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Preface

The modern computer and telecommunication industry relies heavily on the use
of semiconductor devices. The first semiconductor device (a germanium transistor)
was built in 1947 by Bardeen, Brattain, and Shockley, who were awarded the Nobel
prize in 1956. In the following decades, a lot of different devices for special applica-
tions have been invented, for instance, light-emitting diodes, metal-oxide semicon-
ductor transistors, semiconductor lasers, solar cells, and single-electron transistors.

A fundamental fact of the success of the semiconductor technology is that the
device length is much smaller than that of previous electronic devices (like tube
transistors). The first transistor of Bardeen, Brattain, and Shockley had a charac-
teristic length (the emitter–collector length) of 20 μm, compared to the size of a
few centimeter of a tube transistor. The first Intel processor 4004, built in 1971,
consisted of 2250 transistors, each of them with a characteristic length of 10 μm.
This length could be reduced to 45 nm for transistors in actual processors. Mod-
ern quantum-based devices (like tunneling diodes) have structures of only a few
nanometer length.

The main objective of this book is the derivation of transport equations describ-
ing the electron flow through a semiconductor device due to the application of a
voltage. Depending on the device structure, the main transport phenomena may be
very different, caused by diffusion, drift, scattering, or quantum-mechanical effects.
The choice of the model equations depends on certain key parameters, such as the
number of free electrons in the device, the mean free path of the charge carriers (i.e.,
the average distance between two consecutive collisions for a particle), the device
dimension, and the ambient temperature.

Usually, a large number of electrons is flowing through a device such that a
particle-like description using kinetic or fluid-type equations seems to be appropri-
ate. On the other hand, electrons in a semiconductor crystal are quantum mechani-
cal objects such that a wave-like description using the Schrödinger equation or the
density-matrix formalism is necessary. For this reason, we have to devise different
models which are able to describe the important physical phenomena for a partic-
ular situation or for a particular device. Moreover, since in some cases we are not
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interested in all the available physical information, we need simpler models which
help to reduce the computation costs in the numerical simulations.

This leads to a hierarchy of semiconductor models. Roughly speaking, we
distinguish four classes of semiconductor models: (i) microscopic semi-classical,
(ii) macroscopic semi-classical, (iii) microscopic quantum, and (iv) macroscopic
quantum model equations.

The first model class involves kinetic equations in which the quantum mechanical
description is incorporated only in a semi-classical way. The electrons are specified
by a distribution function, which has a probabilistic interpretation, depending on the
phase space variables and the time. The evolution equations are of kinetic type, such
as the Liouville, Vlasov, and Boltzmann equation.

When collisions become dominant in the semiconductor domain, i.e., when the
mean free path is much smaller than the characteristic device size, a fluid dynami-
cal description is appropriate. This description takes into account quantities which
are averages of the distribution function of the Boltzmann equation over the mo-
mentum or energy space, like the particle, current, and energy densities. This leads
to the second model class, which consists of semi-classical diffusive or hyperbolic
moment equations, such as the drift-diffusion, energy-transport, hydrodynamic, and
spherical harmonics expansion (SHE) models.

The semi-classical description is reasonable if the carriers can be treated as parti-
cles. An important parameter, which measures the validity of this description, is the
de Broglie wavelength corresponding to a thermal average carrier. In physical situ-
ations, in which the electric potential varies rapidly on the scale of the de Broglie
length or in which the mean free path is much larger than the de Broglie length,
quantum mechanical models are more appropriate. In the third model class, three
formulations of quantum microscopic models are presented: the Schrödinger, the
density-matrix, and the kinetic Wigner formulation.

When the modeling of both quantum effects and collisions is important, but a
computationally less expensive macroscopic description of the transport phenom-
ena is needed, averaged quantum models can be formulated. This leads to the model
class of macroscopic quantum models. These models are, in some sense, quantum
analogues of the semi-classical equations, such as the quantum drift-diffusion, quan-
tum energy-transport, and quantum hydrodynamic equations. Similar to their semi-
classical analogues, they are derived from Wigner–Boltzmann equations.

The model hierarchies determine the structure of this book, which consists of five
parts. The first part provides a short introduction to some basic notions of semicon-
ductor physics and explains the strategy of the derivation of macroscopic models,
starting from kinetic equations. The four model classes are then presented in the
remaining four parts. Figure 1 gives an overview of the model hierarchy.

This book is not intended to be comprehensive, and there are a lot of important
models which are not discussed, like hybrid models, lattice heat flow equations,
transport in magnetic fields, subband models, quantum SHE equations, models for
spintronics, and many others. The emphasis is placed on transport fundamentals and
concepts of macroscopic modeling. For details on the crystal structure of semicon-
ductors and their properties and on specific semiconductor devices, we refer to the
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viii Preface

physical and engineering literature. Furthermore, in order to make this book acces-
sible to a wide range of readers, such as researchers and graduate students from
physics, engineering, and applied mathematics, not the most general situations are
considered and mathematical details are usually replaced by references to the corre-
sponding literature.

In this spirit, the derivations of the model equations are purely formal, although
in several instances some mathematical properties are mentioned. It turned out to
be convenient to summarize the results in the form of lemmas, propositions, and
theorems as it is common in mathematics. However, a “proof” of a lemma, proposi-
tion, or theorem is not a proof in the strict mathematical sense, since the underlying
function spaces and regularity assumptions are generally not specified.

Some existing material on semiconductor modeling was employed in this book.
For instance, the book of Brennan [1] was used for the chapter on semiconductor
physics. The classical book of Markowich, Ringhofer, and Schmeiser [2] was an
important source for the presentation of semi-classical and quantum kinetic the-
ory. The works of Poupaud [3] were additionally employed for the description
of kinetic equations, the papers of Arnold [4] were very useful for microscopic
quantum modeling, and finally, Ben Abdallah [5] contributed to the derivation of
boundary conditions for the Schrödinger equation. The chapters on semi-classical
macroscopic models are based on several sources. For instance, the derivation of
the low- and high-field drift-diffusion models from the Boltzmann equation was
done by Poupaud in [6, 7]. The derivation of energy-transport and SHE equations
from the Boltzmann equation is due to Degond and coworkers [8, 9]. An exten-
sion of the energy-transport model was derived by Grasser and coworkers [10].
Hydrodynamic models and their extensions were studied intensively by Anile, Ro-
mano, and coworkers [11, 12]. Furthermore, the derivation of quantum fluid mod-
els from a Wigner–Boltzmann equation was initiated by Degond and Ringhofer
[13], and quantum drift-diffusion and quantum energy-transport models have been
derived [14]. I’m very grateful to the above mentioned authors for many fruitful
discussions and various suggestions on the material. Moreover, I want to express
my gratitude to (in alphabetic order) Kazuo Aoki (Kyoto), José Antonio Carrillo
(Barcelona), Irene Gamba (Austin), Thierry Goudon (Lille), Hans-Christoph Kaiser
(Berlin), Florian Méhats (Rennes), Paola Pietra (Pavia), and Riccardo Sacco (Milan)
for valuable discussions.

I would like to express my thanks to Bertram Düring, Jan Haškovec, Stefan
Krause, Peter Kristöfel, and Daniel Matthes from Vienna for many corrections
and suggestions. Finally, I acknowledge partial support of the German Science
Foundation (DFG), the Austrian Science Fund (FWF), the German Academic Ex-
change Service (DAAD), the European Science Foundation (ESF), and the Austrian
Exchange Service (ÖAD).

Vienna, Austria Ansgar Jüngel
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Part I
Introduction



The following two chapters are of introductory nature. First, we present a sum-
mary of basic notions and definitions from semiconductor physics. Only those sub-
jects relevant to the subsequent chapters are included here. Second, we explain the
strategy of deriving macroscopic model equations from the microscopic Boltzmann
equation by assuming dominant scattering. Here, we distinguish the diffusion scal-
ing, leading to diffusive models which are mathematically of parabolic type, and the
hydrodynamic scaling, leading to hydrodynamic models which are mathematically
of hyperbolic type.



Chapter 1
Basic Semiconductor Physics

In this chapter we present a short summary of the physics and main properties
of semiconductors. We refer to [1–6] for introductory textbooks of solid-state and
semiconductor physics and to [7–12] for more advanced expositions.

1.1 Semiconductor Crystals

What is a semiconductor? Historically, the term “semiconductor” has been used to
denote solid materials whose conductivity is much larger than that of insulators but
much smaller than that of metals, measured at room temperature. A modern and
more precise definition is that a semiconductor is a solid with an energy gap larger
than zero and smaller than a few electron volt (up to about 3 or 4 eV; see [13]).
Metals do not have an energy gap, whereas it is usually larger than a few electron
volt in insulators. In order to give a meaning to the notion “energy gap”, we shall
review some facts about the crystal structure of solids.

An ideal solid is made of an infinite three-dimensional array of atoms arranged
in a lattice

L = {n1a1 + n2a2 + n3a3 : n1,n2,n3 ∈ Z} ⊂ R
3,

where a1, a2, a3 ∈R
3 are the basis vectors of L, called primitive vectors of the lattice

(see Fig. 1.1). The set L is called the Bravais lattice. The periodic structure of the
lattice is specified in the following definitions [3, 14]:

1. The reciprocal lattice (or dual lattice) L∗ of L is defined by

L∗ = {n1a∗1 + n2a∗2 + n3a∗3 : n1,n2,n3 ∈ Z} ⊂ R
3,

where the primitive vectors a∗1, a∗2, a∗3 ∈ R
3 are the dual basis, satisfying

am ·a∗n = 2πδmn for all m,n = 1,2,3. (1.1)

Jüngel, A.: Basic Semiconductor Physics. Lect. Notes Phys. 773, 3–44 (2009)
DOI 10.1007/978-3-540-89526-8 1 c© Springer-Verlag Berlin Heidelberg 2009
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a1

a2

Fig. 1.1 Illustration of a two-dimensional lattice L

2. A connected set D ⊂ R
3 is called a primitive cell of L (or L∗) if the volume of D

equals the volume of the parallelepiped spanned by the basis vectors of L (or L∗),

vol(D) = a1 · (a2 ×a3) (or vol(D) = a∗1 · (a∗2 ×a∗3)),

and if the whole space R
3 is covered by the union of translates of D by the

primitive vectors. Here, the symbol “×” denotes the vector product in R
3.

3. The special primitive cell

D =

{

x ∈ R
3 : x =

3

∑
n=1

αnan, αn ∈
[

−1
2
,

1
2

]}

,

which consists of all points being closer to the origin than to any other point of
the lattice, is called the Wigner–Seitz cell.

4. The Wigner–Seitz cell of the reciprocal lattice is called the (first) Brillouin zone
(see Fig. 1.2):

B =

{

k ∈ R
3 : k =

3

∑
n=1

βna∗n, βn ∈
[

−1
2
,

1
2

]}

.

a2

a2

a1

0

*

a1*

B

Fig. 1.2 The primitive vectors of a two-dimensional lattice L and its reciprocal lattice L∗ and the
Brillouin zone B
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We give some explanations of the above definitions. What is the meaning of the
reciprocal lattice? The reciprocal lattice vectors and the direct lattice vectors can
be seen as conjugate variables, like time and frequency are conjugate variables in
signal analysis. In fact, let x ∈ L and k ∈ L∗ be given by

x =
3

∑
m=1

αmam and k =
3

∑
n=1

βna∗n,

where αm, βn ∈ Z. Then, by (1.1),

eik·x = exp

(

i
3

∑
m,n=1

2πδmnαmβn

)

= exp

(

2π i
3

∑
m=1

αmβm

)

= 1. (1.2)

As the position vector x has the dimension of length, k has the dimension of inverse
length and therefore, k is called a wave vector. (More precisely, k is called a pseudo-
wave vector; see below.)

Physically, the reciprocal lattice appears in X-ray diffraction experiments with
crystals. It can be shown that the intensity peaks of the reflected X-rays are obtained
when the change in the wave vector �k of the X-ray wave is an element of the
reciprocal lattice [3, p. 404]. This allows one to determine the structure of the crystal
lattice.

The primitive vectors a∗� of the Brillouin zone can be computed from the vectors
am by

a∗� = 2π
am ×an

a1 · (a2 ×a3)
,

where (�,m,n) is (1,2,3), (2,3,1), or (3,1,2). If A, A∗ denote the 3× 3 matrices
whose columns are the vectors an = (a1n,a2n,a3n)�, a∗n = (a∗1n,a

∗
2n,a

∗
3n)

�, respec-
tively, the relation (1.1) implies that

(A�A∗)mn =
3

∑
j=1

a jma∗jn = am ·a∗n = 2πδmn

and thus A�A∗ = 2πId, where Id is the identity matrix of R
3×3. Hence,

A∗ = 2π(A�)−1 = 2π(A−1)�. (1.3)

Graphically, the Brillouin zone can be constructed as follows. Draw arrows from
a lattice point of L∗ to its nearest neighbors and determine the midpoints of the
arrows. Then the planes through these points perpendicular to the arrows form the
surface of the (bounded) Brillouin zone. In two space dimensions, the Brillouin
zone is a hexagon or a square (see Fig. 1.2). In three space dimensions, the zone is
a polyhedron (e.g., a “capped” octahedron; see Fig. 1.3).

Lemma 1.1. The volumes of a primitive cell D and its Brillouin zone B are related
by the equation

volB =
(2π)3

volD
.
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Fig. 1.3 Brillouin zone of semiconductors like silicon, germanium, gallium arsenide, etc.

Proof. With the above notations, we have

volD = a1 · (a2 ×a3) = det(a1,a2,a3) = det A,

and hence, by (1.3),

volB = det(a∗1,a
∗
2,a

∗
3) = det A∗ = det(2π(A−1)�) = (2π)3 det(A−1)

=
(2π)3

detA
=

(2π)3

volD
,

finishing the proof. 	


1.2 The Schrödinger Equation

In the previous section we have introduced the semiconductor solid by its crystalline
structure, i.e., by the nuclei lying at lattice points. In fact, the crystal consists of the
nuclei, the core electrons, and the valence electrons. Their state has to be described
by quantum mechanics. More precisely, the state of a quantum particle is repre-
sented by a complex-valued wave function φ(x,t), where x ∈ R

3 and t ∈ R. The
dynamics of the wave function is given by the Schrödinger equation

ih̄∂tφ = Hφ , x ∈ R
3, t > 0, φ(·,0) = φI , (1.4)

where ∂t = ∂/∂ t and H is the so-called Hamilton operator. For instance, the Hamil-
ton operator of a single electron with mass m moving in an electric potential V (x)
reads as

H = − h̄2

2m
Δ −qV(x), x ∈ R

3, (1.5)

where Δ = ∑3
j=1 ∂ 2/∂x2

j is the Laplace operator in R
3.
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Stationary states can be obtained from the ansatz φ(x,t) = e−iEt/h̄ψ(x), where
E is a real number. Inserting this ansatz into (1.4) and dividing by e−iEt/h̄ gives the
stationary Schrödinger equation

Hψ = Eψ (1.6)

or, in the case of a single electron,

− h̄2

2m
Δψ −qV(x)ψ = Eψ , x ∈ R

3.

Thus, the quantum state is stationary if ψ is an eigenfunction and E is an eigenvalue
of H. Physically, E describes the energy of the system if it is in the eigenstate ψ . The
set of all possible energy values is represented by the spectrum of the Hamiltonian
H.

The solution φ of (1.4) with the Hamiltonian (1.5) can be interpreted as follows.
We take the derivative

∂t |φ |2 = (∂tφ )φ + φ(∂tφ) = − ih̄
2m

Δφφ +
ih̄
2m

φΔφ

= − ih̄
2m

div(∇φφ −φ∇φ) = − h̄
m

divIm(φ∇φ),

where z denotes the conjugate of the complex number z ∈ C, Im(z) is its imaginary
part, and divu = ∑3

j=1 ∂u j/∂x j is the divergence of a vector field u = (u1,u2,u3).
Introducing the variables

n = |φ |2, J = −qh̄
m

Im(φ∇φ),

we arrive at the conservation law

∂t n− 1
q

divJ = 0,

expressing the conservation of the integral
∫
R3 ndx. According to the pioneering

works of Einstein, Planck, etc., we may interpret n as the electron density and J as
the electron current density J. The integral

∫
Ω |φ(x,t)|2 dx is the probability to find

the electron at time t in the domain Ω .
We illustrate the stationary Schrödinger equation and its solutions by two simple

examples.

Example 1.2 (State of a free-electron). Consider a free-electron in a one-dimensional
vacuum, i.e., V (x) = 0 for all x ∈ R. We need to solve the Schrödinger equation

− h̄2

2m
ψ ′′ = Eψ in R. (1.7)
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A computation shows that eigenfunctions are given by

ψk(x) = Aeikx + Be−ikx, x ∈ R,

where k2 = 2mE/h̄2, with eigenvalues

E = E(k) =
h̄2k2

2m
, k ∈ R.

Thus, the eigenvalue problem (1.7) has infinitely many bounded solutions parametri-
zed by k∈R and corresponding to different real-valued energies E(k). The functions
e±ikx are called plane waves. Thus, the eigenstates of a free particle are plane waves.
	

Example 1.3 (Infinite square-well potential). We consider an electron in an infinite
square-well potential. This is a one-dimensional structure of length L with a van-
ishing potential inside the well and an infinite potential outside. As the potential is
confining the electron to the inner region, we have to solve the Schrödinger equation
(1.6) in the interval (0,L) with boundary conditions

ψ(0) = ψ(L) = 0

and potential V (x) = 0 for x ∈ (0,L). The general solution of (1.6) is

ψ(x) = Ae(a+ik)x + Be−(a+ik)x,

where A, B ∈C and a and k are real numbers such that −(a+ ik)2 = 2mE/h̄2. Using
the boundary conditions, it is not difficult to see that they can only be satisfied if
a = 0 and sin(kL) = 0. Hence, the eigenfunctions are given by

ψk(x) = A
(

eikx − e−ikx
)

= C sin(kx), where k =
nπ
L

, n ∈ Z,

and C = 2iA, and the eigenvalues are

E(k) =
h̄2k2

2m
.

The integration constant C can be determined by assuming that

∫ L

0
|ψk(x)|2 dx = 1

holds, stating that the probability of finding the electron in the square well is equal
to one. A simple computation shows that C =

√
2L. The system only allows discrete

energy states. In particular, the parameter k can only take discrete values. 	
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1.3 Electrons in a Periodic Potential

The semiconductor solid can be described by ions (nuclei and core electrons) and
valence electrons. These electrons are responsible for the electronic properties of the
solid. The evolution of their state is quantum mechanically given by the Hamilto-
nian which takes into account the relevant physical phenomena, like ion vibrations,
electron–ion interactions, and electron–electron scattering. We assume that the ions
are fixed and in equilibrium such that we can neglect lattice vibrations and their
interaction with the electrons (see [2, 11] for lattice dynamics and electron–phonon
interactions).

Let the state of the ion–electron system be described by the wave function ψ(x),
where x = (x1, . . . ,xM)� ∈ R

3M is the vector of all possible positions x j ∈ R
3 of the

M electrons. Then, the Hamiltonian of the quantum system (see Sect. 1.2) consists
of the kinetic energy part, the electron–ion interactions, and the electron–electron
interactions,

H = − h̄2

2m

M

∑
j=1

Δ j + Hei + Hee,

where Δ j is the Laplace operator acting on the x j variable only. In the following, we
will derive explicit expressions for Hei and Hee.

The lattice ions generate a periodic electrostatic potential Vei,

Vei(x + y) = Vei(x) for x ∈ R
3, y ∈ L

(recall that L is the Bravais lattice; see Sect. 1.1), which is the superposition of the
Coulomb potentials

Vj(x) =
Q

4πε0|x−R j|
of the crystal ions located at R j, i.e.,

Vei(x) =
Mi

∑
j=1

Q
4πε0|x−R j| , x ∈ R

3

(see Fig. 1.4). Here, Q is the ion charge, ε0 the permittivity, and Mi the number
of ions. The lattice potential describes the interaction of a single electron with the
ions. It is periodic with respect to the lattice. Hence, the electron–ion Hamiltonian
is given by

Hei = −q
M

∑
�=1

Vei(x�) = −
M

∑
�=1

Mi

∑
j=1

qQ
4πε0|x�−R j| .

The electron–electron interactions are modeled by

Vee(x) = −1
2

M

∑
j,�=1, j �=�

q
4πε0|x j − x�| , x ∈ R

3M,
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Vj−1(x) Vj+1(x)Vj(x)

Vei(x)

atomatomatomatom

x
Rj+2Rj+1Rj−1 Rj

Fig. 1.4 Potentials Vj(x) of a single ion at x = R j and net potential Vei(x) of a one-dimensional
crystal lattice

and the Hamiltonian is given by Hee = −qVee(x). The factor 1
2 takes into account

that the sum counts each interaction twice.
Thus, the Hamiltonian of the system reads as

H =
M

∑
j=1

(

− h̄2

2m
Δ j −qVei(x j)

)

−qVee(x).

The solution of the eigenvalue problem Hψ = Eψ is computationally very expen-
sive, due to the presence of the potentials and the large number of electrons. In the
following, we simplify the problem by making two approximations. First, we re-
place the electron–electron interactions by an effective single-particle potential. This
reduces the 3M-dimensional problem to a three-dimensional one (Hartree–Fock ap-
proximation). Second, the solution of the Schrödinger equation in the whole space
R

3 is reduced to the solution in a primitive cell of the lattice (Bloch decomposition).

Hartree–Fock approximation. The reduction to a single-particle potential is based
on the following idea. If the electron–electron interactions can be neglected, the
Schrödinger equation is the sum of single-particle Schrödinger equations. Conse-
quently, the wave function ψ can be written as the product of the single-particle
wave functions. Even in the presence of electron–electron interactions, one may try
the product ansatz

ψ(x) =
M

∏
j=1

ψ j(x j). (1.8)

This approximation of the wave function is called the Hartree approximation. The
single-particle wave functions ψ j are determined by assuming that they minimize
the energy (ψ ,Hψ)L2 =

∫
R3N ψHψ dx under the constraint of normalized wave

functions,
min

ψ
(ψ ,Hψ)L2 subject to ‖ψ j‖2

L2 = 1 for all j, (1.9)
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where ‖ψ j‖2
L2 =

∫
R3 |ψ j|2 dx and ψ denotes the complex conjugate of ψ . The mini-

mum is taken over all wave functions satisfying (1.8).

Proposition 1.4 (Hartree equation). A necessary condition for the solution of the
constrained minimization problem (1.9) is given by the solution of the Schrödinger
eigenvalue problem

− h̄2

2m
Δ jψ j −qVei(x j)ψ j −qVH, j(x)ψ j = E jψ j in R

3, (1.10)

the so-called Hartree equation, where the Hartree potential VH, j is defined by

VH, j(x) = −q ∑
� �= j

∫

R3

|ψ�|2 dx�

4πε0|x− x�| , j = 1, . . . ,M.

Proof. The constrained minimization problem (1.9) can be solved by the method of
Lagrange multipliers. We define

F (ψ1, . . . ,ψM,E1, . . . ,EM) = (ψ ,Hψ)L2 −
M

∑
j=1

E j
(‖ψ j‖2

L2 −1
)
,

where E j are the Lagrange multipliers. A computation, using (1.8) and the normal-
ization ‖ψ j‖2

L2 = 1, shows that the expectation value (ψ ,Hψ)L2 can be written as

(ψ ,Hψ)L2 =
M

∑
j=1

∫

R3
ψ j

(

− h̄2

2m
Δ j −qVei(x j)

)

ψ j dx j

+
q2

2

M

∑
j,�=1, j �=�

∫

R6

|ψ j(x j)|2|ψ�(x�)|2
4πε0|x j − x�| dx j dx�.

Then, a necessary condition for the solution of (1.9) reads as

0 =
∂F
∂ψ j

(φ) =

((

− h̄2

2m
Δ j −qVei + q2 ∑

� �= j

∫

R3

|ψ�(x�)|2 dx�

4πε0|x j − x�| −E j

)

ψ j,φ

)

L2

for all functions φ . This gives (1.10). 	

The above approach has a drawback. By the Pauli principle, the total wave func-

tion of an electron ensemble has to be anti-symmetric (with respect to the spatial
and spin variables). This is not necessarily the case if the above product ansatz is
employed. To overcome this limitation, we construct a properly symmetrized wave
function by a linear combination of products of the type ψ1(x j1) · · ·ψN(x jN ). More
precisely, ψ is given by the Slater determinant, and x jk includes spatial and spin vari-
ables. By computing the necessary condition for the corresponding constrained min-
imization problem, we obtain a Schrödinger equation similar to (1.10) augmented
by the additional term qVex, jψ j. Instead of going into the details, we only present
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the result and refer to [3, Sect. 7.2] for a definition of the Slater determinant and the
computations:

Vex, jψ j(x) = −q ∑
� �= j,‖

∫

R3

ψ j(x′)ψ�(x′)
4πε0|x− x′| dx′ψ�(x).

The summation is over all states � with parallel spin. This exchange term comes from
the fact that the Slater determinant is the sum of weighted and signed products of
single-particle functions with interchanged coordinates. Notice that the expression
Vex, jψ j is not a multiplication of two functions but Vex, j is a nonlocal nonlinear
integral operator since ψ j appears under the integral.

The Schrödinger equation with the above effective potential can be reformulated
by introducing the electron density and exchange particle density, respectively,

n(x) =
M

∑
j=1

|ψ j(x)|2, nex, j(x,x′) = ∑
�,‖

ψ j(x′)ψ�(x′)ψ j(x)ψ�(x)

ψ j(x)ψ j(x)
.

Then, the so-called Hartree–Fock equation reads as

E jψ j = − h̄2

2m
Δψ j −q(Vei(x)+VH, j(x)+Vex, j(x))ψ j

= − h̄2

2m
Δψ j −qVei(x)ψ j + q2

∫

R3

n(x′)−nex, j(x,x′)
4πε0|x− x′| dx′ψ j.

The exchange potential depends on the state number j. A function independent of
the state number is obtained by replacing the exchange density nex, j by the average

n̄ex(x,x′) =
1
M

M

∑
j=1

nex, j(x,x′).

Then, introducing the effective single-particle potential

Veff(x) = −q
∫

R3

n(x′)− n̄ex(x,x′)
4πε0|x− x′| dx′

and the total effective potential VL =Vei +Veff, we obtain the modified Hartree–Fock
equation

− h̄2

2m
Δψ j −qVL(x)ψ j = E jψ j, x ∈ R

3, j = 1, . . . ,M. (1.11)

This is a single-particle equation in R
3 incorporating the many-body aspect in terms

of the total effective potential VL. For a discussion of the validity of the Hartree–
Fock approximation, we refer to [8, Sect. 1.4].
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Bloch decomposition. In a perfect periodic crystal, we expect that the single-
electron effective potential VL is periodic, too [2, p. 132]. Thus, one might hope
that the whole-space Schrödinger problem (1.11) can be reduced to an eigenvalue
problem on a cell of the lattice. The following result, due to Bloch [15], states that
this is indeed possible.

Theorem 1.5 (Bloch). Let VL be a periodic potential, i.e., VL(x + y) = VL(x) for
all x ∈ R

3 and y ∈ L (the Bravais lattice). Then the eigenvalue problem for the
Schrödinger operator

H = − h̄2

2m
Δ −qVL(x), x ∈ R

3,

can be reduced to an eigenvalue problem of the Schrödinger equation on the primi-
tive cell D of the lattice, indexed by k ∈ B (the Brillouin zone),

Hψ = Eψ in D, ψ(x + y) = eik·yψ(x), x ∈ D, y ∈ L. (1.12)

For each k ∈ B, there exists a sequence En(k), n ≥ 1, of eigenvalues with associated
eigenfunctions ψn,k. The eigenvalues En(k) are real functions of k and periodic and
symmetric on B. The spectrum of H is given by the union of the closed intervals
{En(k) : k ∈ B} for n ≥ 1 (with B being the closure of B).

For a proof of the Bloch theorem, we refer to [16, 17], where also more properties
on the energies En(k) are stated. A simple proof for the one-particle Schrödinger
equation can be found in [18, Sect. 7.1]. In the following, we give a (mathematically
not rigorous) motivation of the above statement, which helps to understand the role
of the vector k.

We consider the translation operator Ta, defined by (Taψ)(x) = ψ(x + a) for a ∈
L, x ∈ R

3, and functions ψ ∈ L2(R3). First, we claim that the eigenvalues of Ta are
given by eiθ for θ ∈ R. To see this, let ψ be an eigenfunction to the eigenvalue λ ,
i.e., Taψ = λ ψ . Then

|λ |2 ‖ψ‖2
L2 = ‖λ ψ‖2

L2 = ‖Taψ‖2
L2 =

∫

R3
|ψ(x + a)|2 dx = ‖ψ‖2

L2 ,

and thus, |λ | = 1 or λ = eiθ for some θ ∈ R.
The Hamiltonian H commutes with all the translation operators Ta since VL is

periodic:

(TaHψ)(x) = − h̄2

2m
Δψ(x + a)−qVL(x + a)ψ(x + a)

= − h̄2

2m
Δψ(x + a)−qVL(x)ψ(x + a) = (HTaψ)(x).

Therefore, if ψ is an eigenfunction of H, it is also an eigenfunction of Ta for any
a ∈ L and vice versa. (For this statement some mathematical properties are needed,
like the self-adjointness of H and Ta; see, e.g., [19].) Let ψ be such a simultaneous
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eigenvector of H and Ta for any a ∈ L. Hence, for all j = 1,2,3, there exists θ j ∈ R

such that

T−a j ψ = eiθ j ψ , (1.13)

where a1, a2, and a3 are the primitive vectors of the Bravais lattice L. We set

k0 = − 1
2π

3

∑
�=1

θ�a
∗
� , (1.14)

where a∗1, a∗2, and a∗3 are the primitive vectors of L∗. Then (1.2) implies that

k0 ·a j = − 1
2π

3

∑
�=1

θ�a
∗
� ·a j = −θ j. (1.15)

We define φ(x) = e−ik0·xψ(x) for x ∈ R
3. We claim that φ(x + y) = φ(x) for all

x ∈ R
3 and y ∈ L. Since every y ∈ L is a linear combination of the vectors a j, it is

sufficient to prove the periodicity for y = a j. We obtain, using (1.13) and (1.15),

φ(x) = e−ik0·xψ(x) = e−ik0·x(T−a j ψ)(x + a j) = e−ik0·xeiθ j ψ(x + a j)

= e−ik0·xeiθ j eik0·(x+a j)φ(x + a j) = ei(θ j+k0·a j)φ(x + a j) = φ(x + a j).

It remains to show that k0 can be restricted to the Brillouin zone. We decompose
k0 = k+ �, where k ∈ B and �∈ L∗ is a point in the reciprocal lattice closest to k (see
Fig. 1.5). Then

ψ(x) = eik0·xφ(x) = eik·xu(x), x ∈ R
3, (1.16)

where u(x) = ei�·xφ(x) satisfies, in view of (1.2),

u(x + y) = ei�·x ei�·yφ(x + y) = ei�·xφ(x) = u(x)

for all x ∈R
3 and y ∈ L. Now, the representation (1.16) implies, for x ∈ D and y ∈ L,

that ψ(x + y) = eik·(x+y)u(x) = eik·yψ(x), which proves (1.12).

k

k0

B

�

a2
∗

a1
∗

Fig. 1.5 Illustration of k0 = k + � with k ∈ B and � ∈ L∗
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Remark 1.6. The Brillouin zone in Theorem 1.5 is a nondiscrete set. In a semicon-
ductor of finite size, however, only a finite number of values k ∈ B is allowed. Sup-
pose that ψ is a wave function satisfying the representation (1.16) and the boundary
conditions ψ(x+Nja j) = ψ(x) for all x ∈ R

3, where a j is a primitive vector and Nj

is the number of primitive cells in the jth direction. Then (1.16) shows that

eik·xu(x) = ψ(x) = ψ(x + Nja j) = eik·(x+Nja j)u(x),

since Nja j ∈ L and u is periodic on L. Thus, Njk ·a j is a multiple of 2π and k ·a j =
2πn j/Nj for some n j ∈ Z. Above we have decomposed k0, defined in (1.14), as the
sum of k and some vector � ∈ L∗. Thus, k = k0 − � and there exist some coefficients
cp such that k = ∑p cpa∗p. The property a j ·a∗p = 2πδ jp then yields

2π
n j

Nj
= k ·a j =

3

∑
p=1

cpa∗p ·a j = 2πc j

and hence,

k =
3

∑
p=1

n j

Nj
a∗p, n j ∈ Z, −Nj

2
≤ n j ≤ Nj

2
. (1.17)

Thus, k can take only a finite number of values. Typically, there are about 104 atoms
in a semiconductor crystal of length 10−6 m in each direction. Thus, practically, k
can take many numbers, and usually, it is assumed that k is not discrete but continu-
ous as in a semiconductor occupying the whole space. This can be also justified by
a scaling argument; see Sect. 1.6. 	

Remark 1.7. The solutions ψ of the eigenvalue problem Hψ = Enψ in R

3 and ψn,k

of (1.12) are formally related by the expressions

ψ(x) =
1

vol(B)

∫

B
ψn,k(x)dk and ψn,k(x) = ∑

�∈L

e−ik·�ψ(x + �)

(see [20]). 	

The above motivation shows that the eigenfunction ψn,k of (1.12), parametrized

by n ∈ N and k ∈ B, can be written as

ψn,k(x) = eik·xun,k(x), x ∈ D, k ∈ B,

and un,k is periodic with respect to L (see (1.16)). In some sense, the so-called Bloch
functions ψn,k are plane waves which are modulated by a periodic function un,k

taking into account the influence of the crystal lattice. This explains why k is termed
the pseudo-wave vector. It appears in modulated plane waves and is therefore not a
real wave vector.

Which equation does un,k solve? Inserting the above expression into the Schrö-
dinger equation shows that un,k is a solution of
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− h̄2

2m
(Δun,k + 2ik ·∇un,k)+

(
h̄2

2m
|k|2 −qVL(x)

)

un,k = En(k)un,k in D (1.18)

with the periodic boundary conditions

un,k(x + y) = un,k(x), x ∈ R
3, y ∈ L. (1.19)

The function k �→ En(k) is called the dispersion relation and the set {En(k) : k ∈
B} the nth energy band. It shows how the energy of the nth band depends on the
(pseudo-) wave vector k. The union of ranges of En over n ∈ N is not necessarily
the whole real line R, i.e., there may exist energies E∗ for which there is no number
n ∈ N and no vector k ∈ B such that En(k) = E∗. The connected components of the
set of energies with this non-existence property are called energy gaps. We illustrate
this property by the following example.

Example 1.8 (Kronig–Penney model). The Kronig–Penney model [21] is a simple
model representing a one-dimensional single-crystal lattice (see [3, Sect. 8.2] or
[10, Sect. 3.1.2]). The potential of the lattice atoms is modeled by the function

VL(x) =
{−V0 if −b < x ≤ 0,

0 if 0 < x ≤ a,

and VL is extended to R with period a+b, VL(x) = VL(x+a+b) for x ∈ R, where a
and b > 0 (see Fig. 1.6).

In order to solve the Schrödinger equation (1.12), we make the Bloch decompo-
sition ψ(x) = eikxu(x), where u(x) is a (a + b) periodic solution of (1.18),

−u′′ −2iku′+ k2u =
2m

h̄2 (E + qVL)u in R. (1.20)

We proceed as in [10, Sect. 3.1.2]. First we solve (1.20) in the interval (0,a). Then
VL(x) = 0, x ∈ (0,a), and the ansatz u(x) = eiγx leads to

(γ2 + 2kγ + k2 −α2)eiγx = 0, where α =
√

2mE
h̄

.

The solutions of the quadratic equation in γ are given by γ1/2 = −k±α and there-
fore,

−V0

−b 0 a 2a + b xa + b

Fig. 1.6 The periodic square-well potential VL(x) of the Kronig–Penney model
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u1(x) = Aei(α−k)x + Be−i(α+k)x, x ∈ (0,a),

for some constants A and B.
In the interval (−b,0) we make again the ansatz u(x) = eiγx yielding

(γ2 + 2kγ + k2 −β 2)eiγx = 0, where β =

√
2m(E −qV0)

h̄
.

The solutions are γ1/2 = −k±β and thus,

u2(x) = Cei(β−k)x + De−i(β+k)x, x ∈ (−b,0),

where C and D are some constants. We notice that β is purely imaginary if E < qV0,
i.e., the electrons are bound within the crystal, and β is real if E > qV0.

The constants A, B, C, and D are determined from the interface conditions. As-
suming that u is continuously differentiable and periodic on R,

u1(0) = u2(0), u′1(0) = u′2(0),

u1(a) = u2(−b), u′1(a) = u′2(−b),

we obtain the following four equations for the unknowns A, B, C, and D:

0 = A + B−C−D,

0 = (α − k)A− (α + k)B− (β − k)C +(β + k)D,

0 = Aei(α−k)a + Be−i(α+k)a −Ce−i(β−k)b −Dei(β+k)b,

0 = (α − k)Aei(α−k)a − (α + k)Be−i(α+k)a − (β − k)Ce−i(β−k)b

+(β + k)Dei(β+k)b.

This is a homogeneous linear system which has nontrivial solutions only if the de-
terminant of the coefficient matrix vanishes. A lengthy calculation shows that this
condition is equivalent to the equation

− α2 + β 2

2αβ
sin(αa)sin(β b)+ cos(αa)cos(β b) = cos(k(a + b)), (1.21)

which relates the wave vector k to the energy E through the parameters α and β .
There are values of E for which there does not exist any k satisfying (1.21). In

order to see this we assume that E < qV0 such that β is purely imaginary and set
β = iγ . Since sin(ix) = i sinh(x) and cos(ix) = cosh(x), (1.21) becomes

γ2 −α2

2αγ
sin(αa)sinh(γb)+ cos(αa)cosh(γb) = cos(k(a + b)). (1.22)

Using limα→0 sin(αa)/α = a, we obtain for E = 0 (which implies that α = 0):

γa
2

sinh(γb)+ cosh(γb) = cos(k(a + b)).
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Since sinh(γb) > 0 and cosh(γb) > 1, the left-hand side is strictly larger than one
and thus, this equation cannot have a solution. By continuity, there is no solution in
a neighborhood of E = 0.

We can compute the intervals for which no solution exists more explicitly for
a periodic array of δ -potentials. For this, we let the potential barrier width b → 0
and the barrier height |V0| → ∞ such that the product bV0 remains bounded, i.e.,
bV0 → ε �= 0. Then VL(x) converges (in some sense) to ε ∑m∈Z δ (x−ma),

γb =

√
2m(qV0 −E)b2

h̄2 → 0, cosh(γb) → 1

and (
γ2 −α2

)
b

2
sinh(γb)

γb
=

m(qV0 −2E)b
h̄2

sinh(γb)
γb

→ mqε
h̄2 .

Thus, (1.22) becomes in the limit

f (αa) = Q
sin(αa)

αa
+ cos(αa) = cos(ka), (1.23)

where Q = mqεa/h̄2. Figure 1.7 illustrates the function f = f (αa). In regions where
| f (αa)| ≤ 1, there exists at least one solution k ∈ B of (1.23); in regions with
| f (αa)| > 1, no solution k exists. Every connected subset of [0,∞)\R(E), where
R(E) = {E0 ≥ 0 : there exists k ∈ R such that E(k) = E0}, is an energy gap. 	


An energy gap separates two energy bands. The nearest energy band below the
energy gap (if it is unique) is called the valence band, the nearest energy band above
the energy gap is termed the conduction band (see Fig. 1.8).

−10 −5 0 5 10

−1

0

1

2

3

4

α a

f (
α 

a)

Fig. 1.7 The function f = f (αa) of (1.23)
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Eg

E

k

valence band

conduction
band

Fig. 1.8 Schematic band structure with energy gap Eg

Now we are able to state the definition of a semiconductor: It is a solid with
an energy gap whose value is positive and smaller than a few electron volt (up to
about 3 or 4 eV). In Table 1.1 the values of the energy gaps for some common
semiconductor materials are collected.

The band structure of real crystals in three space dimensions is much more
complicated than the one-dimensional situation of the Kronig–Penney model. In-
deed, electrons traveling in different directions encounter different potential pat-
terns, generated by the lattice atoms, and therefore, the E(k) diagram is a function
of the three-dimensional wave vector k. In physics textbooks, usually a projection
of the full E(k) diagram is shown. As an example, Fig. 1.9 shows the schematic
band structures of silicon and gallium arsenide. In place of the positive and nega-
tive k axes of the one-dimensional case, two different crystal directions are shown,
namely the k = (0,0,1)� direction along the +k axis (called the Δ line) and the
k = (1,1,1)� direction along the −k axis (called the Λ line). The point k = (0,0,0)
is termed the Γ point. The points at the boundary of the Brillouin zone in the Λ
and Δ directions are called L and X points, respectively (see Fig. 1.10; [9, 23]).

Table 1.1 Energy gaps of selected semiconductors (from [6, Appendix C]; the value for
Al0.3Ga0.7As is taken from [22])

Material Symbol Energy gap in eV

Indium arsenide InAs 0.356
Germanium Ge 0.661
Silicon Si 1.124
Gallium arsenide GaAs 1.424
Aluminum gallium arsenide Al0.3Ga0.7As 1.80
Aluminum arsenide AlAs 2.239
Gallium phosphide GaP 2.272
Cadmium sulfur CdS 2.514
Gallium nitride GaN 3.44
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Fig. 1.9 Schematic band structure of silicon (left) and gallium arsenide (right) (see [12, Figs. 3.7
and 3.9])
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Fig. 1.10 Brillouin zone of semiconductors like silicon, germanium, gallium arsenide, etc.
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1.4 The Semi-Classical Picture

In this section, we assume that the transport of electrons in a semiconductor can be
described by the time-dependent one-particle Schrödinger equation

ih̄∂tψ = − h̄2

2m
Δψ −q(VL(x)+V(x))ψ , x ∈ R

3,

where VL(x) is the (periodic) potential due to the interactions of the valence electrons
with the lattice ions and V (x) is a slowly varying (nonperiodic) potential modeling,
for instance, the external applied potential. The solution of this equation is very
difficult such that approximate models need to be used. One possibility is a semi-
classical treatment which describes the carrier dynamics in the potential V (x) by
Newton’s laws without explicitly treating the crystal potential VL(x). The influence
of VL(x) is indirectly taken into account by the use of the energy band structure in
the description of the velocity and the mass of the carrier ensemble.

The lattice potential is assumed to be spatially rapidly oscillating in macroscopic
scale, with typical length λ , whereas the external potential varies over compara-
tively long distances, with typical length scale L. Defining the dimensionless pa-
rameters h0 = h̄T τ2/mλ 2 and ε = λ/L, where T is the macroscopic and τ the
microscopic time scale, the above Schrödinger equation can be written in dimen-
sionless variables as

ih0∂tψ = −h2
0

2
Δψ − h2

0

ε2 VL

( x
ε

)
ψ −V(x)ψ , x ∈ R

3. (1.24)

We refer to [24, 25] for details about the scaling. Here, we have used the same
symbols for the physical and dimensionless variables. If the quantum wave en-
ergy is small compared to the microscopic kinetic energy, i.e., h0 � 1, the so-
called Vlasov equation (see Sect. 3.2) is obtained in the classical limit h0 → 0.
This limit, without the additional periodic potential, was rigorously performed in
[26, 27]. The homogenization limit ε → 0 was analyzed in [25, 28]. The limit equa-
tion obtained by Poupaud and Ringhofer [25] is a Schrödinger equation with the
Hamiltonian −(h2

0/2)div(M∇ψ) +V (x)ψ , where the matrix M is the Hessian of
the energy band, M = d2En(0)/dk2, and En(0) is the strict minimum of En. This
matrix is also called the effective mass tensor (cf. the discussion at the end of Sect.
1.5). The combined classical and homogenization limit is called the semi-classical
limit. Here, the limits h0 → 0 and ε → 0 are performed in such a way that the result-
ing semi-classical equation still contains quantum mechanical effects. Bechouche et
al. [24] proved that the unscaled semi-classical equations of motion are, in the limit
ε = h0 → 0,

h̄ẋ = ∇kEn(k), h̄k̇ = q∇xV, (1.25)

where x is the position of the electron at time t, k is the pseudo-wave vector in-
troduced in Sect. 1.3, and the dot denotes differentiation with respect to time. For
related semi-classical limits, we also refer to [25, 29–31] and references therein.
The idea of the proof in [24, 25] is to formulate the Schrödinger equation with the
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so-called Wigner function (see Sect. 11.1) and to perform the limit in the Wigner
equation, leading to a semi-classical Vlasov equation.

In the following, we will derive the semi-classical equations of motion (1.25) and
the effective mass tensor in a more heuristic way. First, we motivate the left equation
in (1.25). We assume that the electrons remain for all time in the same energy band,
i.e., band crossings are not allowed (for band crossings, see [31]). Then we may
omit the index n in ψn,k. Let ψk be a solution of the stationary Schrödinger equation

− h̄2

2m
Δψk −q(VL(x)+V (x))ψk = En(k)ψk in D (1.26)

with boundary conditions ψk(x+y)= eik·yψ(x) for x∈D, y∈L, where D is the prim-
itive cell of the lattice and L the Bravais lattice (see Sect. 1.1). Recall that the mo-
mentum is represented quantum mechanically by the operator Pψ = −ih̄∇xψ , and
its expectation value of a quantum system in the (normalized) state ψk is given by

〈P〉k =
∫

D
ψkPψk dx =

h̄
i

∫

D
ψk∇xψk dx.

Then we define the mean velocity of this state by

vn(k) =
〈P〉k

m
.

In the semi-classical setting, we introduce a “trajectory” of the quantum system
corresponding to the mean velocity by ẋ = vn(k). In this interpretation, x and k are
functions of time. Employing (1.26), we can relate the mean velocity to the energy
band.

Lemma 1.9. The semi-classical trajectory with mean velocity vn(k) is given by

ẋ = vn(k) =
1
h̄

∇kEn(k), t > 0.

Proof. By Bloch’s Theorem 1.5, ψk can be written as

ψk(x) = eik·xuk(x). (1.27)

Differentiating (1.26) with respect to k and using (1.27) gives

(∇kEn)ψk = − h̄2

2m
Δx

(
eik·x∇kuk + ixψk

)

− (qVL + qV + En)
(

eik·x∇kuk + ixψk

)

=
(

− h̄2

2m
Δx − (qVL + qV + En)

)(
eik·x∇kuk

)
− ih̄2

m
∇xψk

+ ix

(

− h̄2

2m
Δx − (qVL + qV + En)

)

ψk.
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Observing that the last term vanishes in view of (1.26), multiplication of the above
equation with ψk and integration over D yields

∇kEn

∫

D
|ψk|2 dx +

ih̄2

m

∫

D
ψk∇xψk dx

=
∫

D
ψk

(

− h̄2

2m
Δx − (qVL + qV + En)

)(
eik·x∇kuk

)
dx

=
∫

D
eik·x∇kuk

(

− h̄2

2m
Δx − (qVL + qV + En)

)

ψk dx = 0,

where we have used integration by parts and again (1.26). The boundary integral in
the integration-by-parts formula vanishes since uk is periodic on D. Thus, if ψk is
normalized,

∇kEn =
h̄2

im

∫

D
ψk∇xψk dx =

h̄
m
〈P〉k = h̄vn(k).

This shows the lemma. 	

The second equation in (1.25) is more difficult to justify (see [2, p. 220] or

[9, p. 39]). If we suppose that the total energy, consisting of the band energy En(k)
and the potential energy−qV(x), is constant along the trajectories x = x(t), k = k(t),
its derivative with respect to time vanishes,

0 =
d
dt

(En(k)−qV(x)) = ∇kEn(k) · k̇−q∇xV (x) · ẋ = vn(k) · (h̄k̇−q∇xV (x)).
(1.28)

This identity is satisfied if h̄k̇− q∇xV = 0, which is the second equation in (1.25).
Clearly, this equation is not necessary for the energy to be conserved since (1.28)
only shows that h̄k̇−q∇xV is perpendicular to the velocity vn(k).

Another motivation comes from the fact that the momentum operator P =−ih̄∇x,
acting on a plane wave ψ(x) = eik·x, yields Pψ = h̄kψ such that h̄k may be in-
terpreted as a momentum value. Strictly speaking, this interpretation does not ap-
ply to the motion in a periodic potential since the momentum operator, acting on
ψk(x) = eik·xuk(x), gives

Pψk(x) = −ih̄∇x(eik·xuk) = h̄kψk + eik·x∇xuk,

which is generally not equal to a multiple of ψk. However, one may see h̄k as a
natural extension of the momentum in the case of a periodic potential. In order to
emphasize this similarity, the expression p = h̄k is called the crystal momentum.
Notice, however, that h̄k is not the momentum of the Bloch electron since the rate of
change of its momentum only includes the external field q∇xV and not the periodic
field of the lattice (also see the discussion in [2, p. 139, 219]). Now, assuming that
Newton’s law ṗ = F is valid also for the crystal momentum p = h̄k, we arrive to the
second equation in (1.25) if the force F is given by the electric field q∇xV .
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The mean velocity vn is defined by 〈P〉k = mvn. Employing the crystal mo-
mentum p instead of the physical momentum 〈P〉k, we may define p = m∗vn,
where m∗ is another mass. In the case of a free-electron motion (see Example
1.2), the mass m∗ is the rest mass of the electron since E(k) = h̄2|k|2/2m yields
h̄k = p = m∗vn = m∗∇kE/h̄ = m∗h̄k/m and hence m∗ = m. What is the meaning of
m∗ in the case of a periodic potential? We differentiate the momentum p = m∗vn

with respect to time and employ the first equation in (1.25),

ṗ = m∗v̇n =
m∗

h̄
d2En

dk2 k̇ =
m∗

h̄2

d2En

dk2 ṗ,

which shows that

(m∗)−1 =
1

h̄2

d2En

dk2 . (1.29)

This equation is considered as a definition of the effective mass m∗. The right-hand
side of this definition is the Hessian matrix of En, so the symbol (m∗)−1 is a 3× 3
matrix.

The effective mass has the advantage that under some conditions, the behavior
of the electrons in a crystal can be described similarly as that of a free-electron gas.
In order to see this, we evaluate the Hessian of En near a local minimum (of the
conduction band), i.e., ∇kEn(k0) = 0. Then d2En(k0)/dk2 is a symmetric positive
definite matrix which can be diagonalized and the diagonal matrix has positive en-
tries. We assume that the coordinates are chosen such that d2En(k0)/dk2 is already
diagonal,

1

h̄2

d2En

dk2 (k0) =

⎛

⎜
⎝

1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3

⎞

⎟
⎠ .

Assume that the energy values are shifted in such a way that En(k0) = 0. (This
is possible by fixing a reference point for the energy.) Let us further assume that
already En(0) = 0, otherwise define Ẽn(k) = En(k + k0). If the function k �→ En(k)
is smooth, Taylor’s formula implies that

En(k) = En(0)+ ∇kEn(0) · k +
1
2

k�
(

d2En

dk2 (0)
)

k +O(|k|3)

=
h̄2

2

(
k2

1

m∗
1

+
k2

2

m∗
2

+
k2

3

m∗
3

)

+O(|k|3) for k → 0,

where k = (k1,k2,k3)� and O(|k|3) denote terms of order |k|3. If the effective masses
are equal in all directions, i.e., m∗ = m∗

1 = m∗
2 = m∗

3, we can write, neglecting higher-
order terms,

En(k) =
h̄2

2m∗ |k|2. (1.30)
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This relation is valid for wave vectors k sufficiently close to a local band minimum
(of the conduction band). The scalar m∗ is called here the isotropic effective mass.
Comparing this expression with the dispersion relation of a free-electron gas,

E(k) =
h̄2

2m
|k|2,

we infer that the energy of an electron near a band minimum (of an isotropic
semiconductor) equals the energy of a free-electron in a vacuum where the elec-
tron rest mass m is replaced by the effective mass m∗.

Expression (1.30) is referred to as the parabolic band approximation and usually,
the range of wave vectors is extended to the whole space, k ∈ R

3 (see the scaling
argument in Sect. 1.6). This simple model is appropriate for low applied fields for
which the carriers are close to the conduction band minimum. For high applied
fields, however, the higher-order terms in the above Taylor expansion cannot be
ignored. In order to account for nonparabolic effects, often the nonparabolic band
approximation in the sense of Kane is used:

En(1 + αEn) =
h̄2

2m∗ |k|2, (1.31)

where m∗ is determined from (1.29) at the conduction band minimum at k = 0, the
nonparabolicity parameter α is given by

α =
1

Eg

(

1− m∗

m

)2

,

and Eg is the band gap (see [6, Sect. 2.1] or [10, (1.40)]). In Table 1.2 some values
for α are shown. Formula (1.31) can be obtained from approximate solutions of the
Schrödinger equation (1.18) derived by the so-called k · p theory (see Sect. 1.5).

When we consider the effective mass definition (1.29) near a maximum (of the
valence band), we find that the Hessian of En is negative definite. This would lead to
a negative effective mass. In order to obtain a positive mass, we may also change the
sign for the group velocity vn since this is consistent with the definition p = m∗vn.
A reversed sign in the velocity means that the particles, under the influence of an
electric field, travel in the opposite direction compared to electrons. This is the case
if the particles have a positive charge. Employing a positive charge leads again to
a positive effective mass. The corresponding (pseudo-) particles are called holes
(or defect electrons). Physically, a hole is a vacant orbital in a valence band. Thus,

Table 1.2 Values of the nonparabolicity parameter α for some semiconductors (from [9,
Table 1.1]; the value for Al0.3Ga0.7As is taken from [32])

Material Si Ge GaAs Al0.3Ga0.7As InAs

α in (eV)−1 0.5 0.65 0.64 0.72 2.73
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t = 0:

crystal atom

electron orbital

vacancy

t > 0:
vacancy

electron

Fig. 1.11 Motion of a valence band electron to a neighboring vacant orbital or, equivalently, of a
hole in the inverse direction

the current flow in a semiconductor crystal comes from two sources: the flow of
electrons in the conduction band and the flow of holes in the valence band. It is
a convention to consider the motion of the valence band vacancies rather than the
electrons moving from one vacant orbital to the next (see Fig. 1.11).

We summarize: Close to the bottom k = 0 of the conduction band in an isotropic
semiconductor, the band energy becomes

En(k) = Ec +
h̄2

2m∗
e
|k|2, (1.32)

whereas near the top k = 0 of the valence band we have

En(k) = Ev − h̄2

2m∗
h
|k|2, (1.33)

where Ec is the energy at the conduction band minimum, Ev the energy at the valence
band maximum, m∗

e the effective electron mass, and m∗
h the effective hole mass.

Clearly, the energy gap Eg is given by Eg = Ec −Ev (see Fig. 1.12).
For semiconductors possessing an energy band with ellipsoidal isoenergetic sur-

faces, we find that

En(k) =
h̄2

2

( |k�|2
m∗

�

+
|kt |2
m∗

t

)

, k = (k�,kt)� ∈ R
3, k� ∈ R, kt ∈ R

2,

0

valence band

conduction band

Eg
Ev

Ec

k

Fig. 1.12 Schematic conduction and valence bands near the extrema at k = 0
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Table 1.3 Relative effective electron masses for some semiconductor materials (from [9,
Table 1.1]). The electron rest mass is denoted by me, and m∗

� and m∗
t refer to the longitudinal

and transversal effective masses, respectively

Material m∗
�/me m∗

e/me m∗
t /me

Si 0.98 − 0.19
Ge 1.64 − 0.082
GaP 1.12 − 0.22
GaAs − 0.067 −
InAs − 0.023 −
InP − 0.080 −
ZnS − 0.28 −

where m∗
� and m∗

t denote the longitudinal and transversal effective masses, respec-
tively, and the equation describes conduction bands at the L point and along the Δ
line (see Sect. 1.1). Some values for the effective masses of common cubic semi-
conductors can be found in Table 1.3.

1.5 The k ·p Method

In the previous section we have seen that the mean velocity and the effective mass of
the electrons in a semiconductor can be computed in the semi-classical picture from
the energy band structure; see formulas (1.25) and (1.29). In this section we describe
the k · p method which allows us to derive an approximation of the energy band
En(k) close to the bottom of the conduction band or close to the top of the valance
band. The main assumption of this method is that the energy at k = 0 is known.
Then En(k) close to the Γ -point k = 0 can be computed using time-independent
perturbation theory. We proceed in the following as in [3, Sect. 8.7] and [12, Sect.
4.1]. For other methods of calculating the band structure, see, e.g., [2, Chaps. 8, 9,
10, 11].

The starting point is the Schrödinger equation (1.18) for the functions un,k of the
Bloch function ψn,k = eik·xun,k, here written in the form

(H0 + εH1)un,k = En(k)un,k, (1.34)

where

H0 = − h̄2

2m
Δx −qVL(x)

is the single-electron Hamiltonian and

εH1 = − ih̄2

m
k ·∇x +

h̄2

2m
|k|2
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is considered to be a perturbation of H0. The parameter ε measures the magnitude
of |k|. Defining the quantum momentum operator P =−ih̄∇x, we can formally write

εH1 =
h̄
m

k ·P+
h̄2

2m
|k|2,

which explains the name of the k · p method (usually written as k · p instead of k ·P).
We assume that |k| is “small” compared to a reference wave vector. Notice that

for k = 0, the operator H0 + εH1 reduces to H0. Furthermore, we suppose that the
solutions of the eigenvalue problem

H0u(0)
n = E(0)

n u(0)
n in D, (1.35)

together with periodic boundary conditions, are known. Here, D is the primitive cell

and E(0)
n = En(0). Since the operator H0 is symmetric and real, the eigenfunctions

u(0)
n and the eigenvalues E(0)

n are real. We show the following result.

Theorem 1.10 (Effective mass). Let the solutions (u(0)
n ) to (1.35) form a non-

degenerate orthonormal basis of L2(D;C) (i.e., all eigenspaces are one-dimen-
sional). Then, up to second order in ε ,

En(k) = E(0)
n +

h̄2

2
k�(m∗)−1k, (1.36)

where the matrix (m∗)−1 consists of the elements 1/m∗
j� with

m
m∗

j�
= δ j�− 2h̄2

m ∑
q �=n

Pqn jPnq�

E(0)
q −E(0)

n

, where Pqn j =
∫

D
u(0)

q
∂u(0)

n

∂x j
dx. (1.37)

Notice that the one-dimensionality of the eigenspaces implies that E(0)
q �= E(0)

n

for all q �= n and so (1.37) is well defined.

Proof. We apply a perturbation method to (1.34) (see [3, Sect. 4.1] or [12, Appendix
C.1.1]). For this, we develop

un,k = u(0)
n + εu(1)

n + ε2u(2)
n + · · · , En(k) = E(0)

n + εE(1)
n + ε2E(2)

n + · · · .

Inserting these expressions into (1.34) and equating terms with the same order of ε
leads to

ε0 : H0u(0)
n = E(0)

n u(0)
n , (1.38)

ε1 : H0u(1)
n + H1u(0)

n = E(0)
n u(1)

n + E(1)
n u(0)

n , (1.39)

ε2 : H0u(2)
n + H1u(1)

n = E(0)
n u(2)

n + E(1)
n u(1)

n + E(2)
n u(0)

n . (1.40)
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The zeroth-order equation (1.38) is clearly the same as (1.35). In order to derive

the first-order correction, we multiply (1.39) by u(0)
q and integrate over D. Then,

observing that (u(0)
q ,u(0)

n ) =
∫

D u(0)
q u(0)

n dx = δqn, we obtain

(
u(0)

q ,H0u(1)
n

)
+

(
u(0)

q ,H1u(0)
n

)
= E(0)

n

(
u(0)

q ,u(1)
n

)
+ E(1)

n δqn.

Integrating by parts twice (or employing the symmetry of H0), it follows that
(

E(0)
q −E(0)

n

)(
u(0)

q ,u(1)
n

)
+

(
u(0)

q ,H1u(0)
n

)
= E(1)

n δqn.

For q = n, this gives an expression for E(1)
n only depending on u(0)

n :

E(1)
n =

(
u(0)

n ,H1u(0)
n

)
. (1.41)

For q �= n we have

(
u(0)

q ,u(1)
n

)
=

(
u(0)

q ,H1u(0)
n

)

E(0)
q −E(0)

n

. (1.42)

This is well defined since E(0)
q �= E(0)

n for all q �= n. The sequence (u(0)
q ) is an or-

thonormal basis of L2(D;C), so we can develop u(1)
n in this basis,

u(1)
n = ∑

q

(
u(0)

q ,u(1)
n

)
u(0)

q . (1.43)

In the sum we need an expression for the term (u(0)
n ,u(1)

n ). This term is not deter-
minable from the above calculation. If we want to have asymptotic normalization

of un,k, ‖un,k‖ = 1 + O(ε2) as ε → 0, we must choose (u(0)
n ,u(1)

n ) = 0. In view of
(1.42), the expression (1.43) becomes

u(1)
n = ∑

q �=n

(
u(0)

q ,H1u(0)
n

)

E(0)
q −E(0)

n

u(0)
q .

Thus, up to first order, the eigenfunctions are given by

u(0)
n + εu(1)

n = u(0)
n + ∑

q �=n

(
u(0)

q ,εH1u(0)
n

)

E(0)
q −E(0)

n

u(0)
q ,

and the eigenvalues are E(0)
n + εE(1)

n = E(0)
n +(u(0)

n ,εH1u(0)
n ). Notice that these cor-

rections only depend on the unperturbed eigenfunctions u(0)
n which are assumed to

be known.
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In order to derive the second-order correction, we multiply (1.40) by u(0)
q and

integrate over D:
(

u(0)
q ,H0u(2)

n

)
+

(
u(0)

q ,H1u(1)
n

)
= E(0)

n

(
u(0)

q ,u(2)
n

)
+ E(1)

n

(
u(0)

q ,u(1)
n

)
+ E(2)

n δqn.

As above, we obtain
(

E(0)
q −E(0)

n

)(
u(0)

q ,u(2)
n

)
+

(
u(0)

q ,H1u(1)
n

)
= E(1)

n

(
u(0)

q ,u(1)
n

)
+ E(2)

n δqn.

Using (1.41) and (1.43), the case q = n yields

E(2)
n =

(
u(0)

n ,H1u(1)
n

)
−E(1)

n

(
u(0)

n ,u(1)
n

)

= ∑
q

(
u(0)

q ,u(1)
n

)(
u(0)

n ,H1u(0)
q

)
−

(
u(0)

n ,H1u(0)
n

)(
u(0)

n ,u(1)
n

)

= ∑
q �=n

(
u(0)

n ,H1u(0)
q

)(
u(0)

q ,u(1)
n

)
= ∑

q �=n

(
u(0)

n ,H1u(0)
q

)
(

u(0)
q ,H1u(0)

n

)

E(0)
q −E(0)

n

.

In the last equation we have employed (1.42). Thus, the second-order correction to
the eigenvalues is

E(0)
n + εE(1)

n + ε2E(2)
n = E(0)

n +
(

u(0)
n ,εH1u(0)

n

)

+ ∑
q �=n

(
u(0)

n ,εH1u(0)
q

)(
u(0)

q ,εH1u(0)
n

)

E(0)
q −E(0)

n

.

It remains to compute the scalar products. We write

(
u(0)

n ,εH1u(0)
q

)
= − ih̄2

m
k ·

(
u(0)

n ,∇u(0)
q

)
+

h̄2

2m
|k|2

(
u(0)

n ,u(0)
q

)

= − ih̄2

m
k ·Pnq +

h̄2

2m
|k|2δnq,

where
Pnq =

∫

D
u(0)

n ∇u(0)
q dx.

The periodicity of u(0)
n on D gives

Pnn =
1
2

∫

D
∇
((

u(0)
n

)2
)

dx = 0,

and therefore,
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(
u(0)

n ,εH1u(0)
q

)
=

⎧
⎪⎪⎨

⎪⎪⎩

h̄2

2m
|k|2 for n = q,

− ih̄2

m
k ·Pnq for n �= q.

This shows that En(k) is, up to second order in ε ,

En(k) = E(0)
n + εE(1)

n + ε2E(2)
n

= E(0)
n +

h̄2

2m
|k|2 − h̄4

m2 ∑
q �=n

(k ·Pnq)(k ·Pqn)

E(0)
q −E(0)

n

(1.44)

= E(0)
n +

h̄2

2m
|k|2 − h̄4

m2 ∑
q �=n

∑
j,�

k jk�
Pnq jPqn�

E(0)
q −E(0)

n

= E(0)
n +

h̄2

2 ∑
j,�

k jk�

m∗
j�

which proves the theorem. 	

Equation (1.44) shows that the first-order correction of the energy simply yields

the free-electron mass. The second-order correction is needed to obtain an effective
mass which is different from the free-electron mass. This is the reason why we
computed the corrections up to second order.

In most semiconductors, the bottom of the conduction band is nondegenerate at
k = 0 (the energy bands do not cross; see Fig. 1.9), and Theorem 1.10 is applicable.
However, the valence band maximum of semiconductors with diamond and zinc
blende structure is degenerate [11, p. 148], and hence, the above result does not
hold. Mathematically, we have in such a situation several eigenfunctions with the
same eigenvalue, for instance for n �= q,

H0u(0)
n = E(0)

n u(0)
n and H0u(0)

q = E(0)
q u(0)

q , but E(0)
n = E(0)

q .

Then, the expression (1.37) may not be defined. It is still possible to derive a formula
similar to (1.36) in the degenerate case by applying degenerate perturbation theory.
The idea is to find a linear combination

ũ(0)
n =

A

∑
α=1

cα u(0)
n,α

of the eigenfunctions u(0)
n,α with the same energy E(0)

n such that the nominator in the
first-order correction

ũ(1)
n = ∑

q �=n

(
ũ(0)

q ,H1ũ(0)
n

)

E(0)
q −E(0)

n

ũ(0)
q

vanishes if E(0)
q = E(0)

n . Thus, the problem is to find coefficients cα such that

(ũ(0)
q ,H1ũ(0)

n ) = 0. It can be shown [12, Sect. 4.1.4] that the energies En(k) are,
up to second order, the eigenvalues of the matrix Hn,k ∈ R

A×A with elements
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(Hn,k)μν = E(0)
n δμν − ih̄2

m ∑
j

k jP̃
μν
nn j +

h̄2

2 ∑
j,�

k jk�

(m∗)μν
j�

, (1.45)

where the coefficients P̃μν
nq j are defined similarly as in Theorem 1.10 and

m

(m∗)μν
j�

= δ j�δμν − 2h̄2

m ∑
q �=n

A

∑
α=1

P̃μα
nq j P̃

να
qn�

E(0)
q −E(0)

n

.

Analogous results as above can be derived for holes in the valence band. In this
case, the energy En(k) can be approximately written as

En(k) = Ec
n(0)− h̄2

2
k�(m∗

h)
−1k,

where Ec
n(0) is the top energy of the valence band and m∗

h is the effective mass tensor
for the holes, similarly defined as above. In this case, P̃μν

nn j = 0 for all j, such that the
linear term in k in (1.45) vanishes.

In our arguments, we have neglected the magnetic dipole moment associated
with the electron spin. This magnetic moment removes partially the degeneracy at
the valence band maximum through its interaction with the magnetic dipole mo-
ment which is associated with the electron orbit. For details about this spin–orbit
interaction, we refer to [12, Sect. 4.2.4].

The above derivation of the effective mass is valid for a Hamiltonian which takes
into account the periodic lattice potential but not an external macroscopic potential.
A formula for the effective mass for Hamiltonians including external potentials was
rigorously derived by Poupaud and Ringhofer [25] and Allaire and Piatnitski [28].
Both works rely on Bloch wave regularity and the assumption of simple eigenvalues
of the corresponding Hamiltonian. Recently, Ben Abdallah and Barletti [33] have
reconsidered the effective mass approximation by employing an envelope function
decomposition inspired by Burt [34] (also see the work of Kohn and Luttinger [35])
and performed the homogenization limit ε → 0 in (1.24).

1.6 Semiconductor Statistics

In this section we will answer the question how many electrons and holes are in a
semiconductor of finite size which is in thermal equilibrium (i.e., no current flow).
Let f (E) be the occupation density of the quantum state of energy E . We can inter-
pret f (E) as the mean number of electrons in a quantum state of energy E = En(k).
Then the number of electrons equals the sum of all f (En(k)) over (n,k), where n is
the band number and k the pseudo-wave vector:

N∗ = ∑
n

N∗
n = 2∑

n
∑
k∈B

f (En(k)). (1.46)
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The factor 2 takes into account the two possible states of the spin of an electron,
and B is the Brillouin zone. This formula leads to two questions:

1. How can the sum over many k be computed practically?
2. How does the function f depend on the energy?

To answer the first question, we recall that k can take the values

k =
3

∑
j=1

n j

Nj
a∗j , n j ∈ Z, −Nj

2
≤ n j ≤ Nj

2
,

where a∗j is the primitive vector of the reciprocal lattice and Nj is the number of
primitive cells in the jth spatial direction (see (1.17)). In one space dimension, we
can simplify this expression. Let the crystal be given by a chain of M + 1 atoms
with distance h. Then the length of the chain is L = Mh. A primitive cell is given by
D = [−h/2,h/2] and, since vol(D) = 2π/vol(B), by Lemma 1.1, the Brillouin zone
equals B = [−π/h,π/h]. Thus, the wave vector k can take one of the discrete values

k j =
2π j

L
=

2π j
Mh

, −M
2

≤ j ≤ M
2

.

Since L = Mh is the chain length, each state occupies 2π/L in the wave-vector space.
The number of states between k and k+�k is L�k/2π . In d dimensions, this gener-
alizes to Ld�k/(2π)d. To be more precise, we have to take into account the spin of
the electrons. Then, the number of states divided by the volume in the k-space equals
2vol(Ω)/(2π)d , where vol(Ω) = Ld denotes the volume of the semiconductor. We
call this number the density of states in k-space,

N(k) =
2vol(Ω)
(2π)d . (1.47)

Now we come back to the first question. Typically, L = 1 μm = 10−6 m and
h = 10−10 m, so M = 104. Therefore, one may consider k to be approximately con-
tinuous. To simplify the presentation, we assume in the following that M is even.
Then the sum

M/2−1

∑
j=−M/2

g(k j),

where g is some function, transforms into the integral

M/2−1

∑
j=−M/2

g(k j) =
M/2−1

∑
j=−M/2

g

(
2π j
Mh

)

≈
∫ M/2

−M/2
g

(
2π j
Mh

)

d j =
L

2π

∫ π/h

−π/h
g(k)dk.

