8.195) is rewritten as

r2R′′ + ar R′′ + a R′ − m2r2R − a m2r R = 0. (8.198)

Substituting the values of R′′, R′ and R obtained from (8.197) and (8.198),
where R′′ and R′ are the second and first derivatives of R with respect to r,
one gets,

∞∑
p=0

(p + q) (p + q − 1)Aprp+q + a
∞∑

p=0

(p + q) (p + q − 1)Apr(p+q−1)

+ a
∞∑

p=0

(p + q)Apr(p+q−1) − m2
∞∑

p=0

Apr(p+q+2) − am2
∞∑

p=0

Apr(p+q+1) = 0.

(8.199)

The normal procedure is to equate the smallest power of r to zero and taking
p = 0, we get

Aq(q − 1)A0 + aq A0 = 0. (8.200)

Since a and A0 are not zero, hence q has distinct double roots and both
of them are zero. In order to find out the generalised form of the expression
for the coefficient Ap, we equate the coefficients of rq+r−1 to obtain

(q + p − 1)(q + p − 2)Ap−1 + a(q + p − 1)(q + p)Ap + a(q + p)Ap

− m2Ap−3 − am2Ap−2 = 0. (8.201)

From (8.201), one gets

Ap =
1

a (q + p)2
[
m2Ap−3 + am2Ap−2 − (q + p − 1) (q + p − 2) Ap−1

]
.

(8.202)
Since (8.196) can be solved by taking the solution in the form of a Frobe-

nious extended power series. One of the solutions will be the (8.197) provided
we can determine the coefficient Ap. Since the indicial equation has two dis-
tinct roots, (8.194) must have a second solution.

R2 =
∂R1

∂q

(Ayres 1972, Kreyszig 1985)
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=
∂

∂q

[
rq
∞∑

p=0

Aprp
]

= rq ln r
∞∑

p=0

Aprp + rq
∞∑

p=0

∂Ap

∂q
rp. (8.203)

Therefore, q = 0, the two solutions are

T1 (m, r) = R1 |q=0 =
∞∑

p=0

Aprp (8.204)

T2 (m, r) = R2 |q=0 = ln R1 +
∞∑

p=0

Kprp (8.205)

where
Kp =

∂Ap

∂q
.

(Ayres 1972, Kreyszig 1985)
The generalised expression for Kp can be shown, after a few steps of simple

differentiation and algebraic simplification. Taking A0 = 1, we get

K1 =
∂A1

∂q
=

∂

∂q

[
− q (q − 1)

a (q + 1)2

]

= −1
a

(q + 1)
(
2q2 − 1

)− 2q (q − 1) (q + 1)

(q + 1)4
. (8.206)

Therefore at q = 0
K1 = 1/a

and

K2 =
∂A2

∂q

= − 2
a (q + 2)3

[
am2 +

q (q − 1)
a (q + 1)

]
+

1
a (q + 2)2[

−1
a

(q + 1)
(
3q2 − 2q

)− q2 (q − 1)

(q + 1)2

]
. (8.207)

At q = 0

K2 = −m2

4

K3 =
∂A3

∂q

= − 2

a (q + 3)3
[
am2A1 + m2A0 − (q + 2) (q + 1) A2

]
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+
1

a (q + 3)2
[
am2K1 − (q + 2) (q + 1)K2 − (2q + 3)A2

]

K3 = −1
a

m2

27
+

1
a

m2

12
. (8.208)

Generalised expression for the term Kp for p ≥ 4 can be formed taking q = 0,
as

Kp = − 2
ap3

Cp +
[
m2Kp−3 + am2Kp−2 − (p− 1) (p− 2)Kp−1

− (2p− 3)Ap−1] /ap2 (8.209)

where,
Cp =

[
m2Ap−3 + am2Ap−2 − (p − 1) (p − 2)Ap−1

]
.

Part 2: Potential Function an Borehole Transitional Earth Model
zone where Rt > RX0

In this parametric setup where Rt > RX0 the value of a in the (8.199) may
assume a zero value for certain value of r, and the coefficient of dR/dr becomes
zero. To avoid this algebraic singularity, conductivity is considered to vary
linearly in this model (Rt > RX0) in case of transitional invaded zone.

Potential expression in the transition zone (8.194) can be expressed as

∂2φ3

∂r2
+

1
r
∂φ3

∂r
+

1
σtr

∂σtr

∂r
∂φ3

∂r
+
∂2φ3

∂z2
= 0 (8.210)

which is independent of the azimuthal angle. Applying the method of separa-
tion of variables, (8.210) reduces to

d2Z
dz2 + m2z = 0 (8.211)

d2R
dr2

+
1
r

dR
dr

+
1

σtr

dσtr

dr
dR
dr

− m2R = 0. (8.212)

Equations (8.194) and (8.212) are same as there is no heterogeneity in the z
direction. Assuming linear transition in electrical conductivity in the transi-
tion zone i.e.,

σtr = σx0 +
σt − σx0

rtr − rx0
(r − rx0) (8.213)

where, σtr is the conductivity of the transition zone and a function of radial
distance. σt and σx0 are the conductivity of the uncontaminated and the
flushed zones respectively.

We write σtr = a1 + σr
where,

a1 = σx0 − σrx0
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and
σ =

σt − σx0

rtr − rx0
.

With algebraic simplifications (taking a = a1/σt) one gets,

d2R
dr2

+
a + 2r

r (a + r)
dR
dr

− m2R = 0 (8.214)

⇒ r2
d2R
dr2

+ ar
d2R
dr2

+ 2r
dR
dr

+ a
dR
dr

− m2r2R − m2arR = 0

⇒ r2R′′ + ar R′′ + 2r R′ + aR′ − m2ar R = 0. (8.215)

Here also we assume the solution in an extended power series form, as at
r = 0 the coefficient of dR/dr is not analytic,

R =
∞∑

p=0

Aprp+q.

Substituting the values of R′′R′ and R in the (8.214) one gets,

∞∑
p=0

(p + q) (p + q − 1)Aprp+q + a
∞∑

p=0

(p + q) (p + q − 1)Apr(p+q−1)

+ 2
∞∑

p=0

(p + q) Apr(p+q) + a
∞∑

p=0

(p + q)Apr(p+q−1) − m2
∞∑

p=0

Apr(p+q+2)

− am2
∞∑
0

Apr(p+q+1) = 0. (8.216)

Equating the coefficient of rq−1, taking p = 0 the above equation reduces to
a q2A0 = 0

As a and A0 cannot be zero, hence q = 0. It implies that q has distinct
double roots.

Putting the value of q in (8.215) and equating the coefficient of rp−1, one
gets the generating expression of AP

i.e.,

Ap =
1

ap2

[
m2Ap−3 + am2Ap−2 − (p − 1) pAp−1

]
(8.217)

We can write the solutions of the differential (8.215) as, (taking q = 0)

T1 (m, r) = r1 = R |q=0

T2 (m, r) = R2 = R1 ln r +
∞∑

p=0

Kprp. (8.218)
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Since the indicial equation has distinct double roots, we have two solutions of
the differential equation. First solution is T1 (m, r) provided we can determine
the coefficient Ap. Second solution of differential equation is T2 (m, r) and the
coefficient Kp has to be determined. Generalised expression of the coefficient
term can be found out with simple mathematical steps.

From (8.215), we get

R′2 = R′1 ln r + R1/r +
∞∑

p=1

p Kprp−1 (8.219)

R′′2 = R′′1 ln r + 2R′1/r − R1/r2 +
∞∑

p=0

p (p − 1)Kprp−2 (8.220)

Putting these values in the differential (8.219 and 8.220) and after some math-
ematical steps, terms for K can be found out after equating the coefficients of
different powers of r.

Equating the coefficients of r0, r1, r2 and r3, we respectively get

(i)
K1 = −A0/a (8.221)

(ii)
K2 = − (2K1 + 4aA2) /a2

2 (8.222)

(iii)
K3 =

(
am2K1 − 6K2 − 5A2 − 6aA3

)
/a2

3 (8.223)

(iv)

K4 = (m2K1 + am2K2 − 4(4 − 1)K3 − 7A3 − 8aA4)/a42. (8.224)

The generalised solution for potential of the transitional invaded zone

Kp = (m2Kp−3 + am2Kp−2 − p(p − 1)Kp−1 − (2p − 1)Ap−1 − 2ap Ap)/ap2

(8.225)
(for both the models) can be written as,

φ3 =

∞∫

0

[C′4 (m)T1 (m, r) + C′5 (m) T2 (m, r)] [F cosmz + G sin mz] dm

(8.226)

Here T1 (m, r) and T2 (m, r) are the two solutions of the second order dif-
ferential equation. T1 (m, r) and T2 (m, r) the two solutions, are entirely
different for the two different cases (i.e., Rt > Rx0 and Rt < Rx0). This can
be easily verified from the (8.197) and (8.215). C′4 (m), C′5 (m), F and G are
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arbitrary constants generally determined applying the boundary conditions.
In this problem, the potential is independent of the sign of z therefore sin mz
term is neglected.

Equation (8.226) reduces to the form

φ3 =

∞∫

0

C4 (m)T1 (m, r) cosmz dm +

∞∫

0

C5 (m)T2 (m, r) cosmz dm (8.227)

where C4(m) = C′4(m)F and C5(m) = C′5(m)G
The general expressions for the potential in different media are

φ1 = C

∞∫

0

K0 (mr) cos mz dm+

∞∫

0

C1 (m)I0 (mr) cos mz dm (8.228)

where

C =
RmI

2π2rm
.

φ2 =

∞∫

0

C2 (m)I0 (mr) cos mz dm +

∞∫

0

C3 (m)K0 (mr) cos mz dm (8.229)

φ3 =

∞∫

0

C4 (m)T1 (m, r) cos mz dm +

∞∫

0

C5 (m) T2 (m, r) cos mz dm

(8.230)

φ4 =

∞∫

0

C6 (m)K0 (mr) cos mz dm. (8.231)

Boundary conditions are as follows: (i) φ1 = φ2 and J1 = J2 at r = rm (ii)
φ2 = φ3 and J2 = J3 at r = rx0 and φ3 = φ4 and J3 = J4 at r = rtr where
J1, J2, J3 and J4 are the normal component of the current densities at the
interfaces between the four different media. On both the sides of the transition
zone, Rx0 = Rtr at r = rx0 and Rtr = Rt at r = rtr. Therefore the boundary
conditions J2 = J3 and J3 = J4 reduce to φ′2 = φ′3 and φ′3 = φ′4, where φ′1,
φ′2, φ

′
3 and φ′4 are the derivatives of the potentials with respect to r at the

respective boundaries, r = rx0 and r = rtr. Applying the boundary conditions
to (8.227), (8.228), (8.229), (8.230), (8.231) and arranging them in matrix
form, one gets
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I0 (mrm) I0 (mrm) K0 (mrm) 0 0 0

0 I0 (mrx0) K0 (mrx0) T1 (m, rx0) −T2 (m, rx0) 0

0 0 0 T1 (m, rtr)m T2 (m, rtr) K0 (m rtr)

I1 (mrm) /Rm −I1 (mrm) /Rx0 K1 (mrm) /Rx0 0 0 0

0 I0 (mrx0)m −K1 (mrx0)m −T′
1 (m, rx0) −T′

2 (m, rx0) 0

0 0 0 T′
1 (m, rx0) T′

1 (m, rx0) K1 (m rtr)m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1 (m)

C2 (m)

C3 (m)

C4 (m)

C5 (m)

C6 (m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−CK0 (mrm)

0

0

CK1 (mrm) /R

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.232)

using the Bessel function identity I′0(x) = I1(x) and K′0(x) = −K1(x)

d T1 (m, r)
dr

= T′1 (m, r) ;
d T2 (m, r)

dr
= T′2 (m, r) .

Above matrix can be written in the form

X Cv = Y (8.233)

where, Cv is the column vector of kernel functions to be determined. Since
potential is measured in the borehole, evaluation of C1 (m) is only required
from (8.227).

Potential φ1 is given by, taking mz = x

φ1 = C

∞∫

0

K0

(x
z
r
)

cos x
dx
z

+
1
z

∞∫

0

C1
x
z
I0
(x

z
r
)

cos x dx (8.234)

Applying the Weber Lipschitz identity, the first integral reduces to π
2z at r = 0

i.e., along the borehole axis. The second integral (I2) reduces to the form,

I2 =

∞∫

0

C1

(x
z

)
cos x dx (8.235)

Since I0
(

x
z r
)

at r = 0 is 1.0. The infinite integral I2 is determined using Gauss
quadrature method. The kernel function C1 (x/z) is determined using cubic
spline interpolation.

Expression of the potential along the borehole axis reduces to the form

φ1 =
RmI

2π2rm

[ π
2z

]
+

1
z
.I2. (8.236)

The expression for the apparent resistivity (Ra) for a two electrode system
can be written as

Ra = 4πzφ1/I (8.237)

(Dakhnov, 1962)
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Fig. 8.7. A model of a dipping interface between the two media of resistivities
ρ2 and ρ1; A (r,o,o) is the location of the current electrode and M is the pont of
observation

Hence the apparent resistivity for two electrode system can be expressed
as,

Ra

Rm
=

1
rm

+
4π

Rmz
I2. (8.238)

Taking derivatives of potential expression with respect to z, one gets the
expression for apparent resistivity for three electrode system (lateral configu-
ration) (Fig. 8.7) as

Ra

Rm
=

1
rm

+
4π
Rm

∞∫

0

C1 (x/z) x sin x dx (8.239)

In this section, an elaborate treatment on how to handle nonlaplacian terms
along with the laplacian terms in a second order differential equation is shown.
It is demonstrated that any second order differential equation, not solvable in
closed form with suitable substitution as demonstrated, can be solved using
Frobenious power series.

8.4 Geoelectrical Potential for a Dipping Interface

Dipping bed or dipping contact problem was solved by Skalskaya (1948),
Maeda (1955), Van Nostrand and Cook (1955), De Gery and Kunetz (1956),
Dakhnov (1962) and Others. Figure 8.7 show the geometry of the problem.
Here cylindrical system of coordinate (r, θ, z) was chosen. z-axis is taken along
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the geological strike direction,i.e., along the line of contact between two bodies
having different physical properties. Dipping contact is having a dip θ = α.
A point current electrode is placed on the surface and at the point A (r,0,0).
Because the origin is chosen at the point O(0,0,0). The Y axis is assumed ver-
tically downward from the origin O. Right hand portion of the homogenous
formation of resistivity ρ1 is termed as the hanging wall and left portions of
the homogenous formation may be termed as the foot wall. These are geolog-
ical terms. On the hanging wall side θ = 0 and on the foot wall side θ = π
Coordinate of the point of observation M is (r, θ, z). The distances between
O and M is r, O and A is r0 and A and M is R.Since resistivity of the air is
infinitely high, ∂φ∂n = 0 both for θ = 0 and θ = π.

In Chap. 7 we have discussed two forms of the solutions of Laplace equation
in cylindrical coordinatrs in terms of Bessel’s functions and modified Bessel’s
functions. Application of both the forms are demonstrated in this chapter. In
this problem, the third form of solution of Laplace equation by the method
of separation of variables using modified Bessel’s function of imaginary order
is demonstrated.

In this problem Laplace equation is valid at all points except at the point
A. In this problem the Laplace equation is

∇2φ =
∂2φ
∂r2

+
1
r
∂φ
∂r

+
1
r2
∂2φ
∂θ2 +

∂2φ
∂z2

= 0 (8.240)

The third set of equations used in the present problem are

1
Z

d2Z
dz2 = −λ2 (8.241)

1
Θ

d2Θ
dθ2 = −i2s2(i.e. n becomes i s) (8.242)

and
d2R
dr2

+
1
r

dR
dr

−
(

λ2 +
(is)2

r2

)
R = 0 (8.243)

The solution of this third set of equations are respectively cos λz, sin λz,
cosh sθ, sinh sθ and Iis(λr) and Kis(λr). Iis(λr) and Kis(λr) are the modified
Bessel’s function of the first and second kind and of imaginary order. In this
problem the potential is independent of the sign of z, therfore cos λz will be
the appropriate potential function and not sin λz. When r → ∞, φ→ 0. Since
Iis(λr) approaches high values when r → ∞, therefore Iis(λr) cannot be the
proper potential function and Kis(λr) is the suitable potential function.

Therefore, the expression for the perturbation potential can be written as

φ =

∞∫

λ=0

∞∫

s=0

cosλzdλ (L (s, λ) cosh(sθ) +M (s, λ) sinh(sθ)Kis (λr) ds.

(8.244)
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To find the potential at M (r, θ, z), We have

φ1 =
1ρ1

2π
.

1
AM

.+

∞∫

λ=0

∞∫

s=0

cosλzdλ (A (s, λ) coshsθ

+B (s, λ) sinh (sθ)Kis (λr) ds (8.245)

φ2 =
1ρ1

2π
.

1
AM

.+

∞∫

λ=0

∞∫

s=0

cosλzdλ (C (s, λ) coshsθ

+D(s, λ), sin hsθ)Kis (λr) ds. (8.246)

Now four constants in these equations can be determined applying four bound-
ary conditions, i.e.,

φ1 = φ2 at θ = α
1

ρ1

∂φ1

∂θ
=

1
ρ2

∂φ2

∂θ
at θ = α

∂φ1

∂θ
= 0 at θ = 0

∂φ1

∂θ
= 0 at θ = π

The last two boundary conditions originate because current cannot flow across
the air-earth boundary. For this type of boundary value problems ,as has
already been discussed, one has to express the source potential in the same
format as the perturbation potential before the boundary condition is applied.
We have to express 1

AM or 1
r in the form of Kis(λr). Skalskaya (1948) solved

this problem. She has shown that 1
AM can be expressed as

1
AM

=
1
r

=
1√

r20 + r2 − 2r0r cos θ + z2

=
4
π2

∞∫

0

cosλzdλ

∞∫

0

coshs (π − θ)Kis (λr0)Kis (λr) ds (8.247)

Let Iρ
2π = q. Now, applying the second set of boundary conditions q

AM terms
will cancel out from both the sides. Now sinh sθ = 0 and cosh sθ = 1 for θ = 0.
Therefore, we can write down

φ1 =
q

AM
+

∞∫

0

cos λz dλ
∞∫

0

L (S1λ) cos SθKis (λr) dS (8.248)

and

φ2 =
q

AM
+

∞∫

0

cosλz dλ
∞∫

0

M (S1λ) cos h S (π − θ)Kis (λr) dS (8.249)
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Two boundary conditions are used to get two equations

L(S1λ) cosh Sα = M(S1λ) coshS(π − α) (8.250)
1
ρ
L (S1λ) sinhSα− 1

ρ2
M (S1λ) sinhS (π − α)

=
(

1
ρ1

− 1
ρ2

)
q.

4
π2

sinhS (π − α)Kis (λr0) (8.251)

From these two equations L and M can be determined. After a few steps of
algebraic simplifications we get

L (S, λ) = q
4
π2
.

K12 sinh 2S (π − α)
sinhSπ −Kis sinhS (π − 2α)

(8.252)

= q.
4
π2
.A(s)

and

M (S, λ) = q.
4
π2
.

sinhSπ + sinhS (π − 2α)
sinhSπ −K12 sinhS (π − 2α)

(8.253)

= q.
4
π2
.B (s)

Therefore the expressions for the potentials are

φ1 =
Iρ1

2π

⎡
⎣ 1

R
+

4
π2

∞∫

0

cos λz dλ
∞∫

0

A(S) coshSθ

Kis (λr0)Kis (λr) ds

⎤
⎦ (8.254)

φ2 =
Iρ1

2π

⎡
⎣ 1

R
+

4
π2

∞∫

0

cos λz dλ
∞∫

0

B (S) cosh S (π − θ)

Kis (λr0)Kis (λr) ds

⎤
⎦ . (8.255)

To get potential on the surface, one has to put θ = 0 and get.

A (S) =
K12 sinh 2S (π − α)

sinhSπ −K12 sinhS (π − 2α)
(8.256)

where K12 = (ρ2 − ρ1)/(ρ2 + ρ1), the reflection factor
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8.5 Geoelectrical Potentials for an Anisotropic Medium

8.5.1 General Nature of the Basic Equations

In an anisotropic medium

�Jx =
1

ρx

�Ex,�Jy =
�Ey

ρy

and Jz =
�Ez

ρz

(8.257)

where ρx, ρy and ρz and Ex,Ey and Ez are the resistivities and fields along
the principal axes of anisotropy x,y,z. The equation of continuity div�J = 0 in
a source free region may be written as

∂

∂x

(
Ex

ρx

)
+

∂

∂y

(
Ey

ρy

)
+

∂

∂z

(
Ez

ρz

)
= 0 (8.258)

For a homogeneous but anisotropic medium. This equation reduces to

1
ρx

∂2φ
∂x2

+
1

ρy

∂2φ
∂y2

+
1
ρz

∂2φ
∂z2

= 0 (8.259)

For a homogeneous and isotropic medium, (8.259) reduces to

∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2

= 0 since ρx = ρy = ρz (8.260)

For an anisotropic medium let us choose a new sets of coordinates, such that
ξ = x

√
ρx, η = y

√
ρyandζ = z

√
ρ
z

and (8.259) reduces to

∂2φ
∂ξ2 +

∂2φ
∂η2

+
∂2φ
∂ζ2 = 0 (8.261)

The solution of the equation is

φ =
C

(ξ2 + η2 + ζ2)1/2
(8.262)

where C is the constant of integration.

⇒ C(
ρxx2 + ρyy2 + ρzz2

) (8.263)

The expression for the equipotential surface is given by

ρxx
2 + ρyy

2 + ρzz
2 = R2 (8.264)

Equation (8.264) is an equation of an ellipsoid. The axes of the ellipsoid coin-
cide with the principal axes of anisotropy. The current densities are given by
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Jx = − 1
ρx

∂φ
∂x

=
Cx(

ρxx2 + ρyy2 + ρzz2
)3/2 (8.265)

Jy = − 1
ρy

∂φ
∂y

=
Cy(

ρxx2 + ρyy2 + ρzz2
)3/2 (8.266)

Jz = − 1
ρz

∂φ
∂z

=
Cz(

ρxx2 + ρyy2 + ρzz2
)3/2 (8.267)

Here current lines are straight lines spreading out radially from the source
similar to that happens in an isotropic medium. The electric lines of force
in an anisotropic medium form a family of curvilinear trajectories orthogonal
to the equipotential surfaces. They do not coincide with the direction of the
current lines except along the principal axes.

In geological sedimentary rocks the anisotropies are along and at right
angles to the plane of stratification. Two resistivities are horizontal resistiv-
ity ρl (parallel to the plane of stratification) and vertical and the transverse
resistivity ρt (perpendicular to the plane of stratification). If the plane of
stratification is closer as the xy plane then (8.259) reduces to

1
ρl

(
∂2φ
∂x2

+
∂2φ
∂y2

)
+

1
ρt

∂2φ
∂z2

= 0. (8.268)

The expression for equipotential surface is given by

x2 + y2 + (ρt/ρl)z
2 = constant (8.269)

i.e., the equipotential surfaces are ellipsoid of revolution around the z-axis.
For an anisotropic medium, two more parameters are defined. They are

λ =
√

ρt/ρl and ρm

√
ρtρl (8.270)

where λ is called the coefficient of anisotropy and ρm is the root mean square
resistivity of the media. From (8.269), we get

ρm = λρl =
1
λ

ρt (8.271)

The solution of (8.268) may now be written as

φ =
C

ρ1/2
l

(
x2 + y2 + λ2z2

)1/2
. (8.272)

The current densities are
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�Jx = − Cx

ρ3/2
l

(
x2 + y2 + λ2Z2

)3/2
(8.273)

�Jy = − Cy

ρ3/2
l

(
x2 + y2 + λ2z2

)3/2
(8.274)

�Jz = − Cz

ρ3/2
l

(
x2 + y2 + λ2z2

)3/2
(8.275)

such that

J =
(
J2
x + J2

y + J2
z

)1/2
= − C

(
x2 + y2 + z2

)1/2

ρ3/2
l

(
x2 + y2 + λ2z2

)3/2
. (8.276)

In order to find the constant of integration C (8.276), we construct around
the point P, a sphere of radius R and calculate the total current flowing
out through this spherical surface. This is equal to the total current flowing
through the point P.

Thus

I =
∫

s

J.ds =

2π∫

0

JR2 sin θ dθ dψ.

Now
x2 + y2 = R2 sin2 θ

and
Z2 = R2 cos2 θ

and (8.276) becomes

J =
C

ρ3/2
l R2

(
sin2 θ + λ2 cos2 θ

)3/2
=

C

ρ3/2
s R2

[
1 +

(
λ2 − 1

)
cos2 θ

]3/2
.

(8.277)
We can write

J =
Iλ

(
x2 + y2 + z2

)1/2

4π
(
x2 + y2 + λ2z2

)3/2
=

Iλ

4πR2
[
1 +

(
λ2 − 1

)
cos2 θ

]3/2

I =
C

ρ3/2
l

2π∫

0

dψ
π∫

0

sin θdθ[
1 +

(
λ2 − 1

)
cos2 θ

]3/2
(8.278)

=
2πC

ρ3/2
l

.
2
λ

=
4πC

λρ3/2
s

. (8.279)
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Hence the expressions for the potentials and the current densities become

φ =
IλρS

4π
(
x2 + y2 + λ2z2

)1/2
=

Iρm

4πR
[
1 +

(
λ2 − 1

)
cos2 θ

]1/2
(8.280)

and

J =
Iλ

(
x2 + y2 + z2

)1/2

4π
(
x2 + y2 + λ2z2

)3/2
=

Iλ

4πR2
[
1 +

(
λ2 − 1

)
cos2 θ

]3/2
. (8.281)

8.5.2 General Solution of Laplace Equation for an Anisotropic
Earth

Equation (8.259) is the guiding equation for solving problems for an isotropic
earth. When resistivity of a medium varies along the longitudinal and traverse
direction, (8.259) changes to the form

1
ρ1

(
∂2φ
∂x2

+
∂2φ
∂y2

)
+

1
ρt

∂2φ
∂z2

= 0. (8.282)

Applying the method of separation of variables φ = R(r)Z(z), we get

∂2R
∂r2

+
1
r

dR
dr

− λ2R = 0 (8.283)

and
∂2Z
∂z2

− m2λ2Z = 0. (8.284)

Solving these two-equations (8.283) and (8.284) and substituting the values,
we get the expression for the perturbation potential as

φ =

∞∫

0

A(λ) e−mλzJ0 (λr) dλ + q. (8.285)

The source potential q, can be written for anisotropic earth as

q =
Iρm

2π

∞∫

0

e−mλzJ0 (λr) dλ (8.286)

using Weber Lipschitz identity where

ρm =
√

ρtρl.

For a two layer earth, potentials in the three regions following Wait (1982)
and Negi and Saraf (1989), we can write
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φ0 =
Iρ0

4πR
+

∞∫

0

A0 (λ) eλzJ0 (λr) dλ (in the air) (8.287)

φ1 =

∞∫

0

[
A1 (λ) e−m1λz + B1 (λ) emλz

]
J0 (λr) dλ (in the first layer) (8.288)

and

φ2 =

∞∫

0

A2 (λ) e−m2λzJ0 (λr) dλ (in the lower half space) (8.289)

where Iρ0
4πR is the source term

where
R =

√
r2 + (z + z0)

2
, m1 =

√
ρt1/ρl1 (8.290)

and
m2 =

√
ρt2/ρl2.

To evaluate A0,A1,B1,A2 the boundary conditions are applied. The boundary
conditions are

(i) φ = φ1 at z = 0
(ii) φ = φ2 at z = h
(iii) J0 = J1 at z = 0
(iv) J1 = J2 at z = h

where J0, J1 and J2 are the current densities in the respective media. Here for
anisotropic earth

1
ρ0

∂φ0

∂z
=

1
ρt1

∂φ1

∂z
at z = 0 and

1
ρt1

∂φ1

∂z
=

1
ρt2

∂φ2

∂z
at z = h

Using the four boundary conditions,
A0(λ) can be written as

A0 (λ) = − Iρ0

4π
.e−λz0

ρ0 − ρ1n (P1/P2)
ρ0 + ρ1n (P1/P2)

(8.291)

where

ρln = (ρl1/ρt1)
1/2, ρ2n = (ρl2/ρt2)

1/2

P1 =
(
1 − R1e−2λh1

)
, P2 =

(
1 + R1e−2λh1

)

where
m1h = h1
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and
R1 =

ρ1n − ρ2n

ρ1n + ρ2n

.

When the current source is at the air earth interface the potential in the first
medium

φ0 =
Iρ0

2π

∞∫

0

[1 + B0 (λ)] e−λzJ0 (λr) dλ (8.292)

where
B0 (λ) = − 4π

Iρ0

A0 (λ) =
2ρ1n (P1/P2)

ρ0 + (P1nP1/P2)
− 1 (8.293)

ρ0 >> ρ1n and ρ2n (8.292) reduces to

φ0 =
Iρ1n

2π

∞∫

0

1 − R1e−2λh1

1 + R1e−2λh1
e−hz J0 (λr) dλ. (8.294)

On the surface of the earth at z = 0

φ0 (r10) =
Iρ1n

2πr

⎡
⎣1 − 2R1r

∞∫

0

e−2λh1J0 (λr)
1 + Re−2λh1

dλ

⎤
⎦ . (8.295)



9

Complex Variables and Conformal
Transformation in Potential Theory

In this chapter, we have shown (i) how the complex variables can be used to
solve some problems in potential theory, (ii) how real and imaginary quan-
tities together can represent field lines and equipotential lines and satisfy
Laplace equation, (iii) how analytic function and Cauchy Rieman’s equations
in complex variables can be used for solving certain kind of two dimensional
problems. Schwarz Cristoffel method of conformal transformation can be used
for solving two dimensional geoelectrical problems. Three types of problems
are given where S-C transformations are used. These boundary value problems
are (i) where closed form solution is possible (ii) where closed form solution
is not possible and one has to use numerical methods and (iii) where closed
form solution is possible using elliptic integrals and elliptic functions. For the
benefit of the students a brief introduction on elliptic integrals and elliptic
functions are appended.

9.1 Definition of Analytic Function

If E is a certain point set in a complex plane (z = x + iy), if for every z, there
exists one or more complex number w, if a function of the complex variable z
with its value equal to w defined in E or briefly if w = f (z) and if z = x + iy
and w = u + iv, then we have u and v as functions of x and y (Fig. 9.1 a,b).
The function w is said to be continuous at a point z0 = (x0 + iy0+) if u (x,
y) tends to u0(x0, y0) and v (x, y) tends to v0(x0, y0) when x tends to x0 and
y tends to y0. Such a function is said to be analytic in a particular domain if
the differential coefficient of f (z) i.e.,

f′(z) = Lim
z→z0

f(z) − f(z0)
z − z0

(9.1)

exists for all paths joining z to z0. The necessary and sufficient conditions for
differentiability are
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z = - plane
z = x + iy

iy

xo

z
z0

w = - plane
w = u + iv

iv

uo

Fig. 9.1 a,b. Complex Z and W plane; Point by point mapping in the Z and W
plane

∂u
∂x

=
∂v
∂y

;
∂u
∂y

=
∂v
∂x

; (9.2)

and these partial derivatives are continuous. When these conditions are sat-
isfied f (z) is said to be analytic at the point z0.

9.2 Complex Functions and their Derivatives

We can define w to be a function of the complex variable z if for each value
of z, belonging to a prescribed set S, there will be corresponding one or more
values of w. Such a definition proves to be too general to be particularly
useful for physical application. So we shall confine our attention to a much
more limited class of functions. Those which are single valued continuous and
possess a single class of function are generally chosen.

In defining the derivative of a complex function, we shall have to introduce
the concept of limit. Let f (z) be defined as single valued at all points in
the neighbourhood of z0 except possibly at z0 itself. Then we say that f (z)
approaches the limit w0. This is written as

Lim
z−z0

→ f(z) = w0. (9.3)

If f (z) can be made arbitrarily close to w0 then in the neighbourhood of
z0, z − z0 is taken sufficiently small. Arithmatically this is expressed as fol-
lows: Corresponding to each preassigned positive numeric ε, no matter how
small, there exists a positive number δ such that |f(z) − w0| < εwhenever0 <
|z − z0| < δ, where δ is infinitesimally small. For a function to be continuous
at a point i.e., for f (z) to be continuous at z0, the basic requirement is f (z0)
must exist at z0 i.e,

Lim
z−z0

→ f(z) = f(z0).

This definition is also valid where z0 lies on the boundary of a closed region.
Let us put

w = f(z) = u(x, y) + iν(x, y). (9.4)

Two complex numbers are equal if and only if their real and imaginary parts
are separately equal,



9.2 Complex Functions and their Derivatives 265

we get

Lim
x→0
y→0

u(x, y) = u(x0, y0) (9.5)

Lim
x→0
y→0

v (x, y) = v (x0, y0) (9.6)

and their path of movements lie entirely within the region of definition.
The derivative of f (z) with respect to z is given by

f ′(z) =
df(z)
dz

= Lim
Δz→0

f(z + dz) − f(z)
Δz

= Lim
Δz→0

Δf
Δz

. (9.7)

Since Δz = Δx + iΔy, we see that there are an infinite number of paths
in the z plane along which Δz can approach zero. A unique value of the
derivative regardless of the mode of approach, a set of necessary conditions for
the existence of a unique derivative at a point is obtained (Fig. 9.2). Certainly
if the value of the limit obtained by first setting Δy = 0 and then permitting
Δx to approach zero, the derivative is not independent of the path. If we first
put Δx = 0, (9.7) becomes

df
dz

= Lim
Δy→0

f (z + iΔy) − f (z)
iΔy

(9.8)

= Lim
Δy→0

u (x, y + Δy) − u (x, y)
iΔy

+
i [v (x, y + Δy) − v (x, y)]

iΔy
(9.9)

= −i
∂u
∂y

+
∂v
∂y
. (9.10)

Fig. 9.2. Movements in the z-plane for determining the derivatives (Cauchy
Reimann Condition)
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Similarly, putting Δy → 0 and taking the limit

df
dz

= Lim
Δx→0

f (z + Δx, y) − f (z)
iΔx

(9.11)

⇒ Lim
Δx→0

u (x+ Δx, y) − u (x, y)
Δx

+
i [v (x+ Δx, y) − v (x, y)]

Δx
(9.12)

=
∂u

∂x
+ i

∂v

∂x
.

These two expressions for the derivatives are equal if and only if

∂u
∂x

=
∂v
∂y

;
∂u
∂y

= −∂v
∂x

(9.13)

⇒ df

dz
=
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
=
∂u

∂x
− i

∂u

∂y
=
∂ν

∂y
+ i

∂v

∂x
. (9.14)

These pairs of first order differential equations are Cauchy-Riemann equations.
A function f (z) of complex variable z is said to be analytic at the point

z0, if it is single valued and possesses a derivative not only at z0 but at every
point in a neighbourhood of z0. Otherwise the point z0 is a singular point of
the analytic function. If f (z) is analytic at every point of a domain D, then,
differentiating the first equation with respect to x and second equation with
respect to y, we have,

∂2ν
∂x2

=
∂2ν
∂x∂y

and
∂2v

∂y2
= − ∂2v

∂x∂y
.

Therefore
∂2ν

∂x2
+
∂2ν

∂y2
= 0. (9.15)

Similarly, we get
∂2u

∂x2
+
∂2u

∂y2
= 0. (9.16)

Both the real and imaginary parts of a complex functions are analytic func-
tions, and they satisfy Laplace equation in two dimensions.

ν(x, y) = C1 is a family of curves where C1 is constant.

m1 =
∂y
∂x

= + (∂u/∂x) / (∂u/∂y) (9.17)

m1 =
∂y
∂x

= + (∂u/∂x) / (∂u/∂y) . (9.18)

Similarly u(x, y) = C2, where C2 is another constant

.m2 =
∂y

∂x
= + (∂ν/∂x) / (∂ν/∂y) . (9.19)

Now taking the products of m1 and m2, we have
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x

y

v(x,y) = β1 u(x,y) = α1

Fig. 9.3. Orthogonal property of u and v functions

m1.m2 =
∂u/∂x.∂ν/∂x
∂u/∂y.∂ν/∂y

= −1. (9.20)

These two sets of tangents are orthogonal (Fig. 9.3). Therefore, if u (x, y) are
the equipotential lines then ν, (x, y) will be the field lines. Thus it is proved
that if u and v are analytic functions in a complex plane then they satisfy
Laplace equation and the slopes of the tangents are mutually orthogonal.
Hence u and v can be used to denote equipotential and field lines.

9.3 Conformal Mapping

Equations (9.14) are normally known as Cauchy Riemann equations. Geomet-
rical interpretation of derivative

∣∣dw
dz

∣∣ = |f′ (z)| is a measure of elongation of
an element in the z-plane when it is transferred to w-plane. Arg {f′(z)} is
interpreted as rotation of an element dz with respect to an element dw. Arg
stands for argument in a complex quantity. It is represented in the form of an
angle similar to phase angles in an electromagnetics .

If we draw two curves through a point z0 in the z plane and draw two
tangents at z0 and map the two curves in the w plane by a function w = f(z)
which is analytic in a region such that f′(z) does not vanish (since otherwise
the mapping will not be one to one) and draw a tangent to each of the curves at
the point of intersection, the angle between the two tangents remain invariant
under mapping. This property of mapping is called conformal mapping in the
domain of analyticity (Fig. 9.4 a,b). If the sense of angle is preserved together
with its magnitude, it is called conformal mapping of the first kind and if the
sense is preserved keeping its magnitude constant, it is called the conformal
mapping of the second kind.

A complex potential, which is an analytic function, must have a singularity
at infinity otherwise it will reduce to a constant. Physical interpretation of
the singularity can be given. By definition, the singularities are points where
a function ceases to be analytic. Such points are precisely the points where
physical sources which give rise to potentials are located. Singular points in
a complex plane may be poles, zeros, essential singularities or branch points
Spiegel (1964).
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x

iy z = - plane
z = x + iy

z c

B

u

iv w = - plane 
w = u + iv

Ac

B

Fig. 9.4 a,b. Show the movement of a point in the Z plane and the corresponding
movement in the W plane where the angle of movement is preserved

The mapping is said to be one to one over the finite domain of the z-plane
if there exists an inverse transformation function z = f−1 (w) which will map
the w-plane onto the z-plane. Let w(z) = u(x, y) + iν(x, y). We can find the
values at x and y if the Jacobians is non zero.
i.e.

J
∣∣∣∣
u, ν
x, y

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∂u
∂x
,
∂u
∂y

∂ν
∂x
,
∂ν
∂y

∣∣∣∣∣∣∣∣
�= 0. (9.21)

On making use of the Cauchy Riemann conditions into the (9.20), the Jacobian
can be shown to be

J
∣∣∣∣
u, ν
x, y

∣∣∣∣ = |f′ (z)|2 . (9.22)

This means that inverse transformation function exists if f′(z) �= 0.
Now assuming that an inverse transformation function exists and can be

found, let us take the transformation of a complex potential function.
Let φ (z) be a complex potential in the z-plane

φ(z) = U(x, y) + iV(x, y). (9.23)

We shall replace z by w using inverse mapping function

φ
(
f−1 (w)

)
= U(u, v) + iV (u, ν) . (9.24)

It can be shown that U(u, ν) and V(u, ν) satisfy Laplace equation.
We know

(
∂2

∂x2
+

∂2

∂y2

)
=

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i

∂

∂y

)
. (9.25)

Now
∂

∂x
=
∂u
∂x

∂

∂u
+
∂ν
∂x

∂

∂u
(9.26)

and
i
∂

∂y
= i

∂u
∂y

∂

∂u
+ i

∂ν
∂y

∂

∂ν
. (9.27)
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By adding and substracting (9.26) and (9.27) and using 9.22 we obtain
(
∂

∂x
+ i

∂

∂y

)
= f ′ (z)

(
∂

∂u
+ i

∂

∂ν

)
(9.28)

(
∂

∂x
− i

∂

∂y

)
= f ′ (z)

(
∂

∂u
− i

∂

∂ν

)
. (9.29)

Hence from (9.28) and (9.29) is get
(
∂2

∂x2
+ i

∂2

∂y2

)
u = |f ′ (z)|2

(
∂2U

∂u2
+ i

∂2U

∂ν2

)
. (9.30)

From (9.30) we get
(
∂2u
∂x2

+ i
∂2u
∂y2

)
= 0 = |f′ (z)|2

(
∂2U
∂u2

+ i
∂2U
∂ν2

)
. (9.31)

Since f′(z) �= 0,

∂2U
∂u2 + ∂2V

∂ν2 = 0 and from (9.14) it can be shown that

∂2U
∂x2

+
∂2U
∂y2

= 0 and
∂2V
∂x2

+
∂2V
∂y2

= 0. (9.32)

Hence both U(u, ν) and V(u, ν) will satisfy Laplace’s equation. This is an alter-
native approach to prove that analytic functions in two-dimensional medium
in a complex plane satisfy Laplace equations.

9.4 Transformations

The set of equations

u = u(x, y)
ν = v(x, y) (9.33)

defines in general a transformation or mapping which establishes a corre-
spondence between points in the uν and xy planes. These (9.32) are called
transformation equations. If to each point of the uv plane there corresponds
one and only one point in the xy plane and conversely, we speak of one to one
transformation or mapping, in such a case a set of points in the xy plane is
mapped onto a set of points in the uv plane. The corresponding set of points is
often called images of each other. When u and v are real and imaginary parts
of an analytical function, a complex variable w = u + iv = f (z) = f (x + iy)
and the transformation will be one to one in the region where f′ (z) �= 0.
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A mapping in the plane is said to be angle preserving or conformal if
it preserves angle between oriented curves in magnitude as well as in sense
i.e., the image of any two intersecting oriented curves taken with their corre-
sponding orientation make the same angle of intersection with the curve both
in magnitude and direction.
Corollary 1 – If f (z) is analytic and f′ (z) �= 0 in a region R, then the
mapping w = f (z) is conformal at all points of R.
Corollary 2 – The mapping defined by an analytic function f (z) is conformal
except a points where the derivative f ′(z) is zero.

9.4.1 Simple Transformations

In this section we choose two simple mathematical relations in a complex
domain to demonstrate that these relations can show the nature of field lines
and equipotential lines in a two dimensional problem..

Problem 1

In this problem, we chose a simple transformation z = k coshw (Pipes 1953)
and show how orthogonal current lines and equipotential lines in a square grid
in w(= u + iv) plane transforms to ellipses and hyperbolas in the z(= x + iy)
plane to represent equipotential lines and current lines for a finite line source.

Let
z = k coshw = k cosh(u + iv) (9.34)

where k is a real constant. (Fig. 9.5 a,b) To study this transformation, we
must determine the curve u = const and v = const. Expanding cosh(u + iv)
into its real and imaginary parts, we obtain

x + iy = k(cosh u cos v + i sinh u sin v) (9.35)
x = k coshu cos v (9.36)
y = k sinh u sin v

This may be written in the form

cos v =
x

k cosh u
(9.37)

sin v =
y

k sinh u

Therefore, on squaring these equations and adding them, we have

x2

k2 cosh2 u
+

y2

k2 sinh2 u
= 1. (9.38)
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Fig. 9.5 a,b. Simple cosine hyperbolic transformation changes ellipse and hyperbola
in the z plane to square grid in the w – plane

If we put

a = k cosh u (9.39)
b = k sinh u,

the (9.38) can be written as

x2

a2
+

y2

b2
= 1. (9.40)

This is the equation of an ellipse with its centre is at the origin and having a
major axis of length 2a and a minor axis of length 2b. Hence the curve u =
constant are a family of confocal ellipses.

To obtain the curve u = constant, we write in the form

cos h u =
x

k cos u
and sinh u =

y
k sin ν

(9.41)

cos h2u − sinh2 u =
x2

k2 cos2 u
− y2

k2 sin2 ν
= 1. (9.42)

If we set a′ = k cos ν and b′ = k sin ν,
we have

x2

a′2
− y2

b′2
= 1. This is an equation of a hyperbola. (9.43)

For a direct current flow field the equipotential lines are elliptical and field
lines and current flow lines are hyperbolic due to a line source of finite length.

Case 2

Problem 2

A simple transformation of a line source and a sink in a z plane maps the field
lines and equipotential lines in a w-plane.
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Let
w = A ln

z − a
z + a

. (9.44)

We have seen that the equation

w = − q
2πk

ln z = u + iν (9.45)

gives the appropriate transformation to study the electric field in the region
surrounding a charged circular cylinder with its centre at the origin and having
a charge Q per unit length (Fig. 9.6a and b). In this case the real part of the
transformation is

u = − q
2πk

ln r and the imaginary part is

ν =
−q
2πk

ln θ. (9.46)

Let us now consider a field produced by a line charge of +q per unit length
at z = a and another line charge of −q per unit length at z = −a. The fields
produced by both the line charges gets added up and is given by

w = +
q

2πk
ln (z − a) − ln (z + a) = − q

2πk
ln

z − a
z + a

. (9.47)

Equation (9.47) represents the proper transformation to determine the field
and equipotentials of two line charges.

Let
A = − q

2πk
, (9.48)

we then have
u + iν = A ln

z − a
z + a

. (9.49)

If we now let the distance of the point P (Fig. 9.6 a,b) from the point z = a
and z = −a be r1 and r2 respectively, we have

z − a = r1eiθ1 (9.50)

z + a = r2eiθ2 (9.51)

where θ1 = arg(z − a) and θ2 = arg(z + a).
Hence u + iν = A [ln (z − a) − ln (z + a)]

= A [ln r1 + iθ1 − ln r2 − iθ2] . (9.52)

Therefore,
u = A ln

r1
r2

(9.53)
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Fig. 9.6 a,b. Simple logarithmic transformation simulates the fields and equipo-
tentials for a line source and a sink

and
ν = A(θ1 − θ2). (9.54)

These are the curves for u = constant and ν = constant.
If we put

ln
r1
r2

= u/A (9.55)

then
r1
r2

= eu/A =
(x − a)2 + y2

(x + a)2 + y2
= e2u/k = K (9.56)

Therefore

y2 +
[
x− a (1 +K)

(1 −K)

]2

=
4a2K

(1 −K)2
. (9.57)

We thus see that the curves u = constant are a family of circles with eccentric
gradual shifting of centres along the line joining the source and sink.

x = a (1 + k) / (1 − k) and r =
2a

√
k

1 − k
(9.58)

These eccentric circles are the equipotentials due to a line source and a line
sink in a homogeneous and isotropic medium.
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9.5 Schwarz Christoffel Transformation

9.5.1 Introduction

Schwarz and Christoffel independently proposed that a suitable transforma-
tion function or mapping function can be determined for transferring the
problem in the z plane to the w plane such that the problem is solved in the
w plane and at the end we can return back to the z-plane again and present
the final answer. In case it is necessary one may have to go for successive
transformation depending upon the nature of the problem. As for example in
certain cases one may have to go from w plane to t plane ,from t plane to
t’ plane, get the solution in the t’ plane and finally come back to z plane to
present the final answer.

9.5.2 Schwarz-Christoffel Transformation of the Interior
of a Polygon

The problem to find a mapping function to map the interior of a n-sided poly-
gon in the z-plane onto the upper half of the w-plane such that the boundary
of the polygon goes over to the real axis of the w-plane. The upper half of
the w-plane goes to inside of a polygon. Let w = a1, a2, a3, . . . . . . an be images
on the real axis of the vertices of a polygon z = z1, z2, z3, . . . . . . zn. We shall
assume that a1 < a2 < a3 . . . . . . .an (Fig. 9.7 a,b). The mapping function
should be such that (i) A segment of real axis of the w-plane bounded by two
images of the vertices say, ak, ak+1 must go over the corresponding sides of
the polygon joining the points zk and zk+1.

This requires that the argument of the mapping function dz
dw = f′ (w) must

remain constant for ak < w < ak+1.
(ii) As we cross an image of the vertices, say ak+1, the argument of the

mapping function must change discontinuously by an amount equal to the
exterior angle of the polygon at z = zk+1 say θ = παk+1(−1 < αk+1 < 1)

such that
n∑

k=1

αk = 2 where (−1 < αk < 1). Note that w = a1, a2, a3, . . . . . . an

must be branch points of the mapping function because at these points the
angle between the tangents of the real axis does not remain constant during
transformation.

(iii) The upper half of the w-plane and the interior must have one to one
relation. Considering the mapping function of the following from

dz
dw

= A(w − a1)
−α1 (w − a2)

−α2 (w − a3)
−α3 . . . . . . . . . . . . (w − an)

−αn ,

(9.59)
The argument of f′ (w) will be given by

Arg f ′ (w) = Arg A−α1 Arg(w−a1)−α2Arg(w−a2) . . . . . . . . .αn Arg(w−an)
(9.60)
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Fig. 9.7 a,b. Show the conformal transformation of a complex geometry of a poly-
gon on to the real axis of the w-plane

Thus the net change in the argument is πα1. The argument remains con-
stant while a1 < w < a2, but as we cross a2 there is a further increase in the
argument by πa2. Thus there is an increase in the argument of f′ (z) at each
of the image vertices by an amount equal to say παk at the kth vertice. Total
increase in the argument after crossing an is

n∑
k=1

παk = 2π = Arg A (9.61)

Since the argument of f′ (w) remains constant for any interval on the real
axis of the w-plane, that interval should be mapped onto a side of the polygon.
For examples, the interval (ak+1 − ak) must be mapped onto the kth side of
length 1k. This gives us n relations.

1k = |A|
ak+1∫

ak

∣∣∣∣f′
(

w
w

)∣∣∣∣ dw
(
wk+1

wk

)
(k = 1, 2, 3, . . .n) (9.62)
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These n equations are used in determining n unknown quantities a1, a2,
a3 . . . . . . an images of the vertices of the polygon.

The mapping function f (z) is analytic in the upper half plane and the real
axis except at the images of the vertices a1, a2, a3 . . . . . . ..an. These points are
branch points in mapping the real axis of the w-plane. We shall have to avoid
these branch points by following an infinitesimally small semicircle with the
centre at these branch points.

9.5.3 Determination of Unknown Constants

Integration (9.58), the mapping function may be written as follows

Z = A

w∫

w0

(w − a1)
−α1 (w − a2)

−α2 . . . . . . . . . (w − an)
−αn dw. (9.63)

Hence the n + 2 unknowns are A, w0, a1, a2, . . . . . . ..an.α1,α2,α3,αn are eas-
ily given by external angles of polygon. Hence we do not consider them as
unknowns. These constants can be determined applying suitable boundary
conditions as demonstrated in different problems presented in this chapter.

9.5.4 S-C Transformation Theorem

This is one of the most powerful transformation techniques in a complex
domain. It transforms the interior of a polygon in the z-plane on to the upper
half of another plane, say the w1 plane, in such a manner that the side of a
polygon in the z-plane are transformed to the real axis of the w-plane. (Fig. 9.7
a,b) Schwarz and Christoffel independently have shown that given the required
polygon, a certain differential equation may be written which when integrated
gives directly the desired transformation. Consider the expression

dz
dw

= A(w − a1)
φ1 (w − a2)

φ2 . . . . . . . . . (w − an)φn (9.64)

where A is a complex constant; a1, a2, . . . . . . an and φ1, φ2, . . . . . . φn are real
numbers and their arguments. Since the argument of a product of a complex
number is equal to sum of the individual factors, we have

dz
dw

=arg A + φ1 arg (w − a1) + φ2 arg (w − a2) (9.65)

+ . . . . . .+ φn arg(w − an).

The real numbers a1, a2, . . . . . . an are plotted on the real axis of the w-plane
(Fig. 9.7b). If w is a real number then the argument of Nr = w − ar is

arg (w − ar) =
[

0 if w > ar

π if w < ar

]
. (9.66)
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Let us suppose that the w traverses the real axis of the w-plane from left to
right. Then (w − ar) will be positive if w is greater than ar and it will be
negative when w is less than ar.

Let θr = arg dz
dw when ar < w < ar+1.

We obtain

θr = arg A + (φr+1 + φr+2 + . . . . . . ..+ φn)π
θr+1 = arg A + (φr+2 + φr+3 + . . . . . . ..+ φn)π. (9.67)

Hence
θr+1 − θr = −πφr+1

Now
arg

dz
dw

= arg
dx + i dy

du
= tan−1 dy

dx
. (9.68)

We see that this is the angle the element dz in the z-plane rotates into the
mapping of dw in the w plane by the S–C transformation. As we move along
the sides of the polygon in the z-plane, the corresponding movement in the
w-plane for one to one correspondence will be along the real axis.

When the point w passes from the left of ar+1 to the right of ar+1 in the
w-plane, the direction of the point z in the z-plane is suddenly changed by an
angle of – πφr+1 measured mathematically in the positive sense. If we imagine
the broken line to form the closed polygon then the angle αr+1 measured
between the two adjacent sides of the polygon is called an interior angle.

We, then have
αr+1 − πφr+1 = π (9.69)

Hence
φr+1 =

αr+1

π
− 1. (9.70)

Substituting these values, we have

dz
dw

= A(w − a1)
α1
π −1 (w − a2)

α2
π −1 (w − a3)

α3
π −1

= A
r=n

Π
r=1

(w − ar)
αr
π −1 . (9.71)

Integrating the expression with respect to w, we have

z = A
∫

n

Π
r=1

(w − ar)
αr
π −1 dw + B (9.72)

where B is an arbitrary constant. This transformation transforms the real axis
of the w-plane onto a polygon in the z-plane. The angles αr are the interior
angle of the polygon. The modulus of the constant A determines the size of
the polygon and the argument of the constant A determines the orientation
of the polygon. The constant B determines the location of the polygon.
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9.6 Geophysical Problems on S-C Transformation

Two dimensional boundary value problems, which satisfy Laplace equation,
are presented in this section with considerable details for only four problems.
These four problems can be classified in three categories i.e., (i) problems
where closed form solutions are available (ii) problems where closed form
solutions are not possible and numerical integration was required for its solu-
tion (iii) problems where closed form solutions can be obtained using elliptic
integrals and elliptic functions.

9.6.1 Problem 1 Conformal Transformation for a Substratum
of Finite Thickness

In this problem two plane parallel boundaries are assumed. The region in
between those boundaries constitutes the interior of a polygon with one angle
only as we move from one point of the polygon to the other. This region is
assumed to have a finite resistivity. Resistivities outside are infinitely high. In
geophysical model simulation resistivity of the crystalline basement is assumed
to be infinitely high in comparison to sediments of finite resistivity and thick-
ness. Above the air earth boundary, resistivity of the air is infinitely high
(Roy 1967).

Figure 9.8 a,b show the geometry of the problem in the Z plane and its
transformation on the real axis of the w plane. Here the thickness and resistiv-
ity of the top layer is ‘h’ and ‘ρ’ respectively. The point source of current I is
located at (0, h). For every problems we have to fix the origin on the z-plane.
Here the origin is fixed at a depth ‘h’ from the surface and on top of the
basement. Now the boundary conditions are dv/dy = 0 at y = 0 and h. The
Schwarz Christoffel method of conformal transformation, for transforming the
geometry of the z-plane on to the real axis of the w-plane are bounded by the
following equation

dz
dw

= A(w − a)−α/π (w − b)−β/π (w − c)−γ/π (w − d)−δ/π (9.73)

where ‘a’, ‘b’, ‘c’, ‘d’ are the values of w at the corners of the polygon and ‘A’
is a constant as discussed. As we move from A to C, we cross the corner BB′

only as there are no other corners. Hence the (9.73) reduces to the form

dz
dw

= A(w − a)−α/π
. (9.74)

Now as we move across BB′, our movement has turned through an angle
of 1800 or π because we started moving in the opposite direction. Therefore
α = π. Since we move towards the polygon (shown by the dotted lines) the
sign of the argument ‘α’ will be + or positive. Therefore (9.74) reduce, to the
form
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Fig. 9.8. (a) S-C transformation of a horizontal overburden of uniform thichness
over a resistive basement in the Z plane; (b) Map on to the real axis of the W plane

dz
dw

= A(w − 0)−π/π because w = 0 at BB′ (9.75)

dz = A
dw
w

z = A1n w + C1 (9.76)

This is the transformation function which maps the z = x + iy plane onto
the real axis of the w = u + iν plane. Now to solve the problem completely
we have to determine ‘A’ and ‘C1’. The constant ‘A’ can be determined as
follows. As we move from A′ to C′ over a large semicircle from π to 0, the
movement in the z-plane is – ‘ih’, where ‘h’ is the thickness of the substratum
and the vertical axis is the imaginary axis.

Let w = Reiθ. As R → ∞ the (9.75) reduces to the form

−ih = A

0∫

π

i Reiθdθ
Reiθ = A

0∫

π

idθ (9.77)

or
A = h/π

We can choose the origin in such a way that the constant of integration
becomes zero. If we choose z = 0 at w = 1. Then C1 = 0. And our origin
is fixed at w = 1. Therefore,
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z =
h
π

ln w (9.78)

and

u = eπx/h. cos (πy/h) (9.79)

ν = eπx/h. sin (πy/h) . (9.80)

Position of the current source I is u = −1, and potential in the w-plane φw is
given by

φw =
Iρ
π

ln
l
r

(9.81)

where r is the distance between the position of the source and the point of
measurement. In the w-plane

r = {(u + l)2 + ν2}1/2

therefore
φw = − Iρ

2π
ln
[
(u + l)2 + ν2

]
.

In the z plane

φz = − Iρ
2π

ln
[
e2πx/h + 2.eπx/h cos (πy/h) + l

]
. (9.82)

For y = h

φz = − Iρ
2π

ln
[
e2πx/h + 2.eπx/h + l

]
(9.83)

=
Iρ
π

ln
[
eπx/h − 1

]
. (9.84)

9.6.2 Problem 2 Telluric Field over a Vertical Basement Fault

The geometry of the problem is shown is Fig. (9.9 a, b,). The problem was
solved independently by Kunetz and de Gery (1956), Berdichevsku, M.N.
(1950), Li. Y. Shu (1963). Here the basement is assumed to be vertically
faulted. The thicknesses of the sedimentary layer on the downthrow and
upthrow sides are ‘H’ and ‘h’ respectively. ρ1, the resistivity of the sedimen-
tary column, is assumed to be unity. ρ2, the resistivity of the basement, is
considered to be infinitely high (ρ2 = ∞). Since the areas adjacent to the
fault planes are suitable sites for oil accumulation, telluric current method is
used as a reconnaissance tool for location of these fault planes.

Telluric currents or earth currents originate due to interaction of the
earth’s natural electromagnetic field with the earth’s crust. Earth’s natu-
ral electromagnetic field originates due to interaction of the solar flares with
the magnetosphere of the earth. Telluric current sources are assumed to be
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Fig. 9.9. (a) S - C Transformation of a vertical fault type of structure in the plane;
(b) Map on to the real axis of the W plane

infinitely long line current sources placed at infinity such that uniform field is
created.

The Schwarz-Christoffel transformation function, which maps the struc-
ture in the z-plane onto the real axis of the w-plane, is given by

dz
dw

= A w−1 (w − a)1/2 (w − b)−1/2 (9.85)

because the corners crossed are at BB’, C and D; the corresponding angles are
π, −π/2 and +π/2. The change in angles at C and D are π/2 in both cases.
At the point C the movement is away from the polygon and at the point D
the movement is towards the polygon. Hence there will be change in sign at
C and D. This step is important to get the starting integral correctly before
SC transformation starts.

Here

z = A
∫

(w − a)1/2

w (w − b)1/2
dw + C1 (9.86)
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where A is a constant to be determined. Applying the first boundary condition,
i.e. we integrate the (9.86) over a large semicircle of radius R(→ ∞) as w
changes from −∞ to + ∞ and θ varies from 0 to π. The movement in the
z-plane is – iH. Therefore, we have

−iH = A

0∫

π

(
Reiθ − a

)y2

Reiθ
(
Reiθ − b

)1/2
i Reiθ dθ. (9.87)

Since R is infinitely large, (9.87) reduces to the form

−iH = A

o∫

π

(
Reiθ

)1/2

Reiθ
(
Reiθ

)1/2
iReiθdθ

or
A =

H
π
. (9.88)

We next apply the second boundary condition i.e. we integrate (9.86) over an
infinitesimal semicircle around BB’ with w = reiθ where r → 0 and θ varies
from π to 0. The movement in the z-plane is –ih. Hence

−ih =
H

π

0∫

π

(
Reiθ − a

)1/2

Reiθ
(
Reiθ − b

)1/2
iReiθdθ

=
H
π

√
a
b

0∫

π

idθ

=
h
π

√
a
b
. (9.89)

Since in this problem one of the values of a or b can be chosen arbitrarily.
We choose the value of a = 1, therefore

√
b =

H
h
. (9.90)

The integral (9.86) can be solved with the substitution of

t =

√
w − 1
w − b

since a = 1, we can write

z =
H
π

∫
(w − 1)1/2 dw

w (w − b)1/2
=

H
π

∫
2t2 (1 − b) dt

(t2 − 1)
(
bt2 − 1

) (9.91)
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because

w =
bt2 − 1
t2 − 1

and

dw =
2t (1 − b)
(t2 − 1)2

.

The integral can be solved by the well known method of partial fraction and
it reduces to the form

z =
H
π

[
1√
b

ln

√
bt − 1√
bt + 1

+ ln
1 + t
1 − t

]
+ C1 (9.92)

z =
H
π

[
1√
b

ln

√
b
√

w − 1 −√
w − b√

b
√

w − 1 +
√

w − b
+ ln

√
w − b +

√
w − 1√

w − b −√
w − 1

]
+ C1. (9.93)

Equation (9.93) is the required mapping function for transformation of the
geometry from the z-plane to the w-plane. Now in order to determine the
value of C1, we fix the origin in the z-plane at w = 1. Fixing the origin within
the prescribed geometry of the z-plane is at our disposal. We can fix the origin
at any point we want. Now if z = 0 at w = 1, we get from (9.93).

0 =
H
π

[
1√
b

ln (−1) + ln (1)
]

+ C1

or

0 =
H
π

[
1√
b
.iπ

]
+ C1

C1 = −i
H√
b

= −ih. (9.94)

Computation of Telluric Field

In order to compute the telluric field, the source and sink are assumed to be
at infinity. The source is at z = −∞, at w = 0 and the sink is at z = +∞,
and w = −∞, the expression for the telluric field in given by

φ =
Iρ1

π
ln

1
w
. (9.95)

Since the source and sink are assumed to be the infinitely long line electrodes,
therefore

dφ
dw

= − Iρ1

π
1
w

(9.96)

The expression for the telluric field in the z-plane is

dφ
dz

=
dφ
dw

dw
dz
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or
dφ
dx

=
dφ
du

du
dx
. (9.97)

Since the measurements are taken on the surface and on the real axis of the
w plane ν = 0, therefore

dw
dz

=
du
dx
. (9.98)

Again for a particular geometry of the structure y = const ≡ ih and dz = dx.
Therefore telluric field can be computed from the (9.97) where the expressions
for dφ

du and
du
dx are known.

9.6.3 Problem 3 Telluric Field and Apparent Resistivity
Over an Anticline

This is also a similar type of boundary value problem as discussed in the
previous section i.e., in connection with flow of telluric currents over basement
structure. Important points to be highlighted are: (i) close form solution of
this problem is not possible, therefore one has to use numerical methods for
solution of a part of this problem (ii) movements in the complex plane from
the tip of the anticline and the trajectory of movement are demonstrated .

A two dimensional model of an anticline is shown in (Fig. 9.11 a,b) ECABD
is the infinitely resistive basement and D′ E′ is the earth surface. The domain
delineated by the polygonal boundary ECABD D′E′ is filled with a medium
of finite resistivity (ρ = 1). Telluric currents, far away from the structure, are
assumed to be horizontal current sheets confined to the channel bounded by
the surface and the basement. The thickness of the overburden, away from
the structure, is assumed to be unity. (Roy and Naidu 1970).

Potential distribution in a homogeneous and isotropic medium and in a
source free region is given by the Laplace’s equation

∂2φ (x, y)
∂x2

+
∂2φ (x, y)
∂y2

= 0. (9.99)

The method of Schwarz-Christoffel transformation is used for conformal map-
ping. The transformation maps the complex geometry of the problem onto a
simple geometry consisting of whole of the positive w-plane and the boundary
along the u-axis while keeping the Laplace’s equation and the boundary con-
ditions invariant. Since ECABD D′E′ is a five cornered polygon, there will be
five terms of the type (w − an)

−an/π where n = 1 . . . . . . 5, out of which three
may be chosen arbitrarily. The choices are as follows (9.10 a,b)

a1 = ±∞ (Corresponding to EE′)
a2 = −k (Corresponding to C)
a3 = 0 (Corresponding to A
a4 = 1 (Corresponding to B)
a5 = 1 (Corresponding to DD′)
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(a)

(b)

(c)

Fig. 9.10. (a) Map of the basement asymmetric anticline in the Z plane; (b) its
map onto the real axis of the W plane; (c) trajectory in the W plane of vertical
movement from the tip of the anticle A to the epicentre of A on the surface in the
Z plane

and the arguments α1, α2, α3, α4, α5 are given as follows

α5 = π (Corresponding to EE′)
α2 = α (Corresponding to C)
α3 = −(α + β) (Corresponding to A)
α4 = β (Corresponding to B)
α5 = π (Corresponding to DD′)

Hence the Schwarz – Christoffel transformation function for the present prob-
lem may be expressed in the differential form as



286 9 Complex Variables and Conformal Transformation in Potential Theory

dz
dw

= A1w
α+β

π (w + k)−α/π (w − l)−β/π (w − l)−1 (9.100)

which can be rewritten as

z = A

w∫

0

w
α+β

π dw

(w + k)α/π (w − l)β/π (w − l)
+ C. (9.101)

The term corresponding to the point EE′ does not enter into the differen-
tial equation because the value of w at E and E′ are ±∞. The constant of
integration is C = 0 because the origin in the z-plane is fixed.

The evaluations of the unknowns A1, . . . k are attempted using the follow-
ing boundary conditions. Equation (9.101) is integrated at a point A along a
semiinfinite circle in the upper half of the w-plane. Substituting w = Reiθ and
R → ∞.

One gets

z = A1

0∫

π

(
Reiθ

) α+β
π

i Reiθdθ
(
Reiθ + k

)α/π (
Reiθ − l

)β/π (
Reiθ − l

) (9.102)

By moving in an infinitely large semicircle from to 0 to π along the upper half
of the w-plane, the corresponding movement in the z-plane is from E to E′,
i.e. ‘iH’ where ‘H’ is the thickness of the overburden (assumed to be unity).

So z = iH = i
As R → ∞ the integral reduces to

i = A1

0∫

π

i dθ or A1 = −1
π
. (9.103)

Next the (9.101) is integrated along an infinitesimal semicircle around DD′ in
the upper half of the w-plane. Substituting w = 1 + reiθ as r → 0, one gets

z = A1

0∫

π

(
1 + reiθ) α+β

π ireiθdθ

(1 + reiθ + k)α/π (1 + reiθ − �)β/π (1 + reiθ − 1)

i = A1

0∫
idθ

(1 + k)α/π (1 − �)β/π

because movement in the z-plane is from D to D′ which is ‘iH’ or simply ‘i’.
Therefore

i =
1
π

1

(1 + k)α/π (1 − 1)β/π − iπ

Or
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k = (1 − �)β/α − 1. (9.104)

One more equation is required to solve for ‘k’ and ‘1’ uniquely. The following
procedure is adopted. The inverse of the (9.98) is written as

dw
dz

= A−1
1 w

−(α+β)
π (w + k)α/π (w − �)β/π (w − 1) . (9.105)

A solution of the differential equation in a closed form is not possible
except when both α/π and β/π can be expressed as ratio of two integers.
Hence (9.105) has to be solved numerically.

Since
dw
dz

=
dv
dy

− i
du
dy

One gets

dv
dy

= +Real
{

1
A1

w
−(α+β)

π (w + k)α/π (w − �)β/π (w − 1)
}

(9.106)

du
dy

= +Imag
{

1
A1

w
−(α+β)

π (w + k)α/π (w − �)β/π (w − 1)
}
. (9.107)

Values of ‘k’ and ‘1’ are selected and the system of (9.106) and (9.107) are
integrated from y = 0 to y = h keeping x constant (here x = 0). While
integrating numerically the point in the w-plane describes a trajectory which
commences at the origin and ends somewhere on the positive part of the
real axis (Fig. 9.11c). This point represents the projection of the vertex of
the triangle, it is termed as ‘epicentre’ U0. Of course, the initial condition
is u = v = 0 when y = 0. But at this point the integrands (9.106) and
(9.107) are singular. They have an algebraic singularity and as a result a
numerical solution cannot be initiated at this point. This difficulty is avoided
by obtaining an asymptotic solution. Instead of starting y = 0, it is necessary
to start at y = ∂y where ∂y << 1 as follows.

dz
dw

= A1w
α+β

π (w + k)−α/π (w − �)−β/π (w − 1)−1 (9.108)

dz
dww=0

= A1w
α+β

π (k)−α/π (�)−β/π (−1)−1
. (9.109)

Therefore

z = −A1 (k)−α/π (−�)−β/π w(1+ α+β
π )

(
1 + α+β

π

) (9.110)

= −A1. (k)−α/π (�)−β/π (u + iv)(1+
α+β

π )
(
1 + α+β

π

) . (9.111)

Hence
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x = − A1. (k)−α/π (�)−β/π

[√
u2 + v2

](1+ α+β
π )

(
1 + α+β

π

) (9.112)

cos
{

tan−1 v
u

x
(

1 +
α + β

π

)
− β

}

y = − A1. (k)−α/π (�)−β/π

[√
u2 + v2

](1+ α+β
π )

(
1 + α+β

π

) (9.113)

sin
{

tan−1 v
u

x
(

1 +
α + β

π

)
− β

}
.

Since x = 0 through out the path

cos
{

tan−1 v
u

x
(

1 +
α + β

π

)
− β

}
= 0 (9.114)

or {
tan−1 v

u
x
(

1 +
α + β

π

)
− β

}
= π/2.

Hence
v
u

= tan

(
π/2 + β
1 + α+β

π

)
. (9.115)

Either v or u may be chosen arbitrarily such that it is very nearly equal to
zero. Then

v0 =
v
u

u0 tan

(
π/2 + β
1 + α+β

π

)
. (9.116)

y0 = −A1. (k)−α/π (�)−β/π

[√
u2

0 + v2
0

](1+ α+β
π )

(
1 + α+β

π

) . (9.117)

It is now possible to integrate the (9.116) and (9.117) numerically. The pro-
jection of the epicentre is given by

u0 = −
h∫

0

Im ag
{

1
A1

w
−(α+β)

π (w + k)α/π (w − �)β/π (w − 1)
}

dy. (9.118)

and

0 = −
h∫

0

Real
{

1
A1

w
−(α+β)

π (w + k)α/π (w − �)β/π (w − 1)
}

dy. (9.119)
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In principle, (9.118) and (9.119) can now be used to solve for ‘k’ and ‘l’
uniquely. For solution of the problem values of ‘k’ and ‘l’ satisfying (9.118)
and (9.119) are selected and ‘h’, for which (9.104) is satisfied, is determined.
By varying ‘k’ ‘l’ , ‘h’ can be varied; however, this method is not particularly
convenient if it is desired to vary h in regular steps. It may be noted that
(9.118) and (9.119) are non-linear and can be solved only numerically. The
Runge-Kutta method of order four was used. Figure 9.11c shows the trajectory
of the path in the W-plane as the point moves from A (Fig. 9.11a) to the
epicentre of the point A on the surface. It is needed for point to point mapping.

Computation of Telluric Field and Apparent Resistivity

Having transformed the complex geometry of the problem into a simple one,
the field problem in the w-plane is solved first and then it is transferred
onto the z-plane. The telluric field in the z-plane may be looked upon as
that due to a point source and a point sink placed at ±∞ respectively. After
transformation the point source at +∞ is mapped onto DD′ while the sink is
still at infinity. The boundary conditions in the w-plane are: Potential gradient
across the real axis is zero and the potential goes to zero on the semicircle
with infinite radius in the upper half of the w-plane. The potential due to
a point source, satisfying the above boundary conditions and the Laplace’s
equation is

φ =
I
π

ln
[

1
w − 1

]
. (9.120)

The gradient is transferred to the z-plane and the field equation is

E = −dφ
dz

= − dφ
dw

dw
dz

=
I
π
A−1

1 (w)
−(α+β)

π (w + k)α/π (w − �)β/π
. (9.121)

Since the telluric field is measured on the earth’s surface (where y = 0 and
v = 0), (9.121) may further be simplified to

E = −dφ
dx

=
I
π

A−1
1 (u)

−(α+β)
π (u + k)α/π (u − �)β/π

. (9.122)

To determine the telluric field at a given point on the x-axis, the map of x on
the u axis is computed and then (9.122) is evaluated taking point by point
mapping. From (9.120) we can write the telluric field as

E = − dφ
dw

=
I
π

[
1

w − 1

]
. (9.123)

The (9.105) changes to

dx
du

= A1 (u)
−α+β

π α/π (u − �)β/π (u − 1)−1 (9.124)

for the purpose of mapping on the real axis. Taking its inverse the equation is
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du
dx

= A−1
1 (u)

−(α+β)
π (u + k)α/π (u − �)β/π (u − 1)−1 (9.125)

which may be considered as a non-linear differential equation connecting u and
x. By integrating (9.118) and (9.119) numerically with the initial condition,
viz. u = u0 at x = 0 which was determined earlier, a map of any point on the
real x-axis is obtained. Figure 9.10d shows the telluric field response over an
anticlinal structure.

9.6.4 Problem 4 Telluric Field Over a Faulted Basement (Horst)

In this section a problem is presented where closed form solution is obtained
and conformal transformation is used along with elliptic integrals and elliptic
functions. For the benefit of the readers a brief outline of the elliptic integrals
and elliptic functions are given in Sect. 9.7. (Roy 1973).

A two dimensional model of the horst is shown in (Fig. 9.12 a, b). In this
section a rectangular basement structure is chosen. As in the previous case
it is assumed that the resistivity ‘ρ’ and the thickness ‘H’ of the sedimentary
layer are both unity. ‘h’ and ‘d’ are respectively the throw of the fault and
half width of the horst. In the z-plane the source and sink are assumed to
be at ±∞ so that in the w-plane they are mapped at DE (w = 1

k1
) and at

D′E′(w = −1/k1) respectively.
Since the basement is assumed to be of infinite resistivity, the problem

reduces to a Neumann problem, i.e., the potential should satisfy Laplace’s

(d)

Fig. 9.11. (d)Telluric field anomaly over an asymmetric anticline
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Fig. 9.12 a, b. Show the faulted basement with horst type of structure in the Z-
plane and its map on the real axis of the W-plane; map of surface and subsurface
onto the real axis of the w-plane ; flow of direct current from infinity; long line source
and sink placed at infinite distance away in the z-plane and are respectively mapped
at DE and E’D’ on the real axis

equation with the condition that the normal gradient ∂φ
∂n = 0 throughout the

entire boundary FEDCBA B′C′D′E′F′. A two dimensional potential distribu-
tion in a homogeneous isotropic and in a source free region is given by the
Laplace’s equation.

Closed form mathematical solution can be obtained using conformal trans-
formation and elliptic integrals and function. These problems satisfy Laplace
equation

∂2φ (x, y)
∂x2

+
∂2φ (x, y)
∂y2

= 0. (9.126)
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Using the method of Schwarz – Christoffel transformation. The transformation
function for the present problem may be expressed in the differential form as

dz
dw

=A(w − 1)1/2 (w − a)−1/2 (w − b)−1 (w + 1)1/2 (w + a)−1/2 (w + b)−1

=A

(
w2 − 1

)1/2

(w2 − a2)1/2 (w2 − b2)
(9.127)

z =A

w∫

0

(
w2 − 1

)1/2
dw

(w2 − a2)1/2 (w2 − b2)
+ C1. (9.128)

Here C1 = 0, because the origin in the z-plane is fixed. Equation (9.128)
is in the form of an elliptic integral. The above integral is brought into a
standard form by substituting a = 1/k and b = 1/k1 (Kober 1957) and
Byrd Friedman (1954). In the next section, an introductory level discussion
on elliptic integrals and elliptic functions are given. For better background,
the readers will have to read the standard text books on elliptic integrals and
functions. Equation (9.128) therefore reduces to

or

z = C

w∫

0

(
1 − w2

)1/2 dw

(1 − k2w2)1/2 (1 − k2
1w2)

(9.129)

where C = −k2
1

A
k is a new constant. Hence the values of C, k and k1 are to

be known before solving the boundary value problem. In order to evaluate
the constant C the following boundary condition is applied. It is noted from
(9.129) that at the point w = 1/k1 an algebraic singularity is present. There-
fore, (9.129) is integrated around an infinitesimal semicircle from w = 1

k1
+ ε

to w = 1
k1

− ε where ε → 0 and thus the singular point is avoided. However,
the approach is different from that shown in the previous problem. Since the
shift in the z-plane is ‘iH’ the (9.129) can be written as :

iH = C

(
1 − 1/k2

1

)1/2

(1 − k2/k2
1)

1/2 (1 + k1w)

⎧
⎨
⎩

w∫

0

dw
(1 − k1w)

⎫
⎬
⎭

1/k1+ε

1/K1−ε

= C

(
1 − 1/k2

1

)1/2

(1 − k2/k2
1)

1/2 (1 + k1w)

{
− 1

k1
log (k1w − 1)

}1/k1+ε

1/K1−ε
. (9.130)

Nowaswpasses through the singular point (w = 1/k1), the expression (k1w− 1)
changes its sign, i.e., log (k1w − 1) increases by an amount −iπ. Therefore, the
change in the value of−

(
1
k1

)
log (k1w − 1) from 1

k1
− ε to 1

k1
+ ε is i π

k1
.

Hence

iH =
C
(
1 − k2

1

)1/2

2 (k2 − k2
1)

1/2
.i

π
k1
.
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And

C =
2H
π

(
k2 − k2

1

)
k1

(1 + k2
1)

1/2
. (9.131)

Substituting k1 = k snα one gets
or

C =
2H
π

(
k2 − k2sn2α

)1/2

(1 − k2sn2α)1/2
k snα

=
2H
π

k2snα cnα
dnα

. (9.132)

where snα, cnα and dnα are the Jacobian elliptic functions. In order to eval-
uate the constants k and k1 (or k and α since k1 = ksnα), it is necessary to
integrate (9.129) and then to apply suitable boundary conditions.

