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Preface

Two professors of Geophysics Late Prof. Prabhat Kumar Bhattacharyya and
Late Prof. Amalendu Roy developed the courses on Potential Theory and
Electromagnetic Theory in 1950s for postgraduate students of geophysics in
the Department of Geology and Geophysics, Indian Institute of Technology,
Kharagpur, India. The courses had gone through several stages of additions
and alterations from time to time updating during the next 5 decades. Prof.
Bhattacharyya died in 1967 and Prof. Amalendu Roy left this department
in the year 1961. These subjects still remained as two of the core subjects
in the curriculum of M.Sc level students of geophysics in the same depart-
ment. Inverse theory joined in these core courses much later in late seventies
and early eighties. Teaching potential theory and electromagnetic theory for
a period of 9 years in M.Sc and predoctoral level geophysics in the same
department enthused me to write a monograph on potential theory bringing
all the pedagogical materials under one title “Potential Theory in Applied
Geophysics”. T hope that the book will cater some needs of the postgrad-
uate students and researchers in geophysics. Since many subjects based on
physical sciences have some common areas, the students of Physics, Applied
Mathematics. Electrical Engineering, Electrical Communication Engineering,
Acoustics, Aerospace Engineering etc may find some of the treatments useful
for them in preparation of some background in Potential Theory. Every dis-
cipline of science has its own need, style of presentation and coverage. This
book also has strong bias in geophysics although it is essentially a mono-
graph on mathematical physics. While teaching these subjects, I felt it a
necessity to prepare a new book on this topic to cater the needs of the
students. Rapid growth of the subject Potential Theory within geophysics
prompted me to prepare one more monograph with a strong geophysics bias.
The areal coverages are different with at the most 20 to 30% overlap. Every
book has a separate identity. Students should go through all the books because
every author had his own plans and programmes for projecting his angle of
vision.
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This book originated mainly from M.Sc level class room teaching of three
courses viz. Field Theory — I (Potential Theory), Field Theory -II (Electro-
magnetic Theory) and Inverse theory in the Department of Geology and
Geophysics, L.I.T., Kharagpur, India. The prime motivation behind writing
this book was to prepare a text cum reference book on Field Theory (Scalar
and Vector Potentials and Inversion of Potential Fields).This book has more
detailed treatments on electrical and electromagnetic potentials. It is slightly
biased towards electrical methods. The content of this book is structured as
follows:

In Chap. 1 a brief introduction on vector analysis and vector algebra is
given keeping the undergraduate and postgraduate students in mind. Because
important relations in vector analysis are used in many chapters.

In Chap. 2 I have given some introductory remarks on fields and their clas-
sifications, potentials, nature of a medium, i.e. isotropic or anisotropic, one,
two and three dimensional problems, Dirichlet, Neumann and mixed boundary
conditions, tensors, differential and integral homogenous and inhomogenous
equations with homogenous and inhomogenous boundary conditions, and an
idea about domain of geophysics where treatments are based on potential
theory.

In Chap. 3 I briefly discussed about the nature of gravitational field. New-
ton’s law of gravitation, gravitational fields and potentials for bodies of sim-
pler geometric shapes, gravitational field of the earth and isostasy and guiding
equations for any treatment on gravitional potentials.

In Chap. 4 Electrostatics is briefly introduced. It includes Coulomb’s law,
electrical permittivity and dielectrics, electric displacement, Gauss’s law of
total normal induction and dipole fields. Boundary conditions in electrostatics
and electrostatic energy are also discussed.

In Chap. 5 besides some of the basics of magnetostatic field, the similarities
and dissimilarities of the magnetostatic field with other inverse square law
fields are highlighted. Both rotational and irrotational nature of the field,
vector and scalar potentials and solenoidal nature of the field are discussed.
All the important laws in magnetostatics, viz Coulomb’s law, Faraday’s law,
Biot and Savart’s law, Ampere’s force law and circuital law are discussed
briefly. Concept of magnetic dipole and magnetostatic energy are introduced
here. The nature of geomagnetic field and different types of magnetic field
measurements in geophysics are highlighted.

In Chap. 6 most of the elementary ideas and concepts of direct current
flow field are discussed. Equation of continuity, boundary conditions, different
electrode configurations, depth of penetration of direct current and nature of
the DC dipole fields are touched upon.

In Chap. 7 solution of Laplace equation in cartisian, cylindrical polar and
spherical polar coordinates using the method of separation of variables are
discussed in great details. Bessel’s Function, Legendre’s Polynomials, Associ-
ated Legendre’s Polynomial and Spherical Harmonics are introduced. Nature
of a few boundary value problems are demonstrated.
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In Chap. 8 advanced level boundary value problems in direct current flow
field are given in considerable details. After deriving the potentials in different
layers for an N-layered earth the nature of surface and subsurface kernel func-
tions in one dimensional DC resistivity field are shown. Solution of Laplace
and nonlaplace equations together, solution of these equations using Frobe-
neous power series, solution of Laplace equations for a dipping contact and
anisotropic medium are given.

In Chap. 9 use of complex variables and conformal transformation in
potential theory has been demonstrated.A few simple examples of transfor-
mation in a complex domain are shown. Use of Schwarz-Christoffel method
of conformal transformation in solving two dimensional potential problem of
geophysical interest are discussed in considerable detail. A brief introduction
is given on elliptic integrals and elliptic functions.

In Chap. 10 Green’s theorem, it’s first, second and third identities and
corollaries of Green’s theorem and Green’s equivalent layers are discussed.
Connecting relation between Green’s theorem and Poisson’s equation, esti-
mation of mass from gravity field measurement, total normal induction in
gravity field, two dimensional nature of the Green’s theorem are given.

In Chap. 11 use of electrical images in solving simpler one dimensional
potential problems for different electrotrode configurations are shown along
with formation of multiple images.

In Chap. 12 after an elaborate introduction on electromagnetic waves and
its application in geophysics, I have discussed about a few basic points on
Electromagnetic waves, elliptic polarization, mutual inductance, Maxwell’s
equations, Helmholtz electromagnetic wave equations, propagation constant,
skin depth, perturbation centroid frequency, Poynting vector, boundary con-
ditions in electromagnetics, Hertz and Fitzerald vector potentials and their
connections with electric and magnetic fields.

In Chap. 13 T have presented the simplest boundary value problems in
electromagnetic wave propagations through homogenous half space. Bound-
ary value problems in electromagnetic wave propagations, Plane wave prop-
agation through layered earth (magnetotellurics), propagation of em waves
due to vertical oscillating electric dipole, vertical oscillating magnetic dipole,
horizontal oscillating magnetic dipole, an infinitely long line source are dis-
cussed showing the nature of solution of boundary value problems using the
method of separation of variables. Electromagnetic response in the presence
of conducting cylindrical and spherical inhomogeneities in an uniform field
are discussed. Principle of electrodynamic similitude has been defined.

In Chap. 14 T have discussed the basic definition of Green’s function and
some of its properties including it’s connection with potentials and fields,
Fredhom’s integral equations and kernel function and it’s use for solution of
Poisson.s equation. A few simplest examples for solution of potential problems
are demonstrated. Basics of dyadics and dyadic Green;s function are given.

In Chap. 15 I have discussed the entry of numerical methods in poten-
tial theory. Finite difference, finite element and integral equation methods are
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mostly discussed. Finite difference formulation for surface and borehole geo-
physics in DC resistivity domain and for surface geophysics in plane wave
electromagnetics (magnetotellurics ) domain are discussed. Finite element
formulation for surface geophysics in DC resistivity domain using Rayleigh-
Ritz energy minimization method, finite element formulation for surface geo-
physics in magnetotellurics using Galerkin’s method, finite element formula-
tion for surface geophysics in magnetotellurics using advanced level elements,
Galerkin’s method and isoparametric elements are discussed. Integral equa-
tion method for surface geophysics in electromagnetics is mentioned briefly.

In Chap. 16 I have discussed on the different approaches of analytical
continuation of potential field based on the class lecture notes and a few
research papers of Prof. Amalendu Roy. In this chapter I have discussed the
use of ( a) harmonic analysis for downward continuation, (b) Taylor’s series
expansion and finite difference grids for downward continuation, (¢) Green’s
theorem and integral equation in upward and downward continuation, (d)
Integral equation and areal averages for downward continuation, (e) Integral
equation and Lagrange’s interpolation formula for analytical continuation.

In Chap. 17 I have discussed a few points on Inversion of Potential field
data. In that I covered the following topics briefly, e.g., (a) singular value
decomposition(SVD), (b) least squares estimator,(c) ridge regression estima-
tor, (d) weighted ridge regression estimator, (e) minimum norm algorithm
for an underdetermined problem, (f) Bachus Gilbert Inversion, (g) stochas-
tic inversion, (h) Occam’s inversion, (i) Global optimization under the fol-
lowing heads, (i) Montecarlo Inversion (ii) simulated annealing, (iii) genetic
algorithm, (j) artificial neural network, (k) joint inversion.The topics are dis-
cussed briefly. Complete discussion on these subjects demands a separate book
writing programme. Many more topics do exist besides whatever have been
covered.

This book is dedicated to the name of Late Prof.P.K.Bhattacharyya and
Late Prof. Amalendu Roy, our teachers, and both of them were great teachers
and scholars in geophysics in India. Prof.Amalendu Roy has seen the first
draft of the manuscript. I regret that Prof. Amalendu Roy did not survive
to see the book in printed form. I requested him for writing the chapter on
“Analytical Continuation of Potential Field Data” He however expressed his
inability because of his poor health condition. He expired in December 2005 at
the age of 81 years. I am grateful to our teacher late Prof. P. K. Bhattacharya
whose inspiring teaching formed the basis of this book. He left a group of
student to pursue research in future to push forward his ideas.

Towards completion of this monograph most of my students have lot
of contributions in one form or the other. My students at doctoral level
Dr. O. P. Rathi, Chief Geophysicist, Coal India Limited, Ranchi, India,
Dr. D. J. Dutta, Senior Geophysicist, Schlumberger Well Surveying Corpo-
ration, Teheran, Iran, Dr. A. K. Singh, Scientist,Indian Institute of Geo-
magnetism, Mumbai, India, Dr. C. K. Rao, Scientist, Indian Institute of
Geomagnetism, Mumbai, India, Dr. N. S. R. Murthy, Infosys, Bangalore,
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India, and masters level Dr. P. S. Routh, Assistant Professor of Geophysics,
University of Boise at Idaho, USA, Dr. Anupama Venkata Raman, Geo-
physicist, Exxon, Houston, Texas, USA, Dr. Anubrati Mukherjee, Schlum-
berger, Mumbai, India, Dr. Mallika Mullick, Institute of Man and Enviroment,
Kolkata, India, Mr. Priyank Jaiswal, Graduate Student, Rice University,
Houston Texas, USA, Mr. Souvik Mukherjee, Ex Graduate student, Uni-
versity of Utah,Salt Lake City, USA Mrs. Tanima Dutta, graduate student
Stanford University, USA have contributions towards development of this vol-
ume. My classmate Dr. K. Mallick of National Geophysical Research Institute,
Hyderabad have some contribution in this volume. In the References I have
included the works of all the scientists whose contributions have helped me in
developing this manuscript. Those works are cited in the text.

The author is grateful to Dr. P. S. Routh, my son in law, for critically going
through some of the chapters of this book and making some useful comments.
I am grateful to my elder daughter Dr. Baishali Roy, senior geophysicist,
Conoco Phillip, Houston, Texas, USA, for computer drafting of many dia-
grams of this book, collecting some reference materials and purchasing a few
books for me, needed to write this monograph. I am grateful to my younger
daughter Miss Debanjali Roy, research student, University of Miami, Florida,
USA for collecting some literatures for me from the University library. I am
grateful to Mr. Priyank Jaiswal, graduate student Rice University, Houston
Texas for making arrangement for my visit to Rice University Library. I am
grateful to Mr. M. Venkat at Katy, Texas for offering me car ride upto Rice
University Library for an extended period. I am grateful to Mr. Subhobroto
Sarkar, senior computer engineer, Dell,Salt lake Kolkata for his help in scan-
ning the diagrams. His all round help in providing softwares to computer main-
tenance is gratefully acknowledged. I am grateful to Ms Lilly Chakraborty and
Mr. Sudipta Saha of Printek Point, Technology Market, IIT, Kharagpur for
typing the first draft of the manuscript. Second draft of the manuscript was
typed jointly by Mr. Dilip Kumar Manna, Technology Cooperative Stores,
IIT, Kharagpur and Mr. Rana Roy and his associates at High Tech Point,
Jadavpur University Calcutta. I am grateful to Mr. S. P. Hazra, Department
of Mining Engineering, Mr. Tapan Sarkar, Department of Geology and Geo-
physics and Mr. Mukti Ram Bose, Department of Electrical Communication
Engineering and Radar Centre, all from IIT, Kharagpur for drafting many
diagrams of the book. I am grateful to my wife for her patience and tolerating
the troubles she faced for bringing home considerable amount of work and
using a part of home as office space.

I am grateful to the Director, IIT, Kharagpur and Dean, Continuing Edu-
cation Programme, IIT, Kharagpur for financial support regarding prepa-
ration of the first draft of the book... The author is grateful to the Vice
Chancellor, Jadavpur University for sanctioning an office room in the Depart-
ment of Geological Sciences such that this type of academic programme can
be pursued. I am grateful to Council of Scientific and Industrial Research,
New Delhi, India for sanctioning the project titled “Development of a new
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magnetotelluric software for detection of lithosphere asthenosphere boundary”
(Ref.No.21(0559)/02-EMR-II ) to pursue the academic work as an emeritus
scientist.

I hope students of physical sciences may find some pages of their interest.

September, 2007 Dr. K.K.Roy
Emeritus Scientist
Department of Geological Sciences

Jadavpur University
Kolkata-700032, India
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Elements of Vector Analysis

Since foundation of potential theory in geophysics is based on scalar and vector
potentials, a brief introductory note on vector analysis is given. Besides pre-
liminaries of vector algebra, gradient divergence and curl are defined. Gauss’s
divergence theorem to convert a volume integral to a surface integral and
Stoke’s theorem to convert a surface integral to a line integral are given. A
few well known relations in vector analysis are given as ready references.

1.1 Scalar & Vector

In vector analysis, we deal mostly with scalars and vectors.

Scalars: A quantity that can be identified only by its magnitude and
sign is termed as a scalar. As for example distance temperature, mass and
displacement are scalars.

Vector: A quantity that has both magnitude, direction and sense is termed
as a vector. As for example: Force, field, velocity etc are vectors.

1.2 Properties of Vectors

(i) Sign of a vector. If AB is vector V then BA is a vector —V
ii) The sum of two vectors (Fig. 1.1)

e e
AB + BC = AC. (1.1)
Here
— — — —
AB + BC = BC + AB. (1.2)

iii) The difference of two vectors
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iv)

vi)
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y

A X

Fig. 1.1. Shows the resultant of two vectors

A=bC (1.4)
i.e., the product of a vector and a scalar is a vector.
Unit Vector:
A unit vector is defined as a vector of unit magnitude along the three

mutually perpendicular directions i j k. Components of a vector along
the x, y, z directions in a Cartesian coordinate are

A=7A, +jA, + kA, (1.5)

Vector Components: Three scalars Ay, Ay, and A, are the three compo-
nents in a cartisian coordinate system (Fig. 1.2). The magnitude of the

vector A s [A] = /A + A2 + A2
When A makes specific angles o, B and v with the three mutually per-

pendicular directions x, y and z, cosines of these angles are respectively
given by (Fig. 1.3)

f< A A
= Az
J
).f\ g y
Ax

Fig. 1.2. Shows the three components of a vector in a Cartesian coordinate system
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o« Ax

A Ay

Fig. 1.3. Shows the direction cosines of a vector

Ax Ay .
cosa = ,cos 3 = .
A g A A
In general cos o, cos B, cos y are denoted as Ix, ly and 1z and they are
known as direction cosines.
vii) Scalar product or dot product: The scalar product of two vectors is a
scalar and is given by (Fig. 1.4)

and cosvy = (1.6)

A.B = ABcos6 (1.7)

i.e. the product of two vectors multiplied by cosine of the angles between
the two vectors. Some of the properties of dot product are

a) AB=B.A,
b) ij=jk=Fki=0and (1.8)

Here i, j, k are the unit vectors in the three mutually perpendicular direc-
tions.
d) AB=ABx+A,By +A,B,. (1.9)

viii) Vector product or cross product:
The cross product or vector product of two vectors is a vector and its
direction is at right angles to the directions of both the vectors (Fig. 1.5).

B

0
A

Fig. 1.4. Shows the scalar product of two vectors
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AxB

\/

Fig. 1.5. Shows the vector product of two vectors

|A x B| = ABsiny

where Y is the angle between the two vectors A and B.

Some of the properties of cross product are

a) AxB=-BxA,

b) A x A =0,

o) ixj=Fk,

d) jxk=1,

e) Kxi=],

f) i:xi::O,

g) 1xj=0,

h) kxk=0 and

i) Ax B=(AyB. — A.B,)i+ (A.By — AyB.)j + (As By —

In the matrix form, it can be written as

B R
AxB=|A, A, A,
B, By, B,

1.3 Gradient of a Scalar

(1.10)

(1.11)

(1.12)
AyB,)k.

(1.13)

Gradient of a scalar is defined as the maximum rate of change of any scalar
function along a particular direction in a space domain. The gradient is a
mathematical operation. It operates on a scalar function and makes it a vector.
So the gradient has a direction. This direction coincides with the direction of
the maximum slope or the maximum rate of change of any scalar function.

Let ¢(x,y,2) be a scalar function of position in space of coordinate x, y, z.
If the coordinates are increased by dx, dy and dz, (Fig. 1.6) then

9 9o 90

do = 8de+ 8ydy+ 9

dz.
Z

(1.14)
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u+du
P(x+dx, y+ dy, z+dz)

P(x,y,2)

Fig. 1.6. Change of position of a scalar function in a field

If we assume the displacement to be dr, then
— - - —
dr = idx + jdy + kdz. (1.15)

In vector algebra, the differential operator V is defined as

- -0 -0 -0

V=1 j k 1.16
Z(’?x t oy + 0z ( )
and the gradient of a scalar function is defined as
00 200 -0
= k. " 1.1
grad ¢ 18x+J8y+ Py (1.17)

The operator V also when operates on a scalar function 6(x,y,z), we get

B A
Vo =TgytTg, Ty, (1.18)

where gf:, g;’i and gi’ are the rates of change of a scalar function along the
three mutually perpendicular directions. We can now write

¢ + dp = const,
¢ = consth.

Gradient of a
scalar function

Fig. 1.7. Gradient of a scalar function, the direction of maximum rate of change of
a function: Orthogonal to the equipotential lines or surface
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(200 =00 S0P\ (- > -
do = (Zay —l—]ay +k8z) (zdx—kydy—i—kdz) (1.19)

= (V0).dr

where dr is along the normal of the scalar function ¢(x,y,z) = constant. We
get the gradient of a scalar function as d¢ = (V¢).dr = 0, when the vector
Vo is normal to the surface ¢ = constant. It is also termed as grad ¢ or the
gradient of ¢. (Fig. 1.7).

1.4 Divergence of a Vector

Divergence of a vector is a scalar or dot product of a vector operator V and
a vector A gives a scalar. That is
. A, A A, Lo

V-A= 8(% + 88; + aaz = divA. (1.20)
This concept of divergence has come from fluid dynamics. Consider a fluid of
density p(x,y,z,t) is flowing with a velocity V (x, y, z, t). and let V = vp.v
is the volume. If S is the cross section of a plane surface (Fig. 1.8) then V.S
is the mass of the fluid flowing through the surface in an unit time (Pipes,
1958).

Let us assume a small parallelepiped of dimension dx, dy and dz. Mass
of the fluid flowing through the face F; per unit time is Vydx dz = (pv)y
dx dz(S = dxdz).

Fluids going out of the face Fs is

dxdydz

z dxdz / dxdz
/

/-
Vvdxdz _/

dz
o Vi, ay Oxdz

dy

R

X

Fig. 1.8. Inflow and out flow of fluid through a parallelepiped to show the divergence
of a vector
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Vytdydx dz = <Vy + 38\/ydy> dx dz. (1.21)

Hence the net increase of mass of the fluid per unit time is

(’9Vu> dxdz = %Vy dzxdydz. (1.22)
Y

Vydx dz — (Vy + ay

Considering the increase of mass of fluid per unit time entering through the
other two pairs of faces, we obtain

(avx ov, V.
- -

= . 1.2
P dy 92 ) dxdydz = —(V.V)dx dy dz (1.23)

as the total increase in mass of fluid per unit time. According to the principle
of conservation of matter, this must be equal to the rate of increase of density
with time multiplied by the volume of the parallelepiped.

Hence 5
—(V.V)dx dy dz = ((;) dx dy da. (1.24)
Therefore P
_op
v =, (1.25)

This is known as the equation of continuity in a fluid flow field. This concept
is also valid in other fields, viz. direct current flow field, heat flow field etc.
Divergence represents the flow outside a volume whether it is a charge or a
mass. Divergence of a vector is a dot product between the vector operator V
and a vector V and ultimately it generates a scalar.

1.5 Surface Integral

Consider a surface as shown in the (Fig. 1.9). The surface is divided into the
representative vectors dsy, dsg, dss.... etc (Pipes, 1958).
Let V; be the value of the vector function of position Vi(x,y,z) at ds;.
Then

Lim VdS —//VdS (1.26)

As—0
n—oo =1

The sign of the integral depends on which face of the surface is taken positive.
If the surface is closed, the outward normal is taken as positive.

Since L . .
dS =1dS, +jdSy +k dS., (1.27)

we can write
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Ta
ds

X

Fig. 1.9. Shows the surface integral as a vector

// V.ds = // (Vx dsx + Vy dsy + V, ds,). (1.28)
S S

Surface integral of the vector V is termed as the flux of V through out the
surface.

1.6 Gauss’s Divergence Theorem

Gauss’s divergence theorem states that volume integral of divergence of a
vector A taken over any volume V is equal to the surface integral of A taken
over a closed surface surrounding the volume V| i.e.,

/5/(%@)@ = /S/ff.ds. (1.29)

Therefore it is an important relation by which one can change a volume inte-
gral to a surface integral and vice versa. We shall see the frequent application
of this theorem in potential theory.

Gauss’s theorem can be proved as follows. Let us expand the left hand
side of the (1.29) as

B 04, 04, O0A.
///(V.A)dv-///( O + ay + 92 )dxdydz
e
:/// 04, .d;r:dydz—l—/// 04y dzdydz
Ox oy
% 1%
0A,
+/// 92 dxdydz. (1.30)
1%
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Ay

dSz

=T P,

>

Fig. 1.10. Shows the divergence of a vector

Let us take the first integral on the right hand side. We can now integrate
the first integral with respect to x, i.e., along a strip of cross section dy dz
extending from Py to Ps.(Fig. 1.10).

We thus obtain

// Baziw drdydz = // [Ay (22,9, 2) — Az (21,y, 2)] dydz. (1.31)

Here (x1,y,2) and (x2,y,z) are respectively the coordinates of Py and Pa. At
P1, we have
dy dz = —dS,

and at Po

dy dz = dSx. (1.32)

Because the direction of the surface vectors are in the opposite direction.

Therefore 94
/// 5 *dxdydz = //Am ds,. (1.33)
T

where the surface integral on the right hand side is evaluated on the whole
surface. This way we can get

/// aaAy dxdydz :// A, dS, and (1.34)
Y

0A, B
/// 95 da:dydz-//Az ds,. (1.35)
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If we add these three components, we get Gauss’s theorem

/// (V.V)dv = // (Ax dSx + Ay dSy + A, dS,) = //A.dS. (1.36)

1.7 Line Integral

Let A be a vector field in a space and MN is a curve described in the sense
M to N. Let the continuous curve MN be subdivided into infinitesimal vector
elements (Fig. 1.11)

dly,dlp,dls — — — — — — — dl,..

The sum of these scalar products, is

N N
S A di, = /A.dl. (1.37)
M M

This sum along the entire length of the curve is known as the line integral of
A along the curve MN. In terms of Cartesian coordinate system, we can write

N N
/A.dl = /(Axda:—l—Aydy—FAzdz). (1.38)
M M

Let A be the gradient of ¢, a scalar function of position, then

A=V0o (1.39)

N N N
19J0) 19J0) oo}

Adl = [ (Ve)dl = ( dr + _"dy+ dz). (1.40)
Al ]\l ]\Z Ox oy 0z

and

N

z
o
Adl,
Adl,
M
\/ N

P

X

Fig. 1.11. Shows the paths of movement for line integral of a vector
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Since
gidx + gidy + gi)dz = do, (1.41)
we get
N N
/A.dl = /dd) =oN — dum (1.42)
M M

where the value of ¢,; and ¢y are the values of ¢ at the points M and N.
Therefore, the line integral of the gradient of any scalar function of position
¢ around a closed curve vanishes. Because if the curve is closed, the point M
and N are coincident and the line integral is equal to ¢y; — ¢ and is equal to

zero. In other words
/ Adl + / A.dl = 0.

MON NPM
Hence
//Y.dl:— / Adl. (1.43)
MON NPM

This concept of line integral with a vector function, which is a gradient of

another scalar function, is used later to define potential in a scalar potential
field.

1.8 Curl of a Vector

Curl or circulation of a vector operates on a vector and generates another
vector (Fig. 1.12). It is written as V x A, ie., it is a cross product of the
vector operator V and a vector A. Curl of a vector can be explained using
the concept of line integral. If A is a vector, the curl or rot of A (circulation
or rotation) is defined as the vector function of space obtained by taking the
vector product of the operator V and A and its direction is at right angles to
the original vector. It is written as V x A. So we can write

— = — - (9Az aAy e aAI aAZ
curl A=V x A= ((‘9y — 6z>+j(8z - (%)

L (04, 0A,
Cp(0 oAy, was

It can be written in a matrix form as

R
VxAd=|0 2 2. (1.45)
Ay Ay A,
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Curl A

A

Fig. 1.12. Shows the circulation of a vector

If A =V¢, then
- %0 9%
V x A=Vx (V) _1<8y82 - 8z8y>
S0 9N (9% 0% _
+ (823){ a 3X8Z) Tk <8X3y a 8X8y> =0 (1.46)

Curl of a vector is zero if that vector can be defined as a gradient of another
scalar function.

1.9 Line Integral in a Plane (Stoke’s Theorem)
To show the connection between line integral and curl of a vector, let us

compute the line integral of a vector field A around an infinitesimal rectangle
of sides Ax and Ay lying in the xy plane as shown in the (Fig. 1.13).

A
D(x,y+Ay) < C(x+Ax,y+Ay)
v B
>
A(x,y) B(x+Ax,y)
>

Fig. 1.13. Shows the line integral in a plane to explain stokes theorem
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We can compute ¢ A.dl around the rectangle writing down the contribu-
tions towards this integral from different sides as follows:

Along AB — A Ax
Along BC — (Ay + 8(;47! Ax) Ay
x

Along CD — — (Aw + 8(;490 Ay) Az (1.47)
Y

Along DA — —A,Ay.

Here Ax and Ay are infinitesimally small. Adding the various contributions,
we obtain

Adl = (8;;/ - 85;) AzAy (1.48)
ABCD
It can be written as
7{ Adl = (6 X K)stxy (1.49)
ABCD

where V x fL is the z-component of the curl of A and dsyy is the area of the
rectangle ABCD.

If we take a closed surface s in the xy plane (Fig. 1.14) and the space is
divided into several rectangular elements of infinitesimally small areas, the
sum of the line integrals of the various meshes is given by

y
4

yd - \\

\ v )

\\\ N
~L_] =

» X

Fig. 1.14. Shows that the vectors only on the boundary remains and the vectors
inside get cancelled
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nyA.dl =3 (VxA), dsay. (1.50)
r=1 . r=1

Contributions to the line integrals of the adjoining meshes cancel each other.
Only the line integrals in the periphery remain.

Hence -
Z]{A.dz = 7{A.dl (1.51)
r=17. c

7{A.d1 - //S(v x A), dsyy. (1.52)

This relation is valid for all the components. Therefore we can write

]{A.dl = // (V x A)ds. (1.53)

This is Stoke’s theorem. It states that surface integral of a curl of a vector
is equal to the line integral of the vector itself. It is a mathematical tool to
convert surface integrals to line integrals and vice versa.

and

1.10 Successive Application of the Operator V

In vector aniﬂysis, for successive application of operator V, we can take the
vector V x B for V x V x A. where B is V x A. If we expand this equation
in cartisian coordinate, we get

i ]k
VxAd=|4 b 5 (1.54)
Az Yy z

Here Ay, Ay and A, are respectively the x, y and z components of A in a
cartisian coordinate. Equation (1.54) is

0A. aAy) +j<8Am - GAZ) ~<aAy 04,

Curl A=1 < oy 9% 92 P +k P oy > (1.55)

and curl B is

T~
Dy
Vo

VxVxA= (1.56)

0A. _ 0Ay (aAz _ aAz) 0Ay  9A,
oy 0z 0z ox ox Jy
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aAy 0A, 9 (04, 0A.
dy y 02\ 0z ox
) aA L0 [0A, DA,
0z 0z ox \ 0x dy

0 (0Ax O0A, 0 (0A, O0A,
{('?X((% a ax)_8y<8y_ az)} (1.57)

A, A, 82AZ}

{

+

8y3x Oy? 022 + 0z0x
~[0%A,  O0%*A, 0A, 0?A,
+ - -y
0z0y 072 ox?  Oxdy
%A, O%A, B %A, B 0?A,
oydx  Ox2 dy?  Oyoz |~

The ith component can be written as
~[ 0 (0Ax O0A, O0A, 0?A,  0%A.  0%A,
jl{@x(@x * Oy i Bz)_<€9x2 * Oy? i 522)}' (1.59)

Writing the j th and k th component as in (1.59), we can write

(1.58)

VxVx A=V (V.A)-viA
or curl curl A = grad div A — V2A. (1.60)

Equation (1.60) is an important relation and is used quite often in electro-
magnetic theory.

1.11 Important Relations in Vector Algebra

Some important relations in vector algebra, needed in potential theory, are
presented in this section. A couple of relations are derived in the text. The
other relations can be derived. They are

i)

bxc=bixa=2caxb (1.61)

ii) i x (B x a) — (38)b — (5.6) g (1.62)

iii) (5 X B) . (6 X ;1) = &b x (6 X &) (1.63)
—3 (B.d%— B.a*)
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iv) (3 x5) x (¢xd) = (axbd) e (axbe)d (1.64)
v) V(0+y) =Vo+ Vy (1.65)
vi) V (0y) = 0Vy + yVo (1.66)
vii) v (a’+ B) —V.a+Vh (1.67)
viii) V. (08) = 0V.& + &V (1.68)
ix) v (5 x B) PN E—aV XD (1.69)
X) ﬁx(é‘ﬂ?):ﬁxa#ﬁxf) (1.70)
xi) V x (07) = OVA + Vo x & (1.71)
$) 9 (@5) = @v)b+ (5.9)a+ (3% (VxB) +5x (Vxad) (172)
xiii) v x (5 x B) — &V.h-DV.d+ (B.v) i (V)b (1.73)
xiv) ¥ x (6 x fY) —VV.A- VA (1.74)
xv) V x (Vo) =0 (1.75)

xvi) V.V x&=0. (1.76)
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Introductory Remarks

In this chapter the basic ideas of (a) fields and their classifications (ii) poten-
tials (iii) boundary value problems and boundary conditions (iv) dimensional-
ity of a geophysical problem (v) nature of a medium in earth science (isotropy
and anisotropy, homogeneity and inhomogeneity) (vi) Tensors (vi)Nature of
equations encountered in solving geophysical problems (vii) Areas of geo-
physics controlled by potential theory are introduced.

2.1 Field of Force

At any point in a medium, an unit mass or an unit charge or an unit magnetic
pole experiences a certain force. This force will be a force of attraction in
the case of a gravitational field. It will be a force of attraction or repulsion
when two unit charges or two magnetic poles of opposite or same polarity
are brought close to each other. These forces are fields of forces (Figs. 2.1,
2.2, 2.3).