In d-space dimensions, the factor L/2π becomes (L/2π)d = vol(Ω)/(2π)d . There-
fore, we can write
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vol(Ω)
(2π)d

∫

B
g(k)dk instead of ∑

k∈B

g(k). (1.48)

The advantage of the integral formulation is that integrals can usually be more easily
computed than sums. In the continuum limit M → ∞ and h → 0 such that Mh stays
finite, we can extend the Brillouin zone B = [−π/h,π/h]d to R

d and write

vol(Ω)
(2π)d

∫

Rd
g(k)dk.

Notice that we have considered here a general d-dimensional situation. The rea-
son is that it is possible to confine carriers in one (or two) space dimensions, i.e.,
the carriers are confined in the x-y plane (or in the x-direction) and are free to move
in the z-direction (or in the y-z plane). Such structures can be constructed with so-
called semiconductor heterostructures and are called quantum wires or quantum
wells, respectively (see, e.g., [9, Sect. 1.5.2]).

We summarize: The number of electrons in the nth band of a semiconductor
crystal Ω with finite size, which is in thermal equilibrium, is (with the above ap-
proximations) given by

N∗
n =

2vol(Ω)
(2π)d

∫

B
f (En(k))dk. (1.49)

Now we answer the second question. We observe that electrons are fermions, i.e.,
particles with half-integral spin, satisfying the following properties:

1. Electrons cannot be distinguished from each other.
2. The Pauli exclusion principle holds, i.e., each quantum state can be occupied by

not more than two electrons with opposite spins.

We arrange M electrons into � energy bands each of which has gn quantum states,
n = 1, . . . , �. Suppose that mn electrons are occupying quantum states in the nth
band, where mn ≤ gn. Recall that, by the Pauli exclusion principle, each electron is
occupying exactly one quantum state. The occupation probability f (E) at energy E
is equal to the number of occupied states mn divided by the number of states gn, i.e.,
we have to compute the quotient mn/gn. To this end, we are looking for the most
probable configuration (m1, . . . ,m�) which is obtained by maximizing the number
of different configurations in all bands under the condition that the total number of
electrons ∑n mn and the total energy E are conserved.

First, we derive a formula for the number of different configurations. The num-
ber Qn of different arrangements in the nth band equals the number of all possible
configurations,

gn(gn −1) · · ·(gn −mn + 1),

divided by the number of all possible permutations of the mn electrons (since they
are indistinguishable), mn!, hence
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Qn =
gn(gn −1) · · ·(gn −mn + 1)

mn!
=

gn!
(gn −mn)!mn!

.

The total number of configurations reads in the limit � → ∞

Q(m1,m2, . . .) =
∞

∏
n=1

Qn =
∞

∏
n=1

gn!
(gn −mn)!mn!

.

In order to manipulate this function, it is convenient to consider

logQ(m1,m2, . . .) =
∞

∑
n=1

(loggn!− log(gn −mn)!− logmn!) .

Moreover, since computations with the factorial are cumbersome, we approximate
logQ by employing Stirling’s formula

n! ∼ nn

en or logn! ∼ n logn−n (n → ∞),

where the notation a(n) ∼ b(n) for n → ∞ means that limn→∞ a(n)/b(n) = 1. Then,
approximately,

logQ(m1,m2, . . .) =
∞

∑
n=1

(loggn!− (gn −mn) log(gn −mn)−mn logmn + gn) .

This function is related to the thermodynamic entropy (see [3, p. 268]). The most
probable configuration of (m1,m2, . . .) is that one which maximizes logQ, under the
constraints that the particle number and the energy are conserved,

max
mj

logQ(m1,m2, . . .) subject to
∞

∑
n=1

mn = M and
∞

∑
n=1

mnEn = E.

In other words, the occupation probability f (E j) is equal to the maximizer of the
above constrained extremal problem divided by the number of states g j. The solution
of this problem is given in the following lemma which answers the second question
stated at the beginning of this section.

Lemma 1.11 (Fermi–Dirac distribution). The mean number of electrons in a
quantum state of energy E is given by the Fermi–Dirac distribution function

f (E) =
1

1 + e(E−qμ)/kBT
, (1.50)

where kB is the Boltzmann constant.

The two parameters T and μ are Lagrange multipliers coming from the con-
strained extremal problem. Thermodynamics shows that T can be interpreted as the
temperature of the system and μ as the chemical potential [3, Chap. 5]. The meaning
will become more transparent below (see Remark 1.12).
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Proof. We solve the constrained extremal problem with Lagrange multipliers, i.e.,
we introduce

F(m1,m2, . . . ;λ1,λ2) = logQ+ λ1

(
∞

∑
n=1

mn −M

)

+ λ2

(
∞

∑
n=1

mnEn −E

)

.

A necessary condition is

0 =
∂F
∂m j

= log(g j −m j)+ 1− (logm j + 1)+ λ1 + λ2E j

= log

(
g j

m j
−1

)

+ λ1 + λ2E j.

Solving for m j/g j yields
m j

g j
=

1

1 + e−λ1−λ2E j
.

Defining the temperature T and chemical potential μ by

λ1 =
qμ
kBT

and λ2 = − 1
kBT

,

we obtain
m j

g j
=

1

1 + e(E j−qμ)/kBT
= f (E j).

Since the left-hand side is the mean number of electrons in a quantum state of energy
E j, the lemma is shown. 	

Remark 1.12 (Fermi–Dirac and Maxwell–Boltzmann distributions). The properties
of the Fermi–Dirac distribution can be understood as follows (also see [3, p. 298ff.]).
At zero temperature, this function becomes

f (E) =

{
1 for E < qμ ,

0 for E > qμ ,
and f (qμ) =

1
2

(see Fig. 1.13). This means that all states which have an energy smaller than the
chemical potential are occupied, and all states with an energy larger than qμ are
empty. Physically, this behavior comes from the Pauli principle according to which
two electrons must not occupy the same quantum state. At zero temperature, the
states with lowest energy are filled first. The energy of the state filled by the last
particle is equal to the chemical potential qμ . This number is also called the Fermi
energy EF . For nonzero temperature, there is a positive probability that some energy
states above qμ will be occupied, i.e., some particles jump to higher energy levels
due to thermal excitation.
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0

0.5

1

energy E

Fermi−Dirac T > 0

Fermi−Dirac T = 0

Maxwell−Boltzmann

Fig. 1.13 The Fermi–Dirac distribution at zero and nonzero temperatures and the Maxwell–
Boltzmann approximation

Strictly speaking, the Fermi energy is defined as EF = qμ only if T = 0. By
abuse of notation, we will also employ this terminology for T > 0 (e.g., like in [23,
Sect. 7.2]).

For energies much larger than the Fermi energy in the sense of E −EF � kBT ,
we can approximate the Fermi–Dirac distribution by the Maxwell–Boltzmann dis-
tribution

f (E) = e−(E−EF)/kBT (1.51)

since 1/(1+ ex) ∼ e−x as x → ∞ (Fig. 1.13). Semiconductors whose electron distri-
bution can be described by this distribution are called nondegenerate. Semiconduc-
tor materials in which the Fermi–Dirac distribution has to be used (for instance, in
the case of high doping) are termed degenerate. 	


The electron density in a given band E j(k) is determined by the number of elec-
trons (1.49), N∗ = N∗

j , divided by the volume of the semiconductor domain:

n =
N∗

vol(Ω)
=

2
(2π)d

∫

B
f (E j(k))dk, where f (E) =

1

1 + e(E−qμ)/kBT
. (1.52)

We wish to formulate the integral not in the k-space but in the energy space. For
this, we introduce the Dirac delta distribution δ as that functional which associates
the value g(0) with an appropriate function g, i.e., δ (g) = g(0). This is also written
as 〈δ ,g〉 = g(0) or as the symbolic integral

∫

R

δ (x)g(x)dx = g(0). (1.53)

We recall that this notation has to be considered with care: The symbol δ is not a
function but a functional and (1.53) is not an integral but a symbolic representation,
which is useful for the following computations.

With the Dirac distribution, the expression (1.52) for the electron density can be
reformulated. We obtain from (1.53)
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n =
2

(2π)d

∫

B

∫

R

δ (E −E j(k)) f (E)dE dk

=
∫

R

(
2

(2π)d

∫

B
δ (E −E j(k))dk

)

f (E)dE.

Thus, we can write

n =
∫

R

Nj(E) f (E)dE,

where the integral

Nj(E) =
2

(2π)d

∫

B
δ (E −E j(k))dk (1.54)

is called the density of states of the jth band of energy E . In the physical litera-
ture, sometimes the notation DOS instead of Nj is used. The quantity Nj(E)�E is
approximately the number of quantum states �N∗ between E and E +�E . Thus,
Nj(E) is approximately �N∗/�E or, in the infinitesimal sense, Nj(E) = dN∗/dE .
Notice that the density of states in k-space is constant, see (1.47), but the density of
states in energy space (1.54) generally is not.

The integral (1.54) can be formulated more rigorously by applying the coarea
formula, which is a curvilinear generalization of Fubini’s theorem [36]. The formula
reads as follows. Let B ⊂ R

d be an appropriate domain, g : B → R be continuous,
and E : B → R be continuously differentiable such that 1/|∇kE j(k)| is integrable.
Then ∫

B
g(k)dk =

∫

R

∫

E−1(e)
g(k)

dSe(k)
|∇kE(k)| de, (1.55)

where E−1(e) = {k ∈ B : E j(k) = e} is the level set of energy e and dSe is a surface
element. Formally, by (1.53), this gives

Nj(E) =
2

(2π)d

∫

R

∫

{E j(k)=e}
δ (E −E j(k))

dSe(k)
|∇kE j(k)| de

=
2

(2π)d

∫

R

∫

{E j(k)=e}
δ (E − e)

dSe

|∇kE j| de

=
2

(2π)d

∫

{E j(k)=E}
dSE

|∇kE j| . (1.56)

The density of states is thus written as a surface integral over the isoenergy surface
E−1

j (E).
We summarize these results in the following proposition.

Proposition 1.13 (Electron density). The electron density n in a given band E j(k)
reads as

n =
∫

R

Nj(E) f (E)dE,

where the density of states Nj(E) at energy E is defined in (1.54) or (1.56) and the
Fermi–Dirac distribution function f (E) is given in (1.50).
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In a similar way, we can compute the density of holes in the jth band. Taking
into account that the mean number of holes in a quantum state of energy E equals
the mean number of empty states of energy E , 1− f (E), we have

p =
∫

R

Nj(E)(1− f (E))dE.

For the electron or hole density in the conduction or valence band, respectively, we
write

n =
∫

R

Nc(E) f (E)dE, p =
∫

R

Nv(E)(1− f (E))dE, (1.57)

where Nc(E) and Nv(E) denote the density of states in the conduction band Ec(k)
and valance band Ev(k), respectively.

In the following, we derive more explicit formulas for the particle densities in the
parabolic band approximation (1.32) and (1.33) with the extended Brillouin zone
B = R

d . We first compute the density of states.

Lemma 1.14 (Density of states for parabolic bands). In the parabolic band ap-
proximation E(k) = E0 + h̄2|k|2/2m∗ we obtain for E ≥ E0:

N(E) =
m∗

π h̄2

√
2m∗(E −E0)

π h̄
for three-dimensional carriers,

N(E) =
m∗

π h̄2 for two-dimensional carriers,

N(E) =
m∗

π h̄2

h̄
√

2m∗(E −E0)
for one-dimensional carriers.

For E < E0, we have N(E) = 0 in all three cases.

Proof. We consider first the three-dimensional case. We start from (1.54), use spher-
ical coordinates (ρ ,θ ,φ), and substitute z = h̄2ρ2/2m∗ to obtain

N(E) =
2

(2π)3

∫

R3
δ
(

E −E0 − h̄2

2m∗ |k|2
)

dk

=
1

4π3

∫ 2π

0

∫ π

0

∫ ∞

0
δ
(

E −E0 − h̄2

2m∗ ρ2
)

ρ2 sinθ dρ dθ dφ

=
m∗

π2h̄2

√
2m∗

h̄

∫ ∞

0
δ (E −E0 − z)

√
zdz.

Introducing the Heaviside function H by H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0
and using (1.53), we obtain

N(E) =
m∗

π h̄2

√
2m∗

π h̄

∫

R

δ (E −E0 − z)
√

zH(z)dz

=
m∗

π h̄2

√
2m∗

π h̄

√
E −E0H(E −E0).
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In the two-dimensional case, we start again from (1.54) and use polar coordinates
(ρ ,φ) and the substitution z = h̄2ρ2/2m∗,

N(E) =
2

(2π)2

∫ 2π

0

∫ ∞

0
δ
(

E −E0 − h̄2

2m∗ ρ2
)

ρ dρ dφ

=
m∗

π h̄2

∫ ∞

0
δ (E −E0 − z)dz =

m∗

π h̄2 H(E −E0).

Finally, in the one-dimensional case,

N(E) =
2

2π

∫

R

δ
(

E −E0 − h̄2

2m∗ k2
)

dk =
1
π

√
2m∗

2h̄

∫ ∞

0
δ (E −E0 − z)

dz√
z

=
m∗

π h̄2

h̄
√

2m∗(E −E0)
H(E −E0),

showing the lemma. 	

Remark 1.15 (Density of states for nonparabolic bands). In the nonparabolic band
approximation (1.31),

E(1 + αE) =
h̄2

2m∗ |k|2, α > 0,

the density of states becomes

N(E) =
m∗

π h̄2

√
2m∗E
π h̄

√
1 + αE (1 + 2αE) in the three-dimensional case,

N(E) =
m∗

π h̄2 (1 + 2αE) in the two-dimensional case

(see [9, Problem 1.4]). 	

For the particle densities in thermal equilibrium and in the parabolic band ap-

proximation, the following result holds.

Lemma 1.16 (Electron and hole densities for parabolic bands). Let the conduc-
tion and valence bands be given by the parabolic band approximations (1.32) and
(1.33). Then the three-dimensional particle densities are

n = NcF1/2

(
qμ −Ec

kBT

)

, p = NvF1/2

(
Ev −qμ

kBT

)

,

where

Nc = 2

(
m∗

ekBT

2π h̄2

)3/2

, Nv = 2

(
m∗

hkBT

2π h̄2

)3/2

(1.58)

are the effective densities of states and
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F1/2(z) =
2√
π

∫ ∞

0

√
xdx

1 + ex−z , z ∈ R, (1.59)

is the Fermi integral (of index 1/2) [37, 38]. Furthermore, m∗
e and m∗

h denote the
(isotropic) effective mass of the electrons and holes, respectively.

Proof. From (1.57), Lemma 1.14, and the substitution x = (E −Ec)/kBT we obtain

n =
m∗

e

π h̄2

√
2m∗

e

π h̄

∫ ∞

Ec

√
E −Ec

1 + e(E−qμ)/kBT
dE

=
4√
π

(
m∗

ekBT

2π h̄2

)3/2 ∫ ∞

0

√
xdx

1 + ex−(qμ−Ec)/kBT
= NcF1/2

(
qμ −Ec

kBT

)

.

In a similar way,

p =
m∗

h

π h̄2

√
2m∗

h

π h̄

∫ Ev

−∞

√
Ev −E

1 + e−(E−qμ)/kBT
dE

=
4√
π

(
m∗

hkBT

2π h̄2

)3/2 ∫ 0

−∞

√
xdx

1 + ex−(Ev−qμ)/kBT
= NvF1/2

(
Ev −qμ

kBT

)

.

This proves the lemma. 	

Next, we compute the particle densities for some particular cases.

Lemma 1.17 (Two-dimensional electron density). The electron density in a quan-
tum well equals

n =
m∗

ekBT

π h̄2 log
(

1 + e(qμ−Ec)/kBT
)

.

Proof. In a quantum well, electrons are confined in one direction. Therefore, using
the density of states function for two-dimensional carriers (see Lemma 1.14),

n =
m∗

e

π h̄2

∫ ∞

Ec

dE

1 + e(E−qμ)/kBT
=

m∗
ekBT

π h̄2

[− log(1 + e−(E−qμ)/kBT )
]∞

Ec

=
m∗

ekBT

π h̄2 log(1 + e−(Ec−qμ)/kBT ),

ending the proof. 	

Lemma 1.18 (Electron and hole densities for parabolic bands). The three-dimen-
sional electron and hole densities in the parabolic band and Maxwell–Boltzmann
approximation |qμ −Ec|, |qμ −Ev| � kBT are

n = Nc exp

(
qμ −Ec

kBT

)

, p = Nv exp

(
Ev −qμ

kBT

)

,

where Nc and Nv are the effective densities of states defined in (1.58).
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Proof. For z →−∞ we can approximate

F1/2(z) = ez 2√
π

∫ ∞

0

√
xdx

ez + ex ∼ ez 2√
π

∫ ∞

0

√
xdx
ex = ez 2√

π
Γ

(
3
2

)

= ez,

where Γ (x) is the Gamma function,

Γ (x) =
∫ ∞

0
yx−1e−y dy, (1.60)

with the properties Γ ( 1
2 ) =

√
π and Γ (x + 1) = xΓ (x) for x > 0. Thus, the result

follows from Lemma 1.16. 	

Finally, we discuss two notions needed in the subsequent chapters, the intrinsic

density and doping of semiconductors.
A pure semiconductor with no impurities is called an intrinsic semiconductor.

In this case, electrons in the conduction band can only come from valence band
levels leaving a vacancy (hole) behind them (see Fig. 1.11). Therefore, the number
of electrons in the conduction band is equal to the number of holes in the valence
band,

n = p = ni.

The quantity ni is called the intrinsic density. It can be computed in the nondegen-
erate parabolic band case from Lemma 1.18:

ni =
√

np =
√

NcNv exp

(
Ev −Ec

2kBT

)

=
√

NcNv exp

(

− Eg

2kBT

)

, (1.61)

where Eg = Ec−Ev is the energy gap. This allows us to determine the Fermi energy
EF = qμ of an intrinsic semiconductor:

EF = Ec + kBT log
n

Nc
= Ec + kBT log

ni

Nc
= Ec − Eg

2
+

kBT
2

log
Nv

Nc

=
1
2
(Ec + Ev)+

3
4

kBT log
m∗

h

m∗
e
.

This asserts that at zero temperature, the Fermi energy lies precisely in the middle
of the energy gap. Furthermore, since log(m∗

h/m∗
e) is of order one, the correction is

only of order kBT for nonzero temperature. In most semiconductors at room tem-
perature, the energy gap is much larger than kBT ≈ 0.026 eV. This shows that the
nondegeneracy assumptions

E −EF ≥ Ec −EF =
Eg

2
− 3

4
kBT log

m∗
h

m∗
e
� kBT,

EF −E ≥ EF −Ev =
Eg

2
− 3

4
kBT log

m∗
h

m∗
e
� kBT

are satisfied and that the result is consistent with our assumptions.
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The intrinsic density is too small to result in a significant conductivity for nonzero
temperature. For instance, in silicon we have ni ≈ 6.93 · 109 cm−3 compared to Nc

and Nv being of the order of 1019 cm−3. Replacing some atoms in the semiconduc-
tor crystal by atoms which provide free-electrons in the conduction band or free
holes in the valence band allows one to increase the conductivity. Such a process
is called the doping of a semiconductor. Impurities are called donors if they supply
additional electrons to the conduction band and acceptors if they supply additional
holes to (i.e., capture electrons from) the valence band. A semiconductor which is
doped with donors is termed an n-type semiconductor, and a semiconductor doped
with acceptors is called a p-type semiconductor. For instance, when we dope a ger-
manium crystal, whose atoms each have four valence electrons, with arsenic, which
has five valence electrons per atom, each arsenic atom provides one additional elec-
tron. These additional electrons are only weakly bound to the arsenic atom. Indeed,
the binding energy is about 0.013 eV [2, Table 28.2] which is smaller than the ther-
mal energy kBT ≈ 0.026 eV at room temperature. More generally, denoting by Ed

and Ea the energies of a donor electron and an acceptor hole, respectively, then
Ec −Ed and Ea −Ev are small compared to kBT (see Fig. 1.14). This means that the
additional carriers contribute at room temperature to the electron and hole density
and increase the conductivity of the semiconductor.

k

Ev

Ec

E

Ea

Ed

Eg � kBTEF

Fig. 1.14 Illustration of the energy gap Eg and the donor and acceptor energies Ed and Ea. The
Fermi energy EF approximately lies in the middle of the energy gap for moderate temperatures

Let Nd(x), Na(x) denote the densities of the donor and acceptor impurities, re-
spectively. Then the doping profile or doping concentration is C(x) = Na(x)−Nd(x)
and the total space charge is given by

ρ = −qn + qp + qNa(x)−qNd(x) = −q(n− p−C(x)).
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22. K. Jackson and W. Schröter (eds.). Handbook of Semiconductor Technology, Vol. 1. Wiley-
VCH, Weinheim, 2000. 19

23. M. Grundmann. The Physics of Semiconductors. Springer, Berlin, 2006. 19, 37
24. P. Bechouche, N. Mauser, and F. Poupaud. Semiclassical limit for the Schrödinger-Poisson

equation in a crystal. Commun. Pure Appl. Math. 54 (2001), 851–890. 21
25. F. Poupaud and C. Ringhofer. Semi-classical limits in a crystal with exterior potentials and

effective mass theorems. Commun. Part. Diff. Eqs. 21 (1996), 1897–1918. 21, 32
26. P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamer. 9 (1993), 553–618. 21
27. P. Markowich and N. Mauser. The classical limit of a self-consistent quantum-Vlasov equation

in 3D. Math. Models Meth. Appl. Sci. 3 (1993), 109–124. 21
28. G. Allaire and A. Piatnitski. Homogenization of the Schrödinger equation and effective mass

theorems. Commun. Math. Phys. 258 (2005), 1–22. 21, 32
29. P. Gérard. Mesures semi-classiques et ondes de Bloch. Séminaires sur les Equations aux
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Chapter 2
Derivation of Macroscopic Equations

In this chapter we explain the strategy how to derive macroscopic models from the
semiconductor Boltzmann equation by the so-called moment method. The macro-
scopic models contain only averaged physical quantities. A main assumption of the
derivation of the transport equations is that scattering of the electrons is (in some
sense) dominant. Then, depending on the considered timescale, hydrodynamic or
diffusive fluid-type models are derived.

2.1 The Boltzmann Equation and its Scalings

In the previous chapter we have considered an electron ensemble being in thermal
equilibrium (no current flow). Here, we wish to find an evolution equation for an
electron ensemble not being in equilibrium. Since the number of conduction elec-
trons in a semiconductor crystal is usually very large, we employ, as in Sect. 1.6, a
statistical approach.

Let f (x,k,t) be the distribution function of an electron ensemble, where x ∈ R
3

denotes the spatial variable, k ∈ B the pseudo-wave vector (see Sect. 1.3), and t > 0
the time. More precisely, f (x,k,t) is the ratio of the number of occupied quantum
states in the infinitesimal volume element dxdk in the conduction band to the total
number of states in dxdk in the conduction band. The function f (x,k,t) is often
referred to as the occupation number of the state k in the point x. In this sense,
0 ≤ f (x,k,t) ≤ 1 for all (x,k,t) holds.

We can define in a similar way the distribution function fh(x,k, t) of a hole en-
semble, where fh(x,k,t) is the ratio of the number of occupied states in dxdk in the
valence band to the total number of states in dxdk in the valence band. However, for
simplicity, we consider in this chapter only the transport of electrons.

From the distribution function, we can derive macroscopic quantities, like the
particle density, velocity, and energy, which can be measured experimentally. Macro-
scopic models then describe the evolution of these quantities. The number N∗ of

Jüngel, A.: Derivation of Macroscopic Equations. Lect. Notes Phys. 773, 45–54 (2009)
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electrons in the conduction band of a semiconductor crystal Ω ⊂ R
3 is, according

to (1.49), given by

N∗(x,t) =
vol(Ω)

4π3

∫

B
f (x,k,t)dk.

Thus, the electron density n, i.e., the number of electrons per unit volume, equals

n(x,t) =
N∗(x,t)
vol(Ω)

=
1

4π3

∫

B
f (x,k, t)dk.

Introducing the notation

〈g〉 =
1

4π3

∫

B
g(k)dk,

we can write the above expression compactly as n = 〈 f 〉. The mean velocity u(x, t)
and the mean energy density (ne)(x,t) are defined, respectively, by

u =
1
n
〈v f 〉, ne = 〈E f 〉,

where v = ∇kE/h̄ is the semi-classical mean velocity and E the conduction-band
energy (see Lemma 1.9).

In the parabolic band approximation E(k) = h̄2|k|2/2m∗, where m∗ is the effec-
tive electron mass, we have v(k) = h̄k/m∗ and thus,

nu =
1

m∗ 〈p f 〉, ne =
1

m∗

〈
1
2
|p|2 f

〉

,

where p = h̄k is the crystal momentum (see Sect. 1.4). We call the expression n =
〈 f 〉 the zeroth moment, 〈p f 〉 the first moment, and 〈 1

2 |p|2 f 〉 the second moment
associated with f . Furthermore, 1, p, and 1

2 |p|2 are termed weight functions.
Now, we derive an evolution equation for the distribution function. We assume

that f is constant along the trajectory (x(t),k(t)). We refer to Sect. 3.1 for some
explanations of this hypothesis. Then, along the trajectories,

0 =
d f
dt

= ∂t f + ẋ ·∇x f + k̇ ·∇k f .

The semi-classical equations (1.25) yield

∂t f + v(k) ·∇x f +
q
h̄

∇xV (x) ·∇k f = 0, x ∈ R
3, k ∈ B, t > 0.

This is a partial differential equation which is complemented by an initial condition
for f (x,k,0). In Sect. 3.2 we give a more precise derivation of this equation.

Scattering allows particles to jump to another trajectory. We assume that the rate
of change d f/dt due to convective or electric effects and the rate of change Q( f )
due to collisions balance, d f/dt = Q( f ). Then
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∂t f + v(k) ·∇x f +
q
h̄

∇xV (x) ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0. (2.1)

This is the semiconductor Boltzmann equation. We call Q( f ) a collision operator.
Usually, it is a nonlocal and nonlinear operator in f . Since we will discuss the scat-
tering mechanism in more detail in Chap. 4, we will only use a very simple example
in Sects. 2.3 and 2.4.

In order to identify small parameters and to perform the asymptotic limits lead-
ing to the macroscopic models, we scale the Boltzmann equation (2.1). We define
a characteristic length λ (for instance, the device diameter) and the characteristic
velocity u =

√
kBTL/m∗, where TL is the lattice temperature. The velocity u corre-

sponds to a particle with kinetic energy of the order kBTL. Furthermore, we define
the characteristic pseudo-wave vector m∗u/h̄, the characteristic electric potential
UT = kBTL/q, which is also referred to as the thermal voltage, and a characteristic
time τ , which will be specified below. A second timescale is given by the time τc

between two consecutive collisions. The distance λc = uτc, which a particle travels
between two consecutive collisions, is called the mean free path. This defines the
dimensionless variables

x = λ xs, t = τts, k =
m∗u

h̄
ks

and the dimensionless functions

V = UTVs, Q( f ) =
1
τc

Qs( f ).

The distribution function is a number and therefore, it is already dimensionless.
We derive macroscopic models by assuming that scattering is dominant in the

sense that the mean free path is much smaller than the device diameter, i.e., α =
λc/λ � 1. This means that a particle will undergo many collisions along its way
through the device. The number α is called the Knudsen number.

The constant τ is still unspecified. We consider two scalings. First, we set τ =
τc/α . Since α � 1, this means that we consider a timescale much larger than the
collision time. A computation shows that the Boltzmann equation (2.1) becomes,
after omitting the index “s” for the dimensionless variables and parameters,

α∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Q( f ). (2.2)

This is the Boltzmann equation in the hydrodynamic scaling. Next, we set τ =
τc/α2. In this scaling, which we call the diffusion scaling, the characteristic time
is even larger than that from the hydrodynamic scaling. Here, the Boltzmann equa-
tion can be written as

α2∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Q( f ). (2.3)

The choice of the scaling – hydrodynamic or diffusive – depends on the equilib-
rium states associated with the collision operators. Before we can make precise the
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structure of the collision operator, which will be used in the derivation, we need the
notion of the Maxwellian which is introduced in the following section.

2.2 Maxwellians

In thermal equilibrium, the distribution function is equal to the Fermi–Dirac distri-
bution (1.50) or to the Maxwell–Boltzmann distribution (1.51),

feq = e−(E−EF )/kBTL ,

where EF is the Fermi energy and TL the (constant) lattice temperature. The energy
E is the sum of the potential energy −qV due to the doping potential and the band
energy En(k), E = −qV +En. Under the assumption that the range of the velocity v
is the whole space R

3, we will show that feq is a solution of the Boltzmann equation
(2.1) if and only if the Fermi energy EF is constant.

Since in equilibrium nothing changes with time, feq does not depend on time and
the net collision rate is zero, Q( feq) = 0. A computation shows that the equilibrium
distribution feq satisfies

v(k) ·∇x feq +
q
h̄

∇xV ·∇k feq = v(k) ·∇xEF
feq

kBTL
= 0,

if EF is constant. On the other hand, if feq solves the Boltzmann equation, the above
computation shows that v(k) ·∇xEF = 0 for all k ∈ B. This implies that ∇xEF = 0,
and EF is constant.

The equilibrium distribution

feq = N(x)e−En(k)/kBTL with N(x) = e(qV (x)+EF )/kBTL (2.4)

with constant EF is called a Maxwellian.
In order to derive the thermal equilibrium state, we can also argue thermody-

namically. In thermal equilibrium, the entropy of the system with a fixed number
of particles should be maximal. This maximum-entropy argument was already used
in statistical mechanics by Jaynes in 1957 [1]. In the following, we generalize this
idea by allowing not only a fixed number of electrons but also a fixed momentum
or energy. (In Sect. 1.6 we have already used a similar argument.) Depending on
the fixed quantities, we obtain different Maxwellians. To make this statement pre-
cise, we consider for simplicity Maxwell–Boltzmann statistics and parabolic bands
En(k) = h̄2|k|2/2m∗. We refer to Chap. 8 for more general situations. The kinetic
entropy is defined by

S( f ) = −
∫

R3×B
f (kBTL log f − kBTL + E(k)) dxdk.
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More precisely, −S is the free energy of the system. Furthermore, we introduce the
weight functions κ0(k) = 1, κ1(k) = h̄k/m∗, and κ2(k) = h̄2|k|2/2m∗. We abbreviate
as in Sect. 2.1 〈g〉 =

∫
R3 g(k)dk/4π3 for any function g(k) and we call the integrals

m0 = 〈κ0 f 〉 = 〈 f 〉,
m1 = 〈κ1 f 〉 =

〈 h̄k
m∗ f

〉
,

m2 = 〈κ2 f 〉 =
〈 h̄2|k|2

2m∗ f
〉

the zeroth, first, and second moment of f , respectively. They have a physical inter-
pretation: m0 is the particle density, m1 the momentum density, and m2 the energy
density.

The precise maximization problem reads as follows: For given f (x,k, t) and mo-
ments mi = 〈κi f 〉, find M[ f ] such that

S(M[ f ]) = max{S(g) : 〈κig〉 = mi for i = 0,1,2}.

We will prove in Sect. 8.1 that, if this constrained extremal problem is solvable, its
formal solution is given by

M[ f ] = exp

(

κ ·λ − h̄2|k|2
2kBTLm∗

)

,

where κ = (κi) and λ = (λi) are the Lagrange multipliers arising from the con-
strained maximization problem and depending on x and t through the distribution
function f . We call M[ f ] the Maxwellian of f .

Example 2.1 (Maxwellians). We consider some examples.
1. Classical Maxwellian: Let κ0(k) = 1, i.e., we solve the maximization problem

for a given particle density or for a fixed number of electrons. Then, the Maxwellian
equals M[ f ] = exp(λ0 − h̄2|k|2/2kBTLm∗). The Lagrange multiplier λ0 can be elim-
inated by observing that the electron density is given by n = m0 =

∫
R3 M[ f ]dk/4π3.

Indeed, we have, with spherical coordinates,

n =
eλ0

4π3

∫

R3
e−h̄2|k|2/2kBTLm∗

dk =
eλ0

π2

∫ ∞

0
e−h̄2ρ2/2kBTLm∗

ρ2 dρ = Nc(TL)eλ0 ,

where

Nc(TL) = 2

(
m∗kBTL

2π h̄2

)3/2

is the effective density of state of the conduction band introduced in (1.58). Hence,
the Maxwellian can be written as

M[ f ] =
n

Nc(TL)
exp

(

− h̄2|k|2
2kBTLm∗

)

. (2.5)
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This is the Maxwellian (2.4) with N = n/Nc(TL) and En(k) = h̄2|k|2/2m∗.
2. Heated Maxwellian: Let κ = (1, h̄2|k|2/2m∗). Then the Maxwellian reads as

M[ f ] = exp

(

λ0 +
h̄2|k|2
2m∗ λ1 − h̄2|k|2

2kBTLm∗

)

.

Introducing the electron temperature T by 1/kBTm∗ = −λ1 + 1/kBTLm∗, we can
write M[ f ] = exp(λ0 − h̄2|k|2/2kBT m∗) and similarly as above, we obtain

M[ f ] =
n

Nc(T )
exp

(

− h̄2|k|2
2kBT m∗

)

. (2.6)

Notice that compared to (2.5), the constant lattice temperature TL is replaced by the
particle temperature T . The function (2.6) is referred to as the heated Maxwellian.

3. Shifted Maxwellian: Let κ = (1, h̄k/m∗, h̄2|k|2/2m∗). Then it follows that

M[ f ] = exp

(

λ0 +
h̄k
m∗ ·λ1 +

h̄2|k|2
2m∗ λ2 − h̄2|k|2

2kBTLm∗

)

,

and introducing the electron temperature as above by 1/kBT m∗ = −λ2 + 1/kBTLm∗
and the mean velocity u = kBT λ1/m∗, the above formula becomes

M[ f ] = exp

(

λ0 +
m∗|u|2
2kBT

− |h̄k−m∗u|2
2kBTm∗

)

. (2.7)

A calculation analogous to that of the previous examples shows that the electron
density equals n = Nc(T )eλ0−m∗|u|2/2kBT . Hence, we can write the Maxwellian as

M[ f ] =
n

Nc(T )
exp

(

−|h̄k−m∗u|2
2kBT m∗

)

. (2.8)

This expression is called the (heated) shifted Maxwellian. The variable u has the
meaning of a mean velocity since 〈(h̄k/m∗)M[ f ]〉 = nu is the momentum. 	


2.3 Hydrodynamic Models

We consider now the scaled Boltzmann equation in the hydrodynamic scaling (2.2).
To simplify the presentation, we make the following assumptions (see Chap. 9 for
more general results):

1. The (scaled) energy band is parabolic, i.e., v(k) = k.
2. The collision operator is of relaxation-time type, i.e., Q( f ) = (M[ f ] − f )/τ ,

where M[ f ] is the Maxwellian of f given the moments corresponding to the
weight functions κ0(k) = 1, κ1(k) = k, and κ2(k) = |k|2/2.
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If the distribution function is homogeneous in space and there are no electric forces,
the Boltzmann equation becomes

∂t f =
1
τ
(M[ f ]− f ).

Thus, τ can be interpreted as the typical (scaled) time in which the distribution
function converges to the Maxwellian. Thus, the scaled Boltzmann equation reads as

α∂t fα + α(k ·∇x fα + ∇xV ·∇k fα ) =
1
τ
(M[ fα ]− fα). (2.9)

The main idea for the derivation of macroscopic models is to multiply the Boltz-
mann equation by the weight functions κi(k) and to integrate the resulting equation
over the wave-vector space. This leads to the so-called moment equations,

∂t〈κi fα 〉+ divx〈κik fα〉−∇xV · 〈∇kκi fα 〉 = 0, i = 0,1,2. (2.10)

The right-hand side vanishes since the moments of M[ fα ] and fα coincide by def-
inition. Notice that we have integrated by parts in the last term on the left-hand
side. The moments mi = 〈κi fα〉 are the variables of the model. They are the electron
density n = m0, the momentum or current density nu = m1, and the energy density
ne = m2.

The integrals on the left-hand side can be expressed in terms of the moments ex-
cept the integrals 〈κ1k fα 〉= 〈k⊗k f 〉 and 〈κ2k fα 〉= 〈 1

2 k|k|2 fα 〉. (The notation k⊗k
signifies the matrix with elements kik j for i, j = 1,2,3.) This is a conceptional prob-
lem. Given any set of weight functions, there is at least one integral with a higher-
order moment which cannot be expressed in terms of the lower-order moments. This
is called the closure problem. An additional condition to close the equations is nec-
essary. Sensible closure conditions are motivated by investigation of the asymptotic
limit α → 0 which consists of two steps.

In the first step, we perform the (formal) limit α → 0 in the Boltzmann equation
(2.9). This gives Q( f ) = 0, where f = limα→0 fα , and hence f = M[ f ]. For the
weight functions defined above, M[ f ] is given by (2.8) in scaled form, i.e., M[ f ] =
1
2 (2π/T)3/2nexp(−|k−u|2/2T ). In the second step we perform the limit α → 0 in
the moment equations (2.10):

∂t〈κiM[ f ]〉+ div x〈κikM[ f ]〉−∇xV · 〈∇kκiM[ f ]〉 = 0. (2.11)

As M[ f ] is known, we can compute the integrals.
Since the moments of the Maxwellian are, by definition, the same as the moments

of f , we obtain 〈M[ f ]〉 = n, 〈kM[ f ]〉 = nu, and 〈 1
2 |k|2M[ f ]〉 = ne. Furthermore, a

computation shows that

〈k⊗ kM[ f ]〉 = P+ nu⊗u,

where the stress tensor P is defined by P = 〈(k−u)⊗ (k−u)M[ f ]〉, and
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〈
1
2
|k|2kM[ f ]

〉

= q +(P+ ne Id)u,

where q = 〈 1
2 (k − u)|k − u|2M[ f ]〉 is the heat flux and Id is the identity matrix.

Given the above Maxwellian, the heat flux vanishes since the integrand is odd in
k − u. Moreover, P = nT Id and ne = 3

2 nT . We refer to Sect. 9.1 for the detailed
computations.

Thus, we can reformulate (2.11) for κ0(k) = 1, κ1(k) = k, and κ2(k) = 1
2 |k|2 as

∂t n + div(nu) = 0, (2.12)

∂t(nu)+ div(nu⊗u)+ ∇(nT)−n∇V = 0, (2.13)

∂t(ne)+ div(nu(T + e))−nu ·∇V = 0. (2.14)

These equations are referred to as the hydrodynamic model. In the absence of the
electric field −∇V , the above equations express the conservation of mass, momen-
tum, and energy, respectively. We refer to Chap. 9 for a discussion of this result.

Notice that we obtain a hierarchy of hydrodynamic models by choosing different
sets of weight functions or, equivalently, moments. For instance, if we only choose
κ0(k) = 1 and κ1(k) = k, this leads to (2.12) and (2.13) with T = const., since the
corresponding Maxwellian has constant temperature. This model hierarchy will be
studied in more detail in Chap. 9.

Remark 2.2. The above derivation essentially consists of the formulation of the mo-
ment equations (2.10) and the replacement of fα by the corresponding Maxwellian.
This replacement was motivated by the hydrodynamic limit α → 0. Concerning the
collision operator, we have only needed the following properties: The kernel consists
exactly of the corresponding Maxwellian and the averages 〈κiQ( f )〉 are known. In
the particular example of the relaxation-time operator, the averages vanish, which
expresses conservation of mass, momentum, and energy. More general scattering
integrals are considered in Chap. 9. 	


2.4 Diffusion Models

Diffusion models are derived from the scaled Boltzmann equation (2.3),

α2∂t fα + α (k ·∇x fα + ∇xV ·∇k fα) = Q( fα ).

As in the previous section, we have assumed the parabolic band approximation and
we employ the relaxation-time operator Q( f ) = (M[ f ]− f )/τ , where M[ f ] is the
Maxwellian of f , given the moments corresponding to weight functions of even
order in k.

The derivation is based on three steps. The first step is as in the previous section.
Performing the formal limit α → 0 in the above Boltzmann equation, we obtain
Q( f ) = 0, where f = limα→0 fα , and hence f = M[ f ].
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For the second step we introduce the Chapman–Enskog expansion fα = M[ fα ]+
αgα (in fact, this equation defines gα), which includes the first-order correction
αgα . This correction is needed for the following reason. In the previous section, we
have defined the current density as the integral J =−nu = −〈kM[ f ]〉. In the present
situation, the Maxwellian is even in k (since the weight functions are assumed to
be even in k) and thus, the integral of kM[ f ] vanishes, J = 0. In order to obtain a
nonvanishing current density, we need to introduce the first-order correction αgα .

Inserting the Chapman–Enskog expansion into the Boltzmann equation gives,
after division by α ,

α∂t(M[ fα ]+ αgα)+ (k ·∇xM[ fα ]+ ∇xV ·∇kM[ fα ])

+ α (k ·∇xgα + ∇xV ·∇kgα) =
1
α

Q(M[ fα ])+ Q(gα) = Q(gα) .

Performing the limit α → 0 then yields

Q(g) = k ·∇xM[ f ]+ ∇xV ·∇kM[ f ],

where g = limα→0 gα . As M[ f ] is given, this is an operator equation for g. The
relaxation-time operator allows us to solve this equation explicitly,

g = M[ f ]− τ(k ·∇xM[ f ]+ ∇xV ·∇kM[ f ]). (2.15)

The third step is concerned with the limit α → 0 in the moment equations, reading
as

∂t〈κiM[ fα ]〉+ α∂t〈κigα〉+ 1
α

(divx〈κikM[ fα ]〉+ ∇xV · 〈∇kκiM[ fα ]〉)
+ divx〈κikgα〉+ ∇xV · 〈∇kκigα〉 = 0.

The integrals with the factor 1/α vanish since the functions κi are assumed to be
even and thus, κikM[ fα ] and ∇kκiM[ fα ] are odd in k. Then the limit α → 0 leads to

∂t〈κiM[ f ]〉+ divx〈κikg〉+ ∇xV · 〈∇kκig〉 = 0. (2.16)

As the function g is given by (2.15), this determines the evolution equation. The
integral Ji = −〈κikg〉 is the flux corresponding to the moment 〈κiM[ f ]〉. Inserting g
into the definition of Ji yields the expression

Ji = −τ〈κik⊗ k∇xM[ f ]〉− τ〈κik⊗∇kM[ f ]〉∇xV. (2.17)

The first term shows that (2.16) is a diffusion equation since it contains the expres-
sion divx〈κik⊗k∇xM[ f ]〉 with second-order derivatives. The second term expresses
the convection due to the electric field −∇xV .

The structure of the equations becomes clearer when we specify the moments.
We present in the following only a simple example and refer to Chaps. 5, 6, 7, and
8 for more general situations.
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Example 2.3. Let κ0(k) = 1. Then, by (2.5), the Maxwellian reads as M[ f ] =
1
2 (2π)3/2 ne−|k|2/2 and (2.16) becomes, since n = 〈M[ f ]〉,

∂t n−divJn = 0. (2.18)

It remains to compute the particle flux,

Jn = τ〈k⊗ k∇xM[ f ]+ k∇xV ·∇kM[ f ]〉
=

τ
2
(2π)3/2〈k⊗ ke−|k|2/2〉(∇xn−n∇xV ).

As 〈k⊗ ke−|k|2/2〉 = 2(2π)−3/2 Id, we obtain

Jn = τ(∇xn−n∇xV ). (2.19)

Equations (2.18) and (2.19) are referred to as the drift-diffusion model. It will be
studied in more detail in Chap. 5. 	


We remark that different choices of even-weight functions lead to a hierarchy of
diffusive models, which will be discussed in detail in Chap. 8.

Example 2.4. The above derivation is based on the moment equations and on the
diffusive limit α → 0, but compared to the derivation of the hydrodynamic models,
first-order effects of the expansion fα = M[ fα ] + αgα are additionally taken into
account. Moreover, the derivation requires more knowledge on the collision oper-
ator. Like in the previous section, we have assumed that the kernel consists of the
corresponding Maxwellian and that the integrals 〈κiQ( f )〉 are known. In addition,
we need to solve the operator equation Q(g) = h, where h = (k ·∇x +∇xV ·∇k)M[ f ].
This equation was easy to solve for relaxation-time operators Q( f ), but it requires
some mathematical theory for more general collision operators. We come back to
this point in Sect. 5.1. 	
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Part II
Microscopic Semi-Classical Models



The fundamental evolution equations for classical charged particle flow are New-
ton’s laws. When the number of particles is large, a statistical description is recom-
mended, modeling the behavior of the particle ensemble by a probability density
or distribution function. We derive kinetic equations describing the evolution of the
distribution function in the phase space (or, more precisely, the position-wave vec-
tor space). First, we consider models without collision mechanisms, such as the
Liouville and Vlasov equations. Then, we allow for scattering events leading to the
Boltzmann equation.



Chapter 3
Collisionless Models

In this chapter, we consider only long-range interactions, like Coulomb forces, lead-
ing to the semi-classical Liouville or Vlasov equations. Models including short-
range interactions are studied in Chap. 4.

3.1 The Liouville Equation

We first analyze the classical motion of M particles with mass m moving in a vacuum
under the action of a force. The particles are described as classical particles, i.e.,
we associate the position vector xi ∈ R

3 and the velocity vector vi ∈ R
3 with the

ith particle of the ensemble. Quantum mechanical effects are incorporated later in
such a way that we obtain a semi-classical description of the electron ensemble in
a semiconductor. The trajectories (xi(t),vi(t)) of the particles satisfy Newton’s laws
in the 6M-dimensional ensemble position–velocity phase space

ẋ = v, mv̇ = F, t > 0, (3.1)

with initial conditions
x(0) = x0, v(0) = v0, (3.2)

where x = (x1, . . . ,xM), v = (v1, . . . ,vM), the dot denotes differentiation with respect
to time, and F = (F1, . . . ,FM) is a force. It can, for instance, be given by an electric
field acting on the electron ensemble,

Fi = −qE(x,t), i = 1, . . . ,M.

We assume that the forces are independent of the velocity.
In semiconductors, the number of electrons M is typically very large (at least

M > 104) and therefore, the numerical solution of (3.1) and (3.2) is very expen-
sive. Since we are rather interested in the behavior of the particle ensemble instead
of the behavior of the individual electrons, it seems reasonable to use a statistical

Jüngel, A.: Collisionless Models. Lect. Notes Phys. 773, 57–54 (2009)
DOI 10.1007/978-3-540-89526-8 3 c© Springer-Verlag Berlin Heidelberg 2009
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description. Then we are not prescribing the initial conditions (3.2) for each particle
but the probability density fI(x,v) of the initial position and velocity of the particles.
The integral ∫

Ω
fI(x,v)dxdv

represents the expected number of particles at time t = 0 in the subset Ω of the (x,v)
space.

Let f (x,v,t) be the probability density or distribution function of the ensemble
at time t. We wish to derive an evolution equation for f . Under some condition
on the dynamical system, the distribution function is constant along the trajectory
(x(t),v(t)):

f (x(t),v(t),t) = fI(x0,v0), t > 0 (3.3)

(also see Sect. 2.1). To specify this condition, let x0, v0 ∈ R
3M and X = (X1, . . . ,

XM), U = (U1, . . . ,UM) : R
6M → R

3M be two functions. Furthermore, let Φt be the
flow map of the system of differential equations

ẋ = X(x,v), v̇ = U(x,v), t > 0, x(0) = x0, v(0) = v0, (3.4)

i.e., Φt is defined as Φt(x0,v0) = (x(t),v(t)), where (x,v) is the solution of (3.4)
(which is assumed to exist). We define the distribution function, for given fI , as

∫

Φt(Ω)
f (ξ ,η ,t)dξ dη =

∫

Ω
fI(x,v)dxdv (3.5)

for all Ω ⊂ R
6M , where Φt(Ω) is the image of Ω under Φt , i.e., the set of all points

(ξ ,η) ∈ R
6M which can be written as (ξ ,η) = Φt (x,v) for some (x,v) ∈ R

6M .

Theorem 3.1 (Liouville). If

M

∑
i=1

(
∂Xi

∂xi
+

∂Ui

∂vi

)

(x(t),v(t)) = 0 for all t > 0, (3.6)

then (3.3) holds.

Proof. Let t > 0 be fixed. A transformation of variables in (3.5) gives
∫

Ω
f (Φt (x,v),t)|detDΦt(x,v)|dxdv =

∫

Ω
fI(x,v)dxdv,

where DΦt is the Jacobian of Φt . We show that detDΦt(x,v) = 1 for all (x,v) ∈
Ω . To prove this relation, we observe that the flow map satisfies the equation
∂tΦt (x,v)= (X(Φt(x,v)),U(Φt (x,v)))�. Differentiation with respect to (x,v) yields,
by the chain rule,

∂tDΦt = (DX ◦Φt ,DU ◦Φt)�DΦt .

As the derivative of the determinant of a matrix B is given by ∂t detB =
Tr(B−1∂tB) detB [1], where Tr is the trace of a matrix, we have
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∂t(detDΦt) = Tr
(
(DΦt )−1∂t(DΦt )

)
detDΦt

= Tr
(
(DΦt)−1(DX ◦Φt ,DU ◦Φt)�DΦt

)
detDΦt

= Tr(DX ◦Φt ,DU ◦Φt)detDΦt .

Assumption (3.6) translates to

Tr(DX(Φt(x,v)),DU(Φt (x,v)))
� = Tr(DX ,DU)�(x(t),v(t)) = 0.

Hence, detDΦt(x,v) is constant for all t > 0, and since detDΦ0(x,v) is the unit
matrix, we obtain detDΦt(x,v) = 1 which shows the theorem. 	


If the right-hand sides of the differential equations in (3.4) are given by Newton’s
laws (3.1), the hypothesis of the Liouville Theorem (3.1) is satisfied since we have
assumed that the forces do not depend on the velocity. Thus, differentiating (3.3)
with respect to t gives the differential equation

0 =
d
dt

f (x(t),v(t),t) = ∂t f + ẋ ·∇x f + v̇ ·∇v f ,

and employing Newton’s laws (3.1) leads to the Liouville equation

∂t f + v ·∇x f +
1
m

F ·∇v f = 0, (x,v) ∈ R
6M, t > 0. (3.7)

It is supplemented with the initial condition

f (x,v,0) = fI(x,v), (x,v) ∈ R
6M.

In semiconductors, the electron ensemble cannot be described classically and
the above argument is not valid. In Sect. 1.4, however, we have motivated that the
motion of the electrons can be modeled semi-classically by the equations

h̄ẋi = ∇ki En(ki), h̄k̇i = q∇xiV, i = 1, . . . ,M, (3.8)

where En is the energy of the nth band depending on the pseudo-wave vector ki

and V (x,t) is the electric potential (cf. (1.25)). As above, we introduce the vectors
x = (x1, . . . ,xM) and k = (k1, . . . ,kM). The distribution function f depends now on
(x,k,t) rather than on (x,v,t). We assume that the electrons of the ensemble stay in
the same energy band so that we can drop the index n. We claim that Liouville’s the-
orem can be applied to this semi-classical picture. Indeed, the classical momentum
pi = mvi of the ith particle translates into the crystal momentum pi = h̄ki (see Sect.
1.4), and the hypothesis (3.6) becomes

M

∑
i=1

(
∂ ẋi

∂xi
+

∂ k̇i

∂ki

)

= 0.



60 3 Collisionless Models

This condition is satisfied since ẋi depends on k but not on x, and k̇i depends on x
but not on k. Taking into account (3.8), the Liouville equation reads as follows (also
see Sect. 2.1):

0 =
d
dt

f (x(t),k(t),t) = ∂t f + ẋ ·∇x f + k̇ ·∇k f

= ∂t f +
1
h̄

∇kE ·∇x f +
q
h̄

∇xV ·∇k f , (3.9)

to be solved for x∈R
3M , k ∈BM , and t > 0, where B is the Brillouin zone introduced

in Sect. 1.1. Equation (3.9) is referred to as the semi-classical Liouville equation.
The products are scalar products in R

6M, i.e., they are defined as

∇kE ·∇x f =
M

∑
i=1

∇ki E ·∇xi f , ∇xV ·∇k f =
M

∑
i=1

∇xiV ·∇ki f ,

and the dot on the right-hand sides denotes the usual scalar product in R
3. We have

to complement the Liouville equation by initial and boundary conditions since B is
a bounded set of R

3. The initial condition is given by

f (x,k,0) = fI(x,k), (x,k) ∈ R
3M ×BM. (3.10)

Often, periodic boundary conditions

f (x,k1, . . . ,ki, . . . ,kM,t) = f (x,k1, . . . ,−ki, . . . ,kM, t), ki ∈ ∂B, (3.11)

for i = 1, . . . ,M, are chosen (see, e.g., [2, formula (1.2.49)]). This formulation makes
sense since B is point symmetric with respect to the origin, i.e., ki ∈ B if and only if
−ki ∈ B.

The Liouville equation possesses some important properties. We recall the defi-
nition of the electron-ensemble density (see Sect. 2.1)

n(x,t) =
1

(4π3)M

∫

BM
f (x,k,t)dk.

The electron-ensemble current density is defined as the first moment of the distribu-
tion function,

Jn(x,t) = − q
(4π3)M

∫

BM
f (x,k, t)v(k)dk,

where v(k) = ∇kE/h̄ is the mean velocity.

Proposition 3.2 (Properties of the Liouville equation). Let f (x,k,t) be the solu-
tion of the Liouville initial boundary-value problem (3.9), (3.10), and (3.11). Then
the following properties hold:

1. Positivity preservation: If fI ≥ 0 in R
3M ×BM then f (x,k, t) ≥ 0 for all x ∈ R

3M,
k ∈ BM, and t > 0.



3.2 The Vlasov Equation 61

2. Conservation law: It holds

∂tn− 1
q

divx Jn = 0, x ∈ R
3M, t > 0,

with initial condition n(x,0) = (4π3)−M ∫
BM fI dk, x ∈ R

3M.
3. Conservation of mass: The number of particles is conserved,

∫

R3M
n(x,t)dx =

1
(4π3)M

∫

R3M

∫

BM
fI(x,k)dk dx, t > 0.

Proof. The first property follows immediately from (3.3). By formally integrating
the Liouville equation (3.9) over k ∈ BM, we obtain from the divergence theorem

∂t n =
1

(4π3)M

∫

BM
∂t f dk

= − 1
(4π3)M

∫

BM
divx(v f )dk− 1

(4π3)M

q
h̄

∫

BM
divk(∇xV f )dk =

1
q

divx Jn.

The last property follows from the second one after integrating over the spatial vari-
able x ∈ R

3M. 	

We notice that in the parabolic band approximation E(ki) = h̄2|ki|2/2m∗ (see

(1.30)), where m∗ denotes the effective electron mass, the semi-classical Liouville
equation (3.9) reduces to the classical Liouville equation (3.7) with m = m∗ since
v = ∇kE/h̄ = h̄k/m∗ and ∇k f = (h̄/m∗)∇v f .

The Liouville equation can be extended to describe the motion of an electron
ensemble under the influence of a magnetic field with induction vector Bind. The
magnetic force is given by qv×Bind, and the total force is the Lorentz force F =
q(∇xV + v×Bind). Then the semi-classical Liouville equation can be written as

∂t f + v ·∇x f +
q
h̄
(∇xV + v×Bind) ·∇k f = 0, t > 0,

where v = (v1(k1), . . . ,vM(kM)), together with the initial and boundary conditions
(3.10) and (3.11). The magnetic field Bind may be given or coupled to the electric
field −q∇xV and the current Jn through the Maxwell equations. For mathematical
results on the corresponding Vlasov–Maxwell system, we refer to [3–5].

3.2 The Vlasov Equation

The main disadvantage of the semi-classical Liouville initial boundary-value prob-
lem (3.9), (3.10), and (3.11) is that it has to be solved in a very high-dimensional
phase space. Modeling the moderate number of M = 104 electrons, the dimension
becomes 6 · 104 which is prohibitive for numerical simulations. In this section, we
will derive an equation which acts in a six-dimensional phase space, by replacing the
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electron-ensemble electric potential by an effective single-particle potential, similar
to the Hartree–Fock approximation of Sect. 1.3. The idea of the derivation is first to
assume a certain structure of the electric force, then to integrate the Liouville equa-
tion in sub-phase spaces, and finally, to carry out the formal limit M → ∞, where M
is the number of particles. We proceed similarly as in [2].

Let an ensemble of M electrons be given and denote by x = (x1, . . . ,xM) and k =
(k1, . . . ,kM) the position and wave vector coordinates of the particles, respectively.
We impose the following assumptions:

1. The motion is governed by an external electric field Eext and by two-particle
(long-range) interaction forces Eint,

Fi(x,t) = −qEext(xi,t)− q
4π3

M

∑
j=1, j �=i

Eint(xi,x j), i = 1, . . . ,M,

where the interaction forces are assumed to be anti-symmetric,

Eint(xi,x j) = −Eint(x j,xi) for all i, j. (3.12)

2. The pointwise limit E0 = limM→∞ MEint exists, i.e., the interaction force is of
order 1/M.

3. The initial density is independent of the numbering of the particles,

fI(x1, . . . ,xM,k1, . . . ,kM) = fI
(
xπ(1), . . . ,xπ(M),kπ(1), . . . ,kπ(M)

)
(3.13)

for all xi ∈ R
3, ki ∈ B, i = 1, . . . ,M, and for all permutations π of {1, . . . ,M}.

4. The subensemble initial density

f (a)
I (x1, . . . ,xa,k1, . . . ,ka) =

1
(4π3)M−a

∫

(R3×B)M−a
fI dxa+1 · · ·dxM dka+1 · · ·dkM

can be factorized,

f (a)
I =

a

∏
i=1

FI(xi,ki), (3.14)

for all a = 1, . . . ,M−1, where FI is a given function.

We discuss these assumptions. We have excluded in the first condition velocity-
dependent forces, which exclude magnetic fields. The first assumption, which is
crucial for the derivation of the Vlasov equation, means that the force field Fi ex-
erted on the ith electron is given by the sum of an external electric field acting on
the ith electron and of the sum of M−1 two-particle interaction forces of order 1/M
between the ith electron and all other electrons. The interaction force Eint is inde-
pendent of the electron index which expresse the fact that the electrons are indistin-
guishable. The action–reaction law implies that the force exerted by the jth electron
on the ith electron equals the negative force of the ith electron on the jth electron,
i.e., Eint is anti-symmetric. This property and the third assumption imply that also
f (x,k,t) is independent of the numbering of the particles for all t > 0. Finally, the
fourth hypothesis means that the electrons of a subensemble with a-particles move
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independently of each other initially. Intuitively, this hypothesis is reasonable if a is
small compared to M. A discussion of the validity of this condition, which is called
the initial chaos assumption, can be found in [6, Chap. 2.3].

We derive first an equation for the distribution function f (a) of a subensemble
consisting of a < M electrons,

f (a)(x1, . . . ,xa,k1, . . . ,ka,t) =
1

(4π3)M−a

∫

(R3×B)M−a
f (x,k,t)dx(a+1) dk(a+1),

(3.15)
where dx(a+1) = dxa+1 · · · dxM and dk(a+1) = dka+1 · · · dkM.

Lemma 3.3 (BBGKY hierarchy). Let f be a solution of the semi-classical Liou-
ville initial-value problem (3.9), (3.10), and (3.10) and let 1 ≤ a ≤ M−1. We sup-
pose that the first and third assumptions from above hold. Then f (a), defined in
(3.15), solves

0 = ∂t f (a) +
a

∑
j=1

v(k j) ·∇x j f (a) − q
h̄

a

∑
j=1

Eext(x j, t) ·∇k j f (a)

− q
h̄

a

∑
j,�=1

Eint(x j,x�) ·∇k j f (a) (3.16)

− (M−a)
q

4π3h̄

a

∑
j=1

div k j

∫

R3×B
Eint(x j,x∗) f (a+1)

∗ dx∗ dk∗,

with initial conditions

f (a)(x1, . . . ,xa,k1, . . . ,ka,0) = f (a)
I (x1, . . . ,xa,k1, . . . ,ka), (3.17)

for (x1, . . . ,xa) ∈ R
3a, (k1, . . . ,ka) ∈ Ba, where

f (a+1)
∗ = f (a+1)(x1, . . . ,xa,x∗,k1, . . . ,ka,k∗,t).

The system of equations (3.16) is called the BBGKY hierarchy, from Bogoliubov
[7], Born and Green [8], Kirkwood [9], and Yvon [10]. It describes the evolution of
the a-particle distribution function f (a) in terms of the (a + 1)-particle distribution
function f (a+1).

Proof. We integrate the semi-classical Liouville equation

∂t f +
M

∑
j=1

v(k j) ·∇x j f − q
h̄

M

∑
j=1

Eext(x j,t) ·∇k j f − q
4π3h̄

M

∑
j,�=1

Eint(x j,x�) ·∇k j f = 0

(3.18)

with respect to xa+1, . . . ,xM,ka+1, . . . ,kM in order to obtain an equation for f (a). We
reformulate the corresponding integrals term by term.

The first integral coming from the first term on the left-hand side of (3.18) equals
∂t f (a) after the integration. For the integral of the second term we compute, using
the divergence theorem,
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1
(4π3)M−a

M

∑
j=1

∫

(R3×B)M−a
v(k j) ·∇x j f dx(a+1) dk(a+1)

=
1

(4π3)M−a

a

∑
j=1

v(k j) ·∇x j

∫

(R3×B)M−a
f dx(a+1) dk(a+1)

+
1

(4π3)M−a

M

∑
j=a+1

∫

(R3×B)M−a
div x j (v(k j) f )dx(a+1) dk(a+1)

=
a

∑
j=1

v(k j) ·∇x j f (a).

The integral of the third term in (3.18) can be treated in a similar way, leading to

1
(4π3)M−a

M

∑
j=1

∫

(R3×B)M−a
div k j (Eext(x j,t) f ) dx(a+1) dk(a+1)

=
a

∑
j=1

div k j

(
Eext(x j,t) f (a)

)
.

The integral of the last term on the left-hand side of (3.18) becomes

1
(4π3)M−a

M

∑
j,�=1

∫

(R3×B)M−a
div k j (Eint(x j,x�) f ) dx(a+1) dk(a+1)

=
a

∑
j,�=1

Eint(x j,x�) ·∇k j f (a)

+
1

(4π3)M−a

M

∑
j=a+1

M

∑
�=1

∫

(R3×B)M−a
div k j (Eint(x j,x�) f ) dx(a+1) dk(a+1)

+
1

(4π3)M−a

a

∑
j=1

M

∑
�=a+1

∫

(R3×B)M−a
div k j (Eint(x j,x�) f ) dx(a+1) dk(a+1).

The last integral on the right-hand side of the above equation vanishes by the di-
vergence theorem. For the first integral, we use the anti-symmetry of the external
field (3.12) and the third assumption (3.13). Indeed, it is possible to renumber the
particles such that the last integral equals

1
(4π3)M−a

a

∑
j=1

(M−a)
∫

(R3×B)M−a
div k j (Eint(x j,xa+1) f ) dx(a+1) dk(a+1)

=
M−a
4π3

a

∑
j=1

div k j

∫

R3×B
Eint(x j,x∗) f (a+1)

∗ dx∗dk∗,

Thus, integration of (3.18) yields the system of equations (3.16). 	
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The BBGKY hierarchy does not simplify the Liouville equation. Indeed, in order
to find f (1), we need to know f (2) and so on. In order to find f (M−1), the knowledge
about f (M) is necessary, which is the solution of the Liouville equation. In view of
the initial chaos assumption (3.14), we may expect that if M → ∞, this property also
holds for positive time. Therefore, we perform the limit M → ∞ in (3.16) to find the
evolution of a one-particle distribution function.

Let f (a)
M be a solution of (3.16) and (3.17). We assume that f (a)

M converges point-
wise to some function f (a) as M → ∞ (similar for its derivatives). By the second
assumption, the internal field Eint is of order 1/M and vanishes in the formal limit
M → ∞. Moreover, (M − a)Eint converges to E0. Thus, the BBGKY hierarchy be-
comes in the formal limit of infinitely many particles

0 = ∂t f (a) +
a

∑
j=1

v(k j) ·∇x j f (a)− q
h̄

a

∑
j=1

Eext(x j,t) ·∇k j f (a)

− q
4π3h̄

a

∑
j=1

div k j

∫

R3×B
E0(x j,x∗) f (a+1)

∗ dx∗ dk∗, (3.19)

f (a)(x1, . . . ,xa,k1, . . . ,ka,0) = f (a)
I (x1, . . . ,xa,k1, . . . ,ka), (3.20)

where (x1, . . . ,xa) ∈ R
3a and (k1, . . . ,ka) ∈ Ba. We claim that a one-particle distri-

bution function contains all the dynamics of this many-particle problem under the
initial chaos assumption.

Theorem 3.4 (Semi-classical Vlasov equation). Let the assumptions on page 62
hold and let f ∗ be a solution of the one-particle semi-classical Vlasov equation

∂t f ∗ + v(k) ·∇x f ∗ − q
h̄

Eeff ·∇k f ∗ = 0, x ∈ R
3, k ∈ B, t > 0, (3.21)

f ∗(x,k,0) = f ∗I (x,k), x ∈ R
3, k ∈ B,

with periodic boundary conditions

f ∗(x,k,t) = f ∗(x,−k,t), x ∈ R
3, k ∈ B, t > 0,

where
Eeff(x,t) = Eext(x,t)+

∫

R3
n(x∗,t)E0(x,x∗)dx∗ (3.22)

is the effective field and

n(x,t) =
∫

R3
f ∗(x,k,t)

dk
4π3

represents the electron density. Then the functions

f (a)(x1, . . . ,xa,k1, . . . ,ka,t) =
a

∏
i=1

f ∗(xi,ki,t) (3.23)

are a solution of the limit BBGKY hierarchy (3.19) and (3.20).
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Proof. We multiply the Vlasov equation (3.21), evaluated at (xi,ki), by

Qi =
a

∏
j=1, j �=i

f ∗(x j,k j, t)

and sum over i = 1, . . . ,a. Then, the time derivative in (3.21) becomes, for f ∗i =
f ∗(xi,ki,t),

a

∑
i=1

Qi∂t f ∗i =
a

∑
i=1

∏
j �=i

f ∗j ∂t f ∗i = ∂t

a

∏
i=1

f ∗i = ∂t f (a).

In a similar way, we compute

a

∑
i=1

Qiv(ki) ·∇xi f ∗i =
a

∑
i=1

v(ki) ·∇xi f (a),

a

∑
i=1

QiEext(xi,t) ·∇ki f ∗i =
a

∑
i=1

Eext(xi,t) ·∇ki f (a).

The expression involving the limiting internal field E0 can be reformulated as

a

∑
i=1

Qi

(∫

R3×B
f ∗(x∗,k∗,t)E0(xi,x∗)dx∗ dk∗

)

·∇ki f ∗i

=
a

∑
i=1

div ki

∫

R3×B

a

∏
j=1

f ∗(x j,k j,t) f ∗(x∗,k∗,t)E0(xi,x∗)dx∗ dk∗

=
a

∑
i=1

div ki

∫

R3×B
f (a+1)
∗ E0(xi,x∗)dx∗dk∗.

Putting together the above expressions, we see that the ansatz (3.23) indeed solves
(3.19) and (3.20). 	


Each solution of the semi-classical Vlasov equation provides a solution of the
limiting semi-classical Liouville equation under the initial chaos assumption. Thus,
the solution of the many-particle problem is reduced to the solution of a one-particle
problem. In this sense, the Vlasov equation is derived from the Liouville equation.
Figure 3.1 illustrates the steps of the derivation.

The Vlasov equation has the form of a Liouville equation for a single particle
with the force field −qEeff. Many-particle effects are taken into account through the
effective field Eeff which depends on the particle density and hence, on the distribu-
tion function f ∗. Therefore, (3.21) is a nonlinear equation with a nonlocal quadratic

Liouville equation BBGKY hierarchy limit BBGKY hierarchy Vlasov equation

Collisionless microscopic semi-classical models

Fig. 3.1 Illustration of the derivation of the Vlasov equation
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nonlinearity. It describes the macroscopic motion of the many-particle system with
weak long-range forces. It does not provide a description of strong short-range in-
teractions such as scattering of particles, which are considered in Chap. 4.

The classical Vlasov equation can be directly derived from the Newton equations
ẋi = vi, v̇i = Fi/m, i = 1, . . . ,M, for identical particles of mass m which are initially
equally separated. For this, let the interaction force Fi be given by Fi = ∑ j �=i F(xi −
x j)/M. The measure

μM(x,v,t) =
1
M

M

∑
i=1

δ (x− xi(t))⊗ δ (v− vi(t)),

where (xi,vi) solves the Newton equations and the symbol ⊗ denotes the tensor
product, can be shown to be a solution of the Vlasov equation in the sense of distri-
butions. The question is whether the weak limit of μM as M → ∞ solves the Vlasov
equation or not. The first positive answers were given by Neunzert and Wick [11],
Dobrushin [12], and Braun and Hepp [13]. A physical derivation can be found in
[14]. Further results were obtained in, for instance, [15–17]. The result of Braun
and Hepp [13] is based on the boundedness of the forces Fi, thus excluding forces
of the type F(x) ≤ c|x|−α with α > 0. The recent work of Hauray and Jabin [18]
allows for such forces with α < 1. Unfortunately, the case α = 1 cannot be treated,
which would cover the case of the Vlasov–Poisson system in three space dimen-
sions.

The Vlasov equation was derived also in other contexts. For instance, it was
deduced from the Liouville equation for plasmas permeated by a uniform ambient
magnetic field in [19]. A derivation from the many-particle Schrödinger equation
with pair interaction in the classical limit is presented in [20].

The first proof of the global-in-time existence of smooth solutions of the Vlasov–
Poisson system was found by Pfaffelmoser in 1989 [21]. Previous results [22, 23]
were concerned with symmetric or small initial data. Later, other and simpler proofs
were given by Lions and Perthame [24], Schaeffer [25], and Horst [26] improving
the result of [25].

