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Preface 

Turbulent dynamics of fluids and gases occurs in a variety of natural and 
technical systems. Turbulence plays a fundamental role in the atmospheres 
of the Earth and the Sun, the intermixing of fluids in oceans, and river 
flows. Understanding turbulence is necessary to calculate the parameters of 
media flows in pipes, flows of air around cars, aircrafts, and space vehicles 
in the atmosphere. 

Due to the widespread occurrence of turbulence and the profound 
analogy between it and a range of other physical phenomena of statistical 
character turbulence studies are important not only from the standpoint of 
applications but also from that of basic science. Though turbulence has 
been investigated for over a century, the phenomenon is extremely complex 
and there still exists no general theory to describe it.  

As various applications of turbulence necessitated developing methods 
of its simulation, experimental studies were performed and semi-empirical 
techniques of calculating the parameters of turbulent flows were developed 
on their basis. In the more recent past, the techniques materialized in the 
form of computer codes which made it much easier to solve a number of 
practical problems. However, the scope of the empirical methods is limited, 
and the task of creating a theory of turbulence remains high on the 
scientific agenda.  

The nature of the oscillations of flow parameters and the mechanism of 
their emergence must be understood precisely to develop the fundamentals 
of turbulence theory. It should be noted that the issues have been considered 
already by Lord Rayleigh, Osborne Reynolds and also by Hendrick Lorentz 
whose concepts of the origin of turbulence diverged. An attempt to find a 
solution to the two basic problems – the nature and the mechanism of the 
emergence of turbulent oscillations – using the wave approach is made in 
the present book. The solution was found largely by chance during an 
investigation into the transition from normal combustion to detonation. 

The evolution of the process in a pipe having a square cross-section 
was recorded by Schlieren technique. It transpired that the gas flow in front 
of the flame involved numerous perturbations looking like compression 
waves propagating in various directions with the speed of sound. The 
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perturbations emerged at the pipe walls and represented spherical wave 
packets. In the course of time, the waves formed an increasingly dense three-
dimensional system of perturbations, and the smooth flame turned turbulent. 

Measurements showed that the pressure oscillations replicated those of 
the velocity. The examination of hundreds of snapshots and oscillograms 
led to the idea that the field of turbulent fluctuations was actually of 
acoustic nature and was formed by acoustic waves. The idea, however, 
collides with the broadly adopted notion that pressure in the transverse 
cross-section of the flow is constant. At that time the new concept raised 
serious doubts, especially since the emergence of perturbation waves at a 
pipe smooth wall also appeared strange. Therefore the theme required 
further investigation. 

The process took decades. In the meantime I worked on the problem  
of neutralizing diffraction divergence to propagate optical beams over 
distances spanning many Rayleigh ranges. By the time the problem was 
solved I realized that the gas flow in a pipe should be regarded as a wave 
beam. According to Rayleigh’s law elementary plane waves in a beam 
rapidly grow spherical. In the gas flow case the spherical waves are reflected 
by pipe walls and thus the conditions get formed for the generation of 
perturbations where the reflection occurs.  

The next problem was to model specific phenomena numerically and 
to formulate a unified approach. Mathematica interactive computation 
system (Wolfram Research Inc.) was used for the purpose. Mathematica 
codes for the simulation of certain phases of the above process are presented 
below.  

The topic of a large part of the book is the development of the model 
of turbulent oscillations. Calculation methods and relations describing the 
field of turbulent oscillations in space and time are presented. They are 
based entirely on the conservation laws. No new formulae are nearly 
needed to describe the process – all the expressions used below are taken 
from “Fluid Mechanics” and “The Classical Theory of Fields” by L.D. 
Landau and E.M. Lifshitz, the author’s teachers. Only the interpretations 
and the applications of the corresponding formulae had to be adjusted for 
the purposes of the present study. 

The wave model and the analytical representation of the spatio-
temporal field of parameter oscillations open unique opportunities to 
explore theoretically various properties of the field and the way they are 
affected by the flow conditions. In particular temporal and spatial spectra of 
the oscillations are considered to that end. The chaotization of the oscil-
lations of the flow parameters is a subject of a separate Chapter. In it the 
dependence of the extent of randomization on the character of the 
generation of perturbations and the conditions under which the oscillations 
can be treated as a purely random process are examined. 
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The experimental validation of the foundations of the wave model is 
also discussed in detail. Experimental evidence is provided to support the 
concepts of the flow structure in a simple wave and of the mechanism of 
the emergence of perturbations at the pipe walls. Calculated distributions of 
the longitudinal and transverse oscillation components agree well with 
those observed experimentally.  

The transition from normal combustion to detonation provides an 
example of the application of the wave model of turbulent oscillations. Like 
turbulence, the phenomenon had been studied for a long time but its picture 
had not been finalized. Yet, recurrent blasts in coal mines make it necessary 
to solve the problem.  

The analytical representation of the spatio-temporal field of turbulent 
oscillations makes it possible to move on to the specifics of the inverse 
problem of turbulence, by which I mean calculating the parameters of the 
original perturbations from the spatio-temporal oscillations data. The idea 
of posing and solving the inverse problem is applied below to calculate the 
parameters of an optical discharge caused by a laser beam with compensated 
diffraction divergence. The parameters of the divergence primary break-
downs that remained out of reach for experimental measurements have 
been calculated by solving the corresponding inverse problem.  

The calculations of the spatio-temporal field of turbulent oscillations 
have been carried out for slow flows in channels so that the fluid compressi-
bility can be ignored. It is planned to incorporate fluid compressibility and 
a number of other factors into the considerations in the future.  
 
 
Moscow Lev N. Pyatnitsky 
December 2008 
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1 
The turbulence problem 

1.1  The first interpretation 

The system of hydrodynamic equations including Navier–Stokes and 
continuity equations describes distributions of flow parameters, i.e., velocity 
Uf, pressure Pf, density ρf, and temperature Tf. However, O. Reynolds [1] 
observing liquid flows in a pipe at various velocities discovered a curious 
phenomenon. Some unknown forces appeared at certain liquid velocity to 
perturb the flow, and produce the velocity fluctuations. As a result, the liquid 
motion in the pipe became chaotic, or “turbulent”. It was found later that all 
the other flow parameters undergo similar fluctuations. 

The moving fluid state is descried by means of the fluid’s velocity and 
any two thermodynamic quantities pertaining to the fluid, say, pressure and 
density. The fluctuations depend on flow conditions in more subtle line. 
However, numerous experiments testify that a parameter fluctuation 
amplitude makes up only a small part of the parameter mean quantity, 
which does not exceed some percents (see, e.g. [2]). Hence any of the 
turbulent flow parameters can be considered as a sum of a time-averaged 
basic value, and some small perturbation. If the time-averaged basic values 
are the velocity U(U, V, W), pressure P, density ρ, and their small 
perturbations are accordingly u(u, v, w), p, ρ, then the relations can be 
written as  

Uf  = U + u, Pf  = P + p, ρf = ρ + ρ. (1.1) 

Averaged components of the parameters can be computed by solving a 
system of hydrodynamic equations, at least in simple cases. However with 
regard to fluctuations and an impressive picture of a flow transition from 
the laminar state into the turbulent, the problem has not yet been solved. 
The state of the theory at this point has been emphasized by L.D. Landau 
and E.M. Lifshitz: “No complete quantitative theory of turbulence has yet 
been evolved” ([3], §33), or “a complete theory of turbulence (which does 
not yet exist) …” ([3], §35). The cause of such a strange situation lies in 
lack of understanding of the mechanism of turbulent fluctuations. This lack, 
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in its turn, means that the nature of primary exciting motion is still in 
abeyance. 

Two basically divergent approaches to the turbulence problem 
appeared from the very beginning. O. Reynolds [4] and J.W. Strutt (Lord 
Rayleigh) [5] proceeded from the assumption that a laminar flow turned 
into the turbulent owing to its stability loss. In this case, the well-known 
method of small perturbations might be applied, and the problem could be 
reduced to finding out whether a small perturbation was damping and 
eventually faded away or was increasing in time. Then the primary exciting 
motion was automatically implied to be some periodic function of small 
amplitude being described by the same equations as the flow itself. 
Generally, the theory assumed the fluctuations of any form convenient for a 
given application, though a harmonic function was usually used. 

H. Lorentz [6], on the contrary, allowed for any form of the primary 
exciting motion and looked for motion descriptions that were compatible 
only with the continuity equation. This approach to the study of turbulence 
did not develop further due to a lack of proper understanding of the primary 
perturbation image, at that time. Meanwhile the validity of Lorentz’s idea 
can be easy demonstrated by the example of some constant turbulent flow, 
in which vectors of the main flow velocity and of the perturbation velocity 
are utterly different functions. Really, the flow velocity vectors of 
stationary flow do not depend on time, U(r), whereas fluctuations exist in 
the form of a spatio-temporal field u(r, t) depending on time explicitly. 

Absence of a physically proved form of the primary exciting motion, 
as well as the scientific authority of Rayleigh who explored the flow 
stability even before the turbulence phenomenon had been discovered, 
resulted in the first approach being generally recognized. Also, L. Prandtl’s 
effort promoted recognition of the first approach to a great extent. 

Having discovered fluid adhesion to the channel wall [7], Prandtl 
distinguished a thin layer within the stream adjoining the wall. This layer 
differed from the other (main) part of the flow by the considerable 
influence of viscous friction forces on the fluid’s motion. Prandtl 
introduced into practice the notion of a “boundary layer” for the thin part of 
the flow, and a “flow core” where the friction influence was insignificant 
and negligible. After that it became possible to consider the flow core as a 
separate main flow, and to apply Bernoulli’s equation to its description. 

Also, Prandtl came out with a suggestion, according to which the 
pressure P in the flow in each cross-section was nearly constant, i.e., the 
pressures in the boundary layer and in the main stream are approximately 
equal and determined by Bernoulli’s equation. For instance, if the velocity 
vector U in a stationary two-dimensional flow is directed along the axis of 
the channel and the z-axis is normal to the walls, then it follows from this 
assumption, that 
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( / ) 0 ,

const .( / )
dP dz
dP dx

=

=

⎫
⎬
⎭

 (1.2) 

Hence, using equations derived from Navier–Stokes and continuity 
equations by some essential further simplifying assumptions (see, for 
example [8]), Prandtl managed to describe the flow within the boundary 
layer. Stability of the flow was now just defined by stability of the laminar 
boundary layer. With all this going on, the primary exciting motion is 
considered as a flat harmonic wave propagating along the stream. As 
before, the incremental negative value implies that the exciting motion is 
fading, whereas the positive one means the perturbation is strengthening, 
and, accordingly, the laminar flow conversion into the turbulent follows. 

The method of small perturbations allows us to estimate conditions of 
the laminar flow stability loss, but does not describe the perturbations in a 
channel. As a matter of fact, the friction tangential stress σ is necessary to 
know in order to solve the problem. The stress in a laminar boundary layer 
is given by Newton’s friction law according to which 

σ η ( / ) .dU dz=  (1.3) 

Here the viscosity factor η is determined by the momentum flux 
density across the flow, i.e., by the momentum transmission caused by 
impacts of molecules from neighboring layers. In gases, for example, the 
viscosity factor η=ρλυ/3 depends on clear physical parameters, such as the 
molecule free path λ and molecule thermal velocity υ. Therefore the flow 
description in the laminar case is developed as a purely deductive theory, 
starting from equations for the viscous flow. 

Elaboration of the deductive theory for the flow turbulent mode was 
impossible in view of the regrettable fact that there was no conception of 
momentum transmission. Therefore the theory elaboration was confined by 
semi-empirical approximation (see, e.g. [8]). Then the structure of the 
formula (1.3) was taken as a model to formulate the turbulent friction law 
corresponding to averaged velocity U, while conception of the momentum 
transmission remained unknown. Then there were introduced seeming 
tangential stress (shearing stress) σt as a function of the mean velocity U, 
instead of tangential stress σ, and the factor of turbulent exchange Аt 
instead of the coefficient of dynamic viscosity η, to formulate the turbulent 
friction law. 

However, the turbulent exchange factor Аt, as distinct from the 
viscosity coefficient η, depends on the velocity U distribution in a channel 
cross-section, and is not a physical constant. Therefore, the velocity 
distribution was required as well to derive a friction law for solving the set 
of hydrodynamic equations. The dependence was constructed on the basis 
of the mixing path hypothesis advanced and later improved by Prandtl [7, 
9]. Von Kármán’s similarity hypothesis [10] yielded an analogous result. 
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The mixing path notion was formulated as a macroscopic analog of the 
molecule free path λ in kinetic theory. Length L of the path is defined as the 
distance across the stream to the neighbor layer, where difference between 
velocity of the fluid “turbulent mass” (fluid turbulent cluster) and of the 
layer destination became equal to the mean velocity of the longitudinal 
fluctuation. 

The definition does not seem to imply a clear physical picture of the 
process, since it makes sense provided that every such turbulent mass keeps 
on being a single whole, saving the velocity longitudinal component during 
the motion along the trajectory L. Besides, it is worth emphasizing that the 
turbulent mass may travel across a stream only under the action of some 
force which is the pressure gradient in the flow. Hence the idea of a 
pressure transversal gradient in a flow cross-section does not correspond to 
the supposition expressed by formula (1.2) according to which zero 
gradient has been assumed.  

In view of obvious disadvantages and contradictions of available 
interpretation of the phenomenon, L. Richardson [11] explained the 
turbulent fluctuations by onset and interaction of vortices during cascade 
process of their disintegration. At some value of Reynolds’ number Re = 
UL/ν > Recr the flow loses its stability, and there appear vortices of typical 
size and parameters such as L1 < L and u1 < U, Re1 < Re. If number Re1 is 
large enough and still exceeds some critical value Rec, nascent vortices 
serve as sources for new vortices of the second generation. 

The disintegration process lasts until Reynolds’ number Re, at some 
cascade step n, amounts to critical value Rec. After that the vortices get 
quasi-stable and dissipate gradually under the influence of the viscosity. 
Superposition of the dispersed vortices at various stages of their develop-
ment produces a spatio-temporal field of fluctuations in the flow. 

Here we should note that this attractive concept, as can be seen at first 
sight, is open to one serious question. The vorticity can arise only within 
the flow area where exists the viscous friction and transversal momentum 
transfer, i.e., in the boundary layer. However the vorticity penetration 
through the border of the boundary layer into the flow potential part is 
impossible by virtue of Thomson’s theorem ([3], §8). Therefore, the 
vorticity extension to the complete flow badly needs a special sub-
stantiation which in its turn needs some serious study. 

All the troubles emerging in turbulence interpretation within the 
frames of various approaches seem to originate from the formal description 
of the momentum transfer mechanism, without taking into account actual 
details of the mechanism. As a result, the available turbulence models 
appear interiorly inconsistent, and mismatch real physical processes. 
Therefore, turbulent fluctuations, owing to their disorder and incompre-
hensibility, have been classed as random phenomena. 
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The rationality of this new approach can be easily demonstrated, when 
the fluctuations are expressed in terms of explicit functions of the fluid 
hydrodynamic equations. Substituting relations (1.1) into a Navier–Stokes’ 
equation, and subsequent time averaging of the result, lead to Reynolds’s 
equation (see, for example [12]). When the density ρ and kinematic 
viscosity ν are constant values, and 0iu = , the equation takes the form  

              1 + ν ,i ii
j i j

j i j j

U P UU U u u
t x x x x

 
∂ ∂ ∂ ∂∂ + = − −

∂ ∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠ρ

 (1.4) 

where the fluctuations are represented by pair correlation functions i ju u . 
This equation along with a continuity equation make up a set of five 

relations containing seven unknown functions, i.e., the equations for 
turbulent flow do not represent a closed system. Two additional relations 
are required to come to the sought closed set of equations, and to express 
dependence of the fluctuations on mean values of the flow parameters. 
Unknown pair correlations i ju u  in equation (1.4) can be expressed 
through the averaging of flow parameters, though there appear the triple 
correlations i j ku u u  instead of i ju u , which in its turn depends on 
quadruple correlations, and so ad infinitum.  

It is necessary to cut short the perpetual chain of equations at some 
phase to obtain a consistent set of equations. The pair correlations are 
known to correspond to the tensor of turbulent (Reynolds’) stresses i ju uρ , 
while correlations of higher orders have no certain physical interpretation. 
Therefore the missing equations are usually deduced from some model 
approximation based on interpretation of experimental data or formulated 
from inductive reasoning.  

1.2  The next approaches 

Seeing that the turbulence theory was an imperfect one, J. Taylor [13] 
turned his attention to a statistical approach. Assuming the field of 
fluctuations being homogeneous and isotropic, J. Taylor tried to describe 
the fluctuations using such statistical characteristics as correlation function 

2 2
1 2 1 2

F u u u u= . (1.5) 

However, inasmuch as the isotropic turbulence had actually no 
uniform structure, A.N. Kolmogorov [14] put forward the concept of local 
isotropic turbulence, where one did not consider correlations of velocities, 
but of their differences within the length of l: 
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/ 2

0
.= ∫

d
l F dr  (1.6) 

A similar idea was simultaneously offered by A.M. Oboukhov [15]. 
Kolmogorov supposed that isotropism of this kind existed in any part 

of a turbulent flow, including those volumes where the parameter gradients 
were considerable and the turbulence Reynolds’ number  

      2Re νu l=  (1.7) 

was large enough. Then the dimensional theory allowed one to obtain the 
spectrum of local isotropic turbulence power, known as Kolmogorov’s 
“law of –5/3”:  

 ε = Cqk–5/3. (1.8) 
Here the fluctuation kinetic energy ε depends on wave number k ~ 1/l, on 
the rate q of the turbulent energy dissipation within a unit volume, and on 
quantity C, named as Kolmogorov’s constant. 

Kolmogorov constructed the concept using several underlying 
postulates. Scaling invariance is applicable provided that transformation of 
length l, velocity U and ratio P ρ  occur simultaneously, 

2

α ,

α ,
,h

h

l l
U U
P P

⇒
⇒

⇒

⎫⎪
⎬
⎪⎭ρ ρ

 (1.9) 

while Navier–Stokes’ equation with average parameters is considered. Here 
h stands for arbitrary values of the power index. Further, there exists a 
permanent flow of energy from large-scale fluctuations to those of fine-scale. 
Then, this energy dissipates in a high-frequency spectral region. At last, 
energy flux qi at scale l depends on other parameter magnitudes of the same 
scale. 

The requirement of scale invariance is not observed in the area l where 
the length is large, l ~ l1, of the order of the flow size. This region includes 
a domain in which the fluctuations are generated. On the other hand,  
the invariance fails, if the length scale is too small, l ~ l2 ~ (ν3/q)1/4, because 
viscosity leads to an appreciable dissipation under this condition. Thus the 
scale invariance requirement is valid, and the value of h can be estimated 
inside the so-called inertial interval l1<< l << l1.  

However, the value of h can be determined only under some additional 
hypotheses even within this interval. To get out of the situation, the turbu-
lent energy dissipation rate, averaged over the interval, is supposed to be 
invariable. Then the dimensional analysis leads to the quantitative relation  

3~l lq u l , (1.10) 

whence the Kolmogorov–Oboukhov law follows ([14, 15]): 
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1/ 3~ ( )l lu q l . (1.11) 

A great number of works have been devoted to further development 
and generalization of the statistical description of turbulence (see, e.g. [16–
21]). Naturally, steady flows were considered only in the frame of the 
statistical approach, and the problems of paramount importance, concerning 
turbulence origination and stochastization were not discussed at all. 

D. Ruelle and F. Takens [22, 23] started exploration of these processes 
by means of chaotic dynamics which dealt with stochastic behavior of 
nonlinear deterministic processes. Chaotic dynamics employs the concept 
of a strange attractor which represents a multitude of attracting unstable 
trajectories in a phase space of the dissipative dynamic system under 
consideration. One of the main parameters characterizing a dynamic system 
is the Poincaré cross-section of the system. 

The dynamic chaos idea as applied to turbulence and the strange 
attractor adaptability to a description of turbulent disorder origination are 
grounded on bifurcations in the stream, and opportunity of the strange 
attractor restoring itself after a transition to disorder. The restoration of an 
attractor has been successful with the flow of some special geometry, such 
as in the case of Taylor–Couette flow.  

Some inconstancy of exponent h is interpreted within the framework of 
this approach as a result of its quantity distribution over structures of 
different scales. And the turbulence itself is perceived as a spatio-temporal 
chaotic field of the structures interacting with each other. The chaotic flow 
dynamics is determined, much as in [11], by a small number of independent 
large-scale perturbations which then form coherent structures. Progress in 
application of chaotic dynamics to turbulence and to development of 
structures in the flows of various types is presented, for instance, in reports 
of the Symposium mentioned in [21]. 

Generally, the strange attractor concept relates to the matter of self-
oscillatory systems, and hence turbulence as a phenomenon should be 
considered as a self-oscillatory process. However P.S. Landa [24] has cast 
serious doubts on the validity of such a consideration, at least with regard 
to subsonic flow in turbulent jets. Solutions of Navier–Stokes equations by 
the Krylov–Bogolyubov asymptotic method, and determination of the flow 
parameters in a jet [25] have strengthened the doubts. 

According to the solution, the turbulence and coherent structures arise 
not due to self-excited oscillations, but by amplification of casual acoustic 
wave perturbations that exist always in a jet at the nozzle outlet. The 
velocity and pressure oscillations calculated coincide with data of many 
experimental researches. In particular, the results describe very well the 
velocity oscillation frequency shift towards a low-frequency region, as well 
as an oscillation space scale increase with the distance from the nozzle 
outlet. 



1 The turbulence problem 8 

As is clear from [25], acoustic waves even of weak intensity play a 
rather important role in formation of turbulent fluctuations. Dependence of 
turbulent flow characteristics in jets on acoustic waves has been 
investigated in many works, for example in [26]. Data of the measurements 
demonstrate clearly that acoustic oscillations, and, pay attention, the nozzle 
vibrations have similar considerable effect on turbulence properties. The 
effect depends on the oscillation frequency. At high frequency, turbulent 
fluctuations become weaker, whereas at low frequency they grew stronger. 
Results of these researches have been used for elaboration of a new method 
for flow parameter control [26–28]. 

One of the important findings of the researches [24, 27] consists in a 
profound analogy between changes in behavior of the turbulent jet and 
swing of a pendulum under influence of acoustic waves and casual 
displacement of a mechanical pendulum axis, accordingly. It should be 
noted in this connection, that the Navier–Stokes equation has nothing to do 
with the pendulum. Hence it is the ordinary wave equation that serves as a 
basis for the just mentioned analogy. 

The turbulence research technique listed above has been creative as 
applied to different experimental conditions. Furthermore, a macroscopic 
description of the observable processes used in the technique does not need 
modeling of an exciting motion. Therefore there is not surprising that 
various methods have developed and appeared absolutely independently of 
one another. Nevertheless, there should exist some general physical basis, 
or pattern of an exciting motion inherent to the turbulence in all its 
manifestations. The pattern should explain origination of an observable 
spatio-temporal field of chaotic fluctuations, practically independent of 
initial perturbations and exterior noises. 

L.D. Landau [29] and then E. Hopf [30] considered the primary 
exciting motion in the form of a harmonic function within the framework of 
stability theory. They analyzed behavior of the stream function for two-
dimensional stationary flow. The fluid velocity along the wall in direction 
of the x-axis was supposed to depend only on the distance z to the wall. 

According to representation (1.1), some small harmonic exciting 
motion in the form of a one-dimensional wave was imposed on the stream 
function ψ0 of the main unperturbed flow ([3], §41): 

ψ ( ) exp[ ( ω )]z i k x t= ϕ − . (1.12) 

The stream function ψ0 of cooperative motion ψ0+ψ satisfies the hydro-
dynamic equations by definition. As to stream function ψ (1.12), its 
substitution into the linearized hydrodynamic equations gives an ordinary 
differential equation of the fourth order, an Orr–Zommerfeld equation (see, 
e.g. [8]):  
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        ( ) ( ) ( )2 2 42 .
Re

′′ ′′ ′′′′ ′′− ϕ − ϕ + ϕ = ϕ − ϕ + ϕc U k U k k
k

i
 (1.13) 

Equation (1.13) describes amplitude φ(z) of the stream function ψ, and 
underlies the stability theory of the laminar flow. It can be easily reduced to 
a dimensionless form. For this purpose all lengths are divided by the typical 
channel size d, and velocities are divided by the greatest velocity U0 of the 
main flow, where Re = U0d/ν is Reynolds’ number, c denotes velocity of 
the perturbation propagation. Its dimensional quantity equals c = ω/k.  

The equation’s left-hand side includes inertial terms of the dynamical 
equation, while the right-hand side contains the terms relating to friction 
phenomena. Both components of perturbation velocity vanish on the wall 
surface. Therefore, boundary conditions at borders of the flow moving 
along the channel constituted by two planes (z = 0, d), or moving along a 
single wall (z = 0, ∞), should satisfy the requirements φ = φ' = φ'' = 0.  

Study of laminar flow stability in relation to perturbations of type 
(1.12) is reduced to an eigenvalue problem for equation (1.13). It is 
necessary for the solution to specify basic flow U(z) and a Reynolds 
number Re. Varying wave number k for a pair of the values of Re and k 
allows one to determine an eigenfunction ϕ(z) and a complex frequency 
eigenvalue ω+iγ. 

If γ is a negative value, the perturbation damps in time. Otherwise the 
instability develops, and the perturbation exponentially increases. The 
intermediate case, γ = 0, corresponds to the so-called neutral curve k(Re), 
where Reynolds number Re amounts to critical value Recr, i.e., to a value 
exceeding which means progressive intensification of the perturbation. 

Landau and Lifshitz ([3], §26) estimated the perturbation wave 
development in time, remaining in the range of small perturbation method 
applicability. The harmonic perturbation velocity u was presented in the 
form of the product of two independent functions of coordinates and time, 

         u = A(t) F(r). (1.14) 
The function F(r) relates to spatial distribution of the wave field, and A(t) 
corresponds to the velocity complex amplitude provided that γ << ω: 

    ( )
0

_ ω βγ .A( ) A
i ttt e e

+
=  (1.15) 

Here β in the imaginary exponent is some initial phase of the wave. 
When the Reynolds number satisfies requirement Re ≥ Recr, there can exist 
oscillation frequencies in the perturbation spectrum, at least one frequency, 
at which the negative exponent γ reverses the sign to become positive, γ > 0. 

Expansion of function A(t) into a power series enables one to estimate 
the time derivative from the oscillation amplitude squared, |A|2 = AA*. 
Averaging of the derivative within the time interval  
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  2π ω 2π γt  (1.16) 

leads to an equation for |A|2. The equation to within the terms of the fourth 
order of |A| looks like  

        
2

2 42
A

γ A α A .
d

d t = −  (1.17) 

Here the sign of averaging over the left- and right-hand items is omitted, 
since the averaging time is rather short according to equation (1.16). A 
factor α known as Landau’s constant can be thought of as a positive value, 
when the flow instability is considered in relation to small initial 
perturbations. 

Analysis shows that the flow instability originates from any arbitrarily 
small exciting motion, certainly provided Re > Recr. This equation for the 
exciting motion has the solution: 

( ) 1
2 2γconst ,

2
αA γ

te
−

−= + ⋅  (1.18) 

which means that |A|2 tends asymptotically to the following finite limit: 

2
max

2 .γA α=  (1.19) 

Generally, parameter γ is some function of Reynolds number Re. And 
inasmuch as γ(Recr) = 0 by definition, it can be expanded into a series. 
Using only the first item of the series, namely γ ~ (Re–Recr), and 
substituting it into equation (1.19), we can see that the amplitude |A| 
depends on the square root of the difference Re–Recr : 

maxA ~ crRe Re .-  (1.20) 

This consideration allows us to draw some important conclusions [3, §26]. 
Absolute instability of the flow under the influence of perturbations 

like equation (1.12) results in periodic unsteady motion, provided Re > 
Recr. While the difference Re–Recr is not too large, the motion can be 
represented as a sum of two distinct functions corresponding to the 
stationary motion and some additional periodical perturbation u(x,y,z,t) of 
small, but finite amplitude. This amplitude increases with Re as in equation 
(1.20). The velocity distribution in this flow is of the form  

u=f(r)exp(–i(ωt+β)), (1.21) 
where f(r) is a complex function of the coordinates, and β denotes some 
initial phase. 

For large Re–Recr, the separation of the velocity into two components 
is no longer meaningful. We then have simply some periodic flow with 
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frequency ω. If, instead of the time, the phase φ = ωt + β is used as an 
independent variable, then the function u(r,φ) becomes a periodic function 
of the phased φ with period 2π. However, this function is no longer a 
simple trigonometric function, for Fourier series of this function, 

u= ( , , ) pi
pp x y z e− ϕ∑ A , (1.22) 

contains terms not only at the base frequency ω, but p-th harmonic 
frequencies ωp as well.  

Hydrodynamic equations for a turbulent stationary flow under fixed 
boundary conditions are known (see, e.g. [3, 8]) to have an unambiguous 
solution. This solution allows us to obtain the flow parameters averaged 
over time, and to compute distribution of the parameters. It should be 
emphasized that the distribution of the averaged parameters is completely 
determined by chosen external conditions, and it does not possess any 
degree of freedom. 

As to the parameter fluctuations, this is quite another matter. The 
exciting motion in the form (1.12) gives merely an opportunity to estimate 
absolute value (1.19) of the complex amplitude of the oscillations. As a 
matter of fact, distribution of the oscillations, which even in steady-state 
flow wear a complicated appearance of subtle a spatio-temporal field, can 
not be understood. Then there is nothing to say about an opportunity to 
describe features and development of the fluctuation field. Also, unlike  
the averaged parameter, the initial phase of the harmonic perturbation wave 
turns out to be indefinite. Moreover, its physical interpretation is not quite 
clear. 

Thus, the periodic exciting motion is not determined unambiguously 
by those external conditions that form the properties of the averaged flow 
parameters. Unlike the flow, fluctuations bear a degree of freedom caused 
by uncontrollable factors. In other words, the exciting motion form (1.12) 
does not reveal the fluctuation nature, and does not disclose a physical 
picture of the turbulence. 

1.3  A new approach 

In search of the exciting motion form, let us turn our attention to Reynolds’ 
criterion. The physical sense of this criterion is known, and it can be easily 
demonstrated by an example of the laminar flow of a viscous 
incompressible fluid moving in the channel formed by two parallel planes 
at z= d distance.  

Let J be the vector of the momentum flux density of the fluid. 
Component i of the vector in the direction of normal n to a surface element 
can be expressed through a tensor of the momentum flux density Πik  
[3, §15]: 
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σi i ii k k k k kikJ П n p n U U n n= = + − ′ρ . (1.23) 

The first item in the expression (1.23) is a force of pressure acting in  
the fluid. The second item relates to the reversible transference of the 
momentum connected with mechanical transfer of fluid elements. And the 
third item describes the viscous strain tensor, 

( )σ = η i ik k kik U x U x n∂ ∂ + ∂ ∂′ , (1.24) 

determining the part of the momentum flux that is directed along the same 
momentum gradient. This part of the flux is not connected immediately 
with the fluid transference. It arises by virtue of the momentum flux 
nonreversible transference caused by the viscous friction and 
accompanying dissipation.  

We consider a steady flow along axis x of the channel ( 0=V = W ) with 
the velocity distribution: 

U = U0[1–(2z/d–1)2]. (1.25) 

As it follows from equation (1.23), х- and z-components of the momentum 
flux in the channel middle, z = d/2, are accordingly  

2
0

.
,x

z

J p
J p

= +
=

⎫
⎬
⎭

ρU
. (1.26) 

The fluid stops moving at the wall surface, z = 0, and thus does not 
participate in the momentum transference. Hence we can write: 

( )0

0

0

,

4η .
x

z

J p

J p U d

=

= −

⎫
⎬
⎭

 (1.27) 

The second item of component Jz0 appears due to viscous friction which is 
responsible for some additional momentum flux in the surface normal n 
direction. This flux is of the density  

                                 ( ) ( )00 σ η 4η= = ∂ ∂ =′x zzj U z U d . (1.28) 

Now, writing down the proportion, we will gain an expression for the 
Reynolds criterion accurate within a numerical factor: 

0

0

Re.
η

z

x U dJ
= =
ρ

 (1.29) 

This expression means that the Reynolds criterion identifies the portion 
of the flow momentum that the fluid loses to overcome the friction force, 
i.e., its inverse value, to be exact. The same can be said with regard to the 

J
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flow energy, for, as it is known, momentum transference always involves 
energy transfer. 

The expressions (1.28) and (1.29) written for steady flow parameters 
averaged over time contains no information on the momentum transference 
mechanism. Note in this connection, that viscosity entails the flow eddying 
and the flow energy dissipation at the wall ([3], §79). The dissipation 
excites some local perturbations of temperature and pressure. It is obvious, 
that the temperature and pressure perturbations can not be accumulated 
anywhere within the steady flow, and thus they disperse over the volume. 

The temperature perturbations are smoothed out by heat conductivity 
and by heat transfer to the wall. The pressure perturbations should 
propagate all over the flow as well, being converted into heat in the end. 
The process of the propagation is well known ([3], §70). A small volume of 
sudden pressure perturbation emits a spherical acoustic wave packet. It 
bears a momentum flux, thereof average density in the z-axis direction is  

        2Пz zzj = = ρw . (1.30) 

The wave packet derives its strength from the main flow, or finally 
from the source supporting the whole fluid motion. Total momentum flux 
produced by many of such packets corresponds to the momentum flux 
defined by equation (1.28). To the point, each wave packet contains 
oscillating parameters ([3], §70). Superposition of the oscillations in the 
flow volume appears as a spatio-temporal field of the fluctuations. 

This process is by no means in conflict with the Navier–Stokes 
equation which is replaced by two equations for velocity and pressure 
correspondingly. The first concerns the eddy motion, and the latter is an 
equation of the Poisson type ([3], §15). Its particular solution represents 
pressure distribution near the wall, which corresponds to the pressure 
perturbations mentioned. The general solution (Laplace’s equation 
solution) determines harmonious waves similar to the emitted acoustic 
waves which follow from the wave equation. In its turn, the wave equation 
is deduced from Navier–Stokes and continuity equations after some 
simplifications. 

The above propositions impel one to suggest that acoustic waves can 
play a more important role in formation of turbulent fluctuations than 
formerly believed, and that turbulent fluctuations can be of a wave nature. 
So that examination of a flow stability by means of superposition of the 
perturbations of the wave type on the main flow might not be only a matter 
of chance. 

Note, in addition, a strong influence of outside sound strong influence 
on the turbulent properties of jets, as well as the analogy between turbulent 
fluctuations and pendulum oscillations, observed in [24, 27], serve as 
auxiliary arguments in favor of the wave nature of turbulence. 
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In the next chapters of the book we consider the “wave” concept of 
turbulent fluctuations. Fluctuations in the frame of this concept are 
interpreted as perturbations carried by acoustic waves. Some simple and 
obvious assertions underlie this consideration. In short they are reduced to 
the following theses [31–37]: 

1. A viscous fluid (liquid or gas) moving in a channel loses some part 
of its energy to wall friction along the channel, which decelerates the flow. 
Any outside source, e.g., a piston, can serve to offset losses for flow 
maintenance. 

2. The piston is able to transfer its energy over all of the flow by 
radiating a sequence of elementary pressure waves of small, though finite, 
amplitude. A sequence of waves forms a so-called simple wave, in which 
the fluid moves in the same direction as the piston. 

3. Any channel has naturally a limited cross section. This means that 
the simple wave is actually the wave beam, and therefore wave fronts may 
not be flat but spherical by virtue of the law of Rayleigh’s diffraction 
divergence. Such waves are inevitably reflected by the walls. 

4. Each acoustic wave encloses longitudinal oscillations of the hydro-
dynamic parameters. The amplitudes of oscillating velocity, pressure and 
temperature jump at the running spot of the wave reflection near the wall. If 
the wave is of enough strength and of appropriate angle of incidence, a 
local tangential discontinuity of the boundary layer develops in the vicinity 
of the spot. Instability of the tangential discontinuity is known to lead to a 
substantial local pressure increase ([3], §29). 

5. The tangential discontinuity along with the following pressure rise 
develop while the spherical wave interacts with the boundary layer during 
local reflection. Since this process takes a very short time in comparison 
with other motions in the flow, it can be accepted as being momentary. 
Then the pressure rise zone propagates in the flow in the form of the 
acoustic wave packet. The packet thickness corresponds to the zone initial 
diameter, or its linear dimension. 

6. The boundary layer within the simple wave is characterized by a 
strong velocity gradient and hence by vorticity. The current lines of the 
layer and the vortices do not intersect the surface that separates the area of 
vortex flow from potential motion, as Thomson’s (Kelvin) theorem runs 
([3], §35). However the wave packet easily penetrates through the surface. 
For all that, the wave transfers the parameter oscillations into the main 
stream. At the same time, the convective component of the oscillating 
velocity carries over thereto some quantity of the fluid along with the 
frozen-in vorticity. 

7. Superposition of a sequence of the wave packets results in a spatio-
temporal field of flow parameter perturbations. Simultaneously the 
vorticity carried over by the packets creates its own system of 
perturbations, which is similar to a well-known interpretation [11]. This 
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implies two mechanisms of turbulent fluctuations. The difference between 
the two lies in their natures, which become apparent when one observes the 
effect of damping on the fluctuation rate. The fluctuations of the first kind 
are in essence oscillations, to call things by their proper names. In this case 
the wave amplitude fades away with the distance covered as r–1, whereas 
the convective component of the oscillating velocity, responsible for 
vorticity transposition, is proportional to r–2. 

Oscillations of acoustic nature are observed not only in turbulent 
flows, but in turbulent flames and in detonation structures (see Chapter 9). 
Similar structures have been discovered in the plasma channels created by 
Besselian beams of laser radiation as well (see Chapter 10). 

Coming back to the beginning of the chapter, remember an idea of  
H. Lorentz. He searched for such a form of the initial exciting motion, 
which would have some clear physical interpretation and proper equations 
differing from the equations for the flow itself. Now we might say that he 
seems to have been quite right in his quest for a new initial motion. 

Hereinafter we will consider in detail the initial exciting motion, 
definition of the direct turbulence problem, properties and development of 
the oscillation spatio-temporal field, the process of the field stochastization, 
formulation of the inverse turbulence problem and an example of its 
solution. 

To facilitate understanding of this new and unusual concept of 
turbulence, and to simplify mathematical expressions to a fewer number, 
the exploration is confined within fluids (liquid or gas) moving slowly 
along a wall or in channel 
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2 
Fluid motion 

2.1  Equations of fluid motion  

Slow motion of a fluid with equilibrium thermodynamic properties is 
characterized by velocity U(U, V, W), pressure Р and density ρ. These 
symbols correspond to the parameter in equation (1.1), marked by the 
subscript f which is omitted here and hereinafter for writing simplification. 

As the functions of the coordinates x, y, z and time t, all these 
quantities are determined by the hydrodynamic equations formulating in 
differential form the laws of conservation of mass (continuity equation), of 
momentum (motion equation) and energy (energy equation). The greatest 
computational complexity in the set of hydrodynamic equations is bound 
up with the nonlinear motion equation. The most general form of the 
equation for an isotropic viscous fluid looks like ([3], §15) 
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 (2.1) 

The quantity η is the coefficient of viscosity, and ζ is called of second 
viscosity. Both of them are functions of pressure and temperature. Generally, 
parameters P and T vary within the flow, so that the viscosity coefficients η 
and ζ change as well. However, the dependences of the coefficient quantities 
on the parameters P and T are rather weak in most slow flows. Therefore the 
quantities are customarily regarded as constants. In this case the equation 
becomes simpler, and it is possible to be presented in the vector form of a 
Navier–Stokes equation, 

      ( ) ( )η, grad grad ζ + grad div η .
3

P
t

∂
+ = − + + Δ

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠
ρ

U
U U U U  (2.2) 
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Then all the set of hydrodynamic equations are written in a vector form, as 
follows, 
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 (2.3) 

Here ε is the internal energy per unit mass, and q  =  q + – q–  stands for that 
specific energy which the fluid acquires from some external source to 
support its motion. 

The reductive equations (2.3) present another complicated nonlinear 
set, and essential simplifications are needed to formulate the solution. The 
ideal fluid motion is one of such simplifications, when the viscosity, as well 
as the heat exchange between a fluid and the environment, and the fluid’s 
different segments are considered as negligible, q  =  0. Zero heat transfer 
means that the motion is adiabatic, i.e., the fluid entropy remains constant, 
s  =  s0  =  const.  

Total energy of the fluid volume unit does change at these limitations 
merely owing to the energy transfer through this volume surface, and to the 
work of a pressure force over the fluid. Then the momentum conservation 
law is expressed by Euler’s equation instead of Navier–Stokes’ equation, 

   ( ), grad grad1 P
t

∂
+ = −

∂ ρ .
U U U  (2.4) 

The thermodynamic relation at the adiabatic motion, 

(1grad grad ,H P= ρ)  

including enthalpy H = ε  + P/ρ, can be employed in equation (2.4) which 
can be written in the form  

                             ( ), grad grad H
t

∂
+ = −

∂
.

U U U  (2.5) 

The fluid motion being adiabatic does not modify the continuity equation, 
and the equation set (2.3) reduces to the set 
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At the same time, using a formula 

[ ] ( )2 grad1 2 grad , curl ,U = −U U U U  

which is well-known in vector analysis, Euler’s equation can be rewritten 
in the form 

        [ ] ( )2, curl grad 2H U
t

∂
− = − +

∂
U

U U . (2.7) 

Now consider steady flow, when ∂U /∂t  =  0, and define the concept of 
the stream line. It is a line such that the tangent to it at any point indicates 
the direction of the fluid velocity at that point. The line is determined  
by the following differential equations: 

      .= =
dx dy dz
U V W

 (2.8) 

In a steady flow the streamlines do not vary with time, and they coincide 
with the paths of the fluid particles. This coincidence does not occur in 
non-steady flow.  

The vector [U, curlU] is perpendicular to U, and its projection on the 
direction of l  =  U /U is equal to zero by definition, whereas the gradient 
projection onto the same direction is the derivative in that direction. The 
projection of the gradient on the direction l is the derivative in that 
direction. Then equation (2.7) reduces to 

( )2 2 0H U
l

∂
+

∂
= . 

Hence, along the line (2.8) is fulfilled the relation known as Bernoulli’s 
equation, 

              2 2
0 02 2 .H U H U constant+ += =  (2.9) 

It is worth underscoring here the distinction between steady and non-
steady flows. In a steady flow the stream lines do not vary with time, and 
they coincide with the paths of the fluid particles. In a non-steady flow this 
coincidence does not occur, and the tangents to the stream lines indicate the 
directions of the fluid particle velocities in the space at various points at a 
chosen instant. The tangent to the path indicates the direction of the 
velocity of a chosen fluid particle at various times. 
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Note in addition, an important difference between Bernoulli’s equation 
for potential flow and that for general case of flows. In the general case, the 
constant in equation (2.9) does not change along any chosen stream line, 
but different stream lines have various values of the constant. In potential 
flow it keeps the same quantity throughout all the fluid. 

2.2  Vorticity 

An important parameter of fluid flow is velocity circulation Г(U) of the 
fluid’s particles around some closed contour L drawn in the fluid at a given 
instant, 

 (2.10) 

The contour moves along with those fluid particles in the flow. The 
velocity circulation evolution in time is determined by the total time 
derivative on the moving contour ([3], §8), 

 (2.11) 

The second integral in the sum of the equation vanishes as it is the 
integral from the total differential around the closed contour, and remains 
valid, 

(2.12) 

The derivative of the integrand on the right-hand side is known from 
Euler’s equation, dU/dt = –gradH. Substituting the derivative dU/dt  into 
equation (2.12), replacing the integral along the contour by the integral 
over surface S circumscribed by the contour L according to Stokes’ 
formula, and taking into account equality curlgradH  =  0, we obtain, 

(2.13) 

Whence follows the final result 

(2.14) 

Thus the velocity circulation around a closed contour within a moving 
fluid is constant in time. This is Thomson’s (Kelvin) dynamical theorem, or 
the law of conservation of velocity circulation. According to Stokes’ 
formula, the velocity circulation (1.10) can be expressed in terms of the 
vorticity Ω  =  curlU at the fluid’s given point, 

    Γ(U) = .d∫L
U l   

( )= + .
L

d d d dd d d
dt dt dt∫ ∫ ∫L L

U lU l l U l

= .d dd d
dt dt∫ ∫L L

UU l l  

   
S

= cur l =0.
L

d dd d
dt dt∫ ∫
U Ul S   

= = 0,d dd
dt dt

Γ
∫L

U l  or  d∫L
U l  = const  
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S

Г .d const= =∫ Ω S  (2.15) 

When the area S is getting rather small, S → 0, equality (1.15) reduces to 

         Γ  ≈  ΩdS  =  const. (2.16) 

The const value being nonzero means that the flow is vortical, and the 
product ΩdS constancy can be understood in the sense that the vorticity 
moves along with the fluid. If the vorticity is zero at some point of the 
flow, the condition Ω  =  0 inheres in the whole stream line. When the 
condition const  =  0 is fulfilled for all the stream lines of the flow, we deal 
with the fluid’s potential motion. 