A body at a point external to a single body or a group of bodies will
experience force(s) of attraction in a gravitational field. These forces will be
exerted by a body or a group of bodies on a mass placed at a point. Every
mass in the space is associated with a gravitational force of attraction. This
force has both a direction and a magnitude. For gravitational field, the force
of attraction will be between two masses along the line joining the bodies
(Fig. 2.1). For electrostatic, magnetostatic and direct current flow fields, the
direction of a field will be tangential to any point of observation. These forces
are the fields of forces. These fields are either global fields or are man made
artificial local fields. Thus we arrive at a conception of a field of force.

These fields are used to quantitatively estimate some physical properties
at every point in a medium. Important physical fields used by geophysicists
are (i)Gravitational field, (ii) Magnetostatic field, (iii) Electromagnetic field,
(iv) Direct current flow field, (v) Electrostatic field, (vi) Heat flow field, (vii)
Fluid flow field, (viii) Earth’s natural electromagnetic field etc. Each of these
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m, m, m,

Fig. 2.1. Shows the gravitational attraction at a point P due to the masses m;, ma,
ms, and my

Fig. 2.2. Shows the magnetic field due to a bar magnet and the forces of attraction
and repulsion in the vicinity of two unlike and like magnetic poles

Fig. 2.3. Shows the electrostatic field due to a point charge
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fields is associated with one or two physical properties e.g., gravity field is
associated with density or density contrasts of the earth’s materials, direct
current flow field is associated with electrical resistivity or electrical conduc-
tivity, electrostatic field is associated with dielectric constant and electrical
permittivity, magnetostatic field is associated with magnetic permeability and
electromagnetic field is associated with electrical conductivity, electrical per-
mittivity and magnetic permeability of a medium. Physicists and geophysicists
use these fields to determine certain physical properties or their variations in
a medium. Mathematically they are expressed as a function of space.

2.2 Classification of Fields

These fields can be classified in many ways. Some of these classifications are
as follows:

2.2.1 Type A Classification

(i) Naturally occurring fields
(ii) Artificially created man made fields

Gravitational field, earth’s magnetic field due to dynamo current in the core of
the earth, earth’s extraterrestrial electromagnetic field originated due to inter-
action of the solar flare with the earth’s magnetosphere, electric fields gener-
ated due to electrochemical and electrokinetic activities within the earth at
shallow depths are naturally occurring fields. These fields are present always.
No man made sources are needed to generate these fields. They are receiving
energy from one form of the natural source or the other.

Direct current flow fields, electromagnetic field, are mostly artificial man
made fields. Artificial source of energy is required to generate these fields. Nor-
mally we use batteries(cells) or gasoline generators to generate these powers
for sending current through the ground.

2.2.2 Type B Classification

(i) Scalar potential field
(ii) Vector potential field

Scalar potential fields are those where the potentials are scalars but a field,
being a gradient of potential is a vector. Gravitational field, direct current
flow field, electrostatic field, heat flow field, stream lined fluid flow fields are
scalar potential fields. In a vector potential field, both the potential and field
are vectors. Magnetostatic field and, electromagnetic fields have both scalar
and vector potentials (see Chap. 5 and Chaps. 12, and 13)
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2.2.3 Type C Classification

(i) Static field
(ii) Stationary field
(iii) Variable field

Electrostatic field is a static field (see Chap. 4) where the charges do not move
and stay at a particular point. Direct current flow field and magnetostatic
fields are stationary fields (see Chaps. 5 and 6) where the charges are moving
at a constant rate so that both the electric and magnetic fields of constant
magnitude are generated. Electromagnetic field is a time varying field where
both magnitude and direction of electric and magnetic vectors are changing
constantly depending upon the frequency of the variable field (see Chap. 12).

2.2.4 Type D Classification

(i) Rotational field (Fig. 2.2a)
(i) Irrotational field (Fig. 2.1)

If curl of a vector is zero, then the field is an irrotational field. Gravitational
field, direct current flow fields are irrotational fields, e.g,

crl E=VxE=0
curl @ =V x g=0.

Here E is the electric field (see Chaps. 4 and 6) g is the acceleration due to
gravity (see Chap. 3). If curl of a field vector is non zero, then it is a rota-
tional field. Magnetostatic field and electromagnetic field are rotational fields
because the curl of a field vector is not zero. Here curlH = J in magnetostatics
(see Ctlap. 5) and curld = J+ %It) in electromagnetics (see Chap. 12). H, J, D
and %[t) are respectively the intensity of the magnetic field, the current den-

sity, (see Chap. 6), the displacement vector (see Chap. 4) and dal? displacement
current vector (see Chap. 12).

2.2.5 Type E Classification

(i) Conservative field (Fig. 2.4)
(ii) Non-conservative field

If potential difference between two points in a field is independent of the path
through which an unit charge or an unit mass moves from a point A to a point
B, (Fig. 2.4) it is called a conservative field (see Sect. 2.3). In a conservative
field when an unit charge or an unit mass move around a close loop, the net
work done by the mass or charge will be zero.Otherwise the field will be a
non-conservative field.
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P P,

Fig. 2.4. Work done to move from P1 to P2 is independent of paths followed

2.2.6 Type F Classification

(i) Solenoidal
(ii) Nonsolenoidal field

A force field, which has zero divergence through out the entire region of investi-
gation, is called a solenoidal field. Gravity field, direct current flow field, steady
state heat flow and fluid flow fields in a source free region are solenoidal field.
Magnetostatic field is always a divergence free or solenoidal field (Figs. 2.5
and 2.6). For a magnetostatic field, div B=0ordivH=0is always true and
is therefore a solenoidal field. For a gravitational and an electrostatic fields
div g and div E will be zero if they do not contain any mass or charge as the
case may be in the space domain. (see Chaps. 3, 4, 5).

Potential (discussed later in this chapter) problem, that include the source
function, satisfy Poisson’s equation. These fields are not divergence free. They
are called non-solenoidal field. To solve boundary value problems in potential
theory using finite element or finite difference method in a direct current
domain we generally use Poisson’s equations (see Chap. 15).

2.2.7 Type G Classification

(i) Newtonian potential field
(ii) Non Newtonian potential field

Newtonian potentials are those, which satisfy 1 relation. The potential at a
point is inversely proportional to the first power of the distance (Sect. 2.3).
Gravitational potential ¢ = Gg is a Newtonian potential where ¢ is the
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) d—masses :' o

Source free
region

Fig. 2.5. (A). Shows the region devoid of any masses; (B). Shows the region con-
taining masses; (C). Shows the region containing charges

potential at a point due to a mass M at a distance R from the point of
observation and G is the universal gravitational constant.(see Chap. 3).

Non-Newtonian potentials are those which do not satisfy 1 variation of
potential with distance. The potentials at a point due to a line source and
a dipole source are non-Newtonian potentials that way. Potentials are log-
arithmic for a line source and follow inverse square law for a dipole source
(see Chaps. 3, 4, 6). But all electro chemical and electrokinetic potentials are
non-Newtonian potentials.

2.2.8 Type H Classification

(i) Dipole field
(ii) Non dipole field

Fig. 2.6. Shows the field due to an electric dipole



2.2 Classification of Fields 23

Fig. 2.7. Shows the field due to a magnetic dipole

Dipole fields are those where potentials are inversely proportional to the
square of the distance. Fields generated by a loop carrying current and two
very closely placed current electrodes generate dipole fields (Figs. 2.6 and
2.7). Fields generated by two widely separated sources are non-dipole fields.
Gravitational fields, direct current flow fields with widely separated current
electrodes are non-dipole fields.

2.2.9 Type I Classification

(i) Laplacian fields
(ii) Non Laplacian fields

Gravity, electrostatic, direct current flow fields in a source free regions satisfy
Laplace equation V20 = 0; where ¢ is the potential at a point (Chaps. 3, 4,
6, 7). Non Laplacian fields include extra nonlaplacian terms in a differential
equation.

(1) Scalar potential fields, where the sources are included, satisfy the Poisson’s
equation. For example, the gravitational field, electrostatic and direct cur-
rent flow field satisfy the following Poisson’s equations:

(i) V?0, = 4nGm (Gravity Field)

(i) div grad¢ = V¢ = —? (Electrostatic Field)
(iii) divE = div grad¢ = V2¢ = —p (Direct Current Flow Field)

For mathematical modelling, Poisson’s equations are used for solution
of boundary value problems in geophysics. In a source free region they
satisfy Laplace equation.

(2) Potential problems for a transitional earth where a physical property
changes continuously along a particular direction generates a mnon-
Laplacian terms in the governing equation (see Chap. 8) Laplacian and
non-Laplacian equations are solved together with the introduction of
proper boundary conditions.

(3) For electromagnetic field, the guiding equations are Helmholtz wave equa-
tions. Electric field, magnetic field, scalar and vector potentials satisfy
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the equation V2F = 72 F where F stands for magnetic field, electric field,
vector potentials and or scalar potential. y is the propagation constant
(see Chap. 12). For y =0, i.e., for zero frequency, the Helmholtz equation
changes to a Laplace equation. So electromagnetic field is a non-Laplacian
field.

A large number of non-Laplacian potentials exist and are being used by the
geophysicists. These potentials are known as self-potentials and they are of
electrochemical and electrokinetic origin. Potentiometers used for measur-
ing Laplacian potentials can also measure these self-potentials. Important
members of this family are (i) liquid junction potential, (ii) membrane
potential, (iii) oxidation-reduction potential, and (iv) electrode potential
of electrochemical origin and (i) streaming potential, (ii) eletrofiltration
potential and (iii) thermal potentials of electrokinetic origin. A source
of energy is required to generate these potentials. In the case of direct
current field a battery or a generator is used to create the field. For self-
potentials, electrochemical cells are generated within the earth to sustain
the flow of current for a long time. These electrochemical cells originate
at the contact of the two different electrolytes of different chemical activ-
ities or they may be at different oxidation-reduction environment. These
redox cells of oxidation-reduction origin sustain flow of current across an
ore body for many years In any thermodynamic system there is always
some free energy which can be easily converted into work. Some poten-
tials are generated when one form of energy is converted into another
form of energy. For example, mechanical energy is converted into electri-
cal energy for generation of streaming potential in a fractured rock zone
inside a borehole. Due to maintenance of high pressure in a borehole, the
mud filtrate enters into the formations through fractures and generates
streaming potentials. For electrofiltration potentials, gravitational energy
is converted into electrical energy. When fluid moves through a porous
medium under a gravity gradient, the potentials are developed and can
be measured. Thermal gradients in a geothermal area generate potentials
where thermal energy is converted to an electrical energy. Geothermal
gradient cells are created. These potentials satisfy Nerst equation, Han-
derson’s equation and Oxidation-Reduction equations. They form a big
group of non-Laplacian potentials. Self-potentials as such is a major topic
in geophysics and fairly lengthy discussion is necessary to do any justice
to this topic.

2.2.10 Type J Classification

(i)
(i)

Global field
Local field

Gravity field is a global field, which is present in the entire universe. It includes
different stars, planets and satellites. Magnetic field of the earth and earth’s
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natural electromagnetic field of extra terrestrial origin, heat flow field etc. are
global fields.

Fields generated by artificial man made sources for geophysical exploration
are local fields. Direct current flow field and electromagnetic fields generated
by man made sources are local fields.

2.2.11 Type K Classification

(i) Microscopic field
(ii) Macroscopic field

Inter atomic and inter molecular fields are microscopic fields. Understanding
of these fields is in the domain of physics. Geophysicists are interested in
studying these macroscopic fields.

2.3 Concept of Potential

If we have a vector F and a small element of length dl along which one wants

to move in a field then the amount work done is given by force multiplied
- —

by distance i.e., F.dl. If we move from point P; to Py (Fig. 2.8) then the

Po .
work down is [ F.dl. If this work done is path dependent, then the field is

P1
non-conservative. Otherwise it is a conservative field.
Here
P2
- —
dw = /F.dl (2.1)
P1

where dw is the element of work done and it is the change in potential energy.
Potential at a point in a field is defined as the amount of work done to bring
an unit mass or charge from infinity to that point. Potential energy at Po —
Potential energy at P; will be the amount of work done to move from P; to
Py (Fig. 2.9). The potential difference

Py

- —
0, — 0, = /F.dl (2.2)
Py
p r
= Hzl'dr:‘—m 2:m<1 — 1> (2.3)
P, T T Iry I I'o

The potential difference depends upon the end points and not on the path.
If ¢ = 0, when the reference point is at infinity, ¢, = "'. Therefore the
potential at a point at a distance r is 7' multiplied by a constant. These

constants vary from one type of field to the other. Next three chapters deal
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Fig. 2.8. Shows the path of movement of an unit mass or an unit charge in an
uniform gravitational or electrostatic field

P1

with these constants. Potential at any point in a gravitational field due to a
given distribution of masses is the work done by attraction of masses on a
particle of unit mass as it moves along any path from infinite distance up to
the point considered.

For a scalar potential field, the principle of superposition is valid. Principle
of superposition states that the potential at a point due to a number of mass
or charge distributions can be added algebraically. Potential at a point due to
the combined effect of volume, surface, linear distributions and several discrete
point masses is

Py

Fig. 2.9. Shows the work done to move from point P; to P2 in the field ﬁ; ds is
the elementary movement making an angle ¥ at that point
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Point masses

1i

F 3
h

Linear distribution of mass

rface distribution of m

Fig. 2.10. Shows the gravitational attraction at a point due to volume, surface, line
and point distribution of masses

g e

where p, G, A are respectively the volume, surface and linear density of mass.
m; is the ith particle in a family of n number of particles.(Fig. 2.10).

2.4 Field Mapping

The direction of the field lines due to gravitational field, magnetostatic field,
electrostatic field, direct current flow field are shown in the Figs. 2.1, 2.2, 2.3,

2.7 and 2.8. Figure 2.11 shows a section of a field line where a small element
dl is chosen. Here
fy dy

I, = tany = i (2.5)

where fy and fx are the components of the field lines along the y and x
directions.

¥ is the angle made by the field lines at the point dl with the x axis.

Fig. 2.11. Shows that the field vector at any point is tangential to the field direction
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Equipotential

7 lines

N

Field Lines

Fig. 2.12. Shows the orthogonal nature of field lines and equipotential lines

Therefore, equation for a field line is

de _ dy (2.6)
fe oy
For a movement of an unit charge or an unit mass making an angle o Xith
the direction of the field, the element of the potential will be —d¢ = f.dl =
fdl cosa (Fig. 2.11) where o is the angle between f and dl. When o = 0,
f= (‘Z‘f) and ¢ = constant when oo = m/2. This shows that the field

lines and equipotential lines are at right angles in a conservative field and the
gradient of a potential is

A
—grad ¢ = dmax V¢ = glirré (A?) (2.7)

where ay,.x is the unit vector along the direction of field line. Figure 2.12 shows
the nature of field lines and equipotential lines for an uniform field where
theoretically the source and sink are at infinite distance away. Figure 2.13
shows the nature of the field lines and equipotential lines for a point source
and sink at finite distance away.

and equation for the equipotential surface is

do(x,y,2) =0 (2.8)

Fig. 2.13. Field lines and equipotential lines for a point source and sink at a finite
distance away
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In a spherical polar co-ordinate system (Fig. 2.14) (see Chap. 7), the vectors
are denoted in the direction of R, 8 and y. The unit vectors are ag, ag, ay.

Here .
dl = dr.dR + dp.RdO + dyR.Sind.dy (2.9)
and the field components are
oo 00 b 1 90¢
TR T ROe
1 00

f“’:_Rsmea\y' (2.10)

In a cylindrical polar co-ordinate system (Fig. 2.15) 1% = p% + 2% in (p, W, z)
system. In this system the unit vectors are

dl = a_;.d_;“ + dyg.rdyp + da..dz (2.11)
So the field components are

0 L0 ag, =2

= — 2.12
8{)’ \4 paw o7 ( )

fy=—

Equations for field lines in spherical polar and cylindrical polar co-ordinates
are respectively given by

dR  Rdf  RSinfdp

2.13
Ir fo fo (249)
Z
A
\\ r
~
'\\ ’/ v
r
0 l
]
DAV
_‘fn’ : ,/’ X =rsin &cos W
e 4 _v:rsin@sinw
z=rcost

Fig. 2.14. Shows the layout of the spherical polar coordinates
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(o, ¥

Fig. 2.15. Shows the layout of the cylindrical polar coordinates

and p p J
p_pdy_ dz (2.14)
fp fw fz
In the case of a point mass
m m
0= —GR and f = —GR2 (2.15)
Equipotential surface for a point source is given by
G = Constant. Therefore, R = Constant (2.16)

R

For a point mass or a point source of charge, the equipotential surface will be
spherical. In a plane paper the equipotential surface is a circle with the centre
at m and radius R. In the xy plane

m

=G, 0 (2.17)
mx
fy = —G (2.18)
(x? +y2)*/?
my
f, = —G (2.19)
’ (x? +y2)*/?
Therefore,
d
di = i or y = mx (2.20)

i.e., the field lines are radial lines passing through the centre.
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2.5 Nature of a Solid Medium

A solid medium is said to be an homogeneous and isotropic medium when any
physical property is same at every point as well as in every direction x, y, z
of the medium. If a physical property (say electrical conductivity or electrical
permittivity or magnetic permeability or moduli of elasticity) are different at
different points and they are different in different directions, the medium is
an inhomogeneous and anisotropic medium. Let p; and p, be the resistivities
along the three mutually perpendicular directions x,y and z at two point A
and B in a medium. (Fig. 2.16). Then for

(a) an homogeneous and isotropic medium

(1) pr=py (i) p1x = P1y = P1, = Pox = Pay = P2, (2.21)

(b) an inhomogeneous and isotropic medium

() py # P2 (I)p1y = Pry = P1, and Poy = Py = Py, (2.22)
(¢) an homogeneous and anisotropic medium
(1) pr=py (1) p1x # P1y # P1z  (ilD) Poy # Pay 7 Pay (2.23)
(iV) Pryc = Paxs Py =Py and Py, =Py,

(d) an inhomogeneous and anisotropic earth

(i) py # P2 (1) pix # Pry 7# P1, 7 Pox 7 Pay # P1y- (2.24)

For a homogeneous and isotropic medium (Fig. 2.16a), electrical conductivity
or electrical permittivity are scalar quantities. For an inhomogeneous and
anisotropic earth, these properties become 3 x 3 tensors. For a homogeneous

and isotropic earth J (: GE) is in the same directions as E (see Chap. 6). For

(a) Homogenous and (b) Inhomogenous and
isotropic medium anisotropic medium

Fig. 2.16(a,b). Show models of homogenous and isotropic and inhomogenous and
anisotopic medium
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an anisotropic medium (Fig. 2.16b), J has the directive property and generally

the direction of J and E are different. Therefore for a rectangular coordinate
system, the modified version of Ohm’s law can be written as:

Jx = 0xx Ex + Oxy Ey + 0y, E,
Jy =0y« Ex +0yy By +0y, E, (2.25)
Jz = Ozx Ex + Ozy Ey + Oz Ez

where Gj; may be defined as the electrical conductivity in the direction s
when the current flow is in the direction i. It is a 3 x 3 tensor.When Gj, =
Oki,. conductivity of an anisotropic medium is a symmetric tensor having six
components.

2.6 Tensors

Any physical entity which are expressed using n subscripts or superscripts is a
tensor of order n and is expressed as T123456.... n- Any physical property of the
earth, say electrical conductivity ¢ or electrical permittivity € or magnetic
permeability p is a scalar in a perfectly homogeneous and isotropic medium.
In an inhomogeneous and anisotropic medium scalars become tensors. As for
example in a direct current flow field (see Chap. 6), J=oEina homogeneous
and isotropic medium where J is the current density in amp/meter?, ¢ is the
electrical conductivity in mho/meter and E is the electric field in volt/meter.
In an inhomogeneous and anisotropic medium J= Gijﬁ where J is no more
in the same direction as E and o is replaced by oj; to accommodate the
effect of change in direction and magnitude. ojj is a tensor of rank 2. The
effect of direction dependence is given in equation (2.25). This tensor cj; has
9 components with i = x,y,z and j = x,y, z for cartisian coordinate in an
Euclidean geometry. Here 6y is the electrical conductivity for current density
along the x direction and contribution of electrical field in the y direction. The
directional dependence changes a scalar to a tensor of rank 2 which can be
expressed in the form of a matrix. So a tensor of rank or order n can be written
as T, iyisis....in- With this brief introduction about the nature of a tensor, we
discuss very briefly some of the basic properties of a tensor.

The fundamental definition involved in tensor analysis is connected with
the subject of coordinate transformation. Let us consider a set of variables
(x!,x?,x%) which are related to another set of variables (z',z2,73) where 1, 2,
3 are superscripts. The relation between the two variables is of the form

z' = ajx’ + ajx” + agx’
72 = alx! + aix? + alx® (2.26)

z° = ajx' + adx® + ajx’

where the coefficients are constants. In this case two sets of variables (x!, x2, x?)
and (z!,7%, z%) are related by a linear transformation. This transformation can
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be written as

n=3
2" =) alx" wherer=1,2,3. (2.27)
n=1

Equation (2.27) can be written as
25 =aju" forr=1,23. (2.28)

So we can define a nine component second order tensor as tjj for i = 1,2, 3 and
j=1,2,3 in the unprimed frame and nine components in the primed frame if
the components are related by the coordinate transformation law.

Ty = I-Lik~lljiTiJ (2.29)

In the present context we redefine scalars and vectors as follows. A physical
entity is called a scalar if it has only a single component say o in the coordinate
system x; and measured along u; and this component does not change when
it is expressed in x/ /

¢ and it is measured along u{, i.e.

ax,y,z) = o (x/,y],2]) (2.30)

A scalar is a tensor of zero order. A physical entity is called a vector or
a tensor of first order if it has 3 components &; and if these components are
connected by the transformation of coordinate law

£ =y (231)
where wy = Cos (uf, ;).
This relation can also be written in the matrix form as éll = ué where &', u,

€ contain the elements of the (2.29).

Contravariant vector : Let physical entities has the values o', 02, o in the

coordinate system x!, x2, x> and these quantities change to the form 01, 02, O3

in the coordinate system %', %%, %>. Now if
_ox™

oxt
then the quantities ol, 02, o are the components of a contravariant vector or
a contravariant tensor of the first rank with respect to the transformation

g =F(x', x4 x%) =% (x), %%, x%) forr = 1,2, 3 (2.33)

(xm

of form=1,2,3 i=1,23 (2.32)

in an euclidean space. The curvilinear coordinate space ()’(%, X3, 5(3) are created
by (x!,x2,x3) by transformation of coordinates.

Covariant vector : If a physical entity has the values a4, 0, 03 in the sys-
tem of coordinate (x1, X2, x3) and these values changes to the form (0, 02, 0i3)
in the system of coordinates (X1, X2, X3) and if

Oy = O (2.34)

Then o4, 0, 03 are the components of covariant vector or tensor of rank 1.
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A tensor in which both contravariant and covariant components are present
is called a mixed tensor. As for example
ox™ Ox

o = . i 2.
% T gy axn % (2:35)

is a mixed tensor of rank 2. Kronecker delta 8, is a mixed tensor of rank 2.

It is defined as
1 ifm=
gm—¢ hmen (2.36)
0 ifm#n

Since earth is an anisotropic and inhomogenous medium, for problems related
to anisotropic earth, tensors are used.

2.7 Boundary Value Problems

Solution of boundary value problems is one of the important subjects in math-
ematical physics. For determining potentials or fields at any point within a
closed domain R, bounded by a surface S, it is necessary that the problem
satisfy certain boundary conditions or some boundary conditions are imposed
on the surface or within the medium to get the necessary solution. In most
potential problems, certain arbitrary constants or coefficients appear in the
solution. These constants are evaluated applying the boundary conditions. In
fact through these boundary conditions geometry of the problem enter into
the solution. Detailed discussions and use of boundary conditions are avail-
able in Chaps. 6, 7, 8, 9, 11, 12, 13, 15. The boundary conditions are more
in electromagnetic methods than in direct current methods. Almost every
Maxwell’s equation generates a boundary condition(see Chap. 12). Applica-
tion and nature of boundary conditions are different in different problems.
Only some of the approaches used in mathematical geophysics are discussed
in this book. Boundary conditions applied in solving problems in complex
variables are of different types(see Chap. 9) An important task in solving
problems in potential theory is to bring the source and perturbation potentials
in the same mathematical form before the boundary conditions are applied.
Solved examples in Chaps. 7, 8 and 13 are some of the demonstrations in
this direction. For mathematical modelling, we often encounter three types of
boundary value problems, viz., Dirichlet’s problems, Neumann problems and
mixed (Robin /Cauchy) problems.

2.7.1 Dirichlet’s Problem

In a closed region R having a closed boundary S, while solving Laplace equa-
tion V29 = 0 (see Chap. 7) some prescribed values are assigned to the
boundaries. When potentials are prescribed on the boundaries, the problems
are called Dirichlet’s problems and the boundary conditions are Dirichlet’s
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boundary conditions. Potential at any boundary can be zero or a function of
distance or a constant. If potential at the said boundary is zero then it is a
homogeneous boundary condition. Otherwise the boundary condition is inho-
mogeneous. Within the boundary, which is well behaved on these regions and
takes some prescribed values on the boundary say ¢ (x,y,z) = 0. (Fig. 2.17a),
the problems are called Dirichlet’s problem. As for example potential at an

D,(x)

®,(x] Dirichlet Problem KD ,(x)

Ds(x)

09,/ oOn

o, | n Neumann Problem ra% /On
4

0@,/ on

a4,/ on

) Robin Problem D,

0@,/ 0on

Fig. 2.17a,b,c. Show the direchlet, neumann and mixed boundary conditions
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infinite distance from a source is zero. Therefore if we make the working
domain to be arbitrarily very large we can prescribe ¢(x,y,z) = 0 everywhere
on the boundary because potentials die down to zero at infinite distance from
the point source following 1 law (see Chaps. 3, 4, 6, 9, 15).

2.7.2 Neumann Problem

For solution of Laplace or Poisson’s equation, if the normal derivatives of
potentials are prescribed on the boundaries then the problems are called Neu-
mann problems and the boundary conditions are Neumann boundary condi-
tions. Application of Neumann boundary condition is shown in Chaps. 8, 9
and 15. (Fig. 2.17b). Like Dirichlet’s boundary conditions, Neumann bound-
ary conditions can be homogenous or inhomogenous.

2.7.3 Mixed Problem

If ¢ is prescribed on certain parts of a boundary and gi is prescribed on rest
part of the boundary, then the problems is called a mixed or Robin problem.
Most of geophysical problems are mixed problems where ¢ is defined on one
part and gﬁ is defined on rest of the boundary. Figure (2.17¢) shows a domain
of the earth where the top surface is the air-earth boundary. Since the contrast
in resistivity at the air-earth boundary is very high, therefore, gﬁ, the normal
derivative of potential, will always be zero. Other boundaries are pushed away
from the working area to force the potential ¢ to be zero.

For solution of the Poisson’s equation or Laplace equation, the potentials
and their derivatives make the condition kgg + h¢ = 0. Application of mixed
boundary condition is shown in Chap. 15.

2.8 Dimension of a Problem and its Solvability

For interpretation of geophysical field data, one has to go through the solution
of forward and inverse problems. Proper selection of a forward problem is a
very important step to begin with. The geophysicists need helps from potential
theory for solution of forward problems. An homogeneous and isotropic full
space problem is a zero dimensional problem because the physical property
does not change in any direction. An homogeneous and isotropic half space
has two media with different physical properties and having a sharp boundary
between them. An assumed homogeneous earth with an air earth boundary
is a homogeneous half space. A layered earth generates an one-dimensional
problem because physical property varies only along the vertically downward
direction. Therefore all the potential and nonpotential problems related to
layered earth are one dimensional problems,.(Fig. 2.18a,b).When a physical
property varies along the x and z direction and remain same along the y
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Fig. 2.18a. A sketch for zero dimensional problem

AIR

direction, the problem is called a two dimensional problem. Here x, y, z are
arbitrary mutually perpendicular directions. An infinitely long cylinder of cir-
cular or rectangular or arbitrary shaped cross section placed horizontally at
a certain depth from the surface of the earth or exposed on the surface of
the earth is an ideal example of a two dimensional problem. Many such earth
models with much more complicated geometry are regularly used for inter-
pretation of geophysical data. (Fig. 2.18¢c) When a physical property varies
along the x and z direction and the cylindrical structure has limited length
along the y direction, the problem is termed as a two and a half dimensional
problem (2;D problem).

When a physical property varies in all the three directions, the problems
are called three-dimensional problems (3-D problem). (Fig. 2.18d) For most of
the one-dimensional problems closed form analytical solutions are available.
For solution of the two and three dimensional problems finite element, finite
difference, integral equation, volume integration

Fourier methods are used. These are numerical methods (Chap. 15). Many
of the two dimensional problems have complete analytical solution. Partly
numerical and partly analytical techniques are used for solution of some prob-
lems (see Chaps. 7, 8, 9).

With the advent of numerical methods and high speed computers, the
domain and solvability of the forward problems have increased significantly
and it is no longer restricted to bodies of simpler geometries only.

co=0 AIR x

Cn LAST LAYER IS UNIFORM HALF SPACE

Fig. 2.18b. A sketch for one dimensional problems
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4

X b=

Fig. 2.18c. A sketch for a two dimensional problem

Y

3-D

Fig. 2.18d. A three dimensional body where physical property changes in all the
three mutually perpendicular directions

2.9 Equations

2.9.1 Differential Equations

A first order ordinary differential equation

+p(x)y =r(x) (2.37)

is a linear differential equation. Important features of this equation is that
it is a linear in y and 31 where p and r are any given function of x. If the
right hand side r(x) = 0 for all x in a working region, the equation is said
to be homogeneous. Otherwise it is inhomogeneous. An ordinary differential
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equation may be divided into two large classes, viz., linear and non-linear

equations.
A second order differential equation
d?y dy
&2 TP g Ha&y =1(x) (2.38)

is called a homogeneous equation if r(x) = 0.
The equation is non linear if it can be written as

d?y  (dy)’? dy
2 =0. 2.
X (dx2 + (dx) + Y 0 (2.39)
An ordinary differential equation of nth order can be written as
qny dnfly dy
Pooa(x) 4. P P, = 2.4
an + 1(X) an,1 + + 1 dX + (X)y r(X> ( 0)

where r, Py, Py, Po ... Py, are functions of x. In a similar way this equation can
be homogeneous and inhomogeneous. Partial differential equations are those
where the functions, involved, depend on two or more independent variables.
They are used for solving many problems of physics, viz., problems of potential
theory, electromagnetic theory, heat conduction and fluid flow theory, solid
mechanics etc. We use these partial differential equations for solving boundary
value problems of different branches of mathematical physics.

A partial differential equation is linear if it or its partial derivative is of
first degree independent variables. Otherwise it is nonlinear. If each term of
this type of equation contains dependent variables or one of its derivatives,
the equation is said to be homogeneous. Otherwise they are inhomogeneous.

An equation of the form

0%u 0%u 0%u Ju OJu
A3X2 * 2B3X8y + C@yQ =Floyu, Ox’ Oy
is a normal form of partial differential equation. The equation is said to be
elliptic if AC—B?2 > 0, parabolic if AC—B? = 0 and hyperbolic if AC—B? < 0.
Here A,B,C may be function of x, y, z. As for example Laplace equation

0%u N 0%u N o*u
ox2  Oy? 022

is an elliptic equation. Heat conduction equation

(2.41)

0 (2.42)

ou 0%*u
ot = C8x2 (2.43)
is a parabolic equation and wave equation
0%u ,0%u
o2 = C 9x2 (2.44)

is a hyperbolic equation.
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2.9.2 Integral Equations

The theory of Integral equations deals with the equations in which an
unknown function occurs under the integral sign. The subject was devel-
oped by V. Volterra (1860-1940), E.I. Fredhom (1866-1927) and D. Hilbert
(1862-1943).