Equation (9.129) can be rewritten in the form

z = C

w∫

0

(
1 − w2

)
dw

(1 − k2w2)1/2 (1 − k2
1w2) (1 − w2)1/2

. (9.133)

The form of the integral suggests that it is an elliptic integral of the third
kind which can be separated into two parts:

I1 = C

w∫

0

dw

(1 − k2w2)1/2 (1 − k2
1w2) (1 − w2)1/2

(9.134)

and

I2 = C

w∫

0

w2dw

(1 − k2w2)1/2 (1 − k2
1w2) (1 − w2)1/2

(9.135)

Here I1 = Cπ (w, k, k1), i.e. the standard Legendre’s from of elliptic integrals
of the third kind. However, it is difficult to express I2 in the Legendre’s form.
In order to avoid this difficulty both the integrals are transformed into the
Jacobian form by substituting

w = snλ

therefore
dw = cn λ dn λ dλ.

Since
dn λ = (1 − k2sn2λ)1/2

and
cn λ = (1 − sn2λ)1/2
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The integral I1 can be rewritten as

I1 =C

λ∫

0

(
1 − k2sn2λ

)1/2 (1 − sn2λ
)1/2 dλ

(1 − k2
1sn2λ)1/2 (1 − k2sn2λ)1/2 (1 − sn2λ)1/2

(9.136)

= C

λ∫

0

dλ
(1 − k2

1sn2λ)

= C

⎧
⎨
⎩λ + k2sn2α

λ∫

0

sn2λdλ
(1 − k2

1sn2λ)

⎫
⎬
⎭ where k1 = ksnα

= C
{

λ +
sn α

cnα dnα
π (λ,α)

}
(9.137)

where π(λ,α) is the Jacobian form of the elliptic integral of the third kind.

I2 =C

λ∫

0

(
sn2λ

) (
1 − sn2λ

)1/2 (1 − k2sn2λ
)1/2 dλ

(1 − k2sn2λ)1/2 (1 − k2
1sn2λ)1/2 (1 − sn2λ)

= C

λ∫

0

sn2λdλ
(1 − k2

1sn2λ)

= C
π (λ,α)

k2snα cnα dnα
. (9.138)

Hence

z = C
{

λ +
snα

cnα dnα
π (λ,α) − π (λ,α)

k2snα cnα dnα

}
. (9.139)

Equation (9.139) is the function required for mapping the z-plane onto the
real axis of the w-plane.

Now at w = 1/k, z = d − ih as shown in Fig. 11 b, c. Therefore

λ =sn−1w =

1/k∫

0

dw

(1 − w2)1/2 (1 − k2w2)1/2

= K + iK′. (9.140)

Here K and K′ are the complete elliptic integrals of the first kind from the
definition. Hence (9.139) can be rewritten as

d−ih = C

{
(
K + iK′

)
+

snα
cnα dnα

π
(
K + iK′,α

)− π
(
K + iK′,α

)
k2snα cnα dnα

}
. (9.141)

From the well-known relation between the Jacobi’s elliptic integral of the third
kind and his theta and zeta functions one can write



9.6 Geophysical Problems on S-C Transformation 295

π
(
K + ik′,α

)
=

1
2

log
Θ
(
K + ik′ − α

)

Θ
(
K + iK′ + α

) +
(
K + iK′

)
Z (α) (9.142)

which simplifies to
KZ (α) + i

( πα
2K

+K ′Z (α)
)

(9.143)

where z (α) is the Jacobi’s zeta function. On substituting the value of C and
π(K + iK′,α) (9.139) becomes

d − ih =
2H
π

k2 cnα snα
dnα

[(
K + iK′

)
+

snα
cnα dnα

]
(9.144)

{
K Z(α) + i

( πα
2K

+ K′Z (α)
)}

− 1
k2snα cnα dnα{

K Z(α) + i
( πα

2K
+ K′Z (α)

)}]
. (9.145)

Separating the real and imaginary parts one gets the following two equations

d
H

=
2K

π dnα

[
k2cnαsnα +

k2sn2α
dnα

Z (α) − Z (α)
dnα

]
(9.146)

h
H

=
2

πdnα

[
1

dnα

(πα
2K

+ K′Z (α)
)
− k2sn2α

dnα

( πα
2K

+K′Z (α)
)
− K′k2cnα snα

]
.

(9.147)

Mention may be made that all the factors, e.g., K, K′, snα, cnα, dnα, Z (α)
are dependent on the values of k and α. Only two equations are available and
there are several unknowns. It is not possible as yet to determine the values
of k. and k1 (or k snα) from known values of d/H and h/H which are fixed by
the geometry of the structure. To avoid this difficulty the process is reversed.
In that, a series of values of k and α are assumed and the corresponding values
of d/H and h/H are determined. The values of k and α can be established for
a given set of d/H and h/H ratios. For chosen values of k and α, the value of
C can be determined as

C =
2H
π

k2snα cnα
dnα

. (9.148)

Mapping the desired region onto the upper half of the w-plane along the entire
u-axis, the problems can now be solved. In order to plot the telluric field
point by point on the surface, the values of u for different values of x must
be known. For this purpose, the inverse transformation function (indicated in
the previous problem), from (9.127) can be written as:

dw
dz

=
1
C

(
1 − k2w2

)1/2 (
1 − k2

1w
2
)

(1 − w2)1/2
. (9.149)

Since
dw
dz

=
du
dx

+ i
dv
dx
,
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Fig. 9.13. Telluric field anomaly over a horst type of structure

the (9.149) reduces to

du
dx

=
1
C
(
1 − k2u2

)1/2 (
1 − k2

1u
2
) (

1 − u2
)−1/2

(9.150)

because v = 0 on the u-axis which corresponds to the air earth boundary in
the z-plane (for ∞ > u > 1/k1).

Equation (9.150) is a non-linear differential equation and, in principle,
may be numerically integrated. Although it is necessary to know the values
of both ‘u’ and ‘x’ at the staring point, in order to determine the telluric field
as explained earlier, the source and the sink is placed at ±∞ in the z-plane
such that they are at w = 1/k1 and w = −1/k1 respectively in the w-plane.
The potential distribution is given by

φ = − I
π

log (w − 1/k1) +
I
π

log (w + 1/k1) . (9.151)

Therefore, the telluric field on the surface (Fig. 9.13) is given by

E = − dφ
dx

= −dφ
du
.
du
dx

= − I
π
.
1
C

2k1

(
1 − k2u2

)1/2

(1 − u2)1/2
. (9.152)
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In this section one problem is presented where conformal transformation is
used along with the elliptic integrals and elliptic functions. Researchers on
electrical communication, electrical power engineering and applied mathemat-
ics need this kind of solution of boundary value problems.

Analytical solution results can be compared with those obtained numeri-
cally for calibration of the finite element or finite difference code.

9.7 Elliptic Integrals and Elliptic Functions

Let us consider the integral

λ =

w∫

0

dw

(1 − w2)1/2 (1 − k2w2)1/2
. (9.153)

The constant k is called the modulus of λ. In actual physical problems the
value of k is found to vary in between zero and unity. For this reason k can
be, and often is, designed by sin θ where θ is called the modulus angle. This
integral is called the elliptic integral of the first kind. Such integrals were called
elliptic because they were first encountered in the determination of length of
arc of an ellipse. The form of the integral (9.153) is known as Jacobi’s notation
of the elliptic integral.

9.7.1 Legendre’s Equation

Second notation is that of Legendre. It can be obtained from that of Jacobi
by putting

w = sin φ (9.154)
where φ is called the amplitude angle. This angle may be obtained from θ the
modulus angle. We get

λ =

φ∫

0

dφ
(
1 − k2 sin2 φ

)1/2 . (9.155)

The integral in (9.155) is the elliptic integral of the first kind. In Legendre’s
notation φ = amα signifying that φ is the amplitude of α.

9.7.2 Complete Integrals

If the upper limit of the integral is made unity the integral is said to be
complete. The complete elliptic integral of the first kind is always denoted by
K and hence
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K =

1∫

0

dw

(1 − w2)1/2 (1 − k2w2)1/2
. (9.156)

Equation (9.156) gives k in Jacobi’s notation. In Legendre’s notation since
w = sin φ, the limits of integration are from zero to π/2. Hence in Legendre’s
notation

K =

π/2∫

0

dφ
(
1 − k2 sin2 φ

)1/2 . (9.157)

It may sometimes be necessary to state the modulus of K. We then write K
(k) for the complete elliptic integral of the first kind of modulus k.

The Complementary Modulus

We now need to define a complementary modulus k′ related to the modulus
k by the equation k2 + k′2 = 1 or

k′ = (1 − k2)1/2 (9.158)

From (9.158), when k is written as sin θ, k′ must be written as cos θ.
The complete elliptic integral of the 1st kind to modulus k′ must be entirely
different from K which has the modulus k.

K′(k) = K(k′). (9.159)

Hence K and K′ are related through their modulus and K, K′ must be a real
number.

By this definition K′ is given by the integral

K′ =

1∫

0

dw

(1 − w2)1/2 (1 − k′2w2)1/2
. (9.160)

The next thing to find is the equation defining K′ in terms of the normal
modulus k. In (9.160), let

t =
1

(1 − k′2w2)1/2

w2 =
1

k′2

(
1 − 1

t2

)

=
t2 − 1
k′2t2

(9.161)

Therefore,
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1 − w2 =
k′2t2 − t2 + 1

k′2t2

=
1 − t2

(
1 − k′2

)
k′2t2

=
1 − k2t2

k′2t2

and hence

(
1 − w2

)1/2
=

(
1 − k2′

t2
)1/2

k′t
(9.162)

Furthermore from (9.161)

w =

(
t2 − 1

)1/2
k′t

Therefore

dw =
t2
(
t2 − 1

)−1/2 (
t2 − 1

)1/2
k′t2

dt (9.163)

⇒ t2 − (
t2 − 1

)

k′t2 (t2 − 1)1/2

⇒ dt

k′t2 (t2 − 1)1/2
.

Substituting these values, we get

k′ =
∫

dt

k′t2 (t2 − 1)1/2
k′t

(1 − k′2t2)1/2

with new limits. To find the new limits note that when w = 0, t = 1 and when
w = 1

t =
1

(1 − k′2)1/2
=

1
k
.

Therefore, simplifying the integrand and adding the new limits, we get

k′ =

1/k∫

1

dt

(t2 − 1)/2 (1 − k′2t2)1/2

k′ =

1/k∫

1

dt

i (1 − t2)/2 (1 − k′2t2)1/2
(9.164)

and this is the required relation. Notice that the integral is the same as that
for k but the limits are changed and the integral is imaginary. Combining the
integrands of K and K′ one gets the total integration from the lower limit zero
to the upper limit 1/k and it is the complex number

K + iK′ =

1/k∫

1

dw

(1 − w2)1/2 (1 − k′2w2)1/2
. (9.165)
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9.7.3 Elliptic Functions

The elliptic functions of interest to engineers are Jacobi’s elliptic functions.

λ =

ω∫

0

dw

(1 − w2)1/2
= sin−1 w. (9.166)

Thus the effect of getting rid of k is to make λ a function only of w and more
over an elementary function of w. we get

w = sin λ.

It can be shown that Legendre’s form of the integral can be obtained by
putting

w = sin φ
= sin am λ
= sn λ
= sn λ (k)
= sn(λ, 0) = sin λ. (9.167)

Now

(1 − w2)1/2 = cos φ = cos am λ
= cnλ = cn(λ, k). (9.168)

Since sin2 φ + cos2 φ = 1, it can be deduced that

sn2λ + cn2λ = 1 (9.169)

dn λ = (1 − k2w2)1/2

= (1 − k2 sin2 φ)1/2

= (1 − k2 sn2λ)1/2. (9.170)

The three functions snλ, cnλ, dnλ are the principal Jacobian elliptic functions

tn λ =
sn λ
cn λ

. (9.171)

We have defined

K =

π/2∫

0

dφ
(
1 − k2 sin2 φ

)1/2 .

If the upper limit of the integral is some value of φ less than π/2, the integral
is incomplete and is then written as F (φ, k). Thus
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F (φ, k) =

φ∫

0

dφ
(
1 − k2 sin2 φ

)1/2 . (9.172)

The integral is frequently written in terms of the amplitude angle and the
modular angle as F (φ, θ) and rather less frequently in terms of the amplitude
and modulus as F (w, k). Here

F(w, k) = F(π/2, k) ≡ K(k) = K (9.173)
F(w, k) = F(φ, k) = λ (9.174)

We have
λ = sn−1(w, k) (9.175)

Therefore

sn−1(w, k) = F(w, k)

I =

w∫

0

(
1 − k2w2

)1/2

(1 − w2)1/2
dw. (9.176)

This is the Jacobi’s form of the elliptic integral of the second kind and it is
denoted by E (w, k) where, as before, w is the argument or amplitude and k
is the modulus. Legendre’s form is given by

E (φ, k) =

φ∫

0

(
1 − k2 sin2 φ

)
dφ (9.177)

Another form is obtained by introducing the variable u where φ is the
amplitude of u.

sin φ = snu
and by differentiating both sides
cnφ dφ = cnu dnu du.

dφ =
cnu dnu du

(1 − sn2u)1/2
= dnu du. (9.178)

The integral (9.177) can be written as

E (u, k) =

u∫

0

(
1 − k2sn2u

)1/2
dnu du

=

u∫

0

dn2u du. (9.179)
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It defines the elliptic integral of the second kind in terms of elliptic functions.
Complete elliptic integrals of the second kind is expressed as

E(1, k) ≡ E(π/2, k) ≡ E(k) ≡ E (9.180)

9.7.4 Jacobi’s Zeta Function

Z (φ) = E (φ) = Z (φ)
E
K

(9.181)

all to modulus k.

9.7.5 Jacobi’s Theta Function

More important still are Jacobi’s Theta functions. His original theta function
is denoted by Θ and widely used and they are indeed almost indispensable.

Z (φ) =
Θ′ (φ)
Θ (φ)

a relation given by
φ∫

0

Z (φ) dφ = log Θ (φ) + C (9.182)

where series for theta function is

Θ (φ) = 1 + 2
∞∑

m=1

(−1)m .qm2
cos

mπφ
k

(9.183)

where q = e−π K′
K .

Elliptic Integral of the Third kind is

π (w, k1, k) =

w∫

0

dφ
(1 − k2

1w2) (1 − k2w2)1/2 (1 − w2)1/2
. (9.184)

Now putting w = sin φ giving

π (φ, k1, k) =

φ∫

0

dφ
(
1 − k2

1 sin2 φ
) (

1 − k2 sin2 φ
)1/2 . (9.185)

If we put w = snu
dw = cnu dnu du

π (u, k1, k) =

u∫

0

du
1 − k2

1sn2n
. (9.186)

All these are three forms of Legendre’s elliptic integral .
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9.7.6 Jacobi’s Elliptic Integral of the Third Kind

Jacobi adopted not merely a different form but an entirely different way of
presentation of elliptic integrals of the third kind.

Putting
k1 = k sn α to mod k,

the integrand is

=
du

1 − k2 sn2α sn2u
. (9.187)

With this substitution Jacobi defined his elliptic integral of the third kind as

π (u,α) = k2 snα cn α dn α
u∫

0

sn2 u du
1 − k2sn2α sn2u

(9.188)

(H.E.I.E.P. Handbook of Elliptic Integrals for Engineers and Physicists
400.01).

Jacobi’s definition of the elliptic integral can be expressed in terms of his
zeta function and also in terms of his theta functions

sn (u + α) + sn (u − α) =
2 snu cnα duα

1 − k2 sn2u sn2 α
.

(H.E.I.E.P.123.02) (9.189)

And hence substituting these values

π (u,α) =
1
2
k2 snα

u∫

0

snu {sn (u + α) + sn (u − α)} du. (9.190)

But from (H.E.I.E.P. 142.02)

k2 snα snu sn(u + α) = −Z(u + α) + Z(u) + Z(α)

and
k2 snα snu sn(u − α) = Z(u − α) − Z(u) + Z(α).

Hence

π (u,α) =
1
2

u∫

0

{Z (u − α) − Z (u + α) + 2Z (α)} du. (9.191)

This gives a definition of Jacobi’s elliptic integral of the third kind in terms
of this zeta function.

Since
u∫

0

Z (u) du = log Θ (u) + C, (9.192)
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we get

π (u,α) =
1
2
{log Θ (u − α) − log Θ (u + α)} +

u∫

0

Z (α) du

=
1
2

log
Θ (u − α)
Θ (u + α)

+ uz (α) . (9.193)

It gives yet another definition of the elliptic integral of the third kind in terms
of his zeta and theta functions.

Real and Imaginary parts of π(K + iK′,α)

π
(
K + iK′,α

)
=

1
2
{
log Θ

(
K − α + iK′

)− log Θ
(
K + θ + iK′

)}

+
(
K + iK′

)
Z (α) . (9.194)

From H.E.I.E.P. 141.01

Z(K − α + iK′) − Z(K − α) + cs(K − α) du(K − α) − iπ/2K. (9.195)

Integrating both sides of this equation with respect to (K−α), the integration
of the zeta functions can be taken.

The integration of csu dnu can be found as
∫

cs u dn u du =
∫

csu dnu
snu

du (H.E.J.E.P. 120.02)

=
∫

dsnu
snu

= log sn u. (9.196)

The complete integration therefore produces

log Θ(K − α + iK′) + C1

= log Θ(K − α) + C2 + log sn(K − α) − iπ(K − α)/2K. (9.197)

Similarly

log Θ(K + α + iK′) + C1

= log Θ(K + α) + C2 + log sn(K + α) − iπ(K + α)/2K. (9.198)

By subtraction

log Θ(K − α + iK′) − log Θ(K + α + iK′)

= log
Θ (K − α)
Θ (K + α)

+ log
sn (K − α)
sn (K + α)

+
iπ
2K

(2α) . (9.199)

From H.E.I.E.P. 1051.03
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= log
Θ (K − α)
Θ (K + α)

+ log
Θ1 (−α)
Θ1 (α)

= log 1 = 0.

Similarly

= log
sn (K − α)
sn (K + α)

= log 1 = 0.

Hence log Θ(K − α + iK′) − log Θ(K + α + iK′) = iπα/K.
And

π(K − iK′,α) = (K + iK′) Z(α) + iπα/2K. (9.200)

Necessary formulae for deriving the expressions are available in ‘Handbook of
elliptic integrals for engineers and physicists, by Byrd, P.F. and Friedman,
M.D. (1954) and ‘Elements of the theory of elliptic and associated func-
tions with applications by Dutta, M., Debnath, L. (1965). All the values of
snα, cnα, dnα,Z(α) are read from the ‘Jacobian elliptic function tables’ by
Milne-Thomson Dover New York (1950).



10

Green’s Theorem in Potential Theory

In this chapter Green’s first second and third identities are defined. Using
Green’s theorem one can arrive at Poisson’s equation. Gauss’ theorem of total
normal induction in gravity field, estimation of mass of a subsurface body
from gravitational potential are given. It could be shown that the basic for-
mula of analytical continuation of potential field can be derived from Green’s
theorem. Two dimensional nature of the Green’s identities are shown The-
ory of Green’s equivalent layer which explains the ambiguity in interpretation
of gravitational potentials is discussed. Application of Green’s theorem for
deriving Green’s function and analytical continuation are respectively given
in Chaps. 14 and 16. Nature of the vector Green’s theorem is shown.

10.1 Green’s First Identity

Let a region R includes the Vol. V enclosed by the surface S. Let φ (x, y, z)
and ψ (x, y, z) are two scalar functions and we assume that both ψ and φ are
continuous and have non-zero first and second derivatives(Fig. 10.1).

We can define a vector in the form

�F = φ grad ψ (10.1)

Since
div

(
a�A

)
= a div �A + �A grad a (10.2)

where a and �A are respectively a scalar and a vector. Applying divergence
operation on both the sides of (10.1), we get,

div �F = grad φ gradψ + φ div gradψ. (10.3)

Integrating both the sides, we get
∫

ϑ

div �Fdν =
∫

ϑ

(gradφ grad ψ) dν +
∫

ϑ

φ∇2ψdv. (10.4)
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Fig. 10.1. A region R is having Vol. V and surrounded by the surface S

From Gausses divergence theorem , we get
∫

ν

div �F dν =
∫

s

Fnds =
∫

φ
∂ψ
∂n

ds. (10.5)

This is known as the Green’s Theorem in non-symmetrical form. It is also
known as the Green’s first identity.

If we write
�F = ψ gradφ (10.6)

we get a complementary equation which can be written in the form as
∫

s

ψ
∂φ
∂n

ds =
∫

ν

(grad ψ gradφ) dν +
∫

ψ∇2φdv. (10.7)

Subtracting (10.7) from (10.5) , we get
∫

ν

(
φ∇2ψ − ψ∇2φ

)
dν =

∫

s

(
φ
∂ψ
∂n

− ψ
∂φ
∂n

)
ds (10.8)

This is known as the Green’s second identity or Green’s theorem in symmet-
rical form.

10.2 Harmonic Function

Harmonic function is defined as the function which is continuous within a
finite region R, it has non zero first and second derivatives and it satisfies
Laplace equation within the region.
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10.3 Corollaries of Green’s Theorem

Some of the Corollaries of Green’s theorem are as follows:
Cor. 1 If φ and ψ are both harmonic and continuous within the region R,
then ∫ (

φ
∂ψ
∂n

− ψ
∂φ
∂n

)
ds = 0 (10.9)

since both ∇2φ = ∇2ψ = 0 and φ and ψ satisfy Laplace equation.
Cor. 2 If φ is harmonic and continuously differentiable in a closed region then
the integral of the normal derivative of φ over the boundary vanishes.

If we put ψ = 1, then
∫
∂φ
∂n

ds = 0. (10.10)

This region does not include any source. The surface integral of the normal
derivative of a harmonic function over any closed surface is zero.
Cor. 3 If a function φ is harmonic in a closed sphere of radius ‘a’ with the
centre at the point C, then φc is equal to the average of its values on the
boundary surface. This is known as the mean value theorem or the average
value theorem in potential theory. If this theorem is applied in the case of
bodies of simpler geometrics, say, in the case of a sphere (Fig. 10.2) then for
a sphere, the normal is along the radial direction, ∂φ

∂n = ∂φ
∂r . Elementary area

ds = r2 sin θ dθ dψ, where θ and ψ are respectively the polar and azimuthal
angles.

Hence ∫
∂φ
∂n

ds =
∫
∂φ
∂n

r2 sin θ dθ dψ

=

2π∫

0

π∫

0

∂φ
∂r

r2 sin θ dθ dψ = 0 (10.11)

Fig. 10.2. A sphere of outer and inner radii ‘a’ and ‘r’ respectively



310 10 Green’s Theorem in Potential Theory

Multiplying both the sides of (10.11) by dr and integrating with in the region,
we get

=

r∫

0

dr

2π∫

0

π∫

0

∂φ
∂r

r2 sin θ dθ dψ = 0

⇒
2π∫

0

π∫

0

(φr − φ0) r2 sin θ dθ dψ = 0

⇒
2π∫

0

π∫

0

φr r2 sin θ dθ dψ − 4πr2φ (c) = 0

⇒ φc =
1

4πr2

2π∫

0

π∫

0

φr r2 sin θ dθ dφ

=
1

4πr2

2π∫

0

π∫

0

φr ds

=
1

4πr2

∫ ∫
φs ds. (10.12)

This gives the value of the potential at the centre which is the average of its
potential on the surface i.e., the mean value theorem is

φc =
1
S

∮

s

φs ds (10.13)

Cor. 4 If a function φ is harmonic in a closed sphere, then φc at the centre
is equal to the average of its value through out the sphere. This is the second
average value or mean value theorem.

From (10.12), we can write

a∫

0

φc4πr2 dr =

a∫

0

∫

s

φ dsdr =
∫

ν

φ dν (10.14)

where a is the radius of the sphere. Therefore

⇒ φc =
1
ν

∫

ν

φ dν. (10.15)

Here the sphere considered is a solid sphere and ν is the volume of the sphere.
Cor. 5 If φ is a harmonic function and not constant in a closed region, then
φ cannot have maximum or minimum inside the region.
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Cor. 6 A maximum or a minimum value of a harmonic function occurs only
at a boundary of the region.
Cor. 7 If a function is harmonic in a region and is constants on the surface,
then it is constant throughout the region.
Cor. 8 Two functions φ and ψ which are harmonic in a region and are equal
at every point in the boundary are equal at every point in the region.
Cor. 9 If a solution of Laplace equation is found and has prescribed values
on the boundary, then the solution is unique. This is known as the uniqueness
theorem in potential theory.
Cor. 10 If a function is harmonic in a closed region and its normal derivatives
vanish in the boundary, then the function is constant throughout the region.
Cor. 11 If two functions are harmonic in a closed region and have the same
normal derivative at the boundary, then they differ by a constant.

10.4 Regular Function

The space outside the closed volume (Fig. 10.1) is called the infinite region
where r → ∞. If there be any function φ such that Lim

r→∞ rφ = finite or
Lim
r→∞ r grad φ = finite then φ is called a regular function at infinity. A potential
function is a regular function provided the source does not exist in the region.

Cor. 12 A function is harmonic in an infinite region if it has continuous
second derivative, satisfies Laplace equation and is regular at infinity.

With this definition of the harmonic and regular function, the theorem,
which we get is valid for infinite region. For an infinite region, the value
of a harmonic function is uniquely determined by the values of the normal
derivatives at the boundary.
Cor. 13 If φ and ψ are harmonic functions within a closed surface S and ψ
has a single pole on S so that

ψ =
1
r

+ ρ

where ρ is harmonic, then

φ (x, y, z) =
1
4π

∫

s

[
ψ
∂ψ

∂n
− φ

∂φ

∂n

]
ds. (10.16)

Cor. 14 If φ and ψ are harmonic within a closed surface and φ and ψ have
single poles at ρ1 and ρ2 respectively and

φ =
1
r1

+ ρ1 and ψ =
1
r2

+ ρ2
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then
1
4π

∫

s

(
φ
∂ψ
∂n

− ψ
∂φ
∂n

)
ds = φ (ρ1) − ψ (ρ2) (10.17)

where φ(ρ2) is the value of the function φ at the point ρ2.

10.5 Green’s Formula

Let a finite region R is bounded by the surface S. The point Q may be within
the volume or outside the region. The point P also may be within or outside
the region (Fig. 10.3). The coordinates of P and Q are respectively (x, y, z)
and (ξ,η, ζ). Here P is the observation point. Then the value of 1

r , which
behaves as a potential function, is given by

1
r

=
1[

(x − ξ)2 + (y − η)2 + (z − ζ)2
]1/2

(10.18)

(a) When the point P is outside
Let us take 1

r as a harmonic function and ψ as any other function. From
Green’s theorem, we get

∫

ν

1
r
∇2ψ dν =

∫

s

[
1
r

dψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds. (10.19)

Fig. 10.3. Observation point P is outside the region R
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Fig. 10.4. Observation point P is inside the region R

(b) When the point P is inside the body, ‘r’ may or may not be harmonic
strictly. We can isolate the point with a small semicircle (Fig. 10.4). In
the rest of the region 1

r is harmonic. For this region, the normal is always
outside the region. The boundary, which demarcates the region, and the
boundary, which isolates the point P, should be taken into consideration
separately.
Using ∇2

(
1
r

)
= 0, we get
∫

ν

1
r
∇2ψ dν =

∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds

+
∫

s′

[
1
r

dψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds. (10.20)

Let

I1 =
∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds

I2 =
∫

s′

[
1
r
∂ψ
∂n

]
ds

and

I3 =
∫

s′

[
ψ
∂

∂n

(
1
r

)]
ds.

Let us first evaluate the second integral, which entered into the (10.20)
due to the origin of the second surface, which isolates the point P. The
circle which isolates the point P is of radius ‘a’. Therefore
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I2 =
∫

s′

1
a

(
−∂ψ
∂r

)
a2 sin θ dθ dψ. (10.21)

Here −∂ψ
dr is the normal towards the centre because the movement is in

the clockwise direction as indicated by the arrows. Therefore

I2 = a

2π∫

0

π∫

0

−
(
∂ψ
∂r

)
sin θ dθ dψ. (10.22)

Now Lim
a→0

I2 → 0.
In the limit r → 0

I3 =
∫

s

[
−ψ

∂

∂n

(
1
r

)]
ds. (10.23)

Since ∂
∂n

(
1
r

)
= − 1

r2 = − 1
a2 when r → a, (10.23) reduces to

I3 = −
2π∫

0

π∫

0

ψ sin θ dθ dψ. (10.24)

Now taking the limit a → 0, the integral reduces to 4πψρ when the point
P is inside. Green’s theorem changes to the form

ψp = − 1
4π

∫

ν

1
r
∇2ψ dν +

1
4π

∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds (10.25)

This is the expression for the potential at a point when the point P is
inside the region R.

(c) When the point is on the boundary

When the point P is right over the boundary, the function 1
r is not strictly har-

monic. Approaching in a similar way, we get the expressions for the potentials
as

ψp = − 1
2π

∫

ν

1
r
∇2ψ dν +

1
2π

∫

s

(
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

))
ds (10.26)

because the solid angle subtended at the point P is 2π and not 4π.
If ψ is a potential function which is harmonic within the region then ∇2ψ =

0 and

ψp =
1
2π

∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds. (10.27)

Now we can summarise the Green’s formulae for potential as follows.
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(a) When the point P is outside
∫

s

[
1
r

∂ψ

∂n
− ψ

∂

∂n

(
1
r

)]
ds = 0. (10.28)

(b) When the point P is inside, then

ψp =
1
4π

∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds. (10.29)

This is the Green’s third formula.
(c) When the point P is on the boundary

ψp =
1
2π

∫

s

[
1
r
∂ψ
∂n

− ψ
∂

∂n

(
1
r

)]
ds. (10.30)

Green’s first and second identities are also known as Green’s formulae. The
second identity i.e., the Green’s symmetrical formula is more frequently used.
Only the first and second derivatives of φ and ψ enter in the surface integrals
and they are the normal derivatives. φ and ψ have continuous second deriva-
tives in the interior of the region V (entire volume). φ, ψ, ∂φ

∂n and ∂ψ
∂n remains

continuous in the closed region v + s, i.e. volume plus surface.
The second derivatives of φ and ψ are piecewise continuous in the volume

V. Green’s theorem is valid for each of the subregions into which the V is
divided by the surface of discontinuity. By addition of these formulae for each
subregions, we can obtain the theorem for the entire region.

10.6 Some Special Cases in Green’s Formula

(a) when ψ = 1, then ∫ ∫

v

∫
∇2φ dν =

∫

s

∂φ
∂n

ds (10.31)

(b) if φ = ψ, then
∫ ∫

v

∫
(∇φ)2 dν =

∫ ∫

s

φ
∂φ
∂n

ds −
∫ ∫

v

∫
φ∇2φdν (10.32)

(c) if φ is a regular harmonic function in v, then ∇2φ = 0, and one gets
∫ ∫

v

∫
(∇φ)2 dν =

∫ ∫
φ
∂φ
∂n

ds. (10.33)

(d) If φ and ψ are both harmonic functions inside the closed surface S, then
∫ ∫

s

(
φ
∂ψ
∂n

− ψ
∂φ
∂n

)
ds = 0. (10.34)
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10.7 Poisson’s Equation from Green’s Theorem

Let φ(ξ,η, ζ) is a function at a coordinate ξ,η, ζ which is continuous in a vol-
ume and is bounded by a closed surface S. Its first derivative is also continuous.
From Green’s theorem, we can write

∫

ν

∇2φ dν =
∫

s

∂φ
∂n

ds (10.35)

for continuous and finite distribution of matters. Here φ is a potential function
for continuous and finite distribution of matters. From Gauss’s theorem, we
can write ∫

∂φ
∂n

ds = −4π M or
∫

∇2φ dν = −4π M. (10.36)

Here M stands for the distribution of mass and is equal to M =
∫
ν

σdν.

σ(ξ,η, ζ) is the density of the matters distributed in the volume We can rewrite
(10.36) in the form ∫

ν

(∇2φ + 4πσ
)
dν = 0 (10.37)

It reduces to
∇2φ = −4πσ (10.38)

This is the Poisson equation and it is valid for any kind of distribution of
matters.

10.8 Gauss’s Theorem of Total Normal Induction
in Gravity Field

Let φ be the gravitational potential due to certain distribution of masses both
inside and outside the domain R. Let ψ, the other scalar potential function is
assumed to be constant both outside and inside the region S. We can write
from Green’s second identity

∫

v

∇2φ dv =
∫

s

∂φ
∂n

ds (10.39)

where φ is a harmonic function. Since ψ is assumed to be constant, its deriva-
tive with respect to the direction normal to the surface is zero. Let φin and φout

are respectively the potential both inside and outside S. φout obeys Laplace
equation is a source free region and φin obeys Poisson’s equation because the
masses are included within the domain.

∫ ∫

v

∫
∇2φoutdv = 0 (10.40)
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and ∫ ∫

v

∫
∇2φout dv = −4πGM (10.41)

Here M is the total mass included by the surface. It is important to note these
Green’s formulae is independent of the sizes and shapes of the distribution of
masses and sizes and shapes of the boundaries. Hence

∫ ∫

v

∫
∇2φdv =

∫ ∫
∂φ
∂n

ds = −4πGM (10.42)

This is Gauss’ law of total normal induction. It states that the total normal
gravitation flux on a closed bounded surface is equal to 4πG times the total
M of one body or multiple bodies inside the closed domain. Here G is the
universal gravitational constant.

10.9 Estimation of Mass in Gravity Field

Since Gauss’ law of total normal induction is valid in gravity field also, we
can assume that the anomalous masses which are generating gravity anomaly
because of density contrast are relatively nearer to the surface and we estimate
the total normal induction on the surface of a sphere of infinite radius. We
divide this sphere into two hemispheres and the central horizontal plane which
cuts the sphere into two parts.The first part represent the surface of the
earth, where we seek the mass to be estimated. And the second part is upper
hemisphere of infinite radius.We can now write the total normal induction as

∫

Plane

∂φ

∂n
ds+

∫

Hemisphere

∂φ

∂n
ds = −4πGM (10.43)

We can divide the total normal induction equally in upper and lower hemi-
sphere and each sector will have −2πGM where M is the total anomalous mass.
This induction is independent of the total number of bodies present and their
sizes and shapes. Therefore, on the surface, we can write the expression for
the integral on gravity anomaly as

∫

surface

Δgds = 2πGM (10.44)

where Δg is the gravity anomaly and M is the mass excess due to density
contrast with the host rock. Surface integration is carried over the plane of
observation.
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10.10 Green’s Theorem for Analytical Continuation

By analytical continuation we mean potential measured in one plane or level
can be transferred to another plane or level mathematically or analytically
(see Chap. 16). If P is any point outside the domain with surface S and
φ/ = 1

r where r is the distance of P from any volume element dv at Q inside
the domain bounded by S (Fig. 10.4). Since φ/ is an harmonic function, it
satisfies Laplace equation ∇2φ/ = 0 at all points throughout V. Inside the
volume V1 the potential satisfies Poisson’s equation. Therefore we can write
∇2φ = −4πGM, where G is the universal gravitational constant and M is
the total mass. From Green’s second identity or symmetrical form of Green’s
theorem, we can write

4π
∫ ∫

v

∫
Gρ dv

r
=

∫ ∫

s

[
φ
∂

∂n

(
1
r

)
− 1

r
∂φ
∂n

]
ds (10.45)

⇒ φP =
1
4π

∫

s

[
φ
∂

rn

(
1
r

)
− 1

r

(
∂φ
∂n

)]
ds (10.46)

where

φP =
∫

Gdm
r

(10.47)

is the potential at P due to mass distribution inside S. One can estimate the
potential at any point outside a closed surface S if the potential φ and its
normal derivative ∂φ

∂n are known at all points on the surface. The potential
φ is the combined potential due to the masses inside and outside S. φ is the
potential due to the masses enclosed by the surface only.

Now on the surface of a hemisphere

φ
∂

∂n

(
1
r

)
= 0 and (1/r)

(
∂φ
∂n

)
= 0

because the hemisphere radius is infinitely high. Hence (10.47) becomes

φP =
1
4π

∫

Plane

[
φ
∂

∂n

(
1
r

)
− 1

r
∂φ
∂n

]
ds/ (10.48)

Figure 10.5 shows that the images of mass distribution are within the enclosed
volume of the upper hemisphere. These images also produce the potential on
the boundary surface of the two hemisphere. If φ1 is the potential due to the
distribution of images in the upper hemisphere, the potential and its normal
derivatives must be equal on the plane which divides the two hemispheres.
Since the normals n and n1 are in the opposite direction, we can write
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Fig. 10.5. Distribution of masses in the lower half space and their images in the
upper half space

φ = φ1 and
∂φ
∂n

=
∂φ1

∂n1

on the plane. For upper hemisphere
∫ [

φ1

∂

∂n1

(
1
r

)
− 1

r
∂φ1

∂n1

]
ds = 0 (10.49)

with no masses inside. Thus
∫

Plane

φ
∂

rn

(
1
r

)
ds = −

∫

Plane

1
r
∂φ
∂n

ds. (10.50)

Therefore (10.49) can be rewritten as

φP = − 1
2π

∫

Plane

1
r
∂φ
∂n

ds. (10.51)

Taking z axis as positive vertically downward and normal to the plane we get

φP = − 1
2π

∫

s

1
r
∂φ
∂n

ds (10.52)
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This is the upward continuation integral. This integral is valid for the upper
hemisphere where (10.52) is valid. The plane of observation at any height in
the upper hemisphere does not contain any mass responsible for the potential
φ. Further details on the topic is discussed in Chap. 16.

10.11 Green’s Theorem for Two Dimensional Problems

For a two-dimensional problem, the potential is logarithmic

φ = −2Gm�
�n

(
C
r

)
(10.53)

This is the expression for gravitational potential due to a long line source of
mass m
. C is any arbitrary constant. For two-dimensional problems

(a) the Laplace and other connecting equations are

(i) ∂2φ
∂x2

+
∂2φ
∂y2

= 0 (10.54)

(ii) ∇2

(
�n

1
r

)
= 0. (10.55)

(b) Gauss’s divergence theorem is

div�F = Lim
Δs→0

∮ �F.
−→
dl

ΔS
(10.56)

where as for three dimensional problem it is

div�F = Lim
Δν→0

∫

s

�F.ds
Δ ν

. (10.57)

(c) Green’s second identity can be obtained from

�F = φ gradψ

where both φ and ψ are functions of x and y. It is given by
∫

s

(
φ∇2ψ − ψ∇2φ

)
ds =

∫




(
φ
∂ψ
∂n

− ψ
∂φ
∂n

)
d�. (10.58)

(d) The mean value theorem is the value of the logarithmic potential at the
centre of the circle and it is the average of potentials at the circumference.

(e) For Green’s formula in two dimensions φ = �n
(

1
r

)
and ψ is any function.

Here
r =

√
(x − ξ)2 + (y − η)2.
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If the point P is outside (Fig. 10.4) the closed surface, �n
(

1
r

)
is continuous

and harmonic. When the point P is inside, we shall have to draw a small
circle surrounding the point P to avoid singularity as it is done in the 3-D
case. Green’s formula for the 2-D case is given by

ψp =
1
2π

∮




[
�n

(
1
r

)
∂ψ
∂n

− ψ
∂

∂n

(
�n

1
r

)]
d�

= 2π
∮




(
ψ
∂

∂n
�n r − �n r

∂ψ
∂n

)
d�. (10.59)

When the point P is outside, we get

0 =
1
2π

∮




(
ψ
∂

∂n
�n r − �n r

∂ψ
∂n

)
d�. (10.60)

When the point P is on the boundary of an area in two dimensions

ψp =
1
π

∮




{
ψ
∂

∂n
�n r − �n r

∂ψ
∂n

}
d�. (10.61)

If the point P lies on the boundary C, the point P is excluded from the region
of integration by enclosing it in a small circle of radius ‘a’ and the ‘a’ is made
to approach zero. The factor 1

2π enters here instead of 1
4π , since 2π is the

circumference of an unit circle. Every potential possesses continuous partial
derivatives.

10.12 Three to Two Dimensional Conversion

For three to two dimensional conversions of the potential problems the fol-
lowing factors are to be changed i.e.

3-D 2-D
(i) Volume → area
(ii) Surface → curve lines
(iii) Sphere → circle

(iv)
1
r
→ �n

(
1
r

)

(v) 4π → 2π
(vi) 2π → π

(vii)
∂2φ
∂z2

+
∂2φ
∂y2

+
∂2φ
∂z2

or
∂2φ
∂x2

+
∂2φ
∂z2

(10.62)
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Fig. 10.6. Distribution of masses both inside and outside the region R and surface S

10.13 Green’s Equivalent Layers

For Poisson’s field when the source is included

∇2φ = −4πρ (10.63)

where ρ is the volume density of mass and ∇2φ = 0 for Laplace field in a
source free region. Let us assume a certain region R has the volume V and
is bounded by the surface S. Some masses are present inside and some are
outside the domain boundaries as shown in the Fig. 10.6. Potential at a point
P due to the distribution of mass using Green’s theorem is

φp =
1
4π

∫

s

∫ [
1
r
.
∂φ
∂n

− φ
∂

∂n

(
1
r

)]
ds +

∫ ∫

v

∫
ρdv
r

dν (10.64)

I1 ↓ I2 ↓

I2 indicates the components of potential at a point P due to all the sources
included in the volume V. The surface S is drawn to separate the volume V
that contains all the sources inside and the sources outside the region.



10.13 Green’s Equivalent Layers 323

I1 =
∫

s

∫
1
r

(
1
4π
.
∂φ
∂n

)
ds −

∫

s

∫
φ
4π
.
∂

∂n

(
1
r

)
ds (10.65)

σs ↓ ↓
Surface distribution of masses Double layer distribution

The first integral represents the potentials due to simple surface distribu-
tion σs. The second integral represents the potential due to surface distribution
of double layer dipoles of charge or mass distribution of moment m. Hence we
can show the redistribution of masses as shown in the Fig. 10.7. We can divide
the total normal induction equally in upper and lower hemisphere and each
sector will have −2πGM where M is the total anomalous mass. This induc-
tion is independent of the total number of bodies present and their sizes and
shapes. Therefore, on the surface, we can write the expression for the integral
on gravity anomaly as ∫

surface

Δgds = 4πGM (10.66)

where Δg is the gravity anomaly and M is the mass excess due to density
contrast with the host rock. Surface integration is carried over the plane of
observation.

∫ ∫ ∫
ρdν
r

+
∫ ∫

σsds
r

+

↓ ↓
Volume distribution Surface distribution
of masses of masses

Fig. 10.7. Mass distribution in the region both inside and outside the region can
be changed to mass distribution inside,surface distribution of masses and dipolar
distribution
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∫ ∫
m
4π

∂

∂n

(
1
r

)
ds

↓
Double layer
distribution of masses

The sources outside the surface can be redistributed and taken on the bound-
ing surface S as a simple surface distribution and a double layer distribution.
In a source free region where ∇2φ = 0, the potential is

φp =
1
4π

∫

s

∫ [
1
r
∂φ
∂n

− φ
∂

∂n

(
1
r

)]
ds (10.67)

This is known as the Green’s third formula. From this equation, we can see
that the value of a harmonic function in the interior region of volume V, where
it is regular, is determined. We know the value of the function and its normal
derivatives on the boundary, We assumed also that φ and ∂φ

∂n are continuous
on approaching the boundary S.

Green’s third formula states that: every regular harmonic function can be
represented as the sum of the potentials due to a surface distribution and a
double layer distribution on the surface.

Green’s theorem of equivalent layer states that

(a) the effect of matter lying outside of any closed surface S may be replaced
at all the interior points by the superposition of a single layer and a double
layer on S.

(b) The effect of matter lying within a closed surface may be replaced at all
the exterior points by the superposition of a single layer and a double
layer.

(c) The matter contained outside (or inside) any closed equipotential sur-
face S in a given field can be spread over the surface with a surface
density - 1

4π
∂ψ
∂n at a point on the surface without altering the potential

at any point in the field inside (or outside) S. Some parts of the matter
are also distributed in the form of double layer with dipole moment m

4π .
distribution and is knows as Green’s equivalent layers and it explains the
ambiguity in the potential fields i.e., many different sets of distribution
of masses can generate the same type of gravity responses on the surface.
Ambiguity do exist in other scalar and vector potential fields also.

10.14 Unique Surface Distribution

In a region bounded by S (Fig. 10.8), if φ0 is harmonic outside and φi is
harmonic inside, then one can write from Green’s theorem

φi =
1
4π

∮ [
1
r

∂φi
∂n0

− φi
∂

∂ni

(
1
r

)]
ds (10.68)
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Fig. 10.8. Unique surface distribution when the potential is harmonic both inside
and outside

when the observation point is also outside, one gets

0 =
1
4π

∮ [
1
r
∂φi

∂n0
− φi

∂

∂n0

(
1
r

)]
ds (10.69)

The two formulae are for potential inside and outside when the observation
point is inside. When the observation point is outside, One gets

0 =
1
4π

∮ [
1
r
∂φ0

∂n
− φ0

∂

∂ni

(
1
r

)]
ds → inside (10.70)

and

φ0 =
1
4π

∮ [
1
r
∂φ0

∂n
− φ0

∂

∂n0

(
1
r

)]
ds → outside (10.71)

Hence we get

φi =
1
4π

∮
1
r

(
∂φi
∂n0

+
∂φ0

∂ni

)
ds− 1

4π

∮ [
φi

∂

∂n0

(
1
r

)
+ φ0

∂

∂ni

(
1
r

)]
ds

(10.72)
Now ∂

∂ni
= − ∂

∂n0
and on the surface φi = φ0
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Therefore,

φi =
1
4π

∮

s

1
r

(
∂φi

∂n0
− ∂φ0

∂n0

)
ds (10.73)

φ0 =
1
4π

∮

s

1
r

(
∂φi

∂n0
− ∂φ0

∂n0

)
ds (10.74)

by adding the terms. Both values in (10.73) and (10.74) are exactly equal. If
φ0 be the potential at any point outside a closed surface S due to masses inside
the surface and φi is the potential at points inside the surface due to masses

outside and if φ0 = φi on the surface then the expression 1
4π

∫ (
∂φi
∂n − ∂φ0

∂n

)
ds
r

has the value φ0 at the external point and the value φi at the internal points.
Here r denotes the distance from the point source at any point on the surface.
n is the direction of the normal.

If in a closed surface S there are certain distribution of mass and if φi is
harmonic inside and φ0 is harmonic outside and if φi = φ0 on the surface, then
there exists one and only one surface distribution for which φi is the internal
potential and φ0 is the external potential.

10.15 Vector Green’s Theorem

Tai (1992) first demonstrated that if we take

�F = �P ×∇× �Q (10.75)

where �P and �Q are two vectors. Applying the vector identity we get

∇.�F = (∇× �P).(∇× �Q) − �P.∇×∇× �Q (10.76)

Substituting these values in Gauss’s divergence theorem we get
∫ ∫

v

∫ [
(∇× �P ) • (∇× �Q) − �P • ∇ ×∇× �Q

]
dv =

∫

s

∫
(�P ×∇× �Q)d�s =

∮

s

∫
�
n.(�P ×∇× �Q)ds

(10.77)

where �n denotes the outward normal unit vector on the surface.
By interchanging the role of �P and �Q, the way it was done for scalar

Green’s function, and taking the difference of the two resultant equations, we
get the vector Green’s theorem of second symmetrical formula as
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∫ ∫

v

∫
(�P.∇×∇× �Q − �Q.∇×∇× �P)dv

=
∫ ∫

s

(�Q ×∇× �Q − �P ×∇× �Q) �ds

−
∫ ∫

s

(�n.(�Q ×∇× �P − �P ×∇× �Q) ds. (10.78)



11

Electrical Images in Potential Theory

In this chapter a brief idea about the concept of electrical image and its use in
computation of perturbation potential in direct current flow field for layered
earth structures in bore hole geophysics are demonstrated. Necessary formulae
for computation of potentials across a horizontally stratified 3 layered bed
are given for two, three and seven(laterolog-7) electrode configurations. This
approach for solution of the boundary value problems is restricted to problems
with simpler geometries.

11.1 Introduction

Many of the potential problems in direct current potential domains can be
solved using the concept of images. The analogy is drawn from optics. It
is shown that using more than one reflector one can get several series of
images, the way one gets the optical images in between the two mirrors. The
only condition required to satisfy is potentials must be continuous across the
boundary (or reflector). This technique for computation of potential is only
valid for plane boundaries (Dakhnov (1962), Keller and Frischknecht (1966).
Concept of images with spherical boundaries are available in. (Ramsay 1940),
Macmillan (1958).

11.2 Computation of Potential Using Images
(Two Media)

The potential at a point at a distance ‘r’ from a point current source embedded
in an infinite and homogeneous medium of resistivity ‘ρ’ is given by

φ =
Iρ
4π

1
r

(11.1)
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where I is the current flowing through the medium. In a semiinfinite medium
when the current electrode is on the surface,

φ =
Iρ
2π

1
r
. (11.2)

For two homogeneous and isotropic semiinfinite media of resistivity ρ1 and ρ2

(Fig. 11.1) the potential at a point P due to current source I is

φ =
ρ1

4π

(
I
r

+
I′

r′

)
. (11.3)

Here I’ is termed as the electrical image of I at P. P and P′ are at a same
distance from the boundary of the two media of resistivity ρ1 and ρ2. Some
analogy can be drawn from the theory of optics. This perturbation term,
originated from the concept of image and has to satisfy the basic boundary
conditions in direct current electrical method i.e., (i) the potential on both
the media must be same on the boundary and (ii) the normal component of
the current density is continuous across boundary.

These boundary conditions are φ1 = φ2 and

J1

(
=

1
ρ1

∂φ
∂n

)

1

= J2

(
=

1
ρ2

∂φ
∂n

)

2

. (11.4)

Potential in a medium 2 due to a current source in a medium 1 is given by

φ2 =
ρ2I
′′

4πr′′
(11.5)

where I′′ is the reduced current strength and r′′ is the distance of the point of
observation in the medium 2 from the source I in the medium 1.

Fig. 11.1. Electrical Image for a plane single boundary between two semi infinite
media of resistivity ρ1 and ρ2 respectively
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In order to determine the strengths of the fictitious current, we shall
apply the boundary conditions stated above. At the boundary since r = r′

(Fig. 11.1), we get
ρ1(I + I′) = ρ2I

′′. (11.6)

Applying the second boundary condition, we get
(

1
ρ1

∂φ1

∂n

)

1

=
1
4π

[
∂

∂r

(
I

r

)
∂r

∂n
+

∂

∂r′

(
I ′

r′

)
∂r′

∂n

]

= − 1
4π

(
I

r2
dr

dn
+
I ′

r′2
dr′

dn

)
(11.7)

and
1
ρ2

∂φ2

∂n
=

1
4π

∂

∂r

(
I ′′

r′′

)
dr

dn
= − I ′′

4πr′′2
dr′′

dn
. (11.8)

At the boundary r = r′ and dr
dn = −dr′

dn . Equating (11.7) and (11.8), we get

I − I′ = I′′. (11.9)

Equations (11.6) and (11.9) yields

I′ =
ρ2 − ρ1

ρ2 + ρ1

I = K12I (11.10)

and

I′′ =
(

1 − ρ2 − ρ1

ρ2 + ρ1

I
)

=
2ρ2

ρ1 + ρ2

I = (1 − K12) I. (11.11)

K12 and (1−K12) are termed respectively as reflection factor and transmission
factor. Potentials in the first and second media are respectively given by

φ1 =
ρ1I
4π

(
1
r

+
K12

r′

)
(11.12)

φ2 =
ρ2I
4π

(1 − K12) . (11.13)

We can now compare electrical images with optical images. Current source
should be replaced by a source of light and boundary between the two media
should be replaced by a mirror of reflection coefficient K12 and transmission
coefficient (1−K12). If the light source is seen from medium 1, one can measure
the intensity of light due to the source and the reflected light intensity I′ and
coming from the image point P′. If the light source is viewed from medium 2,
one will see the light with reduced intensity (1 − K12) I.
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11.3 Computation of Potential Using Images
(for Three Media)

A simple approach for computing potential field using the theory of electrical
images is discussed. The use of images, has major application in plane bound-
ary problems. Concept of image can also be applied for spherical boundary
problem. The potential field can be found out very easily for a medium with
two plane and parallel boundaries using this method. The problem is one of
determining the potential function for three regions designated as medium
1,2 and 3 having resistivities ρ1, ρ2 and ρ3. The regions are separated by two
plane parallel boundaries P and Q (Fig. 11.2). The general set up and the
position of the different series of current images and their strengths, when
the current source is situated in medium 1 at a point A, are shown In the
Fig. 11.2. Here H is the thickness of medium 2, the target bed, Z, is the dis-
tance of the current electrode from the interface P, between medium 1 and 2
; D, is the distance between the current and potential electrodes. Kij is the
reflection factor for medium i and j, where Kij = (ρj − ρI)/(ρj + ρI), i and j
varies between 1 2 and 3 and I is the current strength. For determining the
potential at a point, we have to first find out the potential at a point due to
the source irrespective of whether the source and the observation point (s) are
in the same or in different medium (or media). Next the contributions from
series of images are computed and are algebraically added up.

Distribution of image current sources in a medium with two parallel plane
boundaries; the original current source A [I] in medium 1 are shown in the
Fig. (11.2). These series of images originated to satisfy the two boundary
conditions at the interfaces, i.e.,

1) φ = φ′

2) Jn = J′n

where φ and φ′ are the potentials and Jn and J′n are the normal components of
the current densities on both the sides of the interface. More than one series
of images are generated for any current source placed in any medium.

Any current source placed in medium 1 at a distance z from the interface P
has to satisfy the boundary conditions at P. By introducing the image source
A1

(2) of strength IK12 the boundary condition at P is satisfied. The potential
function in medium 2 will be the same as it would be in a fully infinite and
homogeneous medium with a source of reduced intensity I(1 − K12).

Now, to satisfy the boundary condition at Q, another fictitious current
source A1

(3) in medium 3 at a distance 2 (H + Z) from the current source at
A has to be introduced. The strength of this source will be 1(1 − K12)K23.

Addition of this second fictitious source indicates that the boundary con-
ditions at P is no longer valid. A third image at the point A1

(1) in the first
medium is needed to satisfy the boundary conditions. The strength of the
image source will be I (1 − K12)K21K23 and located at a distance 2(2H + Z)
from the image A1

(3) in the third medium and 2H from the original current
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Fig. 11.2. Shows the formation of images in a layered medium

source A. When the addition of third image A1
(1) satisfy the boundary con-

ditions at P, the boundary conditions at the interface Q becomes invalid. To
restore this, another image source A2

(3) of strength I(1 − K12)K23 K21 K23

has to be introduced in the third medium at a distance 2(2H + Z) from the
original current source at A.

The process of developing image sources will continue infinitely for bal-
ancing out the proceeding boundary condition. This process will create two
infinite series of image sources one in medium 1 and other in medium 3.
In medium 1, the generalized expression of the image current source are
I(1 − K12)(K21 K23)n and are located at a distance 2nH from the original
current source at A and in medium 3, the expression of image current sources
are I(1 − K12)K23(K21 K23)n−1 at a distance of 2(nH + Z) from the source
current. Depending on the position of the electrodes current image sources are
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used for calculation of potentials. For example if potential current electrodes
are in medium 1, the images in medium 1 are not considered.

Proceeding in a same way, it can be shown that if we have a current
source in medium 2, then there will be four series of images. Considering a
point source electrode at a distance Z from the interface P, the generalized
expressions for image sources are described below.

a) First series of images in the medium 1 with strength IK21(K21 K23)n−1 at
a distance 2(n − 1)H + Z from the current source.

b) Second series of images in the medium 1 with strength I(K21 K23)n at a
distance 2nH from the current source.

c) First series of images in the medium 3 with strength IK23(K21 K23)n−1 at
a distance 2(nH − Z) from the original current source.

d) Second series of images in the medium 3 with strength I(K21 K23)n

Proceeding in the similar way, expression for image sources when the cur-
rent electrode is in medium 3 can be found out. In the following section a
set of general expressions of potentials are given considering one current and
one potential electrode. They cover all possible combination that can appear
considering two electrodes and three media with two parallel boundaries.

11.4 General Expressions for Potentials Using Images

To generate these expressions for potentials we have taken a 3 layered earth
model with upper shoulder bed resistivity ρ1 (medium 1), target bed resistivity
ρ2 (medium 2) and lower shoulder bed resistivity ρ3 (medium 3) ; H is the
target bed thickness, distance of current electrode z is calculated from the
interface between medium 1 and medium 2, when the current electrode is
in the medium 1. The distance z is also calculated from the interface of the
medium 2 and medium 3 when the current electrode is in the medium 3, D
is the electrode separation, K12,K23,K21 are the reflection coefficients where
K12 = (ρ2 − ρ1)/(ρ2 − ρ1) and K23 = (ρ3 − ρ2)/(ρ3 + ρ2) and I is the current
sent. In some expressions ± sign is given. This is due to the relative positions
of the electrodes in a particular medium. Basic equation for calculation of
potential measured at the borehole axis (r = 0) due to one point source
current electrode can be written as follows.

a) Expressions of potential at a point when both the electrodes are in
medium 1

φ1
1 =

ρ1I
4π

[
1
D

+
K12

(2Z ± D)
+ (1 − K12)K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z ± D)

]
(11.14)

b) Expression of potential at a point when the current electrode is in medium
1 and the potential electrode is in medium 2
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φ1
2 =

ρ2I
4π

(1 − K12)

[ ∞∑
n=0

(K12 K23) n
(2nH + D)

+ K23

∞∑
n−1

(K21 K23)
(2nH + 2Z − D)

]

(11.15)
c) Expression of potential at a point when the current electrode is in medium

1 and the potential electrode is in medium 3

φ1
3 =

ρ2I
4π

(1 − K12) (1 − K23)
∞∑

n=0

(K21 K23)
n

2nH + D
(11.16)

d) Expression of potential at a point when the current electrode is in medium
2 and the potential electrode is in medium 1

φ2
1 =

ρ1I
4π

(1 − K21)

[
1
D

+
∞∑

n=1

(K21 K23)
n

(2nH + D)

+K23

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2 (H − Z) + D}

]
(11.17)

e) Expression of potential at a point when both the electrodes are medium 2

φ2
2 =

ρ2
I

4π

[
1
D

+ K21

∞∑
n=1

(K21K23)
n−1

{2 (n − 1)H + 2Z± D}

+ K23

∞∑
n−1

(K21 K23)
n−1

{2 (n − 1)H + 2 (H − Z) ∓ D}

+
∞∑

n=1

(K21 K23)
n

2nH ± D
+
∞∑

n=1

(K21K23)
n

(2nH ∓ D)

]
(11.18)

f) Expression of potential at a point when the current electrode is in medium
2 and the potential electrode is in medium 3

φ2
3 =

ρ3I
4π

(1 − K23)

[
1
D

+
∞∑

n=1

(K21 K23)
n

(2nH + D)

+K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2Z + D}

]
(11.19)

g) Expression of potential at a point when the current electrode is in medium
3 and the potential electrode is in medium 1

φ3
1 =

ρ3I
4π

(1 + K12) (1 + K23)
∞∑

n=0

(K21 K23)
n

(2nH + D)
(11.20)
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h) Expression of potential at a point when the current electrode is in medium
3 and the potential electrode is in medium 2

φ3
2 =

ρ2I
4π

(1 + K23)

[ ∞∑
n=0

(K21 K23)
n

(2nH + D)
− K12

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z − D)

]

(11.21)
i) Expressions of potential at a point when both the electrodes are in

medium 3

φ3
3 =

ρ3I
4π

[
1
D

− K23

2Z ± D
− (1 − K23)K12

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z± D)

]
(11.22)

11.5 Expressions for Potentials for Two Electrode
Configuration

For full space with two plane parallel boundaries there will be in total five
cases for two electrode configurations (Fig. 11.3) when target bed thickness
is greater than tool length. If target bed thickness is less than tool length a
special case arises (Fig. 11.3). In any set up the total number of tool positions
with respect to target bed are five. Expressions for Potential for different cases
are given below. For two-electrode configuration, the return current electrode
and other potential electrode are theoretically assumed at infinite distances. In
reality, they are kept away from the electrode system AM. Tool configuration is
shown in the Fig. 11.3 and AM (=D) is the electrode separation. Expressions
for potentials for five cases are

Cases for thick bed (H > L)

Case 1:

φM

ρ1I
4π

[
1
D

+
K12

2Z − D
+ (1 − K12)K23

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z − D)

]
(11.23)

Case 2:

φM =
ρ2I
4π

(1 − K12)

[ ∞∑
n=0

(K21K23)
n

(2nH + D)
+ K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z − D)

]
(11.24)
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Fig. 11.3. Three media with two plane parallel boundaries; first and third media
are semiinfinite media; second medium has finite thickness; two electrode (AM) and
three electrode (AMN) set up are approaching and crossing the two boundaries;
5 and 7 set of images are respectively formed as shown; thin bed case, i.e., bed
thickness less than the electrode separation are presented

Case 3

φM =
ρ2I
4π

[
1
D

+ K21

∞∑
n=1

(K21K23)
n−1

{2 (n − 1)H + 2Z + D}

+ K23

∞∑
n=1

(K21K23)
n−1

{2 (n − 1)H + 2 (H − Z) − D}
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+
∞∑

n=1

(K21K23)
n

(2nH + D)
+
∞∑

n=1

(K21K23)
n

(2nH − D)

]
(11.25)

Relative tool positions for normal and lateral electrode

Case 4:

φM =
ρ3I
4π

(1 − K23)

[
1
D

+
∞∑

n=1

(K21 K23)
n

(2nH + D)
+ K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2Z + D}

]

(11.26)

Case 5:

φM =
ρ3I
4π

[
1
D

− K23

(2Z + D)
− (1 − K23)K12

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z + D)

]
(11.27)

Special case for thin bed (H < L):

Case 3:

φM =
ρ3I
4π

(1 − K12) (1 − K23)
∞∑

n=0

(K21 K23)
n

(2nH + D)
(11.28)

Apparent resistivity (ρa) at each point of the run is computed using the for-
mula

ρa = 4π.AM.
φM

I
(11.29)

where, AM is the tool length and I is the current intensity.

11.6 Expressions for Potentials for Three Electrode
Configuration

In case of lateral or three-electrode arrangement, the total cases in any setup
are seven. Both thick bed (H > L) and thin bed (H < L) cases are con-
sidered. The different positions including the special cases for thin bed are
shown in Fig. 11.3 Bed thickness less than potential probe separation (MN)
is not considered, as the separation is very less compared to tool length. Tool
configuration is shown in Fig. 11.3 where A is the current electrode and M,
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N are the two potential electrodes. AM(= D1), AN(= D2) and MN are dis-
tances between different electrodes. O is the mid point between M, N and
AO is considered the tool length. Return current electrode is considered at an
infinite distance. Expressions of potentials at different positions are given in
the following section.

Cases for Thick Bed (H > L):

Case 1:

φM =
ρ1I
4π

[
1

D1
+

K12

(2Z − D1)
+ (1 − K12)K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z − D1)

]
(11.30)

φN =
ρ1I
4π

[
1

D2
+

K12

(2Z − D2)
+ (1 − K12)K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z − D2)

]
(11.31)

Case 2:

φM =
ρ1I
4π

[
1

D1
+

K12

(2Z − D1)
+ (1 − K12)K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z − D1)

]
(11.32)

φN =
ρ2I
4π

(1 − K12)

[ ∞∑
n=0

(K21 K23)
n

(2nH + D2)
+ K23

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z− D2)

]
(11.33)

Case 3:

φM =
ρ1I
4π

(
ρ2I
4π

)
(1 − K12)

[ ∞∑
n=0

(K21K23)
n

(2nH + D1)
+ K23

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z − D1)

]

(11.34)

φN =
ρ2I
4π

(1 − K12)

[ ∞∑
n=0

(K21 K23)
n

(2nH + D2)
+ K23

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z − D2)

]
(11.35)

Case 4:

φM =
ρ2I
4π

[
1

D1
+ K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2Z + D1}
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+ K23

∞∑
n=1

(K21K23)
n−1

{2 (n − 1)H + 2 (H − Z) − D1}

+
∞∑

n=1

(K21 K23)
n

(2nH + D1)
+
∞∑

n=1

(K21 K23)
n

(2nH − D1)
(11.36)

φN =
ρ2I
4π

[
1

D2
+ K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2Z + D2}

+ K23

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1) H + 2 (H − Z) − D2}

+
∞∑

n=1

(K21 K23)
n

(2nH − D2)
+
∞∑

n=1

(K21 K23)
n

(2nH − D2)

]
(11.37)

Case 5:

φM =
ρ2I
4π

[
1

D1
+ K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2Z + D1}

+ K23

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1)H + 2 (H − Z) − D1}

+
∞∑

n=1

(K21 K23)
n

(2nH + D1)
+
∞∑

n=1

(K21 K23)
n

2nH − D1

]
(11.38)

φN =
ρ3I
4π

(1 − K23)

[
1

D2
+
∞∑

n=1

(K21 K23)
n

(2nH + D2)

+ K21

∞∑
n=1

(K21 K23) n − 1
{2 (n − 1)H + 2Z + D2} (11.39)

Case 6:

φM =
ρ3I

4π (1 − K23)

[
1

D1
+

∞∑
n=1

(K21K23)
n

(2nH + D1)
+ K21

∞∑
n=1

(K21K23)
n−1

{2 (n − 1) H + 2Z + D2}

]

(11.40)

φN =
ρ3I

4π (1 − K23)

[
1

D2
+

∞∑
n=1

(K21 K23)
n

(2nH + D2)
+ K21

∞∑
n=1

(K21 K23)
n−1

{2 (n − 1) H + 2Z + D2}

]

(11.41)
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Case 7:

φM =
ρ3I
4π

[
1

D1
− K23

(2Z + D1)
− (1 − K23)K12

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z + D1)

]
(11.42)

φN =
ρ3I
4π

[
1

D2
− K23

(2Z + D2)
− (1 − K23)K12

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z + D2)

]
(11.43)

Special Cases for Thin Bed (H < L)

Case 4:

φM =
ρ2I
4π

(1 − K12)

[ ∞∑
n=0

(K21 K23)
n

(2nH + D1)
+ K23

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z − D1)

]
(11.44)

φN =
ρI
4π

(1 − K12) (1 − K23)
∞∑

n=0

(K21K23)
n

(2nH + D2)
(11.45)

Case 5:

φM =
ρ3I
4π

(1 − K12) (1 − K23)
∞∑

n=0

(K21K23)
n

(2nH + D1)
(11.46)

φN =
ρ3I
4π

(1 − K12) (1 − K23)
∞∑

n=0

(K21K23)
n

(2nH + D2)
(11.47)

Apparent resistivity (ρa) is calculated point by point using the relation

ρa = 4π.
AM.AN

MN
.
Δφ
I

(11.48)

where, Δφ = φM − φN and I is the current intensity.

11.7 Expression for Potentials for Seven Electrode
Configurations

Direct current response across the horizontal beds of contrasting resistivity
in an otherwise homogeneous and isotropic medium using vertically moving
seven electrode system in the absence of any borehole is computed to high-
light some points of principle. Seven electrode system assumed in this model
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differs from Schlumberger laterolog system on one point i.e., the bucking cur-
rent electrodes are not shorted to check the variation of I1/I0 and I2/I0. The
potential electrodes M1, M4 and M2, M3 are shorted the way it is done in LL7
(Laterolog -7) Schlumberger Log Interpretation Principle (1972). Differences
in potential between M1, M2 and M3, M4 has been brought to the same level
by equating the potentials developed. To get the maximum focusing all the
four potentials are equated. Theory of electrical images are used for compu-
tation of potentials. This derivation is based on four points.

(a) Current through the central electrode
∧
A0 can always be kept constant.

(b) It is possible to bring all the four potential electrodes in a same equipoten-
tial line by adjusting bucking currents. Bucking currents are the currents
I1 and I2 sent by two bucking or guard electrodes A1 and A2 (Fig. 11.3). To
avoid any current flow through the potential electrodes, they are instanta-
neously brought to the same potential by adjusting the bucking currents.

(c) By equating potentials developed in the four potential electrodes M1, M2,
M3 and M4, we get four nontrivial equations for φM1 = φM2, φM2 = φM3,
φM3 = φM4 and φM4 = φM1 to solve for either two (I1 and I2) or three
((I1, I2 and I0) unknowns for fixed or variable I0. Here two unknowns I1
and I2 are determined from four equations using the generalized inverse.

(d) Variable geometric factor is considered (Roy 1977) for computation of
apparent resistivity. A seven electrode system with a central focusing cur-

rent electrode
∧
A0 and a pair of guard or bucking current electrodes

∧
A1 and

∧
A2 are considered. Two pairs of shorted potential electrodes M1M4 and
M2M3 are taken and mathematical shorting is done equating φM1 = φM2

and φM3 = φM4. That ensures focusing of currents, i.e., the currents are
forced to flow in a particular direction in the form of a beam of current.
01 and 02 are respectively the mid points of M1M2 and M3M4.

∧
A1

∧
A2(= L) is the electrode separation. Most of the computations were done

with 0102 = 0.4L. Return current and potential electrodes are assumed to be

far away from the electrode system. Bucking current
∧
A1 and

∧
A2 are allowed to

remain open (not short circuited) and I1 and I2 are adjusted till the potentials
at M1, M2, M3 and M4 are made the same. Focussing current I0 is kept fixed.
Apparent resistivity at each point is computed using the geometric factor for
laterolog system, i.e.,

ρa =
4π[

1
A0M1

+
I1/I0
A1M1

+
I2/I0
A2M1

] φM1

I0
(11.49)

In total there will be 36 cases for computation of potential for different
positions of the seven electrode system. 15 of them are for thick beds (H > L)
where H is the bed thickness and L is the electrode separation. Rest 21 cases
are for thin beds (not shown). The expressions for potentials for thick beds



11.7 Expression for Potentials for Seven Electrode Configurations 343

Fig. 11.4. Seven electrode laterolog – 7 is crossing the boundaries; 15 cases of
electrode positions and formations of images are presented

and only for case 1 (Fig. 11.4) are presented here as a sample. Since the
derivation of these expressions are quite simple and straight forward (Keller
and Frischknecht 1966 and Dakhnov 1962), the rest of the exercise is omitted
from the text.

Here X11, X12, . . . .. X43 are the coefficients of I0, I1 and I2. These expres-
sions will differ for different cases. From equation (11.54) one can write

φM1 − φM2 = 0 = Y11I0 + Y12I1 + Y13I2 (11.50)
φM2 − φM3 = 0 = Y21I0 + Y22I1 + Y23I2 (11.51)
φM3 − φM4 = 0 = Y31I0 + Y32I1 + Y33I2 (11.52)
φM4 − φM1 = 0 = Y41I0 + Y42I1 + Y13I2 (11.53)
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where,

Y11 = (X11 − X21),Y12 = (X12 − X22) (11.54)
Y13 = (X13 − X23),Y21 = (X21 − X31) (11.55)
Y22 = (X22 − X32),Y23 = (X23 − X33) (11.56)
Y31 = (X31 − X41),Y32 = (X32 − X42) (11.57)
Y33 = (X33 − X43),Y41 = (X41 − X11) (11.58)
Y42 = (X42 − X12),Y43 = (X43 − X13) (11.59)

Equation (11.50) to (11.53) can be written in a matrix form as
⎡
⎢⎢⎣
Y12 Y13

Y22 Y23

Y32 Y33

Y42 Y43

⎤
⎥⎥⎦
[
I1
I2

]
= −

⎡
⎢⎢⎣
Y11

Y21

Y31

Y41

⎤
⎥⎥⎦ I0 (11.60)

In a matrix notation equation (11.65) can be written as

Y1 = Y′I0 (11.61)

Since all the four equation (11.55) to (11.58) are non trivial, the solution of
equation (11.66) for estimation of bucking currents can be obtained using the
least square estimator of a rectangular matrix (Draper and Smith, 1966) as

I = (YTY)−1(YTI0)I0 (11.62)

Here YT is the transpose of Y.
With the help of these 9 equations (11.55) to (11.60) one can easily gen-

erate the potential expressions associated with four potential electrodes in
this seven electrode system. Potential generated at any position will be the
algebraic sum of potential developed due to the current flowing at different
current electrodes. As an example we can give expression for potential for case
1 for thick bed (h > L).

Thick Bed Case: 1

Using the list of symbols given in the next section, we can write the expressions
for potentials at all the four potential electrodes as

φM1
=

ρ1I1
4π

[E1 + K1201 + (1 − K12)K23A1]

+
ρ1I0
4π

[E5 + K1207 + (1 − K12)K23A7]

+
ρ1I2
4π

[E9 + K1209 + (1 − K12)K23A9] (11.63)
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φM2
=

ρ1I1
4π

[E2 + K1202 + (1 − K12)K23A2]

+
ρ1I0
4π

[E6 + K1208 + (1 − K12)K23A8]

+
ρ1I2
4π

[E10 + K12010 + (1 − K12)K23A10] (11.64)

φM3
=

ρ1I1
4π

[E3 + K1203 + (1 − K12)K23A3]

+
ρ1I0
4π

[E7 + K1205 + (1 − K12)K23A5]

+
ρ1I2
4π

[E11 + K12011 + (1 − K12)K23A11] (11.65)

φM4
=

ρ1I1
4π

[E4 + K1204 + (1 − K12)K23A4]

+
ρ1I0
4π

[E8 + K1206 + (1 − K12)K23A6]

+
ρ1I2
4π

[E12 + K12012 + (1 − K12)K23A12] (11.66)

Above expressions for potentials (11.50) to (11.53), can be written in a short
form after separating out the terms of I1 and I0 and I2 as

φM1 = X11I0 + X12I1 + X13I2
φM2 = X21I0 + X22I1 + X23I2
φM3 = X31I0 + X32I1 + X33I2 (11.67)
φM4 = X41I0 + X42I1 + X43I2

Computation for two electrode configuration for thick and thin bed (H > L)
are done following Roy and Rathi (1981) and Dutta (1993).

List of Symbols

E1 =
1

D11
; E2 =

1
D12

; E3 =
1

D13
; E4 =

1
D14

; E5 =
1

D21
;

E6 =
1

D22
; E7 =

1
D11

;

E8 =
1

D24
; E9 =

1
D31

; E10 =
1

D32
; E11 =

1
D33

; E12 =
1

D34

01 =
1

2Z1 − D11
; 02 =

1
2Z1 − D12

; 03 =
1

2Z1 − D13
;
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04 =
1

2Z1 − D14
;

05 =
1

2Z2 − D23
; 06 =

1
2Z2 − D24

; 07 =
1

2Z2 + D21
;

08 =
1

2Z1 + D22
;

09 =
1

2Z3 + D31
; 010 =

1
2Z3 − D32

; 011 =
1

2Z3 + D33
;

012 =
1

2Z3 + D34
;

A1 =
∞∑

n=1

(K21K23)
n−1

(2nH + 2Z1 − D11)
; A2 =

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z1 − D12)
;

A3 =
∞∑

n=1

(K21K23)
n−1

(2nH + 2Z1 − D13)

A4 =
∞∑

n=1

(K21 K23)
n−1

(2nH + 2Z1 − D14)
; A5 =

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z2 − D23)
;

A6 =
∞∑

n=1

(K21K23)
n−1

(2nH + 2Z1 − D24)

A7 =
∞∑

n=1

(K21K23)
n−1

(2nH + 2Z2 + D21)
; A8 =

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z2 − D22)

A9 =
∞∑

n=1

(K21K23)
n−1

(2nH + 2Z3 + D31)
; A10 =

∞∑
n=1

(K21 K23)
n−1

(2nH + 2Z3 + D32)
;

A11 =
∞∑

n=1

(K21 K23)
n−1

(2nH + 2Z3 + D33)
; A12 =

∞∑
n=1

(K21K23)
n−1

(2nH + 2Z3 + D34)

where

K12, K21, K23 are the reflection factors.
Z1, Z2, Z3 are the distances of the current electrodes from the inter-

faces (Fig. 11.5).
D11, D12, D13, D14, D21, D22, D23, D24, D31, D32, D33, D34 are

the distances between different current and potential electrodes
(Fig. 11.5).

H is the target bed thickness. The nature of seven electrode responses
across a three media formation is given in Fig. 11.4.
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Fig. 11.5. Different positions of the current and potential electrodes with respect
to the boundaries in a seven electrode laterolog seven system for computation of
potentials



12

Electromagnetic Theory (Vector Potentials)

In this chapter basics of electromagnetics are introduced. Nature of a wavelet,
characteristics of waves, its amplitude and phase and their characteristic
equations, elliptic polarization, mutual inductance and their complex nature,
nature of wave propagation, attenuation of waves, skin depth, propagation
constant, Maxwell’s electromagnetic equations, Helmholtz electromagnetic
wave equations, Hertz and Fitzerald vector potentials, boundary conditions
in electromagnetics and poynting vector are discussed.

12.1 Introduction

In this chapter and in the next we shall discuss a few important aspects of
electromagnetic theory or the theory of time varying electromagnetic fields.
The treatments are based on vector potentials. Therefore the mathematical
treatments are essentially based on Maxwell’s electromagnetic equations and
Helmholtz electromagnetic wave equations. The treatments have typical geo-
physical orientation.

Magnetic field originates due to flow of charge or flow of current. When
this current becomes time varying in a source, electromagnetic field originates
and electromagnetic waves start propagating. These electromagnetic waves
are transverse waves, i.e., the direction of vibration of a particle in a medium,
through which the wave passes, is at right angles to the direction of propaga-
tion (Fig. 12.1).