Now, we consider the flow of viscous fluid in the approximation of 
incompressibility, when the density ρ variation is a negligible quantity,  
ρ  =  0. The equations of continuity and Navier–Stokes from the set (2.3)  
in this approximation are simply written as 

( )

div 0 ,
1

grad grad ν ,

=

∂
+ = − + Δ

∂

⎫
⎪
⎬
⎪⎭

P
t ρ

U
U

U U U
 (2.17) 

Here ν denotes the kinematic viscosity factor. Boundary conditions in a 
viscous fluid are determined by the adhesion phenomenon. According to 
the phenomenon, all the velocity components U (U, V, W, t) vanish on the 
wall surface, 

z = 0 z = 0 z = 0( ) ( ) ( ) 0= = =t t tU V W . (2.18) 

The first equation in (2.17) does not depend on the fluid pressure. The 
second equation does, but it can be eliminated by means of the operation 
curl applied to both sides of the equation. Acting in this way and using 
some vector analysis formulas results in the new equation for Ω  =  curlU, 

[ ]curl ,
t

ν∂
= + Δ

∂
Ω Ω ΩU  (2.19) 

where 

y z z x x y
∂ ∂ ∂ ∂ ∂ ∂

Δ Δ − Δ − Δ −
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎛⎞ ⎞⎛ ⎞
⎜ ⎜⎟⎟ ⎟⎜ ⎠⎝⎠ ⎠⎝ ⎝

 Ω i j k= + +
W V U W V U . 

Since the fluid is incompressible, equation (2.19) can be transformed 
by expanding the product in the first term on the right side and applying the 
equation divU  =  0 to the form ([3], §15): 

( ) ( )curl curl curl curl .ν
t

∂
+ ∇ − ∇ = Δ

∂
⋅U U U U U U  (2.20) 
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There is only one unknown function in equation (2.20), and in (2.19) 
as well, namely velocity U. If the velocity distribution is known, the 
pressure distribution in the flow can be in principle found by solving the 
equation of Poisson’s type  

                            ( , , ).
∂ ∂

Δ = − =
∂ ∂

i k

k i

U U
P f x y z

x x
ρ  (2.21) 

This equation is obtained by taking the operation div for both sides of 
Navier–Stokes’ equation from the set (2.17). The function f(x,y,z) specified 
in the area G has a partial solution at some sampling point x, y, z, given by 
the formula 

 
G

( ,η, ) ξ η
( , , )

4π η2 2 2

ξ ζ ζ
=

( − ξ) + ( − ) + ( − ζ)
∫∫∫

f d d d
P x y z

x y z

ρ
, (2.22) 

where ξ, η, ζ are variables of the integration. 
Equations (2.19) and (2.21) enable us to cast some light on the fluid 

motion’s general properties and structure. The fluid viscosity in the flow 
kernel does not influence the hydrodynamic parameters and their distri-
butions, for it is relatively small. So that factor ν  in equation (2.19) may be 
neglected, and there is good reason to suppose ν= 0. Then it follows from 
equation (2.19) that Ω = 0, and the fluid motion in the main part of the flow 
does not differ from the flow of an ideal fluid. The function f (x, y, z) can be 
easily found as well. 

On the contrary, the fluid viscosity in the boundary layer is relatively 
large, ν≠0, and it causes a drag force which slows down the fluid motion. 
Consequently the vorticity Ω  within the layer may not be neglected, Ω≠0, 
and solution of equations (2.19) and (2.21) with f (x, y, z) ≠0 comes as an 
intricate problem. 

Solution of the boundary problem for Poisson’s equation consists of two 
parts, ,P P⇒ +P  the partial solution P(x, y, z) and general solution P which 
can be a constant ([12], §1.1). The first part presented by formula (2.22) 
depends on prescribed function f (x, y, z). The second part is determined by 
Laplace’s equation, 0.Δ =P  The boundary problem solution for Laplace’s 
equation contains harmonic functions of coordinates. Each of them is 
unambiguously selected by boundary conditions, i.e., by the pressure 
distribution on the border of region G of the function definition. Thus the 
friction force action in the flow boundary layer is accompanied by formation 
of the vorticity Ω and of the pressure field according to functions Р and .P  

All modifications of parameters in a stationary flow are in a dynamic 
equilibrium, and any perturbation comes again to the equilibrium state 
during some transitional period τ. This period depends on the sound 
(acoustic) velocity c, which is responsible for the perturbation spread. 
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If the period is short in comparison with duration T of the parameter 
changes in the process under investigation, τ  << T, then the transitional 
process occurs practically without any imbalance in the flow. Otherwise the 
effect of the retardation is observed in the transient period, well-known and 
studied in electrodynamics as the delayed potential. 

While the fluid is considered as incompressible, ρ  >> ρ→0, the sound 
velocity c  =  (∂p/∂ρ)s increases infinitely, and rapid propagation of the 
perturbation wave allows us to neglect the retardation phenomenon. 

2.3  Wave equation and incompressibility conditions 

Actually the acoustic wave velocity in any fluid is a finite quantity. The 
wave implies an adiabatic oscillating motion of the fluid at small amplitude, 
which is alternately compression and rarefaction. Moreover, the pressure  
p and density ρ perturbations in the wave are bound by the linear relation 
that follows, 

  2

s
ρ.

ρ
p

p c
∂

= =
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.23) 

The relation (2.23) replaces the energy equation in (2.3) in this case. 
While the averaged values of the parameters U, P, ρ from the relations 
(1.1), satisfy the equation set (2.3), there remain in the set the small 
perturbations u, p, ρ. As to quadratic terms of the perturbations, they can be 
neglected in the equations. Then the set of equations (2.3) is reduced to the 
following linearized equations ([3], §64): 

ρ
div = 0;

1
grad 0.

t

p
t

∂
+

∂
∂

+ =
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⎫
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⎬
⎪
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ρ

ρ

u

u  (2.24) 

The operation curl applied to the second equation of the set produces 
the following equation [38]: 

∂
=

∂
Ω
t 0 . (2.25) 

So, the acoustic perturbations really create a potential field. Then the field 
parameters can be expressed through the velocity potential φ according to 
the relation u  = gradφ. Such expressions can be easily derived from the 
second equation of the set (2.24) and formula (2.23): 

, ρ , .p
t c t

∂ ϕ ∂ ϕ ∂ ϕ
= − = − =

∂ ∂ ∂2

ρ
ρ u

r
 (2.26) 
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Combining the first equation of the set (2.24) with the relations (2.26) 
results in the so-called the wave equation 

2
2

2
Δ = 0

∂ ϕ
− ϕ .

∂
c

t
 (2.27) 

An elementary solution of the equation is expressed in terms of delta 
function δ(r–ct): 

  .
( )

ϕ
δ −

=
r

r ct
 (2.28) 

The solution features the perturbation, created by an instantaneous point 
source, in the form of a sphere (r–ct) moving away from the radiant with 
the sound velocity and gradually decreasing amplitude. 

Superposition of the elementary solutions gives an opportunity to 
analyze the perturbations from a more complicated radiant, such as the 
sources of the kind f (R,cτ). If the source radiates in a brief time, cτ  <<  R, 
the perturbation can be considered as instantaneous parameter distribution 
f (R)|V within the small volume V at the time instant t  =  0. 

To determine the response in some point r to the perturbation of type 
f (R)|V, the Green function G(t,r) should be constructed for the given wave 
equation, 

    
1

( , ) δ ( )
4π

= −G t r r ct
t

. (2.29) 

The problem concerning the space propagation of f (R)-type perturbation 
and, finally, related to the parameter spatio-temporal field created by the 
perturbation can be solved by convolution of two functions, G(t,R) and 
f (R), within all the explored volume V: 

( )

( )

V

V

( , ) , ( )

1
δ ( ) .

4π

t r G t ct f R d

ct f R d
t

ϕ = − − =

= − −

∫

∫

r R R

r R R
 (2.30) 

Function f (R) wants the explicit initial definition to evaluate the field 
φ(t,r). Also it is necessary in presetting distributions of the functions in 
space and time to write down the boundary conditions for determination of 
the spatio-temporal field of the parameter perturbations. As a matter of fact, 
the question concerning the turbulence essence is reduced to a problem 
which implies knowledge of the primary perturbation nature and process of 
the perturbation formation. But all we know is that the velocity u should be 
equal to zero on a wall surface of a channel. 

The price to be paid for transition to an image of an ideal fluid has 
turned out to be the fluid viscosity and the energy dissipation concerned 



2.3 Wave equation and incompressibility conditions 25 

with it. However both of these qualities can have considerable impact on 
the system behavior, and they should be taken into account in many tasks. 
In such cases, it is usual to neglect some other components of the equation 
set (2.3), to which the solution is the least sensitive in terms of the 
analytical result being closest to the real process under consideration. 

It follows from Navier–Stokes’ equation in (2.3), that the density 
changes make the least impact on the flow feature. Therefore one of the 
ways to simplify the equations consists in disregarding the compressibility, 
which means that assumption ρ  <<  ρ (ρ→0) may be employed instead of 
the representation ρf  =  ρ  +  ρ .  The density perturbation ρ  depends on the 
flow velocity U, or on the value of Mach number M  =  U/c. According to 
([3], §10), the density perturbation permissible quantity is estimated as 
being of the order of ρ  ~  ρM2. Therefore, the first condition of a fluid’s 
incompressibility is the requirement of the flow being slow, 

  М  <<  1. (2.31) 

However, the requirement (2.31) is necessary and sufficient only for 
the steady flow. In a non-steady case the fluid incompressibility needs one 
more requirement, which limits the change rate of the local flow 
parameters. An estimation of the components in equations (2.3) shows that 
the density variation can be considered as small, if the typical variation 
time τ is great as compared with duration T of the sound wave propagation 
along characteristic linear dimension L of the explored volume ([3], §10): 

   Τ  >> L /c .  (2.32) 

In other words, this additional requirement means that the effect of the 
retarded potential of the acoustic wave field gives a wrong description of 
the flow, if the inequality (2.32) is not obeyed. The retarded potential 
notion relates to the inhomogeneous wave equation, and is fully considered 
in ([39], §62). Certainly, the effect loses its force, if the length L happens to 
be small, or if the signal (the sound wave in fluid) fades away too rapidly. 

The sound wave amplitude fades in time as the exponential function 
exp(–κct), where κ is the attenuation factor. Let number N be the ratio of 
the wave amplitude at the start time to the amplitude in a later instant  
T. The interval T can be named as the wave life time in the sense of, and 
equal to, 

T  =  lnN /(κc). (2.33) 

For example, if N  =  100 and pertinent frequency 100 кHz, then the 
perturbation life span will be T  ≈  0.03 s in air (κ ~  4 × 10–3  cm–1) and 
T  ≈  0.8 s in water (κ ~  40.37 × 10–4  cm–1), 

The path length L including reflections, which the perturbation wave 
covers in fact within an explored channel, can happen to be less than the 
distance that the wave runs during its life time, and L /c  <  lnN /(κc). 
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Hence the second requirement for the fluid being accepted as incompressible 
is written in the form  

 (2.34) 

Thus the equation set (2.17) is valid, provided that the requirements 
(2.31) and (2.32), or (2.34), are satisfied. Hence, when the fluid density is 
accepted to be constant, ρ  = 0,  the set (2.17) is true automatically. 

The parameters U, P and ρ mentioned in the equalities (1.1) are the 
time averaged values. The averaging procedure can be understood as 
averaging of equations (2.3) in time t within the interval T  <  t  <<  τ. This 
procedure is similar to averaging of the perturbation (1.15) in the interval 
(1.16), that leads to equation (1.17). However, the assumptions employed 
in derivation of equation set (2.17) are not applicable to perturbations u, p, 
ρ introduced in equation (1.1), for typical duration τ of the perturbation 
local alternation is extremely rapid as compared with attenuation time T of 
the wave. 

In other words, the small perturbations u, p, ρ obey entirely  
the requirement (2.31) written now in the form M  =  u/c  <<  1. At the same 
time, the requirement (2.32) may not be satisfied in principle. Indeed, time 
τ of the perturbation wave change can be estimated as τ  ~  λ /c, whereas  
T = L/c. An obvious result of the comparison implies the inequality τ <<<  T  
which conflicts with requirement (2.32). Therefore the fluid compressi-
bility, i.e. condition ρ 0≠ , should be taken into account in the initial 
equations (2.3), while dealing with propagation of the perturbation waves. 

Thus, it follows from all the statements above, that solutions of 
equations (2.3) may describe simultaneously several modes of fluid motion. 
These modes are the translational and eddy motions, as well as the potential 
vortex-free motion induced by acoustic waves. They coexist in the flow, 
though thereof spatio-temporal properties are essentially different. 

For instance, the main flow potential motion and vorticity can be two- 
or three-dimensional, whereas the perturbation wave propagates always in 
all directions, and is certainly three-dimensional. The first two modes 
develop rather slowly at moderate motion of the fluid flow, and a stationary 
state of the parameters is possible. Contrariwise, the perturbation waves 
create some ephemeral field of the parameters, which remains changeable 
even in the flow’s steady state. 

Note, there can appear some secondary terms of motion–motion interac-
tion besides the mentioned processes. However the analysis ([12], §1.7) 
shows that they are small, and consequently are not considered here.  

The equation set (2.3) fits the description of all kinds of fluid motion, 
though it is hard to extract a general solution. But in the case under 
consideration, when the fluid moves slowly, and the perturbation wave runs 
rapidly, the set can be solved. The solution procedure becomes a trans-

     τ>> ln, .L N
c cκ
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formation of the total equation system (2.3) into more suitable separate sets 
of equations for each kind of motion. So, equations (2.17) relate to 
incompressible fluid motion, and equations (2.24) concern propagation of 
perturbation waves. Remember, however, that the flow perturbations in the 
form of vorticity and wave motion have a single common source which is 
viscous friction.  

To further clarify the physical picture of the viscous friction effect on 
flow qualities, the motion of the viscous fluid should be compared with the 
ideal fluid motion. The ideal fluid is known to slide on a wall surface 
without any friction, so that a function of the velocity tangential component 
U undergoes a discontinuity at the surface. The discontinuity in the 
tangential velocity component is equivalent to an infinitely thin boundary 
layer. Therefore, some vorticity and perturbation of a finite amplitude can 
not arise in the ideal flow moving along the wall, if the surface is plane and 
there are no external sources of perturbations. The perturbations may arise 
due to the wall bend surface or under the action of some external sources. 

Energy dissipation in a viscous fluid perturbs the flow parameters, and 
the momentum flux transferred by the viscosity diffuses the velocity jump 
at the wall. As a result, the boundary layer becomes of a finite thickness, 
and the velocity therein decreases gradually in the direction of the wall. At 
the same time, vortices appear, as equation (2.19) suggests, and the 
pressure perturbations appear, as equation (2.21) implies. For all that, the 
inequalities М  <<  1 and t  <<  T  <<  τ  mean, that the field of the wave 
perturbations in a moderate flow comes to equilibrium state much faster 
than the averaged parameters do.  

The perturbation, as it will be shown below, propagates as a wave of 
spherical shape. Such a wave intensity is inversely lproportional to the 
distance run squared, r–2, and the perturbation dies away before the 
viscosity effect reaches a significant extent. Therefore, the perturbations 
propagate as isentropic waves, and formation of the perturbation spatio-
temporal field may be considered as if the fluid were motionless. Then the 
parameters of the steady flow are expressed through the following 
formulas: 
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 (2.35) 

Generally speaking, the functions U(r), P(r), ρ(r) may depend on time 
as well. However, the analytical solution can, in practice, be completed 
only for an incompressible fluid in this case, i.e., when requirements (2.31) 
and (2.32), or (2.34) are satisfied. 
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3 
Distribution of parameters in viscous flow 

3.1  Velocity profiles in a flow cross-section 

Without losing the generality of our reasoning, and at the same time to be 
definite, we shall consider the simple case of a steady flow, when the fluid 
moves slowly (M << 1, ρ  = 0) along the x-axis of the channel formed by 
two parallel plane walls located at z = 0 and z = d. 
 When we deal with an ideal fluid, Bernoulli equation (2.9) takes the 
simple form 

  
2

constant,2
U P+ =

ρ
 (3.1) 

where the ratio P/ρ replaces the enthalpy H. The potential flow of 
incompressible fluid is described in a particularly simple manner that 
includes Laplace’s equation for the velocity potential φ, 

   Δφ  =  0.  (3.2) 

The boundary conditions have to be added to equation (3.2). At the 
immovable wall surfaces, the fluid velocity component normal to the 
surface has to be zero, Un  =  ∂φ /∂n = 0. This solves the problem of ideal 
fluid flows. 
 As to viscous fluid motion, the parameter distributions are under the 
influence of fluid friction, including friction force at the channel walls. The 
fluid velocity is determined by the set of equations (2.17). In this case,  
the velocity U has components U≠0, V = 0, W = 0, and U  is a function of 
only ordinate z, U (z). Then the equations (2.17) for a steady flow at the 
accepted conditions are written in the following simple form ([3], §17), 
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The second equation in (3.3) shows that the pressure is independent of 
the ordinate z. While the fluid pressure is constant in the z direction, the 
right-hand side of the first equation should be a function of x only, whereas 
the left-hand side is a function of z. This means that both sides of the 
equation are constant, and consequently 

dP
dx

= constant. (3.4) 

Thus the pressure is a linear function of the coordinate x along the direction 
of the flow motion. Then we obtain the parabolic law of velocity distribution 
in a flow cross-section 

21
( ) .

2
dP

z z a z b
dx

= − + +
η

U  (3.5) 

The constants a and b are determined from the boundary conditions 
which imply that on the channel walls, z  =  0 and z  =  d, the fluid is 
immovable, U  =  0. Then 

1
( ) ( )

2
dP

z z d z .
dx

= −
η

U  (3.6) 

With the dimensionless values, when a point altitude z is measured in scale 
of d, and the velocity maximum U0 is located at the middle of the channel, 
z  =  d/2, relation (3.6) is written as 

0
4 (1 ).

( )
z z

z
U = −

U
 (3.7) 

A similar result can be obtained in the channels of other profiles. For 
instance, the velocity distribution in a pipe with circular cross-section by 
radius R (r→r/R) is 

2( ) = (1 )r r-U . (3.8) 

The distribution (3.7) takes its profile under the influence of the 
shearing stress, or friction force. The same force directed to the opposite 
side along the x-axis acts on surfaces of the walls. The force per the surface 
unit area is defined by the expression: 

z 0
.

( )σ η z 2xz
z d dP

dx=

∂
= = −

∂
U

 (3.9) 

This force equation represents the momentum x-component being transmitted 
by the fluid to the surface per unit time. There exists constant flux of the 
momentum x-component, which is responsible for the velocity gradient 
∂U /∂z in the flow. 
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Formulas (3.5, 3.9) concern laminar flows. Similar momentum flux has 
to exist in the case of turbulent flows as well, though attributed to the 
gradient of the averaged velocity U. As follows from dimensional arguments 
and from measurements, it is 

 ( )2( )σ ,xz
d zz

dz
κ=ρ U  (3.10) 

where κ is a numerical value known as a von Kármán constant that 
amounts to 0.4. 

The gradient of the velocity x-component in the steady turbulent flow 
of a viscous fluid moving along a wall can be represented in an explicit 
form. Then the integration of equation (3.10) gives the logarithmical law 
for the velocity component distribution to within the integration constant C 
([3], §42): 

    ( )ln Cσ xz z= +ρU . (3.11) 

However, the constant C can not be determined from boundary conditions 
in the usual way, for the solution (3.11) is defined neither near the wall nor 
far from it: 

0, ,
, .

z U
z U
→ →∞ ⎫

⎬→ ∞ →∞ ⎭
 (3.12) 

In view of the uncertainty of the relations, estimation of the constant C 
needs some additional reasoning. In the meanwhile, the information we 
seek lies in the fact that the dependence (3.11) leaves out of account the 
molecular friction at the wall. The molecular friction is important just in the 
immediate vicinity of the wall surface, within some rather thin layer z < z0. 
The molecular friction in the layer is represented by the well-known 
relation σ  =  ρν(dU/dz). Integration of this relation at U|z  =  0  =  0 results 
in the following simple velocity linear dependence on the distance z from 
the wall, 

  σ z .=
νρ

U  (3.13) 

So then, the whole velocity profile can be invented as a composite 
dependence consisting of two parts joined end-to-end at the point z0. One of 
the parts is the linear function (3.13) which is valid within the layer z  ≤  z0. 
As for the other part, a function similar to the logarithmic function (3.11) 
can be employed in the region of z  >  z0. And the point z0 can serve as that 
boundary condition which can help to estimate the constant C in the 
function (3.11). Following the appropriate mathematical routine, we can 
obtain the law (3.11) in the form 
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0

z
ln .

z
σ= ρU  (3.14) 

The form of the law evidently retains indeterminacy at the wide break 
in the region of z→∞. In the channel configuration we have chosen, this 
indeterminacy is responsible for the break of the velocity profile in the 
middle of the channel. On the other hand, there are abundant physical 
measurements in channels (see, e.g. [40]), which show the velocity U 
profile being power-behaved with good accuracy. In particular, the flow 
velocity distribution between the channel’s two walls is written as a 
universal function of the dimensionless argument z→ z /d: 

 [ ]1/

0

( ) 4 (1 ) .mz z z= −U
U

 (3.15) 

Here U0 denotes the fluid’s longitudinal velocity in the middle of the 
channel, and parameter m depends on the flow mode. The value m = 1 
corresponds to laminar flow, the value of m for turbulent flow varies with 
Reynolds number approximately from 5 to 10. Since large values of m 
mean profiles with too abrupt fall of the velocity near the wall, hereinafter 
m = 5 will be used as a rule for clearness of pictorial presentations. 

Note, this troublesome state of the flow velocity problem means that 
the turbulence model being in use does not quite correspond to the real 
processes in the flow. The problem will be discussed in the next chapter. 
For the present we will continue consideration of the subject matter. 

Now, applying sequentially operations “grad” and “curl” to expression 
(3.15) results in the following formulas: 
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Comparison of these expressions shows that vectors of the velocity 
gradient and vorticity are of the same value as well as distribution within 
the flow cross-section. The only difference between them concerns their 
orientations accordingly along the z- and y-axis directions. 

The distributions of the velocity U(z) /U0, velocity gradient ∇U(z) /U0 
and vorticity Ω(z) /U0 are demonstrated in Fig. 3.1 for the laminar (m  =  1) 
and turbulent (m = 5 and 100) flows. Some diagrams of interaction 
between the fluid translational motion and vorticity for the flow parameters 
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m  =  1 and m  =  5 are shown in the figure as well. The interaction 
diagrams have been already depicted by J.  Lighthill [38], whence they are 
reproduced with some modifications. 

As seen from Fig. 3.1, the vorticity Ω /U0 along with the velocity 
gradient ∇U /U0 at the largest values of the parameter m are localized 
within some narrow area near the wall, known as the boundary layer. At the 
same time, the gradient and vorticity in the main part of the flow practically 
vanish, and therein the flow can be considered as the potential. The 
diagrams in the lower row of Fig. 3.1 illustrate interaction between the two 
modes of the fluid motion. 

Fig. 3.1. Profiles of the velocity, gradient velocity, vorticity, and diagram of their 
interaction 

3.2  Hypothesis on pressure profile in a flow cross-section 

According to Thomson’s theorem, the velocity circulation along some 
closed contour that encircles a stream line at any point remains constant all 
along the stream line, and the vorticity moves with the fluid. If the vorticity 
curlU is zero at some point of a stream line, it must be zero at any other 
point of this line. Therefore, the vorticity cannot penetrate into the potential 
part of the flow from that area in which the velocity gradient and vorticity 
are localized ([3], §9). But for all that a fundamental problem arises as to 
how the parameter perturbations (or fluctuations) appear in the potential 
part of the flow, and what is the mechanism of the phenomenon. 

We investigate this problem by the example of simple motion of 
incompressible viscous fluid that obeys the set of equations (2.17). It is 
more convenient to represent the equations in components for that purpose, 
implying a steady two-dimensional flow as follows: 
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 (3.18) 

It is first worth considering a generally accepted approach to the flow 
description [2, 3]. As is evident from the graphs shown in Fig. 3.1, small 
values of the velocity gradient ∂U /∂z, as well as small tangential stress 
proportional to ∂U /∂z, reside in the central flow part. According to the 
technique accepted in these circumstances, the viscosity influence on the 
fluid motion is neglected for the sake of problem simplification in this area 
of the flow. 

In view of the fluid motion’s preferred х-axis direction, i.e., W  <<  U, 
the partial derivative ∂P/∂x can be replaced by the total derivative dP/dx. 
Taking into account this assumption enables us to rewrite the second 
equation of the system (3.18) in the form of Bernoulli’s equation: 

  
2

, or
2

.d P d U U
U P

d x d z
const≈ − + ≈ρ ρ  (3.19) 

Relative weight of every term in the set (3.18) changes with approach 
to the wall. Derivative ∂U /∂z grows, whereas the term ∂2U /∂x2 tends to be 
small as compared with the second derivative on z, and it can be omitted. 
Now, estimating the ratio of the pressure gradient in the z-axis direction to 
the gradient in the x direction, and comparing the second and third equations 
of the set (3.18), we shall have the following proportion 

( ) ( ) ~ .∂ ∂
∂ ∂

P P
z x

W
U  (3.20) 

The velocity component W  has just been estimated as small, W  <<  U. 
Therefore, the gradient ∂P/∂z can be considered as small as well with  
the same accuracy. Then, just as in the case of the main part of the flow, the 
gradient ∂P/∂z may be neglected near the wall too, and we obtain for the 
first approximation: 

   0.
∂

=
∂
P
z

 (3.21) 

These assumptions and replacements rearrange the equation set (3.18) into 
Prandtl’s equations for the laminar boundary layer. The set of the equations 
follows: 
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Note, that here the pressure gradient dP/dx is determined by the 
longitudinal pressure distribution in the main part of the flow (3.19), and 
the boundary conditions look like: 

0 0 0, ( ).= = →∞= = →z z z U xU W U  (3.23) 

Applying the set of equations (3.22) for the boundary layer to the 
problem of flow past a flat half-infinite plate, x ≥  0, allows us to obtain the 
problem’s exact solution. It is assumed in the problem (Blasius’ problem), 
that the incident flow velocity U0 is constant, and the velocity component 
U  above the plate increases from zero at its surface to the definite value 
U0, i .e . ,  U |z→∞→U0. 

Since the velocity U0 in the incident flow is constant by the problem 
terms, and the pressure in the flow cross-section is accepted as being 
constant (3.21), the approximate equality dP/dx  ≈  0 follows from equation 
(3.19) with the same accuracy, as in the previous assumption. Under these 
conditions (emphasize the approximate equality dP/dx  ≈  0) the velocity 
components U(x, z)  and W(x, z)  can be expressed from the equation of 
continuity in (3.22) through the flow stream function ψ(x, z): 

 
( , ) ψ ,
( , ) ψ .
x  z z
x  z x

= ∂ ∂
∂ ∂
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⎬
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U
W =

 (3.24) 

Let us introduce the dimensionless stream function f(ζ), so that 

 0ψ ν (ζ),= xU f  (3.25) 

where ζ is dimensionless distance to the wall, 

  0ζ ν .U xz=  (3.26) 

Then the velocity components (3.24) and the friction force (3.9) acting on a 
unit of the plate surface are expressed through the dimensionless variables: 
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These relations show that the velocity components and the friction 
force depend on the stream function f (ζ) and its derivatives (see [3], §39). 
The velocity component U is determined by the first derivative f ′(ζ), the 
component W depends on difference ζ f ′(ζ) – f (ζ), and the friction force is a 
function of the second derivative f ″(ζ). Substituting relations (3.27) into 
the second equation of the set (3.22) results in the ordinary differential 
equation for the stream function f (ζ), 

2 0′′′ ′′+ =f f f , (3.29) 

with the boundary conditions 

(ζ 0) 0, (ζ 0) 0, (ζ ) 1 .′ ′= = = = → ∞ →f f f  (3.30) 

Solution of the nonlinear differential equation (3.29) of the third 
degree with boundary conditions (3.30) implies some small calculating 
complexity caused by the requirement at the boundary ζ→∞. In essence, 
its solution needs determination of such a value of the derivative f ″(ζ)|ζ=0, 
which would satisfy the requirement f ′(ζ)|ζ→∞→1. 

Various skilful analytical or numerical methods were earlier used for 
this purpose (see [2]). The modern computer-based mathematical systems 
allow to determine easily the sought for derivative quantity f ″(ζ)|ζ=0. In the 
given research the interactive system Mathematica (Wolfram Research, 
Inc) has been used to search out the value. The functions under consideration 
are computed in Mathematica by the following simple program. The 
outcome of the computation is shown in Fig. 3.2. 

Program 3.1  Evaluation of function f (ζ) and its derivatives 

solv_0 = NDSolve[{2 f ' ' ' [ζ] + f [ζ] f ' ' [ζ]= 0, f [0] = 0, f ' [0] = 0,  
                 f ' '  [0] = 0.33}, f [ζ],{ζ , 0, 7)}]; 
solv_1= NDSolve[{2 f  ' ' ' [ζ] + f [ζ] f ' ' [ζ]= 0, f [0] = 0, f ' [0] = 0,  
                 f ' ' [0] = 0.33}, f ’[ζ],{ζ , 0, 7)}]; 
solv_2= NDSolve[{2 f  ' ' ' [ζ] + f [ζ] f ' ' [ζ]= 0, f [0] = 0, f ' [0] = 0,  
                 f ' ' [0] = 0.33}, f ' ' [ζ],{ζ , 0, 7)}]; 

gr_0 = Plot[(1/4) Evaluate[f [ζ] /solv_0],{ζ , 0, 7},  
                 Frame→True, PlotRange→All]; 
gr_1 = Plot[Evaluate[f ' [] /solv_1],{ζ , 0, 7}, Frame→True]; 
gr_2 = Plot[Evaluate[f ' ' [ζ] /solv_2],{ζ , 0, 7}, Frame→True]; 
gr_S = Plot[Evaluate[(1/2) ζ  f ' [ζ] /solv_1]− 
                −Evaluate[(1/2) f [ζ] /solv_0],{ζ , 0, 7}, Frame→True]; 
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Fig. 3.2. Stream function f (ζ), its derivatives and their combination 

The operations solv_n in the program solve equation (3.29) for 
functions f (n)(ζ), and the procedures gr_n draw the corresponding graphs. 
Results of the computations presented in Fig. 3.2 give an uncommon 
opportunity to estimate the correctness of those assumptions that have been 
accepted for derivation f ' (ζ)  of the equation set (3.29), and of equation 
(3.22) in the long run. 

The graph of the function f ' (ζ)  in Fig. 3.2 shows that the velocity 
longitudinal component U(ζ) /U0 being equal to zero on the wall surface,  
ζ = 0, fast increases, so that at ζ = 3 it attains 0.85. After that the 
augmentation progressively decreases, and the ratio U/U0 tends to 1. When 
the dimensionless distance from the wall amounts to ζ = 5, the ratio differs 
from unity by about ~0.2%. If the distance is identified with the edge of the 
boundary layer, where the friction is practically unimportant, we obtain from 
the first equation in (3.27) the conditional thickness of the layer, z = δ: 

1/2

0

ν
δ 5 5 Re .−= = xU

x
x  (3.31) 

As an exactly definable characteristic of the boundary layer thickness, 
the so-called displacement thickness δ* is often used. The thickness δ* 
corresponds to the distance by which the fluid flow is pushed aside from 
the plate surface because of the retardation of the stream near the wall. 

0 0

*δ ζ .1 dU

∞
⎛ ⎞= ⎜ ⎟
⎝ ⎠
−∫ U  (3.32) 

Substituting hither the relation for U(ζ)  from equation (3.27) gives the 
displacement thickness δ*  =  0.34δ. 
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An interesting point in the concept is worth paying attention to. The 
stream displacement implies fluid transverse motion. This motion is 
confirmed by the function W(ζ) behavior, shown in Fig. 3.2. The transverse 
velocity W(ζ) in the boundary layer tends, as z→∞, not to zero but to some 
non-zero value ([3], §39): 

0 0

1/20,43 0,43
ν Re .−=≈ xU U x

W
 (3.33) 

The fluid transverse motion does not cease even at the outer edge of 
the friction region, and at the conditional edge of the boundary layer the 
displacement is a significant quantity still. 

3.3  Correction of the pressure profile 

The principal cause underlying the displacement is obviously the viscous 
friction proportional to the second derivative f ″(ζ). The derivative is seen 
from Fig. 3.2 to decrease from its maximum on the wall surface to nearly 
zero at the conditional edge ζ  =  5 of the boundary layer. Notice, the fluid 
may move in the direction of the z-axis, only in the presence of some force 
acting in this direction. Such a force in a similar fluid, liquid or gas, is the 
pressure gradient. Therefore, the flow deceleration due to viscous friction 
should lead to some increase in pressure near the wall. 

Hence the first approximation written as the requirement (3.21) seems 
to be not quite adequate. In this connection, it makes sense to return to 
formulas (3.27) and (3.22) for the velocity components U(ζ) and W(ζ). 
The formulas have appeared as a solution of equations (3.18) at the 
supposition that ∂P(z)/∂z  =  0 which in the dimensionless variables is 
written as ∂P(ζ)/∂ζ  =  0. 

It is obvious that the requirement ∂P/∂z  =  0 has changed all the set of 
equations (3.18). First of all, the equation of fluid motion in the z-axis 
direction, third equation in (3.18), has been replaced by simple equality 
∂P/∂z  =  0. Secondly, one of the items depending on the viscosity has been 
removed from the equation of motion in the x-axis direction. Besides, the 
pressure distribution P(х,z) has been replaced by the external function 
P(x), as the first approximation, which is the solution of Bernoulli’s 
equation (3.19) generally pertaining to the main part of the flow. 

As a result, only two unknown functions, U and W, have remained 
instead of three functions, U, W and P. Therefore, the second approxi-
mation of the function P(x,z) may hardly be evaluated by the method of 
successive approximations. Following this method, expressions for U(ζ)  



3.3 Correction of the pressure profile 

 

39 

and W(ζ) from equation (3.27) should be substituted in equations (3.18) to 
evaluate P(x,z). 

To be convinced of this remark’s validity, we will substitute the 
velocity components U(ζ)  and W(ζ) in the third equation of the original 
set (3.18). Using the dimensionless variables (3.24−3.28) and Reynolds 
number with the length x as a scale, on the form Rex  =  xU0 /ν, we obtain 
the following expression: 

 ( )
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P f

f f
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− +
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 (3.34) 

In a similar way, the velocity components U(ζ) ,  W(ζ) from equation 
(3.27) are used in Poisson’s equation (2.21), that gives the dimensionless 
formula  
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 (3.35) 

The pressure gradients (3.34) and (3.35) in relative values as functions 
of ζ are accordingly depicted in Figs. 3.3 and 3.4 for various values of 
Reynolds number Rex. 

Fig. 3.3. Distributions of pressure gradient (3.34) for Rex  = 10, 30 and 1,000 

 

 

 

 
Fig. 3.4. Distributions of pressure gradient (2.35) for Rex=10, 30, 100 and 1,000 
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The two figures show that the formulas (3.34) and (3.35) predict an 
unusual pressure profile near the wall and its incomprehensible dependence 
on its Reynolds number. Evidently, the pressure distribution properties 
demonstrated by the figures do not agree at all with the velocity function 
W(ζ). Also, any physical interpretation of those features can not be found. 

Thus we see that the attempts to obtain a suitable kind of distribution 
P(z), based on equations (3.22), have failed. As has been said, the reason 
lies in principal distinction of the differential equations (3.22) and (3.18). In 
the circumstances it is worth using Bernoulli’s equation (3.19) in its 
integral form. Generally, an important preference of an equation in integral 
form over the differential form consists in a result less sensitive to the 
faults of such functions as U(ζ) and W(ζ). 

In equation (3.19) the value of const does not change all over the flow, 
only in the adiabatic case. Otherwise it remains invariable solely along a 
stream line ([3], §9). The values inherent to various stream lines differ one 
from another due to dissipation induced by viscous friction. Taking into 
account the difference and the functions U(z) and W(z), equation (3.19) 
will be written in the following modified form: 

2 2 2
0

0
1 1 ν .2 2 2

UP P z
∂

+ ≈ + + +
∂ρ ρ

U W U
 (3.36) 

Now the equation can be rewritten in dimensionless variables. For that 
formulas (3.24−3.28) and Reynolds number Re = Rex  =  xU0 /ν are to be 
used. Expressing relative overpressure (P(ζ)–P0)/(ρU0/2) through the 
stream function f (ζ) and its derivatives f ′ (ζ), f ″(ζ) results in the equation 

  ( )2 20

0

(ζ) 1 21 ζ .
2 4 Re Re

' ' ''−
= − − − −

P P
f f f f

Uρ
 (3.37) 

The non-dimensional stream function f (ζ), and also its first f ′ (ζ) and 
second f ″(ζ) derivatives have already been computed in Program 3.1. Now 
the relative overpressure (P(ζ)–P0)/(ρU0/2) can be determined by choosing 
the flow cross-section x, and by indicating Reynolds number Rex  =  xU0 /ν, 
where U0 is the incident flow velocity over a plate. Program 3.2 is intended 
for the overpressure estimation in the flow for Rex  = 30, 100 and 1,000. 
 

Program 3.2  Overpressure in the three cross-sections of a flow over plate 

Re={30, 100, 1000}; 
Solve_0 = NDSolve[{2 f ' ' ' [ζ] + f [ζ] f ' ' [ζ] = 0 , f [ζ] = 0,  

  f ' ' [ζ] = 0.33, f [ζ], {ζ, 0, 7}]; 
Solve_1= NDSolve[{2 f ' ' ' [ζ] + f [ζ] f ' ' [ζ] = 0 ,  f [ζ] = 0,  

  f ' ' [ζ] = 0.33, f ' [ζ] , {ζ, 0, 7}]; 
Solve_2= NDSolve[{2 f ' ' ' [ζ] + f [ζ] f ' ' [ζ] = 0 ,  f [ζ] = 0,  
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  f ' ' [ζ] = 0.33, f ' ' [ζ] , {ζ, 0, 7}]; 
gi[[i]] = Plot[ 1 – Evaluate[ f ' [ζ]2 /.solve_1] – 1/ ( 4 R e [ [ i ] ] ) ×  
    ×{Evaluate[ ζ f ’[ζ]2 /.solve_1] – Evaluate[ f [ζ]/.solve_0]}2–  
     – Evaluate[ ( 2/Re) f ' ' [ζ] /.solve_2], {ζ,0,7}, Frame→True,  
       PlotRange→{{0,7},{0,1}},FrameLabel→{' 'ζ' ' , ' '2(P– P 0 ) /ρU2' '},  
       DisplayFunction→Identity];  
gtxt = Graphics[{Text[' 'Re=30' ' ,{3.8,0.88},{0,0}], 
    Text[' 'Re=100' ' ,{3.9,0.68},{0,0}],Text[' 'Re=100'0' ,{4,0.48},{0,0}]], 
comb=Show[{gi[[1]], gi[[2]], gi[[3]], gtxt},  

       DisplayFunction→&DisplayFunction; 
 

 
Fig. 3.5. Overpressure in flow cross-section for Rex=30, 100 and 1,000 

In the program, just the same as in Program 3.1, operations solv_n deter-
mine functions f (n)(ζ) by solving equation (3.37). After that, the procedures 
gi[[i]] and gtxt prepare data for construction of the required graphics with 
suitable inscriptions. The command comb draws images of the relative 
overpressure as functions of the parameter ζ. The result of the computations 
for the indicated values of Reynolds number are shown by the graphics in 
Fig. 3.5. 

The findings represent the overpressure in the form of monotone 
functions that have no singularities. Also the functions demonstrate a 
reasonable transition from the boundary layer to the main potential part of 
the flow, and show acceptable dependence on Reynolds number Rex. Thus, 
in the beginning we have started with the assumption that the pressure 
distribution across the flow does not depend on fluid current viscosity. 
According to this understanding, the requirement (3.21), ∂P/∂z  =  0, has 
been accepted, though as a first approximation. However, further consider-
ation has shown that the requirement (3.21) needs some correction. The 
corrections make a distinction in kind in the phenomenon interpretation. 

The viscosity taken into account has led to equation (3.37) that results 
in pressure dependence on the coordinate z, represented by the diagram in 
Fig. 3.5. As follows from the diagram, the pressure in the region of the wall 
friction and flow deceleration increases. The maximum is located on the 
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wall surface, which shows the best correlation with the velocity profiles 
(3.15) and the velocity gradient distributions (Fig. 3.1) observed in 
experiments. 

The correction introduced into the relative overpressure distribution 
has an order of magnitude ρU2/2 which is usually small as compared with the 
pressure P0 in the flow. When М << 1, it comes to several percents from the 
pressure P0. Indeed, in water (ν = 0.01 cm2/s) moving along a flat wall with 
velocity, say, of 20 cm/s, the pressure correction is estimated as ρU2/2P0 ≈ 
0.02 with the other parameters being P0 = 1 atm, x = 1 cm, Rex = 104. 

It should be emphasized in this connection that the field of our 
consideration relates namely to moderate flows, М << 1. Under such 
conditions the ratios of measured velocity and pressure fluctuations 
(oscillations) to their mean values have the same order of magnitude. 
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4 
Perturbations in viscous flow 

4.1  Fluid motion from the start 

Kinetic energy of an incompressible fluid motion in volume V is 

( ) 2 V.2E U d= ∫ρ  

Fluid viscosity involves energy dissipation due to friction, which is defined by 
the time derivative ∂E/∂t. By means of Navier–Stokes’ equation and some 
mathematical manipulation, this derivative can be written in a form of the 
following expression [3, §16]: 

    
2η V.2

∂ ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂ ∂⎝ ⎠∫ i k

k i

E U U dt x x  (4.1) 

When a viscous incompressible fluid moves along a wall by length L, 
and width Y, the layer by height z looses the energy 

2

0 0

2ηY .∂ ∂
∂ ∂

⎛ ⎞≈ − ⎜ ⎟
⎝ ⎠∫ ∫

Lz

dx dz
t z
E U

 (4.2) 

The derivative ∂U/∂z grows rapidly at the wall surface, and according to 
formula (4.2), the main part of the energy losses are located near the walls 
of the channel. 

Some outside force and energy source should exist to compensate for 
the losses and maintain the fluid motion in a constant state. The fluid 
(liquid or gas) is set in motion by pressure gradients within a simple wave 
(Riemann’s wave) [3, §101]. There are three ways to excite a simple wave 
in channels [38]: by pressure drop between a receiver and the channel’s 
open end, by outflow due to a great volume, and, lastly, by a moving 
piston. 

Disturbances at the channel entrance in the first two alternative cases 
complicate unpredictably the analysis of the flow properties [25]. Therefore, 
it is better to decide in favour of the variant of the fluid motion in front of 
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the moving piston, where flow parameters can be calculated, provided that 
the piston advances at rather moderate velocity. 

In the beginning we will ascertain features of one-dimensional motion. 
Without loss of generality, the motion is more convenient for exploring in 
gases, as the equation of state for gases has a simple form. Solution of the 
problem concerning the one-dimensional motion of gas in front of the 
piston (without any friction) is well known (see, e.g. [3], §§99, 101). 

Let us assume that a piston starts moving at the moment τ  =  0 from 
the point x  =  0 in the direction x  >  0 according to some law X(τ ) .  While 
moving, it generates a sequence of elementary pressure waves. On the 
whole the waves present a simple wave traveling in front of the piston. 
Dependence of the fluid velocity at a current position x and running time t, 
U(x, t) within the simple wave is determined by parametric equations 

0

(τ),
γ 1(τ) ( τ) [ (τ)].

2

′= ⎫⎪+ ⎬′= + − + ⎪⎭

X
x X t c X
U

 (4.3) 

Here с0 denotes the sound velocity in the gas under consideration at 
quiescent state, and γ is the gas adiabatic exponent. As these equations 
show, the velocity U in the simple wave is a variable value. Along with the 
velocity U vary the pressure P, local sound velocity c, and also the gas 
density ρ:  
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 (4.4) 

 As the elementary pressure wave propagates at the new velocity U +c 
which depends now on the variable density, and is different for various 
values х, the simple wave shape is deformed in time. Let the piston velocity 
X′(τ )  increase at first, and then tend to the limit U0 with the characteristic 
time θ. To be definite, it is represented by the expression 

  ( )0
μ1 exp( τ / )X U θ′= − − , (4.5)  

where the exponent μ can be supposed equal, for instance, μ = 2. 
 The spectrum of the piston motion and of the waves radiated by the 
piston depend evidently on the frequency ω  =  2π /θ. The spectrum density 
of the velocity (4.5) variable component looks like 



4.1 Fluid motion from the start 45 

(ω)F = ( ) 2 22 exp( ω / 4)θ θ− , (4.6) 

and the spectrum of the constant component is expressed through the Dirac 
delta function 2π δ(ω).  

Inevitable natural irregularity of the piston motion, omitted in the 
formula (4.5), can be included as an additional term. This term can be 
presented by a harmonic component of the frequency ω  =  2πn /θ and some 
small amplitude g  <<  1: 

    ( )0 g sin 2π τ .δ θ′ =X U n  (4.7) 

Evolution of the overpressure function ΔP(x)/P0  =  (P(x)–P0)/P0 in 
the simple wave, similar to the velocity U(x) evolution, can be demonstrated 
by comparison of the function computed for different instants and various 
velocities of the piston. The function ΔP(x)/P0  at different values U0  
is evaluated by equations (4.3) where the parameters are given by 
expressions (4.4) and (4.5). Inasmuch as the ratio U(x)/c0 is always small, 
expressions for pressure and density in equation (4.4) can be expanded into 
series and replaced by the approximated values including only the first 
terms of the expansions, e.g., P(x)/P0  ≈  1 + γU(x)/c0. 