If an external force is applied to a linear system and is described by a
function f(x) (a < x < b), then the result or the output is given by the system
which can be written as

b
f(x) = / G(x, E)(E)E (2.45)

where G(x,&) is a Kernel function or a Green’s function which is specified
by the given system. Integral equation (IE) has a major role in geophysical
forward modeling. Here a certain class of integral equations are introduced.
Integral equations appear in a certain class of diffusion and potential problems
in geophysics. IE has a major success in handling three dimensional problem
both in potential (scalar and vector) and non potential problems. If both
the upper and lower limits of an integral are constant then the equations
are Fredhom type. If one of the limits is an independent variable, then the
equations are Volterra type. An integral equation is said to be linear if all the
terms occurring in the equations are linear. These integral equations can be
of first, second and third kind as follows :

(i) Fredhom'’s integral equation of the first kind.

b

/ K (x, t)f(t)dt = g(x) (2.46)

a

(ii) Fredhom’s integral equation of the second kind

b
/ K (x, t)f(t)dt = g(x) + f(x) (2.47)

(iii) Fredhom’s integral equation of the third kind

b
/K(X, t)f(t)dt = M(x) (2.48)
(iv) Volterra’s integral equation of the first kind

/ K(x, t)f(t)dt = g(x) (2.49)
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(v) Volterra’s integral equation of the second kind

X

/ K (x, £)f(t)dt = g(x) + f(x) (2.50)

a

(vi) Volterra’s integral equation of the third kind

/ K(x, t)f(t)dt = M(x) (2.51)

In Fredhom’s integral equations, the upper and lower limits are respec-
tively ‘b’ and ‘a’ where ‘a’ and ‘b’ are constants. In Volterra’s integral equa-
tion the upper and lower limits are respectively ‘x’ and ‘a’ where x is an
independent variable and ‘a’ is a constant. Here f(t) is an unknown function
to be determined. K(x,t) and g(x) are known functions. K(x,t) is known as the
Kernel function. Equation of the third kind is a homogeneous version of the
second kind and it defines an eigen value problem. These integral equations of
second kind can be solved either iteratively or using Gauss quadrature method
of numerical integration or by series expansion method. Further discussion on
integral equation is available in Chap. 15. Figen value is defined in Chap. 17.

2.10 Domain of Geophysics in Potential Theory

Potential theory as such is a vast subject and is used by physicists, geophysi-
cists, electrical engineers, electrical communication engineers, mathematicians
working in fluid dynamics, complex variables, aerodynamics, acoustics, elec-
tromagnetic wave theory, heat flow, theory of gravity and magnetics etc. This
subject forms the basis of many branches of science and engineering. Only a
part of geophysics, controlled by potential theory, includes gravity, magnetic,
electrical electromagnetic heat flow and fluid flow methods.. Seismic methods
in geophysics and nuclear geophysics are out of bound of potential theory.
All potentials of electrochemical and electrokinetic origin strictly do not come
under potential theory.

Primary task of a geophysicist is to understand the data collected from
the field and interprete them in the form of an acceptable geological model
within the limit of finite resolving powers of different geophysical potential
fields For proper execution of this task, geophysicists have to frame the earth
models and have some ideas about the nature of field response. To have this
understanding, geophysicists solve forward problems for different branches of
geophysics using potential theory (Scalar and Vector potentials). Therefore
potential theory, equipped with different mathematical tools, forms the basis
for solution of forward problems. Potential theory is a must to understand
the behaviour of the geophysical data. Inverse theory comes next as a tool
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for interpretation. Advent of inverse theory revolutionized the entire proce-
dure for interpretation of geophysical data. It became possible due to very
rapid development of computer science, software technology and numerical
methods in mathematical modelling. The phenomenal developments in sci-
ence and technology in these areas during the last three decades improved
the power of vision of geophysicists to look inside the earth. In this book,
besides some introduction on gravitational field, magnetostatic field, electro-
static field, direct current flow field and electromagnetic field, we introduced
(i) the solution of Laplace equation and its contribution towards solving dif-
ferent type of boundary value problems, (ii) complex variable and its role
in solving two dimensional potential problems (iii) Green theorem and its
application in solving potential problems (iv) concept of images in potential
theory (v) electromagnetic theory and vector potentials and their contribution
towards solving the electromagnetic boundary value problems (vi) finite ele-
ment and finite difference and integral equation methods towards solving two
and three dimensional potential problem (vii) Green’s function (viii) analyti-
cal continuation of potential fields and (ix) inversion of potential field data.

Scientists of other disciplines of physical sciences and technologies may
find interest .in some of these topics.



3

Gravitational Potential and Field

In this chapter we included some of the preliminaries of the gravitational
potentials and fields, viz, Newton’s law of gravitational attraction, gravita-
tional fields and potentials, universal gravitational constant and acceleration
due to gravity, the nature of earth’s gravitational field, gravitational potentials
and fields for bodies of simpler geometries and the basic guiding equations of
the gravitational field. A few points about the nature of the earth’s grav-
ity field and the basic preliminaries regarding data handling are mentioned.
Advanced topics, viz, spherical harmonics Green’ theorem, Green’s equivalent
layers and analytical continuation of potential field are given respectively in
Chaps. 7, 10 and 16.

3.1 Introduction

Sir Isaac Newton first published Philosophiae Naturalis Principia Mathemat-
ica in 1687. In that he gave ideas both about the law of gravitation as well as
the laws of forces. It was realised that (i) gravitational force is always a force
of attraction, (ii) It is not only a global force it is an universal force present in
the entire universe, (iii) It is one of the weak forces, (iv) It has some relation
with mass of a body, (v) principle of superposition is valid for gravitational
fields, (vi).centrepetal and centrifugal forces do exist, (vii) movement of plan-
ets round different stars and movement of satellites round different planets
are controlled by the gravitational force of attraction. Two important physi-
cal parameters, viz, ‘G’ and ‘g’ came in the fore front for further advancement
although mass of a body, its density, has some direct relation with the force of
gravitation was realised. Lord Cavendish experimentally determined the value
of ‘G’, the universal gravitational constant, in his laboratory by measuring the
force of attraction between two lead balls placed at a certain precise distance
and published the value of ‘G’ in 1798 to be 6.754 x 10~ m®kg ~'s~2 (MKS or
SI unit) which was refined later as 6.672 x 107! MKS unit. Accelaration due
to gravity was first measured by Galileo in his famous experiment by dropping
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objects from the leaning tower of Pisa. The numerical value of ‘g’ was found
to be around 980 cm/ sec?. In honour of Galileo the unit 1cm/ sec?; the unit
of acceleration due to gravity was termed as ‘Gal’ or ‘gal’. It was understood
right from the beginning that the force of gravitation is global and the gravita-
tional force is always a force of attraction and the entire network of billions of
stars, planets and satellites are controlled by the force of gravitation. Kepler’s
three law’s i.e., (i) orbit of each planet is an ellipse with sun at one of the foci
(ii) orbital radius of the earth sweeps out equal areas in equal interval of time
and (iii) the ratio of square of the planet’s period of revolution to the cube of
the semi major axis of the orbit is a constant for all the planets and could be
explained from Newton’s law of gravitation.

Next round of researches in this area were centred around accurate evalu-
ation of the absolute value of ‘g’, the acceleration due to gravity, and G, the
universal gravitational constant. Soon it became known to the physicists that
the time period of oscillation of a simple pendulum, which executes simple
harmonic motion, is connected to the acceleration due to gravity g through
the relation T = 27r\/ l/g where 1 is the distance between the pivotal point
of the hinge to the centre of the mass and T is the time period of oscilla-
tion. Although expression looks very simple several stages of developments
and generation of compound pendulum was necessary for accurate measure-
ment of ‘g’. It could be known, as soon as the value of ‘g’ is known that ‘g’
is a latitude dependent quantity and shape of the earth is nearly a spheroid
with definite ellipticity. It was known right from the beginning that mass and
density of a body are interrelated and they have connection with the gravity
field of the earth. Therefore both the mass and the mean density of the earth
could be known from ‘G’ and ‘g’.

Much later geophysicists came forward for accurate measurement of minute
variation of the value of ‘g’ due to minor variations of densities of rocks and
minerals. Precision of measurement has gone up to such a level that practical
unit of measurement of variation of the gravity field was reduced to milli-
gal (1073). The minute variations of gravity is termed as ‘Ag’, the gravity
anomaly and the precision instruments are named gravimeters. Gravimeters
measure the minute variations in ‘g’ rather than their absolute values. Preci-
sion level is heading towards microgal level in 21st century. The ultra sensi-
tive gravimeters are used for geodetic survey, crustal studies and geophysical
exploration.In this chapter a brief outline of the gravitational potential and
field are given. Some of the topics of gravitational potentials and fields are
included in Chaps. 10 and 16.

3.2 Newton’s Law of Gravitation
Newton’s law of gravitation states that “Every particle in the universe attracts

every other particle with a force which is directly proportional to the product
of the masses of the particles and inversely proportional to the square of
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the distance between them.” Therefore, Newton’s law of gravitation can be

stated as
= myp 1Mo
Foa

2

which can be written as My

F=G 2 (3.1)
where F is the force of attraction between the two masses m; and ms placed
at a distance r from each other and G, the constant of proportionality, is the
universal gravitational constant. Here m; and mo are the two masses separated
by a distance r. This G is the force of attraction between the two particles of
unit mass separated by a unit distance. The acceleration due to gravity is ‘g’.
Its unit is cm/ sec? or Gal. The unit Gal is introduced in honour Galileo. The
practical unit is milligal = 1073 gal. Assuming the earth as a spherical body
of density p and radius ‘r’, the force of attraction between the earth and a
body of mass M is given by

G = Mg (3.2)

where M, is the mass of the earth and is equal to = gnr3p and p is the mean
density of the earth (p = 5.67 gms/cc approx). Here g is the acceleration due
to gravity and is approximately equal to g = 981 cm/sec?. In C.G.S Unit

3g 1
G-= %8 _ 3.3
smpr 15,500,000 (APPTO¥) (33)

=6.664 x 107% cm/g. sec?(CGS unit)
6.664 x 10~ m/kg. sec?(M.K.S. Unit) (3.4)

G is in dyne — cm?/gm? that is equivalent to Newton. Cavendish first exper-
imentally determined the value of G as mentioned.

Gravitational field is a naturally existing conservative, solenidal (in a
source free region), irrotational, global and scalar potential field of very large
dimension. Two masses separated by a great distance can experience a force
of attraction what little be the magnitude of that force. Gravitational force
exits between all the celestial bodies. It is a weak force. But the force is always
a force of attraction and the direction of the force is along the line joining the
centres of two masses m; and my (Fig. 3.1) at P (x, y, z) and at Q (§,n, Q)
where 1 is the distance between the two point masses. 7 the directional force
vector which is expressed as the distance between the two masses can be
written as

F=i(x—&+jly—m) +k(z—¢) (3.5)
For an unit point mass my, gravitational field due to a point mass is given by

LimF=-Gor

mo—1 I‘2
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P(x, y, 2)

Q& n, &

Fig. 3.1. Gravitational attraction at a point P due to a point mass m at a point Q
at a distance r from P

where T is the direction of the unit vector. Gravitational field is a scalar
potential field i.e., the potential is a scalar and the field is a vector. They

are related by the relation E = —grad¢. Many authors use negative sign to
express,

= mpmsa

F=-G 2 T (3.6)

As mentioned already gravitational field, is always an irrotational field i.e.
curl g = 0.

Absolute values of densities or their variations in crust mantle silicates,
originated due to thermal processes inside the earth as well as due to tec-
tonic evolution, are responsible generation of global gravity map. Purpose of
investigation fixes the scale of measurement.

3.3 Gravity Field at a Point due to Number
of Point Sources

Suppose the masses my, mo, m3 and my are distributed in a space and their
distances from the point of observation P are respectively given by rq, 1o, 13,
ry ete (Fig. 3.2). Let the gravitational attraction at the point P for the masses
be gi1,g9,g3 and gy respectively. Since this will be a vector field, the total
field can be determined by resolving the components of forces along the three
co-ordinates axes.

Let &;,m; and {; be the co-ordinates of the ith particle and m; be its mass.

my

The force acting at the point P due to m; is e The components of the force
along the x, y and z directions are respectively given by

m; m; ¢ —E&
iz — = . 3~7
g r? . 2o (3.7)
m; mi y—nm
v = = . 3~8
Siy riQ y riQ r; ( )
1m; m; 7z —
iz = 2 7 = P C (39)

I3 I3 T
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P

Fig. 3.2. Gravitational attraction at a point P due to masses mi, ma, m3 and ma

Therefore, the total gravitational field components gy, gy, g, using principle
of superposition are given by

n

(x—¢&) . (y—m)
gx:zmi r? ’gy:;mi r3

i=1 i i

and
- (z — Cl)
g = Z;mi e (3.10)
Here
g = /g2 83+l (3.11)

That gives the expression for gravitational force of attraction at a point due
to n number of isolated discrete point masses.

3.4 Gravitational Field for a Large Body

Let us assume an arbitrary shaped large solid three dimensional body of den-
sity p. Let us take a point of observation P at coordinates (x, y, z) and an
elementary mass at Q having coordinates (§,m, {) within the body (Fig. 3.3).
The elementary volume dv = dédnd¢. We can divide the body into number of

elementary volumes. The volume density of source is Lt  p= 2™ where p
Av—0 Av

is the density of the body. For a small volume dv, its mass is pdv. The field
due to the entire mass along the x, y, and z directions are given by

p (x &) dédndt
= (3.12)
) /V//[<x—a>2+<y—n>2+<z—c>2 v
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dv = d&dnd()

p(Density)

Pix, 5, )

Fig. 3.3. Gravitational attraction at the point P due to a large solid mass

/ / / p (y —n)d&dndg 2}3/2 (3.13)

(y =)+ (z—¢)
d€dnd
. /// ~ ) dedndg » -
(v =) + (2= §)’]
3.5 Gravitational Field due to a Line Source
Let AB is a line source of mass having linear density A where A = Lt AAT
Al—O

(Fig. 3.4). The line is put in the xy plane such that the centre of the line is
at the origin. Let the line be divided into a number of segments d&. Thus the
field components along the x direction is given by

J
“

X

A C'E‘D

e U ey e (I ——pp.

Fig. 3.4. Gravitational field at an external point P due to a line source of finite
length
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AdE x—&

= , 3.15
(= 4y \/(X—§)2+y2 o

and

_ AdE y
B A Y /S Iy

Therefore, the total fields Fy and Fy for the entire linear mass are given by

(3.16)

e

At
Let v

coso, =

{(X -&% + y2}1/2
and
—sinodo = — 2y (x—g)ds 9
2 [ +y7]”

therefore

s
A A

F, = /sina da =" (cosas —cosay)
Y Y

a1

_ A Y - Y (3.19)
Y \/(x+a)2+y2 \/(x—a)2+y2
Similarly for
Fy =\ v P (3.20)
2 2
[(X -&) " +y ]
Let d
tan o = T E",and sec? odor = — i
y y

) ) 3/2
since sec® o0 = ((X —&)° + y2) , we get
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(%51

A A
Fy =— / cosador = [sinoy — sin o]
y y

Ol2
A X—a B X+ a (3.21)
Vet ey fera)? g
Now
F— \/FX+F2
A 1/2
[2 — 2 cos0y cos o — 2sin oy sin O]
y
A
=y [2—2cos (o — 0L2)]1/2
A _ 1/2 2 _
=2 {2sin2(a1 0‘2)} —2 sin(al a2>
Yy 2 Yy 2
» . APB
:2ysin 5 (3.22)

Therefore, the direction of the gravitational force of attraction is along the
AN
bisector of the triangle APB.

3.6 Gravitational Potential due to a Finite Line Source

Although once field due to a finite line source is known, the gravitational
potential at a point is known also. However a separate section is given to
highlight a few points of principle.

A line source AB of length L is taken along the z-direction (Fig. 3.5). In
a cylindrical co-ordinate, the potential will not depend upon the azimuthal
angle y but on r and z. Take a small element d{. Its mass is Ad{ where A
is the linear density. Since the gravitational potential is —G 7} where m and
r are respectively the mass and distance of the point of observation. We can
write

l
g
¢ =—GA (3.23)
_/l 2+ -]

Let

z —( =rtan0,so
—d¢ = rsec’0d6
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T B

+1 /]e/‘.z‘
BoN B

1 A

Fig. 3.5. Gravitational potential at a point due to a finite line source

Therefore

1
¢ = GAln[secO + tan®]_

_ 2 (z —1)2 2 4 (z4+1)2
P I P Vim0 fae V)
T

+
T T T

(Z—|—l)—|—\/r2—|——|—(z—|—l)2
(2= 1)+ \/©2 4 + (2 - 1)

When ¢ = Constant

o = —GAln (3.24)

z+l+\/r2—|—(z—|—l)2
z—1+\/r2—|—(z—l)2

This is an equation for the equipotential surface and (3.25) can be rewritten
with a few steps of algebraic simplification in the form.

D2 a2 12 a2
E§+32'(1) +(K4Kl) (L) =1 (3.26)

K — e—9/Gh _ (3.25)

This is an equation of an ellipse. The semi major and minor axes are respec-
tively given by
K+1 2vK

K—l'landK—ll'

The eccentricity is e = \/ 1-— 22 and the foci are at +£1.



52 3 Gravitational Potential and Field

The field components are

fr:_aq):Gk} z+1 z—1

or r \/r2 + (241’ B \/r2 4 (1) (3.27)

[ = :_le r r

0z r \/r2+(z+1)2_\/r2+(z—1)2

The total field of f = \/fr2 + {2 describes hyperbolas (Fig. 3.6). For a very long
wire where

(3.28)

2
l—oa,g=0andg, = —G?»r (3.29)

Here the field is proportional to 1 Hence the potential is

o= k/ gdr + Constant

= 2GAInr + Constant

= —2GAIn (ro) (3.30)
Iy

It implies that the potential becomes zero at infinity. Therefore for a line
source potential is logarithmic potential and field varies inversely with dis-
tance. For a finite line source the equipotentials are ellipses and the eccentric-
ity of the ellipse die down with distance from the source. At infinite distance
the eccentricity of the ellipse will be zero and the ellipse will turn into a circle.
The field lines will be radial For an infinitely long line source the field lines
and equipotential lines will form a square or rectangular grids

Field Line

Equipotential Line

Fig. 3.6. Field lines and equipotential lines due to a line source of finite length
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3.7 Gravitational Attraction due to a Buried Cylinder

Vertical component of gravitational attraction at unit mass at the point of
observation ‘P’ due to a small element ‘dl’ at a distance ‘I’ from ‘Q’, the
shortest distance of the cylinder from the point of observation is (Fig. 3.7)

_ G dm Sin® R

dg =ana sme.fr{. (3.31)

z r2
Here dm is the elementary mass of the thin strip dl, A is the linear density of
the cylinder and is equal to wa?) for unit length where ‘a’ is the radius of the
cylinder and G is the universal gravitational constant. Vertical gravitational

attraction due to a cylinder of infinite length is

o
) dl
g, = GASin6R / (R2 4 2372 (3.32)
—0o
_ 2 z
=2 Gna k(XQ 42y (3.33)
Y
Air- earth boundary P ,/ X

Fig. 3.7. Gravitational anomaly on the surface due to a buried cylindrical body of
finite length
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3.8 Gravitational Field due to a Plane Sheet

Let us assume a plane sheet in the xy plane and is symmetrical around the
axis OP vertical to the plane of the paper (Fig. 3.8).We assume an elementary
area ds on the plane sheet. Let

o= Li Am
= Lim
AS—0 AS
where As is the surface area of an infinitesimally small surface area in the
plane sheet and Am be its mass.
For a small area ds, the mass of the area is ods. The gravitational field

due to this small element at P is Grdzs. Vertical component of this field is given
by f, = Grdzs cos o and the component at right angles to z direction is Grdzs sin Q.
Since the point of observation P is symmetrically placed with respect to the
plate, the vertical components of the field will get added up. The components

perpendicular to the z-direction will get cancelled. The vertical component of
the field is d
f, = // N src20s0c = /de = 0w (3.34)

dscos©
2

where

= do.
Tr

Here dw is the solid angle subtended by the elementary mass at the P, w is
the total solid angle subtended by the plate at the point P. The field at the
point P is equal to the density multiplied by the solid angle subtended at the
point P. For an infinitely large sheet @ = 2.

f, = 2noc (3.35)

and. the field is independent of the distance of the point of observation from
the plate.

v
=

Fig. 3.8. Gravitational field on the vertical axis of a square horizontal plate
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3.9 Gravitational Field due to a Circular Plate

In this section, we shall derive the expression for the gravity field due to
circular plate. Let us choose the polar co-ordinate (r, y). The field at a point
P along a vertical line crossing the plane of the plate at right angles for the
elementary mass is GrdR’;d“’. where o is surface density (Fig. 3.9). Therefore,

the vertical component of the field is

Af, = Gr?{rgd“’ cos . (3.36)

Other components will vanish because of symmetry of the problem. Hence

a 2n
f_//(srdr .Z cosoc:Z,Rgzl"Q—i—z2
R
a 2n drd
ozrdrdy
// e (3.37)
r —|—Z

a

d 1 &
:2n0z/ rr32:2n0z[— }
(12 + 22)*/ Vi2+22 ],

:27TO'Z|:1— ! }z%ra[l— i ]
2 V22 +a? V22 + a?

Fig. 3.9. Gravitational field on the vertical axis of a horizontal circular plate
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3.10 Gravity Field at a Point Outside on the Axis
of a Vertical Cylinder

To compute gravitational field at a point P on the axis of a cylinder at a
point outside it, we assume an elementary mass opdpdy dz inside the cylinder
(Fig. 3.10). Here R is the radius of the cylinder. h, and hgq are the depths,
from the surface, to the top and bottom planes of a cylinder of length or
height H. ¢ is the volume density of mass.

dz §
Fig. 3.10. Gravitational field on the axis of a vertical solid cylindrical body at a
point outside the body
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The gravitational attraction due to an elementary mass at the point P
outside the cylinder and on its axis is
G dm opdpdydz
dg — el pdpdy

r2

(3.38)

2
where dv = pdpdydz. p is the radial distance of the elementary mass from
the axis of the cylinder. Since only the vertical component is of interest.
So
Z
dg, = dgcos = dgr

_ Gopdp.dyzdz

g (3.39)

The total gravitational attraction of the cylinder at the point P is given by

R hd 2= dodwzd
g, = Go / / pep “’:;2 (3.40)
p=0 hu y=o + z
2n hd R q
:>G0/d\|f/zdz/ P (3.41)
o hu o (p2 + Z2) !
hd R q
:>27|:G(5/zdz/ 9932
; J (p? + 72) /
hd . R
= 2TCGG/ZdZ - 1/ (3.42)
J (P2 + 22) / .
hd hd 1 R
zdz
= 2nGo /dz — / (R2 + 72)
u hu o
hd . .
= ZTEGG/ZdZ —
K 7 \/RQ + Z2
= 2nGo [(hd —h,) — \/R2 +h2 +/R2 + hg} (3.43)
So
Ag, = 27Go [H — \/R2 +h%+ /R + hg} . (3.44)
Case 1

If the point of observation is located right on the upper surface of the cylinder.
Then h, = O,hq = H and
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Ag, = 2nCGo [H ~VR2+H2+R|. (3.45)

Case 11

When R >> H
Ag, = 2nGoH. (3.46)

This is the expression for Bouguer gravity anomaly due to the plate.

Case 111

When R << H
Ag, = 2nGoR. (3.47)

This is the expression for a gravitational field for H — oo. i.e., for colum-
nar structures like volcanic pipe or a long cylindrical intrusions like mantle
xenoliths etc.

3.11 Gravitational Potential at a Point due
to a Spherical Body

Let a small elementary circular shell is assumed in a spherical body at a
distance ‘a’ from the centre of the sphere (Fig. 3.11).The point of observation
P is at a distance R from the centre of the sphere and ‘r’ from the elementary
mass.
So
dm = pa’sin6d 6 dady

where p is the density of the material of the spherical body (spherical shell or
solid sphere). The gravitational potential at a point P is given by

Fig. 3.11. Gravitational potential and field at a point P outside a spherical body
(solid or hollow)



3.11 Gravitational Potential at a Point due to a Spherical Body 59

2w

2 .
pa®sin @ db da diy
= -G 3.48
& //\/a2+R2—2aRcos0 ( )
where
2 =a? + R% — 2aR cosH
and
rdr = aR sin6 d 6.
So
0, = —2nGp;da / dr. (3.49)
Case 1

When the point P is outside the sphere
R+a

oo = —ZWGp]C;dCL / dr
R—a

a2
= —4nGp R da. (3.50)

Since the total mass of the shell = 4npaZda, the potential 0, = —GR asif
the mass of the spherical shell is put at the centre.

Case 11

If the point of observation P is inside (Fig. 3.12)

a+R
O; = —27er;l%da / dr = —4nGpada (3.51)
a—R

= —G"' where m is the total mass of the shell.

Fig. 3.12. Computation of potential at a point P within a spherical shell of outside
radius a and inside radius b
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When the outer and inner radii of the shell are respectively ‘a’ and ‘b’, the

mass is M = én (a3 — b3) p.

Therefore the potential outside is

4nGp i 4n Gp M
¢0:_ R /a,zda,:—B R [aB—bB}:—GR. (352)
b
The potential at internal point
o, = —41'|:Gp/ada = —2nGp (32 - b2) . (3.53)
b

Since a?—b? = Constant, the field inside (%pri = 0) is zero for the solid sphere.

¢; = 2nGpa? = Constant. Therefore, the field inside will be zero.

The gravitational potential at any point inside a solid body is determined
by the mass internal to the point inside the sphere of radius ‘a’. The mass out-
side does not have any effect on the potential. It shows that the gravitational
field at the centre of the earth is zero.

Case 111

When the point of observation ‘P’ is within the spherical shell
For the point P outside, the potential

RB_bS

4
= ,1G 3.54
o 3n p R ( )
and for inside
o; = 2nGp(a® — R?). (3.55)
So the total potential ¢ in the material itself is
4 R3 —b?
Dotal = Po + O = —37TGP < R ) —2nGR (32 - Rz)
1 13 1
= 4 2 _ _ 2| .
nGp [2a SR GR] (3.56)

The gravity field
©n 4 b3 4 R3 -3
= = — 7Gp|— Rl =— 7Gp |- . 3.57
9m =" oR 3”’)[R2+} 3P| T Re (8:57)
We can now examine the continuity of the potentials at the boundaries

(i) when R <b
0, = 2nGp (a® — b?) (3.58)
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» R » radial distance

T —

Inside Boundary
boundary

Fig. 3.13a. Potential at a point inside a spherical shell due to mass of the spherical
shell

(ii) whenb <R < a

1 1b3 1
¢, = —4nGp <a2 3R "6 RZ) (3.59)
(iii) when R > a
4 ad — b3
0, =—,7Gp" L, (3.60)

When R = b, potentials for case (i) and (ii) becomes 2nGp(a? — b?) and
when R = a, the potentials for case (ii) and (iii) becomes
4 ad — b3

— . mpG .
3 P a
Therefore, the potential remains same inside the boundary. As soon as the
point of observation comes out on the surface, the potential and field intensi-
ties decreases with distance as follows (Fig. 3.13a and Fig. 3.13b):

——» R < radial distance

O ——

Inner Boundary
boundary

Fig. 3.13b. A curtoon of variation of ‘g’ both outside and inside the air-earth
boundary, g = 0 at the centre of the earth as well as in the outer space;maximum
value of g is at a certain depth from the surface
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(i) for R <b
g =10
(ii) forb<R <b
R3 — b3
R2
Both potential and gravitational field are continuous across the boundary.

4
gp = —3nGp (3.61)

3.12 Gravitational Attraction on the Surface due
to a Buried Sphere

Gravitational attraction upon unit mass at a point P on the surface due to a
buried sphere of radius R, density ¢ and buried at a depth z is given by

M 4 nGR%c
= .62
Gr2 3 (2% + x2) (3:62)
where M( = 3nR?0) is the mass of the spherical body and r = v/z2 + x2. The
vertical component of the gravitational attraction will be equal to (Fig. 3.14)

3

M VA 4 3
gz = GrQ'r = 3nGR 0.(Z2+r2)3/2.

(3.63)

Gravitational force will be maximum at the origin i.e., at z = 0 and x = 0
on the surface. The value will die down symmetrically on both the sides of

SURFACE I

BURIED SPHERE

Fig. 3.14. Gravitational anomaly on the surface due to a buried spherical body of
radius R
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the spherical mass with increasing distance x from the origin. For further
studies the readers are referred to the works of Blakely(1996), Talwani and
Ewing(1961), Radhakrishnamurthy(1998) Telford et al (1976) and Dobrin and
Savit(1988).

3.13 Gravitational Anomaly due to a Body
of Trapezoidal Cross Section

Gravitational attraction on the surface at a point P due to a body of rect-
angular cross section present within the depth extent of zo and z1(z2 > 21)

(Fig. 3.15) is given by
7 zdxd
z dx dz
gp = 2Gp// 2 g2 (3.64)

Zz1 X1

where G is the universal gravitational constant and p is the density contrast
of the body with the surrounding host rocks
For a two dimensional body of trapezoidal cross-section as shown in the
Fig. 3.15.
RQ = rd6 = dx Sin® (3.65)

The gravitational anomaly due to a two dimensional body of trapezoidal cross
section is given by

Agy = 2Gp// dx dz. (3.66)

Z _r Slne Slne
x242z2 —  r2

Ag, = 2Gp / / Slfedx dz (3.67)

0> zo
:2Gp// d dz. (3.68)

01 z1

Since z = rSin®, and
we get

P Surface

Q |
r {

TTTTyY Z’

R d
Z,

Fig. 3.15. Gravitational anomaly due to a two dimensional body of trapezoidal
cross section
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/N

Z,

VZ
Fig. 3.16. Enlarged view of a trapezoidal cross section of a body and the direction
of line integral

Line integral along the trapezoidal cross section (Fig. 3.16) is given by

02 Z2 01 z1
](Gdz: /Gdz—l— / 0dz + / 0dz + / 0dz (3.69)

01,21 71,01 02,22 72,01
=0+ GQ(ZQ — Zl) +0+ el(Zl — ZQ)
= (22 — 21)(82 — 01). (3.70)

3.13.1 Special Cases

Case I Gravitation Attraction Due to a Two Dimensional
Horizontal Slab

Figure 3.17 shows the geometry of the problem. Gravitational anomaly at the
point P.

B

C D A
Ag, =2Gp /9dz+/9dz—|—/9dz+/9dz (3.71)
C D

A B
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P
<« Surface — +@

*"0;3 U AZ]

D
—o C 75
-+

Fig. 3.17. Gravitational attraction at the point P due to a two dimensional hori-

zontal slab
T T, Z2 T,Z2 n,Z2
=2Gp /9dz—|—/9dz+/9dz+ /Gdz (3.72)
\Z1 T,Z1 T,Z1

n,Z2
=2Gp[0 + m(z2 —21) + 0+ 0]
= 21'CGP(ZQ — Zl). (373)

Case II Gravitational Anomaly Due to a Fault with a Small Throw

Figure 3.18 shows the geometry of the figure. The gravitational anomaly at
the point P is

Z2 Z1

0 0
Ag, = 2Gp / Gdz—l—/ Gdz—|—/ 9dz+/9dz (3.74)

\Z1 71,0 72,0 72,0
=2Gp[0 + 02(z2 — z1) + 0+ 0] (3.75)
= 2Gp6h = 2Gph tan~! ”. (3.76)
X
P Surface

N

|
2222222207,

Fig. 3.18. Gravitational anomaly due to a fault with a small throw




66 3 Gravitational Potential and Field

Case III Gravitational Anomaly due to a Body of Rectangular
Cross Section

Figure 3.19 Show the geometry of the problem. Gravitational anomaly at a
point P is given by

G 02,22 03 02,21
Ag, =2Gp / 0dz + / 0dz + / 0dz + / 0dz (3.77)
62,21 61,21 04,22 03,22
B Z9 Z5
—2Gp 0+l/tmf4zdz+04—/}an_lzdz (3.78)
X X9
L z1 Zo
:2Gp [ZQ (94 — 93) + z1(62 — 91)
1 x2 4 72 X2 4 72
- In"y  Z4xeln s UL :
2(X1 DX%—’_Z%‘FXQ nx%—i—z% (3.79)

Since [tan™' Xdx =x tan™!' ¥ — 3 In(a® + x?)