Electromagnetic waves are similar to light waves and shear elastic waves
so far as the nature of propagation is concerned. Electromagnetic waves can
travel through any medium like air, gas, vacuum but not through a perfect
conductor. Through vacuum EM waves travel at a speed of light. In the very
broad spectrum of electromagnetic waves starting from gamma rays to radio
waves and beyond, visible light waves occupy only a narrow band VIBGYOR.
Velocity of electromagnetic waves get significantly retarded by several order
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Fig. 12.1. Transverse nature of electromagnetic wavelets orthogonal to the direction
of propagation

of magnitude when it travels through a medium of finite electrical conductiv-
ity. Even then the velocity of electromagnetic waves remain significantly more
than velocity of sound and elastic longitudinal P waves. Any wire loop or a
linear conductor carrying alternating or time varying current can become a
source of electromagnetic waves. As early as 1912 Faraday has demonstrated
through his famous experiment on electromagnetic induction that when a bar
magnet approaches a coil (circular or any other shape), current flows through
the coil and this current deflects a galvanometer (Chap. 5). Magnitude of
induced e.m.f. is proportional to the rate of change of number of lines of forces.
Magnitude of current depends on speed of forward and backward movement
to and from a coil. That is how electricity and magnetism are attached to each
other both in magnetostatics and in time varying electromagnetic fields. So
whenever time varying magnetic field is cut by a conductor, i.e. a body of finite
electrical conductivity, induced currents or eddy currents are generated within
these conductors. All the important terminologies, viz. wavelength, velocity,
frequency, time period, amplitude, phase, wave number are used to charac-
terise an electromagnetic or time varying field. Magnitude of these induced
currents or eddy currents are very much dependent upon the frequency of the
electromagnetic signals and the conductivity of the medium through which
an electromagnetic wave travels. So higher the conductivity and/or frequency
higher will be the eddy currents and higher will be the attenuation of EM sig-
nals according to the Lenz’s law of electromagnetic induction. So electromag-
netic waves travel through vacuum almost unattenuated. it travels through air
with very little attenuation but gets attenuated significantly when it travels
through a conductor. According to Lenz’s law, the eddy current opposes the
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incoming electromagnetic waves. So higher the conductivity and/or frequency
of the em signal, stronger will be the eddy currents, stronger will be the force
of opposition, greater will be the attenuation.

Electromagnetic waves are used in many walks of life such as information
technology, space technology, communication technology, defence, sports, nav-
igation etc. The details are beyond the scope of this book.

Scientists and engineers of many disciplines viz. electrical communication,
electrical power, aerospace engineering, physics, geophysics etc use electro-
magnetic waves. The role of electromagnetic waves in geophysics is very much
special in the sense that geophysicists deal with the earth, a spherical solid
body of radius nearly 6370km and the upper atmosphere upto the height of
magnetosphere/ magnetopause level, 3 to 6 times the radius of the earth, in
the outer space and the space above. Electrical Communication Engineers and
space technologists deal with chips, microchips, semi conductors, dielectrics or
machines for very long distance propagation, reflection, refraction, diffraction
and scattering of electromagnetic waves.

Geophysicists probably use the widest frequency band of the electromag-
netic waves. Their necessity forced them to do so. To study the earth from
electrical conductivity point of view, one needs very large depth of penetration
of the electromagnetic waves. Pacific or Atlantic Ocean with 4 to 5 km of saline
water cover, absorbs all the high frequency electromagnetic signals propa-
gated from the upper atmosphere towards the earth. So the starting frequency
of the signal is cycles/12 hours over ocean surface. Cycles/day cycles/week,
cycles/month, cycles/year, cycles/11 year are the frequency ranges for ocean
bottom electromagnetic studies. To have larger depth of penetration of elec-
tromagnetic waves geophysicists went toward lower and lower frequencies or
longer and longer periods. In exploration geophysics, the requirement for
depth of penetration is considerably less for shallow ground water and mineral
exploration problems. For oil exploration problem maximum depth of inves-
tigation should be of the order of 5 to 6 kms from the surface and that too in
sedimentary rocks. For solid earth geophysics, when we try to reach the centre
of the earth, one needs very very long period magnetic signals available only
from the permanent geomagnetic observatories. It was observed that resistiv-
ity of sedimentary rock is of the order of 1 to 30 ohm-m. Therefore 4 to 5 kms
of sedimentary rocks as in Cambay basin of western India, Bengal basin in
eastern India can considerably absorb the high frequency signals and atten-
uate the longer period signals. Hence for deeper probing, one should avoid
soft rocks and should try to take measurements over hard rock exposures.
Scientists search for granite windows to see beyond Moharovicic discontinu-
ity, lithosphere – asthenosphere boundary, olivine-spinel transition zone and
beyond. Highly resistive granites allow the high frequency signals to penetrate
deep inside.

There are other problems beyond upper crustal level. Depth of penetration
is controlled by skin depth (discussed later). Shallow magma chambers in a
high heat flow areas, lower crustal conductors originated due to accumulation
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of fluids, presence of continuous phase grain boundary graphites will absorb
the relatively higher frequency signals. Electrical conductivity of the earth’s
crust mantle silicates have very strong dependence on temperature. Since tem-
perature is increasing with depth and it reaches about 1200◦C to 1300◦C at
the lithosphere asthenosphere boundary, an insulator at room temperature can
become a conductor at 1300◦C/1400◦C. Conducting asthenosphere absorbs
electromagnetic signals. Longer and longer period electromagnetic signals
with poorer and poorer resolving power enter deep inside the earth. There-
fore, magnetovariational sounding (MVS), magnetotelluric sounding (MTS)
and long period geomagnetic depth sounding (GDS) are used to study deep
inside the earth. Fortunately the energy level of the earth’s natural electro-
magnetic field is very high (of the order of 1023 ergs) and the energy level
increases with period of the em signals coming from the magnetosphere level
and above. This naturally gifted property of the em signals coming from the
outer space with a very wide band of frequencies make the magnetotelluric
(MTS ), magnetovariational(MVS) and geomagnetic depth(GDS) sounding
possible.

For deeper probing, these earth’s natural electromagnetic fields are used.
These natural signals which originate due to interaction of the solar flares
with the magnetosphere, tidal oscillation of the ionosphere in the magne-
tosphere, ring current, diurnal and seasonal variations of the time varying
extraterrestrial electromagnetic fields, thunderstorm activities in between the
earth ionosphere waveguide have a very wide range of frequencies. Due to
phenomenal advancement in instrumentation, and development of softwares
for data processing and interpretation, it is now possible to collect data
over a very wide band of frequencies specially for very very low frequencies.
Four to five decades of research in instrumentation made these measurements
possible.

For shallow electromagnetics, used for groundwater and mineral explo-
ration, man made low power units having frequencies in the range of 300C/s
to 5000C/s are available. Signals within the frequency range of 20,000Hz are
used for induction logging. Signals of GigaHertz and MegaHertz frequencies
are used in electromagnetic propagation tool (EPT) in borehole geophysics.
EPT is used to demarcate the oil-water contact at the borehole wall. Here
half to one inch of penetration of EM signal is good enough. Therefore, the
frequency could be raised to the level which are used by communication engi-
neers. One naturally gifted properly which helped the geophysicists is the
significant difference in dielectric constant of water (80) and hydrocarbons
(5). At very high frequencies, displacement current dominates over the con-
duction current. Since displacement current components have direct relation
with the dielectric constant, it become possible to detect the oil-water con-
tact in a borehole within the 1 to 2 inches of depth of penetration along the
borehole wall. Inside the coal mines also one uses MHz to GHz signals to
estimate the thickness of the coal columns. A promising very high frequency
tool came up during the last two decades is known as ‘Ground Penetrating
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Radar’(GPR). Its operating frequency is in gegahertz range(GHz) and its
resolving power is comparable to that of seismic P waves. It can see only
5 to 10 meters from the ground surface. Successive reduction in frequency
increases the depth of investigation. It can map very finer details of the shal-
low subsurface. Besides these three uses of the high frequency signals, most of
the geophysical EM jobs are in the audiofrequency ranges where displacement
currents are negligible.

Conduction current and diffusion of electromagnetic waves through the air
and earth are important for geophysicists. Most of the geophysical work are
done in the conduction zone where the electrical conductivity rather than the
dielectric constant control the electromagnetic wave propagation. Since elec-
tromagnetic waves can travel through the air; even an antenna in the air can
excite the ground. That brought the air borne electromagnetics, an important
branch of electromagnetics, in geophysics. Air borne geoelectromagnetics is a
very big branch of geophysics, where both time domain and frequency domain
measurements are possible and are done. The other name of time domain elec-
tromagnetics is electromagnetic transients. It is a very important branch of
geophysics for probing upto the upper crust of the earth. Fortunately the time
domain decay of an em signal is much faster than the time domain decay of
induced polarization signals. That is why it became possible to isolate the
em transients from IP in time domain measurements. Since the behaviour of
the induced polarization signal of electrochemical origin has some similarity
with the presence of capacitance in a resistive circuit, variation of impedances
and their phases of these capacitors with frequency are studied in frequency
domain and in spectral induced polarization, measurement of IP phase or
variation of decay during discharging of a capacitor in a time domain IP are
studied.
For direct current flow one needs galvanic contact of current electrodes with
the ground and potentials are measured through a pair of potential electrodes.
In electromagnetics transmitting and receiving dipoles are used for one type
of measurement. Current can be sent through a large loop insulated from the
ground or a grounded loop or line source and the response can be measured
in receiver loops. For earth’s natural electromagnetic field, the magnetic sig-
nals are received in induction coils or in magnetometers (flux gate, proton
procession, SQUIDS etc.) and electrical signals are measured by two pairs
of non polarisable electrodes planted on the ground. A coil carrying current
is termed as magnetic dipole. When alternating current passes through it,
the coil becomes an oscillating magnetic dipole(Chap. 5 and 13). The mea-
sured signals in electromagnetics are complex quantities. Therefore real and
imaginary components or amplitude and phase are measured. EM signals
are measured in many different ways. The design and nature of transmitters
and receivers are purpose and problem dependent. Only some basic theories,
needed for the graduate students to start with, are discussed in this chapter
and Chap. 13.
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12.2 Elementary Wavelet

In a continuous medium, any disturbance in the form of an electrical pulse or
sound pulse will continue to propagate waves. These waves are functions of
space and time and can be expressed as

φ = f(x, t). (12.1)

This disturbance will move forward or backward with a certain velocity c. φ
changes to

φ = f(x − ct) for a forward moving wave and (12.2)
φ = f(x + ct) for a backward moving wave (12.3)

where t is time.
Any time varying and propagating harmonic signal can be expressed as

φ = a cos ωx or a sin ωx. (12.4)

Here a is the amplitude and ω (= 2πn, n is the frequency of the time varying
signal) is the angular frequency and x is the displacement. Many different
ways, the same (12.4) can be written. The same expression for a time varying
field can be written as

φ = a cos ω(x − ct). (12.5)

For a harmonic wave equation, we can write

x = x +
2π
ω

(12.6)

where 2π = 360◦. Figure 12.2 shows a harmonic wave where wavelength
λ, amplitude a, phases 0◦, 90◦, 180◦, 270◦ and 360◦ are shown. In the phase
domain plot, the vector Ex1 comes back to the original position after rotation
for an angle 2π. Amplitude of the wave is the length of the vector Ex1 and
it is the radius of the circle presented in Fig. 12.3. Figure 12.2 shows the two
signals of same amplitude and frequency but difference in phase. Phase is an
angle and it is measured either in degrees or in radian or milliradian.The angle
shown between the vectors Ex1 and Ex2 is the phase angle and it is the phase
difference between two sinusoidal signals shown in Fig. 12.2. For a particular
signal phase repeats after the lapse of time period T.
Therefore (12.5) can be written as

φ = a cos ω
(

x +
2π
ω

− ct
)
. (12.7)

Frequency n (ω = 2πn) of a time varying signal is the number of wavelets of
length λ cross a particular point in the space domain per second. Here λ is the
wave length and T is the time period of the signal and n = 1

T i.e., frequency
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Fig. 12.2. Two sine wavelets of same frequency and same amplitude with a dieffer-
ence of phase

and time period have reciprocal relation. ωT = 2π, or, T = 2π
ω i.e., after a

complete time period T, the phase will rotate by 2π and the wave will repeat
itself. That is why (12.5) could be written as (12.7) using the relation (12.6).
Equation (12.7) can be written as

φ = a cos[ω(x − ct) + 2π] (12.8)
= a cos ω(x − ct).

After traveling a distance 2π
ω , the wave profile repeat itself.

Since c = nλ; λ = c
n ; ωT = 2π and T = 1

n , therefore n = ω
2π . Hence λ = 2πc

ω
or 2πc

λ = ω, and

φ = a cos
2πc
λ

(x − ct) . (12.9)

Wave number k = 1
λ , and λ

c = T = 1
n , therefore,

ω (x − ct) =
2πc
T

(x
c
− t

)
=

2πc
T

( x
nλ

− t
)

=
2πc
t

(
xT
λ

− t
)

= 2πc
(

x
λ
− t

T

)
(12.10)

Fig. 12.3. Representation of two electric vector with a phase difference; projection
of these vectors on the abscissa executes simple harmonic motion
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Fig. 12.4. Primary electromagnetic field due to a transmitting magnetic dipole;
generation of eddy currents and secondary field in the presence of a conductor

⇒ φ = a cos 2πc
(

x
λ
− t

T

)
(12.11)

⇒ a cos 2πc
(x

λ
− nt

)
(12.12)

⇒ a cos 2πc(kx − nt). (12.13)

If we insert a phase component, we get

φ = a cos[2πc(kx − nt)+ ∈] (12.14)

where ∈ is the change in phase.
From (12.5) we get, after differentiating twice,

∂2φ
∂x2

=
1
c2

∂2φ
∂t2

(12.15)

This is the one dimensional wave equation. For two and three dimensional
cases the expressions for the waves are respectively given by

φ = f(lx + my − ct) (12.16)
φ = f(lx + my + pz − ct) (12.17)

where l, m and p are direction cosines.

12.3 Elliptic Polarisation of Electromagnetic Waves

When two electromagnetic waves differing in amplitude and phase interact,
they get elliptically polarised. These sources of the electromagnetic waves can
be two independent sources or it may be due to interaction of primary and
secondary fields. When an electromagnetic wave propagates from a source, it
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generates a primary field. When these time varying signals start propagat-
ing through a conductor, eddy currents are generated within it due to rate
of change of number of lines of forces in any section. These eddy currents
start generating electromagnetic waves of different amplitude and phase but
same frequency. This is a secondary field (Fig. 12.4). These two primary and
secondary signals interact and get elliptically polarized. Let the two signals be

Ex = Ex0 cos ωt (12.18)
Ey = Ey0 cos (ωt − φ) (12.19)

where Exo,Ey0 are the amplitudes and φ is the phase difference between the
two signals Ex and Ey. From (12.18) and (12.19), we can write

Ey
Ey0

=
Ex
Ex0

cosφ+

√
1 − Ex

2

Ex0
2 sinφ

(
Ey

Ey0

− Ex

Ex0

cos φ
)2

=
(

1 − E2
x

E2
x0

)
sin2 φ

⇒ E2
y

E2
ya

+
E2
x

E2
ya

cos2 ϕ− 2EyEx
EyaExa

cosϕ
sin2 ϕ

= 1 (12.20)

⇒ LE2
x + NE2

y − 2MExEy = 1 (12.21)

when M2 − LN < 1. Then (12.21) becomes an equation of an ellipse. The
major and minor axes of the ellipse are respectively given by

a =

√√√√ 2

L + N −
√

4M2 + (L − N)2
(12.22)

b =

√√√√ 2

L + N +
√

4M2 + (L − N)2
. (12.23)

Here

M =
cos φ

Ey0Ex0 sin2 φ
(12.24)

L =
1

Ex0
2 sin2 φ

(12.25)

N =
1

Ey0
2 sin2 φ

. (12.26)

So

M2 − LN =
cos2 φ

Ey0
2Ex0

2 sin4 φ
− 1

Ex0
2Ey0

2 sin4 φ

=
1

Ey0
2Ex0

2 sin4 φ

(
cos2 ϕ− 1

)
. (12.27)



358 12 Electromagnetic Theory (Vector Potentials)

Fig. 12.5. Elliptic polarisation due to interaction of two electromagnetic waves
having different amplitude and phase

Since cos2 φ < 1, therefore M2 − LN < 1, therefore the field is elliptically
polarised (Fig. 12.5). The angle of tilt of the ellipse is given by

tan 2ψ =
2M

L − N
. (12.28)

Hence when an alternating current is sent through the ground, an elliptically
polarised field is established. It has no longer constant direction and magni-
tude but traces ellipse in the xy/xz/yz plane. This property generated the dip
angle or tilt angle method of electromagnetic prospecting in geophysics.

12.4 Mutual Inductance

The Fig. 12.6 shows an arrangement of two coils for developing the induced
e.m.f.
The magnetic field inside the longer solenoid is uniform and has the magnitude

�B =
μ
4π

N1I1
l

(12.29)

where N1 is the number of turns and l is its length in coil 1; I1 is the cur-
rent flowing through it. Cross sectional area of the coil 1 is S; the flux is its
magnitude time S. If the coil 2 has N2 turns, this flux links the coil N2 times.
Therefore, emf in coil 2 is given by

ε2 = N2S
∂�B
∂t

(12.30)

Equation (12.30) can be written as

ε2 =
μ
4π

S
N2N1

l
dI1
dt
. (12.31)
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Fig. 12.6. Mutual induction between the two coils carrying currents I1 and I2

Here emf in coil 2 is proportional to the rate of change of current in coil 1.
The constant of proportionality which is basically a geometric factor of the
two coils is termed as the mutual inductance and is written as

ε2 = M21
dI1
dt
. (12.32)

If current I2 passes through coil 2, then the emf in coil 1 will be

ε1 = M12
dI2
dt

(12.33)

because field will be proportional to I2 and the flux linkage through the coil
1 would be dI2

dt .

12.4.1 Mutual Inductance Between any Two Arbitrary Coils

The general expression for the induced emf in the coil 1 is ε = − ∂
∂t

∫
�B�n.ds

where �B is the magnetic induction and the integral is taken over the surface
bounded by the coil 1. Applying Stoke’s theorem one can write

∫
�B.�n.ds =∮

�A.dl, where �A is a vector potential and �B = curl �A.dl1 is the element of the
circuit in coil. The line integral is taken around the circuit 1. The emf in coil
1, can be written as

ε1 = − d
dt

∮
�A.dl1. (12.34)
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Fig. 12.7. Mutual inductance between the two noncoaxial arbitrary coils separated
by a certain distance

Let the vector potential in circuit 1 comes from the current in circuit 2. The
line integral around the circuit 2 can be written as (Fig. 12.7)

A =
μ

4π

∮
I2dl2
r12

(12.35)

where I2 is the current in the circuit 2 and r12 is the distance from the element
of the circuit dl2 to the point of measurement on the circuit 1 at which we
are evaluating the vector potential. Hence the emf in the circuit 1 appears as
a double line integral.

ε1 = − μ

4π
l

dt

∮

1

∮

2

I2dl2dl1
r12

. (12.36)

In this equation, the integrals are all taken with respect to the stationary
circuits. The variable quantity I2 does not depend upon the variable of inte-
gration. We can, therefore, write

ε1 = m12
dI2
dt
. (12.37)

Here
m12 = − μ

4π

∮

1

∮

2

dl1dl2
r12

(12.38)

and m12 is the mutual inductance.
If there are two currents in the two coils simultaneously, the magnetic flux

linking the two coils will be sum of the two fluxes linking separately. The emf
in either coil will therefore be proportional not only to the change of current
in the other coil but also to the change of current in the coil itself. Therefore,
the total emf is

ε2 = m21
dI1
dt

+ m22
dI2
dt

(12.39)

and
ε1 = m12

dI2
dt

+ m11
dI1
dt

(12.40)

The coefficients m22 and m11 are self inductances of the coils. The self induc-
tance exits for one coil. Here m11 = −L1 and m22 = −L2 where L1 and L2
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are the self inductances of the coil 1 and 2 respectively. Since emf generated
due to the rate of change of number of lines of forces oppose the changes of
current, according to Lenz’s law, the self inductances are negative.

12.4.2 Simple Mutual Inductance Model in Geophysics

Grant and West (1965) in a simple mutual inductance model, demonstrated
the very basic nature of the electromagnetic response one gets for geophysical
problems due to vertical magnetic dipoles used as a transmitter and a receiver.
Here conducting earth is replaced by a vertical buried coil (Fig. 12.8)

Let us suppose that an alternating current Ioeiωt is made to flow in the
transmitting coil. This current generates an alternating magnetic field in the
surrounding environment which in turn induces an emf both in the conductor
as well as in the receiving coil. These emf’s are governed by the Faraday’s law
of electromagnetic induction, i.e.,

Ej = −Mij
∂I1
∂t

(12.41)

where Ej is the emf induced in one circuit by the current I1 flowing in another
circuit and Mij is the mutual inductance. The emf induced in the receiver by
the primary field is, therefore,

ε2 = −M02
d
dt

I0eiωt

= −iωM02I0eiωt. (12.42)

Here M02 is the mutual inductance between the transmitter and the receiver
coil. The emf induced in the vertical coil is

ε1 = −iωM01I0eiωt (12.43)

where M01 is the mutual inductance between the transmitting and the vertical
coil representing the subsurface. To this emf ε1, we must add ε1

+, the sum of
the voltage drop across the resistance and self inductance of the vertical coil
carrying current I1eiωt. Thus

Fig. 12.8. A simple mutual inductance model to represent electromagnetic Induc-
tion in the earth (Grant and West 1985)
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ε1
+ = −RI1eiωt − L

d
dt

I1eiωt = −(R + iωL)I1eiωt. (12.44)

To find the current I1, we observe that around any closed loop, the total emf
must vanish, i.e., ε1 + ε1

′ = 0 and therefore

I1eiωt = −iω
M01

(R + iωL)
I0eiωt (12.45)

I1e
iωt = −M01

L

[
iωL (R− iωL)
R2 + ω2L2

]
I0e

iωt. (12.46)

This is the expression for the eddy currents induced in the underground cir-
cuit. The secondary magnetic field generated by this induced current to the
receiving coil in the circuit is given by

ε(s)
2 = −iωM12I1eiωt. (12.47)

Here M12 in the mutual inductance between the underground circuit and the
receiving coil. The ratio of secondary emf and primary emf, i.e., ε(s)

2 /ε(p)
2 is

the em response function for the vertical coil and it is given by

ε(s)
2

ε(p)
2

=
−iωM12I1eiωt

−iωM02I1eiωt

=
M01M12

M02

[
i
(
ωL
R

) (
1 − iωL

R

)

1 +
(
ωL
R

)2
]

= −M01M12

M02

(
α2 + iα
l + α2

)
(12.48)

where
α =

ωL
R

The electromagnetic response is a complex quantity (Fig. 12.9). The response
can be a measure either in the form of real and imaginary components or
in the form of amplitude and phase. The real part of the response is also
termed as the in phase component i.e., the component which is in phase with
the primary field. The imaginary component, which is as real as the real
component, is termed as the out of phase or quadrature component. This
component will be 90◦ out of phase with the primary field. The secondary
field generated by eddy currents in a medium of finite conductivity will always
differ with the primary field both in amplitude and phase. The real component
has the contributions both from the primary and secondary fields where as
the quadrature component or the phase angles come from the secondary field.
Thus the basic nature of the electromagnetic response in the presence of a
medium of finite conductivity can be explained using the concept of mutual
inductance.
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Fig. 12.9. Variation of the real and imaginary components of the electromagnetic
field in a simple mutual inductance model

12.5 Maxwell’s Equations

From the basic principles of electrostatics, magnetostatics and direct current
flow fields , we know

�D = ε�E
�B = μ�H (12.49)
�J = σ�E

Here the basic electromagnetic vectors and scalars are given by (i) �E (elec-
tric field) in volt/meter (ii) �D (electric displacement) in coulomb/meter2 (iii)
�H (magnetic field) in ampere/meter or ampere turn/m (iv) �B (magnetic
induction) in Weber/meter2 (v) �J (current density) in ampere/meter2 (vi)
ε (electrical permittivity) in farad/meter (vii) μ (magnetic permeability) in
henry/meter (viii) σ (electrical conductivity) in mho/meter.
According to Ampere’s law

I =

→∫

l

�H.dl =
∫

s

curl �H.n.ds (12.50)

where I is the current, H is the magnetic field and dl is the element of length
in a conductor carrying current.
Since

I =
∫
�J.�n.ds,

we can write, applying Stoke’s theorem,

curl �H = �J. (12.51)

The electromotive force generated in a conductor is due to the rate of change
of number of lines of forces (or magnetic flux) and is equal to
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ε = −d�N
dt
. (12.52)

Since emf ε can be written as
∮
�E.dl and magnetic flux as N =

∫
�B.�n.ds, we,

therefore, can write ∮
E.dl = − ∂

∂t

∫
�B.�n.ds.

From Stoke’s theorem we write

⇒
∫

s

curl �E.ds = − ∂

∂t

∫

s

�B.�n.ds (12.53)

⇒ curl �E = −∂
�B
∂t
. (12.54)

This is the Maxwell’s first equation.
Current flow in a particular medium is the rate of flow of charge. Since

the current flowing out of a particular medium is the current loss inside, we
can write ∫

�J.�n.ds = −dq
dt
. (12.55)

Applying the divergence theorem we can write
∫

div�Jdν = − d
dt

∫
ρdν (12.56)

where ρ is the volume density of charge. We can write

div �J = −∂ρ
dt
. (12.57)

This is known as the equation of continuity. For uniform flow of current with
the source situated outside the region

div�J = 0. (12.58)

Equation (12.57) is treated as the Maxwell’s fifth equation.
Since div �D = +ρ from (4.26), bringing the time derivatives on both the

sides, we get
∂

∂t

(
div �D

)
=
∂ρ

∂t
. (12.59)

It changes to

div

(
∂ �D

∂t

)
=
∂ρ

∂t
. (12.60)

The equation of continuity changes to the form
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div�J = −div

(
∂�D
∂t

)
(12.61)

⇒ div

(
�J +

∂�D
∂t

)
= 0

⇒ div

(
�J +

∂�D
∂t

)
= div curl �H.

Because divergence of curl of a vector is always zero.
Hence

curl �H = �J +
∂�D
∂t
. (12.62)

This is Maxwell’s second electromagnetic equation.
Since �D = Q

A (Coulomb/meter2), ∂ �D∂t is termed as the displacement cur-
rent. The rate of change of dielectric vector has the same dimension as �J. So
∂�D
∂t will generate the magnetic field. Therefore the five Maxwell’s electromag-
netic equations are

i) curl �E = −∂
�B
∂t
, (12.63)

(ii) curl �H = �J +
∂�D
∂t
, (12.64)

(iii) div �B = 0, (12.65)

(iv) div �D = ρ and (12.66)

(v) div �J = −∂ρ
∂t

(12.67)

where (12.65) (12.66) and (12.67) are respectively taken from Chaps. 4, 5
and 6. The respective equations are (5.49), (4.26), (6.18) and (12.57).

If there are impressed electric and magnetic currents the first two Maxwell’s
equations change to the form

curl �E = −∂
�B
∂t

− �Mi (12.68)

curl �H = �J +
∂�D
∂t

+ �Ji. (12.69)

Using (12.49), we can write down the Maxwell’s (12.63) and (12.64) as

curl �E = −μ
∂�H
∂t

(12.70)

and

curl �H = σ�E+ ∈ ∂�E
∂t
. (12.71)
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12.5.1 Integral form of Maxwell’s Equations

Integral form of Maxwell’s equations are

(a) ∫ ∫ ∫
curl E dv = −

∫ ∫ ∫
∂�B
∂t

dv, (12.72)

(b) ∫ ∫ ∫
curl �Hdv =

∫ ∫ ∫ (
�J +

∂�D
∂t

)
dv, (12.73)

(c) ∫ ∫ ∫
div�J = −

∫ ∫ ∫
∂ρ
∂t

dv, (12.74)

(d) ∫ ∫ ∫
div �B = 0 and (12.75)

(e) ∫ ∫ ∫
div �D =

∫ ∫ ∫
ρ dv (12.76)

12.6 Helmholtz Electromagnetic Wave Equations

From equations (12.49) and (12.63) we can write

curl curl �E = −μ
∂

∂t
curl �H

= −μ
∂

∂t

[
σ�E+ ∈ ∂�E

∂t

]

from (12.71).
Hence

grad div �E −∇2�E = −μσ
∂�E
∂t

− μ ∈ ∂2�E
∂t2

(12.77)

⇒ ∇2�E = μσ
∂�E
∂t

+ μ ∈ ∂2�E
∂t2

− grad div �E (12.78)

⇒ ∇2�E = μσ
∂�E
∂t

+ μ ∈ ∂2E
∂t2

(12.79)

where div �E = 0 in a source free region (12.58) and is equal to ρ
∈ where the

region contains the source. Equation (12.79) is the Helmholtz electromagnetic
wave equation.
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Similarly it can be proved that

∇2�H = μσ
∂�H
∂t

+ μ ∈ ∂2H
∂t2

. (12.80)

Since �E and �H are electric and magnetic field vectors. They have three com-
ponents along the three mutually perpendicular coordinate axes. These wave
equations are valid for each component i.e.,

∇2Hx = μσ
∂Hx

∂t
+ με

∂2Hx

∂t2
. (12.81)

For very high frequency, where the displacement current dominates over the
conduction current. Therefore

∇2�Hx = μ ∈ ∂2Hx

∂t2
. (12.82)

At lower frequencies in the audio range, conduction current dominates over
the displacement current and the Helmholtz equation changes to the form

∇2Hx = μσ
∂Hx

∂t
. (12.83)

Since both �E and �H are vectors and having three components each, the-
oretically one has to determine six components to define the electromagnetic
field totally. In actual practice, for different types of source excitation, there
will be some zero and non zero electric and magnetic vectors as shown in the
next chapter. We try to solve for the non zero �E and �H components.

Alternatively if we express the electromagnetic field in terms of a vector
and a scalar potentials, the number of components to be determined will be 4
i.e., three components for one vector and one scalar. These vectors are termed
as vector potentials. One of the options for solving the electromagnetic bound-
ary value problems is to use these vector and scalars (please see Chap. 13). If
B, H and E are expressed respectively as curl A, curl A′ and curl A′′, these
A, A′, A′′ are termed as vector potentials because curl operates on a vector
and generates another vector. A brief introduction about the definition and
mathematical expressions for the vector potential is given in Chap. 5.

Since div �B = 0 always because the monopoles in magnetostatics do not
exist, we can write div �H = 0, because �B = μ�H. Since divergence of a curl of
a vector is always zero, we can write

�H = curl �A (12.84)

where �A is a vector potential. div �E = 0 in a source free region. From (12.70),
we get
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curl �E = −μ
∂�H
∂t

⇒ −μcurl
∂�A
∂t

(12.85)

⇒ curl

(
�E + μ

∂�A
∂t

)
= 0. (12.86)

If curl of a vector is zero, then that vector can always be expressed in terms
of gradient of a scalar potential.

So
�E + μ

∂�A
∂t

= −gradφ. (12.87)

Since �H = curl �A, we can write

curl curl �A = −μσ
∂�A
∂t

− σ grad φ

−μ ∈ ∂2A
∂t2

− ∈ grad
∂φ
∂t

= grad div�A −∇2�A. (12.88)

Since the vector potential is quite arbitrary, we can choose

grad div�A = −σ grad φ − ε grad
∂φ
∂t

(12.89)

which leads to

∇2�A = μσ
∂�A
∂t

+ μ ∈ ∂2�A
∂t2

. (12.90)

And
div �A = −σφ − ε

∂φ
∂t
. (12.91)

From (12.87), we get

div �E = −μ
∂

∂t
div �A −∇2φ = 0 (12.92)

and

∇2φ = μσ
∂φ
∂t

+ μ ∈ ∂2φ
∂t2

. (12.93)

Therefore, both vector and scalar potentials satisfy Helmholtz wave equations.
The connecting links between a vector and a scalar potential with electric and
magnetic fields are given by

�H = curl �A (12.94)

�E = −μ
∂�A
∂t

− grad φ. (12.95)
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If electromagnetic field is harmonically varying field, i.e., E = Eeiωt and
H = Heiωt, the Helmholtz wave equation changes to the form

∇2�E = iωμσ�E + i2ω2μ ∈ �E

= iωμ (σ + iω ∈) �E

= γ2�E.

Here γ
(
=

√
iωμ (σ + iω ∈)

)
is termed as the propagation constant. Helmholtz

equations can be written shortly as

∇2�E = γ2�E

∇2�H = γ2�H (12.96)

∇2�A = γ2�A

∇2φ = γ2φ.

For audio frequency range the displacement current is negligible. Therefore
γ =

√
iωμσ. In the megahertz range γ =

√
iωμ (σ + iω ∈ and in the gigahertz

range γ = iω
√

μ ∈.

12.7 Hertz and Fitzerald Vectors

Hertz defined a vector potential �A in the form

�A = σ�Π + ε
∂�Π
∂t

(12.97)

where �Π is termed as the Hertz vector. Taking divergence on both the sides,
we get

σdiv �Π + ε
∂

∂t
div �Π = div �A

= −σφ − ε
∂φ
∂t

(12.98)

from (12.87). From (12.98) we get

φ = −div �Π. (12.99)

Equation (12.99) connects the Hertz vector with the scalar potential φ.
Because the divergence operates on a vector and generates a scalar.

From (12.93) and (12.94) we can write

H = σ curl �Π + ε curl
∂�Π
∂t

= (σ + iω ∈) curl �Π (12.100)
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and

�E = −μσ
∂�Π
∂t

− μ ∈ ∂2Π
∂t2

+ grad div�Π

= −∇2�Π + grad div�Π

= curl curl �Π. (12.101)

From (12.88 and 12.95), we write

∇2div �Π = μσ
∂

∂t
div �Π + με

∂2

∂t2
div �Π. (12.102)

Here

∇2�Π = μσ
∂�Π
∂t

+ μ ∈ ∂2�Π
∂t2

. (12.103)

Therefore Hertz vector satisfies Helmoholtz wave equation. Equations (12.100)
and (12.101) are the connecting links between the Hertz vector and the electric
and magnetic fields.
Similarly, assuming �E = curl �A′ where A′ is the electric vector potential and
following the same procedure it can be shown that

curl

(
�H − σA′ − ε

∂�A
∂t

)
= 0 (12.104)

or
�H − σA′ + ε

∂A′

∂t
+ gradψ (12.105)

where �H is the magnetic scalar potential. The vector potential F is, known as
Fitzerald vector which connects the E and H field through these two equations

�H = curl curl�F (12.106a)

and
�E = −iωμ curl �F (12.106b)

and will also satisfy the Helmholtz wave equation

∇2�F = μσ
∂�F
∂t

+ μ ∈ ∂2F
∂t2

. (12.107)

Many of the electromagnetic boundary value problems can be solved using
Hertz or Fitzerald vectors. In that case the number of equations to be solved
is only three. Once a solution is obtained in �Π and �F one can move to �E and �H
fields through these two pairs of connecting links i.e., (12.100), (12.101) and
(12.106a and b).
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12.8 Boundary Conditions in Electromagnetics

12.8.1 Normal Component of the Magnetic Induction
B is Continuous Across the Boundary in a Conductor

From Maxwell’s equation, we know that div�B = 0. From divergence theorem
we can write ∫

div �B.dν =
∫
�B.�n.ds. = 0. (12.108)

Now assuming a small box of area Δa and thickness Δl across the boundary
shown in the Fig. 12.10 we take the integration over the volume with an
approximation

(B2.n2 + B1.n1)Δa + Contribution from the wall = 0.

Since the contribution from the walls is directly proportional to Δl, its con-
tribution will be zero when Δl = 0.
Therefore

B2.n2 + Bi.n1 = 0.

Since the normal vectors n2 and n1 on two opposite sides of the boundary
are in the opposite direction, i.e., n2 = −n1, therefore

(B2 − B1).n = 0. (12.109)

In other words the normal components of the magnetic induction will be
continuous across the boundary.

12.8.2 Normal Component of the Electric Displacement
is Continuous Across the Boundary

Since divD = qν,, we can write Gauss’s divergence theorem
∫

v

div �Ddν =
∫

s

�D.�n.ds. =
∫

v

qvdv = q (12.110)

where q is the total charge and qv is the volume density of charge. Therefore,
we get as in the previous case (Fig. 12.11)

(
�D2.n2 + �D1.n1

)
Δa = wΔa (12.111)

where w is the surface density of charge and

q =
∫

v

qνdv = qν.Δl.Δa. (12.112)
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Fig. 12.10. Normal component of the magnetic flux across the boundary with
different values of ε±, σ±, μ

Since n2 = −n1 as shown in previous case, we can write

(
�D2 − �D1

)
.n = ω (12.113)

This equation shows that normal component Dn of the vector �D is discontinu-
ous across the boundary due to accumulation of surface charge density w. At
the surface of a conductor the surface charge density dissipates very quickly.
Hence across the interface involving all but the poorest conductors, normal D
is continuous across the boundary
Therefore

(D2.n2 + D1.n1) = 0 (12.114)
(D2.n2 − D1.n1) = 0 (12.115)
⇒ (D2 − D1) .n = 0

⇒ Dn2 = Dn1 (12.116)

Fig. 12.11. Normal component of the electric displacement across the boundary
with different values of ε, σ, μ
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12.8.3 Tangential Component of E is Continuous Across
the Boundary

From Maxwell’s equation curl �E = −∂�B
∂t ,

we can write ∫

s

(
�∇× �E

)
nda −

∫
∂B
∂t
.nda = 0 (12.117)

where n is the unit vector normal to the surface S. Applying the Stoke’s
theorem we can write ∮

�E.dl =
∫

curl �E.n.da. (12.118)

Therefore

−
∫
∂�B
∂t
.n.da =

∮
�E.dl = �E2.Δl + �E1 (−Δl)

+contribution from the end where �E2.Δl and �E1.Δl are the tangential com-
ponents of �E in the medium 1 and 2 (Fig. 12.12). If we reduce the thickness
of the rectangular loop to zero such that �E2.Δt = 0. That brings the line
segments on the surface. The equation reduces to

−∂B
∂t
.nΔt.Δl = (E2 − E1) .Δl (12.119)

In the limit when the thickness of the strip Δt = 0, the left hand side is zero,
so that across the boundary

Et1 = Et2 or n × (E2 − E1) = 0 (12.120)

where n is the unit vector normal to the boundary surface. In other words, the
tangential component of the electric field is continuous across the boundary.

12.8.4 Tangential Component of H is Continuous Across the
Boundary

From Maxwell’s equation

curl �H = �J +
∂�D
∂t
,

Fig. 12.12. Tangential component of the electric vector is continuous across the
boundary with different values of ε, σ and μ
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we can write ∮

l

H.dl −
∫
∂�D
∂t
.n.da =

∫
�J.n.da (12.121)

The contour of integration is the same as that shown in the previous case. By
using the component of H tangential to the boundary surface (Fig. 12.13) and
by proceeding to the limit of a contour of negligible height Δl, we can write

nx (H2 − H1) =
Lim

Δt → 0

(
∂�D
∂t

+ �J

)
Δt = 0 (12.122)

for finite current density and bounded nature of D and its derivatives. There-
fore, the boundary condition for media of finite conductivity will be

nx(H1 − H2) = 0 (12.123)

in the absence of any kind of surface currents. Hence, the tangential compo-
nent of the magnetic field in continuous across the boundary.

12.8.5 Normal Component of the Current Density is Continuous
Across the Boundary

Currents entering and leaving an elementary box across the boundary span-
ning two conductive media consists partly of normal components and partly
of tangential components. As the thickness of the box across the boundary
tends to zero, the current crossing the interface may be computed either as

I = J2.nΔa or as I = J1.n.Δa

Thus the normal component of J, i.e., Jn must be continuous across the bound-
ary. Hence

(J2 − J1).n = 0 (12.124)

or
Jn1 = Jn2

Fig. 12.13. Tangential component of the magnetic field is continuous across the
boundary of two media having different values of ε, σ, and μ
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12.8.6 Scalar Potentials are Continuous Across the Boundary

In electrostatics and magnetostatics problems �E = −gradφ and H = −gradφ∗

where φ and φ∗ are the scalar potentials. In the absence of any source potentials
φ and φ∗ must be continuous across a boundary surface (Fig. 12.14). For the
work required to carry a small electric charge or a magnetic pole from infinity
to two adjacent points located on opposite sides of the surface with negligible
distance between them must be the same, i.e.

φ1 = φ2

and
φ∗1 = φ∗2.

Thus it is seen that each and every Maxwell’s equation generate one bound-
ary condition in electromagnetics. Integral form of Maxwell’s equations for
generating the boundary conditions are

(f) ∫ ∫
(�n × �E)ds = −

∫ ∫ ∫
∂�B
∂t

div, (12.125)

(g) ∫ ∫
(�n × �H)ds =

∫ ∫ ∫ (
�J +

∂�D
∂t

)
dv, (12.126)

(h) ∫ ∫
(�n.�J)ds = −

∫ ∫ ∫
∂ρ
∂t

dv, (12.127)

Fig. 12.14. Normal component of current density J is across the boundary
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(i) ∫ ∫
(�n.�B)ds = 0 and (12.128)

(j) ∫ ∫
(�n.�D)ds =

∫ ∫ ∫
ρdv (12.129)

where �n is the vector normal to the surface. (12.130)

12.9 Poynting Vector

As electromagnetic waves travel through space from their source to the dis-
tant receiving points, there is a transfer of energy from the source to the
receiver. There exists a simple and direct relation between the rate of this
energy transfer and amplitudes of this electric and magnetic field strengths of
the electromagnetic waves. This relation can be obtained from the Maxwell’s
equation as follows. From the second Maxwell’s (12.62), we can write

�J = curl �H − ε
∂�E
∂t
. (12.131)

This expression has the dimension of current density on both the sides. Mul-
tiplying both the sides of the (12.131) by �E, the modified equation has the
dimension of power per unit volume i.e.,

�E.�J = �E.�∇× �H− ∈ �E
∂�E
∂t

(12.132)

And
∇.�E × �H = �H.�∇× �E − �E.�∇× �H. (12.133)

Therefore
�E.�J = �H.∇× �E −∇.�E × �H− ∈ �E.

∂�E
∂t
. (12.134)

From Maxwell’s first equation we get

�∇× �E = −∂
�B
∂t

= −μ
∂�H
∂t
. (12.135)

Therefore
�E.�J = −μ�H

∂�H
∂t

= − ∈ E
∂�E
∂t

−∇.�E × �H. (12.136)

Since
�H.
∂�H
∂t

=
1
2
∂

∂t
−2

H
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and
�E
∂�E
∂t

=
1
2
∂

∂t
−2

E

Therefore
�E.�J = −μ

2
∂

∂t
−2

H − ∈
2
∂

∂t
−2

E − �∇.�E × �H. (12.137)

Integrating over a volume v,
∫

v

�E.�Jdv = − ∂

∂t

∫

v

(μ
2
H2 +

∈
2

E2
)

dv −
∮
�E × �H ds

−
∫

v

∇.�E × �H dv. (12.138)

Using Gauss’s divergence theorem, the last term of (12.138) changes from
volume integral to surface integral over the surfaces and encompassing the
volume v i.e., ∫

v

∇.�E × �H dv =
∮
�E × �H ds. (12.139)

We can write (12.139) as
∫

v

�E.�J dv = − ∂

∂t

∫

v

(μ
2
H2 +

∈
2

E2
)

dv −
∮
�E × �H ds. (12.140)

As per basic definitions in electrical engineering, a conductor carrying current
I and having a voltage drop E per unit length will have a power loss of �E�I
watt per unit length. The power dissipated per unit volume is �E�I

A = �E.�J. For
a homogeneous and isotropic medium �E and �J will be in the same direction.
In general for an inhomogeneous and anisotropic medium. �E and �J may not
be in the same direction. Even the power dissipated will be the product of �J
and the component of �E along the direction of �J. Therefore the total power
dissipated in a volume will be

∫

v

�E.�J.dv. (12.141)

The expressions 1
2 ∈ E2 and 1

2μH2 are respectively the stored electrical and
magnetic energy per unit volume of the electric field.

The integral shows the dissipation of the total electrical and magnetic
energy. The rate of energy dissipation in the volume V must be equal
to the rate at which the stored energy in the volume is decreasing. The
term − ∮

�E × �H ds represents the rate of flow of energy outward through
the surface enclosed in the volume V. The integral of �E × �H is a measure of
the energy out flow through that surface. It is seen that the vector is
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Fig. 12.15. Direction of propagation of a poynting vector

�P = �E × �H. (12.142)

The dimension of watt per square meter. It is a Poynting vector in electro-
magnetics (Fig. 12.15). The Poynting vector �P is directed at right angles to
the plane which contain �E and �H. It is a cross product of E and H and the
energy flows at right angles to the plane which contains �E and �H.
Now

∇.
(
�E × �H

)
= �H.

(
−μ

∂H
∂t

)
− �E

(
− ∈ ∂�E

∂t

)
. (12.143)

In a perfect dielectric where the conductivity is equal to zero, we get

�∇× �E = −∂
�B
∂t

or
�∇× �H = − ∈ ∂�D

∂t
.

So

∇.
(
�E × �H

)
= − ∂

∂t

(
1
2

μH2 +
1
2
∈ E2

)
. (12.144)

Here 1
2μH2 is the energy density associated with the magnetic field and 1

2 ∈ E2

is the energy density associated with the electric field. We therefore, can write

∇.
(
�E × �H

)
= +

∂

∂t

[
1
2

μH2 +
1
2
∈ E2

]
= 0 (12.145)

⇒ �∇.�P +
∂

∂t

[
1
2

μH2 +
1
2
∈ E2

]
= 0. (12.146)

This is the equation for the conservation of energy or the equations of conti-
nuity in electromagnetic field. This equation is similar to the Maxwell’s fifth
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equation of continuity which is also valid for direct current, heat, fluid flow
fields, i.e.,

div�J +
∂qv

∂t
= 0. (12.147)

For a medium of finite conductivity, we have

∇.
(
�E × �H

)
= �H.

(
�∇× �E

)
− �E.

(
�∇× �H

)

= −μ�H
∂�H
∂t

− �E.

[
σ�E+ ∈ ∂�E

∂t

]

= − ∂

∂t

[
1
2

μH2 +
1
2
∈ E2

]
− σE2. (12.148)

Equation (12.148) can be written as
∫

s

∫ (
�E × �H

)
ds =

∫ ∫
�P ds = − ∂

∂t

∫ ∫ ∫ (
1
2

μH2 +
1
2
∈ H2

)
dv

−
∫ ∫

v

∫
σE2dv.

The last term on the right hand side is interpreted as the energy consumed
as heat in the volume for a medium of finite conductivity.
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Electromagnetic Wave Propagation Problems
Related to Geophysics

In this chapter a basic guideline for solving electromagnetic boundary value
problems using Helmholtz electromagnetic wave equation and the method of
separation of variables are discussed for simplest problems. The use of vector
potentials and their relation with E and H fields and application of boundary
conditions are demonstrated.

Structure of the electromagnetic boundary value problems for (i) plane
wave electromagnetics, (ii) oscillating vertical electric dipole in an homoge-
nous full space, (iii) oscillating vertical magnetic dipole over an homogenous
earth, (iv) oscillating horizontal magnetic dipole over an homogenous earth,
(v) line source carrying alternating current over an homogenous full space,
(vi) line source over an homogenous earth (vii) electromagnetic response
for a buried conducting horizontal cylinder in an uniform vertical field
and (viii) electromagnetic response for a buried sphere in an uniform ver-
tical field are discussed. Principle of electrodynamic similitude is included
.

13.1 Plane Wave Propagation

A source of electromagnetic wave at infinite distance generates plane waves.
Electromagnetic waves generated due to interactions of the solar emissions
with the magnetosphere come to the surface of the earth as plane or nearly
plane waves. The electric and magnetic vectors are mutually orthogonal in a
plane of a propagating wave front. All vibrating particles in a wave front are in
the same phase. Magnitude of electric and magnetic vectors remain invariant
in a plane wave front. The direction of propagation of electromagnetic waves
will be at right angles to the plane of the wave front.

In a rectangular coordinate system, the Helmholtz electromagnetic wave
equations are given by
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∇2�Ex = γ2 �Ex

∇2 �Ey = γ2 �Ey (13.1)

∇2 �Ez = γ2 �Ez

where γ is the propagation constant. When a wave is propagating along the
z direction, as shown in Fig. 13.1, Ez = 0 and Hz = 0. For an uniform plane
wave, there will be no variation of electric and magnetic vectors with respect
to x or y i.e., ∂

∂x = 0 and ∂
∂y = 0. Therefore, the Helmoholtz wave equation

reduces to
∂2Ex

∂z2
= γ2Ex (13.2)

or
∂2Ey

∂z2
= γ2Ey. (13.3)

If electric field is in only one direction, then it is a linearly polarized uniform
plane waves in the x and y direction. In a source free region

curl �Ex = −iωμ�Hy (13.4)

⇒ ∂Ez
∂y

− ∂Ex
∂z

= −iωμ �Hy. (13.5)

If �Ex �= 0, then �Ey = 0 for linearly polarized field and Hx = 0, Hz = 0 with
Hy �= 0. Hence

∂Ex

∂z
= −iωμHy

⇒ Hy = − 1
iωμ

∂Ex

∂z
(13.6)

Similarly in other cases, where Ey is present, the governing equations are

Fig. 13.1. Propagation of plane electromagnetic waves
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∂2Ey

∂z2
= γ2Ey (13.7)

Hx =
1

iωμ
∂Ey

∂z
(13.8)

These two sets of equations for plane electromagnetic waves, reflect the trans-
verse nature of electromagnetic waves. A general solution to the (13.2) is
given by

�Ex = Aeγz + Be−γz (13.9)

and from (13.5)
�Hy = − γ

iωμ
(
Aeγz − e−γz) (13.10)

where γ is the propagation constant and γ2 = iωμ(σ + iω ∈).
Let γ = α + iβ then

α2 + β2 + 2iαβ = iωμ(σ + iω ∈). (13.11)

Equating the real and imaginary parts, we obtain

α2 − β2 = −ω2μ ∈
and

2αβ = ωμσ. (13.12)

Thus α and β can be expressed as

α = ω

[
μ ∈
2

(√
1 +

σ2

ω2 ∈2
− 1

)]1/2

(13.13)

and

β = ω

[
μ ∈
2

(√
1 +

σ2

ω2 ∈2
+ 1

)]1/2

. (13.14)

Case I
For

σ2

ω2 ∈2
<< 1

i.e., when the displacement current dominates over the conduction current,
we get

α = ω
[

μ ∈
2
.
1
2
.

σ2

ω2 ∈2

]1/2

=
σ
2

√
μ
∈ (13.15)

and

β = ω
√

μ ∈
(

1 +
1
8

σ2

ω2 ∈2

)

= ω
√

ω ∈. (13.16)
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For α = 0, β = ω
√

μ ∈. At a very high frequency i.e., in the megahertz or
gigahertz range, displacement current dominates over conduction current and
conduction current becomes negligibly small.
Case II
For

σ2

ω2 ∈2
<< 1

we get

α = β =
√

ωμσ
2

. (13.17)

When conduction current dominates over the displacement current at lower
frequencies, the attenuation factor becomes a function of electrical conductiv-
ity σ, angular frequency ω and magnetic permeability μ.

13.1.1 Advancing Electromagnetic Wave

The expression for an advancing electromagnetic wave is given by

�Ex = Aeαz.eiβz + Be−αz.eiβz

�Ex =
−
Exo eiφx .eαz.ei(ωt+βz) +

+

Exo eiφx .e−αz.ei(ωt−βz) (13.18)

where
+

Exo and
−
Exo are respectively the forward and backward propagating

waves. φx is the initial phase. t = 0, is the initial instant of time. The real
part of this expression is given by

Exreal =
−
Exoeαz. cos (ωt + βz + φx)

+
+

Exoe−αz cos (ωt − βz + φx) . (13.19)

In an infinite space, there is no reflected component, and only the forward
propagating wave will be present.
Therefore, we can write

�Ex = E+
xoe
−αz cos (ωt − βz + φx) (13.20)

and
�Hy =

β
ωμ

E+
xoe
−αz cos (ωt − βz + φx) . (13.21)

Thus the ratio gives

Ex

Hy
=

ωμ
β

=
ωμ

ω
√

μ ∈ =
√

μ
∈ . (13.22)
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Since Ex is in volt/meter and Hy is in Ampere/meter. The unit of
√

μ
∈ is

ohm. It is termed as the intrinsic impedance of the medium. Taking μ as the
free space magnetic permeability μ0 = 4π × 10−7 = 1.257 × 106 henry/meter
and the electrical permittivity as the free space electrical permittivity ∈0=
8.854× 10−12 farad/meter, we get

Ex

Hy
=

√
μ
∈ = 377 ohms. (13.23)

This is the resistance experienced by an electromagnetic wave during its prop-
agation. If electrical conductivity of a medium is zero, there will be no atten-
uation of propagating electromagnetic wave. It can travel through vacuum
and does not need any medium for its propagation. In a vacuum or in air
it travels with a velocity of light. In a conductive medium (say earth), the
velocity goes down by several order of magnitude and the velocity is con-
trolled by

√
μ
∈ of the medium. This particular observation that the ratio of

the electric and the transverse magnetic field gives a measure of impedance of
a medium was known to the electromagnetic research community long before
Cagniard (1953) Tikhnov (1950) proposed the magnetotelluric theory in
geophysics.

13.1.2 Plane Wave Incidence on the Surface of the Earth

When a wave impinges normally on the surface of the earth, the wave front
will be parallel to the air-earth boundary.
For a linearly polarized EM field

�Ex = �ax
�Ex (13.24)

where �Ex is in the x direction and �Hy is in the y direction. The wave equation
for this problem is given by

∇2�Ex = γ2�Ex. (13.25)

For a plane wave propagating along the z-direction, ∂
∂x = ∂

∂y = 0, therefore
the wave equation reduces to

∂2Ex

∂z2
= γ2Ex (13.26)

and its solution is
�Ex = A−γz + Beγz. (13.27)

We can write
Exo = A0e−γ0z + B0eγ0z (13.28)
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for air
Ex1 = A1e−γ1z + B1eγz (13.29)

for earth or medium of finite conductivity.
Similarly the corresponding magnetic fields are

Hyo =
1

η0

(
A0e−γ0z − B0eγ0z

)
(13.30)

⇒ Hy1 =
1

η1

A1e
−γ

1
z (13.31)

where η0 and η1 are respectively
√

iωμ
σ0

and
√

iωμ
σ1

.
The second term for both electric and magnetic fields will not exist in the

absence of any reflecting boundary (B1 = 0).
Now at z = 0, i.e., on the surface of the earth we have

Ex = Ex0

and

Ex0 = A0

(
e−γ0z +

η1 − η0

η1 + η0

eγ0z
)
. (13.32)

In the second medium
Ex1 = A0

2η1

η0 + η1

e−γ1z. (13.33)

Here the reflection and the transmission coefficients are respectively given by

(i)

reflection coefficient =
η1 − η0

η1 + η0

(13.34)

and
(ii)

transmission coefficient =
2η1

η1 + η0

. (13.35)

On the surface,
∣∣∣Ex
Hy

∣∣∣
z=0

= η1 ohm. It is termed as the surface impedance
of the medium. It is independent of the amplitude of the incident wave. In
the low frequency regime, conduction current dominates over displacement
current. The propagation constant γ1 reduces to

γ1 =
√

iωμσ1 and η1 =
√

iωμ
σ1

. (13.36)

The surface impedance

Z = η1 =
√

ωμ1

σ1
.
√

i =
√
ωμ1

σ1
.e−iπ/4. (13.37)
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Therefore

Z2 =
ωμ
σ

=
8π2 × 10−7

Tσ
(13.38)

and

ρ =
T
∣∣Z2

∣∣
8π2 × 107

. (13.39)

Here ρ is resistivity of the medium and is reciprocal of σ.
π
4 is the argument of Z. This suggests that the electric and magnetic fields

are at a phase difference of 450 on the surface for a plane wave incidence over
an homogeneous earth. Moreover resistivity is proportional to the product of
the square of the impedance ‘Z’ and time period of the EM signal ‘T’. This is
the starting point of magnetotelluric sounding.

13.2 Skin Depth

When an electromagnetic wave propagates through a medium of finite con-
ductivity, its amplitude attenuates (Fig. 13.2) and phase rotates constantly.
Depth where amplitude of an electromagnetic signal reduces to 1

e th of its orig-
inal value on the surface is termed as skin depth of a signal in that medium.
In electromagnetics , skin depth is also termed as the depth of penetration of
electromagnetic signals.

On surface of the earth, we can write the expression for electric field as

Ex1 = E0 e
−γ1z = E0e

−√iωμσz (13.40)

⇒ E1 = E0e−z/δ.eiz/δ.eiπ/4 (13.41)

where δ =
√

2
ωμσ . This δ is termed as the skin depth. It is a function of

electrical conductivity, magnetic permeability and the frequency of the elec-
tromagnetic signal. At a depth δ, the amplitude of the signal becomes E0

e . So
the expression for the EM signal at a certain depth Z is given by

Fig. 13.2. Decay of electromagnetic wave amplitude for its propagation through
a medium of finite conductivity
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Fig. 13.3. Magnetotelluric sounding over a layered earth; plane wavefront is
approaching the surface

E1 = E0e−z/δ cos (ωt + ψ − z/δ + π/4) . (13.42)

From theoretical one dimensional magnetotelluric modeling, it is observed
that an EM signal can see a target for certain cases when it is beyond the
skin depth (Roy and Singh (1993)). Brian Spies (1989) also reported that an
EM signal can see a target when it is below the skin depth level. In general
it is treated as an estimate of the depth of penetration of the electromagnetic
signal. An EM signal amplitude decreases continuously with continuous rota-
tion of phase. Figure (13.3) shows the nature of the reduction of an EM signal
amplitude with depth.

13.3 Perturbation Centroid Frequency

In an homogeneous and isotropic medium of finite conductivity if a certain
perturbation is inserted at a certain depth in the form of a thin layer hav-
ing different conductivity, an EM signal of a certain frequency will see that
perturbation to the maximum extent. That is termed as the perturbation cen-
troid frequency or the depth of investigation or the depth which contributes
maximum towards the signal of a certain frequency measured on the surface.
Perturbation centroid frequency related with depth of investigation does not
have any straight forward relation with skin depth.
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13.4 Magnetotelluric Response for a Layered
Earth Model

For a homogeneous, earth, the wave equation is given by

∇2E = μσ
∂E

∂t
+ μ ∈ ∂2E

∂t2
. (13.43)

Component of the wave equation (13.43) changes to the form

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2
= μσ

∂Ex

∂t
+ μ ∈ ∂2Ex

∂t2
. (13.44)

For a plane electromagnetic wave propagating along the z direction (for a
harmonically varying field) is given by

∂2Ex

∂z2
= γ2Ex where γ2 = iωμ(σ + iω ∈). (13.45)

From (13.45), we get
Ex = Aeγz + Be−γz. (13.46)

For a homogeneous earth Ex vanishes at Z → ∞. This condition puts

A = 0 and Ex = Be−γz. (13.47)

Here Ex is time varying (Ex(eiωt)) and generates a time variant orthogo-
nal magnetic field in the y direction. The vertical component Hz = 0. From
Maxwell’s equation,

curl �Ey = −iωμ�Hy. (13.48)

For an uniform field

∂Ex

∂z
= −iωμHy (13.49)

Hy = − γ
iωμ

Be−γz. (13.50)

Therefore Cagniard impedance for a homogeneous ground is

Z =
Ex

Hy
=

iωμ
γ
. (13.51)

At low frequency γ =
√

iωμσ, Z =
√ωμρeiπ/4 and

ρ =
1

ωμ

∣∣∣∣
Ex

Hy

∣∣∣∣
2

(13.52)
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or

ρ = 0.2T
∣∣∣∣
Ex

Hy

∣∣∣∣
2

. (13.53)

For a two layer earth model with layer resistivities ρ1 and ρ2 and thickness
h1, the electrical and magnetic components can be written as

Ex = Aeγx + Be−γx (13.54)

Hy = − γ
iωμ

(
Ae+γx − Be−γx) . (13.55)

The ratio of Ex and Hy yields

Ex
Hy

= − iωμ
γ

(
Aeγz +Be−γz

Aeγz −Be−γz

)
(13.56)

Dividing the numerator and the denominator by
√

AB, substituting
√

A
B

= exp

(
ln

√
A
B

)
.

We can rewrite the relation as

Ex

Hy
= − iωμ

γ

exp
(

γz + ln
√

A
B

)
+ exp

(
−γz − ln

√
A
B

)

exp
(

γz + ln
√

A
B

)
− exp

(
−γz − ln

√
A
B

)

= − iωμ
γ

Coth

(
γz + ln

√
A
B

)
. (13.57)

We determine the ratio of wave impedances at two different depths to elimi-
nate A and B. For this purpose we evaluate Z2 at a depth z2 with reference to
Z1 at a depth z1 such that z1 and z2 are in the same medium. The impedance
Z1 at a depth z1 is given as

Z1 = − iωμ
γ

Coth

(
γz1 + ln

√
A
B

)
. (13.58)

From (13.58) we get

ln

√
A
B

= −
{

Coth−1

(
Z1γ
iωμ

)
+ γz1

}
. (13.59)

The impedance Z2 at a depth z2 is

Z2 = − iωμ
γ

[
Coth

{
γ (z2 − z1) − Coth−1

(
γz1

iωμ

)}]
. (13.60)
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This equation is valid as long as Z1 and Z2 are in same medium. If we put
z2 = 0, then z2 − z1 = h1, i.e., thickness of the top layer, then we have Z2 at
the ground surface z = 0.

Z2 (z2 = 0) =
iωμ

γ

[
Coth

{
γh1 + Coth−1

}( γz1

iωμ

)]
. (13.61)

If we now let h1 → ∞, the geologic structure assumes a homogeneous ground
and the (13.60) reduces to

Z2 =
iωμ

γ
. (13.62)

For a two layer earth, we write Z2 at a depth z = h1 but in the second medium
and equate it with Z1 at the same depth. Thus we get

Z2 =
iωμ
γ2

Coth
[

γ2∞ + Coth−1 γ2Z1

iωμ

]
(13.63)

=
iωμ
γ2

γ2Z1

iωμ
= Z1.

In the first medium, we have

Z0 =
iωμ
γ1

Coth
[

γ1h1 + Coth−1 γ1Z1

iωμ

]
. (13.64)

Substituting the value of Z1 from (13.62) to (13.63) we get

Z0 =
iωμ
γ1

Coth
[

γ1h1 + Coth−1

(
γ1

γ2

)]
. (13.65)

In a similar manner, we can write the impedance for a three layer earth on
the ground surface as

Z0 =
iωμ
γ1

Coth
[

γ1h1 + Coth−1

{
γ1

γ2

Coth
(

γ2h2 + Coth−1 γ2

γ1

)}]
. (13.66)

The general expression for impedance for an N-layered earth is (from (13.65))
(Fig. 13.3)

Z0 =
iωμ
γ1

Coth
[

γ1h1 − Coth−1

{
γ1

γ2

Coth
(
γ2h2 + Coth−1

(
γ2

γ3

. . . . . . . . . ..+ Coth−1

(
γn−2

γn−1

Coth
(

γn−2hn−1 + Coth−1 γn−1

γn−2

)))]
.

(13.67)

Equation (13.66) is one of the approaches for computation of one dimensional
magnetotelluric response for an N-layered earth (Fig. 13.4 and Fig. 13.5).
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Fig. 13.4. Magnetotelluric apparent resistivity and phase variations with period;
theoretical model parameter values are given in the diagrams
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Fig. 13.5. Magnetotelluric apparent resistivity and phase variations with
period;model parameters are given in the diagram
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13.5 Electromagnetic Field due to a Vertical Oscillating
Electric Dipole

A small oscillating electric dipole is assumed in an infinite full space. The
electromagnetic waves will propagate in all the directions as if a point source is
located at the centre (Fig. 13.6). Therefore, overall potential distribution will
have spherical symmetry and the Laplacian operator ∇2 will be in spherical
coordinate and it will be a function of ‘r’ the radial direction only.

Let as assume that the Hertz vector �Π has only z-component and is
expressed as

�Πz = �az
�Πz. (13.68)

The wave equation ∇2�Πz = γ2Πz reduces to the form

∂2Πz

∂r2
+

2
r
∂Πz

∂r
= γ2Πz

⇒ ∂2

∂r2
(
r�Πz

)
= γ2

(
r�Πz

)
(13.69)

⇒ r�Πz = aeγr + be−γr

⇒ �Πz =
aeγr

r
+

be−γr

r
. (13.70)

In an infinite and homogenous medium, there is no possibility for a wave to
be reflected back. The potential will die down with distance. Therefore the
term a eγr

r cannot be a potential function. The correct term is

�Πz =
be−γr

r
. (13.71)

The vector potential for an electromagnetic field changes to �Πz = b
r for γ = 0

i.e., for zero frequency. Vector potential in electromagnetics changes to scalar
potential in direct current field for zero frequency. Frequency dependent Hertz
vector potential die at a faster pace with distance than the frequency inde-
pendent scalar potential due to a DC point source. At this moment the value
of ‘b’ is arbitrary.

The connecting relations between Hertz vector and the magnetic and elec-
tric fields can be written as

�Er = −γ2�Πr +
∂

∂r

(
div�Πz

)
(13.72)

�Eθ = −γ2�Πθ +
∂

r∂θ

(
∂�Πz

∂z

)
(13.73)

�Eψ = −γ2�Πψ +
1

sin θ
∂

∂ψ

(
∂�Πz

∂z

)
. (13.74)
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Now

�Πr = �Πz cos θ (13.75)
�Πθ = −�Πz sin θ

and
�Πψ = 0

For oscillating vertical electric dipole, �Πψ = 0 and ∂
∂ψ = 0 where ψ is an

azimuthal angle. Therefore,

�Hr = (σ + iω ∈)
1

r sin θ

[
∂

∂θ

(
sin θ�Πψ

)
− ∂

∂ψ
�Πθ

]
= 0 (13.76)

�Hθ = (σ + iω ∈)
1

sin θ

⎡
⎣∂�Πr

∂ψ
− sin θ

∂
(
r�Πψ

)

∂r

⎤
⎦ = 0 (13.77)

�Hφ = (σ + iω ∈)
1
r

[
∂

∂r

(
r�Πθ

)
− ∂�Πr

∂θ

]
(13.78)

Since Hr and Hθ are zero, therefore Er and Eθ are not zero because electromag-
netic waves are transverse in nature. The magnetic component which exists
is Hψ.
Now

�Πz =
be−γr

r

Fig. 13.6. Vertical oscillating electric dipole in a homogeneous full space
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and
∂�Πz

∂z
=

(
−be−γr

r2
− bγ

r
e−γr

)
. (13.79)

Hence

− γ2be−γr

r
cos θ�Er = − r2be−γr

r
cos θ +

∂

∂r

(
− b

r2
e−γr − bγ

r
− e−γr

)
cos θ

= be−γr cos θ
[
− γ2

r
+

γ
r2

+
γ2

r
2
r3

+
γ
r2

]

=
2b cos θ

r3
(1 + γr) e−γr. (13.80)

Exactly in the same way, the value of Eθ can be found out as

�Eθ =
−γ2be−γr

r
sin θ +

∂

r∂θ

(
∂�Πz

∂z

)

=
b sin θ

r3
(
1 + γr + γ2r2

)
e−γr (13.81)

and

�Hψ = (σ + iω ∈)
1
r

[
∂

∂r

(
− γbe−γr

r
sin θ

)
− ∂

∂θ

(
be−γr

r
cos θ

)]

= (σ + ω ∈)
b sin θ

r2
(1 + γr) e−γr. (13.82)

To assign a certain value to ‘b’ which is quite arbitrary so far, we seek analogy
from the electrostatic and DC conduction case. In the electrostatic and direct
current flow field cases, the potential at a point at a distance ‘r’ from a dipole
of charge +q and −q (and +I and −I as the case may be) separated by a
distance dz are

φ =
qdz
4πε

cos θ
r2

(electrostatic case) (13.83)

and

φ =
Idl
4πσ

cos θ
r2

(DC conduction case) (13.84)

�Eθ = −1
r
∂φ
∂θ

=
qdz
4πε

[
sin θ
r3

]
(electrostatic case) (13.85)

and
�Eθ =

Idl
4πσ

[
sin θ
r3

]
(DC conduction case). (13.86)
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Therefore, we can write the value of �Πz in case of an oscillating electric
dipole as

�Πz =
I l

4π (σ + iω ∈)
.
e−γr

r
(13.87)

where b = I l
4π(σ+iω∈) . I is the current strength and l is the length of the current

dipole i.e., the distance between +I and −I. In order to accommodate the time
varying part, σ was replaced by (σ + iω ∈). We can now write the existing
components of the electric and magnetic fields as

�Er =
I l

4π (σ + iω ∈)
.
2 cos θ

r3
(1 + γr) e−γr (13.88)

�Eθ =
I l

4π (σ + iω ∈)
.
sin θ
r3

(
1 + γr + γ2r2

)
e−γr (13.89)

�Eψ =
I l
4π
.
sin θ
r2

(1 + γr) e−γr. (13.90)

Special cases
Case 1 when |γr| << 1
This zone is known as the near zone or static zone.
Here

�Er =
I l

4π (σ + iω ∈)
.
2 cos θ

r3
(13.91)

�Eθ =
I l

4π (σ + iω ∈)
.
sin θ
r3

(13.92)

and
�Hψ =

I l
4π
.
sin θ
r2

. (13.93)

Case II when |γr| >> 1
This is the far zone or the radiation zone. In this case

�Er =
I lγ

4π (σ + iω ∈)
.
2 cos θ

r2
e−γr (13.94)

�Eθ =
I lγ

4π (σ + iω ∈)
.
sin θ

r
e−γr (13.95)

and
�Hψ =

I lγ
4π

.
sin θ

r
.e−γr. (13.96)

In this case, the radial component �Er is decreasing rapidly with distance, Eθ
and Hψ will form a transverse wave at a great distance when �Er has become
negligible. Since Eθ and Hψ are in the same plane, the resultant effect will be
a plane transverse wave propagating outward.
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Here
�Eθ
�Hψ

=
γ2

σ + iω ∈ .
1
γ

=
γ

σ + iω ∈ =

√
iωμ

σ + iω ∈ = η (13.97)

is the impedance of the medium. We can express Eθ as

�Eθ =
I l
4π
.ωμ.

sin θ
r

e−(α+iβ)r .eiωt.eiπ/2

=
I l
4π
.ωμ.

sin θ
r

e−αr.ei(ωt−βr+π/2). (13.98)

Since

γ = α + iβ =
√

α2 + β2.ei tan−1( β
α )

Hψ =
I l
4π

√
α2 + β2.

sin θ
r
.e−αr.ei(ωt−β+π/2). (13.99)

If electrical conductivity of the medium is zero, then

β = ω
√

μ ∈,
therefore

�Eθ =
Il
4π
.
ωμ sin θ

r
cos (ωt − ω

√
μ ∈.r + π/2) (13.100)

and
�Hψ =

I l
4π
.ω
√

μ ∈. sin θ
r

cos (ωt − ω
√

μ ∈.r + π/2) . (13.101)

(Figs. 13.7 and 13.8). Since there is no phase difference, it is a linearly polar-
ized uniform plane wave and

�Eθ

�Hψ
=

ωμ
ω
√

μ ∈ =
√

μ
∈ (13.102)

gives intrinsic impedances of the medium.

Fig. 13.7. Variation of amplitude of the magnetic field Hψ with electromagnetic
parameter P(= l2ωμσ); l is the distance
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Fig. 13.8. Variation of phase of Hψ

13.6 Electromagnetic Field due to an Oscillating Vertical
Magnetic Dipole Placed on the Surface of the Earth

A coil carrying current is a magnetic dipole. It generates the magnetic field
around the coil (Fig. 13.9). When an alternating current is sent through the
same coil, it becomes an oscillating magnetic dipole and electromagnetic waves
start propagating in all the directions from this magnetic dipole. It is termed
as the vertical oscillating magnetic dipole when the plane of the coil is hori-
zontal and the magnetic field vector is vertical. When the plane of the coil is
vertical and the magnetic field vector is at right angles to the plane of coil i.e.,
horizontal, it is termed as the horizontal magnetic dipole (See next section)

Fig. 13.9. Vertical oscillating magnetic dipole on the surface of a homogenous earth
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In this problem, both the coil and the point of observation are initially
assumed to be in the air. They are finally brought down to the surface of the
earth to have a simplified solution to the problem. However, researchers can
introduce further complexities in the problem and arrive at a more general
solution taking this solution as a starting point. The simplest problems are
presented in this section. Many problems in this series have already been
solved and they are available in published literatures. The problem due to
an oscillating magnetic dipole z is solved using Fitzerald vector potential
�F. From Sect. (13.2) we have seen that the expression for vector potential
at a distance r due to an oscillating electric dipole is �Π = be−γr

r . Similarly
we have written the expression for the source potential for vertical magnetic
dipole as

�F = m.
e−γr

r
(13.103)

where m is the moment of the dipole. For electric dipole

�m = �al
Il

4π(σ + iω ∈)
(13.104)

and for magnetic dipole

�m = �an
IS
4π

(13.105)

where S is the surface area of the current carrying coil. �al and �an are respec-
tively the unit vectors. Our problem is to find out the fields at any point
either outside or on the surface of the earth. Moment of the vertical magnetic
dipole is directed normal to the boundary. The boundary plane is the air earth
boundary and the oscillating dipole is placed at a height ‘h’ from the surface.
The magnetic dipoles are taken along the z direction and are represented by
the Fitzerald vector �F. Basic structures of this type of boundary value prob-
lems are more or less the same with some problem dependent variations in
finer details.

This type of boundary value problems start with electromagnetic wave
equations. The Laplacian operator, to be used, varies from source to source
of the electromagnetic waves. The problem can be solved either in �E and �H
field domain as done in Sect. 13.1 or in vector potential domain as shown in
Sect. 13.2 to 13.8. The EM wave partial differential equations are solved using
the method of separation of variables. Once potential problems are solved in
a vector potential domain, one can obtain the electric and magnetic fields
using the appropriate relations between vector potentials and �E and �H fields
((13.72) to (13.74) and (13.76) to (13.77)). These relations are connectors
between �E and �H field with �Π or �F or �A and φ, as discussed in the previ-
ous chapter. In the (�A, φ) formulation φ is a scalar potential. At this stage
one has to find out the vanishing and non-vanishing components of the �E
and �H fields.Physics and geometry of the problems help in determining the
zero and non-zero components of the EM fields. The source potential and
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the perturbation potentials are determined. They are brought to the same
form before the boundary conditions are applied. This step is more or less
the same as those used for potential field problems in direct current problem.
Bringing source potential and perturbation potential in the same form may
turn out to be a fairly complex mathematical problem. These arbitrary coef-
ficients, obtained while computing the perturbation potentials by solving the
wave equation by method of separation of variables, are determined applying
boundary conditions. The final expressions for �E and �H fields are obtained
either analytically or numerically depending upon the level of complexities in
mathematics.
The Fitzerald vector �F is directed along the z direction.

�F = �az.
IS
4π
.
e−γr

r
. (13.106)

In view of the cylindrical symmetry, the field

�Fz = f(ρ, z). (13.107)

Therefore, the Helmholtz wave equation

∇2�Fz = γ2�Fz (13.108)

reduces to
∂2Fz

∂ρ2
+

1
ρ
∂Fz

∂ρ
+
∂2Fz

∂z2
= γ2Fz (13.109)

In this problem �Fψ = 0 and ∂
∂ψ = 0, where ψ is the azimuthal angle.

Now applying the method of separation of variables

�F = R(ρ)Z(z) (13.110)

we get
1
R

d2R
dρ2

+
1

ρR
.
dR
dρ

= − 1
Z

d2Z
dz2 + γ2. (13.111)

If we substitute
1
Z

d2Z
dz2 = γ2 + n2 (13.112)

(13.111) reduces to
1
R
.
d2R
dρ2

+
1

ρR
.
dR
dρ

+ n2 = 0. (13.113)

The solutions of the first and second equations are respectively given by

(i)e±
√

γ2 + n2Z

and
(ii)J0(nρ) and Y0(nρ) (13.114)
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where J0 and Y0 are the Bessel’s function of first and second kind and of zero
order. The solutions of the vector potentials in the two media are

�F0 =

α∫

0

(
A0e−Z

√
γ2+n2

+ B0e+Z
√
γ2+n2

)
J0(nρ)dn (13.115)

and

�F1 =

α∫

0

B1e+z
√

γ2+n2
J0 (nρ) dn. (13.116)

Since Y0 tends to infinity as r → 0,Y0 cannot be present in the solution of the
problem. �F0 in the first medium, will contain the source potential. Therefore

�F0 =
me−γ0r

r
+

α∫

0

Ane−Z
√

γ20+n2
J0 (nρ) dn. (13.117)

Bn cannot be present in the expression because the field must vanish at
infinite distance. In the second medium Z is assumed to be negative. The
vector potential should die down with depth in the absence of any kind of
reflector. Therefore

�F1 =
∫ α

0

Bne+Z
√

γ21+n2J0(nρ)dn. (13.118)

The connecting link between the Fitzerald vector and the electric and mag-
netic fields are respectively given by

�E = −iωμ curl �F (13.119)
�H = −γ2�F + grad div�F

= curlcurl�F (13.120)

= − 1
iωμ

curl �E. (13.121)

In cylindrical coordinate system

curl�F =�aρ

(
1
ρ
∂�Fz

∂ρ
− ∂�Fψ

∂z

)

+�aψ

(
∂�Fρ

∂z
− ∂�Fz

∂ρ

)

+�az

(
1
ρ
∂

∂ρ
(ρFψ) − 1

ρ
∂Fρ

∂ψ

)
. (13.122)

In this problem ∂
∂φ = 0, �Ep = �Ez = �Hψ = 0 and
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�Eψ = iωμ
∂Fz

∂ρ
(13.123)

�Hρ =
1

iωμ
∂�Eψ

∂Z
=

∂

∂Z
∂�F
∂ρ

(13.124)

�Hz =
1
ρ
∂

∂ρ

(
ρ
∂�Fz

∂ρ

)
. (13.125)

Boundary conditions are

(Eψ)0 = (Eψ)1
(Hρ)0 = (Hρ)1 (13.126)

Therefore,

iωμ0

(
∂F
∂ρ

)

0

= iωμ1

(
∂F
∂ρ

)

1

and (
∂

∂Z
.
∂F
∂ρ

)

0

=
(
∂

∂Z
∂F
∂ρ

)

1

. (13.127)

If a function is continuous across the boundary

μ0F0 = μ1F1

∂F0

∂Z
=
∂F1

∂Z
. (13.128)

These are the two sets of boundary conditions in this problem.
Weber Lipschitz integral

1
r

=
1√

ρ2 + z2
=

α∫

0

e−nZJ0(nρ)dn (13.129)

has already been used in direct current field problem to convert the poten-
tial function 1

r in the form of an integral involving Bessel’s function to bring
parity between the source potential and the perturbation potential. This is
an essential step for all electrical and electromagnetic boundary value prob-
lems. For a time varying electromagnetic field Sommerfeld suggested the
formula

e−γ
√

ρ2+z2

√
ρ2 + z2

=

α∫

0

e−Z
√

γ2+n2
.

n√
n2 + γ2

.J0 (nρ) dn. (13.130)

For γ = 0, i.e. for zero frequency, Sommerfeld’s formula reduces down to the
Weber’s formula. ‘r’ is always positive irrespective of the position of the point
of observation with respect to the ground and the transmitting antenna i.e.,
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r2 = ρ2 + (h − z)2

or
ρ2 + (z − h)2

is always positive whether h is greater or less than z.
Sommerfeld formula for this problem is

e−γ
√

ρ2+(z−h)2

√
ρ2 + (z − h)2

=

α∫

0

e−|z−h|
√

γ2+n2
.

n√
n2 + γ2

. (13.131)

The vector potentials in the two media now be written as

�F0 =m

α∫

0

e−|z−h|
√

γ20+n2
.

n√
γ2
0 + n2

.J0(nρ)dn

+

α∫

0

Ane−Z
√

γ20+n2
J0(nρ)dn (13.132)

and

�F1 =

α∫

0

BneZ
√

γ21+n2
.J0(nρ)dn. (13.133)

Applying the boundary conditions at z = 0, we get

μ0m

α∫

0

n√
n2 + γ2

0

e−h
√

γ20+n2
J0(nρ)dn

+ μ0

α∫

0

AnJ0(nρ) dn = μ1

α∫

0

BnJ0(nρ)dn (13.134)

⇒ μ0m.
n

n2 + γ2
0

√
γ2
0 + n2.e−h

√
γ20+n2 − μ0An

√
γ2
0 + n2 = μ1.Bn

√
γ2
1 + n2.