In the beginning the ratio ΔP(x)/P0  is computed as a function of the 
final velocity U0 for the piston moving according to the law (4.5). Then the 
function for the same piston motion (4.5) is corrected for the irregularity 
(4.7). The piston motion with the irregularity (4.7) seems to be closer to 
real system behavior. To compare the two modes of the piston motion, the 
following parameters are employed in these mental experiments: the piston 
final rate U0 ∈ [5,20] m/s, sound velocity c0  =  350 m/s, characteristic 
time θ  =  0.002, time instants t  =  3θ, 10θ, and n  =  5, g  =  0.05. 

Further the program for computation of the function P(x)/P0 follows. 
In the system Mathematica the program is fulfilled with the help of an 
additional package addressed as <<Graphics` ParametricPlot3D`. 
 

Program 4.1 Pressure distribution in a simple wave 
 
c = 350;  θ= 0.002;  t1 = 3θ;  t2 = 10θ;  γ= 1.4;  
X ′= U0(1 – Exp[–(t /θ ) 2]);  
X = Integrate[ X ′, { t , 0 , t } ] ;   
ΔP/P0=100γX ′ / c ;   
x3θ = X + (t1 – t)(c + X ′ ( γ–1) /2); 
x10θ = X + (t2 – t)(c + X ′ ( γ–1) /2); 

g3θ = ParametricPlot3D [ { x3θ , X ′,ΔP/P0}, {t,0,t1 },{U0 ,5,20,2.5}, 
  PlotRange→{{0,8.5}, {5,20.1},{0,9}}, BoxRatios→ 

{1,1,0.7},AxesLabel→{“x.m”, “U0 , m/s”, “ΔP/P0 ,%”}, 
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ViewPoint→{7,–11,1}, DisplayFunction→Identity]; 
g10θ = ParametricPlot3D [ { x10θ , X ′,ΔP/P0}, {t,0,t2 },{U0 ,5,20}, 
  PlotRange→{{0,8.5}, {5,20.1},{0,9}}, BoxRatios→ 

{1,1,0.7},AxesLabel→{“x.m”, “U0 , m/s”, “ΔP/P0 ,%”},  
ViewPoint→{7, –11,1},DisplayFunction→Identity]; 

comb=Show[{g3θ , g10θ } , DisplayFunction→$DisplayFunction]; 
 

The first line of Program 4.1 includes information on the chosen values 
of the problem’s initial parameters. The next five lines stand for the formulas 
of the parametric equations that calculate the piston motion and overpressure 
distributions along the simple wave, x3θ and x10θ, corresponding to the 
profiles at two instants, t1 = 3θ and t2 = 10θ. The blocks g3θ and g10θ 
prepare data for the graphic representation. 

In the end, the operation named as ‘comb’ constructs the graphs of the 
overpressure distributions along the simple wave length x for two given 
instants, that are shown by the graph a in Fig. 4.1. A similar solution for the 
same initial data, but with correction (4.7), where n  =  5 and g  =  0.05, is 
shown as a graph b. 

 

 
Fig. 4.1. Evolution of pressure in a one-dimensional simple wave 

As evident from the graphs in Fig. 4.1, the pressure in the simple wave 
(as well as the flow velocity U  similar to it) settles at the front for a short 
time, and then remains constant along the remainder of the simple wave. 
The front formation in space and time depend obviously on peculiarity of 
the piston acceleration development, i.e., on the kind of function (4.5). The 
irregularity in the velocity excites the pressure oscillations that constitute 
perturbations moving within the simple wave as a train of acoustic wave 
packets. 

The pressure in the simple wave is proportional to the piston’s final 
velocity U0, provided that the piston motion follows the law (4.5), with U0 
being constant. When the piston motion law varies, the pressure distribution 
in the wave follows the variations. In particular, graph b in Fig. 4.1 shows 
that the piston velocity oscillations lead to similar oscillations in the 
pressure distribution. Another example of practical importance relates to 
the piston velocity’s permanent growth, U0(t). In this case the pressure in 
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the simple wave becomes similar to its distribution in the extended wave 
front, gradually increasing from P0 to the maximum quantity which 
responds to the highest value of the velocity U0 . 

As mentioned above, a fixed point in the simple wave travels at the 
velocity ([3], §101) 

 ( ) ( )
x
t

c∂
∂

= +
U

U U ,  (4.8) 

or, after integration, according to the trajectory 

 x  =  [U  + c(U)] t  + F(U), 

where F(U) is a function similar to equation (4.5), and c(U) is given by the 
relation dU/dρ  =  c/ρ. Hence, the total velocity of the wave packet may be 
regarded as the result of superposition of the packet propagation relative to 
the fluid at the sound velocity c on the movement of the fluid itself at the 
variable velocity U. 

The dependence (4.8) leads ultimately to a discontinuity, or a shock 
wave, formation at the simple wave front, and at the front of every wave 
packet as well. Analytically the place and time of the discontinuity 
formation is determined by two simultaneous equations: 

                             ( ) t/ 0∂ ∂ =x U , ( )2 2

t
/ 0∂ ∂ =x U . (4.9) 

When the simple wave front moving in the fluid at rest is considered, the first 
requirement vanishes, and the second one holds at the condition U = 0: 

( )
=0

/ 0tx∂ ∂ =
U

U  

In the case of an arbitrary pressure amplitude, the simple wave turns 
into a shock wave as far as the discontinuity is formed, being accompanied 
by a fluid entropy jump, while the entropy in the simple wave is constant. 
However, if U0  <<  c and the pressure amplitude is small, the change in 
entropy at the discontinuity is of the third order of smallness. So that the 
wave with the discontinuity formed can still be regarded as a simple wave 
in the second approximation ([3], §102). 

4.2  Simple wave and wave beam 

Generally, the one-dimensional simple wave, and the wave packet as well, 
is substantially an abstraction, for the effects of a finite aperture in the 
channel where the wave travels are not considered in equation (4.3). 
Meanwhile, the channel aperture has a strong impact on flow behavior and 
structure. 
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In fact, the fluid flow in a channel means that we deal not with a 
simple wave or wave packet, but with a wave beam. In addition, the fluid 
moving within the simple wave contacts with the channel walls. The 
viscous friction (3.9) originated from the contact creates a pressure gradient 
dP/dx directed against the current. That leads to gradual deceleration of the 
flow in the channel down to full immobility. 

If an acoustic plane wave damps during some time T, then the 
differential pressure vanishes, ΔP/P0  =  0, at the distance c0T covered by 
the wave. Therefore, the greatest length of the simple wave being driven by 
the piston is limited by that distance, and the system of the piston-simple 
wave becomes practically stationary, if, of course, the piston motion is 
steady, and the channel length is large enough. 

The one-dimensional image of a simple wave implies that elementary 
plane waves transfer the momentum flux in the fluid only in the x-axis 
direction, irrespective of diffraction phenomena. It is the principal distinctive 
feature of that one-dimensional simple wave. However, in reality the fluid 
within the simple wave moves in a channel of finite cross-section, say, of 
diameter d. 

Under the circumstances the flow is not one-dimensional motion, and 
it should be considered as a wave beam. According to Rayleigh’s law on 
diffraction divergence, any wave beam diverges, as is illustrated by the 
schematic diagram in Fig. 10.1. In Chapter 10 we discuss the beam of 
electromagnetic radiation. In this case we deal with acoustic radiation. But 
it does not matter, for the principal point consists in the requirement that 
the radiation has to be of a wave nature [41]. 
 Any parameter of the flow may be brought to conformity with Fourier 
image, and the fluid motion recognized as a set of waves. Some wave is 
characterized by its frequency ω, wave length λ and wave vector k. If the 
wave vector of the beam in its initial state is k0  =  2π /λ s0, where s0 denotes 
the unit vector directed along the beam axis, and the beam diameter 
amounts to d, then the divergence angle is θ  ≈  λ /d.  

Correspondingly, the wave vector in the direction θ is k(θ)  = 
2π /λ s(θ) , where s(θ) means the unit vector in the direction of the angle θ. 
The wave front of the diverging wave looks like the sector of sphere 
limited by the angle θ. Hence this Rayleigh diffraction divergence appears 
as additional momentum flux in the radial direction, and a radial component 
of the elementary waves ([3], §61). 

The diffraction phenomena obeying the wave equation are known not 
to depend on the wave field nature, but on the beam diameter d and 
wavelength λ .  Nevertheless, the estimation technique of the beam 
divergence state varies slightly in different areas of knowledge. 

For instance, the properties of the optical beams are estimated by the 
divergence angle θ  ~  λ /d  (λ  =  2πc /ω ) .  The wave front in Gaussian 
beams is usually thought of as plane, while the beam length L does not 
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exceed L  ≈  πd 2 /λ  (Rayleigh length). Properties of the beams created by a 
piston sound radiator are estimated in acoustic applications by the value of 
the so-called wave parameter P  =  (λL /S )1/2, where S is the surface area 
of the piston (see, e.g. [42]). 

Close to the piston, when, in the so-called near-field region, P  <<  1, 
the wave front is considered as plane. When P  ~  1, the wave front is 
recognized as convex; it tends to a spherical segment. And wide apart,  
P  >>  1, the wave takes a spherical-like configuration. The flow within the 
simple wave in the example considered above can be characterized by the 
wavelength λ  ~  cθ  ~  70 cm. Let the pipe diameter be d  =  3 cm, or  
S  ~  10 cm2. Then the wave parameter reaches the value of P = 1  already 
at the distance L  <  0.2 cm, i.e., the wave front obtains the spherical form 
practically at once. 

The plane wave reflection from the walls at oblique incidence is 
known ([3], §79) to cause intense dissipation. The energy is absorbed near 
the wall due to the fluid temperature rise at the reflection spot. A fraction of 
the wave mean energy flux density incident upon a unit area of the wall 
dissipated near the surface is defined by relation 

    2 p
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2 2ω
ν sin 1 ,

cos
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γ cc
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ϑ
= + −

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4.10) 

where ϑ is a local incident angle of the wave, cp and cV are thermal 
capacities, a is a factor of the fluid thermal diffusivity. 

This important question is worth dwelling on, for any spherical wave 
propagation in a channel is necessarily accompanied by the wave 
reflections from the channel walls at various angles. This expression, 
derived for the reflection of a plane wave, can evidently be accommodated 
to the reflection of the spherical wave, at least when the wave radius R is 
not too large. 

However, we are interested in the energy absorption Gx at the spherical 
wave reflection spot while it runs along the wall surface in the direction of 
the x-axis. The wave incidence local angle ϑ changes along with the wave 
radius R in this case. Hence, the components u and w of the velocity 
oscillation amplitude u and the motion velocity of the reflection spot χ′  
depend on the radius R as well [37]. 

The radius is convenient to employ as dimensionless value with the 
scale being the cross-section characteristic dimension d. Then the wave 
incidence angle ϑ(R) in these variables is 

ϑ  =  arcos(R/2), (4.11) 

and the amplitudes of the oscillation velocity components in longitudinal u 
and transverse w directions are expressed correspondingly as 
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 u  =  u(R)sinϑ, w  =  u(R)cosϑ,  (4.12) 

where u(R)  is the velocity oscillation amplitude within the spherical wave 
packet, 

         u(R)  ~  1/R.  (4.13) 

Now the amplitudes of the velocity components are  

  
2 2

2
~ 4 1 2 ,
~1 2 .

R R
R

u − ⎫
⎬
⎭w

 (4.14) 

The velocity of the reflection spot motion is determined by the first 
derivative from its dimensionless coordinate χ  = x/d  =  1/2tgϑ  with 
respect to the wave radius R, χ′  =  (dχ/dR)(dR/dt). The differentiation 
results in the following simple relation 

   χ′  =  cR ( R 2 –1/4)–1/2 (4.15) 

At last, the energy dissipation per unit area of the wall surface can be 
represented in the form 

 Gx  =  γR–2. (4.16) 

Functions of the dissipation Gx(R) , of velocity amplitude components u(R) 
and w(R)  at the running reflection spot, and the velocity χ′ (R)  of this spot 
are shown in Fig. 4.2. 

 
Fig. 4.2. Functions Gx(R), u (R) ,  w(R) , χ′(R)  at the moving point of the spherical 
wave reflection 

The constants ν ≈a ≈0.15 cm2s–1 and cP/cV  = 1.4 (for air) have been 
used in evaluation of the functions shown in Fig. 4.2. To combine all the 
functions on the graph in one vertical scale, they are represented at different 
factors. The function Gx(R) is depicted as the ratio of the current value to 
its maximum, the amplitudes u(R)  and w(R)  are given in the scales 1:1 and 
1:2 correspondingly, the velocity χ′ (R)  is presented in ratio 1:10. 
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4.3  Origin of pressure perturbations 

It is important to notice some peculiarities of the functions depicted in  
Fig. 4.2. The velocity component w(R)  and the travel velocity of the 
reflection spot χ′(R)  are monotonic functions, though when R→1/2,  
the function w(R)  tends to 2, whereas χ′(R)  increases without limit. At the 
same time, the absorption and the longitudinal oscillation amplitudes, the 
functions Gx(R) and u(R) correspondingly, have acute maxima. 

Locations of the maxima are worthy of special attention, for they 
correspond to nearly the same spherical wave radii, namely RGmax  =  0.73 
and Rumax  =  0.71, and approximately the same incident angles, ϑGmax  =  
46.7° and ϑumax  =  45.2°. So that the maxima are separated on the wave 
surface by the very small distance which does not exceed Δx  =  0.03, i.e., 
we may suppose that locations of the maxima coincide. Also, the amplitudes 
u(Rmax) and w(Rmax) become equal in the region of the coincidence, and 
the spot of the wave reflection travels at sound velocity, within the 
calculation accuracy. 

Now notice, that formula (4.12) for the velocity amplitude of the 
longitudinal oscillations within the wave packet is in essence the same as 
formula (1.12) for the small exciting motion ψ which is used for the 
analysis of the boundary layer instability. However, there is some distinction. 
The formulas (4.12) refer to a certain physical process that gives an 
opportunity to construct the mechanism of the flow disturbances. It is 
grounded on the following principles. 

Generally, the velocity amplitude u of the longitudinal oscillations is 
small in comparison with the flow velocity component U, but both of them 
are zero on the wall surface. Meanwhile near the wall, within the boundary 
layer, the velocity U(z) decreases slowly as z1/m. It is clearly seen from  
the formula (3.15) and Fig. 3.2. At the same time, the amplitude u(z) is 
proportional to the difference of the kind 1–exp(–z (ω/2ν)1/2), and decreases 
only at the very wall. 

Therefore, the velocity u of the fluid’s longitudinal oscillations becomes 
of the order and even more than the flow velocity U in immediate proximity 
to the wall along the short length Δx ([3], §79). Then a considerable 
oscillating local gradient of the tangent velocity and sequent tangential 
discontinuity appear in the zone of the boundary layer. The tangential 
discontinuity is an absolutely unstable structure which just turns into a 
formation of the pressure jump within the zone ([3], §29). It seems to be the 
source of that sought exciting motion, or the primary perturbing motion. 

The tangential velocity discontinuity and subsequent events develop 
against the background of heightened pressure near the wall. Indeed, the 
viscous flow friction creates a pressure increase existing near the wall, 
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considered in §3.3. The spherical wave reflection adds the local brief 
pressure jump of the value to p≈2cρu 2cos2ϑ  ([3], §66). Besides, the 
pressure grows at the moving point of the wave reflection due to dissipation 
of the wave energy, which, as we have seen, occurs in the gradient field of 
the flow velocity. 

Because all these phenomena are concentrated in the field of the 
viscous flow friction, i.e., within the boundary layer, the radial dimension a 
of the primary perturbation can be estimated as a≈δ. At the same time, the 
listed processes leading to formation of the tangential discontinuity and 
pressure jump develop during the time τ of the spherical wave interaction 
with the boundary layer. As the time τ is rather small, of the order of 2δ /c, 
the local perturbation may be presented by instantaneous distribution f(R)|V 
with parameters: 

   τ  ≈  2δ /c, Δx  ≈  0.03, a  ≈  δ.  (4.17) 

A perturbation in the form like f(R)|V propagates over a channel as the 
acoustic wave packet (2.30). When the volume V is small, i.e., the distance 
r covered by the perturbation border is getting large, r/a  >>  1, the wave 
packet front takes practically the spherical shape. Surely, the spherical 
shape is distorted after multiple reflections from the walls. 

The perturbations follow one after another, and the sequence of the 
wave packets, including the primary and reflected ones, forms some structure 
of perturbations in the channel. Each of the spherical wave packets implies 
oscillations of hydrodynamic parameters, and their totality is understood as 
a spatio-temporal field of the fluctuations. 

Now, some physical comments might be made on the expression (4.2) 
which this chapter began with. The fluid in the channel comes to the 
motion under the action of an outside force produced by the piston in our 
case. It transmits energy to the fluid by emitted pressure waves. A certain 
quantity of the power transmitted by the piston is consumed in overcoming 
the viscous friction. Some part of this quantity is laid out directly for  
fluid heating and is partially transmitted to the walls due to the thermal 
conductivity. 

The remaining part goes toward generation of the acoustic waves 
which create a field of perturbations in the form of oscillating parameters, 
thereby scattering the energy over the flow. While propagating, the waves 
and oscillations gradually damp owing to viscosity and thermal conductivity, 
and the absorbed energy turns into heat. 

A spherical wave packet reflection from a wall in the presence of some 
boundary layer had not been investigated in detail till now. The process 
pattern described above is an evident simplification. Indeed, some factors 
have fallen out of the consideration, such as the vorticity (2.19), overpressure 
in the layer of viscous friction (2.21), (3.37), oscillation kinetic energy 
conversion into potential energy within the reflection region, and destruction 
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of the compression wave front in the boundary layer, which is discussed in 
the following chapter. 

Nevertheless, analysis of the simple wave structure ([35–37], etc.) 
shows that the important peculiar properties of the pressure wave reflection, 
connected with the nonzero pressure gradient in the z-axis direction, 
∂P/∂z≠0, and propagation of the primary local perturbation in the form of 
the spherical wave packet, meet reliable experimental verification. 

The experimental part of the study will be considered in Chapter 8. For 
the present we will explore properties of the primary perturbation propaga-
tion in channels. 
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5 
Perturbation in channels 

5.1  Perturbations in semi-infinite space 

As said at the end of the previous chapter, according to equation (4.17), the 
primary acoustic perturbation arises within a small volume V practically 
instantaneously. Thus it may be represented by a function like f(R)|V. At 
the distance r  >>  a beyond the edges of the boundary layer, initial 
configuration of the volume V does not noticeably influence the perturbation 
wave contour at later stages, and the wave front can be considered to be of 
a spherical shape. 

Let such a perturbation originate in the fluid at rest on a wall in the 
form of a hemisphere with radius a at an instant t  =  0. The spatio-
temporal field, which the perturbation f(R) |V creates while propagating, 
is described by the integral (2.30). But the velocity potential φ  is well-
known (see, for example [3], §70) for the outer problem, V,∉r  in the 
given case of spherical symmetry (see, for example [3], §70). It looks like 
φ  =  f (r, t)/r, where function f(r, t) is the solution of the one-dimensional 
wave equation 
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 (5.1) 

The solution of this equation has the simplest form when the initial 
perturbation f(R) |V is set by a distribution of the fluid density variable part 
ρ(R). Since the volume V is small, we can consider the part to be a constant 
value, ρ(R)  =  Δ  =  const. Then the solution takes the form: 
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The rendition of the solution (5.2) looks like a spherical wave packet 
of thickness 2а. It propagates in the fluid with sound velocity c, and the 
amplitude is proportional to r−1. Within the packet, |r – ct|  ≤  a, the density 
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ρ changes from Δ /2  to –Δ /2  in relation to the density average value ρ. 
However, if the density distribution in the primary perturbation, R  ≤  a, 
depends on R, f (R)|R≤a, or on time, f (cτ)|cτ≤ a , then the factor (r−ct) in the 
product Δ (r−ct) should be replaced by the function f (r−ct) corresponding 
to the initial distribution of the parameters. 

We may conclude from relations (2.26), that the pressure and density 
functions in the wave packet are similar to each other, for both of them are 
proportional to the time derivative of the potential, ∂φ /∂ t. At the same 
time, the velocity u is defined by the potential gradient. 

In the case of spherical symmetry, the gradient can be evaluated by 
substituting the derivative ∂φ /∂ t into the equation of motion from the 
system (2.24), and next integrating the result for an arbitrary function 
f (r−ct). After the integration, distributions of the parameters (2.26) within 
the wave packet are represented as follows: 
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While propagating in the flow, every spherical wave packet brings 
along with it some oscillations of the parameters within the packet 
thickness 2а. Figure 3.1 and formula (3.15) have shown that when the flow 
is intensified, i.e., the longitudinal velocity U  and the index m increase, the 
region of the velocity gradient ∂U /∂z  gets thinner, and the gradient itself 
strengthens. This strengthening leads to more intense formation of the 
parameter perturbations in the boundary layer. In the beginning, while the 
velocity gradient is relatively small, the perturbations arise sporadically. 
But then the perturbations appear more frequently, and the generation 
process becomes regular. 

The sequence of perturbations and superposition of parameter oscil-
lations excited by the wave packets form a spatio-temporal field. The field 
state is characterized by the alternation or intermittency factor γ of the 
turbulence [2] ([3], §35). When γ  <  1, the case of low frequency of 
generation, the turbulence is of an intermittent character. When γ  =  1, the 
case of regular high frequency, the perturbation dynamics is in an 
equilibrium state, and the turbulence is completely developed. 

Given all that, the notion concerning the free surface shape of the 
boundary layer implies its time-averaged position. The surface’s instan-
taneous shape is highly irregular even if γ  =  1, as verified by experimental 
data. This irregularity results from the discrete nature of origination of the 
primary perturbations. 
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The above reasoning, based on the wave nature of the turbulence, 
implies a certain wave mechanism of the parameter oscillations in the 
turbulent flow. However, the wave concept assumes one more mechanism 
of turbulent oscillations, which is concerned with travel, development and 
interaction of the vortices in the flow. This mechanism is similar to the one 
considered by L. Richardson [11]. 

This mechanism proceeds from the fact that the strong velocity 
gradient at the wall entails a vortex motion, and the vortices evolve and 
interact in the flow. However, we see here the problem that was mentioned 
above, i.e., the vorticity does not penetrate into the main potential part of 
the flow from the boundary layer, as follows from Thomson’s theorem. In 
addition, the vorticity localization within the boundary layer is in a stable 
state under the given conditions, according to a finding in ([3], §35). 
 Now, we have an opportunity to solve the problem in the framework of 
the wave approach to turbulence. The acoustic perturbation wave is known 
to freely cross the boundary layer surface, and this is the key to the solution. 

As is seen from equation (5.3), the expression for the velocity u differs 
from the formulas for pressure p and density ρ by an additional convective 
term. 

Owing to the difference, the velocity in the wave packet changes its 
sign a little bit later than the pressure and density do. As a result, the wave 
carries some quantity of the fluid along with the frozen-in vorticity, and 
transfers it from the boundary layer to the potential part of the flow. 

Interaction of the frozen-in vorticity with the potential flow of viscous 
fluid is determined by equation (2.19). The vortex as a kind of perturbation 
induces a circular motion of the fluid’s adjacent particles of the potential 
part of the flow. The angular Ω and linear u velocities of the fluid particles 
in two-dimensional flow are expressed as follows [43]: 
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The vortical motion transferred to the flow potential part by a 
perturbation wave creates therein some induced vorticity. The transferred 
vortex and induced vorticity are gradually smoothed and damped in the 
potential flow under the action of the viscosity friction represented in 
equations (5.4) due to the kinematic viscosity factor ν. This process generates 
potential flow perturbations comprising a broad range of the velocity u 
amplitudes directed in every ways. 

The vortices transferred by a sequence of perturbation waves create a 
motion that appears as a disordered oscillation field of the fluid velocity. 
These oscillations correspond to the interpretation of turbulent fluctuations 
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offered in [11]. Thus the wave conception of turbulent oscillations, or 
fluctuations as commonly said, implies two formation ways of the 
oscillations. 

One important difference between the two ways, following from the 
expression for the velocity u in equation (5.3), should be noted here. The 
first item in the expression causes the formation of velocity oscillations 
according to the first mechanism. The second item is responsible for the 
oscillations formed amenably to the second mechanism. The comparison 
shows that the first term in equation (5.3) is inversely proportional to the 
distance covered by the perturbation wave, r–1, whereas the second one is 
inversely proportional to the distance squared, r–2. 

Therefore, when r  >> a, the velocity oscillations are mainly 
determined by the first item, so that the velocity distribution within the 
wave packet becomes similar to the pressure and density distributions. The 
waves and oscillations related to the first mechanism exist for a relatively 
long time and cover rather a large distance. Since this process has not been 
analyzed in the literature so far, we will consider it in further detail. 

5.2  Perturbation waves in flow  

We have just seen that the wave front of a wave packet creates a spherical 
configuration in an infinite space filled with some medium at rest. When 
the wave propagates in a medium moving in a restricted space, e.g., in a 
channel, the wave front is distorted. The distortions arise, first of all, due to 
wave reflections from the channel walls, and secondly owing to the 
intricate velocity profile in the flow. 

Let us consider a steady flow in a channel formed by two planes, 
where the flow velocity profile is of the form U(z)  =  U0[4z(1–z)]1/m. A 
perturbation is assumed to arise on the lower plane, its center being located 
at some point with random coordinates rp (xp, yp, zp). The perturbations are 
observed at x0, y0, z0, as shown in Fig. 5.1. The image of the velocity profile 
U(z) is seen on the left from the channel scheme. 

Fig. 5.1. A perturbation originated on a wall of a flat channel 
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The wave packet profile in the vertical plane is depicted in Fig. 5.2. 
Hear the wave propagation relative to the onset point rp(xp,0,0) would be 
described in the upper half plane (without reflections) by the radius-vector 
ρ(ξ,η,ζ). The perturbation wave would pass through the observation point 
r0(x,0,z) only one time in this case. When the wave packet propagates in 
the channel, it passes through this point many times. After multiple 
reflections, the packet creates at this point gradually fading oscillations, as 
the lower graph in Fig. 5.2 illustrates. 

 

Fig. 5.2. The wave packet profile in a flat channel and velocity oscillations at the 
observation point r0 

The effect of the flow velocity profile U(r) on the character of the 
wave propagation can be determined using a known expression for  
the wave packet group velocity, V  =  (∂ω /∂k), where k denotes the wave 
vector, and ω(k) is the dispersion law. A simple dispersion relation may be 
applied to the fluid moving at some moderate velocity U (U  <<  c): 

.ckω = +Uk           (5.5) 

When the perturbation wave propagates in a flow, and the fluid velocity 
has some intricate profile, the wave front is distorted. In this case the path 
of some probe point and the shape of the wave front as a whole should 
depend not on the observation point distance r, but on the probe point 
trajectory length [44, 45]. Then, as the relations (5.3) suggest, the pressure 
p, density ρ, and velocity u in the wave packet, |ℓ– ct |  ≤  a, vary along the 
trajectory at ℓ  >> a according to the relations 
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where the function f (R/а) means the density or pressure distribution in the 
primary perturbation. 

Now we need to define the trajectory of the probe point. Let s be a unit 
vector directed along the tangent to the trajectory at the probe point, which 
is determined by the equation ([3], §68]): 
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[ ]1
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d c

=
l

s
U s  (5.7) 

When the fluid is at rest, U  =  0, the wave probe point moves at 
velocity V  =  ck /k. Accordingly, this point motion direction is s  =  ρ/ρ, 
and the chosen point of the wave moves along a straight line. If the  
fluid moves at constant velocity, U  =  const, then the point velocity is  
V  =  ck /k  +  U .  In this case the flow causes the wave to drift as a whole, 
and the vector s does not change its orientation, so that the wave keeps its 
spherical symmetry. Quite a different situation is observed near the wall, 
where U≠ const, and the trajectory of the probe point curves, as it follows 
from equation (5.7). 

Let us estimate the total deflection angle of the point trajectory in the 
flow velocity field U(z). Similar to equation (3.15), we assume that the flow 
velocity depends only on coordinate z, so that dU/dz  > 0 and U  =  0, 
when z = 0. 

Equation (5.7) can be rewritten in components of the vector s(sx,sy,sz): 
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Since sz  =  dz/dℓ by definition, integration of equations (5.8) gives: 
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 (5.9) 

where s0(sx0,sy0,sz0) are initial values of the vector s  and the components, 
and M(z)  =  U(z)/c is the Mach number of the flow at the ordinate z. 

Introducing polar ϑ  and azimuthal φ angles of the vector s, we obtain 
the equations for variable orientation ,{ }ϑ ϕ of the probe point trajectory in 
the form of a dependence on the trajectory initial direction 0 0,{ }ϑ ϕ  and 
coordinate z: 
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sin cos sin cos ( ) ,
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 (5.10) 

The variable trajectory orientation can be obtained from equations 
(5.10) in the form of the following two expressions [46, 47]: 
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 Our knowledge of the vector s gives us an opportunity to find the 
trajectory ℓ(r )  of the probe point moving in the field of the variable flow 
velocity. First, we find the trajectory ℓ(ρ)  in relation to the centre of the 
wave origin (without reflections), assuming that the point starts moving at 
the path length and coordinates ℓ  =  ξ  =  η  =  ζ  =  0,  when t  =  0. The 
point’s subsequent location is defined by dimensionless values of the 
coordinates ρ(ξ ,η ,ζ ) scaled by the channel height d. 

To be definite, we discuss the case when the perturbation arises on the 
bottom wall. According to equalities (5.10), the probe point coordinates of 
the trajectory depend on the path length ℓ and are determined by the 
following parametric differential equations [45]: 
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 (5.12) 

at the initial conditions 

  ξ ( 0 ) =η ( 0 ) = ζ ( 0 ) = 0. (5.12a) 

5.3  Distortion of the wave packet in channels 

Since the real wave propagates in a channel, say, formed by two plane 
walls, we need to use new coordinates related to the channel with the origin 
at x = 0, y = 0, z = 0. As before, the perturbation wave arises on one of 
the walls in the centre rp(xp,yp,zp) at some instant tp = τc/d in relation to 
the fixed time t  =  0. This time the radius-vector ρ(ξ ,η ,ζ) indicates 
location of the probe point relative to the center rp(xp,yp,zp) in the new 
coordinate system. Now the wave reflections from the walls should be 
taken into account in describing the wave configuration in addition to 
equations (5.12). 

The quantity n of the wave reflections in the channel under consider-
ation depends on the probe point ordinate ζ. Looking at the diagram shown 
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in Fig. 5.2, the quantity may be expressed in the form of n = In(ζ), where 
the sign In means the operation of taking the whole part of the value ζ. The 
quantity n is determined by the formula 
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Taking into account the place rp and time tp of the wave origin results in 
transformation of equations (5.12) to the following form [36]: 
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The effect of the flow velocity gradient on properties of the probe 
point trajectory depends on the angles ϑ and φ with other parameters being 
equal. To illustrate the effect, the trajectory is considered for n=0 in the 
plane ϑ =0, φ=0, where the influence is seen to be the best of all planes. 
Under the given conditions the angular relations (5.10) are reduced to the 
expression 

0 0
1/sin sin [4 (1 )] ,mM z zϑ ϑ + −=  (5.15) 

and the corresponding equations (5.12) take the form 
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 (5.16) 

The equality (5.15) suggests some valuable conclusions about properties 
of the probe point trajectory. If the trajectory’s initial direction belongs to 
the region of non-positive angles ϑ 0≤0, in Fig. 5.2 it corresponds to the 
left quadrant x≤ xp, then the probe point may move off from the wall for 
any arbitrary distance z, certainly within the channel height d. 

And vice versa, in the region of positive angles ϑ 0 > 0 and x>xp, right 
quadrant in the Fig. 5.2, there exist such quantities of the parameters M0, m 
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and of the angle ϑ 0≥ϑ*,  when the distance of the wave probe point from 
the wall does not exceed some upper limit z=z*. This limit corresponds to 
the angle ϑ =π/2. 

In other words, the set of these three parameters, M0, m and ϑ 0, 
determines the limit value of z*,  if the limit generally exists for the set. The 
quantity z* makes sense of the trajectory singularity. It is clear when the 
inverse function is treated. 

Under this condition, quantity z as an explicit function of M0, m and 
ϑ 0 can be deduced from formula (5.15): 

0

1 sin1 12 1 .
m

z M
ϑ−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

m  (5.17) 

The sign ‘minus’ before the square root corresponds to the lower wall, and 
the sign ‘plus’ relates to the upper wall. As we have agreed, the distance z 
possesses the limit value z* when ϑ =π/2 and ϑ 0=ϑ*. 

The expression (5.17) predicts an interesting dependence of the 
ordinate z* on the initial angle ϑ 0. The ordinate is a complex number 
within the angle interval ϑ 0< ϑ*,  so that the trajectory of the probe point is 

the angle interval ϑ 0≥ϑ* is a real number. The function z*(ϑ 0) in the 
interval has a maximum, while the function ϑ 0(z) discontinues at the point 
z*. The function z*(ϑ 0) on the right-hand side of point z*, in the interval 
ϑ 0>ϑ*, has the same maximum. Hence the trajectory describes some kind 
of an arc-wise curve to return again to the wall. 

The function z*(ϑ 0) depends, as seen from expression (5.17), not only 
on the initial angle ϑ 0, but also on the parameter m and velocity M0. The 
graphs of the function are depicted in Fig. 5.3 as the surfaces z*(m, M0,ϑ 0) 
for the parameters m  =  1, 5 and 10. 

 

 

Fig. 5.3. Function z*(m,M0,ϑ0) for m = 1, 5, 10 

channel with height d = 1 cm. The polar angle ϑ0 is replaced in the graphs 
with its trajectory inclination angle relative to the wall, χ0  = π /2 –ϑ 0. The 

The graphs plotted in Fig. 5.3 have been computed for air in a 

limited only by the walls of the channel. At the same time, the ordinate in 
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Reynolds number in this instance reaches its critical value at the velocity 
M0  ≈  0.01. Wherefore the function z*(m, M0, χ0) is plotted in the velocity 
interval M0∈[0, 0.01] for the flow’s laminar mode, when m = 1. As to 
the flow’s turbulent mode, when m = 5 and m = 10, the interval comes 
to M0∈[0.01, 0.3], thus the fluid can still be considered as non-compressible. 

The surface z*(m, M0, χ0) divides the perturbation wave into two 
sectors. In the sector of small angles χ0 (ϑ 0→π/2), the parameter z* being a 
real value defines the trajectory ordinate maximum and its subsequent 
motion to the wall. In the sector of large angles χ0 (ϑ 0∈[0,ϑ *] ), the 
parameter  z* is a complex value. Therefore there exists no backtracking 
point at all, so that the trajectory leaves the field of the flow velocity 
gradient to make its way into the potential part of the flow. 

The shape of the surface z*(m, M0, χ0) and size of the angle ϑ* (or χ*) 
depend on the flow mode. Indeed, when m = 1, the probe point backward 
motion does occur, if the trajectory belongs to a small sector of the wave 
adjoining a wall, ϑ 0 > 85°. Hence, only a very small portion of the wave 
energy remains within the boundary layer to create perturbations. 

When the parameter m increases, this sector widens, so that if m = 10, 
the probe point backward motion occurs in the large angle interval 
ϑ 0 > 50°. The larger portion of the wave energy is used for creation of 
perturbations within the boundary layer. Besides, while the parameter m 
grows, the function z*(ϑ 0) increases more and more steeply. 

To study special features of the trajectory, it is better to deal with its 
dependence in the explicit form, z(x). For that purpose we take advantage 
of the parametric equations (5.16). Let the channel be constituted of two 
parallel planes, and the perturbation arise at rp  =  tp  =  0. Simple 
transformations of the equations lead, for these requirements, to the 
following equation for the trajectory: 
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 (5.18) 

Equation (5.18) describes both kinds of trajectory that we have 
discussed. The trajectory z(x) in the region of the angles ϑ 0< ϑ* is 
determined by the usual numerical integration of (5.18), whereas the 
integration in the angle region ϑ 0> ϑ* has some specificity. The issue is 
that the derivative dx /dz tends to infinity and changes sign in the vicinity of 
the point z*. Therefore, it is necessary, first, to define the position x* of the 
trajectory maximum z* relative to the wave centre rp, and then to integrate 
separately at the left and at the right of this maximum. 

The Program 5.1 is an example of the problem solution. The trajectory 
is calculated for the flow parameters m  =  5 and M0  =  0.05, with ϑ 0  = 75°. 
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Program 5.1 Computation of trajectory of the wave probe point 

m = 5; M0≈0.05; ϑ 0=75°;  
t0 =πϑ 0 /180; ϑ =ArcSin[Sin[πϑ 0 /180]+M0(4z(1–z))1/m;  

0

0

1 1 Sin[t ]
1 1 ;

2

m
*z

M
−

= − −
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

x*=NIntegrate[Tan[ArcSin[t0]+M0(4z(1–z))1/m], {z,0,z1}]; 
z1 = ( 1 –10– 8) z*; x1 = ( 1 +10– 4) x*; 
xL= NIntegrate[Tan[ArcSin[t0]+M0(4z(1–z))1/m],{z,0, i(z1/2000)}]; 

xR= NIntegrate[Tan[ArcSin[t0]+M0(4z(1–z))1/m],{z, z1, z1(1–(i/2000)}]; 

xLi= Table[{xL, i(z1/2000)},{i,0, 2000}]; 

xRi= Table[{xR+x1, z1(1–(i/2000)},{i,  2000}]; 
g1=ListPlot[xLi,PlotJoined→True, Frame→True, 

PlotRange→{{0,2.1x*}, {0,1.1z*}}, 
FrameLabel→{“x”,”z”}, DisplayFunction→Identity]; 

g2=ListPlot[xRi,PlotJoined→True, Frame→True, 
PlotRange→{{0,2.1x*}, {0,1.1z*}}, 
FrameLabel→{“x”,”z”}, DisplayFunction→Identity]; 

gzx=Show[{g1,g2}, DisplayFunction→$DisplayFunction]; 

 
As usual, the first two lines of the program contain some set of initial 

conditions and formulas for definition of the parameters in practical use. 
The next three lines include computation of the ordinate z* and position x* 
of the maximum, and then the coordinates of z1, x1, the nearest to z*, x*, 
where the calculation can be fulfilled. 

After that the dependences of abscissa xL on ordinate z along the 
trajectory left part, x< x*, and the dependence of abscissa xR on ordinate z 
along the trajectory right part, x> x*, are determined. These data are 
summarized in tables xLi and xRi. In the end, the procedures g1, g2 prepare 
the table data for visual representation, and the operation gzx plots  
the dependence graph. 

The program provides a computation for one complete cycle of the 
probe point motion. The cycle includes the phases of the point moving off 
from the wall and its backward motion. However, the trajectory can be 
computed for any length according to the amplitude’s prescribed attenuation. 
In particular, the trajectory may overstep the limits of one cycle. 
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5.4  The wave packet in the boundary layer 

To gain a more comprehensive understanding of the effect of the flow 
velocity gradient on certain features of the disturbances, we consider the 
wave shape in the flow of laminar and turbulent modes. The shape 
variation can be ascertained by comparison of the trajectories of some 
probe points. We choose, for demonstration, trajectories at seven initial 
orientations ϑ0 in the flow of the velocity profile (3.15), M(z) = M0[4z(1–
z)]1/m, at two couples of the parameters, m =  1, M0  =  0.005 (laminar 
mode) and m =  5, M0  =  0.05 (turbulent mode). Also, some useful 
information can be obtained by comparison of the computed trajectories 
with the imaginary ones that might occur in the hypothetical flow with m = 
∞. As has been said in comments to equation (5.7), the trajectories in the 
latter case do not bend but rather appear as straight lines. 

The problem in all enumerated alternatives is solved by means of 
Program 5.1. Outcomes of the solutions for the chosen parameters are 
represented by diagrams in Fig. 5.4. The wave front in the laminar flow is 
on the left, and the front in the turbulent flow is on the right. The wave fronts 
on both graphs correspond to the time instant t = 1 (in dimensionless units). 
Since the flow velocity is small in comparison with the wave velocity, the 
wave front looks like a half-round with radius ℓ = 1. The radial lines 
represent the trajectories for the initial angles ϑ0 = 0, ±25, ±50, ±75° for all 
the mentioned values of the parameters M0 and m, including m = ∞. 

 

 
   m =  1 and m = ∞, M0  =  0.005        m  =  5 and m = ∞, M0  =  0.05 

Fig. 5.4. Trajectories at various flow velocity, parameter m and angle ϑ 0 

As follows from the graphs in the figure, when the perturbation wave 
propagates in the laminar flow, M(z)  =  M0[4z(1–z)], the trajectory 
curvature is too insignificant to be detected, whatever the angle ϑ0  might 
be. Also, the trajectories at m = 1 and m = ∞ practically coincide and appear 
to be straight lines, at least for the picture scale. As to the turbulent flow, 
when the flow velocity is M(z)  =  M0[4z(1–z)]1/5, every trajectory 
deflects from the straight line (m = ∞) clockwise. The area of the deflection 
is shaded in the figure. The amount of deflection depends on the initial 
angle 0ϑ , and it is most considerable at ϑ 0  = 75° of all the chosen angles. 
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While |ϑ0 |< |ϑ*| ,  the trajectory deflection from the initial direction is 
small, and it can be neglected similarly to the laminar flow. If ϑ0⇒–π/2, 
the trajectory moves away from the wall. But when ϑ0>ϑ* and ϑ0⇒π/2, 
the deflection becomes more and more essential, and the effect must 
necessarily be taken into account. The effect’s fundamental importance is 
illustrated by two trajectories at different values of the parameter m, with 
other parameters being equal, namely, the initial angle ϑ0 =  83° and flow 
velocity M0  =  0.05. The trajectories are shown in Fig. 5.5 [34, 47]. 

Fig. 5.5. The trajectories at m = ∞ and m = 5 with flow parameters ϑ0 = 83°,  
M0  =  0.05 

It is astonishing to see such unlike curves resulted under nearly 
identical conditions. However it is necessary to note that the trajectory 
calculation for the angle ϑ 0  =  83° has been fulfilled by means of Program 
5.1 for a formally the case, when the trajectory corresponds to an infinitesi-
mal angular aperture. Meanwhile such a trajectory cannot exist in reality, in 
particular when the wave packet thickness 2а exceeds considerably the 
layer depth z* typical for initial angle ϑ 0  =  83°. 

Therefore we will continue consideration for the sake of the principal 
importance of trajectory behavior, but when the angle ϑ0  is large enough 
though does not belong in close proximity to angle π/2. Thus we trace the 
deflection of the probe point trajectory from the straight line in the region 
of initial angles ϑ0  = 70, 73, 75, 76, 77°. In order to simplify the graphic 
picture, we consider only the narrow flow layer, z∈[0, 0.1], and the 
trajectories by the length ℓ≈1.2 each at the primary perturbation radius 
being a  =  0.04. 

The wave amplitude of such perturbation within the distance ℓ≈1.2 
decreases approximately 30 times. This means that consideration of the 
amplitude’s subsequent lessening may be omitted, having in view the 
phenomenon illustration. Integration of equation (5.18) for the listed initial 
angles ϑ 0 gives the trajectories presented in Fig. 5.6 [35, 36]. 
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Fig. 5.6. Trajectories of the probe point near the wall 

The trajectory at the initial angle ϑ 0 =70° leaves the layer z∈[0, 0.1], 
that maintains the motion direction almost invariable. But when the angle 
runs up to ϑ0 = 73°, it already describes an arc. The complete cycle is of the 
length ℓ ≈ 4.5 and altitude z* ≈ 0.15 in this case, and the trajectory maximum 
can not be seen on Fig. 5.6, for it is beyond the limits of the graph. 

The perturbation within such a length practically fades away (accurate 
within ~3%) before the probe point arrives at the end of the complete cycle. 
There remain within the selected layer only the trajectories with initial 
angles ϑ0  = 75, 76, 77°. While the path length covered by the probe point 
is ℓ  ≈  1.2, each of the trajectories with these initial angles has time to 
describe more than one cycle, interlacing with one another. Thus, for 
example, in the cross-section х  =  1.16 we observe trajectories with the 
sequence of the angles 75-77-76°, instead of the angle sequence 77-76-75°, 
as it might be expected. 

Of course, the angle ϑ0 varies continuously within the perturbation 
wave from –90° to +90°. So that when ϑ 0  ≥ 75°, a multitude of the elemen-
tary trajectories intermix completely within the layer z*(75°)  ≈  0.04. At all 
that, there appear some spots on the wall surface, in which the wave 
reflection positions simultaneously coincide with each other. For instance, 
such a spot is observed around the abscissa х = 0.63 on the graph in Fig. 
5.6. 

The trajectory curvature’s strong dependence on the angle ϑ 0  in the 
turbulent flow has a simple explanation. The deflection is determined by 
the path length ℓ  of the wave probe point, which passes through the flow 
field of the heavy velocity gradient. The gradient in the fluid laminar 
motion is small throughout all the flow cross-section, as seen in Fig. 3.1. 
Hence the trajectory curvature and the deflection from the straight line 
seem insignificant in the laminar flow. 