Case IV Gravitational Attraction at a Point on the Surface due to
a Thin Plate

Figure 3.20 shows the geometry of the problem. Gravitational anomaly at the
point P due to the thin plate of finite length is given by

Agp = 2Gp [Z2(94 — 93) + 21(92 — 91)]
= 2GptH (3.80)

where 0 is the angle made by the plate at the point of observation P. t (= Az)
is the thickness of the plate.

P X1 Surface

Fig. 3.19. Geometry of the buried prism of rectangular cross section and the point
of observation on the surface
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P Surface

0

IO

Fig. 3.20. Geometry of a buried thin slab and the point of observation on the
surface

Case V Gravitational Attraction at a Point on the Face of a Two
Dimensional Ridge

Figure 3.21 shows the geometry of the problem. Gravitational attraction at a
point P on the face of a two dimensional ridge is given by

oo 72 X2 X1.21
Agy, =2Gp /9dz—|— / 0dz + / 0dz + / 0dz
x1,71 71,00 00,72 X272
X020 oo 7 x1
+ /6dz—|— / 0dz + / 6dz+/6dz (3.81)
1,21 X0,20 Zo,00 0,21

:2Gp [{0 + 27'C(Z2 — Zl) + 0+ (27'C — OC)(Zl — Zg)}

+{(mr—0)(2o —21) + 0+ 0+ 0}] (3.82)
=2Gp[(z2 — z1)(2n — 2 + o) + (T — o) (20 — 71)] (3.83)
=2Gplou(ze — 21 — 2o + 71) + (20 — 71)] (3.84)
=2Gpa(ze — z,) — 2nGP(21 — Zo). (3.85)

X, Zs ©

P

5
1o 2
A D
— oo Ko ¥y e

Fig. 3.21. Geometry of a ridge and the point of observation on the ridge surface




68 3 Gravitational Potential and Field

Case VI Gravitational Attraction on the Surface due to a Buried

Two Dimensional Body of Hexagonal Cross Section.

Figure 3.22 shows the geometry of the problem. Here gravitational attraction
at a point P due to an elementary strip of hexagonal cross section is given by

Agy = j{Gdz.

z=xtan0 = (x — a;) tan y,

In segment BC

X tany,; — a; tan ;.
From the (3.87) we get
x = a; tany,/(tany, — tan0)

and

”— xtan® — a; tan© tan\pi’
tany; — tan®
therefore o t
an® tany,
A =2G ; ' de.
sBC g ]{ N tany; — tan®@

The total gravity anomaly will be
Ag = Agpc + Agep + Agpe + Ager + Agra + Agas

Agpc = a;sin ¢, cos ¢, [Gi — 041 +tany; In

I;_.__ a; _,iQ c C'  Surface

cos 0; (tan 6; — tan y,)
cos ;41 (tan 6;41 — tany,)

C (Xitlf Yi+1)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

Fig. 3.22. Geometry of a buried two dimensional cylindrical structure of hexagonal

cross section and the point of observation on the surface
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Since
1 %Zi —1 Zi+1
0, = tan ! ,0i41 = tan !
Xj Xit1
1 Zi+1 — Zi
Y; = tan
Xi+1 — X
and

7 — 741
aj = PC/ = QC/ = Xj4+1 — Zi41 Cot \|Ii = Xj+1 + Zi+1 ' o . (393)
Xi+1 — Xi
Therefore the final expression for the gravitational anomaly for a prism with
n number of face is given by

- XiZi+1 — ZiXi41
Ag, =2 i+1 — Xi) (01 — 03
o Gp; [(Xiﬂ —xi)? + (Zit1 — Zi)z} Gaigr = 1) (B = 6i41)

+ (zi1 —z)In ri+1] . (3.94)

I

3.14 Gravity Field of the Earth

Gravity field of the earth is a global naturally existing field which attracts any
mass having a definite density and weight towards the centre of the earth. One
can measure this field or it’s variations on the surface of the earth, in the air,
in the ocean, inside a borehole or inside a mine. Thus the different branches of
gravity measurements, viz., aerogravity, marine gravity, borehole gravity and
surface gravity have developed. In surface gravity also (i) survey for geodesy,
(ii) survey for crustal studies (iii) survey for oil exploration and (iv) survey
for mineral exploration have altogether different dimensions. That is why in
a square grid gravity survey the distance between the two consecutive gravity
stations can be around 100 km for geodetic survey to 10 meters for mineral
survey.

Normal gravity field of the earth varies from 978.0327 gal at the equator to
081.2186 gal at the pole (Wilcox 1989). Point to point variation of the gravity
field is termed as gravity anomaly Ag and its’ unit is milligal.

Gravity data need a few corrections before they can be used for routine
interpretation using forward modelling and inversion. The corrections are

(i) Free air correction
i) Bouguer correction
) Terrain correction

iv) Latitude correction

(v) Tidal correction
) Isostatic correctiom
) Drift correction
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3.14.1 Free Air Correction

Earth, s normal gravity field varies inversely as the square of the distance.
Therefore, hills and valleys bring variations in the earth’s gravitational force
of attraction. Gravity at a height ‘h’ at any latitude can be represented by
truncated Taylor’s series expansion

G(R+h)=g(R)+hdg(R)/OR+------------ (3.95)
It generates the free air correction as
G(R+h) = g(R) — (0.30855 +.00022 cos 2y)h + 0.073 x 10~ °h? — —— (3.96)

where h is in meters and the gravity field is in milligal. For routine free air
correction 0.3086 h milligal is added to the gravity value. It only depends upon
the distance of the point of observation from the centre of the earth.

3.14.2 Bouguer Correction

Bouguer correction accounts for the attraction of the assumed plate at an
assumed point in a datum plane from the point of observation on the surface.
Through Bouguer correction, all the gravity data are brought back to the
same datum plane. Earth materials below the observation point will generate
an additional force of attraction at the datum point which was not taken
care of in free air correction. The earth materials present below the point
of observation and above the assumed datum plane is given an approximate
shape of a plate of certain thickness and infinitely large radius. For reducing
all the gravity data to the same datum plane the Bouguer correction is always
substracted from the gravity data. It’s value is 0.04188 p where p is the density
of the slab (see Sect. 3.9)

3.14.3 Terrain Correction

Rugged topography in a hilly terrain with rapid variation in elevation causes
an extra correction to be added. Terrain correction is always added both
for hills and valleys because the presence of positive and negative masses
will always align the force of attraction vector in the same direction. Mass
excess in the hill and mass deficiency in the valley will dictate the quan-
tum of correction to be applied. Details are available in Dobrin and Savit
(1988).

3.14.4 Latitude Correction

Spheroidal shape of the earth with its equatorial bulge and centrifugal force
for rotation of the earth around it’s axis and revolution of the earth around
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the sun in its orbit generates the latitude correction. It’s latitude dependence
is expressed by the equation(Heiskanen and Vening Meinsz 1958)

g(y) = 978.049(1 + 0.0052884Sin*y — 0.0000059Sinys (3.97)

where'y’ is the latitude on the surface of the earth. This is the international
gravity formula. The radius of the spheroidal earth is given by

R(y) = 6378.388(1 — 0.0033670Sin*y + 0.0000071Sin*2y). (3.98)
The normal gravity formula for geodetic reference system is as follows
g(y) = 978.0327(1 + 0.0053024 Sin®y — 0.00000071 Sin*2yy). (3.99)

For routine latitude correction needed for geodetic survey as well as for surveys
related with crustal studies the latitude correction used is ~ 1.307 Sin2y.

3.14.5 Tidal Correction

Sensitive gravimeters respond to the position of the sun and moon with respect
to the earth and the values of g varies with the tides in the ocean. It may be
a fraction of a milligal but it is measurable.

3.14.6 Isostatic Correction

Isostatic correction originated due to the presence of lateral variation of den-
sity within the earth, s crust. After the said corrections are applied, the
Bouguer anomaly for particular reference plane should have been zero in large
scale mapping and keeping aside the local variations in densities .In realities
it is was observed that negative Bouguer anomaly exists near the mountains
and positive anomaly exits near the oceans.

Two scientists named G.B. Airy and J.H. Pratt proposed two different
models for the crust. Airy’s model suggests that crust is thick near the moun-
tains and mountains have roots and it is thiner below the ocean bottoms and
here the crust has antiroots. The density of the crust is assumed to be the
same. Pratt assumed a variable density model and this variation in density
has direct relation with the elevation of the ground from the mean sea level.
Depth of the ocean floor from the mean sea level causes increase in density.
Figures 3.23a.b show the Airy and Pratt’s isostatic models.

Isostatic correction is needed only for geodetic survey as well as for surveys
related to crustal studies. For routine exploration survey only free air, Bouguer
and terrain corrections are necessary. Drift correction is an instrument based
correction. Round the clock reading at one point can give the idea about drift
correction to be added or subtracted.
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Fig. 3.23. (a) Airy’s isostatic model; (b) Pratt’s mode

3.15 Units

G = cm/gmsec? (CGS unit)
= m/kgsec? (MKS unit)

g = cm/sec? and gal

Ag = milligal(10~3 gal)

p = gms/cc.

3.16 Basic Equation

The basic equations for the gravitational field are

(i) g= —grad ¢,

where ¢, is the scalar gravitational potential.

(3.100)
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(i) Curlg=0 (3.101)
because the force of attraction is along the line joining the two masses.
(iii) div grad ¢, = V?0, = 4nGm (3.102)

when the region contains the mass. It satisfies Poisson’s equation. In a source
free region V2¢g = 0 and it satisfies Laplace’s equation.
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Electrostatics

In this chapter a brief introduction on electrostatics is given. Coulomb’s law,
electrostatic potential, electrical permittivity, electrical fluxes and displace-
ment vector, Gauss’s theorem on total normal induction, electrostatic dipole
potential and field, Laplace and Poisson’s equations,. electrostatic energy,
boundary conditions and basic equations in electrostatics are given.

4.1 Introduction

It was known to the people for more than three centuries that if an insulator is
rubbed with a cloth it acquires a special property of attracting other objects.
It was said that the body got charged. As early as 1785 Coulomb first quan-
titatively measured the force of attraction or repulsion. It was observed that
when a glass rod is rubbed with a silk cloth, it acquires positive charge. Simi-
larly when an amber rod is rubbed with a black cotton cloth negative charge
originates. These positive and negative charges are arbitrary convensions. Sim-
ply these charges are found to be of opposite polarities. Electrostatics deals
with these immovable electric charges of opposite or same signs and the fields
created by these charges. The energy spent to rub an amber or a glass rod
is partly converted into electrical energy and partly into heat energy due to
friction. This electrical energy appears in the form of electrical charges. It is
observed that the number of charges in the glass rod is exactly same as that
in the silk cloth. It proves the total conservation of charges and energy remain
the same. Free energy (which can be easily converted into work) in any ther-
modynamic system was used to separate these two types of charges present
in a body. They originate from an uncharged neutral body. Like charges repel
and unlike charges attract. These electric charges remain static and generate
electric field. The subject electrostatics is one of the most fundamental sub-
jects in potential theory. Because some of the most fundamental concepts and
equations, used in electromagnetic theory, came from electrostatics.
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+q - _ -q

Fig. 4.1. Coulomb force of attraction between a positive and a negative charge
separated by a distance r

4.2 Coulomb’s Law

Coulomb’s law states that two point charges q and ¢ separated by a distance
‘v’ will have (i) a force of attraction or repulsion directly proportional to the
product of the two charges and inversely proportional to the square of the
distance, (ii)the force of attraction or repulsion will be along the line joining
the two charges(Fig. 4.1), (iii) the constant of proportionality k = 1/4w €,
where € is the electrical permittivity of the medium (Sect. 4.4) (iv) like charges
repel and unlike charges attract. The expression for electrostatic force is given
by

/
F= kj‘; . (4.1)

This is known as the Coulomb’s law of force and k is a constant. Units of q,r
and F are respectively in coulomb, meter and Newton,.

4.3 Electrostatic Potential

Potential at a point in an electrostatic field is the amount of work done to
bring an unit charge from infinity to that point. Since work done = force x
distance, we can write

R
Workdone = —/ 2 ddl. (4.2)
Since
’ 1
q . q q
F= Ar € r2 for an unit charge. = —/ drer® =4, (4.3)

Therefore the potential at a point Ps at a distance r from a single charge q at
Py is given by ,! .7 (Fig. 4.2). The potential ¢ (= ,!_ ?) has only magnitude
and no direction and therefore it is a scalar potential. Potential at a point is
independent of the path followed.

The potential at a point P due to number of charges q1,q2,q3 . .. situated

at distances r1,rs,13 is given by

g= 1 (Q1+qz+%+.....). (4.4)

4 € \rqy T2 T3
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P,

Fig. 4.2. Work done for movement of the unit charge in the field

If there is a continuous distribution of charge throughout a region instead of
being located at discrete points, the region can be divided into elements of
volume Av. Then each Av contains charge pAv where p is the volume density
of charge in the volume element. The potential at a point is given by

1 > piAvi
(b 47 € ; T ( 5)

where r; is the distance of the ith volume element from P. When the size of
these volume elements become infinitesimally small

o= 1 /pd”. (4.6)

T 4me r

4.4 Electrical Permittivity and Electrical Force Field

If two opposite faces of an insulator (Fig. 4.3) are charged with potential
difference ¢ applying an external electric field, the charges on the two opposite
faces will be given by

0C =gq (4.7)

where C is the capacitance of a dielectric and ¢ is the voltage across the two
faces. Capacitance between the two plates can be defined as the charges needed
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Fig. 4.3. Charging of a dielectric (capacitance) between the two opposite faces

for unit potential difference between the two opposite faces of a capacitor. Unit
of capacitance is farad. This name was chosen to honour Micheal Faraday. The
unit farad = 1 coul/volt. More practical units are microfarad (1uf = 1076f)
and picofarad (1pf = 10712f). Equation (4.7) can be written as,

c./ll. (“j) :Z (4.8)

Here 1 is the distance between the two opposite faces of a capacitor.

where €= C f;. The capacitance of a body per unit length and unit
cross section is termed as electrical permittivity or electrical capacitivity of a
medium. Potential per unit width of the capacitor is the field ESoE = ‘f’ and

D (: Z‘) is the charge per unit area. It is termed as the dielectric flux den-
sity. It is also termed as the displacement vector. Its unit is Coulomb/meter?.
In a vacuum €=¢€p= 8.854 x 107!? farad/meter When an electric field is
applied between two opposite faces of a dielectric material, potential gener-
ated between the two opposite faces of the dielectric depends upon capacitance
of the dielectric. Dielectric constant is given by €,=€(€,. where €¢= 367711109
and is the free space electrical permittivity of the medium. €, is the relative
electrical permittivity of the body with respect to the free space value. The
electrostatic field due to a point charge is given by,

1 q .

E= LT
4w € 73

(4.9)
The field lines for a point source (positive charge) and sink (negative charge)
are radial (Fig. 2.3) in a homogeneous and isotropic dielectric and the equipo-
tential surfaces will be spherical. The direction of force is along the line joining
the two charges irrespective of polarity of the charges.
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Fig. 4.4. Shows the electrostatic field due to two opposite charges in a homogeneous
and isotropic medium

4.5 Electric Flux

When an isolated positive or negative charge is placed in a homogenous and
isotropic dielectric medium , field lines originating from the source spread
along the radial direction with the charge at the centre (Fig. 2.3). In the case
of a negative charge the field lines will converge radially to the negative charge.
When a positive and a negative charge is placed in a dielectric medium the
field lines will start from a positive charge and will end up in a negative charge
as shown in Fig. 4.4. The field lines are the lines of forces or the flux lines. The
important properties of these electric flux are (i) these fluxes are independent
of the medium, (ii) the magnitude of these fluxes is solely dependent upon
the strength of the charge from which the flux lines come out, (iii) the electric
flux density must be inversely proportional to the square of the distance if the
flux source is covered by a bounded domain say a sphere. The flux lines will
be perpendicular to the spherical surface.

4.6 Electric Displacement y and the Displacement
Vector D

Faraday’s famous experiment on movement of electrostatic charges in different
spherical shells is as follows: A sphere with charge q is placed within another
spherical shell without touching it. The outer sphere is momentarily earthed
and when the inner sphere is removed, the charge on the outer shell is found to
be exactly the same as that in the inner sphere but of opposite sign. It is true
for all sizes of the sphere and for all dielectric constants of the media. There is
a displacement of charges from the inner sphere to those in the outer sphere.
The amount of displacement depends only upon the magnitude of the charge
. Thus the displacement is in Coulomb i.e., ¥ = q. The electric displacement
per unit area at any point on a spherical surface of radius ‘r’ is the electric
displacement density D. It is a vector because there is a definite direction for
this displacement. So,
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3 v q
D= = 4.10

drr?  4qr? (4.10)
The unit is in Coulomb/meter?. The displacement per unit area at any point
depends upon the direction of the area and it is normal to the surface elements.
This displacement is along the direction of the field in a homogeneous and
isotropic dielectrics. Therefore we can again write,

=9
D=, of (4.11)
D=cE. (4.12)

The vector D is also called displacement vector. We can define the flux ¥ =
D.ds where ds is the differential surface elements on the surface S.

In an anisotropic dielectric, the electrical permittivity becomes a tensor
and the connecting relation between D and E can be expressed as

D, =¢ci1 Ex+ €12 Ey+ €13 I,
Dy =€91 B+ €09 Ey+ o3 B,
D, =€31 B+ €23 Ey+ €33 I,

and in the matrix form

D, €11 €12 €13 | | B
Dy = | €21 €922 €23 Ey (4.13)
D, €31 €32 €33 | | B2

4.7 Gauss’s Theorem

The total normal induction or total displacement of electric flux through any
closed surface, which enclosed the charges, is equal to the amount of charge
enclosed. From Fig. 4.5, the displacement or electric flux through the elemen-

tary surface ds is
d¥ =D dscos6 (4.14)

where 0 is the angle between D and 7. where 77 is normal to the surface ds.
The total normal induction through the entire surface is given by

v = j{]_j dscos 6 (4.15)

where the integration is over the whole surface.
Solid angle dw is (Fig. 4.6)

dscos©
2

do (4.16)

and,



4.7 Gauss’s Theorem 81

Fig. 4.5. Shows the normal induction through the surface ds when a charge q is
bounded by the surface S

¢:fpﬂm. (4.17)
Substituting the value of D from (4.6), we get
q
= do. 4.18
V=t fdo (4.18)

Since the total solid angle subtended at the point O (occupied by the charge
q) by the closed surface is 4m, therefore

v =aq. (4.19)

If there be n number of dielectric charge q; within the enclosed volume, the
total flux on the surface will be,

v=>"a. (4.20)
i=1

If the charges are distributed throughout the volume and p is the volume
density of charge then the total normal induction through the surface is

Y= /pdv. (4.21)
_ dscosf P-f}

do

rl

Fig. 4.6. Shows the solid angle subtended at the point o due to the surface ds
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Now (4.18) can be written as,

U= 7{D.ds. (4.22)

j{ﬁ.d§: /pdv. (4.23)

Applying Gauss’s divergence theorem, we can write

/ divDdv = / D.ii.ds = / pdv (4.24)

v S v

divD = V.D = p. (4.25)

From (4.22), we can write,

4.8 Field due to an Electrostatic Dipole

Both dipoles and bipoles consist of two poles. The difference lies in the distance
between the two poles. In an electrostatic dipole the distance between the two
poles is negligibly small in comparison to the distance of the observation point.
As a result the potential and field vary inversely as the square and cube of the
distance respectively. For bipole fields, the distance between the two charges
is comparable to the distance where we measure the field. As a result the
potential and field vary inversely as the first and second power of distance.

In this section, we shall develop the expressions for potentials and fields
for static field. Let the charges + q and —q separated by a distance ‘I’ are
placed along the z-axis. gl is the moment of the dipole. The point dipole is
defined as Illirgl ql = finite.

Figure 2.7 shows the location of the dipole. The point of observation P is
located at a certain point x, y, z in a cartesian coordinates. The vector 1 is
from +q to —q. The potential at P is given by

o= ¢ (1—1> (4.26)

o 4t € \r1 T2

Substituting the values of r; and ro, we get

q ) 12 —1/2 ) 12 —-1/2
o= dn e <r + 4 —lrcose) — (r + 4 —I—h"cosO)
—~1/2 9 —~1/2
_q 1 12 1 1 1
= dncr (1 + w2 p cos 0 1+ A2 + . cos 0 (4.27)




4.8 Field due to an Electrostatic Dipole 83

P

Fig. 4.7. Shows the electrostatic dipole. P is the measuring point of potential and
field

q 1 12 1 12 1
= 1= 0—-1 0 o 4.28
4n6r[ gr2 T o O80T gpa T 0080 (4.28)
q 1|1 9 .
= . cos 0 + 1“and higher order terms
ime r |r

I cos® P cos6 5
= ST Y Where P is the dipole moment. (4.29)
dn e’ r? it e 12

The expression for the dipole field is,
P.g,

. 4.
4 € 13 (4.30)

E:

The field components in spherical and cartisian coordinates are respectively
given by

o0 2P cos@

== or  dme’ 13 (4:31)
- 00 P sin®
Eg = — = ) 4.32
0 rod 4me 13 (4.32)
Ey =0. (4.33)
The total field is
P Lo
A e p (8:2 cos O + ap. sin 0)
_ P ? (4.34)

4n e'(Xz +y2 _|_Z2)3/2'

The components are
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P p 33Xz - P 3xz
ToAme (x2 4 y2442)%%  dmerd
- p 3yz
Ey = Ape 15 (4.35)

E—j _ 15' 3Z2 1
YT 4n e 2 2 2\5/2 (2 2 2\3/2
Te |2ty 42 (2hy?ia)

P /322 1
:Me(ﬁ_ﬁ) (4.36)

For dipoles, the expressions for the potential can also be written as

1 1 1

0=, 4 ( - )
T € T To
1 1

1 —

= Q"

dn € 4 ( 1 )

1 - 21
_4ne'P'Ifi%181(r>'

So the differential form of the expression for potential at a point due to a

dipole is given by
P 9 /1
¢_4n6'81(r)' (4.37)

The potential due to a single pole is ¢ = 41‘36 i For surface distribution of
single poles, the expression for the potential will be

o= / / "fs (4.38)

where G is the surface density of charge. For dipoles, the direction of the dipole
will be at right angles to the surface. If P is the moment of the dipole per
unit area, Pds is the moment of the dipole for a small area ds. Assume that
each dipole is normal to the surface. So the potential at a point p due to the
elementary surface ds. (Fig. 4.8) is

Pds o (1
- 4m €’ on (r) (4.39)

The total potential due to a surface distribution of dipoles is given by

o= [iean () (840

where the direction of the moment is at right angles to the direction of the
surface. Therefore



4.9 Poisson and Laplace Equations 85

Fig. 4.8. Dipole surface

P dscosf P Puw
= . = dw = 4.41
¢ / dr e r? 47 € // n 47 € ( )

where o is the solid angle subtented at the point P. 7 is the dipole moment
due to the surface S.

4.9 Poisson and Laplace Equations

Starting from equation (4.25),i.e.

VD =p,
we can write
V.eE = p
= V.E= Z. (4.42)
Since
E= _v¢7
therefore
p
V.V =—
q) S
= V2= - Z. (4.43)

This is known as the Poisson’s equation. In a free space where there is no
electrostatic source, (4.43) reduces to,

V29 =0 (4.44)
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This is a Laplace equation These equations are of primary importance in
scalar potential field theory. In rectangular coordinates, Poisson or Laplace
equation is written as,
2 2 2

00 0% 00 _ P (4.45)

ox?2 = 0y? 022 €
depending upon whether the source is included in or excluded from the vol-
ume.

These are second order partial differential equations and are related to

the rate of change of potential in three mutually perpendicular directions. In
terms of electric field it can be written as

V.E = g or 0. (4.46)

4.10 Electrostatic Energy

A capacitor gets charged when a voltage ¢ is established between the two
plates. The stored energy can be converted into heat by discharging the capac-
itor. The amount of energy stored can be calculated from the work done in
charging the capacitor.

Since the potential is defined as the work done in moving a unit charge
from infinity to a particular point, the work done by moving a small charge Aq
through the potential difference of ¢ is Aq. The voltage ¢ can be expressed
as

q
= . 4.47
o="2 (447)
The work done in increasing charge in a capacitor by an amount dq is
q
dg. 4.48
% (4.48)
The total work done in charging the capacitor to q Coulomb is
q 12
q q
Total k= dq = . 4.49
otal wor / o= 4 - (4.49)
0
Stored energy in a charged capacitor is
1 ¢? 1 1,
5o = oP1= o9 (4.50)

Since E = | i.e., the potential per unit length and €= C f4, we get the expres-
sion of the electrostatic stored energy as

1 5 122 A 1
C=_El€. = E?1P. 4.51
o® g Bl e =€ (4.51)
So the stored electrostatic energy per unit volume is
1
c B2 (4.52)

2
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4.11 Boundary Conditions

/ﬁ.ﬁ.ds.

S

The normal component of D is

Applying Gauss’s divergence theorem, we get

/ﬁ.ﬁ.ds = /divf).dv = /pdv =q (4.53)

v

Here q is the total charge and p is the volume density of charge. Let us assume
an elementary thin cylinder with negligible thickness with two faces on two
sides of the boundary (Fig. 4.9). The normal component of the displacement
vectors will go out of this volume for normal induction. Therefore Dn; and Dny
will be in the opposite direction. From Gauss’s law of total normal induction
we can write

(DQ.HQ + Dlnl)Aa = wAa (454)

where Dy and Dy are the displacement vectors, n; and ns are the normal
vectors from the bottom and top surfaces of the cylinder, Aa is the surface

area of the cylinder and w is the surface density of charge. Since q = [ pdv =
\'a

pAl.Aa (where p is the volume density of charge), we get
w = pAl,
and

(DQ — Dl).n =W (455)

This equation shows that normal component D,, of the vector D is discontinu-
ous at an interface due to accumulation of surface charge of density w. On the
surface of a conductor, surface charge density dissipates quickly but on a sur-
face of an insulator accumulated charge does not dissipate so quickly. Hence

Hys€1,0,

Has85,0,

Dn,

Fig. 4.9. Normal component of the displacement vector at the boundary between
the two media of different electrical permittivity
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across the interface involving all except the poorest conductors or dielectrics,
the normal component of D is continuous across the boundary i.e.,

Dnl = DDQ (456)
Since the electrostatic potential is also continuous across the boundary.

The boundary conditions generally applied to solve an electrostatic problem
are

(i) 01 = b,

. do\ ¢

i) & (an)l =& <8n1)2. (4.57)
4.12 Basic Equations in Electrostatic Field

1 qge

1. F = br e g2 Coulomb/'slaw (4.58)
2. F=qE (4.59)
3. B= 07 (4.60)
4. o &ﬂii (4.61)
5. div E = qe,, where q, is the volume density of charge. or

V?E = qe,, Poisson’s equation (4.62)
6. E= —gradd,. 0, is the scalar potential in electrostatics (4.63)
7. V’E=0 Laplace equation is a source free region (4.64)
8. D=cE (4.65)

9. divD=p (4.66)
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10. CurlE =0 (4.67)

P cosf

. 4T € 12
where P is the dipole moment.

11. Potential due to a dipole = (4.68)

12. P.a,

Field due to a dipole = P (4.69)
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Magnetostatics

In this chapter, some preliminaries of static magnetic fields, viz, Coulombs
law, Faradays law of electromagnetic induction, Magnetic Induction, Mag-
netic field, Lorentz force, Magnetic properties of the rocks, Biot and Savart’s
law, Ampere’s force law, Ampere’s circuital law, Magnetic vector potential,
Magnetic scalar potential, Magnetomotive force, Magnetostatic energy, Mag-
netic field due to a dipole source are discussed. Nature of the geomagnetic field
are outlined briefly. Besides some of the basics like solenoidal, rotational and
irrotational (low frequency approximation) nature of the magnetostatic field,
similarities and dissimilarities with other scalar potential fields like gravity,
electrostatic and direct current flow field are highlighted. Geomagnetic field
along with magnetostatics and time varying magnetic fields made major in
roads in the various branches of geophysics. A brief outline of that is given.

5.1 Introduction

Magnetic field originates when a charge moves. Therefore no magnetic field is
associated with electrostatics. Magnetic field has link with direct and alter-
nating current flow fields. Magnetism, (i.e., the property of certain metallic
objects, to attract or repel some other metallic objects,) was known to the
people for the last several hundred years.

The word magnetism came from the word Magnesia an ancient city of Asia
Minor. Certain rocks in the vicinity of this city had the property of attracting
metallic bodies. It was observed that a needle shaped load stone got deflected
along a particular direction irrespective of any arbitrary orientation and it
was used by mariners to find out the north-south direction. This kind of
movement in the needle is possible when a couple act on it. The presence of
a couple is possible, when a field exists in the north-south direction and the
needle has north and south polarity at the two ends. Thus the existence of
the geomagnetic field was conceptualised.
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In 1819 Oersted first observed that there is a close connection between the
flow of electric current through a wire and the generation of magnetic field.
In 1820 Biot and Savart first experimentally demonstrated the quantitative
aspect of strength of the magnetic induction B and magnetic field H. In the
same year Ampere proposed his force law i.e., the law for force between the
two coils carrying currents.

Magnetic field is a global and naturally occurring field like gravity field
and can be measured anywhere on the surface of the earth, in the air, in
the ocean bottom and inside a borehole. Both magnetic and gravity fields
show local perturbations due to local variations in magnetic susceptibili-
tiy and density. Geophysicists are interested about these local and global
perturbations.

Gravity field generates always a force of attraction but magnetic field, like
electrostatic field, can have either the force of attraction or repulsion according
to the law “like poles repel and unlike poles attract”. Magnetic field has con-
ceptual north and south poles, the way we have positive charge and negative
charge in electrostatics. In this particular aspect magnetostatic field has some
similarity with the electrostatics field i.e., both the fields satisfy Coulombs
law. Electrostatic field, magnetostatic field and gravity field follow inverse
square law. The fields vary directly with the product of charges or masses or
pole strengths and inversely as the square of the distance. The constants of
proportionality are different for different fields. Both in the case of electro-
static field and direct current flow field, we brought the concept of potential
and electromotive force using the line integral of force multiplied by distance.
Similar concept of magnetomotive force exists where the work is done in the
magnetic field and the line integral of the magnetic field times the distance
gives magnetomotive force. Magnetostatics has the concept of both scalar
and vector potentials as well as rotational and irrotational field. Irrotational
nature of the magnetic field comes from the low frequency approximation and
in a source free region.

Positive charge and negative charge in the case of electrostatics, source
and sink in the case of direct current flow field can generate both bipole and
dipole fields depending upon the separation of the two opposite charges or two
opposite current sources. Separation between the north pole and south pole
can generate bipole and dipole fields in magnetostatics. That way magneto-
static field has some similarities with the electrostatic field and direct current
flow field.

Magnetostatic field has significant dissimilarities with the other fields.
Magnetostatic field is always a bipole or a dipole field. An isolated north
pole or south pole does not exist. A coil carrying current or a thin sheet
of magnetic substances with negligible thickness have both north and south
poles.

Magnetostatic field is a solenoidal field. Divergence of the magnetic field
is always zero because the poles do not stay in isolation. In the case of elec-
trostatic field, direct current flow field, gravity field, heat flow field etc, if the
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Magnetic Field

D

|
Liner Conductor *

Fig. 5.1. Magnetic field due to a linear conductor carrying current

area under consideration is a source free region, then they become solenoidal
field and satisfy Laplace equation. If the region under consideration con-
tains source, then the fields will be nonsolenoidal. These fields then satisfy
Poisson’s equation. So both the options are there in the said nonmagnetic
fields.

Magnetostatic field is a rotational field (Figs. 5.1, 5.2). The curl of a mag-
netic field is not zero where as curl of gravity, electrostatic, direct current flow,
heat flow fields etc. are zero. These fields are irrotational field. Time varying
electromagnetic field also is a rotational field. In the absence of any current
source magentostatic field can also be an irrotational field. Geomagnetic field,
because of its low frequency approximation, becomes an irrotational field and
satisfy Laplace equation.

Bar Magnet
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Fig. 5.2. Magnetic field due to a bar magnet
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Amongst all the static and stationary fields only magnetostatics has the
concept of vector potential. This is also one of the major differences with
other fields. These vector potentials received greater attention while solving
the electromagnetic boundary value problems.(see Chap. 13) in geophysics.