(13.135)

From these two equations, we get the value of An as

An = m.
n√

γ2
0 + n2

.

√
γ2
0 + n2 −√

γ2
1 + n2

√
γ2
0 + n2 +

√
γ2
1 + n2

e−n
√

γ20+n2
. (13.136)

Now let

n2 + γ2
0 = n2

0

n2 + γ2
1 = n2

1.
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Then the (14.134, 14.135) simplify down to

μ0m
n
n0

e−n0h + μ0An = μ1Bn (13.137)

m
n
n0
.e−n0h − n0An = n1Bn. (13.138)

From these two equations, the values of An and Bn comes out to be

An = m.
n
n0
.
Pn0 − n1

Pn0 + n1
e−n0h (13.139)

Bn = m.
2n1

Pn0 + n1
.e−n0h (13.140)

where
ρ =

μ
μ0

.

Therefore the vector potentials in the two media are

�F0 =m

α∫

0

n√
n2 + γ2

0

.e−|z−h|
√

γ20+n2J0 (nρ) dn

+ m
∫ α

0

n
n0

Pn0 − n1

Pn0 + n1
.e−n0(z+h)J0(nρ)dn (13.141)

and
�F1 = m

∫ α

0

2n
Pn0 + n1

.e−n0h+n1zJ0 (nρ) dn. (13.142)

The �F0 can be rewritten as

�F0 = m

α∫

0

n
n0
.e−|h−z|n0.J0 (nρ) dn

+ m

α∫

0

n
n0

e−n0(z+h)J0 (nρ) dn

− m

α∫

0

n
n0
.

2n1

Pn0 + n1
.e−n0(z+h).J0 (nρ) dn. (13.143)

This is equivalent to
m e−γ0r

r
+

m e−γ0r1

r1
− P′ (13.144)

where

r =
√

ρ2 + (z − h)2
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r1 =
√

ρ2 + (z + h)2.

Expression (13.144) stands for a source, an image of the source plus a
perturbation term. In electrostatics and D.C. conduction case one gets only
one image in medium 2 for a source in medium 1 (Fig. 13.1).
Now the coil is brought down to the surface i.e., when we put h = 0

�F0 =2m

α∫

0

n
n0

e−n0zJ0 (nρ) dn

− m

α∫

0

n
n0
.

2n1

Pn0 + n1
.e−n0zJ0 (nρ) dn (13.145)

=2m.
n
n0

α∫

0

n0

n0 + n1
.e−n0zJ0 (nρ) dn. (13.146)

Since p = 1, for μ0 = μ1 and 1 − n1
Pn0+n1

= Pn0
Pn0+n1

.
This is the expression for the vector potential due to an oscillating magnetic
dipole placed on the surface of the earth. For γ = 0, the vector potential
reduces to

�F0 = m

α∫

0

e−nzJ0 (nρ) dn =
m√

ρ2 + z2
=

m
r
. (13.147)

It is a DC potential at a distance r.
The vector potential inside the earth is

�F1 = 2m

α∫

0

n
n0 + n1

e−n1zJ0 (nρ) dn. (13.148)

The existing non-zero electric and magnetic fields are �Eψ, �Hρ and �Hz. The
expressions for these vectors be written as

�Eψ = iωμ02m
∂I
∂ρ

(13.149)

�Ep =
∂2

∂ρ∂Z
.2m I (13.150)

�Hz = 2m.
1
ρ
.
∂

∂ρ
.ρ
∂I
∂ρ

(13.151)

where I is the integral
[ α∫

0

n
n+n1

J0 (nρ) dn
]
.

When both the antenna as well as the point of observation is on the surface,the
expressions for �Eψ, �Hρand �Hz are
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�Eψ = iωμ02m
∂

∂ρ

⎡
⎣

α∫

0

n
n + n1

J0 (nρ) dn

⎤
⎦ (13.152)

�Hρ = −2m
∂

∂ρ

∞∫

0

n2

n + n1
J0 (nρ) dn (13.153)

�Hz = −2m.
1
ρ
∂

∂ρ
ρ
∂

∂ρ

α∫

0

n
n + n1

J0 (nρ) dn (13.154)

The integral

a∫

0

n
n + n1

J0 (nρ)dn =

a∫

0

n (n − n1)
n2 − n2

1

.J0 (nρ) dn

= − 1
γ2
1

α∫

0

n2J0 (nρ) dn +
1
γ2
1

α∫

0

nn1J0 (nρ) dn. (13.155)

These integrals can be calculated using the Weber and Sommerfeld formula.
If we differentiate Weber’s formula twice we get

∂2

∂z2

(
1
r

)
=

α∫

0

n2e−nz.J0 (nρ) dn. (13.156)

At z = 0, eqn. (13.156) reduces to

∂2

∂z2

(
1
r

)∣∣∣∣
z=0

=

α∫

0

n2J0 (nρ) dn. (13.157)

Now ∂
∂z .

1
r = − 1

r2
dr
dz = − z

r3 and

∂2

∂z2
.
1
r

=
(−1

r3

)
− z

∂

∂z

(
1
r3

)

because
r =

√
ρ2 + z2 and

dr
dz

=
1
2
(
ρ2 + z2

)−1/2
.2z =

z
r
.

We get
∂2

∂z2
.
1
r

∣∣∣∣
z=0

= − 1
ρ3
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and
α∫

0

n2J0 (nρ) dn =
1
r3

(13.158)

on the surface of the earth.
If we differentiate Sommerfeld formula twice, we get,

∂2

∂z2

(
e−γr

r

)
=

∫ α

0

nn1e−n1zJ0(nρ)dn

⇒ ∂2

∂z2

(
e−γr

r

)

z=0

=
∫ α

0

nn1J0(nρ)dn. (13.159)

Now

∂

∂z

(
e−γr

r

)
= e−γr

(
− z

r3
− γz
r2

)

= −z
(

1
r3

+
γ
r2

)
e−γr = Zf(r)

and

∂2

∂z2

(
e−γr

r

)
= f (r) + z

∂

∂z
f (r)

⇒ ∂2

∂z2

(
e−γr

r

)

z=0

= f (r) . (13.160)

Therefore, the final expression for Eψ and Hz will come in the form

�Eψ = iωμ0.
−2m
γ2
1ρ4

[
3 − eγρ (3 + 3γρ + γ2ρ2

)]
(13.161)

and
Hz =

2m
γ2
1ρ3

[
9 − eγρ (9 + 9γρ + 4γ2ρ2 + γ3ρ3

)]
. (13.162)

13.7 Electromagnetic Field due to an Oscillating
Horizontal Magnetic Dipole Placed on the Surface
of the Earth

Sommerfeld first suggested that if the vector potential for horizontal magnetic
dipole is taken as

�Π = �ax
�Πx,

It will lead to absurd result i.e., γ0 = γ1, and the vector potential must be
taken in the form as
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Fig. 13.10. Horizontal oscillating magnetic dipole on the surface of the earth

�Π = �ax
�Πx +�az

�Πz (13.163)

i.e. �Π must have two components �Πx and �Πz.
In this problem the plane of symmetry is the X - Z plane (Fig. 13.10) and the
axis of symmetry does not exist. Therefore the wave equation is

∂2�Π
∂ρ2

+
1
ρ
∂�Π
∂ρ

+
1
ρ2

∂2�Π
∂ψ2

+
∂2�Π
∂z2

= γ2�Π (13.164)

in cylindrical polar coordinate and �Π = f (ρ,ψ, z). Using the method of sepa-
ration of variables we can write

�Π = R (ρ) Ψ (ψ) Z (z) (13.165)

Now let

1
Ψ
d2Ψ
dψ2

= −m2 (13.166)

1
Z

d2Z
dz2 = n2 + γ2 (13.167)

Substituting in (13.164) we get

1
R

d2R
dρ2

+
1

Rρ
dR
dρ

+
(

n2 − m2

ρ2

)
R = 0 (13.168)

The solutions are

(a) cosmψ sin mψ
(b) e±z

√
n2+γ2

(c) Jm(nρ),Ym(nρ) (13.169)
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Since x z plane is a plane of symmetry, therefore cosmψ is a solution and sin
mψ can not be a solution. As a result the expression for the vector potential is

�Π =
α∑

m=0

α∫

0

cosmψ
(

fne−z
√

n2+γ2

+ gnez
√

n2+γ2
)

Jm (nρ) dn. (13.170)

Because Ym(n, ρ) is not a good potential function as discussed in Chap. 7. It
is assumed that �Πx behave in a similar way as �Πz behaved in the case of a
vertical oscillating electromagnetic dipole (Sect. 13.3). So the vector potential
will be independent of the azimuthal angle ψ and m will be zero. The general
solution for �Πx will be

�Πx =

α∫

0

(
fne−z

√
n2+γ2 + gnez

√
n2+γ2

)
J0 (nρ) dn. (13.171)

Since

�Ex = −γ2�Πx +
∂

∂x

(
∂�Πx

∂x
+
∂�Πz

∂z

)
(13.172)

We can write the x component of the electric field in the two media as follows.

�E0x = −γ2
0
�Π0x +

∂

∂x

(
∂�Π0x

∂x
+
∂�Π0z

∂z

)
(13.173)

�E1x = −γ2
1
�Π1x +

∂

∂x

(
∂�Π1x

∂x
+
∂�Π1z

∂z

)
. (13.174)

Since the tangential component of the electric field is continuous across the
boundary we get

�E0x = �E1x at z = 0,

γ2
0
�Π0x = γ2

1
�Π1x (13.175)

∂�Π0x

∂x
+
∂�Π0z

∂z
=
∂�Π1x

∂x
+
∂�Π1z

∂z
. (13.176)

Since
∂�Πx

∂x
=
∂�Πx

∂ρ
.
∂ρ
∂x

=
∂�Πx

∂ρ
cos ψ1 (13.177)

(13.176) can be written as

∂�Π0x

∂ρ
cos ψ +

∂�Π0z

∂z
=
∂�Π1x

∂ρ
cos ψ +

∂�Π1z

∂z
(13.178)

In order to apply the boundary condition, we have to equate the coefficient of
cos ψ on both the sides. Therefore �Πz must have a cos ψ term. Since the source
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potential has cos ψ terms, the perturbation potential will also have the cos ψ
terms. Therefore m = 1, for the z component of the perturbation potential
and it will be

�Πz = cosψ

α∫

0

(
pne
−z

√
n2+γ2

+ qne
z
√
n2+γ2

)
J1 (nρ) dn. (13.179)

Since the source potential is m e−γr

r where r = (z − h)2 + ρ2 or (h − z)2 + ρ2

depending upon whether z is greater or less than h. The vector potentials in
the first and second media can be written following the procedure laid down
in the previous problem as

�Π0x =m

α∫

0

n

n0
e−|h−z|n0/J0 (nρ) dn

+

α∫

0

fn e−n0zJ0 (nρ) dn (13.180)

�Π1x =

α∫

0

gnen1zJ0 (nρ) dn (13.181)

Here
n2

0 = n2 + γ2
0

and
n2

1 = n2 + γ2
1. (13.182)

The z component vector potentials are

�Π0z = cosψ

α∫

0

pne
−n0zJ1 (nρ) dn (13.183)

�Π1z = cosψ

α∫

0

qne
n1zJ1 (nρ) dn. (13.184)

In this problem

�Ex = −γ2�Πx +
∂

∂x

(
∂�Πx

∂x
+
∂�Πz

∂z

)
(13.185)

�Ey =
∂

∂y

(
∂�Πx

∂x
+
∂�Πz

∂z

)
(13.186)
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�Ez = −γ2�Πz +
∂

∂z

(
∂�Πx

∂x
+
∂�Πz

∂z

)
. (13.187)

Hx = (σ + iω ∈)curlΠx

= (σ + iω ∈)
(
∂Πz

∂y
− ∂Πy

∂z

)
(13.188)

Hy = (σ + iω ∈)
(
∂Πx

∂z
− ∂Πz

∂x

)
(13.189)

Hz = (σ + iω ∈)
∂Πx

∂y
. (13.190)

The boundary conditions are

γ2
0
�Π0x = γ2

1
�Π1x (13.191)

∂�Π0x

∂x
+
∂�Π0z

∂z
=
∂�Π1x

∂x
+
∂�Π1x

∂z
(13.192)

γ2
0
�Πoz = γ2

1
�Π1z (13.193)

γ2
0

μ0

(
∂Π0x

∂z
− ∂Π0z

∂x

)
=

γ2
1

μ1

(
∂Π1x

∂z
− ∂Π1z

∂x

)
. (13.194)

Applying these boundary conditions, we get

m.
n
n0

e−n0h + fn = gn (13.195)

γ2
0m.

n
n0

e−hn0 + γ2
0fn = γ2

1gn (13.196)

γ2
0m.

n
n0
.n0e−hn0 − γ2

0.n0fn = γ2
1n1gn. (13.197)

Using these boundary conditions, fn and gn can be obtained as

fn = m.
n
n0
.
n0 − n1

n0 + n1
e−n0h (13.198)

gn = 2m.
n

n0 + n1
.
γ2
0

γ2
1

.e−n0h. (13.199)

Using the other boundary conditions i.e.,

∂�Π0x

∂x
+
∂�Π0z

∂z
=
∂�Π1x

∂x
+
∂�Π1z

∂z

and
γ2
0
�Π0z = γ2

1
�Π1z,

we get
m.

n
n0

e−n0h.n + fn − n0p = ng + n1.q (13.200)
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and
γ2
0p = γ2

1g (13.201)

and

p = m.
2n2

n0 + n1
.

γ2
0 − γ2

1

n0γ2
1 + n1γ2

0

.e−n0h

q = m.
2n2

n0 + n1
.
γ2
0

γ2
1

.
γ2
0 − γ2

1

n0γ2
1 + n1γ2

0

e−n0h. (13.202)

Once all the constants are determined applying the boundary conditions,
the expression for the vector potential can be determined.
When we bring the horizontal magnetic dipole on the surface of the earth i.e.,
h = 0
We get

p = 2m
n

n0 + n1
.
γ2
0

γ2
1

(13.203)

and

q = m.
2n2

n0 + n1
.
γ2
0

γ2
1

γ2
0 − γ2

1

n0γ2
1 + n1γ2

0

. (13.204)

Therefore

�Π1x = 2m

α∫

0

n
n0 + n1

.
γ2
0

γ2
1

.en1zJ0(nρ)dn (13.205)

and

�Π1z = 2m cosψ

α∫

0

n2

n0 + n1
.
γ2
0

γ2
1

.
γ2
0 − γ2

1

n0γ2
1 + n1γ2

0

e−n1zJ1 (nρ) dn (13.206)

since
m =

I.dx
4π (σ + iω ∈)

=
Idx
4π

.
iωμ
γ2
0

. (13.207)

γ0 is negligibly small in comparison to γ1 (i.e. conductivity of the air in neg-
ligible in comparison to that of the earth) (13.205) and 13.206). We get

�Π1x =
Idx
2π

.
iωμ
γ2
1

α∫

0

n
n + n1

en1zJ0 (nρ) dn (13.208)

�Π1z = −Idx
2π

.
iωμ

γ2
1

, cosψ

α∫

0

n

n+ n1
en,zJ1 (nρ) dn (13.209)

since
∂

∂ρ
(J0 (nρ) = −nJ1 (nρ)
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The expression for Hz is

Hz = − γ2

iωμ
∂�Πx

∂y
= − γ2

iωμ
sin ψ

∂Πx

∂ρ
(13.210)

= − γ2

iωμ
sinψ

Idx

2π
.
iωμ

γ2

∂

∂ρ

[
1

γ2ρ3
− 1
γ2
e−γρ

(
1
ρ3

+
γ

ρ2

)]

⇒ �Hz = − Idx
2π

sin ψ
1

γ2ρ4

(
3 − e−γρ (3 + 3γρ + γ2ρ2

))
. (13.211)

When ψ = 0, �Hz = 0 i.e., there cannot be any vertical magnetic field along the
horizontal axis of the vertical magnetic dipole. Hz is maximum when ψ = π/2
i.e., along the Y axis we get

Hz |max = −Idx
2π

.
1

γ2ρ4

[
3 − e−γρ

(
3 + 3γρ+ γ2ρ2

)]
. (13.212)

The electric field is

�Ex = −γ2�Πx +
∂

∂x

(
∂�Πx

∂x
+
∂�Πz

∂z

)
. (13.213)

Since
∂

∂ρ
(J0 (nρ) dn) = −n J1 (nρ)

We can write
(
∂�Πx

∂x

)

z=0

=
−�Idx
2π

.
iωμ

γ2
. cosψ

α∫

0

− n

n+ n1
J1 (nρ) dn

=
Idx

2π
.
iωμ

γ2
. cosψ

[
1

γ2ρ3
− 1
γ2
e−γρ

(
1
ρ3

+
γ

ρ2

)]
. (13.214)

Similarly

(
∂Πz

∂z

)

z=0

= −
�Idx

2π
.
iωμ

γ2
. cosψ

α∫

0

nn1

n+ n1
J1 (nρ) dn. (13.215)

Adding (13.214) and (13.215), the integral part reduces to

α∫

0

n2 + nn1

n + n1
J1 (nρ) dn =

α∫

0

n J1 (nρ) dn = − ∂

∂ρ

α∫

0

J0 (nρ) dn. (13.216)
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Therefore

�Ex = −γ2�Πx +
∂

∂ρ

(
∂�Πx

∂x
+
∂�Πz

∂z

)
cosψ (13.217)

�Ez = − γ2Idx
2π

.
iωμ
γ2

.

(
1

γ2ρ3
− 1

γ2
e−γρ

(
1

ρ3
− γ

ρ2

))
+

∂2

∂ρ2

α∫

0

J0 (nρ) dn cos2 ψ (13.218)

Now taking

�Ex = −Idx
2π

.
iωμ

γ2
.

{[
1

γ2ρ3
− 1
γ2
e−γρ

(
1
ρ3

− γ

ρ2

)]
+

∂2

∂ρ2

(
1
ρ

)]
(13.219)

where
1
ρ

=

α∫

0

J0 (nρ) dn.

Equation (13.219) simplifies down to

�Ex =
Idx
2π

.
iωμ
γ2ρ3

[
2 − 3x2

ρ2
− e−γρ (1 + γρ)

]
(13.220)

�Ey = − Idx
2π

.
iωμ
γ2

,
3 sin ψ cos ψ

ρ3
. (13.221)

We can express the electrical components in �Eψ and �Eρ in the form

�E
ρ

= −Idx
2π

.
iωμ

γ2
.
1
ρ3

[{
2 − 3x2

ρ2
− e−γρ (1 + γρ)

}]
cosψ + sin2 ψ cosψ

]
.

(13.222)
For ψ = 900, i.e., in the broad side position there will be no radial component
of the electric field and the magnetic field will be maximum.
Now

�Eρ = Ey cos ψ + Ex sin ψ

= −Idx
2π

.
iωμ

γ2ρ3

[−{
2 − 3 cosφ− e−γρ (1 + γρ)

}
sinψ + 3 cos2 ψ sinψ

]
.

(13.223)

Eψ = Ey cos ψ − Ex sin ψ. (13.224)

When ψ = 900
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�Eψ =
Idx
2π

.
iωμ
γ2

.
1

ρ3
.
[
2 − e−γρ (1 + γρ)

]
, (13.225)

�Hz =
Idx
2π

.
iωμ
γ2

.
1

ρ4
.
[
3 − e−γρ (3 + 3γρ + γ2ρ2

)]
(13.226)

and
�Eρ = 0. (13.227)

Thus both �Eψ and �Hz have maximum values at the broad side position.
Case I: When γρ << 1

�Hz =
Idx
2π

.
3

ρ2
,Eψ =

Idx
2πσ

.
1

ρ3
(Static Case). (13.228)

Case II: When γρ >> 1 in the radiation zone

�Hz = − Idx
2π

.
1

γ2ρ4
.γ2ρ2.e−γρ = − Idx

2π
.
1

ρ2
e−γρ (13.229)

�Eρ =
Idx
2π

.
1

γ2ρ4
.γ2ρ2.e−γρ = − Idx

2π
.
1
ρ2

e−γρ

�Eψ = − Idxγρ
2πγ2

.
e−γρ

ρ3
− Idx

2πγ
.
e−γρ

ρ2
= − Idx

2π
.

1
a + ib

.
e−aρ

ρ2
.e−ibρ. (13.230)

ReEψ = − Idx
2π

.
1√

a2 + b2
.
e−αρ

ρ2
cos

(
ωt − bρ − tan−1 b

a

)
. (13.231)

Thus finally we can define the impedance Z, which is given by

Z =
∣∣∣∣
Eψ

Hz

∣∣∣∣ =
1√ωμρ

. (13.232)

Thus by measuring �Eψ and �Hz we can measure the conductivity of the earth.

13.8 Electromagnetic Field due to a Long Line Cable
Placed in an Infinite and Homogenous Medium

An infinitely long line cable is placed along the Z–direction (Fig 13.11). There-
fore the vector potential will also be in the Z-direction, i.e.,

�Π = �az
�Πz. (13.233)

For an infinitely long line cable,

∂

∂z
= 0,

∂

∂ψ
= 0 (13.234)

where ψ is the azimuthal angle.
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Fig. 13.11. An infinitely long line electrode is place vertically in an homogeneous
and isotropic full space

The wave equation reduces to

∇2�Πz = γ2�Πz (13.235)

⇒ ∂2Πz

∂ρ2
+

1
ρ
∂Πz

∂ρ
− γ2Πz = 0. (13.236)

The solution of the (13.236) is I0(γρ) and K0(γρ) where I0 and K0 are the
modified Bessel’s function of zero order and first and second kind. Since I0(γρ)
tends to be infinity as ρ → α, therefore the appropriate expression for the
potential is

�Πz = bK0 (γρ) . (13.237)

In this problem, the electric field is

�Ez = −γ2�Πz + grad
∂�Πz

∂z
= −γ2�Πz +

∂2Πz

∂z2
. (13.238)

Here
�Eρ = 0 and �Eψ = 0. (13.239)

For an infinitely long cable, there is no variation of �Ez along the Z–axis i.e.
∂
∂z = 0. Therefore

�Ez = −γ2�Πz. (13.240)

The magnetic field
�H = (σ + iω ∈) curl�Π. (13.241)

In this problem

�Hρ = 0 (13.242)

�Hz = 0 (13.243)
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and
�Hψ = − (σ + iω ∈)

∂�Πz

∂ρ
. (13.244)

We can now write

�Ez = −γ2b K0 (γρ) (13.245)

�Hψ = − (σ + iω ∈) b
∂

∂ρ
K0 (γρ) . (13.246)

The value of ‘b’ which is still arbitrary can be determined from the magneto-
static analog :

The magnetic field at a point due to a small current element is

Hψ =
Idz sin θ

4πr2
=

Idz
4π

.
1

ρ2 + z2
.
ρ
r
. (13.247)

For an infinitely long line cable

Hψ =

α∫

−α

Idz
4π

.
ρ

(ρ2 + z2)3/2
=

I
4π
.
2
ρ

=
I

2πρ
. (13.248)

Now

Ez = −γ2b K0(γρ) (13.249)

Hψ = − (σ + iω ∈) bγK′0 (γρ)

= (σ + iω ∈) bγk1 (γρ) . (13.250)

We know

K0 (z) = − ln
zc
2

I0 (z) +
∞∑

m=1

z2m

22m (m!)2

(
1 +

1
2

+
1
3

+ . . . . .
1
m

)
(13.251)

where c is a constant and has some definite value.

K′0 (z) = −1
z
I0 (z) − ln

zc
2

I′0 (z) +
∂

∂z

∞∑
m=1

z2m

22m (m!)2

(
1 +

1
2

+
1
3

+ . . . . .
1
m

)
.

(13.252)
Now the value of

I0 (z) =
∑ z2m

22m (m!)2
= 1 +

z2

22
+

z4

24 (2!)2
+ . . . . . . . (13.253)

Since
Lim
z→0

K′0 (z) = −1
z
, (13.254)
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We can write
Hψ =

σbγ
γρ

=
σb
ρ

=
I

2πρ
when ω → 0. (13.255)

Therefore
‘b’ is =

I
2πσ

. (13.256)

In a time varying field

b =
1

2π (σ + iω ∈)
. (13.257)

Therefore

�Πz = bK0 (γρ) =
1

2π (σ + iω ∈)
.K0 (γρ) (13.258)

=
I

2π
.
iωμ
γ2

.K0 (γρ) . (13.259)

The existing electric and magnetic field components are

�Ez = −iωμ
I

2π
K0 (γρ) (13.260)

�Hψ = − I
2π
.
∂

∂ρ
K0 (γρ) . (13.261)

All other field components are zero i.e.,

Eρ = Eψ = 0 Hρ = Hz = 0. (13.262)

In the radiation zone, where γρ >> 1

K0(z) → K1(z) →
√

π
2z

e−z. (13.263)

the asymptotic values of Ez and Hψ are given as

�Ez = −iωμ.
I

2π

√
π

2γρ
.e−γρ (13.264)

and

�Hψ = − Iγ
2π
.K1 (γρ)

=
Iγ
2π

√
π

2γρ
e−γρ. (13.265)

Now substituting γ = α + iβ, we can separate the real and imaginary parts

1√γ
=

1√
α + iβ

=
1

4
√

α2 + β2
.e−

i
2 tan

−1( β
α )
.
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Therefore the expressions for Ez and Hψ can be written as

�Ez =
μIω
2π

.e
−iπ
2 .

√
π
2ρ
.

1

4
√

α2 + β2
.e−

i
2 tan−1 β

α .e−(α+iβ)ρ (13.266)

�Hψ =
I

2π

√
α2 + β2ei tan−1 β

α .

√
π
2ρ
.

1
4
√

α2 + β2
.e−

i
2 tan−1 β

α .e−(α+iβ)ρ. (13.267)

Real components of the electric and magnetic fields are given by

Re�Ez =
μIω√

8π
.
e−αρ√
ρ
.

1
4
√
α2 + β2

cos
(
ωt− 1

2
tan−1 β

α
− π

2
− βρ

)
(13.268)

Re�Hψ =
I√
8π
.
e−αρ
√ρ

.
1

4
√

α2 + β2
cos

(
ωt − βρ +

1
2

tan−1 β
α

)
. (13.269)

For negligible displacement current

α = β =
√

ωμσ
2

,

hence ∣∣∣∣
Ez

Hψ

∣∣∣∣ = μω.
1√

α2 + β2
=
√

ωμ
σ

= Z. (13.270)

So we can measure conductivity of the ground by measuring EZ and Hψ. Since
γ =

√
iωμσ,

Ez = −iωμ
I

2π
K0

(
P
√

i
)

(13.271)

and

Hψ = − I
2π
.
∂

∂ρ

[
K0

(
P
√

i
)]

(13.272)

where P =
√ωμσ. Here K0

(
P
√

i
)

and K′0
(
P
√

i
)

have both real and imagi-
nary components as

K0

(
P
√

i
)

= kerP + keip P = K0

(
Peiπ/4

)
(13.273)

and
K′0

(
p
√

i
)

= ker′ p + kei′p. (13.274)

The phase varies from - π/2 to +π/2



13.9 Long Cable on the Surface of a Homogeneous Earth 421

13.9 Electromagnetic Field due to a Long Cable on the
Surface of a Homogeneous Earth

An infinitely long cable is placed along the x direction (Fig. 13.12) therefore
the starting wave equation is

∇2�Πx = γ2�Πx (13.275)

where �Πx is the vector potential.
In this problem �Πy = 0 and �Hz = 0. Since there is no variation along

the x – direction, the Helmholtz equation reduces to the form in Cartisian
coordinate as

∂2�Πx

∂z2
+
∂2�Πx

∂y2
= γ2Πx. (13.276)

Applying the method of separation of variables, i.e.

�Πx = Y (y) Z (z)

we get
1
Y

d2Y
dy2 = −n2. (13.277)

The solution are einy, e−iny. If we take

1
Z

d2Z

dz2
= γ2 + n2 (13.278)

The solution are
Z = e±

z
√

γ2+n2
.

Therefore the expression for the perturbation potential is

�Πx =

α∫

0

(
fne−z

√
γ2+n2

gnez
√

γ2+n2
)
e−iny dn. (13.279)

Fig. 13.12. An infinitely long line electrode carrying alternating current on the
surface of the earth
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The expressions for the vector potentials in the first and second media are
respectively given by

�Π0x = �Π0 +

α∫

0

fne−Z
√

n2+γ20 .e−iny dn (13.280)

[in the first medium] and

�Π1x =

α∫

0

gneZ
√

n2+γ21e−iny dn (13.281)

[in the second medium] .
Here the source potential �Π0 is

�Π0 =
I

2π (σ + iω ∈)
.K0 (γρ) =

iωμI

2πγ2
0

K0 (γρ) . (13.282)

Substituting the value of Π0 the source potential, the (13.280) becomes

�Π0x =
iωμ0I
2πγ2

0

K0 (γ0ρ) +

α∫

0

fne−
√

n2+z2.Ze−inydn (13.283)

and the vector potential in the second medium is

�Π1x =

α∫

0

gnez
√

n2+γ21e−iny dn. (13.284)

Now

�Ex = −γ2�Πx + grad div�Πx

= −γ2�Πx. (13.285)

Since ∂
∂x = 0

Hy =
γ2

iωμ
curlΠx =

−γ2

iωμ
.
∂�Πx

∂z
(13.286)

�Hz = − γ2

iωμ
∂�Πx

∂y
(13.287)

because �Πy and �Πz are also zero.
The Sommerfeld formula

e−γ
√

ρ2+z2

√
ρ2 + z2

=

α∫

0

n√
n2 + γ2

e−nzJ0 (nρ) dn (13.288)
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is used in time varying field to bring the source potential in the same format
as perturbation potential.

It changes to the Webers formula for γ = 0 i.e.,

1√
ρ2 + z2

=

α∫

0

e−nzJ0 (nρ) dn =
2
π

α∫

0

K0 (γρ) einz dn. (13.289)

In this problem

1√
n2 + γ2

0

=
1
π

α∫

−α

K0 (γ0y) e−inydy. (13.290)

Here the changes are (i) from ρ to γ0, (ii) from n to y and (iii) from z to n.
The Sommerfeld formula can change to the form

e−z
√

n2+γ20√
n2 + γ2

0

=
1
π

α∫

−α

K0

(
γ0

√
y2 + z2

)
einy dy. (13.291)

Now let

K0 (γ0ρ) = K0

(
γ0

√
y2 + z2

)
=

∞∫

−∞
An e−inydny,

then

An =
1
2π

∞∫

−∞
K0

(
γ0

√
y2 + z2

)
einy.dy. (13.292)

Applying the Fourier Transform, we shall have

An =
1
2π
.π.
e−

√
n2+γ2

0√
n2 + γ2

0

. (13.293)

Therefore

K0

(
γ0

√
y2 + z2

)
=

1
2

∞∫

−∞

e−z
√

n2+γ20√
n2 + γ2

0

e−iny.dn. (13.294)

The vector potential �Π0x is

�Π0x =P

∞∫

−∞

e−|z−h|
√
n2+γ2

0√
n2 + γ2

0

e−iny dn

+

∞∫

0

fn e−z
√

n2+γ20 .e−iny dn, where P =
iωμ0I

2πγ2
0

. (13.295)
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Applying the boundary conditions

γ2
0
�Π0x = γ2

1
�Π1x (13.296)

γ2
0

μ0

.
∂�Π0x

∂z
=

γ2
1

μ1

.
∂�π1x

∂z
(13.297)

and substituting

P =
i�μ0I

2πγ2
0

,

we get

γ2
0 .P e

−h
√
n2+γ2

0√
n2 + γ2

0

+ γ2
0f =γ2

1g (13.298)

γ2
0Pe

h
√
n2+γ2

0 .
√
n2 + γ2

0√
n2 + γ2

0

+ γ2
0 (−1) .

√
n2 + γ2

0 .fn =γ2
1

√
n2 + γ2

1 .gn.

(13.299)

Substituting

n2
0 =n2 + γ2

0

n2
1 =n2 + γ2

1,

the values of fn and gn are found out to be equal to

fn =P.
n0 − n1

n0 (n0 + n1)
e−n0h (13.300)

gn =2P.
γ2
0

γ2
1

.e−n0h.
1

n0 + n1
. (13.301)

When the line source is brought on the surface of the earth. i.e., when h = 0,
the vector potential on the surface of the earth is given by

�Π0x =P

∞∫

0

e−n0z

n0 + n1
e−inydn+ P

∞∫

0

n0 − n1

n0 (n0 + n1)
e−n0ze−inydn

=2P

∞∫

0

e−n0z

n0 + n1
e−inydn. (13.302)

Therefore, the electric and magnetic fields are

�E0x = −2Pγ2
0

∞∫

0

e−n0z

n0 + n1
.e−inydn (13.303)
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�H0y = −2P
γ2
0

iωμ

∞∫

0

n0e
−n0z

n0 + n1
.e−inydn (13.304)

�H0z = −2P
γ2
0

iωμ

∞∫

0

(−in) e−n0z

n0 + n1
.e−inydn. (13.305)

On the surface of the earth at z = 0 and substituting the value of P , we get

�Ex =
iωμI

π

∞∫

0

e−iny

n0 + n1
.dn (13.306)

�Hy = −μI
π

∞∫

0

n0e−iny

n0 + n1
.dn (13.307)

.�Hz = −μI
π

∞∫

0

−in
n0 + n1

.e−iny dn.. (13.308)

Since

K0

(
γ0

√
y2 + z2

)
=

∞∫

0

e−n0z

n0
.e−inydn (13.309)

we get

�Ex = − iωμI
π

∞∫

0

(n1 − n0) e−iny

(n2
1 − n2

0)
dn (13.310)

= − iωμI
π (γ2

1 − γ2
0)

⎡
⎣
∞∫

0

n1e−inydn −
∞∫

0

n0e−inydn

⎤
⎦ . (13.311)

If we differentiate with respect to z twice, we shall get

∂2

∂z2

[
K0

(
γ0

√
y2 + z2

)]
=

∞∫

0

n0e−n0z.e−iny dn. (13.312)

Now,

z
Lim→ 0 =

∞∫

0

n0e
−inydn
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and

K0

(
γ1

√
y2 + z2

)
=

∞∫

0

e−n1z

n1
.e−inydn (13.313)

∂2

∂z2

(
K0

(
γ1

√
y2 + z2

))
z=0

=

∞∫

0

n1e−iny dn.

Therefore, the expression for �Ex can be written as

�Ex = − iωμI

π (γ2
1 − γ2

0)

[
Lt
z→0

∂2

∂z2
K0

(
γ1

√
y2 + z2

)

− Lt
z→0

∂2

∂z2
K0

(
γ0

√
y2 + z2

)]
. (13.314)

Differentiating K0

(
γ0

√
y2 + z2

)
with respect to z, we get

∂

∂z
K0

(
γ0

√
y2 + z2

)
=

(
γ0√
y2 + z2

)
K ′0

(
γ0

√
y2 + z2

)
(13.315)

∂2

∂z2
K0

(
γ0

√
y2 + z2

)
=

γ2
0z

2

y2 + z2
K ′′0

(
γ0

√
y2 + z2

)

+γ0

√
y2 + z2 + z2√

y2+z2

y2 + z2
K ′0

(
γ0

√
y2 + z2

)
.

At

z = 0,
∂2

∂z2
K0

(
γ0

√
y2 + z2

)
=
γ0

y
K ′0 (γ0y) . (13.316)

Therefore ,

�Ex =
−iωμI

π (γ2
1 − γ2

0)

[
γ1

y
K ′0 (γ1y) − γ0

y
K ′0 (γ0y)

]
. (13.317)

Since

K ′0 (x) = −K1 (x)

= �Ex − iωμI
π (γ2

1 − γ2
1)
.
1
y2

[γ0yK1 (γ0y) − γ1yK1 (γ1y)] . (13.318)

When γ0y << 1
Lt

x→0
K1 (x) = 1

Here, x = γ0y
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Fig. 13.13. Variation of amplitude and phase with the electromagnetic
parameter P

�Ex = − iωμI
πγ2

1y2
[1 − γ1yK1 (γ1y)] . (13.319)

Since

�E0
x =

−iωμI
π

,

Ex

E0
x

=
1

γ2
1y2

[1 − γ1y K1 (γ1y)] . (13.320)

The general expressions for the electric field and the magnetic field are given
by

�Ex = − iωμI

π (γ2
1 − γ2

0)
.
γ1

y2
[γ0yK1 (γ0y) − γ1yK1 (γ1y)] (13.321)

and

�Hz = − I
π (γ2

1 − γ2
0)
.
1
y3

[2γ0y/K1 (γ0y)+

γ2
0y

2K0 (γ0y) − 2γ1yK1 (γ1y) − γ2
1y

2K0 (γ1y)
]
. (13.322)

When γ0 → 0

Hz = − I
πγ2

1

.
1
y3

[
2 − 2γ1yK1 (γ1y) − γ2

1y
2K0 (γ1y)

]
(13.323)

H0
z = − I

2π
.
∂

∂y
K0 (γ1y) ≈ 1

2πy
. (13.324)

Then
Hz

H0
z

=
2

γ2
1y2

[
2 − 2γ1yK1 (γ1y) − γ2y2K0 (γ1y)

]
. (13.325)



428 13 Electromagnetic Wave Propagation

Since
γ1 =

√
iωμσ,

Therefore

γ1y = y
√
ωμσ.

√
i = P

√
i

Hz

H0
z

=
2
P 2

[
2 − P

√
iK1

(
P
√
i
)
− P 2iK0

(
P
√
i
)]
. (13.326)

13.10 Electromagnetic Induction due to an Infinite
Cylinder in an Uniform Field

An infinitely long cylinder has its axis horizontal and is directed along the z
direction. The field is vertical due to an oscillating magnetic dipole of larger
radius such that one gets uniform vertical field at the center of the loop
(Fig. 13.14) The starting Helmholtz equation is

∇2�A = γ2�A (13.327)

where �A is a vector potential. Here the field is assumed to be harmonic, i.e.
H = Heiωt. Since the cylinder is infinitely long, ∂

∂z = 0.
From Maxwell’s equation, we can write

curl �H = �J +
∂ �D

∂t
= (σ + iω ∈) �E. (13.328)

We define

Fig. 13.14. An infinitely conducting cylinder buried inside a earth in the presence
of a vertical uniform field
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�H = curl �A (13.329)

⇒ curl curl �A = (σ + iω ∈) �E (13.330)

⇒ grad div �A−∇2 �A = (σ + iω ∈) �E (13.331)

⇒ grad div �A− iωμ (σ + iω ∈) �A = (σ + iω ∈) �E (13.332)

⇒ �E = −iωμ �A+
1

σ + iω ∈grad div
�A. (13.333)

We can write the magnetic field components from (13.329) as

�Hr =
1
r
∂�Az

∂ψ
− ∂�Aψ

∂z
(13.334)

�Hψ =
∂�Ar

∂z
− ∂�Az

∂r
(13.335)

�Hz =
1
r
∂

∂r

(
r�Aψ

)
− 1

r
∂Ar

∂ψ
. (13.336)

Since ∂
∂z = 0 and Aψ = 0 and Ar = 0, we get

�Hr =
1
r
∂�Az

∂ψ
(13.337)

�Hψ = −∂
�Az

∂r
(13.338)

�Hz = 0. (13.339)

The wave equation can be written in the form

∂2 �Az
∂r2

+
1
r

∂ �Az
∂r

+
1
r2
∂2 �Az
∂ψ2

= γ2 �Az

which is independent of the variation along the z-direction.
Applying the method of separation of variables we have

A =RΨ (13.340)

d2Ψ
dψ2

+ n2Ψ =0 (13.341)

and
d2R
dr2

+
1
r

dR
dr

−
(

γ2 +
n2

r2

)
R = 0. (13.342)

The solutions are
(i) cosmψ, sin mψ

and
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(ii) In(γr), Kn(γr). (13.343)

The vector potentials outside and inside the body are given by

A0 = Hr sin ψ +
∑

(cn cos nψ + dn sin nψ)Kn (γr) (13.344)

and
Ai =

∑
(fn cos nψ + gn sin nψ) In (γr). (13.345)

At the boundary of the cylinder i.e., at

r = a, �Hψ0 = �Hψ1 (13.346)
�Ez0 = �Ez1 (13.347)
∂A0

∂r
=
∂A1

∂r
(13.348)

μ0A0 = μ1A1. (13.349)

Applying the first boundary condition, we get

μ0Ha sin φ + μ0

∑
(cn cos nψ + dn sin nψ)Kn(γ0a)

= μ1

∑
(fn cos nψ + gn sin nψ)In(γ1a). (13.350)

Equating the coefficients of sines and cosines we get,

μ0Cn Kn(γ0a) = μ1fnIn(γ, a). (13.351)

Since the source field does not contain any cosine term, the secondary field
also should not contain any cosine terms. Therefore

cn = fn = 0. (13.352)

Similarly
dn = gn = 0 except for n = 1 (13.353)

and
μ0Ha + μ0d1 K1 (γ0a) = μ1g1I1 (γ1a) . (13.354)

From the second boundary condition

H + d1γ0K
′
1 (γ0a) = g1γ1I1 (γ1a) . (13.355)

From these two equations

d1 = H
μ1I1 (γ1a) − μ0γ0aI1 (γ0a)

μ0γ1k1 (γ0a) I1 (γ1a) − μ1γ0I1 (γ1a) (γ0a)
. (13.356)

The vector potential outside the cylinder is given by



13.10 Electromagnetic Induction due to an Infinite Cylinder 431

�A0 = �Hr sinφ+ d1 sinφK1 (γ0r) (13.357)

Source field perturbation field
When

γ0 → 0,K1 (γ0a) ≈ 1
γ0a

and K′1 (γ0a) ≈ − 1

(γ0a)
2 (13.358)

we get

d1 = Hγ0a
2 nI1 (γ1a) − γaI ′1 (γ0a)
γ1aI ′1 (γ1a) + nI1 (γ1a)

(13.359)

where n = μ/μ0 .
Since

I/1 (x) = I0 (x) − 1
x
I1 (x) (13.360)

we can write

A0 = Hsin ψ
[
r +

a2

r
T
]

(13.361)

where

T =
(n + 1) I1 (γ1a) − γ1aI0 (γ1a)
γ1a I0 (γ1a) + (n − 1) I1 (γ1a)

. (13.362)

Here
�Hr =

1
r

∂ �Az
∂ψ

= �H

(
1 +

a2

r2
T

)
cosψ. (13.363)

This is the field in the radial direction. Field in the azimuthal direction is

�Hψ = −∂
�Az
∂r

= −H
(

1 − a2

r2
T

)
sinψ. (13.364)

Since we measure only the magnetic field in the horizontal and vertical direc-
tions using Cosψ, we get

Hx =Hr cosψ − Hφ sinψ

=H cos2 ψ +H
a2

r2
T cos2 ψ +H sin2 ψ −H

a2

r2
T sin2 ψ

=H +
Ha2

r2
T
(
cos2 ψ − sin2 ψ

)

=H

(
1 + Ta2 h2 − y2

(h2 + y2)2

)
. (13.365)

Here y is the distance of the point of measurement from the projection of the
top of the body to the surface and h is the depth of the body.
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Hy =Hr sin ψ + Hφ cos ψ

=Hcos ψ sin ψ +H.
a2

r2
T cosψ sinψ +H

a2

r2
T sinψ −H sinφ cosψ

=2Ha2.T.
hy

(h2 + y2)2
. (13.366)

In the horizontal direction normal and secondary field is present. Hence the
electromagnetic anomalies are

∂Hx

Hx
= Ta2 h2 − y2

(h2 + y2)2
. (13.367)

The anomaly in the horizontal direction is

∂Hy

Hy
= Ta2 hy

(h2 + y2)
. (13.368)

Except the T factor, the anomaly generally depends upon the geometry of
the body. We can compute the em anomaly along the profile at a constant
frequency and compare with that obtained in the field and get the depth of the
body. From multiple frequency observation some idea about the conductivity
of the body can be made.

Now at Y = 0, ∂Hx
Hx

= maximum
By measuring the vertical component of the anomaly we can pin point

the location of the top of the conductive body. By measuring the horizontal
component and locating the position of

(
dHy
Hy

)
max

from the center of the
body, we can measure the depth of the body since distance of the point of
inflection of the horizontal component from that of the vertical component is
h√
3

(Fig. 13.15).

13.10.1 Effect of Change in Frequency on the Response Parameter

The value of T is

T =
(n + 1) I1 (γ1a) − γ1a I0 (γ1a)
γ1a I0 (γ1a) + (n − 1) I1 (γ1a)

. (13.369)

For non magnetic body i.e. for n = μ
μ0

= 1,

T =
2

γ1a
.
I (γ1a)
I0 (γ1a)

− 1. (13.370)

Since the frequency chosen is generally small

γ =
√
iωμ (σ + iω ∈) ≈

√
iωμσ.

Therefore
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T =
2

a
√

iωμσ
.
I1 (a

√
iωμσ)

I0 (a
√

iωμσ)
− 1. (13.371)

If we write P = a
√
ωμσ as the response parameter,

T =
2
ρ
√
i
.
I1

(
P
√
i
)

I0
(
P
√
i
) − 1.

=M − iN = A e−iφ. (13.372)

Since T is a complex function, it may be written as

|T| =
√

M2 + N2 and φ = tan−1 N
M
.

Since P, the response parameter, is a combined effect of the radius ‘a’ conduc-
tivity “σ”, frequency “ω” and magnetic permeability “μ”, the response does
not give any idea about the conductivity of the body at a single frequency.
Frequency spectrum for M and N reveals (Fig. 13.16) that sensitivity charac-
teristics M reaches the zone of saturation where as N reaches zero. Therefore,
the operation frequency should be in the zone where the slope of M and N or
A and φ are maximum.
Now

T =
2
α
.
I1 (α)
I0 (α)

− 1. (13.373)

For small values of α.

I0 (α) = 1 +
(

1
2

α
)2

+
(

1
2

α
)4

.
1
22

+ (13.374)

and

Fig. 13.15. Variation of horizontal and vertical magnetic field over a buried cylin-
drical inhomogeneity
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Fig. 13.16. Variation of real and imaginary part of T with electromagnetic param-
eter P

I1 (α) =
1
2

α +
(

1
2

α
)3 1

2
+ (13.375)

Therefore
|T| ≈ 1

8
α2 =

1
8
a2ωμσ (13.376)

This relation (13.376) holds good unless ω is very large.

13.11 Electromagnetic Response due to a Sphere
in the Field of a Vertically Oscillating Magnetic Dipole

In this problem we shall discuss on the electromagnetic field in the presence
of a spherical body of contrasting electrical conductivity embedded in a host
rock. The source field is assumed to have originated from an oscillating ver-
tical magnetic dipole. Vector potential approach is adapted here to solve the
boundary value problem. Figure 13.17 shows the geometry of the problem.

Let

Fig. 13.17. A buried conducting sphere in the presence of a vertical uniform mag-
netic field
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�H = curl �A. (13.377)

We can write

�Hr =
1

r2 sin θ

[(
∂

∂θ
r sin θ�Aψ

)
− ∂

∂ψ

(
r �Aθ

)]
(13.378)

�Hθ =
1

r sin θ

[
∂

∂ψ
�Ar − ∂

∂r

(
r sin �Aψ

)]
(13.379)

and
�Hψ =

1
r

[
∂

∂r

(
r�Aθ

)
− ∂

∂θ

(
�Ar

)]
. (13.380)

In this problem, the perturbation field will be independent of the azimuthal
angle; therefore ∂

∂ψ = 0. The vanishing and existing component of the vector

potential and magnetic field are respectively given by �Ar = 0, �Aθ = 0, and
�Hr �= 0, �Hθ �= 0, �Hψ = 0. Since �Ar and �Aθ are both zero, therefore Hψ = 0. In
this problem

Hr = H cos θ (13.381)
�Hθ = − �H sin θ (13.382)
�H = �k �H0 (13.383)

where �k is the unit vector along �z direction and

�r =�ix+�jy + �kz

=�i (r sin θ cos ψ) +�j (r sin θ sin ψ) + �k (r cos θ) . (13.384)

Therefore

d�r
dr

=�i (sin θ cos ψ) +�j (sin θ sin ψ) + �k (cos θ) , (13.385)

and ∣∣∣∣
d�r
dr

∣∣∣∣ = 1. (13.386)

Since

�er =�i sin θ cosψ +�j sin θ sinψ + �k cos θ, (13.387)
∂r
∂θ

=�i (r cos θ cos ψ) +�j (r cos θ sin ψ) + �k (−r sin θ) , (13.388)
∣∣∣∣
∂r
∂θ

∣∣∣∣ = r,

and
�eθ =�i cos θ cos ψ +�j cos θ sin ψ − �k sin θ. (13.389)



436 13 Electromagnetic Wave Propagation

For the �eψ component along the azimuthal angle, we have

∂r
∂ψ

=�i (−r sin θ sin ψ) +�j (r sin θ cos ψ) , (13.390)
∣∣∣∣
∂r
∂ψ

∣∣∣∣ = r sin θ (13.391)

and
�eψ = −�i sin ψ +�j cos ψ. (13.392)

We can write down these three equations in the matrix form as
⎡
⎣

sin θ cosψ sin θ sinψ cos θ
cos θ cosψ cos θ sinψ − sin θ
− sinψ cosψ 0

⎤
⎦
⎡
⎣
�i
�j
�k

⎤
⎦ =

⎡
⎣
�er
�eθ
�eψ

⎤
⎦ . (13.393)

We can solve for�i,�j and �k using the Cramer’s rule for evaluation of the matrix.
Here the denominator is

D =

⎡
⎣

sin θ cos ψ sin θ sin ψ cos θ
cos θ cos ψ cos θ sin ψ − sin θ
− sin ψ cos ψ 0

⎤
⎦ = 1 (13.394)

and

D3 =

⎡
⎣

sin θ cosψ sin θ sinψ �er
cos θ cosψ cos θ sinψ �eθ
− sin θ cosψ �eψ

⎤
⎦ (13.395)

= �er cos θ −�eθ sin θ. (13.396)

Here
�k =

|D3|
|D| = �er cos θ −�eθ sin θ (13.397)

and the source vector

�H = �k�H0 = (�er cos θ −�eθ sin θ) H0 = �er (Hr cos θ) +�eθ (−H0 sin θ) . (13.398)

Thus �Hr = �H0 cos θ and �Hθ = −�H0 sin θ
Let us assume that the source vector has only the ψ component. We can

write

curl�A =
1

r2 sin θ

[
∂

∂θ

(
r sin θ�Aψ

)
− ∂

∂ψ

(
r�Aθ

)]
�er

+
[
∂

∂ψ
�Ar − ∂

∂r

(
r sin θ�Aψ

)]
�r �eθ

+
[
∂

∂r

(
r�Aθ

)
− ∂

∂θ

(
�Ar

)]
r sin θ�eψ. (13.399)
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Equation (13.399) can be written as

curl �A =
[
∂

∂θ

{
r sin θ

(
1
2
H0r sin θ

)}
�er

− ∂

∂r

{
r sin θ

(
1
2
H0r sin θ

)}r
�eθ

]

=
1

r2 sin θ

[
1
2
r2H0

∂

∂θ
(
sin2 θ

)
�er

−1
2
H0 sin2 θ

∂

∂r
(
r2
)
�eθ

]
. (13.400)

⇒curl �A =
1

r2 sin θ

[
1
2
r2H02 sin θ cos θ�er

−1
2
Hr

0 sin2 θ
∂

∂r

(
r2
)
�eθ

]

=H0 cos θ�er − H0 sin θ�eθ. (13.401)

Therefore, the source vector potential �Aψ

=
1
2
H0r sin θ�eψ.eiωt. (13.402)

An uniform alternating primary field can therefore be obtained from the vector
potential �A.

For this problem, we can write the vector potential

�A = �A(r, θ)�eψ (13.403)

which changes to
�A = −�Asin ψ�i + �Acos ψ.�j.

If we now operate upon the components in a rectangular coordinate with the
operator ∇2 and recombine them, it can be shown that Helmholtz equation
changes to the form.

(
∇2�A −

�A
sin2 θ

)
= γ2�A (13.404)

⇒ 1
r2
∂

∂r

(
r2
∂�A
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂�A
∂θ

)
−

�A
sin2 θ

= γ2�A. (13.405)

Now substituting
�A = r−1/2R (r)Θ (θ) (13.406)

and using the method of separation of variable we get

(
1 − μ2

) ∂2Θ
∂μ2

− 2μ
∂Θ
∂μ

+
{

n (n + 1) − 1
1 − μ2

}
Θ = 0 (13.407)
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and
d2R
dr2

+
1
r

dR
dr

−
[
r2 +

n (n + 1) + 1
4

r2

]
R = 0. (13.408)

The (13.407) is a second order differential equation whose solutions are in
Legendre’s polynomial P′n(cos θ) and Q′n(cos θ). P′n(cos θ) is a better behaved
potential function.

The solution of (13.408) will come in terms of the modified Bessel’s func-
tion of fractional order in the form

In+ 1
2

(γr) and Kn+ 1
2

(γr) . (13.409)

Therefore, the general solution of the vector potential outside the sphere is

�A0 =
1
2
�Hr sin θ +

∑
r−

1
2 dnIn+ 1

2
(γ0r)P ′n (cos θ) (13.410)

→ outside the sphere.

�A =
∑

r−
1
2 CnIn+ 1

2
(γr) P′n (cos θ) (13.411)

→ inside the sphere.

Since the source potential has sin θ term, the perturbation potential will also
have sin θ term only. Since P′1 (cos θ) = sin θ, therefore dn = 0, except for
n = 1.

Hence
A0 =

1
2
�Hr sin θ + r−1/2d1I3/2 (γ0r) sin θ (13.412)

and
A = r−1/2c1I3/2 (γr) sin θ. (13.413)

Applying the boundary conditions

∂

∂r
(r A0) =

∂

∂r
(rA)

μ0A0 = μ1A1 at r = a (13.414)

where ‘a’ is the radius of the sphere.
We get

1
2
Haμ0 + μ0d1a

−1/2I3/2(r0a) = μ1a
−1/2c1I3/2 (γa) (13.415)

Ha− d1a
−2 = c1

[
−1

2
a−3/2I3/2 (γa) + a−1/2γI ′3/2 (γa)

]
. (13.416)

From the (13.415) and (13.416), we get

d1 = −1
2
Ha3

[
γaI ′3/2 (γa) − (

2γ − 1
2

)
I3/2 (γ0a)

γaI ′3/2 (γa) +
(
γ + 1

2

)
I3/2 (γ0a)

]
. (13.417)
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It is assumed that μ = μ0.
Since

I′3/2 (α) = I1/2 (α) − 3
2α

I3/2 (α)

I1/2 (α) =
(

2
πα

)1/2

sin hα

and

I3/2 (α) =
(

2
πα

)1/2 (
cosh α − 1

2
sin hα

)
,

d1 can be written in the form

d1 = −1
2
.Ha3 a sin hα − (2γ + 1)

(
cosh α − 1

α sin hα
)

α sin hα + (γ − 1)
(
cosh α − 1

α sinh α
)

= −1
2
Ha3 α2 − (2γ + 1) (α coth α − 1)

α2 + (γ − 1) (α2 coth α − 1)

= −1
2
Ha3S. (13.418)

Hence

�A0 =
1
2
Hr sin θ − 1

2
H
a3

r2
S sin θ (13.419)

�Hr = H cos θ −H
a3

r2
S cos θ (13.420)

(normal field) ↓ (perturbation field) ↓

�Hθ = −H sin θ − 1
2
Ha3

r2
.S sin θ (13.421)

(normal field) (perturbation field)

If we take M = − 1
2Ha3S, the radial and angular components are

�Hr =
2�Mcos θ

r3
,

�Hθ =
�M sin θ

r3
(13.422)

The effect of a sphere is as if a dipole is oriented along the Z-axis and it is
placed at the centre. We can express the vertical and horizontal components
as

�Hz = �Hr cos θ − �Hθ sin θ (13.423)

= H − 1
2
Ha3S

[
− 1

r3
+

3h2

r5

]
(13.424)
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where
r2 = y2 + h2 (13.425)

and
�Hy = �Hr sin θ + �Hθ cos θ = −1

2
Ha3S.

3hy
r5

. (13.426)

Here the vertical field is only the normal component and it will be maximum
at y = 0 and the horizontal component will be maximum i.e.,

(
∂Hy
H

)
will be

maximum at y = ± h√
2

(Fig. 13.18). Hence the anomaly field depends upon
the S and geometry of the body.

Here S = M+iN where M and N are respectively the in phase and quadra-
ture components.

Now for smaller values of ‘α’

S = −3α (coth α − 1) − α2

α2
(13.427)

= 1 +
3

α2
− 3 coth α

α
. (13.428)

Since

coth α = 1 +
α
3
− α3

15
+ . . . .. , (13.429)

Fig. 13.18. Variation of horizontal and vertical magnetic field over a buried sphere-
ical inhomogenities
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Fig. 13.19. A conducting plate of radius a and thickness t

the approximate value of S

S ≈ α2

15
=

1
15

α2ωμσ.

For a spherical body, the multiplication factor to α2ωμσ is 1
15 instead of 1

8 in
the case of an infinitely long cylinder. For a circular plate of finite diameter
and thickness the response factor is 2

15 at ωμσ where a is the radius of the
plate and t is the thickness (Fig. 13.19).

The frequency response for all bodies (conductive or resistive) can be writ-
ten as |F| = k L2ωμσ where k is the multiplication factor.

13.12 Principle of Electrodynamic Similitude

From Maxwell equations curl �E = −μ∂ �H∂t , and curl �H = σ �E+ ∈ ∂E
∂t ,

div
(
μ �H

)
= 0, div

(
∈ �E

)
= 0 where there is no source in the region. Let

l0 and t0 represent the unit of length and time. ∈0, μ0, e0 and h0 are the cor-
responding units of electrical permittivity, magnetic permeability, electric field
and magnetic field. We can then write l = l0l

′, t = t0t
′, E = e0E

′andH =
h0H

′. Curl has the dimension of 1/length. We can then write from Maxwell’s
first equation.

e0
l0
.Curl′E′ = −μ0

t0
.μ′.h0.

dH ′

dt′
(13.430)

Here curl is a pure number.
From Maxwell’s second equation we get,

h0

l0
.Curl′H ′ = σ0σ

′e0E′ +
∈0∈′
t0

e0
∂E′

∂t
. (13.431)

we can write from (13.430) and (13.431)

.Curl′E′ = −μ0l0
t0

.
h0

e0
.μ′
∂H ′

∂t′
(13.432)

and

curl H ′ = −σ0l0e0
h0

.σ′E′ +
∈0 l0
t0

.
e0
h0
. ∈′ ∂E

′

∂t
. (13.433)



442 13 Electromagnetic Wave Propagation

From these two equations, we can write

μ0l0
t0

.
h0

e0
. = constant k1 (13.434)

μ0l0
t0

.
h0

e0
. = constant = k2

and ∈0 l0e0
t0h0

= constant = k3. (13.435)

Since the Maxwell’s equations are valid, these factors will be constants. From
these three equations, we can write

μ0.l0.h0

t0e0
.

∈0 l0.e0
t0h0

= k1x k2 = K1 (13.436)

μ0.l0.h0

t0e0
.

∈0 l0e0
t0h0

= k1x k3 = K2 (13.437)

Thus μ0σ0l
2
0

t0
. = constant andμ0∈0l

2
0

t20
= constant.

From these two equations, we can write

1. μ0f0σ0l
2
0 = constant (13.438)

and

2. μ0f
2
0 ∈0 l

2
0 = constant (13.439)

These are two basic equations of the electrodynamics similitude. Usually the
displacement current will be significant when the frequency is of the order of
106. That is in the megahertz range frequency, both the equations must be
satisfied for any kind of model simulation. For geophysics, where the operating
frequency is in the audio frequency range, the displacement current is negli-
gible and only one equations must be satisfied for simulation of models i.e.,
μ0σ

2
0f0h

2
0 = constant. Thus l2wμσ is the electromagnetic response parameter

and is used in geophysical exploration. If M stands for the model and F stands
for the fields data, then

μMσMwML
2
M = μFσFwFL

2
F (13.440)

where μ, σ, w, and L are respectively the magnetic permeability, electrical
conductivity, angular frequency and linear dimension of the model. When we
simulate the electgromagnetic model for non magnetic materials,

μM = μF = μ0

and the (13.440) reduces to
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μ2
MwMσM = L2

FwFσM (13.441)

Once we set up the model for a particular set of L2ωμσ = constant, we
can utilise the response function by suitably multiplying it by a constant.
In otherwords, we know responses due to a (i) sphere

(
1
15a

2wμσ
)

(ii) cylin-
der

(
1
8a

2ωμσ
)

and (iii) plate
(

2
15atwμσ

)
, we have to find out the suitable

multiplication factor for bodies of other geometrical shapes for the relation
kl2wμσ.
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Green’s Function

In this chapter we briefly discussed about some of the basic natures of Green’s
function. It is a mathematical tool having multifaceted application in vari-
ous branches of applied mathematics and mathematical physics. Some of the
properties and applications of Green’s function in potential theory are given.
Dyadics and dyadic Green’s functions are defined. The nature of scalar and
tensor Green’s function are shown. Application of Green’s function in math-
ematical modeling is given in Chap. 15.

14.1 Introduction

Green’s function is a mathematical tool used to solve potential and nonpoten-
tial boundary value problems in scalar and vector potential field domain. It
can represent a potential function which is harmonic and regular maintaining
some differences in their properties with potential function at the boundaries.
In the vector potential field domain it can represent a field or a vector poten-
tial. Green function can be a tensor in the vector potential field domain and
both scalar and tensor Green’s function can be the kernel function in the Fred-
hom’s or Volterra,s integral equations. In the presence of a boundary surface
nearby, image of a source appears in the Green function’s formula. Green’s
functions are always associated with two points say G(r, r0) where r and r0
are respectively the distances of the observation point and source point from
an assumed origin in the space domain (Fig. 14.1).

These points may be within a domain R or one of the points may be
within a domain and the other point may be on the surface S which binds
the domain. This surface may be at finite distance from the source or it may
be at infinite distance. So Green’s functions are generally associated with the
boundary conditions and/or initial conditions. It is used as a mathematical
tool for solution of elliptic, parabolic and hyperbolic differential equations
(see Chap. 2) with homogeneous and inhomogeneous boundary conditions.
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Fig. 14.1. A green’s function domain with source point, observation point, boundary
surface and origin

It is often used in some cases for solution of Poisson and Laplace equa-
tion with homogeneous and inhomogeneous Dirichlet, Neumann and mixed
(Robin or Cauchy) boundary conditions. Once Green’s function is evalu-
ated for homogeneous equation (say Laplace equation) with homogeneous(
say φ = 0 or ∂φ

∂n = 0 on the boundary
)

boundary conditions it can be used
for inhomogeneous equations with inhomogeneous boundary conditions in
some cases.

The form, application and method of determining Green’s function vary
from problem to problem in time and space domain. It depends upon the field
where it is applied as well as on the guiding equation. It vanishes on the sur-
face of a bounded region. It can represent a potential at a point due to an unit
source. It can reduce the unknowns to be determined in a potential problem
Green’s function is symmetric and the principle of reciprocity is valid. Some
of the discontinuities in a potential function at boundaries are removed in
Green’s function domain. Green’s function also can have discontinuity on the
boundary. Green’s function can be used as a mathematical tool for solution of
problems related to heat conduction, electromagnetic wave propagation, em
transients initial value problems, impulse response problems etc. The proce-
dural details for evaluation of the Green’s function differ in different topics
of mathematical physics. So far as geophysics is concerned the major appli-
cation of Green’s function lies in solution of boundary value problems using
Integral Equation method where non dyadic form appears in direct current
flow field or any other scalar potential field and dyadic form appears in elec-
tromagnetic field.. For solution of Laplace’s equation, we have other options
like series solution of harmonic function, method of separation of variable ,
conformal transformation etc. We need not go for Greens function for all types
of problems specially where evaluation of Green’s function may invite tougher
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mathematics. For time varying EM fields, the Green’s function appear in the
form of a dyadic function generally since the scalar is replaced by a vector and
dot product appears in place of algebraic product. Dot product with a vector
source appears only if G, the Green’s function is in the form of a dyadic. Since
in vector potential domain both the field and the potential are vectors and
Green,s function can represent both the fields and vector potentials. In vector
potential domain both scalar and tensor Green’s functions coexist. Green’s
theorem has a major role in evaluating Green’s function in potential theory.
Vector Green’s function and tensor algebra have contribution towards deriv-
ing dyadic Green’s function obtained from Helmholtz electromagnetic wave
equation. It is dyadic for a vector source and nondyadic for a scalar source.

The way some similarities exist in operations between a matrix inverse
and an operator inverse, an identity matrix and an idem factor or an iden-
tity operator in operator domain, some such similarities do exist between a
nine component second order tensor and a dyadic. A few simple examples of
determining Green’s function are given.

This topic is briefly introduced in this chapter. Further details are avail-
able in Lanczos (1941, 1997), Morse and Feshbach (1953), Blakely (1996),
Tai (1971), Stackgold (1968, 1979), Roach (1970), Sneider (2001), Macmil-
lan (1958), Sobolev (1981), Ramsay (1959), Barton(1989), Van Bladel (1968),
Hohmann (1971, 1975, 1983, 1988).

14.2 Delta Function

Dirac delta function was introduced by Paul Dirac. It states that a function
‘r’ is assumed to vanish everywhere outside the point at r = r0. At the point
r = r0, the value of the function δ(x, r) becomes infinitely high such that the
total area or volume under the curve is unity. It can be expressed as

∫ δ(r − r0) dr = 1. (14.1)

One can write

δij = 1 for i = j
δij = 0 for i �= j (14.2)

where δij are the values of an identity matrix and it is known as Kronecker
delta, i.e., Iij = δij, where I is the identity matrix. For a multidimensional
space, we have

δ(r − r0) = δ(x − x0) δ(y − y0) δ(z − z0) (14.3)

where x, y, z are the three coordinates in an Euclidian space and the coordi-
nates of r and r0 are respectively (x, y, z) and (x0, y0, z0).

In the integral form, we have∫

v

δ(r − r0)f(r)dv =
∫

δ(x − x0)δ(y − y0)δ(z − z0)f(x0y0z0)dxdydz (14.4)
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14.3 Operators

Solution of a boundary value problem is an important area in mathemat-
ical physics. It initiates the mathematical formulation of forward problems
which is a basic ingredient for solving an inverse problem needed for inter-
pretation of geophysical data. Many of the forward problems are based on
elliptic, parabolic and hyperbolic type of differential equations. In some cases
these equations can be ordinary differential equations. These equations can
be written as

LΦ = f (14.5)

where L is the operator. It can be a linear or nonlinear differential opera-
tor. Φ is the unknown function to be determined and f is a known function.
Equation (14.5) can be a first, second or higher order ordinary or partial
differential homogeneous or inhomogeneous equations with homogeneous or
inhomogeneous boundary conditions. The differential operators are

L =
d
dx

(14.6)

L =
d2

dx2 +
d
dx

(14.7)

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(14.8)

Equation (14.8) is also known as Laplace or Poisson operator for second order
partial differential equations and is denoted by ∇2 and Δ. Using the same
operator we can write Laplace, Poisson and Helmholtz equations as

Lφ = Δφ = ∇2φ = 0 (14.9)

Lφ = Δφ = ∇2φ = f (14.10)

Lφ = Δφ = ∇2�H = γ2H (14.11)

One of the methods for solving the partial differential equation is to go for
searching an inverse operator L−1 where L−1L = LL−1 = I where I is the
identity operator. Since L is the differential operator, L−1 is termed as an
inverse integral operator. Nature of these integral operators takes the form of
Fredhom or Volterra’s integral equation. The kernel of this integral is termed
as the Green’s function for the operator L. Assuming L to be a linear or linear
differential operator, we get

L−1φ(x) =
∫

G/(x, x0)φ(x0)dx0. (14.12)

From the relation L−1L = LL−1 = I, we can write

φ(x) = Iφ(x) = LL−1φ(x) = L ∫ G/(x, x0) φ(x0)dx0

⇒ ∫ G(x, x0) φ(x0) dx0 (14.13)

where LG/(x, x0) = G(x, x0)
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14.4 Adjoint and Self Adjoint Operator

In a matrix domain we can have a set of linear equations which can be
expressed in a matrix form as

A
n×m

x
m×1

= b
n×1

(14.14)

for an n × m system where n and m are respectively the number of rows and
number of columns. Here A is a rectangular matrix, x is a column vector of
unknowns and b is a column vector of known quantities or parameters. Its
adjoint system (Lanczos 1941) is

A
m×n

T y
n×1

= C
m×1

(14.15)

where AT is the transpose of A. AT is termed as the adjoint operator of A. If
AT = A = A−1, the matrix system is termed as a self adjoint matrix and the
operator AT is termed as the self adjoint operator. For a square symmetric
matrix we get the condition A = AT = A−1.

For a linear or linear differential operator L, we define L∗ as the com-
plex conjugate transpose of L. Taking into account the similarities in the
behaviours of a matrix and that of a linear or linear differential operator, we
define the adjoint operator as

(ψ,LΦ) = (L∗ψ,Φ) (14.16)

where L = d
dx , the differential operator. If L = L∗, the operator is a self adjoint

operator.

14.5 Definition of a Green’s Function

Green’s function is an inverse integral operator in a self adjoint system. It is
a response due to a source of unit strength or an unit impulse response. It
becomes a kernel function in Fredhom’s or Volterra’s integral equations.

The Green’s function is derived to find the effect of Delta function source
at a field point. It’s form depends upon whether the point is in free space
or there is a surface in the vicinity. Let us take a linear differential equation
written in the general form as

L(r) φ(r) = f(r) (14.17)

where L(r) is a linear, self adjoint differential operator, φ(r) is an unknown
function to be determined and f(r) is a known inhomogeneous or nonzero term.
The solution of this equation is

φ(r) = L−1 f(r) (14.18)



450 14 Green’s Function

where L−1 is the inverse of the differential operator and is termed as the
inverse integral operator. It is possible to define L−1 f(r) as

L−1 f(r) = ∫ G(r, r0) f(r0) dr0 (14.19)

where G(r, r0) is the kernel function associated with the differential operator
L. As mentioned Green’s function is a two point function and depends upon
the position of observation point and source point in a space domain The
self adjoint operator generates the solution of a linear differential equation
using Green’s function. Green’s function is also defined as the response of a
linear system to a delta function input i.e., Green’s function of a system is
the impulse response due to Dirac delta type of excitation i.e.,

LG(r, r0) = δ(r − r0). (14.20)

The response of the input δ(r − r0) is given by G(r, r0) and the source
function can be written as the combined effect of this delta function with
another factor f(r0). This shows that the solution of LU = f is given by the
superposition of the Green’s function G(r, r0) with the factor f(r0). Thus we
can write

f(r) =
∫ ∞
−∞

δ(r − r0) f(r0) dr0. (14.21)

It shows that
φ(r) = ∫ G(r, r0) f(r0) dr0. (14.22)

Using Dirac delta function as an identity operator I and using the properties
of the Dirac delta function

∫ ∞
−∞

δ(r0) dr0 = 1 (14.23)

we can rewrite equation (14.22) as

Lφ(r) = L
∫ ∞
−∞

G(r, r0) f(r0) dr (14.24)

=
∫ ∞
−∞

LG(r, r0) f(r0) dr0

=
∫ ∞
−∞

δ(r − r0) f(r0) dr0

= f(r). (14.25)

If φ(x, y) is a function of two variables x and y and L is a partial differential
operator, the Green’s function G(x, y, x0, y0) satisfies the equation

LG = δ(x − x0) (y − y0) (14.26)
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where δ(x − x0) (y − y0) represent the Diract delta function in two dimen-
sions. Let G(x, y, x0, y0) satisfy certain homogeneous boundary conditions on
a boundary in the x,y plane, then

Lφ = f(x, y) (14.27)

satisfy the same boundary conditions and can be expressed as

φ(x, y) = ∫ ∫ G(x, y, x0, y0) f(x0, y0) dx0 dy0. (14.28)

14.6 Free Space Green’s Function

For Poisson’s problem Δφ or ∇2φ = f(x) with φ(x) = 0 at x → ∞, we get
ΔG(x, y) = δ(x−y) where G(x, y) = 0 as |x−y| → ∞. For a radially symmetric
space in a spherical coordinate system (see Chaps. 7 and 13)

1
r2
∂

∂r

(
r2
∂G
∂r

)
=

1
4πr

δ(r). (14.29)

The solution is
G =

A
r

+ B for r > 0. (14.30)

Here A and B are constants. Since G → 0 as r → ∞, B = 0. The outward
normal to the surface is

∂G
∂n

=
∂G
∂r

=
A
R2

. (14.31)

On the surface at r = R, one gets
∫ π

0

∫ 2π

0

∂G
∂n

∣∣∣∣
r=R

R2 sin θ dθ dΨ = 1 (14.32)

where R2 sin θ dθ dΨ is an elementary area on a spherical surface (see
Chaps. 2, 3, 7, 13).
Thus,

A
∫ π

0

∫ 2π

0

sin θ dθ dΨ = 1 (14.33)

⇒ A =
1
4π

φ =
1

4πr
=

1
4π [r − r0]

. (14.34)
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14.7 Green’s Function is a Potential due to a Charge
of Unit Strength in Electrostatics

Potential at a point due to a number of electrostatic charges distributed over
an entire space is obtained as a single algebraic superposition of potentials
produced at a point by each charge (see Chap. 4) . If q1, q2, q3, . . . . . qn are
located at distances r1, r2, r3, . . . . . rn respectively from the point P, the poten-
tial at P is given by

φ =
1

4π ∈
(
q1
r1

+
q2
r2

+
q3
r3

+ . . . ..
qn
rn

)
=

1
4π ∈

n∑
i=1

qi
ri

(14.35)

where ∈ is the electrical permittivity.
If the charges are distributed continuously throughout a region, rather

than located at discrete number of points, the regions can be divided into
elements of volume Δv each containing charge ρΔv, where ρ is the volume
density of charge, the potential is then given by

=
1

4π ∈
i=n∑
i=1

ρiΔv
ri

(14.36)

Equation (14.36) can be expressed in the integral form as

φ =
1

4π ∈
∫

v

ρdv

r
(14.37)

The integration is performed throughout the volume where ρ has certain value.
Equation (14.37) can be written as

φ =
∫

v

ρ Gdv (14.38)

where
G =

1
4π ∈ r

. (14.39)

The function G is a potential at a point of an unit point charge and is referred
to as electrostatic Green’s function for an unbounded region.

If G(r, r0) is the field at the observer’s point r caused by the unit point
source at the point r0, then the field at ‘r’ caused by the source distribution
ρ(r0) is the integral of Gρ over the whole range of r0 occupied by the sources as
shown in (14.38). Here G is the Green’s function. The inhomogeneous source
vector P is

P =
∑

x0y0z0

ρ(x0, y0, z0) δ(x − x0)δ(y − y0)δ(z − z0) (14.40)
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where
P(x0, y0, z0) =

∫ ∫ ∫

v

ρ(r0)δ(r − r0)δx0δy0δz0 (14.41)

Potential function in a three-dimensional space, in terms of Green’s function,
can be written as

φ(x, y, z) =
∫ ∫

v

∫
G(x, y, z/x0, y0, z0)ρ(x0, y0, z0)dx0, dy0, dz0 (14.42)

where G becomes a kernel function in an integral equation.