As for the Liouville equation, the quantity f ∗(x,k, t) can be interpreted as the
probability density of a particle to be in the state (x,k) at time t. Indeed, from the
trajectory equations

ẋ = v(k), k̇ = −q
h̄

E0, t > 0,

and the semi-classical Vlasov equation, we obtain

0 = ∂t f ∗ + v(k) ·∇x f ∗ − q
h̄

Eeff ·∇k f ∗ =
d
dt

f ∗(x(t),k(t),t), t > 0, (3.24)

from which we conclude that f ∗ is constant along the trajectories,

f ∗(x(t),k(t),t) = f ∗(x(0),k(0),0), t > 0.
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In particular, if the number density is nonnegative initially, it remains nonnegative
for all times.

Finally, we wish to formulate the Vlasov equation in the case of Coulomb forces,
which are the most important long-range forces between two electrons. The effective
internal field is given by

E0(x,y) = − q
4πεs

x− y
|x− y|3 , x,y ∈ R

3, x �= y, (3.25)

where εs denotes the semiconductor permittivity, which is a material constant. We
assume that the external field is generated by doping atoms in the semiconductor
crystal of charge +q,

Eext(x,t) =
q

4πεs

∫

R3
C(y)

x− y
|x− y|3 dy, (3.26)

where C(x) is the doping concentration (see Sect. 1.6).

Proposition 3.5 (Semi-classical Vlasov–Poisson system). In the case of the Cou-
lomb forces (3.25) and (3.26), the semi-classical Vlasov equation can be written as
the Vlasov–Poisson system

∂t f ∗ + v(k) ·∇x f ∗ +
q
h̄

∇xV ·∇k f ∗ = 0, (3.27)

εsΔV = q(n−C), x ∈ R
3, k ∈ B, t > 0, (3.28)

with periodic boundary conditions for f ∗ on ∂B and the initial condition f ∗(·, ·,0) =
f ∗I .

If the semiconductor structure consists of several materials, the permittivity is
space dependent and we have to replace the Poisson equation (3.28) by div(εs∇V ) =
q(n−C).

Proof. It is well known from potential theory that the function

φ(x) = − 1
4π

∫

R3

g(y)
|x− y| dy, x ∈ R

3,

solves the Poisson equation Δφ = g in R
3 under some regularity assumptions on g.

Differentiation gives the formulas

g(x) = Δφ(x) =
1

4π
divx

∫

R3
g(y)

x− y
|x− y|3 dy,

0 = curl∇φ(x) =
1

4π
curlx

∫

R3
g(y)

x− y
|x− y|3 dy.
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This shows that divEext = qC/εs, curlEext = 0, and

divEeff(x,t) = divEext(x,t)+ div
∫

R3
n(x∗,t)E0(x,x∗)dx∗

=
q
εs

(C(x)−n(x,t)), (3.29)

curlEeff(x,t) = curlEext(x,t)+
∫

R3
n(x∗,t)curlE0(x,x∗)dx∗ = 0.

Since Eeff is vortex free, there exists a potential V such that Eeff = −∇V . Thus, by
(3.29),

εsΔV = −εsdivEeff = q(n−C),

and the proposition follows. 	
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Chapter 4
Scattering Models

The Vlasov (or Liouville) equation of the previous chapter does not take into ac-
count short-range particle interactions, like collisions of the particles with other
particles or with the crystal lattice. In this chapter, we extend the Vlasov equation to
include scattering mechanisms which leads to the Boltzmann equation. We present
only a phenomenological derivation. For rigorous results, we refer to [1, Sect. 1.5.3]
and [2, Chap. 4].

4.1 The Boltzmann Equation

The Vlasov equation along trajectories

d f
dt

= 0

states that the probability density f (of occupation of states) does not change in time
(see Sect. 3.1). Scattering allows particles to jump to another trajectory. Our main
assumption is that the rate of change of f due to convection and the effective field,
d f/dt, and the rate of change of f due to collisions, Q( f ), balance:

d f
dt

= Q( f ).

Clearly, this equation has to be understood along trajectories. By (3.24), this equa-
tion equals

∂t f + v(k) ·∇x f − q
h̄

Eeff ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0, (4.1)

where the effective field Eeff is given by (3.22).
It remains to derive an expression for Q( f ). We assume that scattering of particles

occurs instantaneously and only changes the crystal momentum of the particles. The

Jüngel, A.: Scattering Models. Lect. Notes Phys. 773, 71–95 (2009)
DOI 10.1007/978-3-540-89526-8 4 c© Springer-Verlag Berlin Heidelberg 2009
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rate P(x,k′ → k, t) at which a particle at (x,t) changes its Bloch state k′ into another
Bloch state k due to a scattering event is proportional to

• the occupation probability f (x,k′,t) and
• the probability 1− f (x,k,t) that the state (x,k) is not occupied.

Here, we used a statistical version of the Pauli exclusion principle which is valid
for fermions and in particular for electrons. Thus,

P(x,k′ → k,t) = s(x,k′,k) f (x,k′ ,t)(1− f (x,k,t)),

where the proportionality factor s(x,k′,k) is called the transition or scattering rate.
The rate of change of f due to collisions is the sum of all in-scattering rates from
some k′ to k minus the out-scattering rate from k to some k′,

P(x,k′ → k,t)−P(x,k → k′, t),

for all possible Bloch states k′ in the “volume element” dk′. In the limit, the sum
becomes an integral and we obtain

(Q( f ))(x,k,t) =
∫

B

(
P(x,k′ → k,t)−P(x,k → k′, t)

)
dk′ (4.2)

=
∫

B

(
s(x,k′,k) f ′(1− f )− s(x,k,k′) f (1− f ′)

)
dk′,

where f = f (x,k, t) and f ′ = f (x,k′,t). Equation (4.1), together with the effective-
field equation

Eeff(x,t) = Eext(x,t)+
∫

R3
n(ξ ,t)E0(x,ξ )dξ , n =

∫

B
f

dk
4π3 , (4.3)

where Eext and E0 are given functions, and the collision operator (4.2) is called the
semi-classical Boltzmann equation. When Eext and E0 are given by the Coulomb
forces (3.25) and (3.26), equations (4.1), (4.2), and (4.3) are called the Boltzmann–
Poisson system, which can be written as (3.27) and (3.28) with f instead of f ∗ and
with the right-hand side Q( f ) in (3.27). Again we impose the initial and periodic
boundary conditions

f (x,k,t) = f (x,−k,t), x ∈ R
3, k ∈ ∂B, t > 0, (4.4)

f (x,k,0) = fI(x,k), x ∈ R
3, k ∈ B. (4.5)

The Boltzmann equation has two nonlinearities:

• a quadratic nonlocal nonlinearity in the position variable caused by the self-
consistent field Eeff in (4.3) and

• another quadratic nonlocal nonlinearity in the wave vector caused by the collision
integral (4.2).
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These nonlinearities make the mathematical analysis of the initial boundary-
value problem (4.1), (4.2), (4.3), (4.4), and (4.5) very difficult. The Boltzmann equa-
tion was first formulated by Boltzmann in 1872 for the nonequilibrium transport of
dilute gases, and some properties of the solutions were shown, but no existence anal-
ysis was available [3]. The first result on the existence and uniqueness of solutions
to the homogeneous gas-dynamics Boltzmann equation ∂t f = Q̃( f ) was published
by Carleman in 1933 under the assumption that f depends on the modulus of the
velocity |v| and t only [4]. For a very general class of collision operators, Arkeryd
developed an L1 theory for the homogeneous equation [5]. For the nonhomogeneous
Boltzmann equation ∂t f +v ·∇x f = Q( f ), only existence results for initial data close
to the equilibrium state or close to a homogeneous distribution were proved up to
1987 [2, Sect. 5.1]. The first result of global-in-time existence of so-called renormal-
ized solutions with general initial data was then shown by Di Perna and Lions [6]
using a smoothing effect of the flow term v ·∇x f , known as the velocity averaging
lemma [7]. We refer to [8] for a review on the solution of the Boltzmann equa-
tion and to [9, 10] for more details and references. The existence of weak solutions
to the semiconductor Boltzmann–Poisson system was first proved by Poupaud [11].
The result was extended by Mustieles in unbounded wave-vector spaces to conclude
smooth global-in-time solutions in one or two space dimensions and local-in-time
solutions in three dimensions [12, 13]. The existence of smooth global solutions
in three space dimensions was proved by Andréasson [14]. In all these works, the
scattering rate was assumed to be smooth. Majorana et al. proved the existence of
solutions of the spatially homogeneous Boltzmann equation allowing for nonsmooth
scattering rates [15–17].

The Boltzmann equation can be solved numerically by direct simulation Monte
Carlo methods, in view of the high computational cost of a conventional quadra-
ture rule for the evaluation of the collision integral [18–20]. An approximation can
be obtained by spherical harmonics expansions of the distribution function before
performing Monte Carlo simulations [21–23]. As probabilistic methods yield low
accurate results for instationary solutions and a low convergence rate, determinis-
tic methods were also designed, for instance, particle methods [2], discrete velocity
models [24], spectral approximations [25], power-series time discretizations [26],
and more recently, high-order finite-difference weighted essentially non-oscillatory
(WENO) solver [27–29]. Simulations of the Boltzmann–Poisson system coupled
with the effective mass Schrödinger equation were performed in [30]. We refer to
[31, 32] for more details and references.

In Fig. 4.1 we present a summary of the models derived in this and the previous
chapter and the relations between them.

We give now some examples of collision operators. In semiconductor crystals,
scattering of electrons is due to lattice defects, phonons, and other carriers. We con-
sider only the following important collision events:

• electron–phonon scattering,
• ionized impurity scattering, and
• carrier–carrier scattering.
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Semi-classical Boltzmann equation

Semi-classical Vlasov equation

Semi-classical Liouville equation

Microscopic kinetic models

no two-particle
interactions

no collisions

Fig. 4.1 Relations between the kinetic models

Carrier–carrier scattering includes electron–electron or electron–hole collisions.
Also collisions of a carrier with a carrier ensemble (collective carrier–carrier scat-
tering), i.e., the interaction of a carrier with oscillations in the carrier density, may
occur when the carrier density is sufficiently high. Extensive treatments of scattering
mechanisms in semiconductors can be found in, e.g., [33, Chap. 9], [34, Chap. 7],
[35, Chap. 2], [36, Chap. 6], and in the textbooks [37–39].

Phonon scattering. At nonzero temperature, the atoms in the crystal lattice vibrate
around their fixed equilibrium. These vibrations are quantized and the quantum of
lattice vibrations is called a phonon. We can distinguish so-called acoustic phonons
and optical phonons. Acoustic phonons arise from displacements of lattice atoms
in the same direction such as sound waves. Optical phonons describe displacements
in the wave vector and are able to interact strongly with light. Denoting by h̄ωα
the energy of a phonon with frequency ωα , the phonon occupation number Nα is
computed from Bose–Einstein statistics,

Nα =
1

eh̄ωα /kBT −1
,

where the index α refers to either “op” for optical phonons or “ac” for acoustic
phonons. Notice that Bose–Einstein statistics has to be used for indistinguishable
particles not obeying the Pauli exclusion principle and therefore also for phonons
(see [33, p. 307ff.] for a derivation).

An electron in the Bloch state k′ with conduction-band energy E(k′) before the
collision with a phonon with quantized frequency ωα can change to the state k after
the collision if

E(k′)−E(k) = ±h̄ωα , (4.6)

where the plus sign refers to phonon emission and the minus sign for phonon ab-
sorption. The transition rate s(x,k,k′) is nonzero only if the energy conservation
condition (4.6) is satisfied. Therefore,
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sα(x,k,k′) = σα(x,k,k′) (4.7)

× (
(1 + Nα)δ (E(k′)−E(k)+ h̄ωα)+ Nαδ (E(k′)−E(k)− h̄ωα)

)
,

where the number σα(x,k,k′) is assumed to be symmetric in k and k′ and δ is the
delta distribution. The first delta distribution contributes when an energy of h̄ωα has
been absorbed, i.e., E(k′) = E(k)− h̄ωα , whereas the second term contributes when
an energy of h̄ωα has been emitted, i.e., E(k′) = E(k)+ h̄ωα . The factors 1+Nα and
Nα come from the eigenvalues of the so-called creation and annihilation operators
[40, Appendix B]. The transition rate is known as the Fermi golden rule (see [33,
Sect. 4.4], [35, Sect. 1.7.1], or [40, Appendix C]). It is valid over long time durations
and for single-state transitions.

Generally, the phonon energy h̄ωα can be interpreted as a function of the wave
vectors k and k′. Often, it depends on the difference k−k′ of the wave vectors before
and after a scattering event only [41, Sect. 2]. For optical (nonpolar) phonon scat-
tering, the dependency is weak such that ωop can be considered to be constant [35,
Sect. 1.8]. On the other hand, the energy of acoustic phonons is rather small com-
pared to the kinetic energy of a carrier and can be neglected near room temperature,
h̄ωac ≈ 0. Then (4.7) can be simplified for elastic acoustic phonon scattering to

sac(x,k,k′) = σ0δ (E(k′)−E(k)), (4.8)

where σ0 = σac(2Nac + 1) does not depend on k or k′.
The collision operator reads according to (4.2)

(Qα( f ))(x,k, t) =
∫

B

(
sα(x,k′,k) f ′(1− f )− sα(x,k,k′) f (1− f ′)

)
dk′, (4.9)

where α = ac, op. For acoustic phonon scattering in the elastic approximation, for
which (4.8) holds, we can employ the symmetry of δ to obtain

∫

B

(
sac(x,k′,k) f ′ f − sac(x,k,k′) f f ′

)
dk′ =

∫

B
σ0δ (E(k′)−E(k))( f ′ f − f f ′)dk′

= 0,

and the collision operator becomes

(Qac( f ))(x,k,t) =
∫

B
σ0δ (E(k′)−E(k))( f ′ − f )dk′. (4.10)

The above expression for sα shows that the scattering rates can be highly
nonsmooth. In fact, they may not be functions but distributions. As already men-
tioned in Sect. 1.6, integrals involving the delta distribution can be interpreted by
employing the coarea formula (1.55). Indeed, let as in [41] Sε = {k ∈ B : E(k) = ε}
be the surface of constant energy ε , dSε(k) the Euclidean surface element on Sε ,
and dNε(k) = dSε(k)/|∇kE(k)| the coarea measure. Then N(ε) = 2(2π)−3 ∫

Sε
dNε

is the density of states of energy ε (see (1.56)). The coarea formula can now be
formulated as



76 4 Scattering Models

∫

B
g(k)dk =

∫

R

∫

Sε
g(k)dNε (k)dε.

The collision integral (4.10), for instance, then becomes

(Qac( f ))(x,k,t) =
∫

SE(k)

σ0 f (k′)dNE(k)(k
′)− f (k)

∫

SE(k)

σ0 dNE(k)(k
′)

and does not contain delta distributions anymore.
Finally, we remark that there are many different phonon scattering mechanisms;

see, e.g., [35] for details.

Ionized impurity scattering. A doping atom in the semiconductor material donates
either an electron or a hole, leaving behind an ionized charged impurity. This fixed
charge may attract or repulse an electron propagating through the crystal lattice. The
interaction of carriers with neutral impurities is another scattering possibility but we
do not consider it here. Since the scattering is elastic, the electron energy E(k′) after
the collision is the same as the energy E(k) before the interaction, and the transition
rate is consequently

simp(x,k,k′) = σimp(x,k,k′)δ (E(k′)−E(k)),

where σimp is symmetric in k and k′ [42]. Again, this expression can be derived from
Fermi’s golden rule. Notice that it is possible to describe acoustic phonon scattering
in the elastic approximation by the same formula in which σimp(x,k,k′) = σ0 (see
(4.8)). The symmetry of σimp and δ implies as above that the collision operator can
be written as

(Qimp( f ))(x,k,t) =
∫

B
σimp(x,k,k′)δ (E(k′)−E(k))( f ′ − f )dk′. (4.11)

Carrier–carrier scattering. We only consider binary electron–electron interac-
tions. Also binary electron–hole scattering or collective carrier–carrier collisions
[35, Sect. 2.10.2] are possible but we do not consider these mechanisms here. The
influence of electron–electron interactions on the carrier dynamics is more pro-
nounced in degenerate semiconductors (see Sect. 1.6). The transition rate for car-
riers in the Bloch states k′ and k′1 which collide and scatter to the states k and k1 is
given by

see(x,k,k′,k1,k
′
1) = σee(x,k,k′,k1,k

′
1)δ (E(k′)+ E(k′1)−E(k)−E(k1)),

since the collisions are elastic. More precisely, the above delta distribution should
be understood as B-periodic in order to account for so-called umklapp processes
and to preserve the periodic structure in k. We refer to [41, Sect. 2] for details.
(Umklapp processes, discovered by Peierls, occur when the pseudo-wave vector of
an electron or phonon interacting with other particles leaves the Brillouin zone and
is brought back to this zone by adding a reciprocal lattice vector; see [43, p. 135ff.].)
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The collision rate is proportional to the occupation probabilities f ′ = f (x,k′,t) and
f ′1 = f (x,k′1,t) (the states k′ and k′1 are occupied) and to 1− f = 1− f (x,k, t) and
1− f1 = 1− f (x,k1,t) (the states k are k1 are not occupied). Therefore, the collision
operator becomes [44, (2.7)]:

(Qee( f ))(x,k, t) =
∫

B3
see(x,k,k′,k1,k

′
1) (4.12)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)
dk′ dk1 dk′1.

Notice that this operator has a nonlocal nonlinearity of fourth order.

Summarizing, the collision operator in the semiconductor Boltzmann equation
(4.1) can be written as the sum of the collision operators considered above:

Q( f ) = Qop( f )+ Qac( f )+ Qimp( f )+ Qee( f ).

The Boltzmann equation (4.1) is fundamental in deriving simpler macroscopic
models for semiconductors (see Chap. 2). It is the basic equation in semi-classical
semiconductor modeling and usually, other models are validated by numerical com-
parisons with the Boltzmann equation. Nevertheless, it is important to understand
its limitations (here we follow [35, Sect. 37]):

• The semiconductor Boltzmann equation is a single-particle description of a
many-particle charge-carrier system. Correlations between carriers are incorpo-
rated only by the effective-field approximation.

• Quantum mechanical phenomena are only modeled in a semi-classical way. Elec-
trons are considered as particles obeying the semi-classical Newton’s laws.

• Collisions are assumed to be binary and to be instantaneous in time and local in
space.

• The statistical description using the probability density f (x,k, t) makes only
sense if the number of carriers is sufficiently large.

We can estimate the range of validity of the semi-classical approach by using
Heisenberg’s uncertainty principles, expressing that it is impossible to determine
momentum and position at the same time and that the energy of a particle can be
determined only if it stays in the same state for a certain time [35, p. 152]. Thus,
the standard deviations of momentum �p and space �x cannot be both arbitrarily
small and the same statement holds for the standard deviations of energy �E and
time �t:

�p�x ≥ h̄ and �E�t ≥ h̄. (4.13)

When we consider an electron as a particle, we can relate the kinetic energy E and
the momentum p by E = p2/2m∗. (This formula holds, for instance, if the energy is
equal to the parabolic band approximation E = h̄2|k|2/2m∗ and p = h̄k is the crystal
momentum.) Then, assuming that the energy spread is of the order of the thermal
energy kBT , we obtain

�p =
√

2m∗�E ∼
√

2m∗kBT .
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The sign “∼” here means “of the same order as”. Introducing the de Broglie length
λB = h/

√
2m∗kBT , which is the wavelength of an electron with thermal energy, the

first inequality in (4.13) leads to the requirement

�x ≥ h̄
�p

∼ λB

2π
.

Therefore, when treating electrons as particles, they cannot be localized sharper than
�x which is of the order of λB. At room temperature and with the (longitudinal)
effective mass m∗ = 0.98me of silicon (see Table 1.3), we obtain the restriction
�x ∼ 1.2 nm.

Taking �t to be the time between two consecutive collisions and again assuming
that �E ∼ kBT , the second inequality in (4.13) gives

�t ≥ h̄
�E

∼ h̄
kBT

.

Supposing further that the electron has the velocity v corresponding to the thermal
energy, v = p/m∗ ∼√

2kBT/m∗, the distance between two collisions is

�L = v�t ≥
√

2kBT
m∗

h
2πkBT

=
λB

π
.

Thus, the mean free path �L should be larger than the de Broglie length λB ∼ 8 nm
in order to guarantee validity of the Boltzmann equation approach.

4.2 Properties of Collision Operators

In the following we show some properties of the collision operators described in the
previous section. In particular, we derive their conservation properties and charac-
terize their kernels. The results are needed for the derivation of macroscopic models.

Collision operator (4.2). Instead of specifying the scattering rate s(x,k,k′) of the
collision operator, we derive a relation which is sufficient to conclude the properties.
We assume that the principle of detailed balance [34, 45] holds, according to which
the local scattering probabilities vanish,

s(x,k′,k) f ′eq(1− feq) = s(x,k,k′) feq(1− f ′eq) = 0.

Here, the prime means evaluation at k′ and feq is the thermal equilibrium occupation
number density given by the Fermi–Dirac distribution

feq(x,k) =
1

1 + exp((E(k)−EF)/kBT )
,
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where E(k) is the band energy and EF the Fermi energy (see Sect. 1.6 for the deriva-
tion of the equilibrium density). This shows that

s(x,k,k′)
s(x,k′,k)

=
f ′eq(1− feq)
feq(1− f ′eq)

= exp
E(k)−E(k′)

kBT
. (4.14)

The following result is due to Poupaud [11].

Proposition 4.1 (Collision operator (4.2)). Let (4.14) hold for some function E(k)
and let s(x,k,k′) be smooth and positive.

(1) For all (regular) functions f (x,k,t), there holds
∫

B
(Q( f ))(x,k,t)dk = 0 for x ∈ R

3, t > 0.

(2) For all functions f (x,k,t) ∈ (0,1) and nondecreasing functions χ : R → R,
there holds

∫

B
(Q( f ))(x,k,t)χ

(
f (x,k,t)

1− f (x,k,t)
eE(k)/kBT

)

dk ≤ 0,

∫

B
(Q( f ))(x,k,t)χ

(
1− f (x,k,t)

f (x,k,t)
e−E(k)/kBT

)

dk ≥ 0.

(3) The kernel of Q only consists of Fermi–Dirac distributions, i.e., Q( f ) = 0 if
and only if, for some −∞ ≤ EF ≤ ∞,

f (k) =
1

1 + e(E(k)−EF )/kBT
, k ∈ B. (4.15)

Proof. (1) Exchanging k and k′ in the second integral of (4.2) gives
∫

B
Q( f )dk =

∫

B2
s(k′,k) f ′(1− f )dk′dk−

∫

B2
s(k,k′) f (1− f ′)dk′ dk

=
∫

B2
s(k′,k) f ′(1− f )dk′dk−

∫

B2
s(k′,k) f ′(1− f )dk dk′ = 0.

(2) We show only the second inequality. The proof of the first one is similar. Set

M(k) = e−E(k)/kBT , F(k) =
1− f (k)

f (k)
M(k).

The function M(k) is the Maxwellian (see (1.51)). With this notation, assumption
(4.14) is equivalent to

s(k′,k)
M(k)

=
s(k,k′)
M(k′)

, (4.16)

and we obtain
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∫

B
Q( f )χ(F)dk =

∫

B2
s(k,k′)

(
M
M′ f ′(1− f )− f (1− f ′)

)

χ(F)dk′ dk

=
∫

B2

s(k,k′)
M′ f f ′(F −F ′)χ(F)dk′ dk, (4.17)

and, after exchanging k and k′ and again using (4.16),

∫

B
Q( f )χ(F)dk =

∫

B2

s(k′,k)
M

f ′ f (F ′ −F)χ(F ′)dk dk′

=
∫

B2

s(k,k′)
M′ f ′ f (F ′ −F)χ(F ′)dk dk′. (4.18)

Adding (4.17) and (4.18) leads to

∫

B
Q( f )χ(F)dk =

1
2

∫

B2

s(k,k′)
M′ f f ′(F −F ′)(χ(F)− χ(F ′))dk′ dk ≥ 0, (4.19)

since χ is nondecreasing and all the other factors are nonnegative.
(3) We see from (4.19) with χ(x) = x that Q( f ) = 0 is equivalent to

f f ′(F −F ′)2 = 0 for almost all k, k′ ∈ B.

This implies f = 0 or F = F ′ almost everywhere. The latter equation is equivalent to

1− f (k)
f (k)

M(k) =
1− f (k′)

f (k′)
M(k′) for almost all k, k′ ∈ B.

We infer that both sides are constant and denote this constant by e−EF/kBT for some
EF ∈ R. Notice that the constant is positive, except if f = 1. Then, solving

1− f (k)
f (k)

=
e−EF /kBT

M(k)
= e(E(k)−EF )/kBT

for f (k) yields (4.15). Finally, choosing EF =±∞ leads to the other two possibilities
f = 0 or f = 1. 	


Proposition 4.1 can be interpreted physically. Let f be a solution of the Boltz-
mann equations (4.1) and (4.2). Then, by the first statement of the theorem and the
divergence theorem,

d
dt

∫

R3
n(x,t)dx =

∫

R3

∫

B
∂t f (x,k,t)

dk
4π3 dx (4.20)

=
∫

R3

∫

B

(
−div x(v(k) f )+

q
h̄

div k(Eeff f )+ Q( f )
) dk

4π3 dx = 0.
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This implies that the total number of electrons is conserved in time:
∫

R3
n(x,t)dx =

∫

R3
n(x,0)dx for all t > 0.

Physically, this is reasonable: collisions neither destroy nor generate particles. The
second statement of the theorem is called the H-theorem. It means that the physical
entropy of the system is increasing in time. We will explain this in detail in Remark
4.4 for a simplified situation. The third part of the theorem finally expresses the fact
that the net scattering rate vanishes in thermal equilibrium or, in other words, that
the Fermi–Dirac distributions span the kernel of Q.

If the scattering rate s(k,k′) is given by electron–phonon interactions,

s(k,k′) = σ(k,k′)
(
(1 + N)δ (E ′ −E + h̄ω)+ Nδ (E ′ −E − h̄ω)

)

(see (4.7)), where σ is a symmetric function, h̄ω is the constant phonon energy,
and N = 1/(eh̄ω − 1) is the phonon occupation number, then the kernel of the cor-
responding collision operator may not consist of Fermi–Dirac distributions only. In
fact, Majorana [46] proved that the kernel is given by all functions

1
1 + g(E(k))exp(E(k)/kBT )

, where g is h̄ω-periodic. (4.21)

This result is not stable with respect to perturbations of collision mechanisms in
the following sense. Consider the scattering of electrons with phonons of two dif-
ferent energies h̄ω1 and h̄ω2, corresponding to the collision operators Q1 and Q2,
respectively. Then the kernel of Q1 + Q2 is given by all functions (4.21) such that g
is both h̄ω1- and h̄ω2-periodic. As a consequence, the kernel is spanned by Fermi–
Dirac distributions only if the quotient ω1/ω2 is not a rational number (also see the
discussion in [47]).

The collision operator (4.2) is nonlocal and nonlinear. Therefore, its analytical
treatment is quite difficult and it is reasonable to consider simplified operators. In
the literature, two simplifications can be found: the low-density approximation and
the relaxation-time approximation. The former model is nonlocal, but linear; the
latter one is local and linear.

Low-density collision operator. First we derive the low-density approximation. We
assume that the distribution function is small in the sense 0 ≤ f (x,k, t) � 1. Then
we can approximate 1− f (x,k,t) ≈ 1 and write, using (4.16),

Q( f )(k) ≈
∫

B

(
s(k′,k) f ′ − s(k,k′) f

)
dk =

∫

B

s(k′,k)
M(k)

(
M f ′ −M′ f

)
dk′.

This motivates the introduction of the low-density collision operator

(Q0( f ))(x,k,t) =
∫

B
σ(x,k′,k)(M f ′ −M′ f )dk′, (4.22)
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where the collision cross-section σ(x,k′,k) = s(x,k′,k)/M(k) is symmetric thanks
to (4.16). For this operator, a similar result like Proposition 4.1 holds.

Proposition 4.2 (Low-density collision operator). Let σ(x,k,k′) > 0 be symmetric
in k and k′. Then it holds:

(1) For all functions f (x,k,t), we have
∫

B
(Q0( f ))(x,k,t)dk = 0 for x ∈ R

3, t > 0.

(2) For all nonnegative functions f (x,k,t) and nondecreasing functions
χ : R → R, ∫

B
(Q0( f ))(x,k,t)χ

(
f (x,k,t)eE(k)/kBT

)
dk ≤ 0. (4.23)

(3) The kernel N(Q0) of Q0 is spanned by the Maxwell–Boltzmann distribution
or Maxwellian

M(k) = e−E(k)/kBT .

Proof. The proof of the first part follows immediately from the symmetry of σ . For
the second part, we compute as in the proof of Proposition 4.1:

∫

B
Q0( f )χ( f/M)dk =

∫

B2
σ(M f ′ −M′ f )χ( f/M)dk′ dk

=
∫

B2
σMM′

(
f ′

M′ −
f

M

)

χ
(

f
M

)

dk′ dk.

We add this relation to the equation in which k and k′ are exchanged:
∫

B
Q0( f )χ( f/M)dk (4.24)

= −1
2

∫

B2
σMM′

(
f ′

M′ −
f

M

)(

χ
(

f ′

M′

)

− χ
(

f
M

))

dk′ dk ≤ 0.

Finally, the third part follows from this inequality taking χ(x) = x. 	

Remark 4.3. In the parabolic band approximation

E(k) =
h̄2

2m∗ |k− k0|2, k ∈ R
3,

we can characterize the kernel N(Q0) of the low-density operator, consisting of
multiples of M, by the family of functions

Mn,u,T (v) = n

(
m∗

2πkBT

)3/2

exp

(

−m∗|v−u|2
2kBT

)

, (4.25)

where n and T are positive. Indeed, defining v = h̄k/m∗ and u = h̄k0/m∗, we obtain
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M(v) = exp

(

−E(k)
kBT

)

= exp

(

−m∗|v−u|2
2kBT

)

.

The quantity n represents the density, u the velocity, and T the temperature of the
particle system. The Maxwellian (4.25) is exactly the local Maxwellian used in gas
dynamics [2]. It corresponds to the heated shifted Maxwellian (2.8) in the velocity
variable formulation. 	

Remark 4.4. Again, inequality (4.23) can be termed an H-theorem. In order to ex-
plain this notion, we neglect for the moment electric effects, i.e., we set Eeff = 0 in
(4.1). Let the (relative) entropy S be given by

S(t) = − 2
(2π)3

∫

R3

∫

B
f log

(
f

M

)

dk dx. (4.26)

Differentiating this function and employing the Boltzmann equation (4.1) yields

dS
dt

= − 2
(2π)3

∫

R3

∫

B
∂t f

(

log

(
f

M

)

+ 1

)

dk dx

= − 2
(2π)3

∫

R3

∫

B

(

∂t f − v ·∇x f log

(
f

M

)

+ Q0( f ) log

(
f

M

))

dk dx.

The last term is nonnegative, due to Proposition 4.2 (2) with χ(x) = logx. In the
second term, we integrate by parts and employ again (4.1):

dS
dt

≥− 2
(2π)3

∫

R3

∫

B

(

∂t f − v ·∇x f log

(
f

M

))

dk dx

= − 2
(2π)3

∫

R3

∫

B
(∂t f + v ·∇x f )dk dx

= − 2
(2π)3

∫

R3

∫

B
Q0( f )dk dx = 0.

Hence, the entropy S is nondecreasing or the negative entropy, which is often de-
noted by the symbol H, is nonincreasing. This fact is called the H-theorem.

If we allow for a force term, we need a slightly different argument since we
have to take into account the electric energy. We assume that Eeff is a gradient
field, i.e., there exists a potential V (x,t) such that Eeff = −∇xV . Define the mod-
ified Maxwellian

M1(x,k,t) = e−(E(k)−qV(x,t))/kBT ,

where E(k)−qV also includes the electric energy component. Then the statement of
Proposition 4.2 still holds, since a multiplication with a nonnegative function which
depends only on x and t does not change the arguments. Therefore,

∫

B
Q0( f ) log

(
f

M1

)

dk ≤ 0.
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Hence, differentiating the entropy (4.26) with M1 instead of M gives, after a com-
putation similar as above,

dS
dt

= − 2
(2π)3

∫

R3

∫

B

(

∂t f − v ·∇x f log

(
f

M1

)

− q
h̄

∇xV ·∇k f log

(
f

M1

)

+Q0( f ) log

(
f

M1

))

dk dx

≥− 2
(2π)3

∫

R3

∫

B

(

∂t f + f v ·∇x(log f − logM1)

+
q
h̄

f ∇xV ·∇k(log f − logM1)
)

dk dx

=
2

(2π)3

∫

R3

∫

B

(
v ·∇x logM1 +

q
h̄

∇xV ·∇k logM1

)
f dk dx = 0,

since

∇x logM1 =
q

kBT
∇xV and

q
h̄

∇k logM1 = − q
h̄kBT

∇kE = − qv
kBT

.

Thus, the entropy is nondecreasing. 	

Relaxation-time collision operator. We rewrite the low-density collision operator
as

Q0( f ) =
∫

B

s(x,k′,k)
M

(M f ′ −M′ f )dk′ =
∫

B

s(x,k,k′)
M′ (M f ′ −M′ f )dk′

= M
∫

B
s(x,k,k′)

f ′

M′ dk′ − f
∫

B
s(x,k,k′)dk′,

where we have employed the property (4.16) for s(x,k′,k). If the initial distribution
is close to a multiple of the Maxwellian M(k) = e−E(k)/kBT , we expect that f ′/M′
is close to a constant (at least for small time) and one may approximate f ′/M′ ≈ n,
where n > 0. Then

Q0( f ) ≈ (nM− f )
∫

B
s(x,k,k′)dk′.

Introducing the relaxation time τ(x,k) by

τ(x,k) =
(∫

B
s(x,k,k′)dk′

)−1

,

we obtain the relaxation-time operator

(Qτ( f ))(x,k,t) = − f (x,k,t)−n(x)M(k)
τ(x,k)

. (4.27)

The quantity n is related to the equilibrium particle density feq if the Maxwellian
is scaled in such a way that

∫
B M dk = 4π3, since then nM = feq and

∫
B feq dk/

4π3 = n.
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The relaxation-time operator drives the distribution function toward the equilib-
rium nM. Indeed, consider the Boltzmann equation along the trajectories (x(t),k(t)),

d f
dt

= − f −nM
τ

, t > 0, (4.28)

where (x(t),k(t)) solves ẋ = v(k), k̇ = −qEeff/h̄ with initial conditions x(0) = x0,
k(0) = k0. For simplicity, let the relaxation time τ be constant. The above differential
equation can be solved, and we see that f −nM converges to zero as e−t/τ if t → ∞.
This means that the distribution function relaxes to the equilibrium density nM along
the trajectories after a time of order τ .

In Sects. 2.3 and 2.4, we have employed the relaxation-time operator in order to
derive macroscopic semiconductor models. This operator is in fact widely used be-
cause of its simplicity. According to [35, Chap. 3.5], the relaxation-time approxima-
tion is appropriate under low electric fields when the scattering is elastic or isotropic.

We notice that the low-density operator equals the relaxation-time operator ex-
actly if the collision cross-section σ only depends on the position variable and if the
Maxwellian is scaled such that

∫
B M dk = 4π3, since

Q0( f ) =
∫

B
σ(x)(M f ′ −M′ f )dk′

= σ(x)M(k)
∫

B
f ′ dk′ −σ(x) f (x,k, t)

∫

B
M′ dk′

= −4π3σ(x)( f (x,k,t)−M(k)n(x,t)) ,

where n(x, t) =
∫

B f (x,k,t)dk/4π3. This corresponds to (4.27) with τ = 1/4π3σ .

Elastic collision operator. Some scattering mechanisms can be described or ap-
proximated by elastic collisions, like ionized impurity or acoustic phonon scatter-
ing. According to (4.10) and (4.11), the corresponding collision operator can be
written as

(Qel( f ))(x,k,t) =
∫

B
σ(x,k,k′)δ (E(k′)−E(k))( f ′ − f )dk′.

We assume that the scattering rate σ is positive and symmetric,

σ(x,k,k′) = σ(x,k′,k) > 0, x ∈ R
3, k,k′ ∈ B. (4.29)

Then the following properties were proved by Ben Abdallah and Degond [41].

Proposition 4.5 (Elastic collision operator). Let the condition (4.29) hold. Then
(1) For all (regular) functions f (x,k,t),
∫

B
(Qel( f ))(x,k,t)dk =

∫

B
(Qel( f ))(x,k,t)E(k)dk = 0 for x ∈ R

3, t > 0.
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(2) The operator −Qel is symmetric and nonnegative in the sense

−
∫

B
Qel( f ) f dk ≥ 0 for all functions f .

(3) The kernel N(Qel) of Qel consists of all functions which depend only on the
energy, being of the form F(x,E(k),t).

The first property expresses the conservation of mass and energy. The con-
servation of mass is already explained in (4.20). The energy conservation only
holds in absence of external forces. Indeed, defining the energy density ne =∫

B f E(k)dk/4π3 and integrating the Boltzmann equation (4.1) gives

d
dt

∫

R3
ne(x,t)dx =

∫

R3

∫

B
∂t f E(k)

dk
4π3 dx = −

∫

R3

∫

B
divx(vE f )

dk
4π3 dx = 0.

Proof. (1) The first property follows from the symmetry of σ and δ ,
∫

B2
Qel( f )Ei−1 dk′ dk =

∫

B2
σ(x,k,k′)δ (E ′ −E) f ′Ei−1 dk′ dk

−
∫

B2
σ(x,k,k′)δ (E −E ′) f ′(E ′)i−1 dk dk′

=
∫

B2
σ(x,k,k′)δ (E ′ −E) f ′Ei−1 dk′ dk

−
∫

B2
σ(x,k,k′)δ (E ′ −E) f ′Ei−1 dk dk′ = 0,

where E ′ = E(k′) and i = 1,2. We have used that δ (E ′ −E)E = δ (E ′ −E)E ′.
(2) A computation similar as above gives for functions f and g

∫

B
Qel( f )gdk =

1
2

∫

B2
σ(x,k,k′)δ (E ′ −E)( f ′ − f )gdk′ dk

+
1
2

∫

B2
σ(x,k′,k)δ (E −E ′)( f − f ′)g′ dk dk′

= −1
2

∫

B2
σ(x,k,k′)δ (E ′ −E)( f ′ − f )(g′ −g)dk′dk

=
∫

B
Qel(g) f dk.

This shows that −Qel is symmetric. Moreover, it is nonnegative, since the choice
f = g leads to

−
∫

B
Qel( f ) f dk =

1
2

∫

B2
σ(x,k,k′)δ (E ′ −E)( f ′ − f )2 dk′ dk ≥ 0. (4.30)

(3) Let f ∈ N(Qel). Then (4.30) implies that

δ (E(k′)−E(k))( f (k′)− f (k))2 = 0 for k,k′ ∈ B.
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Since the support of the delta distribution is concentrated at the origin we must have
f (k′) = f (k) at all points k, k′ ∈ B for which E(k′) = E(k). Thus, f is constant on
each energy surface {k ∈ B : E(k) = ε} for ε ∈ R which means that f is a function
of E(k) only. 	


Electron–electron collision operator. Electron–electron scattering can be described
according to (4.12) by the nonlinear operator

(Qee( f ))(x,k, t) =
∫

B3
σee(x,k,k′,k1,k

′
1)δ (E ′ + E ′

1 −E −E1)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)
dk′ dk1 dk′1.

The scattering rate is symmetric in the following sense (for notational simplicity, we
omit the dependence on x):

σee(k,k′,k1,k
′
1) = σee(k′,k,k1,k

′
1) = σee(k1,k

′
1,k,k

′) (4.31)

for all k, k′, k1, k′1 ∈ B. Then the operator possesses the following properties shown
in [41].

Proposition 4.6 (Electron–electron collision operator). Let the symmetry assump-
tion (4.31) hold. Then we have

(1) For (regular) functions f (x,k,t) it holds
∫

B
Qee( f )dk =

∫

B
Qee( f )E(k)dk = 0. (4.32)

(2) The kernel of Qee consists of Fermi–Dirac distributions,

N(Qee) = { f (x,k,t) : there exist μ , T such that f = Fμ,T},

where

Fμ,T (k) =
1

1 + e(E(k)−μ)/kBT
.

Since f ∈ N(Qee) may depend on (x,t), so do the parameters μ and T , i.e.,
f (x,k,t) = Fμ(x,t),T (x,t)(k).

Notice that in the cases T = 0 or T = ±∞, the Fermi–Dirac distribution attains
the limiting numbers 0, 1

2 , or 1. We interpret the parameter T as the temperature of
the electrons (and then, we suppose that T > 0) and μ as the chemical potential.

Proof. First we show that for regular functions f and g,

∫

B
Qee( f )gdk = −1

4

∫

B4
σee(k,k′,k1,k

′
1)δ (E + E1 −E ′ −E ′

1)

× (g′+ g′1 −g−g1)
(

f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)
)

d4k,
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where d4k = dk dk1 dk′ dk′1. In fact, this is a consequence of a renumbering of the
variables and the symmetry property (4.31):

∫

B
Qee( f )gdk =

1
4

∫

B4
σee(k,k′,k1,k

′
1)δ (E + E1 −E ′ −E ′

1)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)
gd4k

+
1
4

∫

B4
σee(k′,k,k′1,k1)δ (E ′ + E ′

1 −E −E1)

× (
f f1(1− f ′)(1− f ′1)− f ′ f ′1(1− f )(1− f1)

)
g′ d4k

+
1
4

∫

B4
σee(k1,k

′,k,k′1)δ (E + E1 −E ′ −E ′
1)

× (
f ′ f ′1(1− f1)(1− f )− f1 f (1− f ′)(1− f ′1)

)
g1 d4k

+
1
4

∫

B4
σee(k′1,k1,k

′,k)δ (E ′
1 + E ′ −E1 −E)

× (
f1 f (1− f ′1)(1− f ′)− f ′1 f ′(1− f1)(1− f )

)
g′1 d4k

=
1
4

∫

B4
σee(k,k′,k1,k

′
1)δ (E + E1 −E ′ −E ′

1)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)
(g + g1−g′ −g′1)d4k.

Now, taking g(k) = 1, the first conservation property in (4.32) follows immedi-
ately. Choosing g(k) = E(k), we obtain an integral over B4 involving the product

δ (E + E1 −E ′ −E ′
1)(E + E1 −E ′ −E ′

1)

which vanishes since the support of the delta distribution is concentrated at E +E1−
E ′ −E ′

1 = 0. This shows (1).
We only sketch the proof of (2) since it is based on the umklapp processes whose

modeling is hidden in σee (see Sect. 4.1). Choosing g = H( f ) = log f − log(1− f ),
it follows that

∫

B
Qee( f )H( f )dk = −1

4

∫

B4
σee(k,k′,k1,k

′
1)δ (E + E1 −E ′ −E ′

1)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)

× (
log

(
f ′ f ′1(1− f )(1− f1)

)− log
(

f f1(1− f ′)(1− f ′1)
))

d4k ≤ 0,

employing the elementary inequality −(x− y)(logx− logy) ≤ 0 for all x, y > 0.
Since (x− y)(logx− logy) = 0 if and only if x = y, we obtain for all f ∈ N(Qee),

log
(

f ′ f ′1(1− f )(1− f1)
)

= log
(

f f1(1− f ′)(1− f ′1)
)
,

or, in terms of the function H,

H( f ′)+ H( f ′1) = H( f )+ H( f1),
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whenever E(k′)+E(k′1) = E(k)+E(k1) and k′ + k′1 = k + k1 modulo B. The condi-
tion on the energy comes from the delta distribution, whereas the second condition
follows from the umklapp processes. In [44] it is shown that this relation implies
that H( f (k)) is an affine function of the energy, i.e., H( f ) = aE + b for some con-
stants a and b. If a = 0, H( f ) and hence f are constant with respect to k. Therefore,
we assume that a �= 0. Then, introducing the variables T = −1/a and μ = −b/a,
we obtain from

log
f

1− f
= H( f ) = aE + b = −E − μ

kBT

the equation f = 1/(1 + e(E−μ)/kBT ) proving the proposition. 	


4.3 Additional Topics

In this section we specify some boundary conditions for the Vlasov or Boltzmann
equation when they are solved in a bounded spatial domain, and we detail the bipolar
Boltzmann equation including generation–recombination processes.

Spatial boundary conditions. Usually, a semiconductor device is considered in a
bounded position domain so that appropriate boundary conditions for the spatial
variable have to be imposed. Let Ω ⊂ R

3 be a bounded domain. Its boundary ∂Ω
is supposed to be decomposed into two classes of boundary segments: the union of
contacts ΓD through which carriers enter or exit and the union of insulating boundary
parts ΓN , i.e., ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = /0.

Let f (x,k, t) be a distribution function, for instance, the solution of the Vlasov
or the Boltzmann equation. A boundary condition for these equations has to be
imposed on the sets on which the (spatial) characteristics point into Ω . These sets
are subsets of either ΓD or ΓN . We define the Dirichlet inflow boundary

Γ −
D = {(x,k) : x ∈ ΓD, k ∈ B, v(k) ·η(x) < 0},

and the Neumann “inflow” boundary

Γ −
N = {(x,k) : x ∈ ΓN , k ∈ B, v(k) ·η(x) < 0},

where η(x) is the exterior normal unit vector at x ∈ ∂Ω . At the Dirichlet inflow
boundary, the particle distribution function is supposed to be known,

f (x,k,t) = fD(x,k,t) for (x,k) ∈ Γ −
D , t > 0. (4.33)

At the insulating boundary parts, the carriers do not enter or exit the boundary but
they are reflected. Assuming elastic specular reflection, the distribution function on
the Neumann “inflow” boundary has the property

f (x,k,t) = f (x,k′,t), for (x,k) ∈ Γ −
N , t > 0, (4.34)
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where k′ is such that v(k′) = v(k)− 2(v(k) ·η(x))η(x). The Vlasov or Boltzmann
equation is then solved with the initial condition f (x,k,0) = fI(x,k) for (x,k) ∈
Ω ×B and the boundary conditions (4.33) and (4.34).

In gas dynamics, also another reflecting boundary condition is known, the diffu-
sive reflection. Here, the distribution function at the Neumann boundary is equal to
the corresponding Maxwellian,

f (x,k,t) = ρσ f (x,t)e−E(k)/kBT for (x,k) ∈ Γ −
N , t > 0,

where ρ > 0 is a constant and

σ f (x,t) =
∫

v(k)·η(x)>0
(v(k) ·η(x)) f (x,k, t)

dk
4π3

(see [48]). A linear combination of specular and diffusive reflection is also possible,

f (x,k,t) = (1−α) f (x,k′,t)+ αρσ f (x, t)e−E(k)/kBT ,

where (x,k) ∈ Γ −
N , t > 0, and the parameter 0 ≤ α ≤ 1 is called the accommodation

constant.
Under the inflow boundary conditions, we cannot expect to have conservation

of the carrier number. Instead, by the divergence theorem, the rate of change is the
difference of the incoming and outgoing fluxes,

d
dt

∫

Ω

∫

B
f (x,k,t)dk dx =

∫

Γ −
D

(v(k) ·η) fD ds−
∫

Γ +
D

(v(k) ·η) f ds,

where Γ +
D is defined as Γ −

D with v(k) ·η > 0 instead of v(k) ·η < 0.
If the Vlasov–Poisson or Boltzmann–Poisson problem (see Sect. 3.2 or 4.1, re-

spectively) is studied, we need also to impose boundary conditions for the force
field Eeff. We assume that there exists a potential V such that Eeff = −∇xV and we
impose boundary conditions for V . The potential is given at the contacts and the
normal component of the electric field −∇xV vanishes at the insulating boundary
parts,

V = VD on ΓD, ∇xV ·η = 0 on ΓN , t > 0.

Bipolar model. So far we have only considered the transport of electrons in the
conduction band. However, holes in the valence band also contribute to the carrier
flow in the semiconductor (see Sect. 1.4). It is possible that an electron moves from
the valence band to the conduction band, leaving a hole behind it in the valence
band. This process is called the generation of an electron–hole pair (see Fig. 4.2).
The electron has to overcome the energy gap, which is of the order of 1 eV. On
the other hand, the thermal energy of an electron is only of the order of kBT ≈
0.026 eV at room temperature. Therefore, a lot of absorption energy is necessary
for such processes. The inverse process of an electron moving from the conduction
to the valence band, occupying an empty state, is termed the recombination of an
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Fig. 4.2 Recombination (left) and generation (right) of an electron–hole pair

electron–hole pair. In such an event, energy is emitted. The basic mechanisms for
generation–recombination processes are

• Auger/impact ionization generation–recombination,
• radiative generation–recombination,
• thermal generation–recombination.

An Auger process is defined as an electron–hole recombination followed by a trans-
fer of energy to a free carrier which is excited to a state of higher energy. The inverse
Auger process, i.e., the generation of an electron–hole pair, is called impact ioniza-
tion. The energy for the pair generation comes from the collision of a high-energetic
free carrier with the lattice or from electron–electron or hole–hole collisions. When
an electron from the conduction band recombines with a hole from the valence band
and emits a photon, we call this process radiative recombination. The energy of the
photon is equal to the band-gap energy. Radiative generation occurs when a photon
with energy larger than or equal to the gap energy is absorbed. These processes are
of importance in narrow-gap semiconductors. A third source of energy comes from
lattice vibrations or phonons. Thus, thermal recombination or generation arises from
phonon emission or absorption, respectively.

The recombination–generation operator is derived, like the collision operator in
Sect. 4.1, from phenomenological considerations following [49, Chap. 1.6]. The
generation of an electron in the state k and a hole in the state k′ is possible if both
states are not occupied, and its rate is given by

g(x,k′,k)(1− fn)(1− f ′p),

where g(x,k′,k) ≥ 0 is the generation rate, fn = fn(x,k, t) the electron distribution
function and f ′p = fp(x,k′,t) the hole distribution function. The rate of recombina-
tion of an electron at state k and a hole at state k′ equals

r(x,k,k′) fn f ′p,
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where r(x,k,k′) ≥ 0 is the recombination rate. The net rate is the difference of gen-
eration and recombination rates,

g(x,k′,k)(1− fn)(1− f ′p)− r(x,k,k′) fn f ′p.

The recombination–generation operator for electrons in the conduction band is the
integral over all states k′:

(In( fn, fp))(x,k,t) =
∫

B

(
g(x,k′,k)(1− fn)(1− f ′p)− r(x,k,k′) fn f ′p

)
dk′. (4.35)

In a similar way, the recombination–generation operator for holes in the valence
band can be written as

(Ip( fn, fp))(x,k,t) =
∫

B

(
g(x,k,k′)(1− f ′n)(1− fp)− r(x,k′,k) f ′n fp

)
dk′. (4.36)

The recombination and generation rates are related by the equation

r(x,k,k′) = exp

(
En(k)−Ep(k′)

kBT

)

g(x,k′,k), (4.37)

which can be derived from the principle of detailed balance like (4.14) assuming
Maxwell–Boltzmann statistics. This principle holds here since recombination and
generation balance in thermal equilibrium.

The operators (4.35) and (4.36) are added to the electron and hole collision op-
erators. Then, the evolution of the distribution functions fn and fp is given by the
system of Boltzmann equations

∂t fn + vn(k) ·∇x fn − q
h̄

Eeff ·∇k fn = Qn( fn)+ In( fn, fp), (4.38)

∂t fp + vp(k) ·∇x fp +
q
h̄

Eeff ·∇k fp = Qp( fp)+ Ip( fn, fp), (4.39)

with the velocities

vn(k) =
1
h̄

∇kEn(k), vp(k) =
1
h̄

∇kEp(k),

and En and Ep are the conduction and valence band energies, respectively. Denot-
ing by

n(x, t) =
∫

B
fn(x,k,t)

dk
4π3 and p(x,t) =

∫

B
fp(x,k, t)

dk
4π3

the electron and hole densities, respectively, the effective-field equation (4.3)
becomes

Eeff(x,t) = Eext(x,t)+
∫

R3
(n(ξ ,t)− p(ξ , t))E0(x,ξ )dξ , (4.40)
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since electrons and holes have charges with opposite sign. Equations (4.38), (4.39),
and (4.40), together with the collision operators (4.2), and (4.35), (4.36) are called
the semi-classical bipolar Boltzmann model.

The bipolar model has an additional nonlinearity due to the coupling between
the electron and hole distribution functions through (4.35) and (4.36). In partic-
ular, the total number of each type of particles is not conserved anymore since
recombination–generation effects can take place. However, the total space charge
n− p−C is conserved if the doping atoms are immobile, i.e., C is a function of
the space variable x only. Indeed, taking the difference of the Boltzmann equations
(4.38) and (4.39) and integrating over (x,k) ∈ R

3 ×B yields

d
dt

∫

R3
(n− p−C(x))dx =

∫

R3

∫

B
(In( fn, fp)− Ip( fn, fp))dk dx = 0,

by arguing as in the proof of the first part of Proposition 4.1.
Finally, we discuss two special cases. In the low-density approximation fn, fp �

1 we can write the recombination–generation operators as

(In( fn, fp))(x,k,t) =
∫

B
g(x,k′,k)

(
1− e(En(k)−Ep(k′))/kBT fn f ′p

)
dk′, (4.41)

(Ip( fn, fp))(x,k,t) =
∫

B
g(x,k,k′)

(
1− e(En(k′)−Ep(k))/kBT f ′n fp

)
dk′, (4.42)

using (4.37). In the case of Coulomb forces in R
3, the effective field is given by

Eeff(x,t) =
1

4πεs

∫

R3
ρ(y,t)

x− y
|x− y|3 dy,

where the total space charge ρ is the sum of the electron density n, the hole den-
sity p, and the densities Nd , Na of the implanted positively charged donor ions and
the negatively charged acceptor ions, respectively, with which the semiconductor
material is doped (see Sect. 1.6), weighted by the corresponding charges q or −q,

ρ = q(−n + p−Na + Nd).

Defining the electrostatic potential V by Eeff = −∇V and the doping profile C =
Nd −Na, we can replace the effective-field equation (4.40) by the Poisson equation

εsΔV = q(n− p−C) in R
3. (4.43)

The Boltzmann equations (4.38) and (4.39) and the Poisson equation (4.43) consti-
tute the so-called bipolar Boltzmann–Poisson system. For a mathematical analysis
of the bipolar model including recombination–generation terms (H-theorems, exis-
tence and uniqueness of smooth solutions), we refer to [11].
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Part III
Macroscopic Semi-Classical Models



The following chapters are concerned with the formal derivation of semi-classical
macroscopic transport models for semiconductors. As detailed in Chap. 2, there are
two classes of macroscopic equations: diffusive and hydrodynamic models whose
complexity is distinguished by the number of moments involved in the derivation.
We begin with the derivation of diffusive equations, starting from the most sim-
ple ones, the drift-diffusion equations which involve a single moment, the particle
density. Then the energy-transport equations for two moments, the particle density
and the energy density, are studied. Employing more than two moments leads to
so-called higher-order diffusive moment models. Furthermore, the hydrodynamic
semiconductor equations involving three moments, the particle density, momentum,
and energy density, and their extensions are derived.



Chapter 5
Drift-Diffusion Equations

This and the following chapters are concerned with the formal derivation of
semi-classical macroscopic transport models from the semiconductor Boltzmann
equation. We start in this chapter with the derivation of drift-diffusion equations,
which are the simplest semiconductor model in the hierarchy. It was first derived
by van Roosbroeck in 1950 [1]. We derive the model using the moment method in-
troduced in Chap. 2. A derivation using a simple collision operator was presented
in Sect. 2.4. In this chapter, we will employ the low-density operator (4.22). The
derivation was made rigorous by Poupaud [2].

5.1 Derivation from the Boltzmann Equation

The starting point of the derivation is the semiconductor Boltzmann equation (4.1)
for the distribution function f = f (x,k,t),

∂t f + v(k) ·∇x f +
q
h̄

∇xV ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0, (5.1)

with the initial datum f (·, ·,0) = fI in R
3 ×B, together with the Poisson equation

for the electric potential V ,

εsΔV = q(n−C(x)),

where v(k) = ∇kE/h̄ denotes the group velocity with the energy band E(k) depend-
ing on the pseudo-wave vector k, Q( f ) the collision operator, n =

∫
B f dk/4π3 the

electron density, C = C(x) the doping profile, and B the Brillouin zone.

Scaling of the Boltzmann–Poisson system. Before we explain the assumptions
needed to derive the drift-diffusion model, we scale the Boltzmann equation in or-
der to identify small parameters. We proceed similarly as in Sect. 2.4. We introduce
the domain diameter L, the mean free path λ , which is the distance a particle travels

Jüngel, A.: Drift-Diffusion Equations. Lect. Notes Phys. 773, 99–127 (2009)
DOI 10.1007/978-3-540-89526-8 5 c© Springer-Verlag Berlin Heidelberg 2009
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between two consecutive scattering events, and the reference length λ0 =
√

Lλ . Fur-
thermore, we define the reference velocity v0 =

√
kBTL/m∗ and the reference po-

tential UT , where TL is the lattice temperature and UT = kBTL/q the thermal voltage.
This means that the kinetic energy m∗v2

0/2, the electric energy qUT , and the ther-
mal energy kBTL are of the same order. Thus, we consider the case of small electric
fields only. The time, which a particle with the typical velocity v0 needs to cross the
domain, equals τ0 = L/v0, and the typical time between two consecutive collisions
is τ = λ/v0. We use the reference wave vector k0 = m∗v0/h̄, corresponding to the
momentum h̄k0 = m∗v0. Thus, the variables are scaled as follows:

t = τ0ts, x = λ0xs, k = k0ks, v(k) = v0vs(ks), V = UTVs,

where ts, xs, ks, etc., are the scaled quantities. Finally, the collision operator is as-
sumed to be of order 1/τ:

Q( f ) =
1
τ

Qs( f ).

With this scaling, the Boltzmann equation (5.1) becomes, omitting the index “s”,

α2∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Q( f ), (5.2)

where α = λ/λ0 =
√

λ/L is the ratio between the mean free path and the reference
length. Scaling the particle and doping concentrations by k0, the Poisson equation
becomes

λ 2
DΔV = n−C(x), (5.3)

where

λ 2
D =

εsUT

qλ 2
0 k0

(5.4)

is the (squared) scaled Debye length.
Now, we are able to specify our assumptions, following [2] (also see [3]):

1. The energy band is given by the parabolic band approximation E(k) = Ec +
h̄2|k|2/2m∗, where Ec is the conduction band minimum.

2. The collision operator is given by the low-density approximation (see (4.22))

(Q( f ))(x,k,t) =
∫

B
σ(x,k,k′)(M f ′ −M′ f )dk′,

where the collision cross-section σ(x,k,k′) is positive and symmetric in k′ and k,
M(k) = e−E(k)/kBTL is the Maxwellian, and f ′ = f (k′), M′ = M(k′).

3. The mean free path is very small compared to the device diameter, i.e., α � 1.

The first assumption implies that the mean velocity can be written as v(k) =
h̄k/m∗. Furthermore, as explained in Sect. 1.6, we can extend the Brillouin zone to
the whole space and write B = R

3 in the continuum limit. The second condition
prescribes a linear collision operator which excludes nondegenerate materials. The
diffusion approximation of the Boltzmann equation with degenerate Fermi–Dirac
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statistics was performed by Golse and Poupaud [4]. The third hypothesis means that
collisions occur frequently in the material.

In the parabolic band approximation, the scaled velocity becomes v(k) = k and
the scaled collision operator can be written as

(Q( f ))(x,k,t) =
∫

R3
s(x,k,k′)(M f ′ −M′ f )dk′, (5.5)

where we have set s(x,k,k′) = Ne−Ec/kBTL σ(x,k,k′), the scaled Maxwellian equals
M(k) equals N−1e−|k|2/2, and N = 2(2π)−3/2 is such that the Maxwellian is normal-
ized, i.e.,

∫
R3 M(k)dk/4π3 = 1.

Properties of the collision operator. In Chap. 2 we have mentioned that the deriva-
tion of diffusive models is based on some properties of the collision operator Q.
More precisely, we need to analyze its kernel N(Q) and its range R(Q), where

N(Q) = { f : Q( f ) = 0}, R(Q) = {g : there exists f such that Q( f ) = g}.

To this end, we introduce, for fixed x ∈ R
3, the total cross-section,

S(k) =
∫

R3
s(x,k,k′)M(k′)dk′, k ∈ R

3,

and the Banach spaces X and Y , which consist of all measurable functions f : R
3 →

R such that ‖ f‖X and ‖ f‖Y are finite, where

‖ f‖2
X =

∫

R3
f (k)2S(k)M(k)−1 dk,

‖ f‖2
Y =

∫

R3
f (k)2S(k)−1M(k)−1 dk.

By Proposition 4.2 (3), the kernel of Q is spanned by the Maxwellian M(k). For
the analysis of the range of Q, we employ the following version of the Fredholm
alternative.

Lemma 5.1 (Fredholm alternative). Let X be a Hilbert space and Q : X → X be a
linear, continuous, and closed operator (i.e., R(Q) is closed). Then

Q( f ) = g has a solution if and only if g ∈ N(Q∗)⊥.

Here, Q∗ denotes the adjoint operator of Q and N(Q∗)⊥ is the orthogonal com-
plement of N(Q∗). We refer to, e.g., [5] for the functional analytical details and a
proof of the Fredholm alternative.

The following lemma is a consequence of the Fredholm alternative.

Lemma 5.2. Let the collision operator Q be given by (5.5).
(1) The equation Q( f ) = g has a solution f ∈ X if and only if
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∫

R3
g(k)dk = 0.

In this situation, any solution of Q( f ) = g can be written as f +nM, where n = n(x)
is a parameter.

(2) The solution f ∈ X of Q( f ) = g is unique if the orthogonality relation
∫

R3
f (k)S(k)dk = 0 (5.6)

is satisfied.

Proof. (1) First we symmetrize the collision operator (5.5) by setting fs =
√

S/M
f and Qs( fs) = (SM)−1/2Q( f ). Then

Qs( fs) =
1√
SM

(

M
∫

R3
s(x,k,k′) f ′ dk′ −S f

)

=
∫

R3
s(x,k,k′)

(
MM′

SS′

)1/2

f ′s dk′ − fs.

Since s is symmetric in k and k′ by assumption, the operator Qs : L2(R3) → L2(R3)
is symmetric and self-adjoint. It is possible to prove that Qs is closed. By the Fred-
holm alternative, Qs( fs) = gs has a solution in L2(R3) if and only if gs ∈ N(Q∗

s )
⊥ =

N(Qs)⊥ which means that
∫

R3
gshdk = 0 for all h ∈ N(Qs).

The kernel of Qs is spanned by
√

S/MM =
√

SM, such that the above relation is
equivalent to

0 =
∫

R3
gs

√
SM dk =

∫

R3
gdk,

since in the original variables we have g = Q( f ) =
√

SMQs( fs) =
√

SMgs.
Let f1 and f2 be two solutions of Q( f ) = g. Then, since Q is linear, Q( f1− f2)= 0

and thus, f1 − f2 ∈ N(Q). This shows that f2 = f1 + nM for some n = n(x).
(2) We only give a sketch of the proof and refer to [2] for details. It is possible to

show that −Qs is coercive on N(Qs)⊥:

−
∫

R3
Qs( fs) fs dk ≥ c‖ fs‖2

L2(R3) for all fs ∈ N(Qs)⊥,

where c > 0 is some constant. The proof is based on the fact that Id+Qs is a Hilbert–
Schmidt operator. The coercivity property implies that Qs (and also Q) is one to one
on N(Qs)⊥, which proves the uniqueness of solutions on this set. 	


Finally, we prove some properties of the solution of the operator equations:

Q(hi) = kiM(k), i = 1,2,3. (5.7)
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These equations have solutions, due to Lemma 5.2, since the functions ki �→ kiM(k)
are odd and hence their integrals vanish. The solutions are unique in the space of
functions hi satisfying

∫
R3 hi(k)S(k)dk = 0. We set h = (h1,h2,h3)�.

Lemma 5.3. Assume that the collision cross-section is invariant with respect to iso-
metric operations, i.e., for all isometric matrices A ∈ R

3×3 it holds:

σ(x,Ak,Ak′) = σ(x,k,k′) for all x, k, k′ ∈ R
3. (5.8)

Then there exists a scalar function μ0(x) ≥ 0 such that the solutions hi of (5.7)
satisfy ∫

R3
k⊗h

dk
4π3 = −μ0(x)Id, (5.9)

where k⊗h is the matrix with components kih j and Id is the identity matrix in R
3×3.

In the statement of the lemma, we have omitted some technical (regularity) as-
sumptions on the collision cross-section σ . Details can be found in [2].

Proof. Let A be the matrix of a rotation about the axis k1. Then (Ak)1 = k1 for all
k ∈ R

3. Since A is isometric, i.e., |Ak| = |k|, we obtain M(Ak) = N−1e−|Ak|2/2 =
N−1e−|k|2/2 = M(k) and (Ak)1M(Ak) = k1M(k). This implies, together with as-
sumption (5.8) and the transformation w = Ak′ with dw = |detA|dk′ = dk′,

(Q(h1 ◦A))(k) =
∫

R3
s(x,k,k′)

(
M(k)h1(Ak′)−M(k′)h1(Ak)

)
dk′

=
∫

R3
s(x,Ak,Ak′)

(
M(Ak)h1(Ak′)−M(Ak′)h1(Ak)

)
dk′

=
∫

R3
s(x,Ak,w)(M(Ak)h1(w)−M(w)h1(Ak)) dw

= (Q(h1))(Ak) = (Ak)1M(Ak) = k1M(k) = (Q(h1))(k),

and thus Q(h1 ◦A−h1) = 0. Another computation yields
∫

R3
h1(Ak)S(k)dk =

∫

R3

∫

R3
s(x,k,k′)h1(Ak)M(k′)dk′ dk

=
∫

R3

∫

R3
s(x,Ak,Ak′)h1(Ak)M(Ak′)dk′ dk

=
∫

R3

∫

R3
s(x,v,w)h1(v)M(w)dwdv =

∫

R3
h1(v)S(v)dv

and hence ∫

R3
(h1 ◦A−h1)S dk = 0.

This is the orthogonality condition (5.6) which ensures the uniqueness of the so-
lution of Q(h1 ◦ A − h1) = 0. Therefore, h1 ◦ A − h1 = 0. We conclude that h1

remains invariant under a rotation about the axis k1. In particular, we can write
h1(k) = H1(k1, |k|2 − k2

1) for some function H1.
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Now, let A be the isometric matrix corresponding to the linear mapping k �→
(−k1,k2,k3). Since k �→ k1M(k) is odd, a similar computation as above gives Q(h1 ◦
A) = −Q(h1) and ∫

R3
(h1 ◦A + h1)S dk = 0.

This implies that h1 ◦A + h1 = 0. Thus, h1 is an odd function with respect to k1.
In a similar way, we can show that hi(k) = Hi(ki, |k|2 − k2

i ) for i = 2,3 and Hi

are odd functions with respect to the first argument. In fact, all the functions Hi are
equal since, for instance, exchanging k1 and k2 in

Q(H1(k1,k
2
2 + k2

3)) = k1M(k2
1 + k2

2 + k2
3)

(with a slight abuse of notation) leads to

Q(H1(k2,k
2
1 + k2

3)) = k2M(k2
1 + k2

2 + k2
3) = Q(H2(k2,k

2
1 + k2

3))

or Q(H1 −H2) = 0 and thus, H1 = H2. We set H = H1.
Since H is odd with respect to its first argument and |k|2 −k2

j does not depend on
k j, we obtain

∫

R3
kih j(k)dk =

∫

R3
kiH(k j, |k|2 − k2

j)dk = 0 for all i �= j. (5.10)

Furthermore,
∫

R3
kihi(k)dk =

∫

R3
kiH(ki, |k|2 − k2

i )dk =
∫

R3
k jH(k j, |k|2 − k2

j)dk

=
∫

R3
k jh j(k)dk for all i, j.

This means that the integral is independent of i, and we can set

μ0 = −
∫

R3
k1h1(k)

dk
4π3 = −

∫

R3
Q(h1)h1M−1 dk

4π3 .

The parameter μ0 depends on x since h1 depends on x through Q. We have proved
in (4.24) that ∫

R3
Q( f )χ( f/M)dk ≤ 0 for all f

and all nondecreasing functions χ . Choosing χ(x) = x shows that

μ0(x) = −
∫

R3
Q(h1)h1M−1 dk

4π3 ≥ 0,

and, in view of (5.10), we have shown (5.9). 	


Derivation of the drift-diffusion equations. Now, we are in the position to de-
rive the drift-diffusion model. The general strategy is explained in Chap. 2. The
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derivation consists of three steps. Let ( fα ,Vα) be a solution of the scaled Boltzmann–
Poisson system (5.2) and (5.3). We assume that fα , Vα , and their derivatives con-
verge, as α to 0, to f , V , and their corresponding derivatives.

First, we perform the (formal) limit α → 0 in (5.2). This yields

Q( f ) = 0. (5.11)

Since the kernel is spanned by the Maxwellian, f = n(x,t)M, where n(x, t) =∫
R3 f (x,k,t)dk/4π3 (notice that the Maxwellian is normalized).

For the second step, we introduce the Chapman–Enskog expansion fα = nM +
αgα . (This equation has to be considered as a definition of gα .) Inserting the expan-
sion in the Boltzmann equation (5.2) gives, after division by α ,

α∂t(nM + αgα)+ (k ·∇x(nM)+ ∇xVα ·∇k(nM))
+ α(k ·∇xgα + ∇xVα ·∇kgα) = Q(gα),

since Q(nM) = nQ(M) = 0. We perform the limit α → 0 to obtain

Q(g) = k ·∇x(nM)+ ∇xV ·∇k(nM) = (∇xn−n∇xV ) · kM, (5.12)

where g = limα→0 gα . This operator equation is of the form (5.7), since ∇xn−n∇xV
is a function of (x,t) only and Q is linear.

In the third step, we derive the evolution equations. Integrating the Boltzmann
equation (5.2) and inserting the Chapman–Enskog expansion give, employing the
notation 〈 f 〉 =

∫
R3 f dk/4π3,

∂t〈nM〉+ α∂t〈gα〉+ α−1divx〈k(nM)〉+ divx〈kgα 〉 = 0.

Here, we have used that 〈∇xV ·∇k fα 〉 = 0 and 〈Q( fα )〉 = 0. Since k �→ kM(k) is an
odd function, also the integral 〈k(nM)〉 vanishes. Thus, performing the limit α → 0,

∂tn + divx〈kg〉 = 0. (5.13)

The flux Jn = −〈kg〉 can be computed in terms of n and ∇xV . More precisely, we
have the following result.