Magnetic lines of forces are continuous where as the electric field in elec-
trostatics starts from a positive charge and ends in a negative charge; current
flow lines in direct current flow field starts from a source and ends in a sink. In
this respect also magnetic field has dissimilarities with the electrostatic field
and the direct current flow field. The concept of bipole and dipole exists in
magnetostatics, electrostatics and DC field. A coil carrying current is called a
magnetic dipole. A coil carrying alternating current is termed as an oscillating
magnetic dipole. Magnetostatic field, electromagnetic field, gravity field can
be measured in the air. Aeromagnetic, aeroelectromagnetic and aerogravity
methods are standard geophysical airborne tools. For direct current flow how-
ever galvanic contact of both current and potential measuring probes with the
ground or any other medium of finite conductivity is necessary. Therefore DC
flow field does not have any airborne counterpart.

In the case of Geomagnetic field, div B = O(see in this chapter) leads
to div H = 0 since B = pH(see this chapter).Hence H = —grad® where ®
is a scalar potential. Geomagnetic field also satisfies Laplace equation (see
Chap. 7). Since J, the current density in the air is negligible and dD/dt the
displacement vector is zero, curlH = 0. Therefore geomagnetic field becomes
an irrotational and a scalar potential field in all respect and becomes similar
to gravity, electrostatics and DC field.

Different forms of origin of the magnetic fields are shown in the following
figures. Figure 5.1 shows the origin of the magnetic field due to a linear con-
ductor(a long straight wire). Here the magnetic field is encircling the current
carrying conductor. The magnetic lines of forces are continuous without any
break any where showing the rotational nature of the magnetic field. Here
magnetic field is at right angles to the direction of flow of current.

Figure 5.2 shows the nature of the magnetic field created due to a bar
magnet. It is interesting to note that magnetic field does not originate at the
north pole nor it ends in a south pole. Magnetic lines of forces enter in a bar
magnet near a point known as south pole and goes out of the magnet from a
point known as north pole. These north poles and south poles are fictitious
poles and do not exist in reality. These lines of forces are also continuous.

Figure 5.3 shows that magnetic field is created by an electromagnet. If a
current carrying coil is wound round a metallic conductor of electricity ,the
conductor becomes a magnet and the nature of the magnetic field will be
similar to that of a bar magnet.

Figure 5.4 show the nature of magnetic field due to flow of current through
a solenoid or a coil with n number of turns. All the magnetic lines of forces
will pass through the core of a solenoid.

Figure 5.5 a and b show the nature of the magnetic field due to flow of
current through two rectangular coils in opposite directions. Direction of the
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Magnetic Field

Metallic Conductor
Fig. 5.3. Magnetic field created by an electro magnet

Magnetic Field

Flow of Current

Fig. 5.4. Show the nature of the magnetic field due to a solenoid carrying current

m
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Fig. 5.5. Magnetic fields created due to flow of current in the opposite directions
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magnetic field vector will depend upon the direction of flow of current through
two rectangular coils.

Figure 5.6 shows a vertical section of the magnetic field due to a circular
coil carrying current. The plane of the coil is horizontal but the direction
of the magnetic vector is vertical. That is why a horizontal coil carrying
current is termed as a vertical magnetic dipole. When alternating current
flows through the coil it is termed as an oscillating vertical magnetic dipole.
When the plane of the coil is vertical and the direction of the field vec-
tor is horizontal the dipole is termed as horizontal magnetic dipole. The
direction of the magnetic vector will be at right angles to the plane of the
coil.

Figure 5.7 is presented as one of the examples of the nature of distortions of
the field lines due to a bar magnet in the presence of another uniform magnetic
field. Difference in the orientations of a bar magnet and the external fields can
create different patterns of distortions.

Figure 5.8 shows the formation of a couple of force in a magnetic needle
in the presence of an external field. This couple acts on the magnetic needle
and reorient it along the north south direction as discussed. Mariner compass
used was based on this principle.

Fig. 5.6. Magnetic field created due to a magnetic dipole (a loop of wire) carrying
current
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Fig. 5.7. The magnetic field due to a bar magnet in the presence of an external

uniform field
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Fig. 5.8. Deflection of the magnetic needle in the presence of a magnetic field
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5.2 Coulomb’s Law

The concept of magnetic poles, magnetic pole strength ‘m’, two opposite
nature of magnetic poles viz., north pole, south pole, force of attraction and
repulsion and inverse square law of force exist in magnetostatics. If the two
poles m; and ms are separated by a distance r then the force of attraction or
repulsion is given by

F= Kmlgnz

T

where K is the constant of proportionality. This constant of proportionality
is given by 411ru instead of 4; ¢ as in the case of electrostatics. [ is termed as
magnetic permeability. In a free space or in a non-magnetic rock U = u,. W,
is termed as the free space magnetic permeability and is equal to 4w x 10~
henry/meter. The force of attraction or repulsion will be along the line joining

the two poles.

(5.1)

North Pole South Pole

& +—> o

Fig. 5.9. Force of attraction between a north and a south pole placed at a distance r

5.3 Magnetic Properties

5.3.1 Magnetic Dipole Moment

The major difference in the nature of the electrostatic and magnetostatic field
is (i) the magnetic poles do not exist in isolation. Magnetic poles always exist
in dipole form in nature what little be the distance between the two poles. Two
poles of pole strength ‘m’ and separated by a distance 1 will have magnetic
dipole moment

P =ml7 (5.2)
The dipole moment is a vector and is directed along the line joining the two
poles. T is a unit vector along the direction of the line joining the two poles.
Fig. (10.a and b) show the orientations magnetic dipoles in a nonmagnet and
a magnet.

5.3.2 Intensity of Magnetisation

A magnetic body experiences a force when placed in a magnetic field. The
intensity of magnetization is proportional to the external field and direction
is along the direction of the external field. Intensity of magnetization is the
magnetic moment per unit volume i.e.,

p
v

I="F (5.3)

where v is the volume of the magnetic body.
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Fig. 5.10. Shows (a) random orientation of magnetic dipoles in a nonmagnet (b)
oriented dipoles in a magnet

5.3.3 Magnetic Susceptibility (Induced Magnetism)

Some substances acquire magnetic properties when they are brought in a
magnetic field. This magnetism in a rock or mineral or ore body or metallic
alloy are induced magnetism. Magnetism vanishes in some cases when they
are withdrawn from a magnetic field. In some cases substances may retain
some magnetic field even after they are withdrawn from the inducing field
.Third group of substances have their magnetic properties irrespective of their
presence in or absence from a magnetic field. Intensity of magnetization is the
induced magnetic moment per unit volume. It is directly proportional to the
strength of the inducing magnetic field H and is given by

I=KH (5.4)

The constant of proportionality K is termed as magnetic susceptibility There-
fore intensity of magnetisation has direct relation with the susceptibility of
rocks. It is also a measure of the degree to which a body is magnetised.
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Higher the concentration of magnetites or other ferrimagnetic minerals in a
rock higher will be the magnetic susceptibility and higher will be the inten-
sity of magnetisation. Some ferromagnetic materials viz.,magnetite, ferrite,
permalloy mu metals have higher magnetic susceptibility. Magnetic perme-
ability is connected with the magnetic susceptibility through this relation (K,
the susceptibility of a magnetic substance).

u=1+4nK (5.5)

5.3.4 Ferromagnetic, Paramagnetic and Diamagnetic Substances
Diamagnetism

Diamagnetic substances are those whose magnetic susceptibilities are very
small negative quantities. In the presence of an external inducing magnetic
field spinning of orbital electrons are in the opposite direction to the induc-
ing field. Magnetic field within the body vanishes as soon as it is withdrawn
from the inducing magnetic field. In diamagnetic substances, the magnetic
moment of all atoms is zero. They are generally called non magnetic sub-
stances. The common naturally occurring diamagnetic substances are quartz,
graphite, gypsum, marbel etc.

Paramagnetism

Paramagnetic substances have very small positive magnetic susceptibility.
In the presence of an external magnetic field the spinning electrons in
an atom partially align themselves parallel to the inducing field. Param-
agnetism is a temperature dependent phenomenon. Therefore the spinning
electrons get disordered in the presence of high temperature. Paramagnetic
substances also lose their magnetism in the absence of external magnetic field.
But these substances have net magnetic moment in the absence of exter-
nal magnetic field. Pyrites, Zinc Blende and Hematites are paramagnetic
substances.

Ferromagnetic Substances

Materials which show strong magnetic effect in the presence or absence of
external magnetic field are ferromagnetic substances. Ferromagnetic sub-
stances have very high positive magnetic susceptibility. Orbital electrons
get quickly aligned towards the direction of the external magnetic field.
Magnetic induction will be very high in a ferromagnetic substance. There-
fore they distort the external magnetic field considerably. Ferromagnetic
substances have three subgroups. They are (i) ferromagnetic (ii) antiferro-
magnetic and (iii) ferrimagnetic. In ferromagnetic substance the magnetic
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dipoles align themselves parallel to one another quickly in the presence of
an external magnetic field. In antiferromagnetic substance the dipoles align
themselves antiparallel to one another and the net magnetic effects are can-
celled.

Ferrimagnetic substances are those where a material has unequal magnetic
moment in the opposite direction. Therefore they have a net magnetic moment
(5.11). Because of partial cancellation ferrimagnetic substances are less mag-
netic than ferromagnetic substances.

Metals like Iron, cobalt nickel and metallic alloys like mu metals, permalloy
are materials of higher magnetic permeability and magnetites and titanomag-
netites are highly permeable ferrimagnetic ore forming minerals and hematite
is a paramagnetic substance.

Ferromagnetic substance gets easily and strongly magnetized in the pres-
ence of an external magnetic field. Disoriented and nonaligned magnetic
dipoles get quickly aligned even in the presence of a relatively weaker magnetic
field (Fig. 5.11). Magnetic induction or flux cut will be very high through fer-
romagnetic substances. Therefore perturbation of magnetic field will be very
high in the vicinity of a ferromagnetic substance. Often the sensitive mag-
netic instruments are made insensitive to measure the strong perturbation
field for exploration of magnetite. Ferromagnetic substance had a big role
to play towards discovery of the earth’s magnetic field. As mentioned load
stone or magnetite needles were used by the mariners towards determining
the north direction. Another big contribution of the ferromagnetic substances
is the use of mu metals or ferrites , highly permeable specially made metallic
alloys, in framing a core of a highly sensitive induction coils for measuring
very very feeble magnetic field variations. Magnetic field variations of period
10,000 seconds can be detected and measured with a supersensitive induction
coils.

648645

XEEXE
¢ ¢ 6 ¢ o0

Fig. 5.11. Magnetic dipoles in a (a) ferromagnetic (b) antiferromagnetic and (c) fer-
rimagnetic substances
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5.4 Magnetic Induction B

Magnetic flux B is the number of magnetic lines of forces created by a source
of magnetic field. Its unit is Weber. Magnetic flux density or magnetic induc-
tion is the number of lines of forces cut per unit area. Its unit is Weber /Square
meter or tesla. The direction of B is at right angles to the plane of the loop
when the flux cut is maximum. When the loop is in the same plane and is
oriented along the direction of the flux, the flux cut will be minimum. Mag-
netic substances will have higher concentration of flux lines as shown in the
Fig. 5.12. Higher the magnetic permeability or magnetic susceptibility higher
will be the concentration of magnetic flux lines. Material which get magnetized
in the presence of a magnetic field are magnetic substances. Magnetic flux den-
sity or magnetic induction is a vector. The magnetic flux can be written as

0= /E.ﬁ.ds (5.6)

where B is the magnetic induction vector, n is the direction of the normal to
the plane of a coil (Fig. 5.13) or the magnetic substance. ds is a small element
of the area got induced. Magnetic induction is connected to the magnetic field
strength by the relation

B=uH (5.7)

where | is the magnetic permeability. So higher the magnetic field inten-
sity and magnetic permeability, higher will be the magnetic induction. High
magnetic permeability mu metal cores are used inside a coil to enhance the
detectibility of a weak magnetic field as mentioned.

A magnetic body when placed in an external magnetic field H, it gets
magnetized and generates field H' of its own. Magnetic Induction is defined
as the total field within this body and is given by

B=H+H = H+4rK
=(144nK)H = pH. (5.8)

Variation of B with H is a nonlinear behaviour. It generates a loop known as
hysteresis loop. With gradual increase in H, the field strength, the magnetic
induction reaches saturation and show no further increase in B.

Magnetic Material

—— —_———

Magnatic Flux Uniform Magneic Flsld
——

—_—

Out Side From g distance Source
_

1 -
—— —

T
Magneti flux inskde

Fig. 5.12. Magnetic induction in a magnetic substances; concentration of flux lines
in a higly magnetically permeable substance



5.4 Magnetic Induction B 103

Magnetic o #
flux lines

Fig. 5.13. Magnetic flux in a solenoid

That generates the first part of the curve (Fig. 5.14). When the applied
magnetic field is reduced to zero, magnetic induction do not reduce to zero but
come to a positive magnetic induction ‘or’ known as residual magnetism. All
magnetic substances have positive residual magnetism after the withdrawal
of the primary field. If the magnetic field is applied in the negative direction,
the magnetic induction will come down to zero. The sector ‘oc’ is termed
as the coercive force, i.e., the field necessary to bring the magnetic induction
in the substance to zero. The rest of the loop can be obtained by decreasing
and increasing the inducing magnetic field. So B-H curve generates a loop
known as hysteresis loop.

Initial magnetization

curve

o \“1 Induction =

C Rﬁ
or = or'= Residual magnetism
oc = o¢'= Coercive force

Fig. 5.14. B-H curve: Hysteresis loop
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5.5 Magnetic Field Intensity H

From Coulombs law of magnetic force (5.1) we can define the magnetic field
strength H as the force on a unit pole of strength m’ located at a distance r
from the source. The magnetic field due to a point pole of unit pole strength
is given by

I 1 m

Magnetostatic field H = o P

r (5.9)
It is assumed that m’ or the unit pole is not large and near the point of mea-
surement m’ << m. In electromagnetic unit, it is in oersted i.e., dynes/unit
pole. It is shown that the magnetic flux density at a distance r for a wire
carrying current I is

- pl - I

B= and H= 5.10
2nr " 2nr ( )

The magnetic field strength H is thus expressed in terms of current flowing

through the wire. The unit of H is ampere/meter or ampere-turns per meter.

Equation (5.10) tells that magnetic field is independent of the permeability of

a medium. It only depends upon the strength of the current and the distance

of the point of observation from the wire carrying current.

5.6 Faraday’s Law

Faraday’s law of electromagnetic induction states that the voltage induced
in a coil, when a bar magnet is brought near by, is proportional to the
rate of change of number of lines of forces or the rate of change of flux
cut by the coil (Fig. 5.15 a,b,c). If a bar magnet is quickly brought near
the coil or quickly withdrawn, the induced voltage will be more. If the rel-
ative position of the magnet and coil remains same there will be no volt-
age even if the coil and the magnet are quite close. One can verify this
observation attaching a galvanometer to the ends of a coil and allowing a
bar magnet to approach towards the coil or to recede from the coil. This is
Faraday’s law of electromagnetic induction. The induced e.m.f (electromotive

force).
ON dl
= =L 5.11
¢ ot dt ( )
where N is the number of lines of forces and L the constant of proportionality,
between the rate of change of current and the flux, is the self inductance. We

can write
T

/q)dt:/LdI:L / dl = LI (5.12)
0
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and magnetic flux
T
Y= /¢dt = LI (5.13)
0

From (5.13) we can write § = L where A is the area of the coil and } =B
and it is the magnetic flux density or magnetic induction.

We can write
y 1[I
A _LA (1) (5.14)

= B = uH. (5.15)

Here u = LIL i.e. the inductance per unit length and unit cross section is the
magnetic permeability and its unit is henry/meter. The unit of inductance is
henry. An inductance on a coil generates extra impedance in the circuit.

Figure 5.15(a, b, ¢) show the generation of current in a single turn of coil
or on an n turn solenoid due to movement of the magnet with respect to
the coil. Polarity of the bar magnet also changes the direction of the flow
of current. Figure 5.16 show the development of current and voltage in a
secondary inductive circuit when an alternating current passes through the
primary circuit. The currents are generated in the secondary circuit due to
flux linkage with the primary circuit. The rate of change of number of lines
of forces due to the flow of alternating current in the primary circuit caused
the variable flux linkage.

These diagrams in 5.15 a, b, ¢, 5.16 and 5.17 show the nature of the
magnetic field distribution and the close linkage between electricity and mag-
netism. Faraday’s law of electromagnetic induction should come under time
varying magnetic field section. Since some of the basics of magnetostatics are
explained using this law, it is included in this chapter.

Lﬁ? 5

Fig. 5.15(a, b, c). Show the generation of electric current in a coil when a bar
magnet is approaching towards or receding from a single term coil or a solenoid
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Fig. 5.16. Shows the current build up with time when a direct current is allowed
to pass through an inductor

©

Fig. 5.17. Shows the generation of current in the secondary circuit due to flux
linkage when an alternating current flows through the primary circuit

5.7 Biot and Savart’s Law

Oersted (1820) discovered that a field is generated surrounding a wire when
current is allowed to flow through it. This field is capable of deflecting a
magnetic needle. It was established that magnetic field is created when cur-
rent passes through a wire. So a connecting link between the electricity and
magnetium was established. Immediately after this discovery, Biot and Savart
experimentally established a relation between the flow of current in a filament
of wire and the value of the magnetic induction B. It is given by

1dl x7
T X T
dB=""°. 5.16
dn” 13 (5.16)
where dl is a small filament carrying current I, r is the distance of the point
Q, the mid point of the current element dl from the point_'of observation P. I
is also the direction of the vector from the point () to P. dB is the elementary
magnetic flux, for the current carrying filament dl. Using the vector product
we can write (5.16) as
N
i, I dlSin®

dB =
it 12

(5.17)



5.7 Biot and Savart’s Law 107

where U is the free space magnetic permeability. Free space magnetic per-
meability is assumed for vacuum, air and non magnetic materials. In SI unit
U, = 41 x 1077 henry/meter. Sin 0 is the angle made by the vector T with the

— —
vector dl. Therefore the magnetic induction B due to flow of current through

the entire wire is given by
u I dl Sinf
B="¢° . 1

41!74 r2 (5.18)

The direction of B is at right angle to the plane containing both a) and T
(Fig. 5.18). This is the first form of Biot and Savart law.
Since B = u H, the intensity of the magnetic field can be expressed as

H:%Ing (5.19)

4mr?

This is the second form of Biot and savart’s law

Since I = 3‘3, i.e., the rate of flow of charge and the velocity V= (‘ﬂ, ie., dt
is the time required for the charge to move a distance dl. Since dq, V = LdL
we can write (5.19) as

o M, dq(v X I')
dB = i 3

This is the third form of Biot and Savart law.

For a volume distribution of current through a conductor of three dimen-
sional nature (Fig. 5.19), the magnetic field is given by

1 jvxF
H_M///r3@ (5.21)

(5.20)

Fig. 5.18. Magnetic field at a point at a distance r from a loop carrying current;
the direction of the field is at right angle to the plane containing the current element
vector and the position vector r
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Fig. 5.19. Magnetic field created due to volume distribution of current through a
medium of finite conductivity

This is the fourth form of Biot and Savart law and it has direct application
in Magnetic Induced Polarisation (MIP) (Seigel, 1974) and Magnetometric
Resistivity (MMR) (Edward 1974) methods in geophysics.

5.8 Lorentz Force

Point in a region of space has a magnetic field if a charge (positive or negative)
moving in the region experiences a force by virtue of its movement. This force
acts at right angles to the force field. This force may be described in terms of
a field vector B called the magnetic induction _or magnetic flux density. For
a stationary charge, the force acting on it, is F = qE where g is the charge
and E is the electric field. When a charge starts moving with a velocity Va
force known as Lorentz force acts on the charge. This force acts at right angles
to the velocity vector V. This is the magnetic field, which originates due to
flow of charge. Therefore the force due to electrostatics and magnetostatics
are jointly given as the vector sum as

F=ygq (E + Vxé) . (5.22)

Equation (5.22) shows that electric field and magnetic field are at right angles
to each other. The differential form of the force due to the magnetic field is
given by

AF = p.Av.VzB (5.23)

where p is the volume density of charge and Av is the elementary volume.
Since

v, (5.24)
x B dv (5.25)

L#lb

J
AF
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and the magnetic force field F is

F = /3 x B.dv. (5.26)

When 0 is the angle between the direction of flow of charge and the direction
of the magnetic field, the Lorentz force will be

F = pvBsin® (5.27)

Figure 5.19 shows the direction of the magnetic field at a point P on a plane
with respect to the coordinate axis x y z. The value of the magnetic field is

_ Ko (2
B= (er) (5.28)
where U, is the free space magnetic permeability, r is the distance of the point
P from the linear conductor.

5.9 Ampere’s Force Law

Oersted discovered in 1819 that there is a connection between the electricity
and magnetism. He first observed that an wire carrying current is capable of
deflecting a magnetic needle. Soon after this discovery Ampere proposed his
force law. It states that two complete circuits carrying current are capable of
exerting force on one another (Fig. 5.20). He first experimentally demonstrated
that the force exerted between the two coils carrying current is given by

— s
11 dll X R21

S
dFy = " ° Iadl 2
2= 4o l2dla X RI, (5.29)

where dﬁz is the force exerted on the coil 2 due to the flow of current coil 1.
Therefore total force acting on the coil 2 due to the flow of current in coil 1

is given by _
o8 11 dll X ﬁgl
Fo="° I,dl . 5.30

2 4TE / 2 2 x / Rgl ( )

C C

Applying Biot and Savart law, we can write

— _
F, = Z; /Idl2 « B (5.31)

where B is the magnetic flux density.Fo; the force in the circuit Cs is

F21 = HIQ]{ d82 X H21 (532)

C2
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Fig. 5.20. The force of attraction between the two coils

and

H —Ilfdslxm (5.33)
27 yn r2 '
C1
is the magnetic field strength due to the current Iy, in C;. It is also known as
Biot and Savart’s law.

5.10 Magnetic Field on the Axis of a Magnetic Dipole

A coil or a loop carrying current is termed as a magnetic dipole. When the
same loop will carry alternating current it will be termed as an oscillating
magnetic dipole. If the plane of the coil is horizontal but the direction of the
magnetic field vector is vertical it is termed as the vertical magnetic dipole.
Similarly if the plane of the coil is vertical but the direction of the magnetic
field vector through the centre of the circular coil is horizontal it is termed as
an horizontal magnetic dipole.

Figure 5.21 show that a circular loop of radius r is in a horizontal plane
and flow of current through it is I.

For the small element El) carrying current I, we get

dl = rdyay (5.34)

where y is the azimuthal angle and a_\f, is the unit vector along the azimuthal
direction. The distance vector R is the distance between the point of obser-
vation P and the mid point of the linear element dl of the coil. Vectorially we
can write

R = —ra, + za, (5.35)

where 1 is the radius of the coil and &, is the unit vector along the radial
direction. z is the vertical distance of the point of observation from the centre
of the loop in the plane of the dipole. &, is the unit vector along the vertical
z direction. Then the vector product of dl and R is given by

Al xR = rdyay (—1a, + za,) = (r’a, + rzd,)dy. (5.36)
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Fig. 5.21. Magnetic field on the axis of a magnetic dipole

Therefore, from Biot and Savart’s law, the magnetic flux density can be writ-
ten as

2n 2n

5o u Ir? / a,dy uI rz / apdy
 4nm (12 + 72)3/2 4m (12 + 72)3/2
I 2
e - (5.37)

2(12 4 22)3/2 &

On the axis of the loop, the magnetic flux density has only z-component.
Therefore, the magnetic flux at the centre of the loop is
= ul 7

B =

N (5.38)

When the point of observation is in the far zone, i.e. z >> r, the magnetic
flux density at the centre of the coil is given by

2
= I
B = §z3 ay. (5.39)
That shows that the magnetic field due to a magnetic dipole is inversely
proportional to the cube of the distance. Thus it is shown in Chaps. 4, 6
and in this chapter that dipole field dies down inversely as cube of the
distance
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5.11 Magnetomotive Force (MMF)

The way we defined the potential difference or the electromotive force, as the
a

line integral | E.dl where E is the electric field and dl is the element of length

b
through which current flows, we bring the concept of magnetomotive force in
an analogous way.
The line integral

F= / H.dl (MMF) (5.40)
b
is defined as the magnetomotive force between the points a. and b. For a

circular path around the wire. H = 2; (5.10). Thus for a circular path the
magnetomotive force

F= ]{ﬁ.dl =1 (5.41)

This is also known as the Ampere’s circuital law or the Ampere’s work law.
Thus the concept of work is brought here also in the case of magnetostatic
field. The important difference between the rotational and irrotation field is,
for a closed circular path when the point ‘a’ coincide with ‘b’, we get

/E.dz = o —Pp =0 (5.42)
b

and
a

/ﬁ.dl =1 (5.43)
b

For a toroidal coil with n number of turns in a circular ring of radius R, the

magnetomotive force will be .
F=nl (5.44)

In this case, we can write

F nl nl
H= onr  2mr 1 (5.45)
Therefore the unit of the magnetic field can also be written as ampere

turns/meter.

5.12 Ampere’s Law

(i) Ampere’s work law, as discussed in the previous section, states that the
magnetomotive force around a closed path is equal to the current enclosed by
the path, i.e.,
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/ﬁ 1l = I (amperes) (5.46)

This law can also be presented in the following form
Since Current I = [ J.i.ds where J (see Chap. 6) is the current density,
applying Stoke’s theorem, we can write

/curl H.ds = /ﬁ.dl = /.T.ﬁ.ds (5.47)

curlH = J (5.48)

Therefore,

That shows that the magnetostatic field is a rotational field where curl of a
magnetic field is nonzero.

5.13 DivB =0

DivB =0 (5.49)

Since magnetic poles cannot be present in isolation, the magnetic field lines
always complete a closed circuit (Fig. 15.1). Figures 15.2, 15.3, 15.4 show the
nature of the magnetic lines of forces due to a bar magnet, a coil carrying
direct current and a long solenoid carrying direct current.

Any magnetic field lines entering a region with or without any source will
always go out of the region. Therefore div B will always be zero. From Biot
and Savart’s law, we get

- W Idlxad,
dB = 5.50
At 2 ( )
where
P =x—-’+ @ —n’+(z—()° (5.51)
Here ¢ ( 0
L Lx=& _y-n _(z—
AR R (5.52)
We write (5.50) as
= U dlxa -
B = in 2 J.ds (5.53)
u Jx a,
= .54
4m r2 (5-54)

From (5.54) we can write

divB = ;t/div <J ;ar> . (5.55)
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Since L . L .
div (A X B) —Bewl A — & curl B (5.56)

Therefore . .
.5 M ar 77 ar
divB = i / (rQ curl J —J curl rQ) dv. (5.57)

When a current is flowing along a linear conductor curl J=0and

B 48 7 é:r
divB = 47t/ <J curl r2> dv. (5.58)

Now . 5 ¢ 5
ar\ z—G\ y—my _
wni(3) <2200 oo
because
0 (z—C\ _ 0
dy \ 3 n
and 5
y—my\ _
0z < r3 ) =0
Therefore

divB = 0. (5.60)

5.14 Magnetic Vector Potential

Since divB = 0 always and the divergence of curl of a vector is always zero,
we can write

B = curlA (5.61)

where A is termed as a vector potential because curl operates on a vector and
generates another vector. Since a field is obtained from the spatial derivative
of a vector potential, we can write the expression for the vector potential as

Gi _ Mdl

e (5.62)

where Id 1is the current element and r is the distance from the current element
where the vector potential is measured. Expression for vector potential for

current flow through a complete circuit is given by
uldl
A= . .
4dmr (5.63)

For a flow of current through a three dimensional conductor, where current is
not restricted to flow through a filament or a wire

u Jdv
NG 80

More information on vector potential are available in Chaps. 12 and 13.
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5.15 Magnetic Scalar Potential

In a current free region J (the current density)= 0,we get
Curl B = 0.

Once the magnetic induction becomes curl free, it can always be written in
terms of a gradient of a scalar potential where B = —u;A¢ and H = —A®
where ® is the magnetic scalar potential.

Magnetic scalar potential is the work done to bring an unit magnetic pole
from infinity to a point at a distance ‘r’ from source of magnetic pole of
strength ‘m’. The magnetic potential can be expressed as

1 m

0= s r (5.65)

Magnetic field will be the space derivative of magnetic potential. Magnetic
field H = —grad¢. We can write

r

- m

0= /H.dl = dmur (5.66)
o0

where ‘r’ is the distance of the point of observation from the source. Since the

magnetic monopoles do not exist in isolation, the field is generally estimated

due to a magnetic dipole. Magnetic field at a point P due to a magnetic dipole

(Fig. 5.22) is given by

m m 1 1
T - . (5.67
° " { (r2 +12 — 2lrcos 0)1\2  (r2 +12 + 2Ir cos 0)1\2 } (5.67)

For magnetic dipole r, the distance of the point of observation is much greater
than the dipole length (r > 1). Therefore

~ 2ml Cos6 N M Cosb
- 2 ~ 2 :

o (5.68)

T r

(see Chap. 4). Here M is the magnetic dipole moment. The radial and
azimuthal component of the magnetic field are respectively given by

0 r+1 Cosb r—1Cosb
He=- or M2 3/2 (212 .0)3/2 (5.69)
r (r2 +12 + 2rl Cosb) (r2 +12 — 2rl Cos0)
10¢ 1 Sin6 1 Sin®
Ho = - 90 e e 9)3/2 (42 42 3/2 (5.70)
r (r2 +12 + 2rl CosH) (r2 +12 — 2rl Cosb)
forr >> 1.

After simplification, one gets
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Fig. 5.22. Magnetic field at a point outside due to a magnetic dipole

2M Cos6
Ho="" ) (5.71)
and M Sin6
Ho= ' . (5.72)
r

Therefore, the expression for the total field due to a magnetic dipole is
2M Sin6 M Sin6\ -
H=— ( . )F+ ( . )e. (5.73)
r T
Since the magnetic field is a dipole field, Poisson’s equation for magnetic scalar

potential is
V2 = 4n.V.M(r)

where M is the magnetic dipole moment.

5.16 Poisson’s Relation
Magnetic potentials and fields can be estimated from gravitational potential
using Poisson’s relation. This relation can be expressed as

oo _ | d¢/
~ Gp o

(5.74)
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where ¢ is the magnetic potential, ¢/ the gravitational potential, A the direc-
tion of the magnetic polarisation, I the magnetic polarisation, p the density of
a medium and G the universal gravitational constant. Horizontal component
of the magnetic field is given by

96 I 0 (99
Hx_—ax_(%ax<8k). (5.75)

If a magnetic body is polarised along the vertical Z direction, the x component
of the magnetic field can be written as

o6 1 0 (9¢/
H, =— = .
oxr Gpox ( 0z ) (5.76)
and the vertical component is
0 I ¢/
H, = “0: T Gy < 922 (5.77)

here

® = Magnetic scalar potential

@' = Gravitational potential

r = Direction of the magnetic polarization
I = Magnetic polarization

p = Density of the body

G = Universal Gravitational Constant

5.17 Magnetostatic Energy

Magnetostatic energy in a circuit can be estimated in terms of the amount
of work done to establish current I by the electromotive force generated by
change in the magnetic flux in a circuit. Magnetic field in a solenoid is given
by

H =nl/1 (5.78)

in ampere turns/meter. Here I is the current flowing through the solenoid, 1
is the length of the solenoid and n is the number of turns in the solenoid.
The voltage generated in a coil is, according to Faraday’s law,

_ N
0=-N (5.79)

where ¢ is proportional to ‘fi‘g. Here yw = AB where A is the area of the coil
and B is the magnetic induction. Therefore
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¢ = —nAC(l;f. (5.80)

Since total work done in a circuit for flow of current I due to voltage ¢ is

/ nA "’ /mA HAH. (5.81)

Substituting B = pH,y = AB and H = 1 , we get

H2
w = uLA 5 - (5.82)

Therefore magnetostatic energy per unit volume is

1

) uH?. (5.83)

Both the concepts of electrostatic and magnetostatic energy are needed to
explain the Poynting vector in electromagnetics (see Chap. 12).