14.8 Green’s Function can Reduce the Number
of unknowns to be Determined in a Potential Problem

We can use Green’s function to find the solution of Laplace equation ∇2φ = 0
inside a required domain R bounded by a closed surface S (Fig. 14.1) when
the value of φ and ∂φ

∂n are known over the surface. From Green’s third formula
(see Chap. 10), we get

φρ =
1
4π

∫

s

(
1
r
∂φ
∂n

− φ
∂

∂n

(
1
r

))
ds (14.43)

giving the value of φ at any point inside S in terms of the values Φ and ∂φ
∂n on

the surface. It is well known that one gets unique solution of Laplace equation
in a bounded domain if φ and ∂φ

∂n have prescribed values on the boundary. One
needs these two values at the boundary to determine φ inside. Green,s function
can be used to determine potential at a point on the boundary. Let φ be the
solution of Laplace equation inside the boundary S which takes the value

(− 1
r

)
on S. Here r is the distance of the point P from the surface (Fig. 14.2). Let
G = Ψ + 1

r . This G is the Green’s function for the point P and the surface S.
By definition, G vanishes at the boundary. One can frame a Green’s function
G = Ψ+ 1

r where Ψ is the solution of the Laplace equation inside the S. When
both φ and Ψ are harmonic we get

∫ (
φ
∂Ψ
∂n

− Ψ
∂φ
∂n

)
ds = 0 (14.44)

Adding this equation (14.44) to the Green’s third formula, we get

φρ =
1
4π

∫ {(
Ψ +

1
r

)
∂φ
∂n

− φ
∂

∂n

(
Ψ +

1
r

)}

=
1
4π

∫ (
G
∂G
∂n

− φ
∂G
∂n

)
(14.45)
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Fig. 14.2. When the point P is inside the domain R; and infinitesimally small circle
surround the point P to avoid singularity

where G vanishes at the boundary. Therefore, we get

φρ = − 1
4π

∫
φ
∂G
∂n

ds. (14.46)

This is the expression for the potential at any point inside S in terms of
Green’s function G. The properties of the Green’s function are G is harmonic
and its value vanishes on the boundary. In this section we have shown that
we can avoid determining both φ and ∂φ

∂n on the boundary and can determine
only Green’s function to find out the potential at any point inside the domain.

14.9 Green’s Function has Some Relation
with the Concept of Image in Potential Theory

When a source point P and an observation point Q are within the region S, we
can write G(P,Q) = 1

r +Ψ(P,Q) where Ψ(P,Q) = − 1
r such that G (P,Q) = 0

on the surface as mentioned earlier. Potential at Q is 1
r due to a unit source

of charge at P. The potential at Q (ξ,η, ζ) due to the image point P′ of P
is − 1

r/ . Green’s function for an infinite plane is (Figs. 14.3, 14.4)

G(P,Q) =
1
r
− 1

r/
. (14.47)

When the observation point is on the surface i.e., when r = r′, G(P,Q) = 0.
If the Green’s function is known, the Dirichlet’s problem can be solved. In
equation

4πφρ = −
∫

φ(P,Q)
∂G(P,Q)

∂n
ds. (14.48)

We have
r2 = (ξ − x)2 + (η − y)2 + (ζ − z)2 (14.49)

and
r′2 = (ξ′ − x)2 + (η′ − y)2 + (ζ/ − z)2. (14.50)
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Fig. 14.3. Concept of image in analytical continuation

Here

∂G
∂n

=
[
∂

∂z

[
1
r

]
− ∂

∂z

[
1
r

]]
=

ζ − z
r3

− ζ + z
r/3

(14.51)
(
∂G
∂n

)

z=0

= −2z
r3
. (14.52)

Therefore, potential at any point is

4πφρ = 2z
∫

∞

φ(Q)
r3

ds

⇒ φρ =
z
2π

∞∫

−∞

∞∫

−∞

φ(ξ0,η0)dξ0dη0{
(ξ0 − x)2 + (η0 − y)2 + z2

}1/2
. (14.53)

Fig. 14.4. Shows the concept of image in Green’s Function domain in presence of
a boundary between the two media
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This is the simplest example of application of Green’s function in Poten-
tial theory. Equation (14.53) shows that if a potential is prescribed on the
boundary, we can find out potential at any point in the region. Thus one gets
a scalar potential field upward analytical continuation formula from Green’s
function.

Figure 14.4 shows the position of the observation point in the presence of a
source and its image and a plane horizontal boundary between a medium 1 and
2. Computation of potential at the observation point as shown in chapter 11
can also done in Green’s function domain.

Problems 1 and 2 in Sect. 14.14 are some of the examples.

14.10 Reciprocity Relation of Green’s Function

In this section we show that the principle of reciprocity is valid for Green’s
function and the symmetry exists in the behaviour of the Green’s function.

If P and Q are the two points inside a region bounded by a surface S and
G (P, Q) shows the value of the Green’s function at Q for point P and surface
S, then G(P,Q) = G(Q,P) (Fig. 14.5).

Applying Green’s theorem (10.8) to the region bounded by S, S1 and S2

where S1 and S2 are the surfaces of the spheres of infinitesimal small radii r1
and r2 having their centers at P and Q. We put

φ = G′ =
1
r

+ Ψ

and
φ′ = G′′ =

1
r′

+ Ψ′

where r and r′ are the distances of the points of observation from the points
P and Q. Here G′ and G′′ are respectively the Green’s functions for P and S
as well as for Q and S. We have from Green’s theorem

Fig. 14.5. Reciprocity Relation of Green’s Function
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∫

s

(
G′
∂G′′

∂n
− G′′

∂G′

∂n

)
ds +

∫

s1

(
G′
∂G′′

∂n
− G′′

∂G′

∂n

)
ds1

∫

s2

(
G′
∂G′′

∂n
− G′′

∂G′

∂n

)
ds2 =

∫

v

(G′∇2G′′ − G′′∇2G′)dv (14.54)

Since Ψ and Ψ′ are the solutions of Laplace equation and since P and Q have
been excluded from the region of volume of integration, therefore ∇2G′ =
0,∇2G′′ = 0. Otherwise also Green’s function is a harmonic function. The
right hand side of equation (14.54) is zero. By definition G′ and G′′ vanish
on the boundary S, so that the first integral on the left is zero. In the second
integral on the left, we put ds1 = r1dω where dω is the element of the solid
angle. Hence ∫

s1

G′
∂G′′

∂n
ds1 =

∫ (
1
r1

+ Ψ
)
∂G′′

∂n
r21dω (14.55)

tends to zero, when r1 → 0 and Ψ is assumed to be finite. Again

−
∫

s1

G′
∂G′′

∂n
ds1 = −

∫ (
1
r21

+ Ψ
∂Ψ
∂n

)
r21 dω (14.56)

tends to zero as r1 → 0. The integral reduces to –4πG′p where G′p denotes
the value of the Green’s function at P for Q and S, i.e. G (Q, P). Simi-
larly the third integral reduces to G (P, Q) which is equal to G (Q, P).
Thus the principal of reciprocity is valid for Green’s function i.e., G(P,Q) =
G(Q,P). It is also mentioned as the symmetrical property of the Green’s
function.

14.11 Green’s Function as a Kernel Function
in an Integral Equation

In this section we shall show how Green’s function appears in an integral
equation in electrostatics or direct current flow field. This derivation is given
by Eskola (1979, 1992), Eskola and Hongisto (1981).

In direct current flow field, the govering equations are (i) Laplace equation
∇2φ = 0 and Poisson’s equation ∇2φ = ρ/ ∈. The boundary conditions are

φ1 = φ2 and
1
ρ1

(
∂φ
∂n

)

1

=
1

ρ2

(
∂φ
∂n

)

2

(14.57)

on the surface S and φ2 = φ3 and 1
ρ2

(
∂φ
∂n

)
2

= 1
ρ3

(
∂φ
∂n

)
3

at the boundary

A (Fig. 14.6). The product Rφ is bounded as φ is a regular function. The
regularity condition i.e., RG is bounded as R tends to infinity. (See Chap. 10).
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Fig. 14.6. Bounded domain with the outer boundary goes to infinity

The boundary value problems based on Laplace or Poisson’s equation can
be converted into an integral equation using Green’s theorem and Green’s
function. In Green’s function domain the basic equations are

∇2G(r, r0) = −δ(r − r0) (14.58)

where δ is the dirac delta function. The solution of which satisfy the boundary
conditions.

G2 =G3

1
ρ2

∂G2

∂n
=

1
ρ3

∂G3

∂n
(14.59)

on the surface A (Fig. 14.6).
Green’s function from these two equations can be written as sum of the

two terms.
G = G0 + Gs. (14.60)

Here
G0(r, r0) = 1/(4π(r − r0)) (14.61)

is a free space or whole space Green’s function. In

∇2G = −δ(r − r0). (14.62)

G0 is a singular function at r = r0. This function is regular at infinity and
together with its derivatives will automatically be continuous on A. The func-
tion Gs is a nonsingular function and is a solution of the Laplace equation
∇2Gs = 0 that satisfies boundary conditions (14.59) on the surface A. The
method of deducing an integral equation representation.

Φ(r) =
∫
G(r, r0)ρ(r0)dv0 (14.63)

from the differential equation and the boundary condition is based on the
application of Green second identity. Green’s formulae are valid for two scalar
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functions as discussed in Chap. 10 which together with their first and second
derivatives are continuous in a closed region and on the surface. Singularities
at points and along lines can occur and the problem is then treated by suitably
isolating the singularities. Substituting φ and G into Green’s second identity
and applying it to region v2 and v1 interior to the boundary A (Fig. 14.6).
We get

∫

v

(
G2∇2φ2 − φ2∇2G2

)
dv =

∫

A

(
G2

∂φ2

∂n
− φ2

∂G2

∂n

)
(14.64)

where r0 is in v2 and r is in v1 + v2 and the operations are performed with
respect to the variable R. Substituting Poisson’s equation ∇2φ = − ρ

∈0
and

∇2G = −δ(r − r0), the results in the previous equation acquires the form

φ2 =
1
∈0

∫

v

G2ρdv +
∫

A

(
G2

∂φ2

∂n
− φ2

∂G2

∂n

)
dA. (14.65)

Applying Green’s second identity to the region v3 exterior to the surface A
and keeping r0 in v2, the volume integral on the left hand side of Green’s
identity vanishes because φ and G both satisfies Laplace equation in v3. The
integral over the outermost surface B, approaches zero as B recedes to infinity.
Green’s second identity thus takes the form

0 =
∫

A

(
G3

∂φ3

∂n
− φ3

∂G3

∂n

)
ds (14.66)

Since φ satisfies boundary conditions (14.59), we can eliminate unspecified
values of φ and its normal derivatives on the boundary.

Multiplying equation (14.65) by ρ2
ρ3

(Escola 1992) and adding it to equa-
tion (14.66), we get

φ =
1
∈0

∫

v

G2ρdv +
∫

A

[(
G2

∂φ2

∂n
− φ2

∂G2

∂n

)
− ρ2

ρ3

G3
∂φ3

∂n

+
ρ2

ρ3

φ3

∂G3

∂n

]
. (14.67)

Substituting the boundary conditions (14.59) , the surface integrals of (14.65)
vanishes. Interchanging the variables r as r0 and using the reciprocity property
of Green’s function G(r, r0) = G(r0, r). The potential φ reduces to

φ(r) =
1
∈0

∫

v

G(r, ro)ρ(r0)dv0 (14.68)

where the integration is around the volume v1 (Fig. 14.6) and the surface S1.
ρ, the charge density in electrostatics and resistivity in direct current flow
field is around the source at r0.
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Thus we have seen in this section that Green’s function appears as a kernel
in an integral equation.

14.12 Poisson’s Equation and Green’s Function

Let
Lφ = f(r) (14.69)

in the domain R.
φ = k(r) on the boundary S. (14.70)

L is the Laplacian operator Δ or ∇2. For an n dimensional problem G(r, r/)
is the Green’s function for the source point at r and the observation point at
r/ where r = (r1, r2, . . . rn) and r/(r/1, r

/
2, r

/
3 . . . r

/
n). Hence

LG(r, r/) = δ(r1 − r/1) δ(r1 − r/2) δ(r3 − r/3) . . . .+ δ(rn − r/n) (14.71)

for an n dimensional hyperspace. This equation is valid for all the values of r
and r/ in the domain R and G(r, r/) = 0 on the boundary for all r/ on S and
all r in the domain R (Fig. 14.1). The n dimensional Laplacian operator is

∇2 =
∂2

∂r21
+

∂2

∂r22
+

∂2

∂r23
. . .+

∂2

∂r2n
. (14.72)

Since

∇(ΨΔφ − φ∇Ψ) = ∇Ψ.∇φ + Ψ∇2φ −∇Ψ.∇φ − φ∇2Ψ (14.73)

when both Ψ and φ are harmonic and scalar potential functions (see Chap. 10),
we can write

Ψ∇2φ = φ∇2Ψ + ∇(Ψ∇φ − φ∇Ψ) (14.74)

Integrating and applying Gauss’s divergence theorem, we can write
∫ ∫

v

∫
Ψ∇2φdv =

∫ ∫

v

∫
φ∇2Ψdv +

∫ ∫

s

(
Ψ
∂φ
∂n

− φ
∂Ψ
∂n

)
ds (14.75)

where dv and ds are respectively the elements of volume and surface. Equa-
tion (14.75) can be written as
∫ ∫

v

∫
G(r, r′)f(r)dvr =

∫ ∫

v

∫
k(r)δ(r − r′)dvr −

∫

s

∫
k(f)

∂G(r, r′)
∂nr

dsr

(14.76)
Since Ψ = G(r, r/) is zero on the surface.
Hence



14.13 Problem 1 461

φ(r) =
∫ ∫

v

∫
G(r, r′)f(r)dv +

∫

v

∫
k(r)

∂G(r, r′)
∂n

ds (14.77)

For a three dimensional Euclidean space

∇2G(r, r/) = δ(r1 − r/1)δ(r2 − r/2)δ(r3 − r/3) (14.78)

We can then summerise on the conditions for application of Green’s function
for solution of Poisson’s equation as

(i)
∇2φ = f(r) within the domain R (14.79)

(ii)
G(r, r/) = 0 on the surface S (14.80)

(iii)
∇2G(r, r/) = δ(r − r/) (14.81)

(iv)
φ = f(r) on the surface S (14.82)

(v)
G(r, r/) < 0 within the domain R

(vi)

φ(x) =
∫ ∫

v

∫
G(r, r/)f(r)dv +

∫ ∫

s

∫
k(r)

∂G(r, r/)
∂n

ds (14.83)

(vii) G is harmonic inside the domain and outside except on the surface
where it becomes zero. G approaches zero also at infinite distance from
the source.

(viii) It is also a regular function at infinite distance from the source. In this
section it can be shown that Green’s function can be used for solution of
Poisson’s equations satisfying the Dirichlet, Neumann and mixed bound-
ary conditions.

14.13 Problem 1

A highly conductive body of conductivity σ2 and of arbitrary shape is assumed
in a homogenous half space of conductivity σ1, where σ2 � σ1. The conductive
body is charged with direct current I. What will be the potential at any point
in a medium or on the surface?

Highly conductive body has become a source of current as soon as it is
charged with direct current and the outer surface of the body becomes an
equipotential surface. The charged body in a medium 2 (earth )will have an
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Fig. 14.7. Source and its image for solution of a problem in Green’s function domain

image in medium 1(air). Figure 14.7 shows the geometry of the conductive
body, the source, its image in the air, the observation point and the assumed
origin of the problem. The Green’s function for this problems is

G(r, r0) =
1∣∣R̄1

∣∣ +
1∣∣R̄2

∣∣ =
1

|(̄r − r̄0)| +
1∣∣∣

(
r̄ − r̄/0

)∣∣∣
(14.84)

where
R̄1 = r̄ − r̄0

and
R̄2 = r̄ − r̄/0.

The potential at a point P(x, y, z) due to the stationary current is given by

φ(r̄) = φ0(r̄) +
1

4π ∈0

∫

s

G(r, r0)ρds (14.85)

where ρ is the volume density of charge, G(r, r0) is the Green’s function of
the problem, ∈0 is the free space electrical permittivity and φ0(r̄) is the free
space potential in the absence of any kind of inhomogeneity in half space.
The integration is done over the surface S of the conductor. The boundary
conditions for this problem are

(i)
ρ = Dn1 − Dn2 (14.86)

(see Chap. 4)
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where Dn1 and Dn2 are the normal components of the displacement currents.
Since �D =∈ �E, we can write

ρ =∈0 (Jn1/σ1 − Jn2/σ2) (14.87)

where Jn1 and Jn2 are the normal components of the current density vectors
and they are continuous across the boundary i.e., Jn1 = Jn2 . From equa-
tion (14.87), we get

ρ =∈0

(
1

σ1
− 1

σ2

)
Jn (14.88)

Thus the equation (14.88) becomes after substituting the value of ρ

φ(r̄) = φ0(r̄) +
1

4π ∈0
. ∈0

∫
G(r, r0)

(
1

σ1
− 1

σ2

)
Jnds (14.89)

Equation (14.89) can be rewritten as

φ(r̄) = φ0(r̄) +
1
4π

∫
G(r, r0)Q Jn ds (14.90)

where Q = 1
σ1

− 1
σ2

= 1
σ since 1

σ2
≈ 0 for σ2 � σ1.

Thus :
φ(r̄) = φ0(r̄) +

1
4πσ1

∫
G(r, r0)Jn ds (14.91)

φ0(r̄) is the potential at a point P(x, y, z) due to an homgeneous half space
for a source at a distance r̄. Green’s function G(r, r0) will vary from problem
to problem. Substituting the value of G(r, r0) for this problem from (14.84)
one will get an integral to be solved analytically or numerically using Gauss
quadrature or Simpson’s rule or Weddles rule. In case analytical solutions of
the integrals are not possible one has to choose one of the said numerical tools.
Author prefers 7 point Gauss Quadrature for getting a reasonably accurate
answer. It is a simplest example to show how Green’s function can be used
for solving problems in potential theory.

14.14 Problem 2

An homogeneous half space is divided into two compartments of resistivity ρ1

and ρ2. A vertical wall separates the two compartments. (Fig. 14.8). Source of
current is in the medium 1. The source point S1 has images at S2 in medium
2 and S0 in medium 0 of resistivity ρ0 (air). The image S2 will have an image
S3 in medium 0. Therefore, one vertical contact in the subsurface generates
three images. For solution of this problem in the Green’s function domain the
guiding equations are

(i)
∇2G1 = −δ(r̄′ − r̄′0) (14.92)
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Fig. 14.8. A source in a medium of resistivity ρ1 faces an air-earth boundary along
the vertical z direction and vertical boundary between the two media of resistivities
ρ1 and ρ2 along the horizontal × direction

(ii)
∇2G2 = 0 (14.93)

and the boundary conditions are

(i)
G1 = G2 (14.94)

(ii)
1

ρ1

∂G1

∂n
=

1
ρ2

∂G2

∂n
(14.95)

On the vertical contact
∂G1

∂n
=
∂G2

∂n
= 0 (14.96)

On the ground surface
Jn1 = Jn0 = 0 (14.97)

The Green’s function in the two media are

G1 =
1
4π

{
1

|̄r′ − r̄10|
+

1
|̄r′ − r̄40|

+
k

|̄r′ − r̄20|
+

k
|̄r′ − r̄30|

}
(14.98)

G2 =
1 + k
4π

{
1

|̄r′ − r̄10|
+

1
|̄r′ − r̄40|

}
. (14.99)

Here the coordinates of the source and images are (Fig. 14.8)
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r̄10 = (x0, y0, z0)

r̄20 = (−x0, y0, z0) (14.100)

r̄30 = (−x0, y0,−z0)

r̄40 = (x0, y0,−z0)

and k is the reflection factor (see Chaps. 8 and 11)

k = (ρ2 − ρ1)/(ρ2 + ρ1).

14.15 Problem 3

A perfectly conducting body is placed in an homogeneous and isotropic earth.
Find the potential at any point on the surface or at any point in the half space.
A conducting homogeneous and isotropic earth is assumed as an half space
over which a non conducting half space filled with air (ρair = ∞). A perfectly
conducting body is placed in a homogeneous earth. A direct current source of
strength I is applied directly to the body. In the internal region Vi = constant,
i.e., φi = φ0. In the external region Ve satisfies Laplace equation in all the
regions of uniform conductivity, i.e., ∇2φe = 0. Potentials satisfies all the
boundary conditions on all the surfaces of conductivity discontinuity i.e.,

(i)
φ1 = φ2 (14.101)

(ii)

σ1
∂φ1

∂n
= σ1

∂φ2

∂n
(14.102)

(iii) Rφ and RG are regular functions in the potential and Green’s function
domain at infinity.

(iv) Both potential and Green’s function are harmonic functions both in the
internal and external region. On the boundary φ is a continuous function
but G is a singular function.

Starting equation of this problem in the Green’s function domain is

∇2G(r̄, r̄0) = −4πδ(r − r0) (14.103)

It satisfy the boundary conditions specified above.
Applying Green’s second identity (see Chap. 10), we get

∫ ∫

v

∫ [(
φe(r̄1)∇2G(r̄, r0) − G(r̄, r̄0

)∇2φe(r̄0)
]
dv

=
∫ ∫

s

[
φe(r̄)

∂

∂n
G(r̄, r̄0) − G(r̄, r̄0)

∂

∂n
φe(r̄)

]
ds
. (14.104)
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Since the potential must be continuous across the surface of the conductor,
the first integral can be written as

1
4π

∫ ∫

s

φe(r0)
∂

∂n
G(r̄, r̄0)dS0 (14.105)

⇒ φ0

4π

∫ ∫
∂

∂n
G(r̄, r̄0)ds0 (14.106)

⇒ φ0

4π

∫ ∫ ∫
div grad G(r̄, r̄0)ds0 (14.107)

applying Gauss’s divergence theorem. Therefore (14.107) can be rewritten as

= − φ0

4π

∫ ∫

v

∫
∇2G(r̄, r̄0) = 0. (14.108)

Since G is harmonic in the external region.

φe(r̄) = − 1
4π

∫ ∫

s

G(r̄, r̄0)
∂

∂n
φe(r̄0)ds0. (14.109)

Since �J = σ�E and I =
∫
�J.�n.ds (see Chap. 6)

We can write
I =

∫

s

∫
σe(r̄0)

∂

∂n
.φe(r0). (14.110)

14.16 Dyadics

Dyadic Green’s function are also called tensor Green’s function because it has
nine components similar to that of a 3 × 3 second order tensor. Tai (1971)
gave a detailed account about the properties of dyadics and the dyadic Green’s
function.

Dyad means a group of two quantities and a dyadic is a group of two
vectors i.e., −→

�D = �A.�B. (14.111)

Use of dyadic Green’s function in solving geophysical boundary value problems
using integral equation method are discussed in detail by Hohmann (1971,
1975, 1983, 1988), Weidelt (1975), Raiche (1975). Ting and Hohmann (1981)
Das and Verma (1981), Beasley and Ward (1986), Meyer (1976).

A vector can be written in the cartisian coordinate as

⇀

D =
3∑
1

Di�xi (14.112)
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where Dis are scalar components along the x, y, z directions and represent the
three unit vectors along the three directions for i = 1, 2, 3. For three distinct
vectors along the three directions, we can write

⇀

Dj =
3∑

i=1

�Dij
�Xi, for j = 1, 2, 3 (14.113)

and a dyadic function is denoted by �D and is defined as denoted by

−→
�D =

3∑
j=1

�DjXj (14.114)

where �Dj are the three vector components of
−→
�D for j = 1, 2, 3. We can write

−→
�D
−→
�D =

∑
i

∑
j

Dij
�Xi
�Xj (14.115)

where �Dij are the nine scalar components of
−→
�D and �xi�xj are the nine pairs

of the unit dyadics. Each of these dyadics are formed by a pair of two unit
vectors in mutually orthogonal direction (Tai – 1971).

Therefore, we can write as

−→
�D =

⎡
⎣

AxBx�x�x AxBy�x�y AxBz�x�z
AyBx�y�x AyBy�y�y AyBz�y

←
z

AzBx�z�x AzBy�z�y AzBz�z�z

⎤
⎦ . (14.116)

Important Properties of the dyadic Green’s function are

(i) −→
�I = �xi�xi + �xj�xj + �xk�xk (14.117)

where
−→
�I is the unit dyadic or idem factor. Here

−→
�D
−→
�D−1 = I

−→
�D−1

−→
�D = I (14.118)

where
−→
�D−1 is the reciprocal of the dyadic

−→
�D.

(ii) Dyadic is defined by two vector
−→
�D = �A�B as mentioned where functions,

i.e. �A and �B are respectively defined as the anterior and posterior vectors
and its transpose is given by

−→
�DT = �B�A (14.119)
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Green’s function is dyadic for a vector source and is nondyadic for a scalar
source. For vector source also the Green’s function formula is derived to find
the effect of the Dirac delta function. In a similar way, as the scalar Green’s
function, its form depends upon whether the point is in the free space or there
is a surface is the vicinity.

For a time varying vector source, the electric and magnetic potentials
are vector potentials say which satisfy the Helmholtz electromagnetic wave
equation as

∇2�A − γ2�A = −�J (14.120)

where γ is the propagation constant. For a delta function source �J is replaced
by (ux +uy +uz)δ(r−ro) where (ux +uy +uz) are the unit vectors along the x,
y and z directions. For a spherically symmetric free space the vector potential
is

(ux + uy + uz) =
e−γ|r−ro|

4π |r − ro| . (14.121)

This is considered as the vector Green’s function i.e.,

�G(r, ro) =
e−γ|r−ro|

4π |r − ro| (14.122)

where the vector potential is derived for a spherically symmetric free space
(Chap. 13).

For a general current distributions �J, the solution is obtained by a superpo-
sition integral using the conditions that x, y and z components of the current
densities JxJyJz respectively are associated with the unit vectors uxuyuz in
the Green’s function domain. This rule is readily taken into account by intro-
ducing the dyadic Green’s function which is the solution of

∇2
−→
�G(�r,�ro) − γ2

−→
�G(�r,�ro) = −

−→
�I δ(r − ro) (14.123)

where
−→
�G(�r −�ro) is the dyadic Green’s function,

−→
�I is the idem factor or unit

dyadic (uxvx+uyvy+uzvz). For a spherically symmetric free space the solution
of (14.122) is

−→
�G(�r,�ro) =

−→
�I

e−γ|r−ro|

4π |r − ro| . (14.124)

and the vector potential in dyadic space is given by

�A(r) =
∫ ∫

v

∫ −→
�G(r, ro).�J(ro)dvo (14.125)

We can write the three components of the dyadic Green’s function as
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�∇× �∇×
−→
�G (x)

o (r, ro) + γ2
−→
�G (x)

o (r, ro) = δ(r, ro)�x (14.126)

�∇× �∇×
−→
�G (y)

o (r, ro) + γ2
−→
�G (y)

o (r, ro) = δ(r, ro)�y (14.127)

�∇× �∇×
−→
�G (z)

o (r, ro) + γ2
−→
�G (z)

o (r, ro) = δ(r, ro)�z (14.128)

The solutions of these equations are

−→
�G (x)

o (r, ro) =
(−→
�I − 1

γ2
∇∇

)
Go(r, ro)�x (14.129)

−→
�G (y)

o (r, ro) =
(−→
�I − 1

γ2
∇∇

)
Go(r, ro)�y (14.130)

−→
�G (z)

o (r, ro) =
(−→
�I − 1

γ2
∇∇

)
Go(r, ro)�z (14.131)

Van Bladel (1968), Tai (1971) Hohmonn (1971, 1975).
Dyadic free space Green’s functions includes all the three components as

−→
�Go(r, ro) = G(x)

o (r, ro)�x + G(y)
o (r, ro)�y + G(z)

o (r, ro)�z (14.132)

and Go(r, ro) is the nondyadic Green’s function.
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Numerical Methods in Potential Theory

In this chapter, application of numerical methods in solution of boundary
value potential or field problems in geophysics are discussed. Finite element,
finite difference and Integral equation methods for solution of mostly two and
three dimensional boundary value problems are discussed.

A few geoelectrical problems are presented where these numerical approa-
ches are used. Two dimensional finite difference modelling in direct current
flow field domain both for surface and borehole geophysics (problems with
cylindrical symmetry) are demonstrated in considerable details. Some of the
essential differences in these two problems with difference in geometry are
highlighted. A structure of the low frequency plane wave electromagnetic finite
difference three dimensional modelling (magnetotellurics) is presented briefly.
Two dimensional finite element modelling in direct current flow field in surface
geophysics using Rayleigh Ritz energy minimisation method are discussed in
detail. A brief mention is made about the nature of a 3D problem. Two dimen-
sional finite element modelling in magnetotellurics using Galerkins method is
given. Procedure for using advanced level nodes using isoparametric elements
and Galerkin’s method is outlined. Integral equation method for solution of a
three dimensional electromagnetic boundary value problem is demonstrated
for low frequency electromagnetics.

15.1 Introduction

For interpretation of geophysical data, forward problems must be solved before
entering into an inverse problem. Forward problems are mathematically man-
ageable only for models of simpler geometries viz. (i) one dimensional layered
earth problems, (ii) a sphere or a cylinder in a homogeneous and isotropic
half space or full space, and (iii) problems with anisotropic half space or
problems where physical property vary continuously with distance. Some two
dimensional problems with simpler geometries are solved analytically. Since
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the subsurface of the earth has a complex geometry, solution of any real-
istic inverse problem demands solution of the forward problems for similar
type of subsurface structure. Thus numerical methods entered in potential
theory with all its well known tools, viz, finite difference, finite element, inte-
gral equation, volume integral, boundary integral, hybrids (mixture) and thin
sheet methods.

With rapid advancement in computation facilities, software technology,
numerical methods in applied mathematics , solvability of geophysical for-
ward problems has increased immensely. Because one can insert any amount
of complications in the models and still get a solution. That has revolutionised
the interpretation of geophysical data. The only note of caution is one must
use these tools and softwares only after proper calibration. Analytical solu-
tion of a forward problem for a subsurface map of simpler geometries and
its numerical solutions must match with minimum allowable discrepancies.
Because numerical methods are approximate methods always. Application of
these approaches for solving geophysical problems became possible and are
being used extensively these days for two and three dimensional geophysi-
cal problems. Finite difference, finite element and integral equation methods
are well-established subjects because the contributions came from different
branches of physical sciences and technologies.

Foundation of finite element method (FEM) was laid down by Zienkiewicz,
O.C. (1971), Zienkiewicz and Taylor (1989), Bathe (1977), Kardestuncer
(1987), Reddy (1993), Krishnamurthy (1991). FEM was intro duced in the
electrical methods in geophysics by Coggon (1971), Silvester and Haslam
(1972), Reddy et al (1977), Kisak and Silvester (1975), Rodi (1976), Kaikkonen
(1977, 1986), Pridmore (1978), Pridmore et al (1981), Queralt et al (1991),
Wannamaker et al (1987), Xu and Zhao (1987) and others.

Finite difference modelling in geoelectrical problems became a developed
subject with the contributions from Jepson (1969). Yee (1966), Jones and
Price (1969, 1970), Jones and Pascoe (1972), Stoyer and Greenfield (1976),
Mufti (1976, 1978, 1980), Brewitt, Taylor and Weaver (1978), Dey and
Morrison (1979), Zhdanov and Keller (1994), Mundry (1984), Madden and
Mackie (1989), Mackie et al (1993) , Roy and Dutta (1994) and others.

Integral equation method (IEM) developed in geophysics through the con-
tributions from Hohmann (1971, 1975, 1983, 1988), Weidelt (1975), Raiche
(1975), Ting and Hohmann (1981), Stodt et al (1981), Wannamaker et al
(1984), Wannamaker (1991), Beasley and Ward (1986), Eloranta (1984, 1986,
1988), Escola (1992) and others.

Thin sheet modelling grew as a topic in mathematical modelling with the
contributions from Lajoie and West (1976), Vassuer and Weidelt (1977), Green
and Weaver (1978), Dawson and Weaver (1975), Hanneson and West (1984),
Ranganayaki and Madden (1981).

Hybrid technique developed through the research of Lee et al, (1991), Best
et al (1985), Tarlowskii et al (1984), Gupta et al (1984) and others.
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Finite difference (FDM) and finite element (FEM) methods are based on
differential equations. Depending upon the subject area the starting equa-
tions are chosen. As for example for geoelectrical and electromagnetic bound-
ary value problems Poisson’s and Helmholtz electromagnetic wave equations
are the starting points. Every branch of science and engineering where these
mathematical tools are used has their own starting equations. Integral equa-
tion method (IEM),as the name suggests, is based on integral equation and
has great success in handling three dimensional problems in geophysics. In all
the three important numerical methods, the domains are discretized and ulti-
mately the solution of the problem depends upon the efficiency of the matrix
solver. In FDM and FEM, the entire domains are taken into consideration for
solution of the boundary value problems. Therefore size of a matrix becomes
very large for three dimensional problems and they are symmetric or asym-
metric sparse matrics with most of the elements being zeros. In IEM only the
anomalous zones are taken into consideration. Therefore the size of the matrix
is considerably small but solid. That gave upper hand to IEM in handling 3D
problems. But FDM and FEM have better complication handling capability
than IEM.

Mathematical modelling is one of the important areas of geophysics
because it has direct link with understanding the nature of geophysical
data. That will lead to imaging interior of the earth. The steps involved in
mathematical modeling are (i) choice of the basic mathematical equation (ii)
discretization of the domain and mathematical formulation (iii) impostion of
the boundary conditions (iv) Computation of the response on the simulated
air earth boundary or inside the earth using a matrix solver. (v) Compari-
son of the model responses obtained by these numerical methods with those
obtained using analytical method for models with simpler geometries; (vi)
refining the numerical tool till the discrepancy between the numerical and ana-
lytical results are minimum (vii) testing the numerical tool, thus developed,
several times with many simpler models for proper calibration and subsequent
use in mathematical modelling.

In this chapter, finite difference, finite element and integral equation meth-
ods are demonstrated for solving direct current resistivity and magnetotelluric
(plane wave electromagnetic) problems in considerable details. These subjects
are well developed. The students have to read all the books and research
papers cited here.

15.2 Finite Difference Formulation/Direct Current
Domain (Surface Geophysics)

15.2.1 Introduction

In finite difference method the first step is to choose the basic equation depend-
ing upon the problem to be solved. As for example we start with Poisson’s
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equation in direct current flow field. Similarly different branches of science
and engineering have their own starting equations. In this finite difference
geoelectrical problem the next step is to change the differential equation to
a difference equation. Since it is an approximation, the very basis on which
the numerical method stands, an attempt is being made to minimise the error
accumulated in this approximation as much as possible. In direct current flow
field the boundary conditions needed and applied are (i) Dirichlet boundary
condition (ii) Neumann boundary condition and (iii) Mixed boundary condi-
tion. Most of the geophysical problems are mixed boundary value problems
where Dirichlet conditions are satisfied on some boundaries and Neumann
conditions are satisfied on the other.

For a two dimensional direct current flow field problem xz plane is assumed
to be a half space where the domain goes to infinity both in the x(= ±∞) and
z(= +∞), positive downward, directions(Fig. 15.1). For a two dimensional
problem, the physical property along the y direction remains invariant. So
any xz plane will have identical texture from physical property point of view.
On the surface of the earth or air earth boundary z = 0. Since the upper half
space, filled with air, is an infinitely high resistive zone ,air earth boundary
becomes a boundary of infinite resistivity contrast and Neumann boundary
condition is satisfied at this boundary.

The whole 2D domain is discretized into number of cells or elements
(Fig. 15.1) of generally rectangular or square shapes in finite difference
domain. The intersection points of the grid lines are called nodes (Figs. 15.1
and 15.2). Finite difference equations are generated for each nodes to develop
a matrix equation The discretized half space is generally divided into two
parts viz, the working zone and the far zone. In the working area the geolog-
ical models are simulated. Dense mesh or grids of much smaller dimensions
are chosen so that in each cell the assumed linear or nonlinear variation of
potential is not a severe approximation. In DC flow field domain, variation of
potential follow 1/r law, which is depicted in several connecting elements or
cells. In general the law is higher the potential gradient smaller should be the

Fig. 15.1. A simplest discretized domain showing the cells, nodes and boundaries
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Fig. 15.2. Enlarged view of a finite difference cell with a node at the centre

grid size and finer should be the mesh. As one moves away from the source,
gradient of potential diminishes, mesh can also be coarser. The general rule is
finer the mesh more accurate will be the finite difference solution, larger will
be the matrix size, higher will be memory allocation in a computer, higher
will be the computation time and more accurately the differential equation is
changed to a difference equation. Depending upon the computational infras-
tructure available one has to make a suitable compromise on the degree of
refinement of the mesh. With the refinement in matrix, the size of the matrix
increases at an alarming rate. To reduce a matrix size often blocks are made
of 4 or 9 or 16 cells having same physical property. For surface of compli-
cated geometry it is advisable to have finer mesh keeping in mind the limited
resolving power of the geoelectrical potentials in mapping the subsurface.
Some grid lines must pass through the assumed geological target such that
it’s effect enters into the mathematical solution. The topic of expanding grid
is discussed in the Sect. 15.3. In the far zone or non working zone the finite
difference cells are made coarser and coarser to make an expanding grid such
that the domain boundaries are pushed back to infinite distances from the
source such that potentials at those boundaries become zero and Dirichlet’s
boundary condition is satisfied in all the three boundaries (Fig. 15.3). These
boundary conditions will enter into the system matrix modifying some of the
boundary equations.

Difference equations are assembled to generate a matrix equation of large
size. These matrices are sparse matrices with nonzero main diagonal and four
nonzero side diagonals with two nonzero diagonals each in upper and lower
triangle in the matrix. For a 3D problem, the number of nonzero side diagonals
will be 3 each in upper and lower triangles. Therefore one generally gets penta
diagonal and hepta diagonal matrices for 2D and 3D problems respectively.
Sparsity in a matrix is a guiding equation dependent subject and cannot be
generalised in a few words. But sparsity remarkably reduces computer storage
and computation time because most of the elements are zeros. This matrix
equation is solved using one of the well known and widely used matrix solvers,
viz., Gauss elimination, Gauss Seidel iteration, Cholesky’s decomposition,
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Fig. 15.3. Shows finite difference mesh and dipole-dipole electrode configuration
measurements; working zone and far zone., domain boundaries; cells of different
physical properties and nodes

conjugate gradient minimisation, successive over relaxation (SOR), succes-
sive line over relaxation (SLOR), LU decomposition with backward forward
substitution etc. This is a big area of mathematics and is not discussed in
this book. The solutions of these equations generate potentials at each nodal
point per one source point. Since the principle of superposition is valid in
direct current flow field, potentials at the nodal points can be computed for
any number of sources and sinks. Each cell can be assigned different electrical
conductivity, hence it can handle problems of any degree of complication in
subsurface geometry.

15.2.2 Formulation of the Problem

Derivation of finite difference equation in a Cartesian coordinate for surface
measurement is presented in this section. Flow of steady current in a non-
uniform medium can be given by

−∇. �J =
∂Q

∂t
. (15.1)

This is the continuity equation for time invariant current density �J and volume
density of charge Q. The equation can be written as

−∇.
[
σ �E

]
=
∂Q

∂t
(15.2)

or

−∇.
[

1
ρ (x, y, z)

.∇φ(xyz)
]

=
∂Q

∂t
. (15.3)
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Here ρ and φ are respectively the resistivity and scalar potential. Simply we
can write the (15.2) taking ∂Q

∂t = q(x, y, z) as

∇. [σ∇φ] + q = 0 . (15.4)

If we consider this equation in a two dimensional domain assuming there is
no variation in conductivity in the y direction, i.e.,

∂

∂y
[σ (x, y, z)] = 0, (15.5)

we can write (15.4) as

∂

∂x

[
σ (x, y)

∂φ

∂x

]
+

∂

∂z

[
σ (x, y)

∂φ

∂z

]
+ q (x, z) = 0 (15.6)

where q is the current density. Hence for an element p, (Fig. 15.2) the value
of q is I / area (a b c d), or

q =
I

1
2 (hN + hS) .12 (hE + hW )

=
4I

(hN + hS) (hE + hW )
. (15.7)

I is the strength of the source. Here in D.C. resisitivity finite difference mod-
elling, when intervals of the grids are same, hN = hS = hE = hN = h, and
q = 4I/2h.2h = I

h2 . This only happens when the elements are in the sub-
surface. When the source is on the surface, hN = 0 and hence q = 2I

h2 . The
effective strength of the source is doubled when it is placed on the surface of
the earth. In practice, the grid size for discretization may not be equal and
hence the generalised equation for q is

q = 4I/ (hE + hW )hs. (15.8)

15.2.3 Boundary Conditions

The numerical solution is obtained applying the following boundary
conditions:

(a) ϕ (x, y, z) must be continuous across each element boundary of the con-
trasting physical property distribution of σ (x, y).

(b) The normal component of J
(
= −σ∂ϕ/∂n) must be continuous across each

boundary.
(c) φi,j(= f (x, z)) along the subsurface boundaries AB, BC and CD are zeros

as the domain boundaries are pushed far away from the working area.
Dirichlets boundary conditions are satisfied.

(d) ∂φ
∂z = 0 on the air earth boundary AD . Here the Neumann boundary
condition is satisfied (Fig. 15.3).
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(e) qij = 0 every where except at the location of the current electrodes. Here
source and sink of +q and −q are inserted. These two are the only nonzero
elements in column vector B in the matrix equation Ax = B.

(f) The grid is chosen to be rectangular with arbitrary, irregular spacing of the
nodes in the x- and z-directions respectively. The nodes in the x-direction
are labelled j = 0, 1, 2, 3, . . . . . . . . . . . . . . .m and those in the z-direction,
i = 0, 1, 2, 3, . . . . . . . . .n (Fig. 15.1).

(g) The left and right edges at infinite distances in the heterogeneous half
space are simulated by the lines j = 0 and j = m respectively. .
It is possible to choose appropriate boundary conditions at infinite dis-
tance from the source and can be brought nearer with finite choice of m
and n.

(h) The Dirichlet’s boundary condition for all J = 0, 1, 2, 3 . . . .n with i = 0 at
x = ±∞ and z = ∞ is done by extending the meshes far enough away from
the sources and the conductivity inhomogeneities such that the potential
distribution approaches asymptotically to zero.

(i) Electrical conductivity distribution σ (x, z) is assigned in each cell depend-
ing upon the nature of the problem.

(j) φij, the potentials on any surface and subsurface node (i, j) are available
with regular or irregular grid spacing in the x- and z-direction.

(k) The Neumann boundary condition is satisfied on the surface.

15.2.4 Structure of the FD Boundary Value Problem

From the Fig. (15.4) [part of the grid system] we can generate the approximate
relation valid at the point P (i, j) and can write as

(
dφ

dx

)

i,j

=

φ
i,j+h

E
2 − φ

i,j−h h2
(hE + hw) /2

. (15.9)

Fig. 15.4. Surrounding area of a node Pij with adjacent nodes
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Therefore, for the point i, j + hE2 , we can write
(
dφ

dx

)

i,j+
hE
2

=
φ
i,j+

hE
2

− φ
i,j− hE

2

(hE + hw) /2
. (15.10)

Hence (
σ
∂φ

∂x

)

i,j+hE/2

=
(
σi,j+hE/2

)
.h−1
E (φi,j+hE − φi,j) . (15.11)

Now
[
∂

∂x

(
σ
∂φ

∂x

)]
will be from (15.9)

[
∂

∂x

(
σ
∂φ

∂x

)]

i,j

=
2

hE + hw

[(
σ
∂φ

∂x

)

i,j+hE/2

−
(
σ
∂φ

∂x

)

i,j−hW/2

]
. (15.12)

Putting the values from (15.10), we get
[

∂

∂x

(
σ

∂φ

∂x

)]

i,j

=
2

hE + hw

[
σi,j+hE/2

hE

(
φi,j+hE − φi,j

) − σi,j−hw/2
hw

(
φi,j − φi,j−hw

)]
.

(15.13)

Hence (15.6) can be written as

∂

∂x

(
σ
∂φ

∂x

)

i,j

+
∂

∂z

(
σ
∂φ

∂z

)

i,j

+ q (x, z) = 0

⇒ 2
hE + hw

[
σi,j+hE/2

hE
(φi,j+hE − φi,j) −

σi,j−hw/2
hw

(φi,j − φi,j−hw)
]

+
2

hN + hS

[
σi,j+hS/2

hS
(φi,j+hS − φi,j) −

σi,j−hN/2
hN

(
φi,j − φi,j−hN/2,j

)]

+ qii,j = 0. (15.14)

We can rewrite this equation separating the terms of ϕ as,

αEφi,j+hE +αwφi,j−hW +αNφi−hN,j +αSφi+hS,j −αPφij + qij = 0 (15.15)

where

αE = 2
(
σi,j+hE/2

)
[hE (hE + hW )]−1

αW = 2
(
σi,j+hW/2

)
[hW (hE + hW )]−1

αN = 2
(
σi,j+hN/2

)
[hN (hN + hS)]−1 (15.16)

αS = 2
(
σi,j+hS/2

)
[hS (hN + hS)]−1

αp = αE + αW + αN + αS .

Upto this point, we have calculated the values inside the medium.
If we consider the ground surface element, the equation changes in the

following way. Here we consider a fictitious row of elements above the surface
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of the ground such that
hN = hS

and σ1−hN,j = σ1+hS,j as i = 1 represent the ground surface j = 1, 2,
3 . . . . . . . . . . . . . . . . . . . . . ..n. Hence

αN = αS (15.17)

for the element (1, j). We must have ∂φ
∂z = 0 [boundary condition]. This is

only possible if
φ1+hS,j = φ1−hN,j . (15.18)

Putting (15.15) and (15.17) in (15.14) are have

αEφi,j+hE + αwφi,j−hW + αSφi−hS,j + αpφi,j + qij = 0. (15.19)

From the entire set of equations obtained for both the surface and subsurface
nodes, one gets a matrix equation of the form AΦ = B (Fig. 15.5)

A Φ = B (15.20)

Since potential is computed in a two dimensional xz plane, the source and the
sink extend to infinite distance along the y direction. Therefore these sources
are line sources. For converting these potential due to a line source and sink
to potentials due to a point source and sink, integral transform must be used.

15.2.5 Inverse Fourier Cosine Transform

For two-dimensional earth models, the potentials computed are for line source
when it remains independent of one co-ordinate axis. The resistivity distribu-
tion is assumed to be a function of only two co-ordinates (x, z). Since three
dimensional point source is used, the problem cannot be treated purely as
three-dimensional. It is necessary to remove the source variation along y direc-
tion by fourier transformation in order to solve the two-dimensional problem.
Assuming symmetry along y = 0, the potential variations may be transformed
by the application of inverse fourier cosine transformation. We define

φ (x, y, z) =
2
π

∞∫

0

φ (x, λ, z)Cos(λy)dλ (15.21)

A Φ   =  B 

Fig. 15.5. Curtoon of a system matrix in finite difference problem using Poisson’s
equation and showing sparsity
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On the y-axis or when y = 0, we get

ϕ (x, o, z) =
2
π

∞∫

0

φ (x, λ, z)dλ (15.22)

where λ is the integration variable. Many authors (Mwenifumbo (1980), Sasaki
(1982 ), Dey and Morrison (1976), Pridmore (1978)) have used 5 to 7 values of
integration variables λ between 0 and some finite value to bring down the upper
limit of integration form∞. Behaviour of this integral is studied in greater detail.
It was found that better results are obtained if the λ s have a gaussian distribu-
tion between the limits of integral. Therefore the principle of gauss quadrature
integration is followed for evaluating (15.21). Using this procedure the effect of
different sets of λ values on the accuracy in computing potentials with distance
from the source in the working area is examined in detail.

It is observed that, within fixed limits of integration, higher the number
of λ values, greater will be the distance of the point from the source till the
analytical and computed values of potential have a considerable agreement.
For example, the distance will be 50 units, 8 units and 2.5 units for sets with
11, 7 and 3 λ values respectively.

15.2.6 Calibration

The discrepancy between numerical and analytical solutions must be min-
imised comparing the responses for the bodies of simpler geometries. At this
stage the program source code will be ready for operation.

Figure 15.6 shows a two electrode apparent resistivity profile over a vertical
dyke of higher resistivity obtained using finite difference source code. Values
are compared with those obtained using analytical formulae based on image
theory (see Chap. 11).

Fig. 15.6. Resistivity two electrode profile across a vertical dyke; comparision
between the finite difference model and that obtained with those obtained from
analytical solution
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15.3 Finite Difference Formulation Domain
with Cylindrical Symmetry DC Field Borehole
Geophysics

15.3.1 Introduction

In this section finite difference modelling in DC field for a domain of cylindri-
cally symmetric structure is given highlighting some difference in the bound-
ary conditions, geometry of the model and grid system used. In this model
the domain extends from r = 0 to r = ∞ and z = ±∞ where r is the radial
distance from the axis of the cylinder and z is the vertical distance of both
upward and downward boundaries. Discretization of one half of the r-z plane
for solution of the boundary value problem is only needed. That reduces the
computer storage space considerably. In this section a few more points on
finite difference modelling are discussed. Figure (15.7) shows the geometry of
a problem in a zone of cylindrical symmetry. In this problem the Neumann
boundary condition is satisfied on the axis of a cylindrical domaim. Dirichlet
boundary conditions will be met at r = ∞ and z = ±∞. The model is set
up in a cylindrical co-ordinate system. A point source, located in a radially
symmetric environment, generate the potential field.

The proposed medium, with certain structures, is discretized and divided
into rectangular blocks by using vertical and horizontal grid lines, whose

Fig. 15.7. Borehole model with coaxial cylindrical symmetry; coaxial cylindrical
zones respectively show the borehole mud, flushed zone, invaded zone, uncontami-
nated zone and shoulder beds on top and bottom (Anon 1972)



15.3 Finite Difference Formulation Domain with Cylindrical Symmetry 483

mutual separations increased exponentially, both in the vertical and radial
directions. Radial variation of resistivity in one of the coaxial cylindrical shells
is simulated in FD modelling.

15.3.2 Formulation of the Problem

In a cylindrical co-ordinate system with radial symmetry, the starting Pois-
son’s equation is written as

∂

∂r

(
σ
∂ϕ

∂r

)
+

∂

∂z

(
σ
∂ϕ

∂z

)
+

1
r

(
σ
∂ϕ

∂r

)
+ q = 0 (15.23)

where, σ = σ (r, z) and ϕ = ϕ (r, z). This relation represents an elliptic second
order differential equation and defines the electric potential due to a current
source in a medium. The quantity q must be interpreted as a variable current
density in a typical 3-dimensional model, which is reduced to 2-dimension in
the cross section considering radial symmetry.

15.3.3 Boundary Conditions

For finite difference modeling, the infinite medium is made finite by placing
an artificial boundary. Figure (15.7) shows one such boundary in vertical
cross section of an earth model. The medium is discretized by dividing it into
number of rectangular cells with vertical and radial grids. The intersection
points of the grid are called pivotal or nodal points.

Pivotal points which lie on the axis of symmetry or the borehole axis
i.e., the boundary through the points P(1,1) and P(imax′ 1) should follow the
boundary conditions i.e.,

∂ϕ (r, z)
∂r

|r=0 = 0 (15.24)

2) and ϕ(r, z) = 0 when r → ∞ and z → ±∞

15.3.4 Grid Generation for Discretization

The domain has been discretized using vertical and radial grids. As the model
is axially symmetric, only one half of the vertical section, i.e., r ≥ 0 is con-
sidered. It is necessary that the grids to be finely spaced near the current
source (s) as the variation of potential around the source is maximum. As one
moves away from the current source in any direction, the change in poten-
tial gradually diminishes. Hence at points far from the current source, the
grids may be much coarser. It is convenient and justified to increase the grid
spacing exponentially with distance from the current source. Co-ordinate of
a node can be conveniently denoted by (i, j). The node, corresponds to ith
row and jth column can be denoted by P(i,j). j = 1 corresponds to borehole
axis , r = 0, i = imax corresponds to the upper and lower boundaries in the
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Fig. 15.8. Expanding grid for finite difference modelling; P1,1 ,the location of source
point

vertical plane and j = jmax corresponds to the radial boundary. The current
point source is located at a point P(1,1) (Fig. 15.8).

Location of any pivotal point P(i,j) can be expressed in an expanding grid
system as (Mufti 1976)

r (i, j) =
Δr

(
aj−1 − 1

)
a − 1

for j = 1 to jmax

z (i, j) =
Δz

(
bi−1 − 1

)
b − 1

for i = 1 to imax (15.25)

where, a and b are the expansion ratios and Δr and Δz are the smallest spacing
in the radial and vertical directions respectively. The choice of grid expansion
can be determined by trial and error on the basis of desired accuracy and
computational efficiency.

15.3.5 Finite Difference Equations

We can consider arbitrarily chosen element P(i,j) from the grid system shown
in Fig. (15.9). It’s four immediate surrounding neighbourhood pivotal points
are A, B, C and D denoted by P(i,j−1)′P(i−1,j)′ P(i,j+1) and P(i+1,j) respectively.
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Fig. 15.9. Enlarged view of a rectangular cell in a ring element

Distance from P(i,j) to these neighbours can be denoted as hA′ hB′ hC′ hD′ .
P(i,1) points fall on the borehole axis and are used as locations for current
and potential electrodes on the basis of the required position of which P(1,1)

is the position of the current electrode. Figure 15.9 is a vertical section of a
three dimensional model. It only represents a slice of the earth and must be
rotated through 360 degrees to represent the actual setup. The 3-dimensional
space is divided into circular ring elements, which have rectangular cross sec-
tions. Figure 15.9 shows a ring disc volume element associated to the nodal
point Pi,j.. Because of axial symmetry, these ring elements can be viewed as
rectangular element in the section plane, which reduces the model to 2-D.
Figure (15.9) shows a node P(i,j) along with it’s four neighbours. The radial
distance of P(i,j) from the borehole axis (r = 0) is r. Point P(i,j) represents the
rectangular element EFGH, covering an area of (hA + hC)/2× (hB + hD)/2 in
the vertical section. ϕi,j at the point P(i,j) in terms of its neighbouring nodal
points can be derived. On account of the central difference formula, the fol-
lowing approximations are valid at the point P. The difference equation can
be written as (

∂ϕ

∂r

)

i,j

=
ϕi,j+hC/2 − ϕi,j−hA/2

hA + hC
. (15.26)

Therefore, for the point (i, j + hC/2), it can be expressed as
(
∂ϕ

∂r

)

i,j+hC/2

=
ϕi,j+hC − ϕi,j

hC
. (15.27)

Hence, (
σ
∂ϕ

∂r

)

i,j+hC/2

=
σi,j+hC/2

hC
(ϕi,j+hC − ϕi,j) . (15.28)

Similarly for the point (i, j − hA/2), one gets,
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(
σ
∂ϕ

∂r

)

i,j−hA/2

=
σi,j−hA/2

hA
(σi,j − ϕi,j−hA ) . (15.29)

Here, σi,j+hC/2 and σi,j−hA/2 can be expressed as

σi,j+hC/2 =
σi,j + σi,j+hC

hC
(15.30)

and
σi,j−hA/2 =

σi,j + σi,j−hA

hA
(15.31)

where, σi,j′σi,j+hC and σi,j−hA are the conductivity values assumed at the
pivotal points P(i,j)′P(i,j+hC) or P(i,j+1)′ and P(i,j−hA) or P(i,j−1). Other values
of σ associated with the subsequent equations can be calculated in the same
way. For discretization of the earth model, conductivity value is assigned to
each element or cell. Since conductivity and resistivity have reciprocal relation
(σ = 1/ρ), therefore, the assigned value at the nodal resistivities can be
changed to nodal conductivities.

Applying central difference formula once, one gets

[
∂

∂r

(
σ
∂ϕ

∂r

)]

i,j

=
2

hA + hC

[(
σ
∂ϕ

∂r

)

i,j+hC/2

−
(
σ
∂ϕ

∂r

)

i,j−hA/2

]
. (15.32)

Considering (15.28) to (15.31), (15.32) can be expressed as
[
∂

∂r

(
σ
∂ϕ

∂r

)]

i,j

=
2

hA + hC

[
σi,j+hC/2

hC
(ϕi,j+hC − ϕi,j)

−αi,j−hA/2

hA
(ϕi,j − ϕi,j−hA)

]
. (15.33)

Proceeding in the same fashion, generalized self adjoint finite difference
approximation of the differential equation (15.33) can be represented as

2
hA + hC

[
σi,j+hC/2

hC
(ϕi,j+hC − ϕi,j) −

σi,j−hA/2

hA
(ϕi,j − ϕi,j−hA)

]
+

2
hB + hD

[
σi+hD/2,j

hD

(
ϕi+hD′ j − ϕi,j

)− σi,j−hB/2,j

hB

(
ϕi,j − ϕi,hB′ j

)]
+

σi,j
ri,j (hA + hC)

[ϕi,j+hC − ϕi,j−hA ] + qi,j = 0 (15.34)

where, ϕi,j−hA
′ϕi−hB

′j′ϕi,j+hCandϕi+hD
′j are the potential function associ-

ated to the Pi,j−1′Pi−1,j′Pi,j+1 and Pi+1,j nodal points.
From (15.34) after separating out the co-efficient of φ, one gets

−αCϕi,j+hC − αAϕi,j−hA − αDϕi+hD
′J − αBϕi,h′

Bj
+ αPϕi,j = qij (15.35)
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where,

αC =
2

(hA + hC)hC

[
σi,j+hC/2

]
+

σi,j
(hA + hC) ri,j

αA =
2

(hA + hC)hA

[
σi,j−hA/2

]− σi,j
(hA + hC) ri,j

αB =
2

(hB + hD)hB

[
σi−hB/2,j

]
(15.36)

αD =
2

(hB + hD)hD

[
σi−hD/2,j

]

αP = αA + αB + αC + αD.

Above (15.35) gives the potential relation for an arbitrary inside pivotal point
Pi,j in the discretized domain.

In (15.23) the term 1
r

(
σ ∂ϕ∂r

)
, contains a division by r. That leads to mathe-

matical indeterminacy as r → 0 on the borehole axis. This algebraic singularity
is avoided assuming [Mufti (1978, 1980)].

lim
r → 0

1
r

∂ϕ

∂r
=
∂2ϕ

∂r2

∣∣∣∣
r=0

(15.37)

From the (15.23), the generalized expression for evaluating the potential
along the axis of symmetry changes to

∂

∂r

(
σ
∂ϕ

∂r

)
+

∂

∂z

(
σ
∂ϕ

∂z

)
+ σ

∂2ϕ

∂r2
+ q = 0. (15.38)

Finite difference equivalent of the (15.38) can be written as

2
hA + hC

[
σi,j+hC/2

hC
(ϕi,j+hC − ϕi,j) −

σi,j−hA/2

hA
(ϕi,j − ϕi,j−hA)

]
+

2
hB + hD

[
σi,j+hD/2,j

hD

(
ϕi+hD

′j − ϕi,j
)− σi−hB/2,j

hB

(
ϕi,j − ϕi−hB

′j
)]

+

2σi,j
hA + hC

[
1
hC

(ϕi,j+hC − ϕi,j) − 1
hA

(ϕi,j − ϕi,j−hA)
]

+ qi,j = 0. (15.39)

The nodal points, located on the borehole axis, have the value r = 0, and
corresponds to the first column of nodes i.e., for j = 1. Hence the co-ordinates
of the pivotal points will be P(i,1). For calculation of potential on the axis of
symmetry, a fictitious column of element parallel to the axis of symmetry at
the left of (i, 1) is considered and introduced, such that

hA = hC (15.40)

and
σi,1+hC = σi,1−hA . (15.41)
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Elements fall on this axis (i, 1) should satisfy the Neumann boundary condi-
tion

∂ϕ

∂r

∣∣∣∣
r=0

= 0

and this is possible only if

ϕi,1+hC = ϕi,1−hA . (15.42)

Putting all these assumptions described above in (15.39) and separating out
the coefficient of ϕ, one gets

− αC ϕi,1+hC − αD ϕi+hD
′1 − αB ϕi−hB

′1 + αP ϕi,1 = qi,1 (15.43)

αC =
2
h2
C

[
σi,1+hC/2 + 2σi,j

]

αB =
2

(hB + hD)hB

[
σi−hB/2,1

]
(15.44)

αD =
2

(hB + hD)hD

[
σi+hD/2,1

]
αP = αB + αC + αD.

Equations (15.34) to (15.43) are the main finite difference approximations,
which can be solved for the potential expression ϕ (r, z). In practical problems,
a linear equation should be formed using the relations mentioned. Potential
at each node must be expressed in terms of its immediate neighbour and set
of coefficients αA′ , αB′ , αC′ , αD and αP are evaluated. Systematic ordering
of the grid points develops a sparse conductivity coefficient matrix, which is
solved for evaluation of potential field at a desired location using a suitable
matrix solver.

15.3.6 Current Density Factor q at the Source

In this two dimensional borehole d.c. resistivity forward problem involving
radial symmetry, the source is assumed to be a point source and located
along the axis of symmetry which coincides with the borehole axis. It is also
stated that in the expanding grid system the source is considered at the point
P(1,1) from where the grid expands exponentially on both the sides in the
vertical (z) and radial (r) directions. The volume associated with the piv-
otal point is a cylinder of radius hC/2 and height (hB + hD)/2. Figure 15.10
shows such a volume element associated to any of pivotal points that lie
on the axis of symmetry. The volume of this cylinder can be written as
π
(

hC
2

)2 (hB+hD
2

)
. Borehole axis is a boundary and Neumann boundary con-

dition is satisfied here. The approximation is made considering a fictitious
grid parallel to this axis of symmetry which has already been stated in the
previous section. Let a current of constant strength I be emitted from the
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Fig. 15.10. An elementary volume near the point current electrode. On the axis of
a borehole

point source P(1,1). The volume density of current q can then be easily cal-
culated by dividing the strength of current at any instance by the volume of
the cylinder.

Hence

q =
I

π
(

hC

2

)2 (hB + hD

2

) (15.45)

=
8I

πh2
C (hB + hD)

(15.46)

In the (15.35) and (15.43), the current density factor q only comes in the
expression at the current source and sink nodal positions with + and − signs.
For other positions of the nodal points, including those occupied by potential
electrodes, the factor q is zero. Here sources and sinks are considered on the
axis.

15.3.7 Evaluation of the Potential

The finite difference equation (15.35) and (15.43) constructs a large set of
linear equations considering each pivotal points of the discretized earth model.
Finally this large set of linear equations are arranged in a matrix form

A x = b (15.47)

where, A is the conductivity coefficient banded sparse matrix, b is the column
vector where only non zero elements are from the locations of the source and
sink.

The conductivity co-efficient matrix A is a pentadiagonal, asymmetric and
banded in nature, where four off diagonal and the main diagonal entries have
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Fig. 15.11. Comparison of analytical and finite difference modelling results

nonzero values. The remaining entries are all zeros. Direct solution of the
matrix equation can be done using one of the matrix solvers. For a thick bed,
Fig. 15.11 shows the apparent resistivity curves in the presence of flushed zone,
invaded zone and uncontaminated zone. Finite difference curves are compared
with those available in Schlumberger Well Surveying Corporation Document
(1972).

15.4 Finite Difference Formulation Plane Wave
Electromagnetics Magnetotellurics

In the last two Sects. 15.2 and 15.3, finite difference formulations both for
surface and borehole geophysics are demonstrated for direct current flow field
domain in considerable details where the guiding equations were Poisson’s
equation.

In this section we have given a brief structure of the finite difference for-
mulations for plane wave electromagnetics using Maxwell’s equations and
Helmholtz electromagnetic wave equations as guiding equations. Boundary
conditions are considerably different in electromagnetics. Details of electro-
magnetic boundary conditions are discussed in the Chap. 12.

In Magnetotellurics (MT) two sets of field data in frequency domain are
obtained after continuous time domain recording of electric and magnetic
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fields in two mutually perpendicular north-south and east-west directions.
The ratio of the electric field to the transverse magnetic field in frequency
domain are obtained after processing and fourier transforming two sets of
time domain E and H fields. One gets impedances, viz, Zxy(= Ex/Hy)
and Zyx(Ey/Hx). Madden and Nelson (1960) proposed that magnetotelluric
impedance Z is actually a 2 × 2 MT tensor where Zxy and Zyx are off
diagonal elements and Zxx and Zyy are diagonal elements. In 1967 Swift
brought the concepts of mathematical rotation of the MT impedance ten-
sor, optimum rotation angle and TE(Transverse Electric) and TM(Transverse
Magnetic) mode in 2-D MT. Swift rotation (1967) equation is given by,
Vozoff(1972),

Z′ = MZMT (15.48)

where,

Z′ =

[
Z′xxZ

′
xy

Z′yxZ
′
yy

]
. (15.49)

The primed components denote the components of the impedance tensor Z
after rotation. Here

M =

[
cos θ sin θ

− sin θ cos θ

]
and (15.50)

MT is the transpose of M .
For a two dimensional (2-D) structures (see Chap. 2) as well as for opti-

mum rotation angle θ, the angle between the geographic north and the strike
direction of the 2-D structure, one gets Zxx = Zyy = 0 and

(
Z′xy

2 + Z′yx
2
)

=
maximum. The rotated apparent resistivity and phases are given by

ρ′axy = 0.2T
∣∣Z′xy

∣∣2 and ϕ′xy = tan−1

(
Im

(
Z′xy

)

Re
(
Z′xy

)
)

(15.51)

ρ′ayx = 0.2T
∣∣Z′yx

∣∣2 and ϕ′yx = tan−1

(
Im

(
Z′yx

)

Re
(
Z′yx

)
)
. (15.52)

Here the rotated primed parameters are the E and H polarization parameters.
They are ρTE, φTE and ρTM, φTM.

At optimum rotation angle, Helmholtz wave equation ∇2

[
E
H

]
= γ2

[
E
H

]

decouples into two separate independent sets of equations. TE or EII stands
for transverse electric or E-polarization mode where electric field is paral-
lel to the geological strike. TM or E⊥ stands for transverse magnetic or
H-polarization mode (Table 15.1). Here magnetic field is parallel to the
strike and electric field is perpendicular to the strike Figs. (15.12) and
(15.13 a, b) respectively show the strike direction in an ideal 2D model
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Table 15.1. Break up of Helmholtz electromagnetic wave equation for E and H
polarisations

E-polarization equations H-polarization equations

i) E = E(0, Ey, 0),H = H(Hx, 0, Hz)
∂Hx
∂z

− ∂Hz
∂x

= σEy

− ∂Ey
∂z

= iωμHx

∂Ey
∂x

= iωμHz

− 1
iωμ

∂2Ey
∂z2

− 1
iωμ

∂2Ey
∂x2 = σEy

∂2Ey
∂x2 +

∂2Ey
∂z2

= γ2Ey

Hx = − 1
iωμ

∂Ey
∂z

Hz = 1
iωμ

∂Ey
∂x

i) E = E(Ex, 0, Ez),H = H(0, Hy, 0)

− ∂Hy
∂z

= σEx

∂Hy
∂x

= σEz

∂Ex
∂z

− ∂Ez
∂x

= iωμHy

− ∂2Hy
∂z2

− ∂2Hy
∂x2 = iωμσHy

∂2Hy
∂z2

+
∂2Hy
∂x2 = γ2Hy

Ex = − 1
σ
∂Hy
∂z

Ez = 1
σ
∂Hy
∂x

and the directions of electric and magnetic vectors in E-polarisation and H-
polarisation.

Since the low frequencies are involved in MT exploration, conduction cur-
rents dominate over displacement currents. The integral forms of Maxwell’s
equations in mks units can be written as

∮
H.dl =

∫ ∫
J.dS =

∫ ∫
σE.dS (15.53)

∮
E.dl =

∫ ∫
iμωH.dS, (15.54)

where in general, σ and μ are scalars for a homogeneous and isotropic medium
and tensors for inhomogenous and anisotropic medium (Chap. 2). These
Maxwell’s equations and Helmholtz wave equations given in Chaps. 12 and 13

Fig. 15.12. A model of a two dimensional earth with a strike along the y direction;
ρ1 and ρ2 are the resistivities of the two blocks
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Fig. 15.13. Directions of electric and magnetic fields for E and H polarizations

and in Table 15.1 are used to generate the finite difference modelling struc-
tures. We can define a difference scheme such that (15.53) or (15.54) are
exactly satisfied. Finite difference scheme in Magnetotellurics proposed by
Mackie et al (1993) are as follows (Fig. 15.14 a,b)

a) The x, y, z components of (15.53) are

{[Hz (i, j + 1, k) −Hz (i, j, k)] − [Hy (i, j, k + l)

−Hy (i, j, k)]}L = Jx (i, j, k)L2

{[Hx (i, j, k + 1) −Hx (i, j, k)] − [Hz (i+ 1, j, k)

−Hz (i, j, k)]}L = Jy (i, j, k)L2 (15.55)
{[Hy (i+ 1, j, k) −Hy (i, j, k)] − [Hx (i, j + 1, k)

−Hx (i, j, k)]}L = Jy (i, j, k)L2

{[Ez (i, j, k) − Ez (i, j − 1, k)] − Ey (i, j, k)

−Ey (i, j, k − 1)}L = iω < μxx > Hxx (i, j, k)L2

(b)

Ex (i, j, k) =
[ρxx (i, j, k) + ρxx (i− 1, j, k)]

2
Jx (i, j, k) ,

Ey (i, j, k) =
[ρyy (i, j, k) + ρyy (i, j − 1, k)]

2
Jy (i, j, k) , (15.56)

Ez (i, j, k) =
[ρzz (i, j, k) + ρzz (i, j, k − 1)]

2
Jz (i, j, k) .

(c)

{[Ex (i, j, k) − Ex (i, j, k − 1)] − Ez (i, j, k)

−Ez (i− 1, j, k)}L = iω < μyy > Hyy (i, j, k)L2

{[Ey (i, j, k) − Ey (i− 1, j, k)] − Ex (i, j, k)

− Ex (i, j − 1, k)}L = iω < μzz > Hzz (i, j, k)L2 (15.57)
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Fig. 15.14. a,b Magnetotelluric finite difference rectangular parallelepiped cells
showing the direction of electric and Magnetic Fields (Mackie ,Madden and Wan-
namaker 1993)

where we define the permeabilities as :

< μxx > =
μxx (i, j − 1, k − 1) + μxx (i, j, k − 1) + μxx (i, j − 1, k) + μxx (i, j, k)

4

< μyy > =
μyy (i − 1, j, k − 1) + μyy (i, j, k − 1) + μyy (i − 1, j, k) + μyy (i, j, k)

4
(15.58)

< μzz > =
μzz (i − 1, j − 1, k) + μzz (i − 1, j, k) + μzz (i, j − 1, k) + μzz (i, j, k)

4

Here ρ and μ the resistivity and magnetic permeability are chosen to be
tensors. E is defined as the average along a contour and H is defined as the
average across the surface enclosed by the contours Once the basic equations
for TE and TM mode are available and the guide lines to prepare the difference
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equations from Maxwell’s equations are obtained one can frame the finite
difference formulation program .

15.4.1 Boundary Conditions

In TE mode, the boundary conditions are not simple as Ex, Hy and Hz are all
continuous across the air – earth interface. Consequently, the horizontal H field
is not constant everywhere above the ground in the vicinity of a lateral inho-
mogeneity. Thus, it is necessary to consider air layers above the ground . An
upward extension of the model cross section upto the air – ionosphere bound-
ary is necessary in an attempt to get numerical solutions for E polarization
problem. This requires an interface, where lateral changes in conductivity do
not exist. Since we need Hz = 0 and Ex is constant, and ∂Ex/∂y = iωμoHz,
ten air layers are generally introduced(Wannamaker 1987). They are the rows
next to the air – earth interface and are of the same height as the rows just
below the surface under the assumption that electric current flow across the
air – earth interface is negligible. These 10 air layers above the surface of the
earth with exponential increased thickness in some cases are chosen such that
the geometric perturbations in the longest wavelength H field gets damped.
On top of the air layer an arbitrary electric field Eo is assumed. Since all the
fields at different depths get normalised, the arbitrary choice is permissible.
The lower half space below the air earth boundary are chosen in such a way
such that Eo = 0 at the bottom. Generally Eo is chosen as 1 above the air lay-
ers. For TM mode modelling air layers are not necessary. Ho also is assumed to
be 1(Ho = 1). The boundary values on the side faces of the model are chosen
from the values obtained from 1D on the surface of the earth. At the bottom of
the half space Ho also is assumed to be zero. Once the boundary conditions are
imposed one gets a series of equations which can be clubbed together to get a
matrix

Ax = b, (15.59)

where b contains terms associated with the known boundary values and source
field. This system of equations is sparse, symmetric and complex (all ele-
ments are real except for the diagonal elements). Once this system has been
solved for the H fields, the E fields can be determined by application of curl
H = J = σE neglecting the displacement current as mentioned. The values of
the electric and magnetic field on all the nodes in the model are obtained.It
is interesting to note that the column vector in this case has mostly nonzero
elements.The matrix A is symmetric in this case. In the DC domain, the
matrix A is asymmetric These considerable difference in boundary condi-
tions and formulation do exist between direct current and electromagnetic
field domain. Choice of matrix solver may be different. Otherwise step by
step structure of the FD formulation in both the cases are more or less the
same.



496 15 Numerical Methods in Potential Theory

15.5 Finite Element Formulation Direct Current
Resistivity Domain

15.5.1 Introduction

The basic concept in the finite element method is that a continuous space
domain, is assumed to be composed of a set of piecewise continuous functions
defined over a finite number of subdomains or elements. The piecewise con-
tinuous space called elements and any function say potential or field or stress
or strain are defined using values of continuous quantity at a finite number
of point in the solution domain assuming linear or nonlinear variations in
polynomials. Discretization of the space domain, elements, nodes, boundary
conditions, use of matrix solver are more or less same as those we discussed in
Sect. 15.2 and 15.3. But the solution of the problem in finite element (FEM)
domain is considerably different from what we have seen in Sect. 15.2 and 15.3.
The steps involved in formulating a problem in the finite element domain may
be summarised as follows:

1) The solution domain is made finite and divided into a finite number of
elements, each having suitable physical property assigned. These elements may
be one, two, or three-dimensional according to the problem being considered.
The shape of the elements can be one of the many different forms (Zienkiewicz,
1971) viz., triangle, quadrilateral, rectangle, square, tetrahedron, cube, paral-
lelepiped etc with straight or curved boundaries. 2) The elements are intercon-
nected at common nodal points situated at the element boundaries or vertices.
A parameter for the unknown potentials to be determined is assigned to each
of these elements, and the potentials will be obtained from these nodal points.
3) A polynomial function is chosen to define the behaviour of potential field
within the element, in terms of the nodal values. The interpolating polyno-
mial may be linear, quadratic, or cubic. 4) The approximating polynomial
functions are then substituted for the true solution into the equation describ-
ing the potential or field behaviour. 5) The summation of all the elemental
equations gives an approximation to the equation for the continious potential
function. A system of equations is obtained from which the nodal potentials
may be obtained. 6) One of the approaches viz, Rayleigh Ritz energy mini-
mization method based on variational calculus or the Galerkin’s weights are
chosen. 7) Natural coordinates with isoparametric elements are also used to
bring in curved boundaries. In the present finite element approximation, the
cross-section of a 2-D structure is represented by a number of triangular ele-
ments. Inside each of these elements a linear behaviour of potential field is
assumed. The nodes of the elements are situated at the vertices of the triangles
to which these variables are assigned. The approximation of a two dimensional
field variable φ, within an element, e, may be written in terms of the element
unknown parameters φe as,

φe =
[
Nβ φβ

]
(15.60)
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where β = i, j, k, . . . . . . . . . r, r is the number of unknown parameters and
Nβ, β = i, r are the element shape functions.

The element shape functions cannot be chosen arbitrarily because these
functions have to satisfy the continuity and convergence requirements of the
method. More details concerning the types of element shape functions are
given in Kardestuncer (1987).

One can derive the finite element form of the governing differential equa-
tion of a problem in different ways. In the present finite element analysis the
variational approach is used where a functional is minimised. In the next sec-
tions, GalerKin’s method of finite element analysis without and with use of
the isoparametric elements are demonstrated.

In this Rayleigh-Ritz approach, a physical problem, governed by a differ-
ential equation, may be equivalently expressed as an extremum problem by
the method of calculus of variations. For the steady state field problems, the
field equation to be solved is the quasi harmonic equation expressed in general
terms as

∂

∂x

(
σx
∂φ

∂x

)
+

∂

∂y

(
σy
∂φ

∂y

)
+

∂

∂z

(
σz
∂φ

∂z

)
= −∇.Js (15.61)

It is shown, by means of the calculus of variations, that a physical problem
defined by the above differential equation is identical to that of finding a
function φ, that minimizes a functional ψ. The same boundary conditions
applied to the differential equation are applicable to this integral equation

ψ =
∫ [

σz

(
∂φ

∂x

)2

+ σy

(
∂φ

∂y

)2

+ σz

(
∂φ

∂z

)2

− 2φ∇.Js
]
dν. (15.62)

Minimization of this functional with respect to the unknown function φ, gives
the potential φ, which also satisfies the differential equation (Coggon 1971).
In this resistivity problem, this integral is associated with power dissipation
within the conducting medium. The minimum condition thus requires that
the potential distribution within the medium is such that the power dissi-
pated (Joule heat in this case) is minimum Reddy (1986). A brief derivation
of the power integral expressed in terms of potential and suitable for direct
applications of the finite element method is given. Inverse fourier cosine trans-
form discussed in Sect. 15.2 regarding transformation of line source potential
to point source potential is applicable here also

15.5.2 Derivation of the Functional from Power Considerations

Coggon (1971), Mwinifumbo (1980), Reddy (1986), Silvester and Haslam
(1972), Zienkiewicz and Taylor (1987) have presented the mathematical treat-
ments of the approaches based on the variational calculus. This mathematical
treatment is given by Mwinifumbo (1980) The power dissipated per volume
ψc in a conducting medium with resistivity, ρ and current density, Jc, is
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ψc = ρJ2
c . (15.63)

The relations Jc = σE, and E = −∇φ allow the equation to be written as

ψc = σ(∇φ)2 (15.64)

If there is a current source within the volume, the power dissipated per unit
volume by the source is

ψs = −Js.∇φ. (15.65)

The power supplied by the source to the field is equal to the total power
dissipated as Joule heat, that is,

σ(∇φ)2 + Js.∇φ = 0. (15.66)

We wish to minimize the power dissipated within a volume where there
is a source, but the function describing the dissipated power and the power
supplied by the source is zero. This problem is handled by a method similar
to the Lagrangian multiplier method. Instead of minimizing the Joule heat
directly (which does not have the source terms), we construct a new function
as follows

σ(∇φ)2 + Js.∇φ = 0 (15.67)

which in essence is just the negative of the power supplied to the unit volume.
The integral form of power dissipation within the solution domain is then
given as

ψ =
∫

ν

[
σ (∇φ)2 + 2Js.∇φ

]
dν. (15.68)

Using the identity
∇.(φJs) = Js.∇φ + φ∇.Js (15.69)

the first term on the right hand side of (15.69) may be written as
∫

ν

(Js.∇φ) dν =
∫

ν

[∇. (φJs) − φ∇.Js]dν. (15.70)

Applying the divergence theorem to the first term on the right hand side of
this equation, we have

∫

ν

(Js.∇φ) dν =
∫

ν

φJs.nds −
∫

ν

φ∇.Jsdν (15.71)

since there are no sources on the surface of the solution domain, the surface
integral vanishes, then

∫

ν

(Js.∇φ) dν = −
∫

ν

φ∇.Jsdν. (15.72)
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Equation (15.69) then becomes:

ψ =
∫

ν

[
σ (∇φ)2 − 2φ∇.Js

]
dν. (15.73)

The current density in a conducting medium is distributed in such a way that
the power dissipated (ohmic power) is minimum. This minimization principle
may be written as

Δψ = Δ
∫

ν

[
σ (∇φ)2 − 2φ∇.Js

]
dν = 0 (15.74)

where Δψ is the variation of the total power ψ with change of the function φ
(x, y, z). This equation is known as the variational equation. In the present
study we will be modeling two-dimensional structures in the presence of 3-D
sources. If we apply a Fourier cosine transform along the Y direction (strike
direction of the 2-D structure being considered), then the variational equation
reduces to

Δψ =
∫

A

Δ
[
σ
(

φ2
x + λ2φ2 + φ2

z

)
− 2φIδ (x) δ (z)

]
dA = 0. (15.75)

Integration is now over area instead of a volume. By using the variational
method, it is shown below that the variation of the power leads to Pois-
son’s differential equation. This is the basis for most methods of calculating
potential distributions and is known as Ray leigh - Ritz energy minimisation
method.