Theorem 5.4 (Drift-diffusion equations). Let the assumptions at the beginning of
this section hold, assume (5.8), and let ( fα ,Vα) be a solution of the Boltzmann–
Poisson system (5.2) and (5.3). Then the limit f = limα→0 fα , V = limα→0 Vα satis-
fies the drift-diffusion equations

∂t n−divJn = 0, Jn = μ0(∇n−n∇V), (5.14)

λ 2
DΔV = n−C(x), x ∈ R

3, t > 0,

where μ0(x) ≥ 0 comes from Lemma 5.3 and n =
∫
R3 f dk/4π3 is the electron den-

sity, satisfying n(·,0) =
∫
R3 fI dk/4π3.
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The current density is the sum of the drift current −μ0n∇V and the diffusion
current μ0∇n, which explains the name of the model. The quantity μ0 is called the
(scaled) electron mobility.

Proof. In view of (5.13), we have already proved the first equation in (5.14). In order
to prove the second one, we employ Lemma 5.3. Let hi be a solution of Q(hi) = kiM
(i = 1,2,3) and set h = (h1,h2,h3)�. Then g = (∇xn−n∇xV ) ·h solves (5.12) and,
by (5.9),

Jn = −〈kg〉 = −〈k⊗h〉(∇xn−n∇xV ) = μ0(∇xn−n∇xV ).

The limiting Poisson equation follows directly from (5.3) for V = Vα in the formal
limit α → 0. 	


The unscaled equations are obtained by scaling back to the physical variables.
Employing the reference electron mobility μn,ref = qτ/m∗ and the reference current
density Jn,ref = qUT k0μn,ref/λ0, a calculation yields

∂t n−q−1divJn = 0, Jn = qμn(UT ∇n−n∇V),

εsΔV = q(n−C(x)), x ∈ R
3, t > 0.

These equations have to be complemented by initial conditions for the particle den-
sity:

n(x,0) = nI(x), x ∈ R
3.

Remark 5.5 (Hilbert expansion). The derivation of the drift-diffusion equations in
[2] is slightly different from ours. In fact, the model can also be derived from the
Hilbert expansion method. The idea of this technique is to develop the solution fα
of the Boltzmann equation formally in terms of powers of α:

fα = f0 + α f1 + α2 f2 + · · · .

Inserting this expansion into the Boltzmann equation (5.2), using the linearity of
the collision operator, and identifying coefficients of equal powers of α yield the
following equations:

terms in α0 : Q( f0) = 0, (5.15)

terms in α1 : Q( f1) = k ·∇x f0 + ∇xV ·∇k f0, (5.16)

terms in α2 : Q( f2) = ∂t f0 + k ·∇x f1 + ∇xV ·∇k f1. (5.17)

The first equation (5.15) corresponds to (5.11) and shows that f0 is a multiple of
the Maxwellian, f0 = n(x)M. By Lemma 5.3, the second equation (5.16), which
corresponds to (5.12), can be inverted, and the proof of Theorem 5.4 shows that the
first moment of f1 is given by 〈k f1〉 = −μ0(∇xn−n∇xV ). Finally, the conservation
law (5.13) is obtained from the third equation (5.17) after integration over k ∈ R

3

since this equation is solvable, by Lemma 5.2, if and only if its integral with respect
to k vanishes. 	
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The derivation of the drift-diffusion equations from the semiconductor Boltz-
mann equation is extensively studied in the mathematical literature. Poupaud has
proved the convergence toward the linear drift-diffusion model [2]. In the one-
dimensional case, this convergence result was extended by Ben Abdallah and Tayeb
to the Boltzmann equation with Poisson coupling [6]. A generalization of [6] to the
multi-dimensional Boltzmann–Poisson system was performed by Masmoudi and
Tayeb [7].

In the above mentioned papers, the low-density collision operator with smooth
collision cross-section was considered. The diffusion approximation from the Boltz-
mann equation for degenerate Fermi–Dirac statistics was studied by Poupaud and
Schmeiser [8] and for the degenerate Boltzmann–Poisson system by Golse and
Poupaud [4]. Singular cross-sections, modeling electron–phonon scattering, are
admissible in the papers of Markowich and Schmeiser [9] for linear collision op-
erators and of Markowich, Poupaud, and Schmeiser [10] for nonlinear operators.
Furthermore, Ben Abdallah and Tayeb [11] have proved the diffusion limit from
the Boltzmann equation with a spatially oscillating electric potential with an oscil-
lation period being of the same order as the mean free path. Finally, we mention
that the drift-diffusion model can also be derived from the Vlasov–Fokker–Planck
system [12].

The drift-diffusion equations were first proposed by Van Roosbroeck in 1950
[1]. The first computational solution was presented in 1964 by Gummel [13]
and improved some years later by Scharfetter and Gummel [14]. The developed
Scharfetter–Gummel scheme was interpreted as a mixed finite-element method
[15, 16]. Later, finite-volume discretizations were developed [17, 18]. The first
mathematical papers devoted to the drift-diffusion model appeared at the beginning
of the 1970s. Mock analyzed the stationary equations in [19] and the transient prob-
lem with Neumann boundary conditions in [20]. The global existence and unique-
ness of solutions under realistic physical and geometrical conditions was proved by
Gajewski and Gröger [21]. A drift-diffusion model involving Fermi–Dirac statistics
was analyzed in [22] (existence of global solutions) and [23] (uniqueness of sta-
tionary solutions). We refer to [24, 25] for more analytical results for this model
and [26–28] for numerical reviews. The modeling aspects are summarized in, for
instance, [29, 30].

The above drift-diffusion model is formulated in the whole space. Since a
semiconductor occupies a bounded domain, one may ask what happens with the
kinetic boundary conditions in the diffusion limit. Let Ω ⊂ R

3 be a bounded do-
main and define as in Sect. 4.3 the inflow boundary

Γ − = {(x,k) ∈ ∂Ω ×R
3 : k ·η(x) < 0},

where η(x) is the exterior unit normal vector at x ∈ ∂Ω . The kinetic boundary con-
dition then reads as

f (x,k,t) = fD(x,k,t), (x,k) ∈ Γ −, t > 0.
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Assuming that the boundary function can be written as fD(x,k, t) = g(x, t)M(k)
for some function g(x,t), Poupaud [2] showed that the solution fα of (5.2) converges
to n(x,t)M in the sense

‖( fα −nM)(t)‖L1(Ω×R3) ≤ cα for 0 < t ≤ T,

where c > 0 depends on T , and the boundary conditions become n = g on ∂Ω . A
similar result was proved in [7]. The proof is based on the solution of a half-space
(Milne) problem, which provides a boundary layer correction. With this correction,
the electron density solves Dirichlet boundary conditions. This result can be im-
proved by correcting the Dirichlet condition by a term of the order of the mean
free path proportional to the current density (first-order boundary correction). It was
shown by Yamnahakki [31] that the electron density satisfies the Robin boundary
conditions

n− γJn ·η = g on ∂Ω , t > 0,

where the (scaled) extrapolation length γ > 0 is determined from the solution of the
Milne problem. A second-order boundary correction was derived and numerically
compared to lower-order corrections in [32]. However, we are not aware of rigor-
ous derivations of mixed Dirichlet–Neumann boundary conditions from the kinetic
boundary.

The derivation of the drift-diffusion model is mainly based on the following
hypotheses:

• The mean free path λ between two consecutive scattering events is much smaller
than the reference length λ0. Typically, the mean free path is of the order 10−7 m.

• The electric potential is of the order of UT = 0.026V (at T = 300K).

Thus, the drift-diffusion model is appropriate for semiconductor devices with
characteristic lengths not much smaller than about 1 μm= 10−6 m and applied volt-
ages much smaller than 1V. However, in applications this model is also used for
higher applied voltages (including high-field corrections; see Sect. 5.4). It gives rea-
sonable results as long as the characteristic length is not much smaller than about
1μm.

5.2 The Bipolar Model

The bipolar drift-diffusion equations are derived from the bipolar Boltzmann–
Poisson system (4.38), (4.39), and (4.43) in the vanishing scaled mean free path
limit similarly as in Sect. 5.1. In this section, we sketch the derivation of the bipolar
model by emphasizing the differences from the previous section.

One main difference concerns the definition of the reference time τR, which is
now given by the typical time between two consecutive recombination–generation
events. Defining as in the previous section the reference velocity v0 =

√
kBTL/m∗,

the mean free path between two recombination–generation processes is λR = τRv0.
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With the mean free path λ between two collision events, we define the reference
length by λ0 =

√
λRλ (instead of the geometric average of the device diameter and

the mean free path λ , as was done in Sect. 5.1). The reference time τR is of the order
10−9 s, whereas the collision time τ = λ/v0 is of the order 10−12 s [3, p. 86]. Thus,
the ratio α2 = (λ/λ0)2 = τ/τR is much smaller than one.

We assume that the energy band is approximated by the parabolic band diagram,
that the collision operator is given by the low-density approximation, and that α �
1. The collision operator is assumed to be of order 1/τ , and the recombination–
generation terms are supposed to be of order 1/τR:

Q j( f j) =
1
τ

Q j,s( f j), I j( fn, fp) =
1
τR

Ij,s( fn, fp), j = n, p,

where the scaled quantities are denoted by the index “s”. Then the scaled bipolar
Boltzmann–Poisson system for the electron and hole distribution functions fn and
fp, respectively, and the electric potential V reads as follows (omitting the index
“s”):

α2∂t fn + α (k ·∇x fn + ∇xV ·∇k fn) = Qn( fn)+ α2In( fn, fp), (5.18)

α2∂t fp + α (β k ·∇x fp −∇xV ·∇k fp) = Qp( fp)+ α2Ip( fn, fp), (5.19)

λ 2
DΔVα = n− p−C(x), x,k ∈ R

3, t > 0, (5.20)

where β = m∗
e/m∗

h is the ratio of the effective masses of electrons and holes,
n =

∫
R3 fn dk/4π3 the electron density, and p =

∫
R3 fp dk/4π3 the hole density. The

linear collision operators are given by

Q j( f j) =
∫

R3
s j(x,k,k′)

(
Mj f ′j −M′

j f j
)

dk′, j = n, p,

where

sn(x,k,k′) = Nne−Ec/kBTL σn(x,k,k′), sp(x,k,k′) = Npe−Ev/kBTL σp(x,k,k′),

the scaled and normalized Maxwellians read as Mn(k) = N−1
n e−|k|2/2, Mp(k) =

N−1
p e−β |k|2/2, and Nn = 2(2π)−3/2, Np = 2(2π/β )−3/2 are the normalization con-

stants. We recall that Ec and Ev are the conduction band minimum and the valence
band maximum, respectively. Finally, the recombination–generation terms are

(In( fn, fp))(x,k,t) =
∫

R3
g(x,k′,k)

(

1− e(Ec−Ev)/kBTL
fn f ′p

NnNpMnM′
p

)

dk′,

(Ip( fn, fp))(x,k,t) =
∫

R3
g(x,k,k′)

(

1− e(Ec−Ev)/kBTL
f ′n fp

NnNpM′
nMp

)

dk′,

where g(x,k,k′) is the generation rate. Then, Lemmas 5.2 and 5.3 still hold for the
collision operators Qn and Qp, i.e., the kernel of Q j is spanned by Mj, the equation
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Q j( f j) = g j has a solution if and only if
∫
R3 g j dk = 0, and the solutions of the

equations Qn(hn) = kMn(k) and Qp(hp) = β kMp(k) satisfy

∫

R3
k⊗hn

dk
4π3 = −μ0,n Id,

∫

R3
β k⊗hp

dk
4π3 = −μ0,p Id. (5.21)

Let ( fn,α , fp,α ,Vα) be a solution of (5.18), (5.19), and (5.20). We perform the
limit α → 0 again in three steps. The first step is the limit α → 0 in (5.18) and
(5.19), leading to

Qn( fn) = 0, Qp( fp) = 0,

where f j = limα→0 f j,α ( j = n, p). Thus, fn = nMn and fp = pMp, where n =∫
R3 fn dk/4π3 and p =

∫
R3 fp dk/4π3. In the second step we insert the Chapman–

Enskog expansion fn,α = nMn + αgn,α in the Boltzmann equation:

α∂t(nMn + αgn,α)+ (k ·∇x(nMn)+ ∇xV ·∇k(nMn))
+ α (k ·∇xgn,α + ∇xV ·∇kgn,α) = Qn(gn,α)+ αIn( fn,α , fp,α).

The limit α → 0 yields

Qn(gn) = (∇xn−n∇xV ) · kMn,

where gn = limα→0 gn,α . In a similar way, we obtain

Qp(gp) = β (∇x p + p∇xV ) · kMp,

where gp = limα→0 gp,α .
Defining the particle current densities by Jn = μ0,n(∇xn− n∇xV ) and Jp = −β

μ0,p(∇x p + p∇xV ), we have to solve the operator equations

Qn(gn) =
Jn

μ0,n
· kMn(k) and Qp(gp) = − Jp

μ0,p
· kMp(k).

Since Q j is linear, we conclude that gn = μ−1
0,n Jn ·hn +cnMn and gp =−μ−1

0,pJp ·hp +
cpMp for some real constants cn and cp. In view of (5.21), we infer that

〈kgn〉 = μ−1
0,n 〈k⊗hn〉 · Jn = −Jn, β 〈kgp〉 = −β μ−1

0,p〈k⊗hp〉 · Jp = Jp.

In the third step, the balance equations are derived. Here, the recombination–
generation integrals appear. We integrate the Boltzmann equations (5.18) and (5.19)
over the wave-vector space and insert the Chapman–Enskog expansion:

∂t〈nMn〉+ α∂t〈gn,α〉+ divx〈kgn,α〉 = 〈In( fn,α , fp,α)〉,
∂t〈pMp〉+ α∂t〈gp,α〉+ β divx〈kgp,α〉 = 〈Ip( fn,α , fp,α)〉.

The limit α → 0 then leads to



5.2 The Bipolar Model 111

∂t n + divx〈kgn〉 = 〈In(nMn, pMp)〉,
∂t p + β divx〈kgp〉 = 〈Ip(nMn, pMp)〉.

The limiting recombination–generation terms can be expressed in terms of the par-
ticle densities:

〈In(nMn, pMp)〉 =
∫

R3

∫

R3
g(x,k′,k)

(

1− e(Ec−Ev)/kBTL
np

NnNp

)

dk′ dk

= −A(x)(np−n2
i ),

where

A(x) =
1

n2
i

∫

R3

∫

R3
g(x,k′,k)dk dk′, ni = 2(2π)−3/2β 3/4e−(Ec−Ev)/2kBTL . (5.22)

In a similar way, we obtain

〈Ip(nMn, pMp)〉 =
∫

R3

∫

R3
g(x,k,k′)

(

1− e(Ec−Ev)/kBTL
np

NnNp

)

dk′ dk

= −A(x)(np−n2
i ).

Thus, we have proved the following result.

Theorem 5.6 (Bipolar drift-diffusion equations). Let the assumptions at the be-
ginning of this section hold, assume (5.8), and let ( fn,α , fp,α ,Vα) be a solution of the
bipolar Boltzmann–Poisson system (5.18), (5.19), and (5.20). Then the limit func-
tions fn = limα→0 fn,α , fp = limα→0 fp,α , and V = limα→0 Vα are a solution to the
bipolar drift-diffusion equations:

∂t n− Jn = −R(n, p), Jn = μ0,n(∇n−n∇V),
∂t p + Jp = −R(n, p), Jp = −μ0,p(∇p + p∇V),

λ 2
DΔV = n− p−C(x), x ∈ R

3, t > 0,

where
R(n, p) = A(x)(np−n2

i ),

and A(x) and ni are defined in (5.22).

Scaling back to the physical variables, we obtain the equations

∂t n− 1
q

Jn = −R(n, p), Jn = qμn(UT ∇n−n∇V), (5.23)

∂t p +
1
q

Jp = −R(n, p), Jp = −qμp(UT ∇p + p∇V), (5.24)

εsΔV = q(n− p−C(x)), x ∈ R
3, t > 0. (5.25)

The unscaled recombination–generation rate remains unchanged, but now,
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A(x) =
(

h̄2

m∗
ekBTL

)3 ∫

R3

∫

R3
g(x,k,k′)dk′ dk,

and the intrinsic density ni reads as

ni = 2

(√
m∗

em∗
hkBTL

2π h̄2

)3/2

exp

(

−Ec −Ev

2kBTL

)

.

This is exactly the value derived in Sect. 1.6 (see (1.61)).

Remark 5.7 (Shockley–Read–Hall recombination). The above expression for the re-
combination–generation term is a simplified version of the so-called Shockley–
Read–Hall recombination term

R(n, p) =
np−n2

i

τp(n + nd)+ τn(p + pd)
,

where τn and τp are the carrier lifetimes, and the densities nd and pd are defined by

nd = Nc exp

(
Et −Ec

kBTL

)

, pd = Nv exp

(
Ev −Et

kBTL

)

.

Here, Et denotes the trap energy level, and Nc and Nv are the carrier effective den-
sities of states defined in (1.58). Notice that nd pd = n2

i . By “trap level”, we mean
energy levels in the forbidden band region, caused by crystal impurities. They facil-
itate the generation of electron–hole pairs, since the jump from the valence to the
conduction band can be split into two parts, each of which requires less energy than
the gap energy. The Shockley–Read–Hall model is usually derived by assuming one
trap level and quasi-stationarity of the dynamics of the trapped electrons (see [33,
Chap. 10] or [34, Chap. 10]). A generalization to a distribution of trapped states
across the forbidden region was given in [35]. 	


5.3 Thermal Equilibrium State and Boundary Conditions

When we consider the drift-diffusion equations in a bounded domain Ω ⊂ R
3, we

need to impose some boundary conditions. Their definition is based on the notion
of thermal equilibrium, which we explain first.

Let (n, p,V ) be a solution of the unscaled drift-diffusion equations (5.23), (5.24),
and (5.25). The thermal equilibrium state is a steady state with no current flow, i.e.,

∂t n = ∂t p = 0 and Jn = Jp = 0 in Ω .

This implies R(n, p) = 0 or np = n2
i in Ω and

0 = UT ∇n−n∇V = n∇(UT lnn−V),
0 = UT ∇p + p∇V = p∇(UT ln p +V).
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It is physically reasonable to assume that the particle densities n and p are positive
in Ω . (In fact, this can be proved by employing maximum principle arguments,
assuming that the boundary data are positive; see, e.g., [25].) This yields

α = UT lnn−V = const., β = UT ln p +V = const. (5.26)

or
n = eα/UT eV/UT , p = eβ/UT e−V/UT in Ω .

We wish to determine the constants α and β . For this, we use the equation np = n2
i

and the fact that V is determined only up to an additive constant. Then the sum of
the two equations in (5.26) yields α + β = UT ln(np) = 2UT lnni and replacing V
by V + γ, where γ = UT lnni −α , gives

n = e(α+γ)/UT eV/UT = nieV/UT (5.27)

and

p = e(β−γ)/UT e−V/UT = e(β+α−UT lnni)/UT e−V/UT = nie−V/UT . (5.28)

The equilibrium potential satisfies the semilinear elliptic equation

εsΔV = q(n− p−C) = q(nie
V/UT −nie

−V/UT −C)

= q

(

2ni sinh
V

UT
−C

)

in Ω . (5.29)

Now, we can define the boundary conditions. We assume that the boundary of the
semiconductor domain consists of two parts: one part, called the Dirichlet boundary,
on which the particle densities and the potential are prescribed,

n = nD, p = pD, V = VD on ΓD, (5.30)

and the other part, the Neumann boundary, which models the insulating boundary
segments on which the normal components of the current densities and the electric
field vanish,

Jn ·η = Jp ·η = ∇V ·η = 0 on ΓN .

In view of expressions (5.23) and (5.24) for Jn and Jp, this is equivalent to

∇n ·η = ∇p ·η = ∇V ·η = 0 on ΓN . (5.31)

It remains to determine the boundary functions nD, pD, and VD. We make the
following assumptions:

• The total space charge vanishes on ΓD: nD − pD −C(x) = 0.
• The densities are in equilibrium on ΓD: nD pD = n2

i .
• The boundary potential is the superposition of the built-in potential Vbi and the

applied voltage U : VD = Vbi +U .
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Clearly, in thermal equilibrium we have U = 0. The built-in potential is the potential
corresponding to the equilibrium densities given by (5.27) and (5.28):

nD = nieVbi/UT , pD = nie−Vbi/UT . (5.32)

Substituting the equation nD − pD −C = 0 into nD pD = n2
i leads to the quadratic

equation n2
D −CnD = n2

i whose solution is given by

nD =
1
2

(

C +
√

C2 + 4n2
i

)

, pD =
1
2

(

−C +
√

C2 + 4n2
i

)

on ΓD.

Thus we infer from (5.32) that

Vbi = UT ln
nD

ni
= UT ln

(
C

2ni
+

√
C2

4n2
i

+ 1

)

= UT arsinh
C

2ni
. (5.33)

Therefore, the thermal equilibrium state (neq, peq,Veq) is the (unique) solution of
(5.29) with the boundary conditions

Veq = Vbi on ΓD, ∇Veq ·η = 0 on ΓN ,

where Vbi is given by (5.33), and

neq = nie
Veq/UT , peq = nie

−Veq/UT in Ω .

Furthermore, the drift-diffusion equations (5.23), (5.24), and (5.25) are solved with
the boundary conditions (5.30) and (5.31), where nD and pD are defined in (5.32)
and VD = Vbi +U , with Vbi given in (5.33).

5.4 High-Field Models

The drift-diffusion model in Sect. 5.1 is derived under the assumption that the ap-
plied voltage is of the order of the thermal voltage whose value, at room temperature,
is about 26 mV. High electric fields are thus excluded. In this section, we derive a
drift-diffusion model from the semi-classical Boltzmann equation

∂t f + v(k) ·∇x f +
q
h̄

∇xV ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0,

with the initial datum f (·, ·,0) = fI in R
3 ×B for high electric fields. The collision

operator is given by the low-density approximation (4.22),

(Q( f ))(x,k,t) =
∫

B
σ(x,k,k′)(M f ′ −M′ f )dk′,

where M is the Maxwellian and the collision cross-section σ(x,k,k′) is assumed to
be symmetric in k and k′. The following derivation is formally also valid for more
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general scattering terms, but the rigorous results of Poupaud [36] are only available
for the low-density operator. We assume a parabolic band structure,

v(k) = h̄k/m∗, k ∈ R
3.

Then the Maxwellian reads as M = 1
2(2π)3/2e−|k|2/2. Up to the solution of certain

operator equations (see (5.36) below), the derivation formally holds for general band
diagrams.

First, we scale the Boltzmann equation. We introduce the average relaxation
time τ ,

1
τ

=
∫

R3
σ(x,k,k′)MM′ dk′,

the thermal velocity v0 =
√

kBTL/m∗, and the mean free path λ = v0τ . The refer-
ence length (for instance, the device diameter) is denoted by λ0, and we define the
reference time τ0 = λ0/v0 and the reference wave vector k0 = m∗v0/h̄. Then the
scaled mean free path is given by α = λ/λ0 = τ/τ0. The electric field −∇xV is
scaled by UT /λ , where UT = kBTL/q is the thermal voltage. Notice that this cor-
responds to a high-field scaling, since in Sect. 5.1 we have employed the scaling
E0 = UT /λ0 for the electric field. For small scaled mean free paths α � 1, it holds
UT /λ = E0/α � E0. With this scaling the Boltzmann equation with given electric
field E = −∇xV becomes

α∂t f + αk ·∇x f −E ·∇k f = Q( f ). (5.34)

The derivation of the high-field model consists of the formal limit α → 0 and
a Chapman–Enskog expansion. Our presentation is based on the work [36] by
Poupaud. Let fα be a solution of the Boltzmann equation (5.34). In the first step
of the derivation we perform the limit α → 0 in (5.34):

E ·∇k f + Q( f ) = 0, (5.35)

where f = limα→0 fα . Thus, we have to deal with the solution of operator equations
which are of the form

E ·∇k f + Q( f ) = h, (5.36)

where h is some function. In contrast to the solution of the operator equation Q( f ) =
h, which was needed in Sect. 5.1 for the derivation of the (low-field) drift-diffusion
model, the above equation may not have a solution. Indeed, the following result
holds.

Lemma 5.8. Let E ∈ R
3 and let

ω(k) =
∫

R3
σ(k,k′)M′ dk′ (5.37)

be the collision frequency. If there exist constants K > 0 and 0 < γ < 1 such that

ω(k) ≥ K(1 + |k|γ)−1 for all k ∈ R
3, (5.38)
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or if lim|k|→∞ |k|ω(k) > |E|, the operator equation (5.35) has a unique solution f
satisfying

∫
R3 f dk/4π3 = 1. However, if for some constants K > 0 and γ > 1,

ω(k) ≤ K(1 + |k|γ)−1 for all k ∈ R
3,

or if lim|k|→∞ |k|ω(k) < |E|, then (5.35) has no solution. Moreover, under condition
(5.38), the nonhomogeneous operator equation (5.36) has a solution f satisfying∫
R3 f dk = 0 if and only if ∫

R3
hdk = 0.

For a proof of this lemma, we refer to [36, Thm. 2, Thm. 3, Prop. 2]. It is shown
in [37, 38] that if the operator equation (5.35) has no solution, there exist traveling
waves. This is called the runaway phenomenon. It means that the electrons acquire
larger and larger velocities with no upper bound, and the probability density of any
fixed velocity tends to zero.

In the following, let 〈g〉 =
∫
R3 g(k)dk/4π3. By Lemma 5.8, there exists a unique

solution f of (5.35) if (5.38) holds, and we can write

f (x,k,t) = ρ0(x,t)FE(x,t),

where FE satisfies FE ≥ 0, 〈FE〉 = 1, and ρ0 is given by ρ0 = 〈 f 〉. Integrating the
Boltzmann equation (5.34) over k ∈ R

3 gives the moment equation

∂t〈 fα 〉+ divx〈k fα 〉 = 0,

since the integrals over the force and collision terms vanish. The limit α → 0 in this
equation leads to

∂t〈 f 〉+ divx〈k f 〉 = 0.

Inserting the expression f = ρ0FE , we obtain

∂tρ0 + divx(v(E)ρ0) = 0, (5.39)

where v(E) = 〈kFE〉 is the averaged velocity. In fact, for general energy bands, we
have v(E) = 〈v(k)FE〉. This is the so-called high-field drift equation.

In order to derive a diffusive term, we perform in the second step the Chapman–
Enskog expansion fα = f +αgα . We insert this expansion into the Boltzmann equa-
tion (5.34) and employ (5.35):

∂t f + k ·∇x f + α (∂tgα + k ·∇xgα)− (E ·∇kgα + Q(gα)) = 0. (5.40)

In the limit α → 0, we have the nonhomogeneous operator equation

E ·∇kg + Q(g) = ∂t f + k ·∇x f , (5.41)

where g = limα→0 gα . This equation is solvable, according to Lemma 5.8, since the
integral of its right-hand side over k ∈R

3 vanishes. We write the right-hand side in a



5.4 High-Field Models 117

more convenient way. Using the drift equation (5.39), we obtain after an elementary
computation

∂t f + k ·∇x f = ∂t(ρ0FE)+ k ·∇x(ρ0FE) = ρ0GE + ∇xρ0 ·HE ,

where
HE = kFE − v(E)FE , GE = ∂tFE + divxHE .

Then (5.41) becomes

E ·∇kg + Q(g) = ρ0GE + ∇xρ0 ·HE .

This formulation allows us to write the solution g semi-explicitly as

g = ρ0φ + ∇xρ0 · χ + ρ1FE , (5.42)

where φ and χ are solutions of the operator equations

E ·∇kφ + Q(φ) = GE , E ·∇kχ + Q(χ) = HE , (5.43)

and ρ1 is not specified. Notice that the necessary solvability condition is satisfied
since 〈HE〉 = v(E)− v(E)〈FE〉 = 0 and 〈GE〉 = ∂t〈FE〉+ divx〈HE〉 = 0. By Lemma
5.8, we can choose φ and χ such that

〈φ〉 = 0, 〈χ〉 = 0. (5.44)

In the third step, we determine an evolution equation for g. An integration of
(5.40) over k ∈ R

3 yields, in view of the drift equation (5.39),

∂t〈gα〉+ divx〈kgα〉 = 0.

In the limit α → 0 this becomes

∂t〈g〉+ divx〈kg〉 = 0.

Taking into account (5.42) and (5.44), we obtain 〈g〉 = ρ1 and

〈kg〉 = ρ0〈kφ〉+ 〈k⊗ χ〉∇xρ0 + ρ1v(E).

Thus, setting w(E) = −〈kφ〉 and D(E) = −〈k⊗ χ〉, the function ρ1 solves the evo-
lution equation

∂tρ1 −divx (D(E)∇xρ0 + w(E)ρ0 − v(E)ρ1) = 0.

Adding (5.39) and the above equation, the particle density n = ρ0 +αρ1 is a formal
solution of

∂t n−divx (αD(E)∇xn− (v(E)−αw(E))n) = O(α2).

We have shown the following result.



118 5 Drift-Diffusion Equations

Theorem 5.9 (High-field drift-diffusion equations). Let fα be a solution of the
parabolic-band Boltzmann equation (5.34) and let the collision frequency (5.37) be
such that the operator equation (5.35) is solvable (see Lemma 5.8 for a sufficient
solvability condition). Then, in the formal limit α → 0, fα converges to f = 〈 f 〉FE

and gα = ( fα − f )/α converges to g, satisfying up to order O(α2) the high-field
drift-diffusion equations for the electron density n = 〈 f + αg〉 (α > 0)

∂t n−divJn = 0, Jn = αD(E)∇n− vα(E)n, x ∈ R
3, t > 0,

with initial datum n(·,0) = 〈 fI〉. The diffusivity tensor D(E) and the averaged ve-
locity vα(E) are defined by

D(E) = −〈k⊗ χ〉, vα(E) = 〈kFE〉+ α〈kφ〉,

and φ and χ are the unique solutions of the operator equations (5.43).

It is shown in [36] that the diffusivity tensor D(E) is positive definite. The aver-
aged velocity v = 〈kFE〉 has the following properties.

Lemma 5.10. Let the collision cross-section σ(x,k,k′) be isometrically invariant
(see Lemma 5.3). Then there exists μ0(x) ≥ 0 such that

v(0) = 0, ∇E ⊗ v(0) = −μ0(x)Id.

Moreover, if the collision cross-section is constant, σ(x,k,k′) = 1/τ , the collision
operator becomes Q( f ) = (M− f )/τ , and hence, v(E) = −τE.

The function μ0 is the low-field mobility of the drift-diffusion model derived
in Sect. 5.1. The above lemma shows that the velocity is, at least close to E = 0,
decreasing in the electric field, which is physically reasonable.

Proof. We prove first that v(0) = 0. The operator equation (5.35) with E = 0 has the
solution F0 = M. This shows that v(0) = 〈kF0〉 = 〈kM〉 = 0. Differentiating (5.35)
with respect to E gives

∇kFE + Q(∇EFE) = 0,

and at E = 0, Q(∇E F0) = kM. It is proved in Lemma 5.3 that there exists μ0(x) ≥ 0
such that 〈k⊗∇EF0〉 = −μ0Id. Therefore, ∇E ⊗ v(0) = 〈k⊗∇EF0〉 = −μ0Id.

If the collision operator is of relaxation-time form, we multiply (5.35), written as

0 = E ·∇kFE + Q(FE) = E ·∇kFE +
1
τ
(M −FE),

by k and integrate over the wave-vector space. This gives, by integrating by parts,

v(E) = 〈kFE〉 = 〈kM + τk(E ·∇kFE)〉 = −τ〈FE〉E = −τE.

The lemma is proved. 	
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We can even show that vα(0) = 0. Indeed, the operator equation for φ at E = 0
becomes

Q(φ) = G0 = ∂tF0 + divx(kF0 − v(0)F0) = ∂tM + divx(kM) = 0.

Its solution is (a multiple of) the Maxwellian implying that w(0) = −〈kφ〉 =
−〈kM〉 = 0 and hence vα(0) = v(0)−αw(0) = 0. On the other hand, the com-
putation of ∇E ⊗ vα(0) seems to be more involved.

For constant collision cross-sections and α = 0, we recover the drift term of the
drift-diffusion model of Sect. 5.1, v0(E)n = −τEn = τn∇V . Defining the electron
mobility μ(E) by vα(E)=−μ(E)E , this result shows that μ(E) is constant if α = 0.

Unfortunately, it seems to be difficult to derive an explicit dependence of vα
on the field E �= 0 for general scattering operators. Assuming that the distribution
function can be decomposed as f = f0 +(E ·k) f1, for some functions f0 and f1, and
closing the hierarchy of moment equations by making an ansatz for the heat flux,
Hänsch et al. [39] have derived the following mobility model:

μ(E) =
2μ0

1 +
√

1 +(2μ0|E|/vsat)2
, (5.45)

where μ0 is the low-field mobility and vsat the saturation velocity, satisfying

lim
|E|→∞

|vα(E)| = lim
|E|→∞

|μ(E)E| = vsat.

The diffusivity is often computed from the Einstein relation D = μkBTL. In [40],
the high-field mobility and diffusivity were derived from an energy-transport model
(see Sect. 6.1), yielding the following scaled high-field model:

∂t n−div

(
μ0

2− μ(E)/μ0
∇n + μ(E)En

)

= 0,

where the mobility μ(E) is given by (5.45). For small fields, the diffusion coefficient
converges to the low-field electron mobility μ0,

μ0

2− μ(E)/μ0
→ μ0 as |E| → 0,

whereas in the high-field limit, the mobility is reduced:

μ0

2− μ(E)/μ0
→ μ0

2
as |E| → ∞.

For related high-field drift-diffusion or mobility models, we refer, for instance, to
[41–43].

The above approach for a linear collision operator was revised by Cercignani
et al. in [44, 45], including the coupling with the Poisson equation. In Goudon,
Nieto, and co-workers [46, 47], the analysis of the high-field limit coupled with the
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Poisson equation was carried out for the Fokker–Planck equation. High-field asymp-
totics for degenerate semiconductors were derived by Ben Abdallah and Chaker
[48]. Finally, a nonlinear collision operator similar to (4.9) was considered by Ben
Abdallah, Chaker, and Schmeiser [49].

5.5 Drift-Diffusion Models Using Fermi–Dirac Statistics

In the previous sections, we have assumed that the equilibrium distribution is given
by the Maxwellian. In this section, we derive drift-diffusion models employing
Fermi–Dirac statistics. More precisely, we suppose that the collision operator is
linear and that its kernel consists of the Fermi–Dirac distribution functions

F(x,k,t) =
1

η + exp(−λ0(x,t)+ |k|2/2)
, k ∈ R

3, (5.46)

where η ≥ 0 is the degeneracy parameter. The Fermi–Dirac distribution is obtained
for the choice η = 1, whereas we recover for η = 0 the Maxwellian. The function λ0

is chosen such that 〈F〉=
∫
R3 F dk/4π3 = n is fulfilled for a given particle density n.

A simple scattering operator satisfying the above hypothesis is the relaxation-time
operator

Q( f ) =
1
τ
(F [ f ]− f ), (5.47)

where F = F[ f ] is such that 〈F [ f ]〉 = 〈 f 〉 and τ > 0. The kernel of the scatter-
ing operator (4.2) also consists only of Fermi–Dirac distributions, according to
Proposition 4.1.

As in Sect. 5.1, we assume that the energy band is given by the parabolic band
approximation. The following arguments are also valid for more general energy
bands but the formulas would be less explicit.

In order to derive the drift-diffusion equations, let ( fα ,Vα) be a solution of the
scaled Boltzmann–Poisson system

α2∂t fα + α (k ·∇x fα + ∇xVα ·∇k fα ) = Q( fα), λ 2
DΔVα = 〈 fα 〉−C(x), (5.48)

for x, k ∈ R
3, t > 0. The initial condition is fα (·, ·,0) = fI in R

3 ×R
3. The deriva-

tion is based on three steps. First, we let formally α → 0 in the above equations,
leading to

Q( f ) = 0, λ 2
DΔV = 〈 f 〉−C(x),

where f = limα→0 fα and V = limα→0 Vα . By assumption, f equals the Fermi–Dirac
function F = F[ f ]. In the second step, we insert the Chapman–Enskog expansion
fα = F[ fα ]+ αgα in the Boltzmann equation and employ Q(F [ fα ]) = 0:

α∂t(F [ fα ]+ αgα)+ (k ·∇xF [ fα ]+ ∇xV ·∇kF [ fα ])
+ α (k ·∇xgα + ∇xV ·∇kgα) = Q(gα).
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In the limit α → 0 we obtain

Q(g) = k ·∇xF + ∇xV ·∇kF = ∇x(λ0 −V) · kF(1−ηF).

We assume that there exists a solution h = (h1,h2,h3)� of the operator equations

Q(hi) = kiF(1−ηF), i = 1,2,3, (5.49)

which is unique in the orthogonal complement of the kernel of Q. Then we can write

g = ∇x(λ0 −V) ·h + cF, c ∈ R. (5.50)

In the third step, we insert the Chapman–Enskog expansion in the moment
equation

∂t〈 fα 〉+ α−1divx〈k fα 〉 = 0,

observe that the integral 〈kF [ fα ]〉 vanishes, and pass to the limit α → 0. The result
reads as

∂t〈F〉+ divx〈kg〉 = 0.

The first integral 〈F〉 is the electron density, and the second integral Jn = −〈kg〉 can
be interpreted as the particle current density.

Theorem 5.11 (Drift-diffusion equations using Fermi–Dirac statistics I). We
assume that the kernel N(Q) of the collision operator consists of Fermi–Dirac
distributions and that the operator equation (5.49) is uniquely solvable in the
orthogonal complement N(Q)⊥. Furthermore, let ( fα ,Vα) be a solution of the
Boltzmann–Poisson system (5.48). Then the formal limit functions f = limα→0 fα
and V = limα→0 Vα satisfy the drift-diffusion equations

∂tn−divJn = 0, Jn = D∇(λ0 −V), x ∈ R
3, t > 0, (5.51)

λ 2
DΔV = n−C(x), n = η−1NF1/2(λ0 + logη), (5.52)

where N = 2(2π)−3/2 is a normalization constant, F1/2 is the Fermi integral in-
troduced in (1.59), and the diffusion matrix D is given by D = −∫

R3 k⊗ hdk/4π3,
where h is a solution of (5.49). Finally, the initial datum of n is given by n(·,0) =∫
R3 fI dk/4π3.

Proof. It remains to compute the expressions for the densities n and Jn. Since g is
given by (5.50), the formula for Jn follows immediately from the definition of g,
since 〈kF〉 = 0:

Jn = −〈kg〉 = −〈k⊗h〉∇x(λ0 −V ).

Next, we compute the expression for n, employing spherical coordinates and the
substitution x = r2/2:
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n =
1

4π3

∫

R3

dk

η + e−λ0+|k|2/2
=

1
π2

∫ ∞

0

r2dr

η + e−λ0+r2/2

=
1

ηπ2

∫ ∞

0

√
2xdx

1 + e− logη−λ0+x
=

2

η(2π)3/2
F1/2(λ0 + logη).

The conclusion follows. 	

The diffusion matrix can be computed explicitly if the collision operator is given

by the relaxation-time approximation (5.47).

Proposition 5.12 (Drift-diffusion equations using Fermi–Dirac statistics II). Let
the collision operator be given by (5.47). Then the drift-diffusion equations (5.51)
and (5.52) can be formulated as

∂t n−divJn = 0, Jn = τn∇(λ0 −V ), x ∈ R
3, t > 0, (5.53)

λ 2
DΔV = n−C(x), n = η−1NF1/2(λ0 + logη). (5.54)

Proof. We have to show that D = τn Id. Since Q is of the special form (5.47), the
solution of (5.49) is given by

hi = F − τkiF(1−ηF), i = 1,2,3.

Thus, the diffusion coefficients become

Di j = τ
∫

R3
kik jF(1−ηF)

dk
4π3 .

Passing to spherical coordinates k = rω with |ω | = 1, we have

(Di j) =
τ

4π3

∫ ∞

0

∫

|ω|=1

e−λ0+r2/2

(η + e−λ0+r2/2)2
r4ω ⊗ω dω dr.

A computation shows that the integral of ω ⊗ ω over {|ω | = 1} has the value
(4π/3) Id, and hence

(Di j) =
τ

3π2

∫ ∞

0

e−λ0+r2/2

(η + e−λ0+r2/2)2
r4dr Id.

Thus, the diffusion matrix is diagonal with identical entries on the diagonal. We
write D0 = Dii for i = 1,2,3. The substitution x = r2/2 yields

D0 =
23/2τ
3π2η

∫ ∞

0

e−z+x

(1 + e−z+x)2 x3/2 dx, z = logη + λ0.

Observing that
d
dx

1
1 + e−z+x = − e−z+x

(1 + e−z+x)2 ,
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an integration by parts shows that

D0 =
23/2τ
3π2η

∫ ∞

0

1
1 + e−z+x

3
2

x1/2 dx =
2τ

η(2π)3/2
F1/2(λ0 + logη) = τn,

which proves the proposition. 	

The drift-diffusion model (5.53) and (5.54) was formulated by Bonch-Bruevich

and Kalashnikov [50] and mathematically analyzed by Gajewski and Gröger [22].
A numerical treatment can be found in [51]. Golse and Poupaud [4] derived a drift-
diffusion model incorporating Fermi–Dirac statistics from the Boltzmann equation
which is similar to the above equations.

The relaxation-time operator (5.47) is a strong simplification. From a physical
point of view, it is preferable to assume that the collision cross-section in the general
collision operator (4.2) is constant such that we obtain

Q( f ) =
1
τ

∫

R3

(
M f ′(1−η f )−M′ f (1−η f ′)

)
dk′.

It is essentially shown in Proposition 4.1 that the kernel of this operator consists of
the Fermi–Dirac distributions. The diffusion approximation for a given potential V
leads to the following drift-diffusion model [8]:

∂t n−divJn = 0, Jn = D∇(λ0 −V),

where the relation between n and λ0 is as above, the diffusion coefficient is given by

D = Neλ0

(
1 +

ρ0

n
F−1/2(λ0)

)
,

ρ0 is a constant, and F−1/2 is the Fermi integral with index −1/2.
There are two interesting limiting situations for the model (5.53) and (5.54).

When η → 0, the Fermi–Dirac distribution (5.46) reduces to the Maxwellian M =
eλ0−|k|2/2, and we expect that the corresponding drift-diffusion model is the same
as in Sect. 5.1. In some sense, this corresponds to a low-density limit (see Remark
1.12). On the other hand, when η becomes very large, η � 1, we claim that the
limiting model corresponds to a high-density limit. These two cases are analyzed in
the following examples.

Example 5.13 (Low-density limit). We can set η = 0 in the following integral:

η−1F1/2(λ0 + logη) =
2√
π

∫ ∞

0

√
xdx

η + e−λ0+x
,

yielding

n =
2N√

π

∫ ∞

0

√
xeλ0−x dx =

2N√
π

eλ0Γ
(

3
2

)

= Neλ0 ,

where Γ is the Gamma function introduced in (1.60). Thus,
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Jn = τn∇(λ0 −V) = τ(∇n−n∇V).

The balance equation ∂t n−divJn = 0 together with the above formula for the current
density is exactly the drift-diffusion model derived in Sect. 5.1 (see (5.14)). 	

Example 5.14 (High-density limit). For large values of η , η � 1, we employ the
asymptotics F1/2(z)∼ (4/3

√
π)z3/2 (z→∞). Then we can write the electron density

approximately as

n =
1
η

2
√

2
3π2 (λ0 + logη)3/2.

Since

∇(n5/3) =
1

η5/3

(
2
√

2
3π2

)5/3
5
2
(λ0 + logη)3/2∇λ0 =

1

η2/3

(
2
√

2
3π2

)2/3
5
2

n∇λ0,

the current density can be formulated approximately as

Jn = τn∇(λ0 −V) = τ(∇(Nη n5/3)−n∇V),

where Nη = (9π4η2/250)1/3. Thus, the high-density drift-diffusion equations read
as follows:

∂t n− τdiv(∇(Nη n5/3)−n∇V) = 0, λ 2
DΔV = n−C(x), x ∈ R

3, t > 0,

with initial conditions for n. This model was rigorously derived from the drift-
diffusion model (5.53) and (5.54) in [52] and mathematically analyzed in [53–55].
In these papers, the above model is referred to as the degenerate drift-diffusion equa-
tions since the diffusion term Δ(n5/3) is mathematically of degenerate type and the
model is valid for degenerate semiconductor materials. A numerical discretization
in one and two space dimensions was presented in [56, 57] employing mixed fi-
nite elements and in [58, 59] using a finite-volume approximation. The high-density
equations coupled to a heat equation with power dissipation were studied by Guan
and Wu [60]. We mention that Poupaud and Schmeiser [8] rigorously derived a
high-density model from the Boltzmann equation, but the model differs from the
above equations.

Interestingly, the diffusion term ∇(n5/3) can be interpreted thermodynamically.
Treating the electrons as particles of an ideal gas, its pressure is given by P = nT ,
where T is the particle temperature. In the adiabatic and hence isentropic case, for
particles without spin, the temperature depends on the particle density, T = T0n2/3

[61], which implies that ∇P = T0∇(n5/3). 	

Figure 5.1 summarizes the drift-diffusion models derived in this and the previous

sections.
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Semi-classical Boltzmann equation

Standard
drift-diffusion model

High-field
drift-diffusion model

Drift-diffusion using 
Fermi-Dirac statistics

High-density
drift-diffusion model

Drift-diffusion models

diffusion approximations

Fig. 5.1 Relations between the drift-diffusion models of Sects. 5.1, 5.4, and 5.5. The arrow (1)
denotes the low-density limit η → 0, where η is the degeneracy parameter. The arrow (2) signifies
the high-density limit η � 1. The arrow (3) denotes the low-field limit |E| → 0, where μ(E)→ μ0
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22. H. Gajewski and K. Gröger. Semiconductor equations for variable mobilities based on Boltz-
mann statistics or Fermi–Dirac statistics. Math. Nachr. 140 (1989), 7–36. 107, 123
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Chapter 6
Energy-Transport Equations

The drift-diffusion equations are derived by the moment method by employing only
the zeroth-order moment 〈M〉 =

∫
B M dk/4π3, where the Maxwellian M describes

the equilibrium state. As explained in Sect. 2.4, we obtain more general diffu-
sion equations by taking into account higher-order moments. The energy-transport
equations are derived by choosing the moments n = 〈M〉 (particle density) and
ne = 〈E(k)M〉 (energy density), where E(k) is the energy band. The results of
Sect. 2.4 are valid only for a simple BGK collision operator. In this chapter, we
will assume more realistic scattering terms including elastic, carrier–carrier, and in-
elastic collision processes. In the following we proceed as in [1] and [2].

6.1 Derivation from the Boltzmann Equation

We consider the semi-classical Boltzmann equation

∂t f + v(k) ·∇x f +
q
h̄

∇xV ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0,

with the initial datum f (·, ·,0) = fI in R
3 ×B. We assume that the collision oper-

ator models elastic collisions of phonons and ionized impurites, electron–electron
scattering, and inelastic collisions,

Q( f ) = Qel( f )+ Qee( f )+ Qin( f ),

where Qel and Qee are given by

(Qel( f ))(x,k, t) =
∫

B
σel(x,k,k′)δ (E(k′)−E(k))( f ′ − f )dk′, (6.1)

(Qee( f ))(x,k, t) =
∫

B3
σee(x,k,k′,k1,k

′
1)δ (E ′ + E ′

1 −E −E1) (6.2)

× (
f ′ f ′1(1− f )(1− f1)− f f1(1− f ′)(1− f ′1)

)
dk′ dk1 dk′1,

Jüngel, A.: Energy-Transport Equations. Lect. Notes Phys. 773, 129–155 (2009)
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(see (4.11) and (4.12)), where f ′ = f (x,k′,t), f1 = f (x,k1, t), and f ′1 = f (x,k′1, t).
We suppose that the scattering rates σel and σee are symmetric in the sense of
(4.29) and (4.31), respectively. The inelastic collision operator models, for in-
stance, inelastic phonon scattering with transition rate (4.7). For the derivation of
the energy-transport model, we do not need a specific form for Qin, but we assume
that inelastic collisions conserve mass, i.e.,

∫
B Qin( f )dk/4π3 = 0 for all functions

f . Later, we will specify Qin by modeling inelastic phonon scattering (see (6.16)
below).

Scaling of the Boltzmann equation. The Boltzmann equation is scaled similarly
as in the previous chapter. The reference wave vector k0, velocity v0, and voltage
UT are chosen as in Sect. 5.1. The mean free paths of elastic, electron–electron, and
inelastic collisions are denoted by λel, λee, and λin, respectively. We assume that
the typical time is given by the time between two inelastic collisions, τ0 = λin/v0,
and that the typical length scale is the geometric average of the elastic and inelastic
mean free paths, λ0 =

√
λelλin. Furthermore, we suppose that the length scale of

the carrier–carrier interactions is of the order of the reference length, from which
λee = λ0 follows. Then, introducing the parameter α =

√
λel/λin, we obtain the

dimensionless Boltzmann equation

α2∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Qel( f )+ αQee( f )+ α2Qin( f ), (6.3)

where x ∈ R
3, k ∈ B, and t > 0. Elastic collisions are assumed to be dominant com-

pared to electron–electron and inelastic scattering such that α � 1.
In the literature, energy-transport models were derived employing different scal-

ings. Ben Abdallah, Degond, and Génieys have performed a Hilbert expansion for
the scaled Boltzmann equation (6.3) in which the carrier–carrier scattering term is
assumed to be of order one [3]. However, elastic scattering in semiconductors oc-
curs usually more frequently than carrier–carrier collisions and thus, the order of
the electron–electron collision term should be less than that of the elastic scattering
integral. Moreover, this scaling leads in the diffusion approximation to a diffusion
matrix which involves the solution of the operator equation (Qel +L)( f ) = g, where
L = DQee(F) denotes the linearization of Qee at the equilibrium state F . It can be
shown that this equation has a solution, but generally, it cannot be computed ex-
plicitly. Therefore, Ben Abadallah and Degond have proposed a scaling in which
the electron–electron collisions are of the same order α2 as the inelastic scatter-
ing [1]. The diffusion approximation then yields the so-called spherical harmonics
expansion (SHE) model for a distribution function which depends on the energy,
but not on the wave vector anymore (see Chap. 7). A further diffusion limit gives
the energy-transport model. Here, the computation of the diffusion matrix requires
the solution of an equation for the elastic collision operator only, Qel( f ) = g. Un-
der certain assumptions on the energy band and the scattering rate, this equation
can be explicitly solved providing explicit expressions for the diffusion coefficients.
The advantages of the above scaling, leading to (6.3) and suggested by Degond,
Levermore, and Schmeiser [2], are that the energy-transport model can be derived
without passing through the SHE model and that the computation of the diffusion
matrix is based on the solution of the equation involving Qel only.



6.1 Derivation from the Boltzmann Equation 131

Properties of the collision operators. We have already shown some properties of
the elastic and electron–electron collision terms in Sect. 4.2 (see Propositions 4.5
and 4.6). We recall that Qel and Qee conserve mass and energy, the kernel of Qel

consists of functions depending on the energy only, and the kernel of Qee consists of
the Fermi–Dirac distributions. Moreover, −Qel is self-adjoint on L2(B). For the dif-
fusion approximation of the Boltzmann equation, we need two additional properties.

Lemma 6.1. The equation Qel( f ) = h has a solution if and only if
∫

B
h(k)δ (E(k)− ε)dk = 0 for all ε ∈ R(E), (6.4)

where R(E) is the range of the energy band E(k).

We recall that integrals involving delta distributions can be reformulated by
means of the coarea formula to integrals over isoenergetic surfaces (see Sect. 4.2).

Proof. We show that the orthogonal complement N(Qel)⊥ in L2(B) only consists
of functions satisfying (6.4). Then the self-adjointness of −Qel and the Fredholm
alternative (Lemma 5.1) give the conclusion. Let h∈N(Qel)⊥ and f ∈N(Qel). Then,
by Proposition 4.5 in Sect. 4.2, we can write f (k) = F(E(k)) for some function F .
By definition of the delta distribution, we compute

0 =
∫

B
h(k) f (k)dk =

∫

B
h(k)F(E(k))dk

=
∫

B
h(k)

∫

R

F(ε)δ (E(k)− ε)dε dk

=
∫

R(E)

(∫

B
h(k)δ (E(k)− ε)dk

)

F(ε)dε.

This equation holds for any function F . Hence, the expression in the brackets van-
ishes, proving (6.4). On the other hand, if h is a function satisfying (6.4), the same
arguments as above show that h ∈ N(Qel)⊥. 	

Lemma 6.2. Let

S(ε) =
∫

B
(Qee(F))(k)δ (E(k)− ε)dk, ε ∈ R(E).

Then it holds ∫

R

S(ε)dε =
∫

R

S(ε)ε dε = 0.

Furthermore, if S(ε) = 0 for all ε ∈ R(E), then F is a Fermi–Dirac distribution, i.e.,
there exist parameters μ and T such that F(k) = Fμ,T (k) = 1/(1 + e(E(k)−μ)/T ).

The parameter μ is called the chemical potential, T the temperature.

Proof. The proof is very similar to the proof of Proposition 4.6 (2) in Sect. 4.2. We
have for all functions G,
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∫

R

S(ε)G(ε)dε =
∫

B4
(Qee(F))(k)G(E(k))d4k

∣
∣
∣
E(k)=ε

=− 1
4

∫

B4
σ(k,k′,k1,k

′
1)δ (E + E1 −E ′ −E ′

1)(G
′ + G′

1 −G−G1)

× (
F ′F ′

1 (1−F)
(
1−F ′)−FF1

(
1−F ′)(1−F ′

1

))
d4k,

where d4k = dk dk′dk1 dk′1. The first assertion follows after taking G(ε) = 1 and
G(ε) = ε . The above integral is nonpositive if we choose G = logF − log(1−F).
Hence, if F ∈ N(Qee), the integrand vanishes and one proves as for Proposition 4.6
that logF − log(1−F) is an affine function of the energy. Thus, F is a Fermi–Dirac
distribution. 	

Derivation of the energy-transport equations. We proceed now to the diffusion
limit α → 0. Let ( fα ,Vα) be a solution of the Boltzmann–Poisson system (6.3) and
(5.3). As explained in Sect. 2.4, the limit is divided into three steps. The first step is
the formal limit α → 0 in (6.3). Setting f = limα→0 fα , we infer that

Qel( f ) = 0.

By Proposition 4.5, the kernel of Qel is spanned by functions which depend only on
the energy, f (x,k,t) = F(x,E(k),t).

For the second step, we insert the Chapman–Enskog expansion fα = F + αgα
into the Boltzmann equation (6.3):

α∂t(F + αgα)+ (v(k) ·∇xF + ∇xV ·∇kF)
+ α (v(k) ·∇xgα + ∇xV ·∇xgα) = Qel(gα)+ Qee( fα )+ αQin( fα ).

Here we have used that Qel(F) = 0, since F ∈ N(Qel). The limit α → 0 then shows
that

Qel(g) = v(k) ·∇xF + ∇xV ·∇kF −Qee(F), (6.5)

where g = limα→0 gα . By Lemma 6.1, this equation has a solution if and only if
∫

B
(v(k) ·∇xF + ∇xV ·∇kF −Qee(F))δ (E(k)− ε)dk = 0

for all ε ∈ R(E). Since v(k) = ∇kE(k), we obtain
∫

B
(v(k) ·∇xF + ∇xV ·∇kF)δ (E(k)− ε)dk

= (∇xF + ∂EF∇xV )(ε) ·
∫

B
∇kE(k)δ (E(k)− ε)dk.

We claim that the last integral vanishes. A heuristic argument is as follows. Let H
be the Heaviside function, defined by H(x) = 0 for x < 0 and H(x) = 1 for x > 0.
Then H ′ = δ and

∫

B
∇kE(k)δ (E(k)− ε)dk =

∫

B
∇kH(E(k)− ε)dk = 0, (6.6)
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since E(k) is periodic on B. Thus, the solvability condition (6.4) becomes
∫

B
Qee(F)δ (E(k)− ε)dk = 0 for all ε ∈ R(E).

By Lemma 6.2, it follows that F is a Fermi–Dirac distribution, F = Fμ,T for some
functions μ(x,t) and T (x,t). As Fμ,T lies in the kernel of Qee, by Proposition 4.6,
the operator equation (6.5) can be written as

Qel(g) = v(k) ·∇xF + ∇xV ·∇kF

= F(1−F)v(k) ·
(

∇x

(μ
T

)
− ∇xV

T
−E∇x

(
1
T

))

, (6.7)

and we know that it is solvable.
The third step is concerned with the limit α → 0 in the moment equations. We

introduce the notation 〈g〉 =
∫

B gdk/4π3. As moments, we employ the particle den-
sity n = 〈F〉 and the energy density ne = 〈E(k)F〉. An integration of the Boltzmann
equation (6.3) and the Chapman–Enskog expansion leads to the two moment equa-
tions for j = 0,1,

∂t〈E j(F + αgα)〉+ α−1〈E j(v(k) ·∇xF + ∇xV ·∇kF)〉
+ 〈E j(v(k) ·∇xgα + ∇xV ·∇kgα)〉

= α−2〈E jQel( fα )〉+ α−1〈E jQee( fα )〉+ 〈E jQin( fα )〉.

Taking into account the operator equation (6.7), the second term on the left-hand
side equals α−1〈E jQel(g)〉 and this vanishes since elastic collisions conserve mass
and energy (see Proposition 4.5). By the same reason, the first term on the right-hand
side vanishes. This holds also true for the second term on the right-hand side
(see Proposition 4.6). Inelastic scattering conserves mass, but generally not energy.
Therefore, 〈Qin( fα )〉= 0, but 〈E(k)Qin( fα )〉 may not vanish. Thus, the limit α → 0
in the above moment equations gives

∂t〈E jF〉+ 〈E j(v(k) ·∇xg + ∇xV ·∇kg)〉 = 〈E jQin(F)〉, j = 0,1. (6.8)

The second term on the left-hand side can be reformulated:

〈E j(v(k) ·∇xg + ∇xV ·∇kg)〉 = divx〈E jv(k)g〉−∇xV · 〈∇k(E j)g〉.

We introduce the particle and energy current densities J0 = −〈v(k)g〉 and
J1 = −〈v(k)E(k)g〉, respectively. Then, since ∇kE = v,

〈v(k) ·∇xg + ∇xV ·∇kg〉 = −divxJ0,

〈E(v(k) ·∇xg + ∇xV ·∇kg)〉 = −divxJ1 + ∇xV · J0,

and the moment equations become
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∂t n−divxJ0 = 0, ∂t(ne)−divxJ1 + ∇xV · J0 = W,

where W = 〈E(k)Qin(F)〉.
It remains to compute the current densities. Let d0 be a solution of

Qel(d0) = −vF(1−F). (6.9)

Notice that d0 is vector valued since the right-hand side of the above equation lies
in R

3. We write d0 = (d0,1,d0,2,d0,3)�. The existence of a solution of this equation
follows as for (6.7) since there, the right-hand side is a multiple of v(k)F(1−F).
Due to the linearity of Qel, the general solution of (6.7) is then given by g = −d0 ·
(∇x(μ/T )−∇xV/T −E∇x(1/T ))+ F1, where F1 ∈ N(Qel). We compute

Jj = 〈E jv⊗d0〉
(

∇x
μ
T
− ∇xV

T

)

−〈E j+1v⊗d0〉∇x

(
1
T

)

, j = 0,1.

We have shown the following result.

Theorem 6.3 (Energy-transport equations). Let the scattering rates σel and σee

of the collision operators (6.1) and (6.2) be symmetric in the sense of (4.29) and
(4.31), respectively. Furthermore, let ( fα ,Vα) be a solution of the Boltzmann–
Poisson system (6.3) and (5.3). Then the (formal) limit functions F = limα→0 fα
and V = limα→0 Vα satisfy the energy-transport equations

∂t n−divJ0 = 0, ∂t(ne)−divJ1 + J0 ·∇V = W (μ ,T ), (6.10)

J0 = D00

(

∇
(μ

T

)
− ∇V

T

)

−D01∇
(

1
T

)

, (6.11)

J1 = D10

(

∇
(μ

T

)
− ∇V

T

)

−D11∇
(

1
T

)

, (6.12)

λ 2
DΔV = n−C(x), x ∈ R

3, t > 0, (6.13)

where the electron and energy densities are given by, respectively,

n = n(μ ,T ) =
∫

B
Fμ,T

dk
4π3 , ne = (ne)(μ ,T ) =

∫

B
Fμ,T E(k)

dk
4π3 ,

F = Fμ,T = 1/(1 + e(E(k)−μ)/T ) is the Fermi–Dirac distribution, the diffusion coef-
ficients are defined by

Di j = Di j(μ ,T ) =
∫

B
Ei+ jv⊗d0

dk
4π3 , i, j = 0,1, (6.14)

the function d0 is a solution of (6.9), depending on (μ ,T ) through F, and the
averaged inelastic scattering term equals

W (μ ,T ) =
∫

B
E(k)Qin(Fμ,T )

dk
4π3 . (6.15)
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The initial data are given by

n(·,0) =
∫

B
fI

dk
4π3 , (ne)(·,0) =

∫

B
fIE(k)

dk
4π3 .

The diffusion coefficients Di j are matrices of R
3×3 since v⊗d0 is a (3×3)-matrix

with coefficients v�d0,m.
The first energy-transport model was presented by Stratton in 1962 [4]. His ap-

proach is based on the relaxation-time approximation of the collision integral to ob-
tain an approximate explicit solution for the distribution function. Often, the energy-
transport model is considered as an approximation of the hydrodynamic equations
[5, 6] (see Chap. 9). In the physical literature, there exist many versions of the
energy-transport equations, usually called the energy-balance model, derived un-
der various hypotheses on the relaxation-time model, the band structure, and the
degeneracy [7–10]. Some of these versions will be derived in Sect. 6.2.

There are only a few results about the existence and uniqueness of solutions of
(6.10), (6.11), (6.12), and (6.13), considered in a bounded domain with appropriate
initial and boundary conditions. The first existence result for a heuristic model with
particular diffusion coefficients (not being of the form (6.10), (6.11), and (6.12)) is
due to Allegretto and Xie [11]. Under the assumption of a uniformly positive def-
inite diffusion matrix (Di j), the existence of solutions of the stationary and tran-
sient boundary-value problem was shown in [12–14]. Under physically realistic
assumptions, however, the diffusion matrix is a priori only positive semi-definite.
If lower positive bounds for the particle density and temperature were available,
the positive definiteness of the matrix would follow. Existence results for physi-
cally more realistic diffusion coefficients can be found in [15, 16] for the stationary
model and in [17, 18] for the transient equations, but only for data close to thermal
equilibrium.

The numerical discretization of energy-transport models was investigated in the
physical literature since the 1980s (see, for instance, [7–9, 19]). Mathematicians
started to pay attention to these models in the 1990s, using finite-difference methods
[20, 21], mixed finite-volume schemes [22], mixed finite-element methods [23–27],
and essentially non-oscillatory (ENO) numerical schemes [28].

Equations (6.10) can be interpreted as conservation laws of mass and energy,
since in the absence of external forces and source terms, an integration of the equa-
tions over R

3 shows that the particle mass
∫
R3 n(x,t)dx and the thermal energy∫

R3 ne(x,t)dx are constant in time. In nonequilibrium thermodynamics, the formu-
lation (6.10), (6.11), and (6.12) is well known. Indeed, the so-called thermodynamic
fluxes depend linearly on the thermodynamic forces X0 = ∇(μ/T )− ∇V/T and
X1 = −∇(1/T ) [29, 30],

Ji =
1

∑
j=0

Di jXj.

The variables μ/T and −1/T are known as the (primal) entropy variables.
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Properties of the diffusion matrix and inelastic collision term. By Onsager’s
principle, the diffusion matrix (Di j) should be symmetric and positive definite. This
can be proven under an assumption on the energy-band structure.

Proposition 6.4 (Properties of the diffusion matrix). The diffusion matrix satisfies
the following properties:

(1) The matrix D = (Di j) is symmetric and D01 = D10.
(2) Let the functions d0,1, d0,2, d0,3, Ed0,1, Ed0,2, and Ed0,3 be linearly indepen-

dent. Then D is positive definite for any μ ∈ R and T > 0.

The assumption in part (2) of the proposition is a geometric condition on the
band structure since d0 is determined as a solution to (6.9) through E(k). The pos-
itive definiteness of the diffusion matrix indicates that the energy-transport model
is expected to be of parabolic type (in the sense of the theory of partial differential
equations). More precisely, for an existence theory, we also need that the functional
ρ = (n,ne) depending on the entropy variables u = (μ/T,−1/T) is monotone in
the sense of (ρ(u)−ρ(v)) · (u− v)≥ 0. An elementary computation shows that this
is the case since the Jacobian of ρ is positive semi-definite. For details of parabolic
systems of the type ∂tρ(u)−div(D∇u) = f (u,∇u), we refer to [31] and, involving
also the electric potential, to [12]. The structure of the energy-transport model will
be discussed in more detail in Sects. 6.3 and 6.4.

Proof. (1) The property D01 = D10 follows directly from the definition (6.14). The
symmetry of D is a consequence of the symmetry of the elastic collision operator
Qel (see Proposition 4.5). Indeed, we compute one component of the matrix Di j,
employing the definition (6.9) of d0:

Di j,�m =
∫

B
Ei+ jv�d0,m

dk
4π3 = −

∫

B
Ei+ jQel(d0,�)d0,m

dk
4π3F(1−F)

= −
∫

B
Ei+ jd0,�Qel(d0,m)

dk
4π3F(1−F)

= Di j,m�.

To be precise, we have proved in Sect. 4.2 the symmetry of Qel in L2(B) = L2(B;dk),
but this property also holds in the weighted space L2(B;dk/F(1−F)). This shows
that D�

i j = Di j.

(2) We choose a vector z = (ξ ,η)� �= 0 with ξ , η ∈ R
3. Then

z�Dz =
∫

B
(ξ + Eη)�(v⊗d0)(ξ + Eη)

dk
4π3

=−
∫

B
(ξ + Eη)�(Qel(d0)⊗d0)(ξ + Eη)

dk
4π3F(1−F)

=−
∫

B2
σel(k,k′)δ (E ′ −E)

1

∑
i, j=0

(ξi + Eηi)(ξ j + Eη j)

× (d′
0,i −d0,i)d0, j

dk′ dk
4π3F(1−F)
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=
1
2

∫

B2
σel(k,k′)δ (E ′ −E)

1

∑
i, j=0

(ξi + Eηi)(ξ j + Eη j)

× (d′
0,i −d0,i)(d′

0, j −d0, j)
dk′ dk

4π3F(1−F)
.

The last equality follows similarly as in the proof of the second part of Proposition
4.5. Thus,

z�Dz =
1
2

∫

B2
σel(k,k′)δ (E ′ −E)

∣
∣
∣

1

∑
i=0

(ξi + Eηi)(d′
0,i −d0,i)

∣
∣
∣
2 dk′ dk

4π3F(1−F)

=
∫

B2
σel(k,k′)δ (E ′ −E)

∣
∣
∣
∣z ·

(
d0

Ed0

)∣
∣
∣
∣

2 dk′ dk
4π3F(1−F)

.

This integral is positive since otherwise, the equation

z ·
(

d0

Ed0

)

= 0 for some z �= 0

would imply that d0, Ed0 are linearly dependent which is excluded. 	

Now, we specify the inelastic collision integral. Let Qin be given by (4.2) with

transition rate (4.7),

(Qin( f ))(x,k, t) =
∫

B

(
sph(x,k′,k) f ′(1− f )− sph(x,k,k′) f (1− f ′)

)
dk′, (6.16)

where

sph(x,k,k′) = σph(x,k,k′) (6.17)

× (
(1 + Nph)δ (E(k′)−E(k)+ Eph)+ Nphδ (E(k′)−E(k)−Eph)

)
,

σph(x,k,k′) is symmetric in k, k′, Nph = 1/(eEph − 1), and Eph ≥ 0 is the phonon
energy. We claim that the corresponding averaged inelastic collision integral W is
of relaxation-time type, i.e., the temperature of the particles tends to the constant
(scaled) lattice temperature TL = 1 if no external forces are present.

Proposition 6.5 (Property of the averaged inelastic collision term). Let the in-
elastic collision integral Qin be given by (6.16) with transition rate (6.17). Then the
integral W, defined in (6.15), is monotone with respect to T , i.e.,

W (μ ,T )(T −1)≤ 0 for all μ ∈ R, t > 0.

Proof. Employing the identity F = (1−F)M, where F is the Fermi–Dirac distribu-
tion and M = e−(E−μ)/T , we rewrite the collision integral as
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W (μ ,T ) =
∫

B2

(
sph(k′,k)F ′(1−F)− sph(k,k′)F(1−F ′)

)
E

dk′ dk
4π3

=
∫

B2
(1−F)(1−F ′)

(
sph(k′,k)M′ − sph(k,k′)M

)
E

dk′ dk
4π3 .

Definition (6.17) of sph and the property δ (E ′ −E ±Eph) = δ (E −E ′ ∓Eph) yield

sph(k′,k)M′ − sph(k,k′)M

= σph
(
(1 + Nph)δ (E −E ′+ Eph)M′ + Nphδ (E −E ′ −Eph)M′

−(1 + Nph)δ (E −E ′ −Eph)M−Nphδ (E −E ′ + Eph)M
)

= σphδ (E −E ′ + Eph)
(
(1 + Nph)M′ −NphM

)

+ σphδ (E −E ′ −Eph)
(
NphM′ − (1 + Nph)M

)
.

Employing this expression in the integral of W and exchanging k and k′ in the second
summand, we obtain

W =
∫

B2
(1−F)(1−F ′)σph

(
δ (E −E ′+ Eph)E((1 + Nph)M′ −NphM)

+δ (E ′ −E −Eph)E ′(NphM− (1 + Nph)M′)
) dk′ dk

4π3 .

Since δ (E ′ −E −Eph)E ′ = δ (E −E ′ + Eph)(E + Eph), some terms cancel and we
end up with

W =
∫

B2
(1−F)(1−F ′)δ (E −E ′ + Eph)Eph

(
NphM− (1 + Nph)M′) dk′ dk

4π3 .