5.18 Geomagnetic Field

Detailed research work on the history of development of Geomagnetism and
Palaeomagnetism had been published by Merrill and Mcilhenny (1996). The
points to be highlighted from their work, in this brief discussion, are as follows:
(i) People knew about geomagnetism as early as 6th century B.C., (ii) Earliest
magnetic compass came in China as early as lst century A.D., (iii) First
observation on magnetic declination was made in China during 720A.D., (iv)
Magnetic Inclination was discovered by George Hartmann in 1544, (v) Henry
Gellibrand first discovered the variation of declination of the earth’s magnetic
field, (vi) In 1546 Gerhard Mercator first realized that earth magnetic pole
lies on the surface of the earth and he could fix these poles, (vii) Alexander
Von Humbolt first made a global magnetic survey and could establish that
intensity of the magnetic field varies with latitude. The field is strongest at the
pole and weakest at the equator, (viii) In 1600 Willium Gilbert first proposed
that earth as a whole acts like a big magnet (ix) In 1838 Gauss first proposed
the mathematical form of the earths magnetic field. He could pin point the
position of the geomagnetic poles. These positions are the best fitting dipoles
cutting the surface of the earth.

William Gilbert(1540-1603) in his Treatise ‘De magnet’ first mentioned
about the existence of the magnetic field of the earth and that the origin
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of the magnetic field of the earth lies in the interior of the earth. Geomag-
netic stable field of global presence originates due to dynomo current in the
earth’s core composed most probably of iron, nickel and sulphur. Both iron
and nickel are good conductors. The observation regarding the rotation of the
magnetic needle(load stone) along a definite direction of a magnetite needle
led to the discovery of the earth’s magnetic field as mentioned. Even magnetite
ores could be unearthed in the sixteenth and seventeenth century recording
deflections of magnetite needles. Now it is understood that geomagnetic field
originates due to the dynamo current in the core of the earth and it can
be approximated as magnetic dipole oriented approximately along the north
south direction The axis of the magnetic dipole is tilted about 11.5° with
respect to the axis of rotation of the earth. 80% of the earth’s relatively stable
magnetic fields are of internal origin. It varies very slowly. About 19% of the
field is of internal origin of non dipole nature. The magnetic north and south
poles are located at 781°N,691° W and 781°S,1111° E. Figure 5.23 shows
the angle between the geographical north and the magnetic north. It is termed
as declination D. The angle made by the total field with the horizontal is the
inclination of the field. Therefore we can write

T? = H? 4 72 (5.84)

where T is the total field, H and Z are respectively the horizontal and vertical
component of the magnetic fields. I is the inclination angle made by the total
field with the horizontal component, D is the declination made by the magnetic
north with that of the geographical north. Here (Fig. 5.23).

H=Tcosl
Z = Tsinl
tanl = Z/H
Hx = HcosD (5.85)
Hyv =HsinD

Isogonic, isoclinic and isodynamic maps are respectively the contour maps of
equal declination, equal inclination and equal values of H or Z.

About 1% of the earth’s quasistatic and time varying magnetic fields are
of extra terrestrial origin and get superimposed on the earth’s stable mag-
netic field. Inclination of the Earth’s magnetic field is downward throughout
the entire northern hemisphere and its inclination is upward throughout the
southern hemisphere. Magnetic poles are those where the magnetic field is
vertical. Geomagnetic poles are the extension of the magnetic dipole axis on
the surface of the earth. Although they are very close to each other but they
do not exactly coincide. Magnetic field of dipole and nondipole origin exist
upto 30,000km to 40,000 km from the surface of the earth. The total space
above the surface of the earth on both the sides of north and south pole is
known as the magnetosphere (Fig. 5.24). Recent space research has revealed
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Geographic
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X
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Fig. 5.23. Geomagnetic field showing magnetic lines of forces. It shows the geo-
graphic north, magnetic north inclination and declination of the total magnetic field

that magnetosphere get compressed on the sun side due to the interaction
of the solar flares composed of near and far ultraviolet rays, hard and soft
x-rays, gamma rays, electrons and protons in the form of solar plasma, cosmic
rays and particles in the magnetosphere. As a result magnetic field exists only
upto 2 to 3 times the radius of the earth during day time, i.e., on the sun side.
Magnetosphere extends upto 8 to 10 times the earth’s radius on the dark side
of the earth and it extends with a tail known as magneto tail. Figure 5.25.
Magnetic field ceases to exist in the space above the magnetosphere. This
zone is known as the magnetopause. The other important zones of the mag-
netosphere are (i) Ozonosphere at a height of 23 to 25km above the surface
of the earth which absorbs most of the ultra violet rays (ii) Ionosphere(D,E.F
layers) at different heights within the range of 60 to 250km from the surface
of the earth which absorb most of the x rays and gamma rays to get ionized
(iii) Van Allen radiation belts are two daughnut shaped conducting zones are

Fig. 5.24. Nature of the assumed Geomagnetic field showing the magnetic lines of
forces and magnetosphere
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Fig. 5.25. Interaction of the solar flares with the magnetosphere; creation of com-
pressed magnetosphere, Van Allen radiation belts, ionosphere, ozonosphere and mag-
netopause on the day side and magnetotail on the night side

ionized by the highly penetrating gamma rays and x rays. These radiation
belts are at heights of and half times to three times the radius of the earth

Variable solar flares with variable intensities of rays and particles generate
time varying magnetic fields. These magnetic fields are superimposed on the
permanent and stable geomagnetic field of the earth.

5.18.1 Geomagnetic Field Variations

Major long term variations of the earth’s magnetic field are as follows:

(a) Solar Quiet Day Variations(S, Field)

Solar quiet day variations are those where solar emissions, which are primar-
ily responsible for variation of the magnetic field, are minimum. Geomagnetic
field remains more or less stable for a few days at a stretch. These days are
known as solar quiet days and variations are known as S, variations. The
variations are periodic over solar quiet days. Their magnitudes are dependent
upon the season of the year and latitude and are also stronger in the summer
than in the winter. These fields are found to be stronger in higher latitude
than in the equatorial zone. Earths main field and the conducting ionosphere
constitutes the ionosphere dynamo and creates current in the E-layer. Major
part of the S, variations come from the ionospheric currents and their vari-
ations. The other 10% of the S, variations come from the compression of
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the magnetosphere happens due to interaction of the solar flares with the
magnetosphere.

If sun remains quiet(lower level solar emissions), geomagnetic field also
remains quiet. All permanent geomagnetic observatories all over the world
are recording these variations. The magnitude of the Sy variations may be of
the order of 40 to 60 nanotesla (nT).

(b) L variations

Geomagnetic variations which are associated with lunar time are called L
variations. These are much weaker variations and the magnitude is of the
order of 2nT. It is interesting to note that day time L variations are stronger
than night time variations.

(¢) D and Dy variations

These variations are observed due to enhancement in solar flares. Both rays
and particles are emitted at an enhanced rate which causes increase in strength
of the magnetic field and cause magnetic storms . Magnetic storms originate
during the strong and enhanced solar flares. The strength of the magnetic
field rises to a certain peak and then decreases gradually.

Magnetic storms have certain periodicity. It is possible to predict the onset
of magnetic storms. Disturbance day variations of both horizontal and vertical
components of the magnetic field cause auroras in higher latitudes. Enhance-
ment of the magnetic fields creates night time glow in the sky termed as
aurora Borealis and aurora Australis respectively in northern and southern
polar regions. Time varying magnetic field becomes stronger during solar dis-
turbance day variations and generate geoelectric and geomagnetic pulsations
and micropulsations. Besides these variations of the geomagnetic field of out-
side origin, there are several high frequency components of the geomagnetic
field variation.

Those variations are geomagnetic and geoelectric micropulsations, pulsa-
tions. There are several classification of these micropulsations namely Pc, Pi,
Pp, Pg etc. They do not come under magnetostatics. Electromagnetic the-
ory is applicable for these field signals. Long period variations collected from
permanent geomagnetic observatories are used for Geomagnetic Depth Sound-
ing (GDS)(Schmucher 1976) to find out the electrical conductivity of earths
mantle and core. Pulsations and micropulsations and spherics are used for
magnetotelluric sounding (Cagniard 1953) to study the electritrical conduc-
tivity of the earths crust and uppermost mantle. Detailed Spherical Harmonic
Analysis (see Chap. 7) show that 99% of the earths magnetic field are of inter-
nal origin. 80% of that are of deeper dipole origin. Nineteen percent are of
shallower non dipole origin. One percent are of extraterrestrial origin which
constitutes the time varying part of the earths natural electromagnetic field
discussed in Chap. 13.
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For further studies the readers are referred to Keller and Frischknecht
(1966), Telford et al (1981), Parasnis (1966), Dobrin and Savit (1988), Blakely
(1996), Radhakrishnamurthy (1998), Jackson (1999), Wangsness (1979), Jor-
don and Balmain (1993), Guru, B. and Hiziroglu (2005).

5.19 Application of Magnetic Field Measurement
in Geophysics

Magnetic field has made a major inroad in geophysics It has multifaceted
applications in various branches of both solid earth and applied geophysics.
It is interesting to note that noise in one branch of geophysics becomes a
signal in the other. Different branches of geophysics related to magnetic field
measurements are (i) Ground Magnetic Method: It is used for (a) min-
eral exploration, (b) basement mapping for oil exploration (c¢) mapping the
contacts of felsics and mafics (d) mapping volcanics and dyke swarms etc. (ii)
Airborne Magnetic Method: It is used for(a) mapping the major tectonic
settings of a geological terrain (b) quick coverage of accessible and inacces-
sible areas for mineral exploration (iii) Geomagnetic Depth Sounding
(GDS): Long period variations of the earth’s magnetic field are continuously
recorded in permanent geomagnetic observatories all over the world. These
geomagnetic signals are interpreted to find out the electrical conductivity of
mantle and core of the earth (iv) Magnetovariational Sounding (MVS):
Here we measure the short and long period variations of the earth’s mag-
netic field to find out the electrical conductivity of the earth’s crust and
upper mantle (v) Magnetotelluric Sounding (MT): In this branch of
geophysics we measure both the time varying electric and magnetic com-
ponents of the earth’s natural electromagnetic field and try to find out the
electrical conductivity of the earth’s crust and upper mantle (vi) Audiofre-
quency Magnetotellurics (AMT) Relatively high frequency components
of the earth’s natural electric and magnetic field originated due to thunder
storm activities in between the earth ionosphere wave guide are measured
and used for mapping of shallow structures and mineral exploration. (vii)
Audiofrequency Magnetic Method (AFMAG): High frequency spherics
are recorded for mineral exploration. (viii) Magnetic Induced Polarisation
(MIP): Here secondary magnetic field, originated due to depolarisation cur-
rent flow within a polarisable medium, when the primary current is switched
of in time domain induced polarization, is measured. (ix) Magnetometric
Resistivity Method (MMR): In this method primary magnetic field per-
turbation due to flow of electric current through the ground in the presence
of shallow lateral structural heterogeneities are detected (x) Very Low Fre-
quency Method (VLF): In this method very low frequency magnetic fields
are measured due to primary signals from distant broad casting stations to
detect some subsurface structures. Time varying magnetic fields are measured
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in MT,AMT, AFMAG and VLF. They strictly do not come under Magneto-
statics. (xi) In Palaeomagnetism, magnetic field fossilized and frozen in
geological past, are measured. This information is useful for studying (i) con-

tinental drift (ii) rifting of the continents (iii) polar wondering etc.

5.20 Units

The unit of magnetic flux y is Weber

lweber = 1 joule/ampere

= 107" oersted

10ersted = 1 dyne/unit pole

The unit of B is Weber /meter?

Iweber/meter? = 10 gauss

The unit of inductance L is henry

lhenry = ljoule/(ampere)?

The unit of magnetic permeability | is henry/meter

lhenry/meter = Inewton/(ampere)?

The unit of magnetic field intensity H is ampere/meter or ampere
turns/meter

Unit of magnetic field intensity is also expressed as tesla

Itesla = 1weber/(meter)? = 1 volt second

Practical unit of measurement of magnetic field is in nanotesla or
1079 tesla or in gamma. For most geophysical measurements of
the magnetic field, gamma or nanotesla are generally used as units
of measurement.

lgamma = 10~° gauss

5.21 Basic Equations in Magnetostatics

L. divB = 0 (Solenoidal field) (5.86)
2. B =uH (5.87)
3. Curl H = J (Rotational field) (5.88)
4. CurlH = 0 (5.89)

(Low frequency approximation in Geomagnetic field)
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> B = Z; / fﬁrzsme (Biot and Savart Law) (5.90)
6 A= ///ujdv (Vector potential) (5.91)
| 4dnr
T I= /ﬁ.dl (Ampere’s Circuital Law) (5.92)
8. Fio=u= 1112 7{% dls x d12 x12) (Ampere’s force law) (5.93)
9. F = q(E + V x B) (Lorentz force). (5.94)
10. = 111 (5.95)
11. B =CulA (5.96)
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Direct Current Flow Field

In this chapter some parts of the direct current flow field preliminaries used in
geophysics are discussed. Topics include the nature of the direct current flow
field and the approaches for measurement of potentials, depth of penetration
of direct current in a homogenous and isotropic medium, potentials and fields
due to a point source, line source, bipole and dipole sources, boundary condi-
tions in direct current flow field. Most of the basic equations of direct current
flow field are mentioned. Relatively advanced topics on D.C. boundary value
problems are given in Chaps. 7, 8, 9, 11 and 15.

6.1 Introduction

Direct current flow through a medium of finite conductivity or resistivity due
to a point or a line source of current generates scalar potential field, where the
electric field can be expressed as the negative gradient of the potential. The
field and potential at a point created by a point source has similarity with
those obtained for electrostatic or gravitational field, i.e., it follows r12 and 1
laws respectively in a homogeneous and isotropic medium. The current from
a point source flows radially outward and the equipotential lines are circular
in a plane surface (Fig. 6.1).

It is a man made local field in most of the cases. Quasistatic telluric current
flow fields of global presence follow direct current flow field equations. This
field can be divergence less or solenoidal in a source free region (Fig. 6.2a, b).

A certain region R in a direct current flow field in the absence of any source
or sink satisfies Laplace equation. In the presence of one or more than one
source, DC flow field satisfies Poisson’s equation. Both bipolar and dipolar
fields are generated in a direct current flow domain. It is an irrotational or
curl free field. In that respect it is similar to gravity, electrostatic, stream
line fluid flow and, heat flow fields. For direct current flow field, principle of
superposition and principle of reciprocity are valid. Principle of superposition
states that potential at a point due to a number of current sources and sinks
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Fig. 6.1. Field lines and equipotential lines due to a point source of current in a
homogenous and isotropic medium

will get added and subtracted due to presence of current sources and sinks at
the point of observation.

This property generated a series of electrode configurations in direct cur-
rent flow field. We generally send current through two current electrodes and
measure the potential difference through another pair of electrodes known as
potential electrodes. There are about 12/13 electrode configurations used reg-
ularly by the geophysicists. They are (i) Two electrode (Pole-pole) (ii) Three
electrode (Pole-dipole) (iii) Wenner (iv) Schlumberger (v) Collinear dipole-
dipole (vi) Unipole system (vii) Seven electrode (Laterolog) (viii) Equatorial
dipole (ix) Parallel dipole (x) Perpendicular dipole (xi) Azimuthal dipole (xii)
Axial dipole. Different electrode configurations have their different areas of
applicability Fig. 6.3 a, b, ¢, d, e, f and g shows the layout of the different
electrode configurations.

The principle of reciprocity states that if we interchange the positions of
current and potential electrodes, the potential difference measured between
the two potential electrodes in these two cases will remain the same. Theoreti-
cally it is true. In actual field practice with the increase in electrode separation
some differences between the two sets of measurements are observed because
of entry of voltage due to telluric or earth currents and other noises in the
measurement. In electrostatics the electric displacement is connected to the
electric field and the connecting scalar is € (4.4); the electrical permittivity is

(a) /\
|
/ Source

{ Free

!

Fig. 6.2a. Source free region in an uniform field

>
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Fig. 6.2b. Source free region in a point source generated bipole field

expressed in farad/meter. In magnetostatics, the magnetic induction is con-
nected to the magnetic field through a scalar p (5.13) i.e., the magnetic per-
meability. It is expressed in henry per meter. In direct current flow field, the
current density, i.e., the current per unit area is connected to the electric field
through a scalar 6 (6.9), the electrical conductivity. It is expressed in mho/m
or Siemen. These scalars become tensors for an anisotropic medium. These
three equations in conjunction with the Maxwell’s (12.62 to 12.66) equations
form the basis of electromagnetic theory.

In direct current flow field, the physical property, we try to measure is elec-
trical conductivity or electrical resistivity. Electrical resistivity is reciprocal of
electrical conductivity. Of all the physical properties of the earth, measured
by geophysicists, electrical conductivity is the most sensitive parameter. A
little perturbation, in a medium through which current flows, can change the
value of the electrical conductivity by several order of magnitude. The ratio
of the extreme values of resistivity or conductivity is of the order of 10® or
more.

The boundary conditions in direct current flow field are (i) potential must
be continuous across the boundary i.e., ¢1 = ¢o and (ii) normal component of
the current density must be continuous across the boundary,i.e., J,,, = Jy,.
The boundary value problems also must satisfy (i) Dirichlet (ii) Neumann or
(iii) mixed, Robin or Cauchy’s boundary conditions.

Since this book includes elaborate treatments on direct current potential
and field theory in Chap. 7 and Chap. 8 only a very few points, in preliminary
level, are discussed in this chapter. Application of direct current methods in
geophysical exploration is beyond the scope of this book and are available
in Alpin et al (1966), Keller and Frieschknecht (1966), Bhattacharya and
Patra (1968), Koefoed (1979), Zhdanov and Keller (1994). Advanced theories
however are given in Chaps. 8 and 15. Some treatments are also available in
Chaps. 9 and 11.
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Fig. 6.3. (a) Two electrode configuration (normal log arrangement) with one cur-
rent electrode A and one potential electrode B; the other current electrode for return
current path and the other potential electrode are far away from this electrode set
up; (b) Three electrode configuration (Lateral log arrangement) with one current
and two closely spaced potential electrodes, the other return current electrode is
placed far away from this set up; (¢) Four electrode configuration (Wenner elec-
trode arrangement); A and B are two current electrodes and M and N are potential
electrodes; these electrodes are equidistant from one another; (d) Four electrode con-
figuration (Schlumberger electrode arrangement), A and B are current electrodes,
closely spaced M and N are potential electrodes; (e) Four electrode configuration
(Collinear dipole-dipole configuration) with current dipole AB may have wide sep-
aration from potential dipole MN; (f) Seven electrode configuration (Latero log
arrangement) with central focussing current electrode, two bucking current elec-
trodea A; and As; two pairs of potential electrodes M1N; and M2Ng; the return
current electrode is far away from this set up; (g) Four electrode configuration
(Unipole method); here two current electrodes are sources for current focussing; two
closely spaced potential electrodes are used to measure pure anomaly; return current
electrode is far away from this set up
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Flow of
current

Fig. 6.4. Flow of direct current through two opposite faces of a rectangular
parallelepiped

6.2 Direct Current Flow

In direct current flow field, the flow of current is stationary. Let a constant
current I flows through a homogeneous and isotropic medium.

We know that current I can be taken as the rate of flow of charge i.e.
I= gj}. At any point in the medium, I cannot be defined but J can be defined.
A small area AS is chosen normal to the flow of current. The amount of
current flows through the face in a time At is given by (Fig. 6.4)

AS.Al

Al=av

(6.1)

where Al is the distance traveled by the charges and qy is the volume density
of charge. From (6.1) we get

Al Al
AS ~ Tag (6.2)
=J=q7 (6.3)

where J is the current density and ¥ is the velocity. The expression for the
current is given by

1= / J.ii.ds (6.4)

where 1 is the normal vector.

6.3 Differential form of the Ohm’s Law
Ohm’s law is defined as temperature remaining same the potential generated

between the two points of a conductor has direct proportionality with the
current flowing through the ground.

S0 T= (0~ 03) (6.5)
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where I is the current flowing through this medium ¢, and ¢, are the potentials
at two points in the medium and R, the constant of proportionately is the
resistance offered by the ground. Here

R=p (6.6)

A
where p is the specific resistivity, 1 is the length and A is the cross sectional
area for the flow of current. Specific resistivity of a medium is defined as
the resistivity offered by the two opposite faces of an unit cube. The unit
of resistance is Ohm. The unit of resistivity is Ohm-meter. The reciprocal
of resistance is conductance (C). Its unit is mho. The reciprocal of resistiv-
ity is conductivity (o). Its unit is mho/meter. From (6.5 and 6.6), we can
write

A AS
C—O’L—O'Al. (6.7)
AS
Here AI = A(=Ag).
ere AT (—A¢) .o (6.8)
AT A¢
AS T A’
= J=oFE. (6.9)

6.4 Equation of Continuity

Since, the stationary electric fields are conservative, the electric field is
expressed as the gradient of a scalar potential (@) i.e.,

E=-Vo. (6.10)
Combining equation (6.9) with equation (6.10), we get
J= —oVao. (6.11)

Applying the principle of conservation of charge over a volume, which states
that charges can be neither created nor destroyed, although equal amount of
positive and negative charges may be simultaneously created. From (6.8) we
can write

I= ff.ﬁds (6.12)

and this outward flow of positive charge must be balanced by a decrease of
positive charge (or an increase of negative charge) within a closed surface. If
the charge inside a closed surface is denoted by q;, then the rate of decrease
is — dq;/dt and the principle of conservation of charge requires
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7 dg;
I= n.ds = — . 1
%J n.ds gt (6.13)

S

The negative sign indicates the direction of the current flow. The (6.13) is
the continuity equation. By changing the surface integral to a volume integral
using divergence theorem, we get

fJ.ds = /(V.J) dv. (6.14)
S vol

Writing q; = | [ [ gdv, where g, is the volume density of charge, we can write

/ (V.J) dv = —(ft / avdv (6.15)

vol vol

where gy is volume charge density. For outflow of current through a volume,
the derivative can be written as a partial derivative and the (6.15) becomes

/(V.J) dv = /—%qt”dv (6.16)
vol vol

Since, the expression is true for any volume, however small, it is true for an
incremental volume,

(V.J)Av = — 8;1tv Av (6.17)
and the point form of the continuity is
_ Oaqy
(V) =="5" (6.18)
dq
V.J= atS(x)S(y)S(z). (6.19)

6.5 Anisotropy in Electrical Conductivity

For an homogeneous and isotropic medium, the current density J and the
electric field E are assumed to be in the same plane. If the electric field (Ey)
and conductivity (0xx) are along the x-direction, then current density along
the x direction is Jy;. In general, however, not only the field E, but also
the fields Ey and E, may give rise to current densities in the x-direction in an
anisotropic medium. If the additional, current densities are proportional to the
fields E, and E,, then oy, and oy, are proportionality constants respectively.
The total current density in the x-direction is the sum of these three terms.
In general, therefore, we can write,
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Jx = O0xxEx + nyEy + 0B,
Jy = 6yxEx + 0y Ey + 6y, E, (6.20)
J, = 0, Ex +0,,Ey + 0,,E,.

The conductivity of a medium (6) must be a tensor of rank 2, which in Carte-
sian coordinates will have the nine components:

o= |0ye Oy Oy |- (6.21)

If the conductivity tensor is symmetric, the off-diagonal terms will have sym-
metrically equal values i.e., 6xy = Gyx, and so on. If two of the coordinate
directions are selected to lie in the direction of maximum and minimum con-
ductivity, (the principal directions of the conductivity tensor), the off-diagonal
terms will become zero and ¢ can be shown as a diagonal matrix.

Cxx 0 0
c=| 0 oy 0 |. (6.22)
0 0 oy

In isotropic materials, the three principal values of conductivity are all equal
and in effect, conductivity becomes a scalar quantity. In isotropic materials,
the electric field vector and the current density vector are collinear, i.e. cur-
rent flow, is along the direction of applied electric field. In anisotropic media
(the equipotential surfaces are no longer normal to the direction of current
flow). Here three principal values of the conductivity tensor are not equal.
Coincidence of directions occur only when the electric field is directed along
one of the principal directions of the tensor conductivity.

6.6 Potential at a Point due to a Point Source

Potential at a point due to a point source of current I at a distance ‘r’ and in
a homogeneous and isotropic medium of resistivity p can be derived from the
solution of Laplace equation in a spherical coordinate (see Chap. 7) as

Ip I
P= (6.23)
Therefore in a homogeneous and isotropic medium, the current lines will be
radial and equipotential lines will be circular Fig. 6.1. The nature of current
and equipotential lines due to (i) a source and a sink of strength +I and —I
(ii) two sources of strength +I and +I are shown in Figs. 6.5 and 6.6 respec-
tively. The nature of the current lines and field lines for bipole and dipole

fields for +1 and —1 are respectively given in Figs. 6.5 and 6.7.
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Fig. 6.5. Current lines and equipotential lines due to a current source and a sink

Fig. 6.6. Field lines and equipotential lines due to two sources placed at a certain
distence

-

_— —

Fig. 6.7. Field lines and current Ines due to two closely spaced source and sink
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Potential at a point due to a point source at a distance r on the surface of
the earth is o 1
o=,

T
since the solid angle subtended by a point current electrode on air earth
boundary is 2. For Wenner electrode configuration, the potential difference
between the two potential electrodes M and N due to two current electrodes

placed at A and B is given by (Fig. 6.3 ¢ and d)

CIp (1 1 1 1
AO= o KAM a BM) a <BN a AN)} (6:25)
Ip 1

= ,P.. where ‘a’ is the distance between the electrodes. Here for Wenner

configuration AM = MN = NB = a. Therefore

Ad
I

(6.24)

p =2ma (6.26)
where 2ma is the geometric factor for Wenner configuration. Similarly geo-
metric factors for all the electrode configurations cited, can be determined.
Numerical value of a geometric factor increases with electrode separation, the
farthest distance between the two active electrodes. For an inhomogeneous
medium, the resistivity p in (6.26) will change to p,, the apparent resistivity.
Apparent resistivity is defined as the true resistivity of a fictitious homogenous
medium when the response from an inhomogenous earth is same as that from
a fictitious homogenous medium. For Schlumberger electrode configuration
the expression for the apparent resistivity is

P = (m/4)((L? = 1°)/1)(A®/T) (6.27)

where L, the distance between the two current electrodes, the distance between
two potential electrodes is 1, I, the current flowing through the medium and
A® the potential difference measured between the two potential electrodes.
We defined Geometric factor K = , | L 2T, as the exact
(AJWiBIVI)i(BNiAN)
geometic factor. We brought the idea of approximate geometric factors while
discussing the geometric factors for dc dipole configurations. It has a dimen-
sion of length for some cases. Geometric factor can be variable in the case of
laterolog - 7 configuration and can be negative for certain zones of parallel
dipole and wenner gamma or collinear dipole-dipole configurations. In general
geomertric factor is mostly an electrode separation dependent quantity.

6.7 Potential for Line Electrode Configuration

Let us consider an infinitely long line electrode through which a current I per
unit length is being sent through the half space (Parasnis 1965).
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Line Electrode Surface

u
NS

)

Fig. 6.8. Cylindrical annular space for a long line electrode

Figure 6.8 shows an annular semi cylinder of unit length with the electrode
at the axis and having internal and external radii r and r + dr. If p is the
resistivity of the homogeneous ground; resistance of the annular cylindrical is
dR = pi’;. Since current is passing out of the cylindrical annular shell, the
potential drop across it is

IP
do— —1ap— 100" (6.28)
T
Integrating ¢ = — e Inr+C. (6.29)
T

Therefore, potential at a point due to a line electrode is a logarithmic poten-
tial. For ¢ = 0 at r = 0o, we have C = C, where C, is an infinite constant.
Therefore the potential will be infinite at infinite distances. If $ =0 at r =1,
then C = 0. Here potential will be positive for r less than 1 and negative for
r greater than 1. Potential will be —oco as r — oo. Let r; and ry be the dis-
tances of an observation point from two infinitely long line electrodes. These
electrodes are a source and a sink.

The potential from positive and negative electrodes will be of opposite
sign. If we choose C' = C'oo, the total potential at the point will be

I
p=""m'"". (6.30)
7T 2

The potential difference between the two points P1 and P2 in a field created
by two line electrodes is given by (Fig. 6.9)

A¢=¢1—¢2:I:{In <:i> —In (:z)} (6.31)

1y, <T2T3) (6.32)

s T17T4

since the infinity constants cancel each other. The potential expressed in
(6.32) is finite at all the finite distances and tends to zero when both ry
and r; tends to infinity. Potentialis are also zero when r; = ry, i.e., along
the vertical plane midway between the source and sink. Surface potential is
given by
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Fig. 6.9. Shows the potential difference measured between the two points of obser-
vation P1 and P2 between a line source and a line sink C; and Cs each of length 1
and are planted on the ground at a distance L

2

Ip L—=x
= 1
¢ s . L+x
where 2L is the distance between the two electrodes and x is measured from
the midpoints of C;Cs.

(6.33)

6.7.1 Potential due to a Finite Line Electrode

A line electrode of length 2b through which current I per unit length is being
supplied to a homogeneous ground of resistivity p (Fig. 6.10). We determine
the potential at a point P whose perpendicular distance from the electrode is
x and which is situated on a profile of measurement at a distance y from the
centre O of the electrode.

A small element of the line electrode, having a length dA, at a distance A
from O can be treated to be a point electrode through which a current I dA
is being propagated to the ground. Potential at P will then be

Ip d\

T or {22+ (A —y)2}1/2 (6.34)

dg

Integrating between the limits —b and +Db, the potential of the entire line
electrode will be

6= 17 {sin ht (b_y) +sin h7! (b+y>}. (6.35)
2 z z
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Equation (6.35) generates elliptic equipotential lines (Fig. 6.11). Therefore
current lines will be hyperbolic.

Integral transform of Roy and Jain (1961) can be stated as follows. Let a
point electrode in the vicinity of a two dimensional structure striking in the
y direction, produce a potential ¢ (x, y) along a profile in the y-direction. The
profile goes through a point P at a distance x from the electrode. Then the
transform

0 (x) = / o (x,y) dy (6.36)

generates the potential, that would be produced at P by a line electrode
parallel to the profile but placed in the position of point electrodes. The
total current in the point electrode is the current per unit length of the line
electrode. Figure 6.12 shows the variation of potential with distance due to a
point and a line electrode.

6.8 Current Flow Inside the Earth

Potential at a point M (Fig. 6.13) in a semi infinite medium of resistivity p
due to a source +I and sink (—I) on the surface of the earth is given by

bm = ;IT (Tll - :2> (6.37)

where
ry = \/(L/2 +a)’ 2+ 22 (6.38)
ry = \/(L/2 —2)” +y? + 22 (6.39)

where L is the electrode separation. Here.

i
P
______ ~ "Profile
2b T Y
0 X
Y_._--

Fig. 6.10. A finite line electrode of length 2b carrying current I
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Current lines

Equipatentinl lines

Fig. 6.11. Current lines and equipotential lines due to a line current source of finite

length

(=1
T

Potential, —==

Line elecirode

Peint electrode

-2 L 1 I I 1
0 2 [3 6 8 10

Distance [r1)] —==

Fig. 6.12. Shows the variation of potential with distance from a point and a line
electrode

Fig. 6.13. Shows the nature of direct current flow through a homogeneous medium
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= 109
T pox
- 10¢
Jy=— 6.40
- 109
o= p Oz

are the current densities along the x, y and z directions when current is flowing
through a homogenous medium. Here

D T e
Jp = 2 - 2 6.41
2 i r3 r3 ] ( )
- IJy Yy
J, = — 6.42
Yoo _ri’ rg’] ( )
> I [z z
J, = — 6.43
2 _r{’ rg’] ( )
J= \/Jg 242, (6.44)

If we bring the point M on the YZ plane then x = 0 and r; = rq. Jx reduces

to the form.
IL 1

Iy = . 6.45
2 (L/2)* 442 + 2 (0:45)
Current density on the surface on the earth at z = 0 is given by
1 4
= . .4
Jo L2 (6.46)
and at a depth h is
11 1
JIh, (6.47)

= . 2 .