As to the turbulent flow, it is quite another matter. The velocity 
gradient in the main potential stream is small too. But the gradient is 
reinforced harshly, as far as the ordinate z tends to the wall. And a line that 
would go near the wall in the layer by thickness δ  in the direction ϑ0 is of 
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the length ℓ0  ≈  δ /cosϑ0  which rapidly increases when the angle ϑ0  grows. 
Curvature of the line going through the flow gradient field strengthens this 
tendency much more still, i.e., the distance ℓ lengthens much quicker as 
compared with ℓ0. Therefore, the trajectory curvature displays strong 
dependence on the initial angle ϑ0 . The strengthening within a narrow 
range of the initial angles ϑ 0  near the wall results in a rather interesting 
phenomenon. 

The trajectories at this narrow range of the angles ϑ0  are concentrated 
at some certain distance z. When the angle diminishes slightly, the 
trajectories leave the wall vicinity to propagate freely in the main potential 
flow [33, 34]. This abrupt change of the trajectory behavior is demonstrated 
by the graph in Fig. 5.7. Here solutions of the equations (5.18) are 
represented for the interval ϑ0∈[72,73°] with the argument step Δϑ0 = 0.1°. 

 

Fig. 5.7. Trajectories near the wall for a set of the angle ϑ 0∈[72,73°] 

Here the length of the trajectories amounts to ℓ  = 5 which means 100-fold 
decrease of the wave amplitude. 

The trajectory curvature dependence on the initial angle ϑ 0 has one 
more important consequence. There are some spots on the wall surface 
where several wave packets of thickness 2а are simultaneously reflected 
from the wall. This implies the pressure and density local augmentation in 
the layer by height z  ≤  a. A wave propagation in a medium with a variable 
density is known to be a nonlinear process ([3], §66). Nonlinearity is one of 
the causes of wave energy dissipation. The nonlinear interaction in the case 
under consideration occurs in the same layer where the trajectories 
interlace. Hence, there appears an additional opportunity to estimate the 
characteristic dimension of the primary perturbation a [34, 35, 47]: 

a  =  z*(ϑ *). (5.19) 

Recall that, in a thin layer of the flow, z  <<  z*, immediately adjoining 
the wall surface, the fluid moves under the influence of the molecular 
viscous friction. The velocity is small throughout this thin layer, varying 
from zero at the wall surface to values of the order of U  ~ (σ /ρ)1/2 at z  ~  
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ν (ρ /σ)1/2. Herein the velocity distribution is a linear function of the 
ordinate z (2.13). 

Researchers used to call this thin layer as the laminar sublayer because 
of its special characteristics. Though broad-minded, L.D. Landau ([3], §42) 
preferred the term “viscous sublayer”. He emphasized that “the flow in the 
viscous sublayer is turbulent.” “In this respect the name ‘laminar sublayer’ 
still sometimes used is unsuitable. The resemblance to laminar flow lies 
only in the fact that the mean velocity is distributed according to the same 
law as the true velocity would be for a laminar flow under the same 
conditions. The fluctuating flow in the viscous sublayer has some peculiar 
features that have not yet been given an adequate theoretical explanation.” 

However, the wave conception of turbulent oscillations gives an 
adequate explanation for the turbulence nature in the viscous sublayer. 
Indeed, the velocity oscillations in the wave packet imply some energy flux 
cρu2 ([3], §65). As the velocity on the wall turns into zero, the velocity 
oscillations vanish at the wave packet reflection, and their energy is 
transmitted to the oscillations of pressure and density. That is why there is 
no sharp boundary between the boundary layer and the rest of the flow. 

The wave approach to the problem gives us an opportunity to size up 
the viscous sublayer thickness δL. The thickness obviously depends on the 
distribution of the parameters in the primary perturbation, i.e., on the 
function f [(ℓ–ct)/a]. With various kinds of functions, the value of δL may 
be estimated as 

δ ~ (0.1 0.2) .−L a  (5.20) 

We should make an essential remark. As it follows from all said, the 
trajectory intersections in the layer z < z* form some new peculiar spatio-
temporal field of the parameter oscillations. To understand the field’s true 
sense, we should have in view, that the equation (5.7) used in the above 
consideration has been deduced in the approximation of geometrical 
acoustics (see [3], §67), when the trajectory is actually the sound ray ([3], 
§68). But the intersections of the sound rays mean that geometrical 
acoustics is inapplicable in these conditions, for the diffraction effects. We 
only may state, that the regular shape of the wave with a spherical front 
terminates to exist as a single whole. 

The facts concerning the wave propagation mode in the layer by 
thickness z* emphasize sharp distinction between the main flow and the 
one in the layer. The surface at the level of the ordinate z* is formed by the 
trajectories along which the perturbations remain still of significant 
amplitudes, at least within one cycle. Also the distinction implies the strong 
gradient field of the flow longitudinal velocity and vorticity in the layer, 
which is the sign of the boundary layer. As the graphs in Figs. 5.6 and 5.7 
(m  =  5, M0  =  0.05, ϑ * =  75°) show, the boundary layer definition 
corresponds to the condition [36] 
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δ  ≈  z*(ϑ *)  =  0.04.  (5.21) 

The analysis carried out above has allowed us to reveal some physical 
processes in the flow field of the strong velocity gradient, owing to which 
the boundary layer and viscous sublayer are formed. Also, the analysis has 
allowed us to estimate thickness of the boundary layer and sublayer, as well 
as the primary perturbation size. 

It goes without saying, that the parameter primary perturbations 
determine the boundary layer structure. But the perturbations exert influence 
upon the structure of the main flow as well. The main flow structure is 
investigated in the next section. 
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6 
Spatio-temporal field of perturbations in channels 

6.1  Computing technique of wave configuration in channels 

According to the estimations given in equation (4.17), formation process of 
primary perturbations of flow parameters runs within the small volume  
V practically in a trice, as compared with other events in the flow. These 
primary perturbations propagate throughout the flow as acoustic wave 
packets damping gradually (5.3). 

The structure of the flow perturbations in channels is defined by 
propagation of the primary wave packets, direct and reflected from the 
channel walls, and by features of the sequence in which the perturbations 
arise on the wall surfaces. In its turn, this structure representing the 
propagating wave distribution produces the spatio-temporal field of the 
parameter oscillations. 

The spatio-temporal field in a channel depends besides on the 
configuration of the channel, which transforms the shapes of the waves 
after their multiple reflections from the walls. The shape of each wave front 
can be computed by means of the relations (5.13), (5.14). These equations 
are strongly simplified, when the main part of the flow is considered, where 
the flow velocity gradient can be neglected [45]: 
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In[ζ] In[( ) cos ].ϑ= = −n t tp  (6.2) 

Let us appeal to Fig. 5.2 and remember, that the ordinate ζ 0 of the 
perturbation front at some observation point r0(x0,y0,z0) is simply equal to 
this point ordinate, ζ 0 =  z0 . When the perturbation passes the observation 
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point after n reflections, the wave front ordinate ζ n coincides with the 
ordinate zn of the virtual image of the observation point, rn(x0,y0, zn). 

The first virtual image is simply a mirror image of the observation 
point in the wall plane. Its ordinate ζ1 is to be expressed by the evident 
relation ζ1 =  2d–ζ 0. The next reflections add to the imaginary ordinate 
some value which depends on whether the reflection number n is even, or 
odd. The first variant corresponds to the quantity 2(d – ζ 0), whereas in the 
second case it amounts to 2ζ0. All this means, that 
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 (6.3) 

 
The diagram in Fig. 5.2 illustrates the simple rule for the first three virtual 
images, r1, r2, r3 of the observation point r0. 

The convenient rule can be easily extended to the case of a channel in 
the form of a pipe, in particular with a polygonal cross-section [45]. The 
calculation pattern of the perturbation wave configuration in such a pipe 
works on the same principle as in the plane channel, when the relations 
(6.1)–(6.3) are employed. Though the wave reflections simultaneously 
from the pipe several sides need to take into account the imaginary points 
for every side. 

To demonstrate the computing technique for determining the wave 
configuration in the pipe of a polygonal cross-section, we shall consider the 
pipe with a square section. First of all, it must be taken into account that the 
wave reflection quantity per a cycle trebles in the pipe of square section, 
and the ordinate of every imaginary point is defined not by one, but by two 
ordinates. These ordinates change according to formula (6.3) in which the 
length of the square side d is implied as a scale, and the coordinate system 
is similar to the one of Figs. 5.1 and 5.2. 

The perturbation wave configuration evidently does not depend on  
the abscissa x of the perturbation origin site of the pipe. However the 
configuration does strongly depend on the wave’s initial coordinates on the 
pipe walls, i.e., in the directions of the axes y and z. We denote the initial 
coordinates on the walls parallel to the plane yx at z  =  0 through yp0, and 
through yp1 at z  =  1, where z is a dimensionless value. In similar way, the 
initial coordinates on the walls parallel to the plane zx can be designated as 
zp0 (y  =  0) and zp1 (y  =  1 ). Then the coordinates yp0 and zp0 are 
evidently to vary arbitrary in the limits from 0 to 1, whereas coordinates 
yp1 and zp1 may only be equal to 0 or 1. 

Now it is necessary to define the number of reflections for the wave 
moving from any one wall of the channel toward the others. We will 
distinguish the wave motion from the horizontal walls, when z = 0 or z = 1, 
and from vertical walls, when y  =  0 or y  =  1. To avoid misunderstanding 
henceforth, the wall notations are shown by the diagram in Fig. 6.1. Each 
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of the mentioned directions implies wave reflections from three other walls, 
and subsequent reflection from the wall of the wave’s start. 

 

 
Fig. 6.1. Coordinate system concerning the channel in use 

Let the reflection number for the wave starting on one of the horizontal 
walls at z  =  0 (or z  =  1) be named ny0, ny1, nyz, when correspondingly  
y  =  0, y  =  1, z  =  1 (or z  =  0). In the same manner, if the wave starts on 
one of the vertical walls at y  =  0 (or y  =  1), the reflection number from 
one of the walls at z  =  0, z  =  1, y  =  1 (or y  =  1) is designated as nz0, 
nz1, nzy, accordingly. 

By analogy with formula (6.2), the quantity n of the wave outgoing 
from one of two horizontal walls (z  =  0 or z  =  1) and reflected from one 
of the other walls is defined by equations (6.4a). In a similar manner, the 
quantity n of the wave outgoing from one of two vertical walls (y  =  0, or 
y  =  1) and reflected from one of the other walls is defined by equation 
(6.4b) [45]: 

Equations for the waves outgoing from horizontal walls: 
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Equations for the waves outgoing from vertical walls: 
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Parameter t in a channel with a square cross-section is the current time 
(in dimensionless units), just the same as in the previous case of a two-
dimensional flow. Parameters tpy and tpz, relating to the horizontal and 
vertical walls, mean a time delay of a perturbation origin concerning the 
instant t  =  0. These parameters may be of positive sign, real delay, or 
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negative one, when the perturbation arises before the instant t  =  0. The 
polar angle varies within interval ϑ∈[0,π]. Three ordinates ζ appear for 
three reflections of the wave from three different walls of the pipe, instead 
of one ordinate ζ , to describe the reflected wave configuration. 

6.2  Wave front configuration appearance in channels 

While a perturbation propagates in a plane channel, a current configuration 
of the wave reflected from one wall during one reflection cycle is specified 
by variables x,y,z which are determined by relations (6.1). The wave 
configuration in a pipe depends on the reflections from three walls during 
one cycle, and three parameters are necessary for each variable of the set 
x,y,z. The formulas defining the parameters do not basically differ from the 
ones presented in equation (6.1). Therefore, we can save room and consider 
the example of the wave configuration in the flow plane φ  = π/2, which 
comes through the abscissa x =  0. 

The reflected wave configuration in the pipe under these conditions is 
specified by new variables y0, y1, zy instead of y, and in much the same 
way by the variables z0, z1, yz instead of z. These new variables can be 
evaluated by means of equations (6.5a) that replace the second equation in 
system (6.1), and by equations (6.5b) that replace the third equation in 
system (6.1). 
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As seen from the equations, a probe point position on the wave front is 
defined now by the coordinates {y0, yz}, {zy, z1} in the region of polar 
angle ϑ  <  π/2, and by the coordinates {y1, yz}, {zy, z0}, when ϑ  ≥  π/2.  

Now we can apply the above results to investigate configurations of 
the perturbation wave front in a two-dimensional channel and in a pipe of 
square cross-section, assuming the test volumes of the plane channel being 
of the sizes dx =  dy = 8, dz  = 1, and of the sizes dx =  6  and dy = dz  = 1 
in the pipe. As to the two-dimensional channel, the wave front configuration 
is sought for the primary perturbation parameters tp = 0, xp = 1.2, yp = 3 
and zp = 1 (the upper wall). In the pipe these data are supposed to be tp = 0, 
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xp = 3, yp = 0.6 and zp = 0 (the low wall). To be definite, we seek the 
configurations at the instant t  =  6.5 (the flat channel) and at t  =  2.1 (the 
pipe). 

As has been shown in the beginning of the chapter, the wave front 
configuration for the main flow in the flat channel is computed by means  
of formulas (6.1) and (6.2). Program 6.1 can serve for computation and 
plotting of the wave configuration at the indicated conditions and a = 0.03. 
Program 6.1 Computing of a wave configuration in a flat channel at pt=6.5, 
xp=1.2; yp=3; zp=1  

dx = 8; dy = 8; dz = 1; 
tp = 6.5; xp = 1.2; yp = 3; zp = 1; 

n = IntegerPart[(t − tp) Cos[ϑ] + zp]; 
x = (t − tp) Sin[ϑ] Cos[ϕ] + xp; y = (t − tp) Sin[ϑ] Sin[ϕ] + yp; 
z = ((t − tp) Cos[ϑ ]+ zp − 2 IntegerPart[(n+1)/2]) (−1)n; 
gr1= ParametricPlot3D[{x, y, z},{φ, 0, 2π},{ϑ, 0, π /2}, Boxed→True, 

PlotRange→{{0, 8},{0, 8},{0, 1}}, BoxRatios→{8, 8, 2}, 
Ticks→{Automatic,Automatic,{0, 1}},  
AxesLabel→{"x", "y", "z"}]; 

 
The first line of the Program indicates the channel volume under 

investigation. The second line assigns quantities to parameters of the primary 
perturbation, to the origin instant and coordinates of the perturbation center. 
Formulas (6.1), (6.2) by which the wave front coordinates at the instant t 
are computed are given in the next three lines. The last section of the 
program contains a set of parameters for formation of the image of the 
perturbation wave front for the chosen instant. 

The same purpose in the pipe is attained by employing relations like 
(6.4) and (6.5). The pattern of computations is presented in Program 6.2. 

Program 6.2 Computing of wave configuration in a pipe of square section at 
pt=2.1, xp=3; yp=0.6; zp=0 

dx = 6; dy = dz = 1; 
tp = 2.1; xp = 3; yp = 0.6; zp = 0; 

ny1=IntegerPart[t Sin[ϑ]Sin[φ] + yp]; 
ny0=IntegerPart[t Sin[ϑ] Sin[φ] + yp −1]; 
                    nyz=IntegerPart[t Cos[ϑ]; 
nzy=IntegerPart[t Sin[ϑ] Sin[φ]; 
                    nz1=IntegerPart[t Cos[ϑ] + yp];  
                    nz0=IntegerPart[t Cos[ϑ] + yp −1]; 
xy=(t Sin[ϑ] Cos[φ]) + xp; 
y1=(t Sin[ϑ] Sin[φ] + yp − 2 IntegerPart[(ny1+1)/2] (−1)ny1; 
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y0=(t Sin[ϑ] Sin[φ] + yp − 2 IntegerPart[[(ny0+1)/2] (−1)ny0; 
yz=(t cos[ϑ]+ zp − 2 IntegerPart[(nyz+1)/2] (−1)nyz; 
gr1=ParametricPlot3D[{xy, If [φ≤π, y1, y0], yz}, {φ, 0, 2π},{ϑ, 0, π},  
  Compiled→True, PlotRange→{{0, 6}, {0, 1}, {0, 1})}, Boxed→True,  
  Ticks→{Automatic, {0, 1}, {0, 1}}, AxesLabel→{"x", "y", "z"}, 
  AxesEdge→{{−1, −1}, {1, −1}, {−1, −1}}];  
 

This program is prepared precisely in the same manner as Program 6.1, 
with only one difference. The wave reflections number is found by means 
of formulas (6.4), and the probe point coordinates are calculated according 
to equations (6.5). Outcomes of the computation can be seen in Fig. 6.2. 
The left picture shows the wave front configuration after six reflections 
from two walls of the flat channel. On the right is seen the front 
configuration after two reflections from four walls of the pipe. 
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Fig. 6.2. A wave front configurations in a flat channel and in a pipe after six and 
two reflections respectively 

As is seen from Fig. 6.2, the wave front in the flat channel after six 
reflections looks like a grooved surface with variable distance between the 
folds, and varying orientation of a normal to the wave front surface. 
Generally, orientation of the normal coincides with the direction of the 
velocity oscillations in the wave packet, and gives some rough notion about 
the structure of the oscillations in the flow. Hence one perturbation in the 
channel seems to create well-ordered oscillations of the flow parameters. 

While propagating in the pipe, the perturbation wave front changes its 
spherical shape much faster. Herein a single wave creates in a short time 
such a perturbation configuration, that the simple source of its origin can 
hardly be guessed correctly. This appearance of perturbations is perceived 
not as an ordered structure, but rather as some random system of 
independent disturbances. 

The pictures in Fig. 6.2 display the wave front in fixed instants of time. 
However a small improvement of Programs 6.1 and 6.2 allows us to 
describe the wave front evolution in time and simultaneous propagation of 
several waves. The pattern in Fig. 6.3 shows the picture of propagation of 
two waves arisen at different sites of a flat channel, and at different time 
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instants. In fact, Fig. 6.3 demonstrates the process of superposition by the 
example of two waves. 

Notice that the wave configuration in Fig. 6.3 resembles, to a certain 
extent, the image of one wave reflected from the walls, shown in Fig. 6.2. 
Looking at the pictures in Figs. 6.2 and 6.3, we may think that structures 
being formed by any sequence of the perturbation waves are of great 
interest. 

 
 Fig. 6.3. Superposition of two waves in a flat channel  

6.3  Structure of flow perturbations in channels 

We proceed now to study the wave structures formed by a sequence of 
perturbations. All the waves originate on the surfaces of the walls, however 
they differ from each other by coordinates rp and instants tp of the 
origination. The structures are considered in the chosen conditions, i.e., in a 
flat channel and in a pipe of square section. The coordinates and instants of 
the primary perturbation origins are assumed to follow the law of random 
distribution. Some other laws will be discussed below in brief. 

The process of structure formation is observed in some arbitrary 
though limited time interval T, including steady state of the structure, so the 
result does not lose generality. For this purpose, every wave is taken into 
account during all its lifetime τ, while the wave amplitude exceeds, say, 
1/40 of the initial amplitude (at the radius a  =  0.03). Also, a certain mean 
rate K of the wave origin in dimensionless time units with the scale d /c (or 
some quantity N of the perturbations arising during the time interval T) 
should be introduced to compute the structure. With these remarks we 
present a program for computing the perturbation structure in a flat 
channel. 

Program 6.3 Evolution of perturbation structure in a flat channel, dx=dy=5, dz =1 

d=1; T=4; τ=2.8; SeedRandom[NUM];  
xp=Table[Random[Real, (–1, 6)],{100}]; 
yp=Table[Random[Real, (–1, 6)],{100}]; 
zp=Table[Random[Integer], {100}]; 
tp=Table[τ– i (T+τ ) /100, {i, 100}]; 
x = (t+tp) d Sin[ϑ] Cos[φ]+xp; 
y = (t+tp) d Sin[ϑ] Sin[φ]+yp; 
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z = d ( –1)IntegerPart[(t+ tp)d Cos [θ]+zp ]× 
   ×({(t+tp) d Cos[ϑ]+zp–2IntegerPart[((t+tp)dCos [ϑ]+zp]+1)/2]);  
Do[ParametricPlot3D[Evaluate[ 
   Table[If[0≤ t+tp[[i]]≤τ ,{x[[i]],y[[i]],z[[i]]},{0,0,0}],{i,1,100}], 
   {φ, 0, 2π},{ϑ, 0,π/2}, PlotRange→{{0, 5},{0, 5}, {0,1}, Boxed→True, 
   Ticks→{Automatic, Automatic, {0, 0.5, 1},{t, 0, T, T/n}]; 

The program starts with the problem’s initial conditions such as  
the channel height d, observation time T, wave lifetime τ, and law of the 
perturbation origins. The quantities of the places rp and instants tp of the 
perturbation sequences are generated as random numbers by command 
SeedRandom [NUM] of the system Mathematica, where NUM is usually a 
current time of day measured in small fractions of a second. However a 
fixed quantity has to be used in our case to provide the opportunity for 
structure evolution observation at the same probability distribution. 

This basic number NUM = 29174083549372085208 is used in 
computation of distributions of the primary perturbation positions rp(xp, 
yp, zp), and corresponding time instants tp, as the next four lines show. The 
expressions for the parameters include information concerning the channel 
volume where the perturbations arise, and the quantity of the perturbations 
N = 100, that provides the origin mean rate K = 25. 

Coordinates x, y, z of any arbitrary point on the wave front surface for 
every initial position rp(tp) are represented by formulas in the next lines. 
And in the end the command Do plots the images of all the wave fronts at 
one instant t after another within the range t∈[0,T]. As a matter of fact the 
program produces animation of the perturbation structure evolution with 
the step T/n. 

The structure on the left in Fig. 6.4 demonstrates a frame from the 
picture series computed by Program 6.3. While copying the frame, the 
process of its duplication has been interrupted to show the structure from 
within. The picture on the right in Fig. 6.4 depicts the other example of the 
structure for rather different terms. Here are two sets of the determinative 
parameters used in computations for the left and right pictures: 

dx=dy=5, dz =1 r p∈{[-1, 6], [-1, 6], (0, 1)}, T=4, τ=2.8, NK = 25; 
 dx=dy=8, dz =1, r p∈{[-2, 10], [-2, 10], (0, 1)}, Т =10, τ=10, K = 1 . 

Comparing the two pictures proves that the difference in the parameters 
becomes apparent due to the structure clear-cut distinction. 

In the next chapter we shall return to the question. At present we 
consider evolution of the structure formed by a random sequence of 
perturbation waves in a pipe of square section. A pattern of the calculation 
can be constructed by using the technique employed in Program 6.2 for 
one wave propagation within the pipe, and in Program 6.3 for the 
sequence of waves in the flat channel. Combining these two programs 
results in Program 6.4.  
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Fig. 6.4. Structures of perturbationsoo in a plane channel 

Program 6.4 Structure of perturbations in a pipe at wave sequence 
 
d = 3; dx=10; dy=dz=3; τ=1.2; N=12; t = 0; SeedRandom[357204]; 
xyp=Table[Random[],{N/2}]; xzp=Table[Random[],{N/2}]; 
yyp=Table[Random[],{N/2}]; yzp=Table[Random[],{N/2}]; 
zyp=Table[Random[],{N/2}]; zzp=Table[Random[],{N/2}]; 
typ=Table[Random[],{N/2}]; tzp=Table[Random[],{N/2}]; 
ny1=IntegerPart[(t+τ typ) Sin[ϑ]Sin[φ]+yyp]; 
ny0=IntegerPart[(t+τ typ) Sin[ϑ]Sin[φ]+yyp–1]; 
        nyz=IntegerPart[(t+τ typ)  Cos[ϑ]+yzp]; 
nzy=IntegerPart[(t+τ tzp) Sin[ϑ]Sin[φ]+zyp]; 
        nz1=IntegerPart[(t+τ tzp)  Cos[ϑ]+zzp]; 
        ny0=IntegerPart[(t+τ tzp)  Cos[ϑ]+zzp–1]; 
xy = d((t+τ typ) Sin[ϑ] Cos[φ] ) +dx xyp; 
y1 = d((t+τ typ) Sin[ϑ] Sin[φ] +yyp–2 IntegerPart[(ny1+1)/2]) (–1)ny1; 
y0 = d((t+τ typ) Sin[ϑ] Sin[φ]+yyp–2 IntegerPart[ny0/2]) (–1)ny0; 
yz= d((t+τ typ) Cos[ϑ] +yzp–2 IntegerPart[(nz1+1)/2]) (–1)nyz; 
xz = d((t+τ typ) Sin[ϑ] Cos[φ] + dx xzp; 
zy = d((t+τ typ) Sin[ϑ] Sin[φ] +zyp–2 IntegerPart[(nz1+1)/2]) (–1)nzy; 
z1 = d((t+τ typ)  Cos[ϑ] +zzp–2 IntegerPart[(nz1+1)/2]) (–1)nz1; 
z0 = d((t+τ typ) Cos[ϑ] +zzp–2IntegerPart[ny0/2]) (–1)nz0; 
grN=Show[ParanetricPlot3D[ 

{xy[[i]], If[φ≤π, y1[[i]], y0[[i]], yz[[i]]},  
 {xz[[i]], zy[[i]], If[ϑ<π /2, z1[[i]], z0[[i]]}, 
 {φ,0,2π},{ϑ,0,π }, Compiled→True, Boxed→True, 

PlotRange→{{0, 10},{0, 3 },{0, 3}, ViewPoint→{3.9,–7.2, 3.6},  
AxesEdge→{{–1,–1},{–1,–1},{–1,–1}}, AxesLabel→{x,y,z},  
{t, 0, T, T/n}, {i,1,N}]; 

The program evaluates the perturbation wave structure by the time t (in 
non-dimensional units scaled by d /c). To be definite, the structure is 
investigated in the pipe volume 3 × 3 × 10 cm at duration T = 1.2, when 
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the sequence of 12 perturbation waves originate on the surfaces of two 
couples of opposite walls during the interval. The wave lifetime is taken to 
be equal τ  = 1.2. All the data are included in the first line of the program. 

Origination of the waves within the perturbation sequence conforms to 
the rule given by the random number generator Table[Random[],{N/2}]. 
The generator available in Mathematica specifies the initial parameters 
(spatial and temporal), xyp, yyp, zyp, xzp, yzp, zzp, typ, tzp, separately in 
every try of “cast lots”. The value of the generator seed NUM is maintained 
constant during the procedure for the same purpose and just in the same 
way as it has been done in Program 6.3. The program lines from the second 
to the fifth contain all the information.  

It has been tacitly assumed that the primary perturbation has the 
characteristic dimension a = 0.03, certainly in dimensionless units. That 
means the boundary layer being thin. This rather small quantity pre-
determines the time interval T duration to get the structure steady state, and 
implies an opportunity to deal separately with the main part of the flow. So 
the quantities of the wave reflections for various combinations of the pipe 
walls, i.e., ny1, ny0, nyz,  nzy, nz1, ny0, are computed by means of the 
next few lines of the program. Then the coordinates of the waves and 
reflected parts of the waves, xy, y1, y0, yz, xz, zy, z1, z0, are computed in 
the following eight lines. 

The last operation grN assembles all the data by varying number i of 
the source waves in their development, and plots the configuration of the 
wave fronts by the desired instant t. The process of the structure evolution 
is illustrated by the frames shown in Figs. 6.5–6.7. All the pictures are 
plotted for the initial data indicated in Program 6.4.  

Figure 6.5 represents the structure development process at its initiation. 
The figure makes it clear that the perturbation structure represents insulated 
wave fronts looking like quite a regular configuration. At the other extreme 
case shown in Fig. 6.6, the perturbation wave structure formed at a much 
later stage of the evolution, by the instant t  = T, results in a rather tangled 
picture. The wave configuration actually imitates a steady state of the 
perturbations, when the origin of new perturbation waves equalizes the 
deficiency caused by damping and dying of the propagating waves. 

To obtain more complete notion concerning the inner structure, the 
view from within should be examined. To do that, a longitudinal thin 
stratum of thickness 0.2 cm extracted from the middle of the structure is 
shown in Fig. 6.7. The structure image reveals the wave distribution 
properties. The distribution scale is seen to vary in rather wide limits of the 
dimension. Note by the way that this range would be even wider if we had 
not omitted more weak waves from consideration. 

The structure scale depends evidently on the mean quantity of waves 
simultaneously propagating in the chosen volume of the pipe, i.e., on the 
wave lifetime and specific rate of the wave generation. The structure 
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dependence on generation rate is verified by the state of the stratum shown 
in Fig. 6.8. It is computed in the same conditions as in Fig. 6.7, though the 
perturbation specific density is three times as much this time. 

 
Fig. 6.5. Initial state of perturbation configuration, N=12 

 
Fig. 6.6. Perturbation structure at instant t = T=1.2, N=12 

 

   
Fig. 6.7. Perturbation structure at instant t  =  T = 1.2, N=12, stratum 0.2cm 

 
Fig. 6.8. The same structure, but for N=36 



6 Spatio-temporal field of perturbations in channels 84 

Anyhow, the images which we see on these frames represent patterns 
of allocation fields of the moving waves, registered at certain fixed instants. 
This field appears as a result of the linear propagation of acoustic waves. 
This field can have different structure depending on many factors, but it is 
calculable, when the initial perturbations are specified. 

The perturbation waves of the field create a spatio-temporal field of the 
flow parameter oscillations. Naturally, the perturbation waves damp and die 
out in the end, being replaced by new ones. In the same way the oscillations 
gradually damp, but are simultaneously resumed. Both the parameter oscil-
lations and dynamics of the oscillation damping and resumption have not 
been considered in the evaluation of the wave allocation field. Meanwhile 
the spatio-temporal field of the oscillations remains an important research 
problem.  

At the same time, the allocation field of the waves gives an idea of 
their random nature. Hence it is possible to guess that the flow parameter 
oscillations might be random as well. The problems of basic value related 
to the study of the spatio-temporal field of the flow parameter perturbations 
and a process of the field chaotization will be considered in the next 
chapter. 
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7 
Evolution of velocity oscillation field 

7.1  Oscillations of flow parameters produced by a wave  

As has been shown in Chapter 5, the primary perturbation propagates in the 
form of a wave packet which holds the oscillation of the hydrodynamic 
flow parameters. When the wave propagates, the oscillation amplitudes fade 
gradually. We consider the velocity perturbation u of the flow velocity U as 
an example. Generally the results refer to all the other parameters (5.6). 

While a wave packet passes through some appointed position r(x, y, z) 
of a channel, the velocity oscillates at that position according to solution 
(5.2) of the wave equation (5.1). The velocity perturbation lasts at the test 
point r(x, y, z) during the time 2a /c, as it follows from equation (5.2). 

If a sequence of the wave packets propagates within the channel, the 
oscillations appear at the point r(x, y, z) in that succession as the packets 
pass through the point. It has been proved earlier that the perturbation 
amplitudes are small. Hence, as two wave packets or more continue to pass 
through this point, the perturbation total amplitude is defined by simple 
addition of u-vectors, as the superposition principle says. 

The resultant perturbation at that point means that the oscillation 
amplitude and orientation are time functions. Therefore the totality of such 
functions throughout the channel presents a vector field of parameter 
oscillations, which is a vector function of both the coordinates and time, 
u(x, y, z, t). In other wards, it is a spatio-temporal field of the amplitude 
vector of the velocity oscillating in every point of the flow under 
consideration. 

This field will be studied below in detail. In the meantime we find the 
field which is created by a wave packet during its propagation through a 
space, to demonstrate the computing technique. Note, the vector u(x,y, z, t) 
is a parametric function, for its arguments depend on the path length ℓ that 
some element of the wave front area covers to arrive at the point r(x, y, z). 
In non-dimensional units it is the same quantity as the corresponding time 
interval t. The length in its turn is determined by formulas similar to 
equation (6.1).  



7 Evolution of velocity oscillation field 86 

To find the three-dimensional field of function u  we resort to the help 
of system Mathematica packages named <<Graphics`PlotField3D` and 
<<Graphics`ParametricPlot3D`. Then the following simple program 
computes the field. 

Program 7.1  Flow velocity oscillations produced by a wave 

vel = PlotVectorField3D
2 2 2 2 2 2 2 2 2

[{ , , },
x y z

x y z x y z x y z+ + + + + +
 

{x, 0.5, 0.5}, {y, 0.5, 0.5}, {z, 0.5, 0.5},  
PlotPoint→6, VectorHeads→True, Axes→True, 
PlotRange→{{0,0.4},{0,0.4},{0,0.4}}, AxesLabe→{′′x′′,′′y′′,′′z′′}, 
AxesEdge→{{–1,–1},{1,–1},{1, 1}}, DisplayFunction→Identity]; 

sph = ParametricPlot3D[{0.1Cos[ϑ]Cos[φ], 0.1Cos[ϑ]Sin[φ],  0.1Sin[ϑ]}, 
{ϑ, 0, π/2},{φ, 0, π/2}, DisplayFunction→Identity];  

comb = Show[{vel, sph}, DisplayFunction→$DisplayFunction]; 

 
The program contains two special commands designed for use in 

problems like ours, that lighten the work of program text composing. One of 
them, vel, in the first indention, computes the vector field of the oscillation 
velocity amplitudes at six positions of the wave fronts. The vectors are 
depicted in the form of arrows located on the surface of the wave front at 
its consecutive displacement with step Δℓ  =  0.07 (Δt  = 0.07), beginning 
from ℓ  =  t  =  0.1.  

The other special command, sph ,  in the second indention, describes 
the wave front itself at one of six positions, the perturbation initial diameter 
being a = 0.03. The wave front looks like a segment of a spherical surface. 
In the end, the amplitude field of velocity oscillations is combined with the 
computed wave front. The combined picture is shown in Fig. 7.1. 

 
Fig. 7.1. Amplitude field of velocity oscillations at a wave propagation 
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The image space in the figure is limited by intervals of the direction 
angles ϑ∈[0,π /2], φ∈[0,π /2] and the coordinate ranges x,y,z∈[0.05, 0.4 ]. 
The wave front is shown only for value ℓ  =  0.1 (t  =  0.1). All the 
limitations have been introduced, lest any additional information in Fig. 7.1 
would hide the main features of the field. 

The spatio-temporal field of perturbations is interpreted on the basis of 
a wave model of the phenomenon. This field follows from the solution of, 
we emphasize, the linear wave equation (5.1) with a source function in the 
form of perturbations like those used in equation (5.2). The structure of the 
resultant field represents a joint configuration of the perturbation waves 
which are formed in the channel by means of relations of the type (5.13) 
and (5.14). When the main flow part is considered, these relations become 
much more simple, and are replaced by relations (6.1), (6.2) in the case of a 
flat channel, and by (6.4), (6.5) in a pipe of square section. 

When we deal with a turbulent flow, the long-standing fundamental 
question arises, how the determinative exciting motion created by some 
given acoustic waves turns into random oscillations, which were once 
called fluctuations. The formation process of the irregular configurations of 
the wave fronts has been illustrated earlier in Figs. 5.2 and 6.5–6.8. Now 
when the oscillating velocity distribution can be computed, there appears 
an opportunity to understand what happens to the oscillations. 

As we see from Figs. 6.6 and 7.1, evolution of the three-dimensional 
wave fronts along with amplitudes of the velocity oscillations may not be 
reproduced on a sheet of paper. Therefore the data on the configuration 
development in time (or as a function of path length ℓ) may only be shown 
in some sectional plane of the three-dimensional process. Similar to  
Fig. 6.7 we consider the process in the plane y = 0. 

The field in the plane is computed by a method similar to the one used 
in Program 7.1. Though, the evaluation of the sought functions in the plane 
is fulfilled in the system Mathematica by means of another additional 
software package, namely <<Graphics`PlotField`. As an example, Program 
7.2 demonstrates a technique for computation of the velocity oscillation 
amplitudes in the flat channel plane y = 0 during one wave propagation. 

We proceed from the assumption that the channel test volume is (in 
dimensionless units) restricted by the length x∈[−3.5, 3.5] at the height 1. 
The primary perturbation looks like a hemisphere located on the lower 
wall, the radius being a = 0.03. The values and orientations of the 
oscillation amplitudes are computed for four distances covered by the wave 
front, ℓ={0.2, 0.9, 1.6, 2,3} (the equality ℓ  = t  is valid in non-dimensional 
units). The picture area should be extended beyond the channel bounds to 
depict the velocity vector images in one scale. 
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Program 7.2 Evolution of oscillation field produced by a wave 

xp=0; zp=0; ℓ={0.2, 0.9, 1.6, 2.3}; N=IntegerPart[ℓ[[i]] Cos[ϑ]; 
lineU=Graphics[{Thickness[0.01], Line[{{−3.5, 1}, {3.5, 1}}]}]; 
lineD=Graphics[{Thickness[0.01], Line[{{−3.5, 0},{3.5, 0}}]}]; 
vec=Table[{{ℓ[[i]] Sin[ϑ] + xp, zp + (−1) N + zp (ℓ[[i]] Cos[ϑ] − 

−2 IntegerPart [(N+1)/2])}, {(1−0.1) N Sin[ϑ]/(2ℓ[[i]]), 
(1−0.1)N (−1) N + zp Cos[ϑ]/(2ℓ[[i]])}}, 
{i, 4}, {ϑ, −(π/2)(1−0.1), (π/2)(1−0.1), 0.05π}]; 

gc1=Show[Graphics[{AbsoluteThickness[2],Circle[{0,0},0.3,{0,π}]}, 
        Frame→True, PlotRange→{{−5, 5},{−1.2, 2.2}},  

 DisplayFunction→Identity]; 
gc2…………………………… ; 
gc3…………………………… ; 
gc4=Show[Graphics[{AbsoluteThickness[2], 

Circle[{0, −2}, 2.2, {0.36 π, 0.67π}],  
Circle[{0, 2}, 2.27, {1.147π , 1.33π}],  
Circle[{0, 2}, 2.245, {1.667π, 1.854π }],  
Circle[{0, 0}, 2.265, {0, 0.41}],Circle[{0, 0},2.24,{π−0.41,π}]}, 
Frame→True, PlotRange→{{−5, 5},{−1.2, 2.2}},  
DisplayFunction→Identity]; 

gr1=Show[[Graphics`PlotField`ListPlotVectorField[vec[[1]],  
HeadWidth→1, FrameTicks→{Automatic,{−1,0,1,2},{},{}},  
FrameLabel→{"x", "z", " ", " "}, PlotLabel→{"ℓ=0.2"}, 
DisplayFunction→Identity], PlotRange→{{−3.5, 3.5},{−0.2,2.8}},  
Frame→True, lineU, lineD, gc1, DisplayFunction→$DisplayFunction]; 

gr2…………………………… ; 
gr3…………………………… ; 
gr4=Show[Graphics`PlotField`ListPlotVectorField[vec1[[4]],  

HeadWidth→1, FrameTicks→{Automatic,{−1, 0, 1, 2}, {}, {}},  
FrameLabel→{"x", "z", " ", " "}, PlotLabel→{"ℓ=2.3"},  
DisplayFunction→Identity], lineU, lineD, gc4, Frame→True,  
PlotRange→{{−5, 5},{−1.01, 2.01}}, Ticks→{Automatic,{−1,0,1,2}}, 
DisplayFunction→$DisplayFunction];  

 
When we deal with one wave, the coordinates xp, zp can be assigned at 

one’s own choosing, and in the first line they are xp = zp = 0. Also the 
above mentioned instants are written in the line, and the number of  
the wave reflection is defined. Then two procedures lineU and lineD are 
introduced into the program to mark out the channel upper and lower 
borders, and the vector of the velocity oscillation amplitude, vec,  is 
determined for four path lengths ℓ .  
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Note, commands of type Do are not used in the program to show each 
separate step of the evaluation procedures. So the program’s next lines 
compute configurations of the wave fronts, gc1, …, gc4 at the chosen 
instants, including reflected parts of the fronts. In the end, these data are 
employed in operations gr1,  …, gr4 that construct the wave configurations. 
The field of the velocity amplitude vectors computed for the flat channel at 
the indicated four steps under the program is shown in the corresponding 
frames in Fig. 7.2. 

The channel appears as a white stripe, and the space outside its limits 
is shaded. The wave fronts are represented by circle segments, and 
therefore radii correspond to the distances ℓ  which are indicated in the right 
upper corner of each frame. Vectors of the velocity amplitudes are depicted 
by arrows whose length is proportional to the velocity amplitude. 

 

Fig. 7.2. Evolution of the velocity oscillation amplitudes, plane channel, y = 0 

To study the field’s special features we consider the quantitative 
characteristics of oscillations in the two-dimensional channel, analyzing 
properties of such dependences as the oscillation velocity amplitudes and 
spectra in time, u(t), A[u(t)], and in coordinates, u(r), A[u(r)]. The 
analysis of waves reflected from surfaces under these relatively simple 
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conditions, such as in the flat channel, allows us to acquire important 
information about the field without applying cumbersome formulas 
peculiar to channels of complex geometry. 

Let us begin a consistent consideration from the beginning, step by 
step. As we have seen, the parameter oscillations in time at some point 
r(x,y, z) of the flat channel are described by formulas (5.2) and (5.6) 
relating to the wave front surface (6.1), (6.2). According to (5.2) and (5.6), 
the oscillations exist, are not zero, only within the wave packet by the 
thickness 2a, |ℓn–t| < a. Therefore the oscillations appear at the point 
r(x,y, z) when the wave front arrives at the point, and ceases when the 
trailing edge of the wave packet leaves it. But the waves reflected from the 
walls pass through the point as does every original wave. 

Generally, a description of the oscillation field needs knowledge of the 
data set on perturbing motions in the flow under consideration. The data 
include the parameter distribution in the wave packet, i.e., in the primary 
perturbations, fr<a(r), generation (in time and space) law for the primary 
perturbations, rp and tp, the channel profile, limits of the function r(x,y, z) 
variation, etc. [36].  

We start first, as usual, with a computation for one wave packet 
moving in a flat channel. To be definite, the velocity amplitude (5.6) of the 
original and reflected wave packets is assumed to be of the form [36] 

 n
2

= ( ) .
πu 1 α cos n n

a
− −⎛ ⎞− ⎜ ⎟

⎝ ⎠
 (7.1) 

Here the coefficient α designates the losses that the wave incurs during 
each reflection, and the new parameter ℓn represents the path length that the 
wave covers to reach the observation point after n reflections. The velocity 
amplitude diminishes as the time runs (in accepted scale t  = ℓ), and as the 
wave is reflected from a wall. The numerical coefficient in the expression is 
taken to be equal to the unit, for it is evolution of the velocity oscillation 
field, which is the main interest in the problem. 

Now, time dependence of the oscillation velocity amplitude at some 
point r (x, y, z) and any instant t depends on the computation time from the 
process beginning t1 to the end t2, on the working volume limited by 
parameters r1 and r2, and also on those places rp(xp, yp, zp) and times tp, 
where and when a perturbation arises. Hence the oscillation velocity 
amplitude at the observation point r (x, y, z) is a certain piecewise-smooth 
function depending on many variable quantities, which looks like 

 u(r1,r2, t1, t2,rp, tp,a,α ,τ ,r, tp).  (7.2) 

If all these data are known, the mentioned functions u(t) and A[u(t)] 
can be computed for any point r (x, y, z) within a chosen part of the channel. 
Let the named parameters be as follows [44]: 
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   }0.1, 0.1, 10, { , , } {0.3, 0.5, 0.7},
{ , , , } {0, 0, 0, 1}, 10, N 500.

 n x y z
tp xp yp zp

a = α= = =
= τ= =

r
 (7.3) 

Here the quantity N relates to the computation time resolution which means 
that the wave lifetime τ is divided into N parts. According to Fourier 
transform rules, the quantity of the spectrum’s resolvable elements is the 
number N halved. Evaluation of the sought functions u(t) and A[u(t)] is 
fulfilled by means of Program 7.3. 

Program 7.3 Oscillation velocity amplitudes and the spectrum, produced by a 
wave at conditions given by (7.3) 

a = 0.1; α= 0.1; tp = 0; xp = yp = 0; zp = 1; x = 0.3; y = 0.5; z = 0.7;  

ξ= x–xp;  η= y–yp;  ζ= 2IntegerPart[(n+1)/2](–1) zp+(z–zp)(–1)n; 
2 2 2ξ η ζ ;r + +=  ρ = r –( t– tp);  

u = Sum[If [Abs[ρ]<a, Evaluate[(1–α)nCos[πρ /(2a)]ρ/r,0],{n ,0,10}]; 
utab = Table[u,{t, 0.2, 10, 0.02}];  
gu = ListPlot[utab, PlotJoined→True, PlotRange→{−0.06, 0.06},  

Frame→True, PlotJoined→True,  
FrameTicks→{Automatic,{−0.6, −0.3, 0, 0.3, 0.6}, {},{}} 
FrameLabel→{"Time, N=20ν+1","Velocity, u(t) "}]; 

guf = ListPlot[Abs[Fourier[utab], PlotJoined→True,  
PlotRange→{{0, 250}, {0, 0.046}}, Frame→True, 
FrameTicks→{Automatic,{ 0, 0.015, 0.03, 0.046},{},{}}, 
FrameLabel→{"Frequency, N=20ν+1", "Spectrum, A"}]; 

The first line of the program contains information on the initial data 
and location r0(0.3, 0.5, 0.7) of that spot where the oscillations are 
examined. Then the wave position r and velocity amplitude u, utab at 
various instants t, are defined. In the end the velocity gu  and Fourier image 
guf  of the velocity are computed and plotted within time interval 
t∈[0.2, 10] with step 0.02. The computation output is presented in Fig. 7.3 
by two graphs in which arguments of time t and frequency ν are changed by 
the number N of the resolvable elements. 