15.5.3 Equivalence between Poisson’s Equation
and the Minimization of Power

Integration and taking the variation in the above equation may be inter-
changed as follows,

Δψ =
∫

A

Δ
[
σ
(

φ2
x + λ2φ2 + φ2

z

)
− 2φIδ (x) δ (z)

]
dA = 0. (15.76)

Differentiation and the operation of variation may also be interchanged, thus
enabling the (15.76) to be written as

Δψ =
∫

A

[
σ
(

φx.
∂ (Δφ)
∂x

+ λ2φ (Δφ) + φz.
∂ (Δφ)
∂z

)
− I (Δφ) δ (x) δ (z)

]
dA = 0.

(15.77)
Integrating the first term under the integral in (15.77) in the square brackets
yields
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∫

A

∂φ
∂x
.
∂Δφ
∂x

dA =
∫

A

[
∂

∂x

(
∂φ
∂x
.Δφ

)]
dA −

∫

A

[
∂

∂x

(
∂φ
∂x

)
Δφ

]
dA. (15.78)

Applying the divergence theorem to the first integral on the right hand side
of (15.78), we get

∫

A

[
∂φ
∂x

∂ (Δφ)
∂x

]
dA =

∫

L

[
lx
∂φ
∂x

Δφ
]

dL −
∫

A

[
∂

∂x

(
∂φ
∂x

)
Δφ

]
dA (15.79)

where lx is the direction cosine of the normal to the exterior boundary with
respect to the X-axis, and L is the bounding contour of the solution domain
area. A performing similar operations on the third term of the square brackets
of (15.77) gives

∫

A

[
∂φ
∂z

∂ (Δφ)
∂z

]
dA =

∫

L

lz
∂φ
∂z

ΔφdL −
∫

A

[
∂

∂z

(
∂φ
∂z

)
Δφ

]
dA. (15.80)

On substitution of the expression (15.79) and (15.80) into the variational
equation we get

Δψ =
∫

A

[
σ
(
∂2φ
∂x2

+ λ2φ +
∂2φ
∂x2

)
− Iδ (x) δ (z)

]
(Δφ) dA

+
∫

L

[
σ
(

lx
∂φ
∂x

+ lz +
∂φ
∂z

)]
(Δφ) dL = 0 (15.81)

When the boundary values are given, Δφ = 0 on L, the line integral vanishes.
When the boundary values are not given, the variation of φ on L is in general
nonzero. Since the variation of φ within the solution domain is not necessarily
zero, Δψ = 0 occurs only if the square bracketed terms within the integral
vanishes. This requirement yields the following equations.

σ
[
∂2φ
∂x2

− λ2φ +
∂2φ
∂z2

]
+Iδ (x) δ (z)] = 0

σ
[
lx
∂φ
∂x

+ lz
∂φ
∂z

]
= 0 (15.82)

The first part of (15.82) is Poisson’s equation with a Fourier cosine trans-
formation applied along the Y direction and the second part is the natural
boundary condition (homogeneous Neumann boundary condition).

15.5.4 Finite Element Formulation

This formulation is based on the work of Mwinifumbo (1980), Zienkiewicz
and Taylor (1989), Reddy (1986), Krishnamurthy (1991) Roy and Jaiswal
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(2001) (Fig. 15.5). In the present analysis a linear polynomial and triangular
elements are used, that is, the function φ is taken to vary linearly over the
triangular element with nodes at the vertices (Fig. 15.15).

Let a given triangular element with nodes i, j, k and coordinates of the
three nodes being (xi, zI), (xj, zj) and (xk, zk), have the following nodal values
of the potential function φ; φi, φj, φk.

The interpolating polynomial is

φ = α1 + α2x + α3z (15.83)

with the nodal conditions

φ = φI at x = xi, z = zi (15.84)
φ = φj at x = xj, z = zj

φ = φk at x = xk, z = zk.

Substituting of these nodal values into (15.83), one gets a system of equations.

φi = α1 + α2xi + α3zi

φj = α1 + α2xj + α3zj (15.85)

φk = α1 + α2xk + α3zk

which yield

Fig. 15.15. A triangular finite element showing the coordinates of the nodes
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α1 =
1

2A
[
(xjzk − xkzj) φi + (xkzi − xizk) φj + (xizj − xjzi) φk

]

α2 =
1

2A
[
(zj − zk) φi + (zk − zi) φj + (zi − zj) φk

]

α3 =
1

2A
[
(xk − xj) φi + (xj − xk) φj + (xj − xi) φk

]
(15.86)

where 2A is equal to

2A =

∣∣∣∣∣∣
1 xi zi

1 xj zj

1 xk zk

∣∣∣∣∣∣
(15.87)

A being the area of the triangle.
When the value of α1, α2 and α3 are substituted into the expression for

the interpolating polynomial, the following element equation is obtained after
the terms have been rearranged i.e.,

φe = Niφi + Njφj + Nkφk (15.88)

where φe is the potential over the element, e, and Ni, Nj and Nk are the three
shape functions associated with each node of the triangular element and are
defined as follows:

Ni =
1

2A
(ai + bix+ ciz)

Nj =
1

2A
(aj + bjx+ cjz) (15.89)

and
Nk =

1
2A

(ak + bkx+ ckz)

where,

ai = xjzk − xkzj

bi = zj − zk (15.90)
ci = xk − xj

aj = xkzi − xjzk

bj = zk − zi (15.91)
cj = xi − xk

and

ak = xizj − xjzi

bk = zi − zj (15.92)
ck = xj − xi.
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The potential function φ is thus a function of a set of shape functions which
are linear in x and z. This means that the gradients in either x or z direction
will be constant. These are determined as follows:

∂φe

∂x
=
∂Ni

∂x
φi +

∂Nj

∂x
φj +

∂Nk

∂x
φk

∂φe

∂z
=
∂Ni

∂z
φi +

∂Nj

∂z
φj +

∂Nk

∂z
φk (15.93)

The partial derivatives of the shape functions with respect to x and z axes are
evaluated as follows:

∂Nβ

∂x
=

1
2A

bβ

∂Nβ

∂z
=

1
2A

cβ (15.94)

β = i, j, k.
Therefore, (15.93) reduce to

∂φe

∂x
=

1
2A

(
biφi + bjφj + bkφk

)

∂φe

∂z
=

1
2A

(
ciφi + cjφj + ckφk

)
. (15.95)

The parameters bi, bj, bk, ci, cj, ck are constants (they are fixed once the
nodal coordinates are specified) and φi, φj and φk are independent of the
space coordinates. Figure 15.16 shows Dirichlet and Neuman boundaries in a
FEM problem with triangular elements as shown in Sect. 15.2.

15.5.5 Minimisation of the Power

When we minimize the power defined by (15.68), it is only required to derive
that the necessary conditions for a typical element. Influence of other elements
will follow an identical pattern. To obtain the general equation, we simply add
contributions of all the elements.

The power dissipated in an element, e, defined by nodes i, j, and k is given
as (if there are no sources within the element).

ψe =
∫ ∫

e

σ

[(
∂φe

∂x

)2

+ λ2φe2 +
(
∂φe

∂z

)2
]

dxdz. (15.96)

On substitution of the nodal values and their derivatives (15.96) becomes

ψe =
∫ ∫

e

σ

4A2

[
(biφi + bjφj + bkφk)

2 + λ2 (Niφi +Njφj +Nkφk)

+ (ciφi + cjφj + ckφk)
2
]
dx dz. (15.97)
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Fig. 15.16. A finite triangular element mesh showing the working and adjoining
areas, Dirichlet and Neumann conditions at the boundaries

To obtain the minimum of the power within an element, the differentials of ψe

with respect to the nodal parameters φi, φj, φk are evaluated first. To illustrate
the procedure of obtaining these differentials, (15.96) is differentiated with
respect to the nodal values

φ.
∂ψe

∂φi
=
σ

2A
[(
b2i + c2i

)
φi + (b2bj + c2cj)φj + (bjbk + ckci)φk

] ∫ ∫

e

dxdz

+ 2σx2

∫ ∫

e

[
N2
i Kφi +NiNjKj+

]
. (15.98)

The integrals in the above equation are taken over the area of the element.
Integration is straight forward when the triangular area coordinates, L1, L2, L3

(Zienkiewicz (1971)) are used. These coordinates specify the position of any
point within the triangle by giving the distance measured perpendicularly
from each side to the point, distances being expressed as fractions of the
triangle altitude.

The area coordinates span the range of numerical values from 0 to 1 in
any triangle. For a triangular element with corners numbered 1, 2 and 3, these
area coordinates are related to the x and z coordinates by

⎡
⎢⎣
L1

L2

L3

⎤
⎥⎦ =

1
2A

⎡
⎢⎣
(x2z3 − x3z2) (z2 − z3) (x3 − x2)
(x3z1 − x1z3) (z3 − z1) (x1 − x3)
(x1z2 − x2z1) (z1 − z2) (x2 − x1)

⎤
⎥⎦

⎡
⎢⎣

1
x

z

⎤
⎥⎦ . (15.99)



15.5 Finite Element Formulation Direct Current Resistivity Domain 505

Using these coordinate variables, which are also the shape functions for the
linear element; that is

Ni = L1

Nj = L2

Nk = L3

We have ∫

A

La
1L

b
2Lc

3dA =
a!b!c!

(a + b + c + 2)!
2A (15.100)

where a, b, c are the powers of the coordinates Using the above equation the
integrals in (15.98) are evaluated as

∫ ∫

e

dxdz = A

∫ ∫

e

[
N2
i φi +NiNjφj +NiNkφk

]
dxdz =

A

6
φi +

A

12
φj +

A

12
φR. (15.101)

Equation (15.98) reduces to

∂ψe
∂φi

=
σ

2A
(bi + tijφj + tikφk) +

λ2σA

6
(2φi + φj + φk) (15.102)

where

tii = (zj − zk)2 + (xk − xj)2

tij = (zj − zk)(zk − zj) + (xk − xi)(xi − xk) (15.103)
tik = (zj − zk)(zi − zj) + (xk − xi)(xj − xi).

For the whole element i, j, k the differentiation of the power integral is with
respect to the parameters φi, φj, φk. In matrix notation, the elemental system
of equations may be written as

[
∂ψ
∂φ

]e

=

⎡
⎢⎢⎢⎣

∂ψe

∂φi

∂ψe

∂φj

∂ψe

∂φk

⎤
⎥⎥⎥⎦ . (15.104)

The coefficients of φ′s for each element form two symmetric (3 × 3) element
matrices

σ

2A

⎡
⎣

(
b2i + c2i

)
(bibj + cicj) (bibk + cick)

(bibj + cicj)
(
b2j + c2j

)
(bjbk + cjck)

(bibk + cick) (bjbk + cjck)
(
b2k + c2k

)

⎤
⎦ andλ

2σA

6

⎡
⎣

2 1 1
1 2 1
1 1 2

⎤
⎦ . (15.105)
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The final equations for minimising total power within the solution domain are
assembled by adding the contributions of each element to a typical differential
and equating the result to zero. Thus

∂ψ

∂φi
=

N∑
β=1

[
∂ψβ
∂φi

]
= 0 (15.106)

where N is the number of elements sharing the node i. It should be noted
that for a particular node i only the values of φ at nodes connected to it
will appear and that the coefficients will involve only contributions from the
elements adjacent to the node being considered. This results into a typical
narrow banded coefficient matrix for a set of simultaneous equations. If the
potential function φ is to be determined at M number of nodes, then a set of
M linear simultaneous equations result. The required values φ1, φ2 . . . ..φM are
obtained upon solving these equations. In matrix form, the equations may be
written as

[T] {φ} = {S} (15.107)

where [T] is the matrix of coefficients of the equation, φ is the column vec-
tor of M unknown potential values and S is the column vector containing
source terms extracted from the right-hand side of (15.107). The matrix [T] is
a large, symmetric, diagonally dominant, penta diagonal and sparse matrix.

Fig. 15.17. Two electrode profile over a dipping dyke
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That is, most of the terms in any one row are zeros and the non-zero terms
are restricted to a band about the diagonal. Only non-zero terms need to be
stored in along with appropriate locations in the matrix. That reduces con-
siderable amount of storage space needed on the computer. Since the matrix
is symmetrical about the diagonal, only one half of the non-zero terms need
to be stored . Integral transform to change the line source response to point
source response, implementation of Dirichlet and Neumann boundary condi-
tions and generation of expanding grids are more or less the same as discussed
in Sect. 15.2. Figure (15.17) show the theoretically computed two electrode
profiles across a dipping dyke using FEM source code.

15.6 3D Model

Three Dimensional space is divided into discrete tetrahedral elements. The
space consists of a working volume with small tetrahedrons and the outer
volume with large and exponentially expanding elements intended for appli-
cation of the Dirichlet’s boundary conditions. The process of division is two
fold. The whole volume is first divided into octahedral elements. These octa-
hedral elements are divided into five tetrahedrons each. The division of these
octahedral elements leads to two different arrangements of the tetrahedrons
(Fig. 15.18a,b). In order to generate the stiffness matrix, a suitable polynomial
approximation is chosen to fit the potential variation within the tetrahedral
elements. Standard linear polynomial is given by

ϕ = α1 + α2x + α3y + α4z (15.108)

where α1,α2,α3,α4 are constants. On this basis we prepare the element stiff-
ness and hence the global stiffness matrix as follows: Consider a tetrahe-
dral element having the coordinates (xI, yI, zI), (xj, yj, zj), (xk, yk, zk) and
(xp, yp, zp) with potential values φi, φj , φm and φp at ith, jth,mth and pth node
respectively.

The nodal conditions are

Fig. 15.18. Tetrahedral elements for a 3D Finite element problem
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φ = φi at x = xi, y = yi, z = zi

φ = φj at x = xj , y = yj, z = zj

φ = φm at x = xm, y = ym, z = zm (15.109)
φ = φp at x = xp, y = yp, z = zp.

Writing in matrix form
⎡
⎢⎢⎣
φi
φj
φm
φp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 xi yi zi
1 xj yj zj
1 xm ym zm
1 xp yp zp

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
α1

α2

α3

α4

⎤
⎥⎥⎦ (15.110)

Or ⎡
⎢⎢⎣
α1

α2

α3

α4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
φi
φj
φm
φp

⎤
⎥⎥⎦ . (15.111)

The power dissipation in an element (with no sources within) is given by

ψe =
∫

v

o[(
∂φe

∂x
) + (

∂φe

∂y
)2 + (

∂φe

∂z
)2]dv. (15.112)

To obtain minimum power within an element, the derivatives of ψe with
respect to φi, φj , φm and φp are equated to zero.

[
∂ψ

∂φ

]e
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ψe

∂φi

∂ψe

∂φi

∂ψe

∂φm

∂ψe

∂φp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (15.113)

Alternatively the element stiffness matrix is

[
∂ψ

∂φ

]e
= V ×

⎡
⎢⎢⎣
a21a21 + a31a31 + a41a41 a21a22 + a31a32 + a41a42

a21a22 + a31a32 + a41a42 a22a22 + a32a32 + a42a42

a21a23 + a31a33 + a41a43 a22a23 + a32a33 + a42a43

a21a24 + a31a34 + a41a44 a22a24 + a32a34 + a42a44

a21a23 + a31a33 + a41a43 a21a24 + a31a34 + a41a44

a22a23 + a32a33 + a42a43 a22a24 + a32a34 + a42a44

a23a23 + a33a33 + a43a43 a23a24 + a33a34 + a43a44

a23a24 + a33a34 + a43a44 a24a24 + a34a34 + a44a44

⎤
⎥⎥⎦

(15.114)

The element stiffness matrix is mapped into the global stiffness matrix element
by element. Assembly of all the equations gives
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[A].[φ] = [S]. (15.115)

For a 3-D problem with tetrahedral elements,the matrix A will be a hepta
diagonal,diagonally dominant sparse symmetric matrix.Suitable matrix solver
may be used to obtain φ at all the nodes.

15.7 Finite Element Formulation Galerkin’s Approach
Magnetotellurics

15.7.1 Introduction

Coggon (1971), Silvester and Heslam (1972), Rodi (1975), Pelton et al (1978),
Wannamaker (1984, 1987), Kikkonen (1977) did mathematical formulaton on
finite element method for geo-electric and geoelectromagnetic problems. In
this section we present a brief description of the finite element method for TE
and TM mode magnetotellurics (Plane wave normal incidence electromagnet-
ics). The finite element approach for solution of the Helmoltz wave equation
is presented.

Let us consider TE mode MT in which Ex = Ez = Hy = ∂/∂y = 0. For
harmonic fields in the case of plane wave electromagnetics, we get

∂Ey/∂z = iωμ Hx (15.116)

∂Ey/∂z = −iωμ Hz (15.117)

and
∂Hx/∂z− ∂Hz/∂x = iωε Ey. (15.118)

We get

∂/∂x(1/iωμ ∂Ey/∂x) + ∂/∂z(1/iωμ ∂Ey/∂z) − iω ∈ Ey = 0. (15.119)

For TM mode, we get

Ey = Hx = Hz = ∂/∂y = 0

and

∂Hy/∂z = −iω ∈ Ex (15.120)

∂Hy/∂x = iω ∈ Ez (15.121)

and
∂Ex/∂z− ∂Ez/∂x = −iωμ Hy. (15.122)

Substituting (15.120) and (15.121) in (15.122), we obtain

∂/∂x(1/iω ∈ ∂Hy/∂x) + ∂/∂z(1/iω ∈ ∂Hy/∂z) − iωμ Hy = 0. (15.123)

The general expression for two dimensional Helmoltz equation is

∂/∂x(1/k ∂f/∂x) + ∂/∂y(1/k ∂f/∂y) + p(f) = S. (15.124)



510 15 Numerical Methods in Potential Theory

15.7.2 Finite Element Formulation for Helmholtz Wave Equations

This finite element formulation is based on the work of Wannamaker (1984,
1986 and 1987) The finite element formulation is constructed as follows:

(a) The region is divided into finite number of sub-domains selected here as
triangular elements. These elements are connected at common node points
and collectively form the shape of the region.

(b) The continuous unknown function ‘f’ is approximated over each element
by polynomials selected here as linear polynomials. These polynomials are
defined using the noded values of the continuous function ‘f’. The value
of a continuous function ‘f’ at each nodal point is denoted as a variable
which is to be determined.

(c) The equations for behaviours of field over each element are derived from
the Helmholtz equation using linear polynomials.

(d) The regions of application of Neumann and Dirichlet boundary conditions
are established.

(e) Element equations are converted into element matrix equations.
(f) The matrix element equations are assembled to form the global matrix

equations.
(g) The boundary conditions are introduced.
(h) The system of linear equations are solved.

One important aspect of the finite element method is the design of the dis-
cretized domain i.e. the construction of finite element mesh. The construction
of the mesh is problem dependent. The working domain is discretized with
finite elements of different 2-D or 3-D shapes depending upon the dimension
of the problem. The size of the mesh must be variable and near the discontinu-
ities the mesh size should be finer. The area where there is no inhomogeneity
the mesh can be coarser. For two dimensional bodies triangular, rectangu-
lar, hexagonal meshes can be used. For 3-D bodies cubical parallelopiped,
tetrahedral elements can be used. Depending upon the nature of complexity
complicated isoparametric elements with 8 nodes, 20 nodes, 32 nodes cubic
elements can be used as shown in the next section. The connecting points of
all the elements are nodes. In the discretized domain we try to find out the
fields or potentials at these nodal points.

In the following section we present the basics of finite element formula-
tion for magnetotelluric boundary value problems using triangular elements.
Initial part of the formulation is same as that outlined in the previous sec-
tion. In this section the Galerkins methods is used. So the formulation takes
a different path. The elements are triangular, the simplest elements for a two
dimensional problem. The guiding equations are electromagnetic wave equa-
tions and Maxwell’s electromagnetic equations. The boundary conditions are
mentioned in the Sect. 15.4.

We assume an arbitrary triangular element (e) within the finite domain
with nodes at the vertices of the triangles (Fig. 15.19).
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Fig. 15.19. Triangular finite element for MT field formulation

With this type of domain discretization we allowed the functional to vary
linearly over each element. The plane passing through the nodal values of ‘f’
attached with each element (e) can be described by the equation:

fe(x, y) = a(e)
1 + a(e)

2 X + a(e)
3 Z. (15.125)

At the three nodes the values of the assumed polynomials are:

f(e)i (x, y) = α(e)
1 + α(e)

2 Xi + α(e)
3 Zi (15.126)

f(e)j (x, y) = α(e)
1 + α(e)

2 Xj + α(e)
3 Zj (15.127)

f(e)k (x, y) = α(e)
1 + α(e)

2 Xk + α(e)
3 Zk.

We solve these equations for α1,α2 and α3 and insert these values in (15.125)
to get

fe = N(e)
i f(e)i + N(e)

j f(e)j + N(e)
k f(e)k (15.128)

in which
N(e)

i = 1/2Δ(ai + bi X + ciZ) (15.129)

where

ai = xjzk − xkzj (15.130)
bi = zj−zk

ci = xk − xj (15.131)

and Δ is the area of the triangular element (e). Like wise the terms N(e)
j and

N(e)
k are obtained through a cyclic permutations of the subscripts i, j and k.

The functions N(e)
i , N(e)

j and N (e)
k are called the shape functions, interpolation

function or the basis function.
Equation (15.128) can be expressed as the matrix equation in the form

f(e) = N(e)ft(e). (15.132)
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In which
N(e) = [N(e)

i N(e)
j N(e)

k ] (15.133)

and
fTe = [f(e)i f(e)j f(e)k ]. (15.134)

If the domain contains M triangular elements, the complete representation
of the unknown function ‘f’ over the whole domain is given by

f(x, z) =
M∑
e=1

fe(x, z) =
M∑
e=1

Nef
T
e . (15.135)

This is the function ‘f’ defined over whole domain. We shall derive the element
equations.

15.7.3 Element Equations

The domain equation may be written in the concise form as

L f = s (15.136)

In which

L =
∂

∂x

(
1
k

∂

∂x

)
+

∂

∂y

(
1
k

∂

∂y

)
+ P (15.137)

Inserting the approximate value of f(x, z) given by (15.136) and (15.137) we
get

L(
∑

N(e) fT(e)) − s = ε (15.138)

in which ε is the residual error to be minimized. Our way to accomplish this
objective is to use the inner product or dot-product between the error vector
and the function. The dot product becomes zero when they are orthogonal or

< Ne
j , ε >=

∫ ∫

(e)

N
(e)
h εdxdz = 0 (15.139)

for each of the basis function N(e)
h . This integral mathematically states that

the basis function must be orthogonal to the error over the element (e). This
is Galerkin’s method.

Using (15.136) to (15.139), we can write
∫ ∫

(e)

[Ne
n[
∂

∂x
(
1
k

∂fe

∂x
)] + Pf (e) − s]dxdz = 0 (15.140)

in which (e) is the triangular region and n = i, j and k.
Applying integration by parts, we get
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∫ ∫

(e)

N (e)
n

∂

∂x
(
1
k

∂f (e)

∂x
)dxdz= −

∫ ∫
1
k

∂f (e)

∂x

∂N
(e)
n

∂x
dxdz +

∮
1
k

∂f (e)

∂x
nxN

(e)
n dl

(15.141a)
in which nx is the x-component of the unit normal to the boundary, dl is a
differential arc length along the boundary. When we treat the second term in
(15.140) in the same manner, the (15.140) takes the form

∫ ∫

(e)

[−1
k
(
∂f (e)

∂x

∂Nn
∂x

− ∂f (e)

∂z

∂N
(e)
n

∂z
) +Nn(Pf (e) − s)]dxdz

+
∮

1
k

∂f (e)

∂n
N (e)
n dl = 0 (15.141b)

in which
∂f (e)

∂n
=
∂f (e)

∂x
nx +

∂f (e)

∂z
nz . (15.142)

With the surface integral in (15.141b) and selected boundary conditions, we
can write (15.141b) using (15.140,15.141a)

∫ ∫
−1
k

(
∂N(e)

∂x
fT

∂N
(e)
n

∂x
+
∂N(e)

∂z
fT

∂N
(e)
n

∂z
)dxdz +

∫ ∫

(e)

PN(e)f
T
(e)N

(e)
n dxdz

−
∫ ∫

(e)

SN (e)
n dxdz = 0 (15.143)

in which n = i, j, k. We can rewrite (15.143) in the matrix form as

(K(e) + P(e))fT(e) = ST(e) (15.144)

in which the matrices K(e), P(e) and vector ST
(e) have the entities

Kij = −
∫ ∫

(e)

1
k

(
∂Ni
∂x

· ∂Nj
∂x

+
∂Ni
∂z

∂Nj
∂z

)dxdz (15.145)

Pij =
∫ ∫

(e)

PNiNjdxdz (15.146)

and
Si =

∫ ∫

e

SNidxdz. (15.147)

Assuming K and P to be constant within the element e and using (15.144) to
(15.146) and the integral
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∫ ∫

(e)

Na
i N

b
jN

c
kdxdz =

2a!b!c!Δ
(a+ b+ c+ 2)!

(15.148)

in which Δ is the area of the element, we may write (15.134) to (15.145) as

− 1
4kΔ

⎡
⎣
b2i + c2i bibj + cicj bibk + cick

b2j + c2j bjbk + cjck
b2k + c2k

⎤
⎦

+
PΔ
12

⎡
⎣
2 1 1
1 2 1
1 1 2

⎤
⎦ fT(e) + ST(e) = 0. (15.149)

It is interesting to note that (15.149) is applicable for MT, DC resistivity, EM
etc. , but source term will be different in different problems. Imposition of
boundary condition will also be different for different problems. For magne-
totelluric problem ST

(e) is identically zero.
Equation (15.149) is known as element matrix equation for the triangular

element (e). For each element in the domain an equation of the form (15.148)
can be derived. These equations can be assembled (summed) into a single
matrix equation. Details of the assemblage of the global matrix equation are
discussed in the Sect. 15.5 and given in Zienkiewicz (1971). The global matrix
equation can be written as

Gf = S (15.150)

where G is a N×N symmetric, sparse, banded and diagonally dominant matrix
and N is the total number of nodal points in the entire discretized domain.
The vector f is a column vector of N unknown values of the function f (x, z)
at each node of the model. The vector S is a column vector that contains the
source information given by adding the contribution of all the source terms

S(e) =
αI

360

⎡
⎣
0
0
1

⎤
⎦ (15.151)

where α is the angle subtended by element e. I is the current strength. It is
applicable for DC resistivity and not for MT. For the global matrix, all the
boundary conditions demanded by the problem must be introduced first and
then the matrix equation is solved using one of the suitable matrix solver viz.,
(i) Gauss Elimination (ii) Gauss-Siedel Iteration (iii) Cholesky’s Decomposi-
tion (iv) Conjugate Gradient Minimization etc. Thus the unknown value of
‘f’ i.e. E or H in this case of MT and potential in the case of DC resistivity
at all the nodal points will be obtained. Boundary conditions for MT and DC
resistivity are considerably different as discussed already.
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15.8 Finite Element Formulation Galerkin’s Approach
Isoparametric Elements Magnetotellurics

15.8.1 Introduction

In this section a brief presentation on the structure of finite element formu-
lation using isoparametric elements and Galerkin’s method is given. Since
Galerkin’s method is discussed in the previous section with all it’s essential
details, some of the steps will be avoided while demonstrating the finite ele-
ment formulation using eight noded isoparametric elements (Murthy 2000).
Basic structure of formulation is based on the work of Wannamaker et al
(1987). All the details about mesh generation, boundary conditions in TE
and TM mode Plane wave electromagnetics , governing differential equations
are given in Sects. 15.4 and 15.7. A few points about isoparametric elements
and natural coordinates are added here.

To simulate a complicated and sharp curvatures of a boundary of a body of
irregular shape, one needs numerous small elements straight edges to reduce
the difference in shape of the actual and simulated body. Isoparametric ele-
ments can significantly reduce the number of elements to be taken because
the elements can take care of curved boundaries of a body very effectively.
These elements are typically meant for bodies of arbitrary shapes. In isopara-
metric domain the coordinates are called natural coordinates and they are
nondimensional. These elements are called isoparametric because the number
of nodes in an element in cartisian coordinate and natural coordinates are
same.

For any variable function Φ within a triangular parent element (simplest
2D element) the prescribed values at the nodes can be obtained assuming a
linear polynomial function within the element as

Φ = α1 + α2ξ + α3ζ. (15.152)

In this Fig. (15.20)

Fig. 15.20. A simplest triangular element with natural coordinate
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Since

Φ = Φ1 at node 1(ξ = 0, ζ = 0),
Φ = Φ2 at node 2(ξ = 1, ζ = 0) (15.153)
Φ = Φ3 at node 3(ξ = 0, ζ = 1),

from (15.153), we get

α1 = Φ1

α1 + α2 = Φ2 (15.154)
α1 + α3 = Φ3.

The polynomial coefficients from these equation are

α1 = Φ1

α2 = Φ2 − Φ1 (15.155)
α3 = Φ3 − Φ1.

Substituting these values, the (15.152) can be written as

Φ = N1Φ1 + N2Φ2 + N3Φ3 (15.156)

where Φ1, Φ2 and Φ3 are nodal potentials or fields and N1, N2 and N3 are
element shape functions. They are connected to the natural coordinates in
isoparametric domain as

N1 = 1 − ξ − ζ
N2 = ξ (15.157)
N3 = ζ

From (15.154), (15.155), (15.156) and (15.157) we get where

N1 + N2 + N3 = 1 (15.158)
Ni = 1
Nj = 0
Nk = 0.

Thus we can write the connecting relationship between the cartisian coordi-
nates and the natural coordinates as

[
X
Z

]
=

3∑
i=1

Ni(ξ, ζ)
[
Xi

Zi

]
(15.159)

where Xi and Zi are the cartisian coordinates of the ith element. The con-
necting link between the fields at the centre of a triangle and the nodal values
are
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[
Ex

Ez

]
=

3∑
i=1

Ni(ξ, ζ)
[
EXi

EZi

]
. (15.160)

The cartisian derivatives of the shape function Ni in terms of the natural
coordinates can be written as

∂Ni
∂ξ

=
∂Ni
∂x

∂x

∂ξ
+
∂Ni
∂z

∂z

∂ξ
(15.161)

∂Ni
∂ζ

=
∂Ni
∂x

∂x

∂ζ
+
∂Ni
∂z

∂z

∂ζ
(15.162)

which in matrix form can be written as
⎡
⎢⎣
∂Ni

∂ξ
∂Ni

∂ζ

⎤
⎥⎦ =

⎡
⎢⎣
∂x
∂ξ

∂z
∂ξ

∂x
∂ζ

∂z
∂ζ

⎤
⎥⎦

⎡
⎢⎣
∂Ni

∂x
∂Ni

∂z

⎤
⎥⎦ = [J]

⎡
⎢⎣
∂Ni

∂x
∂Ni

∂z

⎤
⎥⎦ . (15.163)

where J is the Jacobian matrix and can be evaluated using

|J| =
3∑

i=1

⎡
⎣
∂Ni
∂ξ xi

∂Ni
∂ξ zi

∂Ni
∂ζ xi

∂Ni
∂ζ zi

⎤
⎦ . (15.164)

The derivatives of shape function in Cartisian coordinate can be obtained in
terms of natural coordinate and can be written as

⎡
⎣
∂Ni
∂x

∂Ni
∂ζ

⎤
⎦ = [J]−1

⎡
⎣
∂Ni
∂ξ

∂Ni
∂ζ

⎤
⎦ (15.165)

where the determinant of the Jacobian matrix must be non zero.

15.8.2 Finite Element Formulation

Figure (15.21) shows the typical mesh generated using the quadrilateral finite
elements. A homogeneous external region is included in the mesh to facilitate
inclusion of boundary conditions. The resistivity of this region is held fixed at
the average value of the apparent resistivity data. The nodal field values at the
bottom and sides of the mesh are set equal to the analytical values obtained
for the homogeneous space. Vertical element dimensions may be increased
approximately exponentially downward from the air-earth interface because
of exponential decay of the fields. Along the horizontal element boundaries,
we extended the mesh from fine to coarse as we go away from the working
zone. The nodes in the y-direction are indexed by i = 1, 2, 3 . . .M and the
nodes in the z-directions are j = 1, 2, 3 . . .N.

Taking the x-axis parallel to strike, y-axis in the horizontal and z-axis
positive downward, for the TE mode 2-D geometries, Ey = Ez = Hx = ∂

∂x = 0.
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Fig. 15.21. A finite element mesh with quadrilateral boundaries;model shows the
air-earth boundary and air layers on top of it,the anomalous body and the host
rocks;expanding grid is shown both upward,downward ans lateral directions from
the centre of the body

From Maxwell’s equations we can write

∂Exs
∂z

= ẑHys (15.166)

∂Exs
∂y

= ẑHzs (15.167)

∂Hxs

∂z
= ŷEys + ΔŷEyp (15.168)

∂Hxs

∂y
= ŷEzs + ΔŷEzp (15.169)

and
∂Hzs

∂y
− ∂Hys

∂z
= ŷExs + ΔŷExp (15.170)

(Chaps. 12 and 13 and Table 15.1)) where ŷ = σ + iω ∈ is the admittivity,
ẑ = iωμo is the impedivity, Δŷ = ŷi˜ ŷj . where ŷi and ŷj indicates the admit-
tivity difference between the layered host and its 2D inhomogeneity. Subscripts
p and s refer to primary (layered earth) and secondary field components.
Substituting (15.166) and (15.167) into (15.168) , the TE mode Helmholtz
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equation is

∂

∂y

(
1
ẑ

∂Exs
∂y

)
+

∂

∂z

(
1
∂z

∂Exs
∂z

)
− ŷExs = ΔŷExp. (15.171)

Similarly, Maxwell’s equations for the secondary components of the TM mode,
Ex = Hy = Hz = ∂/∂x = 0. Here the guiding equations are

∂Hxs

∂z
= ŷEys + ΔŷEyp (15.172)

∂Hxs

∂y
= ŷEzs + ΔŷEzp (15.173)

and
∂Ezs
∂y

− ∂Eys
∂z

= −ẑHxs. (15.174)

Substituting (15.172) and (15.173) into (15.174) and rearranging, the TM
mode Helmholtz equation one gets

∂

∂y

(
1
ŷ

∂Hxs

∂y

)
+

∂

∂z

(
1
ŷ

∂Hxs

∂z

)
− ẑHxs = Δ

Δk2

ŷ
Hxp +

∂

∂z

(
Δŷ
ŷ

)
Eyp

(15.175)
where Δk2 = −Δ

�
y
�
z and Ezp is zero in the magnetotellurics.

The (15.171) and (15.175) can be written in more general form as

∂

∂y

(
1
q

∂f̂e

∂y
+

∂

∂z

∂f̂e

∂z

)
+ p

�

f
e

− s = 0 (15.176)

where, q = ẑ, p = −ŷ, s = Δ
�
yExp for TE-mode.

q =
�
y , p = −�

z , s = Δk2

ŷ Hxp − ∂
∂z

(
Δŷ
ŷ

)
Eyp for TM-mode.

The(15.176) can be written as

∂

∂y
(F1) +

∂

∂z
(F2) + pf̂e − s = 0 (15.177)

where,

F1 =
(

1
q
∂

�

f
e

∂y

)
(15.178)

F2 =
(

1
q
∂

�

f
e

∂z

)
.

The element equations for finite element solution,

L
�

f = s (15.179)
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where L is the Helmholtz operator, f̂ is the unknown secondary electric or
magnetic field parallel or perpendicular to the strike depending upon TE or
TM mode formulation and s is the source function. We assume that ‘f̂ ’ is a
piecewise linear functions over quadrilateral sub region ‘e’ of the domain and
we can write

f̂ =
m∑
e=1

f̂e (15.180)

where, m is total number of quadrilateral sub domains and,

f̂e = α1 + α2x+ α3y + α4xy + α5x
2 + α6y

2 + α7x
2y + α8xy

2. (15.181)

For node ‘i’

f̂e = α1 +α2xi+α3yi+α4xiyi+α5xi
2 +α6yi

2 +α7xi
2yi+α8xiyi

2. (15.182)

Having defined the form of the approximation over these domains, the error
approximation (ε) can be obtained after substituting (15.182) into (15.179)
i.e.,

Lf̂ − s ≡ ε. (15.183)

As discussed in Sect. 15.7, by proper choice of the weights, the error can be
minimised to zero. These weights are Galerkin’s weights. One gets

∫ ∫

e

W e
[
Lf̂ − s

]
dydz = 0. (15.184)

Mathematically, this states that the error of approximation be orthogonal to
the weight functions ‘W e’ over each sub domain ‘e’ i.e.,

∫

Ωe

W

[
∂

∂y
(F1) +

∂

∂z
(F2) + pf̂ − s

]
dydz = 0. (15.185)

Integrating first two terms in (15.185) by parts, we get

∂

∂y
(WF1) =

∂W

∂y
F1 +W

∂F1

∂y
(15.186)

∂

∂z
(WF2) =

∂W

∂z
F2 +W

∂F2

∂z
. (15.187)

Equation (15.186 and 15.187) can be written as

−W ∂F1

∂y
=
∂W

∂y
F1 − ∂

∂y
(WF1)

−W ∂F2

∂z
=
∂W

∂z
F2 − ∂

∂z
(WF2) . (15.188)

From Stokes theorem,
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∫

Ωe

∂

∂y
(WF1) dydz =

∮

re

WF1nyds

∫

Ωe

∂

∂z
(WF2) dydz =

∮

re

WF2nzds (15.189)

where, ny and nz are the components (i.e., direction cosines) of the unit
normal vector

n̂ = nyi+ nzj (15.190)
= cos (α) i+ sin(α)j

on the boundary Γe, and ds is the arc length of an infinitesimal line element
along the boundary. Using (15.188) and (15.189) in (15.185)

∫

Ωe

[
∂W

∂y
(F1) +

∂W

∂z
(F2) +Wpf̂ −Ws

]
dydz (15.191)

−
∮

Γe

W [ny(F1) + nz (F2)]ds = 0.

Equation (15.191) can be written as
∫

Ωe

[
∂W

∂y

(
1
q

∂f̂e

∂y

)
+
∂W

∂z

(
1
q

∂f̂e

∂z

)
+Wpf̂e −Ws

]
dydz (15.192)

−
∮

Γe

W

[
ny

(
1
q

∂f̂e

∂y

)
+ nz

(
1
q

∂f̂e

∂z

)]
ds = 0

which is equal to

∫

ΩE

⎛
⎝−1

q
(
∂f̂e

∂y

∂W

∂y
+
∂
�

f
e

∂z

∂W

∂z
) +W

[
p
�

f
e

− s

]⎞
⎠dydz

+
∮

Γe

1
q

∂f̂e

∂η
Wds ≡ 0.

(15.193)

But, in Garlerkin’s technique, the weights are equivalent to the approximate
(or shape) functions.

The (15.193) further can be written as

∫

Ωe

⎛
⎝−1

q
(
∂f̂e

∂y

∂Ne
n

∂y
+
∂
�

f
e

∂z

∂Ne
n

∂z
) +Ne

n

[
p
�

f
e

− s

]⎞
⎠dydz

+
∮

Γe

1
q

∂f̂e

∂η
Ne
nds ≡ 0

(15.194)
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where, ∂
�

f
e

∂η is the normal derivative of the basis function at the element bound-
ary, which is equivalent to

∂
�

f
e

∂η
=
∂
�

f
e

∂y
ny +

∂
�

f
e

∂z
nz (15.195)

where ny and nz are the y and z component of the unit vector normal to the
boundary. ds is the differential arc length along the boundary Ωe of the quadri-
lateral element. Since internal element boundaries would be traversed twice
in opposite directions during integration, the surface integral term of (15.193)
is henceforth dropped from consideration which for the external boundaries
the terms are either zero for Neumann boundary conditions or need not be
evaluated for Dirichlet boundary conditions.

The (15.194) can be written as

(Qe + P e) f̂e = Se (15.196)

where

Qeij = −
∫ ∫

e

1
q

(
∂Ne

i

∂y

∂Ne
j

∂y
+
∂Ne

j

∂z

∂Ne
j

∂z

)
dydz (15.197)

P eij =
∫ ∫

e

pNe
i N

e
j dydz (15.198)

Sei =
∫ ∫

e

sNe
i dydz. (15.199)

15.8.3 Shape Functions Using Natural Coordinates (ξ, η)

Isoparametric formulation makes it possible to generate elements that are non-
rectangular (or) non-quradrilateral and have curved boundaries. These shapes
have obvious usage in grading a mesh from coarse to fine in modelling arbi-
trary shapes, and curved boundaries. In formulating isoparametric elements,
natural coordinate system (ξ, η) may be used. Secondary fields are expressed
in terms of natural coordinates, but must be differentiated with respect to
global coordinate y and z.

A non-rectangular region cannot be represented by using rectangular ele-
ment; however, it can be represented by quadrilateral elements. Since, the
interpolation function are easily derivable for a rectangular element, and it
is easy to evaluate integrals over rectangular geometries, we transform the
finite element integrals defined over quadrilaterals to rectangles. Therefore,
numerical integration schemes, such as Gauss–Legendre scheme, require that
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the integral be evaluated on a specific domain or with respect to specific
coordinate system. The transformation of the geometry and the variable coef-
ficients of the differential equation from the problem coordinates (x, y) to the
natural coordinates (ξ, η) results in algebraically complex expression and this
precludes analytical (i.e., exact) evaluation of the integrals. Thus, the trans-
formation of a given integral expression is defined over the element Ωe, to one
of the domain

�

Ω and must be such as to facilitate numerical integration. Each
element of the finite element mesh is transformed to

�

Ω, only for the purposes
of numerically evaluating the integrals. The element Ωe, is called a master
element.

The transformation between Ωe and
�

Ω i.e., between (x, y) and (ξ, η) is
accomplished by a coordinate transformation of the form.

y =
8∑
i=1

Niyi (15.200)

z =
8∑
i=1

Nizi

for eight noded isoparametric element, axes ξ and η pass through mid points
of opposite sides as shown in (Fig. 15.22). Axes ξ and η need be orthogonal,
and neither need be parallel to the y-axis nor the z-axis. Side of the element
are at ξ = ±1 and η = ±1. The interpolation (or shape) functions following
Sect. 15.8.1 can be worked out to be

Fig. 15.22. Advanced level eight nodded isoparametric element
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For node 1: 1
4 (1 − ξ) (1 − η) (−ξ − η − 1)

For node 2: 1
4 (1 + ξ) (1 − η) (ξ − η − 1)

For node 3: 1
4 (1 + ξ) (1 + η) (ξ + η − 1)

For node 4: 1
4 (1 − ξ) (1 + η) (−ξ + η − 1)

For node 5: 1
2

(
1 − ξ2

)
(1 − η)

For node 6: 1
2 (1 + ξ)

(
1 − η2

)

For node 7: 1
2

(
1 − ξ2

)
(1 + η)

For node 8: 1
2 (1 − ξ)

(
1 − η2

)

15.8.4 Coordinate Transformation

The transformation of a quadrilateral element of a finite element mesh to
the master element

�

Ω is solely for the purpose of numerically evaluating the
integrals (15.197), (15.198), (15.199). The resulting algebraic equations of the
finite element formulations are always among the nodal values of the physical
domain. Different element of the finite element mesh can be generated from
the same master element by assigning the global coordinates of the elements.
With the help of an appropriate master element, any arbitrary element of
a mesh can be generated. However, the transformation of a master element
should be such that there are no spurious gaps between elements and no
element overlaps.

When a typical element of the finite element mesh is transformed to its
master element for the purpose of numerically evaluating integrals, the inte-
grand must also be expressed in terms of coordinates (ξ, η) of the master ele-
ment. In the (15.194), the integrand i.e., the expression in the square brackets
under the integral) and their derivatives are functions of the global coordi-
nates y and z.. We must rewrite it in terms of (ξ) and (η) using transformation
(15.160 to 15.165).

Therefore, we must relate ∂Ne
i

∂y and ∂Ne
i

∂z to ∂Ne
i

∂ξ and ∂Ne
i

∂η .
The function Ne

i can be expressed in terms of the local coordinates ξ and
η by means of (15.194). Hence, by chain rule of partial differentiation, we
have

∂Ne
i

∂ξ
=
∂Ne

i

∂y

∂y

∂ξ
+
∂Ne

i

∂z

∂z

∂ξ
(15.201)

∂Ne
i

∂η
=
∂Ne

i

∂y

∂y

∂η
+
∂Ne

i

∂z

∂z

∂η
.

In matrix notation ⎛
⎝
∂Ne

i

∂ξ

∂Ne
i

∂η

⎞
⎠ =

(∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

)⎛
⎝
∂Ne

i

∂y

∂Ne
i

∂z

⎞
⎠ (15.202)
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which gives the relation between the derivatives Ne
i with respect to the global

and local coordinates. The (15.202) can be written as
⎛
⎝
∂Ne

i

∂ξ

∂Ne
i

∂η

⎞
⎠ = [J ]

⎛
⎝
∂Ne

i

∂y

∂Ne
i

∂z

⎞
⎠ (15.203)

where, [J ] is known as Jacobian matrix which is equal to

[J ] =

(∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

)
. (15.204)

To find the cartesian derivatives of Ne
i , we get

⎛
⎝
∂Ne

i

∂y

∂Ne
i

∂z

⎞
⎠ = [J ]−1

⎛
⎝
∂Ne

i

∂ξ

∂Ne
i

∂η

⎞
⎠ (15.205)

=
1
|J |

( ∂z
∂η −∂z

∂ξ

−∂y
∂η

∂y
∂ξ

)⎛
⎝
∂Ne

i

∂ξ

∂Ne
i

∂η

⎞
⎠

where,

|J | =
∂y

∂ξ

∂z

∂η
− ∂y

∂η

∂z

∂ξ
. (15.206)

This requires that the Jacobian matrix [J ] be non-singular.
The (15.206) can be written as

∂Ne
i

∂y
=
∂Ne

i

∂ξ

∂ξ

∂y
+
∂Ne

i

∂η

∂η

∂y
(15.207)

∂Ne
i

∂z
=
∂Ne

i

∂ξ

∂ξ

∂z
+
∂Ne

i

∂η

∂η

∂z
.

From (15.202), the (15.204) will be

[J ] =

⎛
⎜⎜⎝

8∑
i=1

∂Ni

∂ξ xi
8∑
i=1

∂Ni

∂ξ xi

8∑
i=1

∂Ni

∂ξ xi
8∑
i=1

∂Ni

∂ξ xi

⎞
⎟⎟⎠ . (15.208)

Equation (15.206) can be restructured as

[J ] =

⎛
⎝
∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N5
∂ξ

∂N6
∂ξ

∂N7
∂ξ

∂N81
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

∂N5
∂η

∂N6
∂η

∂N7
∂η

∂N81
∂η

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1
x2 y2
x3 y3
x4 y4
x5 y5
x6 y6
x7 y7
x8 y8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.209)
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The element area dA = dydz in the element Ωe is transformed to

dA = dydz = |J | dξdη (15.210)

in the master element
�

Ω.
Equation (15.197), (15.198) and (15.199) can be written as

Qeij = −
1∫

−1

1
q

(
∂Ne

i

∂ξ

∂Ne
j

∂ξ

)
|J | dξdη −

1∫

−1

1
q

(
∂Ne

i

∂ξ

∂Ne
j

∂ξ

)
|J |dξdη (15.211)

P eij = pNe
i N

e
j |J | dξdη (15.212)

and

Seij = sNe
i |J | dξdη (15.213)

the (15.209) can be written as

Qeij = Q1eij +Q2eij (15.214)

where

Q1eij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N2
∂ξ

∂N1
∂ξ

∂N3
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N2
∂ξ

∂N1
∂ξ

∂N2
∂ξ

∂N2
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N2
∂ξ

∂N4
∂ξ

∂N2
∂ξ

∂N5
∂ξ

∂N2
∂ξ

∂N6
∂ξ

∂N2
∂ξ

∂N7
∂ξ

∂N2
∂ξ

∂N8
∂ξ

∂N3
∂ξ

∂N1
∂ξ

∂N3
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N3
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N3
∂ξ

∂N5
∂ξ

∂N3
∂ξ

∂N6
∂ξ

∂N3
∂ξ

∂N7
∂ξ

∂N3
∂ξ

∂N8
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N2
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N2
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N2
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N2
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N2
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15.215)
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and Q2eij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N2
∂ξ

∂N1
∂ξ

∂N3
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N2
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N3
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N4
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N5
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N6
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N7
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N8
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

∂N1
∂ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15.216)

For i = 1 to 8, ∂Ni/∂ξ is

∂N1

∂ξ
=

(1 − η) (2ξ + η)
4

∂N2

∂ξ
=

(1 − η) (2ξ − η)
4

(15.217)

∂N3

∂ξ
=

(1 + η) (2ξ + η)
4

∂N4

∂ξ
=

(1 + η) (η − 2ξ)
4

∂N5

∂ξ
= −ξ (1 − η)

∂N6

∂ξ
=

1 − η2

2
∂N7

∂ξ
= −ξ (1 + η)

∂N8

∂ξ
= −1 − η2

2
.

Similarly, for i = 1 to 8, ∂Ni/∂η is
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∂N1

∂η
=

(1 − ξ) (2η + ξ)
4

∂N2

∂η
=

(1 + ξ) (ξ − 2η)
4

(15.218)

∂N3

∂η
=

(1 + ξ) (2η + ξ)
4

∂N4

∂η
=

(1 − ξ) (2η − ξ)
4

∂N5

∂η
= −1 − ξ2

2
∂N6

∂η
= −η (1 + ξ)

∂N7

∂η
= −1 − ξ2

2

where, q, p and s depend upon whether TE or TM modes are being consid-
ered for evaluation. All the elements of the matrices are to be obtained using
numerical integration using Gauss Legender Quadrature . Gauss weights for
one two and three dimensional problems are available in standard mathemat-
ical handbooks.One chooses 3,5,7,9 point Gauss Quadrature depending upon
the accuracy needed. The steps include: generation of element matrices Qe, P e

and Se as defined in (15.197), (15.198) and (15.199) respectively. These ele-
ment matrices are assembled to form the global matrix, before imposition of
boundary conditions. The nodal field variables are obtained by solving the
finite element equations.

15.9 Integral Equation Method

15.9.1 Introduction

An equation, where an unknown function to be determined, remains within
the integral sign, is an integral equation. The integral equations are defined
by Fredhom and Volterra. Fredhom and Volterra’s integral equations of the
first, second and third kind are given by the (2.46, 2.47, 2.48, 2.49, 2.50, 2.51)
Often the Kernel functions of these integral equations are Green’s function. If
the limits of these integral are finite, the integrals are of Fredhom type. For
an infinite or undefined limits of the integral, the integral equations are of
Volterra’s type. Geophysical Boundary value problems solved using integral
equations generally appear in the form of Fredhom’s integral equation of the
second kind.

f(r) − λ
∫

v

G(r, r0)f(r0)dv0 = g(r) (15.219)

where G(r, r0) is the Green’s function with observation points and source
points are respectively at r and r0; g(r) is the known function and f(r) is the
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unknown function to be determined. r and r0 are respectively ‘the distances
of the points of observation and the source from the origin. If the Green’s
function is singular in a region of integration, then the equation is a singular
integral equation otherwise it is non-singular and continuous function. If the
equation can be solved for a certain value of λ, then the problem is said to be
an eigen value problem. In general it is easier to handle the integral equation
of the second kind. The most important component regarding the solutions of
the integral equation is the solution of these Green’s functions. Since Green’s
function appears under the integral equation, the integrals are solved using
numerical methods, viz. Gauss quadrature, Simpson’s rule, Weddles rule etc.
For simpler cases analytical solution of the integral is possible. In the case of
a discretized domain in IE, each element of the matrix equations becomes an
integral containing Green’s function. In integral equation method, distortion
in the field due to anomaly causing body are of interest. The anomaly causing
body of contrasting physical property in a half space or a layered half space is
replaced by the scattering current while formulation of the problem. In IEM,
these scattering currents are of interest to geophysicists. Therefore, the volume
of integration is restricted to the anomaly causing body. As a result the size
of the matrix in formulation of an integral equation is considerably smaller
in comparison to those encountered while formulating the problems using
finite difference and finite element methods. Both FDM and FEM are differ-
ential equation based methods and entire space outside the target body are
taken into consideration in the discretized domain. As a result IEM becomes
a very powerful tool for solving three dimensional boundary value problems.
In IEM, the matrices are solid but of much smaller size. In FDM and FEM,
the matrices are sparse but of large dimension. For modeling subsurface tar-
get body of complicated geometry, FDM and FEM have slight edge over IEM
with the gradual advancement in computation facilities. Mathematics may
become quite tougher in IEM in comparison to what we face for handling
FDM and FEM problems. FDM is well known for its inherent simplicity.
In electromagnetic boundary value problems, both scalar and tensor Green’s
function appear in the solution. Tensor Green’s function are known as dyadic
Green’s functions having 9 components. Therefore, the integral equation is
changed to matrix equation and these equations are solved using the method
of moments by judicious choice of the basis function and weighting function.
Green’s function becomes a tensor because the direction of the source dipole
and the observation dipoles are in the different directions. Since the behaviours
of the dyadics is similar to that of a 3× 3 tensor having nine components, the
dyadic Green’s function are termed as tensor Green’s function.

15.9.2 Formulation of an Electromagnetic Boundary
Value Problem

This subject is developed by Hohmann (1971, 1975, 1983, 1988), Wanna-
maker (1984a, 1984b, 1991), Meyer (1976), Weidelt (1975), Raichi (1975),
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Newman et al (1986), Newman et al (1987), Ting and Hohmann (1981). San-
filipo and Hohmann (1985) and Sanfilipo et al (1985 Fig. (15.23) shows the
geometry of the problem. An anomalous body with a contrast in electrical
conductivity from the rest of the layered half space is assumed. The problem
is to determine the electrical and magnetic field due to the anomaly causing
body by replacing it with the scattering currents. These scattering currents
are in excess of conduction and displacement currents. These scattering cur-
rents are assumed in an otherwise homogeneous and isotropic layered half
space. Scattering current flows only through the conductivity inhomogeneity.
Computation of the anomalous fields is restricted to the volume occupied by
the target. Both primary and scattered secondary fields are harmonic fields.
In Maxwell’s equation

�∇× �H = �J +
∂�D
∂t
, (15.220)

�J is divided into two parts, i.e., �J = �Jc +�Js where �Jc is the conduction current
because for most of the geophysical problems, displacement current is negli-
gible. Displacement current becomes significant in megahertz and gigahertz
range. Jc is connected with the scalar conductivity σ. Js is the source current
which flows through the host rock. The first step in this scattering problem
is to replace the inhomogeneity by �Js. This Js is the current density due to
the flow of current through the inhomogeneity. The electrical conductivity
of the anomalous region is σs. The total electric field are field due to half
space without any inhomogeneity and that due to scattering current which is
superimposed over the conduction current. Therefore

Fig. 15.23. An anomalous conductor in a layered half space (Mayer 1976)
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�E = �Es(�r) + �Ei(�r). (15.221)

�Ei(�r) is the electric field, that would exist at the field point or observation
point, in the absence of the anomalous body. �Es(�r) is the scattered field at
�r due to anomaly causing body. �Es(�r) is a function of �Js which exists in the
entire anomalous region. The relationship can be written as

�Es(�r) =
∫

va

→
�G(�r,�r0)�Js(�r0)dv0 (15.222)

Morse and Feshback (1953), Tai (1971), Hohman (1971), Van Bladel (1968),
Eskola (1992). Here va is the anomalous volume for integration, �r0 is the

potential vector for the source point.
→
�G(�r,�r0) is the tensor Green’s function,

because the direction of the field may or may not be in the same direction as

the current elements in the medium.
→
�G(�r,�r0) is the scattered electric field at

�r due to unit current density at r0. �Es(�r) have some contribution due to the
magnetic current also. Since free space magnetic permeability μ0 is assumed
for the entire half space with no contrast anywhere, therefore the magnetic
current is absent and is not included in the solution. �Js, the anomalous current
density is just the conduction current density in the anomalous body minus
the conduction current in the surrounding host rock. Therefore

�Js(�r0) = (σE
s − σE

2 )�Es(�r0) (15.223)

where σE
s and σE

2 are the anomalous and true electrical conductivity in
the anomalous zone neglecting displacement current. Therefore we can write
(15.222) as

�Es(�r) =
∫

va

→
�G(�r,�r0)(σs − σ2)�E(�r0)dv0. (15.224)

Assuming σs and σ2 to be constant, (σs − σ2) can be taken out of the sign of
integration. Equation (15.224) can be rewritten in the form

�Es(�r) = (σs − σ2)
∫

va

→
�G(�r,�r0)E(r0)dv0. (15.225)

Using (15.221), we can write

�E(�r) = �Ei(r) + (σs − σ2)
∫

va

G(�r,�r0)�E(�r0)dv0. (15.226)

Equation (15.226) is the vector Fredhom’s integral equation of the second kind.

�Ei(r), the electric field induced in the free space can be computed.
→
�G(�r,�r0),
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the Green’s tensor, which depends upon the geometry of the problem, can be
calculated (Hohmann, 1975, Weidelt, 1975, Raichi, 1975, Wannamaker 1984,
Meyer, 1976). Equation (15.198) is used to calculate �Ei(�r). Equation (15.197)
is used to calculate �Es(r). Method of moments (Harrington, 1968) can be
based for solving (15.226) by proper choice of basis function and weighting
functions (Hohmann 1988). Volume Va of the anomalous conductor is divided
into N smaller volumes (Fig. 15.24.).

The electrical field within each of the smaller volumes are assumed to be
constant. The integral equation at the centre of each of these smaller cubical
volumes (Fig. 15.24) is

�Em = �Em
i +

N∑
n=1

(σs − σ2)
∫

va

→
�G(�r,�r0)�Endv0. (15.227)

where �Em is the electric field of the centre of the mth cell. �rm is the position
vector for the mth cell. It is the distance of the centre of the mth cell from
the origin.

Since �En, the electric field in the nth cell (Fig. 15.25) is assumed to be
constant throughout the anomalous conductor, �En can be taken outside the
sign of integration. Therefore (15.227) can be written as

�Em = �Em
i +

N∑
n

(σs − σ2)
∫

va

→
�G(�rm,�r0)dv0.�En. (15.228)

Now let

(σs − σ2)
∫

va

→
�G(�rm,�r0)dv0 =

→
�Γmn. (15.229)

Fig. 15.24. Division of the anomaly causing body into cubic cells
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Fig. 15.25. Interrelation between the position vectors of two cubical elements inside
the body; position vectors are with respect to the assumed origin

Therefore, (15.228) becomes

�Em = �Em
i +

∑→
�Γmn(�rm,�r0).�En. (15.230)

Equation (15.230) can be written as

�Em =
∑→

�Kmn
�En. (15.231)

Here →
�Kmn =

→
�Γmn −

→
�δ mn (15.232)

where,
→
�δ mn =

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ for m �= n =

→
�0 . (15.233)

It is termed as the null dyadic and

→
�δ mn =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ for m �= n. (15.234)

It is termed as the identity dyadic or idem factor.
In (15.231), there are N possible values of the superscript m and there are

three components in each vector. So (15.231) represents 3N equations in 3N
unknowns �En. Matrix elements are composed of the elements of the dyadic
Green’s function. �Em

i are calculated for each particular source geometry. �Ei

is calculated in the absence of any inhomogeneity. In the matrix form we can
write (15.231) as

[E] = [K]−1[Ei] (15.235)
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where [K]−1 is a 3N × 3N matrix containing the information about the sub-
surface geometry and the conductivity distribution. [Ei] is a 3N × 1 column
vector containing information about the source and its effect on the host in
the absence of the target body. Actual value of the electric field in the inho-
mogeneity is �E is also 3N × 1 column vector. These values of �E can then
be used to calculate �Es(r) any where in the host rock and in the air. Elab-
orate treatments on computations of dyadic Green’s tensors are available in
Tai (1971), Weidelt (1975), Raiche (1975), Meyer (1976), Beasely and Ward
(1986), Wannamaker (1984).
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Analytical Continuation of Potential Field

In this chapter the techniques for analytical continuation of potential field are
discussed. The topics covered, related to upward and downward continuation
of potential fields, are (i) harmonic analysis (ii) Taylor’s series expansion and
finite difference scheme (iii)Green’s theorem, Green’s function and integral
equation (iv) Peter’s areal average (v) Lagrange interpolation formula and
integral equation (vi) Green’s theorem in electromagnetic fields.

16.1 Introduction

Analytical continuation of potential field is a process of finding a potential
field on any plane from the measured values of that field on any other plane
(Fig. 16.1). If a field is measured on the ground surface within a certain area,
mathematical technique of analytical continuation allows one to find out the
field on any other plane above or below the level of the plane where the
measurements were done. Continuation of the field above the level of mea-
surement is known as upward continuation. Continuation below the level of
measurement is known as downward continuation. These basic properties of
mathematical physics were used by the geophysicists for interpretation of field
data by upward or downward continuation. Upward continuation allows the
data to be smooth and as such there is no problem of instability in mathe-
matical continuation.

Downward continuation, on the other hand, sharpens the geophysical
anomalies in potential field and may invite instability at different levels of
continuation. Upward and downward continuation of potential fields started
in geophysics for interpretation of gravity and magnetic field data. Later appli-
cation of analytical continuation found its place in interpretation of self poten-
tial, telluric current and electromagnetic data. Aeromagnetic or aerogravity
data can be compared with upward continued gravity and magnetic potentials
recorded at a particular area. Even for downward continuation, a few units
of upward continuation is necessary. Analytical continuation of potential field
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Fig. 16.1. Shows two horizontal planes at a difference of height ‘h’; potentials
measured in one plane can be continued to the other plane

also comes under the broad umbrella of inversion of potential field data dis-
cussed in the next chapter.

The idea of analytical continuation of potential field in geophysics started
coming from the third decade of the last century. Authors developed this
subject are Evjen (1936), Tsuboi and Fuchida (1937), Tsuboi (1938), Hughes
(1942), Bullard and Cooper (1948), Peters (1949), Henderson and Zeitz (1949),
Trejo (1954), Roy (1960, 1962, 1963, 1966a, 1966b, 1967, 1968, 1969), (1961)
and Huestis and Parker (1979).

Different mathematical tools used for analytical continuation are Taylor’s
series expansion, and finite difference approximation solution of Laplace equa-
tion, harmonic analysis, Green’s theorem, Fourier sine transform, relaxation,
Lagrange interpolation, integral equation and spatial averaging. The subject
originally came forward for handling gravity and magnetic data. Roy(papers
cited above) have shown that the same technique can be extended in the
fields of telluric current, self potential, direct current and electromagnetic
field of geophysical interest. Huestis and Parker (1979) have proposed the use
of Bachus-Gilbert inversion approach (1968, 1970) for analytical continuation
of potential field. Analytical continuation of gravity and magnetic data is used
widely by geophysicists in oil and mineral industries.

In this chapter a few approaches of analytical continuation are presented
the way the different authors have proposed.

16.2 Downward Continuation by Harmonic Analysis
of Gravity Field

Tsuboi and Fuchida (1937) first suggested the harmonic analysis approach for
downward continuation of the gravity field. The general solution of Laplace
equation in Cartisian coordinate is given by
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φ (x, y, z) =
∞∑

m=0

∞∑
n=0

Amn
cosmx cos ny
sinmx sin my e

√
m2+n2

z (16.1)

and
∂φ
∂z

∣∣∣∣
z=0

= g (x, y) . (16.2)

Here φ is the gravitational potential and g is the vertical component of the
gravity field.

From (16.1) we get

∂φ
∂z

∣∣∣∣
z=0

=
∞∑

m=0

∞∑
n=0

Amn

√
m2 + n2.

cos mx cos ny
sinmx sin ny (16.3)

=
∞∑

m=0

∞∑
n=0

Bmn
cosmx cos ny
sin mx sin ny (16.4)

where
Bmn = Amn

√
m2 + n2.

And
∂φ
∂z

∣∣∣∣
z=d

=
∞∑

m=0

∞∑
n=0

Cmn
cosmx cos ny
sinmx sin ny

where
Cmn = Bmn e

√
m2+n2.d. (16.5)

Equation (16.5) gives the downward continued gravity field.

16.3 Taylor’s Series Expansion and Finite Difference
Approach for Downward Continuation

16.3.1 Approach A

Bullard and Coopper’s approach

Bullard and Cooper (1948) suggested the finite difference approach and used
Taylor’s series expansion to obtain downward continued gravity values in a
two dimensional square grid of separation ‘a’ in a xz plane (Fig. 16.2). One
can write

g1 = g0 + a
∂g
∂x

+
1
2!

a2 ∂
2g
∂x2

+ (16.6)

g2 = g0 − a
∂g
∂x

+
1
2!

a2 ∂
2g
∂x2

− (16.7)

g3 = g0 + a
∂g
∂z

+
1
2!

a2∂
2g
∂z2

+ (16.8)

g4 = g0 − a
∂g
∂z

+
1
2!

a2∂
2g
∂z2

+ (16.9)
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Fig. 16.2. Finite difference cell

where g1, g2, g3, g4 and g0 are the gravity values at the points 1,2,3,4 and 0.
Adding equations (16.6) , (16.7) and (16.8) ,(16.9). we get

g1 + g2 + g3 + g4 ≡4g (0) +
a2

2!

[
∂2g
∂x2

+
∂2g
∂z2

]

+
a4

4!

[
∂4g

∂x4
+
∂4g

∂z4

]
. (16.10)

For two dimensional bodies, the gravity field in a source free region satisfy
Laplace’s equation.

Hence
4g (0) = g1 + g2 + g3 + g4 (16.11)

16.3.2 Approach B

For downward continuation of two dimensional fields, we can write

g (+h) = g (0) + h
∂g
∂g

∣∣∣∣
z=0

+
h2

2!
∂2g
∂z2

∣∣∣∣
z=0

+

=
∞∑

n=0

(h)n

n!
∂ng
∂zn

∣∣∣∣
z=0

. (16.12)

The general solution of the Laplace equation in cylindrical polar coordinate
is

g (r, θ, z) =
∞∑

n=0

k∑
k=1

eμkz (Ak m cos nθ + Bkm sin nθ) Jn (μkr) (16.13)

where Jn(μk r) is the Bessel’s function of n order and first kind.
Akm and Bkm are the kernels to be determined from the boundary condi-

tion.
For azimuthal independence of the potential field, (16.13) reduces to
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ḡ (r) =
k∑

k=1

AkeμkzJ0 (μkr) (16.14)

and

g (0) =
k∑

k=1

Ak eμkz (16.15)

since

J0 (μkr) = 1 for r = 0

∂g
∂z

∣∣∣∣
z=0

=
k∑

k=1

μkAk (16.16)

∂ng
∂zn

∣∣∣∣
z=0

=
∑

μknAk (16.17)

Hence

g (+h) =
∞∑

n=1

hn

n!

n∑
k=1

μn
k Ak. (16.18)

Choosing maximum number of k = 3 and minimum number of n = 11, we get

ḡ (1) = A1J0 (μ1) + A2J0 (μ2) + A3J0 (μ3) (16.19)

ḡ (2) = A1J0

(√
2μ1

)
+ A2J0

(√
2μ2

)
+ A3J0

(√
2μ3

)
. (16.20)

For r = 0, S, S
√

2,

g (+h) =
11∑

n=0

n
n!

3∑
k=1

μn
kAk. (16.21)

16.3.3 An Example of Analytical Continuation Based
on Synthetic Data

Roy (1966) computed downward continued gravity data based on computed
gravity values due to an infinitely long buried cylinder buried at a depth
H = h.The analytical continuation depths are h-2Δh, h-Δh, h, h + Δh, h +
2Δh. The depths chosen were 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00. The
depth interval is 0.25 unit.The grid interval was also 0.25 unitsThe working
formula for computation of the gravity field is given in Chap. 3 (Sect. 3.7),
(3.33). Figures 16.2 and (16.11) are the guidelines for downward continuation
of gravity field.

Figure 16.3 shows that the central peak of the gravitational anomaly
increases at a very faster pace with gradual increase in depth of continua-
tion. Figure 16.4 show that beyond a certain depth, the gravitational anomaly
explodes i.e., heading towards an infinitely high value. The point of maximum
gradient or inflection gives estimated depth of the body.
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Fig. 16.3. Analytical continuation of synthetic gravity data generated due to an
infinitely long buried cylinder (Roy 1966)
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Fig. 16.4. Gradual increase in amplitude of the peak value of the gravitational
anomaly in different stages of downward continuation; point of inflection of the
curve gives the depth estimation of the causative body (Roy 1966)

16.4 Green’s Theorem and Integral Equations
for Analytical Continuation

Upward continuation integral based on the Green’s Theorem is presented in
this section Roy (1962), Blakely (1996). From Green’s third formula (Chap. 10,
(10.29)), the potential φp inside a source free region R bounded by a surface
S (Fig. 16.5) is given by

φρ =
1
4π

∫

S

∫ [
1
r

∂φ

∂n
− φ

∂

∂n

(
1
r

)]
ds (16.22)

where n is the direction outward normal to S and r is the distance between the
point and the surface element ds. It is known from the uniqueness theorem
that either φ or ∂φ

∂n alone specified on S, should completely determine the
potential distribution inside S (Chap. 7.14). It should, therefore, be possible
to eliminate either φ or ∂φ

∂n from (16.22). Assuming both φ and G′ as harmonic,
where G′ is another scalar function, we can write from Green’s Second identity
in symmetric form as

0 =
∫

S

∫ [
φ
∂G′

∂n
− G′

∂φ
∂n

]
ds (16.23)

Multiplying (16.23) by − 1
4π and adding it to (16.22) we get

φρ =
1
4π

∫

S

∫ [(
G′ +

1
r

)
∂φ
∂n

− φ
∂

∂n

(
G′ +

1
r

)]
ds (16.24)
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Fig. 16.5. Source free region R bounded by the surface S; all the source (masses)
are outside S

If G′ is so chosen that in addition to its being a solution of Laplace equation
in R, it also has a normal derivative at any point on S and is equal to the
negative of the normal derivative or 1

r at the same point, then the (16.24)
simply reduces to

φρ =
1
4π

∫

S

∫ [(
G′ +

1
r

)
∂φ
∂n

]
ds. (16.25)

In (16.25) φ is eliminated at the cost of G′. It is a Green’s function. G′ will
depend upon the nature of the surface S. Usefulness of (16.25) is depended
upon getting a suitable value of G′ for specific cases. The surface S of Fig. 16.6
consists of two portions, i.e., a flat ground surface at z = 0 and an hemispher-
ical surface of infinite radius. All the sources are below the ground surface
and are, therefore, outside R as required. The surface integration in (16.25)
now reduces simply to an integration over the plane z = 0 (ground surface)
because ∂φ

∂n = 0 at all points on the infinite hemisphere. The outward drawn
normal becomes identical with the conventional positive direction of z. With
the surface S defined like this, G′ is obviously given by 1

r , where

r =
[
x2 + y2 + (z + h)2

]1/2

and

r′ =
[
x2 + y2 + (z − h)2

]1/2

(16.26)

as may be verified by differentiating
(

1
r

)
and

(
1
r′
)

with respect to z and then
putting z = 0. Thus (16.24) becomes
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Fig. 16.6. Shows source free region R bounded by a horizontal surface S and hemi-
sphere of infinite radius

φρ =
1
4π

∫

z=0

∫ [
1
r

+
1
r′

]

z=0

∂φ
∂z

∣∣∣∣
z=0

dx dy (16.27)

=
1
2π

∫

z=0

∫
g (x, y, 0) dx dy

(x2 + y2 + h2)3/2
. (16.28)

Gravity field at the point P (Fig. 16.6) is given by

g (0, 0,−h) =
∂φρ

∂z

∣∣∣∣
z=−h

=
1
2π

∫ ∫
g (x, y, 0)

[
∂

∂z

(
1
R

)]

z=−h

=
h
2π

∫ ∫
g (x, y, 0) dx dy

(x2 + y2 + h2)3/2
(16.29)

where R2 = x2 + y2 + z2.
So far as gravity is concerned, elimination of φp from (16.22) is suitable
because

(
∂φp/∂n

)
ultimately turns out to be g, the vertical component of

gravitational attraction due to anomalous masses. In many geophysical mea-
surements other components may also be measured. For such cases, it may
become necessary to eliminate ∂φ

∂n from (16.22) and one finally gets
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φ (0, 0,−h) =
h
2π

∫

z=0

∫
φ (x, y, 0) dx dy

(x2 + y2 + z2)3/2
. (16.30)

Equation (16.30) is valid for any measurable solution of Laplace’s equation.
Equation (16.28) is same as (16.30) written for ‘g’.

For potential or field at any point on an upper plane, one may thus replace
the real sources by an imaginary laminar distribution on a lower parallel plane
with a surface density of g (x, y, 0)/2πG Here G is the gravitational constant.
It can be proved that the areal density g (x, y, 0)/2πG, when integrated over
the entire plane, yields the anomalous mass causing the gravity anomaly.

16.5 Analytical Continuation using Integral Equation
and Taking Areal Averages

Peter’s (1949) proposed the following techniques for upward and downward
continuation of potential field. Peter presented his theory using magnetic field,
here his formulation is shown in terms of the gravity field.

16.5.1 Upward Continuation of Potential Field

We have seen from (16.30) that gravitational field at any height h can be
written in terms of the surface values of the gravity field as

g (α, β,−h) =
1
2π

∞∫

−∞

∞∫

−∞

g (x, y, 0) h dx dy{
(x − α)2 + (y − β)2 + h2

}3/2
. (16.31)

Negative sign is for upward continued values.
Let

x − α = r cos θ

and
y − β = r sin θ (16.32)

then

g (α, β,−h) =

∞−∫

0

g (r) h r dr

(r2 + h2)3/2
(16.33)

where ḡ (r) is the average value of gravity at a point within the radial distance
‘r’. Equation 16.33 can now be written as
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g (α, β,−h) ≈ g (0) + ḡ (r1)
2

r1∫

0

h r d r

(r2 + h2)3/2

+
ḡ (r1) + ḡ (r2)

2

r2∫

r1

h r d r

(r2 + h2)3/2
+

ḡ (r2) + ḡ (r3)
2

r3∫

r2

h r d r

(r2 + h2)3/2

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . (16.34)

Since ∫
h r d r

(r2 + h2)3/2
≈ − h

(r2 + h2)1/2
(16.35)

we can write

g (α, β,−h) =
g (0)

2

[
1 − h

(h2 + r21)
1/2

]

+
ḡ (r1)

2

[
1 − h

(h2 + r22)
1/2

]

+
ḡ (r2) h

2

[
1

(h2 + r21)
1/2

− 1

(h2 + r23)
1/2

]

+
ḡ (r3) h

2

[
1

(h2 + r22)
1/2

− 1

(h2 + r24)
1/2

]

......................................................................

......................................................................

+
ḡ (rn) .h

2

[
1(

h2 + r2n−1

)1/2
− 1(

h2 + r2n+1

)1/2
]
.

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.36)

The (16.36) is used to determine the upward continued potentials. The values
of r1, r2, r3.............rn and the coefficients of ḡ (r) for h = 1 and h = 2 are given
in Table 16.1. Depending upon the need, coefficients for any value of the hn

can be determined.
Radii of the Peter’s circles for upward continuation can approximately be

written as

(i)
√

2 =
√

12 + 12

(ii)
√

5 =
√

22 + 12

(iii)
√

8.5 ≈ √
22 + 22 ≈ √

32

(iv)
√

17 =
√

42 + 12

(v)
√

34 ≈ √
62 ≈ √

42 + 42

(vi)
√

58 ≈ √
62 + 52
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Table 16.1. Coefficients of ḡ (r) for Different Level of Continuation

Radius Coefficient of
g (r) for h = 1

Coefficient of
g (r) for h = 2

0 0 0.1464 0.0528
1 1 0.2113 0.0918

2
√

2 0.1494 0.1139

3
√

5 0.1265 0.1254

4
√

8.5 0.0863 0.1151

5
√

17 0.0777 0.1206

6
√

34 0.0528 0.0912

7
√

58 0.0345 0.0637

8
√

99 0.0206 0.0320

9
√

125 0.0945 0.1866

(vii)
√

99 ≈ √
102 ≈ √

72 + 72

(viii)
√

125 ≈ √
102 + 52

Gravity data used for interpretation are available in the form of contour maps
where the gravity values are taken at the grid points. Figure 16.7 shows the
grid point and Peter’s circles. If the intensity is to be calculated one unit
above the plane z = 0, for h = 1 and r = 1, then the term multiplying g (r1) is
1
2

[
1 − 1/

√
2
]

= 0.1464. Similarly a circle with radius
√

2 about 0, four values
lie on this circle and ḡ (r2) is one fourth the sum of the four values

(
r2 =

√
2
)
.