SRUCIERE
The ratio of the current density at a certain depth h and that on the surface
is given by

JIh, 1
= ) 6.48
Jo ( )

{1 + (2h/L)2} i

Figure 6.14 shows the variation of current density with depth in ‘}Z VS Z plot.
Flow of current upto the depth h is given by
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Ih/Jg —=
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Fig. 6.14. Shows the variation of current density with depth in a xz plane passing
through y = 0 at the centre of the electrode configuration

Amount of current flow —
(=]

0.01 1 1 1 1 1
0 0.5 1.0 1.5 2.0 25

h/L —=

Fig. 6.15. Amount of current flows through the earth with depth and the relation
with electrode separation
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a h
IL dydz
= .4
oo [(5)" +y2+ 2]
IL i d 21 2h
- / RS = tanl T (6.50)
0 (2) +z T

I 2 2h
h_ tan~! .

bl
I ™ L (6-51)

This gives the total amount of current flowing between the surface at any
particular depth. Figure 6.15 shows the variation of II" with h/L. It is observed
that most of the current is concentrated near the surface.

6.9 Refraction of Current Lines

Direct currents get refracted across a contact of two media of different resis-
tivities and follow ‘tan’ law unlike ‘sine’ law for seismic or elastic waves. Two
homogeneous and isotropic media of resistivity p; and ps are having a hori-
zontal contact Fig. 6.16 of infinite horizontal extent.

Current with a current density J; is incident on the horizontal surface at an
angle 01. Jx, and Jz, are respectively the horizontal and vertical components.
This current element is at an angle 5 with the vertical.

e
T

Fig. 6.16. Shows the refraction of the current lines at the boundary between the
two media having resistivity p, and p,
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Now for direct current flow field, the potential must be continuous across
the boundary i.e., o1 = 9 and the normal component of the current densities
Jn, and Jy, must be continuous across the boundary.

In terms of electric field, we can write,

Ey=Fy, and o01E,, =02F,,. (6.52)
From (6.52), we can write

Je p1 = Juype and  J,, = J,,. (6.53)
From the two equations, we get

01 (Joy [ Ton) = p2 (Jos [ T2) = p1 tanfy = po tan fs. (6.54)

6.10 Dipole Field

Figure 6.7 shows the nature of the direct current flow field for DC dipoles
when the distance between the two current electrodes are significantly less
in comparison to the distance where we measure the field. The essential dif-
ferences between a dipole and a bipole field are (i) dipole fields die down at
a much faster pace. DC dipole potential varies as T12 with distance and field
varies as T13 with distance. Expression for dipole fields and potential are pre-
sented in Chap. 4. Expressions for potentials in dipoles in electrostatic field
and direct current flow fields are analogous. (Chap. 4, (4.30) and (4.31)). Only
q the charge strength is replaced by current strengths I and &, the electrical
permittivity is replaced by electrical conductivity o.

D.C. dipole fields are being used by the geophysicists primarily to have
informarion of the subsurface from a relatively greater depth. Deeper probing
is possible by sending more current through the earth and measuring poten-
tials far away from the current dipole.

Direct current dipole-dipole configurations for measuring the electrical
resistivity of the earth’s crust is known from the works of Alpin et al (1950),
Jackson (1966), Keller et al (1966), Anderson and Keller (1966), Zohdy (1969),
Alfano (1980).

Important D.C. dipole configurations for deeper probing (sounding) are,
(I) equatiorial (ii) azimuthal (iii) parallel (iv) perpendicular and (v) axial.
dipoles (Fig. 6.17 a, b, ¢, d, and e). Important D.C dipole configuration for
studying the lateral heterogeneites is the collinear dipole dipole configuration
(Fig. 6.18). Figure 6.18 also shows the data plotting points in the pseudosec-
tion form.

In bipole-dipole configuration, the length of the current dipole AB may be
much larger than the potential dipole MN (Fig. 6.17).
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Fig. 6.17. Show the DC dipole configuration; (a) Parallel dipole configuration where
current dipole and potential dipole are parallel; the line joing the midpoints of
the current and potential electrode is making an angle 8 not equal to 90°; (b)
Perpendicular dipole configuration; here potential dipole is at right angles to the
current dipoles at all dipole angles; (c) Radial dipole configuration: Here potential
dipole is in the same line which joins the midpoints of the current and potential
electrodes at all dipole angles; (d) Azimuthal dipole configuration; here potential
dipole is at right angles to the line joining the mid points of the current and potential
dipoles; (e) Equatorial dipoles; here the current and potential dipoles are parallel
and the dipole angle is 90°

For dipole dipole system AB should be nearly equal to MN. Equato-
rial dipole and azimuthal dipoles are used quite frequently in dipole survey
because these data can directly be converted to Schlumberger data and can be
interpreted.

The general expression for the geometric factor for all the electrode con-

figurations is
2

1 1

K= 1 1
— — +
AM ~ BM ~ AN T BN

(6.55)

The approximate geometric factors for different bipole-dipole configurations
are

273 1
K, arallel — . 6.56
parallel L "3cos?20—1 ( )

273 1
K, erpendicular — .. 6.57
perpendicul 3L sinf cos6 ( )
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a-Dipol length; I - Current injected to the ground;
AV - Potential drop measured; Pa=TTan(n+1}[n+2) lélii

Fig. 6.18. Shows the collinear dipole dipole configuration; here current and poten-
tial electrode pairs are in the same line; electrode separations are increased with
higher values of n; pseudo net is for plotting data

3
wr
Kra ial = . 6.
dial = T cos (6.58)
23
Kazimu all = . . 6.59
thall = I sin@ ( )

(Aplin 1950, Bhattacharyya and Patra, 1968 and Koefoed, 1979)
Here 6 is the dipole angle. L and r are respectively the current dipole
length and the dipole separation. The percentage discrepancy

5= Kactual - Kapproa:imate « 100%
Kactual

between the actual and approximate geometric factors (6.55 to 6.59) can be
very high in some cases. This discrepancy is significant for bipole-dipole sys-
tem. For dipole -dipole system, when AB = MN, this discrepancy § goes down
significantly. Figure 6.19 shows the decrease in the percentage discrepancy &
computed for an homogenous earth model as well as for parallel dipole con-
figuration for MN = 300 meters, p = 1000 ohm — meters for different current
dipole lengths and dipole separations and current sent through the ground
was assumed to be one ampere.

Discrepancy between the actual and approximate geometric factor reduces
down significantly with increasing dipole separation OO’ where O and O’ are
the mid points of the current and potential dipoles.

DC dipole field measurement is essentially an attempt to measure a man
made field obtained by a generator driven power at a far of point. Difficult
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Fig. 6.19. Shows the discrepancy between the exact and approximate geometric
factor in the case of parallel dipole for different current dipole lengths and dipole
separations (OO’); This figure is for homogenuous and isotropic half space and dipole
angle 75°

field logistics to layout several kilometers of field cables for deeper probing in
case Schlumberger or Wenner array could be avoided by separating the current
and potential dipoles as two independent units. Advent of sophisticated and
accurate global positioning system (GPS), distance communication system
and mobile telephones significantly reduced the ground hazards in measuring
dipole fields and subsequent data analysis specially for earth’s crustal.studies.

Cultural noise problem is significantly low in this case in comparison to
what one expects for audiofrequency magnetotelluric survey.

Parallel dipole configuration does not work at dipole angle nearly 55°
(Keller 1966, 8§ = 53°44’, Zohdy 1969, 6 = 54°44’, Alpin et al 1950,
0 = 54°44’8" Das and Verma, 1980 6 = 54°-55°). At this angle Ey, the
parallel current dipole component of the electric field is zero. Therefore, any
measurement in the vicinity of this dipole angle is unreliable. It is now realised
that not only one should avoid § = 53°, there is a big zone from 6 = 35° to
0 = 65°, where parallel dipole does not work. It is termed as the prohibitive
zone (Fig. 6.20) for parallel dipole. Permitted zones for parallel dipole system
are 6 = 0° to 35° and 65° to 90°. Therefore, the recommended prescription
for use of bipole-dipole configurations for various dipole angle are (Fig. 6.21):
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Fig. 6.20. Shows the different working zones for parallel and perpendicular dipoles;
Parallel dipole works for dipole angle 0° to 35° and 70° to 90° and perpendicular
dipole works best within the dipole angle 35° to 70°
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Fig. 6.21. Shows the variations of potentials for different dipole angles and different
dipole configurations in a homogeneous and isotropic half space; it is an approxi-
mate guideline for choice of DC dipoles for different dipole angles, computation of
potentials is made for current dipole length = 3 km, potential dipole length = 300
meter and dipole separation R = OO’ = 5km
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(i) Radial, perpendicular and parallel dipole for 20° < 6 < 35°
(ii) Perpendicular, radial and azimuthal for 35° < 6 < 65°
(iii) Perpendicular, parallel, redial and azimuthal for 65° < 6 < 75°
(iv) Radial and parallel dipoles for 0° < 6 < 20°
(v) Azimuthal and parallel for 75° < 6 < 90°

Bipole-dipole configuration is preferable than that of dipole-dipole for deep
crustal studies. Geometric factors generally used for computation of apparent
resistivities in dipole sounding (6.56 to 6.59) should not be used for small
(00" < 4AB) dipole separation. Combination of parallel and perpendicular
dipoles have some logistic advantage in the actual geological ground condi-
tion. Once one knows the orientation of the current dipole, orientation of the
potential dipoles are also known. In a rugged and dense forest region accurate
measurement of dipole angle may be difficult. Measurement of DC dipole field
will regain its proper place after significant improvements in field logistics as
mentioned and developments in interpretation softwares. Fairly detailed expo-
sitions of potential theory related to the direct current flow field are given in
Chaps. 7, 8, 9, 11 and 15.

6.11 Basic Equations in Direct Current Flow Field

1. j=0E (6.60)
2 E= —gradeg (6.61)
3 E o 3" (6.62)
- I 1 .
4 o = .~ (Point source) (6.63)
dmo 1
PCost
5. ¢p = ptos for DC dipoles.(Dipole source) (6.64)
dror?
Ip .
6. ¢ =— " lnr (line source) (6.65)
7r
7. div E =0 or V2¢ = 0 (Laplacian field) (6.66)
8. div V?¢ = p (Poissonian field) (6.67)
9. Curl E=0 (6.68)
o Jq
10. d = — 6.69
= (6.69)
11. Ty = T, (6.70)

12. p1 tanf; = po tan 6o (6.71)
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6.12 Units

o — mho/meter(Siemen)
p — Ohm—meter

R — Ohm

J — Amp/meter?

¢ — Volt/Millivolt

E — Volt/meter
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Solution of Laplace Equation

In this chapter solutions of Laplace equation in cartisian, cylindrical polar
and spherical polar coordinates using the method of separation of variables
are discussed in considerable details. The nature of solution of boundary value
problems in potential theory is introduced. The nature of Bessel’s function |,
modified Bessel’s function, Legendre’s Polynomial and Associated Legendre’s
Polynomial are shown. A brief discussion on Spherical Harmonics is given.

7.1 Equations of Poisson and Laplace

The electric displacement vector is D =€ E { (4.4.)} where D is the electric
displacement, E is the electric field and € is the electrical permittivity of
a medium. In addition to the constitutive relation, we use the Gauss’s flux
theorem of total normal induction on a closed surface due to a charge inside
the enclosed volume and it is given by

/ﬁn.ds = /divﬁ.dv =q= /pdv (7.1)

where p is the volume density of charge and dv is the infinitesimal volume.
Hence

VD=p (7.2)
= V.(eE)=p
= V.(-€Vod) =p
= —ecdivgradd=p

2, P
= V=" (7.3)

= 0 when p = 0.
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In a source free region (Fig. 6.2 a and b)
— € V% =0. (7.4)

For a nonhomogenous but isotropic dielectric (7.4) becomes

o (_ 00\ o [ 00\ 0 ([ 00\
Ox (6 ax> T ow (E ay> *ox (E ax) =0 (7.5)

For a homogenous and isotropic dieletric

%0 %0 0%
o oyt o =0 (7.6)

For three principal axes anisotropy (7.5) will be

) 20\ 0 26\ 0 a0\
Ox <€Xx 8X) + Oy <€yy 8y) + 0z <€ZZ 8X> =0 (7.7)

7.2 Laplace Equation in Direct Current Flow Domain

When current is flowing out of a closed region, the flow of charge will be
guided by the relation

Ip
ot

where p is the volume density of charge in Coulomb/meter?® and J is current
density in ampere/meter?. Since this relation satisfies the law of conserva-
tion of charge, it is termed as the equation of continuity. In a source free
region

div] = — (7.8)

div] =0 (7.9)

where J = 0E = —ogradg, where ¢ is the potential (in volt) and E is the
electric field in volt/meter. Equation (7.9) can be written as

div (o grad ¢) = 0 (7.10)
= grad (o) grad ¢ + (o)divgrad ¢ = 0. (7.11)

For an homogeneous and isotropic medium (7.11) reduces to Laplace equation
V29 = 0. (7.12)

Non Laplacian character of (7.11) is demonstrated in Chap. 8.
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Fig. 7.1. A cuboid with curve sides to represent the curvilinear coordinates

7.3 Laplace Equation in Generalised Curvilinear
Coordinates

Laplace equations in cartesian, cylindrical polar and spherical polar coordi-
nates can be expressed from the expression of Laplace equation in generalized
curvilinear coordinates (Fig. 7.1).

In orthogonal curvilinear coordinate, the Laplace equation is

v?q’ . 1 8 h2h3 8¢ + 8 h1h3 8¢
o hl h2h3 (‘9u1 hl 8111 aUQ h2 8112
0 [hihy 0d
. . 7.13
8113 |: h3 8113 ( )
Here the value of hy, ho, hsy and uj, us and ug can be expressed as :

(a) In cartesian coordinates (Fig. 7.2)

u; = X, U =y and us=2z
hl = ]., hg = 1, and h3: 1 (714)
Za
* | dz
- iy
dx
»X

Y

Fig. 7.2. A three dimensional elementary volume in Cartisian coordinatea (x,y,z)
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(b) in cylindrical polar coordinates (Fig. 7.3)
u; =p, u =W and uz=7z
h1 = 1, hg =p and h3: 1 (715)
(c¢) In spherical polar coordinates (Fig. 7.4)
u; =r, us =0 and us =y
hy =1, ho =, and hg =rsiny. (7.16)

Therefore, the expressions for the Laplace equation in three coordinate sys-
tems are respectively given by

" 2% 9% 9%
24 —
V0= et ag T o =0 (7.17)

in Cartesian coordinate, where ¢ = f(x,y,z).

(b)
oy L[ (00) 0 (130 9 [ 00\] _
vq’_p{69<p59>+5@<95@)+52<p&>}_0

19 [ 96 1 (9% 2?0
pop <pap> T2 <5\PZ> oz =0 (7.18)

in cylindrical polar coordinates where ¢ = f(p,y, z.).

Fig. 7.3. A three dimensional elementary volume in cylindrical polar coordinates

(r, W, 2)
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¥ rsin0 d¥

Fig. 7.4. A three dimensional elementary volume in spherical polar coordinates
(r,0,¥)

(c)
5, 1 9 (4 . 00 9 (. 0¢
v'e " r2sinf | Or " Smear + 00 Sme@@

o (1 o0\
T ow <smeaw>] =0

1{8(2(%) 1 2 1 9%

2 lor \" or sin " 962 sin29'8\|12}:0 (7.19)

in spherical polar coordinates where ¢ = f(r,0,y). Most of the geophysical
problems, dealing with scalar potential field satisfy Laplace equation in a
source free region i.e. the region which excludes the source (field exists but
not the source) (Fig. 2.5 a and 6.2 a,b). Therefore, the solution of Laplace
equation forms a significant part of the potential theory in geophysics. In this
chapter we shall deal with the solution of Laplace equation by the method of
separation of variable in (i) cartesian (ii) cylindrical polar and (iii) spherical
polar coordinates depending upon the nature of the problems. One has to
choose the proper coordinate system for solving a particular problem A few
simpler problems are included.
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7.4 Laplace Equation in Cartesian Coordinates

The solution of the Laplace equation by the method of separation of variables
in cartesian coordinate is demonstrated in this section.When potential ¢ is a
function of x, y and z where X, Y, Z are independent variables, we can write:

0=Xx)Y (y)Z(2) (7.20)
and 9 o%
=Y7Z 21
ox ox (7.21)
or,
¢ 9?°X
e = Y2 555 (7.22)
Substituting these values in (7.17) we get
0% 9% 0%
2
= = 2
Vo Ox2 + dy? + 922 0 (7.23)
*X d*Y ?Z
YZ ZX XY =0. .24
da? + dy? + dz? 0 (7.24)
Dividing the whole (7.24) by XYZ, we get:
1 d2X 1 d?y 1 d%z
= 0. (7.25)

X" dx? * Y dy? " Z' dz®
The sum of these terms will never be zero unless each individual terms are
constants and the sum of these constants is zero i.e., if
D G
. =
X dx?
1 d%Y
Sy = [32 (7.26)
Y dy
1 d&?Z 9
C e =7
Z dz
then
o2+ B +92=0. (7.27)

We shall now examine the nature of the expressions for potentials for their

dependence on the different axes:

7.4.1 When Potential is a Function of Vertical Axis z, i.e., ¢ = f(z)
¢ _

The Laplace equation reduces down to .5 = 0 and the solution is

0=cz+d (7.28)
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where ¢ and d are two arbitrary constants. Here potential is increasing with z,
i.e., higher the value of z, higher will be the potential. One encounters this kind
of situation while computing gravitational potentials due to a hypothetical
infinite plate. Here
Fo_%0_
0Z

i.e., the field is constant at any distance from the plane.

c (7.29)

7.4.2 When Potential is a Function of Both x and y, i.e., 6 = f(x,y)

Putting 6 =X (x) Y (y)
The Laplace equation reduces down to:

1 X 1 a?Y

. : =0. 7.
X + Y dy? 0 (7.30)
If & &
1 d°X 9 1 d°Y 9
. = th . = —o°. 7.31
X o, en dy? o (7.31)
And if £X L2y
1 2 1 2
: =— th : =f". 7.32
Xt = B then = (7.32)
Therefore, we can write:
d2X
dx? - oiX =
d?y
, +0Y = (7.33)
dy
The solutions are:
X =™, e %, cosh ox, sinh ox (7.34)

and
i —io; :
Y =%, e cos oy, sin oy

The most general solution of Laplace equation for these two equations are:

o= Z (an e™* + b, e*““X) (cncosoy, v+ dysinoy, y) (7.35)
n=0
and

o= Z (an cosPB, v + bnsinB,y) (cn coshanx + d, sinh o,x) (7.36)

n=o
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7.4.3 Solution of Boundary Value Problems in Cartisian
Coordinates by the Method of Separation of Variables

Let us find out the potential at any point in a two dimensional space when
the size of the conductor and the potentials on the boundaries are prescribed.

Problem 1

A rectangular block of a conductor of thickness ‘b’ is placed in the xy plane.
The prescribed values at different boundaries are:

x=o00, ¢=0

!
x=0, ¢=Pcos by
y=—b =0
y=+to,  0=0

Find the potential at any point in the rectangular plate.
Figure (7.5) shows the nature of the problem. Since ¢ = 0 at x = oo, the
general solution of the two dimensional potential problem takes the form:

o= Z by €% * (¢, coshay, y + dycinay, y) . (7.37)
n=0

Applying the second boundary condition, we get :

T .

P cos g = Z (¢l cos O,y + df sino,y) (7.38)
where ¢, = byc, and d/, = bye, . These are arbitrary constants to be deter-
mined from the boundary conditions. Since the source potential contains ‘cos’
term, we have to drop the ‘sin’ terms from the solution. Therefore, the expres-

sion for the potential reduces to:

+b/2 =0
@=Pcos (my/b) x=c
d=0
-b/2 d=0

Fig. 7.5. A two dimensional Dirichlet’s problem with potentials prescribed in all
the boundaries



7.4 Laplace Equation in Cartesian Coordinates 159

o= Z cle ™ cos 0y,y. (7.39)

Applying the third boundary condition, we get:

! —0nX (an
= n . 4
0 E che cos (7.40)
Therefore
Onb
=0
cos 5

The expression for the potential changes to the form
o= Zc;e_rﬁnxcosrg{'y. (7.41)

Applying the second boundary condition, (7.41) becomes:

Ty nmy
P =
cos | =cpcos
’ ny ’ 3my ’ STy
= |cacos | + ¢ cos b + c; cos b o . (7.42)

Equating the coefficients of cos ”g’ on both the sides, one gets:
P = ¢} for n = 1, therefore ¢} = c; = ¢, = c; =0.

Therefore the final solution of the problem is:

d=Pe " cos nby. (7.43)

Problem 2

A finite rectangular conductor of length ‘a’ and width ‘b’ is placed in the
xy plane placing the corner A of the rectangle at the origin. The prescribed
potentials at the boundaries are as follows (Fig. 7.6)

d=0atx=0
0=0atx=a
0=0aty=0

¢=1f(x), aty=b

Find the potential at any point on the plate. The solution of the Laplace
equation :
02 0?
0, 0%

=0 7.44
dx? dy2 ( )
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b /o)
&=0 d=(
y =0x=0 o= x=a

Fig. 7.6. A two dimensional potential problem with potentials prescribed in all the
boundaries

are

(i) €™, e~ sindy, cos oy
(ii)

sin o, cos ox, €™, e~ * (7.45)

and the general solution of the problem is written as :

¢ = Z (A, cos apz + By sinay,x) (C’neany + Dnefa"y) . (7.46)

n=o

Values of these arbitrary constants are determined using the boundary con-
ditions.
Applying the first boundary condition, we get:

0= YA, (Cphe™Y + Dype™ ™). (7.47)

The right hand side expression of (7.47) will be zero when A, = 0. Therefore
the general expression for the potential reduces to

o= Z B, sin o, x (Clneo‘“y + Dne_o‘“y) ) (7.48)
n=0

Applying the second boundary condition, we get:
0 = Esinopa (Cpe®™Y + Dje™*Y) (7.49)
where C!/, = B,,C,, and D/, = B,D,,.
Equation (7.49) will be 0 if sino,a =0
= Opha =nT

nw
= o, =

. (7.50)
=3 smnzx (C;e“? + D;e*“?) . (7.51)
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Applying the third boundary condition, we get:
0= Z sin C/ +Dyj). (7.52)

Equation (7.52) will be 0 if,

C,+D, =0
= C,=-D,. (7.53)

Hence the expression for the potential becomes

0= Z sin DZX (e Ve ﬂiny)
~ 3 Fjsin nzx sinh n’;y (7.54)

where, F/ is a new constant.
Now applying the fourth boundary condition, we get:

=Y, sinh b i I (7.55)
a a

mnx

Multiplying both the sides by sin and integrating from a to 0, we get:

a

/ (x )sm dX—Z/F sinh™" ™ sin ™ dx. (7.56)

a
o

Since
a
/sinnxsinmx dx =0 form#n
(o]

a
=, for m = n,

therefore, from (7.55), one can write

poo? 1 / £ (x) sin m:de. (7.57)

a sinh m:b
(o]

Hence, the general solution of the problem is

6= Fysin m;mc sinh Y (7.58)

a
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= (%)

y=b x=a
x=a y=b
, o=f,(x) B=f,(x)
y=0.p =) x=a
Ji®) 0 0 0
0| o lo+o o, Pt+| o [+t o R
3

JA%) [

Fig. 7.7. A break up of a two dimensional problem into four parts to make it a
easily solvable problem

Problem 3

Find the potential at any point inside a rectangular conductor of length ‘a’
and width ‘b’ placed in the xy planes when the following boundary conditions
are prescribed, i.e., for (Fig. 7.7)

x=0, ¢="Ff(x)
y=0, ¢==5(x)
x=a, 0="f3x)
y=b, 0=1fi(x)

This problem can be solved by breaking the problem into four problems similar
to that discussed in the previous section, get the potential at a point for four
problems and add them up. Since the potentials are scalars and the principle
of superposition is valid, we can get

¢ =0, + 0 + 03+ 0, (7.59)

7.5 Laplace Equation in Cylindrical Polar Coordinates

Laplace equation in cylindrical coordinate is :

9% 100 1 9% 0%
2 _
V2 = p2+p p+p2. \|f2+ 2 =0 (7.60)



7.5 Laplace Equation in Cylindrical Polar Coordinates 163

where the coordinates are p (along the radial direction), ¥ (along the
azimuthal direction) and z (along the vertical direction). Applying the method
of separation of variables we can write :

¢ = R(p)¥(y)Z(z)

where, R, ¥ and Z are respectively the functions of p, ¥ and z only. Therefore,
from (7.60) we can write

d’R  VWZdR 1 d*v d*Z
vz Z =0. 7.61
dp2+ ) dp+p2R dw2+R¢dz2 0 (7.61)
Now dividing the equation by RVZ, we get
1d?R 1 dR 1 1 d*0 1d*Z
e . =0. 7.62
de2+dep+p2\I/d1/)2+zdz2 0 (7.62)
Let us choose 27
1 2
7 a2 o (7.63)
Multiplying the (7.62) by p?, we get :
2 72 2
p- d°R  p dR 9 o 1 d*W
. . . =0. .64
de2+de+ozp+\de¢2 0 (7.64)
We, next put
1 d?v 2
. = — 7.
vy =8 (7.65)
and obtain : 2 2R R
p p 2.2 2 _
R'dp2+R'dp+ap =0 (7.66)
which can be rewritten as
d®’R  1dR , B
dp? + o dp + <0L =2 R=0. (7.67)

This equation is known as Bessels equation.
Alternately, we can have the second set of equations as follows:

1 d%z
- _o?

24 (7.68)
1 d*v
o -3 (7.69)
d®R 1 dR , B

+ =+ JR=0 7.70
dp? ~ p dp ( p? (e10)

Equation (7.70) is a modified Bessels equation.
Now let us examine the dependence of potential function on p, y, z and
the corresponding changes in the expressions for potentials.
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7.5.1 When Potential is a Function of z ,i.e., ¢ = f(z)
The Laplace equation takes the form

2
ji):O, or0=Az+B (7.71)
z

where A and B are constants. The potential at a point is gradually increasing
with z. This is the potential function due to an infinite plate, discussed in the
previous section.

7.5.2 When Potential is a Function of Azimuthal Angle Only
i.e., 0 = £(y)

The Laplace equation changes to the form

O o= CyiD (7.72)
d\ug_ ) - W *

where C and D are constants. A circular resistance carrying current can create
this type of potential functions.

7.5.3 When the Potential is a Function of Radial Distance,
i.e., ® = f(p)

The Laplace equation becomes

%0 100

dp? + 0dp 0 (7.73)
0 0

- p (pap) Y
90 Ip
=N,0¢ = +N
P op ¢ P
Therefore the solution of this equation is :

¢ = MlInp + N (7.74)

where M and N are constants to be determined from the boundary conditions.
Let us take an example.

Problem

Two infinitely long cylinders of radius ‘a’ and ‘b’ are placed co-axially. The
potentials at the outer boundary at radius ‘b’ and the inner boundary at
radius ‘a’ are respectively 0 and V,. Find the potential at any point in the
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Fig. 7.8. Potential inside a cylinderical shell when the potentials are prescribed in
the inner and outer boundaries

annular space between the two cylinders (Fig. 7.8) Applying the boundary
conditions, we get:

0=MInb+N
Vo, =Milna+N (7.75)
Therefore, V, = Mln7,
In (b) In (b)

The potential at any point at a radial distance p from the axis of the coaxial
cylindrical bodies is given by

_ Vo, Volnb
T lna/m) P (asm)

In (p/b)
Vo M. (7.77)

7.5.4 When Potential is a Function of Both p and v,
i.e., 6 = f(p,v)

The Laplace equation becomes

9% 100 1 9%
a2 Tpap T p2oy? T 0. (7.78)
Applying the method of separation of variables i.e.,
0 =R(p)¥(y)

we get two equations
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1 d?w
g = —n? (7.79)
Y dy
and
d’R n 1 dR n?
dp?> pdp p?
The solution of the (7.79) is

R =0. (7.80)

¢ = (A cosny + Bsinny). (7.81)

The solution of the (7.80) can be determined as follows:
Multiplying the (7.80) by p2, we get

+p o n’R = 0. (7.82)

Let
0 = log?, then p =¢°

So,

dR°dR d6 dR o
dp ~ do'dp  do’
d?R d /dR d _gdR
= = = e
dp?  dp \ dp d de
d dR
_ . -0
—¢ ae (e 0
o od®R  _dR
:ee<e ed92_e ede)
- d’R ~dR
de* de
Substituting these values one gets
d’R _dR n dR
de> de  de

or,

or,
R = A" + Age ™
=Ap"+Ap" (7.83)

Therefore, the general solution of Laplace equation when ® = f(p,y), is

0= (Aycosny + Bysinny) (Cop™ +Dup ™) . (7.84)
1
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Problem 1

An infinitely long cylinder of dielectric constant €2 is placed in a medium
of dielectric constant €; with the axis of the cylinder oriented along the z-
direction. The cylinder is placed in an uniform field, i.e., the source and sink
are assumed to be at infinity (Fig. 7.9).

Find the potential at any point both inside and outside the cylindrical
body.

In a direct current flow field, we assume a cylindrical conductor of electrical
conductivity o9 is placed in an homogeneous medium of conductivity 6;. The
boundary value problem will essentially remain the same. The field is assumed
to be perpendicular to the axis of the cylinder and is assumed to be parallel
to the x-axis.

Since 9
E = —gradd¢ = — 0 (7.85)
ox
where ¢ is the potential function. We get
Ex.x = —0 + Constant. (7.86)

Therefore, the source potential is :

0, = —Exx+A

o = —

where A is a constant and x is the of the point assumed origin. A is dropped
while computing the perturbation potential. In an uniform field Ey, in a
medium of dielectric constant, €; and in the presence of an anomalous body
of contrasting physical property €5, an anomalous or perturbation potential
will be generated. It will be added up to the source potential in an uniform
field. This perturbation potential will gradually die down with distance of the
point of observation from the centre of the cylinder,the anomalous body.