We can write 1 + Nph = eEphNph such that

W =
∫

B2
(1−F)(1−F ′)δ (E −E ′ + Eph)EphNph(M − eEphM′)

dk′ dk
4π3 .

The delta distribution allows us to substitute the energy E in the Maxwellian M by
E ′ −Eph such that, for all E and E ′ satisfying E = E ′ −Eph,

M− eEphM′ = e−(E−μ)/T − eEphe−(E ′−μ)/T = e−(E ′−μ)/T
(

eEph/T − eEph

)
.

We conclude that

W (μ ,T )(T −1) =
∫

B2
(1−F)(1−F ′)δ (E −E ′ + Eph)EphNphM′

×
(

eEph/T − eEph

)
(T −1)

dk′dk
4π3 ≤ 0,

since (eEph/T − eEph)(T −1)≤ 0 for all T > 0. 	
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The unscaled energy-transport model reads as follows:

∂t n− 1
q

divJn = 0, ∂t(ne)−divJe + Jn ·∇V = W (μ ,T ),

Jn = qD00

(

∇
(

qμ
kBT

)

− q∇V
kBT

)

−qD01∇
(

1
kBT

)

,

Je = D10

(

∇
(

qμ
kBT

)

− q∇V
kBT

)

−D11∇
(

1
kBT

)

,

εsΔV = q(n−C(x)),

complemented with initial conditions for the electron density and temperature,

n(·,0) = nI, T (·,0) = TI in R
3.

Given the initial particle density and temperature, the initial chemical potential
μ(·,0) = μI can be computed from nI =

∫
B(1 + e(E(k)−μI)/TI )−1 dk/4π3. As the

derivative ∂nI/∂ μI is strictly positive, the expression nI = nI(μI) can be inverted.
Hence, the initial datum for the thermal energy ne = (ne)(μ ,T ) can be calculated.

When the model is considered in a bounded domain, we impose mixed Dirichlet–
Neumann boundary conditions for the particle density, temperature, and electric
potential, similar as for the drift-diffusion model. For this, we assume that ∂Ω =
ΓD ∪ΓN with ΓD ∩ΓN = /0. Then

n = nD, T = TD, V = VD on ΓD, t > 0,

Jn ·η = Je ·η = ∇V ·η = 0 on ΓN , t > 0,

where η is the exterior unit normal to ΓN .
The energy-transport model (6.10), (6.11), and (6.12) is still not explicit since

the diffusion coefficients and the moments depend nonlocally and nonlinearly on
the entropy variables μ/T and −1/T . In the following section we specify the elastic
scattering rate and the energy band in order to derive explicit transport models.

6.2 Some Explicit Models

In this section we derive explicit expressions for the particle density n(μ ,T ), the
energy density ne(μ ,T ), the diffusion coefficients Di j(μ ,T ), and the relaxation-
time term W (μ ,T ) depending on the entropy variables μ/T and −1/T as solutions
of (6.10), (6.11), and (6.12). For this, we need some simplifying assumptions on the
elastic collision operator and the energy band structure:

1. The Fermi–Dirac distribution F = Fμ,T is approximated by the Maxwellian M =
e−(E−μ)/T and F(1−F) is approximated by e−(E−μ)/T .

2. The scattering rate of the elastic collision integral only depends on the energy,
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σel(x,k,k′) = s(x,E(k)) for all k, k′ with E(k) = E(k′).

3. The energy band E(k) is spherically symmetric and strictly monotone, i.e., there
exists a strictly monotone function γ : R → R such that

|k|2 = γ(E(|k|)), k ∈ B = R
3.

We choose the reference point for the energy such that E(k) is always nonnega-
tive. According to Remark 1.12, the Fermi–Dirac distribution can be approximated
by the Maxwell–Boltzmann distribution if the energy E −μ is much larger than the
thermal energy T . This is the case for nondegenerate semiconductor materials.

The second condition makes sense since, due to the term δ (E(k′)− E(k)) in
the definition (6.1) of Qel, the scattering rate needs to be defined only on the sur-
face {k′ ∈ B : E(k) = E(k′)} of energy E(k). This assumption is reasonable, at
least approximately, for many scattering mechanisms. For instance, when the en-
ergy band is parabolic and the scattering goes as the density of states, one may write
σel(x,k,k′) = s1(x)E(k)β , with β = 1/2 for nonpolar phonon scattering, β = −3/2
for moderate ionized impurity scattering in the elastic limit [32, Sect. 2.3.4] (see
also [33, Sect. 9.2]), and β = 0 for acoustic phonon scattering [1, formula (3.37)].
For polar optical phonon scattering, which is a strong collision mechanism in com-
pound semiconductors like GaAs, the scattering rate is more complicated but σel

is a function of E(k) only [32, Sect. 2.8.1]. The assumption of a spherically sym-
metric energy band seems to be reasonable for the Γ valley of GaAs. In silicon and
germanium, the energy band is described by an ellipsoid rather than by a sphere.

Proposition 6.6. Under Maxwell–Boltzmann statistics and the above assumptions
on the scattering rate and the energy band, the particle density, energy density, and
diffusion coefficients can be written, respectively, as

n =
1

2π2 eμ/T
∫ ∞

0
e−ε/T

√
γ(ε)γ ′(ε)dε, (6.18)

ne =
1

2π2 eμ/T
∫ ∞

0
e−ε/T

√
γ(ε)γ ′(ε)ε dε, (6.19)

Di j =
1

3π3 eμ/T
∫ ∞

0
e−ε/T γ(ε)ε i+ j

s(x,ε)γ ′(ε)2 dε Id, i, j = 0,1. (6.20)

Furthermore, the density of states of energy ε equals

N(ε) =
∫

R3
δ (E(k)− ε)

dk
4π3 =

1
2π2

√
γ(ε)γ ′(ε), ε ≥ 0. (6.21)

The expression (6.20) shows that the diffusion coefficients, which are (3× 3)-
matrices, can be identified with their diagonal element, and we can write

Di j =
1

3π3 eμ/T
∫ ∞

0
e−ε/T γ(ε)ε i+ j

s(x,ε)γ ′(ε)2 dε. (6.22)
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Proof. We will transform the integrals over the wave-vector space R
3 to integrals

over the energy space (0,∞) by means of the coarea formula (1.55). Let ρ = |k|.
Then differentiation of ρ2 = γ(E(ρ)) with respect to ρ yields 2ρ = γ ′(E(ρ))E ′(ρ)
and

E ′(ρ) =
2
√

γ(ε)
γ ′(ε)

with ε = E(ρ),

and we conclude that

∇kE(|k|) = E ′(ρ)∇k|k| = 2
√

γ(ε)
γ ′(ε)

k
|k| . (6.23)

Now, the coarea formula gives

n =
∫

R3
e−(E(|k|)−μ)/T dk

4π3 =
1

4π3

∫ ∞

0

∫

{E(ρ)=ε}
e−(ε−μ)/T dSε(k)

|∇kE(|k|)| dε

=
1

4π3

∫ ∞

0
e−(ε−μ)/T γ ′(ε)

2
√

γ(ε)

∫

{E(ρ)=ε}
dSε(k)dε.

The surface of all k such that E(ρ) = ε or, equivalently, ρ2 = γ(E(ρ)) = γ(ε) equals
4πρ2 = 4πγ(ε) if ε = E(ρ). Hence,

∫

{E(ρ)=ε}
dSε(k) = 4πγ(ε),

and the electron density becomes

n =
1

2π2 eμ/T
∫ ∞

0
e−ε/T

√
γ(ε)γ ′(ε)dε,

which is (6.18). In a similar way, the energy density can be computed leading to
(6.19). The density of states becomes

N(ε) =
∫ ∞

0

∫

{E(|k|)=η}
δ (E − ε)

dSη(k)
|∇kE|

dη
4π3

=
∫ ∞

0

γ ′(η)
2
√

γ(η)
δ (η − ε)4πγ(η)

dη
4π3 =

1
2π2

√
γ(ε)γ ′(ε).

It remains to compute the diffusion coefficients. The second of the above as-
sumptions allows us to simplify the elastic collision operator. Indeed, we obtain

Qel( f ) =
∫

R3
s(x,E)δ (E ′ −E)( f ′ − f )dk′

= s(x,E)
(∫

R3
δ (E ′ −E) f ′ dk′ − f (k)

∫

R3
δ (E ′ −E)dk′

)

=
[ f ]− f

τ(x,E(k))
,
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where

τ(x,E) =
1

4π3s(x,E)N(E)
(6.24)

is the relaxation time, N(E) =
∫
R3 δ (E ′ −E)dk′/4π3 is the density of states of en-

ergy E , and

[ f ](x,k,t) =
1

4π3N(E(k))

∫

R3
δ (E ′ −E) f (x,k′, t)dk′

is the average of f over the energy surface {k′ : E(k′) = E(k)}.
With the above expression, we are able to solve the operator equation (6.9) which

becomes in the Maxwell–Boltzmann approximation Qel(d0) = −vM. The solution
is given by d0 = τ(x,E)∇kEe−(E−μ)/T since

[d0] =
1

4π3N(E(k))

∫

R3
δ (E ′ −E)τ(x,E ′)∇kE ′e−(E ′−μ)/T dk′

=
τ(x,E)

4π3N(E(k))
e−(E−μ)/T

∫

R3
δ (E ′ −E)∇kE ′ dk′ = 0

and hence,

Qel(d0) = − d0

τ(x,E(k))
= −∇kEe−(E−μ)/T = −vM.

With the explicit expression for d0, the diffusion coefficients (6.14) can be
written as

Di j =
∫

R3
Ei+ j(∇kE ⊗∇kE)τ(x,E)e−(E−μ)/T dk

4π3 .

Then (6.23) and the coarea formula lead to

Di j =
1

4π3

∫

R

e−(ε−μ)/T ε i+ jτ(ε)
∫

{E(k)=ε}
∇kE ⊗∇kE

dSε(k)
|∇kE| dε

=
1

4π3

∫

R

e−(ε−μ)/T ε i+ jτ(ε)
2
√

γ(ε)
γ ′(ε)

∫

{E(|k|)=ε}
k
|k| ⊗

k
|k| dSε(k)dε.

In spherical coordinates, it holds

k
|k| =

⎛

⎝
sinθ cosφ
sinθ sinφ

cosθ

⎞

⎠ ,

for angles θ and φ , and therefore, after some computations,

∫

{E(|k|)=ε}
k
|k| ⊗

k
|k| dSε(k) =

∫ 2π

0

∫ π

0

k
|k| ⊗

k
|k|γ(ε)sin θ dθ dφ =

4π
3

γ(ε)Id.

Replacing τ(ε) by (6.24) and (6.21) then gives (6.20). 	
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When the averaged inelastic collision integral is given by a Fokker–Planck ap-
proximation [34], we can make the relaxation-time term more explicit.

Proposition 6.7. Assume that

∫

{E(k)=ε}
Qin(F)

dSε(k)
|∇kE|

is approximated by the Fokker–Planck term

s0
∂

∂ε

(
N(ε)

τ(x,ε)

(

F +
∂F
∂ε

))

,

where s0 > 0 and τ(x,ε) is defined in (6.24). Then the relaxation-time term can be
written as

W (μ ,T ) = − s0

4π4 eμ/T
(

1− 1
T

)∫ ∞

0
s(x,ε)γ(ε)γ ′(ε)2e−ε/T dε,

Proof. We obtain from (6.15) and (6.21), after integrating by parts,

W =
1

4π3

∫

R

s0
∂

∂ε

(
N(ε)
τ(ε)

(

F +
∂F
∂ε

))

ε dε

= −s0

∫ ∞

0
s(x,ε)N(ε)2

(

1− 1
T

)

e−(ε−μ)/T dε

= − s0

4π4

∫ ∞

0
s(x,ε)γ(ε)γ ′(ε)2

(

1− 1
T

)

e−(ε−μ)/T dε,

which shows the proposition. 	

When the energy band is parabolic and the scattering rate is made explicit, we are

able to calculate the integrals over the energy space and to derive local expressions
for the densities and coefficients as functions of μ and T .

Example 6.8 (Parabolic band approximation). In addition to the hypotheses at the
beginning of this section, we assume that

• the energy band is parabolic, E(k) = |k|2/2, k ∈ R
3, and

• the scattering rate is given by s(x,ε) = s1(x)εβ , β ≥ 0.

The first assumption implies that γ(ε) = 2ε . Then, by (6.21), N(ε) =
√

2ε/π2. In
view of (6.18) and (6.19), the electron and energy densities become

n =
√

2
π2 eμ/T

∫ ∞

0
e−ε/T√ε dε =

√
2

π2 T 3/2eμ/T
∫ ∞

0
e−z√zdz

=
√

2
π2 T 3/2eμ/TΓ

(
3
2

)

=
2

(2π)3/2
T 3/2eμ/T , (6.25)
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ne =
√

2
π2 eμ/T

∫ ∞

0
e−ε/T ε3/2 dε =

√
2

π2 T 5/2eμ/T
∫ ∞

0
e−zz3/2 dz

=
√

2
π2 T 5/2eμ/TΓ

(
5
2

)

=
3
2

nT,

where Γ is the Gamma function, defined in (1.60). Notice that the expression for
the particle density is exactly the formula (in scaled form) obtained in Lemma 1.18.

The diffusion coefficients (6.22) can be written as

Di j =
eμ/T

6π3s1(x)

∫ ∞

0
e−ε/T ε i+ j+1−β dε

=
eμ/T

6π3s1(x)
T i+ j+2−β

∫ ∞

0
e−zzi+ j+1−β dz

=
eμ/T

6π3s1(x)
T i+ j+2−βΓ (i+ j + 2−β ).

Employing the expression for the electron density, we can write the diffusion matrix
D = (Di j) as

D = μ0Γ (2−β )nT1/2−β
(

1 (2−β )T
(2−β )T (3−β )(2−β )T2

)

, (6.26)

where μ0(x) = 1/(
√

18π3s1(x)). Typical choices for β are β = 1
2 , employed by

Chen et al. [7], and β = 0, used by Lyumkis et al. [35], leading to the diffusion
matrices

DChen =
√

π
2

μ0n

(
1 3

2 T
3
2 T 15

4 T 2

)

, DLyumkis = μ0nT 1/2
(

1 2T
2T 6T 2

)

.

It remains to compute the relaxation-time term (see Proposition 6.7):

W = −2s0s1

π4 eμ/T
(

1− 1
T

)∫ ∞

0
e−ε/T εβ+1 dε

= −2s0s1

π4 eμ/T T β+1(T −1)Γ (β + 2) = −3
2

n(T −1)
τβ (x,T )

,

where the energy relaxation time is

τβ (x,T ) =
π5/2T 1/2−β

√
8s0s1(x)Γ (β + 2)

. (6.27)

Notice that for the choice β = 1/2 of Chen et al. [7], the relaxation time τ1/2(x,T )
is constant with respect to T . An energy-dependent relaxation time was already
suggested by Stratton [4, formula (25)].
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We summarize the energy-transport equations in the parabolic band approxima-
tion:

∂t n−divJ0 = 0, ∂t

(
3
2

nT

)

−divJ1 + J0 ·∇V = W (μ ,T ),

J0 = D00

(

∇
(μ

T

)
− ∇V

T

)

−D01∇
(

1
T

)

,

J1 = D10

(

∇
(μ

T

)
− ∇V

T

)

−D11∇
(

1
T

)

,

where the diffusion matrix is given by (6.26) and the relaxation-time term by

W (μ ,T ) = −3
2

n(T −1)
τβ (T )

,

the energy relaxation time τβ (T ) is defined in (6.27), and the electron density n =
2(2π)−3/2T 3/2eμ/T is a function of μ and T . 	

Example 6.9 (Nonparabolic band approximation). Let the energy band be given by
the nonparabolic approximation of Kane (see (1.31)),

E(1 + αE) =
|k|2
2

,

where α > 0 is the (scaled) nonparabolicity parameter. Then γ(ε) = 2ε(1+αε) and
the electron and energy density become

n =
√

2
π2 eμ/T

∫ ∞

0
e−μ/T

√
ε(1 + αε)(1 + 2αε)dε = Nα (T )T 3/2eμ/T ,

ne =
3
2

Qβ (T )nT,

where

Nα(T ) =
√

2
π2

∫ ∞

0
e−z

√
z(1 + αTz)(1 + 2αTz)dz,

Qβ (T ) =
2
3

∫ ∞
0 e−z

√
z(1 + αTz)(1 + 2αTz)zdz

∫ ∞
0 e−z

√
z(1 + αTz)(1 + 2αTz)dz

. (6.28)

The diffusion coefficients can be formulated as

Di j = μi j(α,T )n, i, j = 0,1,

where

μi j(α,T ) = μ0T i+ j+1/2−β
∫ ∞

0

zi+ j+1−β (1 + αTz)
(1 + 2αTz)2 e−z dz, (6.29)

and μ0 is defined one line below (6.26). Finally, the relaxation-time term equals
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W (n,T ) =
3
2

n(1−T)
τα

β (x,T )
,

where

τα
β (x,T )−1 =

√
8s0s1(x)
π5/2

T β−1/2
∫ ∞

0
z1+β (1 + αTz)(1 + 2αTz)2e−z dz.

The above integral can be written as a third-order polynomial in αT with coeffi-
cients depending on the Gamma function evaluated at β + j, where j = 2, . . . ,5
(see [36, Sect. 4.1.3] for details). A numerical comparison of the nonparabolic and
parabolic energy-transport models can be found in [23]. 	


6.3 Symmetrization and Entropy

The energy-transport equations (6.10), (6.11), and (6.12) describe the transport of
particles due to diffusive, thermal, and electric effects. Similar models were used,
for instance, in electro-chemistry [37, 38] and alloy solidification [39, 40]. In fact,
the model is also well known in nonequilibrium thermodynamics [29, 30], as men-
tioned in Sect. 6.1. In thermodynamics, it is known that the convective parts due to
the electric field can be eliminated by using so-called dual entropy variables. Inter-
estingly, the existence of such a change of unknowns is (in some sense) equivalent
to the existence of an entropy functional which gives information on the long-time
behavior of the variables. In this section, we explain the relation to nonequilibrium
thermodynamics in detail.

We consider the energy-transport equations (6.10), (6.11), and (6.12), here writ-
ten in the form

∂tρ j(u)−divJj + jJ0 ·∇V = W (u), Jj =
1

∑
i=0

D ji∇ui + D j0∇Vu1, (6.30)

where j = 0,1. The particle density ρ0 = n and the energy density ρ1 = ne are
functions of μ and T through

ρ =
(

n
ne

)

=
∫

B

1

1 + e−(E(k)−μ)/T

(
1

E(k)

)
dk

4π3 ,

and u0 = μ/T and u1 = −1/T are the (primal) entropy variables. We define the
vector-valued functions ρ = (ρ0,ρ1)� and u = (u0,u1)�. The diffusion coefficients
Di j and the relaxation-time term W (u) are defined in (6.14) and (6.15), respectively.
Proposition 6.4 shows that D = (Di j) is symmetric and positive definite. The sym-
metry expresses the Onsager principle of thermodynamics, whereas the positive def-
initeness is related to the second law of thermodynamics [30]. Equations (6.30) are
solved in the bounded domain Ω ⊂ R

3 with boundary ∂Ω = ΓD ∪ΓN such that
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ΓD ∩ΓN = /0 and they are complemented by the mixed Dirichlet–Neumann bound-
ary and initial conditions

u = uD, V = VD on ΓD, t > 0,

J0 ·η = J1 ·η = ∇V ·η = 0 on ΓN , t > 0,

u(·,0) = uI in Ω .

The function ρ : R
2 → R

2 has some important properties. First, it is not difficult
to verify that it is monotone, i.e., (ρ(u)−ρ(v)) · (u−v) ≥ 0 for all u, v ∈ R

2. More-
over, ρ is a gradient, i.e., there exists a function χ : R

2 →R such that ∇uχ = ρ . This
function has the form

χ(u) =
∫

B

(
− log(1 + eu0+E(k)u1)+ (u0 + E(k)u1)

) dk
4π3 .

These properties are needed for the (local) well posedness of the energy-transport
equations; see [31] for the potential-free case and [12] for the case including the
electric potential.

The key of the mathematical analysis performed in [12, 13] was the use of the
dual entropy variables, defined by

w0 =
μ −V

T
= u0 +Vu1, w1 = − 1

T
= u1. (6.31)

Then the system of equations (6.30) is formally equivalent to

∂t b j(w,V )−divI j = Q j(w), I j =
1

∑
i=0

Li j(w,V )∇wi, j = 0,1, (6.32)

where b0(w,V ) = ρ0 = n, b1(w,V ) = ρ1 −ρ0V = ne−nV , Q0 = 0, Q1 = W , and

L00 = D00, L01 = L10 = D01 −D00V,

L11 = D11 −2D01V + D00V 2.

The new diffusion matrix L = (Li j) is symmetric and positive definite, since L =
P�DP and P = (Pi j) is the invertible matrix

P =
(

1 −V
0 1

)

.

The dual entropy variables w0 and w1 satisfy mixed Dirichlet–Neumann boundary
conditions with w0 = w0,D = (u0 +Vu1)|ΓD and w1 = w1,D = u1|ΓD on ΓD. The trans-
formed set of equations (6.32) is “symmetrized” in the sense that the convective
terms D j0∇V/T and J0 ·∇V are eliminated. This simplifies the mathematical anal-
ysis and it is useful for numerical approximations [24, 27].

The transformation of variables (6.31) is well known in nonequilibrium thermo-
dynamics [41, Sect. 53]. It can also be employed for the drift-diffusion model (see
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Sect. 5.1). Indeed, with the electron density ρ(u) and the entropy variable u = logn
(here called the chemical potential), we can symmetrize the expression for the cur-
rent density,

Jn = μ0(∇n−n∇V) = μ0n∇(logn−V) = μ0n∇w,

where w = u−V can be interpreted as a dual entropy variable. In the context of
the drift-diffusion model, w is referred to as the quasi-Fermi potential. This sym-
metrization property was already observed by Albinus [42].

The existence of a symmetrizing change of unknowns implies the existence of an
entropy functional or, more precisely, of a monotone free energy functional,

E(u(t)) =
∫

Ω
(ρ(u) · (u−uD)− (χ(u)− χ(uD))) dx +

1
2TD

∫

Ω
|∇(V −VD)|2 dx,

where TD is the electron temperature on the contacts ΓD. We recall that ∇uχ = ρ . The
first integral represents the internal or thermodynamic energy, the second integral the
electric energy. The first integrand can be interpreted in some sense as the Legendre
transform of χ . The free energy E(u(t)) is nonnegative, since ρ is monotone, and
monotoneously decreasing in time, since

dE
dt

+ c
∫

Ω

(|∇(w0 −w0,D)|2 + |∇(w1 −w1,D)|2) dx ≤ 0, t > 0, (6.33)

where c is a constant depending on the lower bounds for the particle density and
temperature. If these bounds are positive, then c > 0, otherwise we have only c ≥ 0.
Inequality (6.33) is also called an entropy inequality and the second integral on
the left-hand side the entropy production. The entropy inequality was proved in
[12, 36] under the assumption that the temperature TD = −1/w1,D is constant on
ΓD. This condition is satisfied if TD is equal to the (constant) room temperature
at the contacts. If TD is not constant, a similar inequality as above exists but we
need to add a constant depending on TD on the right-hand side. Inequality (6.33)
provides uniform bounds for the entropy production term ∑ j |∇(wj −wj,D)|2. If the
boundary data wD is given by the thermal equilibrium state, it can be shown that
(6.33) implies the convergence of u(t) to the thermal equilibrium state as t → ∞
[12]. We prove an entropy inequality for a more general diffusive moment model in
Sect. 8.4.

The fact that the existence of a symmetric formulation is formally equivalent to
the existence of an entropy functional is well known in the theory of hyperbolic con-
servation laws and was first formulated mathematically by Kawashima and Shizuta
[43]. In [44], this equivalence was analyzed for parabolic systems. In fact, the above
considerations are also valid for models describing the flow of M components of
a fluid or gas of charged particles with particle density ρ j for the j-component,
j = 0, . . . ,M [12].



6.4 Drift-Diffusion Formulation 149

6.4 Drift-Diffusion Formulation

The formulation of the energy-transport model in terms of the dual entropy variables
(6.31) has the advantage that all terms involving the electric field are eliminated and
that the elliptic differential operator is symmetric. On the other hand, the result-
ing system is of cross-diffusion type, i.e., the diffusion matrix is not diagonal and
the equations are strongly coupled. For numerical purposes it may be advantageous
to have a “decoupled” formulation which allows for a fixed-point strategy to solve
the system of equations. In other words, we are seeking for a formulation in which
the diffusion matrix is diagonal. In this section, we show that such a formulation
exists if Maxwell–Boltzmann statistics are assumed, i.e., the Fermi–Dirac distribu-
tion F = Fμ,T is approximated by the Maxwellian M = e−(E−μ)/T and F(1−F) is
approximated by e−(E−μ)/T .

We recall that the current densities are defined by

Jj = D j0

(

∇
(μ

T

)
− ∇V

T

)

−D j1∇
(

1
T

)

, j = 0,1, (6.34)

with the diffusion coefficients Di j = 〈Ei+ jv⊗ d0〉 (see (6.11), (6.12), and (6.14)),
and the function d0 is a solution of Qel(d0) = −vM.

Proposition 6.10. Under the assumption of Maxwell–Boltzmann statistics, the cur-
rent densities (6.11) and (6.12) can be formulated as

Jj = ∇D j0 − D j0

T
∇V, j = 0,1. (6.35)

Proof. First, we claim that ∇xd0 = (∇(μ/T ) − E∇(1/T ))d0 + F1, where F1 ∈
N(Qel)3. By Lemma 4.5, F1 is a function of E(k) (and x, t) only. Since Qel(d0)
is linear, a formal differentiation gives

Qel(∇xd0) = ∇xQel(d0) = −v∇xM = −
(

∇
(μ

T

)
−E∇

(
1
T

))

vM

= Qel

((

∇
(μ

T

)
−E∇

(
1
T

))

d0

)

.

This shows the claim. We notice that in this step, we need to suppose Maxwell–
Boltzmann statistics. Indeed, in the general case, we have Qel(∇xd0) = −v∇x

(F(1−F)) and the right-hand side is more complicated.
Next, we compute, for j = 0,1,

∇xD j0 = 〈E jv⊗∇xd0〉 =
〈(

∇
(μ

T

)
−E∇

(
1
T

))

E jv⊗d0

〉
+ 〈E jv⊗F1〉

= D j0∇
(μ

T

)
−D j1∇

(
1
T

)

.
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The last equality follows since all matrix components of 〈E jv⊗F1〉 vanish:

〈E j(v⊗F1)�m〉 =
∫

B
E j ∂E

∂k�
F1,m(E(k))

dk
4π3 =

∫

B

∂
∂k�

Gm(E(k))
dk

4π3 = 0,

where Gm is such that (dGm/dε)(ε) = ε jF1,m(ε). Therefore, the assertion follows
from (6.34). 	


Expression (6.35) for the current densities can be interpreted as a drift-diffusion
formulation with the diffusion current ∇Di0 and the drift current −Di0∇V/T . The
variables which “diagonalize” the diffusion matrix are given by g0 = D00 and g1 =
D10. Then, the temperature is a function of the new variables, T = T (g0,g1). We
have to explain how it can be computed from g0 and g1. For this, we show that the
following function can be inverted if the diffusion matrix is positive definite:

f (T ) =
g1

g0
=

〈v⊗d0〉
〈Ev⊗d0〉 , (6.36)

and d0 solves Qel(d0) = −vM.

Lemma 6.11. Under Maxwell–Boltzmann statistics, the derivative of the function
f , defined in (6.36), is given by

f ′(T ) =
detD

(T D00)2 ,

where D = (Di j) is the diffusion matrix.

Thus, the invertibility of (6.36) is equivalent to the positive definiteness of the
diffusion matrix D .

Proof. Since

Qel

(
∂d0

∂T

)

=
∂

∂T
Qel(d0) = −vM

E − μ
T 2 = Qel

(
E − μ

T 2 d0

)

,

we conclude that ∂d0/∂T = d0(E − μ)/T2 + F1(E(k)), where F1 ∈ N(Qel)3. Thus,
the derivative of D j0, j = 0,1, with respect to T becomes

∂D j0

∂T
=

〈
E jv⊗ ∂d0

∂T

〉
= T−2(D j1 − μD j0),

since, as in the proof of Proposition 6.10, 〈E jv⊗F1〉 = 0. Therefore,

f ′(T ) =
1

D2
00

(
∂D10

∂T
D00 −D10

∂D00

∂T

)

=
D11D00 −D01D10

D2
00T 2

,

which proves the lemma. 	
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Summarizing, the energy-transport equations in the drift-diffusion formulation
read as follows:

∂t n(g0,g1)−divJ0 = 0, ∂t(ne)(g0,g1)−divJ1 + J0 ·∇V = W (g0,g1),

J0 = ∇g0 − g0

T (g0,g1)
∇V, J1 = ∇g1 − g1

T (g0,g1)
∇V,

λ 2
DΔV = n(g0,g1)−C(x),

where T (g0,g1) is the unique solution of (6.36), the densities n(g0,g1) and (ne)
(g0, g1) are computed from

n(g0,g1) = eμ/T
∫

B
e−E(k)/T (g0,g1) dk

4π3 ,

(ne)(g0,g1) = eμ/T
∫

B
e−E(k)/T (g0,g1)E(k)

dk
4π3 ,

and u = μ/T is, for given T , the unique solution of the nonlinear equation D00(u) =
g0. This equation is uniquely solvable. Indeed, since Qel(∂d0/∂u) = −v∂M/∂u =
−vM = Qel(d0) and hence, ∂d0/∂u = d0 + F1, where F1 ∈ N(Qel)3, we obtain
(dD00/du)(u) = 〈v⊗ (∂d0/∂u)〉 = D00 and this is positive if D is positive definite.

We consider some examples.

Example 6.12 (Parabolic band approximation). In the parabolic band approxima-
tion, according to Example 6.8, the diffusion coefficients are given by

D00 = μ0Γ (2−β )nT1/2−β , D10 = μ0Γ (3−β )nT3/2−β

(see (6.26)). Moreover, ne = 3
2 nT and W = 3n(1−T )/τβ (x,T ) with τβ (x,T ) as in

(6.27). Thus, the current densities in the drift-diffusion formulation read as

J0 = μ0Γ (2−β )
(

∇(nT 1/2−β )−nT−1/2−β ∇V
)

,

J1 = μ0Γ (3−β )
(

∇(nT 3/2−β )−nT1/2−β ∇V
)

.

The cases β = 1/2, β = 0, and β = −1/2 are of particular interest.
For β = 1/2, the energy-transport model reads as

∂tn−divJ0 = 0, ∂t

(
3
2

nT

)

−divJ1 + J0 ·∇V = W (n,T ),

J0 = μ∗ (∇n−nT−1∇V
)
, J1 =

3
2

μ∗ (∇(nT )−n∇V) ,

where μ∗ =
√

πμ0/2. This is the model studied by Chen et al. [7], mentioned in
Example 6.8. Finite-element approximations for this so-called Chen model can be
found, for instance, in [23, 25, 45].

In the case β = 0, we obtain the current densities (the evolution equations remain
unchanged)
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J0 = μ0

(
∇(nT 1/2)−nT−1/2∇V

)
, J1 = 2μ0

(
∇(nT 3/2)−nT1/2∇V

)
.

The corresponding energy-transport model, called the Lyumkis model, was nu-
merically solved by Lyumkis et al. [35], as mentioned in Example 6.8, and mathe-
matically analyzed in [17]. However, it seems that the Chen model is preferred in
numerical simulations.

Another choice is β = −1/2. Then the current densities can be written as

J0 = μ∗ (∇(nT )−n∇V) , J1 =
5
2

μ∗ (∇(nT 2)−nT∇V
)
,

where now μ∗ = 3
√

πμ0/4. These expressions can be derived from the hydrody-
namic equations in the diffusion limit if the heat conductivity is given by κ = 5

2 nT
(see Sect. 9.3). 	

Example 6.13 (Nonparabolic band approximation). The energy-transport model in
the nonparabolic band approximation |k|2/2 = E(1 + αE) and drift-diffusion for-
mulation is given by

∂t n−divJ0 = 0, ∂t

(
3
2

Qβ (T )nT

)

−divJ1 + J0 ·∇V = W (n,T ),

J0 = ∇(μ00(α,T )n)− μ00(α,t)nT−1∇V,

J1 = ∇(μ10(α,T )n)− μ10(α,t)nT−1∇V,

where Qβ (T ) is defined in (6.28), μi j is introduced in (6.29), and the relaxation-time
term W (n,T ) is made explicit in Example 6.9. 	

Remark 6.14 (Drift-diffusion approximation for general energy bands). When in-
elastic phonon scattering is very strong, we recover the drift-diffusion equations
from Sect. 5.1. In order to make this statement precise, we assume that the relaxation-
time term W (μ ,T ) from (6.15) is strongly monotone in T and of order O(α−1),
where α−1 expresses the strength of inelastic collisions. Thus, we can rewrite
(6.10) as

∂t n−divJ0 = 0, ∂t(ne)−divJ1 + J0 ·∇V = α−1W (μ ,T ).

Formally, the limit α → 0 in the second equation leads to W (μ ,T ) = 0. Since, by
Proposition 6.5, W (μ ,1) = 0 and since W is strongly monotone in T , this implies
that T = 1. Hence, we can write the electron current density (6.34) as

J0 = D00∇(μ −V ),

and we have derived the drift-diffusion equation

0 = ∂t n(μ)−divJ0 = ∂t n(μ)−div(D00∇(μ −V)),

where the electron density n = n(μ) is a function of the chemical potential μ through
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n(μ) =
∫

B

1

1 + eE(k)−μ
dk

4π3

and the diffusion coefficient D00 is defined by

D00 =
∫

B
∇kE(k)⊗d0

dk
4π3 ,

where d0 is a solution of

Qel(d0) = −∇kE(k)F(1−F) = − ∇kEeE−μ

(1 + eE−μ)2 .

The drift-diffusion equation is of parabolic type since ∂n/∂ μ is positive. It is a
generalization of the drift-diffusion model (5.51) and (5.52), derived in Sect. 5.5, to
general energy bands.

We can make the model more explicit if the energy band is spherically symmetric
and if nondegenerate semiconductor materials are considered (such that the Fermi–
Dirac distribution F can be approximated by the Maxwellian e−(E(k)−μ)). Then, by
(6.18), n = Nγ eμ , and by (6.22), D00 = Dγ,sn, where Nγ only depends on the energy
band γ(ε) and Dγ,s depends on the energy band and the scattering rate. We obtain
∇n = n∇μ and hence,

∂t n−divJ0 = 0, J0 = Dγ,s(∇n−n∇V).

This is exactly of the form (5.14), derived from a different elastic collision operator.
In contrast to the drift-diffusion equations derived in Sect. 5.1, the above model is
valid for more general band structures. 	
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Chapter 7
Spherical Harmonics Expansion Equations

The spherical harmonics expansion (SHE) model can be derived from the Boltz-
mann equation by the three-step procedure introduced in Sect. 2.4. In contrast to
the previous chapters, we do not integrate the Boltzmann equation over the whole
wave-vector space but only over the isoenergetic wave-vector space. As a result,
the variable is still a distribution function, but depending on the position-energy
space (x,ε) (and time) only and not on the position-wave-vector space (x,k) (and
time). Thus, we are able to reduce the seven-dimensional Boltzmann equation to a
five-dimensional problem.

One may argue that the SHE model does not fit in the hierarchy of diffusive mo-
ment models, presented in this part, which have the property that the moments only
depend on the position and time variables. However, the SHE equations contain a
diffusive term and their derivation is similar to that of the energy-transport equations
in Chap. 6 such that it seems appropriate to present the SHE model at this place.

7.1 Derivation from the Boltzmann Equation

As in Chaps. 5 and 6, we start with the semi-classical Boltzmann equation

∂t f + v(k) ·∇x f +
q
h̄

∇xV ·∇k f = Qel( f )+ Qin( f ), x ∈ R
3, k ∈ B, t > 0,

with initial condition f (x,k,0) = fI(x,k), x ∈ R
3, k ∈ B, and the velocity v(k) =

∇kE(k) defined by the energy band E(k). The elastic collision operator reads as

(Qel( f ))(x,k,t) =
∫

B
σel(x,k,k′)δ (E ′ −E)( f ′ − f )dk′, (7.1)

where the scattering rate σel(x,k,k′) is symmetric in k and k′, and Qin denotes the
inelastic collision operator modeling, for instance, inelastic phonon scattering and
electron–electron collisions. First we scale the Boltzmann equation. The scaling is

Jüngel, A.: Spherical Harmonics Expansion Equations. Lect. Notes Phys. 773, 157–170 (2009)
DOI 10.1007/978-3-540-89526-8 7 c© Springer-Verlag Berlin Heidelberg 2009
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as in Sect. 6.1, i.e., with the mean free path of elastic and inelastic collisions λel and
λin, respectively, we introduce the reference length λ0 =

√
λelλin and the parameter

α =
√

λel/λin. Then the scaled equation reads as follows:

α2∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Qel( f )+ α2Qin( f ), (7.2)

employing the same notation for the scaled and unscaled variables. We suppose that
α is a small (positive) parameter such that it makes sense to study the limit α → 0
in (7.2).

The derivation of the SHE model is performed in three steps following [1]. Let
( fα ,Vα) be a (smooth) solution of (7.2) and the Poisson equation (5.3). First we
perform the limit α → 0 in (7.2). Then Qel( f ) = 0, where f = limα→0 fα . By
Proposition 4.5 (3) in Sect. 4.2, it follows that f is a function of the energy only,
i.e., f (x,k, t) = F(x,E(k),t) for some function F . Second, inserting the Chapman–
Enskog expansion fα = F + αgα in (7.2) and dividing by α , we infer that

α∂t fα +(v(k) ·∇xF + ∇xV ·∇kF)

+ α (v(k) ·∇xgα + ∇xV ·∇kgα) = Qel(gα)+ αQin( fα).

Here we have used that Qel is linear and Qel(F) = 0. The (formal) limit α → 0 yields

Qel(g) = v(k) ·∇xF + ∇xV ·∇kF = v(k) · (∇xF + ∇xV∂ε F),

where g = limα→0 gα and ∂ε F = ∂F/∂ε . By Lemma 6.1, this equation is solvable
if and only if

∫

B
v(k) · (∇xF + ∇xV ∂ε F)δ (E(k)− ε)dk = 0 for all ε.

This is the case since the above integral is equal to

(∇xF + ∇xV∂ε F)(x,ε,t) ·
∫

B
∇kE(k)δ (E(k)− ε)dk,

and the integral vanishes (see (6.6)). Let d0(x,k,t) be the unique solution in N(Qel)⊥
of

Qel(d0) = −v(k). (7.3)

We claim that g = −(∇xF + ∇xV∂ε F) · d0 (up to the addition of an element of
N(Qel)). Indeed, since F depends on E(k) only and the collision integral is taken
over the isoenergetic surface, we have

Qel(g) = −(∇xF + ∇xV∂ε F) ·Qel(d0) = (∇xF + ∇xV∂ε F) · v(k). (7.4)

The third step is to integrate the Boltzmann equation (7.2) over the isoenergetic
surface,
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∫

B

(
∂tF + α∂tgα + α−1(v(k) ·∇xF + ∇xV ·∇kF)

+(v(k) ·∇xgα + ∇xV ·∇kgα)−α−1Qel(gα)−Qin( fα )
)

× δ (E(k)− ε)
dk

4π3 = 0.

The isoenergetic surface integral over Qel( f ) vanishes for all functions f . Therefore,
by (7.4),

∫

B
(v(k) ·∇xF + ∇xV ·∇kF)δ (E(k)− ε)

dk
4π3 =

∫

B
Qel(g)δ (E(k)− ε)

dk
4π3 = 0.

We conclude that all terms of order α−1 vanish, and the limit α → 0 leads to
∫

B
(∂tF + v(k) ·∇xg + ∇xV ·∇kg−Qin(F))δ (E(k)− ε)

dk
4π3 = 0.

With the density of states of energy ε ,

N(ε) =
∫

B
δ (E(k)− ε)

dk
4π3 , ε ∈ R, (7.5)

the first summand in the above integral becomes

∫

B
∂tFδ (E(k)− ε)

dk
4π3 = N(ε)∂t F.

The second summand is defined as the divergence of the electron current density
and it follows, employing g = −(∇xF + ∇xV∂ε F) ·d0, that

J(x,ε,t) = −
∫

B
v(k)gδ (E(k)− ε)

dk
4π3

= D(x,ε)(∇xF + ∇xV∂ε F)(x,ε,t), (7.6)

where

D(x,ε) =
∫

B
∇kE(k)⊗d0δ (E(k)− ε)

dk
4π3 ∈ R

3×3 (7.7)

is the diffusion matrix. For the computation of the third summand, we choose a
smooth test function ψ with compact support in the range R(E) of E and use the
definition of the delta distribution to obtain

∫

R

ψ(ε)
∫

B
∇kgδ (E(k)− ε)dk dε =

∫

B
ψ(E(k))∇kg(E(k))dk

= −
∫

B
g(E(k))ψ ′(E(k))∇kE(k)dk

= −
∫

R

ψ ′(ε)
∫

B
v(k)g(ε)δ (E(k)− ε)dk dε

=
∫

R

ψ ′(ε)J(ε)dε = −
∫

R

ψ(ε)
∂J
∂ε

(ε)dε.
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Since ψ is arbitrary, we conclude that

∫

B
∇kgδ (E(k)− ε)

dk
4π3 = −∂J

∂ε
(x,ε,t).

Finally, the fourth summand defines the averaged inelastic collision term. We have
shown the following theorem.

Theorem 7.1 (Spherical harmonics expansion equations). Let the scattering rate
of the elastic collision operator (7.1) be symmetric and let ( fα ,Vα) be a solution
of the Boltzmann–Poisson system (7.2) and (5.3). Then the (formal) limit functions
F = limα→0 fα and V = limα→0 Vα satisfy the spherical harmonics expansion (SHE)
equations

N(ε)∂t F −divJ −∇V · ∂J
∂ε

= S(F), (7.8)

λ 2
DΔV = n−C(x), x ∈ R

3, ε ∈ R, t > 0,

where the density of states N(ε) of energy ε is defined in (7.5) and the particle
current density J(x,ε,t) is introduced in (7.6). With the diffusion matrix (7.7), the
particle density is given by n(x,t) =

∫
R

F(x,ε,t)N(ε)dε , and the averaged collision
operator equals

(S(F))(x,ε,t) =
∫

B
(Qin(F))(x,k,t)δ (E(k)− ε)

dk
4π3 .

Finally, the initial condition reads as

F(x,ε,t) =
∫

B
fI(x,k,t)δ (E(k)− ε)

dk
4π3 , x ∈ R

3, ε ∈ R, t > 0.

Originally, the SHE model was derived in the physics literature from a truncated
expansion of the Boltzmann equation in spherical harmonics (therefore its name).
In 1956, an approximation of the Boltzmann equation was given by Herring and
Vogt [2], truncating the expansion after the first term. In the following decades, the
method was applied to the Boltzmann equation under various assumptions on the
collision processes, for instance, including acoustic phonon and intervalley scat-
tering for small electric fields [3], also including impact ionization scattering [4],
or modeling multi-band effects [5]. The SHE model also appears in the studies of
Stratton (see, e.g., [6, 7]). The first derivation of this model from a diffusion ap-
proximation of the Boltzmann equation is due to Dmitruk, Saul, and Reyna [8]. Of-
ten, spherically symmetric band diagrams were assumed for the derivation [9, 10].
A general band structure was employed in the works of Vecchi et al. [4, 11]. A
more mathematical derivation was performed by Ben Abdallah, Degond [1], and
co-workers; see, for instance, [12–14]. Schmeiser and Zwirchmayr gave a rigor-
ous justification of the diffusion approximation for parabolic bands and electron–
phonon scattering [15]. Numerical simulations of the SHE model can be found, for
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instance, in [4, 5, 16, 17]. An existence and uniqueness result for transient solutions
was shown in [18].

The SHE equations were also employed in the context of collisions of electrons
with the isolator surface in MOS transistors [19] and to model semiconductor super-
lattices [20]. Moreover, it appears in gas discharge [21] and plasma physics [22, 23].

The advantages of the SHE model are twofold. First, as already mentioned, the
equations have to be solved in four dimensions of the position-energy space instead
of the six-dimensional phase space of the Boltzmann equation. Second, the SHE
equation (7.8) is mathematically of parabolic type which simplifies the analysis and
numerical solution. In order to see the diffusive structure, we introduce the total
energy variable u = ε −V(x,t) and the transformed functions

f (x,ε −V (x,t),t) = F(x,ε, t),
d(x,ε −V (x,t),t) = D(x,ε),
ρ(x,ε −V (x,t),t) = N(ε).

Then ∇xF = ∇x f −∇xV∂u f = ∇x f −∇xV∂ε F and ∂tF = ∂t f −∂tV ∂u f . Therefore,
with the notation

∇∗ = ∇x + ∇xV
∂

∂ε
,

we can write (7.8) in symmetric form as

N(ε)∂t F −∇∗ · J = S(F), J = D∇∗F.

In the total energy variable, we obtain, since ∇∗F = ∇xF + ∇xV∂ε F = ∇x f ,

ρ(x,u, t)∂t f −divx(d∇x f )(x,u,t) = S( f )+ ρ(x,u, t)∂tV
∂ f
∂u

.

The parabolicity property of the differential operator now follows from the positive
definiteness of the diffusion matrix d or D, as stated in the following proposition.

Proposition 7.2 (Properties of the diffusion matrix). The diffusion matrix (7.7) is
symmetric and positive semi-definite.

Proof. We show first the symmetry. We compute, for any (smooth) test function
ψ(ε), employing (7.3),

∫

R

Di j(x,ε)ψ(ε)dε =
∫

R

∫

B

∂E
∂ki

d0, jδ (E(k)− ε)ψ(ε)
dk

4π3 dε

= −
∫

B
Qel(d0,i)d0, jψ(E(k))

dk
4π3

= −
∫

B
Qel(ψ(E(k))d0,i)d0, j

dk
4π3 .

The last equality holds since ψ(E(k)) only depends on the energy. By Proposition
4.5, Qel is symmetric on L2(B) and hence,
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∫

R

Di j(x,ε)ψ(ε)dε = −
∫

B
ψ(E(k))d0,iQel(d0, j)

dk
4π3 =

∫

R

D ji(x,ε)ψ(ε)dε.

Since ψ is arbitrary, Di j = D ji.
Next, we show that (Di j) is positive semi-definite. Let z ∈ R

3. Then, by the defi-
nition of Qel,

z�D(x,ε)z = −
3

∑
i, j=1

∫

B
ziQel(d0,i)d0, jz jδ (E(k)− ε)

dk
4π3

= −
3

∑
i, j=1

∫

B2
σel(x,k,k′)δ (E ′ −E)δ (E − ε)zi(d′

0,i −d0,i)z jd0, j
dk′ dk
4π3 .

Similar as in the proof of Proposition 4.5 (2), we can write

z�D(x,ε)z =
1
2

3

∑
i, j=1

∫

B2
σel(x,k,k′)δ (E ′ −E)δ (E − ε)

× zi(d′
0,i −d0,i)z j(d′

0, j −d0, j)
dk′ dk
4π3

=
1
2

∫

B2
σelδ (E ′ −E)δ (E − ε)

∣
∣z · (d′

0 −d0)
∣
∣2 dk′ dk

4π3 ≥ 0.

This finishes the proof. 	

Ben Abdallah and Degond showed in [1, Prop. 3.6] a stronger property of the

diffusion matrix: There exists a constant K > 0 such that

Di j(x,ε) ≥ K
N(ε)

∫

B

∂E
∂ki

∂E
∂k j

δ (E(k)− ε)
dk

4π3 , i, j = 1,2,3.

The right-hand side defines a symmetric matrix which is degenerate at the critical
points of E (i.e., ∇kE(k) = 0 at ε = E(k)). We show in Sect. 7.2 that this inequality
is sharp (see (7.10)). The proof of the above inequality is based on the property

−
∫

B
Qel( f ) f

dk
4π3 ≥ K0

∫

B
( f − [ f ])2N(E(k))

dk
4π3 ,

where K0 > 0 is a constant and [ f ] the orthogonal projection on N(Qel),

[ f ](k) =
1

N(E(k))

∫

B
f (k′)δ (E(k′)−E(k))

dk′

4π3 . (7.9)

For a proof of the above property, we refer to Proposition 3.1 in [1].
Finally, we state the SHE equations in physical variables:

N(ε)∂t F − 1
q

divxJ −∇xV · ∂J
∂ε

= S(F),

J = D(x,ε)
(

∇xF + q∇xV
∂F
∂ε

)

,
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where N(ε) is given by (7.5) and

D(x,ε) =
q
h̄

∫

B
∇kE(k)⊗d0(x,k)δ (E(k)− ε)

dk
4π3 .

7.2 Some Explicit Models

The SHE model can be made more explicit for spherical symmetric energy bands.
Therefore, we suppose similar as in Sect. 6.2 (and in [1]):

1. The scattering rate depends only on the energy,

σel(x,k,k′) = s(x,E(k)) for all k, k′ with E(k) = E(k′).

2. The energy is spherical symmetric, i.e., E = E(|k|), and strictly monotone in |k|.
Thus, there exists a function γ such that |k|2 = γ(E(|k|)) for all k ∈ R

3.

We refer to the beginning of Sect. 6.2 for some comments on these assumptions.
The SHE model becomes more explicit when we specify the density of states N(ε)
and the diffusion matrix D(x,ε).

Proposition 7.3. Under the above hypotheses on the scattering rate and the energy
band, we have

N(ε) =
1

2π2

√
γ(ε)γ ′(ε), D(x,ε) =

4
3

γ(ε)
s(x,ε)γ ′(ε)2 Id,

where Id denotes the identity matrix in R
3×3.

The formula for the diffusion matrix was also obtained by Ventura et al. [10] up
to a multiplicative constant.

Proof. The expression for the density of states was already proved in Sect. 6.2; see
the proof of Proposition 6.6. In that proof we have also shown that the hypothesis
on the scattering rate allows us to simplify the elastic collision operator,

Qel( f ) =
[ f ]− f

τ(x,E(k))
, where τ(x,ε) =

1
4π3s(x,ε)N(ε)

,

and [ f ] is defined in (7.9). Then, the solution of Qel(d0) = −v(k) = −∇kE(k) can
be written explicitly as

d0 = τ(x,E(k))∇kE(k),

which follows from the fact that [d0] = 0. Hence,

D(x,ε) = τ(x,ε)
∫

R3
∇kE(k)⊗∇kE(k)δ (E(k)− ε)dk. (7.10)

Now, the proof proceeds as for Proposition 6.6. 	

Finally, we consider two examples.
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Example 7.4 (Parabolic band approximation). In addition to the assumptions at the
beginning of this section, we suppose that

• the energy band is parabolic, E(k) = 1
2 |k|2, k ∈ R

3, and
• the scattering rate is given by s(x,ε) = s1(x)εβ , β ≥ 0.

The first assumption implies that γ(ε) = 2ε and

N(ε) =
√

2ε
π2 , D(x,ε) =

2ε
3s(x,ε)

Id.

With the second hypothesis, we obtain D(x,ε) = (2/3s1(x))ε1−β Id. Thus, the SHE
equations read as

√
2ε

π2 ∂tF −divxJ−∇xV · ∂J
∂ε

= S(F), x ∈ R
3, ε > 0, t > 0,

J =
2

3s1(x)
ε1−β

(

∇xF + ∇xV
∂F
∂ε

)

.

We notice that this equation is mathematically of degenerate type since the diffusion
coefficient vanishes at ε = 0 if β < 1. Another mathematical difficulty arises from
the fact that at critical points of the electric potential (i.e., ∇xV (x,t) = 0), we do
not obtain information on the derivative of F with respect to ε . We refer to [18] for
details.

It remains to determine the averaged collision operator S(F). The precise struc-
ture depends on the assumptions on the inelastic collision integral. Here, we propose
a simplified expression, the Fokker–Planck approximation

S(F) = s0
∂

∂ε

(

εβ N(ε)2
(

F +
∂F
∂ε

))

,

similar to Proposition 6.7 in Sect. 6.2. 	

Example 7.5 (Nonparabolic band approximation). In the nonparabolic band approx-
imation of Kane 1

2 |k|2 = E(1 + αE) or γ(ε) = 2ε(1 + αε), we obtain from Propo-
sition 7.3 the formulas

N(ε) =
1

π2

√
2ε(1 + αε)(1 + 2αε), D(x,ε) =

2
3

ε1−β (1 + αε)
s1(x)(1 + 2αε)2 Id.

These expressions have to be employed in (7.8) and (7.6). 	


7.3 Diffusion Approximation

The energy-transport equations can be derived from the SHE model in the diffusion
approximation. We proceed in the following as in [1]. We recall the SHE equations
from Sect. 7.1,
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N(ε)∂t F −divxJ−∇xV · ∂J
∂ε

= S(F), x ∈ R
3, ε ∈ R, t > 0, (7.11)

J = D(x,ε)
(

∇xF + ∇xV
∂F
∂ε

)

. (7.12)

Our main assumption is that the inelastic collision operator is the sum of electron–
electron scattering and inelastic phonon collisions and that the carrier–carrier scat-
tering is dominant:

Qin( f ) =
1
α

Qee( f )+ Qph( f ),

where α > 0 is a small parameter and Qee and Qph are defined in (6.2) and (6.16),
respectively. This assumption means that the energy loss due to inelastic phonon
scattering occurs on a longer time scale than carrier–carrier collisions. Then, by the
definition of the averaged collision term S(F), we can write

S(F) =
1
α

See(F)+ Sph(F), (7.13)

where See and Sph are defined by

(See(F))(x,ε,t) =
∫

B
(Qee(F))(x,k,t)δ (E(k)− ε)dk,

(Sph(F))(x,ε,t) =
∫

B
(Qph(F))(x,k,t)δ (E(k)− ε)dk.

The averaged collision operators have the following properties.

Lemma 7.6. (1) The operator See conserves mass and energy and Sph conserves
mass in the sense

∫

R

See(F)dε =
∫

R

See(F)ε dε =
∫

R

Sph(F)dε = 0

for all functions F.
(2) The kernel of See consists of Fermi–Dirac distributions

Fμ,T =
1

1 + e(ε−μ)/T
,

where μ ∈ R and T > 0.
(3) For given F = F(ε), let LF = DSee(F) denote the (Fréchet) derivative of See

at the point F. Then the operator equation LF(G) = H is solvable if and only if
∫

R

H(ε)dε =
∫

R

H(ε)ε dε = 0. (7.14)

Proof. The first statement for See is proved in Lemma 6.2. The statement for Sph fol-
lows directly from the definition of Qph. The second statement is shown similarly as
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in the proof of Proposition 4.6. For the last assertion, we observe that the derivative
DQee( f ) reads as

(DQee( f ))(g) =
∫

B3
σee(k,k′,k1,k

′
1)δ (E ′ + E ′

1 −E −E1)

× f ′ f ′1(1− f )(1− f1)(g̃ ′ + g̃ ′
1 − g̃− g̃1)dk dk′ dk1 dk′1,

where g̃ = g/ f (1− f ). Similarly as in the proof of Proposition 4.6, the following
equation can be verified:

∫

R

LF(G)H dε = −1
4

∫

R

∫

B4
σee(k,k′,k1,k

′
1)δ (E ′ + E ′

1 −E −E1)

×F ′F ′
1(1−F)(1−F1)(G̃′ + G̃′

1 − G̃− G̃1)
× (H ′ + H ′

1 −H −H1)dk1 dk′ dk1 dk′1 dε,

where G̃ = G/F(1−F). This expression shows that the operator LF is self-adjoint
with respect to the scalar product

(G,H)F =
∫

B
G(ε)H(ε)

dε
F(1−F)

.

Similarly as in the proof of Proposition 4.6, it can be shown that the kernel N(LF )
of LF is spanned by F(1−F) and εF(1−F). By the Fredholm alternative (Lemma
5.1), the equation LF(G) = H is solvable if and only if H is an element of the
orthogonal complement of N(LF ) (with respect to the above scalar product), i.e., if
and only if (7.14) holds. 	


Now, we turn to the derivation of the energy-transport model. Let (Fα ,Jα , Vα)
be a solution of the SHE equations (7.11) and (7.12) with collision operator (7.13)
and of the Poisson equation (5.3), respectively. The (formal) limit α → 0 in (7.11)
gives See(F) = 0, where F = limα→0 Fα . Thus, by Lemma 7.6, F is given by Fμ,T

for some μ and T . Inserting the Chapman–Enskog expansion Fα = F + αGα into
(7.11) and (7.12) leads to

N(ε)∂t F + αN(ε)∂t Gα −divxJα −∇Vα · ∂Jα
∂ε

=
1
α

See(Fα)+ Sph(Fα), (7.15)

Jα = D(x,ε)
(

∇xF + ∇xVα
∂F
∂ε

)

+ αD(x,ε)
(

∇xGα + ∇xVα
∂Gα

∂ε

)

. (7.16)

We develop the right-hand side of (7.15) employing Taylor expansion:

1
α

See(Fα)+ Sph(Fα) =
1
α

(See(F)+ α(DSee(F))(Gα))+ Sph(F)+O(α)

= (DSee(F))(Gα)+ Sph(F)+O(α),

since See(F) = 0. Thus, performing the limit α → 0 in (7.15) and (7.16) gives
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N(ε)∂t F −divxJ−∇xV · ∂J
∂ε

−Sph(F) = (DSee(F))(G), (7.17)

J = D(x,ε)
(

∇xF + ∇xV
∂F
∂ε

)

, (7.18)

where V = limα→0 Vα and G = limα→0 Gα . By Lemma 7.6 (3), the operator equation
(7.17) is solvable if and only if

∫

R

(

N(ε)∂t F −divxJ −∇xV · ∂J
∂ε

−Sph(F)
)

ε j dε = 0, j = 0,1, (7.19)

is satisfied. Defining the macroscopic particle and energy densities

n(x,t) =
∫

R

Fμ,T (x,ε,t)N(ε)dε, ne(x,t) =
∫

R

Fμ,T (x,ε, t)N(ε)ε dε (7.20)

and the macroscopic particle and energy current densities

Jn(x,t) =
∫

R

J(x,ε,t)dε, Je(x,t) =
∫

R

J(x,ε,t)ε dε,

we can reformulate the solvability condition as

∂t n−divJn = ∇V ·
∫

R

∂J
∂ε

dε +
∫

R

Sph(F)dε = 0,

∂t(ne)−divJe = ∇V ·
∫

R

∂J
∂ε

ε dε +
∫

R

Sph(F)ε dε = −∇V · Jn +W (μ ,T ),

employing Lemma 7.6 (1), where

W (μ ,T ) =
∫

R

Sph(F)ε dε (7.21)

is the energy relaxation term.
It remains to compute the fluxes Jn and Je. Taking the derivative of F = Fμ,T

with respect to x, we obtain from (7.18), employing the abbreviations u0 = μ/T and
u1 = −1/T ,

J = D(x,ε)
(

∂F
∂u0

∇xu0 +
∂F
∂u1

∇xu1 + ∇xV
∂F
∂ε

)

= D(x,ε)F(1−F)
(

∇xu0 + ε∇xu1 − ∇Vx

T

)

.

Then, integrating J with respect to ε , we have shown the following theorem.

Theorem 7.7 (Energy-transport equations). Let (Fα ,Vα) be a solution of the SHE
equations (7.11) and (7.12) and the Poisson equation (5.3). Then the limit functions
F = Fμ,T = limα→0 Fα and V = limα→0 Vα satisfy the energy-transport equations
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∂t n−divJn = 0, ∂t(ne)−divJe + Jn ·∇V = W (μ ,t),

Jn = D00

(

∇
(μ

T

)
− ∇V

T

)

−D01∇
(

1
T

)

,

Je = D10

(

∇
(μ

T

)
− ∇V

T

)

−D11∇
(

1
T

)

,

λ 2
DΔV = n−C(x),

where the diffusion coefficients are given by

Di j(x,μ ,T ) =
∫

R

D(x,ε)Fμ,T (1−Fμ,T )ε i+ j dε, i, j = 0,1, (7.22)

and the electron density n, the energy density ne, and the energy relaxation term
W (μ ,T ) are defined in (7.20) and (7.21), respectively.

To be precise, the SHE equations for n and ne are obtained from the solvabil-
ity condition (7.19) for the operator equation (7.17). As in Sect. 7.1, the diffusion
coefficients are matrices in R

3×3.

Proposition 7.8 (Properties of the diffusion matrix and the relaxation term).
The following properties hold:

(1) The matrix D = (Di j) is symmetric and D01 = D10.
(2) If the six functions {∂E/∂ki, E∂E/∂ki : i = 1,2,3} are linearly independent,

then D is symmetric and positive definite for any μ ∈ R and T > 0.
(3) The relaxation term W (μ ,T ), defined through the inelastic collision operator

(6.16), is monotone with respect to T ,

W (μ ,T )(T −1)≤ 0 for all T > 0.

The proof of this proposition is very similar to the proofs of Propositions 6.4 and
6.5 and is therefore omitted.

Remark 7.9. The diffusion coefficients (7.22) are the same as those derived in Sect.
6.1 (see (6.14)). Indeed, with (7.7) we can write (7.22) as

Di j =
∫

B
v(k)⊗d0F(1−F)

(∫

R

δ (E(k)− ε)ε i+ j dε
)

dk
4π3

=
∫

B
v(k)⊗d0F(1−F)Ei+ j dk

4π3 .

The function d0 is a solution of Qel(d0) =−v(k). Since F is a function of the energy
and not of the wave vector, d̃0 = F(1−F)d0 solves Qel(d̃0) = −vF(1−F). Thus,
the above expression becomes

Di j =
∫

B
v(k)⊗ d̃0Ei+ j dk

4π3 ,

which is equal to (6.14) after identifying d0 and d̃0. 	
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Drift-diffusion model

Macroscopic diffusive models

dominant elastic 
scattering

dominant elastic 
scattering

dominant
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constant
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Fig. 7.1 Relations between the drift-diffusion, energy-transport, and SHE equations. A (high-field)
drift-diffusion model is derived from the SHE model in [24]. The drift-diffusion equations can be
directly derived from the Boltzmann equation in the diffusion approximation (see Sect. 5.1)

Figure 7.1 summarizes the relations between the diffusive models derived in this
and the previous chapters.
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Chapter 8
Diffusive Higher-Order Moment Equations

The drift-diffusion and energy-transport equations of Chaps. 5 and 6 are derived
from the Boltzmann equation by considering the moments

n =
∫

B
F

dk
4π3 , ne =

∫

B
FE(k)

dk
4π3 ,

where F is the distribution function. We have already indicated in Sect. 2.4 that this
strategy can be generalized. In this chapter, we detail the derivation of a hierarchy
of diffusive moment models.

We consider the semiconductor Boltzmann equation in the diffusive scaling

α2∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Q( f ), x ∈ R
3, k ∈ B, t > 0, (8.1)

together with periodic boundary conditions with respect to k and the initial condition
f (x,k,0) = fI(x,k). The scaling means that we have changed the space and time
scales according to x → x/α and t → t/α2, where α is the ratio of the mean free
path between two consecutive collisions to some reference length (see Sects. 5.1
and 6.1 for details). The function v(k) = ∇kE(k) is the mean velocity defined by the
energy band E(k). We suppose that α is small compared to one, and below we will
perform the formal limit α → 0.

We further assume that the collision operator can be decomposed into two parts,
a dominant part and a small part:

Q( f ) = Q0( f )+ α2Q1( f ).

In order to specify the assumptions on the collision terms Q0 and Q1, we need the
so-called generalized Maxwellians which are introduced in the next section. In the
following, we proceed as in [1].

Jüngel, A.: Diffusive Higher-Order Moment Equations. Lect. Notes Phys. 773, 171–194 (2009)
DOI 10.1007/978-3-540-89526-8 8 c© Springer-Verlag Berlin Heidelberg 2009
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8.1 Derivation from the Boltzmann Equation

Entropy maximization and generalized Maxwellians. For a given distribution
function f (x,k,t), we introduce the scaled relative entropy (or free energy, since we
include E(k)) by

(S( f ))(x,t) = −
∫

B
f (log f −1 + E(k))

dk
4π3 .

The generalized Maxwellians are defined like in Sect. 2.2 as the maximizers of
certain constrained extremal problems. In order to define this problem, let some
moments m(x,t) = (m0(x,t), . . . ,mN(x,t)) be given. We assume that N ≥ 1,

E(k) is even and κi(k) = E(k)i, i = 0, . . . ,N, (8.2)

where κ(k) = (κ0(k), . . . ,κN(k)) are scalar weight functions. It is possible to employ
more general (even) weight functions, but then the formulas below become more
complicated. We refer to [1] for details. Also vector-valued weight functions can be
considered, see [2].

As in the previous chapters, we set 〈g〉=
∫

B g(k)dk/4π3 for functions g(k). Then
we call the expression

〈κi f 〉 =
∫

B
κi(k) f (k)

dk
4π3

the i-th moment of f . For given moments m = (m0, . . . ,mN), we consider the follow-
ing constrained maximization problem:

S( f ∗) = max
{

S( f ) : 〈κ f (x, ·,t)〉 = m(x,t) for x ∈ R
3, t > 0

}
. (8.3)

Lemma 8.1. The formal solution of (8.3) (if it exists) is

f ∗(x,k,t) = eλ ∗(x,t)·κ(k),

where λ ∗ = (λ ∗
0 , . . . ,λ ∗

N) are some Lagrange multipliers defined by the relation
〈κ f ∗〉 = m.

Proof. With the Lagrange multipliers λi, we have to analyze the functional

G( f ,λ ) =
∫

B
f (log f −1−E(k))

dk
4π3 −λ · (〈κ f 〉−m).

The extremal condition for a function f ∗,

0 =
∂G( f ∗,λ )

∂ f
(g) =

∫

B
g(log f ∗ −E(k))

dk
4π3 −λ · 〈κg〉

=
∫

B
g(log f ∗ −E(k)−λ ·κ)

dk
4π3 ,
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for all functions g implies the identity log f ∗ = E(k)+ λ ·κ . Then, by setting λ ∗
1 =

λ1 + 1 and λ ∗
i = λi for all i �= 1, the lemma is proved. 	


Remark 8.2. We notice that the mathematical solution of (8.3) is quite delicate.
In [3], it was shown that (8.3) can be uniquely solved whenever the multipliers
λ̃ = λ̃ (m) can be found. However, there are situations for which problem (8.3) has
no solution. This is the case if the momentum space is unbounded and the polyno-
mial weight functions grow superquadratically at infinity [4, 5]. When the constraint
of the highest degree is relaxed (as an inequality instead of an equality), the con-
strained maximization problem is always uniquely solvable [6]. In particular, the
maximization problem can be uniquely solved if one of the following conditions
holds:

1. General band structure: B is a bounded set.
2. Kane’s nonparabolic band approximation: B = R

3 and κ = (1,E,E2), where

E(k) =
|k|2

1 +
√

1 + 2α|k|2 . (8.4)

Notice that E(k) grows linearly with k at infinity such that κi(k) is at most
quadratic.

3. Parabolic band approximation: B = R
3 and κ = (1, |k|2/2). 	


Given a function f (x,k,t) with moments mi = 〈κi f 〉, we call the maximizer of
(8.3) the generalized Maxwellian with respect to f and write f ∗ = M[ f ]. We infer
from Lemma 8.1 that there exist Lagrange multipliers λi such that

M[ f ](x,k,t) = eλ (x,t)·κ(k).

By definition, M[ f ] and f have the same moments, 〈κiM[ f ]〉 = 〈κi f 〉 = mi.
The use of the above entropy functional implicitly assumes nondegenerate

Maxwell–Boltzmann statistics. Degenerate Fermi–Dirac statistics can be also con-
sidered. Then the entropy functional reads as

S( f ) = −
∫

B

(

f log f +
1
η

(1−η f ) log(1−η f )+ E(k) f

)
dk

4π3 .

The (scaled) parameter η measures the semiconductor degeneracy. Fermi–Dirac
statistics means that η = 1; if η = 0, we recover Maxwell–Boltzmann statistics
since limη→0 η−1(1−η f ) log(1−η f ) = − f . Solving the constrained maximiza-
tion problem with Fermi–Dirac statistics, a computation shows that the formal max-
imizer is

f ∗ =
1

η + e−λ ·κ . (8.5)

Assumptions on the collision operators. Let ( fα ,Vα) be a (smooth) solution of
the Boltzmann equation (8.1) and the Poisson equation (5.3). We assume that fα
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converges to some function F = limα→0 fα . We introduce the Hilbert space L2
F(B)

with the scalar product

( f ,g)F =
∫

B
f gM[F ]−1 dk

4π3 (8.6)

and the corresponding norm ‖ · ‖F , where M[F ] is the generalized Maxwellian with
respect to F . We impose the following hypotheses on the collision operators. Instead
of considering specific scattering models, we assume only abstract properties:

1. For all functions f (k) and i = 0, . . . ,N, 〈κiQ0( f )〉 = 0. The kernel of Q0 consists
of generalized Maxwellians, N(Q0) = { f : f = const.M[ f ]}.

2. For all functions f (k), 〈Q1( f )〉 = 0.
3. The derivative L = DQ0(M[F ]) is continuous, closed, and symmetric on L2

F(B)
and its kernel is spanned by M[F ].

The first two hypotheses express the collisional invariants. Since κ0 = 1 and
κ1 = E by (8.2), the first assumption expresses in particular mass and energy conser-
vation. Additionally, we suppose for Q0 conservation for all moments with respect
to the weight functions. This assumption is rather strong. However, it is satisfied,
for instance, for the (simple) relaxation-time operator

Q0( f ) =
1
τ
(M[ f ]− f ), (8.7)

where τ > 0 is a (possibly space- and time-dependent) relaxation time. Since M[ f ]
and f have the same moments and the kernel consists of generalized Maxwellians,
the first assertion is satisfied. Operators describing impurity scattering (4.11), acous-
tic phonon collisions in the elastic approximation (4.10), or electron–electron scat-
tering (4.12) satisfy the first condition with N = 1.

The second hypothesis simply expresses mass conservation for the collision oper-
ator Q1, which is physically reasonable. For instance, the phonon collision operator
with transition rate (4.7) satisfies this condition.