The term multiplying ḡ (r1) is 1
2

[
1 − 1/

√
3
]

= 0.2113. The values of r3 can be
taken as

√
5.

Fig. 16.7. Peter’s circle for areal averaging
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The circle of radius r3 passes through eight points on the corner of an
octagon. The values at these eight point are used to compute averages.

16.5.2 Downward Continuation of Potential Field (Peters
Approach)

Using Taylors series expansion, one can write

g (+h) = g (0) + h
∂g
∂z

∣∣∣∣
z=0

+
h2

2!
∂2g
∂z2

∣∣∣∣
z=0

+ . . . . . . . . . . . . .. (16.37)

and

g (−h) = g (0) − h
∂g
∂z

∣∣∣∣
z=0

+
h2

4!
∂4g
∂z4

∣∣∣∣
z=0

+ . . . . . . . . . . . . .. . (16.38)

Adding (16.37) and (16.38) we get

g (0, 0, h) =2
[
g (0, 0, 0) +

h2

2!
∂2g
∂z2

∣∣∣∣
z=0

+
h4

4!
∂2g
∂z4

∣∣∣∣
z=0

+- - - - - - - - - - - - - - - - - - - - - - - - - - -] − g (0, 0,−h) .
(16.39)

Since in a source free region the potential satisfies Laplace equation, we can
write

∂2g
∂z2

= −
(
∂2g
∂x2

+
∂2g
∂y2

)
. (16.40)

In a cylindrical polar coordinate we can write

g (0, 0, h) =g (0, 0, 0) − h2

2

(
∂2

∂r2
+

1
r
∂

∂r

)
ḡ (r)

+
h4

4!

(
∂2

∂r2
+

1
r
∂

∂r

)2

ḡ (r) − h6

6!

(
∂2

∂r2
+

1
r
∂

∂r

)3

ḡ (r)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.41)

It can be shown from Green’s Theorem that ḡ (r) is an even function and it
may be written in the form

ḡ (r) = b0 + b2r2 + b4r4 + b6r6 + . . . . . . . . . . . . . (16.42)

If we carry out the operation as indicated in (16.41), we can find
(
∂2

∂r2
+

1
r
∂

∂r

)
ḡ (r) = 4b2 (16.43)

(
∂2

∂r2
+

1
r
∂

∂r

)2

ḡ (r) = 6.4b4 (16.44)

(
∂2

∂r2
+

1
r
∂

∂r

)3

ḡ (r) = 2304b6. (16.45)



548 16 Analytical Continuation of Potential Field

The (16.39) for the continuation down ward becomes

g (0, 0, h) ∼= 2
[
b0 − 2b2h2 +

8
3
b4h4 − 16

5
b6h6 + . . . . . . .

]
−g (0, 0, h) . (16.46)

The values of b0, b2 and b4 are obtained by least squares solution of the
abridged form of (16.42)

g (0, 0, h) ∼= b0 + b2r2 + b4r4. (16.47)

Using the average values of ḡ (r) around the circles of radius 0, 1,
√

2,√
5,
√

8.5,
√

17,
√

34,
√

58,
√

99, the values of b0, b2, b4, obtained by the least
squares method as (Peters 1949).

b0 =0.2471ḡ (0) + 0.2351ḡ (1) + 0.2234ḡ
(√

2
)

+ 0.1874ḡ
(√

5
)

+ 0.1521ḡ
(√

8.5
)

+ 0.0717ḡ
(√

17
)

− 0.0449ḡ
(√

34
)
− 0.1095ḡ

(√
58
)

+ 0.0500ḡ
(√

99
)

(16.48)

b2 = − 0.0119ḡ (0) − 0.0105ḡ (1) − 0.0091ḡ
(√

2
)

− 0.0053ḡ
(√

5
)
− 0.0011ḡ

(√
8.5

)
+ 0.0077ḡ

(√
17
)

+ 0.0192ḡ
(√

34
)

+ 0.0218ḡ
(√

58
)
− 0.0108ḡ

(√
99
)

(16.49)

b4 = − 0.00010ḡ (0) + 0.00009ḡ (1) + 0.0007ḡ
(√

2
)

+ 0.00004ḡ
(√

5
)
− 0.ḡ

(√
8.5

)
− 0.00009ḡ

(√
17
)

− 0.00020ḡ
(√

34
)
− 0.00020ḡ

(√
58
)

+ 0.00020ḡ
(√

99
)

(16.50)

These values are substituted in (16.47) to get the coefficients for the circles.
By combining the coefficients for continuation upward g (0, 0, −h), given in

Table 16.2. Values of the coefficients for downward continuation

a0 a2 a4

g (0) 0.2473 −0.0122 0.0001
ḡ (S) 0.2353 −0.0107 0.00009

g
(
S
√

2
)

0.2236 −0.0093 0.00007

ḡ
(
S
√

5
)

0.1895 −0.0055 0.00004

ḡ
(
S
√

8.5
)

0.1521 −0.0013 −0.000007

ḡ
(
S
√

17
)

0.0714 0.0075 −0.0009

ḡ
(
S
√

34
)

0.460 0.0190 −0.00020

ḡ
(
S
√

58
)

0.1124 0.0215 −0.0021

ḡ
(
S
√

99
) −0.0432 −0.0116 +0.00020
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Fig. 16.8. Variation of f(hr) with radial distance

Table 16.1, the coefficients for continuation downward can be obtained for
h = 1 and h = 2. These coefficients are given in Table 16.2 and are used along
with the values given (Fig. 16.8).

Trejo (1954) suggested that one can get better results for downward con-
tinuation if Peters upward continuation program and three dimensional finite
difference program is used together for downward continuation. His working
relation is (Fig. 16.9)

g(0, 0, h) =6g(0, 0, 0)− g(h, 0, 0)− g(−h, 0, 0)
− g(0, h, 0)− g(0,−h, 0)− g(0, 0 − h). (16.51)

This relation gives the value of g at a depth h in terms of the measured values
of g at a height −h, and at the five points on the surface z = 0.

g (0, 0, h) = −
∞∫

0

ḡ (r) h r d r

(r2 + h2)3/2
(16.52)

is valid only for negative non-zero values of h. At h = 0, the expression on
the right side of the expression is not well defined. Baranov (1953) argued
that if this expression could be made to behave properly at h = 0, such

Fig. 16.9. Finite difference grid points at three different levels
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that it yields the observed g (0,0) at that point, then one could extrapo-
late g (0, h) backwards, so to say to positive value of h and achieve down-
ward continuation. Baranov was able to do this by breaking up the range
of integration in to 10 intervals expressing ḡ (r) in suitable polynomials
and then determining the constants of the polynomial in terms of ḡ (r) at
r = 0, 1,

√
2,
√

5,
√

10,
√

17,
√

25,
√

40,
√

68, 10.

16.6 Upward and Downward Continuation using Integral
Equation and Lagrange Interpolation Formula

Henderson and Zeitz (1949) independently suggested the approach for upward
continuation which is also based on the integral which connects the gravity or
magnetic fields at different levels, i.e.,

g (α, β,−h) =
h
2π

∞∫

−∞

g (x, y, 0) dxdy[
(x − α)2 + (y − β)2 + h2

]3/2
. (16.53)

This equation is valid for upward continuation. In cylindrical coordinate it is

g (α, β,−h) =

∞∫

0

ḡ (r) h r d r

(h2 + z2)3/2
. (16.54)

Equation (16.54) can be written as

=
1
2

n−1∑
i=1

ḡ (r) f (ri, h) (ri+1 − ri−1) (16.55)

+
1
2
g (rn) f (rn, h) (rn+1 − rn−1)

where
f (ri, h) =

h ri
(h2 + r2i )

3/2
. (16.56)

Using equation (16.53), g(0, 0,−h), the upward continued values of the grav-
itational field can be calculated using the Lagrange interpolation polynomial
as

g (0, 0,−h) =
n∑

m=0

(−1)m h (h + s) (h + 2s) . . . . . . . . . (h + ns)
Sn (h + ms) (n − m)!m!

g (−ms) .

(16.57)
Here S is the grid spacing and n is the highest value of m.

Henderson and Zeitz (1949) used Lagrange’s interpolation formula for
downward continuation. If the anomaly on the plane of observation and
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upward continuation at 5 heights each of one grid spacing apart are known,
the gravity field at a depth ‘h’ can be determined from the formula

g (0, 0,−h) =
n∑

n=0

(−1)m h (h + a) (h + 2a) . . . . . . . . . (h + na)
an (h + ma) (n − m)!n!

. (16.58)

Equation (16.57) and (16.58) are same. The sign of ‘h’ will dictate whether the
continuation is upward or downward. For downward continuation the maxi-
mum value of n is taken as 5. That is 5 units of upward continuation is nec-
essary for downward continuation from general solution of Laplace equation
and Taylor’s series expansion.

16.7 Downward Continuation of Telluric Current Data

Earth currents or telluric currents are continuously flowing through the con-
ducting portion of the upper crust. These currents are induced on the earth by
electromagnetic waves which are propagated from the magnetosphere towards
the surface of the earth. These currents are flowing through the subsurface as
if the currents are generated by two infinitely long line electrodes placed at
infinite distance and this electrode pair is continuously rotating to generate
elliptically or circularly polarized telluric fields.

For telluric current flow it is assumed that a perfectly insulating basement
is overlain by a homogeneous conducting layer of sediments through which the
telluric current flows. Since

(
∂φ
∂z

)
, the derivative of telluric potential normal

to the ground surface at z = 0, is zero everywhere, it follows that

∂3φ
∂z3

= −
[(

∂2

∂x2
+

∂2

∂y2

)
∂φ
∂z

]
= 0 (16.59)

on the ground surface. Similarly it can be shown that all the higher odd
derivatives are also zero on the ground surface. The Taylor’s series expansion
of (16.39), simplifies to

φ (±h) = φ (0) +
∂2φ
∂z2

∣∣∣∣
z=0

h
2!

+
∂4φ
∂z4

∣∣∣∣
z=0

h4

4!
+ (16.60)

where φ is the DC telluric potential. Although telluric field is a time vary-
ing field, the frequencies are very low in general. Therefore both static and
dynamic theories are used with equal validity to analyse earth’s natural elec-
tromagnetic field signals. Static theory is used to study the electrotelluric
fields and potentials, dynamic theory is used in magnetotellurics although the
frequencies of the signals may be of the same order. Laplace equation is used
to study electrotellurics,

Helmholtz electromagnetic wave equation ∇2H = γ2H is used in magne-
totellurics neglecting the displacement current component in the propagation
constant γ (i.e. γ =

√
iωμσ).
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The continuation in this case is thus independent of the sign of h and
can be carried out very easily. One can directly apply the finite difference
form of Laplace’s equation to the measured data in order to obtain downward
continued potentials step by step. Specifically for two dimensional problem.

φ (0, 1) = φ (4) = φ (2) = 2φ (0) − [φ (1) + φ (3)] /2, for the first unit of
depth of continuation and

φ(0, n) = φ(4) = 4φ(0) − φ(1) − φ(2) − φ(3) (16.61)

will be the working formula for subsequent units of depth of continuation. For
three dimensional case

φ (0, 1) ≡ φ (4) = φ (2) = 3φ (0) − [φ (1) + φ (3) + φ (5) + φ (6)] /2 (16.62)

for the first units of the depth of continuations and

φ (0, n) ≡ φ (4) = 6φ (0) − [φ (1) + φ (2) + φ (3) + φ (4) + φ (5)] (16.63)

for the subsequent units.
After having obtained the downward continued potentials of a sufficiently

large number of levels, one can draw the equipotential contours in suitable
section. In the same vertical section one can draw the streamlines which are
orthogonal to the equipotentials. One of these stream lines correspond to the
basement surface, since the top of the basement also happens to be a flow
surface where ∂φ

∂n = 0. Without any other information, it is not possible to
decide which of the streamlines actually represent the basement topography.
If the depth to the top of the basement is known aprior or is determined by
magnetotelluric sounding at one point, one can find out the entire topography
of the basement surface by choosing that flow surface which passes through
the known points.

16.8 Upward and Downward Continuation
of Electromagnetic Field Data

Roy (1966, 1968) prescribed the methodology for upward continuation of elec-
tromagnetic field starting from the Helmholtz electromagnetic wave equation

∇2�ψ = γ2�ψ (16.64)

where �ψ is the complex electromagnetic field potential and γ is the propagation
constant

(
=

√
iωμ (σ + iωε)

)
. Ψ can be expressed as �ψ = �ψR + i�ψI . Here R

and I respectively represent real and imaginary components. ω,μ,σ, and ε, and√
i are standard notation, in electromagnetics and are available in Chaps. (12

and 13). It can be shown that the value of �ψ at any interior point P (x′, y′, z′)
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(see Chap. 10) is given by those on the surface S according to the Green’s
formula

Ψ (x′, y′, z′) =
1
4π

∫ ∫

s

[
∂Ψ
∂n

e−γr

r
− Ψ

∂

∂n

(
e−γr

r

)]
ds. (16.65)

Based on two important assumptions the Helmholtz electromagnetic wave
equation reduces to Laplace equation. These assumptions are

(a) the frequencies of the electromagnetic signals with which geophysicists
work are very much on the lower side to achieve reasonable skin depth
or the depth of penetration of the em signals. At those frequencies, con-
duction currents dominate over the displacement current. Therefore the
propagation constant changes to the form γ =

√
iωμσ neglecting the con-

tributions from the displacement currents.
(b) The second assumption is electrical conductivity of the basement is more

than two order of magnitude less than that of the sedimentary overburden.
Therefore conductivity of the basement is assumed to be zero. Since γ = 0
for σ = 0 and Helmoholtz equation reduces to Laplace equation. Therefore
the formula applicable for static or stationery cases are also applicable for
special cases in electromagnetics.

Let r =
[
(x − x′)2 + (y − y′)2 + (z − z′)2

]1/2

is the distance of P from a
surface dS at (x, y, z). Since, by the electromagnetic uniqueness theorem,
Ψ (x′, y′, z′) is completely determined once Ψ is defined on the surface.

If is now possible to eliminate ∂Ψ
∂n . Let us now consider Green’s second

identity
∫ ∫ ∫ (

Ψ∇2φ − φ∇2Ψ
)
dv =

∫ ∫

s

(
Ψ
∂φ
∂n

− φ
∂Ψ
∂n

)
ds (16.66)

where φ and Ψ are two scalar functions of position that have continuous first
and second derivative (Chap. 10) throughout the region R and on the surface
S. Now if both φ and Ψ are harmonic then (16.66) changes to the form

0 =
∫

s

∫ (
Ψ
∂φ
∂n

− φ
∂Ψ
∂n

)
ds. (16.67)

This is the reciprocity theorem, valid in the same form for two electromag-
netic fields as it is for two static and stationary fields. Multiplying (16.66) by(

1
4π

)
and adding to (16.67), we get

ψ (x′, y′, z′) =
1
4π

∫ ∫

s

[
∂ψ

∂n

{
e−γr

r
− φ

}
− ψ

∂

∂n

{
e−γr

r
− φ

}]
. (16.68)
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If φ is chosen so that, in addition to satisfying (16.68), it also assumes the
value of

(
e−γr

r

)
on the boundary S,(16.68) reduces to

Ψ (x′, y′, z′) =
1
4π

∫

s

∫
Ψ
∂

∂n

{
e−γ r

r
− φ

}
ds. (16.69)

Thus ∂Ψ
∂n has been eliminated from the (16.69) at the cost of introducing

Green’s function as already mentioned. The homogeneous and isotropic vol-
ume v can now be identified with geometry as shown in (Fig. 16.6).

Let ‘r’ denote the radial distance of the region of air (z < 0) bounded by
a horizontal plane at z = 0 (ground surface) and an infinite hemisphere above
it (Fig. 16.10). For this geometry equation (16.69) can be rewritten as

Ψ (x′, y′, z′ = −h) = − 1
4π

∫ ∫

z=0

Ψ
∂

∂z

{
e−γ r

r
− φ

}
dx dy. (16.70)

Since the integral does not vary on the infinite hemisphere, the required func-
tion φ, in this case, is obviously

φ =
e−γ r′

r′
(16.71)

Fig. 16.10. Geometry of the hemispherical space
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where

r =
[
(x − x′)2 + (y − y)2 + (z + h)2

]1/2

(16.72)

and

r′ =
[
(x − x′)2 + (y − y′)2 + (z − h)2

]1/2

.

Substitution of (16.71 and 16.72) in (16.70) and differentiation yield

Ψ (x′, y′,−h) =
h
2π

∫ ∫

z=0

{
1
R

− iγ
]

e−γR.
Ψ (x, y, 0)

R2

}
dx dy (16.73)

where
R =

[
(x − x′)2 + (y − y′)2 + h2

]1/2

. (16.74)

For static and stationary fields, γ = 0 and (16.73) reduces to the well known
upward continuation integral. It is also known as the Poisson’s integral.

Since γ, the propagation constant can be written as γ = α + iβ where the
values of α and β are given in (13.13) and (13.14) We can write

exp (iγR) = exp (−βr) , (cos (αβ) + iSin (αR)) . (16.75)

The real and imaginary parts of the electromagnetic upward continuation,
integral (16.73) are therefore, given as

ΨR (x′, y′,−h) =
h
2π

∫ ∫

z=0

e−βR
[
ΨR (x, y, 0)

{(
β +

1
R

)
cos (αR)

+α sin (αR)} − Ψi (x, y, 0)
{(

β +
1
R

)
sin (αR)

−α cos (αR)]
1

R2
dx dy (16.76)

Ψl (x′, y′,−h) =
h
2π

∫ ∫

z=0

e−βR
[(

β +
1
R

)
sin αR − α cos (αR)

}

+Ψl (x, y, 0)
{(

β +
1
R

)
cos αR + α sin (αR)

}]

× 1
R2

dx dy
∮ ∫

dy dx. (16.77)

In air, σ = β = 0, and α = w/c = 2π
λ , where c is the velocity of propagation

and λ is the wave length. Considering the origin to be located on the surface
vertically below p, one has
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ΨR (0, 0,−h) =
h
2π

∫ ∫

z=0

e−βR [ΨR (x, y, 0)

{
cos

(
2πR

λ

)
R

+
2π
λ

sin
(

2πR
λ

)}

(16.78)

−Ψl (x, y, 0) =

{
sin

(
2πR

λ

)
R

− 2π
λ

cos
(

2πR
λ

)}]
1

R2
dx dy (16.79)

Ψi (0, 0,−h) =
h

2π

∫ ∫

z=0

[ΨR (x, y, 0)

{
sin

(
2πR
λ

)
R

− 2π
λ

cos
(

2πR
λ

)}

(16.80)

+Ψl (x, y, 0) =
h
2π

∫ ∫

z=0

[ΨR (x, y, 0)

{
cos

(
2πR

λ

)
R

+
2π
λ

sin
(

2πR
λ

)}⎤
⎦ 1

R2
dx dy

where R = (x2 + y2 + h2)1/2. For static field where γ = 0, λ = ∞, ΨI (x, y, 0),
(16.79) and (16.80) reduces to the static upward continuation integral.

16.9 Downward Continuation of Electromagnetic Field

Roy’s (1969) formulation for downward continuation is presented here. If the
xy plane at z = 0 (z positive downward) represents the air earth boundary,
it is known that both tangential components of the magnetic field Hx and
Hy and the normal component Hz will be continuous across the boundary
provided μair = μearth = μvacuum where μ is the magnetic permeability of
the medium. Horizontal derivatives of all orders of Hx, Hy and Hz are also
continuous across the boundary. Since these derivatives are determined solely
from the field values of z = 0. If we combine these back ground with the
relation.

div�H =
∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
= 0 (16.81)

on either side of z = 0 (air earth boundary), it follows that ∂Hz
∂z is also con-

tinuous across this plane, Higher order vertical derivatives are discontinuous
across the air earth boundary since they satisfy Helmholtz electromagnetic
wave equations

∇2�Ha = γ2�Ha (in air) (16.82)

∇2�He = γ2�He (in earth) (16.83)

where γ2
a = μ0εω2 and γ2

e = iωμ0 (σ + iωε), μ0 is the magnetic permeability of
the vacuum. The subscripts ‘a’ and ‘e’ relate to quantities in air and in earth
immediately on two sides of the interface at z = 0. Since
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∂2�Hza

∂x2
=
∂2�Hze

∂x2
(16.84)

∂2�Hza

∂y2
=
∂2�Hze

∂y2
(16.85)

and
Hza = Hze,

it follows from (16.82) and (16.83) that

∂2Hze

∂z2
=
(
γ2
e − γ2

a

)
Hza +

∂2Hza

∂z2
at z = 0. (16.86)

Replacing HZa in (16.84) and (16.85) in turn by ∂Hz

∂z ,
∂2Hz

∂z2 and so on and
using the fact that

∂3Hza

∂x2∂z
=
∂3Hze

∂x2∂z
,
∂3Hza

∂y2∂z
=
∂3Hze

∂y2∂z

and
∂Hza

∂z
=
∂Hze

∂z
(16.87)

for higher order derivatives , one can show that

∂3Hze

∂z3
=

(
γ2
e − γ2

0

) ∂Hze

∂z
+
∂3Hza

∂z3
at z = 0

∂4Hze

∂z4
=

(
γ2
e − γ2

0

)2
Hza + 2

(
γ2
e − γ2

a

) ∂2za

∂z2
+
∂4za

∂z4
at z = 0

∂5Hze

∂x5
=

(
γ2
e − γ2

a

)2 ∂Hza

∂z
+ 2

(
γ2
e − γ2

a

) ∂3Hza

∂z3
+
∂5Zza

∂z5
at z = 0 (16.88)

and so on .
In general, for n = 1, 2, 3

∂2nHze

∂z2n
=

[(
γ2
a − γ2

e

)
+

∂2

∂z2

]n

Hza at z = 0 (16.89)

and so on. On the ground, for n = 1, 2, 3

∂2n+1Hze

∂z2n+1
=

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]n
∂Hza

∂z
, at z = 0 (16.90)

where the superscript n indicates that the operation within the brackets has
to be carried out n terms successively.
∂Hz
∂z is continuous across the boundary ∂Hx

∂z and ∂Hy
∂z are not because

∂Hza

∂y
− ∂Hya

∂z
= iωεaExa (in air) (16.91)
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and
∂Hze

∂y
− ∂Hye

∂z
= (σ + iωεe) Exe(in earth), (16.92)

since Exe = Exa and ∂Hza

∂y = ∂Hze
∂y at z = 0.

We have

∂Hye

∂z
=
∂Hza

∂y
+

σ + iωε
ωεa

[
∂Hza

∂y
− ∂Hya

∂z

]
at z = 0. (16.93)

Replacing Hy for Hz in (16.92) and (16.93) yields

∂2Hye

∂z2
=
(
γ2
e − γ2

a

)
Hya +

∂2Ha

∂z2
at z = 0. (16.94)

It can also be shown that

∂3Hye

∂z3
=

(
γ2
e − γ2

a +
∂2

∂z2

)[
∂Hxa

∂y
+

σ + iωε
ωεa

{
∂Hza

∂y
− ∂Hya

∂z

}]
(16.95)

at z = 0
where the operations indicated in the first parentheses are to be carried out
over the quantity in the squared brackets. In general again for n = 1, 2, 3, . . . ..

∂2nHye

∂z2n
=
(

γ2
1 − γ2

a +
∂2

∂z2

)n

Hya at z = 0 (16.96)

∂2nHye

∂z2n+1
=
(

γ2
1 − γ2

a +
∂2

∂z2

)n [
∂Hza

∂y
+

σ + iωε
ωεa

{
∂Hza

∂y
− ∂Hya

∂z

}]

at z = 0. (16.97)

With the superscript n having the same meaning as in expression (16.84)
(16.85) and (16.86). Similar expressions can be derived for the vertical deriva-
tives of Hxe. In case it is the electric field components that are observed, one
has (Stratton, 1941, p 483).

Exe = Exa,Eye = Eya,Eze =
(

γ2
a

γ2
e

)
.Eza (16.98)

at z = 0. From the divergence relation

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
= 0 (16.99)

which holds on both the sides of z = 0, it is obvious that ∂Ez
∂z , like ∂Hz

∂z is
continuous across the boundary. However as in the magnetic case, ∂Ex

∂z and
∂Ey
∂z are not continuous. Since
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∂Exa

∂z
− ∂Eza

∂x
= −iωμ0 Hy0(in air) (16.100)

∂Exe

∂z
− ∂Eze

∂x
= −iωμ0 Hye(in earth) (16.101)

and Hye = Hya at z = 0. We get

∂Exe

∂z
− ∂Exa

∂z
= −

(
1 − γ2

a

γ2
e

)
∂Eza

∂x
at z = 0 (16.102)

∂Eye

∂z
=
∂Eya

∂z
= −

(
1 − γ2

a

γ2
e

)
∂Eza

∂y
at z = 0 (16.103)

The higher derivatives are

∂2Eze

∂z2
=

γ2
a

γ2
e

[(
γ2
a − γ2

e

)
Eza +

∂2Eza

∂z2

]
at z = 0 (16.104)

∂3Eze

∂z3
=

(
γ2
e − γ2

a

) ∂Eza

∂z3
+
∂3Eza

∂z3
at z = 0 (16.105)

∂4Eze

∂z4
=

γ2
a

γ2
e

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]2

Eza at z = 0 (16.106)

∂2nEze

∂z2n
=

γ2
a

γ2
e

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]2

Ezaat z = 0 (16.107)

∂2n+1Eze

∂z2n+1
=

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]2
∂Eza

∂z
at z = 0 (16.108)

∂2Exe

∂z2
=

(
γ2
e − γ2

a

)
Exa +

∂2Exa

∂z2
at z = 0 (16.109)

∂3Exe

∂z3
=

(
γ2
e − γ2

a

) ∂2

∂z2

[
∂Exa

∂z
−
(

1 − γ2
a

γ2
e

)
∂Exa

∂x

]
at z = 0 (16.110)

∂2nExe

∂z2n
=

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]n

Exa at z = 0 (16.111)

∂2n+1Exe

∂z2n
=

[(
γ2
e − γ2

a

)
+

∂2

∂z2

]n

Exaat z = 0. (16.112)

Equation (16.110) and (16.111) give the necessary guide lines to find out the
higher vertical derivatives for Eye

16.9.1 Downward Continuation of Hz

The downward continued values of Hze (h) can be written in terms of values
on the z = 0 boundary in the form of Taylor expansion as follows

Hze (h) = Hze (0) + h
∂Hze

∂z

∣∣∣∣
z=0

+
h2

2!
∂2Hze

∂z2

∣∣∣∣
z=0

+
h3

3!
∂3Hze

∂z3

∣∣∣∣
z=0

+
h4

4!
∂4Hze

∂z4

∣∣∣∣
z=0

+ - - - - - - - - - -. (16.113)
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Substituting (16.111) and (16.112) upto the fourth order of vertical deriva-
tives, one can write

Hze (h) = [H] .

Substituting (16.111) (16.112) (16.113) upto the fourth order of vertical
derivatives, one can write

Hze (h) =
[
Hza (0)) + h

∂Hxa(0)
∂z

+
h2

2!
∂2Hza(0)
∂z2

+
h3

3!
∂3Hza(0)
∂z3

+ · · ·

+
h4

4!
∂4Hza(0)
∂z4

]
+
[
h2

2!
(
γ2
e − γ2

a

)
Hza (0) +

h4

4!
(
γ2
e − γ2

a

)2
Hza (0)

+
h3

3!
(
γ2
e − γ2

a

) ∂Hza (0)
∂z2

]
. (16.114)

If Hxa and Hya are also observed, one can use a finite difference approximation
of (16.112) and (16.113) to Hza (0)/dz. Thus it is possible to determine Hze (h).

Alternately one can use Peter’s (1949) static field approximation by using
the average values of Hza(0) on circles around the point of continuation using
suitable coefficients discussed in Sect. (16.5). That involves the development of
a numerical scheme for evaluation of the electromagnetic upward continuation
integrals (16.80).
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Inversion of Potential Field Data

In this chapter a few basic points about inversion of geophysical data are given.
Structures of different approaches for inversion, viz, Singular Value Decompo-
sition, Least Squares including Ridge Regression, and Weighted Ridge Regres-
sion, Minimum Norm Algorithm, Bachus Gilbert Inversion, Stochastic Inver-
sion, Occam’s Inversion Global Optimization Techniques including Monte
Carlo Inversion, Simulated Annealing and Genetic Algorithm, Artificial Neu-
ral Network and Joint inversion are discussed.

17.1 Introduction

The task of retrieving complete information about model parameters from a
complete and precise set of data is inversion. In geophysics, these models are
earth models and the task is to establish a link between a data space and
model space (Fig. 17.1).

If we have a set of data collected from the field, we try to say about the
earth model with those finite data set. How many different ways can one try

Fig. 17.1. Connecting link between a data and the corresponding model space in
a forward and an inverse problem
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to travel within a Data space (or domain) and a model space (or domain),
how good the flow of information is from a data space to a model space, what
are the difficulties can one encounter, how many different ways can one try
to overcome those difficulties, how much information can one really gather
and what are their limitations, what are the precautions can one take on
the way as one moves through the multidimensional hyperspace (Figs. 17.2
and 17.3) are some of the questions to be addressed briefly. Inverse theory
is applicable to all the branches of science and engineering. Inverse problems
are also termed as identification problems or optimization problems. It is
a part of information theory and communication theory. Inverse Theory is
the most scientific and accurate mathematical tool to be used judiciously for
interpretation of geophysical or other scientific data.

Some sense of movement, distance and projection of a structure from dif-
ferent angles are involved in an inverse problem. Data and model spaces are
assumed to be n and m-dimensional abstract spaces (Figs. 17.2 and 17.3)
where information from the data space are transmitted to the model space
and vice versa through some connecting links. We shall discuss on these links
in the text. Figure 17.2 show the distance between the starting and the end
point in an m dimensional hyperspace. This sense of distance and movement
are present both in the data and model space. These distances are dobs –
dpredicted in the data space and mtrue – mprior in the model space. We try
to minimize these distances in both the spaces. It means that the model
with which we started our experiment has certain co-ordinates in the abstract
space. That m-dimensional co-ordinate point moves towards the actual answer
as the inverse process progresses. This is the sense of movement in an inverse
problem. These movements can be continuous in small discrete steps or it
can be by random jumps in the entire parameter space. What is really meant
by this movement? Here comes the concept of forward modeling. Figure 17.3
shows the different initial choices of the model parameters at different places
in the m-domain but all the movement from the starting points are towards
the actual answer. An initial and judicious choice of a model is the starting
point of an inverse problem. For existence of an inverse problem, the forward
problem must exist. Therefore, solution of a forward problem is the starting

Fig. 17.2. Movement of an assumed model and the sense of distance in an N
dimensional model space
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Fig. 17.3. Different initial choices and in M dimensional parameter space and their
movements towards the actual answer

point of an inverse problem. Geophysicists collect a set of data on the surface
of the earth or in the air or inside a bore hole or at the ocean bottom.What
can we say about the earth with these limited noisy data? That’s how, ‘norm’,
convergence, metric space, inner product space, Hilbert space n-dimensional
vector space entered in an inverse problem. Figure 17.2 shows the distance
between the actual answer and the starting point.
Generally gravity / magnetic / D.C. resistively / electromagnetic / S.P. /
I.P / Seismic reflection and refraction / earthquake Seismology / heat flow
data are collected. Interpreters of data have to guess judiciously at this stage
on what kind of subsurface structure can generate this kind of data distribu-
tion. Interpreters must have some insight about the nature of distribution of
data for different type of subsurface structures as well as for different types of
potential and non potential fields. Judicious choice of an initial model reduces
the distance between mprior and mtrue where these points are locations of
a priori or initial choice of the model parameters in an abstract space. To
achieve this insight one has to solve mathematical boundary value problems
for different types of naturally occurring or artificial man made fields and
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examine the nature of responses responsible for different types of sub surface
structures. These boundary value problems are forward problems and can be
one / two / or three-dimensional problems. With increase in complexity in
an assumed earth model, the mathematical complications in the solution of
a forward problem increases. Advent of numerical methods, viz., finite dif-
ference, finite element, integral equation, volume integral, transmission line,
hybrids, increased the horizon of solvability of the problems of complex sub-
surface geometry and that increased the horizon of applicability of inverse
problems. For the last seven decades, geophysicists solved numerous forward
boundary value problems needed for interpretation of geophysical data. Hence
inversion of geophysical data grew as a subject at a faster pace. The data we
generate by solution of boundary value problem are noise free synthetic data
obtained from a synthetic model. These synthetic data are called dPredicted

or dPre and a synthetic model is mPrior. In geophysics dObserved or dObvs are
generally the field data collected on the surface of the earth or in the air or in
ocean surface or in a borehole. These are experimental data in other branch
of science and engineering and are contaminated with noise. (dObs – dPre)
and (mtrue – mPrior) are the two distances or norms we were talking about
and we try to minimize these distances in the data space and model space
by dual minimization simultaneously. Inverse theory is based on a few basic
concepts(Parker 1977) viz., (i) existence (ii) construction (iii) approximations
(iv) stability and (v) nonuniqueness.

Existence : For existence of an inverse problem, forward problem must
exist The solution of a boundary value problem is either available or it is to be
solved. Solutions of forward models in analytical form are available (already
solved) for simpler sub surface geometries. With the introduction of realistic
touches in earth models, a boundary value problem becomes mathematically
unmanageable and one has to solve the problems numerically.

So the forward problem must be solved or at least must be available before
construction of an inverse problem. Since the model space and data space are
respectively the Hilbert space and Euclidean space, the concept of projection
of models from different angles appear. With limited data and with limited
resolving power of many of the potential problems we can only see a projection
of the model from a particular angle. That invites a serious problem of non
uniqueness to be taken up.

Construction : Construction of an inverse problem can be done in many
ways. It is centered around (i) examination of data and to take decision on
application of regularization (ii) judicious assumption of an initial model based
on the nature of the data (iii) solution of the forward problem (iv) comparison
of field data with the synthetic model data or predicted data (v) estimation of
the discrepancies (dobs – dpre) in data space and (mest – mprior) in the model
space quantitatively in the form of squared residuals or chi square errors or
residual variance or energy function or cost function or error function etc.
(vi) choose a particular type of inversion approach based either on linearised
inversion approach or random walk technique for global optimization approach
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Fig. 17.4. Convergence of an inverse problem in successive iterations

(vi) obtain the convergence of an iterative solutions (Fig. 17.4). (vii) find
out the uncertainly level in parameter estimation (ix) study the level of non
uniqueness and find out the way to overcome it if possible (x) mix some
additional information from different branches of geophysics if available and
try to go for joint inversion.
Multi domain geophysical data based on different physical properties can be
used either for joint inversion or these additional information can be used to
constrain the model to be estimated. Some of the very well known approaches
for construction of an inverse problems are (i) Singular value decomposition
(ii) Least squares estimator (iii) Ridge regression and weighted ridge regression
estimators (iv) Minimum norm estimator for an underdetermined problem
(v) Method of steepest descent (vi) Conjugate gradient minimization (vii)
Bachus Gilbert inversion (viii) Stochastic inversion. (ix) Occam’s inversion.
(x) Monte Carlo inversion (xi) Simulated Annealing (xii) Genetic Algorithm
(xiii) Neural network etc. This is a broad outline about the construction of
an inverse problem. There are many other approaches not listed here.

Figure 17.5 shows a schematic diagram regarding construction of some of
the inversion procedures. Procedural details are different for different inversion
approaches. Figure 17.6 shows the paths for convergence and divergence in the
parameter space starting from the initial choice.
Approximation is a major component in framing an inverse problem.
Approximation enters into the system through many channels. As for exam-
ples most of the geophysical problems are non-linear problems. We linearise
the non-linear problems by truncating higher order terms of the Taylor’s series
expansion and introduce approximation to enter into the domain of general-
ized linear inverse problems. The effect of this truncation of higher order
terms may be less for certain problems. They are called weakly non-linear or
linearisable problems. For certain other cases the effect of linearization may
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Fig. 17.5. A cartoon of a flow chart for an inverse problem

be severe. They are called strongly non-linear problems. Some of these non-
linear problems can be linearised at the maximum likelihood point (discussed
later) whereas some other problems cannot be linearised at all. Therefore,
for strongly nonlinear problems one should use one of the global optimiza-
tion approaches. The next major approximation enters through the choice of

Fig. 17.6. Convergence and divergence of an inverse problem as the initial model
starts moving towards the actual answer
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forward problems. Earth structure is much more complicated than whatever
forward model we choose to initiate an inverse process. The approximation
in very severe for one dimensional modeling and inversion. Only for a few
cases we get perfect horizontal layers inside the earth. Although numerical
approaches for forward modeling viz. finite element and finite difference can
take care of a part of the degree of complications inside the earth in 2-D/3-
D forward problems, it cannot be a complete substitute for an earth model.
The interpreter must have a reasonable knowledge about the geology of the
area for proper selection of an earth model. A model widely off from the
actual earth’s subsurface will generate wrong answer even if one gets rea-
sonably good convergence of an inverse problem. Approximations also enter
through data inadequacy, data smoothing and applications of several con-
straints. Some kinds of regularization, viz, Tikhnov’s regularization (Tikhnov
and Arsenin 1977), Occam’s rajor (Constable et al 1987), minimum structure
algorithm (Smith and Booker, 1991) are necessary. Data smoothing is very
common before inversion unless the data are of very high quality.

Stability of an inverse problem means smooth and trouble free move-
ment of all the parameters of a particular model towards the actual answer
and should reach nearer to the destination (Fig. 17.6). For movement from
the initial choice point in the Hilbert space, the inverse problem may start
diverging out. It means the discrepancy between the field and predicted data
and the distance between model values and the actual answer will also start
increasing, i.e., sum of the squared residual will start increasing instead of
decreasing. Larger the number of parameters in a model space greater will
be the probability for divergence. In the parameter space all the parameters
must move towards the actual answer. In that case the inverse problem is
stable. There are a few reasons for an inverse problem to be unstable. These
are (i) data inadequacy (ii) data inaccuracy (iii) poor initial choice of the
model parameters (iv) generation of ill conditioned matrix with several zeros
or very small eigen values for the problems dealing with generalized inverse (v)
unconstrained optimization. Presence of several local minimum pockets will
not allow the system to converge. The data space and model space are con-
nected by a linear or a linear differential operator. Since most of the geophysi-
cal problems are nonlinear, linear differential operators are generally used and
they construct the sensitivity matrix. If the matrix thus generated is an well
conditioned matrix, then with adequate good quality data one can generate
a well posed problem.

In an well posed problem if one gives a small perturbation in the model
parameters, small perturbation in the data space will result and vice versa.
On the other hand if a small perturbation in the data space causes large
perturbation in the model space, then the problem is an ill posed problem.
Most of the geophysical problems are ill posed problems. Zero and small eigen
values of the sensitivity matrix bring this instability. To improve stability of an
inverse problem quite a few steps are taken viz. (i) an attempt is being made
to make the problem overdetermined. An over determined problems are those
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where the number of data points (n) are more than the number of unknown
parameters (m). n greater than m does not guarantee that the problem will be
an overdetermined problems. Data must be capable of seeing the entire earth
model within its power of detectibility. For most of the geophysical problems
it becomes possible to collect more data than the number of parameters to be
resolved from the model.

For certain geophysical problems, it may not be possible to collect as many
data as practicable and the problem becomes underdetermined problem i.e.,
the number of data points is less than the number of unknowns parameters
(n < m). Theoretically or mathematically when n = m, we have an even
determined problem and one should be able to determine m completely. But
presence of noise in field data makes the system unstable and the problem
diverges. (ii) detailed eigen value analysis is done to study the rank deficiency
of the sensitivity matrix and to weed out the zero and small eigen values (iii)
Marquardt Levenberg coefficients or parameter variance covariance values are
added to the diagonal elements of the sensitivity matrix to ensure stability
(iv) Positivity or non negativity constraints are imposed for not allowing any
of the parameter to be negative when it is known that the parameters to
be determined are definitely positive quantities. Constraints on upper and
lower bounds of a particular parameter can also be introduced. Constraints
on movement in the parameter space is also introduced to ensure better sta-
bility (v) introduction of a prior assumption from reliable other geophysical or
geological data may reduce the number of unknown parameters to be deter-
mined and thereby improve the stability condition and quality of inversion to
a certain extent.

Nonuniquenesses are very important aspects of an inverse problem to be
taken care of. If we have or assume a model we can generate a unique response
for a particular type of field. But the reverse is not true, i.e., if we have a set
of data, infinitely many models may satisfy this set of data It is possible to
overcome this hopeless situation to a great extent and that is why the inverse
theory survived the test of time. The causes for the non uniqueness in an
inverse problem are as follows:

Nonuniqueness is due to (i) principle of ambiguity present in the potential
theory (ii) data inadequacy (iii) data inaccuracy, (iv) different form of error
present in the data (v) noise (vi) bad initial choice of the model parameters,
(vii) different types of constraints imposed, (viii) presence of several local
minima pockets in the parameter space (Figs. 17.7 a, b) (ix) simplification of
the forward model, (x) linearization of the nonlinear problem, (xi) different
approaches are adapted for solution of inverse problems, (xii) different types
of corrections applied to the data, (xiii) various types of smoothing applied
to the data. (xiv) different forward problem soft wares used to interpret same
data.

Green’s theorem of equivalent layers in potential theory discussed in
Chap. 10 is an example of non uniqueness present in theory. This theorem
shows that one can get same gravitational field for different type of mass
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(a)

(b)

Fig. 17.7. a, b. Local minima pockets in the parameters space; these are model
traps, prevent the models from further movement towards global minimum

distribution. Principle of equivalence in electrical and electromagnetic the-
ory tells that for different combinations of layer resistivity and thickness one
gets T(= hρ) and S(= h

ρ ) equivalence where ρ is the resistivity and h is the
thickness of a layer in an one dimensional layered earth problem.

Since retrieval of a model from a set of data is to see the different projec-
tions of the model in the Hilbert space from different angles, data inadequacy
will increase the non uniqueness due to partial view of the model from different
projection angles.

Noise in the field data is an inevitable process. Noise will be there in the
data collected from the field. Higher noise level can completely vitiate inverse
process. Opacity increases in the observation power of the data. So the model
space can be either empty (null information) or infinite dimensional (Bachus
and Gilbert 1967).

Varied initial choices and presence of many local minima pockets bring
non uniqueness in an inverse problem. From different points in the space
when the initially assumed models start moving, they get trapped at different
local minima and generate different answers. Therefore judicious initial choice
of the model parameters is essential to reduce the starting distance between
mPrior and mtrue where mtrue is the true model parameter. In that case this
probability to get trapped in local minimum reduces. Interpreter should choose
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the initial model with available known geology of the area. Difference in the
choice of forward model will generate different answers. It is interesting to
note that the interpreter often over parameterises the model to make it an
underdetermined problem and get interpretable encouraging results. Even if
the initial forward model is totally a wrong choice and does not have any
closeness with the local geology, one may get both convergence and stability
of an inverse problem and get an answer. This is a note of caution. The
convergence i.e., the reductions of the discrepancy between the field data
and the model data in successive iteration does not guarantee any acceptable
result. Interpreter should have some knowledge about the local geology of the
area to get a meaningful results.

A class of inverse problems which use differential operators are generally
made linear by truncating higher order terms of the Taylor’s series expansion
of nonlinear problems. This approximation may be too severe for a certain
class of strongly nonlinear problems. This linearisation, coupled with limited
resolving power of the potential problems, inadequate and inaccurate data
generate non uniqueness. Interpreter dependent factors are the (i) nature of
smoothness used in data processing (ii) choice of a particular approach for
inversion (iii) different way of discretisation to generate data. (iv) use of dif-
ferent softwares.

Even with all these problems of non uniqueness if we have good quality
adequate data, one can get a cluster of models in the parameter space or M-
space near the actual answer. If several earth models obtained using different
approaches of inversion have some common feature then earth must have that
property (Bachus and Gilbert 1967). Thus inverse theory survives with con-
siderable success while imaging extremely complicated, inhomogeneous and
anisotropic earth even in this high level of non uniqueness.

17.2 Wellposed and Illposed Problems

The concept of well posed and ill posed problems were introduced by
J. Hadamard (1902, 1932) in an attempt to classify the different types of
differential equations along with their boundary conditions.

A solution is said to be well posed for solution of the equation

A z = u
n × m m × 1 n × 1 (17.1)

where the initial choice of model parameter z is in the model space M and u is
in the data space D. These spaces are M and N dimensional abstract spaces.
These spaces are metric spaces, Euclidean space, pre-Hilbert space, Hilbert
space, normed inner product space etc(Sect. 17.4).
A problem of determining a solution z in the space M from the initial data
u in the D space is well posed on these spaces (D and M) if the following
condition are satisfied:
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a. For every element u ∈ D, there exists a solution in the M space
b. The solution is unique
c. The solution is stable on the spaces D and M

Problems that do not satisfy these conditions are termed illposed problems.
Most of the geophysical problems are illposed because the data are noisy and
as a result there can be infinitely many solutions which will satisfy all the
data.

17.3 Tikhnov’s Regularisation

If a small perturbation in the data generates a small perturbation in the model
parameters and vice versa then the inverse problem is a stable but not nec-
essarily well posed .If a minor change in the data invites major change in
the model the problem is definitely an ill posed problem. Regularisation in
the data may be necessary to an ill posed problem and to get an approxi-
mate solution which is stable. It may be based on providing supplementary
information from completely independent sources. An attempt is being made
to construct an approximate solution of (17.1), that are stable under small
changes in the data space through use of a regularization operator. With noisy
data set uδ, the approximate model set is Zα = R(uδ,α), obtained with the aid
of regularizing operator R(u,α) where α = α(δ, uδ). Here δ is the noise level.
α is the regularizing parameter. Every regularizing parameter defines a stable
method of approximate construction of a solution of (17.1). The choice of the
regularizing parameter(s) should be consistent with the accuracy of assess-
ment of δ the noise level in the data (α = α(δ). This regularizing parameter
α is chosen in such a way that when δ → 0 and uδ → u then Z tends towards
ZT or Ztrue.. Thus the problem of finding an approximate solution of (17.1),
is centered around getting a stable solution under minor perturbation in the
data space and determining the regularization parameter α from additional
information related to the problem. This method of constructing the approxi-
mate solution is called the regularization method. This is the basic philosophy
of Tikhnov’s Regularisation( Tikhnov and Arsenin 1977).

All kinds of data smoothing, Occam’s rajor, generation of minimum struc-
ture algorithm, introduction of different kinds of constraints, application of
data and model variance-covariance matrices for bringing stability in an inver-
sion algorithm are the members of the regularization club.

17.4 Abstract Spaces

17.4.1 N–Dimensional Vector Space

A vector is a collection of n real numbers a1 . . . . . . . . . an in a definite
order where n is any integer. This vector is a = (a1 . . . . . . . . . . . . an) where
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a1 . . . . . . . . . .an are the components of the vector ‘a’. Two vectors ‘a’ and ‘b’
are equal if ai = bi for i = 1 . . . . . . . . . ..n.

These vectors in an n-dimensional space fulfill certain algebraic laws.
These are

(i)
(a + b) = (b + a)(associativity law of addition) (17.2)

(ii)
(a + b) + c = a + (b + c)(distributive law) (17.3)

(iii)
λ(a + b) = λa + λb(multiplication law) (17.4)

where λ is a scalar.
(iv)

λ(μa) = (λμ) a(associativity law of multiplication) (17.5)

(v)
0a = θ(concept of null vector). (17.6)

where θ is a zero or null vector. A real space in space domain can have 3
dimensions. We often bring the concept of 4th dimension bringing time or fre-
quency into consideration. But when we try to conceive of a space for a set of
geophysical data collected on the surface of the earth, we think of an n dimen-
sional data space and an m dimensional parameter space. ‘n’ will depend upon
the number of data collected and ‘m’ depends on the parameters that can be
retrieved from the information collected. Variation of the physical properties
and their dimensions in the space domain generate m number of model param-
eters. These data and model parameters generate D and M vector spaces.

17.4.2 Norm of a Vector

Length or norm of the vector ‘a’ in ‘R’ is the arithmetic square root of sum
of the square of the components. The norm of a vector ‘a’ is denoted by ||a||
and is given by

||a|| =
√

a2
1 + a2

2 + a2
3 + . . . . . . .a2

n (17.7)

If coordinate of a point P is (x, y, z) in a three dimensional space, its distance
from the origin (0, 0, 0) is d =

√
x2 + y2 + z2. Therefore (17.7) is an n dimen-

sional generalisation of 3 dimensional real space concept of distance or norm.
The properties of norm are

(i)
||a|| ≥ 0for all a and||a|| = 0 (17.8)

only if a = θ.
(ii)

||λa|| = |λ|||a|| (17.9)
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(iii)
||a + b|| ≤ ||a|| + ||b||. (17.10)

An n–dimensional vector space R in which norm of a vector is defined is called
an n–dimensional Euclidean space. A vector with an infinite set of components
in an infinite sequence of real numbers (a1, a2, . . . .a∞) is an infinite dimen-
sional Euclidean space.

17.4.3 Metric Space

A metric space is an n dimensional abstract space where a non-negative real
number called distance is defined between any two elements of a1 and a2 and
is denoted by d(a1, a2). It satisfies the following conditions, i.e.,

(i)
d(a1, a2) = 0 if a1 = a2 (17.11)

(ii)
d(a1, a2) = d(a2, a1) (17.12)

(iii) for any three elements of the abstract space.

d(a1, a2) ≤ d(a1, a3) + d(a3, a2) (17.13)

(iv) d(am, an) → 0 for n, m → ∞

17.4.4 Linear System

A set of vectors S forms a linear system if the concept of additions and mul-
tiplications are satisfied as shown in (17.2 and 17.4).

17.4.5 Normed Space

A linear system ‘a’ is called a normed space if for every element an in S,
a real number called norm is defined. Normed space will have the following
properties.

(i)
||a|| ≥ 0 for any a ∈ S (17.14)

(ii)
||a|| = 0 for a = θ (17.15)

(iii)
||λa|| = |λ|||a|| (17.16)

for any a ∈ S and for any scalar number λ.
(iv)

||a + b|| ≤ ||a|| + ||b|| or any a, b ∈ S (17.17)
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(v)
d(a, b) = ||a − b||, (17.18)

the distance in a normed space.
(vi)

||a|| = ||a − θ|| = d(a, θ), (17.19)

i.e., the norm of any element is its distance from the origin.

17.4.6 Linear Dependence and Independence

Elements a1, a2 . . . . . . an ∈ S are called linearly independent, if for a linear
combination of these elements, the relation Σλkak = θ is satisfied only for λ1 =
λ2 = λ3 . . . . . .λn = 0. Otherwise the elements are called linearly dependent.
Elements a1, a2, . . . ..an are linearly dependent if and only if, at least one of
them can be expressed in the form of a linear combination of the others.

If an elements a ∈ S can be expressed in the form of a linear combination

of linearity independent elements a1, a2, a3 . . . ..an, and a =
n∑

k=1

λkak, then λk

will have unique values. These normed space are finite dimensional.

17.4.7 Inner Product Space

Suppose a = (a1, a2, . . . .an) and b = (b1, b2, b3 . . . .bn) are vectors in the
space R. The dot product or inner product of the two vectors are defined by
(a, b). It is defined to be the scalars obtained by multiplying corresponding
components and adding the resulting products.

u.v =
n∑
k=1

uk.vk (17.20)

17.4.8 Hilbert Space

Let the space S be a real linear system and suppose that in any two of its
elements a, b there exists a real number denoted by (a, b) and also possess
the following properties

(i)
(a, b) = (b, a) (17.21)

(ii)
(a + b, c) = (a, c) + (b, c) (17.22)

(iii)
(λa, b) = λ(a, b) (17.23)

(iv)
(a, a) = 0if and only if x = θ (17.24)
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(v)
||a|| =

√
(a, 0). (17.25)

A complete normed real space in which the norm is generated by the inter
product or scalar product is called a Hilbert space.

Abstract spaces in Inverse Theory, viz. data space and model space follow
the properties of these Eucledean space, Metric space, normed linear space,
Inner product space and Hilbert space. Further details are beyond the scope
of this volume.

17.5 Some Properties of a Matrix

17.5.1 Rank of a Matrix

Many of the physical problems in their final stages of formulation reduce to a
matrix equation in the form

Ax = B (17.26)

where A is an n×m known matrix, B is a known vector of n elements and x is
an unknown vector of m elements. We have to consider whether there exists
a vector x which satisfy this equation and whether the set of simultaneous
equations which satisfy (17.26) is consistent. The answer is provided by rank
of the matrix ‘A’. ‘n’ elements f1, f2, f3 . . . . . . . . . . . . fn of a linear space R are
linearly dependent if there exists Cj ∈ F not all equal to zero, such that

n∑
j=1

Cjfj = 0 (17.27)

otherwise they are linearly independent. The rank of a matrix is equal to the
number of linearly independent equations and the number of nonzero eigen
values present in the system. The order of the largest non-zero minor is also
the rank. Theoretically, if rank of a matrix is equal to the number of unknown
parameters m, the solution should be unique if it exists. For practical problems
that is not possible because the data are noisy.

If the rank of the matrix is k and the system of equations is consistent,
then we shall have six possible cases, i.e.,

(i) n = m and k = m
→ Even determined problem

(ii) n = m and k < m
(iii) n > m and k = m

→ Over determined problem
(iv) n > m and k < m
(v) n < m and k = n

→ Underdetermined problem
(vi) n < m and k < n
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where n is the number of data points in D-space and m is the number of
parameters in M-space. k will always be either equal to or less than m or n
which ever is less. n > m does not guarantee that the problem has become
an overdetermined problem. The capability of data to see a target completely
must be taken into consideration. Similarly one can make an overdetermined
problem underdetermined by overparameterising the models. Sometimes it
gives more realistic result specially in one dimensional problems.

17.5.2 Eigen Values and Eigen Vectors

Determine a scalar quantity λ and a vector U which satisfies (17.2). This
equation can be expressed in the polynomial form as

λn + Cn−1 λn−1 + . . . . . . . . .+ C1 λ = 0 (17.28)

The n roots of this polynomial

λ1, λ2, λ3 . . . . . . . . .λn

are the eigen values of the system matrix. They satisfy the equations

Aui = λi ui (17.29)

where ui is called the eigen vector. The set of eigen values form a diagonal
matrix and is called the spectrum of A. The largest absolute value of λ is
called the spectral radius. Every eigen value has a eigen vector. It is a column
vector. Even a zero eigen value has a non zero column eigen vector.

An n × n square matrix has at least one and at the most n distinct eigen
values. We can write (17.29) as

a11 x1 + . . . . . . . . . . . . . . .+ a1 n xn = λ1 x1

a21 x1 + . . . . . . . . . . . . . . .+ a2n xn = λ2 x2

‘
‘
an1 x1 + an2 x2 . . . . . . . . . . . . . . .+ ann xn = λn xn. (17.30)

By transferring the right hand column to the left hand side we get

(a11 − λ1) x1 + a12 λ2 + . . . . . . . . . . . . . . .+ a1n xn = 0
a21 x1 + (a22 − λ2) x2 + . . . . . . . . . . . . . . .+ a2n xn = 0
‘
‘
an1 x1 + an2 x2 . . . . . . . . . . . . . . .+ (ann − λn) xn = 0 (17.31)

Number of non zero eigen values dictates the quality of the matrix, for starting
an inverse problem.
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17.5.3 Properties of the Eigen Values

1. The sum of the diagonal elements of the matrix is equal to the trace of
the matrix and is equal to the sum of the eigen values i.e.,

Trace A =
n∑
i=1

λ1. (17.32)

2. The product of the eigen values is equal to the determinant of the
matrix A.

Det A =
n∏
i=1

λi. (17.33)

3. A matrix has same eigen values as its transpose .
4. For a real matrix each eigen value is either real or one of a complex

conjugate pair of eigen values.
5. A real symmetric matrix has real eigen values only.
6. The eigen values of triangular matrix are equal to its diagonal matrix .
7. If the rows and the corresponding columns are changed, the eigen values

remain unchanged .
8. The eigen value of a matrix remain unchanged if a row is multiplied by f

and the corresponding columns is multiplied by 1/f
9. The rank of a matrix is equal to the number of non-zero eigen values

10. The eigen value of the pth power of a matrix is equal to the pth power of
the eigen values of the matrix .

11. Eigen value matrix is a diagonal matrix

λ = diag (λ1, λ2, λ3, . . . . . . . . . . . . . . .λn).

12. Eigen vector matrix is an orthogonal matrix, i.e., UUT = I and UTU = I,
where I is the identity matrix .

13. Eigen vectors corresponding to two distinct eigen values of a symmetric
matrix are orthogonal, i.e.

UT
i Uj = 0 for i �= j. (17.34)

14. ‘n’ equations can be combined into a matrix equation

AU = UA (17.35)

where U is an orthogonal matrix. Therefore

A = UλUT (17.36)

15. For a rectangular matrix A will be equal to

A = UλVT (17.37)

where U is an eigen vector matrix in the n-space and V is the eigen vector
matrix in the m space in an n x m system, discussed in the Sect. 17.7.
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17.6 Lagrange Multiplier

Lagrange multiplier is a mathematical tool, used for maximizing or minimizing
a function in the presence of a constraint equation.
Let ϕ(x, y) be a mathematical function of x and y. We want to maximize or
minimize this function in the presence of another function of two variables
say ψ(x, y) = 0. The second equation is a constraint equation.

Since maximum or minimum of a function can be obtained when the total
differential of ϕ(x, y) is made zero, we can write

∂φ

∂x
dx+

∂φ

∂y
dy = 0. (17.38)

The total differential of the constrained equation is

∂ψ

∂x
dx+

∂ψ

∂y
dy = 0. (17.39)

By multiplying the (17.39) with an unknown multiplier λ and adding this
equation with (17.38), we get

(
∂φ

∂x
+ λ

∂ψ

∂x

)
dx+

(
∂φ

∂y
+ λ

∂ψ

∂y

)
dy = 0. (17.40)

From (17.40), λ can be determined. Once λ is known, one can get the extreme
value i.e., the maximum or minimum value of ϕ(x, y) from the set of equations

∂φ

∂x
+ λ

∂ψ

∂x
= 0 (17.41)

∂φ

∂y
+ λ

∂ψ

∂y
= 0 (17.42)

ψ(x, y) = 0. (17.43)

Lagrange multiplier is used in (i) generalized linear inverse problem described
by Bachus Gilbert (1968, 1970),(ii) minimum norm algorithm for an under-
determined problems proposed by Menke (1984), (iii) Occam’s Inversion dis-
cussed by Constable et al (1987), Degroot Hedlin Constable (1990) and (iv)
Reduced Basis Occam Inversion (REBOCC) proposed by Siripunvaraporn and
Egbert (2000).

17.7 Singular Value Decomposition (SVD)

For most of the geophysical problems, we can connect the data space with
model space using Fredhom’s integral equation of the first kind.
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di =

∞∫

0

Gi (r)m (r) dr (17.44)

where di is the data in the data space and m (r) is the model at a radial
distance r, Gi (r) is the Kernel function. This function is also called the Frechet
kernel or the Green’s function. This continuous Fredhoms integral can be
written in the discrete form as

di =
∑

Gij (r)mj (r) . (17.45)

Equation (17.45) can be written in the matrix form as

d = Gm (17.46)

where d is a n×1 column vector of n data points. m is the m×1 column vector
of model parameters and G is a rectangular matrix and linear differential
operator or linear operator which connects the data to the model space. Here

d = {d1, d2, d3 . . . ..dN}T for i = 1, . . . .N and (17.47)

m = {m1,m2,m3 . . . ..mM}T for j = 1 to m (17.48)

and T is the transpose. T changes the column vector to a row vector.
Let

d = Gm. (17.49)

It is taken to another plane where the connecting equation between the data
and the model space is given by

d′ = G′ m′. (17.50)

The connecting link is established by multiplying both the sides of the (17.19)
by u where u is the eigen vector in the n-space or data space. Since eigen vector
matrix is an orthogonal matrix we can write

d′ = uTd (17.51)

m′ = uTm. (17.52)

From (17.51) and (17.52) we can write

ud′ = uGm′ (17.53)

⇒ uTud′ = uTuGm′ (17.54)
⇒ d′ = G′m′ (17.55)
since Gu = uλ (17.56)

where λ and u are respectively the eigen value and eigen vector matrix. Hence
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uTGu = uTuλ = λ. (17.57)

Therefore
d′ = λm′. (17.58)

So a square matrix could be changed to diagonal eigen value matrix in the
transformed plane. This is the principal axis transformation. We can write

m′ = λ−1d′ (17.59)

⇒ uTm = λ−1uTd

⇒ uuTm = uλ−1uTd

⇒ m = uλ−1uTd

= G−1d. (17.60)

This is the generalized inverse of a square matrix. For a rectangular system
(n × m)

d = ud′, or d′ = uTd (17.61)

and
m = νm′ or m′ = νTm (17.62)

Therefore,

d = Gm
⇒ ud′ = Gνm′

⇒ uTud′ = uTGνm′

⇒ d′ = uTGνm′

= G′m′ (17.63)

where ν is the eigen vector matrix for the m space or the parameter space. In
an n × m system u and ν are respectively the eigen vector matrices for the n
and m spaces respectively.

Since Gν = uλ (17.63) in an n × m system (Lanczos 1941) we can write

uTGν = uTuλ = λ (17.64)

⇒ uuTGν = uλ (17.65)

⇒ GννT = uλνT

⇒ G = uλνT. (17.66)

Since both u and ν are orthogonal matrices hence the generalized inverse is

G−1 = νλ−1uT. (17.67)

It is used for inversion of geophysical data.
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For an arbitrary n x m system we can have two matrix equations

A y = b
n × m m × 1 n × 1 (17.68)

and
AT x = c

m × n n × 1 m × 1 (17.69)

where (17.69) is the self adjoint of (17.68) (Lanczos 1941). In (17.68) A has n
rows and m columns and transforms the column vector y of m components to
column vector b of n components. The matrix AT of (17.69) has m rows and
n columns. The vector x and c are in a reciprocity relation to the vectors y
and b. x and b are the vectors in the n space and y and c are the vectors in
the m space. Lanczos (1941) has shown that combining these two equations
and transferring to a larger n + m space we get the matrix

Sz = a. (17.70)

Figure 17.8 shows the n + m system and the locations of A, AT, y, b, x and
c. The eigen value equation of this (n + m) × (n + m) square matrix is

Sω = λω (17.71)

This eigen value matrix equation can disintegrate into a pair of eigen value
equations for an n × m system. These are

Aν = λu

ATu = λv
. (17.72)

These equations are termed as shifted eigen value equations where u and ν
are respectively the eigen vectors in the n and m space respectively. λ, is
the diagonal matrix of eigen values. Here u and ν on the right hand side has
shifted their positions. If we postmultiply the first equation by AT and second
equation by A, we get

Fig. 17.8. Matrix in a n + m space; shifted eigen value problem (Lanczos 1941)
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AATu = λ2u

ATAν = λ2ν
. (17.73)

Equation (17.73) is a regular eigen value problem. Here AAT and ATA are
square symmetric matrices in the n and m spaces respectively. It is interesting
to note that significant eigen values for both the n × n and m × m matrices
will be same. In other words, n × n matrix will have only m significant eigen
values and they are equal to those of m × m system. (n − m) eigen values
for AAT are trivial and sum of the eigen values for both the matrices will be
exactly same.

Most of the geophysical inverse problems are nonlinear. We linearise the
nonlinear problem by truncating higher order terms of the Taylor’s series
expansion. Let G (P, x) the written as

G (P, x) = G
(
P0, x

)
+

M∑
i=1

∂G
∂P

ΔP + higher order terms (17.74)

G is termed as the gross earth functional, P is a vector of unknown values
i.e., the parameters to be determined and x is a column vector of n known
quantities. x varies from subject to subject. As for example for dc resistivity
sounding x stands for electrode separation, in magnetotellurics x stands for
periods of the MT signal, in electromagnetic frequency sounding x stands for
frequency etc. Since G (P0, x) is an initial choice of the model parameters or
a priori model. We can write (17.74) as

ΔG = AΔ P (17.75)

where Δ P is the difference between the actual and the initial choice model
parameters. i.e

ΔP =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m1 −mPrior1

)
(
m2 −mPrior2

)

.

.

.

.(
mm −mPriorm)

mx1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (17.76)

Here ΔP is a (m × 1) column vector in the m or model space and changes in
successive iterations. m is the number of parameters to be modified.

Column vector, Δ G is the difference between dObserved i.e., the field data
and dPre or dPredicted, the synthetic data .dpre are obtained from computation
of the forward model. The column vector Δ G is
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ΔG =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
dObs1 − dPre1

)
(
dObs2 − dPre2

)

.

.

.

.(
dObsn − dPr en)

n × 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (17.77)

It is an n × 1 column vector in the D-space or data space. The connecting
link between the two spaces are obtained from the n × m rectangular matrix
A

n×m
. A is termed as the sensitivity matrix or derivative matrix or the linear

differential operator in a linearisable problems. Here A is

A =

∣∣∣∣∣∣∣∣∣∣∣∣

(
∂G
∂P

)
1
. . . . . . . . . .

(
∂G
∂Pm

)
1

.

.

.(
∂G
∂P1

)
n
. . . . . . . . . .

(
∂G
∂Pm

)
n

∣∣∣∣∣∣∣∣∣∣∣∣

(17.78)

where derivatives of the gross earth functionals with respect to all the param-
eters must exist for existence of the sensitivity matrix and therefore for exis-
tence of an inverse problem. Fortunately for most of the geophysical problems
the frechet derivatives exist. For an over determined problem from (17.75) we
can write

ΔP = A−gΔG (17.79)

where A−g is the generalized inverse. We can write (17.79) from (17.67) as.

ΔP = νλ−1uTΔG (17.80)

Equation (17.80) is the basic equation for inversion of geophysical data using
singular value decomposition (Lanczos, 1941, Inman et al 1973, Glenn et al
1973). Here ΔP is the model modification (m × 1) vector. v is the parameter
eigen vector in the M-space. u is the data eigen vector in the n-space and λ is
the eigen value which remains the same both in data and model space. The
matrix AAT

n×n
is a square symmetric matrix having the eigen values λ2s along

the diagonal and eigen vector u. The matrix ATA
m×m

is the square symmetric

matrix having the same eigenvalues λ2s and the eigen vector v. The trace

Trace AAT = Trace ATA =
n∑
i=1

λ2
i =

m∑
i=1

λ2
i . (17.81)

Equation (17.80) with all non zero eigen values of the system matrix is given
by
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ΔP = v λ−1 uT ΔG
m × 1 m × m m × m m × n n × 1

(17.82)

If k < m, then eliminating zero eigen values we get

ΔP = v λ−1 uT ΔG
m× k k × k k × n n× 1 . (17.83)

Eliminating very small eigen values, which bring instability we get

ΔP = v λ−1 uT ΔG
m × q q × q q × n n × 1

(17.84)

where q(q < k < m) is the number of significant eigen values. Although u is
an n × n square matrix. We take only the rows for the number of non-zero
eigen values. Higher the value of k better will be the quality of inversion.

Both data and parameter eigen vector matrices u and v are orthogonal
matrices. Therefore we get

uuT = In (17.85)

and
vvT = Im (17.86)

Equation (17.85) is known as Information density matrix and (17.86) is known
as Resolution matrix. Both are theoretically identity matrices. While dealing
with field data one may get diagonally dominant matrices. Information density
matrix will indicate qualitatively about the number of parameters which are
contributing towards the total signals. Resolution matrix give a qualitative
indication about the resolution of the parameters. In other words when the
values are unity, one gets best resolution. Diagonal elements will not deviate
significantly from unity for proper resolution.

17.8 Least Squares Estimator

In least squares estimator problem, let x11, x12, x13, . . . . . . . . . x1m are inde-
pendent variables and y1, y2, y3 are dependent variables such that

y1 = a0 + a1x11 + a2x12 + a3x13 + . . . . . . . . .+ anx1n (17.87)
y2 = a0 + a1x21 + a2x22 + a3x23 + . . . . . . . . .+ anx2n. (17.88)

For fitting in a format of the type

Y = a0 + a1x1 + a2x2 + a3x3 + . . . . . . . . . . . .+ anxn. (17.89)

The method of least squares say that the best representative curve is the one
for which the sum of the square of the residual is minimum, i.e.,
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f =
n∑
i=1

(y − (a0 + a1x1 + a2x2 + . . . . . .+ anxn))2 (17.90)

is minimum.
The conditions for f (a0, a1, a2, . . . . . . . . . an) to be minimum are

∂f

∂a0
= −2

m∑
0

(y − a0 − a1x1 − a2x2 . . . . . . anxn) = 0, (17.91)

∂f
∂a1

= −2
m∑
0

(y − a0 − a1x1 − a2x2 . . . . . . anxn) x1 = 0, (17.92)

∂f

∂a2
= −2

m∑
0

(y − a0 − a1x1 − a2x2 . . . . . . anxn)x2 = 0, (17.93)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂f

∂an
= −2

m∑
0

(y − a0 − a1x1 − a2x2 . . . . . . anxn)xn = 0. (17.94)

There are n + 1 linear equations for (n + 1) unknowns a0 . . . . . . . . . . . . . . . an.
These sets of equations in (17.91) to (17.94) can be written in the matrix

form as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
∑
x1

∑
x2 − − − ∑

xn∑
x1

∑
x2

1

∑
x1x2 − − − ∑

x1xn∑
x2

∑
x2x1

∑
x2

2 − − − ∑
x2xn

′ ′ ′ − − − ′
′ ′ ′ − − − ′
′ ′ ′ − − − ′∑
xn

∑
xnx1

∑
xnx2 − − − ∑

x2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2
′
′
′

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
y∑
yx1∑
yx2
′
′
′∑
yxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17.95)

Equation (17.94) can be written in the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 − − − 1
x11 x12 x13 x14 − − − x1m

x21 x22 x23 x24 − − − x2m
′ ′ ′ ′ − − − ′
′ ′ ′ ′ − − − ′
′ ′ ′ ′ − − − ′

xn1 xn2 xn3 xn4 − − − xnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x11 − − − xn1

1 x12 − − − xn2

1 x13 − − − xn3

1 ′ − − − ′

1 ′ − − − ′

1 x1m − − − xnm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2
′
′
′

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
y∑
yx1∑
yx2
′
′
′∑
yxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17.96)
Equation (17.95) can be written in the matrix form

XT X A = XTY (17.97)

⇒ A = (XTX)−1 XTY. (17.98)

This is the mathematical expression for the least squares estimator.
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Alternatively, we can say that to find the vector A which minimizes the
sum of the squared residuals ε2. We write

ε2 = εTε = (AX − Y)T(AX − Y)

= ΔGTΔG where ΔG = XA − Y (17.99)

= ATXTA − ATXTY − YTXA + YTY. (17.100)

Differentiating the expressions with respect to AT and setting the result equal
to zero, we get

[
XTX

]
A = XTY (17.101)

⇒ A = (XTX)−1XTY. (17.102)

17.9 Ridge Regression Estimator

The expression for the least square estimator can be obtained from the sum of
the squared residuals. (XTX)−1XT is also a generalized inverse of a rectangular
matrix. Hoerl and Kennard (1970a, 1970b) show that the rectangular matrix
XTX becomes nearly singular quite often because of the presence of zero and
very small eigen values in XTX. Marquardt (1963, 1770) Hoerl and Kennard
independently have shown that considerable amount of stability in the solution
can be obtained by adding a numerical coefficient to the diagonal element of
the (XTX) matrix. This coefficient is known as Marquardt’s coefficient or
Marquardt – Levenberg coefficient. In effect the Marquardt’s coefficient is
added to all the eigen values. It reduces the instability considerably due to
the presence of zero and very small eigen values. So the least squares estimator

ΔP = (XTX)−1XT ΔG (17.103)

changes to the form

ΔP∗ = (XTX + KI)−1XTΔG (17.104)

where K is the Marquardt’s coefficient, I is the identity matrix. ΔP is the
model modification vector X is the sensitivity matrix. ΔP∗ is the model mod-
ification vector with a reduced rate. Equation (17.104) is known as the Ridge
Regression Estimator or Damped Least Squares Estimator. It is called the
damped least squares because the amplitude of the model modification goes
down i.e., ΔP∗ < ΔP (Fig 17.9). Ridge Regression Estimator is much more
stable than Least Squares estimator. It has both the qualities of Newton-
Rhapson method and gradient method. Newton Rhapson method converges
very fast if the starting value is close to the actual answer. The system diverges
when the initial guess is away from the real answer. In the gradient method,
however, the convergence is possible even if the initial guess is considerably
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Fig. 17.9. Movements in the least square and damped least square iterative process

away from the actual answer. But convergence is very slow near the actual
answer. Ridge regression has qualities of both the approaches i.e., it converges
very fast near the actual answer and it’s radius of convergence is reasonably
high. It means even if the initial guess is poor i.e., the distance between the
mPrior and mtrue is high, ridge regression can drag the model towards the
actual answer. Larger the number of parameters, lesser will be the radius of
convergence. Data inadequacy and data inaccuracy has direct relation with
the radius of convergence. Choice of the value of K is dependent upon the
interpreter. Starting value of K can be anything between 10.0, 1.00, 0.01,
0.001 as suggested by Marquardt (1963). But as the iterative solution con-
verges, the value of K must be successively lowered down till its value becomes
negligible. Many interpreters used variance – covariance values instead of a
pure number as Marquardt’s coefficient (Tarantola 1987, Menke, 1984).

17.10 Weighted Ridge Regression

In most of the scientific work we see that some of the experimental data in any
experiment are less reliable than the others. This is quite common in geophys-
ical field data analysis. It means that the data variances are not all equal. In
other words the matrix Var (ε) (Variance (ε) is not in the form of Iσ2 where I
is the identity matrix and σ2 is the variance (square of the standard deviation)
in the data. But Var (ε) is diagonally dominated matrix with unequal diago-
nal elements. It happens in some problems that the off diagonal elements of
Var (ε) are not zero, i.e., the observations are correlated. When either or both
of these occur, the general least squares estimator (17.104) is not valid and it
is necessary to change the procedure for obtaining the estimator. Draper and
Smith (1968 ) suggested that one has to transfer the observation

Y = Xβ + ε (17.105)

to another variable Z in a different plane which do satisfy the basic conditions
of linear regression and one can write
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Z = Qβ + f (17.106)

where E(f) = 0 and Var (f) = Iσ2 . The variables Y and X in the original plane
will change to another set of variables Z and Q such that the E(ε) = 0 and
Var(ε) = Wσ2 changes to E(f) = 0 and Var(f) = Iσ2. Here W is the weight
attached to each data. For transformation from one plane to the other, the
following procedure is adapted. It is possible to find an unique non singular
symmetric matrix P such that

PTP = PP = P2 = W. (17.107)

For transformation from one plane to the other we premultiply both the sides
of the regression equation by P−1. Let f = P−1(ε) such that E(f) = 0 then
E(ffT) = var (f) when the mathematical expectations are taken separately for
every term in the square n × n matrix ffT. We get

var (f) = E(ffT) = E(φ−1εεTφ−1). (17.108)

Since
(φ−1)T = φ−1

we can then write

P−1E(εεT) P−1 ⇒ P−1 var (ε) P−1

⇒ P−1 Wσ2 P−1 ⇒ P−1P2 P−1 σ2 = P−1 PPP−1 σ2 (17.109)

= Iσ2. (17.110)

Thus if we premultiply (17.105) by P−1, We obtain a new model in a new
plane i.e.,

P−1Y = P−1 Xβ + P−1ε (17.111)

Equation (17.111) is written as

Z = Qβ + f. (17.112)

It is now clear that if we apply the basic least squares theory to the (17.112),
since E (f) = 0 and var (f) = Iσ2, we get the normal equation as

QTQ b = QT Z (17.113)

⇒ XT W−1 X b = XT W−1Y (17.114)

⇒ b = (XT W−1X)−1 XT W−1Y. (17.115)

This is the basic formulation of the weighted least squares inverse. The vari-
ance – covariance matrix is

var (b) = (QTQ)−1σ2 = (XT W−1X)−1 σ2 (17.116)

and the sum of the squared residual is
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fTf = εT W−1 ε = (y − xβ)T W−1(y − xβ)

= ΔGT W−1 ΔGT. (17.117)

When the observations are independent and the errors are uncorrelated, all
the covariance terms will be zero and the variance – covariance matrix will
simply be a diagonal matrix.

Therefore the weighted least squares estimator can be written as
∧

ΔP =
(
XTW−1X

)−1
XTW−1ΔG (17.118)

and weighted ridge regressions estimator can be written as
∧

ΔP
∗

=
(
XTW−1X + K I

)−1
XTW−1ΔG. (17.119)

Here the data are weighted by the inverse square root of the data variance-
covariance matrix. (Inman, 1975).

The covariance matrix is given by

V = σ2
(
XTW−1A

)−1
(17.120)

where

σ2 =
ΔGTW−1ΔG

n − m
. (17.121)

Here σ2 is termed as the residual variance and n and m are respectively
the number of data points and number of parameters to be retrieved. The
parameter standard error or the parameter uncertainly is defined as the square
root of the diagonal elements of the parameter variance-covariance matrix.
Thus

√
V11,

√
V22 . . . . . . . . . etc. the parameter uncertainties are added to the

retrieved model parameters i.e., the estimated parameters will now be written
as (

m1 ±
√
V11

)
,

(
m2 ±

√
V22

)
, . . . ..etc.

Data variance covariance matrix W is assumed to be a diagonal variance
matrix with zero or negligible off diagonal covariance part.Reciprocals of the
standard deviations are data weights and is given by

W = (1/σ1, 1/σ2, 1/σ3, 1/σ4, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1/σN)

where variance is square of standard deviation.