 
Fig. 7.3. Velocity oscillation amplitude u(t) and Fourier transform A[u(t)] according 
to data listed in (7.3) 
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By the example of one wave propagating in the channel, we can 
ascertain which parameters influence the oscillation spectrum in the 
channel and in what ways. It is evident that the form of Fourier spectrum 
does not depend on the wave start delay tp and location rp of the primary 
perturbation. However, the effect of the diameter a, the parameter 
distribution in initial perturbation f (r < a), and of the loss factor α  seems 
to be important. 

Some preliminary information about the subject can be obtained from 
the function (7.1) represented in the form of a Fourier transform integral. 
Two terms of the function lead at integration to an output that contains an 
expression of sine integral function type, si. As is known, the function si 
tends to π/2 when the frequency ν belongs to the low-frequency part of the 
spectrum. On the other hand, the spectrum is approximated by the ratio 
cosψ /ψ in the high-frequency area. Note that the frequency ν should be 
replaced by product aν in our case. Thus the spectrum under consideration 
has to be amplitude-modulated, as appearance of the spectrum shown in 
Fig. 7.3 proves, and also the frequency band has to broaden when the 
primary perturbation size a decreases. 

Fig. 7.4. Amplitude spectra in point r (0.3, 0.5, 0.7): а={0.2, 0.1} – spectra 1 and 
2; f ={1– | rn– t|/а}, {1– (|rn– t|/а)4} – spectra 3 and 4; α={0.1, 0.5} – spectra 5 and 6 
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According to formula (7.1), amendments in the spectrum shape may 
depend on the function f (r < a) and loss factor α which causes the wave 
damping and calls into existence the oscillation velocity jump at the wave 
reflection. At last, the spectrum frequency band changes under the influence 
of the test process duration T, while it has not come to the steady state. In this 
case the computation needs greater resolving power, i.e., the quantity N. 

Influence of the parameters a, α values and the function f (r < a) form 
on the spectrum can be estimated by varying them successively in Program 
7.3. Some results of the variation are shown in Fig. 7.4. 

When one of the parameters is varied, the others are imported from the 
data list (7.3). Spectra 1 and 2 are plotted for values of a→{0.2, 0.1}; 
spectra 3 and 4 relate to the functions f→{1 | rn – t |/a}, {1 [(rn – t)/a] 4}; and 
spectra 5 and 6 correspond to the values of coefficient α→{0.1, 0.5}. The 
separate spectral lines on the graphs are spectra of sine functions by 
amplitude g and frequency ν. These are added to the velocity for estimation 
of the absolute values of the spectral parameters depicted on the graphs.  

As a comparison between curves 1 and 2 reveals, the frequency band 
of the oscillation spectrum is defined by the wave packet thickness 2а, or 
the primary perturbation dimension. The whole spectrum contains a series 
of harmonics. The half-width of the harmonics each taken separately, and 
the distance between them, depend on the dimension 2а as well. The 
difference between the spectra 1–4 means that features of the harmonics 
and decrement of their damping are caused by a function of the f (r < a) 
kind. Finally, it is clear from spectra 5 and 6 that increase of the energy loss 
factor at the wave reflection smoothes over the spectral curves. 

7.2  Spatio-temporal field of oscillations in a wave sequence  

When properties of the oscillations produced by one wave are known, we 
can turn to study of the oscillation field produced by many waves 
propagating in the channel. Certainly, the field is determined, if the start 
time tp and origin place rp of every primary perturbation in the sequence 
are given. 

To compute the field, Program 7.3 should be extended to the case of 
the perturbation sequence including, say, eight ones. We intend to deal with 
the flat channel, the height and length being z  = 1 and x∈[−7, 7], when the 
observation region is limited by the length x∈[−5, 5], accordingly. Let the 
instants and places of the perturbation origins obey the law of random 
numbers. The configuration of the oscillation amplitudes is computed for 
two instants, t  = 0.2 and t  = 2.3. The proper vector diagrams are 
demonstrated by two frames in Fig. 7.5. 

Requirements for computation of the oscillation vector amplitudes 
shown by two frames in Fig. 7.5 correspond completely to the conditions in 
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which the first and last frames in Fig. 7.2 were obtained, with the exception 
of the wave quantity. Comparison of the appropriate frames in the figures 
reveals a quick formation of the chaotic character of the velocity amplitude 
configuration of the frames in Fig. 7.5. 

As is clear from the frames in Fig. 7.2, one wave in half-space creates 
a field of velocity oscillations which appear as an entirely definite and 
regular configuration. The wave reflections evidently change the direction 
and amplitude of the oscillation vectors in the channel and complicate the 
configuration. However the general effect of spatio-temporal field 
regularity does not vanish. 

 
Fig. 7.5. Amplitude field of oscillating velocity in plane channel: propagation of 
eight perturbations, two time instants t = 0.2 and t = 2.3 

As to the vector field of the oscillation amplitudes in Fig. 7.5, its 
configuration appears to be regular at the initial stage of the development 
(the frame t  = 0.2), though the regularity is difficult to recognize at the 
later stages. When t  =  2.3, only eight waves propagating in the channel 
(the wave fronts on the diagram are omitted) form the oscillation field that 
looks as if it is the result of chaotic motions [32, 35]. 

Note among other things, that despite the random origination of the 
perturbations forming the spatio-temporal vector field of the frame t= 2.3, 
in Fig. 7.5, their dispersion as they arise takes a very small time interval,  
tp ≤  0.5. In fact, the initial perturbations appear almost simultaneously. 
The choice of such a small interval is stipulated only for the opportunities 
of a graphical data representation. For this reason the field chaotic state 
development concerns only a direction of the oscillation vectors on the 
graph. 

In reality the interval tp is naturally not limited. When the perturbations 
arise as some continuous sequence, the oscillation vectors differ not only 
by direction, but also by amplitude. So that quite deterministic process of 
propagation of the perturbations in a channel produces in a short time an 
image of random oscillations, which matches with the structure of wave 
fronts presented in Figs. 6.6–6.8. 
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Now we intend to investigate the function of the velocity u(t) and the 
spectrum A[u(t)], which can be observed in the point r(x,y,z) when many 
waves propagate in the channel. We assume, that each of the waves damps 
during its lifetime. In the development, the field structure passes through 
some stages in the evolution, until it reaches a steady state. Here and 
henceforward, steady structures are considered. 

Let k perturbations arise during the time T when the flow in a steady 
state is observed. The perturbation wave is reflected n times on average. 
Then the mean number of the perturbation waves simultaneously 
propagating in the channel will be equal to knτ /T, irrespective of the 
sequence form in which they appear. The value of the number means the 
process reciprocal resolution β in time. 

Definition of the structure stabilization time of the oscillation structure 
steady state is similar to the problem about the water level in a vessel at a 
constant average inflow and at an outflow velocity depending on altitude of 
this level. Similar to the case of the water level, the balance between 
origination and damping of the waves is defined by an expression of the 
type exp(– t /τ). 

According to the expression, the structure can be considered as 
satisfying a steady state condition at the instant t1 = 3τ, when the number of 
waves available in the channel does not differ from the dynamic equilibrium 
quantity more than 5%. 

As to the experimental measurements, the parameter oscillations in a 
channel are used to record a time function at some chosen point, or an 
instantaneous distribution in some direction, often along the wall or in the 
transverse direction. We start with computation of the velocity oscillations 
in a fixed point. 

To ensure the parameter oscillations being at dynamic equilibrium in 
the chosen point r(x,y,z), the computation time should belong to the 
following interval t∈[t1, t2], where t1  =  3τ and t2  ≤  T. For this purpose it is 
necessary to take into account all the perturbations originating at the 
distance from the spot of observation, which the wave covers during its 
lifetime τ. For example, if the wave exists during τ  = 10, the test volume 
boundaries should lie in the limits 

{[x1, x2], [y1, y2], (z1, z2)}∈{[0, 20], [0, 20], (0, 1)} (7.4) 

with centre in a plane x = y = 10. 
At the same time, the survey of the channel volume surrounding the 

point under investigation has to respond to the requirement of the 
equilibrium state of oscillations as well. For this purpose it is necessary to 
consider all the perturbations which originate within the distance from the 
observation point, that a wave covers during its lifetime τ. 

Time properties of oscillations in the point r(x,y,z) can be computed 
by summing the velocity vector function 
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u(a,α ,r1,r2, t1, t2,rp, tp,r{x,y,z},τ,T,k, r, t) (7.5) 

over all k perturbations. We employ data of the example in computing the 
velocity oscillations in point r(10,10, z). To have the full set of initial 
conditions, let us assume that a = α = 0.1, the time interval [t1, t2]  = [30, 
50], coordinates of the observation point r{x,y,z} = {10, 10, 0.7}, lifetime 
τ  = 10, the process is observed during Т  = 50, and the wave quantity k = 
100. Under such circumstances the wave amplitude decreases for a lifetime 
approximately by 300 times. 

Now the following program computes the velocity amplitude u(t) and 
the velocity amplitude Fourier transform A[u(t)] at the mentioned observ-
ation point. 
 
Program 7.4 Velocity oscillation amplitudes and the spectra in point r(10, 10, 0.7) 
for random sequences rp and tp 

a = 0.1; α= 0.1; T = 50; k = 100; SeedRandom[NUM];  
x = 10; y = 10; z = 0.7; x1 = 0; x2 = 20; y1 = 0; y2 = 20;  

xp = Table[Random[Real,{x1, x2}],{k}]; 
yp = Table[Random[Real,{y1, y2}],{k}]; 
zp = Table[Random[Integer],{k}]; 
tp = Table[T Random[ ],{k}]; 

ξ= x–xp;  η= y–yp;  ζ= 2IntegerPart[(n+1)/2](–1) zp+(z–zp)(–1)n; 
2 2 2ξ η ζ ;r + +=  ρ = r –( t– tp);  

ut = Sum[If [Abs[ρ]<a, Evaluate[100(1–α)n 

Cos[πρ[[i]]/(2a)]ρ[[i]]/r[[i]] ,0],{i,1,k},{n ,0,10}]; 
uttab = Table[ut,{t, 30, 50, 0.01}];  

gut = ListPlot[uttab, PlotJoined→True, PlotRange→{{0,2080},{−3.2,3.2}}, 
Frame→True, FrameLabel→{"Time, N=100ν+1","Velocity, u(t)"}]; 

guf = ListPlot[Abs[Fourier[utab], PlotJoined→True,  
PlotRange→{{0, 310}, {0, 4.6}}, Frame→True, 
FrameLabel→{"Frequency, N=20ν+1","Spectrum, A"}]; 

 
This program, seemingly, does not require any comments. Indeed, 

assignment of the initial conditions, evaluation manner of the wave 
configurations, and data on the velocity function u(t) and spectrum A[u(t)] 
representation have just been considered in connection with Program 7.3. 
As to the parameters rp and pt describing random distribution of the 
primary perturbations in space and time, the matter has been discussed 
earlier in comments to Program 6.3. 

A small difference concerns the function u(t) (ut in the program) which 
is evaluated as a sum over all the perturbations marked by index i. Also, 
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arising and damping of the perturbations are maintained at constant 
equilibrium level on average, while the oscillation parameters are computed. 
At last, the time duration T is divided into N = 2,000 equal intervals. 

7.3  Chaotization of a spatio-temporal field  

Hitherto we used random distribution of the initial perturbations in the 
sequences rp and pt. Meanwhile, as pointed out at the beginning of section 
6.3 and in comments to Program 7.4, any other form of the sequences rp 
and pt may be employed in this sort of program. Then the chosen kind of 
sequences rp and pt has to replace appropriate procedures in Program 7.4. 
For instance, if there is a necessity to assign, say, the perturbation constant 
spacing in the sequence xp, we should substitute the operation Random 
[Real,{x1, x2}] for Range[x1, x2, dx]. 

The function u(t) in non-dimensional time units and function A[u(t)] in 
non-dimensional frequency ν are plotted in Fig. 7.6. On the left column are 
graphs of functions u(t), on the right column are the spectra A[u(t)]. The 
data have been computed by means of programs similar to Program 7.4. 
Three combinations of various kinds of sequences rp, pt were used in the 
computation [36]. 

The perturbations following the random sequences rp and pt were 
formed by the operation Random. The frames with the data occupy the 
upper row in the figure. The next combination of sequences includes 
perturbations arising at five fixed positions uniformly situated along the 
length {x1, x2}, while the time instants follow a random distribution. These 
data are represented in the second row. And the last combination shows the 
perturbations arising at five fixed positions at regular time intervals equal 
to T /20. These functions are in the third row. 

The time and frequency are presented in the figure by number of the 
intervals N = 100 t and N = 20ν  + 1. The spectra frequency band on 
graphs is limited by significant magnitudes of the velocity oscillation 
amplitude. 

Thus the functional dependences plotted in Fig. 7.6 relate to 
oscillations at a fixed point r(x,y,z) and differ only in the type of sequences 
in which the perturbations arise. Once again, the velocity oscillation 
amplitude u(t) and time spectrum A[u(t)] on the graphs a correspond to the 
sequences rp and tp with random distribution of the perturbations. The 
graphs b represent the version in which the distribution tp is a random 
sequence, whereas perturbations in the sequence rp arise at fixed points. 

Unlike the two previous alternatives, the graph c depicts the velocity 
oscillation amplitude u(t) and the time spectrum A[u(t)] for well-ordered 
distribution of the perturbations within the sequence rp, when the period 
0.05T is the main characteristic of the sequence tp. 
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Fig. 7.6. Velocity oscillation amplitudes and the spectra at x  =  y  =  10, z  =  0.7 
in time interval t∈[30, 50]: (a)−random rp and tp; (b)−5 fixed rp at tp random; 
(с)−5 fixed rp at periodical tp  = T /20 

Now we shall consider the structure of amplitudes of the velocity 
oscillations, i.e., space distribution of the oscillation amplitude and 
spectrum, u(r) and A[u(r)]. We assume that the structure develops in the 
same conditions as in the case of the time dependent functions u(t), A[u(t)]. 
Let the test segment of the straight line parallel to the x-axis be of length L 
and pass through the point {x,y,z}  =  {10,10,0.7}, so that L∈[0, 20]. The 
process of the structure formation is considered at the time instant t = T = 50.  

As before with the time dependences u(t) and A[u(t)], the spatial 
features of the oscillations on the straight line segment L∈[0, 20] can be 
computed by summing up function u over all k waves at every point of the 
line: 

u(a,α ,r1,r2, t1, t2,rp, tp,τ,T,k,L , r) (7.6) 

The segment L is located in the same volume, as in the previous 
computation. However, it is necessary to take into account the end effect in 
the case of spatial distribution. This means that the volume where the 
perturbations originate should widen at each end of the segment by a 
distance equivalent to the wave lifetime τ, and the quantity of perturbations 
k should be enlarged in the same proportion. Hence for the chosen 
conditions when τ  = L = 10 the new effective volume is to have the 
following limits [36]: 
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{[x1, x2], [y1, y2], [z1, z2]}∈ {[0,40], [0,40], [0,40], [0,1]}. (7.7) 

The program for computing the sought dependences of the velocity 
oscillation amplitude u(x) and the spectrum A[u(x)] on the segment length 
x is similar to Program 7.4. In this way we compute these two functions, 
u(x) and A[u(x)], within the length x∈[10, 30] with the step δx = 0.01 at 
the time instant T = 50. These functions are shown in Fig. 7.7. 

By analogy with Fig. 7.6, the left graphs show the velocity amplitude 
u(x), and the right graphs relate to the spectra A[u(x)]. The length in  
the direction of the segment L and the spatial frequency in the direction are 
expressed by the number N, accordingly N = 100t and N = 20ν  + 1. The 
chosen resolution β meets the spatial spectral range N = 1,000 and  
the frequency band ν  = 50. However the spectra on the graphs are limited 
by the range of ν  ≈  15, since the spectral density beyond the range is found 
to be too small. 

Fig. 7.7. Oscillation structure along line x∈[10, 30], y = 10, z = 0.7 at time instant  
T = 50: (a)−rp and tp random; (b)−5 fixed rp at tp random; (с)−5 fixed rp at 
periodical tp  = T /20 

Graphs a, b, c in Fig. 7.7 correspond to just the same sequences rp and tp as 
in Fig. 7.6. Comparison of the graphs in Figs. 7.6 and 7.7 shows that 
temporal and spatial functions of the oscillations have similar characteristics. 
For instance, the curve that envelops the spectrum has a maximum which 
corresponds to the frequency ν  ≈  1/2а  = 5 in both cases. Also there can 
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be seen separate lines in the spectra, and the first more or less strong line is 
at the frequency ν  = 2 which coincides with the mean frequency of the 
perturbation that arises. 

At the same time, there are two essential distinctions between the 
spectra presented in Figs. 7.6 and 7.7, concerning the spectral density 
distribution and contrast of the spectral lines. Density of the spatial spectra 
in low-frequency (long-wave) range exceeds considerably density of the 
temporal spectra. This distinction is a quite explicable effect. 

Actually, the reference frequency of oscillations depends on the 
thickness 2а of the perturbation wave packet. The spectrum density at 
frequencies other than that depends on the coherent length of the oscillations 
in the wave trains taking part in superposition. At a fixed point, when the 
temporal spectrum is investigated, the coherent length may exceed the 
quantity 2а due only to synchronization of the oscillations in the wave 
packets passing through the observation point one after another. 

The probability of such an event diminishes rapidly when the density 
of the available wave packets decreases. This is the reason why the 
temporal spectrum density falls in the range of low frequencies, as Fig. 7.6 
shows. The coherence in the case of a spatial spectrum is a result of 
intersection of the segment L by every wave packet, in addition to 
synchronization between the oscillations in various packets.  

Therefore, the coherent length along the segment L depends not so 
much on the wave packet thickness 2a as on the wave radius R and on the 
crossing angle. It results in a much larger coherent length of oscillations 
along the length L, and in growth of the spatial spectrum density, especially 
at low frequencies, as verified by graphs in Fig. 7.7. 

Comparison between graphs a, b, c presented in both Figs. 7.6 and 7.7 
reveals, that spectral lines differ in contrast, i.e., in regularity of oscillations. 
Generally speaking, irregularity of a field of wave nature can be stipulated 
for various reasons. Among them could be wave equation nonlinearity, 
channel shape (e.g., as in the case of Sinai billiards), wave front profile, and 
also properties of the sequences rp and tp. In our case of the linear wave 
equation and the channel profile being invariable, the reason for a change in 
oscillation regularity should only be sought in the variation of sequences rp 

and tp. 
As we can see from graphs a in Figs. 7.6 and 7.7, where the sequences 

rp and tp are random, the oscillations in both cases have continuous 
spectrum, though some separate spectral lines are visible against the 
continuum background. The graphs b in the figures, where sequences rp are 
ordered whereas sequences tp remain random, show that frequency ranges 
of the spectra shorten, and the separate spectral lines are given a better 
contrast.  

The graphs c obtained at the full ordered sequences rp and tp discover 
the separate lines dominating in the spectra. The spectrum c in Fig. 7.6 
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consists of 23 separate lines, and the mean frequency shift of each of the 
next lines amounts to about Δν  =  0.4. Note, the shift corresponds to a 
mean arising rate of the perturbations. In fact, this spectrum represents 
velocity periodical oscillations at the point under observation. 

Thus, the degree of order in the oscillations depends on the structure of 
the perturbation sequences in space and time, rp and tp. There exist two 
extreme alternative sorts of sequences. Random sequences rp and tp entail 
in every respect a disordered spatio-temporal field of velocity oscillations, 
and evidently of other parameters of the flow. 

On the other hand, the well-ordered sequences rp and tp involve a 
regular spatio-temporal field of the parameter oscillations, so that the field 
at some observation point proves the mode of usual acoustic oscillation. 
Note by the way, that the oscillations at neighboring test points of the field 
are different. Therefore, the field gives an impression of chaotic oscillations, 
even if the sequences rp and tp are entirely ordered, when it is observed 
with the unaided eye. 

Now, a chaotic oscillation field may be found in either the random or 
the stochastic state. These qualities of the field are not discernible 
superficially, for the oscillations in both cases have continuous Fourier 
spectrum and a diminishing autocorrelation function. In essence, however, 
the random process differs from the stochastic one in the respect that it is 
generated by a system with an unlimited number of degrees of freedom, or 
depends on a random factor, e.g., on random initial conditions. 

This delicate problem is worth special emphasis. As a matter of fact, 
we have seen earlier that the arbitrary initial phase β in the formulas (1.15) 
and (1.21) for a small perturbation looks like a random factor which is 
similar to the random sequence tp applied to the time origination of the 
perturbations in our conception. Meanwhile, the sequences rp are the same 
as the sequence tp, in the sense that it relates to origination of the random 
perturbations. In other words, the random factor β is just the same as the 
sequences rp and tp, as made obvious in the foregoing. 

It has been found that important results concerning many observations 
made with turbulent oscillations can be explained on the basis of the wave 
conception, starting with Reynolds’ experiments with a colored streamlet, 
including the turbulence intermittency phenomenon, and finishing with the 
Kolmogorov–Obouhov law concerning local properties of turbulence. Here 
we will touch upon the wave approach to that law. 

The structure of flow velocity oscillations, with scale l being small in 
comparison with the flow diameter, is locally homogeneous and isotropic. 
Figs. 7.5 and 7.7 confirm this supposition. The latter property means that 
the oscillating motions, within region with dimensions of the order l, do not 
depend on the direction of the mean flow velocity, and the oscillation 
features are completely independent of the direction. The problem in 
question implies the relative motion of the fluid particles in that region, but 
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not the absolute motion of the region as a whole, i.e., the oscillation 
structure concerns the image and likeness of the turbulent flow. 

One of the parameters that characterizes turbulent flow is the energy ε 
dissipated per unit time and per the fluid mass unit. The quantity ε is the 
energy flux by nature, which passes from the structural cells of larger scale 
to the ones of smaller scale down to the molecular level where the dissipation 
occurs due to viscosity. The structure of the flow oscillation field, as we have 
seen in §6.3 and in this chapter, is formed by superposition of the wave 
packets simultaneously propagating in the channel. The specific energy of a 
traveling acoustic wave is proportional to the local oscillation velocity 
squared, Е  ~ u2. Then the specific energy of the oscillations in the cell by 
scale l can be expressed in the form Еl  ~ 2ul  [3, §65]. 

In its turn, the energy dissipation is determined to be the product of the 
specific energy gradient and the effective viscosity, so that 

ε  =  (dЕl /dl)νeff. (7.8) 

The gradient for small distances may be written as dЕl /dl  ≈  (ul /l)2, and 
viscosity is estimated as νeff  ~  lul [3, §33]. Substitution of these quantities 
into formula (7.8) gives the relation 

ε  ~  3ul / l, (7.9) 

whence follows  

ul  =  (ε l)1/3 (7.10) 

This is the well-known Kolmogorov–Obouhov law. 
The analysis of hydrodynamic equations carried out above has shown 

that fluctuations of a turbulent flow can be interpreted as the oscillations of 
acoustic nature, which are formed by acoustic wave packets propagating in 
a channel. The spatio-temporal field of oscillations is a result of the wave 
packet superposition. According to the expounded representations, the 
model of the turbulent oscillations is a consistent consequence of well-
known equations. Nevertheless, as a fundamentally new approach to the 
phenomenon interpretation is employed, the turbulence model that is 
considered needs experimental confirmation. This is the purpose of the next 
chapter. 
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8 
Experimental substantiation of turbulence wave model 

Some fundamental assertions underlying the wave model of turbulence 
were summarized in Chapter 1. None of them, taken alone, seems to be 
unusual. However new effects of their combination may raise some doubts. 
Those assertions that need experimental verification first of all are: the 
simple wave structure in a channel and the character of compression waves 
transmitting momentum to the fluid, origination of acoustic perturbations, 
and formation mechanism of secondary waves of spherical type. 

Certainly, a degree of conformity between the oscillation spatio-
temporal fields computed by the offered method and observed in experi-
ments should be verified as well. Here we will consider the experimental 
data relating to these problems. 

8.1  Structure of a simple wave 

The structure of a simple wave and accompanying pressure oscillations 
were observed in a pipe when a gas moved in front of the flame. It is 
common knowledge (see, for example [48– 50]), that thermal expansion of 
combustion products produced by the flame propagating from the closed 
end of the pipe acts as a driving piston. 

The flame operation analogy to the piston effect is explained in the 
following way (see, e.g. [49] ). The combustion induces increase in 
temperature and pressure within the flame. The pressure excess propagates 
as compression waves moving forward in undisturbed gas, and backward in 
the burnt gas. The latter has high temperature, and the wave moves in it at 
large velocity. The waves reflected from the closed end of the pipe quickly 
equalize the pressure behind the flame. Therefore the burnt gas remains 
practically motionless, whereas the pressure waves moving forward produce 
the flow in front of the flame in the same way as the piston does. 

The pipe of square cross-section with a quadrate side being equal to  
d = 2.9 cm consisted of some interchangeable sections with a polished 
interior surface, including nests for pressure gauges. Some details will be 
sited below. One of the sections, the visual section, had two through 
windows of 19 cm length each, covered with plates manufactured from 
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optical glass. Optical perturbations in the gas were observed through the 
windows by the Schlieren method. 

In the experiments were recorded: the gas pressure in time at different 
points of the pipe, the process development by slit scan and high speed 
shooting of the Schlieren-image of the gas density perturbations. Mixture 
CH4 + 4O2 was ignited at a closed end of the pipe by a weak inductive 
discharge initiated by a spark in a gap between two thin electrodes spaced  
4 mm apart. The technique of measurements of different parameters, 
details of the procedure and requirements are described in [51–53]. 

Examples of the pressure oscillograms registered in the pipe sections 
removed from the spark for distances х  =  0, 18, 35 and 53 cm are given in 
Fig. 8.1 [35]. Heavy line has been drawn as function x(t) where x is 
determined by the pressure sensor positions in the pipe, and time t 
corresponds to the maxima of the sensor readings. Thus the line reproduces 
the flame front trajectory. 

At the initial stage of the flame propagation, within the pipe’s 
approximate length of 18 cm, the flame is seen to accelerate. At the 
acceleration stage the flame continues to fill up the pipe visual section, and 
the volume of the hot gas widens from the burning zone in all directions 
during that time. On the next part of the path, up to 53 cm, the hot gas begins 
to expand in one direction, along the pipe axis. The flame moves from that 
instant almost at a constant velocity, while the combustion acts as a piston 
pushing forward the gas in front of the flame. 

The process development in this stage, where x∈[18,  37], is presented 
in Fig. 8.2 by the slit scan of the Schlieren-image. Details of the process 
development are shown by frames of the rapid Schlieren-filming whose 
fragments are reproduced in Fig. 8.3. To magnify the spatial resolution of 
the process, the field of vision in the frames has been restricted by half of 
the visual section window, which length amounts to about 9 cm. 

The distances from the ignition place to a current point, the pipe section 
x, are indicated on the photos; time from the instant of the explosive 
mixture ignition is set on the right of the frames. Though the photos show a 
projection of the structure in the vertical plane, because of a Schlieren 
technique peculiarity, the frames allow us to estimate the main features of 
the process. Now let us consider structures of the flame and of the gas 
moving in front of the flame at different stages of the process evolution. 

Frames a in Fig. 8.3 are exposed at 58 and 146 μs after the ignition. 
These photos disclose development of the primary perturbation produced 
by the weak inductive discharge. The perturbation moves in the pipe at the 
sound velocity c = 345 m/s. It has the form of a spherical wave packet by 
thickness 4 mm, just equal to the initial discharge diameter. The spherical 
packet is reflected inevitably from the pipe walls, and superposition of  
the reflected waves forms some tangled structure of the gas density 
perturbations. 
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Fig. 8.1. Pressure oscillograms in pipe sections at х = 0, 18, 35, 53 cm 

Fig. 8.2. Slit scan of process development in a pipe of square cross-section within 
the length 18−37 cm 

The flame rapidly takes its contour of elongated shape, as frames b in 
Fig. 8.3 show. Photos b are exposed at 643 and 790 μs after the ignition. 
The wave of initial perturbation covers a distance of about 25 cm by the 
time instant, and disappears soon from the field of vision. 
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Fig. 8.3. Flow pattern and flame; τ – time delay of exposure after ignition 
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The frames b  make it clear that the flame becomes of clearly expressed 
cellular structure. Cellular flames have been known for a long time, and 
have been observed in different experimental conditions (see elsewhere 
[54]). However the reason for appearance of this kind of structure remained 
unknown for some time. Eventually it was ascertained that these structures 
are formed under the action of waves of acoustic type [47, 55]. The frames 
a, b in Fig. 8.3, as well as others that are not shown here, definitively 
confirm this cause of cellular structure formation. 

In the case under consideration, the amplitude of the wave covered the 
distance of 25 cm becomes 60 times less, and the wave density gradient 
oversteps the limits of the system visualization sensitivity. However the 
flame surface reacts to the gas’s slightest motions. Therefore, the flow 
perturbation structure formed as a result of superposition of the acoustic 
waves is reproduced in the flame surface structure. 

Generally speaking, the influence of acoustic waves on flame structure 
becomes apparent when the oscillating velocity of a medium in the wave 
amounts to a small share of the flame normal velocity. Since the normal 
velocity is known in our case, it is equal to 2.3 m/s for a given experiment, 
the flame structure can serve as a tool for quantitative estimation of 
disturbances in the flow running before the flame. In this way we can 
conclude that oscillations of the gas velocity in front of the flame are of the 
order u/с ~ 10– 4. The same can be said concerning the pressure oscillations, 
p/P = u / с  ~ 10– 4. 

Further development of the structure is demonstrated by frames c in 
Fig. 8.3, where are represented two quasi-stationary states of the already 
formed system ‘piston–simple wave’. The inspection area in these frames 
extends over the pipe length x∈[18, 37] cm. The flame appears in the area 
approximately in 1.8 ms after ignition, when the length of the simple wave 
amounts to 37 cm. The flow just in front of the flame is characterized in 
the pipe by Reynolds number Re ≈ 2·104. 

To gain more understanding of the structure within this stage, we shall 
compare patterns of flow represented in the forms of the slit scan (Fig. 8.2), 
instantaneous photos (frames c in the Fig. 8.3), and oscillogram in the pipe 
at х  = 35 cm (Fig. 8.1). As is seen from Fig. 8.2, while propagating along 
the length x∈[18, 37] cm, the flame does not change the shape, and moves 
at practically constant velocity. However, there are a lot of compression 
waves propagating in front of the flame. 

The frames c in Fig. 8.3 show that superposition of the waves does 
cause the complex structure of perturbations in the flow preceding the 
flame-piston, and in the flame itself as well. It means that some discrete 
perturbations of finite intensity arise in the flow preceding the flame from 
time to time. 

Structures available on the frames c in Fig. 8.3 allow us to make an 
important supposition concerning localization of the perturbation sources. 
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The perturbations seem to arise in the flow in front of the flame within a 
narrow ring which tightly sides with the pipe walls. To test this supposition 
we turn to the process slit scan shown in Fig. 8.2. Each perturbation wave 
moving before the flame leaves on the Schlieren photo a track in the form 
of a slant line whose declination is usually accepted as the propagation 
velocity. 

However on closer examination, the lines are found to consist of 
separate segments by length from 8 to 16 cm each (2.5–5.5 calibers). 
Moreover, the image sharpness at the ends of the wave track segments 
becomes blurred and bends. Measurement of the angles at the segment ends 
gives the seeming velocity of the wave being equal to ~800 m/s at the 
beginning of the segment and equal to ~400 m/s at the end. Subtracting 
from these values the flow velocity which in the section x = 35 cm makes 
up ~50 m/s, we obtain accordingly 750 and 350 m/s. 

The greater of these velocities might be observed only in the case of a 
shock wave at pressure jump P2 /P1 =  5.8. However, according to the 
pressure oscillogram shown in Fig. 8.1, at the pipe section x = 35 cm, the 
pressure transducer reading does not exceed the level of the order P2/P1 = 
1.5. This pressure jump level corresponds to the wave velocity which by no 
means is more than about 400 m/s. 

This paradoxical result, at first sight, may serve as a definite proof that 
the perturbation waves arise at surfaces of the pipe walls. We shall consider 
a model of the pipe of square section with the side length d  =  3 cm. The 
wave projection on the plane y, passing through the perturbation wave 
center, provides the best conditions for the wave front visualization. The 
wave starts on the lower wall at x = z = 0 just before the flame-piston 
model. The wave propagates in all directions, but we are interested in the 
area where x > 0, for the Schlieren method does not register small 
perturbations in the area x < 0 because of high temperature of the burnt gas 
mixture. 

Let us determine a trace of side view of the wave front, which is seen 
through the pipe slit image of 19 cm long, just as in the experiment, during 
the period of t  = 6.7 (the time is measured in the units of d/c). The wave is 
reflected from the horizontal walls six times during the period. The wave 
propagation trace on the slit scan is computed by means of Program 8.1. 
 

Program 8.1 Wave trace in plane y = 0 through spit for px = 0, pz = 1.5cm, t = 6.7 

d = 3 ;  d x = 0 ;  n = 6.7; 
g6 = ParametricPlot[{tdSin[ϑ] + dx,  

(tCos[ϑ] – 2IntegerPart[(IntegerPart[tCos[ϑ]+1)/2])× 
×d(–1)IntegerPart[tCos[ϑ]]}, {ϑ, 0,π/2}, Frame→True, 
PlotRange→{{0,20}, {0,3}}, FrameLabel→{"x,cm","z,cm"},  
DisplayFunction→Identity];  
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line = Line[{{0.5,1.4}, {0.5,1.6}, {19.5,1.4}, {19.5,1.6}}]; 

combi = Show[{g6,Graphics[line]}, AspectRatio→1/5.7,  
DisplayFunction→$DisplayFunction]; 

 
In this simple program the wave trace in the slit field of vision is 

computed by the operation g6. Reflections from the vertical walls are 
ignored for the reason already mentioned above. The pipe and the slit 
contours are defined by command ‘line’. The operation ‘combi’ prepares 
data and illustrates the wave trace in the chosen volume. The outcome of 
the calculation is reproduced by diagram in Fig. 8.4 [44]. 

Fig. 8.4. A wave trace through the slit, px = 0, pz = 1.5 cm, t = 6.7 

The slit scan imitates the motion of that point where the wave front and 
the slit intersect. Such a moving point leaves on the picture of the slit scan a 
track that looks like an inclined trajectory. The trajectory slope angle is 
determined by the scanning rate which is usually constant during the scan, 
and by the intersection point velocity which can vary. 

As seen in Fig. 8.4, the wave during the given time intersects the slit 
simultaneously at several points. Quantity of the intersections and motion 
velocity of each of the points along the slit depends on the number n of the 
wave reflection. These intersections form a set of the trajectories, all of 
them being at different inclinations. 

All the trajectory set is described by the multiple-valued function x(t). 
Accordingly, the multiple-valued derivative dx/dt describes the velocity of 
every moving intersection, i.e., the slope angle which, generally, is a 
function of time. The diagram in Fig. 8.4 allows us to evaluate both the 
function x(t) and the derivative dx/dt. Program 8.2 serves this purpose. 

 
Program 8.2 Linear scanning of a spherical wave in a pipe plane y = 0 

 
2 2 2

2 2

x = ; x1= t 0.25; x2 = t -9×0.25; x3= t - 25×0.25;

x4 = t - 49×0.25; x5= t -81×0.25;

t -
 

dx=Dt[x,t]; dx1=Dt[x1,t]; dx2=Dt[x2,t]; dx3=Dt[x3,t];  
 dx4=Dt[x4,t]; dx5=Dt[x5,t]; 

gf=Plot[{x,x1,x2,x3,x4,x5},{t, 0, 5.5}, PlotPoints→100, Frame→True, 
 PlotRange→{{–0.05,5.5},{–0.05,4.1}, FrameLabel→{″t″,″x( t)″}, 



8 Experimental substantiation of turbulence wave model 110 

PlotStyle→Thickness[0.008], DisplayFunction→Identity];  

gf_txt=Show[Graphics[{Text[″c″,{1.1,3.2}.{0,0}],  
Text[″n=1″,{1.1, 0.45},{0.0}], Text[″n=2″,{1.95, 0.45},{0.0}], 
Text[″n=3″,{2.95, 0.45},{0.0}], Text[″n=4″,{3.9, 0.45},{0.0}], 
Text[″n=5″,{4.9, 0.45},{0.0}], DisplayFunction→Identity]; 

gdf=Plot[{dx,dx1,dx2,dx3,dx4,dx5},{t, 0, 5.5}, Frame→True,  
PlotPoints→100, PlotRange→{{–0.05,5.5},{–0.05,4.1}, 

 FrameLabel→{″t,cm″,″dx/dt″}, PlotStyle→Thickness[0.008], 
DisplayFunction→Identity];  

gdf_txt=Show[Graphics[{Text[″c″,{0.3,1.3}.{0,0}],  
Text[″n=1″,{0.9, 3.6},{0.0}], Text[″n=2″,{1.95, 3.6},{0.0}], 
Text[″n=3″,{3, 3.6},{0.0}], Text[″n=4″,{4, 3.6},{0.0}], 
Text[″n=5″,{5, 3.6},{0.0}], DisplayFunction→Identity]; 

g1=[{gf,gf_txt},  DisplayFunction→$DisplayFunction];  
g2=[{ gdf,  gdf_txt},  DisplayFunction→$DisplayFunction]; 

 
The trajectories xi and the velocities dxi for each of five intersection 

points are computed separately in the program to display the procedure. 
Numerical simulation of the graphs gf and gdf of the functions xi and dxi is 
accompanied by corresponding text inscriptions gf_txt and gdf_txt in the 
program. Operations g1 and g2 prepare data for the trajectories and 
velocities plotted in Fig. 8.5. As a whole, the lines represent quantitative 
data on the shapes and inclinations of the trajectories within the chosen 
time interval t∈ [0, 5.5]. 

 

 
Fig. 8.5. Functions x(t) and dx/dt of slit scan for the wave n reflections 
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The straight line on the graph x(t) passes through the origin of coordi-
nates and corresponds to the plane wave propagation along the slot at the 
sound velocity c. The spherical wave originated on one of the horizontal 
walls comes into the slot field of vision at t  = 0.5 for the first time  
(n = 0). From this time the first track on the slit scan appears, following 
the function x(t). While the wave propagates, the track tends to the line 
related to the sound velocity, and merges finally with it at t  ≈  3 [44]. 

The reflected waves intersect field of vision of the slot in regular 
intervals, δt  = 1, and new tracks appear periodically on the graph x(t), the 
period being equal to 1. Similar to the first track, the new tracks gradually 
come nearer to the sound velocity line. 

The observer has customarily assumed that the velocity of the 
intersection point motion is the wave velocity. However the graph x(t) in 
Fig. 8.5 shows that this opinion is inconsistent with experimental data, for 
this velocity comes as only an apparent one. Dependence of the apparent 
velocity on time and on reflection number n is shown by the computed 
derivative dx/dt in Fig. 8.5. Here the horizontal straight line corresponds to 
the sound velocity. The remaining lines of the graph correspond to the 
motion velocity of the intersection points, or the apparent velocity of the 
wave after the reflection number n = 1, 2, 3, 4, 5. 

There are two important circumstances that deserve attentive consider-
ation. When the infinitesimal thin wave comes into contact with an 
infinitesimal thin slit, the apparent velocity would be infinitely large on the 
picture of the slit scan. However, if the wave and the slit are of finite width, 
the track of the intersection is diffused. Besides, starting and ending points 
of the track are not visualized in a proper way, for their images on the slit 
scan are diffused as well. The reason consists in the peculiarity of the 
Schlieren method registration employed in the measurement. 

The Schlieren method visualizes optical perturbations by means of a 
so-called Foucault’s knife. This technique is sensitive to optical density 
variation only in the direction normal to Foucault’s knife blade. The blade 
has been oriented vertically in the experiments, as usual in such cases. The 
knife orientation means that the visualization efficiency is proportional not 
to density gradient dρ /dr, but to its horizontal component, 

χ .cos
d

x d
∂

=
∂
ρ ρ

r
 (8.1) 

Here χ is an angle between the slit and the normal to the wave front at the 
point of their intersection. 

The angle of the tangency at the intersection instant amounts to χ  = 
90° (cosχ  = 0), hence ∂ρ/∂x = 0, and the track of the wave at the onset 
turns out to be invisible. The track image becomes noticeable as soon as the 
value of cosχ grows. At the same time, the wave amplitude damps in the 
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course of propagation, |dρ/dr|  ~ 1/t, and its component (8.1) tends to zero, 
∂ρ/∂x→0. Therefore, the track on the slit scan disappears again at some 
instant. If the primary perturbation diameter is 2а when t  = 0, then the 
component (8.1) can be written in the form 

x
∂

=
∂
ρ cosχ | |

.
( )

d d
a t+
ρ r

 (8.2) 

The function cosχ in formula (8.2) for the slit field of vision can be 
expressed in terms of non-dimensional time t to obtain an explicit form of 
the track’s distinguishableness K [35]: 

2K 4 1.
2  ( )

= −
+

a
t

t t a
 (8.3) 

If the characteristic dimension of the perturbation produced by the 
discharge is 0.2 cm, the non-dimensional size a  =  0.07, just as in the 
experiment, this criterion can be represented by the ratio K(t)/Km, where 
Km is the distinguishableness factor maximum at the instant tm. The factor 
as a function of time is plotted in Fig. 8.6. 

 

 

Fig. 8.6. Relative criterion of the track distinguishableness 

The intersection point at the track end in the region t  < tm  moves first 
at velocity about 700 m/s, and when t  diminishes, the function K( t)  value 
tends quickly to zero. The apparent velocity on the opposite wing of the 
function, where t  > tm , tends to ~400 m/s, and the function K(t) decreases 
slowly. Surely, the track on a Schlieren-gram is discernible provided that 
the factor K value exceeds some level Kmin, i.e., the condition K ≥  Kmin 
should be satisfied. 

As follows from the figure, this criterion has a maximum located at the 
argument tm  ≈  0.75, and the half-width is δ t  ≈  1.6. An opportunity to 
discern the track on the Schlieren-gram occurs during the time interval 
which approximates to Δ t  ≈  4. According to the function x(t) in Fig. 8.5, 
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this interval corresponds to the tracks by a length up to 12 cm, as it is 
observed in the slit scan process in Fig. 8.2. 

So, the parameters derived from Figs. 8.5 and 8.6 that have been 
computed for the simple diagram drawn in Fig. 8.4, and the ones measured 
by the slit scan photo in Fig. 8.2 coincide with good accuracy. Notice, that 
the photos c in Fig. 8.3 confirm the fact that the secondary waves create a 
dense structure of perturbations in the flow just before the flame front. The 
perturbation structure is completely reproduced by the flame structure. 

The frames c in Fig. 8.3 imply some important information on the 
process of the flow structure formation. These frames make it clear that the 
shape of the flame enveloping surface and, hence, the velocity of the flame 
propagation has maxima near the walls at the distance δ  = 1.5–2 mm. 
Hence distribution of the parameter oscillations is not uniform over the 
flow cross-section, and the oscillations are most intensive in the indicated 
area. 

We shall return below to this problem which will be considered in 
detail. Here we shall mention only briefly the problem of the wall 
roughness which can happen to be the source of the oscillation under 
consideration. 

It is commonplace to mention that roughness of the walls hastens 
sharply the turbulence development. A pipe wall being smooth is used to 
consider, if the ratio of a surface asperity δz  to the length Δx of the 
boundary layer, say, at Reynolds number Re ~ 5 × 105, does not exceed 
the value of δz /Δx = 5 × 10–4 [8]. The length Δx  in our case may by no 
means exceed the simple wave length; let it be l  ~ 10 cm. Then the surface 
asperity initiates the flow perturbation provided that δ  >  0.05 mm. 

Some special experiments have been performed to study whether the 
roughness is the source of the perturbations observed in our experiments, or 
the influence does not matter. Recall that the pipe walls have been polished. 
Some small threshold has been created in the pipe of square cross-section to 
test it. The threshold has been made by upward displacement of the pipe 
part following the visual section for the permissible asperity δ  multiplied 
by 5, 5δ  =  0.25 mm. 

The frames d in Fig. 8.3 represent results of these experiments. As we 
see from the frames, the simple wave propagation near the asperity is 
accompanied by generating a sequence of waves, moving evidently all over 
the flow, including the direction against the current. The waves follow one 
after another with an interval of about 1 mm. This empirical observation 
implies that the simple wave structure is of the above mentioned discrete 
nature. In addition, the accurate concentric shape of the waves points to the 
threshold as a center of high pressure, which proves to be the source 
emitting secondary compression waves of rather considerable amplitude. 

With the results described, we may conclude that the strengthening of 
the flow perturbations caused by the wall roughness can be easily explained 



8 Experimental substantiation of turbulence wave model 114 

by the wave mechanism of the turbulent oscillations. On the whole, 
analysis of the experimental data shows that the simple wave has a pressure 
discrete distribution including the compression waves maintaining the flow 
in front of the flame-piston. The waves are of a form close to spherical. 

The flow perturbations originate at the channel walls as centers of local 
overpressure within the boundary layer, and propagate over the flow in the 
form of the spherical wave packets of thickness equal to the primary 
perturbation scale 2a. Superposition of the packets forms the spatio-
temporal field of the flow parameter oscillations. The assumption about 
pressure constancy in the flow cross-section, ∂P/∂z = 0, can be accepted as 
the first approximation and only concerning the flow parameters averaged 
in time. 