Examples of collision operators, which fulfill the third hypothesis, are the
low-density operator (4.22) and the relaxation-time operator (8.7). The assumption
is quite natural in order to apply the Fredholm alternative for the Chapman–Enskog
correction.

The above approach has the advantage that only abstract properties of the scat-
tering terms are assumed, including many examples. On the other hand, there are
some drawbacks too. In contrast to the diffusion approximation of Chap. 6, there
are no scattering terms of first order in the Knudsen number α . For realistic semi-
conductors the order of magnitudes of the various scattering mechanisms can be
quite complicated and the decomposition into two operators Q0( f ) and α2Q1( f )
may be too simple. Furthermore, the generalized Maxwellian may not be a good ap-
proximation of the Boltzmann distribution function in certain situations, for instance
in the drain region of an n+nn+ diode [7]. A possible way out could be the use of the
generalized Fermi–Dirac distributions (8.5). However, the resulting expressions for
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the diffusion coefficients and densities become quite complicated since some inte-
grals cannot be simplified as in the case of Maxwell–Boltzmann statistics. Another
possibility could be the use of the superposition of two Maxwellian-type distribution
functions modeling hot and cold electron populations in the semiconductor (see, for
instance, [7, 8]).

Derivation of the diffusion moment model. The derivation consists of three steps.
First we perform the (formal) limit α → 0 in the Boltzmann equation (8.1). Then
Q0(F) = 0. By the first hypothesis, F is a generalized Maxwellian, F = M[F ]. In
the second step, we insert the Chapman–Enskog expansion fα = M[ fα ] + αgα in
the Boltzmann equation (8.1). Observing the (formal) expansion of the collision
operator,

Q0( fα ) = Q0 (M[ fα ])+ αDQ0 (M[ fα ])gα +O(α2),

we obtain

α∂t (M[ fα ]+ αgα)+ (v ·M[ fα ]+ ∇xV ·∇kM[ fα ])+ α (v ·gα + ∇xV ·∇kgα)

= α−1Q0 (M[ fα ])+ DQ0 (M[ fα ])gα +O(α).

By the first hypothesis, we have Q0(M[ fα ]) = 0. Hence, the formal limit α → 0
gives

v ·∇xM[F ]+ ∇xV ·∇kM[F ] = DQ0(M[F ])G = LG, (8.8)

where G = limα→0 gα .
We claim that this operator equation is solvable. The third assumption and the

Fredholm alternative (Lemma 5.1) imply that the equation LG = H is solvable if
and only if H ∈ N(L∗)⊥ and its solution is unique in the space N(L∗)⊥. Since L is
assumed to be symmetric and its kernel consists of generalized Maxwellians only,
we conclude that LG = H is solvable if and only if 0 = (H,M[F ])F =

∫
B H dk/4π3.

Now, viκ jM[F ] and (∂κi/∂k j)M[F ] are odd functions in k, and hence their integrals
vanish over B. Thus, the integral of the left-hand side of (8.8) over B vanishes too,
and this operator equation is uniquely solvable in N(L)⊥. We claim further that the
solution is given, up to the addition of a function in N(L), by

G = −
N

∑
i=0

(φi ·∇xλi + iλiφi−1 ·∇xV ) , (8.9)

where φi = (φi1,φi2,φi3) is the unique (vector-valued) solution in N(L)⊥ to

Lφi j = −v jκiM[F ] = − ∂E
∂k j

EiM[F ], i = 0, . . . ,N, j = 1,2,3, (8.10)

and we have set φ−1 = 0. Indeed, observing that

∇xM[F ] =
N

∑
i=0

κiM[F ]∇xλi, ∇kM[F ] =
N

∑
i=0

λiM[F ]∇kκi,
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and ∇kκi = ivκi−1 (by (8.2)), we have

LG = −
N

∑
i=0

(Lφi ·∇xλi + iλiφi−1 ·∇xV )

=
N

∑
i=0

(κiv ·∇xλi + λi∇xV ·∇kκi)M[F ] = v ·∇xM[F ]+ ∇xV ·∇kM[F ].

The third step is concerned with the limit α → 0 in the moment equations. For
this, we multiply the Boltzmann equation (8.1) by κi, integrate over B, and integrate
by parts in the term involving the electric potential:

α2∂t〈κi fα 〉+ α (divx〈vκi fα 〉− i∇xV · 〈vκi−1 fα〉)
= 〈κiQ0( fα)〉+ α2〈κiQ1( fα )〉, i = 0, . . . ,N,

where we have set κ−1 = 0. By the first assumption on Q0, the moments of Q0( fα )
vanish. Inserting the Chapman–Enskog expansion and dividing the resulting equa-
tion by α2 then lead to

∂t〈κiM[ fα ]〉+ α∂t〈κigα〉+ divx〈vκigα〉− i∇xV · 〈vκi−1gα〉 = 〈κiQ1( fα )〉.

We have used that vκiM[ fα ] is an odd function in k and hence its integral over B
vanishes. We perform the limit α → 0 to obtain

∂t〈κiM[F ]〉+ divx〈vκiG〉− i∇xV · 〈vκi−1G〉 = 〈κiQ1(M[F ])〉.

These are the evolution equations for the moments mi = 〈κiM[F ]〉. The fluxes Ji =
−〈vκiG〉 are determined by employing the expression (8.9) for G. This gives the
following theorem.

Theorem 8.3 (Diffusive moment equations). Let N ≥ 1, assume (8.2), and let the
hypotheses on the collision operators on page 174 hold. Furthermore, let ( fα ,Vα)
be a (smooth) solution of the Boltzmann–Poisson system (8.1) and (5.3). Then the
limit functions F = limα→0 fα and V = limα→0 Vα satisfy F = M[F ] = eλ ·κ and the
higher-order diffusive moment equations

∂tmi −divJi + iJi−1 ·∇V = Wi, x ∈ R
3, t > 0, (8.11)

Ji =
N

∑
j=0

(
Di j∇λ j + jDi, j−1λ j∇V

)
, i = 0, . . . ,N, (8.12)

λ 2
DΔV = m0 −C(x).

The moments mi and the right-hand side Wi are defined by

mi =
∫

B
FE(k)i dk

4π3 , Wi =
∫

B
Q1(F)E(k)i dk

4π3 , (8.13)
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the matrices Di j ∈ R
3×3 are given by

Di j =
∫

B
v(k)⊗φ jE(k)i dk

4π3 , i, j = 0, . . . ,N, (8.14)

where we have set Di,−1 = 0, and the functions φ j = (φ j1,φ j2,φ j3) are the (unique)
solutions in N(L)⊥ of the operator equations (8.10). Furthermore, m and λ are
related through the first equation in (8.13). The initial conditions read as

mi(·,0) =
∫

B
fIE(k)i dk

4π3 , i = 0, . . . ,N.

Diffusive higher-order moment models were already derived in the engineer-
ing literature in the 1990s. For instance, Sonoda et al. [9] derived heuristically
a system for the moments 〈M[F ]〉, 〈E(k)M[F ]〉, and 〈E(k)2M[F ]〉. Grasser et al.
[8, 10] employ the same moments and give a more systematic derivation, even for
nonparabolic bands.

Some properties of the diffusion matrices. Next, we show that the matrices Di j are
symmetric and, under some additional assumptions, positive definite. This indicates
that the system (8.11) and (8.12) may be well posed, at least locally in time.

Proposition 8.4 (Properties of the diffusion matrix). The following properties
hold:

(1) The matrix D ∈ R
3(N+1)×3(N+1), defined by D = (Di j) with Di j ∈ R

3×3, is
symmetric.

(2) Let the operator −L = −DQ0(M[F ]) be coercive on N(L)⊥, i.e., there exists
a constant β > 0 such that for all g ∈ N(L)⊥, (−Lg,g)F ≥ β‖g‖2

F (see (8.6) for the
definition of (·, ·)F ). Furthermore, let {viE j : i = 1,2,3, j = 0, . . . ,N} be linearly
independent functions in k. Then the diffusion matrix D = (Di j) is positive definite,
i.e., for all ξ ∈ R

3(N+1) with ξ �= 0,

ξ�Dξ > 0.

Proof. (1) We have to show that D�
i j = D ji. We write Di j = (D�m

i j ) ∈ R
3×3. Since L

is symmetric on L2(B), by the third assumption on page 174, we have

D�m
i j = (v�κiM[F ],φ jm)F = −(Lφi�,φ jm)F = −(φi�,Lφ jm)F

= (φi�,vmκ jM[F ])F = Dm�
ji .

(2) The proof is inspired by the proof of Proposition IV.6 in [11]. We write Di j =
(D�m

i j ) and ξ = (ξ0, . . . ,ξN) ∈ R
3(N+1) with ξi = (ξi�) ∈ R

3. Let (ξ0, . . . ,ξN) �= 0.
Then, by the definition of the matrices Di j,

ξ�Dξ =
N

∑
i, j=0

ξ�
i Di jξ j =

N

∑
i, j=0

3

∑
�,m=1

ξi�D
�m
i j ξ jm =

N

∑
i, j=0

3

∑
�,m=1

∫

B
ξi�κiv�φ jmξ jm

dk
4π3 .
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Since v�κiM[F ] = −Lφi�, we obtain

N

∑
i, j=0

ξ�
i Di jξ j = −

N

∑
i, j=0

3

∑
�,m=1

∫

B
ξi�Lφi�φ jmξ jmM[F ]−1 dk

4π3

=
N

∑
i, j=0

3

∑
�,m=1

(−L(ξi�φi�),ξ jmφ jm)F

=

(

−L

(
N

∑
i=0

3

∑
�=1

ξi�φi�

)

,
N

∑
i=0

3

∑
�=1

ξi�φi�

)

F

.

As φi� ∈ N(L)⊥, the coercivity and boundedness of −L (with bound cL > 0) give

N

∑
i, j=0

ξ�
i Di jξ j ≥ β

∥
∥
∥

N

∑
i=0

3

∑
�=1

ξi�φi�

∥
∥
∥

2

F
≥ β

c2
L

∥
∥
∥−L

(
N

∑
i=0

3

∑
�=1

ξi�φi�

)
∥
∥
∥

2

F

=
β
c2

L

∥
∥
∥

N

∑
i=0

3

∑
�=1

ξi�v�κiM[F ]
∥
∥
∥

2

F
=

β
c2

L

∫

B

∣
∣
∣

N

∑
i=0

3

∑
�=1

ξi�v�κi

∣
∣
∣
2
M[F ]

dk
4π3 > 0,

since the functions v�κi are supposed to be linearly independent. 	

Remark 8.5. We discuss in the following the assumptions of the above proposition.
The functions v�Ei (� = 1,2,3, i = 0, . . . ,N) are linearly independent, for instance,
in the case of the parabolic and nonparabolic band approximation. The operator
−L = −DQ0(M[F ]) is coercive on N(L)⊥ if Q0 is the relaxation-time operator (8.7)
and if Ei (i = 0, . . . ,N) are linearly independent. For a proof of this statement, let
g ∈ N(L)⊥. We show first that M[g] ∈ N(L). This follows if we have shown that
M[M[g]] = M[g]. Thus, let M[g] = eλ ·κ and M[M[g]] = eμ·κ . Since the moments of
M[g] and M[M[g]] coincide by construction, we have

∫

B
κ
(

eλ ·w − eμ·κ
)

dk = 0 and
∫

B
(λ ·κ − μ ·κ)

(
eλ ·κ − eμ·κ

)
dk = 0.

By the strict monotonicity of x �→ ex, the integrand of the second integral vanishes
and therefore (λ − μ) · κ = 0. Since κi = Ei are assumed to be linearly indepen-
dent, λ = μ . Hence, M[M[g]] = M[g] and M[g] ∈ N(L). This property shows that
(M[g],g)F = 0 and

(−Lg,g)F = −(Q0(g),g)F = −1
τ
(M[g]−g,g)F =

1
τ
‖g‖2

F .

This proves the coercivity of −L on N(L)⊥. 	

The diffusion matrices can be simplified if the operator Q0 is of relaxation-time

type.

Proposition 8.6 (Simplified diffusion matrix). Let Q0( f ) = (M[ f ]− f )/τ , where
τ > 0 is some (scaled) relaxation time, and set E(k) = e( 1

2 |k|2) for some scalar
function e. Then
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Di j =
τ
3

∫

B
e

(
1
2
|k|2

)

e′
(

1
2
|k|2

)2

|k|2 exp

(
N

∑
�=0

λ�e

(
1
2
|k|2

)�
)

dk
4π3 Id,

where Id is the unit matrix in R
3×3.

Under the assumption of the proposition, we can identify Di j with its diagonal
element and simply write D = (Di j) ∈ R

(N+1)×(N+1).

Proof. First, we observe that in the case of the relaxation-time operator, the function
G, which is the limit of the Chapman–Enskog correction, can be written explicitly,
enabling us to solve the operator Eq. (8.10) explicitly. Indeed, from the Chapman–
Enskog expansion and the Boltzmann equation (8.1), we infer that

gα =
1
α

( fα −M[ fα ]) = − τ
α

Q0( fα )

= −τα(∂t fα −Q1( fα))− τ(v ·∇x fα + ∇xV ·∇k fα),

and the formal limit α → 0 gives

G = −τ (v ·∇xM[F ]+ ∇xV ·∇kM[F ]) = −τ
N

∑
j=0

(κ jv ·∇xλ j + ∇xV ·∇kκ jλ j)M[F ].

Comparing with (8.9), the solution φ j of (8.10) reads as

φ j = τvκ jM[F ] = τ∇kEE jM[F ].

By definition (8.14), this implies

Di j =
∫

B
Ei∇kE ⊗φ j

dk
4π3 = τ

∫

B
Ei+ j∇kE ⊗∇kEM[F ]

dk
4π3 .

Since ∇kE(k) = ke′( 1
2 |k|2), we obtain

Di j = τ
∫

B
e

(
1
2
|k|2

)i+ j

e′
(

1
2
|k|2

)2

k⊗ kM[F]
dk

4π3 .

The function k �→ k ⊗ k is odd in every off-diagonal element such that the above
integral vanishes except in the diagonal elements. Since each diagonal element has
the same value and M[F ] = eλ ·κ , the expression for Di j follows. 	


The diffusion coefficients can be further simplified under additional assumptions
on the energy band structure. We consider some examples.

Example 8.7 (Monotone energy band). Let the assumption of Proposition 8.6 hold.
We suppose additionally that the energy band e( 1

2 |k|2) is strictly monotone in |k|
and that e(0) = 0 and limz→∞ e(z) = ∞. This allows us to choose B = R

3. Then, with
spherical coordinates (ρ ,θ ,φ), for i, j = 0, . . . ,N, we have
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Di j =
τ

12π3

∫ 2π

0

∫ π

0

∫ ∞

0
e

(
1
2

ρ2
)i+ j

e′
(

1
2

ρ2
)2

ρ4 exp

(
N

∑
�=0

λ�e

(
1
2

ρ2
)�

)

× sinθ dρ dθ dφ .

Now we perform the change of variables ε = e( 1
2 ρ2), setting γ(ε) = ρ2. Therefore,

dε = e′( 1
2 ρ2)ρ dρ and e′( 1

2 ρ2) = 2/γ ′(ε) such that

Di j =
2τ

3π2

∫ ∞

0
ε i+ j γ(ε)3/2

γ ′(ε)
exp

(
N

∑
�=0

λ�ε�

)

dε. (8.15)

In the special case N = 1 and for constant relaxation times, the same diffusion co-
efficients were derived in [11, formulas (3.36), (4.17)]. Notice that the above trans-
formation allows us to simplify the expression for the moments:

mi =
∫

B
e

(
1
2
|k|2

)i

exp

(
N

∑
�=0

λ�e

(
1
2
|k|2

)�
)

dk
4π3

=
1

π2

∫ ∞

0
e

(
1
2

ρ2
)i

exp

(
N

∑
�=0

λ�e

(
1
2

ρ2
)�

)

ρ2 dρ

=
1

2π2

∫ ∞

0
ε i
√

γ(ε)γ ′(ε)exp

(
N

∑
�=0

λ�ε�

)

dε, (8.16)

where i = 0, . . . ,N. Expressions (8.15) and (8.16) coincide with those for the energy-
transport model if τ = 2π

√
γ(ε)γ ′(ε), see (6.18), (6.19) and (6.20). 	


Example 8.8 (Nonparabolic and parabolic band approximation). In the case of
Kane’s nonparabolic band approximation (8.4), we can further simplify the inte-
grals (8.15) and (8.16). Since γ(ε) = |k|2 = 2ε(1 + αε) and γ ′(ε) = 2(1 + 2αε),
with the nonparabolicity parameter α > 0, we compute

Di j =
√

8τ
3π2

∫ ∞

0
ε i+ j+3/2 (1 + αε)3/2

1 + 2αε
exp

(
N

∑
�=0

λ�ε�

)

dε,

mi =
√

2
π2

∫ ∞

0
ε i+1/2(1 + αε)1/2(1 + 2αε)exp

(
N

∑
�=0

λ�ε�

)

dε,

where i = 0, . . . ,N. The relations for the parabolic band approximation are obtained
by setting α = 0 in the above formulas:

Di j =
√

8τ
3π2

∫ ∞

0
ε i+ j+3/2 exp

(
N

∑
�=0

λ�ε�

)

dε, (8.17)

mi =
√

2
π2

∫ ∞

0
ε i+1/2 exp

(
N

∑
�=0

λ�ε�

)

dε, (8.18)

where i, j = 0, . . . ,N. 	
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8.2 Some Explicit Examples

In this section we verify that the above strategy leads to the drift-diffusion and
energy-transport models of Chaps. 5 and 6, if one or two moments, respectively, are
chosen. This provides an alternative derivation, already indicated in Sect. 2.4, but
for simpler collision operators than those considered in Chaps. 5 and 6. Moreover,
a higher-order model is presented.

Drift-diffusion equations. The Maxwellian for the drift-diffusion model is ob-
tained by choosing N = 0 in the entropy maximization problem (8.3). The only
weight function is κ0 = 1, and the Maxwellian equals M[F ] = eλ0−E(k). The balance
equation is given by (8.11), ∂tm0 + divJ0 = 0, since the mass conservation leads
to W0 = 0. We need to compute the current density J0 since the case N = 0 was
excluded in Theorem 8.3. We have to solve

LG = v ·∇xM[F ]+ ∇xV ·∇kM[F ] = v ·∇x(λ0 −V)M[F ] (8.19)

(see (8.8)). Let φ0 be the unique solution in N(L)⊥ of Lφ0 = −vM[F ]. It is not
difficult to verify that G = −∇x(λ0 −V) ·φ0 solves (8.19). Thus,

J0 = −〈vG〉 = 〈v⊗φ0〉∇x(λ0 −V).

Notice that Theorem 8.3 would only give Ji = 〈v⊗φ0〉∇xλ0 since we have modified
the definition of the Lagrange multipliers. The flux can be written in terms of the
particle density m0. Indeed, since

m0 =
∫

B
M[F ]

dk
4π3 = Aeλ0 , where A =

∫

B
e−E(k) dk

4π3 > 0,

we obtain ∇xλ0 = (∇xm0)/m0 and hence

J0 = μ0(∇xm0 −m0∇xV ), where μ0 =
1

m0

∫

B
v⊗φ0

dk
4π3 .

This gives the drift-diffusion equations for the particle density n = m0 and the cur-
rent density Jn = J0 (see Sect. 5.1):

∂t n−divJn = 0, Jn = μ0(∇n−n∇V).

The model of Sect. 5.1 is obtained in the parabolic band approximation. By (8.17)
and (8.18), we infer that

m0 =
√

2
π2 eλ0

∫ ∞

0
ε1/2e−ε dε =

√
2

π2 eλ0Γ
(

3
2

)

=
2

(2π)3/2
eλ0 ,

μ0 =
√

8τ
3π2m0

eλ0

∫ ∞

0
ε3/2e−ε dε =

√
8τeλ0

3π2m0
Γ

(
5
2

)

=
√

8τ
3π2

(2π)3/2

2
Γ

(
5
2

)

= τ,

where Γ is the Gamma function defined in (1.60).
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Energy-transport equations. The energy-transport model is obtained from the
choice N = 1. Then M[F ] = eλ0+λ1E . By Theorem 8.3, the balance equations are

∂tm0 −divJ0 = 0, ∂tm1 −divJ1 + ∇V · J0 = W1,

where the particle current density J0 and the energy current density J1 are given by

J0 = D00(∇λ0 + λ1∇V )+ D01∇λ1,

J1 = D10(∇λ0 + λ1∇V )+ D11∇λ1,

the diffusion coefficients are defined by Di j = 〈Eiv ⊗ φ j〉, and the moments are
functions of the Lagrange multipliers λ0 and λ1:

m0 = eλ0

∫

B
eλ1E(k) dk

4π3 , m1 = eλ0

∫

B
eλ1E(k)E(k)

dk
4π3 .

The above equations correspond to the energy-transport model derived in
Sect. 6.1.

The energy-transport equations can be made more explicit in the parabolic energy
band approximation, for instance. We set λ1 =−1/T and interpret T as the electron
temperature. By Example 8.8, we have

mi =
√

2
π2 eλ0

∫ ∞

0
ε i+1/2e−ε/T dε =

√
2

π2 eλ0T i+3/2Γ
(

i+
3
2

)

, i = 0,1,

and thus, the electron density n = m0 and the energy density ne = m1 are

n =
2

(2π)3/2
T 3/2eλ0 , ne =

3

(2π)3/2
T 5/2eλ0 =

3
2

nT, (8.20)

which coincides with the expressions in Example 6.8. The diffusion coefficients
become, using (8.17),

Di j =
√

8τ
3π2 eλ0

∫ ∞

0
ε i+ j+3/2e−ε/T dε =

√
8τ

3π2 eλ0T i+ j+5/2Γ
(

i+ j +
5
2

)

,

and computing the gamma functions, we obtain the diffusion matrix

D = (Di j) = τnT

⎛

⎜
⎜
⎝

1
5
2

T

5
2

T
35
4

T 2

⎞

⎟
⎟
⎠ . (8.21)

Remark 8.9. Energy-transport models with diffusion matrices similar to (6.26) can
be derived by taking a relaxation time which depends on the macroscopic energy:

τ = τ0

( 〈M[F ]〉
〈εM[F ]〉

)β
,
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where τ0 > 0 and β ∈ R. Then τ = τ0(m0/m1)β = ( 2
3 )β τ0T−β , and the diffusion

matrix (8.21) becomes

D =
(

2
3

)β
τ0nT 1−β

⎛

⎜
⎜
⎝

1
5
2

T

5
2

T
35
4

T 2

⎞

⎟
⎟
⎠ .

This matrix is very similar to (6.26) for β = 1 except the coefficients 5/2 and 35/4.
The matrix (6.26) is obtained if the relaxation time depends on the microscopic en-
ergy, i.e., τ = τ(ε) = ε0/ε for some ε0 > 0. This is not surprising since the relaxation
time used to derive (6.26) also depends on the energy ε , see (6.24). We infer that

Di j =
√

8
3π2 eλ0

∫ ∞

0
τ(ε)ε i+ j+3/2e−ε/T dε =

√
8ε0

3π2 eλ0T i+ j+3/2Γ
(

i+ j +
3
2

)

,

giving

D =
2
3

ε0n

⎛

⎜
⎜
⎝

1
3
2

T

3
2

T
15
4

T 2

⎞

⎟
⎟
⎠ , (8.22)

which is the diffusion matrix of the Chen model. 	

Fourth-order moment equations. Finally, we consider the case N = 2 and κ =
(1,E,E2). In the parabolic band approximation, the weight functions are at most of
fourth order in k, which explains the name of the model. The balance equations are
given by (8.11),

∂tm0 −divJ0 = 0, (8.23)

∂tm1 −divJ1 + ∇V · J0 = W1, (8.24)

∂tm2 −divJ2 + 2∇V · J1 = W2, (8.25)

where W1 and W2 are the averaged collision terms, defined in Theorem 8.3, and the
fluxes read as

Ji = Di0(∇λ0 + λ1∇V )+ Di1(∇λ1 + 2λ2∇V )+ Di2∇λ2, i = 0,1,2,

with the diffusion coefficients (8.14). The derivation of the model is based on the
solvability of the constrained maximization problem (8.3). According to Remark 8.2,
this problem with weight functions (1,E,E2) is solvable if the nonparabolic band
approximation (8.4) with nonparabolicity parameter α > 0 is assumed. A more ex-
plicit formulation is obtained in the parabolic band approximation. Strictly speak-
ing, the extremal problem may be unsolvable in this situation. However, we may
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consider the parabolic band case as the limiting situation when the nonparabolicity
parameter in the nonparabolic band approximation tends to zero. Then (8.17) and
(8.18) lead to the expressions

mi =
√

2
π2 eλ0

∫ ∞

0
ε i+1/2eλ1ε+λ2ε2

dε, i = 0,1,2, (8.26)

Di j =
√

8τ
3π2

∫ ∞

0
ε i+ j+3/2eλ1ε+λ2ε2

dε, i, j = 0,1,2.

Unfortunately, the above integrals cannot be further simplified. Moreover, the inter-
pretation of the Lagrange multipliers λi becomes more difficult. In the next section,
we discuss a reformulation of the fourth-order moment model and compare it with
higher-order models in the literature.

8.3 Drift-Diffusion Formulation

We show that the fluxes of the higher-order moment model can be written in a
drift-diffusion-type form, which allows for a numerical decoupling of the stationary
model.

Proposition 8.10. Let the assumptions of Theorem 8.3 and Proposition 8.4 (2) hold.
Then we can write

Ji = ∇di + Fi(d)di∇V,

where di = Di0, d = (d0, . . . ,dN), and

Fi(d) =
N

∑
j=1

j
Di, j−1

Di0
λ j, i = 0, . . . ,N.

The Lagrange multipliers λ j are implicitly given by the values of di = 〈Eiv⊗φ0〉 and
Lφ0 = −vM[F] = −veλ ·κ . The mapping d = d(λ ) can be inverted since detd′(λ ) =
detD > 0.

Proof. We claim that the first sum in the flux formulation (8.12) equals ∇Di0. In-
deed, from

L(∇φ jm) = ∇(Lφ jm) = −vmE j
N

∑
�=0

∇λ�E
�M[F ] = −

N

∑
�=0

∇λ�vmE j+�M[F ]

= L

(
N

∑
�=0

∇λ�φ j+�,m

)

and the unique solvability in N(L)⊥, we obtain the relation
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∇φ j =
N

∑
�=0

∇λ�φ j+� + cM[F],

where c is a constant vector. Hence, by (8.14), setting j = 0,

∇Di0 = 〈Eiv⊗∇φ0〉 =
N

∑
�=0

∇λ�〈Eiv⊗φ�〉 =
N

∑
�=0

∇λ�Di�.

Then (8.12) becomes

Ji = ∇Di0 + Di0∇V
N

∑
j=0

j
Di, j−1

Di0
λ j,

proving the first assertion.
It remains to show that the determinant of the matrix d′(λ ) is positive. Since

L

(
∂φ jm

∂λ�

)

= −vmE j ∂M[F ]
∂λ�

= −vmE j+�M[F ] = Lφ j+�,m,

which gives ∂φ0/∂λ� = φ� + cM[F] for some and thus,

∂Di0

∂λ�
=

〈

Eiv⊗ ∂φ0

∂λ�

〉

= 〈Eiv⊗φ�〉 = Di�,

the Jacobian of d(λ ) consists of the elements ∂di/∂λ j = ∂Di0/∂λ j = Di j. The
matrix D = (Di j) is positive definite by Proposition 8.4, and we have detd′(λ ) =
detD > 0. 	

Remark 8.11. The numerical decoupling of the higher-order moment model can be
done as follows. Under the assumptions of the above proposition, the stationary
model reads as

−divJi = −i∇V · Ji−1 +Wi, Ji = ∇di + Fi(d)di∇V, i = 0, . . . ,N.

We assume that V is given, and Wi =Wi(d,V ) may depend on d and V . We also write
Ji = Ji(d,V ). During the iteration procedure, we may “freeze” the nonlinearities: Let
d̃ be given (e.g., from the previous iteration step) and consider the system

−divJi(d,V ) = −i∇V · Ji−1(d̃,V )+Wi(d̃,V ), Ji(d,V ) = ∇di + Fi(d̃)di∇V.

This system is decoupled since each equation is a scalar elliptic differential equation
for di. Furthermore, the linear equations can by “symmetrized” by local Slotboom
variables as described, for instance, in [12], to treat the convective part Fi(d̃)di∇V .
Finally, the “symmetrized” equations can be numerically discretized by mixed finite
elements [12, 13]. 	
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We come back to the fourth-order moment model discussed in the previous sec-
tion. Assuming the parabolic band approximation, the model can be rewritten as
follows. We rewrite the functions Fi(d):

Fi(d) = λ1 + 2
di+1

di
λ2, i = 0,1,2.

Observing that di = (2τ/3)mi+1 and integrating by parts, we obtain from (8.26)

mi = −
√

2
π2 eλ0

∫ ∞

0

2
2i+ 3

ε i+3/2(λ1 + 2λ2ε)eλ1ε+λ2ε2
dε (8.27)

= − 2
2i+ 3

(λ1mi+1 + 2λ2mi+2) = − 3
(2i+ 3)τ

(λ1di + 2λ2di+1).

Hence,

Fi(d) =
1
di

(λ1di + 2λ2di+1) = − (2i+ 3)τ
3

mi

di
,

and the fluxes become, for constant relaxation time,

Ji = ∇di + Fi(d)di∇V =
2
3

τ
(

∇mi+1 − 2i+ 3
2

mi∇V

)

, i = 0,1,2. (8.28)

Together with the balance equations (8.23), (8.24), and (8.25), we obtain a system
of three equations for the unknowns m0, m1, and m2. If τ depends on x or t, the
variables are τm0, τm1, and τm2. In the expression for J2, the moment m3 is needed.
It can be computed from m0, m1, and m2 using the relation

m3 = − 1
2λ2

(
5
2

m1 + λ1m2

)

, (8.29)

which comes from (8.27), where λ1, λ2 are functions of m = (m0,m1,m2). The
fourth-order model with the above current relations can also be interpreted as a
system of parabolic equations in the variables m1, m2, and m3; the particle density
m0 is then a function of m1, m2, and m3.

It remains to show that the function m(λ ) with λ = (λ0,λ1,λ2) can be inverted.
This comes from the fact that the matrix dm/dλ = (mi+ j)i, j ∈ R

3×3 is positive def-
inite (and hence its determinant is positive) since it is equal to the Hessian of the
strictly convex function

λ �→ m0 =
√

2
π2

∫ ∞

0
ε1/2eλ0+λ1ε+λ2ε2

dε.

The final fourth-order model consists of the balance equations (8.23), (8.24), and
(8.25) and the current relations (8.28) in the variables m0, m1, and m2.
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Remark 8.12. Grasser et al. have derived a related fourth-order model, called the six-
moments transport equations (see formulas (124)–(129) in [14]). The model equa-
tions are given by (8.23), (8.24), (8.25), and (8.28) together with

m0 = n, m1 =
3
2

nT, m2 =
5 ·3

4
nT 2βn. (8.30)

Here, the variables are the particle density n, the electron temperature T , and the
kurtosis βn. This notion is inspired from the energy-transport model in the parabolic
band approximation, where m2 = 15

4 nT 2 (see the coefficient D22 in (8.22)). In this
sense, βn measures the deviation from the heated Maxwellian M[F ] = eλ0−ε/T . More
generally, the kurtosis is defined by

βn =
3
5

m0m2

m2
1

.

By the Cauchy–Schwarz inequality,

m2
1 =

2
π4 e2λ0

(∫ ∞

0
ε1/4ε5/4eλ1ε+λ2ε2

dε
)2

≤ 2
π4 e2λ0

∫ ∞

0
ε1/2eλ1ε+λ2ε2

dε
∫ ∞

0
ε5/2eλ1ε+λ2ε2

dε = m0m2,

we obtain the restriction βn ≥ 3/5.
Grasser et al. [14] define heuristically m3 in terms of the lower-order moments

by setting

m3 =
7 ·5 ·3

8
nT 2β c

n , (8.31)

where the constant exponent c is fitted from Monte Carlo simulations of the Boltz-
mann equation, computing the numerical moment mMC

3 . It has been found that the
choice c = 3 gives the smallest deviation of the ratio mMC

3 /m3 from the desired value
one [14].

In the model derived above, m3 is implicitly defined in terms of the lower-order
moments, see (8.29). Using the notation (8.30) and setting λ1 = −1/T as in the
energy-transport equations, we obtain from (8.29)

m3 = −15
8

(1−βn)nT
λ2

.

The expression (8.31) is obtained by setting λ2 = −(1−βn)/7Tβ c
n . Since it should

hold λ2 < 0 (in order to have integrability of eλ1ε+λ2ε2
for ε ≥ 0), we conclude the

restriction βn ≤ 1. Together with the above condition, the kurtosis has to satisfy the
bounds 3/5 ≤ βn ≤ 1 [15]. Clearly, βn = 1 corresponds to the energy-transport case
for which λ2 = 0.

Thus, the model of Grasser et al. is contained in our model hierarchy with the
heuristic choice λ2 = −(1−βn)/7Tβ c

n . 	
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8.4 Symmetrization and Entropy

In Sect. 6.3, we have shown that the electric force terms can be eliminated in the
energy-transport equations by employing dual entropy variables (see (6.31)). It is
possible to extend this methodology to the higher-order moment models derived
above. To this end, we define generalized dual entropy variables ν = (ν0, . . . ,νN)�
by

λ = Pν,

where λ = (λ0, . . . ,λN)� are the Lagrange multipliers (or the primal entropy vari-
ables), and the transformation matrix P = (Pi j) ∈ R

(N+1)×(N+1) is the following
upper triangular matrix:

Pi j = (−1)i+ j
(

j
i

)

ai jV
j−i with ai j =

{
1 if i ≤ j,
0 if i > j,

where i, j = 0, . . . ,N. The dual entropy formulation allows us to “symmetrize” the
equations in the sense of the following proposition.

Proposition 8.13 (Dual entropy formulation). Define the dual entropy variables
ν = (ν0, . . . ,νN)�, the transformed moments ρ = (ρ0, . . . ,ρN)�, and the thermody-
namic fluxes F = (F0, . . . , FN)� by

λ = Pν, ρ = P�m, and F = P�J.

Then the model equations (8.11) and (8.12) can be equivalently written as

∂tρi −divFi = (P�W +V−1∂tVRm)i, Fi =
N

∑
j=0

Ci j∇ν j,

where W = (0,W1, . . . ,WN)�, R = (Ri j) is given by Ri j = (i− j)Pji, and the new
diffusion matrix C = (Ci j) is defined by C = P�DP.

The proof of the proposition is quite technical and is based on some properties
of the transformation matrix P, which are shown first.

Lemma 8.14. The following properties hold:
(1) The matrix Q = (Qi j) given by Qi j =

( j
i

)
ai jV j−i is the inverse of P.

(2) We set jδi, j−1 = 0 for j = 0. Then, for all i, j = 0, . . . ,N,

N

∑
k=0

( j− k)PikQk j = −
N

∑
k=0

( j− k)QikPk j = jδi, j−1V.

(3) For all i = 0, . . . ,N −1, j = 1, . . . ,N,

− jPi, j−1 +(i+ 1)Pi+1, j = 0.
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Proof. (1) By the definition of the coefficients ai j, we have ∑� Pi�Q� j = 0 for all
i > j. Let i < j. Then

N

∑
�=0

Pi�Q� j =
j

∑
�=i

(−1)i+�

(
�

i

)(
j
�

)

V j−i = V j−i
j

∑
�=i

(−1)i+�

(
j
i

)(
j− i
�− i

)

= V j−i
(

j
i

) j−i

∑
p=0

(−1)p
(

j− i
p

)

= 0.

Furthermore, for i = j, we obtain

N

∑
�=0

Pi�Q�i =
i

∑
�=i

(−1)i+�

(
�

i

)(
i
�

)

= 1.

Thus, PQ equals the identity matrix.
(2) The definition of ai j yields ∑�( j− �)Pi�Q� j = 0 for i ≥ j. Next, for i < j−1

it follows that

N

∑
�=0

( j− �)Pi�Q� j = V j−i
j−1

∑
�=i

( j− �)(−1)i+�

(
�

i

)(
j
�

)

= V j−i
j−1

∑
�=i

(−1)i+� j

(
j−1

i

)(
j−1− i
�− i

)

= jV j−i
(

j−1
i

) j−1−i

∑
p=0

(−1)p
(

j−1− i
p

)

= 0.

If i = j−1 then

N

∑
�=0

( j− �)Pi�Q� j = V
j−1

∑
�= j−1

( j− �)(−1) j−1+�

(
�

j−1

)(
j
�

)

= V

(
j−1
j−1

)(
j

j−1

)

= jV.

The second equality is shown in a similar way.
(3) For i ≥ j we have Pi, j−1 = 0 and Pi+1, j = 0. If i < j then

− jPi, j−1 +(i+ 1)Pi+1, j = (−1)i+ j+1V j−1−i
(

− j

(
j−1

i

)

+(i+ 1)
(

j
i+ 1

))

= 0.

This shows the lemma. 	

Proof (of Proposition 8.13). First we show the relation for the new fluxes. Employ-
ing the definitions C = P�DP and ν = Qλ and the property QP = Id, we obtain
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N

∑
j=0

Ci j∇ν j =
N

∑
j,�,p,n=0

P�iD�pPp j∇(Q jnλn)

=
N

∑
j,�,p,n=0

P�iD�p(Pp jQ jn∇λn + Pp j∇Q jnλn)

=
N

∑
�,p=0

P�iD�p∇λp +
N

∑
�,p,n=0

P�iD�p

(
N

∑
j=0

(n− j)Pp jQ jn

)

V−1∇V λn,

since ∇Q jn = (n− j)V−1∇VQ jn. Now, using Lemma 8.14 (2),

N

∑
j=0

Ci j∇ν j =
N

∑
�,p=0

P�iD�p∇λp +
N

∑
�,p,n=0

P�iD�pnδp,n−1∇Vλn

=
N

∑
�,n=0

P�i(D�n∇λn + nD�,n−1∇Vλn) =
N

∑
�=0

P�iJ� = Fi.

Next, we compute the transformed balance equations. By the definition of Fi,

divFi =
N

∑
j=0

div(PjiJj) =
N

∑
j=0

(Pji divJj + ∇Pji · Jj) (8.32)

=
N

∑
j=0

Pji(divJj − jJ j−1 ·∇V )+
N

∑
j=0

(∇Pji · Jj + jPjiJ j−1 ·∇V ).

We show that the second sum vanishes. Observing that ∇Pji = (i− j)V−1∇VPji, we
find

A =
N

∑
j=0

(∇Pji · Jj + jPjiJ j−1 ·∇V ) =
N

∑
j=0

(
(i− j)PjiV

−1∇V · Jj + jPjiJ j−1 ·∇V
)
.

Since the first sum can be rewritten, by Lemma 8.14 (2), as

N

∑
j=0

(i− j)PjiV
−1∇V · Jj =

N

∑
j,�=0

(i− �)δ j�P�iV
−1Jj ·∇V

=
N

∑
j,�,p=0

(i− �)PjpQp�P�iV
−1Jj ·∇V =

N

∑
j,p=0

(
N

∑
�=0

(i− �)Qp�P�i

)

PjpV−1Jj ·∇V

= −
N

∑
j,p=0

iδp,i−1PjpJj ·∇V = −
N

∑
j=0

iPj,i−1Jj ·∇V,

we obtain

A =
N−1

∑
j=0

(−iPj,i−1 +( j + 1)Pj+1,i)Jj ·∇V = 0,
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using Lemma 8.14 (3). Hence, with the balance equations (8.11), (8.32) becomes

divFi =
N

∑
j=0

Pji(∂tm j −Wj). (8.33)

We employ the definition ρ = P�m to rewrite the first sum,

N

∑
j=0

Pji∂tm j =
N

∑
j=0

(∂t(Pjim j)− ∂tPjim j)

= ∂tρi −V−1∂tV
N

∑
j=0

(i− j)Pjim j = ∂tρi −V−1∂tV
N

∑
j=0

Ri jm j.

This finishes the proof. 	

We consider two examples.

Example 8.15. (Energy-transport model) The transformation matrix P and its in-
verse Q read in the case N = 1 as follows:

P =
(

1 −V
0 1

)

, Q =
(

1 V
0 1

)

.

Defining the chemical potential μ by λ0 = μ/T , where T =−1/λ1 > 0 is the particle
temperature, the dual entropy variable ν = Qλ becomes (see Sect. 6.3)

ν0 = λ0 +Vλ1 =
μ −V

T
, ν1 = λ1 = − 1

T
.

The quantity μ −V is known as the electro-chemical potential. 	

Example 8.16. (Fourth-order model) For N = 2, the transformation matrix is given
by

P =

⎛

⎝
1 −V V 2

0 1 −2V
0 0 1

⎞

⎠ .

Introducing the chemical potential and the temperature as in the previous example
and the second-order temperature θ as in [10] by λ2 = −1/θT , the dual entropy
variables are

ν0 =
μ −V

T
− V 2

θT
, ν1 = − 1

T
− 2V

θT
, ν2 = − 1

θT
. �

The dual entropy formulation allows us to prove entropy dissipation. We define
the relative entropy S by

S(t) = −
∫

R3
(m · (λ − λ̄)−m0 + m̄0)dx ≤ 0,
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where λ = (λ0, . . . ,λN)� and m = (m0, . . . ,mN)�. The vectors λ̄ = (V,−1,0, . . . ,0)�

and m̄0 = m0(λ̄ ) are the equilibrium values (since eλ̄ ·κ = eV−E(k) is the equilibrium
distribution function in the presence of an electric field). Notice that for the energy-
transport model (i.e., N = 1), the relative entropy becomes (see (8.20))

S = −
∫

R3

(

n

(

ln
( n

T 3/2

)
− 5

2
− log

2

(2π)3/2
−V

)

+
3
2

nT +
2

(2π)3/2
eV

)

dx.

Proposition 8.17 (Entropy inequality). Assume that the electric potential is
time-independent and that

∫

R3
W · (λ − λ̄)dx ≤ 0. (8.34)

Then any (smooth) solution λ of the higher-order moment equations (8.11) and
(8.12) satisfies the entropy inequality

−dS
dt

+
∫

R3

N

∑
i, j=0

Ci j∇νi ·∇ν j dx ≤ 0.

The second integral on the left-hand side is called the entropy production. It is
nonnegative since the diffusion matrix is positive (semi-) definite. Thus, the entropy
is nondecreasing in time.

Proof. We introduce the relative entropy density s(λ ) = −m · (λ − λ̄)+ m0 − m̄0.
The moments are given by mi =

∫
B E(k)ieλ ·κ dk/4π3. Then ∂m0/∂λi = mi and we

obtain
∂ s
∂λi

= − ∂m
∂λi

· (λ − λ̄)−mi +
∂m0

∂λi
= − ∂m

∂λi
· (λ − λ̄)

and

∂tm · (λ − λ̄) =
N

∑
i=0

∂m
∂λi

· (λ − λ̄)∂tλi = −
N

∑
i=0

∂ s
∂λi

∂tλi = −∂t s(λ ). (8.35)

The balance equation (8.11) is formally equivalent to (8.33); multiplying the latter
equations by νi − ν̄i, where ν̄ = Qλ̄ , and summing over i = 0, . . . ,N, it follows that

(P�∂tm)�(ν − ν̄)− (divF)�(ν − ν̄) = (P�W )�(ν − ν̄).

Integrating over x and employing the definition ν = Qλ give

∫

R3
∂tm

�PQ(λ − λ̄)dx−
∫

R3

N

∑
i, j=0

div(Ci j∇ν j)(νi − ν̄i)dx

=
∫

R3
W�PQ(λ − λ̄)dx.

Finally, integrating by parts in the second integral, taking into account that
∇ν̄ = 0, and using (8.35) yield
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−
∫

R3
∂t s(λ )dx +

∫

R3

N

∑
i, j=0

Ci j∇νi ·∇ν j dx =
∫

R3
W�(λ − λ̄)dx ≤ 0,

which proves the lemma. 	

In [16, Lemma 4.11], it was shown that assumption (8.34) on W holds for an

inelastic phonon collision operator in the case of the energy-transport model. This
hypothesis also holds if

Wi = −1
τ
(mi − m̄i), where m̄i = mi(λ̄ ),

since

W · (λ − λ̄) = −1
τ

∫

B
(eκ ·λ − eκ ·λ̄ )(κ ·λ −κ · λ̄ )

dk
4π3 ≤ 0.

Figure 8.1 summarizes the relations between the diffusive models discussed in
this chapter.

Semi-classical Boltzmann equation

Fourth-order
moment model

Energy-transport
model 

Drift-diffusion model

Macroscopic diffusive models

special choice for m3

K = 1 

diffusion approximation

Higher-order diffusive moment models

Grasser’s
moment model 

K = (1,E(k),E(k) 

2) K = (1,E(k))

Fig. 8.1 Relations between the diffusive moment models. From the diffusive moment hierarchy,
explicit models can be derived by choosing the weight functions κ . The moment m3 is discussed
in Remark 8.12
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Chapter 9
Hydrodynamic Equations

In Sect. 2.1, we have considered two different time scalings. In the diffusion scal-
ing, assumed in Chaps. 5, 6, 7, and 8, the typical time is of the order of the time
between two consecutive collisions divided by the square of the Knudsen number
α2, which is supposed to be small compared to one. In this chapter, we consider
a shorter time scale. More precisely, we suppose that the typical time is of the or-
der of the time between two scattering events divided by α . We show that with this
scaling hydrodynamic equations can be derived. In contrast to the models of the
previous chapters, hydrodynamic models are mathematically not of parabolic but of
hyperbolic type.

9.1 Derivation from the Boltzmann Equation

Like in the previous chapters, the starting point is the semiconductor Boltzmann
equation for the distribution function f = f (x,k,t),

∂t f + v(k) ·∇x f +
q
h̄

∇xV ·∇k f = Q( f ), x ∈ R
3, k ∈ B, t > 0,

where v(k) = ∇kE(k)/h̄ is the group velocity, E(k) the energy band structure de-
pending on the (pseudo) wave vector k, V (x,t) the electric potential, computed from
the Poisson equation (5.3), and B the Brillouin zone. The initial condition reads as
f (x,k,0) = fI(x,k). We assume that the collision operator is given as the sum

Q( f ) = Q0( f )+ Q1( f )

and that the mean free path λ0 of collisions described by Q0 is much smaller than
the mean free path λ given by Q1.

First, we scale the Boltzmann equation. We proceed similarly as in Sect. 2.3. We
introduce the reference length λ , which is the mean free path corresponding to Q1,
and the reference velocity v0 =

√
kBTL/m∗. This velocity corresponds to a particle

Jüngel, A.: Hydrodynamic Equations. Lect. Notes Phys. 773, 195–213 (2009)
DOI 10.1007/978-3-540-89526-8 9 c© Springer-Verlag Berlin Heidelberg 2009
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with kinetic energy of the order of the thermal energy kBTL. Furthermore, we define
the reference wave vector m∗v0/h̄, the reference potential UT = kBTL/q, and the
reference times τ = λ/v0 and τ0 = λ0/v0. This defines the dimensionless variables

x = λ xs, t = τts, k =
m∗v0

h̄
ks,

and the dimensionless functions

V = UTVs, Q0( f ) =
1
τ0

Qs,0( f ), Q1( f ) =
1
τ

Qs,1( f ).

Inserting this scaling into the Boltzmann equation and multiplying the resulting
equation by τ0, we obtain, omitting the index “s”,

α∂t f + α (v(k) ·∇x f + ∇xV ·∇k f ) = Q0( f )+ αQ1( f ), (9.1)

where α = λ0/λ is the ratio between the mean free paths corresponding to the
collision operators Q0 and Q1, respectively. We assume that α � 1, i.e., there are
much more scattering events described by Q0 than by Q1.

Derivation of the hydrodynamic equations. The hydrodynamic model is derived
from the moment equations of (9.1). Let fα be a solution of (9.1) and Vα be a
solution of the Poisson equation (5.3). We introduce the following weight functions:
κ0(k) = 1, κ1(k) = v(k), and κ2(k) = E(k). The corresponding moments have a
physical interpretation: n = 〈 f 〉 is the electron density, J = −〈v(k) f 〉 the electron
current density, and 〈E(k) f 〉 the energy density, relative to the distribution function
f , where 〈g〉=

∫
B g(k)dk/4π3. Then, the moment equations are obtained from (9.1)

by multiplication by κi/α and integration over the Brillouin zone, as in Sect. 2.3:

∂t〈κi fα 〉+ divx〈vκi fα 〉−∇xV · 〈∇kκi fα 〉 = α−1〈κiQ0( fα )〉+ 〈κiQ1( fα )〉, (9.2)

where i = 0,1,2. Unfortunately, this set of equations is not closed: The integrals
〈vv fα 〉 = 〈v⊗ v fα〉 and 〈vE fα 〉 cannot be written in terms of the lower-order mo-
ments n, J, and ne. This is referred to as the closure problem. To solve this problem,
we make some simplifying assumptions on the collision operators and perform the
formal limit α → 0.

We impose the following assumptions:

1. The energy band is approximated by a parabolic band and B = R
3. Then the

weight functions become κ0(k) = 1, κ1(k) = k, and κ2(k) = 1
2 |k|2.

2. All moments up to second order of Q0 vanish, i.e., 〈κiQ0( f )〉= 0 for all functions
f .

3. The kernel of Q0 is spanned by the Maxwellians, N(Q0) = { f : f (k) = M[ f ](k) =
M(k) = exp(λ0 +λ1 ·v(k)+ 1

2 λ2|k|2)}, where λ0 and λ2 are real numbers and λ1

is a vector.
4. The collisions described by Q1 conserve mass, i.e., 〈Q1( f )〉 = 0 for all functions

f (k).
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The first assumption simplifies the computations below. We will discuss the case
of a general band structure at the end of this section. The second condition means
that the collision operator Q0 conserves mass, momentum, and energy. For instance,
a relaxation-time operator satisfies this hypothesis. The third assumption signifies
that the equilibrium state of the system given by Q0 is given by Maxwellians. In
view of the parabolic band approximation, the Maxwellians can be written in a
more common form. Instead of λ0, λ1, and λ2, we introduce the electron density n,
the mean velocity u, and the electron temperature T by n = 〈M〉, λ2 = −1/T , and
λ1 = u/T . Then a computation shows that

n =
∫

R3
exp

(

λ0 + λ1 · k +
1
2

λ2|k|2
)

dk
4π3 =

2

(2π)3/2
T 3/2eλ0+|u|2/2T ,

and hence,

M(k) =
1
2

(
2π
T

)3/2

ne−|u−k|2/2T . (9.3)

Finally, the last condition implies mass conservation for the total collision operator
Q0 + αQ1 which is physically reasonable.

The derivation of the hydrodynamic equations is based on two steps, as explained
in Sect. 2.3. In the first step, the (formal) limit α → 0 in the Boltzmann equation
(9.1) leads to

Q0( f ) = 0, where f = lim
α→0

fα .

Then, by the third assumption, f = M for some n, u, and T . In the second step,
we perform the limit α → 0 in the moment equations (9.2), employing the first
assumption on Q0:

∂t〈κiM〉+ divx〈κikM〉−∇xV · 〈∇kκiM〉 = 〈κiQ1(M)〉, i = 0,1,2. (9.4)

We need to compute the higher-order moments.

Lemma 9.1. Let the Maxwellian M be given by (9.3). Then

〈kM〉 = nu, 〈k⊗ kM〉 = n(u⊗u)+ nT Id,

〈
1
2

k|k|2M

〉

=
1
2

nu(|u|2 + 5T).

Proof. We employ the following identities:
〈

e−|z|2/2
〉

= 2(2π)−3/2,
〈

ziz je−|z|2/2
〉

= 2(2π)−3/2δi j.

Then, with the transformation z = (k−u)/
√

T , we obtain

〈kM〉 =
1
2
(2π)3/2n

〈
(u +

√
T z)e−|z|2/2

〉
= nu,

since z �→ ze−|z|2/2 is an odd function and hence, its integral vanishes. Furthermore,
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〈k⊗ kM〉 =
1
2
(2π)3/2n

〈
(u +

√
T z)⊗ (u +

√
T z)e−|z|2/2

〉

= n(u⊗u)+
1
2
(2π)3/2nT 〈z⊗ ze−|z|2/2〉 = n(u⊗u)+ nT Id.

Finally, we have for i = 1,2,3

〈
1
2

ki|k|2M

〉

=
1
4
(2π)3/2n

3

∑
j=1

〈
(ui +

√
Tzi)(u j +

√
Tz j)2e−|z|2/2

〉
.

A straightforward computation shows that

〈
1
2

ki|k|2M

〉

=
1
2

nui|u|2 +
1
2

nT
3

∑
j=1

(ui + 2u jδi j) =
1
2

nui|u|2 +
5
2

nTui.

This finishes the proof. 	

Inserting the expressions of Lemma 9.1 into the moment equations (9.4) leads to

the following result.

Theorem 9.2 (Hydrodynamic equations). Let the above assumptions on the en-
ergy band and the collision operators hold and let ( fα ,Vα) be a solution of the
Boltzmann–Poisson system (9.1) and (5.3). Then the limit function f = limα→0 fα
equals the Maxwellian (9.3), where the functions n, Jn = −nu, and ne are solutions
of the hydrodynamic equations

∂t n−divJn = 0, (9.5)

∂t Jn −div

(
Jn ⊗ Jn

n

)

−∇(nT )+ n∇V = −〈kQ1(M)〉, (9.6)

∂t(ne)−div (Jn(e + T))+ Jn ·∇V =
〈

1
2
|k|2Q1(M)

〉

, (9.7)

λ 2
DΔV = n−C(x),

where e = 1
2 |u|2 + 3

2 T is the sum of the kinetic and thermal energies, and V =
limα→0 Vα . The initial conditions are

n(·,0) =
∫

B
fI

dk
4π3 , Jn(·,0) = −

∫

B
k fI

dk
4π3 , (ne)(·,0) =

∫

B

1
2
|k|2 fI

dk
4π3 .

Discussion of the equations. The production terms 〈kQ1(M)〉 and 〈 1
2 |k|2Q1(M)〉

can be specified if Q1 is given, for instance, by the low-density operator

(Q1( f )) (x,k,t) =
∫

R3
σ
(
x,k,k′

)(
Meq f ′ −M′

eq f
)

dk′, (9.8)
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where the collision cross-section σ is assumed to be symmetric in k and k′ and
Meq(k) = 1

2 (2π)3/2e−|k|2/2 is the Maxwellian of the thermal equilibrium state. No-
tice that Meq is normalized, i.e., 〈Meq〉 = 1.

Lemma 9.3. The low-density collision operator (9.8) satisfies, for all functions
f (k),

〈Q1( f )〉 = 0,

〈kQ1( f )〉 = −
∫

R3

k f
τp(x,k)

dk
4π3 ,

〈
1
2
|k|2Q1( f )

〉

=
∫

R3

f (e0(x,k)− e 1
2 |k|2)

τe(x,k)
dk

4π3 ,

where the momentum relaxation time τp, the energy relaxation time τe, and the av-
eraged energy e0 are given by, respectively,

1
τp(x,k)

=
∫

R3
σ(x,k,k′)M′

eq

(

1− k′

k

)

dk′, (9.9)

1
τe(x, p)

=
∫

R3
σ(x,k,k′)M′

eq dk′,

e0(x,k) =
(∫

R3
σ(x,k,k′)M′

eq dk′
)−1 ∫

R3
σ(x,k,k′)

1
2
|k′|2M′

eq dk′.

Furthermore, if the scattering rate σ does not depend on k and k′, then

〈kQ1(M)〉 =
Jn

τ0
,

〈
1
2
|k|2Q1(M)

〉

= − n
τ0

(

e− 3
2

)

, (9.10)

where τ0 = 1/σ .

Expression (9.9) for the momentum relaxation time can be also found in [1,
Sect. 5.2.1].

Proof. The first moment is given by

〈kQ1( f )〉 =
1

4π3

∫

R6
σ(k,k′)(Meq f ′ −M′

eq f )k dk′ dk,

and exchanging k and k′ in the first sum gives

〈kQ1( f )〉 =
1

4π3

∫

R6
σ(k,k′)M′

eq f (k′ − k)dk′ dk

= −
∫

R3
k f

(∫

R3
σ(k,k′)M′

eq

(

1− k′

k

)

dk′
)

dk
4π3 ,

showing the second equation involving τp. The third equation follows from
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〈
1
2
|k|2Q1( f )

〉

=
1
2

∫

R3
f

(∫

R3
σ(k,k′)|k′|2M′

eq dk′ − |k|2
∫

R3
σ(k,k′)M′

eq dk′
)

dk
4π3 .

Furthermore, if σ = σ(x), we compute

Q1( f ) = σ(x)
(

Meq

∫

R3
f ′ dk′ − f

∫

R3
M′

eq dk′
)

= 4π3σ(x)(nMeq − f ),

and hence, by the definition of Jn,

〈kQ1(M)〉 = σ(n〈kMeq〉− 〈kM〉) = σJn.

By the second identity in Lemma 9.1, we infer that 〈 1
2 |k|2M〉 = 1

2 n|u|2 + 3
2 nT = ne,

such that
〈

1
2
|k|2Q1(M)

〉

= σ
(

n

〈
1
2
|k|2Meq

〉

−
〈

1
2
|k|2M

〉)

= σ
(

3
2

n−ne

)

,

which proves the lemma. 	

For wave-vector-independent scattering rates, the above lemma shows that the

averaged collision integrals are of relaxation-time type. Indeed, in the absence of
external forces, in the homogeneous case, and for constant scattering rate, we con-
clude from (9.6) and (9.7) that

∂t

∫

R3
Jn dx = − 1

τ0

∫

R3
Jn dx, ∂t

∫

R3
nedx = − 1

τ0

∫

R3

(

ne− 3
2

n

)

dx.

These differential equations can be solved explicitly. Since the total mass ρ =∫
R3 n(x,t)dx is constant in time, it follows that

∫

R3
Jn(x,t)dx = e−t/τ0

∫

R3
Jn(x,0)dx,

∫

R3
(ne)(x,t)dx =

(∫

R3
(ne)(x,0)dx− 3

2
ρ
)

e−t/τ0 +
3
2

ρ .

Thus, as t → ∞,
∫
R3 Jn dx converges exponentially fast to zero with rate 1/τ0 and∫

R3 nedx converges exponentially fast to 3
2 ρ with the same rate. Notice that 3

2 ρ is
the particle energy at equilibrium with velocity u = 0 and temperature T = 1.

The low-density collision operator (9.8) is a very simplified scattering model.
We refer to Jacoboni and Lugli [2] for scattering integrals including acoustic de-
formation potential scattering, intravalley collisions, and impurity scattering. Often,
the production integrals are expressed in terms of the deviation of the associated
moment 〈wiM〉 from its equilibrium value 〈wiM〉eq:

〈wiQ1(M)〉 = −〈wiM〉− 〈wiM〉eq

τi(M)
,
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where the macroscopic relaxation time τi(M) is a functional of the Maxwellian. This
relaxation time is frequently modeled in an ad hoc manner, either by fitting to bulk
Monte Carlo data or by empirical models and sometimes, the presentation (9.10) is
assumed [3]. A relaxation-time approximation, separating the effects of interband
and intraband collisions and assuming that the intravalley scattering occurs much
more frequently than intervalley collisions, was suggested in Rudan et al. [4]. We
refer to the work of Grasser [5, Sect. 5] for a discussion and more references.

We remark that the unscaled hydrodynamic equations with the collisional mo-
ments (9.10) are written as follows:

∂t n− 1
q

divJn = 0, (9.11)

∂t Jn − 1
q

div

(
Jn ⊗ Jn

n

)

− qkB

m∗ ∇(nT )+
q2

m∗ n∇V = − Jn

τ0
, (9.12)

∂t(ne)− 1
q

div (Jn(e + kBT ))+ Jn ·∇V = − n
τ0

(

e− 3
2

kBTL

)

, (9.13)

where the energy is given by

e =
m∗

2q2

|Jn|2
n2 +

3
2

kBT. (9.14)

In the absence of electric fields and scattering integrals, Eqs. (9.5), (9.6), and (9.7)
correspond to the Euler equations of gas dynamics. Mathematically, they constitute
a quasilinear hyperbolic system of conservation laws since mass, momentum, and
energy are conserved. In this context, the expression nT in (9.6) can be interpreted as
the gas pressure, which is generalized to the stress tensor P = 〈(k−u)⊗ (k−u)M〉.
The heat flux is defined by q = 〈 1

2 (k−u)|k−u|2M〉. Since the Maxwellian M is even
in k−u, this integral vanishes here and thus, q = 0.

The hydrodynamic model for semiconductors was first introduced by Bløtekjær
[6] and Baccarani and Wordeman [3]. Bløtekjær derived the equations from the
semiconductor Boltzmann equation by the moment method with a heuristic closure.
In particular, he allowed for a nonvanishing heat flux q = −κ∇T , inspired from the
Fourier law, where κ is the heat conductivity of the electron gas, and the expres-
sion −div(κ∇T ) is added to the left-hand side of the energy equation (9.7). This
choice was criticized in [7], since κ∇T only approximates the diffusive component
of the heat flux. For a uniform temperature, ∇T = 0, and hence q = 0. However, the
convective part of the heat flux needs to be included in some situations. Under some
simplifying assumptions (like isotropy of the distribution function), another (scaled)
expression for the heat flux was derived by Anile and Romano [8]:

q = −5
2

T ∇T +
5
2

nTu

(
1
τp

− 1
τe

)

τe,

where τp and τe are the momentum and energy relaxation times, respectively. When
τp = τe, one obtains the usual Fourier law. A nonvanishing heat flux was employed
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in Rudan et al. [4] as a closure in the moment equations. We remark that a nonzero
heat flux can be derived by a Chapman–Enskog expansion method in the gas dy-
namics context, leading to the fluid dynamical Navier–Stokes equations [9].

There is a huge literature about hydrodynamic limits of the Boltzmann equation,
in particular to derive the Euler and Navier–Stokes equations. The first rigorous
result for the hydrodynamical limit was carried out by Caflisch [10] and general-
ized by Lachowicz [11]. The compressible Euler equations were derived by Nishida
[12] and Ukai and Asano [13] based on the work by Grad [14]. The Navier–Stokes
equations were derived from the Boltzmann equation by De Masi, Esposito, and
Lebowitz [15] and simultaneously by Bardos, Golse, and Levermore [9, 16]. The
above (formal) derivation is based on Bardos et al. [9]. For more references we refer
to the books of Cercignani [17, 18].

When the electron temperature is assumed to be constant, Eqs. (9.5) and (9.6) are
referred to as the isothermal hydrodynamic model. In gas dynamics, also isentropic
hydrodynamic equations are considered, where the pressure P = nT is replaced by
P = P0nβ−1 with P0 > 0 and β > 1. Lions, Perthame, and co-workers proved the
existence of global weak solutions of the transient isentropic model in one space
dimension with vanishing electric field for all β > 1 [19, 20], whereas Matsumura
and Nishida considered the isothermal case β = 1 [21]. The existence of global
solutions of the one-dimensional isothermal equations including electric forces and
the coupling to the Poisson equation was shown in [22, 23]. The isentropic case was
treated in [24, 25]. The full hydrodynamic system (9.5), (9.6), and (9.7) (including a
nonvanishing heat flux) was studied in [26, 27]. Finally, Gamba and Morawetz have
analyzed the steady-state system [28, 29].

The solutions of the hydrodynamic equations may develop shock waves and con-
tact discontinuities. They occur, for instance, for velocities exceeding the sound
speed which is related to the electron temperature. As the hydrodynamic model is
hyperbolic in the supersonic regions, special numerical methods have to be em-
ployed. Many numerical discretizations were proposed, for instance Godunov or
Nessyahu–Tadmor schemes [25, 30, 31], ENO (essentially non-oscillatory) shock-
capturing algorithms [32], second-order upwind-type finite-difference discretiza-
tions [33], stabilized finite-element approximations [34], high-resolution-centered
schemes [35], and relaxation methods [36].

General energy band structure. The hydrodynamic model can be extended to gen-
eral energy bands. Let the weight functions be given by κ0(k) = 1, κ1(k) = k, and
κ2(k) = E(k). Performing the limit α → 0 in the moment equations (9.2) and as-
suming that all κ-moments of Q0( fα ) vanish, we obtain

∂t〈κiM〉+ divx〈vκiM〉−∇xV · 〈∇kκiM〉 = 〈κiQ1(M)〉, i = 0,1,2, (9.15)

where M = limα→0 fα is the Maxwellian M(k) = exp(λ0 + λ1 · k + λ2E(k)). We
introduce similar as above the electron density n = 〈M〉, the current density Jn =
−nu = −〈kM〉 with the averaged crystal momentum u, and the energy density ne =
〈E(k)M〉. Then we can reformulate the above moment equations as
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∂tn−divJn = 0,

∂t(nu)+ div(nu⊗u + P)−n∇V = C1,

∂t(ne)+ div((ne)u + R)−nU∇V = C2,

where P = 〈(k− u)⊗ (k− u)M〉 is the stress tensor, R = 〈(k− u)E(k)M〉 a part of
the energy flux (which is defined by 〈kE(k)M〉), U = 〈v(k)M〉/n is the averaged
electron velocity, and C1 = 〈kQ1(M)〉 and C2 = 〈E(k)Q1(M)〉 are the moments of
the collision term. Clearly, in the case of the parabolic band approximation, the
averaged crystal momentum u and the electron velocity U coincide.

As discussed by Anile and Romano [37], the choice κ1(k) = v(k) instead of
κ1(k) = k is also possible. Using this choice, the term n∇V in the momentum equa-
tion has to be replaced by

〈∇k ⊗ v(k)M〉∇V = 〈(m∗)−1M〉∇V,

where (m∗)−1 = (∇k ⊗∇k)E is the inverse of the (scaled) effective mass tensor. If
the effective mass tensor can be approximated by the scalar value m∗, we recover
the expression (m∗)−1n∇V .

The difficulty now is to express the functions P, R, and U in terms of the lower-
order moments n, nu, and ne. Usually, this can be done in an approximate way only.
For instance, the Maxwellian may be approximated by

Mapprox(k) = eλ0+λ2E(k)g(λ1,λ2,k,E(k)),

where g is a function of the Lagrange multipliers and weight functions (see, for
instance, [38] for some choices for g), such that the integrals involving Mapprox can
be evaluated analytically.

The moment equations (9.15) form a symmetric hyperbolic system of conser-
vation laws. In order to see this, we differentiate the moments with respect to the
Lagrange multipliers, leading to

2

∑
j=0

〈κiκ jM〉∂t λ j +
2

∑
j=0

〈vκiκ jM〉∇xλ j −∇xV · 〈∇kκiM〉 = 〈κiQ1(M)〉. (9.16)

The matrix (〈κiκ jM〉) is symmetric and positive definite since it is the Hessian of the
convex function λ �→ 〈M〉= 〈eκ ·λ 〉. Furthermore, the matrix (〈vκiκ jM〉) is symmet-
ric. Thus, it can be diagonalized, and the eigenvalues are real numbers. Therefore,
the system (9.15), considered as a system of linearized equations with lower-order
terms, is of symmetric hyperbolic type [31].

9.2 Extended Hydrodynamic Equations

The derivation of the hydrodynamic models presented in the previous section can
be generalized to an arbitrary number of weight functions. Similar as in Chap. 8,
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this leads to a hierarchy of models. Employing more moments than in the previ-
ous section gives the so-called extended hydrodynamic models. Engineers started to
pay attention to extended moment models from the end of the 1980s. Nekovee et
al. [39] derived moment models from the Boltzmann equation, based on the works
[40, 41], by expanding the distribution function around a Maxwellian involving Her-
mite polynomials. An arbitrary number of moments was considered by Struchtrup
in the context of gas dynamics [42] and semiconductor theory [43]. He employed
the entropy maximization closure to close the system of moment equations, similar
to the procedure presented in Sect. 2.2. This closure was employed by Anile and
Romano for the transport in semiconductors [37], first for silicon devices [44] and
later for GaAs devices [45, 46].

In the following we detail the general approach for deriving higher-order hydro-
dynamic moment models, parallel to the higher-order diffusive moment models of
Chap. 8, and discuss the extended hydrodynamic model of Anile and Romano [37].

Higher-order hydrodynamic moment models. Let κ = κ(k) = (κ0, . . . ,κN) be
weight functions, m = m(x,t) = (m0, . . . ,mN) be moments, and let, for a given dis-
tribution function f (x,k,t),

(S( f ))(x,t) = −
∫

B
f (log f −1 + E(k))

dk
4π3

be the relative entropy or energy using Maxwell–Boltzmann statistics (see Sect.
2.2). As in the previous section, we set 〈g〉 =

∫
B g(k)dk/4π3. It is shown in Lemma

8.1 that the constrained maximization problem

S( f ∗) = max
{

S( f ) : 〈κ f (x, ·,t)〉 = m(x,t) for x ∈ R
3, t > 0

}
(9.17)

possesses the formal solution f ∗(x,k,t) = eλ (x,t)·κ(k) (if it exists), where λ =
(λ0, . . . ,λN) are some Lagrange multipliers which are given implicitly by the re-
lation 〈κ f ∗〉 = m. Clearly, in order to obtain an integrable solution if the Brillouin
zone B is unbounded, the weight functions have to be chosen appropriately. For
a given function f with moments m = 〈κ f 〉, we call the maximizer of (9.17) the
generalized Maxwellian of f , f ∗ = M[ f ].

We consider the Boltzmann equation in the hydrodynamic scaling (see (9.1)):

α∂t fα + α (v(k) ·∇x fα + ∇xV ·∇k fα ) = Q( fα ). (9.18)

We assume for simplicity that the collision operator is given by the relaxation-time
approximation,

Q( f ) =
1
τ
(M[ f ]− f ). (9.19)

Then the kernel of Q consists of all functions satisfying f = M[ f ] and, by construc-
tion, all moments of Q vanish, 〈κiQ( f )〉 = 0 for all functions f and all i = 0, . . . ,N.
First, we perform the formal limit α → 0 in (9.18) leading to Q( f ) = 0 for the limit
function f = limα→0 fα . Hence, f = M[ f ]. Then, performing the limit α → 0 in the
moment equations
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∂t〈κi fα 〉+ divx〈vκi fα 〉−∇xVα · 〈∇kκi fα 〉 = α−1〈κiQ( fα )〉 = 0,

where Vα is a solution of the Poisson equation, gives the limit equations

∂t〈κiM[ f ]〉+ div〈vκiM[ f ]〉−∇xV · 〈∇kκiM[ f ]〉 = 0, i = 0, . . . ,N.