17.11 Minimum Norm Algorithm for an Under
Determined Problem

17.11.1 Norm

Norm is a measure of distance or length i.e., the distance between dObs and
dPre or mPrior and mtrue. For each observations, one defines a predictable error
or misfit
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ei = dObs
i − dPr e

i .

The best line is the one with smallest over all error E.

E =
n∑

i=1

e2
1 = eTe.

This exactly is the squared Euclidean length. In the parameter domain L =
n∑
i=1

m2
i = mTm. Here E and L are respectively the square of sum of the

lengths in the data and parameter domains. Here mi = mtrue
i − mPr ior

i for
the ith parameter. The norm is indicated by double bar i.e., E = ‖e‖. The
L1, L2, L3- - - - - - - - - - -Lα norms are defined as

L1 norm = ‖e‖1 =

[
n∑
i=1

|e|1
]

(17.122)

L2 norm = ‖e‖2 =

[
n∑

i=1

|ei|2
]1/2

(17.123)

Ln norm = ‖e‖n =

[
n∑

i=1

|ei|n
]1/n

(17.124)

L∞ norm = ‖e‖∞ = max |ei| (17.125)

Successive higher norms give larger weightage to the largest element of e.
Therefore L∞ norm is the highest value of ei.

17.11.2 Minimum Norm Estimator

William Menke (1984) discussed this algorithm for solving underdetermined
problems using Lagrange multipliers. Underdetermined problems are those
where the number of data points are less than the number of unknown param-
eters to be determined. Underdetermined problems have generally infinite
number of solutions. It is difficult to choose the correct one out of many. That
is why some additional information known as a priori information are neces-
sary to interprete an underdetermined inverse problem. Lagrange multipliers
maximizes or minimizes a certain function using a constraint equation.

Here in this problem we have to find a model mestimated or mest that
minimizes

L = mTm =
∑

m2
e (17.126)

subject to the constraint equation that e = d − Gm = 0
where e is the error. The inverse problem is d = Gm. This problem can be
solved using Lagrange multiplier. We can minimize the function
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φ (m) = L +
N∑

i=1

λiei (17.127)

φ (m) = L+
N∑
i=1

λiei =
M∑
i=1

m2
i +

N∑
i=1

λi

[
di −

M∑
Gimi

J=1

]
(17.128)

where λI is the Lagrange multiplier, Gij is the frechet kernel. Taking the
derivations with respect to mq, we get

∂φ

∂mq
=

M∑
i=1

2
∂mi

∂mq
.mi −

N∑
i=1

λi
M∑
j=1

∂mi

∂mq
(17.129)

= 2mq −
N∑

i=1

λiGiq. (17.130)

Taking
∂φ

∂mq
= 0,

we get
2m = GTλ (17.131)

in matrix notation. Taking the constraint equation Gm = d, and substituting
this equation in (17.101), we get

d = Gm = G(GTλ/2). (17.132)

The matrix GGT is an N×N matrix. If its inverse exists then we get the value
of the Lagrange multiplier as

λ = 2
(
GGT

)−1
d. (17.133)

The expression for the minimum norm estimator for an under determined
problem is

mest = GT
(
GTG

)−1
d

= G−gd. (17.134)

G−g is a generalized inverse for an underdetermined problem. Whatever pre-
scriptions are made for least squares estimator for an over determined problem
regarding use of Marquardt’s coefficient to handle zero and very small eigen
values of the system matrix are also valid for under determined problems. The
least squares and minimum norm generalized inverses are respectively given
by

G−g =
(
GTG

)−1
GT (Least Squares) (17.135)

and
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G−g = GT
(
G GT

)−1
(Minimum norm) (17.136)

Generalized inverse gives mestimated or mest = G−gdobs from d = Gm. There-
fore we can write dPre = G mest = G(G−gdobs) = (GG−g)dobs.

= N dobs. (17.137)

The n × n square matrix N = GG−g is called the data resolution matrix.
The diagonal elements of this matrix give a quantitative idea about the data
importance.

Data importance n = diag(N).
Similarly model resolution matrix

mest = G−gdobs = G−g
[
G mtrue

]
(17.138)

=
[
G−gG

]
mtrue

= Rmtrue. (17.139)

Here R is m × m model resolution matrix. If R = 1, then each model is well
determined. Like N, it is also a diagonally dominant matrix.

Information density matrix uuT = In and resolution matrix vvT = In has
some similarity with N and R respectively. But the values do not come exactly
same. uuT = In and N = GG−g are in data space, vvT = Im and R = G−gG
are in the model space.

Dirichlet’s spread functions are defined as

Spread = (N) = ‖N − I‖ =
N∑

i=1

N∑
j=1

[Nij − Iij]
2 (17.140)

Spread = (R) = ‖N − I‖ =
M∑
i=1

M∑
j=1

[Rij − Iij]
2
. (17.141)

The spread qualitatively indicates the quality of inversion. Larger the spread
worse will be the inverted model. n and m are respectively the number of data
points and number of parameters. I is the identity matrix therefore Iij = 0.

17.12 Bachus – Gilbert Inversion

17.12.1 Introduction

Bachus – Gilbert theory of inversion is also a member of the linear inverse
theory. But the approach is significantly different from those we have discussed
so far. Here we describe and apply a method of finding the resolving power of
a finite set of data when these data are used to construct an earth model.

Bachus – Gilbert’s theory say that if we can construct an inverse problem
such that when we try to find out the physical property of the earth at a
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depth z0 say (m)Z0, then the mathematical system should pickup maximum
information from that depth z0 and very little information from above and
below that depth. In other words if we can construct a kernel which have dirac
delta type behaviour, then only it will be possible to pick up information
only from one depth. With finite number of data, it is not possible to get
such a sharp dirac delta type kernel. B-G named this kernel as an averaging
kernel A(z, z0). It not only picks up information from that depth z0 but also
carries some information from depths above and below. This averaging kernel
has certain width or spread. Lower the spread, sharper will be the pick of
the averaging kernel. B-G made the mathematical formulation in such a way
that they tried to minimize the spread using Lagrange multiplier and using
the constraint equation. i.e., the area under the averaging kernel in equal to
unity. So the deltaness criterion of the averaging kernel and minimization of
the spread function go together at all depths and the model parameter 〈m〉Z0

is determined. Gradual increase of the B-G spread function with depth will
roughly tell about the depth upto which the earth model could be estimated
with a certain degree of certainty using a finite number of data.

17.12.2 B-G Formulation

The important advantages of the B-G method are (i) layered earth approx-
imation is not required. The physical property say resistivity or density is
a function of the depth z only i.e. ρ = f(z) at the point of measurement.
Therefore data collected over a complicated Archean-Proterozoic geological
terrain can also be inverted using B-G approach (ii) depth of exploration of
the D.C resistivity, electromagnetic and magnetotelluric sounding data can
be estimated from B-G spread function.

B-G assumed that the earth functionals are linear and they are fre’che’t
differentiable. Therefore the linear earth functionals g1, g2, . . . . . . gN (field
data) can be connected to the earth model parameter through the Fredhom’s
integral of the first kind i.e.

gi (m) =

Z∫

Z0

Gi (z)m (z) dz (17.142)

where Gi(z) is a known function of z because g is a known linear functional.
So the inverse problem is what can we say about m(z) at z = z0 when all
we know is a set of g1, g2, . . . . . . gN collected on the surface of the earth. We
try to compute 〈m〉Z0 which is the average value of m taken within a short
interval z0 ± Δz0. These local averages are the model value at a particular
depth z0 within the resolving length z0 + Δz0 to z0 − Δz0. B-G defined the
local average using the averaging kernel in the form

〈m〉z0 =

z max∫

z0

A(z0, z)m (z) dz (17.143)
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where averaging kernel assumed to be unimodular and it is

z max∫

z

A(z0, z) dz = 1. (17.144)

The averaging kernel A is distributed in z i.e., at depths where we shall try
to compute m(z), we shall have to compute the averaging kernel to examine
the quality of inversion based on the strength of the data. Data quality and
adequacy improves the quality of A. Theoretically the nature of A should be
unimodular, for practical problems when the data contains noise, A can show
multimodular nature and spread may increase very fast. Ideally A (z0, z) =
δ(z − z0) where δ is the Dirac delta distribution. With only a finite number
of field data, available for computing 〈m〉Z0, we should not expect the local
average to be so localized.

We assume that the average 〈m〉Z0, whatever it turns out to be, depends
only on g1(m), g2(m) . . . . . . gN(m).

Since 〈m〉Z0 and g1(m), g2(m) . . . . . . gN(m) have linear relation, we can
write

〈m〉Z0 =
N∑

i=1

ai (z0) gi (m) (17.145)

These coefficients depends on the depth z0. At each depth we have to find out
these coefficients ai(z0) to estimate 〈m〉Z0 and the additional constraint is

A (z0, z) =
N∑

i=1

ai (z0)Gi (z) . (17.146)

So we have to determine the ai(z0) at all depths such that it satisfies (17.143)
(17.144) (17.145). B-G chose a function K (z0, z) which vanishes at z = z0 and
increases on both the sides of z0. B-G chose the function

K = 12

∞∫

0

(z − z0)
2A2 (z, z0) dz. (17.147)

Here the factor 12 in (17.147) is used so that the spread becomes equal to
width of the averaging kernel. We can write the value of K from (17.147) and
(17.146) in the form

K =
N∑

i=1

N∑
j=1

aiaj

⎧
⎨
⎩12

∞∫

0

(z − z0)
2Gi (z)Gj (z) dz

⎫
⎬
⎭ (17.148)

=
N∑

i=1

N∑
j=1

ai aj Sij. (17.149)
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In the matrix form
K = at S a (17.150)

where S = Sij.
K is interpreted as the spread around z0 (Oldenburg 1979). The matrix S is
called the spread matrix. The elements of matrix S can be written in simpler
computational form as

Sij =12

∞∫

o

(z − z0)
2Gi (z)Gj (z) dz (17.151)

=

⎡
⎣12

∞∫

0

z2Gi (z)Gj (z) dz

⎤
⎦− 2z0

⎡
⎣12

∞∫

0

z Gi (z)Gj (z) dz

⎤
⎦

+ z2
0

⎡
⎣12

∞∫

o

Gi (z)Gj (z) dz

⎤
⎦ . (17.152)

The construction of the averaging Kernel requires computation of averaging
coefficients aj(z0), (i = 1, 2, . . . . . . . . .N) around the depth of interest. These
coefficients are determined minimizing the spread using Lagrange multiplier
and using the constraint i.e., the area under the averaging kernel is equal to
unity. We can write (17.148) in the form

N∑
i=1

∞∫

0

ai (zo)Gi (z) dz = 1 (17.153)

⇒
N∑
i=1

aiui = 1 (17.154)

where

ui =

∞∫

0

Gi (z)dz. (17.155)

And in the matrix form we can write

⇒ atu = 1. (17.156)

The minimization of ‘at S a’ under the constraint atu = 1 using Lagrange
multiplier technique solves the problem of determining coefficients of the aver-
aging kernel. Applying this technique, the condition for minimization of the
spread with respect to a is

∂

∂ai

[
N∑
i=1

N∑
J=1

ai aj Sij − λ′
(∑

aiui − 1
)]

= 0 (17.157)
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where λ′ is the Lagrange multiplier
and when i = j, ai aj = a2

i and ∂
∂ai

= 2ai. Therefore

2
N∑

j=1

ai SiJ − λ′ui = 0 (17.158)

where

λ =
λ′

2
.

In the matrix form

S a − λ u = 0

⇒ a = λ S−1u. (17.159)

Since

atu = 1

⇒ λ ut S−1u = 1

⇒ λ =
1

utS−1u
. (17.160)

Hence
a = S−1 u/(ut S−1 u). (17.161)

Equations (17.159) and (17.161) shows respectively the values of the Lagrange
multipliers and the coefficients of the averaging kernel which minimizes the
spread. The corresponding model estimate is given by

〈m〉z0 = atd

=
ut S−1d
utS−1u

(17.162)

and the averaging kernel is determined as

A (z, z0) =
at G (z)
utS−1u

. (17.163)

Thus all the parameters of B-G inversion are obtained. But one problem is
yet to be solved i.e. how to determine the fre’che’t kernel G (z). Oldenburg
(1978 and 1979) have shown the procedure for determination of G (z) for
d.c resistivity and magnetotelluric inversion applying B-G method. In the
presence of noise, the spread matrix ‘S’ is replaced by W in the form.

W = (1 − α)S + α Cov (m). (17.164)

Here error in the model estimate is related to the error in the data. The
variance in the estimated model is considered as a measure of error. Covariance
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matrix is constructed and a fraction of that is taken in the modified spread.
α is a fraction. It varies from 0 to 1. For very good quality data α = 0,
and W = S. With increase in noise α increases. α = 1 for totally noisy
data. The averaging coefficients are obtained by minimizing at W a instead of
at S a. The coefficients thus obtained are the functions of α. The procedure
for minimizing W is the same as that for S. A trade off between resolution
and the variance-covariance is made for optimum choice of α.

In B-G inversion no initial choice of the model parameter is necessary.
Therefore it can be used for any kind of complicated geology. Any physical
property is assumed to be just a function of depth. One can see the strength of
the data and the quality of inversion from the nature of the averaging kernel.
One can directly see the depth of investigation of the data. Beyond a certain
depth, the B-G spread function explodes i.e., the spreads start increasing at
a very faster rate. That dictates the depth upto which the data could see the
subsurface.

17.13 Stochastic Inversion

17.13.1 Introduction

In this inversion approach most of the basic ingradients of inversion are
viewed from the angle of probility density functions although it is basically
a dual minimization approach. Instead of minimizing the error function in
successive iteration we maximize the probability density function assum-
ing Gaussian distribution for linear and linearisable problems. Some of the
ideas of Tarantola (1987) are described very briefly. Four classes of problems
(Fig. 17.10) viz, linear, linearisable, nonlinear but linearisable at the maximum

Fig. 17.10. Four classes of an inverse problems (a) linear (b) non linear but linearis-
able (c) nonlinear but linearisable at the maximum likelihood point (d) nonlinear
and not linearisable
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likelihood point and strongly nonlinear problems and three classes of prob-
ability density functions viz, joint probability density function, conditional
probability density function and marginal probability density function are
used (Freund and Walpole,1987). Since most of the geophysical problems are
nonlinear we work mostly with last three classes of problems. It has already
been mentioned that one linearises a nonlinear problem by truncating higher
order terms of the Taylor’s series expansion. The quantum of error present in
this approximation dictates the degree of nonlinearity of a problem. Higher
the degree of nonlinearity more will be the deviation of the nature of the prob-
ability density function from the Gaussian nature. In the stochastic domain
the existence of an inverse problem is connected with the existence of marginal
probability density function. Here there are more of mixing of information in
the (D × M) parameter space collected from the data (D) and Model (M)
spaces.

Errors due to modeling, instrumentation is expressed in the form of joint
probability density – functions θ(d,m) and ρ(d,m). Here ‘d’ stands for data
and m stands for model. ρ(d,m) is a mixture of information from ρ(d) and
ρ(m) where ρ(d) is the probability density function due to the data error
(dobs − dPre) and ρ(m) is the probability density function due to modeling
error (mPrior −mtrue). These probabilities are described in the form of Gaus-
sion distribution. These probabilities are combined to form a joint probability
density function. σ(d,m). It is the starting point of stochastic inversion. From
σ(d,m), we find out the marginal probability density functions σM(m) in the
model space and σD(d) in the data apace. Since geophysicists are mostly inter-
ested to get models from a set of data, therefore, we are interested in σM(m),
the marginal probability density function in the model space. It extracts all
information about the model from the joint a posteriori probability density
function σ(d,m). Figure 17.11 is a curtoon of stochastic inversion scheme.

Error due to modeling will always exist. We shall never be able to choose an
earth model which will exactly match with the reality. In general the chosen
model will always be much simpler than the real earth where the data are
collected. So there will always be some difference between dPre and dObs. Even
when we get dObs ≈ dPre in an iterative process there is no guarantee that we
obtained all the subsurface features in the earth model and in fact we retrieve
a much simpler model. Error due to instrumentation was severe in earlier days.
With sophistication in instrumentation in modern day digital electronics, error
due to instrumentation has significantly gone down. Tarantola expressed these
uncertainties in modeling in the form of Gaussian probability density function

θ (d |m ) =
(
(2π)ND det (CT (m))

)−1/2

∗

exp
{
−1

2
(d− g (m))t C−1

T (m) (d− g (m))
}
.

(17.165)

Here dPre = dCal = g (m). For linear inverse problem we have shown already
that we linearise at the reference point as
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Fig. 17.11. Conjunction of the state of information and extraction of model param-
eters

g (m) = g (mref) + Gref (m − mref) (17.166)

to start the inverse process where

Giα
ref =

∣∣∣∣
∂gi

∂m∞

∣∣∣∣
mref

. (17.167)

Here Gα
ref is the derivative at the reference point with respect to each unknown

parameters and each known parameters. It is often difficult to quantitatively
assess the error introduced due to linearisation of a non linear problem. Taran-
tola used the joint probability density function θ(d,m) over the space D ×M
to describe information about the resolution of the forward model. Similarly
two more probability density functions are defined viz.,

ρD (d) =
(
(2π)ND detC

(
dObs

))−1/2

∗

exp
{

1
2
(
d− dObs

)t
C
(
dObs

)−1 (
d− dObs

)}
.

(17.168)

Here dPre(d) is the actual input in the instrument and dObs is what we have
collected from the field. By apriori information, we mean information, which is
obtained independently of the results of measurements. The probability den-
sity function representing the a priori information will be denoted by ρM(m)
and is equal to

ρM (m) =
(
(2π)NM det (CM )

)−1/2

∗

exp
{
−1

2
(
m−mPr ior

)t
C−1
M (m−mPr ior)

} (17.169)
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Here we define the a priori information on model parameters as information
independent of the observations or data. The information we have in both
model parameters (m) and data (d) can then by described in the D×M space
by the joint probability density function

ρ (d,m) = ρD (d) ρM (m) . (17.170)

CD and CM are the data and model covariance matrices (Draper and Smith
1984).

17.13.2 Conjunction of the State of Information

The probability density function ρ(d,m) defined in the D × M space repre-
sents information both from data and a prior information about the model.
These two states of information combine with information about the error in
modeling to produce the a posteriori state of information σ(d,m) in the D×M
space and is given by

σ(d,m) = ρ (d,m) θ (d,m) (17.171)

σ(d,m) is the first step for entering into the arena of inversion. Once the a
posteriori joint probability density function in the D×M space is obtained, the
a posterior information in the model space is given by the marginal probabil-
ity density function σM (m) =

∫
D

d d σ (d,m) while the posteriori information

in the data space is σD (d) =
∫
M

d m σ (d,m). The marginal probability den-

sity functions σM(m) contain all information about the model parameters.
Geophysicists are mostly interested in σM(m) (Fig. 17.11).

17.13.3 Maximum Likelyhood Point

When the problems do not have small number of parameters and the com-
putation of σM (m) at any point ‘m’ is expensive. One should find out ways
to reach mML maximizing σM (m). This is the maximum likely hood point.If
σM (m) is a differential function of ‘m’ the maximum likely hood point can
be obtained using the gradient of σM (m) i.e., ∂σM/∂mα. σM (m) is in gen-
eral, an arbitrary complicated function of m. There is no guarantee that the
maximum likelyhood function is unique or that a given point which is locally
maximum is the absolute maximum.

The general expression for σM (m) is

σM (m) = Const.

exp
[
−1

2

[(
g (m) − dobs)tC−1

D −
(
g (m) − dobs)
+(m−mprior)tC−1

M (m−mprior)

]
.

(17.172)
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A. When the Problem is Linear

Instead of writing d = g(m), we write d = Gm where G is the lin-
ear operator acting from the model space into the data space. This gives
σM (m) = Const. exp(−S(m)) where

S (m) =
1
2

[
(Gm − dobs)

t C−1
D (Gm− dobs)

+ (m−mprior)
t
C−1
M (m−mprior)

]
. (17.173)

B. When the Problem is Non Linear

σM (m) = const. exp

[
− 1

2 (g (m) − dobs)
t
C−1
D (g (m) − dobs)

+ (m−mprior)
t
C−1
M (m−mprior)

]
. (17.174)

Since g(m) is not a linear function, for weakly nonlinear problems g(m) =
g (mprior)+Go (m−mprior) where Go represent the derivative operator with
element

Giαo =
[
∂gi

∂mα

]

mprior

. (17.175)

The aposteriori marginal probability density function will be approximately
linear to describe it adequately by its central estimator and the estimators
of dispersion. Among the central estimator, the maximum likelyhood point
value mML is chosen.

mML : σM (mML)max (17.176)

The maximum likelyhood point is given by

mmL = mprior +
[
GtoC

−1
D Go + C−1

M

]−1
GtoC

−1
D (dobs − g (mprior)) (17.177)

and the a posteriori covariance operator is approximately given by

C′M ≈ [
GtoC

−1
D Go + C−1

M

]−1
. (17.178)

For strongly nonlinear problems:
d = g(m) can be linearised only around the true maximum likelyhood

point mML

where
g(m) ≈ g(mML) +Gα (m−mML) . (17.179)

Here Gα represents the derivative operator with element

Giαα =
[
∂gi

∂mα

]
. (17.180)

The point mML to be obtained by iterative minimisation of S(m)
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S (m) =
1
2

⎡
⎣ (g (m) − dobs)

t
C−1
D (g (m) − dobs)

+ (m−mprior)
t C−1

M (m−mprior)

⎤
⎦ (17.181)

where mn+1 = mn + δmn. If mα is the point where we want to stop the
iteration, then mα = mML. The posterior covariance operator can then be
written as

C′M =
[
GtαC

−1
D Gα + C−1

M

]−1
. (17.182)

(iii) When the forward problem cannot be linearised a posterior probability
density remains far from Gaussian and global optimization methods should
be used.

17.14 Occam’s Inversion

Constable et al (1987) and Degroot-Hedlin and Constable (1990) developed
this approach for inversion for minimum structure by dual minimization of
roughness factors and data misfit using Lagrange multiplier. Roughness fac-
tors are defined by Constable et al (1987) as

R1 =
∫

(∂m/∂z)2 dz (17.183)

and
R2 =

∫ (
∂2 m/∂z2

)
dz (17.184)

where m(z) is a quantitative value of a parameter at a particular depth z. In
the case of dc resistivity it is an apparent resistivity. In the case of magne-
totellurics it is either an apparent resistivity or a phase. The mathematical
function for a particular geophysical tool can be written as

dj = gj(m), for j = 1, 2, . . . ..M (17.185)

where gj is a subject dependent functional for the forward problem associated
with the jth datum. R1 and R2 are respectively the two roughness functions
based on first and second derivatives of the model parameters with respect to
depth z. As mentioned, d = Gm for a linear problem and d = g(m) for a non
linear but linearisable problem. If σi is the standard deviation of the ith data
collected in the field, the weights in the weighted least squares are 1/σ1, 1/σ2,,
1/σ3. . .. . .. . .1/σN (Sect. 17.6). For dc resistivity sounding where the number
of observation are at the most 3 or 4 per electrode separation, 1%,2% or 5%
standard deviation for all data depending upon their quality (Inman 1975)
are assumed; even variable Ws are permissible. For MT standard deviations
are available for all apparent resistivities and phases after processing.

For linear problem the parameter estimator for Occam inversion is given by

m =
[
λ∂T∂ + (WG)TWG

]−1
(WG)T Wd (17.186)
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where λ−1 is the Lagrange multiplier used to maximize or minimize a func-
tion using a constraint equation (Sects. 17.7, 17.8). ∂(m) is the roughness
factor, and ∂T is its transpose. W,G and d are respectively the weights, linear
operator and data respectively. For a nonlinear problem as discussed already,

g(mi+Δmi) = g(mi) + J Δmi + ε (17.187)

where J is the linear differential operator obtained truncating higher order
terms of the Taylor’s series expansion. Elements of J forms the sensitivity
matrix in linearised inversion. The parameter estimator for non linear prob-
lems is

m =
[
λ∂T∂ + (WJ1)TWJ1

]−1
(WJ1)T Wd. (17.188)

Equations (17.188) and (17.186) are more or less the same where linear oper-
ator G is replaced by linear differential operator J. The roughness matrix R1

may be replaced by R2 or it may be kept as R1.
These roughness factors are defined by Constable and his coworkers as

R1 =
N∑

i=1

(mi − mi−1)
2 (17.189)

and

R2 =
N∑

i=2

(mi−1 − 2mi + mi)2. (17.190)

This roughness matrix can be written as

R1 = ‖∂m‖2 (17.191)

where ∂ is a N × N and is given by

∂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−1 1

−1 1
−1 1

−1 1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (17.192)

This dual minimization of roughness and data misfit in the modified weighted
least squares domain to achieve a smooth and minimum structure is Occam’s
inversion developed by Constable and his coworkers and is widely used by geo-
physicists to generate 2D models. For further details the readers are requested
to go through the original papers.

17.15 Global Optimization

17.15.1 Introduction

In global optimization one searches the entire parameter space by random walk
for solution of an inverse problem. These approaches are very much unlike the
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local search tools we have discussed earlier. Global search tools do not have
any problem for getting trapped in the local minima pockets. Because the
movements in the parameter space is by random jumping and not through
any systematic mathematical procedures. Once the forward problem is solved
inverse problem can be solved by random jump in model space and trial
and error. That eliminates the stability problem of a sensitivity matrix and
local minima problem . These inversion approaches move towards the global
minimum instead of a local minimum and hence they are classified as global
optimization tools. These global optimization tools choose a model by random
walk, compute the forward problem, compute the discrepancy between the
field data and model data in the form of an error function or cost function or
energy function, move to the next model by random jump and follow the same
procedure till you reach a model where the discrepancy is minimum between
the field data and the model data.

The members in this family of random walk are (i) Monte Carlo inversion
(ii) Simulated Annealing and (iii) Genetic Algorithm. Neural Network does
not come strictly under the random walk techniques. Monte Carlo method is
an unguided random walk technique without any artificial intelligence. Simu-
lated Annealing and Genetic Algorithm are guided random walk tools having
artificial intelligence. Neural network on the otherhand is a tool with artificial
intelligence but with a partially random approach at the beginning regarding
selection of weights. SA is designed bringing some analogy from the chemical
thermodynamics and chemical annealing process of metals. Genetic Algorithm
mimics the biological processes and goes through the survival for the fittest
test. Neural Network imitates the behaviours and functioning of the neurons
in the brain.That is why these networks are trained to do some specific jobs.

These tools are very powerful in the sense that MC, SA, GA search the
entire parameter space by random jumping. Since there is no mathematics for
inversion, there is (i) no problem of finding out the analytical derivatives or
frechet derivatives (ii) there is no stability problem in inversion. But problem
of non uniqueness remains because of the finite resolving power of the scalar
and vector potentials and the parameters generated out of these potentials can
be collected from the field free from any noise. (iii) both linear and nonlinear
problems can be handled with equal ease (iv) these optimization tools become
more powerful to handle 2-D/3-D problems.

Since several thousands computations of forward problem are involved, an
efficient and minimum time run algorithm for forward problem computation is
essential to use these tools. Otherwise the computation time requirement will
be prohibitive. Monte Carlo inversion needs more than one million forward
problem computations. The same process will continue for 10,000 times in
Simulated Annealing and more in Genetic Algorithm because GA works with
a population of initial models. Artificial Neural Network(ANN) is strictly not
a member of the global optimization tools. ANN tools are trained several
times to do a particular type of job by adjustment of weights in the hidden
layers through backward propagation of information from output to input.
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17.15.2 Monte Carlo Inversion

Monte Carlo inversion is an unguided random walk technique and without any
artificial intelligence component in it. In Monte Carlo inversion, the models
are chosen randomly in the parameter space, the forward models are com-
puted, the model data (dpre) are computed and are compared with the field
data(dobs), if the constraints imposed in this problem are satisfied, the cost
function or error function is within the prescribed limit then only that par-
ticular model is allowed to pass through the mesh. This model is one of the
successful model. The next model is chosen by the process of random walk
and the same procedures are repeated. This way out of one million trial runs
10 models may trickle through the Monte Carlo mesh.

All realistic, judicious and acceptable constraints must be used to reduce
the search space and computation time. Since most of the physical parameters
or properties are positive quantities, positivity constraint can be used by not
allowing any parameter to be negative. Each parameter is assigned an upper
and lower bound once the number of parameters to be retrieved is decided.
Dimensionality of the model (i.e. 1D, 2D or 3D) will dictate the number of
parameters to be retrieved. Apriori information obtained from other geophys-
ical methods or local geology or any other sources of reliable information can
be incorporated in the system. That is how the Monte Carlo mesh is prepared.
With so many constraints, very few models in one or two million trials will
cross all the barriers and trickle down as the prospective solutions. For each
parameter the upper and lower bounds are fixed i.e., mmax

i ≤ mi ≤ mmin
i

is set for all the parameters. Using the random number generator a random
numbers is taken to perturb the old model and the new model will be

mnew
i =≤ mmin

i + α
(
mmax

i − mmin
i

)
(17.193)

where 0 ≤ α ≤ 1. Larger the value of

N =
mmax

i − mmin
i

Δmi
(17.194)

finer will be the searching, better will be resolution and higher will be the
computation time. The number of successful models to be taken is generally
predefined. Probability density based on the error functions of each model
should be tested and the model showing the highest probability should be
taken as the most probable model. If several of peaks of the probability densi-
ties of the successful models are of the same order, then the mean and standard
deviations of the best three models should be taken. It is very unlikely that
all the twenty successful models will shows the same probability density of the
error function. If that happens then more models should be allowed to trickle
through the several hurdles. If they cross successfully, they become successful
models. Interpreter decides how many successful models will he choose for
further statistical analysis and decide to stop the inversion process. One main
advantage in the Monte Carle method is its inherent simplicity. Press (1968),
Wiggins (1969) used this approach for inversion of seismic data successfully.
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17.15.3 Simulated Annealing

Simulated annealing is one of the approaches for global optimization. Like
Monte Carlo inversion it is one of the random walk techniques, but with
certain artificial intelligence. Kirkpatrick (1983) first proposed this approach
of global optimization. It was later developed by Van Larhoven and Aarts
(1983), Rothman (1985, 1986), Geman and Geman (1984), Oldenburg (1978),
Sen and Stoffa (1995). This approach has certain similarity with the anneal-
ing process in chemical thermodynamics. The annealing is done to join two
metallic plates or to seal the cracks in a metallic plate. When a metal is heated
above its melting point and the molten matter is allowed to cool down slowly,
it gets crystallized and the annealing is done properly without leaving any
zone of weakness.

In simulated annealing we bring the concept of temperature and we call
it a controlling parameter although temperature has nothing to do with an
inverse problem. The energy function in thermodynamics is replaced by error
function. This error function is also termed as cost function or energy function
in global optimization. Gibb’s probability density function in thermodynam-
ics is

P (Ej) =
exp

(− Ei
KT

)
∑

exp
(− Ei

KT

) (17.195)

where K is the Boltzmon constant. In global optimization K is assumed to be
unity because it does not have any role in iterative inversion process.

Difference between the observed field data dobvs and synthetic data created
from the model i.e., dPre generates the error function, defined as

E (m) = (dObs − dPre)T(C−1
D )(dObs − dPre) (17.196)

where CD is the data covariance operator, discussed in the section of weighted
ridge regression. In simulated annealing the inverse problem starts with a very
high initial temperature or the controlling parameter. In successive iteration,
the temperature is lowered down slowly to make the Gibb’s probability density
function more and more sensitive. Many approaches of Simulated Annealing
are now available in the literature, viz. (i) Metropolis algorithm (ii) Heat bath
algorithm (iii) Fast Simulating Annealing (FSA) and (iv) Very Fast Simulated
Annealing (VFSA). In different approaches the cooling schedules are different.
Cooling schedules are the schemes for lowering down the temperature. The
different formats for lowering down the temperature are as follows :

(i)TK = T0(0.99)K or T0(0.98)K (ii) T =
T0

K
(iii) T =

T0

lnK
(17.197)

etc. The number of model parameters to be taken depends upon the structure
of a problem. For finite element and finite difference 2-D/3-D forward prob-
lems, a few elements are clubbed together to form one parameter, because of
prohibitive computation time. Too much of coarse structuring of a model will
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eliminate many essential details of a subsurface tomography. So a judicious
compromise is made between the computation time and the finer details to
be retrieved from the data. For 1-D earth models, number of data points can
be more than the number of parameters to make it an overdetermined prob-
lem. Each model parameter is assigned upper and lower bounds and the range(
mmax

i − mmin
i

)
is discretised M times. Higher the value of M finer will be the

model resolution.

Metropolis Algorithm

Metropolis (1953) first proposed this algorithm in Simulated Annealing (SA).
In that a small perturbation is given to model mi to obtain a new model
mi+1 such that error functions for the two models are respectively E (mi) and
E (mi+1). Difference in energy level ΔEi = (E(mi+1) − E (mi)) is computed.
If ΔEi < 0, the new model is accepted. If ΔEi ≥ 0, the new model is accepted
after examining the probability function P = exp(−ΔEi/T) where T is the
temperature (controlling parameter) in an optimization problem. This is the
basic point of the Metropolis algorithm. This step is repeated several times
at each temperature till the temperature comes to zero or very low value.
In Metropolis algorithm every parameter has finite probability of acceptance.
Geman and Geman (1984) has shown that one heads towards the convergence
of the problem and as the temperature or the controlling parameter is lowered
down the probability peaks become sharper and sharper. The perturbations
which reduces ΔEi are accepted.

Heat Bath Algorithm

In heat bath algorithm, once number of parameters in an inverse problem
is guessed, discretization in the parameter domain is completed choosing the
upper and lower bounds for each parameter as discussed in the previous sec-
tion. One value of each parameter is chosen at random using one of the ran-
dom number generators within the respective upper and lower bounds of each
parameter. Keeping the values of the second to the last parameter fixed, ran-
dom search is made for all possible values of the first parameter. Search lit-
erally means, for each value of the first parameter and the randomly chosen
other parameter values, the forward problems are solved, error functions and
Gibbs probability density are computed and the model with highest probabil-
ity is chosen as the preferable first parameter. Keeping now the first parameter
fixed at the chosen value and 3rd to last parameters are fixed at the first ran-
domly chosen values, the second parameter is varied from upper to the lower
bounds by random choice and the parameter with highest probable value of
m2 is chosen. This process will continue till the nth parameter mN is seen from
the upper to the lower bounds by random choice. That completes only one
iteration. Figure 17.12 shows the Similated Annealing tree for the 1st and 2nd
iteration for one dimensional three layer DC resistivity problems. The second
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Fig. 17.12. Simulated annealing tree in heat bath algorithm

iteration starts with lower temperature with the second set of upper and lower
bounds used for m1 to mN, found in the first iteration. This way the temper-
ature is lowered slowly till the complete convergence of the inverse problem
is achieved. In heat bath algorithm there is no rejection of models. 2000 to
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Fig. 17.13. Nature of convergence in VFSA inversion

10,000 iterations are needed for convergence. Because of random jump, the
probability, of a solution, getting trapped in a local minimum pocket, is zero.
Once a forward problem is solved, inverse problem is solved automatically. In
global search, there is no mathematics in an inverse problem so stability is
guaranteed. However computation time required to handle 10,000 iterations
remains as a problem. Geman and Geman (1984) showed that a necessary and
sufficient condition for convergence to the global minimum level for Simulated
Annealing is given by the following cooling schedule

T (K) =
T0

ln k
(17.198)

where T (K) is the temperature at iteration K.

Fast Simulated Annealing (FSA)

Szu and Hartley (1987) proposed a new algorithm known as Fast Simulated
Annealing. This algorithm uses Cauchy like distribution which shows very
sharp peak at lower temperature (Sen and Stoffa 1995). This Cauchy like
distribution is a function of temperature and is given by

f (Δmi) α
T

(Δm2
i + T2)1/2

(17.199)

where T is the temperature or the controlling parameter to be lowered as per
any specific cooling schedule. Δmi is the perturbation in the ith parameter
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model with respect to the present model. Szu and Hartely showed that for
choice of the perturbed model generation program, the cooling schedule for
convergence is chosen as

T (K) =
T0

K
(17.200)

where K is the number of iteration. The nature of Cauchy type distribution is
very much different from the Gaussian type distribution. At lower tempera-
ture, Cauchy type peaks can be used to find out the highest probability values
with greater sensitivity.

Very Fast Simulated Annealing (VFSA)

Ingber (1989, 1993) did several modifications of Simulated Annealing and
proposed a new algorithm known as Very Fast Simulated Annealing (VFSA)
Ingber proposed a new probability distribution for model generation such
that a slow cooling schedule is no longer required. The special features of this
algorithm are (i) each parameter can have different types of discretization
and different degree of perturbation (ii) the temperature or the controlling
parameter may be different for different parameters (iii) new probability dis-
tribution avoids Cauchy type distribution but avoids slow cooling and quick
convergence of an inverse problem. Thus it became a very effective tool to
handle geophysical inverse problems and is used by many geophysicists to
solve 2D/3D inverse problems. A brief sketch of the Ingber’s (1993) VFSA
model is

mk+1
i = mk + yi

(
mmax

i − mmin
i

)
(17.201)

where mk
i is the ith model parameters after the iteration K and this value is

within the upper and lower bounds i.e., mmin
i ≤ mk

i ≤ mmax
i .mk+1

i is the model
parameter after (K + 1) iteration and it is also within the upper and lower
bounds i.e. mk+1

i is also within mmin
i ≤ mk+1

i ≤ mmax
i . The special parameter

Yi is defined by (Ingber 1993) as

gT (y) =
NM∏
i=1

1

2 (|Yi| + Ti) ln
(
1 + 1

Ti

)

=
NM∏
i=1

gTi (yi) . (17.202)

Equation (17.202) has the following cumulative probability as

GTi (yi) =
1
2

+
Sgn (yi) ln

(
1 + |Yi|

Ti

)

ln
(
1 + 1

Ti

) . (17.203)

Thus a random number ui drawn from an uniform distribution U (0, 1) can
be mapped into the above distribution with the following formulae
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Yi = Sgn
(

ui − 1
2

)
Ti

[(
1 +

1
Ti

)|2ui−1|
− 1

]
. (17.204)

Distribution of global minimum can be statistically obtained using the cooling
schedule

Ti (k) = T0i exp
(
−CiK1/NM

)
. (17.205)

Ti is the controlling parameter for the ith model parameter and T0i the initial
controlling parameter in the model. The value of ui randomly varies within
+1 to −1. Sgn denotes the sign of the expression. So model perturbation has
some relation with the probability distribution of the respective parameters.
Generally Metropolis criterion is used here also for selection of the models
automatically. In global search, there is no mathematics in an inverse prob-
lem so stability is guaranteed. However computation time required to handle
10,000 iterations may be more as mentioned. Geman and Geman (1984) has
shown the conditions for convergence of the model. The temperature is used
to decide on the acceptance criterion. VFSA also has the flexibility of chang-
ing the cooling schedule. Figure (17.13) shows the nature of convergence in
VFSA applied to two dimensional DC resistivity problem. Convergence in an
inverse problem starts after several thousand iterations are over.

17.15.4 Genetic Algorithm

Introduction

Genetic Algorithm is one of the powerful tools for global optimization. It is
also based on the principle of random walk in the parameter space. GA has
artificial intelligence like SA and can handle strongly nonlinear problems. GA
was discovered by Holland (1977) and was brought to the present stage of
development by Goldberg (1989) and Davis (1991). The procedure for genetic
algorithm has some similarity with the biological evolution and survival for
the fittest. Like Monte Carlo inversion, and Simulated Annealing, GA does
not need any derivatives or curvature information. Therefore once the forward
problem is solved, inverse problem can be solved automatically because the
entire exercise is to choose some models, compute synthetic data, compare dPre

with dObs, compute the cost function or error function and go on choosing
the better and better models through certain guide lines in deciding on the
acceptance criterion.

Unlike other approaches, GA works with a population of models. Larger
the number models to start with more efficient will be the global search in
the parameter space. The basic guidelines for genetic algorithms are divided
into the following nine steps viz.,

(i) Selection of the even number (N) models from a large set of models.
(ii) Randomly generate N/2 number of pairs.
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(iii) Discretize the of model parameters in one, two or three dimensional
domain. In that process a continuous domain gets discretized.

(iv) Discretize each model parameter fixing the upper and lower bounds and
ρi be the number of models parameters for the parameter mi. Here mi

is the i th model parameter and ρi is the number of discretized values
between the upper and lower bounds. Larger the value of ρi finer will be
model resolution. ρi may be same or different for different parameters
of the model.

(v) Binary coding is done for each model parameter from upper and lower
bounds in O’S and 1’S and bit strings or chromosomes in GA language
are generated.

(vi) Generation of Concatenated strings.
(vii) Generation of randomly chosen pairs and crossovers with reasonably

high crossover probability are the next steps.
(viii) Mutation with reasonably low mutation probability is done next to

retain certain diversity in the models or to remove any bias.
(ix) Model updating or survival for the fittest test is done next. This is

the last step where the best models are chosen from the population.
The entire genetic operation is completed at this stage and only first
iteration of the Genetic algorithm is over at this stage. With the updated
models the second iteration starts. The entire operation continues till
the complete convergence is obtained upto a specified limit.

Selection

Since GA starts with a population of models instead of a single model, an arbi-
trarily 200 or 300 models are randomly generated using the random number
generator and the energy function or cost function or error function

E (m) =
1
NS

[
dObs − dPr e

]t [
dObs − dPr e

]
(17.206)

is computed where dObs and dpre as defined earlier are observed and predicted
field data. t is the transpose and NS is the number of data points. Gibbs
probability distribution

P (mij) =
exp (−Emij) /T
m∑
j=1

exp (−Emij) /T
(17.207)

is computed. T the temperature or the controlling parameter is also used
these days for model search the way it is used in simulated annealing. In case
we decide to work with 50 initial models, we select 50 models with relatively
higher probabilities from the arbitrary population of 300 models. For one
dimensional problems, 10 to 20 models are good enough to start with the
Genetic process. For two dimensional problem, initial population of 50 to 100
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should be appropriate. For three dimensional problem 100 to 1000 models
should be chosen to start with. One should remember that larger the number
of initial, models, higher will be the computation time and more efficient will
be the genetic algorithm process.

Discretization

Double discretization of the model space is done in two stages. In the first
stage, the discrete set of model parameters are assumed for an earth model,
where the physical property might be varying continuously. The second set
of discretization comes from fixing the upper and lower bounds for the model
parameters i.e.
where

mi = mmin
i + J Δ mi (17.208)

where J varies from 0 to Ni and

Δmi =
mmax

i − mmin
i

Ni
. (17.209)

So for a finite number of models N having M parameters the number of model
will be

N =
M∏
i=1

Ni. (17.210)

Parameter Coding

Q number of models are binary coded with 0’s and 1’s. Binary coding is
done to represent a model parameter, such that all the bits become zero
at the minimum value of the parameter and all the bits become one at the
maximum value as shown in the Fig. (17.14). Depending upon the level of
resolution needed and the discretization done, a parameter can be a 3, 4,
5 . . .. . . 9 bit string for one dimensional problem. for two /three dimensional
problem, the parameter can be of 15 to 20 bit string or even more. These ‘bits’
are called ‘genes’ which can take a value of ‘0’ or ‘1’ called alleles. For a 7 bit
string 27-1 discrete values of the model parameters will be obtained. For two
dimensional problems 15 bit strings have been used with success. These 7 bit,
9 bit or 15 bit strings are called chromosomes. One chromosome is generated
for one parameter. They are attached one after the other to obtain binary
coded concatenated strings. Larger the number of bits in a chromosome, longer
will be the concatenated string, higher will be the computation time. For
Two/three dimensional problems in finite difference or finite element forward
problem, the concatenated strings will be very long because each element or
a group of elements will form one parameter.
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Fig. 17.14. Genetic Algorithm structure: (a) Parameter coding and preparation of
concatenated string (b) selection of pairs(c) crossover (d) mutation

Crossover

These binary coded strings (Fig. 17.14) are randomly paired to generate Q/2
pairs of models. At this stage the crossover starts at randomly chosen crossover
point with high crossover probability. Crossover can be a single point or a
multipoint crossover. The exchange of bits or ‘genes’ take place to all the bits
on the right of the crossover point (Fig. 17.14). The bits, left to the crossover
point, remain unaltered. For multipoint crossover also, the crossover, is done
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with randomly selected crossover points for each chromosome and for each
parameter. But the crossover or floor crossing of the bits take place only to
the bits right of the crossover points. For two and three dimensional problems
multipoint crossover is advisable. For one dimensional problems single point
crossover works well. Genetic Algorithm is a very active area of research.
Therefore these procedures are also changing.

Mutation

After crossover is over, just to give little diversity and to remove any kind of
bias, mutation is done with low mutation probability. Here floor crossing of
one or two bits is done and allowed the system to converge. (Fig. 17.14). High
mutation probability will delay the convergence and may lead to Monte Carlo
type inversion. Mutation probability is always kept low.

Model update

This is the last genetic operation. This operation is also termed as the survival
for the fittest test. Three or four different approaches are available in the
literature regarding the model update. In this chapter Stochastic Remainder
Selection Without Replacement (SRSWR) as proposed by Goldberg (1989)
and as it is used by the author for inversion of one or two dimensional problem
is discussed .

Once Q
2 pairs of offspring models are generated from Q

2 pairs of parents.
Each of these modes had to pass through the survival for the fittest test. The
stronger models will survive and strengthen their position. The weaker models
are eliminated from the contest.

Each model has its own objective function or error function. The proba-
bilities of these new generation of populations are multiplied by the number
models present. Some of these fractional probabilities have integer numbers.
It can be 1 or 2 or 3. Some of the members do not have integer number. In
the selection for next generation of new models, all the models having integer
number will go first. If the model no.1 has the multiplied probability 2.5 (say),
then the model no.1 will go twice. If it is 3.4, then it will go thrice. Once all
the models having multiplied probability greater than 1 are taken care of,
the fractional part of the multiplied probabilities are taken. Higher fractional
parts are given preference to get a berth in the next generation models with
which the next generation genetic process will start. If a particular model
had multiplied probability 2.8 (say), then if gets two berths for two integer
numbers and one berth for higher fractional number. So this model gets three
berths to start the next genetic process. These are offspring models. Parents
models are destroyed after the crossover is completed.

If we start with 50 initial models, there will be 50 berths in the model
update. Who will occupy these berths and how. The berths are given to the
models with higher multiplied probabilities. The stronger models may occupy
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Fig. 17.15. Nature of convergence in two dimensional Genetic algorithm optimiza-
tion

3 or 4 berths. Weaker model have to vacate their berths. Weaker model means,
the models with less probability or higher error function or higher discrepancy
between the observed and predicted data.

Model updating continues this way in successive iterations till one gets the
convergence (Fig. 17.15). Ultimately the stronger models only will occupy all
the berths. Since the parameter values change within a model in successive
crossover, therefore near convergence the parameter values come quite chose
to each other in different models near global minimum point. The number
of models also reduces in successive iteration. Self learning process or the
artificial intelligence takes the model search in the direction of high probability
density models and makes it a powerful tool.

17.16 Neural Network

17.16.1 Introduction

Neural Network as the name suggests, mimics the functioning of brain. Arti-
ficial Neural Network (ANN) originated to simulate the complex behaviour of
the brain initially. Later it proved to be a versatile tool to be used in many
branches of science and engineering viz., pattern recognition, global optimiza-
tion, noise reduction and classification, data compression etc.
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These are some of the areas where artificial neural network can be and is
being used. This subject as such is vast and it is outside the scope of this
book. Here only a few basic points regarding the use of neural network for
global optimization of geophysical data will be highlighted very briefly.

There are millions of structure elements within the brain called neurons.
Millions of synapses are formed to connect these neurons so that the brain
becomes a parallel computing system. Synapses are also elements of structural
units, which are responsible for the interaction between the neurons. These
neurons with variable synaptic connection functions as information processing
units in the human brain. In neural network, the structure is made with
artificial neuron interconnected to each other. These artificial neural networks
are designed to function the way the brain does a particular job. Human brain
is an immensely superior system. ANN networks are trained to a particular
job and it tries to do that job only. Hopfields ( 1975 ) procedure is discussed
briefly.
A Neural network can be defined as follows: A neural network is a system
composed of many simple processing elements operating in parallel whose
function is determined by network structure, strengths of the connecting links.
The processing is performed at the nodes or neurons. In global optimization
problem, the structure of ANN consists of an input layer, one or more hidden
layers and an output layer. The number of hidden layers can vary from 1 to
n where the value of n will be problem dependent. For geophysical inverse
problems the input layer will contain the data and the output layer contains
all the models parameters obtained. Each of the nodes of the input layer is
connected with each of the nodes of the first hidden layer. Nodes of the input
layers are not connected to each other.

Each of the nodes of the output layer is connected to each of the nodes of
the nth hidden layer. That is how a neural net is constructed. The number of
data points of an inverse problem will dictate the number of nodes in the input
layer and the number of parameters to be retrieved from a set of data will be
equal to the number of nodes in the output layer. How many hidden layers
and how many nodes, required in each hidden layers, are decided through
repeated experiment while trying to solve a particular problem in a particular
field. Number of nodes in a hidden layer and number of hidden layers in a
problem are highly variable parameters. Each of these connections between
the nodes is assigned a certain weightage. These weights are initially selected
at random. Then the learning process or the training process starts. It starts
with known synthetic models for which both inputs and outputs are known.
The message about the discrepancy between actual output and the outputs
obtained with randomly chosen synaptic weights are back propagated through
preceptors and the weights are changed in successive iterations till the actual
output and computed output becomes more or less the same with already
prescribed minimum error level. This learning process is done several times
with noise free synthetic data and then with data mixed with Gaussian noise.
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Say for one-dimensional direct current resistivity or magnetotelluric prob-
lems, the neural net is trained for 2 to n hidden layers. The same program
trained for different models can be kept separately and used accordingly. The
artificial neural network acquires knowledge through this learning process that
involves modification of the connecting weights. The acquired knowledge is
stored in the form of modified weights. Information processing occurs at the
nodes simultaneously and the weights are gradually modified till the error
function or cost function is modified. Once a neural net is trained for a known
system, it is now ready to take the field data or experimental data to find out
the model. Neural net can function only for which it is trained. A net trained
for some other models or for some other purpose will generate wrong results.
Therefore the interpreter has to choose the properly trained package. Choice
of the forward model (ID or 2D or 3D) will dictate the proper choice of the
package. Except random choice of the synaptic weights at the beginning of
the training or learning process, there is nothing random is subsequent stages.
The functioning of the neural network is similar to gradient minimization in
an inverse problem.

17.16.2 Optimization Problem

The procedure is as follows:
Let the desired output values at different nodes aremtrue

1 . . . . . . . . . . . . . . . . . .
mtrue
M for a known system where as the actual computed model parameters

for the known synthetic data are mPr e
1 . . . . . . . . . . . . . . . . . .mPr e

M which passed
through the randon weights. The discrepancy between the actual and observed
values of the model parameters generate the error function

εM =
M∑
i=1

(
mtrue
i −mPr e

i

)2
. (17.211)

One obtains this mPr e
1 from all the connecting paths from the hidden layer

(s). Multi channel input comes from the hidden layers to the output layer
to generate a single output at a particular node. Since neural network is a
parallel processing system, the same process continues at all the nodes with
different interactions with the nodes or neurons of the hidden layer because
the interacting links and the synaptic weights are different. The processing
occur at the say j th node where the signals dhj are coming from the different
input nodes. Each of these input signals are multiplied by their weights to
generate the output function.

mj =
n∑
i=1

Wjid
h
i . (17.212)

These output values mj pass through a nonlinear activation function, gener-
ally a sigmoidal functions to produce the output Mj. Here
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Mj = fi

(∑
Wjid

h
i

)
. (17.213)

Superscript ‘h’ stands for the hidden layer. If input signals (data) are directly
connected with the output signals (model) then dhj will be only dj . Generally
one or more than one hidden layer (s) is / are necessary to generate the
desired output by gradual and systematic changes of weights. The output
Oi = fi (Mj) =

fi

(∑
Wjid

h
i

)
. (17.214)

This function maps the total input from all the nodes of a hidden layer to
generate the output, i.e., once the j th parameter output mPr e

1 is obtained,
it is compared with the true output mtrue

1 . This error signal
(
Otruej −Oobsj

)
is back propagated through perceptrons. Perceptron is an active layer, which
provides the learning process mechanism to the artificial neural network. The
learning process starts with the adjustment of weights at all sectors. The error
signals are then transmitted back ward from the output layer to each node or
neuron in the intermediate layer that contribute directly to the output layer
and the contribution comes from each node of the intermediate layer. The
error signal is also proportional to the fraction of the contribution made by
each node. This process repeats in each subsequent hidden layer till the back
propagation of information reaches the first hidden layer.

Briefly the procedures for training the network are as follows: (a) apply
the input synthetic data as a data vector in the input layer, (b) compare the
correct output with the output obtained with random selection of weights in
all the synaptic connections between neurons when the net is getting trained
with a synthetic model where both the inputs and outputs are known, (c)
the errors in each sector is computed, (d) one has to find out at this stage
whether the weights should be increased or decreased to reduce the error and
the quantum of change to be made in each weight in successive iteration, (f)
these corrections are then applied to each weights, (g) the whole process is
repeated till the training vector reaches a state where difference between the
true output and the observed output is minimized. The rate of change also
gets minimized at this stage, (h) the training is partially completed for one
model say a simple two layered earth, (i) separate neural nets be preferably
trained for 1D, 2D and 3D models, (j) the nets should be trained several times
for 2 to n layered earth models with synthetic data for 1D models. Once the
net is trained for synthetic data, Gaussian and random noises are added to
the input data and the network is trained again to take care of noise in the
field or experimental data. (l) Thus the training process is complete. So far as
the geophysical inverse problem goes, the field data are inserted at the input
layer and the model parameters are taken from the output layer.

Theory: Let the input and output vectors are respectively D and M where
D is the data space and M is in the parameter space. Here M = f(D)
where D stands for n real variables i.e.,number of data points and M con-
tains m real variables i.e., model parameters. The input vector (Fig. 17.16)
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Fig. 17.16. Neural Network Optimisation Problem with input, output and hidden
layers

DN = (Dy1 , Dy2 − −−−−−−−−−−−−−−Dyn) is applied to the
input layer. This information gets distributed in all the wings of the hidden
layer. A particular node in the hidden layer will have the input.

DN =
n∑
i=1

WjiD
h
i + Zhj (17.215)

where Wh
ji is the weight on the connections from the i th input unit and Zhj

is the threshold value. Superscript h stands for the hidden layer.

Kyj = fhj
(
Xh
yi

)
(17.216)

for Y th input node to J th output node for the hidden layer h. Therefore,
the equation for the output nodes are

X0
yg =

L∑
j=1

W 0
gjkyi + Z0

g (17.217)

and
m0
yg = f0

g

(
x0
yg

)
(17.218)

where the superscript ‘O’ stands for the outputs layer, L is the number of
output nodes and information comes from the g th hidden node from the last
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hidden layer to y th node at the output layer. W’s are the weights connecting
the g th node of the hidden layer to y th node of the output layer. They are
chosen randomly to start with. For geophysical inverse problem, we train the
net with a known model for which both input and output are known because
the mathematical solution of the forward problem is known. Therefore the
output values are mtrue and the output values obtained from the random
choice of the weights are mPr edicted or mPr e. The error is

εm =
M∑
g=1

(
mtrue
yg −mPr e

yg

)2
=

M∑
g=1

δ2yg. (17.219)

The back propagation or errors start at this stage and the signal reaches to
all the connecting links in the neural net and the whole iterative process is
continued to minimize the rate of change of weights in all the sectors till the
true output and the observed output becomes more or less the same. The
negative gradient of the error can be written as

−gradient εm =
(
mtrue
yg −mPr e

yg

)
f0
g

(
X0
yg

)
kyj . (17.220)

The magnitude of the weight change is proportional to the negative gradient.
The weights in the output layers are modified as

W 0
gj (e+ 1) = W 0

gj (e) + δW 0
gj (e) (17.221)

where
δW 0

gi(e) = α(mtrue
yg −mPr e

yg )f0
g (x0

yg)kyj . (17.222)

Here the factor α is the learning rate parameter and its value varies from 0
to l. Generally nonlinear sigmoidal output functions are used where

f0
g (xyg) =

(
1 + e−xig

)−1 (17.223)

e is the iteration number.
The weight adjustment is continued till the error is minimum. The same

net is tested mixing gaussian noise.
Once the learning process is over, the field data can be inserted as an

input and the outputs are obtained as model parameters. So far ANN could
be used successfully for geophysical 1D models. This tool is gradually getting
established for solution of 2-D/3-D inverse problems.

17.17 Joint Inversion

Joint inversion is a topic of inverse theory and it is an art of retrieving maxi-
mum possible information about the earth’s structure from more than one set
of data collected on the surface of the earth / in the air/ in a borehole. The
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data may originate from the same or different types of excitation as well as
for the same or different types of physical properties of the earth. The inverse
theory in geophysics, applied for a single set of data are also applicable for
joint inversion. It is now more or less an established fact that joint inversion
improves the resolution of the subsurface imaging because of greater infor-
mation content in the several sets of data Joint inversion can be done with
several sets of data together.

Different approaches do exist in joint inversion technology. The entire
domain of electromagnetics deal with complex quantities. Therefore, all obser-
vations have either real and quadrature components or amplitude and phase.
In Magnetotellurics we get apparent resistivities and phases. Apparent resis-
tivities and phases are jointly inverted always for any kind of interpretation
of MT data. Here we get two sets of data from the same excitation.In the
case of MT/GDS/Gravity/Magnetic fields we deal with naturally existing
fields. Joint inversion can be between (i) Magnetotellurics and DC resistivity
Harinarayana (1992), Sasaki (1989), Dobroka et al (2001), Vozoff and Jupp
(1975), Jupp and Vozoff (1977b) (ii) Magnetotellurics and Seismic Refraction
Dobroka et al (1991) (iii) MT and Seismic Reflection (iv) Magnetotellurics
and Geomagnetic Depth Sounding Ritz and Vassel (1986) (v) Gravity and
Magnetics Zehen and Pous (1993), Gallardo-Degado et al (2003) and Bosch
and Mcgaughey (2001), (v) Magnetotelluric and Magneto variational sound-
ing (vi) Surface waves and body waves in seismics (vii) different surface waves
(viii) Dc resistivity, MT, TEM, EMAP Meju et al., (1999) (ix) Gravity and
Seismics (Ursin et al, 2003) (x) Magnetics and Seismics (xi) Resistivity and
Induced Polarisation Roy and Rathi (1988), Roy et al (1995), Pelton et al
(1978) and Bhattacharyya et al (2003), (xii) Electromagnetics and Magnetics
Benech et al (2002), Seguin (1975) (xiii) Transient Electromagnetics and Mag-
netotellurics (Meju (1996), (xiv) Electromagnetics and DC resistivity Verma
and Sharma (1993), Sharma and Kaikkonnen (1999), Raiche et al (1999), (xv)
Seismic Reflection and Refraction Habro et al (2003), Zhang et al (1998), (xvi)
Seismic and DC resistivity Dobroka (1991), (xvii) local and regional teleseis-
mics (Federica et al (2003), (xviii) VLF and VLF R Kaikkonen and Sharma
(1998) and (xix) tomographic inversion. Therefore all possible combination of
joint inversions are possible. Although there are some apprehensions in differ-
ent group of scientists regarding feasibility and credibility of joint inversion
based on data originated from different physical properties. The important
question raised is whether one is allowed to frame a large sensitivity matrix
based on different sets of data of different physics origin.In reality it is found
that it works. Specially when we go for global optimization, the sensitivity
matrix does not exist and the technology is free from this issue of mixing of
information in the sensitivity matrix.

Joint inversion can be done in three to four different ways.First approach
is the preparation of the sensitivity matrix for different sets of data from
same or different fields together. Since the range and nature of variation of
different sets of data may be widely different, regularization of the sensitivity
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matrix is of primary importance (Jupp and Vozoff (1975)) Different sets of
data may have different regularization parameters before they are taken in
the same sensitivity matrix. Second approach is centered around inclusion of
global optimization techniques where sensitivity matrix is not required at all.
Different sets of data taken for joint inversion may or may not go through the
same global optimization technology. One set of data may go through Very
Fast Simulated Annealing, The second set may go through Genetic Algorithm
and the third set may go through the path of Artificial Neural Network or
Monte carlo Inversion. Since the binding force of joint inversion is missing
here therefore the freedoms of the interpreters are more here.

The third approach is the interactive inversion where two or three sets of
data are inverted one after another in one iteration. Second iteration starts
with the modified values of all the sectors. Here the data are collected from the
same excitation and one set of data are genetically connected with the other.
Different sectors gradually head towards convergence. Interactive inversion
also remains free from controversy on the issue on whether we are permitted
to bring seismic, em and gravity data under one umbrella and mix up.

A series of workers have worked on joint inversion with the sole intension
of resolving the subsurface with higher degree of clarity. Almost all possible
combinations of using geophysical tools for mapping the subsurface are being
tried to assess quantitatively or at least semiquantitatively the improvements
in clarity of images of subsurface with some additional finer details.

Hering et al (1995) did joint inversion of both dispersive Love and Rayleigh
waves on one hand and joint inversion of dipole-dipole, Schlumberger and
two electrode sounding data on the other and could achieve better resolu-
tion and finer details of the subsurface. Li and Oldenburg (2000) did joint
inversion of surface and borehole three component magnetic data and could
prepare a better 3D magnetic susceptibility map of the subsurface with bet-
ter depth control. Li-Yun Fu(2004) gave an example of interactive inversion
scheme with surface and borehole seismic data for better preparation of an
acoustic impedance model. Gallardo-Delgado et al (2003) did a joint inversion
of 3D gravity and magnetic data and have shown that ambiguity in gravity
and magnetic interpretation gets reduced considerably. Dobroka et al ( 2001)
have claimed better resolution of the subsurface by joint inversion of magne-
totelluric and DC resistivity data. Vozoff and Jupp (1975)and Vozoff (1975),
Verma and Sharma (1993) have shown that joint inversion of magnetotelluric
and direct current resistivity data can resolve thin bed with greater degree
of clarity. Even the problem of equivalence and suppression in geoelectrical
modeling can be handled more efficiently by joint inversion of MT and DC
resistivity data. Benech et al ( 2002 ) have shown that even by joint inversion
of electromagnetic and magnetic dada one can prepare the in depth magnetic
susceptivility map of the area. Raiche et al ( 1985 ) have shown that by joint
inversion of transient electromagnetics and DC resistivity, layer parameters
can be estimated with better degree of clarity. Joint error function. for seis-
mic refraction travel time and magnetotelluric apparent resistivity and phase
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is given by

ε =

[
1
ns

nt∑
i=1

(
toi − tci
toi

)2

+
1
nt

nt∑
i=1

(
ϕoi − ϕci
ϕoi

)2

+
1
nt

nt∑
i=1

(
ρoi − ρci
ρoi

)2
]

(17.224)
toi and tci are the observed and computed travel time, ϕoi and ϕci are the
observed and computed phases, while ρoi and ρci are the observed and com-
puted apparent resistivities, respectively, ns is number of seismic stations and
nt is the numbers of time periods at which MT field recording is made.
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B. Symbols used to Represent one Parameter
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b Scalars
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Cylindrical Polar Coordinate System

ER, Eθ, and Eψ Electric Field Componentss along the R,θ and ψ Directions in
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Hx, Hy and Hz Magnetic Field in the x,y and z directions in cartisian
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HR, Hθ, and Hψ Magnetic Field along R,θ and ψ directions in Spherical Polar
Coordinate System.

�aR,�aθ,�aϕ Unit Vectors in the three Mutually

Orthogonal Directions in Spherical Polar Coordinates

�ar,�aϕ,�az Unit vectors in the three Mutually

Orthogonal Directions in Cylindrical Polar Coordinate System

�FR, �Fθ, �Fψ Field components in spherical coordinates

�Fρ, �Fψ, �Fz Field components in cylindrical coordinates

R and r Distance

γ Propagation Constant

γ0 Free Space Propagation Constant

Tij Tensors

ξ/i Tensor

∈xy Electrical Permittivity – Tensor

q Volume density of charge

qv Volume density of charge

μ Magnetic Permeability

μ0 Free Space Magnetic Permeability
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∈ Electrical Permittivity

∈0 Free Space Electrical Permittivity

Jn Bessel’s function of the first kind and nth order

Jo Bessel’s function of the first kind of zero order

Yn Bessel’s function of the second kind and nth order

Yo Bessel’s function of the second kind and zero order

In Modified Bessel’s function of the first kind and nth order

Io Modified Bessel’s function of the first kind and zero order

Kn Modified Bessel’s function of the second kind and nth order

Ko Modified Bessel’s function of the second kind and zero order

Pn Legandre’s Polynomial of nth order

Qn Infinite series of nth order

Hn Henkel’s function of nth order

Ho Henkel’s function of 0th order

Pm
n Associated Legendre’s Polynomial of the first kind and nth

order

Qm
n Associated Legendre’s function of the second kind and nth

order.

A1, A2 . . . AN Kernel Functions

B1, B2, . . . BN − 1 Kernel Functions

k12, k23 etc Reflection factors

ρa Apparent Resistivity

K1 and K1
1 Modified Bessel’s function of the second kind and first order

and its derivative

π(w, k, k1) Legendre form of elliptic integral of the third kind

π(λ, α) Jacobian form of the elliptic integral of the third kind

Snα, Cnα and dnα Elliptic Functions

Θ(K + iK/ − α) Jacobi’s theta function

z(φ) Jacobi’s zeta function

c Velocity of electromagnetic wave

f,n Frequency

δ Skin depth

�π Hertz vector
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�F Fitzerald vector

∇2 Second Order Differential Operator

I1 Modified Bessel’s function of the first kind and first order

K1 Modified Bessel’s function of the second kind and first order

In+ 1
2

Modified Bessel’s function of first kind and fractional order

Kn+ 1
2

Modified Bessel’s function of the second kind and fractional
order.

G(r, r0) Green’s function

L Operator

−→
�G Dyadic Green’s function

S Source matrix

φ Column vector of potentials

φ (x,y,z) Potential due to a line source

N Shape function

fc(x, y) Polynomial function

Wi Galerkin’s weights

ξ, η Natural coordinates

[J] Jacobian matrix

U,u Eigen vectors

V,v Eigen vectors

d data

A Matrix

AT Transpose of the Matrix A

〈m〉zo Model value at a depth zo

mmax Maximum value of the parameter

mmin Minimum value of the parameter
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Field, 535–560
Analytic Function, 263
Angular Frequency, 354
Anisotropy, 133, 257, 258
Antiferrimagnetic substances, 106
Antiferromagnetic substances, 101
Associated Legendre’s Polynomial, 200
Attenuation factor, 350, 351, 384, 385
Averaging kernel, 638–642

Bachus Gilbert Inversion, 536
Bessel’s Equation, 172
Bessel’s Function, 172, 177, 181
Biot and Savart Law, 107
Borehole Geophysics, 207, 208, 243, 352
Bouguer Correction, 69, 70
Boundary Conditions, 371, 477, 483, 495
Boundary Value Problems, 34

Cartisian Coordinates, 83, 158, 516
Cauchy Reimann Equations, 265
Classification of Fields, 19–25
Complete Elliptic Integrals of the first

kind, 294
Complete integrals of Complementary

modulus, 298
Complex function, 264
Complex variables, 263
Concept of potential, 25

Conditional probability, 598
Conduction current, 353, 383, 384, 386,

492, 530, 531
Conformal Mapping, 267
Conformal transformation, 263, 270,

278, 291
Conjunction of the state of informa-

tion, 600
Conservative field, 20, 25, 28
Construction of an inverse problem, 564
Convergence, 607–624
Cooling schedule, 606
Coulomb’s Law, 76, 98
Covariance matrix, 589
Cramer’s rule, 211
Curl of a vector, 11
Current density, 131, 133, 141
Cylindrical Polar Coordinate, 30,

154, 162

Data resolution matrix, 592
Data space, 564, 619
Declination D, 118–121
Diamagnetic Substance, 100
Dielectric constant, 78
Differential Equations, 38
Differential form of the Ohm’s Law, 131
Dimension of a problem, 36
Dipole Field, 144–149
Dipoles, 84
Dipping Interface, 253
Dirac Delta Function, 447
Direct current flow field, 127, 149
Dirichlet’s Problem, 34
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Dirichlet’s spread function, 592
Discretization, 483, 613
Displacement current.365, 384
Displacement vector D, 79
Divergence, 498, 500, 558
Divergence of a vector, 6
Dot product, 3, 6, 7, 574
Downward Continuation, 535, 536, 537,

547, 550, 551, 552, 556, 559
Drift Correction, 71
Dyadic Green’s Function, 529
Dyadics, 466

Eddy Current, 350, 351, 357, 362
Eigen value, 41, 576, 577
Eigen vector, 576–577
Electrical conductivity, 32, 133
Electrical force field, 77
Electrical Images, 329–347
Electrical Permittivity, 77–79
Electrical Resistivity, 129
Electromagnetic field, 394, 399, 408,

416, 421, 552, 556
Electromagnetic Field due a long line

source, 416
Electromagnetic Field due to a

Conducting Cylinder, 428
Electromagnetic Field due to a Spherical

Body, 434
Electromagnetic wave, 349, 356–358, 366
Electrostatic Charge, 79
Electrostatic energy, 86
Electrostatic field, 88
Elementary wavelet, 354
Elements, 1–16
Elliptic Function, 300–302
Elliptic Integral, 297–305
Elliptic Integral of the Third Kind, 303
Elliptic Polarisation of Electromagnetic

Waves, 356
Energy Minimisation, 499
Equation of Continuity, 132
Equations, 38
Euclidean Space, 564
Even determined problem, 568
Existence of an inverse problem, 564

Faraday’s law, 104
Fast Simulated Annealing, 609, 610

Ferrimagnetic Substance, 101
Ferromagnetic Substance, 100
Field of Force, 17
Finite difference formulation, 473–481
Finite Element Formulation, 496–507
Fitzerald Vector, 369
Forward Problem, 448, 471, 472
Fourier Cosine Transform, 480
Fredhom’s Integral, 40–41
Frequency, 388
Frobeneous Power Series, 187, 243

Gal, 44
Galerkin’s approach, 471, 496, 497, 509,

512, 515
Gauss’s divergence Theorem, 8
Gauss’s flux theorem, 151
Gauss Elimination, 514
General solution Laplace Equation

for an anisotropic earth, 31, 34,
260, 261

General Solution of Laplace Equation
for an isotropic Earth, 233, 260

Genetic Algorithm, 561, 565, 604,
611–616, 623

Geomagnetic field, 118
Geomagnetic Micropulsations, 122
Global Field, 17, 24
Global Matrix Equation, 514
Global optimization, 603
Gradient of a Scalar, 4
Gravitational Field, 47–58, 62, 72
Green’s Equivalent Layers, 322
Green’s First Identity, 307
Green’s Formula, 312
Green’s Function, 445–469
Green’s Function as a Kernel Function,

457–460
Green’s function for Dirichlet’s

Problem, 34–36
Green’s Function for Elliptic Equa-

tions, 39
Green’s Function for Solution of Simpler

Potential Problems, 471
Green’s Second Identity, 308
Green’s Theorem and Estimation of

Mass, 317
Green’s Theorem and Poisson’s

Equation, 11
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Green’s theorem and Poisson’s
Equation, 11

Grid, 483–484

Harmonic Analysis, 536
Harmonic Function, 308
Heat bath algorithm, 607
Helmholtz electromagnetic Wave

Equation, 366
Hertz Vector, 369
Hilbert space, 563, 564, 569, 570, 574
Horizontal Magnetic Dipole, 399
Hysteresis Loop, 102

Idem Factor, 468
Identity Matrix, 447
Identity Operator, 450
Illposed Problem, 570
Inclination, 118
Inphase Component, 386
Integral Equation, 550–551
Intensity of Magnetisation, 98
Intrinsic Impedance, 385
Inverse Cosine Transform, 497
Inversion of potential field data, 561
Irrotational field, 20
Isoparametric finite element, 471, 496,

497, 522
Isotropic Medium, 32

Jacobi’s elliptic integrals of the third
kind, 294

Jacobi’s Theta Function, 302
Jacobi’s Zeta Function, 302
Jacobian Elliptic Functions, 300
Jacobian matrix, 517
Joint Inversion, 621
Joint Probability Density Function, 599

Kernel function, 210, 212, 219, 223, 225,
252, 445, 449, 453

Lagrange Interpolation Formula, 550
Lagrange multipliers, 578
Laplace Equation in Cartesian

Co-ordinate System, 156
Laplace Equation in Cylindrical Polar

Coordinates, 162
Laplace Equation in Direct Current

Flow Domain, 152–153

Laplace equation in generalised
curvilinear coordinates, 153

Laplace Equation in Spherical Polar
Coordinates, 201

Laplace Equation with Nonlaplacian for
Transitional Earth, 232–253

Latitude Correction, 70
Layered Earth Problem in DC Domain,

207
Least Square Estimator, 586
Legendre’s from of elliptic integrals

third kind, 293
Legendre’s function of the second kind,

188, 191
Legendre’s function’s of the first kind,

188
Legendre’s Polynomial, 193
Linear differential operator, 567
Linearised parameter in optimization,

600, 613
Line Electrode, 136
Line Integral, 10
Local field, 25
Local minima pockets, 569
Long line cable, 416
Long Period Variations, 122
Lorentz Force, 108
LU decomposition, 476

Macroscopic field, 25
Magnetic Dipole, 94
Magnetic field intensity H, 104
Magnetic Flux B, 102
Magnetic Moment, 98
Magnetic permeability, 98, 100, 107
Magnetic properties, 98
Magnetic Scalar Potential, 115
Magnetic susceptibility, 99
Magnetic vector potential, 114
Magnetomotive Force (MMF), 112
Magnetosphere, 120, 121
Magnetostatic energy, 117
Magnetostatic field, 92, 93
Magnetostatics, 91–125
Magnetotellurics, 389
Marginal probability density func-

tion, 598
Marquardt’s Coefficient, 587
Matrix, 449, 506, 507
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Maximum likelihood point, 597
Maxwell’s Equation, 366, 375
Mesh, 475
Metric Space, 563, 573
Metropolis algorithm, 607
Microscopic field, 25
Minimum norm algorithm, 578
Mixed problem, 36
Model resolution matrix, 592
Model space, 562
Model update, 615
Modified Bessel’s function of the first

Kind, 40
Modified Bessel’s Function of the

Second Kind, 41
Monte Carlo Inversion, 604
Mutual Inductance, 358

Natural Coordinates, 496, 515, 522
Naturally occurring fields, 19
Neumann Boundary Condition, 36
Neumann problem, 36
Neural network, 616–624
Newton’s law of gravitation, 44
Newton, 43, 44, 45
Newtonian Potential Field, 21
Nodal points, 483
Node, 474
Non-Conservative field, 20
Non Laplacian Equations, 240–241
Non Laplacian fields, 23
Non-linear problem, 565
Non-Newtonian potential field, 21
Non-solenoidal field, 21
Nonuniqueness, 564, 568
Norm, 563, 572, 573, 578

Occam’s Inversion, 602
Optimization, 603
Oscillating horizontal magnetic

dipole, 408
Out of Phase Component, 362
Overdetermined Problems, 568

Paramagnetic Substance, 101
Parameter coding, 613
Parameter standard error, 589
Period, 350
Perturbation Centroid Frequency, 388

Plane wave front, 381
Plane wave incidence, 385
Point source, 134–136
Poisson’s Equation, 116, 127, 307, 316,
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Poisson’s Relation, 116
Polynomial functions, 496, 515
Poynting Vector, 376
Predicted data, 616
Primary Field, 357, 361, 362
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Principle of Reciprocity, 128
Principle of Superposition, 127
Probability density function, 598
Propagation constant, 349

Random walk technique, 604
Rank of a matrix, 575
Rayleigh-Ritz energy, 497
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Refraction of current, 143
Regular function, 311
Residual variance, 564
Resistivity, 496–507, 622
Resolution, 584
Ridge Regression, 586
Rotational field, 20

Scalar, 1
Scalar potential field, 23
Schwarz-Christoffel Transformation,
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Secondary Field, 356
Sectoral Harmonics, 204
Selection, 612
Self Adjoint Operator, 449
Sensitivity matrix, 603
Separation of Variables, 158, 163,
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Shape Functions, 497, 502, 503, 505,

511, 522
Simulated Annealing, 565, 604, 606
Singular value Decomposition, 578, 583
Skin depth, 387
Solar emissions, 121
Solar Quiet Day Variations, 121
Solenoidal Field, 21
Sommerfeld formula, 404
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Spherical harmonics, 151
Stability, 567
Static Field, 20
Stationary Field, 20
Stochastic Inversion, 565
Stoke’s Theorem, 12
Subsurface kernel, 212
Surface impedance, 386
Surface Integral, 7
Surface Kernel, 212
Synthetic model, 564

Taylor’s series expansion, 537
Telluric field, 280, 284, 289, 290,

295, 296
TE Mode, 495
Temperature, 612
Tensor, 32
Tesseral harmonics, 202
Tikhnov’s Regularisation, 571
TM Mode, 494
Transitional Layer, 240, 241, 243
Transmission coefficient, 331
Transverse Electric Mode, 491
Transverse Magnetic Mode, 491

Underdetermined Problems, 590
Universal Gravitational constant G, 44,

45, 53, 63
Upward Continuation, 320

Variable field, 20
Variance-covariance matrix, 589
Variational approach, 497
Vector, 1–16
Vector Algebra, 1–16
Vector Green’s Function, 447
Vector Potential, 94, 114, 324, 349,

359, 367
Vertical oscillating electric dipole, 394
Vertical Oscillating Magnetic

Dipole, 399
Very fast Simulated Annealing, 610
Volterra’s Integral equations, 40

Wave Length, 354
Wave Number, 350, 355
Weber Lipschitz Integral, 403
Weighted Ridge Regression, 606
Well Posed Problem, 567

Zonal Harmonics, 203
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