8.2  Boundary layer separation and flow perturbations 

When a plane shock wave is reflected from a solid wall, the pressure P2 
behind the reflected wave exceeds the pressure P1 behind the incident 
wave. The ratio of the overpressures (P2 – P0)/(P1 – P0) in a polytropic gas 
with the exponent γ is defined by the relation [56]: 
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The ratio of the overpressures for an intense shock wave depends on 
the exponent γ, as seen from the following data: 
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In case of a weak shock wave, as well as a plane acoustic wave, this ratio of 
overpressures is reduced, 
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−
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≈2. (8.6) 

Presence of the boundary layer at the wall, the pressure profile and front 
shape of the wave introduce their specific contributions to the reflection 
process. Obviously, all these factors play a significant part, when the matter 
concerns the reflection of the spherical wave packet from a wall with a 
boundary layer over that. 

Unfortunately this question has not been investigated experimentally. 
In the absence of direct experimental data relating to the reflection at 
conditions under consideration, there is no choice but to turn to the data of 
experiments on reflection of an oblique shock wave in a supersonic flow [8].
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Figure 8.7 demonstrates the pressure distribution measured in a 
vicinity of the line where the oblique shock wave is reflected from a flat 
plate [57]. The plate is situated in an air flow at the following parameters: 
M  =  1.43, Rex =  9 × 105, and the thickness of the laminar boundary layer 
0.7 mm. 

Fig. 8.7. Pressure at oblique shock wave reflection 

Note at once, that according to [57] and [58], the pressure round about 
the reflection line parallel to the wedge blade grows irrespective of whether 
the boundary layer is separated or is not. At the same time, the boundary 
layer separation changes the structure of the reflection region and the 
reflection mechanism, as it follows from comparison of diagrams a and b in 
Fig. 8.8 [58]. 

   
Fig. 8.8. Oblique shock wave reflection from a flat plate 

The oblique shock wave in the experiments [58] is reflected from a flat 
plate situated in air moving at velocity M  =  3, the boundary layer 
thickness being δ  =  3 mm. The oblique shock wave is produced by means 
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of the wedge with an acute angle φ. The wave intensity depends on the 
angle and increases with angle growth. 

At the angle value φ  =  9° the pressure ratio attains the level P/P0  = 2, 
and there occurs the phenomenon known as a boundary layer separation. 
While the pressure nearby the reflection line exceeds 9°, but remains near 
the value, the boundary layer is reestablished behind the reflection region. 
But the angle’s further growth leads to the layer’s prolonged destruction. 

While the shock wave is of weak intensity (e.g., at φ  = 7°), and the 
boundary layer separation does not occur, the reflected wave leaves a trace 
on the photo in the form of one well-marked line. This situation is seen in 
the diagram a in Fig. 8.8. Then the trace of the reflected wave looks like a 
usual reflected wave, as if there were no boundary layer. 

When the boundary layer separation happens, there appears a system 
of reflected lines of different inclinations instead of one trace. The pattern 
of such a reflection mode is reproduced by photo b in Fig. 8.8, where  
φ  =  13°. The structure formation of those reflected lines is interpreted in 
reference [8] as follows. 

The reflection of the intense shock wave entails appearance of the 
secondary waves at compression of various strength, and rarefaction waves. 
These propagate at different velocities, and hence the lines have different 
inclinations. As to the extension of the reflection pressure region, it is 
explained by the “pressure diffusion” during the boundary layer separation. 
However, there may exist quite another interpretation of the phenomenon. 

According to the Huygens–Fresnel principle, every element of the 
separation region can be considered as the perturbation center, or source 
emitting an elementary spherical pressure wave. The real wave front in the 
whole is formed as a result of interference of the elementary waves radiated 
by the centers. However, concerning the perturbations in the separation 
region, we can think that, first, these centers are not coherent. Second, the 
waves emitted by various centers of the region are of different intensity. 
And last but not least, the flow carries away the waves emitted, and distorts 
the wave fronts in their ways. 

Generally, the spherical elementary waves form the total cylindrical 
wave, when we deal with the oblique shock wave created by the wedge. 
The Schlieren visualization technique forms a two-dimensional picture in 
the direction of the wave axis, as shown in Fig. 8.8. Hence we may 
consider the wave propagation in a plane. Taking into account this notion 
and the three above reasons, we can estimate the process of the reflected 
wave propagation in the flow, as applied to the frame b in Fig. 8.8. 

Motion of the wave probe point depends on its initial position defined 
by the angle χ∈[0, π], on the wave velocity u/c = m (m ≥ 1), and on the 
flow velocity U /c = M. Naturally, the flow drifts the wave and distorts its 
front shape as well as the probe point trajectory. The angle α between the 
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trajectory and x-axis is determined by ratio of the point transverse velocity 
msinχ to the longitudinal velocity M+mcosχ: 

.
+

sintgα
cos
χ
χ

m
M m

=  (8.7) 

The function (8.7) for given m and M has a maximum αm at some 
values of the argument χm. The maximum position on the axis χ can  
be found by equating the derivative from the function tgα with respect to 
the angle χ to zero, 
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Solving the equation for the value of αm known from experiment results, 
e.g., from graph b in Fig. 8.8, we obtain equations that determine the wave 
velocity m and the angle χm: 
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The diagram b in Fig. 8.8 shows that the angle α has upper limit α1. 
Also, the angle α  has some lower limit α2. It follows from formula (5.15), 
according which the wave front does not exist as a whole beginning from 
some direction χ2,  whence χ  <  χ2. Therefore, the real values of α  belong 
to the interval α∈[α1,α2]. 

Among the set of reflected waves, those that have the greatest intensity 
may be expected to leave some noticeable marks on the Schlieren slit scan 
along their traces. For example, a wave of great intensity can be recognized 
by indirect signs, such as some bulging of the boundary layer. A similar 
effect is observed on the diagram b in Fig. 8.8 within the sector S with the 
reflection point s as a center. Measurements of the angle value α1 in the 
sector result in α1 ≈  39°. Then it follows from relations (8.9) that m ≈  1.9 
and χ1 ≈  141°. 

When m, M and χ (or ϑ) quantities are known, equations (5.16) and 
Program 5.1 give an opportunity to compute the trajectory of any probe 
point. The wave front of radius ℓ is clear to represent in essence the locus 
of the tips of the trajectories at the same length ℓ. The wave front distortion 
may be evaluated in the flow with non-uniform velocity distribution by 
means of computation of these trajectories. The data concerning the probe 
point trajectories and the wave front configuration constitute a new model 
of the wave reflection. 
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The diagram in Fig. 8.9 illustrates the model of the reflection process 
shown on frame b in Fig. 8.8. The slant lines in the figure imitate the 
trajectories of seven probe points within sector S, which have the common 
center s. The heavy line within the sector depicts the configuration of the 
originally spherical wave front, χ∈[0,π], deformed as a result of its drift by 
the flow while propagating. 

 

Fig. 8.9. Model of wave reflection shown by diagram b in Fig. 8.8 

Properties of the slant lines (Fig. 8.9) obtained from the numerical 
simulation practically coincide with the lines within the sector S observed 
in the experiment (frame b in Fig. 8.8). This coincidence serves as an 
experimental verification of the suggested interpretation of the wave 
reflection at moderate intensity. This interpretation can be applied to all the 
slant lines in Fig. 8.8b, with the exception of that line which corresponds to 
propagation of the very early perturbation. 

The slope angle α of the line changes quickly. The angle in the 
beginning makes up ~35°, but soon decreases down to ~26°, that means a 
motion deceleration from m ≈  1.7 to m ≈  1.3. Generally, such quick 
deceleration of the wave can be explained, only if the wave is of spherical, 
but not of cylindrical symmetry. The source of the spherical wave instead of 
the expected cylindrical one might arise as a protuberance, or even several 
protuberances on the leading edge of the wave reflection region. Thus, the 
offered concept of the wave reflection does not contradict the empirical 
observations which could be interpreted in all points. 

Surely the oblique shock wave reflection from a wall with boundary 
layer, that have just been considered, somewhat differs from the reflection 
of the spherical acoustic wave packet. Indeed, the oblique shock wave is 
formed in a supersonic stream, and the region of its reflection comprises 
rather strong perturbation which is stationary and, besides, is of cylindrical 
symmetry. However the cited data serve as an indirect proof of the fact at 
least, that a local perturbation arising at the boundary layer separation  
propagates in a flow as a wave with a central symmetry. 



8.3 Distribution of oscillations in flow cross-section 

 

119 

The structure of the perturbations and spatio-temporal field of the 
oscillations have been computed in Chapters 5 and 6 for the main potential 
part of the flow. The pressure gradient ∂P ⁄∂z in this part of the flow is 
small, as demonstrated in Fig. 3.1, and the trajectories of the wave probe 
points are described by rather simple equations (6.1), (6.2). 

The straightforwardness of the trajectories means that the direct and 
reflected waves take part in the superposition at any point of the flow. The 
only impediment for estimation of a wave contribution to a parameter 
perturbation at the observation point is the wave damping, i.e., the distance 
ℓ from the place of its arising to the superposition scene. 

Early in Chapter 5, it has been mentioned that the intensity distribution 
of the parameter oscillations does not keep a constant level over the flow 
cross-section. Also, it has been mentioned that the oscillations are most 
intensive near the wall. These features of the oscillation intensity distribution 
inhere in the flow within the simple wave as well. As emphasized in ([3], 
§42), the fluctuating flow near the wall “has some peculiar features that 
have not yet been given an adequate theoretical explanation.” However the 
peculiarity of the oscillations (fluctuations in terms of [3]) can be 
interpreted in the frame of the wave conception of the turbulence. 

As it follows from equation (5.14), the velocity complex profile in a 
boundary layer makes considerable modifications in the character of the 
wave propagation. Certainly, some spatio-temporal field of hydrodynamic 
parameter oscillations is formed in the boundary layer, and such a pheno-
menon as wave superposition exists. However the wave vectors s of the 
wave taking part in the superposition alter very much the directions while 
propagating through the boundary layer. 

Accordingly, the wave contribution to the parameter perturbations at 
the chosen observation point happens to depend on a variety of factors in a 
not quite evident way. One of the factors is whether a certain perturbation 
arises upstream or downstream concerning the observation point. Then, 
what is the distance between the wave origin spot and the observation 
point. At last, what is the altitude of the observation point above the wall. 

The trajectory description technique has been expounded in Chapter 5. 
The equation set (5.14) relates to general case of wave propagation. Now 
let us consider a solution of the equations for the plane y = 0. The set 
(5.16) assigned for the plane y = 0 implies that the trajectories start at the 
origin x = z = px = pz = 0. However if we deal with wave superposition, 
the parameters px, pz≠0 should be taken into account. 

We have already known, that the trajectory maximum z*, if any, 
depends on the angle value ϑ0  = ϑ*. Accordingly, if such maxima are 
located in one cross-section of the flow, say at х  = 0, the configurations of 
the trajectories in the plane у  = 0 look like as they are shown in Fig. 8.10. 

8.3  Distribution of oscillations in flow cross-section 
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This graph represents the fluid motion in the flat channel at the flow 
parameters m = 5 and М0  =  0.05. The trajectories are arranged in such a 
way that the maxima are z* = {0.075, 0.186, 0.341, 0.422, 0.463, 0.484}. 
The maxima arrangement requires the angles ϑ0  and the origin places xp* 
being ϑ* = {74, 72.7, 72, 71.85, 71.815, 71.807°}, xp* = −{1.17, 2.79, 5.74, 
8.5, 11.2, 14.3}. As a matter of fact the values z*, ϑ*,  px* are bound up with 
each other at given parameters m and М0 , as the relation (5.17) testifies. 

 

 
Fig. 8.10. Trajectories of probe points for the angle ϑ0 = ϑ* values that correspond to 
maxima z* originated at the spots xp* 

The horizontal broken line drawn at the level z*(ϑ* = 72.7°) intersects 
all the trajectories thereof initial angle ϑ and the distance xp  are less than 
ϑ* = 72.7° and xp(72.7°). It follows that a set of the trajectories with many 
other various values of хр and ϑ may pass through the point z*(ϑ* = 72.7°). 
However there is a limiting distance xp* beyond which a trajectory 
ascending branch does not reach the point. Such limiting trajectories are 
defined by the initial angles ϑ* which depend on the flow parameters m 
and M0. It is those trajectories that are shown in Fig. 8.10. 

Now there is a need to elucidate, which of the trajectories reach some 
arbitrary observation spot at the coordinates {x0, z0}. The equation (5.18) 
implies and the example in Fig. 8.10 illustrates, that some perturbation gets 
into the observation spot by both ascending and descending branches of the 
trajectory. To obtain more thorough information on the subject of which 
trajectory may reach the point {x0,z0}, it is better to take advantage of the 
simple flow with well-known parameters, e.g., m = 5, М0  =  0.05 at y = 0. 

The wave centers situated upstream and downstream from the point 
will be denoted as xp–  <  x0 and xp+  >  x0, accordingly. As equation (5.18) 
and Program 5.1 predict, the perturbation from the region xp+ hits the 
observation spot {x0,z0} via the ascending branch, whereas both branches, 
ascending and descending, can serve the purpose, when the perturbation 
starts in the region xp–. To evaluate the effects of the perturbations on the 
superposition of the oscillations, transmitted along the trajectories of these 
two types, we will compare this effect in two spots. 
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Let one of them be near the wall {x0  =  0, z0  =  0.1}, and the other take 
its place in the middle of the channel {x0  =  0, z0  =  0.5}. The trajectories of 
different perturbation waves passing through these two spots are plotted in 
Fig. 8.11. The upper graph represents the trajectory set arriving at a spot 
remote from the wall {x0  =  0, z0  =  0.5}. The lower graph depicts the 
trajectories around a spot lying near the wall {x0  = 0, z0  =  0.1}. Only the 
waves originated on the lower wall are shown in the figure for the purpose 
of the graph simplicity. 

 

 
Fig. 8.11. Trajectories directed to observation spots {x0, z0}  =  {0, 0.5} and  
{x0, z0}  =  {0, 0.1} 

Looking at the graphs, we conclude that the perturbations coming from 
the region xp− reinforce the longitudinal component u of the velocity 
oscillations, and the perturbations from the region xp+ promote intensific-
ation of transverse component w of the oscillations. Also, we can’t help 
paying attention to the region xp− being much longer than the xp+ region. 
Therefore, the oscillations directed along the stream get some advantage, 
all other things being equal. 

Now we are about to investigate how total orientation of the 
oscillations created by the perturbations depends on the distance z0 of the 
observation spot from the wall, or what is the distribution of the velocity u 
components along u and across w of the stream in the flow cross-section 
[33]. 

Initial orientation ϑ0 of the trajectories that come to any of the two 
observation spots from the region xp+ varies in rather broad limits which 
are ϑ0∈[−π/2, 0], to be exact. Hence the contribution made by these waves 
to the parameter perturbations at both spots z0  =  0.5 and z0  =  0.1 do not 
differ noticeably. The essential difference in the contributions appears 
when the waves come from the region xp−. 
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 The trajectory’s initial orientation, that comes to the observation spot from 
the region xp−, lies within some narrow interval, for the angles ϑ0 are 
restricted by limiting angle ϑ*, ϑ0∈[~ϑ*, π/2]. The limiting angle for the 
observation spot z0  =  0.5 amounts to approximately ϑ* = 71.8°. So that  
the spot is accessible only for the ascending branch of the trajectories. The 
similar limiting angle ϑ* exists for a spot situated near the wall too, in 
particular if z0  =  0.1, then ϑ* = 73.6°. However, in contrast to the previous 
case, the lower spot is accessible both for the ascending and descending 
branches of the trajectories, and the latter maxima belong to the range 
z*∈[0.1, 0.5]. 

The contribution to the oscillations due to the perturbations coming by 
such trajectories grows along with the length of the region xp−. In its turn, 
the region lengthens while the observation spot approaches to the wall. 
Accordingly the ratio of the velocity longitudinal component to the 
transverse component, u /w, progressively increases. 

Just such a trend was observed by H.  Reichardt in experiments [59] 
with the channel of rectangular cross-section, and in P.S.  Klebanov’s 
experiments [60] with a flat plate. H.  Reichardt measured turbulent 
oscillations of the air flow velocity in the channel by the width of 1 m and 
height 24.4 cm at the Mach number М0 = 0.003 (the flow velocity U0 = 100 
cm/c), when the Reynolds number exceeded 104. Distributions of the root-
mean-square velocity longitudinal and transverse components across the flow, 

( )2 2
max

u u  and ( )2 max
u2w , (8.10) 

are reproduced in Fig. 8.12 by points. As the distributions are symmetric 
concerning the channel middle, a half of the curves is shown on the graph. 

 

 

Fig. 8.12. Longitudinal 2u and transverse 2w  components of the velocity 
oscillations in relative units 

It is evident from H.  Reichardt’s measurements, that the transverse 
component of the velocity oscillations displays feebly marked dependence 
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on the coordinate z, whereas the longitudinal component has the explicit 
well-defined maximum near the wall, at z  ≈  δ  ≈  0.03. This result, which 
has had no consistent explanation until recent time, is naturally interpreted 
on the basis of the stated understanding of the turbulent fluctuations as the 
oscillations of acoustic nature. 

Moreover, there appears an opportunity to obtain a quantitative 
description of the oscillation distribution observed in the flow cross-section 
within the frame of this acoustic approach. Employing the relation (5.6) 
allows us to formulate the components of the velocity oscillations in the 
form: 
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Here ℓ is the current distance covered by the wave front, ℓn denotes the path 
length from the perturbation origin to the observation spot {x0, z0}, angle ϑ 
implies the slope of the trajectory at the point {x0, z0}, and a = δ  means the 
characteristic dimension of the primary perturbation, being about the 
thickness of the boundary layer. 

Generally, the quantities of the perturbation velocity components, as 
well as the outcome of the superposition, are determined by the relations 
(5.14). However it is reasonable to simplify the calculation technique for 
the sake of better comprehension of a physical picture of the process and 
the space saving. For that we replace the curvilinear trajectory between the 
perturbation centre {x = xp,  z = 0} and the observation spot {x = x0  =  0,  
z = z0} by a straight line, as shown in Fig. 8.13. The straight line length 
does not practically differ from the path length ℓ along the real trajectory. 

 
Fig. 8.13. Design of bowed trajectory replacement by straight line  

Now let us assume that the parameter xp distribution along the x-axis is 
uniform, and take into account only those perturbations which arise in the 
range xp∈[–10, 10]. The wave amplitude outside of the range is too small 
to be included in the calculation as a first approximation. Then the root-
mean-square velocity components of the oscillations can be expressed 
through the arguments xp and z0 as follows: 
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The factor ε is inserted into integrands to compensate the fault in the 
contribution into the oscillations made by the perturbations, resulting from 
the replacement of the real trajectory by a rectilinear path. The mere 
replacement would shorten a little the longitudinal component of the 
velocity oscillations, and lengthen the transverse component. The value  
ε  = 0.2 has been used in the computation. Also the lower limit of 
integration, a, has been included to take into consideration the fact, that an 
outer problem of the wave propagation is solved in the field r > a. Hence 
the integration is carried out outside of the boundary layer, z0  > a  ≈  δ . 

Thus the outer problem of the wave field (2.30) determination is 
reduced to solution of equations of the type (5.2). The inner problem 
solution, when integration (2.30) is carried out at r  < a, leads to the 
components of the velocity oscillations changing from their maximum 
values at the edges of the primary perturbation to zero on the wall surface, 
z0  = 0. 

The components of the velocity oscillations, computed according to 
formulas (8.12) with their definition within the boundary layer, are 
presented on the graph in Fig. 8.12 by solid curves along with dots for the 
experimental data. Comparison of the experimental and calculated data 
shows that the simulated functions and experimental dependences are well 
matched [33]. 

H.  Reichardt’s thorough measurements give us a chance to evaluate 
parameters of that acoustic wave which would be capable to create 
observable oscillations of the velocity. According to data of the experiment, 
the flow mean velocity amounted to U = 100 cm/s, and the level of the 
effective amplitude of the velocity oscillations made up u ~ 5 cm/s. 
Oscillations of the pressure and velocity in an acoustic wave are bound by 
the simple relation p/P0  =  u/c [3, §64]. 

Hence, knowing the amplitude u of the velocity oscillations from the 
experiment [59] allows us to evaluate the effective amplitude of the 
pressure oscillations as p/P0  ≈  10−4. For example, in air at the atmospheric 
pressure (p0 ~ 105 Pa) this amplitude will be p ≈  10 Pa, or ~0.1 mmHg. As 
a matter of fact this experimental quantity corresponds to the level of 
loudness of human speech. 

Thus, the acoustic model of turbulent oscillations (usually called 
fluctuations) gets experimental verification in all the basic theses. 
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9 
Transition from normal combustion to detonation 

9.1  Short history of the problem 

Research on non-stationary combustion and detonation origins began after 
catastrophic explosions occurred in collieries of France and Belgium. 
Subsequent study of the problem was also stimulated by the phenomenon 
of a “knock” in internal-combustion engines and intensification of fuel 
burning in industrial fire-chambers and jet engines. 

Detonation in natural explosive gas mixtures, following a thermal 
initiation of slow combustion, was discovered almost simultaneously by  
M.  Berthelot, P.  Vieille [61] and E.  Mallard, H.  Le Chatelier [62]. Then 
V.A.  Michelson [63] partitioned the phenomenon into three transient 
stages depending on the flame propagation character. These stages are slow 
flame propagation, flame accelerated motion, and detonation. 

V.A.  Michelson paid attention to the important fact that combustion 
within a flame entailed a pressure increase in the flame’s zone. This 
observation furnished a vital clue to understanding of the combustion 
altered regime at all three stages of flame propagation. Unfortunately, this 
observation and the idea itself were forgotten for some time. 

The concept of an effect of acoustic waves on flame structure and 
propagation was first stated by H.B. Dixon [64]. He confirmed experi-
mentally the guess surmised by H. Le Chatelier that some “invisible waves” 
spread quickly before the flame. Later on, the phenomenon of normal 
combustion (deflagration) transition into detonation was investigated  
by many authors, in particular in the works [49, 50, 65–68]. This list of 
references is compiled in chronological order, and certainly does not 
contain all the publications on this problem. 

Combustion represents a process resulting in energy liberation in the 
zone of chemical reactions. Inasmuch as the combustion zone is spatially 
restricted, the energy release is accompanied with expansion of the 
combustion products to set the surrounding gas in motion. Consequently 
combustion is a hydrodynamic process as well. 

When an explosive gas mixture is ignited at a closed end of a pipe, the 
combustion product expansion sets the fresh gas mixture in motion in front 
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of the flame. The moving fresh gas is compressed beginning from the 
forward boundary of the motion, and the gas temperature, density and 
velocity increase as well as the pressure. In due course of time a shock wave 
is formed at the front boundary. Meanwhile, the gas pressure and density 
decrease in the combustion products behind the burning zone where the 
chemical reactions occur. All this results in formation of the so-called 
“double saltus” [50], i.e., a column of gas flowing between the running 
shock wave and a traveling front boundary of the combustion products. 

The gas convective stream causes a flame surface increase and a flame 
acceleration that are followed by a mixture combustion intensification and 
the double saltus strengthening. Expansion of the combustion products acts 
as a piston moving with acceleration. As a consequence, the gas mixture 
motion within the column is quickened. 

When the velocity reaches some great value, the flow and the flame 
become turbulent [49]. The velocity of a turbulent flame exceeds considerably 
the normal flame velocity, and the turbulization serves as a reason for the 
second flame acceleration. 

The elementary compression waves, which are emitted by the acceler-
ating flame-piston, overtake each other and produce a compression wave of 
considerable amplitude in the end [46]. The latter soon transforms to the 
front shock wave, where the temperature rises, and detonation occurs [49, 
50, 65]. 

The exposition of the non-stationary transition into detonation has met 
with some formal difficulty. According to the theory of stationary propag-
ation of the chemical reaction zone, whose foundation was laid by  
D. Chapman [69] and E. Jouguet [70], the conservation equations can be 
solved by using features of the well known Hugoniot adiabatic curve for 
detonations and deflagrations. 

Two branches of the curve are of practical significance. One of them 
describes the reaction zone propagation at a velocity up to 100 m/s, and 
corresponds to normal combustion. The second branch is applicable to 
velocity over 1,500 m/s, and accounts for the detonation propagation. But 
the curve of Hugoniot does not interpret the transient regime of combustion. 
The theory of the Q-curve [71] was developed to make up for this 
deficiency, and to obviate the theory’s formal difficulty [49, 72]. 

The established apprehension concerning the slow combustion transition 
to detonation sufficiently agrees with observational data. Nevertheless,  
one point is worthy of being noted. The authors of previous researches have 
proceeded from the assumption that all the processes develop in one 
dimension. Also such important factors as pressure increase in the zone of 
the energy release have not been taken into account. In particular, effect of 
the pressure waves caused by the energy release on the process development 
has not been considered at all. 
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Hence, understanding of the slow normal burning transition into the 
detonation needs some additional thorough consideration. 

9.2  Exposition of flame propagation in a pipe 

The study of the flame propagation process and transition of the normal 
flame into detonation was carried out in a pipe of circular cross-section, 
diameter of 3 cm, and in a pipe of square cross-section with the square 
side 2.9 cm. Each of the pipes had modular construction consisting of 
interchangeable sections, including its own optical module, the visual 
section, for the process development visualization and registration by 
means of Schlieren slit scan recording and Schlieren high-speed filming 
(see Chapter 8). An overall view of the visual modules is shown in Fig. 9.1. 
The overall length of each pipe was 155 cm. 

 

  
Fig. 9.1. Visual modules of pipes of circular and square cross-sections 

The experimental facility provided the equipment for making the 
visualization of all kinds of perturbations in the form of moving optical 
non-homogeneities by the Schlieren and shadow methods. Also, the set-up 
included devices for visualized scene registration by slit scanning and 
filming, and continuous pressure recording with temporal resolution 10−4 s 
and spatial resolution about 1 cm. 

An explosive mixture of methane with oxygen, CH4 + 4O2, was 
selected after the preliminary experiments. The quantity of molecules in 
such a mixture composition does not change in the course of an oxidation 
reaction. In addition, the combustion products comprised a rather small 
portion of the water molecules, condensation of which might complicate 
the interpretation of the observation results. The Schlieren slit scan photo of 
the flame propagation process in the pipe of the circular cross-section is 
presented in Fig. 9.2 [51]. 
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Fig. 9.2. Slit scanning of the flame propagation process in a pipe of circular cross-
section 
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The transition to the detonation occurs at a distance about 110 cm from 
the mixture ignition site. Inasmuch as the pipe length amounts to 155 cm, the 
shock waves reflected from the opposite end of the pipe meet the 
detonation wave in plenty of time after the detonation has already occurred. 
In this sense the pipe can be considered as being infinitely long. The flame 
propagation is registered as the dependence of the coordinate x on time t 
beginning from the ignition instant. The process details are essential, and 
the time and space resolutions have been provided for. 

The time resolution and tracing duration depend on the velocity of 
scanning, and are easily controlled, though the two parameters have mutually 
exclusive requirements. The visualized picture is recorded at a large scale 
to augment the space resolution whenever possible, but the proper field of 
vision defines the visual module dimensions. As a result, all the picture 
along the pipe length L consists of ten parts implying ten successive 
positions of the visual module. Hence the photo in Fig. 9.2 is actually a 
mosaic made up of separate fragments obtained in different experiments. 

Horizontal black strips are dinted by three opaque scale marks of the 
visual module. The moment and place of the mixture ignition on the photo 
are situated at the point x = 0, t = 0. At the photo’s left has been drawn a 
schematic diagram of the double saltus instant configuration in a pipe.  
The diagram includes the flame sketch, the first intense shock wave at the 
distance l, and the first sound wave which is at distance L from the mixture 
ignition spot. The diagram refers approximately to the time instant t = 1 ms. 

Hence the region of the whole simple wave has length L, the real 
double saltus is of length l. The flame propagation velocity is denoted 
through U, the shock wave through D. The velocity of the gas flow W and 
the flame normal velocity u0 are not shown on the diagram. The velocity u0 
refers to flame’s front motion relative to the fresh mixture in the direction 
normal to the flame surface. 

The broken slant line reproduces the trace from the ignition site, which 
the first acoustic wave would leave on the linear slit scan, if the imaging 
method were more sensitive. The line indicates the forward edge of the 
double saltus, i.e., the front of the simple wave to be exact, however the 
first shock wave seems to be the real boundary. The broad dark track of 
alternating slope on the photo relates to the flame motion. 

The numerous nearly straight lines outgoing from the flame, which 
propagate before the flame, are the compression waves. They originate in 
the combustion zone due to expansion of the combustion products. There 
stand out traces of the forward and backward detonation waves, and the 
powerful shock waves reflected from the pipe ends. The tortuous lines 
behind the flame are the traces of the non-homogeneities produced by 
motion of optical inhomogeneities in the combustion products. The slope of 
the traces corresponds to local velocity of the perturbations of various kinds 
in the hot gas. 
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We repeat once again, the Schlieren method enables us to distinguish a 
perturbation as an optical inhomogeneity in a gas under examination, 
provided that the inhomogeneity gradient is not outside the scope of the 
sensitivity. Generally the detection sensitivity depends on the gas temper-
ature, and the temperature rise reduces the detection opportunity. However 
a strong perturbation with a heavy gradient is visible even in combustion 
products, despite the high temperature. 

So, the higher the temperature of the gas, the more strong perturbation 
is required to be observed. The perturbation motion leaves on the slit scan 
the slant line. The field of the lines contains information on the propagation 
velocity (concerning the pipe) of the pressure waves, of the flame, of separate 
perturbations in the flow in front of the flame, and in the combustion 
products. 

One more kind of traces needs some special explanation, for the traces 
are located within the double saltus. There are small cavities of 0.2 mm 
depth and 3 mm width at the junctions of the optical glass and the observation 
slot in the visual module body of the circular pipe (Fig. 9.1). As a matter of 
fact the cavity is nothing but a local roughness. The effect of the cavity is 
demonstrated by the photo in Fig. 9.2. 

When a set of pressure waves emitted by the flame passes near the 
cavity, the appropriate sequence of the perturbations arises in the form of 
weak spherical pressure waves moving within the simple wave. The waves 
propagating in the slit’s field of vision leave the traces on the slit scan 
image, looking like the curved lines that correspond to the motion against 
the current. 

The visual module of the pipe of square cross-section has no such 
cavities, for the glass slab and metal wall have at the junctions nearly a 
single continuous whole surface. Therefore, the reflected waves do not arise. 
Analysis of the Schlieren photo of the slit scan in Fig. 9.2, and thereof 
comparison with the slit scan in the pipe of square cross-section shows, that 
the local perturbations do not make an impact on the explored process 
development. Nevertheless, the perturbations in the circular pipe lessen the 
path of the normal combustion transition into detonation for a small part of 
a millisecond, and reduce the length of the transition from 5 to 10 cm. 

The velocity of any perturbation can be specified by measurement of 
the trace slope angle β and the scale factor k peculiar to the slit scan image. 
For instance, the flame velocity U  in Fig. 9.2 is determined as 

U  =  k tgβ. (9.1) 

The flame velocity U as a function of the distance X covered by the flame is 
represented in Fig. 9.3. The slit scan photo in Fig. 9.2 has been used for the 
measurements. A fleeting glance at the process development allows us to 
appreciate the character of the transition to detonation, and to divide the 
process into its separate stages. 
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Fig. 9.3. Flame velocity along the trajectory as the slit scan shows 

The flame’s normal velocity in the mixture CH4 + 4O2 is equal to  
2.3 m/s. Expansion of the combustion products enlarges the propagation 
velocity of the flame front along the pipe axis up to ~23 m/s. For the 
reasons expounded in Chapter 8, according to the slit scan, the flame starts 
motion immediately from the acceleration, and in ~1.3 ms after ignition  
the propagation velocity reaches the maximum value which amounts to 
~250 m/s. 

Then, during a relatively long period, ~2.7 ms, the flame moves 
almost at the constant velocity ~200 m/s, being accompanied by small 
oscillations about the mean value. After this quasi-stationary motion, the 
flame propagation mode is changed, and the second progressive acceler-
ation is observed, which is followed by formation of the detonation. 

Thus, the entire process of the normal combustion transition to the 
detonation lasts approximately 3.7 ms and consists of three stages, to say 
nothing about the detonation itself. The main transitional shapes and 
structures that the flame takes while propagating are assembled and 
represented by the frames of high-speed photography in Fig. 9.4. Now we 
will dwell upon each of these three stages. 

9.3  Initial stage of the flame propagation 

The graph in Fig. 9.3 testifies that the initial stage of the flame propagation 
process begins naturally from the explosive mixture ignition by the electric 
spark, and lasts up to the moment when the flame reaches the pipe walls. 
Details of the process can be seen from the slit scan in Fig. 9.2, from the 
frames a, b in Fig. 8.3 and frames 1–3 in Fig. 9.4. The frames in the figures 
have been obtained at different adjustment of the visualization system, so 
that there is some difference in their appearance. Anyhow it does not 
prevent us from realizing the essence of the modifications. 

This stage is characterized by the flame origination, its front surface 
formation, and short period of the flame uniform propagation followed 
soon by strong acceleration and subsequent speedy small deceleration. 
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       1. 

     X = 4.0 cm,  
           τ = 0.12 ms 
 
 
       2.  
      X = 15 cm,  
      τ = 1.00 ms  
 
 
     3. 
      X = 17.5 cm,  
       τ = 1.13 ms  
 
 
       4.  
      X = 26.5 cm,  
        τ = 1.54 ms  
 
 
        5. 
      X = 31.3 cm, 
       τ = 1.94 ms  
 
 
       6. 
      X = 41.1 cm, 
        τ = 2.16 ms  
 
 
       7. 
          X = 61.5 cm, 
       τ = 2.75 ms  
 
 
               8. 
        X = 113.7 cm, 
       τ = 3.43 ms  
 
 

Fig. 9.4. Structures during the flame acceleration 
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The flame origin serves as the source of the weak pressure wave packet. 
The wave, being repeatedly reflected from the pipe walls, makes consider-
able impact on the flame front surface shape, and on its structure as well. 
The wave influence becomes apparent after some period, about 0.07 ms, 
during which the wave runs up to the walls and returns to the start point. 

The flame holds a hemispherical configuration till the moment of the 
meeting with the wave reflected from the walls, and propagates in the  
pipe in the same way as in the free space until the meeting. During this 
phase the flame velocity U and the velocity W of the fresh gas convective 
motion are easy to express through the flame normal velocity u0: 
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where n is the ratio of densities of the fresh mixture and of the combustion 
products. While the flame velocity is small in comparison with the sound 
velocity, as it is in this case, the density ratio can be replaced by the ratio of 
the temperatures Т and molecular weights μ: 
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The thermodynamic calculation [53], for the chosen mixture initial 
temperature T0  = 298 K (μ0  =  29.85) at the atmospheric pressure, gives 
the combustion products temperature T = 2,777 K and molecular weight 
μT  = 26.7, whence n  = 10.05. Accordingly, the velocity of the flame 
propagation and the gas convective velocity make up U  ≈  23 m/s and  
W  ≈  21 m/s. 

The flame meeting with the waves reflected from the walls causes 
redistribution of the gas convective velocity W, and there appears a preferred 
orientation of the gas motion along the pipe axis. Generally, the velocity of 
the flame and the gas in front of the flame are defined by formulas (9.2). 

However when the flame surface area S exceeds the area of the pipe 
cross-section F, the gas’s effective convective velocity W depends on the 
ratio of the areas S /F and the direction. Averaging the second expression in 
(9.2) at constant pressure gives the velocity W mean value in the x-axis 
direction 

0( 1) .
S

W n u
F

= −  (9.4) 

The product S(n–1)u0 is merely growth of volume of the mixture 
combustion products due to combustion at the flame’s enlarged surface 
area S at nearly constant pressure. At the beginning of the flame 
propagation, while the area S is much less as compared with F, the flame 
front shape is deformed slightly and its linear dimensions vary proportionally 
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to time t. Hence, 2~W t  and the flame acceleration looks as ~ ,dW dt t  so 
that the pressure waves are generated along with the mixture ignition.  

A question arises at this point as to whether a source of pressure waves 
is expansion of the combustion products, or energy release due to the 
electric discharge. The inquiry answer definitely follows from comparison 
of two sets of the frames presented in Fig. 9.5. The electric spark is seen to 
produce a pressure wave, though it is very weak and dies away, i.e., 
oversteps the limits of the equipment sensitivity, practically during 10 μs, 
at least. As to the wave produced by combustion, it is supported by 
expansion of the combustion products. In other words, the electric 
discharge does not influence noticeably the process development. 

Fig. 9.5. Perturbations created by an electric spark in air (left) and an explosive 
mixture ignition (right): n  =  31.4 × 103 fr/s, τ  =  4  μs 

Some time later, say, in 0.25 ms, the flame surface deformation 
stimulating expansion of the combustion products in the x-axis direction 
leads to a velocity increase up to 120 m/s. At the time, the flame front 
moves in the radial direction at a velocity of about 7 m/s. When the flame 
stretches along the pipe axis, the surface takes the form of a so-called 
cellular structure. The fact that the cellular structure appears already under 
the condition S  << F has been mentioned in Chapter 8.  

The cellular structure exhibited by flames was especially studied by 
many authors (e.g. [54, 55, 73]), who gave different reasons for the origin 
of such a structure. As to the present research, the effect of wave 
perturbations of an acoustic nature is shown to be the real reason of the 
flame cellular structure formation. It distinctly follows from the Schlieren 
photos a and b in Fig. 8.3. 

It is considered to be the case that the cellular structure does not 
influence the flame’s normal velocity. Meanwhile, the mentioned photos do 
not confirm this supposition. Indeed, the flame should propagate in the 
direction of the normal to the envelope surface at the velocity of 23 m/s, 
whereas according to the graphs in Fig. 8.3, the value estimation for the 
flame at the cellular structure gives 34–35 m/s. This difference, though 
small, arises evidently from the growth of the total combustion rate because 
of the effective area increase in the case of the cellular flame surface. 
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A little more later, in t  = 1.2 ms, the flame contacts the walls. After 
that the flame surface quickly begins to lessen, and the flame propagation 
along the pipe axis decelerates. Really, according to the photos b in  
Fig. 8.3, the angle between the tangent to the flame surface and the pipe 
wall surface can be estimated as φ  ≈  30'. If the flame moves to the wall at 
the normal velocity u0 , then the point of contact runs along the wall surface 
at a velocity which is equal to Uw = u0 /sinφ  ≈  250 m/s. This results in a 
quick reduction in the flame surface. 

That is way the flame front loses its velocity in such an up-tempo, just 
after the instant when the flame comes into first contact with the wall. The 
surface lessening lasts until the velocity Uw is equal to the flame 
propagation velocity U, 

0
w sin

= = .
u

U U
φ

 (9.5) 

The flame surface area S reduction is the main reason of deceleration of the 
flow in front of the flame, and consequently, of the flow’s mean velocity 
W decrease. Other reasons which are discussed in the literature (see, e.g. 
[66–68]) are most likely not so essential. 

Some conclusions follow from formula (9.5). The angle φ which can 
be easily measured by an instant picture of the flame surface area provides 
us with information concerning the ratio of the normal and propagation 
velocities of the flame. However, note that the relation is valid while the 
pressure augmentation and flow velocity W  are not too large, otherwise 

Meantime, there develop some other processes, so that the flame 
obtains a new state in which the shape, propagation velocity and gas mean 
velocity before the flame remain practically permanent. To the point, under 
the circumstances the flame operates as the piston mentioned in Chapter 4 
that moves at the constant velocity .W  

9.4  Uniform flame propagation and second acceleration 

The graph in Fig. 9.3 depicting the flame propagation velocity U as a 
function of the distance X can be attributed to the same dependence of 
Reynolds number Red of the fluid flow before the flame front as well. The 
new ordinate transformation can be performed by means of expressions 
(9.2)–(9.4). According to these formulas, the flow velocity averaged over 
the pipe cross-section rapidly increases along with the ratio S /F . 

When the ratio becomes equal to S /F = 0.1, i.e., shortly after the 
mixture ignition, the Reynolds number Red reaches the critical value. 
Further, during the flame’s uniform propagation, the Reynolds number 

some other velocity values should be used in (9.2) and (9.4). 
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reaches a quantity of the order Red ~ (3–4) × 105, which is 15–20 times as 
much as the critical value. On this ground the flame is presumed to move at 
this stage in the turbulent flow. And as the flame structure follows the 
structure of the flow, it is usually accepted as a turbulent flame ([49, 50], 
etc.). The same standpoint concerning the problem of flame acceleration, 
while the flow fluid propagation remains approximately uniform, is applied 
in the work [74] as well. 
 In reality, it does not seem to be the case. Let us look at the picture of 
the slit scan of the flame at the stage of uniform propagation, x∈[18, 37] 
cm, in the square cross-section pipe shown in Fig. 8.2. Incidentally, waves 
reflected from the glass-wall joints are not seen, as stated above. 
 The gas mixture before the flame does not move along all of the length 
of the pipe, but only in the limits of the dilative complex named above as 
the double saltus. The gas mixture at some cross-section of the pipe begins 
moving when the first wave comes to the cross-section. The velocity is 
constant across the flow at the motion start, however then a new velocity 
profile is settled according to the flow’s Reynolds number in the course of 
time. 
 If the time is sufficiently long, the flow and the flame as well become 
turbulent. Otherwise both of them remain laminar. However, there can 
happen an intermediate phase, when the perturbation waves exist in the 
flow, but the dynamic equilibrium between the perturbation birth and 
damping, and the velocity profile, have no time to come to the settled state. 
 The length of the turbulence coming to steady state depends on the 
flow mode [8]. In the laminar flow this process occurs at x  ≈  0.04 d Red. 
The length of the turbulent flow formation is different depending on, prob-
ably, the feature of the experiment specifics. For instance, J.  Nikuradse 
[40] estimates it as 40 calibers, while according to G. Kirsten’s measure-
ments [75], the length makes up 50–100 calibers. 
 The length in our case, with the pipe cross-section area equivalent to  
3 cm diameter, should exceed 120 cm, at least, whereas the length of the 
double saltus, estimated by the slit scans shown in Figs. 9.2 and 8.2, does not 
exceed 30 cm. Consequently we deal just with the intermediate case, when 
the flow velocity profile and oscillation radial distribution have been 
formed. In the course of time the double saltus length increases, so the flow 
velocity and oscillation profile evolve. The photos 1–5 in Fig. 9.4 as well 
as frames b, c in Fig. 8.3 illustrate the evolution process. 

In the beginning we see that there appear gradually a considerable 
quantity of disturbance waves in front of the flame, though the boundary 
layer is not seen as yet. Meanwhile photos 4, 5 (Fig. 9.4) and frames c (Fig. 
8.3) reveal some essential changes in the flame shape and structure. The 
enveloping surface S of the smooth flame of prolate configuration becomes 
equal only to S  ≈  2.5F, and the question is how the flame propagation is 
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supported at nearly constant velocity. In addition, what is the reason of the 
flame’s second acceleration. 

Change in the flame structure provides an answer to the question.  
As the photos in Fig. 9.4 demonstrate, the flame length shortening is 
accompanied by change in the inner structure which is converted into the 
one looking like a turbulent structure. Effective combustion surface Seff  
of the turbulent flame is known to exceed noticeably the flame smooth 
surface S.  

Thus, the surface enveloping the flame contour is strongly decreased. 
The area size measurements, say, in the photos 2 and 3 (Fig. 9.4) show, that 
the flame enveloping surface area decreases from approximately S2/F ≈  30 
to about S3 /F ≈  2.5. Nevertheless, the flame propagation velocity 
deceleration amounts only to about 20%. Hence the decrease of the flame 
surface area is countervailed owing to the structure change that gives nearly 
tenfold increase in the combustion’s effective surface, which is Seff /F ≈  10. 
This is the reason for the flame propagation at nearly the same velocity. 

The flame of the changed structure might well propagate at permanent 
velocity. However the structure should be steadily maintained by the 
pressure waves. We have seen from oscillograms in Fig. 8.1 and know 
from the paper [73], that energy output in the zone of burning is the source 
of pressure waves. Since the double saltus lengthens in the course of flame 
propagation, the combustion zone becomes a more effective source of 
pressure waves. Therefore, the ratio Seff /F and combustion intensification 
provide further augmentation. This process is illustrated with the frame 
series of high-speed filming shown in Fig. 9.6. 
 

 
Fig. 9.6. Flame structures: t = 1.93 ms, 3Δt  =  47.8 μs (n  =  62.8 × 103  f /s),  
τ  = 2 μs 

The frames in the series have been made with an exposure duration of 
τ  =  2 μs, and a frame-repetition period T  =  15.9 μs at a picture frequency 
n  =  62.8 × 103 f /s (frames per second). Only every third frame has been 
included in the series, so the time interval between the frames shown 
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corresponds to 3Δt  =  47.8 μs. The flame appears in the window’s field of 
vision in t  ~ 1.8 ms after the mixture ignition. Naturally, all frames of the 
series have been registered with the equipment at equal sensitivity 
adjustment. This identity allows the process development to be considered 
in detail. 