We have shown the following result.

Theorem 9.4 (Hydrodynamic moment equations). Let ( fα ,Vα) be a solution of
the Boltzmann–Poisson system (9.18), (5.3) with collision operator (9.19). Then the
formal limit functions f = M[ f ] = limα→0 fα and Vα = limα→0 Vα satisfy the hy-
drodynamic moment equations

∂tmi −divJi + ∇xV · Ii = 0, i = 0, . . . ,N, (9.20)

where mi = 〈κiM[ f ]〉 are the moments, Ji = −〈vκiM[ f ]〉 are the fluxes, and Ii =
−〈∇kκiM[ f ]〉 are some auxiliary integrals. The initial conditions are given by

mi(·,0) = 〈κi fI〉, i = 0, . . . ,N.

The theorem is valid for more general collision operators if the distribution func-
tion f = fα in the moment equations is assumed to be close to the Maxwellian such
that f can be substituted approximately by M[ f ]. The right-hand side of the moment
equations then changes to α−1〈κiQ(M[ f ])〉. With this closure, no limit α → 0 needs
to be performed but the substitution of f by M[ f ] may be criticized from a formal
point of view. Equation (9.20) forms a system of symmetric hyperbolic equations.
This can be proved as in the previous section (see (9.16)).

The macroscopic entropy of the system (9.20) is obtained by setting f = M[ f ] =
eκ ·λ in the microscopic entropy −∫

B f (log f −1)dk/4π3, giving

S0(t) = −
∫

R3

∫

B
eκ ·λ (κ ·λ −1)

dk
4π3 dx = −

∫

R3
(m ·λ −m0)dx.

We claim that this function is constant in time. Indeed, by a straightforward compu-
tation and (9.20),

dS0

dt
= −

∫

R3
∂tm ·λ dx = −

∫

R3

N

∑
i=0

(〈vκiM[ f ]〉∇xλi + ∇xV · 〈∇kκiM[ f ]〉λi) dx

= −
∫

R3
(divx〈vM[ f ]〉+ ∇xV · 〈∇kM[ f ]〉) dx = 0.

Extended hydrodynamic model. In the following we discuss the moment model
for N = 3, studied by Anile and Romano in [8, 37]. The weight functions are given
by κ0(k) = 1, κ1(k) = v(k), κ2(k) = E(k), and κ3(k) = v(k)E(k). The main task is
to explicitly formulate the constitutive equations. The moments are defined in terms
of the Maxwellian
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M[ f ] = eκ ·λ = exp(λ0 + λ1 · v(k)+ λ2E(k)+ λ3 · v(k)E(k)) ,

by the formula

m =
∫

B
κeκ ·λ dk

4π3 . (9.21)

In order to obtain the dependence of the Lagrange multipliers λi on the moments
mi, we need to invert the constraints (9.21). This gives the closure relations for the
fluxes. We will invert (9.21) under a physical condition on the distribution function.

We make two assumptions. First, we suppose that E(K) is isotropic. Then, the
distribution function at equilibrium,

Meq = exp
(
λ0,eq −E(k)

)
,

is isotropic too. Anile and Romano argued in [8, 37] as follows. Monte Carlo sim-
ulations for silicon semiconductor devices have shown that the anisotropy of the
distribution function even far from equilibrium is small. This is due to the fact that
the main collision mechanisms in silicon are interactions between electrons and
acoustic and nonpolar optical phonons, which are isotropic. This motivates the sec-
ond assumption: The anisotropy of the distribution function M[ f ] is supposed to be
small. Since at equilibrium the Lagrange multipliers are given by

λ0 = λ0,eq, λ1 = 0, λ2 = −1, λ3 = 0,

we expand λi up to second order around these equilibrium values, introducing the
anisotropy parameter δ ,

λ0 = λ (0)
0 + δ 2λ (2)

0 , λ1 = δλ (1)
1 ,

λ2 = λ (0)
2 + δ 2λ (2)

2 , λ3 = δλ (1)
3 .

Then, since ex = 1+x+x2/2+O(|x|3) as x → 0, we approximate M[ f ], up to terms
of order O(δ 3), by

M[ f ] = exp
(

λ (0)
0 + λ (0)

2 E(k)
)(

1 + δv(k) ·A1 + δ 2A2 +
δ 2

2
|v(k) ·A1|2

)

, (9.22)

where A1 = λ (1)
1 +λ (1)

3 E(k) and A2 = λ (2)
0 +λ (2)

2 E(k). Inserting this expression into
(9.21) shows that the moments m0 and m2 are of order one, whereas m1 and m3 are
of order O(δ ).

Expressions for λi in terms of m j are obtained by inverting (9.21). We insert
(9.22) into (9.21) and equate equal powers of δ :

m0 = eλ (0)
0

∫

B
eλ (0)

2 E dk
4π3 , (9.23)

m2 = eλ (0)
0

∫

B
eλ (0)

2 EE
dk

4π3 , (9.24)
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m1 = eλ (0)
0

∫

B
eλ (0)

2 Ev(v ·A1)
dk

4π3 , (9.25)

m3 = eλ (0)
0

∫

B
eλ (0)

2 EvE(v ·A1)
dk

4π3 . (9.26)

0 =
∫

B
eλ (0)

2 E
(

A2 +
1
2
|v ·A1|2

)
dk

4π3 , (9.27)

0 =
∫

B
eλ (0)

2 E
(

A2 +
1
2
|v ·A1|2

)

E
dk

4π3 . (9.28)

The energy e = m2/m0 is a function of λ (0)
2 only, by (9.23) and (9.24):

e =
〈eλ (0)

2 E E〉
〈eλ (0)

2 E〉
,

and this relation can be inverted for given e, at least numerically [37, Sect. 5.1].

Then, for given m0, (9.23) can be inverted for λ (0)
0 :

λ (0)
0 = logm0 − log

∫

B
eλ (0)

2 E dk
4π3 .

The parameters λ (1)
1 and λ (1)

3 can be computed by inverting equations (9.25) and

(9.26), which form a linear system in these parameters. Finally, λ (2)
0 and λ (2)

2 are
calculated from the system (9.27) and (9.28). The results are lengthy expressions,
being of the form

λ (1)
1 = a11m1 + a12m3, λ (2)

0 = b01m1 ·m1 + 2b02m1 ·m3 + b03m3 ·m3,

λ (1)
3 = a31m1 + a32m3, λ (2)

2 = b21m1 ·m1 + 2b22m1 ·m3 + b23m3 ·m3,

where the coefficients ai j and bi j are functions of λ (0)
0 and λ (0)

2 or, equivalently,
of m0 and m2. With these expressions, the Maxwellian (9.22) can be written as a
function of the moments mi, and thus, the fluxes Ji = −〈vκiM[ f ]〉 and the integrals
Ii = −〈∇kκiM[ f ]〉 can be expressed in terms of mi only.

Anile and Romano have derived extended hydrodynamic models including the
production terms

C1 = 〈Q(M[ f ])v〉, C2 = 〈Q(M[ f ])E〉, C3 = 〈Q(M[ f ])vE〉

on the right-hand sides of (9.20). They assumed that the collision operator Q de-
scribes acoustic and nonpolar phonon scattering and collisions with impurities. With
the above approximation of M[ f ], explicit but lengthy formulas for Ci can be de-
rived. We refer to [8, Sect. 3.5] for the precise expressions.
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9.3 Relaxation-Time Limits

By performing the so-called relaxation-time limits in the hydrodynamic model, it
is possible to recover the drift-diffusion and energy-transport equations. We rewrite
the hydrodynamic equations as follows:

∂t n− 1
q

divJn = 0, (9.29)

∂t Jn − 1
q

div

(
Jn ⊗ Jn

n

)

− qkB

m∗ ∇(nT )+
q2

m∗ n∇V = − Jn

τp
, (9.30)

∂t(ne)− 1
q

div (Jn(e + kBT ))+ Jn ·∇V −div(κ∇T ) = − n
τe

(

e− 3
2

kBTL

)

, (9.31)

where the energy e is given by (9.14) and the heat conductivity is defined by κ =
κ0τpnkBT/m∗, with κ0 > 0. These equations deviate from (9.5), (9.6), and (9.7) by
the inclusion of the heat conduction term and by the introduction of two different
relaxation mechanisms: momentum relaxation with rate τp and energy relaxation
with rate τe. The reason is that we wish to consider two different time scales for
momentum and energy relaxation. The coupling of the electric potential V to the
electron density through the Poisson equation does not need to be considered in the
subsequent considerations. Therefore, V will be treated as a given function.

First, we scale the above equations. We choose the reference length λ (for in-
stance, the device diameter), the reference particle density Cm (for instance, the
maximal value of the doping concentration), the reference temperature TL (lattice
temperature), the reference potential UT = kBTL/q, and the reference electron cur-
rent density J0 = qCmλ/τ , where the reference time τ is given by the assumption
that the thermal energy is of the same order as the geometric average of the kinetic
energies needed to cross the semiconductor device in time τ and τp, respectively,

kBTL =

√

m∗
(

λ
τ

)2
√

m∗
(

λ
τp

)2

.

With these reference values we can define the nondimensional variables

x = λ xs, t = τts, n = Cmns,

Jn = J0Jn,s, V = UTVs, T = TLTs.

Replacing the dimensional variables in (9.29), (9.30), and (9.31) by the scaled ones,
we obtain the scaled equations (omitting the index “s”)

∂t n−divJn = 0, (9.32)

α∂t Jn −αdiv

(
Jn ⊗ Jn

n

)

−∇(nT)+ n∇V = −Jn, (9.33)
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∂t(ne)−div (Jn(e + T))+ Jn ·∇V −div(κ0nT∇T ) = − n
β

(

e− 3
2

)

, (9.34)

with the energy

e = α
|Jn|2
2n2 +

3
2

T (9.35)

and the nondimensional parameters

α =
τp

τ
, β =

τe

τ
.

We consider the following formal limits:

• α → 0 and β → 0;
• α → 0 and β fixed;
• β → 0 and α fixed.

The limit α → 0, β → 0 corresponds to the physical situation when the kinetic
energy needed to cross the domain in time τ is much smaller than the thermal energy.
Then the hydrodynamic equations (9.32), (9.33), and (9.34) become in the limit
α → 0 and β → 0

∂t n−divJn = 0, Jn = ∇(nT )−n∇V, e =
3
2
.

Furthermore, by (9.35), e = 3T/2, and hence, the scaled temperature T = 1. The
limit equations are the drift-diffusion model studied in Chap. 5.

The limit α → 0 with β fixed leads to another system of equations:

∂t n−divJn = 0, Jn = ∇(nT )−n∇V, (9.36)

∂t

(
3
2

nT

)

−div

(
5
2

JnT + κ0nT ∇T

)

+ Jn ·∇V = −3
2

n
β

(T −1). (9.37)

We claim that this corresponds to an energy-transport model. In order to see this,
we introduce the entropy variables μ/T and −1/T . Since n = 2(2π)−3/2T 3/2eμ/T

(see (6.25)), we obtain after some computations

Jn = nT∇
(μ

T

)
− 5

2
nT 2∇

(
1
T

)

−n∇V,

5
2

JnT + κ0nT∇T =
5
2

nT 2∇
(μ

T

)
−

(
25
4

+ κ0

)

nT 3∇
(

1
T

)

− 5
2

nT∇V.

Hence, we can write the above limit equations as an energy-transport model in the
variables μ/T and −1/T with the diffusion matrix
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D = nT

⎛

⎜
⎝

1
5
2

T

5
2

T

(
25
4

+ κ0

)

T 2

⎞

⎟
⎠ .

This matrix is positive definite for n > 0 and T > 0 if and only if κ0 is positive. The
heat conduction term is necessary to obtain well posedness of the energy-transport
system (at least locally in time).

The limit β → 0 with α fixed gives the equation e = 3
2 which only means that

the sum of the kinetic and thermal energies is constant in space and time. More
interesting is the limit β → 0 in the energy-transport model (9.36) and (9.37). This
yields T = 1 and the drift-diffusion equations

∂t n−divJn = 0, Jn = ∇n−n∇V.

The limit α → 0, β → 0 from the isentropic hydrodynamic to the drift-diffusion
equations was first analyzed by Marcati and Natalini [47] and later by Lattenzio and
Marcati [48, 49] in the presence of certain uniform bounds. A complete proof in one
space dimension was given in [50, 51] and in several space dimensions in [52]. The
isothermal model was treated by Junca and Rascle [53]. Chen et al. [54] proved the
limit for the hydrodynamic model including the energy equation. The limit α → 0
was analyzed by Gasser and Natalini in [55].

The derivation of hydrodynamic models and the three relaxation-time limits are
summarized in Fig. 9.1.

Semi-classical Boltzmann equation

Energy-transport modelDrift-diffusion model

Hydrodynamic models and relaxation-time limits

K = (1,k,E(k))K = (1,v(k),E(k),v(k)E(k))

Extended
hydrodynamic model 

α→ →0,  β 0 α→ 0

→ β 0

Hydrodynamic model

Fig. 9.1 Derivation of hydrodynamic models and relaxation-time limits in the hydrodynamic and
energy-transport equations
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32. E. Fatemi, J. Jerome, and S. Osher. Solution of the hydrodynamic device model using high-

order nonoscillatory shock-capturing algorithms. IEEE Trans. Computer-Aided Design 10
(1991), 232–244. 202

33. L. Ballestra and R. Sacco. Numerical problems in semiconductor simulation using the hy-
drodynamic model: a second-order finite difference scheme. J. Comput. Phys. 195 (2004),
320–340. 202

34. M. Fortin and G. Yang. Simulation of the hydrodynamic model of semiconductor devices by
a finite element method. COMPEL 15 (1996), 4–21. 202

35. A. Anile, N. Nikiforakis, and R. Pidatella. Assessment of a high resolution centered scheme
for the solution of hydrodynamic semiconductor equations. SIAM J. Sci. Comput. 22 (2000),
1533–1548. 202
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50. A. Jüngel and Y.-J. Peng. A hierarchy of hydrodynamic models for plasmas: zero-relaxation-
time limits. Commun. Part. Diff. Eqs. 24 (1999), 1007–1033. 210
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Part IV
Microscopic Quantum Models



When the active region in a semiconductor device is smaller than about 100 nm,
quantum mechanical effects, which go beyond the semi-classical description of the
previous chapters, usually have to be included in the modeling of the transport phe-
nomena. In fact, there are devices whose performance is based on quantum mechani-
cal phenomena, such as laser diodes and resonant tunneling diodes. We present three
different formulations of the evolution of quantum particles: the Schrödinger pic-
ture, the density-matrix formalism, and the quantum-kinetic Wigner formulation.



Chapter 10
The Schrödinger Equation

In this chapter, we reconsider the Schrödinger equation, which was already intro-
duced in Sect. 1.2. Only two aspects of the modeling with the Schrödinger equation
are presented: the relation to the Liouville–von Neumann equation and the modeling
of transparent boundary conditions.

10.1 Density-Matrix Formulation

We consider three alternative formulations of the quantum mechanical motion of an
ensemble of electrons: the Schrödinger formulation, the density-matrix formulation,
and the kinetic Wigner formulation. The kinetic picture is introduced in the follow-
ing chapter. Here, we consider the density-matrix representation and relate it to the
Schrödinger picture.

We assume that there exists an operator ρ̂ , called the density-matrix operator,
satisfying the Liouville–von Neumann equation in the operator formulation

ih̄∂t ρ̂ = [H, ρ̂], t > 0, ρ̂(0) = ρ̂I, (10.1)

where H is the quantum mechanical Hamiltonian, for instance, H = −(h̄2/2m)Δ −
qV (x, t), and [H, ρ̂] = Hρ̂ − ρ̂H is the commutator. We suppose that the density-
matrix operator ρ̂(t) is positive and self-adjoint for all t ≥ 0. To be precise, some
additional properties (compactness, trace-class) are needed for the following func-
tional analytical arguments; we refer to [1, 2] for details. The self-adjointness (and
compactness) of ρ̂ implies the existence of a complete orthonormal set of eigenfunc-
tions (ψ j) of L2(R3) with corresponding (real) eigenvalues (λ j). The eigenfunctions
of ρ̂I are denoted by (ψ0

j ). We claim that the wave functions ψ j are stationary solu-
tions of the Schrödinger equation ih̄∂tψ = Hψ . In order to show this claim, we need
some more properties of the density-matrix operator.

Each density-matrix operator has the unique integral representation

Jüngel, A.: The Schrödinger Equation. Lect. Notes Phys. 773, 217–230 (2009)
DOI 10.1007/978-3-540-89526-8 10 c© Springer-Verlag Berlin Heidelberg 2009
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(ρ̂ψ)(x,t) =
∫

R3
ρ(x,y,t)ψ(y,t)dy, t ≥ 0, (10.2)

where ρ is the density-matrix (function). The “diagonal” of the density-matrix can
be interpreted as the particle density

n(x,t) = 2ρ(x,x,t). (10.3)

The factor 2 takes into account the two possible states of the spin of the particles
(see Sect. 1.6). Furthermore, the particle current density is defined by

J(x,t) =
ih̄q
m

(∇r −∇s)ρ(x,x, t). (10.4)

The notation (∇r −∇s)ρ(x,x,t) means (∇rρ(r,s,t)−∇sρ(r,s,t))|r=s=x. Moreover,
the following properties hold.

Proposition 10.1 (Properties of the density-matrix). The density-matrix solves the
Liouville–von Neumann equation in the “matrix” formulation

ih̄∂tρ(x,y,t) = (Hx −Hy)ρ(x,y,t), t > 0, ρ(x,y,0) = ρI(x,y), x,y ∈ R
3,

where Hx denotes the Hamiltonian only acting on the variable x (for instance, Hx =
−(h̄2/2m)Δx −qV(x,t)) and Hy only acts on the variable y. The initial datum ρI is
computed from

(ρ̂Iψ)(x) =
∫

R3
ρI(x,y)ψ(y)dy.

Furthermore, the density-matrix can be expanded in terms of the eigenfunctions ψ j ,

ρ(x,y,t) =
∞

∑
j=1

λ jψ j(x,t)ψ j(y, t). (10.5)

Proof. By the self-adjointness of Hy, we obtain for all functions ψ(y, t):
∫

R3
ih̄∂tρ(x,y,t)ψ(y,t)dy = ih̄(∂t ρ̂)ψ(x,t) = (Hρ̂ψ − ρ̂Hψ)(x,t)

=
∫

R3
(Hxρ(x,y,t)ψ(y, t)−ρ(x,y, t)Hyψ(y, t)) dy

=
∫

R3
(Hxρ(x,y,t)ψ(y, t)−Hyρ(x,y, t)ψ(y, t)) dy

=
∫

R3
(Hx −Hy)ρ(x,y,t)ψ(y, t)dy.

This shows the first claim. In order to show the second one, we employ (10.2) for
the eigenfunction ψ = ψ j, multiply this equation by ψ�(x, t), and integrate over R

3.
Then, in view of the orthonormality of (ψ j),

δ j�λ� =
∫

R3

∫

R3
ρ(x,y,t)ψ j(y,t)ψ�(x, t)dxdy. (10.6)
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The set (ψ j(x, t)ψ�(y,t)) j,� is a complete orthonormal set of L2(R3×R
3). Therefore,

the density-matrix can be expanded in this basis:

ρ(x,y,t) =
∞

∑
n,p=1

cnp(t)ψn(x,t)ψp(y, t).

Inserting this expansion into (10.6) and employing again the orthonormality of (ψ j),
it follows that the coefficients c� j(t) equal δ j�λ� such that (10.5) follows. 	


The density-matrix operators ρ̂I and ρ̂ can be expanded in the form

ρ̂I =
∞

∑
j=1

λ j|ψ0
j 〉〈ψ0

j |, ρ̂ =
∞

∑
j=1

λ j|ψ j〉〈ψ j|, (10.7)

where the “bra-ket” notation 〈ψ j|, |ψ j〉 denotes the projection operator onto the jth
eigenspace of ρ̂ .

Now, we can state our main result.

Theorem 10.2 (Mixed-state Schrödinger equation). Let ρ̂ be a density-matrix op-
erator, satisfying the Liouville–von Neumann equation (10.1), with a complete or-
thonormal set of eigenfunctions (ψ j) and eigenvalues (λ j). The eigenfunctions of
the initial-data operator ρ̂I are denoted by (ψ0

j ). Then ψ j is the solution of the
Schrödinger equation

ih̄∂tψ j = Hψ j, t > 0, ψ j(·,0) = ψ0
j in R

3, j ∈ N. (10.8)

The particle density n(x,t) can be written as

n(x,t) =
∞

∑
j=1

λ j|ψ j(x,t)|2, x ∈ R
3, t > 0. (10.9)

Conversely, let (ψ j,λ j) be a sequence of solutions of the Schrödinger equation
(10.8) with numbers λ j ≥ 0. Then the density-matrix operator, defined by (10.7),
solves the Liouville–von Neumann equation (10.1).

In view of (10.9), the number λ j can be interpreted as the occupation probability
of the jth state. The sequence of Schrödinger equations (10.8) together with the oc-
cupation probabilities (λ j) is referred to as the mixed-state Schrödinger equations.
The quantum system is called to be in a mixed state. The above proposition roughly
states that the Liouville–von Neumann equation is equivalent to the mixed-state
Schrödinger equations.

Proof. Let ρ̂ be a solution of the Liouville–von Neumann equation (10.1), repre-
sented as in (10.7). On the other hand, the solution of the Liouville–von Neumann
equation can be written formally as

ρ̂(t) = e−iHt/h̄ρ̂IeiHt/h̄, t ≥ 0,
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since

∂t ρ̂ = − i
h̄

He−iHt/h̄ρ̂IeiHt/h̄ +
i
h̄

e−iHt/h̄ρ̂IHeiHt/h̄ = − i
h̄

(Hρ̂ − ρ̂H) .

Here, we have used the fact that the Hamiltonian H and the operator eiHt/h̄ commute.
Then, inserting the expansion (10.7) for ρ̂I in the above formula gives

ρ̂(t) =
∞

∑
j=1

λ j|e−iHt/h̄ψ0
j 〉〈eiHt/h̄ψ0

j |.

Comparing this expression with the expansion (10.7) for ρ̂ shows that ψ j = e−iHt/h̄

ψ0
j . Finally, differentiation with respect to time yields ∂tψ j = −(i/h̄)Hψ j which is

equivalent to the Schrödinger equation (10.8).
Conversely, let ψ j be the solution of the Schrödinger equation (10.8) and let ρ̂

be given by (10.7). Then

∂t ρ̂ =
∞

∑
j=1

λ j (|∂tψ j〉〈ψ j|+ |ψ j〉〈∂tψ j|)

=
∞

∑
j=1

λ j

(

− i
h̄
|Hψ j〉〈ψ j|+ i

h̄
|ψ j〉〈Hψ j|

)

= − i
h̄
(Hρ̂ − ρ̂H).

Thus, ρ̂ is a solution of the Liouville–von Neumann equation (10.1). 	


matrix is given by ρ(x,y,t) = ψ(x,t)ψ(y,t), where ψ solves the Schrödinger equa-
tion (10.8). The particle density equals n(x,t) = 2ρ(x,x,t) = 2|ψ(x,t)|2 and the
particle current density

J = − h̄q
m

Im(ψ∇xψ).

We refer to such a situation as a single state as the single wave function ψ com-
pletely describes the quantum state.

For self-consistent modeling, the Poisson equation for the electric potential is
added to the Schrödinger equations (10.8). Let V be the sum of an external potential
Vex, modeling, for instance, semiconductor heterostructures, and the self-consistent
potential Vsc, which is given by

εsΔVsc = q(n−C(x)), x ∈ R
3. (10.10)

The electron density n is computed according to (10.9). The system of equations,
consisting of the Schrödinger equations (10.8), the Poisson equation (10.10) with
(10.9), is referred to as the mixed-state Schrödinger-Poisson system.

If the initial quantum state can be written as ρI(x,y) = ψI(x)ψI(y), the density
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10.2 Transparent Boundary Conditions

In this section, we consider a quantum system consisting of an active region of an
electronic device, which is connected to the exterior medium through access zones
that can be assumed to be at equilibrium and are modeled by waveguides (which
confine waves in a certain direction). The access zones allow for the injection of
charge carriers into the active region. Instead of solving the Schrödinger–Poisson
system in the whole domain, consisting of the access zones and the active region,
we wish to solve the problem only in the active region in order to reduce the com-
putational cost. Then transparent boundary conditions at the interface between the
access and active zones have to be prescribed in order to model the continuous elec-
tron injection.

Such a situation is referred to as an open quantum system. Open quantum systems
are characterized by the fact that elements of the system interact with an environ-
ment. Here, this notion refers to the influence of the boundaries. We refer to [3] for
a detailed discussion of boundary conditions for open quantum systems. The same
notion is employed to describe an electron ensemble whose motion is influenced by
external sources, like a phonon heat bath, modeled by collision terms in the evolu-
tion equation (see Sect. 11.3). If the elements of a quantum system do not interact
with the environment, this situation is termed a closed quantum system.

Consider the stationary Schrödinger equation

− h̄2

2m∗ Δψ −qV(x)ψ = Eψ in Ω ,

where V is a given potential, E the energy, and Ω ⊂ R
3 a bounded domain. We

assume that the effective mass m∗ is a constant. In heterostructures, however, it
might be space dependent or even induce nonlocal effects. For convenience, we
scale the Schrödinger equation. Choosing the reference length λ = diam(Ω), the
reference potential kBTL/q, and the reference energy kBTL and introducing the scaled
variables

x = λ xs, V =
kBTL

q
Vs, E = kBTLEs,

the Schrödinger equation becomes, after omitting the index s,

−ε2

2
Δψ −V(x)ψ = Eψ in Ω ,

where ε = h̄/
√

m∗kBTLλ 2 is the scaled Planck constant.

One-dimensional stationary problem. The one-dimensional Schrödinger equation
reads as

− ε2

2
ψ ′′ −V(x)ψ = Eψ , x ∈ R. (10.11)
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We assume that the active region is modeled by the interval (0,1), and the ac-
cess zones are the intervals (−∞,0) and (1,∞). The access zones are waveguides
in which the potential is constant. Then, the Schrödinger equation can be solved in
these intervals, and it is possible to reduce the Schrödinger problem on the whole
line to a Schrödinger problem on the interval (0,1). Since we do not know a priori
the wave function at the boundary x = 0 and x = 1, this constitutes an open quantum
system. Boundary conditions at x = 0 and x = 1 can be derived by specifying the
injection conditions. This derivation was first performed by Lent and Kirkner [4],
called the quantum transmitting boundary method. The one-dimensional situation
was analyzed by Ben Abdallah et al. [5]. Following [5], we assume that electron
waves with positive crystal momentum p > 0 are injected at x = 0. They exit the
interval at x = 1 or they are reflected by the potential at x = 0 (see Fig. 10.1). In
a similar way, electrons with p < 0 are injected at x = 1 and either transmitted or
reflected at x = 1.

Since the access zones model waveguides, the potential is constant in these
intervals,

V (x) = V (0) for x < 0, V (x) = V (1) for x > 1. (10.12)

Therefore, the Schrödinger equation (10.11) can be solved explicitly and the so-
lutions are plane waves in (−∞,0) and (1,∞) (see Sect. 1.2). This motivates the
following ansatz. First, let the crystal momentum p be positive. Then we define

ψp(x) =

{
eipx/ε + r(p)e−ipx/ε for x < 0,

t(p)eip+(p)(x−1)/ε for x > 1,
(10.13)

where p+(p) has to be determined. This ansatz means that a wave with amplitude 1
is coming from −∞ (since we assumed that p > 0) and is either transmitted to +∞
with amplitude t(p) or reflected by the potential and travels back to −∞ with am-
plitude r(p). The reflection-transmission coefficients r(p) and t(p) can be deduced
from the Schrödinger equation. Inserting the above ansatz into (10.11) yields

(E +V (0))ψp = −ε2

2
ψ ′′

p =
p2

2
ψp for x < 0,

and thus the energy is given by E = p2/2−V(0). Furthermore, we obtain

10 x

transmitted
electrons

p > 0
injected
electrons

reflected
electrons

Fig. 10.1 Electrons with p > 0 are injected at x = 0 and either reflected at x = 0 or transmitted at
x = 1
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(E +V (1))ψp = −ε2

2
ψ ′′

p =
p+(p)2

2
ψp for x > 1,

which gives an expression for p+(p):

p+(p) =
√

2(E +V(1)) =
√

p2 + 2(V(1)−V(0)).

We take the positive root since the wave travels to +∞ and hence p+(p) > 0 is
required.

If the momentum p is negative, we make an analogous ansatz:

ψp(x) =

{
t(p)e−ip−(p)x/ε for x < 0,

e−ip(x−1)/ε + r(p)eip(x−1)/ε for x > 1,
(10.14)

where p−(p) has to be determined. This ansatz models a wave coming from +∞
and being either transmitted to −∞ or reflected at x = 1 and traveling back to +∞.
Inserting this ansatz into (10.11) gives, after a similar computation as above,

E =
p2

2
−V(1), p−(p) =

√
p2 −2(V(1)−V(0)).

The boundary conditions at x = 0 and x = 1 can be determined from the conti-
nuity of ψp in R. Indeed, for p > 0 and x → 0, x < 0, we conclude from (10.13)
that

εψ ′
p(0) = ip(1− r(p)), ipψp(0) = ip(1 + r(p)).

Eliminating r(p) leads to the boundary condition

εψ ′
p(0)+ ipψp(0) = 2ip.

For x → 1, x > 1, we infer that

εψ ′
p(1) = ip+(p)t(p) = ip+(p)ψp(1).

For p < 0 we obtain

εψ ′
p(1)− ipψp(1) = −ip(1− r(p))− ip(1 + r(p))= −2ip,

εψ ′
p(0) = −ip−(p)t(p) = −ip−(p)ψp(0).

This leads to the following result.

Proposition 10.3 (Lent–Kirkner boundary conditions). Let V be a given poten-
tial satisfying (10.12). Then the solution (ψp,Ep) of the eigenvalue problem

−ε2

2
ψ ′′

p −V(x)ψp = Epψp, x ∈ R,

can be written equivalently, on the interval (0,1), as the solution of
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−ε2

2
ψ ′′

p −V(x)ψp = Epψp, x ∈ (0,1),

with the boundary conditions

εψ ′
p(0)+ ipψp(0) = 2ip, εψ ′

p(1) = ip+(p)ψp(1) for p > 0, (10.15)

−εψ ′
p(1)+ ipψp(1) = 2ip, εψ ′

p(0) = −ip−(p)ψp(0) for p < 0, (10.16)

and outside of the interval (0,1), it equals (10.13), Ep = p2/2−V(0) if p > 0 and
(10.14), Ep = p2/2−V(1) if p < 0, where

p±(p) =
√

p2 ±2(V(1)−V(0)).

The reflection and transmission amplitudes r(p) and t(p), respectively, are deter-
mined by

r(p) =
1
2

(

ψp(0)+ i
ε
p

ψ ′
p(0)

)

, t(p) = ψp(1) for p > 0, (10.17)

r(p) =
1
2

(

ψp(1)− i
ε
p

ψ ′
p(1)

)

, t(p) = ψp(0) for p < 0. (10.18)

Equations (10.15) and (10.16) are called the Lent–Kirkner boundary conditions
[4]. Formulas (10.17) and (10.18) follow immediately from the definition of ψp in
(10.13). It is shown in [6] that the above model allows for an interpretation in terms
of a family of dissipative operators, the so-called quantum transmitting boundary
operator family, leading to the quantum transmitting Schrödinger–Poisson system
analyzed in [6] and related to a dissipative Schrödinger–Poisson system.

From the solution ψp of the Schrödinger equation, the electron and current den-
sities can be computed. In physical variables, they read as follows:

n(x) =
∫

R

f (p)|ψp(x)|2 dp,

J(x) =
qh̄
m∗

∫

R

f (p)Im(ψp(x)∇ψp(x))dp,

where f (p) describes the statistics of the electrons. For instance, in a quantum well,
in which electrons are confined in one direction, the statistics is

f (p) =
m∗kBT

π h̄2 ln
(

1 + e(−p2/2m∗+EF )/kBT
)

,

where EF is the Fermi energy (cf. Lemma 1.17).

Multi-dimensional stationary problem. The model of Lent and Kirkner [4] was
generalized to arbitrary space dimension by Ben Abdallah [7]. The quantum device
is supposed to occupy the domain Ω ⊂ R

d with the active region Ω0 and access



10.2 Transparent Boundary Conditions 225

Ω1

Ω0

Ωj

Ω2
γ2

ξj

γj

γj

ηj

Γ2

Γ1 Γj

Γ0

γ1

Fig. 10.2 Quantum domain Ω with the active region Ω0 and access zones Ω j . In each access zone,
a local coordinate system (ξ j,η j) ∈ R

d−1 ×R is introduced

zones Ω j, j = 1, . . . ,N. The boundary of the active region consists of a part Γ0 and
N flat surfaces Γj of dimension d−1. The access zones Ω j are assumed to be semi-
infinite cylinders with basis Γj and lateral boundary γ j (see Fig. 10.2). The boundary
of Ω is given by the union Γ0 ∪ γ1 ∪ ·· · ∪ γN . For instance, the electron beam is
injected at the waveguide Ω1 and splits into several beams exiting the device by the
leads Ω j, j ≥ 2.

For given potential V (x), we wish to solve the eigenvalue problem

−ε2

2
Δψ −V(x)ψ = Eψ in Ω , ψ = 0 on ∂Ω .

The Dirichlet boundary condition on ∂Ω means that the domain Ω is like a quantum
well. We require that ψ is only bounded and may be nonintegrable to represent a
scattering state. The main assumption is that the given potential only depends on the
transversal direction in each access zone, i.e.,

V = Vj(ξ j) in Ω j, j = 1, . . . ,N, (10.19)

where (ξ j,η j) ∈ R
d−1 ×R are local coordinates. Thus, the zone Ω j behaves like

a waveguide, and the Schrödinger equation can be solved explicitly in Ω j. Indeed,
let (ψ j

m,E j
m) be the eigenfunction–eigenvalue pairs of the transversal Schrödinger

problem

− ε2

2
Δξ j

ψ −Vj(ξ j)ψ = Eψ in Γj, ψ = 0 on ∂Γj, (10.20)

where m ∈ N and j = 1, . . . ,N. The functions (ψ j
m) j form a complete orthonormal

set of L2(Γj), and for each j, the energies E j
m are nondecreasing with respect to

m and tend to infinity as m → ∞. In order to solve the Schrödinger equation in
the waveguide Ω j, we insert the ansatz ψ(ξ j,η j) = ψ j

m(ξ j)λ (η j) in that equation,
which gives



226 10 The Schrödinger Equation

(

−ε2

2
Δξ j

ψ j
m −Vj(ξ j)ψ j

m

)

λ − ε2

2
ψ j

mλ ′′ = Eψ j
mλ .

By (10.20), the expression in the brackets equals E j
mψ j

m. Hence,

(

−ε2

2
λ ′′ − (E −E j

m)λ
)

ψ j
m = 0

and −(ε2/2)λ ′′ = (E −E j
m)λ . Thus, any solution ψ of the Schrödinger equation in

the waveguide Ω j can be written as the infinite sum

ψ(ξ j,η j) =
∞

∑
m=1

ψ j
m(ξ j)λ j

m(η j),

where λ j
m solves the differential equation

−ε2

2
d2λ j

m

dη2
j

= (E −E j
m)λ j

m, η j > 0.

This equation can be solved explicitly. Setting

p j
m(E) =

√
2|E −E j

m| and N j(E) = sup{m ≥ 1 : E > E j
m}, (10.21)

we make the ansatz

λ j
m(η j) =

⎧
⎪⎨

⎪⎩

a j
m exp

(
−ip j

m(E)η j/ε
)

+ b j
m exp

(
ip j

m(E)η j/ε
)

for m ≤ N j(E),

b j
m exp

(
−p j

m(E)η j/ε
)

for m > N j(E).
(10.22)

If m > N j(E), the energy E is smaller than E j
m corresponding to a bound-state be-

havior, whereas in the opposite case the state behaves like a free particle. Since we
have assumed that ψ is bounded, the positive exponential term can be neglected. The
coefficients a j

m are supposed to be known since they describe the incoming waves.
The reflection-transmission coefficients b j

m are unknown and will be deduced from
the equations. Elimination of b j

m then leads to the boundary conditions for ψ on Γj.
To this end, we observe that the wave function and its derivative at η j = 0 or Γj can
be written as

ψ |Γj =
N j

∑
m=1

(a j
m + b j

m)ψ j
m(ξ j)+

∞

∑
m=N j+1

b j
mψ j

m(ξ j), (10.23)

ε
∂ψ
∂η j

∣
∣
∣
Γj

=
N j

∑
m=1

ip j
m(E)(−a j

m + b j
m)ψ j

m(ξ j)−
∞

∑
m=N j+1

p j
m(E)b j

mψ j
m(ξ j). (10.24)
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On the other hand, since (ψ j
m)m is a complete orthonormal set of L2(Γj), we can

develop ψ |Γj according to

ψ |Γj =
∞

∑
m=1

c j
m(ψ)ψ j

m(ξ j).

The coefficients c j
m(ψ) are given by

c j
m(ψ) =

∫

Γj

ψψ j
m dξ j =

{
a j

m + b j
m for m ≤ N j(E),

b j
m for m > N j(E).

Thus, the coefficients b j
m in (10.24) can be eliminated, which gives transparent

boundary conditions for ψ on Γj. We have shown the following result.

Proposition 10.4 (Transparent boundary conditions). Let Ω , Ω0, and Γj be de-
fined as above and let the potential V only depend on the transversal direction, i.e.,
V satisfies condition (10.19). Then the solution ψ of the eigenvalue problem

−ε2

2
Δψ −V(x)ψ = Eψ in Ω , ψ = 0 on ∂Ω ,

is a solution of

−ε2

2
Δψ −V(x)ψ = Eψ in Ω0, ψ |Γ0 = 0,

ε
∂ψ
∂η j

∣
∣
∣
Γj

=
N j(E)

∑
m=1

ip j
m(E)(−2a j

m + c j
m(ψ))ψ j

m(ξ j)

−
∞

∑
m=N j(E)+1

p j
m(E)c j

m(ψ)ψ j
m(ξ j), j = 1, . . . ,N,

where ψ j
m are the transversal wave functions solving (10.20), a j

m are the coeffi-
cients of the incoming waves, according to (10.22), p j

m(E) and N j(E) are defined
in (10.21), and

c j
m(ψ) =

∫

Γj

ψψ j
m dξ j.

Multi-dimensional transient problem. We assume a geometry of the quantum de-
vice as in Fig. 10.2. For a given potential V (x,t), consider the open time-dependent
Schrödinger problem

iε∂tψ = −ε2

2
Δψ −V(x,t)ψ in Ω , t ∈ R, ψ(·,0) = ψI in Ω .

The aim is to give an equivalent formulation of the Schrödinger problem on the ac-
tive region Ω0 only, with transparent boundary conditions. This task is performed in
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[8–10] for homogeneous transparent boundary conditions. Nier has analyzed a more
general version of this problem using the density-matrix formulation and scatter-
ing theory techniques [11]. Here, we present the results of [12] for inhomogeneous
transparent boundary conditions in several space dimensions.

We assume that the potential V is the sum of a given stationary potential V 0 only
depending on the transversal direction and a time-dependent potential Vj in each
lead Ω j, i.e., for any j = 1, . . . ,N, we write V (x,t) =V 0(x)+Vj(t) for x ∈Ω j, where
V 0(x) = V 0

j (ξ j) in Ω j. Then, let ψ0
m be a solution of the stationary Schrödinger

equation in the waveguides,

−ε2

2
Δψ0

m −V 0(x)ψ0
m = E(m)ψ0

m in Ω j, j = 1, . . . ,N.

The functions ψ0
m are the initial data of our problem. We define the phase factor

θ j
m(t) = exp

(

− i
ε

∫ t

0
(E(m)−Vj(s))ds

)

and the plane wave functions

ψpw
m (x,t) = ψ0

m

N

∑
j=1

θ j
m(t)μ j(x),

where (μ1, . . . ,μN) is a partition of unity of Ω , i.e., 0 ≤ μ j ≤ 1, ∑ j μ j = 1 in Ω ,
μ j = 1 in Ω j, and μ j = 0 in Ω� for all � �= j. We notice that the plane wave functions
solve the equations

iε∂tψpw
m = −ε2

2
Δψpw

m −V(x,t)ψpw
m , ψpw

m (·,0) = ψ0
m in Ω\Ω0.

Furthermore, we introduce the functions

χ j
m(ξ j,t) = ψ j

m(ξ j)exp

(

− i
ε

∫ t

0
(E j

m −Vj(s))ds

)

,

which form a basis of L2(Γj). Here, ψ j
m are the transversal eigenmodes of the

waveguide Ω j, i.e., they are the solutions of the problem

−ε2

2
Δψ j

m −V 0
j (ξ j)ψ j

m = E j
mψ j

m in Γj, ψ j
m = 0 on ∂Γj.

It is shown by Ben Abdallah et al. [12] that the Schrödinger problem

iε∂t ψm = −ε2

2
Δψm −V(x,t)ψm in Ω , t ∈ R, ψm(·,0) = ψ0

m in Ω ,

can be formulated as a boundary-value problem on the active region Ω0 with a
Dirichlet boundary condition on Γ0 and
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∂
∂η j

(ψm −ψpw
m ) = −e−iπ/4

∞

∑
�=1

χ j
� (·,t)

√
∂
∂ t

∫

Γj

(ψm −ψpw
m )(ξ j)χ j

m(ξ j,t)dξ j.

Here, the fractional derivative
√

∂/∂ t is defined by

√
∂
∂ t

f =
1√
π

d
dt

∫ t

0

f (s)√
t − s

ds.

This derivative can be also written as a time convolution of the boundary data with
the kernel t−3/2. The above boundary condition is derived by solving explicitly a
Laplace-transformed Schrödinger problem for the Dirichlet–Neumann operator and
applying the inverse Laplace transform. The transparent boundary conditions are, in
contrast to the boundary conditions for the stationary problem, nonlocal in time and
of memory type, thus requiring the storage of all the past history at the boundary in
a numerical simulation. We refer to the review [13] for numerical approximations
and efficient implementations of such boundary conditions.

Finally, we remark that the electric potential may be also given self-consistently.
Then the potential V is the sum of the given potential V 0(x), the waveguide potential
Vj(t), and the self-consistent potential Vsc, defined by

λ 2
DΔVsc = n−C(x) in Ω0, Vsc = 0 on Γ0,

where the electron density is given by

n =
∞

∑
m=1

∫

R

fm(p)|ψm|2 dp,

and fm(p) describes the statistics of the electrons.
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Chapter 11
The Wigner Equation

The quantum mechanical motion of an electron ensemble can be described by the
Schrödinger or the density-matrix formulation (see Sect. 10.1). There is an alterna-
tive description based on the quantum-kinetic Wigner formalism, which we present
and discuss in this chapter. There are two main reasons for using this framework
in applications (mostly for transient problems). First, the Wigner picture allows, in
contrast to Schrödinger models, for a modeling of scattering phenomena in the form
of a quantum Boltzmann equation. Second, the quantum-kinetic framework makes
it easier to formulate boundary conditions at the device contacts, which may be in-
spired from classical kinetic considerations [1]. In this chapter, following [2], we
formulate the quantum Liouville equation, the quantum Vlasov equation, and quan-
tum Boltzmann models and discuss their relations to the classical kinetic equations
introduced in Chaps. 3 and 4.

11.1 The Quantum Liouville Equation

The quantum Liouville equation is the quantum analogue of the Liouville equation
presented in Sect. 3.1. It will be derived from the electron-ensemble Liouville–von
Neumann equation for the density matrix ρ ,

ih̄∂tρ(r,s,t) = (Hr −Hs)ρ(r,s,t), ρ(r,s,0) = ρI(r,s), r,s ∈ R
3M, (11.1)

for an ensemble consisting of M electrons with mass m in a vacuum (see Sect. 10.1
for the introduction of this equation). We define the Fourier transform of a function
f : R

3M → C as

(F ( f ))(p) =
∫

R3M
f (y)e−iy·p/h̄ dy,

Jüngel, A.: The Wigner Equation. Lect. Notes Phys. 773, 231–247 (2009)
DOI 10.1007/978-3-540-89526-8 11 c© Springer-Verlag Berlin Heidelberg 2009
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and its inverse,

(F−1(g))(y) =
1

(2π h̄)3M

∫

R3M
g(p)eiy·p/h̄ dp,

for functions g : R
3M → C.

For the kinetic formulation of the Liouville–von Neumann equation, we need the
so-called Wigner function introduced by Wigner in 1932 [3]:

w(x, p,t) =
∫

R3M
ρ
(

x +
y
2
,x− y

2
,t
)

e−iy·p/h̄ dy. (11.2)

Setting

u(x,y,t) = ρ
(

x +
y
2
,x− y

2
,t
)

, (11.3)

the Wigner function can be written as the Fourier transform of u, w = F (u). Fur-
thermore, u = F−1(w). Since y has the dimension of a length, p/h̄ in the Fourier
transform has the dimension of an inverse length and thus, p has the dimension
of a momentum. We interpret p as the crystal momentum h̄k. We notice that the
transformation ρ �→ w is called the Wigner–Weyl transform.

The evolution equation for the Wigner function is obtained by transforming the
Liouville–von Neumann equation to the (x,y) variables and applying Fourier trans-
formation. The result is expressed in the following proposition.

Proposition 11.1 (Many-particle quantum Liouville equation). Let ρ be a solu-
tion of the Liouville–von Neumann equation (11.1). Then the Wigner function (11.2)
is formally a solution of

∂tw+
p
m
·∇xw+ qθ [V ]w = 0, t > 0, w(x, p,0) = wI(x, p) (11.4)

for x, p ∈ R
3M, where the initial datum is given by

wI(x, p) =
∫

R3M
ρI

(
x +

y
2
,x− y

2

)
e−iy·p/h̄ dy,

and θ [V ] is a pseudo-differential operator, defined by

(θ [V ]w)(x, p, t) =
1

(2π h̄)3M

∫

R3M×R3M
(δV )(x,y, t)w(x, p′,t)eiy·(p−p′)/h̄ dp′dy,

(11.5)
where

δV (x,y,t) =
i
h̄

(
V

(
x +

y
2
,t
)
−V

(
x− y

2
, t
))

.

Equation (11.4) is called the many-particle Wigner equation or many-particle
quantum Liouville equation. The local term (p/m) ·∇xw is the quantum analogue of
the classical transport term of the Liouville equation (see (3.7)). The nonlocal term
qθ [V ]w models the influence of the electric potential. The nonlocality has the effect
that the electron ensemble “feels” an upcoming potential barrier.
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Before we prove the proposition, we discuss the pseudo-differential operator. It
can be written, by slight abuse of notation, as

(θ [V ]w)(x, p,t) =
∫

R3M×R3M
(δV )(x,y,t)u(x,−y,t)eiy·p/h̄ dy

= (2π h̄)3MF−1 ((δV )(x,y, t)u(x,−y, t)) .

Therefore, it acts in the Fourier space essentially as a multiplication operator. The
multiplicator δV is called the symbol of the operator. The symbol δV is a discrete
directional derivative, since in the formal limit “h̄ → 0”, we find

δV (x, h̄y,t) → i∇xV (x,t) · y.

We refer to [4] for a mathematical theory of pseudo-differential operators. In partic-
ular, the Wigner equation (11.4) is a linear pseudo-differential equation.

Proof (of Proposition 11.1). First, we derive the evolution equation for u, defined
in (11.3), and then take the inverse Fourier transform. We compute, for r = x + y/2
and s = x− y/2,

divy(∇xu)(x,y,t) = divy(∇rρ + ∇sρ)
(

x +
y
2
,x− y

2
, t
)

=
1
2
(Δrρ −Δsρ)

(
x +

y
2
,x− y

2
,t
)

.

Then the transformed Liouville–von Neumann equation for u becomes

∂tu(x,y,t) = ∂tρ(r,s,t) = − i
h̄

(

− h̄2

2m
(Δr −Δs)−qV(r,t)+ qV(s, t)

)

ρ(r,s, t)

=
ih̄
m

divy(∇xu)(x,y,t)+ qδV(x,y,t)u(x,y, t)

or

∂t u− ih̄
m

divy(∇xu)−q(δV)u = 0, x,y ∈ R
3M, t > 0.

The Fourier transform gives

∂tF (u)− ih̄
m

F (divy∇xu)−qF ((δV)u) = 0. (11.6)

The second term on the left-hand side can be written, by integrating by parts, as

F (divy∇xu)(x, p,t) =
∫

R3M
divy(∇xu)(x,y,t)e−iy·p/h̄ dy

=
i
h̄

∫

R3M
p ·∇xu(x,y,t)e−iy·p/h̄ dy =

i
h̄

p ·∇xF (u)(x, p, t)

=
i
h̄

p ·∇xw(x,v,t).
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The third term on the left-hand side of (11.6) becomes, by (11.5),

F ((δV )u)(x, p,t) =
∫

R3M
(δV )(x,y,t)u(x,y,t)e−iy·p/h̄ dy

= (2π h̄)−3M
∫

R3M
(δV )(x,y,t)w(x, p′, t)eiy·(p′−p)/h̄ dp′dy

= (2π h̄)−3M
∫

R3M
(δV )(x,−y, t)w(x, p′, t)eiy·(p−p′)/h̄ dp′ dy

= −(θ [V ]w)(x, p,t).

Therefore, (11.6) equals the Wigner equation (11.4). 	

Lemma 11.2. The ensemble particle density n and the ensemble current density J,
defined in (10.3) and (10.4), respectively, can be expressed in terms of the Wigner
function as

n(x, t) =
2

(2π h̄)3M

∫

R3M
w(x, p,t)dp, J(x,t) = − 2

(2π h̄)3M

q
m

∫

R3M
w(x, p, t)pdp.

The above integrals are called the zeroth and first moments of the Wigner func-
tion, respectively, in analogy to the classical situation (see Sect. 2.1).

Proof. The first identity follows from

n(x,t) = 2ρ(x,x,t) = 2u(x,0,t) = 2(2π h̄)−3M
∫

R3M
w(x, p,t)dp.

For the proof of the second identity, we compute

J(x,t) =
ih̄q
m

(∇r −∇s)ρ(x,x,t) =
2ih̄q

m
∇yu(x,0, t)

=
2ih̄q

m
1

(2π h̄)3M

∫

R3M
w(x, p,t)∇yeiy·p/h̄

∣
∣
∣
y=0

dp

= − q
m

2
(2π h̄)3M

∫

R3M
w(x, p,t)pdp,

finishing the proof. 	

We discuss three questions related to the quantum Liouville equation:

• How can we formalize the classical limit “h̄→ 0” and which is the limit equation?
• Are the solutions of the quantum Liouville equation nonnegative if this property

holds true initially?
• How does the quantum Liouville equation change when taking into account the

semiconductor crystal?

The classical limit. The limit “h̄ → 0” can be formalized in an appropriate scaling.
We choose the reference length λ , the reference time τ , the reference momentum
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mλ/τ , and the reference voltage kBTL/q. We assume that the reference wave energy
h̄/τ is much smaller than the thermal and kinetic energies, i.e.,

h̄/τ
kBTL

= ε and
h̄/τ

m(λ/τ)2 = ε with ε � 1

(this fixes λ for given τ and vice versa). Thus, introducing the scaling

x = λ xs, t = τts, p =
mλ
τ

ps, V =
kBTL

q
Vs,

we obtain, after omitting the index s, the scaled Wigner equation

∂tw+ p ·∇xw+ θ [V ]w = 0, (11.7)

where θ [V ]w is given by

(θ [V ]w)(x, p,t) =
1

(2π)3M

∫

R3M×R3M
(δV )(x,η ,t)w(x, p′,t)eiη·(p−p′) dp′dη ,

with the symbol

δV (x,η ,t) =
i
ε

(
V

(
x +

ε
2

η ,t
)
−V

(
x− ε

2
η ,t

))
.

The classical limit ε → 0 in the symbol δV yields δV (x,η , t) → i∇xV (x,t) ·η and
hence, by integrating by parts,

(θ [V ]w)(x, p,t) → i
(2π)3M

∫

R3M×R3M
∇xV (x,t) ·ηw(x, p′, t)eiη·(p−p′) dp′dη

= − 1
(2π)3M ∇xV (x,t) ·

∫

R3M×R3M
∇pe−iη·p′w(x, p′,t)dp′eiη·p dη

=
1

(2π)3M ∇xV (x,t) ·
∫

R3M×R3M
∇pw(x, p′, t)eiη·(p−p′) dp′dη

= ∇xV (x,t) ·∇pw(x, p,t).

This limit was made rigorous by Lions and Paul [5]. For a quadratic potential, the
operator θ [V ] takes exactly the form of its classical counterpart,

θ
[λ

2
|x|2

]
w = λ x ·∇pw,

such that in this situation, the Wigner equation equals formally the classical Liou-
ville equation (see Sect. 3.1)

∂tw+ p ·∇xw+ ∇xV ·∇pw = 0.
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In the general case, this equation follows from (11.7) in the formal limit ε → 0. This
was made rigorous by Markowich and Ringhofer [6, 7] for smooth potentials. The
limit was also performed in [2, Sect. 1.4] by an asymptotic expansion of δV and u
in powers of ε . For references on the mathematical analysis of the Wigner equation
(or the Wigner–Poisson system), we refer to the review of Arnold [8].

Nonnegativity of the Wigner function. The solution of the classical Liouville
equation stays nonnegative for all times if the initial distribution function is
nonnegative. Unfortunately, this property does generally not hold for the solution
of the quantum Liouville equation. In the case of a pure quantum state it is possible
to characterize those states for which the Wigner function is nonnegative. It was
shown by Hudson [9] that

w(x, p,t) =
∫

R3M
ψ

(
x +

y
2
,t
)

ψ
(

x− y
2
,t
)

e−iy·p/h̄ dy

is nonnegative if and only if either ψ = 0 or

ψ(x,t) = exp(−x�A(t)x−a(t) · x−b(t)), x ∈ R
3M, t > 0,

where A(t) ∈ C
3M×3M is a matrix with symmetric positive definite real part and

a(t) ∈ C
3M, b(t) ∈ C. Inserting this ansatz into the Schrödinger equation shows that

the potential has to be quadratic in x, i.e.,

V (x,t) = x�Ã(t)x + ã(t) · x + b̃(t)

for some Ã(t) ∈ C
3M×3M , ã(t) ∈ C

3M, b̃(t) ∈ C, in order to obtain a nonnegative
Wigner solution.

The case of mixed quantum states, i.e., for arbitrary initial data wI ∈ L2(R3M ×
R

3M), is more involved. In fact, a necessary condition for the nonnegativity of w
seems not to be known.

By an appropriate averaging of the Wigner function over sufficiently large
phase-space regions, which is realized by the so-called Husimi transformation, the
oscillations of the Wigner functions are smoothed out, leading to a nonnegative
function, and thus avoiding negative values of the Wigner function (see, for instance,
[5, 10]).

The semi-classical quantum Liouville equation. The quantum Liouville equation
(11.4) models the motion of electrons in a vacuum under the influence of an elec-
tric field. We discuss now the case of a single electron moving in a crystal. Let us
consider a single electron in a fixed energy band E(k) with k ∈ B, where B is the
Brillouin zone (see Sect. 1.1). In this situation, the (scaled) semi-classical Hamil-
tonian H(x,k, t) = |k|2/2−V(x,t) has to be replaced by H(x,k, t) = E(k)−V(x,t).
Let ψ be the Schrödinger wave function corresponding to this energy band Hamil-
tonian and define the single-state density matrix ρ(r,s,t) = ψ(r, t)ψ(s, t), where r
and s are elements of the Bravais lattice L (see Sect. 1.1). Next, we define similar as
above the function
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u(x,y,t) = ρ
(

x +
y
2
,x− y

2
, t
)

for x ∈ 1
2 L and for all y which can be represented as a difference of two points in L.

We introduce artificial grid points such that (x,y) ∈ 1
2 L×L and set u(x,y, t) = 0 on

all artificial grid points. The Wigner function is then the Fourier transform of u,

w(x,k,t) = ∑
y∈L

u(x,y,t)e−iy·k, x ∈ 1
2 L, k ∈ B.

It is shown by Arnold et al. [11] (also see [2, Sect. 1.4]) that the Wigner function
satisfies the dimensionless equation

∂tw+
i
α

(
β E

(
k +

α
2i

∇x

)
−β E

(
k− α

2i
∇x

)

+γV
(

x +
α
2i

∇k

)
− γV

(
x− α

2i
∇k

))
w = 0,

where α , β , and γ are dimensionless parameters. Typically, β and γ are of order
one, whereas α , which is defined as the ratio of a characteristic wave vector and a
typical device length, is much smaller than one. We have employed the notations

E
(

k± α
2i

∇x

)
w(x,k,t) =

1
2meas(B)

∫

2B
∑

x′∈L/2

E
(

k± αy
2

)
w(x′,k,t)eiαy·(x−x′) dy,

V
(

x± α
2i

∇k

)
w(x,k,t) =

1
meas(B)

∫

B
∑
y∈L

V
(

x± αy
2

, t
)

w(x,k′, t)eiαy·(k−k′) dk′.

In order to obtain a numerically more treatable equation, one might perform par-
tially the limit α → 0. More precisely, we let α → 0 in the lattice L = αL0, where L0

has a lattice spacing of order one. Then the lattice becomes finer and the discretely
defined Wigner function is expected to converge formally to a continuous function
defined on R

3 ×B. The limit α → 0 in the band operator

iβ
α

(
E
(

k +
α
2i

∇x

)
−E

(
k− α

2i
∇x

))

formally gives β ∇kE(k) ·∇x. The same limit in the potential operator

θ [V ] =
iγ
α

(
V

(
x +

α
2i

∇k

)
−V

(
x− α

2i
∇k

))

would lead to γ∇xV ·∇k. As the potential operator for α > 0 accounts for quantum
effects, we wish to retain this term and perform the limit α → 0 only in the lattice
and the band operator. This leads to the semi-classical quantum Liouville equation
for single states:

∂tw+ β ∇kE(k) ·∇xw+ θ [V ]w = 0, x ∈ R
3, k ∈ B, t > 0.
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The complete limit α → 0, leading to the semi-classical Liouville equation, was
mathematically analyzed by Steinrück [12]. The Wigner equation in a crystal, taking
into account several energy bands, was discussed by Ringhofer in [13].

11.2 The Quantum Vlasov Equation

The quantum Liouville equation has the same disadvantage as its classical ana-
logue, namely that the equation needs to be solved in a very high dimensional
electron-ensemble phase space which makes its numerical solution almost unfeasi-
ble. In this section we derive the quantum analogue of the classical Vlasov equation,
the quantum Vlasov equation, which acts on the six-dimensional phase space. We
proceed similarly as in [2, Sect. 1.5].

Consider an ensemble of M electrons with mass m moving in a vacuum and in-
fluenced by a (real-valued) potential V (x,t). The motion of the particle ensemble is
described by the density matrix as a solution of the Liouville–von Neumann equa-
tion (11.1). We impose the following assumptions:

1. The potential can be decomposed into a sum of external potentials acting on one
particle and of two-particle interaction potentials:

V (x1, . . . ,xM,t) =
M

∑
j=1

Vext(x j,t)+
1
2

M

∑
j,�=1

Vint(x j,x�), (11.8)

where the interaction potential Vint is symmetric, i.e., Vint(x j,x�) = Vint(x�,x j) for
all j, � = 1, . . . ,M.

2. The limit V0 = limM→∞ MVint exists, i.e., the interaction potential is of order 1/M.
3. The electrons of the ensemble are initially indistinguishable in the sense of

ρ(r1, . . . ,rM,s1, . . . ,sM,0) = ρ(rπ(1), . . . ,rπ(M),sπ(1), . . . ,sπ(M),0) (11.9)

for all permutations π of {1, . . . ,M} and all r j, s j ∈ R
3.

4. The initial subensemble density matrices

ρ (a)
I (r(a),s(a)) =

∫

R3(M−a)
ρI(r(a),ua+1, . . . ,uM,s(a),ua+1, . . . ,uM)dua+1 · · ·duM,

where r(a) = (r1, . . . ,ra) and s(a) = (s1, . . . ,sa), can be factorized for all 1 ≤ a ≤
M−1:

ρ (a)
I (r(a),s(a)) =

a

∏
j=1

RI(r j,s j),

where RI is a given function.

We discuss these hypotheses. The factor 1
2 in (11.8) is necessary since each

electron–electron pair in the sum of two-particle interactions is counted twice. The
symmetry of the interaction potentials implies that
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V (x1, . . . ,xM,t) = V (xπ(1), . . . ,xπ(M),t) for all t ≥ 0

and for all permutations π . It can be shown that this property and (11.9) have the
consequence that

ρ(r1, . . . ,rM,s1, . . . ,sM ,t) = ρ(rπ(1), . . . ,rπ(M),sπ(1), . . . ,sπ(M),t) (11.10)

holds for all t > 0. Physically, this means that the electrons are indistinguishable for
all times.

We wish to derive an evolution equation for the subensemble density matrix

ρ (a)(r(a),s(a),t) =
∫

R3(M−a)
ρ(r(a),ua+1, . . . ,uM,s(a),ua+1, . . . ,uM,t)dua+1 · · ·duM.

Clearly, in view of the indistinguishable property (11.10), the subensemble density
matrices satisfy

ρ (a)(r1, . . . ,ra,s1, . . . ,sa,t) = ρ (a)(rπ(1), . . . ,rπ(a),sπ(1), . . . ,sπ(a),t) (11.11)

for all permutations π of {1, . . . ,a} and all r j , s j ∈ R
3, t ≥ 0.

We recall that the evolution of the complete electron ensemble is governed by the
Liouville–von Neumann equation (11.1), rewritten as

ih̄∂tρ = − h̄2

2m

M

∑
j=1

(Δr j −Δs j)ρ −q
M

∑
j=1

(Vext(r j, t)−Vext(s j, t))ρ

− q
2

M

∑
j,�=1

(Vint(r j,r�)−Vint(s j,s�))ρ . (11.12)

We set u j = s j = r j for j = a + 1, . . . ,M in the above equation, integrate over
(ua+1, . . . ,uM) ∈ R

3(M−a), and use the property (11.11) to obtain, after an analo-
gous computation as in Sect. 3.2, the quantum equivalent of the BBGKY hierarchy,

ih̄∂tρ (a) = − h̄2

2m

a

∑
j=1

(Δr j −Δs j)ρ
(a)−q

a

∑
j=1

(Vext(r j,t)−Vext(s j,t))ρ (a)

−q(M−a)
a

∑
j=1

∫

R3
(Vint(r j,u∗)−Vint(s j,u∗))ρ (a+1)

∗ du∗

for all 1 ≤ a ≤ M−1, where we have set

ρ (a+1)
∗ = ρ (a+1)(r(a),u∗,s(a),u∗, t).

As in the classical case, the quantum BBGKY hierarchy does not simplify the
quantum Liouville equation. A simplification is obtained in the limit M → ∞. Since,
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by assumption, MVint converges to V0 as M → ∞, and assuming that the density ma-
trices and their derivatives converge pointwise to some limit functions, the quantum
BBGKY hierarchy becomes in the limit M → ∞

ih̄∂tρ (a) = − h̄2

2m

a

∑
j=1

(Δr j −Δs j)ρ
(a)−q

a

∑
j=1

(Vext(r j,t)−Vext(s j,t))ρ (a)

−q
a

∑
j=1

∫

R3
(V0(r j,u∗)−V0(s j,u∗))ρ (a+1)

∗ du∗. (11.13)

We claim that a one-particle density matrix contains all the dynamics of the many-
particle problem given by (11.13).

Theorem 11.3 (Quantum Vlasov equation). Let the hypotheses on page 238 hold
and let W be a solution of the quantum Vlasov equation

∂tW +
p
m
·∇xW + qθ [Veff]W = 0, x, p ∈ R

3, t > 0, (11.14)

W (x, p,0) = WI(x, p), x, p ∈ R
3,

where the pseudo-differential operator θ [Veff] is defined as in (11.5) with M = 1, the
effective potential Veff is given by

Veff(x,t) = Vext(x,t)+
∫

R3
n(z,t)V0(x,z)dz, (11.15)

the electron density is

n(x,t) =
2

(2π h̄)3

∫

R3
W (x, p,t)dp, (11.16)

and the initial datum equals

WI(x, p) =
∫

R3
RI

(
x +

y
2
,x− y

2

)
e−iy·p/h̄ dy, x, p ∈ R

3.

We define the single-state density matrix R as the inverse Fourier transform of the
Wigner function,

W (x, p, t) =
∫

R3
R
(

x +
y
2
,x− y

2
,t
)

e−iy·p/h̄ dy, x, p ∈ R
3, t > 0.

Then the density matrix

ρ (a)(r(a),s(a),t) =
a

∏
j=1

R(r j,s j, t) (11.17)

is a solution of the limit BBGKY Liouville–von Neumann equation (11.13) with ini-

tial datum ρ (a)(·, ·,0) = ρ (a)
I in R

3a ×R
3a.
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The expression (11.17) is also called a Hartree ansatz. As the effective poten-
tial depends on the function W through (11.16), the quantum Vlasov equation is a
nonlinear pseudo-differential equation.

Proof. Similar to the classical case, it can be seen that (11.13) is satisfied by the
ansatz (11.17) if R solves the equation

ih̄∂tR = − h̄2

2m
(Δr −Δs)R−q(Veff(r,t)−Veff(s,t))R, r,s ∈ R

3, t > 0, (11.18)

where the effective potential Veff is defined in (11.15) and (11.16). The kinetic for-
mulation of (11.18) is derived as in Sect. 11.1. 	


In contrast to the classical Vlasov equation, the quantum Vlasov equation does
not preserve the nonnegativity of the solution; see the discussion in Sect. 11.1. How-
ever, if the initial single-particle density matrix R(r,s,0) is positive semi-definite, the
electron density n, defined in (11.16), remains nonnegative for all times.

Remark 11.4 (Weak-coupling and low-density limits). A related limit in the
M-particle Schrödinger equation or the corresponding BBGKY hierarchy was con-
sidered in [14–16] (also see the references in these works). The scaling, however,
is different to the scaling used above. More precisely, first the hyperbolic space–
time scaling x �→ εx, t �→ εt was introduced. For the so-called weak-coupling limit,
the potential is assumed to be scaled by Vint �→

√
εVint, and the number of particles

scales like M = ε−3. The weak-coupling limit ε → 0 is characterized by the fact that
the potential interaction is weak, namely of order

√
ε , and the particle density is of

order one. Then the number of collisions per time unit is ε−1. Another scaling is the
so-called low-density limit. In this case, the potential remains unscaled but M = ε−2.
Then the particle density is of order ε , and the particles collide once per time unit.
In the classical context, the latter limit corresponds to the Boltzmann-Grad limit
[17]. In both cases, by applying a kinetic approach [14], the M-particle Schrödinger
equation reduces in the limit ε → 0 to the classical Boltzmann equation in which
the cross-section of the collision operator is the only quantum factor. 	


Similar to the quantum Liouville equation, the solution of the quantum Vlasov
equation converges (at least formally) as “h̄ → 0” to a solution of the classical
Vlasov equation

∂tW +
p
m
·∇xW + q∇xVeff ·∇pW = 0.

The limit “h̄ → 0” has to be understood in the sense explained in Sect. 11.1.
As in Sect. 3.2, a usual choice for the two-particle interaction potential is the

Coulomb potential

V0(x,y) = − q
4πεs

1
|x− y| , x,y ∈ R

3, x �= y,

where εs denotes the permittivity of the semiconductor material. In Sect. 3.2 it is
shown that the effective potential
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Veff(x,t) = Vext(x,t)− q
4πεs

∫

R3

n(z,t)
|z− x| dz (11.19)

solves the Poisson equation

εsΔVeff = q(n−C(x)),

where C(x) =−(εs/q)Vext(x) is the doping concentration if Vext is generated by ions
of charge +q in the semiconductor. The initial-value problem (11.14) and (11.19)
(together with (11.16)) is called the quantum Vlasov–Poisson system.

11.3 Wigner–Boltzmann Equations

In the previous sections, we have considered only ballistic and hence reversible
quantum transport of electrons. However, if the characteristic device length is much
larger than the mean free path of the electrons, scattering phenomena between elec-
trons and phonons or among the electrons have to be taken into account. Inspired
from classical kinetic theory, collisions may be modeled by an appropriate collision
operator, which is added to the right-hand side of the quantum Liouville or Vlasov
equation. This gives the Wigner–Boltzmann equation

∂tw+ v(p) ·∇xw+ qθ [Veff]w = Q(w), x, p ∈ R
3, t > 0,

which we write here for the effective single-state potential Veff derived in Sect. 11.2.
The velocity may depend on the pseudo-wave vector, v(p) = v(h̄k). In the parabolic
band case, v(p) = h̄k/m. This model is an example of an open quantum system since
the electron ensemble interacts with some environment, such as an external phonon
bath, through the collision operator Q(w).

There are many approaches including scattering in quantum models. One method
is to take into account the phase-breaking time of the electrons in the system by
adding an imaginary term to the Hamiltonian, which can be translated as a particular
collision term in the Wigner equation [18, 19]. This approach has the disadvantages
that it is reasonable for a system which is close to equilibrium but maybe not out of
equilibrium, and that the imaginary term is constant throughout the device and there-
fore fails to model the inhomogeneous particle density in the out-of-equilibrium
system. Dissipation may be also included by the so-called Büttiker probes [20, 21].
Compared to the phase-breaking term, this approach is current conserving, but one
has to take into account the space inhomogeneity of the density, and a fitting param-
eter has to be used. In device simulations, often recursive techniques are employed,
for the Schrödinger wave function [22], for the Green’s function [23], or including
a self-energy term [24].

In the following, we present some spatially local collision operators which are
employed in numerical simulations of the Wigner equation.
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Wigner–Fokker–Planck model. The first model is the quantum Fokker–Planck col-
lision operator

Q(w) = DppΔpw+ 2γdivp(pw)+ DqqΔxw+ 2Dpqdivx(∇pw), (11.20)

where γ > 0 is a friction parameter and the nonnegative coefficients Dpp, Dpq, and
Dqq constitute the phase-space diffusion matrix of the system. The first term mod-
els classical diffusion and the last two terms quantum diffusion. The corresponding
Wigner–Fokker–Planck equation governs the dynamical evolution of an electron en-
semble interacting dissipatively with an idealized heat bath consisting of an ensem-
ble of harmonic oscillators and modeling the semiconductor lattice.