Z

I 3

"D .
%

>

Fig. 7.9. An infinately long cylinder of dielectric constant €5 is placed in a medium
of dielectric constant; €; in the presence of an uniform field
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Potential at a point both outside and inside a cylinder can be written as:

o, = 0, + ¢'(potential outside)
0y = 0, + 0" (potential inside) (7.87)

Here ¢’ and ¢ are the perturbation potentials outside and inside the body.
The perturbation potential part also must satisfy Laplace equation.
Therefore
V20’ = 0 and V%" =0 (7.88)

assuming the radius vector is at an angle y with the x-axis
¢, = —Eox = —Eopcosy (7.89)

where ¥ is the angle between the radius vector p and the x-axis. Since the
source potential has a cos ¥ term, the perturbation potential will also have
cos ¥ terms only. The general expression for the perturbation potential, when
it is a function of p and ¥ and independent of z, reduces down to

o = Z fn cosny, p~ " (potential outside) (7.90)

Here p is the radial distance from the axis of the cylinder. Since the pertur-
bation potential will gradually die down with distance from the centre of the
cylinder D,p™™ will be the appropriate potential function for outside region.
Similarly, the perturbation potential inside the body will be given by C,,p" as
the appropriate potential function. Hence

¢ = Z gn cosnypr. (7.91)

n=o

Because when p tends to zero, D,p™ in (7.84) tends to infinity. Since poten-
tial inside a body, when placed in an uniform field, cannot be infinitely high
Therefore, p™™ cannot be a potential function inside the body. Here f,, = A,D,,
and g, = A,,C,, We can now write down the potentials outside and inside the
body respectively as:

0, = —Epcosy + Z fn cosnyp™"
n=0

and

¢, = —Epcosy + Z gn cos nyp™.
n=0
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—_—

&

\____

___._—/\—»-——

Fig. 7.10. Field line distortions in the presence of a cylinder of contrasting dielectric
constant

Applying the boundary conditions :

i)
0, =0y

“@e), o

at p = a. i.e., on the surface of the cylinder of radius ‘a’, we get

Z focosny,a™ " = Z gn cosny, a

and

ii)

and

— €1 Ecosy + Z (=n) fncosnip,a” "D g,
= — €y Ecosy + ann cosnp a™ " €y . (7.93)

Since the source potential contains cos ¥, the perturbation potential will
also have the cos y term, therefore n = 1. The summation sign vanishes and
we obtain, ultimately

fla~t = g1a
and . .
— €1 E+f1372 c1=—€cxE+4g; es. (794)

From (7.94) the values of the arbitrary constants f; and gy are obtained respec-
tively as :

- €9 — €

B2 1

= ‘€g + €
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and
= ELIQ 2 ! 7.95
fl €9+ €1 ( )

in terms of the contrast in physical properties, size of the body and strength
of the uniform field. Potentials both outside and inside the body can now be
written as :

- L, €9 — €
¢1 = —Epcost) + Ea?. 62 n 61 .cos1).p~ 'potential outside (7.96)
2 1
and E c
do = —Ep cos 1) + E€2 n 61 .cos1.p.potential inside (7.97)
2 1

Equations (7.96) and (7.97) can be written in the form

22
0, =—-E <1 +Kp2) pcosy

and
o, =—-E(1+K)pcosy (7.98)

where K = Ellg, the reflection factor.
Since the potential is dependent on p and v, the field inside the body can

be written as : 5 5
E; = +4, (— aﬁ) + 8y (— paq\’u) : (7.99)

Therefore, the fields on both inside and outside the body are respectively
given by

~ - a? a?
Ei =48, E <1 — Kp2> cos\y — :i'\pE.KPQ siny

2
= B, =+G,.Ecost— EKZ2 (@, cos ) — @y sin) . (7.100)
And
Ey = —i,E (14 K)cost) + @y E (1+ K)sintp
=E(1+K) (—&p. cos W + @y sin )
=E(1+K)ay. (7.101)

Here &, dy are the unit vectors along the radial and azimuthal direction and
ay is the unit vector along the x direction (Fig. 7.10).
Here
a, = —a,Cosy + aySiny (7.102)
Equation (7.101) shows that the field inside the body is parallel to the external
and uniform field. Figure 7.11 shows the nature of distortions in the uniform

field and equipotentials due to presence of an infinitely long cylinder of con-
trasting physical property.
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1.0

Jn (x)

05 | 2 13,

Fig. 7.11. Bessel’s function of first kind and 0,1,2,3,4 order

7.5.5 When Potential is a Function of all the Three Coordinates,
i.e., o = f(p, v, 2)

The next problem is to obtain the generalised solution of the Laplace equation
in cylindrical coordinates when the potential function (¢) is dependent on all
the three coordinates p, W and z.

Laplace’s equation in cylindrical coordinates is

20 190 1 %0 %9
o02 o op t o2 oy 5 =0 (7.103)

Using the method of separation of variables, discussed in the previous section,
we have

o =R(p)¥(¥)Z(z)

We obtain the three equations

2
v
fhvz + 10?0 =0 (7.104)
2
(31 f —m?Z =0 (7.105)
Z
d’R  1dR 2
w ot (m2 - 22) R=0 (7.106)

where R, W or Z are respectively the functions of p, y or z only. The solutions of
equations 7.104 and 7.105 are discussed in the previous section. Equation 7.106
can be rewritten in the form

d’R 1 dR n2
d (mp)® " (mp) "d (mp) + (1 N (mp)2> R =0. (7.107)
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Equation 7.107 is of the form

2y 1d 2
Y+ y+(1—n2>y:0 (7.108)

dx?  xdx X
or,
d?y  dy
x? PR (x* —n?)y = 0. (7.109)

It is a Bessel’s equation of order n. The standard approach for solution of this
type of second order differential equation is to assume a power series. It is
known as Frobenius power series.

7.5.6 Bessel Equation and Bessel’s Functions

Let us take Y in the power series form as

Y:XP(ao+a1x—|—a2X2—|—.....)

¢} (¢}
jy = Z ag (P4 8)xP+5~1 and
X
d2%y P+S—2
2 => as(P+8)(P+S—1)x : (7.111)

Substituting these values in (7.109), we get
Y=> [as(P+S)(P+S—1)+ag(P+S)—asn’]x°
+) ag®2=0. (7.112)
The following steps are necessary to evaluate the co-efficients ag:.
i) Equating the co-efficient of x°, when S = 0, we get
ao (P> —n?%) =0. (7.113)
Since a, is kept arbitrary at this stage and non-zero, therefore
P2—n?=0
P = +£n.
ii) Equating the co-efficient of x! when S = 1, we get :
a1 [(P+1)P+(P+1)—n* =0
= [(P +1)2 - nﬂ —0. (7.114)

Substituting P = n, we get a;[(n + 1) — n?] = 0. Since the second factor
cannot be zero even if n = 0, therefore a; = 0.
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iii) Equating the co-efficient of x? and higher order terms, we get :
as [P+S)(P+S—1)+(P+S)—n’| +as2=0 forS>2

Therefore,

ag=— 872 (7.115)

(P+8S)* —n2’
2

Since a, is arbitrarily chosen to be not equal to zero, therefore P? = n? or,
P = 4+n. Hence the order of equation is either n or —n. We then have

aj [(n +1)° — Il2:| =0.

Now, since ((n+ 1)> —n2) # 0, therefore a; = 0. One gets the same result

by choosing P = —n, i.e., a; = 0, for P = —n also. Hence, we write
as—2
=— . 7.116
%7 79(S + 2n) (7.116)
Since
a] = 0.
therefore,
ag=as=a7 =........ =0
With non-zero a,, one gets
a—_ M _ A
T T 2(2+2m) 22(n+1)
a9 a9
34 = — = —
4(4+2n) 222(n+2)
J— + ao
242.(n+1)(n+2)
a4 a4
3‘6 = — = —
6 (6 +2n) 23.3.(n+ 3)
J— + ao
2623 (n+1)(n+2)(n+3)
and o a
= (-1 © . 7.117
azs = (1) 288l (n+1)(n+2)...... (n+9) ( )
Now from Frobeneous power series
Y =xP Easxs
one gets asg to be the co-efficient of x*+25 (- P = n).
Therefore,
S
—1)” .2".a,
25 (-1 2% (7.118)

T2 Sln+ 1) (n+2)...... (n+S)
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where n is an integer. We can write the (7.118) as

(—=1)® 2°T (n + 1)

225+n8IT (n+ S + 1) (7.119)

azs =

So far a, was kept arbitrary. Now we are assigning a certain value to a, i.e.,

1

% = Hup (m+1) (7.120)
such that
X 2 X 4
22T (n+1) 2" T(n+1) 2720 (n+3) '
Since all the terms are defined now, we can write the (7.121) as
( )23“1’1’1

Y = 7.122
Z S'I‘ m+S+1) ( )

Here I'(n + 1) etc. are gamma functions.
For many of the physical problems n is put as an integer, therefore we can
rewrite the formula as :

oo ( )QS+n

Z Sl (9 (7.123)

It is denoted as J,, the Bessel’s function of order n. Hence
Y = Cl,(x) (7.124)

We got the solution taking P = n. A similar solution can be obtained for
P=—n.
Therefore the general solution is

Y=CJyx)+DJ_,(x) (7.125)
where n is an integer, it can be very easily shown that

5u() = (-1 ()
=F J,(x)

where J,, (x) is the Bessel’s function of order n and is given by

s (_1)an+2s

Tn () = S:ZO 2580 (n 4+ S+ 1) (7.126)
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Now let

Y =) Jn(x),
Y = /0 (%) + 0'Ja(x)
Y = 400+ 20/ 3+ 07 ().

Substituting the values in the original equation, we have

¢ n?

/
& Jn +2¢' I+ dJ! + . JIn + a;J’/L + ¢ dn — 2 éJ, = 0. (7.127)

We can isolate the part
1 2
¢{J;’+ T+ (1—“2>Jn] = 0.
X X

This is equal to zero because J, is the solution of the differential equations
and
Equation 7.127 reduces to the form

/
" Jn + 28" T, + i I = 0. (7.128)

Rewriting the (7.128), we get

o (B Yo =0

Jn T

o dg¢' Jo1
2 n / — .
o (2 ) e =0

Integrating, one gets

logd’ + 2logJ, + logx = logE

or B
I _
v = x J2
or d
¢:E/X§2 +G. (7.129)
This part is termed as Y,,. It is
dx
Yo=EJ, + G Jy. (7.130)
x J2

This is the Bessel’s function of nth order and second kind. Hence the general
solution of the Bessel’s equation is
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Y = CJo(x) + DYy (%) (7.131)

where J,, and Y, are respectively the Bessel’s function of the first and second
kind and of nth order.

The most general solution of the Laplace equation in cylindrical co-
ordinates is

¢ = [Acosmy + Bsinmy] [C J, (mp) + D Y, (mp)]
[Ke"” + Le "] (7.132)

where A, B, C, D, K, L are co-efficients, generally determined from the bound-
ary conditions. For some type of boundary value problems, these co-efficients
may turn out to be the Kernal functions in Frehdom’s integral equations, to
be discussed later.

In most of the problems of geophysical interest, the potential generally
becomes independent of y, when ¢ = {(p, Z), the Bessel’s equation reduces to
the form

Y=CJo(x)+D Yo(x) (7.133)

where J, and Y, are the Bessel’s function of first and second kind and of order
Z€ro.
For ¢ = f(p,z), the expression for the potential simplifies down to

¢ =[C J, (mp) + DY, (mp)] [Ke™? + Le~™7] (7.134)

The general expressions for J, and Y, are respectively, given by

Jo = i < (7.135)
© s (gl '
X2 X4 X6
Jo=1— ot 0™ o ana T
(207 212 26 (31)
X2 X4 X6
=1— o T o2 —gzyzgzto (7.136)
and
2 b'e x?2 x(1+41/2)
Yo="|1 — 1
0= [n2J0+ 02 21(21)2 ] (7.137)
2 Y, > g x5 1 1 1
:>Yo—nl(ln2) SZ:O( D% s s (1 F o5+
where L1 )
y:L1m<1+2+3+....+n—10gn) (7.138)

= 0.5772157 and is known as Euler’s Constant.
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Fig. 7.12. Bessel’s function of second kind and 0,1,2,3,4 order

Figures 7.11 and 7.12 shows the behaviour of J, and Y, for increasing val-
ues of x. Both the functions behave as damped oscillatory functions for larger
values of x and the oscillatory characters die down with distance. These points
are taken into consideration before choosing them as potential functions. For
larger values of x, J, and Y, can be computed approximately as

Jo (x) = \/fo oS (x— Z)

2 T
Yd@—¢mﬁn@—4) (7.139)
as X — OQ.

For large values of x, the oscillatory behaviour vanishes, the potential
functions become zero at infinity. In a source free region, where potential
function ¢ satisfies Laplace equation, has a finite value at x = 0. Therefore
for most of the geophysical problem J, or J, are treated as more appropriate
potential functions. Y, = oo at x = 0. Therefore near the vicinity of a source
Y, can be taken as a potential function.

and

7.5.7 Modified Bessel’s Functions

If we take 27
, +m’Z =0
dz
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instead of 27
, —m’Z=0 (7.140)
dz
the Bessel’s equation changes to the form
d%’y 1dy n?
— (1 =0. 7.141
dx? + x dx + x2 )Y 0 ( )

This equation is called the modified Bessel’s equations and is of the form The
(7.142) can be rewritten in the form

d?y 1 dy n?
n Vool -0 7.142
d(ix)®  i2x d(ix) (ix)? Y ( )
The solution of (7.142) is J,(ix) and Y, (ix). We can write J,(ix) as
oo o S /. \n+2S
Ju (ix) = Z +(2sl) )
£ 42590 (n + S +1)

__:n - (_1)5 Xn+2S
- Sz:% o t2SQIT (n+ S + 1) (7.143)

We, therefore, define the modified Bessel’s function of the first kind as

(-1 xS

I, (x) =i ™J, (ix) = S; 2SI (4 S + 1) (7.144)
ie.
In(x) =1 "y (ix).
Modified Bessel’s function of the second kind and nth order K, (x), is
K, (x) =1"J_, (ix). (7.145)
Therefore, the general solution of the modified Bessel’s equation is
Ch Ii(x) + Dy Ky (x). (7.146)

When a potential function is independent of Wy, n will be 0, we get the modified
Bessel’s equation as

—y= (7.147)

and the solution is

where,

(7.148)
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and

Ko (x) =—IL,1In (Y;) —|—X2
4

1 6 11
+ (e ) (e . (7.149)
24, (2!) 2) " 26.(3)) 27" 3

Figures 7.13 and 7.14 show the behaviours of I, and K, with x. At larger
distances from the source, one can write

12
I (x) = <2n ) o (7.150a)
X
and .
Ky (x) = ( 2’; ) ex (7.150b)
as X — OQ.

The general solution of Laplace equation

%0 100 0%
=0 f =f 7.151
N I (7.151)
i.e. when potential is independent of v, the azimuthal angle, the expression
for the potentials using Bessels functions and modified
Bessel’s functions are

0= (Ae™ +Be ™) [CJo(mp) + DYo(mp)] (7.152)
1

3000
2500 -~
2000

1500 -

Tolx)

1000 -

500 -

Fig. 7.13. Modified Bessel’s function of the first kind and of zero order Iy and its
variation with x
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20}

1.5+

Ko{!)
(=]
T

0.5+

Fig. 7.14. Variation of modified Bessel’s function of the second kind and zero order
with x

or,

0= (Acos mz+ Bsinmz) [Clo(mp) + DKo(mp)]. (7.153)
1

Instead of taking the potential functions in the form of A cos mz, B sin mz, we
can always express the potential functions in the complex form e™?* where the
real and imaginary parts can be separated. We now define two new functions
of the form

Hg(mp) = Jo(mp) +1 Y (mp)
and

HZ(mp) = Jo(mp) — i Y(mp) (7.154)

This two functions are called Henkel’s functions of the first and second kind.
Henkel’s functions are also the potential functions and the general solution
for the Laplace equation in cylindrical co-ordinates can also be written as

® = " (Ae™ + Be ™) [CHg(mp) + DH (mp)] (7.155)
Here
1 2 i(x—
and

92 .
HE (x) = \/ e, (7.156)

X—00
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We find that as

p—0,Jo—1, Yy —o00,Ip =1, Ky — ocoand Hy — oo. And for p — oo,
Jo— 0, Yy — 0. Ij — oo, K— 0 and Hy — 0. Therefore, remembering
the behaviours of these Bessel’s function we have to choose the proper poten-
tial function dictated by the nature of the boundary value problems. Bessels
function of the first kind are generally used. However in problems where mod-
ified Bessel’s function are needed both first and second kind of are used in
the geophysical problems as will be shown in the later chapters. Bessels func-
tions of imaginary and fractional orders are also used in solving geophysical
problems(see Chap. 8 and 13).

7.5.8 Some Relation of Bessel’s Function

From

Jn(x) = 27 (7.157)

we get, taking J/ (x) = S Ja (%),

2 (=1)°(n+28) /x\nt2s
x4 () :g i‘l(s))l_(l(:—l—i;' (3) (7.158)
o —1)® <\ n+2s—1
:an+xS_lH(S_(l)ri(nﬂ).(z) . (7.159)
If in (7.159), we put S =1 + 1, we obtain
xJ/ =nJ, — xi (=1)° (X)n+r+1 (7.160)
" I () I n+1+1) \2
=nJ, — xJniq. (7.161)
In the same way we can prove that
x J/ 4+ nJy =xJu_1. (7.162)
If we add (7.161) and (7.162) and get
23 =Ju 1 — Jup. (7.163)
If we put n = 0, we have
I = -1 (7.164)

If we multiply (7.162) by x "~!, we get

x M =xT " gy - x T T (7.165)
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Hence d
dx (x " Jn) = —x"" Jup1 (7.166)
Similarly, it can be proved that
d
dx (x"Jn) = x"Jn1. (7.167)

If we substract (7.165) from (7.162), we get

2Jn
;]( =Jn-1+ Jny1- (7.168)

Expression for J,(x) when n is half and odd integer will be as follows.
If we put n = J, in the general series for J,(x), we obtain

o 5 1
(—1) X\ 25+
Ji (x) = . 7.169
1 0=ngneq ) ) (7109
Since
II(r)=rll(r—1)
and
II(s) = S,if S=1,2,3.
We have
1
1 (1) = ¥
sinx 1 x2 n x4
. = gt Ty T
Hence
2 .
J1 (%) = \/nx sinx. (7.170)
if
1 2
n:_27‘]—§ (X):\/nxcosx. (7.171)
From the recurrence formulae, we get forn = ;1J 1(x)=Jo1 (x)+ s (%)
1
Jg (X) = J%(X)—J_é(x) (7.172)
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7.6 Solution of Laplace Equation in Spherical Polar
Co-ordinates

Lapalce equation V2¢ = 0 in spherical polar co-ordinates where ¢ = f(r,0, ¥)
is given by (Fig. 7.15)

0 (200 L9 (. g00 1 9%
240 2 B
Vo = or <r 8r> + <16 90 (smeae) + Sn20 a2 0 (7.174)

This equation can be solved applying the method of separation of variable
choosing

0 = R(r)O(6)¥(y)
where R, © and U are respectively the functions of r, 6 and y only.

7.6.1 When Potential is a Function of Radial Distance r i.e.,
o = f(r)

When potential is a function of r i.e., 6 = f(r) only and is independent of 6
and ¥. The Laplace equation reduces to

0 [ 5,00
= .1
o (r Br) 0 (7.175)
200 :
=T or = C; where C; is a constant. (7.176)
From the (7.176), we can get
0=Cy— “1 (7.177)

T

where Csq is another constant. This is the potential at a point at a distance r
from the source due to a point source of current. Since the potential will be
zero at r = 0o. Therefore Co = 0, and the potential reduces to

Fig. 7.15. Spherical polar coordinate
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0=— Cil (7.178)
Since
E = —grad = —(;21 and [ = /j.ﬁ.ds
= /cﬁ.ﬁ.ds = —(5/ 021 ds = —GC; 4mr?
re. r
I
= —4ncCy. Hence C; = —
4G
and I 1 Ip 1
0= =P " (7.179)

dnc’r  4nm r
where p is the resistivity of the medium and p=. é
This is the expression for potential at a point at a distance ‘r’ from a point

source in an homogeneous and isotropic full space. The solid angle subtended
at the source point is 4rn. For an air-earth boundary, when the point electrode
is on the surface the potential at a point at a distance ‘r’ from a point source
is o1
o=

T
where the solid angle subtended at a point source is 2w on the surface of a
homogeneous and isotropic half space.

(7.180)

7.6.2 When Potential is a Function of Polar Angle, i.e., ¢ = f(0)

When potential is independent of r and ¥ and is a function of 6 only (Fig. 7.15)
the Laplace equation reduces to

1 0 (. 00
sin 0”90 <51n9— 36‘) = 0. (7.181)
From (7.181), we get
sinegg = Ca. (7.182)
Integrating (7.182), we get
0
¢ =C; + Calntan 9 (7.183)

Here the equipotentials form cones at the centre.
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7.6.3 When Potential is a Function of Azimuthal Angle i.e.,
e = f(y)
Here potential is a function of ¥ only, the Laplace equation is
1 0%
Sin%0 Oy?
%0

=> gy = 00T 0= A + By. (7.184)

7.6.4 When Potential is a Function of Both the Radial Distance
and Polar Angle i.e., ¢ = f(r, 0)

And is independent of the azimuthal angle, the Laplace equation is

9 [ 500 Lo (. 00\
or (r 8r> + sin® 00 (bmeae) =0 (7.185)

9% 200 10% 1 00
o2 T ror T pg2 + cote86 =0. (7.186)

Now applying the method of separation of variables, we get ¢(r,0) = R(r)©(0)
where R and © are functions of r and 6 only. We have
dR 0%¢ d’R %0 d?e

o0
=0 =0 d =R .
o e o T 98 T de?
Substituting these values in the Laplace equation, we get

R 20dR  Rd?’©0 R do
=0. 1
2 + r dr + 2 o2 + 2 Cot6 10 0 (7.187)

Dividing (7.187) by R and

@1d2R+ 2 dR+ 1 d2@+ 1 Coted
Rdr* rRdr 120de* 120 d

0
o =0 (7.188)

Equation (7.188) can be rewritten as

2R 2rdR] 1 [d%© e
0 | = 7.1
[R a® R dr} o [d92 o de] 0 (7.189)
2 PR 2rdR 1 [d26 e
— t0 =n2 7.1
[R dr2+Rdr} @[de2+00 de] " (7.190)

These two independent equations are function of r and 0 respectively and are
equal. They are written as

,?R_ dR
T

e +2r —n’R=0 (7.191)
r
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and d?e de
1
Cot# =n’ 7.192
@[d92+0d6] " (7.192)
For solving (7.191), we take
dR d’R
R (r) = 1% then o ar® ! and W o (o —1)r* 2.
Substituting these values in (7.191), we get
r? la(a—1)+ 7% +2r [ar®™!] —n®r® = 0. (7.193)
= oa@—1)20—02=0=>0>4+0—-n%>=0
—1£ 1+ 4n?
o= .
2
Therefore, the two roots are
1 1 1 1
(X1:—2—|—\/4—|—D2 and (X2:—2—\/4—|—D2. (7194)
If oy = o, then o = —(o + 1), therefore the two solution are R(r) = r* and
r~ (1) taking o = n, the general solution of the first equation is
n B
R= (Ar + rn+1> (7.195)

where A and B are arbitrary constants to be determined from the boundary

conditions.
The second differential equation is
1 [d%?e de
_ = 1
o [dez’ +Cotede] (n+1)

420 de
= g T C0t8 ot n(n+ 1O =0

1 d /. dO .
sin6°do (sm@de) +sinfn(n+1)0 =0
d /. .dO .
= 1 (smede) +sin6.n(n+1)0 =0.
Let i = cos®, Then § = éiu'(cilz = —SineddLl

Substituting, these values

_Sineddu {sine(—sine) iﬁ] +sinfn(n+1)0 =0

d /. ,.,dO
= (sm Gdu>+n(n—|—1)—0.

(7.196)

(7.197)

(7.198)
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Since sin® = /1 — u2, (7.199) changes to the form

d 5\ dO© B
du {(l—u)du]—kn(n—kl)@—O (7.199)
d?e de
— 2 — —
= (1) Y M TR O=0 (7.200)

This is termed as the Legendre’s differential equations. It is written as

42 d
(1-x2) dxz - 2Xdi +n(m+1)y=0. (7.201)

7.6.5 Legender’s Equation and Legender’s polynomial
To solve the (7.201), we use Frobeneous power series and put

Y = ag + a1x + EL2X2—|—
=3 a, x°. (7.202)

Substituting this value of Y in (7.202), we get
Yags (s — 1)x°72 — Yags (s — 1) x° — Y2a, sx*
+¥n(n+1)asx*=0 (7.203)
= Yass—1)x"?+Inm+1)—s(s+1)]ax® =0. (7.204)

If we put S = 2 and equate the co-efficients of x°, we get

n(n+1)

, . (7.205)

ag = —

Equating the co-efficient of x!, we get

(n—1)(n+2)

53 ay. (7.206)

az = —

Equating the Co efficient of x2, we get

[ +n-6]a
= 3.4
_ -2 meumeD)
B 3.4 2 7
_ =2 ;3321(11 MACN (7.207)

Here ag and a; are two arbitrary constants is terms of which we can collect
the terms and present in the following way
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B nn+1) ,, nn—2)(n+1)(n+3)
y—ao[l— /9 x° + /4 Xt — }
+ aix [1— (n—lién—i—?)xg_’_ (n—1)(n+2;én—3)(n+4)x4_”m]'

Till now we have not made any restriction on ‘n’ . But for most of the physical
problems, n is an integer. When n is even, i.e. 0, 2,4, .............. the first
series terminates after a few terms. When n is odd the second series terminates
after a few terms. Therefore, we get one polynomial and one infinite series.
For n =0,

X2 X4
yo=ap+ax |1+ 3 + 5 4+ ... :| (7209)
Forn=1
[ X4 X6
yi=ax+ag|l—x*— g Ty T ] (7.210)
Forn =2
2 448
ya = ag (1—3x) +arx |1 — 3x2—X5 - 3X5 o ] (7.211)

Therefore the general solution must be constituted of an infinite series and a
polynomial. If we take the polynomial part, we can write

5x?
Yo = ap,y1 = a1X,y2 = ag (]. — 3X2) , Y3 = a1x <1 — 3 > . (7212)

The polynomial part of the solution can be written as

Yo=1=Py(x),Y1 =x=P; (x),Ys = ; (3x* = 1) = P5 (x)

Y3 = ; (3x® — 3x%) = P3 (x). (7.213)
These polynomials are known as the Legendre’s polynomial (Fig. 7.16). These

polynomials are termed as the Legendre’s function’s of the first kind. The
infinite series is the Legendre’s function of the second kind and is denoted by

Q.
When

1. 1
n=0,Q(x)=tanh 'x = 5 In 1 i—z
When
n=1,Qi(x) =x Qyx) — 1.
When

n=2,Q(x)=Pz(x)Qo(x) - 5%
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Fig. 7.16. Conical equipotential surface for 6 dependence

Similarly one can have the value of Q, (x) for any value of n. The solution of
the Legendre’s equation is

D AP () +BaQa (%)} (7.214)
n=0

Therefore the general solution of the Laplace equation in spherical co-ordinates
can be written as

o B,
o= Z <Anr“ + rn""l) (CnPy (cos8) + D, Qy (cosB))

0
(EnCosmV¥ + F,, Sinmy) (7.215)

Now
Pu(1) =1,Pu(=1) = (=1)",Pa(0) = 0,

Qn(l) = 00,Qn(0) = 0,Qn(—1) = oo. In general P, behaves as a better
potential function. Therefore in potential theory involving spherical polar co-
ordinates Legendre’s polynomials are used in general as potential functions.
These polynomials in the Table 7.1 are Legendre’s polynomials from 0 to 6th
degree. Each of these polynomials satisfy Legendre’s differential equations for
any value of n. The general expression of the Legendre’s polynomial P, (x) is
given by

N
Pa) = Z(_l)rznr!(fj1 r_)v?;)'— 2@!)‘%2r (7.216)

r=0
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Table 7.1.

IS

O U W OB
g9 9u Y™ l:U el
AR A A A
KPR IN NI NI IN

Il

~

S

1
1/2(

1/2(5x% — 3x)
1/8(

1

1

where N = J when n is even and N = (n — 1)/2 when n is odd. Figure (7.17)

shows that the Legendre’s polynomials are orthogonal to each other. The
Radriques’ formula for the Legendre’s polynomial is

1 a°
Pu(x) = . 2o 21
(9= oo (2 = 1) (r217)
where n is the degree of the polynomial.
One can prove that (Ramsay 1940),
/ 0 if
/Pn(x)Pm(x)dx:{ g ?fnfm. (7.218)
2 ont1 M R=M
1.25
I P10]
1.00-
0.75
050 N PI3] bl ]
2 WEAB
o [ Y
A X
— X %‘Aﬁ
‘°'5°f P P12
-0.75 -
-1.00 -
_1.25-.|li.|.|.|.i,|.\.|1
-1.25 -1.00 -0.75 -0.50 -025 O 025 050 075 1.00 125
X

Fig. 7.17. Legendre’s polynomial for P(0) to P(6)
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The general expression for the Legendre’s function of the second kind is given
by

r=00

S 2t DI+ 2
Qn(x) _ Z r!(2n+2r+ 1>! X 2r—1 (7.219)

Qn(x) is an infinite series as mentioned and is generally not used as a potential
function. So the general solution of the Legendre’s equation

Y = A P, (x) + BQ,(x) (7.220)

reduces to
Y =A P,y(x).

Problem 1

Find out the nature of distortion of the potential field when a sphere of elec-
trical permittivity €5 is placed in a medium €; in the presence of an uniform
field (Fig. 7.18).

A spherical body of electrical permittivity €5 is placed in a medium of
electrical permittivity €; in the presence of an uniform field Eg along the z
direction. Here the perturbation potential will be a function of r and 6.

Hence

0 = —Egy Z + Constant.
= —Ej rcos 0 + Constant. (7.221)

This is the expression for the potential in an uniform field. When we
introduce the anomalous body, having different physical property, in the field,
the perturbation potential will get added in the vicinity of the body. The
perturbation potentials outside and inside the body will be different and are
given by

0 =0 + ¢/
and
0y =g+ 0" (7.222)

where ¢, is the source potential, ¢' and ¢” are respectively the perturbation
potentials outside and inside the body.
In the medium 1, i.e., outside the body, the perturbation potential is

oo

1
o' => A, i1 P (cos6). (7.223)

n=1

Since the potential outside dies down with distance, rnil is the solution and
P, (cos0) is a better potential function. The potential inside is given by
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Z
A

—»

Fig. 7.18. Distorsion in current flow field in the presence of a spherical body

¢ = Z Bur"Py, (cos 0).

Therefore, potentials both outside and inside are given by

o0

1
0, = Z A, [ Pn(cos0) — Egrcos® (Potential outside)

n=1

and
o
= Z By.r".Py, (cos8) — Egr cos O(Potential inside).

Applying the two boundary conditions, i.e.,

1) q)l |r:a - ¢2|r:a’
.. o 2]
W & (%)), = (),

where ‘a’ is the radius of the sphere, we get

Z A, an1+ (cosB) Z B,ha"P, (cos0)

r=a

and

— €1 Eg Py (cos0)+ &4 ZA (n+1). Py (cos0)

n+2

= — €9 EyP; (cosO) + €9 Z Bpna~ "t P, (cos ).

(7.224)

(7.225)

(7.226)

(7.227)

(7.228)



7.6 Solution of Laplace Equation in Spherical Polar Co-ordinates 193

Since the source potential is Eg r cos 0 and cos 0 can be expressed as P (cos 9),
it became possible to bring the source and perturbation potentials in the same
format before the boundary conditions are applied. Here Py is the Legen-
dre’s polynomial of the first order. Since the source potential is in Legendre’s
polynomial of first order, the order will remain the same in the perturbation
potential also. Therefore n = 1. So the equations (7.227) and (7.228) simplifies
down to

Ay
2 = By a (7.229)
- 2 €4 -
— €1 By — A a3 = — €9 Ey+ €5 By. (7230)
From these two equations, the values of A; and By, are
A} =B a* (7.231)
and
= Co — €1
Ay = Eya® 7.232
! “ €o+2 €, ( )
- C9 — €1
By = E . 7.233
T 424 (7.:233)

Substituting the values of A; and By, in (7.225) and (7.226), we get

— €1 a®

¢1 = —Eorcosf + Ey :22+2 J cos f(Potential outside) (7.234)
and
Co — €1 e
¢o = Egrcos® + Ey r cos 0(Potential inside). (7.235)
€2 +2 €
3 €1
=-FE . 6.
0c, 12 €, 7 COS
The fields inside the body are
02 3¢
E. . =— =F 0 7.236
<3T> 062 +2 €4 €os ( )
and 96 5
2 €1 .
Ey=— =-F sin 6. 7.237
0 (r89> Ceyt2e, (7.237)
Therefore, the field inside the body can be written as
- = 3
E = (d, cos® — dpsinb) Ey c +€2161
. 3er =~
=d,. Eq. 7.238
“ €o +2 €y 0 ( )

Hence the field inside will be parallel to the field outside.



194 7 Solution of Laplace Equation
Corollary

Potential at a point on the surface of the earth due to a buried spherical
inhomogeneity of conductivity G5 is placed in a medium of conductivity o7 in
the presence of an uniform field in direct current domain.

This is the same problem as given in the previous section. Here the direct
current is flowing from a source at infinite distance to generate the uniform
field (Fig. 7.19).

The potential will be symmetrical with respect to the polar axis. So the
potential will be independent of the azimulhal angle W.

The solution of the problem is

o= Z {Anr“ + Bnr*(“ﬂ)} Pn (cos0). (7.239)

The constants A, and B, can be found out from the boundary conditions.
) )
¢, = ¢, and pll ;rl = p12 gf . at T = a where ‘a’ is the radius of the sphere.
Since .
;_E_ 100
P Py Ox

The potentials outside and inside the body are given by

therefore ¢, = —Jpx (7.240)

o, = —Jpx+ Z Bur~®*+YP, (cos ) — Potential outside

n=1

O, = —Jpyx+ Z Apr"P,, (cos0) — Potential inside. (