Comparison of the scenes on the frames clearly shows intensification 
of the perturbation waves in front of the flame, as well as arising of the 
prominences on the flame surface near the walls. These events result from 
the aforesaid double saltus progressive lengthening. It was noted in [76], 
that the double saltus length is to some extent similar to the length of a 
plate blown by a stream. As the flow length increases within the double 
saltus, there appears in the flow a laminar boundary layer which comes into 
the turbulent layer in the course of the double saltus lengthening. 

The parameters of the boundary layer in the gas flow behind a shock 
wave were estimated in the work [77] according to results of measurements 
in a flow over a plate. By analogy, we use the data from [8] on the subject 
for the estimation of the boundary layer parameters in the double saltus, 
provided that the plate length is equal to the length l of the double saltus. 

The laminar boundary layer at the plate surface grows into the turbulent 
layer, when the flow Reynolds number composed for the plate length l 
attains the value of the order Rel  =  Recr  =  Wl /ν  ~ 106. Whence the 
critical length lcr  for the laminar boundary layer can be derived in the form 

lcr  ≈  106(ν /W ). (9.6) 

On the other hand, the thickness of the laminar and turbulent boundary 
layers are approximated by the relations: 

( )lamδ 5 ν RelW≈ , (9.7) 

( ) 1/ 5δ 0.37 Re .lt tl
−≈  (9.8) 

It gives an opportunity to estimate the boundary layer thickness δcr at the 
length lcr  when the laminar layer is about to grow into the turbulent state: 

( )cr crδ 5 ν ReW≈ . (9.9) 

Generally speaking, the cited formulas concern those flows in which 
velocity is permanent. In the case under consideration this is not absolutely 
the case. But it is seen from the graph in Fig. 9.3, that the flow velocity W 
within the double saltus during the stage agrees closely with the 
requirement. Taking into account these cases and relations (9.2), (9.4), the 
effective velocity can be estimated as W  =  120 m/s. The kinematic 
viscosity factor ν for the chosen mixture is known, ν  =  0.15 cm2/s. Then 
the length lcr and thickness δcr of the laminar boundary layer near the place 
of conversion into the turbulent state can be estimated by formulas 
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cr cr
ν Re ~ 13 ,cml

W
≈  (9.10) 

cr cr .νδ 5 Re ~ 0.7 mm
W

≈  (9.11) 

These data help to determine the place of the conversion in the process 
under consideration. Looking at the slit scans in Figs. 9.2 and 8.2, we see 
that the double saltus has the length lcr  =  13 cm. The length corresponds to 
the flame’s front position at the distance x =  22  cm from the ignition 
point. Consequently, this is that flame position from which the turbulent 
boundary layer arises. 

Now, as it has been shown above (see Fig. 8.12), the outside surface of 
the boundary layer is characterized by a sharp increase of the flow 
parameter oscillations. It is of interest to estimate an effect of the 
oscillations on the flame velocity, which is known to increase noticeably in 
the presence of the oscillatory motion. 

Among a great number of formulas offered for the turbulent flame 
velocity ut (see, e.g. [68, 78–80]), we will use the most simple expression 
that is sufficient for our purpose: ut  =  u0  +  w. The oscillation amplitude is 
denoted here as w. Then the propagation velocity of the turbulent flame Ut 
takes the form 

Ut  =  W  +  w  +  u0 .  (9.12) 

If the turbulent boundary layer arises immediately in front of the 
combustion zone, then the amplitude w of the velocity oscillations and the 
flame velocity Ut  have maximum values at the distance δcr from the wall. 
That means according to (9.12), that prominences appear on the flame 
surface at the distance δcr from the walls. The beginning of such a 
prominence is demonstrated in frame 4 in Fig. 9.5. 

Following [74], the local maximum of the flame velocity we will call 
“a leading point”. The point moves faster than remaining parts of the flame 
surface and determines the propagation velocity profile. But while the 
length of the turbulent part of the boundary layer is small still, it burns out 
fast, which results in emission of a compression wave. Since no 
modifications happen to the flame, total velocity remains practically 
constant on average. However in actuality the flame velocity makes some 
small oscillations about the average value. 

The process of a leading point formation is illustrated by the outline in 
Fig. 9.7. As is seen on the picture, the same leading point appears at the 
other wall of the pipe. The outline represents the flame propagation process 
in one plane. Meanwhile, it is easy to fancy, that such leading points 
originate along all the periphery of the pipe cross-section. Therefore we can 
think about the leading ring moving close to the walls, which the photos in 
Fig. 9.6 confirm. 
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However the uniform ring distribution is unstable and can not exist for 
a long time. One of the points moves forward, as the sketch in Fig. 9.7 
illustrates, and the frames shown in Fig. 9.8 verify. The point’s subsequent 
progress leads to the flame asymmetry. This process is demonstrated by the 
frames in Fig. 9.9. 

Henceforward the point influence on the flame increases progressively. 
Accordingly, the flame is taking an asymmetrical shape, and its surface is 
growing in area. This process development can be traced by the frame 
series in Figs. 9.7 and 9.9. Similar flame configurations at the non-
stationary propagation were observed in a number of researches (see, e.g. 
[81–83]). 

 

 

Fig. 9.7. Diagram of quasi-stable double saltus 

 
Fig. 9.8. Flame structures: t = 1.93 ms, 3Δt = 47.8 μs (n = 62.8 × 103 f/s), τ = 2 μs 

Fig. 9.9. Flame structures: t = 2.14 ms, 3Δt  =  6 3 .7 μs (n  =  47.1 × 103  f /s),  
τ  = 3 μs 
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An interesting visual demonstration of the leading point growth in 
development of a turbulent boundary layer was described in [78]. The 
experiments were performed for a water flow in an open rectangular 
channel d = 5 cm wide. There were measured the flow velocity averaged in 
time, ,U  and the root-mean-square amplitude of the velocity oscillations, 

.u2  In the course of the turbulence development while the water moved 
down the flow, the maximum of the sum S  = 0( )U U+ 2u  shifted along 
with the thickness of the boundary layer. It is the main point of the above 
reasoning. 

Profiles of the relative velocity 0U U  and sum S  are represented by 
the graph in Fig. 9.10 as the dependences on the distance Δ from the middle 
of the channel for the flow’s two cross-sections characterizing the process 
of closing of the opposite boundary layers. The curves on the left relate to 
the initial closing stage, when the boundary layer thickness is δ  =  d/6. The 
curves on the right image the process at a later stage, when the boundary 
layer edge is found at the distance δ  =  d/3 from the wall. 

 
Fig. 9.10. Profiles of velocity U/U0 (1) and sum S  = 0( )U U+ 2u  (2) for two 
cross-sections of water flow in an open channel [78] 

Data of these experiments confirm the notion according to which the 
maximum of velocity sum S is localized at the edge of the boundary layer. 
The quantity S is nothing but the sum of two decisive terms in formula 
(9.12) for the flame velocity. Hence, we may state on the basis of the data 
and the results [84−86], that the most velocity of the flame propagation is 
situated near the wall, just at the edge of the boundary layer where the 
leading point emerges. The leading point determines the flame shape and 
the inner structure that are responsible for the flame’s second acceleration. 

When the second acceleration comes into force, the pressure waves 
emitted by the flame during the first acceleration are far ahead, in the 
region of the double saltus front. The accelerating flame at this stage 
creates within the double saltus some new system of pressure waves of 
stronger intensity caused by progressing intensification of the mixture 
combustion. 
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These waves interact with the boundary layer in different ways, in 
particular, not excepting direct separation of the layer. Therefore, simple 
application of relations (9.10), (9.11) in such conditions seems to be 
completely unfit for calculation of the length lcr and critical value δcr of the 
laminar boundary layer (see Chapter 8). 

In spite of the fact that the calculation of the length lcr turns into a 
rather complicated problem for the double saltus of the actual configur-
ation, some opportunity for an estimation exists. The problem of the 
estimation is reduced to the length lcr variation and finding such a length 
value at which the boundary layer thickness δ computed according to 
equation (9.8), and the flame’s leading point distance Δ from the wall, 
measured in experiment, would have the closest values. 

Photos presented in Figs. 9.5, 9.7, 9.8 and 9.9 have been used in 
measurements of the parameters L, l and Δ. On the other hand, the 
calculations have been performed by the method of sequential approxi-
mations with the length lcr as the variable argument. The values of L, l, 
necessary for the calculations, have been taken from measurement of 
appropriate photos. The best coincidence has been found for the value of 
the variable argument lcr  = 5 cm. The data in Table 9.1 correspond to the 
value, and are ready for collation. 

Table 9.1. Theoretical δ and measured Δ thickness of boundary layer 

Coincidence of the boundary layer thickness calculated for lcr  = 5 cm, 
and the leading point shift observed in experiment means, that it is 
turbulization of the flow in the boundary layer of the double saltus that may 
be responsible for the flame’s second acceleration. Though it might be not 
the only cause that contributes to the flame acceleration development. The 
slit scan in Fig. 9.11 and series of frames in Fig. 9.12 help to comprehend 
the additional factor promoting the acceleration development. 

The sharp increase in flame-piston velocity and reinforcement of the 
flow disturbances lead to some curious results. The gas mixture is not 
consumed completely within the flame front. It continues burning far behind

Fig. # L (cm) l (cm) lt = l −  lcr 
(cm) 

δ 
(mm) 

Δ 
(mm) 

9.5 28 14 9 2.1 2.0 
9.7 28 14 9 2.1 2.0 
9.5 34 18 13 2.8 2.5 
9.7 34 18 13 2.8 2.5 
9.8 36 20 15 3.2 3.1 
9.8 45 25 20 3.9 4.0 

9.10 55 29 24 4.7 4.8 

the front. The flame itself breaks down into small cells and turns into many 
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subsections within a lengthy zone of combustion, as seen in the photos in 
Figs. 9.11 and 9.12. The length might run up to 20 cm. 

Fig. 9.11. Slit scan of double saltus during evolution of a second flame acceleration 

Such a strong change of the flame structure results in multiple increase 
of total rate of the chemical reactions and the energy release, that call into 
play the flame’s further front acceleration. Note, the enveloping flame 
surface is still formed according to the concept of a leading point in these 
new conditions, as the frames in Fig. 9.12 show. 

Fig. 9.12. Flame structures: t = 2.72 ms, 3Δt = 47.8 μs (n = 62.8 × 103 f/s), τ = 2 μs 

9.5  Formation of detonation wave 

We have just seen that the flame configuration, shape and structure, has a 
decisive effect on the double saltus properties which depend on flame 
acceleration. The quantitative dependence of the flame velocity changes on 
the distance covered can be deduced from function U(X) plotted in Fig. 9.3. 
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Differentiating this function with respect to X, we will obtain dependence 
dU(X)/dX plotted in Fig. 9.13, equivalent to the flame acceleration.  

 

Fig. 9.13. Flame velocity change as function of the path covered 

On the graph are well distinguished the regions of the first acceleration, 
the next short strong deceleration, motion at approximately constant velocity, 
and the second acceleration. Both accelerations appear to have considerable 
values. However the first acceleration is caused by the motion of the flame 
front along the slot for observation. This occurs due to transition from the 
volume expansion of the combustion products to the lengthening along  
the slit. The main reason of the second acceleration is attributed to the 
combustion’s total rate increase, when the flame’s effective surface rises 
steeply under the action of the augmented compression waves. 

The first acceleration creates the double saltus, from which the forward 
front moves much faster then the flame. When the second acceleration 
starts, the forward front leaves the flame ~46 cm behind. The pressure in 
the double saltus at the time is found to be at the level of 2 atm, as it 
follows from the oscillograms in Fig. 8.1. 

During the second acceleration, especially at a later stage, intensive 
compression waves emitted by the flame tend to merge rapidly, forming a 
powerful shock wave moving about 6 cm before the flame front. In this 
way there appears some new double saltus within the previous one. The 
pressure within the new double saltus reaches 10–11 atm. Formation and 
development of the new structure are demonstrated by the frame series in 
Figs. 9.14 and 9.15. 

These photos give evidence that the distance length between the new 
shock wave and the flame becomes gradually shorter, and it is curtailed 
from 6 to 2 cm. Hence, the flame acceleration prolongs its increase at an 
even faster rate. As the shape of the flame’s surface and volume of the 
combustion zone are practically not changed, the acceleration augmentation 
may be explained as nothing but total burning velocity in the flame volume. 
Thus temperature of the mixture rise behind the new shock wave causes the 
acceleration at this stage of the double saltus development. 

For estimation of these newly arisen requirements, we will take 
advantage of the data given in [87] concerning dependences of the shock 
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wave velocity D and velocity W of the gas behind the wave on the pressure 
jump Р1/Р0 at the wave. The parameters calculated in [87] for air with initial 
standard conditions (P0 = 1 atm, T0 = 273 K) are presented in Table 9.2. 

 

 
Fig. 9.14. Flame structures: t = 3.26 ms, 3Δt = 32 μs (n = 125.7 × 103 f/s), τ = 1 μs 

 
Fig. 9.15. Flame structures: t = 3.44 ms, 2Δt = 8 μs (n = 251.3 × 103 f/s), τ = 0.5 μs 

Table 9.2. Parameter jumps in the shock waves in air [87] 
 

Р1/Р0 ρ1 /ρ0 D (m/s) W (m/s) T1 (K) 

2 1.63 452 175 336 

5 2.84 698 452 485 

10 3.88 978 725 705 

15 4.35 1,196 943 940 

25 5.00 1,545 1,270 1,350 
50 6.04 2,150 1,795 2,260 

 
The table data seem to be quite applicable to estimate the main features 

of the process under consideration for further development. Indeed, initial 
physical properties of the mixture CH4 + 4O2 and of the air are practically 
identical, i.e., the mean molecular weights are equal, the ratio γ  =  cp/cv 
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differs for both gases by not more than 3%. Though data in the table have 
been calculated with rather large steps and need interpolation. The 
interpolated dependences are represented by appropriate graphs in Fig. 
9.16. 

 
Fig. 9.16. Dependence of shock wave parameters on the pressure jump 

The gas mixture flow within the double saltus may be represented by  
a somewhat simplified model as follows. The first shock wave, i.e., the 
forward front of the double saltus, propagates in an immobile gas at  
the velocity D1. The gas in the flow created by the wave and supported by 
the flame is heated up to the temperature T1 and moves at the velocity W1. 

The second shock wave moves at the velocity D2 relative to the 
medium, and its total velocity amounts to D  =  D 1  +  W1. The velocity W, 
pressure P and temperature T of the gas being not consumed still increase 
according to W = W1 + W2 , P = P1 + P2 , T = T1 + T2 . The flame’s normal 
velocity u0 in the compressed and heated gas mixture should grow, for the 
chemical reactions to be brought to a point any quicker. The growth of 
chemical reaction rate occasioned by the gas mixture compression and 
heating should cause a rise in the flame’s normal velocity u0 and, certainly, 
the propagation velocity U of the flame front which more precisely to 
define now as the combustion zone front. 

The flame’s normal velocity u0 depends on many factors. Their effects 
were considered in detail in the literature (see, e.g. [66–68, 88, 89]). When 
the mixture consists of some fixed components, as is the case in question, 
the dependence can be written in rather simple form: 

( )
si

0
si si

g( )
u ~ .

T T
T T TP −

 (9.13) 
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Here Tsi is the temperature of spontaneous ignition of an explosive mixture, 
g(Tsi) denotes an effective rate of the combustion’s chemical reactions. 

The formula allows us to interpret the concept of the spontaneous 
ignition temperature as follows. When the mixture temperature comes to 
the spontaneous ignition temperature, T→Tsi, the flame’s normal velocity 
u0 grows exponentially, theoretically without limit, and the chemical 
reaction actually develop simultaneously throughout all the volume of the 
heated mixture. 

A distinctive feature of this process is a harshly accelerating transition 
from slow development of the chemical reaction, as the first phase, to its 
sharply explosive course of the energy release, as the second phase. The 
time interval in which the chemical reaction does not evince any 
perceptible calorific effect is usually termed as the period of induction 
delay τ i. The curves on the graph in Fig. 9.17 illustrate the physical 
meaning of the induction delay. 
 

 
Fig. 9.17. Dependence of induction delay on temperature of explosive mixture 
during chemical reactions 

While the mixture temperature is relatively low, T < Tsi, the time 
delay in chemical reaction progress is too long to be observed, and the 
temperature practically does not exceed some value T1. The spontaneous 
combustion and temperature increase, i.e., realization of the second phase, 
does happen under the condition of T > Tsi. 

The time delay τ i dependence on the mixture temperature Т at this 
stage is approximately identical to most parts of explosive gases [65]. This 
dependence, mentioned in many papers (see, e.g. [49, 90, 91]) is expressed 
by the formula: 

( )exp .τ i
E

RT∼  (9.14) 

One of the versions of the function τ i(T) checked in experiments with the 
mixture of methane with oxygen 3CH4 + 2O2 at atmospheric pressure [67], 
closely related to the case similar to the one under consideration, is 
reproduced in Fig. 9.18. 
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The formula (9.14) allows us to find an interdependence between the 
spontaneous ignition temperature Tsi and induction period duration τ i. For 
example, the induction period τ i = 100 μs implies the spontaneous ignition 
temperature being equal to Tsi  = 1,550 K. 

 
Fig. 9.18. Experimental dependence τ i(T ) for mixture 3CH4 + 2O2 [67] 

Here we should note that the spontaneous ignition temperature Tsi is a 
function of the mixture pressure Psi ([92, 93]). Interdependence between 
the two parameters is defined by the formula known as Semenov’s relation. 
With the view of the research on the subject the relation can be written as 
follows 

2
si

si si

ln const ,
2

P E
T RT

≈ +  (9.15) 

where E  ≈  5 × 104  kal/mol means the activation energy, and R is the gas 
constant. 

Rewriting (9.15) for Tsi  =  T + ΔT , where ΔT  is caused by the pressure 
increase above P0 , we will obtain the equation in the form of the implicit 
function ΔT (P) which is plotted in Fig. 9.19: 
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, (9.16) 

 

Fig. 9.19. Ignition temperature shift ΔT  as function of pressure P 
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The data presented by the graphs in Figs. 9.16, 9.18, 9.19, and by 
formulas (9.14)–(9.16) give an opportunity to estimate the explosive 
mixture state within the region of greatest compression, i.e., within that 
inner double saltus. The state is defined by such parameters as the velocity 
D2 of the second shock wave, total pressure P, temperature T, and by 
duration of the flow element being in the region until the flame consumes 
it. The residence time τ is evaluated according to the relation τ = l(D2–W2). 

As is seen from Table 9.2 and from graphs in Fig. 9.16, the first shock 
wave has velocity D1  ≈  450 m/s and pressure jump Р1 /Р0  ≈  2. The wave 
produces the flow of the mixture moving at velocity W1 ≈  175 m/s. Similar 
data concerning the flow behind the second shock wave can be derived 
from photos shown in Figs. 9.12, 9.14 and 9.15. 

The second shock wave moves at the moment of its formation at 
velocity D  ≈  1,000 m/s which is incremented to D  ≈  1,300 m/s in a short 
while. Despite such a quick augmentation of the velocity D , the length l of 
the second double saltus decreases from 4.7 to 2 cm during that short time. 
Hence the flame is accelerated even more rapidly then the shock wave. As 
a matter of fact it is the third acceleration of the flame. 

Table 9.3. Flow parameters in compression zone l∈[4.7, 2]  cm 

 

For ascertainment of the essential reason of the flame’s third acceleration 
formation, we estimate the flow parameters in the compression zone for the 
velocity D  in the interval of D∈[1,000, 1,300] m/s and the length l in the 
limits l∈[4.7, 2] cm. Table 9.3 demonstrates the estimation result. The data 
in the table testify to an appreciable increase in the mixture temperature at, 
pay attention, simultaneous abridgment of the mixture residence time τ 
within the second double saltus, i.e., in the flow of the most compressed 
mixture. 

As has been estimated above, the induction time τi = 100 μs is well 
matched with the spontaneous ignition temperature T ≈ 1,550 K for the 
mixture at atmospheric pressure. Now, taking into account the induction time 

D 
(m/s) 

W2 
(m/s) 

T2 
(K) 

Р1 + Р2 
(atm)_ 

T1 + T2 
(K) 

D2 – W 
(m/s) 

~ l 
(cm) 

τ 
(μs) 

1,000 590 600 9.5 936 235 4.7 200 

1,100 685 670 10.4 1,006 240 3.8 158 

1,200 775 756 12.4 1,092 250 2.9 116 

1,300 850 830 14.1 1,166 275 2.0 73 
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dependence on the pressure, the temperature correction for the pressure  
14 atm by the formula (9.16) gives the temperature Tsi = 1,110 K. 

According to Table 9.3, the requirement T > Tsi  is unconditionally 
fulfilled at the shock wave velocity D ≥  1,200 m/s. Then the distance l 
between the second shock wave and the flame’s leading point (the leading 
edge of the chemical reaction zone which the flame now is essentially 
turned into), is equivalent to the time induction delay value τi. As a result, 
the shock wave and the combustion zone following behind the wave at a 
distance l constitute a quasi-stationary complex united by some kind of 
feedback. 

Indeed, the space within this complex is filled up by pressure waves 
emitted during the combustion process. The waves support the cycle 
including the second shock wave amplification and the combustion process 
intensification. The latter, in its turn, amplifies generation of the pressure 
waves. This interdependence was formerly noted by A.S. Sokolik [65]. 

The shock wave intensity and the double saltus parameter strengthening 
in the course of the complex relatively smooth development would reach 
the level at which the complex is converted into a detonation wave. 
However the detonation arises in some different way.  

As it follows from the measurement results obtained by J. Campbell 
and considered in the books [67] and [68], the detonation wave in the 
mixture CH4 + 4O2 at P1  = 1 atm, T1  = 293 K is characterized by the 
parameters: 

D2  =  2,166 m/s, Р2 /Р1  =  26, T2  =  3,860 K. (9.17) 

Comparison of these parameters with the experimental data for the shock 
waves from Table 9.3 shows, that the tabulated data are only about a half of 
the values shown in equation (9.17). Nevertheless, the double saltus 
develops into the detonation by some miracle, in spite of such a great 
difference in the parameter values. Anyhow, the frame series in Fig. 9.20 
testifies to the double saltus transition into detonation. Such a “premature” 
formation of the detonation wave might be related to the second double 
saltus features determined by the peculiarity of the acoustic waves 
propagating in channels of finite aperture, considered in Chapter 4. 

High temperature of the gas within the quasi-stationary complex 
reduces the picture contrast owing to the Schlieren-method specificity of 
visualization. Notwithstanding, there can be distinguished on the photo 
series in Fig. 9.20 the burning zone, its approach to the shock wave and the 
pressure waves emitted during combustion. The pressure waves are clearly 
seen to have appreciable curvature and to reflect from the pipe walls. 
Eventually, the mixture at a spot of one of the reflections is heated to such 
an extent (see Fig. 4.2), that thereat the chemical reaction creates a separate 
detonation wave. Two such detonation waves can be discerned at the left 
and right walls on frames in Fig. 9.20. 
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Fig. 9.20. Process of double saltus transition into detonation: T = 3.45 ms, Δt  = 4 
μs (n  =  251.3 × 103 f /s), τ  = 0.5 μs 

The detonation, as nearly a point explosion, propagates from the wall 
in the form of a spherical wave. This wave propagating in the pipe is 
reflected from the walls just in the same way as it is shown in Fig. 6.2. The 
wave sector directed forward merges soon with the other detonation wave, 
and the wave pair becomes gradually more and more flat, moving on the 
fresh mixture as a usual detonation wave. 

The opposite sectors of the waves move through the combustion 
products. Now and then it is called a “returnation” wave. The central 
sectors of the waves move through the environment mixture in which the 
chemical reaction continues. These parts propagate across the pipe, i.e., in a 
rather broad interval of directions around the perpendicular to the pipe axis, 
similar to the diagram in Fig. 5.2. Being reflected by turns from the walls, 
these parts of the ex-detonation wave leave legible intersecting traces on 
the frame photos. 

Photo registration of the detonation wave at the moment of its 
formation is not a very simple operation. The problem consists in synchro-
nization of the process and the exposition instant. The matter is that 
interaction of the acoustic waves with the flame during the flame evolution 
is a multivariant process which implies the dependence X(t) being a 
stochastic one to some extent. At early phases of the development, the 
flame propagates slowly, and the probable deviations from the function can 
scarcely be observed. So that there is no problem with the synchronization, 
despite the limited frame number available in case of optical–mechanical 
unit application for high-speed recording.  

Impotence of these deviations adversely affects the function stability, 
when the flame propagation velocity grows. This results in alteration of the 
detonation transition place and time, which vary within the ranges  

X∈[105, 115] cm and T∈[3,440, 3,450]  μs. (9.18) 
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Meanwhile recording of fine details of the process in the final development 
phase requires high spatial and temporal resolutions, and accordingly, high 
precision in large scale images and synchronization. 

When an optical–mechanical high-speed recording unit is used, the 
synchronization is accomplished by the registration system, when the  
time reading starts from the mixture ignition. Then the probability area of 
the detonation transition recording can be expressed on the coordinate 
plane X– t by a ratio of the product ΔX × ΔT to the frame area δX × δT. 

The values of ΔX  and ΔT follow from equation (9.18), and δX and δT 
are the frame size and time exposure, that are necessary for sharp imaging 
of real picture structure. Hence the probability W of the informative frame 
capture is as follows, 

δ δ
W

X T
X TΔ Δ
×

=
×

. (9.19) 

Substituting the values ΔX ~ 10 cm, ΔT ~ 10 μs, δX = 5 cm, δT = 0.5 μs 
results in probability about 2.5%, i.e., the sought recording succeeds in 2–3 
cases from 100 attempts. The registration at the performance degradation 
leads to problems in the picture interpretation. 
 

 
Fig. 9.21. Detonation transition: t = 3.45 ms, Δt = 8 μs (n = 125.7 × 103 f/s), τ = 1 μs 

Let us consider an example. Double deceleration of the frame repetition 
frequency makes the observation of the detonation transition process 
longer, but the image resolution becomes unsuitable for the picture 
interpretation, as seen from the frames in Fig. 9.21. At the same time, the 
frame series presented in Fig. 9.21 throws light upon some other details of 
the phenomenon. 

In particular, the frames 2–4 demonstrate interaction of the reflected 
shock waves moving across the pipe with the detonation wave. Also, the 
frames 4–6 reveal an interesting fact according to which these transverse 
waves do not damp during rather long time periods. All that implies that 
under certain conditions, for example near the detonation limits, the 
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combustion’s chemical reaction in the mixture behind the second shock 
wave lasts for a long time. 

The reaction can maintain and even strengthen these shock waves. Then 
these reflected waves create the structures known as spinning detonation and 
pulsating detonation. Both kinds of detonation were discussed in detail by 
K.I.  Shchelkin and J.K. Troshin [49]. 

Now, some valuable information on the detonation transition can be 
obtained from examination of the slit scans. The scanning enables us to 
embrace a still more prolonged part of the process and within a more 
extended part of the pipe. Two examples of the detonation wave origination 
are displayed in Fig. 9.22. Two photos have been taken at equal conditions 
with the only difference concerning the image visualization sensitivity. 

   
Fig. 9.22. Slit scans of the detonation formation process 

The detonation wave is seen to arise within the second double saltus 
far behind the shock wave, and even behind the leading point of the 
combustion zone. Velocity of the detonation seems to be infinite, when it 
appears in the slot window field of vision. Actually, as it has been shown in 
Chapter 8.1, the observation means nothing else than the detonation 
originates on the pipe wall. 

The wide horizontal dark strip on the left photo corresponds to 
destruction of the optical glass of the observation window. It happens at the 
place where the detonation wave merges with the shock wave of the second 
double saltus, when the pressure sharply increases in the detonation wave. 

Relatively weak perturbations are visualized in the left photo owing to 
heightened sensitivity of the Schlieren system. However along with the 
improvement there is lost an opportunity to discern strong perturbations 
against the background of all the other perturbations. Therefore, a new 
reduced sensitivity has been employed to overcome the difficulty and to 
take the right photo in Fig. 9.22, where the weak perturbations may not be 
seen. So, the process development at this stage should be considered by 
both photos presented in the figure.  
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Transition to the detonation is a consequence of the persistent 
strengthening of the second shock wave. This strengthening happens, for 
the flame continues permanently emitting the compression waves which 
merge, catching up with each other to produce a very strong shock wave of 
the second double saltus. When it is just formed, the induction delay of the 
chemical reaction becomes so small that the combustion zone sides with 
the strong shock wave. The forming shock wave has the front of its shape 
similar to the spherical form. At one of the spots of the wave reflection 
from the pipe wall, the mixture temperature grows to such an extent that 
there arises a detonation wave reminding one of a point-wise explosion. 

The detonation wave, in the shape of a hemisphere, propagates over 
the pipe volume in all directions. It appears on the slit scan as a detonation 
wave moving forward, and as a returnation wave moving in the opposite 
direction. The central hemisphere part moves across the pipe creating 
transverse oscillations. The detonation and returnation waves are clearly 
visible in the left and right photos of Fig. 9.22. 

Comparison of the two photos illustrates the spread of the positions 
where the detonation transition arises. On the left photo it is about 112 cm, 
whereas the right photo points to approximately 117 cm. In addition, there 
originate more than one centers of detonation within the quasi-stationary 
double saltus. As the right photo in the figure shows, there are five such 
centers in the experiment. 

The considered mechanism of the normal burning transition into 
detonation is confirmed by the pressure oscillograms given in Fig. 8.1.  
The pressure gauges have the frequency band up to the level of 104 Hz. 
The band corresponds to traveling time of the detonation wave along the 
gauge surface. Therefore, the pressure pulse may be accurately measured 
when its duration does exceed 5 × 10–5  s. 

Certainly, the band’s upper limit introduces a well-known error, when 
a high-frequency pulse is analyzed. However this restriction relates only to 
the front shape of ultra-short pressure pulses, and does not prevent 
measurement of the mixture state behind any shock wave in the experiments. 

In conclusion, we would like to recall violent debates of the 50th years 
of the last century on the mechanism of the detonation transition. The 
respected participants, Ja.B. Zeldovich, K.I.  Shchelkin and A.S. Sokolik 
advanced alternative opinions on the nature of the phenomenon and the 
principal cause of the transition. The phenomenon explanation was based 
on formation and development of the double saltus [50], on turbulization of 
the flow in front of the flame [49], and on intensification of the chemical 
reactions impelled by the temperature increase behind a shock wave [65].  

The results considered above show that all the mentioned approaches to 
the problem are decisive, though each of them is appropriate to an appointed 
stage of the process development. 
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10 

In previous chapters, we discussed and solved problems concerning the 
spatio-temporal field of turbulent flow parameter oscillations in channels 
for specified conditions. The velocity oscillations and their spectra displayed 
in Figs. 7.6 and 7.7 have revealed that the quantitative characteristic of those 
oscillations in time and space strongly depend on entry conditions. 

This dependence enables us to make an attempt to consider the problem 
in the inverse formulation, with the purpose of determining parameters of the 
initial perturbations using the observational data on oscillation properties 
measured at a later time or within a neighboring spatial region of the 
domain. The initial perturbation properties of interest among others can be, 
for instance, the characteristic dimension a, parameter distribution over the 
perturbation f(r ≤  а), and rules of their emergence, i.e., of the sequences rp 
and tp. 

The inverse problem solving procedure has proved to be rather effective 
for study of the optical discharge structure in the field of Besselian beams of 
laser radiation [94]. 

To prove effectiveness of the inverse problem formulation and solution, 
some data on physical properties of the oscillation development in a 
medium are necessary. Such properties are not usually measured during 
studies of flows in channels. But many of them are usually examined in the 
optical discharges produced by laser radiation beams. Therefore, we 
demonstrate the inverse problem method of solution by the instance of the 
optical discharge wherein such data are available. 

As shown above, the parameter oscillation profile in a flow is formed 
much more rapidly than the fluid velocity is changed at moderate flows in 
channels. In this sense, conditions of the perturbation formation are identical 
in both cases to be compared. To reinforce identity of the conditions in the 
two cases, a peculiar laser beam is considered, which creates not one, but a 
series of discharges. 

The wave beam optimum concentration (focusing) is known to be one 
of the central problems of optics, laser physics, radio physics and acoustics. 

10.1  Object of the inverse problem application 

An inverse problem of turbulence 
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The traditional approach to focusing is grounded on the use of devices, or 
any other focusing system, similar to a convex lens with spherical (or 
parabolic) surfaces. The device used to transform the incident radiation into 
a beam with a field cross-section diameter of the size 

2.44 λ
,d f

D
≈  (10.1) 

where λ the radiation wave length, D means the cross-section diameter of 
the incident beam at the inlet of the focalizing system, is assumed to be a 
lens with focal length f. 

The flat phase front of the incident wave, if any, is converted by the 
lens into the spherical. It becomes flat only in the focal plane, i.e., in the 
waist of the lens caustic. Thereat the radial distribution of the radiation 
intensity repeats the kind of radial profile of the incident beam. In an ideal 
case it is the Gaussian squared, G2(r). 

The length Ld of the focal area along the z axis (the longitudinal size), 
is one of the most important characteristics of the focused beam, which is 
defined by wave diffraction. The diffraction divergence angle γ and focal 
region length Ld where the wave front is nearly flat, which is usually called 
Rayleigh length, are accordingly 

2λ π
γ ~ , .=

λd
d

L
d

 (10.2) 

To increase the radiation power concentration and augment the 
intensity, the waist diameter d should be reduced as far as possible. 
However, it follows from formulas (10.2), that this reduction leads to 
growth of the beam divergence and the length Ld shortening. Thus it is the 
diffraction divergence that prevents enhancement of the beam intensity and 
creation of thin thread-like beams at the length of L >> Ld. 

The diffraction divergence of the wave beam is fundamentally 
irremovable, nevertheless there is a way to compensate for the divergence. 
It follows from the diffraction divergence configuration schematically 
presented in Fig. 10.1. If we invert the problem formulation, and turn the 
wave vectors k(γ)  in the counter direction, then the inverse wave should 
converge at the angle γ  ~ λ/d to form the waist by diameter d with the 
wave vectors k0. An infinite set of such waists evenly distributed along the 
axis is expected to form a united beam at the same constant diameter. 

 

Fig. 10.1. Scheme of diffraction divergence 

k0 =

k(γ) =

γ

d

d

s0
2π

z
λ

λ

s(γ) 2π
λ

~~



10.1 Object of the inverse problem application 157 

To produce such a beam, the flat front of an incident wave should be 
transformed into the front of conical shape WF. Some special device is 
necessary to realize the idea, e.g., a conical mirror or conical lens usually 
called an axicon [95]. An application of the axicon operation is shown in 
Fig. 10.2. In the figure, s is the unit vector normal to the front surface of a 
wave, index ‘0’ relates to the incident beam, and index ‘γ’ concerns the 
converging wave. The subscripts of the wave vector k have similar 
meanings. 

Fig. 10.2. Formation of extended beam of constant diameter 

The length L of the formed beam, unlike a Gaussian beam, depends not 
on the incident radiation wave length λ, but on the diameter D of the 
incident beam and on the angle γ  = α(N–1), where N is the axicon 
refractive index: 

.2γL D=  (10.3) 

From all that, the cylindrical symmetry of the configuration results in 
transformation of a Gaussian profile of the incident beam into the field’s 
radial distribution of Besselian type Jm(x) of the order m in the focused 
beam. At the same time, the focused beam length is longer by many orders 
of magnitude than Rayleigh length, L >>> Ld (see review [96]). 

It was expected that a threadlike plasma channel might arise in the 
field of such an intensive beam thanks to the axial symmetry and 
longitudinal uniformity of energy supply to the axicon focal volume. The 
first experiments were carried out with a laser radiation source. However a 
series of plasma channels arranged along the axis, of a non-uniform 
structure looking like a string of beads, appeared instead of the desired 
smooth plasma channel [97]. 

At first the “beads” had been supposed to originate because of 
complicated mode composition of the radiation of the laser at hand. 
However additional thorough examinations with the single-frequency laser 
[98] have yielded precisely the same outcome. Therefore, the non-uniform 
structure of the optical discharge in the beams with the divergence 
compensated has been related to some specific features of the Besselian 
beam itself, and to a nonlinear process of propagation of the radiation at the 
conical wave front [99–101]. 
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10.2  Wave beam at Rayleigh divergence compensated 

In the beams under consideration, similarly to Gaussian beams, a wave 
nonlinear propagation depends on the medium permittivity [102] 

ε  =  ε0 + +i ε″+ + εNL(│E│2), 

where ε″ is the term responsible for damping, and εNL is a nonlinear 
functional responsible for wave-matter interaction and defined by the 
medium constitutive equations. For description of the complex amplitude 

E(r, t) = Re{e E (r, z)exp[– i(ωt–kz)]} 

of the field strength in the beam with the divergence compensated, and at 
the wave number k 2 = (ω /c)2 ε 0, the following equation has been used, 

( )NL

2
21
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E E

i k r i E E
z r r c

∂ ∂ ω
+ + + =

∂ ∂
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. (10.4) 

The boundary conditions defined by the volume of the radiation 
focused by the axicon at the aperture radius R are of the form: 

E (r,z = 0) = Ein (r) exp(– ikrsinγ). (10.5) 

The following requirements are accepted for the beam intensity Im(r): 

Ein(r > R) = 0, Ein(r  ≤  R) = 1/2 ( )mI r . 

Linear (ε″ =  εNL  =  0) solution E(0) of the problem (10.4,10.5) in the z-
axis vicinity (r < zsinγ, kr2  <  z) at the length λ/sin2γ  <<  z  <  L gives the 
field E(0) distribution along the axis, which can be expressed through a 
Bessel function of zero index m = 0, J0(krsinγ ), with slowly varying 
amplitude E0(z): 

( )(0)
0 0( , ) ( ) sinγ .E r z E z J kr=  (10.6) 

Thorough analysis shows [100, 101], that in a nonlinear case, εNL≠0, 
solution of equation (10.4) at the boundary condition (10.5) leads to 
longitudinal modulation of the beam field E(z). The modulation is of the 
scale l which does not depend on the nonlinearity mode type: 

L  =  2λ/sin2γ. (10.7) 

Photo a in Fig. 10.3 images a densitogram of the radial profile of the beam 
intensity, obtained in the experiment for the angle γ  = 5°. The profile well 
agrees with the Bessel function of index zero. The positions rn computed 
for the function J0(rn) = 0 are mapped on the right side of the photo. The 
graph b represents the field longitudinal modulation, |E | /E0, as a function 
of the ratio z /l computed for four values of the parameter 0 * .E E  
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Fig. 10.3. Radial (a) and longitudinal (b) field distributions in the beam at γ  =  5°, 
the field structure diagram (c) 

The quantity E0 is the linear solution of equation (10.4), and *E  
means the critical field value for beam self-focusing. Functions on the 
graph b are plotted as a result of the numerical solution [99] of equations 
(10.4), when the permittivity nonlinear part is εNL = (n /ncr) 2

*( .)E E  Here 
n and ncr are electron density and its critical value for the frequency ω. 

Combination of the field radial and longitudinal distributions forms the 
total realistic structure of the beam intensity, of which a fragment is seen  
in the diagram c in Fig. 10.3 [94]. Herein the beam radius is presented by 
the dimensionless argument of a cylindrical functions, x = krsinγ, and  
the length along the z axis is expressed in scale l of the longitudinal 
structure, z/l. As to intensity, it is shown as a variable part ΔI in the axial 
plane. The beam axis of symmetry corresponds to x = 0. The distance 
between the nearest radial neighbor maxima makes up δr ≈  λ /(2sinγ), and 
the spatial period of the maximal longitudinal distribution is equal to l  = 
2λ /(sinγ)2. 

The modulation at the period (10.7) arises, when the radiation field 
(10.6) is close to the critical quantity *E . For example, for nonlinearity 
accepted in calculation of dependences shown in graph b in Fig. 10.3, the 
critical value should satisfy the following requirement: 

 

r
4

r
2

0
r
0

r
1

r
3

ba

c

z

x

E

E0 E0

E*
1.5

1.0

0.5

0 3 6 9 12 Z/
0.625

1.0

0.5

0

3

2

1

010
5

0
5

10

0.687

0.749

0.812



10 An inverse problem of turbulence 160 

2

2

(0)

2
cr *

1
0.2 1

sin γ
| |

≤ ≤
−

E
E

n
n n

. (10.8) 

If the beam field becomes weaker, the longitudinal modulation 
recedes, and the modulation does not appear outside the lower limit of the 
requirement (10.8). Otherwise, if the field strength exceeds the upper limit, 
there appears an additional structure along with the basic structure (10.7), 
describable by the spatial period l1 ~ 10 l [103]. 

Moreover, when the field intensity reaches the level of 5·1013 W/cm2, 
the phenomenon of nonlinear absorption may grow to exert influence on 
the channel evolution. The radiation interacts with the plasma resonance 
modes available in the course of channel developing. The interaction 
results in modulation of the plasma heating, which is followed by the 
appearance of one more structure of the channel, this time depending on 
many parameters, in particular on the medium initial pressure. This intricate 
process is not understood in all details. The first attempt to comprehend the 
process was made in [104]. 

It is important to emphasize that the longitudinal modulation with the 
spatial period (10.7) does not deface the field radial distribution which is 
described in a usual manner by a Bessel function. Owing to this feature, the 
beams with the divergence compensated have been designated as “Besselian 
beams”, by analogy with Gaussian beams. 

This brief overview of Besselian beam properties allows us to imagine  
the process of structure formation in optical discharges, and to estimate the 
peculiarities of inverse problem applications. However at first we should 
consider the configurations of these structures discovered in experiments. 

10.3  Structures of the plasma channels in lengthy wave beams 

Experiments with laser radiation at the wave length of λ  = 1.06 μm 
focused by an axicon are described in [94, 105]. The equipment parameters 
were varied within wide ranges to produce Besselian beams and plasma 
channels of different kinds. In this way, the angle γ was varied from 1° to 
18°, that determined Besselian beam diameter in the range of d∈[50, 3] μm, 
and the beam length L∈[130, 1.5] cm. The plasma was produced in gases 
of ten different compositions at the pressure range 0.05–10 atm. Duration 
of the heating impulse lessened step by step from 50 to 0.1 ns. Accordingly 
the emitted energy decreased from 80 to 0.6 J. 

Several methods of laser diagnostics [106] were used for thorough 
study of the state of the plasma channel structure. The optical perturbation 
distribution was visualized in the light of plasma self-radiation, as well as 
by Schlieren- and shadow methods. The structure state of plasma channels 
created by the short heating impulse at duration of 0.1 ns was investigated 
by means of interferometry with laser illumination at the wave length being 
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shorter in comparison with heating radiation. Images of structural formations 
were recorded by means of image converters and charge-coupled devices. 

Systematization of all the experimental data allowed us to discover 
five typical structures (with some variations) of optical discharges [94, 105, 
107], which are represented in Fig. 10.4 according to chronology of their 
recording. On the photos, the wave front of the heating radiation propagates 
from left to right. 

The optical discharge on the frame a in Fig. 10.4 is produced in air at 
atmospheric pressure by means of the laser impulse duration τ = 40 ns, 
energy E = 70 J and the axicon with the angle γ = 7.5° (L = 17 cm). As seen 
from the photo, the discharge structure is characterized by the presence of the 
side branches reminiscent of petals. The angle β of these petals concerning 
the symmetry axis exceeds distinctly the slope γ of the wave vector, β>> γ. 

Therefore, the great disparity and origin of the petals can not be 
explained by the breakdown motion in direction opposite to the wave vectors 
of heating radiation, as is the case with the optical discharge in a focal spot of 
a spherical lens [108]. Note in addition, the petals take positions periodically 
located along the channel axis at the distance l = 0.12 mm from each other, 
and each of them taken separately consists of small discrete sparkles of the 
breakdown. 

The frame b in the figure demonstrates the discharge structure produced 
in argon at atmospheric pressure by a heating beam of the radiation at the 
same parameters as in the case of the frame a, i.e., τ = 40 ns, E = 70 J and  
γ = 7.5°. Here the large-scale structural formations of the funnel-shaped form 
are observed. The separate parts of them are separated by intervals of more 
than 1 mm. 

As is known (see, e.g. [108, 109]), the threshold intensity in argon 
makes up Ith = 1.5 × 1010 W/cm2, and the threshold in air amounts to only the 
value of Ith = 6.5 × 1010 W/cm2, i.e., ~4.5 times more. And so the excess of 
the available intensity over the level of the threshold in argon is much more 
essential than in air, all other conditions being equal. 

This seems to be the reason for the structure modification when argon as 
a medium-target (see frame b in Fig. 10.4) replaces air (frame a in Fig. 10.4). 
Nevertheless, the beads (the intensity maxima) periodically arranged along 
the axis are noticeable on both frames, and the distance between them, l ≈ 
0.12 mm, corresponds to the structure period prescribed by expression (10.7). 

The frame c has been obtained in air with a laser impulse of somewhat 
less duration, τ = 20 ns, with the other parameters being E = 20 J, γ = 5°  
(L = 26 cm). Here the intensity makes up one sixth part, as compared with 
the case presented on frame b, and the specific energy is 12 times less. The 
periodical structure of the beads appears along the beams in this case as well, 
but the spacing increases up to l ≈ 0.28 mm. In addition, the structural 
formations turn into solid breakdown plasma sites, remaining in the vicinity 
of the symmetry axis. 
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Fig. 10.4. Typical structures of optical discharges in Besselian beams 

40 ns, E  70 J, 
7.5 , air 1 atm 

40 ns, E  70 J, 
7.5 , argon 1 atm 

20 ns, E  20 J, 
5 , air 1 atm 

0.8 ns, E  17 J, 
2.5 , air 1 atm 

Fragment of the 
frame (d)

0.8 ns, E  10 J, 
1 , argon 0.2 atm 
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The other photos in Fig. 10.4 were recorded by laser heating impulses of 
much shorter duration, τ = 0.8 ns. The frame d is the result of an experiment 
in air with the set-up parameters being E = 17 J and γ = 2.5° (L = 52 cm). As 
compared with frame c, the radiation intensity in the case of frame d is nearly 
three times as much, though the radiation specific energy amounts to only 
one tenth part of the previous quantity. The structure’s longitudinal spacing 
comes to l = 1.1 mm. Looking at photo d we can conclude that the specific 
energy decrease deranges the shape uniformity of the discharge structural 
formations. However their uniform distribution remains unchangeable. 

Also, each fragment of the breakdown structure consists of discrete 
sparkles by size of 0.02 ÷ 0.05 mm, which are clustered together and form 
the dotted lines close to the axis. A selected fragment of frame d is 
reproduced as a magnified image in frame e. The photo e clearly shows 
both the discrete sparkles and how they are grouped together into lines. The 
slope angle β of the lines is seen to considerably exceed the incidence angle 
γ of the wave vector k. 

The frame f in Fig. 10.4 illustrates the discharge structure recorded in 
argon at the pressure 0.2 atm, within the beam arisen at E = 10 J and γ  =  
1° (τ  =  0.8 ns). These parameters mean, that the intensity in the beam is 
reduced by two orders of magnitude in comparison with the previous 
experiment. At length L = 130 cm the frame f  includes the beam part by 
the length of 50 cm near the axicon. 

The intensity near the axicon hardly exceeds the threshold level, and 
amounts to about a fourth part of all the length L average. The breakdowns 
are located along the symmetry axis in strict succession with the space 
period l  = 7 mm. When moving off from the axicon, the beam intensity 
grows, and the separate breakdowns tend to merge, so that far off the 
axicon the breakdowns form the channel’s continuous body. 

As follows from the cited data, the longitudinal periodical structure is 
observed in all the typical discharges shown in Fig. 10.4. The structure 
spacing does not depend on gas composition, pressure, energy or on 
duration of the heating impulse, but only on the angle γ  of the generatrix 
slope of the wave front cone, shown in Fig. 10.2. Note, that other 
components of the structures frequently can be simultaneously seen on the 
frames, namely of larger and finer scales. 

The structure configurations of large-scale components are evidently 
associated not merely with Besselian beam properties, but also with the 
heating impulse duration τ and with the ratio of the beam available intensity 
to the intensity threshold level, I /Ith , inherent to the gas used. At the same 
time, dependence of the fine-scale components of the structures on the 
experimental conditions is not so obvious. Nevertheless the fine component 
is present in nearly all the discharges under consideration, to a greater or 
lesser extent. And the discharge needs to be investigated at an early stage. 
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The very early stage of the optical discharge development in Besselian 
beams attracts special attention, for it is essentially an unexplored phenol-
menon. Structures of the primary breakdowns of the discharges have been 
investigated first by means of recording the heating radiation scattered by 
the nascent plasma cells. However measurements of the cell dimensions, 
not to mention the parameters, have had no success in this way. 

One of the reasons for failure consists in the long-lasting heating impulse. 
Really, even with the impulse duration of ~1 ns, the linear dimension of  
the breakdown body increases by ~40 μm. This augmentation may exceed 
the initial body size many times. Therefore, the heating impulse duration 
has had to be reduced ten times at least. The idea has been realized at the 
laboratory of Professor H. Milchberg (Maryland University, USA). The 
experimental facility description can be found in the references [110, 111]. 

Appropriate experiments [94, 105] have been carried out with the wave 
beam formed by the heating impulse at the parameters: λ  =  1.064 μm,  
τ  = 100 ps, and Е  = 0.6 J. The energy level has been conditioned on the 
choice of nitrous oxide as the medium-target because of the threshold 
intensity being low, and of the most accessible angle γ  = 18° for concent-
ration of the radiation. The beam at that angle has had diameter 2а = 2.6 μm 
of the Bessel function central part, and the length L = 1.5 cm. 

A Mach–Zehnder interferometer, illuminated by laser radiation at 
wave length 0.53 μm and impulse duration 70 ps, has been employed to 
observe the discharge development beginning from the breakdown initiation. 
The interferogram magnified images have been registered by means of a 
512 μm matrix (320 pixels).  

One point in these measurements needs to be cleared up. Besselian 
beam intensity attains a level of about 5 × 1013 W/cm2 in these experiments. 
Remember, this is the level where the absorption of the heating radiation 
may influence the structure of a Besselian beam. In order to avoid some 
unwanted distortion in interpretation of observable effects, the optical 
discharge has been explored in its evolution and at different pressures of 
nitrous oxide. Therefore, the interferograms have been registered at a 
pressure in the range P∈[50, 500] Torr and the time interval delayed after 
the heating pulse maximum for within Δt∈[0, 800]  ns. 

The frames a, b and c in Fig. 10.5 represent interferograms exposed at 
the instances Δt  =  0, 100, 250  ns. Numbers 1 and 2 associated with the 
letters relate to nitrous oxide pressures P  =  200 and 500Торр (or 0.27 and 
0.67 atm). The numerals on the interferogram abscissa and ordinate are 
the numbers of CCD matrix pixels. The space interval between neighbor 
pixels corresponds to 1.6 μm. 

Contours of the discharge channels are clearly visible on the frame 
photos against the background of the interference fringes of the equal 
declination. The fringe shifts represent the medium local optical perturbations, 
which mean in fact the medium density changes. 
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Fig. 10.5. Channels of optical discharges in nitrous oxide: a1, b1, c1 (Р = 0.27 atm), 
probe impulse delay 0, 100, 250ns; a2, b2, c2 (Р = 0.67 atm), probe impulse delay 0, 
100, 250 ns 



10 An inverse problem of turbulence 166 

The interferograms а1, b1, c1 prove that the channel of the optical 
discharge remains uniform while the heating impulse is being generated, 
provided that the pressure is 0.27 atm. On the contrary, it follows from the 
interferograms numbered as а2, b2 and c2, that when the ambient pressure 
amounts to 0.67 atm, the interferometer registers optical perturbations 
arising from the very beginning of the discharge. 

The prior problem, however, consists in a poor space resolution of the 
interferograms, which does not allow us to see and measure directly the 
primary perturbation dimensions. Notwithstanding, the fringe shift 
distributions within the channel images shown by the interferograms а2, 
b2, c2 testify to the discrete character of the discharge development at the 
first stage at least. Thereupon it is the discrete primary breakdowns which 
may be considered as sources of the perturbation waves observed on the 
channel images in Fig. 10.5. 

Now, the technique developed in the previous chapters can be applied to 
the data extracted from these interferograms to recover the optical discharge 
structure at the instant of the primary breakdown. The interferogram c2 
seems to be the most informative and therefore most suitable for the 
purpose of quantitative processing of the channel state in spite of the late 
stage of its evolution. 

10.4  Breakdown structures in the short heating impulse  

As follows from the interferogram с2 in Fig. 10.5, the matrix of a CCD 
camera contains N = 56 images of the interference fringes. The satisfactory 
resolution of the fringes enables us to describe the dependence of the fringe 
shift δ as a function of the coordinate z = Nh (h is the distance between 
fringes), or simply of the fringe number along z axis, δ(N). The fringe shift 
has been mentioned to be equivalent to the gas density perturbations within 
the channel. Such a dependence is indeed the problem to be solved. 

The interferometer reading represents an effective quantity δ(N) along 
the line coming through the channel at the distance r from the symmetry 
axis, i.e., the impact parameter. So that the whole interferogram presents 
effective values of δ(N) as a function of r, and, in that way, gives an 
opportunity to obtain experimental dependence δ(N,r). 

The graphs in Fig. 10.6 just produce the function δ(N,r) in the form of 
separate functions δ(N) for different values of the relative impact parameter 
r/R. The ratio denominator R is evaluated from the medial diameter of the 
channel c2 shown in Fig. 10.5, which is estimated from the photo and equal 
to 2R = 41.0 μm. 

The top graph in Fig. 10.6 lets us see the fringe shift behavior at the 
distance r/R = 5, far off the channel axis, and in fact demonstrates the 
interferogram quality, or measurement accuracy at the observation conditions.  
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Fig. 10.6. Distribution of optical density δ(N) in channel с2 (Fig. 10.5) 

The next graphs describe distributions of the fringe shifts along the 
channel for the relative radius ratios r/R =  0, 0.25, 0.50, 0.75. The graph at 
the bottom relates to the channel’s outer surface, r/R = 1, and expresses 
radial displacements of the surface which looks on the photo c2 (Fig. 10.5) 
to be the upper and lower boundaries. 

The experimental patterns of the density perturbation distributions 
confirm the supposition of the discrete character of an optical discharge. 
The basic formation mechanism of the distributions follows from the 
graphs as well. Each micro-breakdown creates some perturbation in the 
form of a local rise in temperature and pressure. According to formula 
(5.2), such a perturbation propagates in space as a spherical wave packet by 
the thickness 2а. 

The hydrodynamic parameters vary within the packet, as the relations 
(5.6) predict, hence the variations are of the form f ((ln– l))/a). The primary 
perturbations, distributed in space and in time as rp and tp, create in  
the channel a well-known to us spatio-temporal field of the density 
perturbations in the course of superposition of the perturbation waves. 
 It is natural to assume that the primary breakdowns arise in the spots 
whose centers are located in the beam intensity maxima. If solution (10.7) 
is valid and the beam structure corresponds to the image c shown in Fig. 
10.3, then the known periodical sequence of the maxima appears at the 
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beam axis, separated by the distance l  = 2λ /sin². In the case under 
consideration the distance is equal to l  ≈  21 μm. 

The structure in the beam cross-section is defined by Bessel function 
rings whose radii make up the following set of dimensionless values: 

a  =  0.063, 0.145, 0.227, …,  (10.9) 

scaled by R = 20.5 μm. There is, however, a question, namely which of 
the enumerate maxima are those where the breakdowns occur. 

To answer this question we can use the procedure of the turbulent 
oscillation definition, already described above, meaning that this time we 
deal with the medium density oscillations. Also, the primary perturbations 
arise at the symmetry axis of the plasma channel, instead of at the walls and 
the CCD matrix by length 512 μm can house 24 diffraction fringes. 
 Let the spots of the primary breakdowns be confined by diameter 2а of 
a Bessel function arbitrary ring, and be situated in the beam intensity 
maxima. Propagation of the perturbation waves can be described by two 
spatial arguments, e.g., by longitudinal and radial coordinates, z and r, 
owing to the problem’s cylindrical symmetry. 

To get the results of the measurement and computation being formally 
mutually congruent, the coordinate z and the fringe shift δ are convenient to 
express in the scale h. Also, the perturbation structure should be computed 
within the same beam length that is observed in the experiment, i.e., in the 
range {z1, z2} = {0, 55}. There exists one more detail to be taken into 
account in the problem. 

When a diagnostic light beam, theoretically a ray, passes through  
the cylindrical channel, the interference fringe shift corresponds to the 
wave phase incursion along the chord at impact parameter r0. We define the 
chord position by the coordinates r0  =  R /2 and z0  =  ( z2 – z1)/2 , for 
certainty. Then its length will be equal to 2r0 tgφ, where φ is the azimuth 
angle, and position y of some point along a half of the chord changes its 
coordinate from 0 to r0 tgφ. The perturbation superposition implies adding 
of the perturbation waves that come to the chord length {z1, z2} from all the 
spots zp where the waves arise. 

Without any limitative assumptions in the description of the perturbation 
wave totality, we enter the following parameters: a possible displacement  
Q of the sequence zp as a whole, Q < 1; an interval q of casual shift of the 
sequence zp points from the uniform distribution, q < 0.5; duration t0 of 
that part of the heating impulse τ on which the breakdowns may occur; 
intervals of a random deviation tp of the breakdown instants at the points 
zp, tp ≤  t0; a quantity k of the primary breakdowns dispersed along the test 
length of the channel {z1, z2} taking into account the edge effects; a 
function fr<a(r) of the density distribution within the primary disturbance; a 
quantity m of the chord segments to sum up for getting the total effect. 
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Quantities tp, t0 and τ are convenient to express in the scale of the 
channel development period from the maximum of the heating impulse till 
the moment of the structure c2 (Fig. 10.5) observation. This time period is 
known to last 250 ns. The heating impulse length amounts to τ = 0.4 in this 
scale. Now we will write out the initial parameters of the chosen variant of 
the problem completely: 

                  
0

1 2 1 2 0

{0.063, 0.145, 0.227}; τ 0.4; 0.4;
{ , } { 1, 56}; { , } {0, tg(π/3)};
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 (10.10) 

The spatial distribution of the interference fringe shifts which are 
equivalent to the medium density perturbations, and the spectrum appro-
priate to the distribution are computed by means of a program similar to the 
Program 6.4. Results of the computation for the perturbations with the 
initial sizes a  =  0.063, 0.145, 0.227 (the central part, the first and second 
rings of Bessel function) are represented in Fig. 10.7 along with the proper 
data derived from the experiment (frame c2 in Fig. 10.5). 

 
Fig. 10.7. Interference shifts and spatial spectra along the line r0/R = 0.5 related to 
experimental data and computation results for parameter a = {0.063, 0.145, 0.227} 
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The fringe shift distributions for the indicated different conditions are 
assembled in the left column in Fig. 10.7. The spectra corresponding to the 
fringe shift distributions are placed in the column on the right. The top row 
represents the experimental findings. 

The traits of the dependences describing the interference fringe shifts 
and the spectra demonstrably differ in many details. The meticulous 
comparison of the theoretical curves and experimental data shows that the 
most strict conformity with experiment demonstrates the graphs for a = 
0.145. When a = 0.063, contour scales of the shift and the spectrum seem 
to be too small in comparison with data of the measurements. On the 
contrary, at a = 0.227 the scales are too great. Therefore, further selection 
of the parameters (10.10) to give a more precise definition to the primary 
perturbations has been fulfilled with the breakdown at the dimension a = 
0.145. 

The trial-and-error method has been used with the following parameters 
being varied: number of perturbations k, their distribution zp along the z 
axis, displacement Q of all the sequence zp, casual interval q, time duration 
t0, and sort of the function fr<a(r). 

It has been proved that the best coincidence between the experimental 
and computed data occurs when the design parameters are of the following 
values: k = 25, t0  =  0.2, Q = 0.17, q = 0, fr<a(r)  = 1. According to these 
findings, all the micro-breakdowns arise within time interval t0  =  50 ps (t0  =  
0.2 in dimensionless quantity), and the spatial period of the disturbances,  
l  = 21 μm, holds true with the accuracy to within some percents, at least. 
The size of the primary breakdown does not transcend the limit of the 
second zero of the Bessel function at radius a = 2.9 μm. The breakdown 
occurs in t0  =  50 ps interval at the level of 0.8 of the intensity maximum. 
The intensity at the next rings of a Bessel function becomes insufficient for 
breakdown. 

Thus, the findings are accepted, that we have realized the mechanism 
of nonlinear interaction of heating radiation with plasma development, 
which corresponds to the beam structure represented by the image c in Fig. 
10.3. According to this mechanism, the longitudinal structure discharge 
arises in those maxima of the Bessel function in which the field satisfies 
requirement (10.8). It is worth noting that the statement is valid for a short 
heating impulse of large intensity, τ  = 100 ps, E = 0.6 J. The impulse of 
longer duration imports additional effects into the discharge development 
after the first breakdowns have happened, which are seen from the frames 
in Fig. 10.4. 

All kinds of the structures in Fig. 10.4 can be described using the 
above results. The successful description of the structures allows us to 
formulate requirements for generation of continuous plasma channels [94] 
that can be useful in some important applications. Also, the correct 
interpretation of the discharge configurations shown in Fig. 10.4 is important 
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in one more aspect, for it can be considered as an additional argument, 
though indirect, in favor of the wave model of the turbulent oscillations. 

10.5  Formation of complex structures of the plasma channel 

During the heating impulse action which lasts t0  =  50 ps,  the primary 
breakdown edge covers a distance that by no means exceeds 1 μm. At this 
time, the breakdown body looks like a point explosion with the blast wave 
running in free space. However if the impulse is radiated for a longer time, 
the protracted radiation is absorbed by the nascent plasma and it takes the 
exertion of plasma pumping to influence the discharge development. 
Numerous facts are available on the optical discharge produced in the focal 
spot of spherical lenses (see, e.g. [108, 109]). 

It has been ascertained that the breakdown threshold is proportional to 
the ionization potential, also the threshold level decreases at augmentation 
of the pressure, of the focal spot diameter, and of the laser impulse 
duration. The breakdown zone surface moves towards laser radiation at 
velocity up to about 107 cm/s according to one of the propagation 
mechanisms, such as ionization wave, breakdown wave, or laser-supported 
detonation wave. The optical discharge propagates in various manners at 
different directions, for the lateral motion velocity is close to the speed of 
sound in the arising plasma, which is many times less compared with the 
mentioned quantities. 

Similar phenomena should occur at radiation focusing by optical 
devices of the conical shape, for example by the axicon. Though Besselian 
beam structure (Fig. 10.3) and the discharge propagation in the traveling 
wave mode (running focus) should make some alterations in the discharge 
propagation process in this case. The sketch in Fig. 10.8 can help to imagine 
the picture of the breakdown front propagation along a Besselian beam. 

 

Fig. 10.8. A heating impulse propagation along a Besselian beam axis 
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Here the intensity I(z, t) is presented as functions of time t in the beam 
three sections situated at the distances z1, z2, z3 [112, 113]. The shaded 
surface in the diagram designates the intensity lower level, I1, whereupon 
nonlinear processes appear according to the relation (10.8). 

While the beam axial intensity is smaller then the level of I1, I  < I1, 
the intensity distribution along the z-axis monotonically increases. However, 
as soon as the intensity oversteps the level of I1, I  > I1, there appears the 
longitudinal modulation with intensity maxima at points z2 and z3. The solid 
line I(z) in the plane z–I depicts the intensity behavior along the beam. 

This delineation explains the primary breakdown enlargement with 
coordinate z growth, and the tendency of the breakdowns to coalescence, 
which are observed in frame f in Fig. 10.4. Behavior of the impulse 
intensity in time are shown by the examples at the axial points z1, z2 and z3. 
Intensities attain their maxima in the instants t1, t′2, t′3. But nonlinearity of 
the interaction is available only in the points z2 and z3, where the 
breakdown occurs at the instants t2 and t3, even before (t′2, t′3) the intensity 
maxima arrive at these points. 

Thus, the primary breakdowns arise in series of the points zn−1 and zn 
provided that the impulse intensity increases faster from level I1 to the 
maximum, than it covers the distance from the point zn−1 to the next point 
zn, i.e., if Δτ  < (zn–zn–1)/v, where v = c/cosγ [105]. This requirement can 
be written down in approximate form as 

<
 cosγ

τ .
l

c
Δ  (10.11) 

 The breakdowns forming an optical discharge propagate in an uneven 
motion according to the structure consisting of the sequence of the intensity 
maxima of the beam. When the heating impulse lasts longer than the 
condition (10.11) requires, this sequence is broken. The first breakdown 
may arise in this case near the distance z, where the intensity longitudinal 
distribution reaches the maximum. Then the discharge propagates in both 
directions from the primary breakdown, forward and backward to the 
axicon.  

There are some specific features in the breakdown propagation in 
radial direction. While the intensity only just exceeds the threshold level, 
the breakdown occurs in the caustic central part, x0 = 2.4. As the impulse 
intensity grows, the primary breakdown region comprises new and new 
successive rings of the Bessel function (xi  = 0.227, 5.52, 8.65, …), more 
distant from the axis. 

With all that, some distant rings of Bessel function, where the intensity 
is too small for producing the breakdown, are nevertheless under the 
influence of the beam field. The influence may result in some abatement of 
the ionization potential, and in some decrease of the lower limit in the 
requirement (10.8). Accordingly, the heating impulse elongation leads to 
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conditions under which the breakdown occurs at a lower level of intensity, 
and the nascent plasma is liable to more effective influence of the beam 
field. If that is the case, the breakdown should propagate in a radial 
direction in an uneven manner, as well as in longitudinal direction. 

Let us analyze the structures produced by the impulses of nanosecond 
range, shown in Fig. 10.4, in reverse order, beginning from the short 
impulse. For this purpose it is necessary to compare the parameters 
characterizing the conditions at which these structures arise. To execute the 
idea, the data concerning the structures should be reduced to some standard 
which can be based, for instance, on the data taken from the experiment 
shown by frame f in Fig. 10.4. 

The spots of the primary breakdowns are well perceived in the 
experiment with argon 0.2 atm and the impulse duration τ = 0.8 ns. The 
spot locations are proved to be in close agreement with the axial structure 
of Besselian beam maxima. Also, the structure is reproduced with rather 
good optical resolution that has been possible thanks to the picture 
registration in the light of scattered radiation, and due to the long distance 
between the separate breakdowns, l  = 7 mm, resulting from the very small 
angle γ  = 1°. And though the heating impulse is almost ten times longer 
than the impulses related to the frames in Fig. 10.5, the remoteness of the 
Bessel function’s first ring from the axis increases up to δa = 30 μm, i.e., 
approximately by the same ten times. So the observation conditions are 
similar in both cases. 

Remember, the intensity at the initial (left) part of the beam shown in 
the frame f is of the breakdown threshold level, and its actual value 
corresponds to the impulse energy E = 2.5 J. This level can be employed 
as the reference value for consideration of the breakdown structures given 
in Fig. 10.4, destined for comparison. It is necessary to take into account in 
comparison, that the optical discharge threshold in argon at pressure 0.2 
atm is ~ five times higher than at atmospheric pressure, and it is close to a 
threshold in air at 1 atm [109]. 

So then, the energy threshold value in air at atmospheric pressure is 
equivalent to Е* =  6.5 J for the beam parameters γ  = 1°, τ  = 0.8 ns. It 
means, that longitudinal distribution of the breakdown spots under the 
specified conditions agrees with the maxima structure corresponding to the 
spacing l from (10.8). As to the radial direction, the breakdown zone is 
limited by the central caustic radius r0 of the Bessel function. Naturally, the 
discharge at other parameters will differ a little from that specified. 

The estimation of conditions for formation of the more complex 
structures presented in Fig. 10.4 needs additional information concerning 
the ratios of the beam power density and specific energy of radiation to the 
proper threshold values, w and ε. These values can be represented in the 
form of the proportions [94]: 
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w  ~  Eγ3 /τ and ε  ~  Eγ3 .   (10.12) 

Let the quantities in the proportions (10.12) for the part of the 
discharge given by frame f in Fig. 10.4 be equal to unity, namely wf  =  ε f  

= 1. Then the quantities of wi, ε i and the radius ri of the breakdown structure 
for other discharges (i  =  a, b, c, d, e, f )  in the figure will be as follows: 
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 When the quantities of wi are known from the experiment, the Bessel 
function allows us to determine the arguments xi  = krisinγi and ring 
numbers ni  at which the radiation relative power attains the level of the 
breakdown. On the other hand, both the argument xi  and ring number ni  can 
be calculated by using the radius values measured from the experiments and 
the Bessel function. Two new designations are introduced for experimental 
data for the avoidance of muddle: zi instead of xi , and mi  instead of ni . 
Collating the data defined by these two procedures we obtain the two lists of 
parameters: 

59.0, 19;
803, 251;
10.0, 3;
25.7, 8.

a a

b b
c c

d d

x n
x n
x n
x n

= =
= =
= =
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⎫
⎪
⎬
⎪
⎭ .

238, 74;
850, 266;
51.7, 16;
25 8, 8.
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To proceed with the inverse problem solution, the suitable values from 
the list (10.14) can be represented in the form of the ratios ni/mi: 

 
19 251 3 8= ; = ; = ; = ;
74 266 16 8

a cb d

a cb d

n nn n
m m m m

 (10.15) 

Comparison of the data related to frames f and d in Fig. 10.4 shows 
that the power density in the latter case is almost 41 times as much at the 
same impulse duration. It is evident, that the structure d getting more 
complex is caused by the power density increase. Many micro-breakdown 
centers of the structure are merged into dissimilar groups, instead of the 
separate spots as is the case in the previous structure. 

At the same time, the breakdown group centers in case of frame d are 
located along the axis at regular intervals, though the interval length 
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amounts to l = 1.1 mm this time. This experimental length exactly conforms 
with the theoretical value at angle γ  = 2.5° available in the experiment. 
Also, it is important to note that both methods of estimation give the same 
value of the Bessel ring numbers, namely nd  = md  = 8. 

Meanwhile it is seen from frame e, a small fragment of frame d, that 
the structural group of the breakdowns resembles by sight the structure 
inherent to the field image plotted on diagram c in Fig. 10.3. Hence 
breakdowns of the discharge localize most likely at the points of intersection 
of the beam’s longitudinal structure with those rings of Besselian beam 
maxima in which the intensity reaches the field threshold value. 

The longitudinal structure c (Fig. 10.4) is characterized by the 
breakdown spots situated at the interval length l  = 0.28 mm. This interval 
agrees precisely with the angle γ rated as γ  = 5°. With all this going on, the 
ring number of Bessel function, computed by the two above-mentioned 
techniques, yields quite different outcomes, nc  = 3 and mc  = 16. 

The reason for such a discrepancy may, obviously, be related to the 
impulse duration which comes to τ  = 20 ns in this case, and more than 20 
times exceeds the previous trial. Also, while the beam relative specific 
power is rather small, wc  = 15.4, the impulse energy εc  = 384 is almost ten 
times more than the energy εd  =  40.6.  The primary breakdowns first arise 
evidently within the region of the three rings of the Bessel function, nc  = 3, 
at such a level of the beam power. However the wave train of heating 
radiation lasts τ  = 20 ns, i.e., the wave train has length about 6 m, and 
maintains the breakdown in further development during that time. 

We have mentioned above, the breakdown spot produced by a 
spherical lens moves in the direction opposite to the wave vectors of the 
focused radiation at a velocity about v ~ 107 cm/s. As to other directions, 
the plasma thermal expansion defines the spot propagation velocity which is 
only u  ~ 106 ÷  4 × 106 cm/s. The wave of ionization is proved to precede 
plasma development in the breakdown spot. 

Generally, a front of primary breakdown produced by an axicon runs 
in opposite direction to the incident wave vector in the same way as in case 
of spherical focusing. However, unlike the spherical focusing, there exist in 
a Besselian beam other maxima of intensity, ready for breakdown. If such a 
maximum falls within the region of the ionization wave which reduces the 
medium dielectric strength, then a breakdown arises at the maximum as 
well. This process looks like a some combination of the radiation-induced 
(of ionization-type) and breakdown wave mechanisms, which have been 
observed (see, e.g. [108]) in experiments with spherical lenses. 

The effect of heating impulse elongation on the breakdown propagation 
in a Bessel beam is illustrated by the diagram in Fig. 10.9. On the diagram 
are shown a side view of a piece of the beam’s radial structure in the form 
of two rings with radii, rn−1 and rn, the vectors u and v of the discharge 
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propagation velocities in respect to the gas in accord with two mentioned 
ways, and a fragment of the conical wave front WF with the wave vector k0. 
 

 
Fig. 10.9. Outline of breakdown propagation in a Besselian beam 

Now let s1 be the distance between the neighbor rings of the beam 
radial structure between points 0 and 1 of the hollow cylinders, and s2 be 
the distance between points 0 and 2 of the same cylinders, but in the 
direction at the angle γ, s2 =  s1/sinγ. Velocities in these two directions 
amount to V1  =  u  + vsinγ  and V2  =  v, accordingly. Then the real 
direction β of the discharge propagation can be estimated from the 
expression 

u v sinγ u
tgβ tg

v cosγ vcosγ
γ+

= = + . (10.16) 

This expression reveals an important finding. The plasma within a 
breakdown spot being pumped by heating impulse propagates along the 
trajectory at the slope angle β, specified in Fig. 10.9 as line 0–3. The angle β 
is seen to exceed always the angle γ . 

Certainly, there have to exist a proper quantity of longitudinal maxima 
of the beam intensity structure (see Fig. 10.3) between the points 1 and 3 at 
a given radial spacing Δr of Bessel rings. Distances between the maxima in 
radial, Δr, and longitudinal, l, directions are known from part 10.1 to 
depend on the heating radiation wavelength λ, argument of Bessel function 
x = krsinγ, and angle γ, 

Δr = λΔx/(2πsinγ), l  = 2λ/sin2γ. 

Whence, the angle βm of the line directed from the maximum at the point 0 
in Fig. 10.9 to the maximum of the next longitudinal maximum belonging 
to the upper radial level of the beam structure is defined by the relation 

tgβm  =  Δr /l  =  3.8λsinγ/4π  ≈  0.3sinγ. (10.17) 

Thus the requirement tgβm << tgβ is satisfied in any case. 
Let us consider frames d and e in Fig. 10.4 as an example to illustrate 

relations (10.16) and (10.17). There the angle γ  amounts to γ  = 2.5°, and 
measurement gives the value β  = 13 ÷ 16°. If v = 107 cm/s and u = 2 × 
106 cm/s, we have from the relation (10.16) the angle β  = 13.7°. This 
quantity coincides with the angle β  = 13 ÷ 16° measured. At the same time, 

v uWF

1

0

32

k0 rn−1
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tgβm  ≈  0.012 according relation (10.17), and the requirement tgβm << tgβ 
is satisfied as well. This means that a breakdown in Besselian beam 
propagates through the intensity maximum 3 (in Fig. 10.9) of the next ring, 
which is located at a large distance from the point 1. 

Further, when the heating impulse becomes longer and the angle γ is 
still small enough, the breakdown threshold in the space between the 
separate plasma spots lessens. This leads to merger of the neighbor 
breakdowns into the plasma solid cells. For example, the picture c in Fig. 
10.4 confirms the statement. Here the size of the breakdown spot increases 
during the impulse lasting 0.5τ (20 ns) by δr ~ 0.2 mm, whereas 
separation of the rings is only Δr = 0.006 mm. The requirement δr > Δr is 
valid in the experiment, and the inequality seems to be the reason of the 
intense merger process. 

The structure a in Fig. 10.4 differs from c in a quantitative sense, but 
there is no qualitative difference between them. Really, the ring number of 
the radial structure computed by the beam radiation intensity makes up  
na  = 19 (xa  = 59.0). At the same time, the radius measured by the 
breakdown spot dimension proves the number equal to ma  ≈  74 (za  = 238). 

It is clear that the structure formation goes under the influence of the 
same mechanisms. Though the growth of the beam’s specific power and 
change of angle γ from 5° to 7.5° promote increase in the number of rings 
involved in the breakdown process. Influence of these factors results in 
petal augmentation and in the real slope angle β  growth up to β  = 36°. 

Such a large angle value prevents from a separate breakdown merging. 
Hence joining up of the plasma spots into large structural formations can 
only be seen in the vicinity of the beam axis, where the specific power is at 
the highest level. Expression (10.16) gives us an opportunity to estimate the 
velocity ratio u/v by the angle β. In particular, for β  = 36° we obtain u/v =  
0.56. 

A peculiar type of an optical discharge is observed in the experiment 
shown by frame b in Fig. 10.4. The cells of the breakdowns look like the 
large bright spots arranged at the outlying periphery of the beam radial 
structure. Great dimensions of the spots and high electron concentration in 
the plasma therein shield the inner part of the beam. Therefore, the usual 
structure of the breakdowns at spacing l (10.7) can be seen only in a close 
vicinity to the axis, and even in some separate parts of it. The frame b 
displays the structure as chopped fragments in the form of the side petals. 

Shielding seems to be the reason for rare disposition of the breakdown 
groups as well. This picture evidences that the discharge formation 
mechanism has changed. This change is relevant to the beam parameters. 
Indeed, the specific power in experiment b is an order of magnitude more 
than in experiment a. The reduced specific power value is equal to  
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wb  =  1,250 at the specific energy εb  =  6.3 × 104 at the same heating 
impulse duration. Accordingly, the intensity many times exceeds the 
breakdown threshold in argon at atmospheric pressure, and the breakdown 
has to cover the beam structure rings up to nb = 251 (xb  =  803). 

On the other hand, the ring number obtained by the radius ri 
measurement from the frame b is estimated as mb = 266 (zb  =  851). The 
discrepancy of the rated and experimental data means that the intensity 
strongly exceeds the threshold level. To understand the fundamental 
peculiarity of this phenomenon, the discharge character is to be evaluated 
numerically. So we assess the velocity ratio u/v for the contours of structural 
groups. 

Measuring the contour generatrix inclination results in the angle being 
equal to β  = 48°, i.e., the velocity ratio happens to be u/v  =  1. This 
astonishing fact implies that the discharge propagates as a laser-supported 
process. Hence, the strong excess of Besselian beam intensity over the level 
of the breakdown threshold causes the discharge to propagate according to 
some new mechanism called the light detonation. Then the structure of the 
optical discharge within the Besselian beam degenerates into separate 
plasma cells united into groups of weakly predictable configuration. 

The discrete character of the discharge seems to be a general property 
of the observable structures. While the beam intensity does not run up to  
~5 × 1013 W/сm2, the periodic longitudinal structure does not depend on the 
gas type or pressure. However this rule becomes inoperative as soon as the 
intensity exceeds the level. 

It is important to emphasize that the discharge structures in Besselian 
beams can be discerned only until the breakdown separate spots merge. 
However the merging process shown in Fig. 10.4 takes place at the very 
beginning of the plasma channel formation. After the merging during a 
certain brief period, the parameters smooth in space, and the channel 
becomes a single whole, practically uniform. 

The channel properties in the further evolution, including the diameter 
to which the channel eventually dilates, depend on the radiation specific 
energy input and its distribution along the axicon focal length. In its turn, 
the energy input distribution is determined by the intensity radial profile in 
the incident beam, and by the employed conical optical system [96]. 

For example, the incident beam of hyper Gaussian profile at N = 5 is 
focused by the axicon with the rectilinear generatrix at the angle γ  =  1°, in 
which the maximum energy input falls to the last quarter of the focal 
length. The channel photo [103] registered in the light of the plasma self-
radiation is reproduced in Fig. 10.10. There have been used the laser 
impulse at the wavelength λ  = 1.06 μm, duration τ  = 50 ns, energy E = 
200 J, the incident beam diameter D = 4.5 cm. 
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Fig. 10.10. Plasma channel in the Besselian beam field with parameters λ  = 1.06 
μm, τ  =  50 ns, E = 200 J, γ  =  1°, D = 4.5 cm, L  = 130 cm, d = 50 μm 

The parameters listed determine the diameter d = 50 μm and the 
length L = 130 cm of the Besselian beam, as well as of the initial plasma 
channel. The photo has been obtained by a camera at open shutter, and 
represents the plasma channel image integrated in time. Some increase of 
the channel diameter is observed at a distance of about (3/4)L from the 
axicon. 

This increase is not bound by the Besselian beam diameter, but by the 
longitudinal intensity distribution of the heating radiation (energy input), 
which depends on the initial beam intensity profile and the axicon profile. 
There are a number of ways to control the intensity longitudinal 
distribution [95, 114], which, in particular, allow us to make the intensity 
remain constant along the beam axis. These ways are considered in some of 
the author’s preprints, and partly in the review [96]. 

It is of interest to compare the properties of other beams with those of 
a Gaussian beam. The Besselian beam remains nearly the same diameter 
along all the length L, whereas the Gaussian beam cross-section area would 
increase by ten times every 2 mm at the chosen external parameters and the 
same diameter. Thus the length of the plasma channel at diffraction 
diameter, produced by a Besselian beam, depends merely on the energy of 
the heating impulse. 

At that, understanding of the structurization process gives an opportu-
nity to control the discharge development and the plasma channel properties 
by eliminating or strengthening Besselian beam structure in response to 
requirements of an application. The opportunity to control the beam 
parameters promotes wide application of the technique [112]. 

It is worth paying attention to the fact that this essential peculiarity of 
the Besselian beam does not connect with the nature of the radiation, which 
may be of electromagnetic kind at any wavelength, or even of acoustic 
nature. In particular, when we deal with the acoustic impulse, a Besselian 
beam does form a waveguide similar to a tube without walls [41]. 
Continuous acoustic radiation may be used as a source instead of the pulse 
radiation. A diagram for the acoustic Besselian beam formation is plotted in 
Fig. 10.11. 

 



10 An inverse problem of turbulence 180 

 
Fig. 10.11. Acoustic Besselian beam formation 

The role of the walls in this case is played by the acoustic energy side 
supply in a configuration similar to the Mach reflection type. Everything 
written in part 10.1 relates to the field of acoustic nature. In particular, 
according to Fig. 10.11, the wave front propagates along the z axis in the 
running focus regime at the velocity cz  = c/cosγ. 

It should be emphasized that the above consideration is not connected 
with any assumptions concerning the initial pressure or type of the medium. 
Therefore, the proposed procedure of focusing is not only applicable in 
gases, but can be employed in liquids and solids as well.  

In conclusion of this section, we remind the reader that the turbulence 
inverse problem has been posed and successfully solved here for the first 
time. The wave approach to oscillations of hydrodynamic parameters 
employed in the solution has allowed us to interpret the intricate complex 
of phenomena concealed within the interaction of a laser Besselian beam 
with the medium in which the extended plasma channel is formed. 
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Conclusion 

This brief summary brings our book to a conclusion by reminding the 
reader of the basic principles involved in understanding the phenomenon 
that is called turbulence. 

Turbulent flows are characterized by chaotic oscillations (fluctuations) 
of their hydrodynamic parameters around time-averaged values of the 
parameters. Widely adopted techniques for the calculation of the field of 
the averaged parameters are based on solving the Navier–Stokes equation. 
The calculated distributions of the flow parameters agree with the experi-
mental data, at least in the cases of simple flows. 

As for the oscillation field, though being of small amplitude, no unified 
approach to its analytical description is available, as recognized in the 
literature on the subject (see, e.g., §§33, 35 in [3]). The reason why the 
problem remains unsolved is that a definite mechanism of the fluctuations 
has not been identified completely since the epoch of Rayleigh, Reynolds, 
Lorentz, and Prandtl. 

Moreover, even a physical interpretation of Reynolds’ criterion lacked 
in clarity though numerous attempts to explain it have been made, as 
references [115–118] evidence it. Reynolds’ hypothesis was that the energy 
of turbulent oscillations got converted into thermal energy in accord with 
an unknown law [115]. Prandtl preferred a formal theoretical manner in 
treating upon the problem instead of physical analysis [116]. Von Kármán 
resorted to the kinetic theory [117, 118]. He represented the criterion as a 
product of two factors – the ratios of flow velocity to sound velocity and of 
channel diameter to the mean free path of molecules: Re = (U/c)(d /λ). 

The recent tendency is to explain the emergence of fluctuations in the 
main flow, which is regarded as potential, by the proliferation into it of 
eddies from the boundary layer where the vortex motion originates. 
Generally, such a proliferation contradicts Thomson’s theorem, therefore 
they used to assume that it occurs during the boundary layer separation. 

However, the separation of the boundary layer implies the emergence 
of a pressure gradient in the proximity of the wall. The hypothesis collides 
necessarily with the initial assumption, according to which the pressure is 
constant in every cross-section of a flow including the boundary layer, and 
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its transverse gradient is zero. Due to this, the separation of the boundary 
layer is usually illustrated with the flows in which a fluid moves along an 
angle-shaped or curved surface. Meanwhile turbulence also emerges in the 
case of a flow along a plane where the above conditions are not available. 

An attempt is made in the present work to consider the turbulent 
fluctuations to be a result of the perturbation of the flow parameters by 
acoustic waves. The transverse gradient of pressure in the flow is not  
a priori assumed to equal zero in the framework of this model. The stated 
formation of turbulent oscillations is examined in detail in the case of the 
flow in front of a piston moving in a channel.  

A field of the flow velocity gradient is generated in the boundary layer 
due to the viscous friction near the wall. There appear in this field a vortex 
motion and perturbations of the hydrodynamic parameters. The perturbations 
are local centers of higher pressure in the zones of maximal dissipation of 
the energy of compression waves compensating the friction losses of the 
flow, when the waves are reflected from the wall. Every of the perturbations 
propagates in the flow as an acoustic wave packet having roughly the same 
size as the boundary layer thickness. 

A central sector of the perturbation wave, that constitutes a main part 
of the wave surface, passes through the boundary layer without considerable 
distortion, for the path length is short. Then this part of the wave spreads to 
all the flow and propagates in it as an acoustic wave packet with a nearly 
spherical wave front. The wave packet propagating in the main, potential 
flow causes the parameter oscillations of common knowledge. 

At the same time, a ring-shaped part of the wave adjacent to the wall 
does not leave the boundary layer and moves within the field of a strong 
gradient of the flow velocity. The wave front of the ring part of the wave 
packet is destroyed and the wave falls to pieces owing to refraction and 
diffraction in the gradient field of the boundary layer. The pieces generate 
therein stochastic oscillations of the flow parameters. 

However the velocity drops to zero on the wall surface, so that energy 
of the velocity oscillations is converted to the pressure oscillations in the 
immediate vicinity of the wall. This wall vicinity is typically referred to as 
the laminar sublayer. Actually, it is not a laminar flow, for there exist the 
pressure oscillations. 

The wave representation of the turbulence disturbances implies two 
mechanisms responsible for turbulent oscillations. The first one follows 
directly from the fact that hydrodynamic parameters within every wave 
packet oscillate. Superposition of the propagating wave packets, as well as 
of those reflected by the walls, forms the spatio-temporal oscillations field. 

The second mechanism is similar to the generally recognized one, 
though somewhat corrected. The wave packets entrain some portions of the 
fluid from the boundary layer into the main flow. The vorticity frozen in 
the fluid is carried along with the fluid portions into the main flow. 
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Diffusion and fading of eddies within the flow core create a disordered 
field of perturbations similar to turbulent oscillations. 

The wave model of turbulence provides a simple physical explanation 
of such phenomena as the synchronism between the velocity and pressure 
oscillations, the kind of distribution of the oscillations in the channel cross-
section, the dependence of the transition from laminar to turbulent flow 
state on an incoming flow, the intermittency of turbulence, the influence of 
the wall roughness, the non-dissipative transfer of energy from large-scale 
to small-scale oscillations, and the dissipation of energy in them. The 
chaotization of oscillations is interpreted naturally in the framework of the 
proposed approach as well. 

The principles on which the wave representation of turbulence is based 
are confirmed experimentally. The clearly formulated model of the pheno-
menon makes it possible to express analytically the spatio-temporal field of 
turbulent oscillations. As an example of the model application, the transition 
from normal combustion to detonation in pipes is considered. In particular, 
it is shown that the process involves the formation of a turbulent flow in 
front of the flame, which specifies the process further development. 

Simulations show that the spatio-temporal field of oscillations and 
especially their spectra depend strongly on the problem’s initial conditions. 
This circumstance makes it possible to set and solve the corresponding 
inverse problem. 

This opportunity has been used and applied to study the optical dis-
charge produced by a Besselian beam of laser radiation. In such studies, 
difficulties arise since the subnanosecond durations and the small size of 
the initial breakdown zones make it impossible to investigate experimentally 
the most important initial stage of the discharge. Solving the inverse problem 
for the perturbations structure recorded during the subsequent stages has 
allowed to identify the time instants and locations of the initial breakdowns, 
and their sizes as well. 
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Stream function 8, 35–37, 40 
Stream lines 19, 21, 33, 40 

T 
Tensor  

momentum flux density of 5 
turbulent stresses of 11 
viscous strain of 11 

Turbulence 
energy dissipation 6, 12, 24, 27, 40, 

43 
fully developed 56 
intermittency 56, 101, 183 
inverse problem 15, 155, 160, 174, 

180, 184 
scale of 6, 7, 30, 81, 82, 101 
time spectral representation 97–99  
space spectral representation 97–99 
wave approach to 2, 3, 13–14 

V 
Velocity 

complex amplitude 9 
components 21, 27, 32, 35, 36 
gradient 33 
profile in flow 12, 21, 30, 32 
logarithmic profile 31 
perturbation propagation of 9, 22, 23 
potential of 23, 29, 55, 56 
vorticity 33 

Viscosity 
dynamic 3, 17 
friction 2, 4, 12, 26, 38, 40, 48, 51, 

52, 57, 69, 182 
kinematic 5, 21, 57, 138 

Viscous force 2, 12 
Viscous sublayer 69, 70 

W 
Wave  

amplitude 2, 8, 9, 10, 23, 24, 25, 55, 
59, 67, 79, 86, 87–89, 95, 107, 
111, 113, 124, 126 

beam of Gaussian profile 14, 48, 49, 
156, 158 

beam of Besselian profile 14,  
155, 156, 157, 160, 161–164, 
167–173, 175–180, 184 
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damping of 14, 52, 65, 67, 69, 85 
distribution of parameters in 13, 14, 

24, 55, 56, 85, 89–91, 155, 183 
energy conversion into heat 52 
energy dissipation 43, 49, 52 
equation 8, 13, 55, 85, 87, 100 
equation general solution 23, 24 
front shape 55, 56, 58, 59, 61, 62,  

 

65, 66, 68, 73, 75–78, 92, 110,  
114, 116, 154, 157, 171, 183 

length 48 
number 48 
probe point trajectory 59–70, 116, 

117, 119–123, 176 
train 46, 99, 175 
vector 48 
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