Without quantum diffusion, the collision operator

Q(w) = DppΔpw+ 2γdivp(pw) (11.21)

was derived by Caldeira and Leggett [25] and Diósi [26]. The Wigner equation with
the Caldeira–Leggett operator is also known under the name of quantum Brownian
motion or quantum Langevin equation and it received a large interest in the context
of interaction between light and matter (see, for instance, [27]).

The Caldeira–Leggett scattering term does not satisfy the so-called Lindblad con-
dition

DppDqq −D2
pq ≥

γ2

4
,

which is a generic condition for quantum systems to preserve complete positivity
of the density matrix along the evolution. Such a property has to be satisfied for
a true quantum evolution. Thus the Wigner–Caldeira–Leggett equation is quantum
mechanically not correct. The reason for this shortcoming comes from the inconsis-
tency that the equation contains the temperature T , through its coefficients, but the
1/T → 0 limit was performed in [25] along the derivation of the model. In [28], the
approach was improved by deriving the Fokker–Planck operator (11.20) with finite
temperature.

Another scattering operator related to (11.20) was derived in [29] from quantized
one-dimensional linearly damped harmonic oscillators:

Q(w) = h̄γΩ
∂ 2w
∂x2 + 2γ

∂
∂ p

(pw)+ Ω 2x
∂w
∂ p

,

where Ω denotes the frequency of the harmonic oscillator. Notice that the term
Ω 2x(∂w/∂ p) is not contained in (11.20) but may be interpreted as a drift term in
the Wigner equation coming from a quadratic potential.

The existence of solutions of the transient Wigner–Fokker–Planck equation was
proved by Arnold, López, and co-workers [30–33]. The stationary case was treated
in [34].

Wigner–BGK model. The second model is the relaxation-time approximation or
Bhatnagar–Gross–Krook (BGK) model [13, 35]
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Q(w) =
1
τ

(
n
n0

w0 −w

)

,

where the particle density and the equilibrium density are given by, respectively,

n(x,t) =
2

(2π h̄)3

∫

R3
w(x, p,t)dp, n0(x,t) =

2
(2π h̄)3

∫

R3
w0(x, p,t)dp,

and w0 is the Wigner function of the quantum mechanical thermal equilibrium, de-
fined, for instance in the mixed state, by the thermal equilibrium density matrix

ρeq(r,s) = ∑
j

f (E j)ψ j(r)ψ j(s)

(by means of the Wigner–Weyl transformation), where (ψ j,E j) are the eigenfunc-
tion–eigenvalue pairs of the quantum Hamiltonian and f (E j) is the Fermi–Dirac or
Maxwell–Boltzmann distribution. The above collision operator expresses the ten-
dency of the system to relax, in the absence of external forces, to the quantum
thermal equilibrium since the solution of the Wigner–BGK model with vanishing
transport and electric field,

∂tw =
1
τ

(
n
n0

w0 −w

)

,

tends to the equilibrium Wigner function nw0/n0. We remark that the relaxation
term can be represented in Lindblatt form, such that positivity preservation is guar-
anteed for this model [36].

The relaxation-time collision operator in the Wigner equation is employed in nu-
merical simulations of resonant tunneling diodes [1, 35]. In fact, virtually all Wigner
function-based device simulations were carried out for one-dimensional tunneling
diodes. The earliest approaches in the mid-1980s were based on finite-difference
schemes [1, 35, 37]. Later, spectral collocation methods were developed as an effi-
cient alternative for the discretization of the nonlocal operator θ [V ] [38]. This ap-
proach was combined with an operator-splitting technique for the transport term
v ·∇x and the pseudo-differential operator θ [V ] by Arnold and Ringhofer [39]. An
analysis of a discrete-momentum Wigner model was performed in [40, 41]. With the
finite-difference method, scattering was restricted to the relaxation-time approxima-
tion and the one-dimensional momentum space. On the other hand, the Monte Carlo
method, which was implemented from 2002 on [42, 43], allows for the inclusion of
more detailed scattering processes. For more recent results, see [44, 45] and the re-
view [46]. The Monte Carlo method has the potential to make multi-dimensional
simulations feasible.

Other collision models. A third model is given by a semi-classical Boltzmann scat-
tering term of the form

Q(w) =
∫

R3

(
s(p, p′)w(x, p′,t)− s(p′, p)w(x, p,t)

)
dp′,
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where s(p, p′) is the scattering rate, describing the electron–phonon interactions, for
instance. Such Boltzmann-type operators give good numerical results [44], but they
are quantum mechanically not correct in the sense of positivity preservation of the
density matrix [8].

A fourth scattering model is derived by Degond and Ringhofer [47] under the
assumptions that the quantum collision operator conserves a set of moments κ(p)
(like conservation of mass, momentum, and energy),

∫

R3
Q(w)κ(p)dp = 0 for all functions w and all x ∈ R

3,

and that it dissipates the quantum entropy, i.e.,

Tr
(
log(ρ̂)W−1[Q(W (ρ̂))]

)≤ 0 for all density-matrix operators ρ̂,

where Tr is the trace of an operator, W (ρ̂) denotes the Wigner transform of ρ̂ and
W−1 its inverse, and log is the logarithm of a self-adjoint operator defined in the
standard way by its spectral decomposition. Then the scattering operator can be
written as follows:

Q(w) =
∫

R3

∫

R3

∫

R3
σ(x, p, p1, p′, p′1)(g

′g′1 −gg1)dp′ dp′1 dp1,

where g = exp(W [log(W−1(w))]) and σ denotes the scattering cross-section. The
nonlocal nature of the quantum collisions is reflected by the spatial nonlocality due
to the operator logarithm although the conservation properties are (spatially) local.
In the classical limit, the quantum collision operator reduces to the usual Boltzmann
operator, since we expect that exp(W [log(W−1(w))]) tends (at least formally) to the
function w.

The kinetic quantum models considered in this chapter and the semi-classical
kinetic models studied in Chaps. 3 and 4 are summarized in Fig. 11.1.

Semi-classical and quantum kinetic models

Wigner-Boltzmann equation

Quantum Vlasov equation

Quantum Liouville equation

no two-particle
interactions

no two-particle
interactions

no collisions

Boltzmann equation

Vlasov equation

Liouville equation

no collisions

classical
limit

classical
limit

classical
limit

Fig. 11.1 Semi-classical and quantum-kinetic models and their relations
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Part V
Macroscopic Quantum Models



In the following chapters, we derive macroscopic quantum models from a Wigner–
Boltzmann equation. In analogy to the classical situation, we define quantum equi-
librium states and employ moment methods and Chapman–Enskog expansion tech-
niques. As a result, we obtain quantum analogues of the semi-classical model hier-
archy, consisting of (quantum) drift-diffusion, energy-transport, and hydrodynamic
models.



Chapter 12
Quantum Drift-Diffusion Equations

The main aim of this and the following chapters is to derive macroscopic quan-
tum models from the parabolic band Wigner–Boltzmann equation (see Sect. 11.3),
written in the crystal momentum p = h̄k,

∂tw+
p

m∗ ·∇xw+ qθ [V ]w = Q(w), x, p ∈ R
3, t > 0, w(·, ·,0) = wI , (12.1)

where V is the effective electric potential of the electron ensemble. Here, θ [V ] de-
notes the pseudo-differential operator defined by

(θ [V ]w)(x, p,t) =
1

(2π)3

∫

R3×R3
(δV )(x,η ,t)w(x, p′,t)ei(p−p′)·η dp′dη ,

(δV )(x,η ,t) =
i
h̄

(

V

(

x +
h̄η
2

,t

)

−V

(

x− h̄η
2

,t

))

,

and Q(w) is a collision operator. Semi-classical macroscopic models are derived in
Chaps. 5–9 by using a moment method and by specifying a closure condition. The
idea is to mimic this procedure in the quantum case.

Employing the same scaling as in Sect. 11.1, the dimensionless Wigner–
Boltzmann equation becomes

∂tw+ p ·∇xw+ θ [V ]w = Q(w), x, p ∈ R
3, t > 0, (12.2)

with the scaled pseudo-differential operator

(θ [V ]w)(x, p,t) =
1

(2π)3

∫

R3×R3
(δV )(x,η ,t)w(x, p′,t)ei(p−p′)·η dp′ dη , (12.3)

(δV )(x,η ,t) =
i
ε

(
V

(
x +

ε
2

η ,t
)
−V

(
x− ε

2
η ,t

))
,

and the scaled Planck constant

Jüngel, A.: Quantum Drift-Diffusion Equations. Lect. Notes Phys. 773, 251–274 (2009)
DOI 10.1007/978-3-540-89526-8 12 c© Springer-Verlag Berlin Heidelberg 2009
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ε =
h̄/τ

m∗(λ/τ)2 ,

expressing the ratio of the wave and kinetic energy. We write the scaled Wigner
equation as in Chap. 11 in terms of the dimensionless crystal momentum p instead
of the scaled pseudo-wave vector k as in Chaps. 4–9. The latter is related to the
former by the formula p = εk.

12.1 Quantum Maxwellians

Inspired from the classical situation, the quantum Maxwellian is defined by that
Wigner function which maximizes the quantum entropy subject to the constraint
that its moments are given. This idea is due to Degond and Ringhofer [1]. In order to
define the quantum Maxwellian, we use the Wigner transform W (ρ̂) of an operator
ρ̂ on L2(R3) with integral kernel ρ (satisfying certain regularity assumptions). Then
we can write

(ρ̂φ)(x) =
∫

R3
ρ(x,y)φ(y)dy, φ ∈ L2(R3).

The Wigner transform of ρ̂ is defined as the Fourier transform of the transformed
function ρ :

W (ρ̂)(x, p) =
∫

R3
ρ
(

x +
ε
2

η ,x− ε
2

η
)

e−iη·p dη .

Its inverse W−1, also called Weyl quantization, is defined as an operator on L2(R3),

(W−1( f )φ)(x) =
1

(2πε)3

∫

R3×R3
f

(
x + y

2

)

φ(y)eip·(x−y)/ε dpdy, φ ∈ L2(R3).

With these definitions, we are able to introduce as in [1] the quantum exponential
Exp and the quantum logarithm Log formally by

Exp f = W (expW−1( f )), Log f = W (logW−1( f )),

where exp and log are the operator exponential and logarithm, respectively, defined
by their corresponding spectral decomposition. The quantum exponential and loga-
rithm have the following formal properties.

Lemma 12.1 (Properties of Exp and Log). The quantum logarithm is the inverse
of the quantum exponential. Furthermore, Exp and Log are formally (Fréchet) dif-
ferentiable and

d
dw

Logw =
1
w

,
d

dw
Expw = Expw.

Proof. The first assertion follows from the formal computation

Log(Expw) = W
(
expW−1 (W (logW−1(w))

))
= W

(
exp(logW−1(w))

)
= w.
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Since the Wigner transform and its inverse are linear operations, the second asser-
tion follows from the properties of the operator exponential and logarithm (see [1,
Lemma 3.3] or [2, Theorem 1] for a more precise argument). 	


Let a quantum mechanical state be described by the Wigner function w solving
the Wigner–Boltzmann equation (12.2). The scaled quantum entropy or von Neu-
mann entropy of the quantum mechanical state is given by

S(w) = − 2
(2πε)3

∫

R3×R3
w(x, p, ·)

(

(Logw)(x, p, ·)−1 +
|p|2

2
−V(x, ·)

)

dxdp,

(12.4)

where V is the electric potential. Whereas the classical entropy is a function on
the configuration space, the above quantum entropy at given time is a real number,
underlining the nonlocal nature of quantum mechanics. We set

〈g(p)〉 =
2

(2πε)3

∫

R3
w(x, p, t)g(p)dp

for functions g = g(p). The above notation is consistent with the notation from Part
III, 〈 f (k)〉=

∫
f (k)dk/4π3, since in scaled variables, p = εk holds. Let some weight

functions κ(p) = (κ0(p), . . . ,κN(p)) be given.

Lemma 12.2. Let w = w(x, p,t) be given and let the moments m = (m0, . . . ,mN) of
w be defined by

m j(x,t) = 〈w(x, p,t)κ j(p)〉, j = 0, . . . ,N.

The formal solution of the constrained maximization problem

S(M[w]) = max
{

S( f ) : 〈 f (x, p,t)κ(p)〉 = m(x,t) for all x ∈ R
3, t > 0

}
, (12.5)

if it exists, is given by

M[w] = Exp

(

λ̃ ·κ +V − |p|2
2

)

,

where λ̃ = (λ̃0, . . . , λ̃N) are some Lagrange multipliers.

We call M[w] the quantum Maxwellian of w. If we assume that w0(p) = 1 and
w2(p) = 1

2 |p|2, setting λ0 = λ̃0 +V , λ2 = λ̃2 − 1, and λ j = λ̃ j otherwise, we can
write the quantum Maxwellian more compactly as

M[w] = Exp(λ ·κ(p)).

Proof. We define for λ̃ = (λ̃0, . . . , λ̃N) and m = (m0, . . . ,mN) the Lagrange func-
tional

F(w, λ̃ ) = S(w)+
∫

R3
λ̃(x) · (m−〈w(x, p,t)κ(p)〉) dx.
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Using Lemma 12.1, the derivative of the quantum entropy is given by

(
d

dw
S(w)

)

(u) = − 2
(2πε)3

∫

R3×R3

(

Logw+
|p|2

2
−V

)

u(x, p)dxdp.

Therefore, the necessary condition for an extremal point reads as

0 =
(

d
dw

F(w∗, λ̃ ∗)
)

(u)

=
∫

R3×R3

(

Logw+
|p|2

2
−V − λ̃ ∗(x) ·κ(p)

)

u(x, p)dxdp

for all functions u(x, p). This implies that

Logw∗ +
|p|2

2
−V(x,t)− λ̃ ∗(x) ·κ(p) = 0

and finally,

w∗ = Exp

(

λ̃ ∗ ·κ +V − |p|2
2

)

,

finishing the proof. 	

Example 12.3. We give some examples of quantum Maxwellians which are used in
the following sections. We define, for given w, the local particle density n, mean
velocity u, and energy density ne by

⎛

⎝
n

nu
ne

⎞

⎠(x,t) =
2

(2πε)3

∫

R3
w(x, p,t)

⎛

⎝
1
p

1
2 |p|2

⎞

⎠ dp.

If only the electron density is prescribed, we obtain the quantum Maxwellian

M[w](x, p,t) = Exp

(

A(x,t)− |p|2
2

)

,

where the Lagrange multiplier A is uniquely determined by the zeroth moment of w.
This Maxwellian will be employed for the derivation of the quantum drift-diffusion
model. In the case of prescribed particle density, velocity, and energy density, we
obtain the quantum Maxwellian

M[w] = Exp

(

A(x,t)− |p− v(x, t)|2
2T (x, t)

)

,

where A, v, and T are determined by the moments of w. This Maxwellian is taken
as the thermal equilibrium state in the quantum hydrodynamic equations. Finally,
prescribing zeroth- and second-order moments, the quantum Maxwellian reads as
follows:
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M[w] = Exp

(

A(x,t)− |p|2
2T (x, t)

)

,

which we use for the derivation of the quantum energy-transport equations. 	

The quantum Maxwellian is a nonlocal operator. It can be made more explicit

when expanding it in terms of the scaled Planck constant ε , which appears in the
definition of the Wigner transform. The expansion is done by means of the following
lemma, which is adopted from [1].

Lemma 12.4 (Expansion of the quantum exponential). Let f (x, p) be a smooth
function. Then the quantum exponential Exp( f ) can be expanded as

Exp( f ) = exp( f )− ε2

8
exp( f )R2 +O

(
ε4) ,

where

R2 =
3

∑
j,�=1

(
∂ 2 f

∂x jx�

∂ 2 f
∂ p j∂ p�

− ∂ 2 f
∂x j∂ p�

∂ 2 f
∂ p j∂x�

+
1
3

∂ 2 f
∂x j∂x�

∂ f
∂ p j

∂ f
∂ p�

− 2
3

∂ 2 f
∂x j∂ p�

∂ f
∂ p j

∂ f
∂x�

+
1
3

∂ 2 f
∂ p j∂ p�

∂ f
∂x j

∂ f
∂x�

)

.

Depending on the specific structure of the function f , the above expansion can
be made more explicit.

Proposition 12.5. The correction term R2 of Lemma 12.4 can be written for f (x, p)
= A(x)−|p− v(x)|2/2T (x) as follows:

R2 = T−1

(

X0 +
3

∑
j=1

X1
j s j +

3

∑
j,�=1

X2
j�s js� +

3

∑
j,�,m=1

X3
j�ms js�sm

+Y 0|s|2 +
3

∑
j=1

Y 1
j |s|2s j +

3

∑
j,�=1

Y 2
j�|s|2s js� + Z0|s|4

)

,

where s = (p− v)/
√

T and the coefficients are defined by

X0 = −ΔA− 1
3
|∇A|2 +

1
2T

Tr(R�R),

X1
j =

2√
T

3

∑
m=1

∂
∂xm

(
1
3

A− logT

)

Rm j − Δwj√
T

,

X2
j� =

1
3

∂ 2A
∂x j∂x�

+
2
3

∂ (logA)
∂x j

∂A
∂x�

− ∂ (logT )
∂x j

∂ (logT )
∂x�

− 1
3T

(R�R) j�,

X3
j�m =

1

3
√

T

∂ 2wm

∂x j∂x�
,
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Y 0 = ∇
(

1
2

logT − 1
3

A

)

·∇(logT )− 1
2

Δ(logT ),

Y 1
j =

1

3
√

T

3

∑
m=1

∂ (logT )
∂xm

Rm j,

Y 2
j� =

1
6

(
∂ 2(logT )

∂x j∂x�
+

∂ (logT )
∂x j

∂ (logT )
∂x�

)

,

Z0 = − 1
12

|∇(logT )|2,

R = (R j�) and R j� = ∂ f j/∂x�− ∂ f�/∂x j.

The proposition follows after computing the derivatives of f with respect to x j

and p� and employing Lemma 12.4 (see [3] for a complete proof). If v = 0 or T = 1,
the expansion of the quantum Maxwellian simplifies.

Corollary 12.6. The following formal expansions hold:

Exp

(

A− |p|2
2T

)

= exp

(

A− |p|2
2T

)[

1 +
ε2

8T

(

ΔA +
1
3
|∇A|2 − 1

3
p�(∇⊗∇)Ap

+
|p|2

2
Δβ + T (p ·∇β )2 +

|p|2
3T

p�(∇⊗∇)β p

+
2
3
(p ·∇β )(p ·∇A)− |p|2

3
(p ·∇β )2 − |p|2

3
∇A ·∇β

+
|p|4

3
|∇β |2

)]

+O
(
ε4) ,

Exp

(

A− |p|2
2

)

= exp

(

A− |p|2
2

)[

1 +
ε2

8

(

ΔA +
1
3
|∇A|2 − 1

3
p�(∇⊗∇)Ap

)]

+O
(
ε4) ,

where β = 1/T, and (∇ ⊗ ∇)A and (∇ ⊗∇)β denote the Hessians of A and β ,
respectively.

Remark 12.7. For later reference, we mention another equilibrium state, first derived
by Wigner in 1932 [4]. Maximizing the quantum entropy (12.4) with the temperature
constraint T = 1 gives the expression

M0 = Exp

(

V − 1
2
|p|2

)

.

By Corollary 12.6, its expansion becomes

M0 = eV−|p|2/2
[

1 +
ε2

8

(

ΔV +
1
3
|∇V |2 − 1

3
p�(∇⊗∇)V p

)]

+O
(
ε4) .



12.2 Derivation from the Wigner–Boltzmann Equation 257

This corresponds to formula (25) in Wigner’s paper [4]. In the classical limit ε → 0,
the expression reduces to the classical equilibrium state eV−|p|2/2. 	


12.2 Derivation from the Wigner–Boltzmann Equation

The quantum drift-diffusion model is derived from the parabolic band Wigner–
Boltzmann equation in the diffusion scaling with a relaxation-time scattering op-
erator. We follow here the derivation of Degond et al. in [5]. More precisely, we
employ in the Wigner–Boltzmann equation (12.2) the collision operator

Q(w) = M[w]−w. (12.6)

The quantum Maxwellian M[w] is defined by the constrained maximization problem
(12.5) with N = 0 and κ0(p) = 1. Thus, the quantum Maxwellian is defined by

M[w] = Exp

(

A− 1
2
|p|2

)

,

where the Lagrange multiplier A is determined through
∫

R3
M[w]dp =

∫

R3
wdp.

We consider a diffusion scaling, i.e., we replace the time t and Q(w) by t/α and
Q(w)/α , respectively. Then (12.2) becomes

α2∂twα + α(p ·∇xwα + θ [Vα ]wα) = M[wα ]−wα , x, p ∈ R
3, t > 0, (12.7)

with initial datum w(·, ·,0) = wI in R
3 ×R

3. The potential operator θ [Vα ] is defined
in (12.3). The electric potential Vα is a solution of the Poisson equation

λ 2
DΔVα = 〈wα 〉−C(x), (12.8)

where 〈g(p)〉 = 2(2πε)−3 ∫
g(p)dp. We wish to perform the limit α → 0. As in

the semi-classical case, this limit relies on the following properties of the collision
operator which are immediate consequences of its definition (12.6).

Lemma 12.8. The collision operator (12.6) satisfies the following:

(i) Collisional invariant: 〈Q(w)〉 = 0,

(ii) Null space: Q(w) = 0 if and only if w = M[w].

The quantum drift-diffusion model is derived in the formal limit α → 0 from the
moment equation

α∂t〈wα 〉+ divx〈pwα 〉+ 〈θ [Vα ]wα〉 = α−1〈Q(wα)〉 = 0, (12.9)
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obtained from (12.7) by integration over p ∈ R
3. First, we prove some properties of

the moments of θ [V ].

Lemma 12.9 (Moments of the potential operator). Let the operator θ [V ] be de-
fined by (12.3). Then, for all functions w = w(x, p,t),

〈θ [V ]w〉 = 0, 〈pθ [V ]w〉 = −n∇xV, (12.10)

where n = 〈w〉.
Proof. We notice that an integration of the Fourier inversion formula

φ(x, p,t) =
1

(2π)3

∫

R3
(F (φ))(x,η ,t)eip·η dη

over R
3 with respect to p gives

(F (φ))(x,0,t) =
∫

R3
φ(x, p,t)dp =

1
(2π)3

∫

R3×R3
(F (φ))(x,η , t)eip·η dη dp.

(12.11)

With this expression we compute

〈θ [V ]w〉 =
2

(2πε)3

1
(2π)3

∫

R3×R3
(δV )(x,η ,t)(F (w))(x,η ,t)eip·η dη dp

=
2

(2πε)3 (δV )(x,0,t)(F (w))(x,0,t)

=
2

(2πε)3

i
ε

[
V

(
x +

ε
2

η ,t
)
−V

(
x− ε

2
η ,t

)]

η=0
(F (w))(x,0,t) = 0.

Furthermore, since peip·η = −i∇ηeip·η , integration by parts yields

〈pθ [V ]w〉 =
2

(2πε)3

i
(2π)3

×
∫

R3×R3
((∇η δV )F (w)+ (δV )∇ηF (w)) (x,η ,t)eip·η dη dp.

Then the expression (12.11) implies that

〈pθ [V ]w〉 = 2i(2πε)−3 ((∇ηδV )F (w)+ (δV )∇yF (w)) (x,0, t).

Employing (δV )(x,0,t) = 0 and

(∇η δV )(x,0, t) =
i
2

[
∇xV

(
x +

ε
2

η ,t
)

+ ∇xV
(

x− ε
2

η ,t
)]

η=0
= i∇xV (x,t)
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finally yields

〈pθ [V ]w〉 = −2(2πη)−3∇xV (x,t)(F (w)) (x,0, t) = −∇xVn,

finishing the proof. 	

Theorem 12.10 (Nonlocal quantum drift-diffusion equations). Let (wα ,Vα) be
a solution of the Wigner–Boltzmann–Poisson system (12.7)–(12.8) with initial da-
tum wα(·, ·,0) = wI. Then, formally, wα → w and Vα → V as α → 0, where
w(x, p, t) = Exp(A(x,t)− |p|2/2) and (A,V ) is a solution of the quantum drift-
diffusion equations

∂t n−divJn = 0, Jn = divP−n∇V, λ 2
DΔV = n−C(x), t > 0, (12.12)

n(·,0) = nI in R
3,

the particle density and quantum stress tensor are, respectively,

n =
2

(2πε)3

∫

R3
Exp

(

A− |p|2
2

)

dp, P =
2

(2πε)3

∫

R3
p⊗ pExp

(

A− |p|2
2

)

dp,

(12.13)

where the matrix p⊗ p consists of the elements (p⊗ p) j� = p j p�, and the initial
datum is given by nI = 〈wI〉.

The quantum stress tensor is a nonlocal operator involving the Lagrange mul-
tiplier A which relates to the particle density n through (12.13). In the isothermal
semi-classical case, P is given by the matrix coefficients nδ j� yielding the drift-
diffusion equations of Chap. 5.

Proof. The derivation is performed in three steps. The first step is the formal limit
α → 0 in (12.7) giving Q(w) = 0 and hence, by Lemma 12.8 (ii), w = M[w]. This
gives w = Exp(A−|p|2/2) for some Lagrange multiplier A. In the second step, we
employ the Chapman–Enskog method. We introduce the first-order correction

wα = M[wα ]+ αgα ,

which in fact is a definition of gα . We denote by g the limit of gα as α → 0. The
simple form of the collision operator allows us to derive an explicit expression for
g. Indeed, the definition of gα implies that

gα = −α−1Q(wα ) = −α∂twα − (p ·∇xwα + θ [Vα ]wα )

converges to
g = −(p ·∇xw+ θ [V ]w), (12.14)

where V = limα→0 Vα .
In the third step, we turn to the moment equation (12.9). By Lemma 12.9, the

integral over θ [Vα ]wα vanishes, 〈θ [Vα ]wα 〉 = 0. It can be verified that the function
p �→ pM[wα ](p) is odd. Hence, its integral over R

3 vanishes and

〈pwα〉 = 〈p(M[wα ]+ αgα)〉 = α〈pgα〉.
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Thus, the moment equation (12.9) becomes, after division by α ,

∂t〈wα〉+ divx〈pgα〉 = 0,

and the limit α → 0 gives, inserting (12.14),

∂t〈w〉−divx〈p(p ·∇xw+ θ [V ]w)〉 = 0.

By Lemma 12.9, we have 〈pθ [V ]w〉 = −n∇xV , and hence,

∂t〈w〉−divx〈p⊗ p∇xw〉+ n∇xV = 0,

which equals (12.12). 	

The quantum drift-diffusion model (12.12) is nonlocal due to the relation be-

tween A and n or P. A local model is obtained in the O
(
ε4

)
expansion of the quan-

tum Maxwellian.

Theorem 12.11 (Local quantum drift-diffusion equations). Let (n,Jn,V ) be a so-
lution of the nonlocal quantum drift-diffusion equations (12.12). Then, formally,
Jn = J0 +O

(
ε4

)
and (n,J0,V ) solves the (local) quantum drift-diffusion equations

∂t n−divJ0 = 0, J0 = ∇n−n∇V − ε2

6
n∇

(
Δ
√

n√
n

)

, (12.15)

λ 2
DΔV = n−C(x), n(·,0) = nI in R

3, t > 0. (12.16)

For the proof of this theorem, we need the following simple lemma.

Lemma 12.12. The following integral identities hold:
∫

R3
e−|p|2/2 dp = (2π)3/2,

∫

R3
p j p�e

−|p|2/2 dp = (2π)3/2δ j�,
∫

R3
p j p� pm pne−|p|2/2 dp = (2π)3/2(δ j�δmn + δ jmδ�n + δ jnδ�m),

where δ j� denotes the Kronecker delta.

Proof (of Theorem 12.11). We need to expand the electron density and the stress
tensor in powers of ε2. By Corollary 12.6, the O

(
ε4

)
expansion of the quantum

Maxwellian is given by

Exp

(

A− |p|2
2

)

= exp

(

A− |p|2
2

)[

1 +
ε2

8

(

ΔA +
1
3
|∇A|2 − 1

3
p�(∇⊗∇)Ap

)]

+O
(
ε4) .
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Thus, using Lemma 12.12, the electron density n = 〈Exp(A− |p|2/2)〉 can be ex-
panded as follows:

n = eA
(

1 +
ε2

8

(

ΔA +
1
3
|∇A|2

))〈
e−|p|2/2

〉

− ε2

24
eA

3

∑
j,�=1

∂ 2A
∂x j∂x�

〈
p j p�e

−|p|2/2
〉

+O
(
ε4)

= 2
(
2πε2)−3/2

eA
(

1 +
ε2

8

(

ΔA +
1
3
|∇A|2

)

− ε2

24
ΔA

)

+O
(
ε4)

= 2
(
2πε2)−3/2

eA
(

1 +
ε2

12

(

ΔA +
1
2
|∇A|2

))

+O
(
ε4) . (12.17)

Next, we develop the quantum stress tensor P in powers of ε2. By its definition
(12.13) and by Lemma 12.12,

Pj� = eA
(

1 +
ε2

8

(

ΔA +
1
3
|∇A|2

))〈
p j p�e

−|p|2/2
〉

− ε2

24

3

∑
m,n=1

∂ 2A
∂xm∂xn

〈
p j p�pm pne−|p|2/2

〉
+O

(
ε4)

= 2
(
2πε2)−3/2

eA
(

1 +
ε2

8

(

ΔA +
1
3
|∇A|2

))

δ j�

− ε2

12
(2πε2)−3/2eA

(

δ j�ΔA + 2
∂ 2A

∂x j∂x�

)

+O
(
ε4)

= 2
(
2πε2)−3/2

eA
(

1 +
ε2

12

(

ΔA +
1
2
|∇A|2

))

δ j�

− ε2

6

(
2πε2)−3/2

eA ∂ 2A
∂x j∂x�

+O
(
ε4) .

The O
(
ε4

)
expansion (12.17) leads to

Pj� = nδ j�− ε2

12
n

∂ 2A
∂x j∂x�

+O
(
ε4) .

Differentiating the O
(
ε2

)
expansion of n with respect to x, we arrive at ∇n = n∇A+

O
(
ε2

)
. Hence,

(divP) j =
3

∑
�=1

∂Pj�

∂x�
=

∂n
∂x j

− ε2

12

3

∑
�=1

(
∂n
∂x�

∂ 2A
∂x j∂x�

+ n
∂ 3A

∂x j∂x2
�

)

+O
(
ε4)

=
∂n
∂x j

− ε2

12

3

∑
�=1

n
∂

∂x j

(
1
2

(
∂A
∂x�

)2

+
∂ 2A

∂x2
�

)

+O
(
ε4) .



262 12 Quantum Drift-Diffusion Equations

In vector form, this reads as

divP = ∇n− ε2

12
n∇

(

ΔA +
1
2
|∇A|2

)

+O
(
ε4) .

It remains to express A in terms of n. We already noticed that ∇A = ∇n/n +O
(
ε2

)

from which we conclude that

ΔA +
1
2
|∇A|2 =

Δn
n

− |∇n|2
n2 +

1
2

∣
∣
∣
∇n
n

∣
∣
∣
2
+O

(
ε2)

=
Δn
n

− |∇n|2
2n2 +O = 2

Δ
√

n√
n

+O
(
ε2) . (12.18)

Therefore,

Jn = divP−n∇V = ∇n−n∇V − ε2

6
n∇

(
Δ
√

n√
n

)

+O
(
ε4) ,

and the conclusion follows. 	

The quantum correction Δ

√
n/
√

n can be interpreted as a quantum potential,
the so-called Bohm potential, which is well known in quantum mechanics. We will
show in Sect. 14.1 that the Bohm potential also arises from the fluid dynamical
formulation of the single-state Schrödinger equation. We notice that (12.15) and
(12.16) reduce to the classical drift-diffusion model in the classical limit ε → 0.

Quantum drift-diffusion models were first used by electro-engineers to simulate
strong inversion layers near the oxide of MOS transistors [6]. The nonlocality of
quantum mechanics is approximated by the fact that the equations of state do depend
not only on the particle density but also on its gradient. Therefore, Eqs. (12.15) and
(12.16) are also called the density-gradient model. It was employed to model field
emissions from metals and steady-state tunneling in metal–insulator–metal struc-
tures [7] and to simulate ultrasmall semiconductor devices [8–10].

The quantum drift-diffusion model allows for hybrid models. This means that the
classical drift-diffusion may be employed in device regions which can be modeled
semi-classically and the quantum drift-diffusion model is taken in domains in which
quantum mechanical effects seem to be important. The only difference between both
models is the Bohm potential term. The quantum drift-diffusion equations can be
also coupled to Schrödinger models, see [11, 12].

In bounded domains Ω ⊂ R
3, boundary conditions from classical models can

be employed in the quantum drift-diffusion model, thus avoiding the problem of
artificial reflection of wave functions from Schrödinger models. For instance, we
can impose mixed Dirichlet–Neumann boundary conditions

n = nD, V = VD on ΓD, J0 ·η = ∇V ·η = 0 on ΓN ,

where η denotes the exterior unit normal vector on ∂Ω = ΓD ∪ΓN , ΓD the union of
contacts, and ΓN the insulating boundary segments. As the quantum drift-diffusion
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equations contain fourth-order derivatives, an additional boundary condition for the
particle density is needed. In [13], it is proposed that the normal component of the
“quantum current density” n∇(Δ

√
n/

√
n) ·η vanishes on the insulating boundary

and that no quantum effects occur at the contacts:

∇
(

Δ
√

n√
n

)

·η = 0 on ΓN , Δ
√

n = 0 on ΓD.

Another choice is to prescribe the so-called quantum quasi-Fermi potential F =
logn−V − (ε2/6)Δ

√
n/
√

n on the boundary:

∇F ·η = 0 on ΓN , F = FD on ΓD,

where the boundary potential FD is the sum of the (constant) equilibrium Fermi
potential and the external potential [14].

We should also mention some shortcomings of the quantum drift-diffusion
model. The quantum correction is only of low order such that no quantum inter-
ference phenomena are included in the model. The simulation results for tunnel-
ing diodes are not very satisfactory, since negative resistance effects can be only
observed at very low lattice temperature or appropriately fitted effective mass or
mobility [10, 15–18]. This may be due to the fact that the diffusive effects of the
model are too strong for such devices whose functionality is based on quantum in-
terference. Furthermore, the simulation of single-electron devices seems to be out
of reach.

Mathematically, the quantum drift-diffusion model (12.15) is a parabolic fourth-
order equation. Without classical diffusion and electric field, the model can be writ-
ten as

∂tn + div

(

n∇
(

Δ
√

n√
n

))

= 0. (12.19)

Its one-dimensional version appears in the modeling of interface fluctuations of cer-
tain spin systems [19] and has attracted the interest of mathematicians since the
equation possesses some remarkable mathematical properties (see [20] for a re-
view).

The first existence result for positive local-in-time solutions of the one-dimen-
sional version of (12.19) was shown by Bleher et al. [21]. The result was improved
to global-in-time nonnegative solutions in [22]. Existence of solutions of the multi-
dimensional equation was shown recently [23, 24]. The stationary quantum drift-
diffusion model was analyzed in [14] and the time-dependent bipolar equations in
[25]. The classical limit was studied, for instance, in [26]. In the papers [13, 27–29],
the equations were numerically discretized by finite-element methods and numer-
ical convergence results were given. Ultrasmall double-gate MOSFET structures
computed from the quantum drift-diffusion model were simulated in several space
dimensions [30] and using high-resolution schemes [31]. An optimal control prob-
lem for the stationary quantum drift-diffusion model was presented in [32].
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Finally, we write the quantum drift-diffusion equations in unscaled form:

∂t n− 1
q

divJn = 0, Jn =
qτ
m∗

(

kBTL∇n−qn∇V − h̄2

6m∗ n∇
(

Δ
√

n√
n

))

,

where τ is the relaxation time originating from the relaxation-time collision opera-
tor.

12.3 Quantum Fluid Entropy

The quantum-kinetic entropy or quantum free energy is defined in (12.4) by

S(w) = − 2
(2πε)3

∫

R3×R3
w

(

Logw−1 +
|p|2

2
−V

)

dxdp.

The quantum fluid entropy according to the quantum drift-diffusion model is ob-
tained by inserting w0 = Exp(A− |p|2/2), which is equivalent to Logw0 = A −
|p|2/2:

S(w0) = − 2
(2πε)3

∫

R3×R3
w0(A−1−V)dxdp = −

∫

R3
n(A−1−V)dx,

since 〈w0〉 = n. It is shown by Degond and Ringhofer [1, Prop. 4.3] that, if n is a
solution of the nonlocal quantum drift-diffusion equation (12.12), for given potential
V , then

d
dt

S(w0) ≥
∫

R3
n∂tV dx.

In particular, if V is time independent, the macroscopic quantum entropy is nonde-
creasing in time.

We claim that also the ε2 expansion of the above quantum fluid entropy is non-
decreasing in time along the solutions of the quantum drift-diffusion model (12.15).
First, we expand the entropy in powers of ε2.

Lemma 12.13. The O
(
ε4

)
expansion of the quantum fluid entropy

S(w0) = −
∫

R3
n(A−1−V)dx

reads as follows (up to integrals over n):

S = −
∫

R3

(

n(logn−1)+
ε2

6
|∇√

n|2 −nV

)

dx +O
(
ε4) .

The term n(logn− 1) corresponds to the thermodynamic entropy, the second
term to the quantum energy, and the last term to the electric energy.
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Proof. We recall that by (12.17), the particle density can be expanded as

n = 2(2πε2)−3/2eA
(

1 +
ε2

12

(

ΔA +
1
2
|∇A|2

))

+O
(
ε4) .

The logarithm of this expression becomes, since log(1 + ε2x) = ε2x +O
(
ε4

)
,

logn = log
(

2(2πε2)−3/2
)

+ A +
ε2

12

(

ΔA +
1
2
|∇A|2

)

+O
(
ε4) .

Employing (12.18), the ε2 terms can be expressed in terms of
√

n:

logn = log
(

2(2πε2)−3/2
)

+ A +
ε2

6
Δ
√

n√
n

+O
(
ε4) .

Inserting this expression for A in the definition of the quantum fluid entropy and
integrating by parts, we arrive at

S(w0) = −
∫

R3

(

n(logn−1)−nV +
ε2

6
|∇√

n|2

− log
(

2
(
2πε2)−3/2

)
n
)

dx +O
(
ε4) .

Since mass conservation holds, the integral
∫

log(2(2πε2)−3/2)ndx is constant and
can be removed from the definition of the entropy. 	


The O
(
ε4

)
approximation of the quantum fluid entropy is indeed nondecreas-

ing in time if the electric potential is time independent, as shown in the following
proposition.

Proposition 12.14. Let V be a given function and let n be a solution of the local
quantum drift-diffusion equations (12.15). Furthermore, let the quantum fluid en-
tropy be given by

S0 = −
∫

R3

(

n(logn−1)+
ε2

6
|∇√

n|2 −nV

)

dx.

Then

dS0

dt
−

∫

R3
n
∣
∣
∣∇

(

logn−V − ε2

6
Δ
√

n√
n

)∣
∣
∣
2

dx =
∫

R3
n∂tV dx. (12.20)

Proof. The particle density n satisfies the equation

∂t n = div

(

n∇
(

logn−V − ε2

6
Δ
√

n√
n

))

.

Then, integrating by parts in the quantum term,
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dS0

dt
= −

∫

R3

(

logn∂tn +
ε2

3
∇
√

n ·∂t∇
√

n−V∂t n−n∂tV

)

dx

= −
∫

R3

(

∂tn

(

logn− ε2

6
Δ
√

n√
n

−V

)

−n∂tV

)

dx

=
∫

R3
n
∣
∣
∣∇

(

logn−V − ε2

6
Δ
√

n√
n

)∣
∣
∣
2

dx +
∫

R3
n∂tV dx,

showing the claim. 	

The second integral on the left-hand side of (12.20) is called the entropy produc-

tion. In the self-consistent case λ 2
DΔV = n−C(x), we have to modify the entropy:

S1 = −
∫

R3

(

n(logn−1)+
ε2

6
|∇√

n|2 − 1
2
(n−C)V

)

dx

= −
∫

R3

(

n(logn−1)+
ε2

6
|∇√

n|2 +
λ 2

D

2
|∇V |2

)

dx.

Then the proof of the above proposition shows that

dS1

dt
−

∫

R3
n
∣
∣
∣∇

(

logn−V − ε2

6
Δ
√

n√
n

)∣
∣
∣
2

dx

=
∫

R3

(

V ∂tn− λ 2
D

2
∂t |∇V |2 + λ 2

D∂t |∇V |2
)

dx

=
∫

R3

(
V∂t n + λ 2

DΔV ∂tV −λ 2
D∂t(V ΔV )

)
dx

=
∫

R3

(
∂t((n−C)V)−λ 2

D∂t(VΔV )
)

dx = 0.

Thus, the quantum fluid entropy is also nondecreasing in the self-consistent case.

12.4 The Entropic Quantum Drift-Diffusion Model

The nonlocal quantum drift-diffusion model (12.12) of Sect. 12.2 can be written in
a different way which facilitates a numerical approximation. The derivation needs
some operator calculus and therefore, we start from the collisional Liouville–von
Neumann equation

iε∂t ρ̂ = [H, ρ̂]+ iεQ(ρ̂), (12.21)

where [H, ρ̂] is the commutator between the Hamiltonian H = −(ε2/2)Δ −V (x, t)
and the density-matrix operator ρ̂ (see Sect. 10.1). We follow the arguments of De-
gond et al. [33, Appendix]. The entropic quantum drift-diffusion model can be also
derived directly from a development of the quantum stress tensor in (12.12), but this
requires some lengthy operator computations (see [34, Sect. 3.3]).
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The collision operator Q(ρ̂) in (12.21) is assumed to be of relaxation-time type.
To make this precise, we need to define the quantum Maxwellian operator. We recall
that the trace Tr(ρ̂1ρ̂2) of two self-adjoint operators ρ̂1 and ρ̂2 is defined, through
the Parseval equality, by

Tr(ρ̂1ρ̂2) =
2

(2πε)3

∫

R3
W (ρ̂1)W (ρ̂2)dp. (12.22)

In view of (12.4), the quantum-kinetic entropy or free energy is given by

S = − 2
(2πε)3

∫

R3
w

(

Logw−1 +
|p|2

2
−V

)

dp,

where w = W (ρ̂) is the Wigner function and Logw = W (logW−1(w)) = W (log ρ̂)
the quantum logarithm introduced in Sect. 12.1. In terms of the density-matrix op-
erator, the quantum entropy can be written, using (12.22), as

S(ρ̂) = −Tr(ρ̂(log ρ̂ −1 + H)).

Let ρ̂ be a given density-matrix operator with the associated electron density n,
defined by Tr(ρ̂φ) =

∫
nφ dx for all functions φ . The notation Tr(ρ̂φ) has to be

understood as the multiplication of the operator ρ̂ with the multiplication operator
(φ̂ (ψ))(x) = φ(x)ψ(x). For simplicity, we do not distinguish between the operator
φ̂ and the function φ . The quantum Maxwellian is the formal solution (if it exists)
of the constrained maximization problem

S(ρ̂∗) = max
{

S(ρ̂) : Tr(ρ̂φ) =
∫

R3
nφ dx for all φ

}
.

The constraint expresses a moment condition in operator formulation, correspond-
ing to the constraint in the Wigner function formulation of (12.5). In order to solve
the extremal problem formally, we differentiate the Lagrangian

F(ρ̂ ,λ ) = S(ρ̂)−
(

Tr(ρ̂W−1(λ ))−
∫

R3
nλ dx

)

.

It is shown in [1, 2] that the derivative of an operator G(ρ̂) = Tr(g(ρ̂)) is given by
DG(ρ̂)(σ̂) = Tr(Dg(ρ̂)σ̂) for all (self-adjoint) operators ρ̂ and σ̂ . The necessary
condition for an extremal point reads as

0 =
dF
dρ̂

(ρ̂∗,λ ∗)(σ̂ ) = −Tr((log ρ̂∗ + H)σ̂)−Tr
(
σ̂W−1(λ ∗)

)

for all σ̂ . Hence, log ρ̂∗ + H +W−1(λ ∗) = 0 and

ρ̂∗ = exp(−H −W−1(λ ∗)).
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We define A = −W−1(λ ∗)+V and H(A) = H +W−1(λ ∗) = H −A +V . Then the
quantum Maxwellian of ρ̂ is defined by

M[ρ̂] = ρ̂∗ = exp(−H(A)) = exp(−H + A−V) = exp

(
ε2

2
Δ + A

)

.

This corresponds to the quantum Maxwellian of Sect. 12.1, formulated as an op-
erator. Indeed, observing that the inverse Wigner transform of −|p|2/2 + A equals
(ε2/2)Δ + A,

W−1
(

−|p|2
2

+ A

)

=
ε2

2
Δ + A,

we infer that

Exp

(

A− |p|2
2

)

= W

(

expW−1
(

A− |p|2
2

))

= W

(

exp

(
ε2

2
Δ + A

))

= W (M[ρ̂ ]). (12.23)

We can now specify the collision operator:

Q(ρ̂) = M[ρ̂]− ρ̂.

We assume a diffusion scaling for the collisional Liouville–von Neumann equation,

iεα∂t ρ̂α = [H, ρ̂α ]+
iε
α

(M[ρ̂α ]− ρ̂α), t > 0, ρ̂α(0) = ρ̂I in R
3, (12.24)

and wish to perform the limit α → 0. The main result is as follows.

Theorem 12.15 (Entropic quantum drift-diffusion equations). Let ρ̂α be a solu-
tion of the collisional Liouville–von Neumann equation (12.24) with the Hamilto-
nian H = −(ε2/2)Δ −V, where V is a given potential. Then, in the formal limit
α → 0, ρ̂α converges to ρ̂ = exp(−H + A−V ), and A is a solution of the entropic
quantum drift-diffusion equations

∂t n−divJn = 0, Jn = n∇(A−V), t > 0, n(·,0) = nI in R
3, (12.25)

where
Tr(ρ̂φ) =

∫

R3
nφ dx, Tr(ρ̂Iφ) =

∫

R3
nIφ dx for all φ .

Using (12.22), the moment reconstruction problem

Tr(exp(−H(A))φ) = Tr(M[ρ̂ ]φ) =
∫

R3
nφ dx for all φ

can be formulated as
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2
(2πε)3

∫

R3
Exp

(

A− 1
2
|p|2

)

dp = n, (12.26)

since, by (12.23), W (exp(−H(A))) = Exp(A−|p|2/2).

Proof. Let ρ̂α be a solution of (12.24) and let Aα be defined by the relation
M[ρ̂α ] = exp(−H(Aα)). As in the proof of Theorem 12.10, we introduce the Chap-
man–Enskog expansion

ρ̂α = M[ρ̂α ]+ αRα ,

thus defining the operator Rα . Since, by the definition of M[ρ̂α ],

Tr(Q(ρ̂α)φ) = Tr(M[ρ̂α ]φ)−Tr(ρ̂α φ) =
∫

R3
nφ dx−

∫

R3
nφ dx = 0,

the moment equation in operator formulation is

iεα∂tTr(ρ̂α φ) = Tr([H, ρ̂α ]φ) = Tr([H,M[ρ̂α ]]φ)+ αTr([H,Rα ]φ). (12.27)

This equation can be simplified. Indeed, using H(Aα) = H −Aα +V , we obtain

[H,M[ρ̂α ]] = [H(Aα),exp(−H(Aα))]+ [Aα −V,exp(−H(Aα))]
= [Aα −V,exp(−H(Aα))], (12.28)

since the commutator of an operator and its exponential vanishes. We claim that the
trace of the right-hand side of this equation also vanishes. For this, we employ the
cyclicity formulas Tr([a,b]c) = Tr(a[b,c]) = Tr([c,a]b). Then

Tr([Aα −V,exp(−H(Aα))]φ) = Tr([φ ,Aα −V ]exp(−H(Aα))) = 0.

Here, we have used the fact that the commutator of two multiplication operators is
zero. Therefore, the first term on the right-hand side of the moment equation (12.27)
vanishes, and we obtain

iε∂tTr(ρ̂α φ) = Tr([H,Rα ]φ).

The formal limit α → 0 gives

iε∂tTr(ρ̂φ) = Tr([H,R]φ), (12.29)

where ρ̂ = limα→0 ρ̂α and R = limα→0 Rα .
In the following, we determine the limit operator R. The limit α → 0 in the

Liouville–von Neumann equation (12.24) shows that ρ̂ = M[ρ̂ ] = exp(−H(A)),
where A = limα→0 Aα . Furthermore, inserting the Chapman–Enskog expansion in
the Liouville–von Neumann equation gives

iεα∂t (M[ρ̂α ]+ αRα) = [H,M[ρ̂α ]+ αRα ]− iεRα ,

and thus, the limit α → 0 leads to
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R = − i
ε
[H,M[ρ̂ ]].

We employ this expression in the limit equation (12.29):

iε∂tTr(ρ̂φ) = − i
ε

Tr
([

H, [H,M[ρ̂]]
]
φ
)
.

It remains to compute the double commutator. By (12.28), [H,M[ρ̂ ]] = [A −
V,exp(−H(A))] = [A−V, ρ̂]. Hence,

iε∂tTr(ρ̂φ) = − i
ε

Tr([H, [A−V, ρ̂]]φ) (12.30)

= − i
ε

Tr

([

−ε2

2
Δ , [A−V, ρ̂]

]

φ
)

+
i
ε

Tr([V, [A−V, ρ̂]]φ) .

The cyclicity formulas imply that the second term on the right-hand side vanishes:

Tr([V, [A−V, ρ̂]]φ) = Tr([φ ,V ][A−V, ρ̂]) = 0.

We claim that the first term can be written as

Tr

([

−ε2

2
Δ , [A−V, ρ̂]

]

φ
)

= ε2Tr(ρ̂∇φ ·∇(A−V)). (12.31)

In order to show this equation, we employ the cyclicity formulas, arriving at

Tr

([

−ε2

2
Δ , [A−V, ρ̂]

]

φ
)

= Tr

([[
ε2

2
Δ ,φ

]

,A−V

]

ρ̂
)

.

Then, employing the identity

[[Δ ,φ ],A−V ]ψ = 2∇φ ·∇(A−V)ψ for smooth functions ψ ,

which follows after a direct calculation, we obtain (12.31). Equation (12.30) now
becomes

iε∂tTr(ρ̂φ) = −iεTr(ρ̂∇φ ·∇(A−V)) .

This can be written as

∂t

∫

R3
nφ dx = −

∫

R3
n∇φ ·∇(A−V)dx,

which is the weak formulation of (12.25). 	

The moment reconstruction problem (12.26) possesses a simpler expression if we

suppose that the modified Hamiltonian H(A) has a discrete spectrum with eigenval-
ues λ j(A) and a complete set of orthonormal eigenfunctions ψ j(A), j ∈ N. Then the
particle density is the weighted sum over all |ψ j(A)|2:
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n(x) =
∞

∑
j=1

e−λ j(A)|ψ j(A)|2, (12.32)

since, for all functions φ ,
∫

R3
nφ dx = Tr(exp(−H(A))φ) = ∑

j∈N

(φ exp(−H(A))ψ j(A),ψ j(A))L2

= ∑
j∈N

∫

R3
φe−λ j |ψ j(A)|2 dx =

∫

R3

(

∑
j∈N

e−λ j |ψ j(A)|2
)

φ dx.

Then the entropic quantum drift-diffusion model is the system of Eqs. (12.25) and
(12.32), where (ψ j(A),λ j(A)) are the eigenfunction–eigenvalue pairs of H(A).

Remark 12.16 (Links to other quantum drift-diffusion models). The equilibrium
state of the entropic quantum drift-diffusion model is characterized by Jn = 0 or
A = V . The moment reconstruction problem then becomes

n =
∞

∑
j=1

e−λ j(V )|ψ j(V )|2,

where (ψ j(V ),λ j(V )) are the eigenfunction–eigenvalue pairs of the original Hamil-
tonian H = −(ε2/2)Δ −V . If, additionally, the density n is related to V through
the Poisson equation, this leads to the Schrödinger–Poisson problem characterizing
equilibrium states.

Close to equilibrium, one may approximate A by V in the moment reconstruction
problem, which gives the system

∂t n−div(n∇(A−V)) = 0, n =
∞

∑
j=1

eA−V−λ j(V )|ψ j(V )|2,

where the eigenvalue problem is associated with the original Hamiltonian. This
system is known as the Schrödinger–Poisson drift-diffusion model investigated in
[12, 17, 35].

As a side product of the proof of Theorem 12.15, it follows that divP = n∇A,
where P is the quantum stress tensor of the nonlocal quantum drift-diffusion model.
In this sense, the entropic and the nonlocal quantum models coincide. We infer that
the local quantum drift-diffusion model derived in Sect. 12.2 is the O

(
ε4

)
approxi-

mation of the entropic quantum drift-diffusion model. 	

When the entropic model is considered in a bounded domain, appropriate bound-

ary conditions need to be specified. In [33], homogeneous boundary conditions for
the wave functions ψ j are prescribed,

∇ψ j ·η = 0 on ∂Ω , j ∈ N.
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For the potentials, two types of boundary conditions were suggested. First, the num-
ber of particles in the domain is enforced to be constant by employing Neumann
boundary conditions:

∇(A−V) ·η = 0 on ∂Ω .

The electric potential is the sum of the self-consistent potential Vsc, solving the Pois-
son equation, and an external potential Vext, modeling heterostructures. If the equi-
librium state is considered, no bias is applied to the device, which is expressed by
the boundary conditions

Vsc = 0 on ∂Ω .

Second, in order to allow for a current flow, Dirichlet conditions are assumed for the
particle density,

n =
∞

∑
j=1

e−λ j(A)|ψ j(A)|2 = nD on ∂Ω ,

and for the self-consistent potential,

Vsc = VD on ∂Ω .

In [33], the one-dimensional entropic quantum model was discretized with a finite-
difference scheme and current–voltage characteristics of a resonant tunneling diode
were numerically computed. Similar to the quantum drift-diffusion model (12.15),
the current–voltage curves exhibit negative differential resistance effects only for
small temperature or appropriately chosen effective mass. The numerical scheme is
shown to preserve the physical properties of the continuous model, such as charge
conservation, positivity of the electron density, and dissipation of the quantum fluid
entropy [36].
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23. U. Gianazza, G. Savaré, and G. Toscani. The Wasserstein gradient flow of the Fisher informa-
tion and the quantum drift-diffusion equation. To appear in Arch. Rat. Mech. Anal., 2009. 263
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Chapter 13
Quantum Diffusive Higher-Order
Moment Equations

The strategy of the previous chapter to derive quantum drift-diffusion equations
can be generalized. Similar to the semi-classical diffusive limit, we impose sev-
eral moment constraints, leading to a system of diffusive equations. In this chap-
ter, we explain the general strategy and consider in more detail a specific quantum
model, consisting of the balance equations of mass and energy, the so-called quan-
tum energy-transport equations.

13.1 Derivation from the Wigner–Boltzmann Equation

We consider the Wigner–Boltzmann equation in the diffusion scaling:

α2∂tw+ α (p ·∇xw+ θ [V ]w) = Q(w), x, p ∈ R
3, t > 0, (13.1)

w(x, p,0) = wI(x, p), x, p ∈ R
3. (13.2)

This scaling is also used in Chap. 8 to derive semi-classical higher-order moment
equations. The electric potential V can be given or be a solution of the Poisson
equation. Let even weight functions κ(p) = (κ0(p), . . . ,κN(p)) be given, for in-
stance κ(p) = (1, 1

2 |p|2, . . .). Given the Wigner function w, we introduce the quan-
tum Maxwellian M[w] = Exp(λ · κ(p)), where λ = (λ0, . . . ,λN) are some La-
grange multipliers. The quantum Maxwellian is the formal solution of the con-
strained maximization problem (12.5). In particular, the moments of w and M[w]
coincide, 〈wκ j〉 = 〈M[w]κ j〉 for all j = 0, . . . ,N, where we recall that 〈g(p)〉 =
2(2πε)−3 ∫

R3 g(p)dp.
We assume that the collision operator can be decomposed into two parts:

Q(w) = Q0(w)+ α2Q1(w), where Q0(w) = M[w]−w (13.3)

Jüngel, A.: Quantum Diffusive Higher-Order Moment Equations. Lect. Notes Phys. 773, 275–282
(2009)
DOI 10.1007/978-3-540-89526-8 13 c© Springer-Verlag Berlin Heidelberg 2009



276 13 Quantum Diffusive Higher-Order Moment Equations

is a relaxation-time or BGK operator. It satisfies the following properties: Its kernel
is given by the Maxwellians, i.e., Q0(w) = 0 if and only if w = M[w], and all mo-
ments of Q0(w) vanish, i.e., 〈Q0(w)κ(p)〉= 0. The operator Q1 remains unspecified.

Theorem 13.1 (Quantum diffusive moment equations). Let V be a given poten-
tial and wα be a solution of the Wigner–Boltzmann equation (13.1) and (13.2). Then,
in the formal limit α → 0, wα converges to M[w] which solves

∂tm−div(div〈p⊗ pκM[w]〉+ 〈pκθ [V ]M[w]〉)
−〈κθ [V ](p ·∇xM[w]+ θ [V ]M[w])〉 = 〈κQ1(M[w])〉, x ∈ R

3, t > 0, (13.4)

where m = 〈κM[w]〉 and m(·,0) = 〈κwI〉.
Proof. Multiplying (13.1) by κ(p)/α2, integrating over the momentum space, and
using the conservation property of Q0, we obtain the moment equations

∂t〈κwα 〉+ α−1 (divx〈κ pwα〉+ 〈κθ [V ]wα 〉) = 〈κQ1(wα )〉.

The derivation of the diffusive model is performed in three steps. In the first step, we
let α → 0 in the Wigner–Boltzmann equation (13.1), leading to w = M[w], where
w = limα→0 wα . For the second step, we insert the Chapman–Enskog expansion

wα = M[wα ]+ αgα

in the above moment equations. Observing that 〈κ pM[wα ]〉 and 〈κθ [V ]M[wα ]〉 van-
ish (since κ(p) and M[wα ] are even in p), we obtain in the limit α → 0

∂t〈κM[w]〉+ divx〈pκg〉+ 〈κθ [V ]g〉 = 〈κQ1(M[w])〉, (13.5)

where g = limα→0 gα . The third step is concerned with the computation of g. Since
Q0 is a BGK operator, we can write

gα = − 1
α

Q0(wα ) = −α∂twα − p ·∇xwα −θ [V ]wα + αQ1(wα ).

In the limit α → 0 we infer that

g = −p ·∇xM[w]−θ [V ]M[w].

Inserting this expression into (13.5) gives the conclusion. 	

The system of equations (13.4) is of diffusive type. Indeed, the second-order term

can be written, since M[w] = Exp(λ ·κ), as

div(div〈p⊗ pκ(p)M[w]〉) =
3

∑
j,�=1

N

∑
m=0

∂
∂x j

(

〈p j p�κmκExp(λ ·κ)〉∂λm

∂x�

)

= div(D : ∇λ ),
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where D = 〈ppκκExp(λ · κ)〉 is a 4-tensor (the quantum “diffusion matrix”) and
the product “:” means summation over two indices. Setting B = 〈κ ⊗κM[w]〉 and
observing that

∂tm = ∂t〈κExp(λ ·κ)〉= 〈κ ⊗κExp(λ ·κ)〉∂tλ = B∂tλ ,

we can formulate (13.4) in compact form as

B∂tλ −div(D : ∇λ ) = f (λ ),

where f (λ ) denotes the remaining terms. This formulation indicates (if D is positive
definite) that the moment system (13.4) is of parabolic type. Unfortunately, it seems
to be difficult to make the system more explicit. Moreover, due to their complexity,
no mathematical results are currently available for such systems. In the case N = 0
and κ0(p) = 1, we recover the quantum drift-diffusion equations studied in Chap.
12. In the following section, we discuss the case N = 1 and κ = (1, 1

2 |p|2).

13.2 The Quantum Energy-Transport Model

The quantum energy-transport equations are obtained from the general moment
model (13.4) in the case N = 1 with the weight functions κ(p) = (1, 1

2 |p|2). The
model was first derived by Degond, Méhats, and Ringhofer in [1]. We recall from
Lemma 12.9 that

〈θ [V ]w〉 = 0, 〈pθ [V ]w〉 = −〈w〉∇V (13.6)

for all functions w. We also need to compute higher-order moments of the potential
operator (12.3).

Lemma 13.2 (Moments of the potential operator). It holds, for all functions w =
w(x, p,t),

〈
1
2
|p|2θ [V ]w

〉

= −〈pw〉 ·∇V,

〈
1
2

p|p|2θ [V ]w
〉

= −
(

〈p⊗ pw〉+
〈

1
2
|p|2w

〉

Id

)

∇V +
ε2

8
〈w〉∇ΔV.

Proof. We recall the formula (12.11):

φ(x,0,t) =
1

(2π)3

∫

R3×R3
φ(x,η , t)eip·η dη dp

for all functions φ . Then, integrating by parts, we compute
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〈
1
2
|p|2θ [V ]w

〉

=
∫

R9
(δV )(x,η ,t)w(x, p′,t)e−ip′·η(−Δηeip·η)

dp′ dη dp
(2π)3(2πε)3

= −
∫

R9
Δη

(
δVe−ip′·η

)
w(x, p′,t)eip·η dp′dη dp

(2π)3(2πε)3

= −
∫

R3
Δη

(
δVe−ip′·η

)∣
∣
∣
η=0

w(x, p′, t)
dp′

(2πε)3 .

Since (δV )(x,0, t) = Δη(δV )(x,0,t) = 0 and ∇η (δV )(x,0, t) = i∇V (x, t), the above
expression becomes

〈
1
2
|p|2θ [V ]w

〉

= −2
∫

R3
p′ ·∇V(x,t)w(x, p′,t)

dp′

(2πε)3 = −〈pw〉 ·∇V.

In a similar way, we can prove the second identity. Employing ∇η Δη(δV )(x,0, t)
= i(ε2/4)∇ΔV , we obtain
〈

1
2

p|p|2θ [V ]w
〉

= −i
∫

R9
∇η Δη(δVe−ip′·η )w(x, p′,t)eip·η dp′dη dp

(2π)3(2πε)3

=
∫

R3

(
ε2

4
∇ΔV −2(p′ ⊗ p′)∇V −|p′|2∇V

)

w(x, p′,t)
dp′

(2πε)3

=
ε2

8
∇ΔV 〈w〉− 〈p⊗ pw〉∇V −〈 1

2 |p|2w〉∇V.

This finishes the proof. 	

With the above result, we can simplify the moment system (13.4).

Theorem 13.3 (Nonlocal quantum energy-transport equations). We assume that
the operator Q1 in (13.3) conserves mass, 〈Q1(w)〉 = 0 for all functions w. Let V be
a given potential and wα be a solution of the Wigner–Boltzmann equation (13.1) and
(13.2). We choose the weight functions κ(p) = (1, 1

2 |p|2). Then, in the formal limit
α → 0, wα converges to M[w] which solves the nonlocal quantum energy-transport
equations

∂t n−divJn = 0, ∂t(ne)−divJe + Jn ·∇V = W, (13.7)

where n = 〈M[w]〉 is the particle density, ne = 〈 1
2 |p|2M[w]〉 the energy density, W =

〈 1
2 |p|2Q1(M[w])〉 the averaged collision term, and the particle and energy current

densities are given by, respectively,

Jn = divP−n∇V, Je = divU − (P+ ne Id)∇V +
ε2

8
n∇ΔV, (13.8)

where P = 〈p⊗ pM[w]〉 is the quantum stress tensor and U = 〈 1
2 p⊗ p|p|2M[w]〉 is

a fourth-order moment.
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Proof. Using (13.6) and Lemma 13.2, the moment system (13.4) can be written as

∂tm0 −divJn = 0, ∂tm1 −divJe −
〈

1
2
|p|2θ [V ](p ·∇xM[w]+ θ [V ]M[w])

〉

= W,

(13.9)

where n = m0 = 〈M[w]〉, ne = m1 = 〈 1
2 |p|2M[w]〉, and the current densities are de-

fined by

Jn = div〈p⊗ pM[w]〉− 〈M[w]〉∇V = divP−n∇V,

Je = div

〈
1
2

p⊗ p|p|2M[w]
〉

−
(

〈p⊗ pM[w]〉+
〈

1
2
|p|2M[w]

〉

Id

)

∇V

+
ε2

8
n∇ΔV = divU − (P+ ne Id)∇V +

ε2

8
n∇ΔV.

It remains to compute the integral in (13.9). With Lemma 13.2 and the second iden-
tity in (13.6), we obtain

〈
1
2
|p|2θ [V ](p ·∇xM[w]+ θ [V ]M[w])

〉

= −〈p(p ·∇xM[w]+ θ [V ]M[w])〉 ·∇V

= −(divx〈p⊗ pM[w]〉+ 〈pθ [V ]M[w]〉) ·∇V

= −(divP−n∇V) ·∇V = −Jn ·∇V,

which concludes the proof. 	

The quantum Maxwellian is given by M[w] = Exp(A−|p|2/2T ), where A and T

are the Lagrange multipliers related to n and ne by the nonlocal moment constraints

n =
2

(2πε)3

∫

R3
Exp

(

A− |p|2
2T

)

dp, ne =
2

(2πε)3

∫

R3

|p|2
2

Exp

(

A− |p|2
2T

)

dp.

The variables A and T may be interpreted, in analogy to the classical case, as
the “chemical potential” and “temperature”, respectively. The quantum energy-
transport model can be viewed equivalently as an evolution system for (n,ne) or
for (A,T ). The relations between (P,U) and (A,T ) are also nonlocal in space.

The balance equations (13.7) for the particle and energy densities are the same
as their semi-classical counterparts (6.10). However, the relations for the current
densities (13.8) are significantly different from the semi-classical expressions. In-
deed, the relation between (Jn,Je) and (n,ne) is nonlocal in space, whereas in the
semi-classical energy-transport equations, the fluxes are functions of the gradients
of (n,ne). Furthermore, the quantum tensors P and U are generally not diagonal. In
the semi-classical case, they are diagonal, since the classical Maxwellian is an even
function with respect to each component p j of the momentum vector p. In the quan-
tum case, the Maxwellian M[w] is even in p but not with respect to each component
of p separately.

The quantum energy-transport model dissipates the quantum fluid entropy. To
make this precise, we define the quantum fluid entropy similar as in Sect. 12.3 by
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S = − 2
(2πε)3

∫

R3×R3
w0(Logw0 −1)dpdx,

where w0 = Exp(A−|p|2/2T). Inserting Logw0 = A−|p|2/2T , we infer that

S = − 2
(2πε)3

∫

R3×R3

(

A− |p|2
2T

−1

)

Exp

(

A− |p|2
2T

)

dpdx

= −
∫

R3

(
An +

ne
T

−n
)

dx. (13.10)

The following result was shown in [1, Prop. 3.3].

Proposition 13.4. Let (n,ne) be a solution of the quantum energy-transport model
(13.7) and (13.8). Then the quantum fluid entropy (13.10) is nondecreasing in time:

dS
dt

≥ 0 for all t ≥ 0.

Proof. Let wα be a solution of the Wigner–Boltzmann equation (13.1). Multiplying
this equation by Logwα and integrating over the phase space give

∫

R3×R3
∂twα Logwα dpdx +α−1

∫

R3×R3
(p ·∇xwα + θ [V ]wα)Logwα dpdx

= α−2
∫

R3×R3
Q(wα)Logwα dpdx. (13.11)

Since by Lemma 12.1, ∂tLogwα = (∂twα)/wα , the first integral of the above equa-
tion can be written as

∫

R3×R3
∂twα Logwα dpdx =

d
dt

∫

R3×R3
wα (Logwα −1)dpdx.

For the second integral, we observe that for wα = W (ρ̂α),

p ·∇xwα + θ [V ]wα = W ([H, ρ̂α ])

(this is a consequence of the results of Sect. 10.1). Thus, using the Parseval-type
identity (12.22) and the cyclicity of the commutator,

∫

R3×R3
(p ·∇xwα + θ [V ]wα )Logwα dpdx =

(2πε)3

2

∫

R3
Tr([H, ρ̂α ] log ρ̂α) dx

=
(2πε)3

2

∫

R3
Tr(H[ρ̂α , log ρ̂α ]) dx = 0,

since ρ̂α commutes with any function of ρ̂α .
Finally, we claim that the right-hand side of (13.11) is nonpositive. Set F(ρ̂) =∫

Tr(ρ̂(log ρ̂ − 1))dx. Its derivative is DF(ρ̂)(σ̂ ) =
∫

Tr(log ρ̂ σ̂)dx. We define for
λ ∈ [0,1] the function G(λ ) = F(W−1((1−λ )M[wα ] + λ wα)). Employing again
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the identity (12.22), the derivative of G is given by

G′(λ ) = DF
(
W−1((1−λ )M[wα ]+ λ wα)

)(
W−1(wα −M[wα ])

)

=
∫

R3
Tr

(
logW−1((1−λ )M[wα ]+ λ wα)W−1(wα −M[wα ])

)
dx

=
2

(2πε)3

∫

R3×R3
Log((1−λ )M[wα ]+ λ wα)(wα −M[wα ])dpdx.

It can be seen that F is convex, and so is G. Therefore G′(1) ≥ G(1)−G(0), which
is equivalent to

2
(2πε)3

∫

R3×R3
(Logwα )(wα −M[wα ])dpdx ≥ F(W−1(wα))−F(W−1(M[wα ])).

The right-hand side is nonnegative since, by definition of the quantum Maxwellian,
W−1(M[wα ]) is the maximizer of −F . Thus, (13.11) becomes

d
dt

∫

R3×R3
wα(Logwα −1)dpdx ≤ α−2

∫

R3×R3
(M[wα ]−wα)Logwα dpdx ≤ 0.

Passing to the limit α → 0, wα converges to w0 = M[w] = Exp(A−|p|2/2T ), where
(A,T ) solves the quantum energy-transport equations, and thus,

d
dt

∫

R3×R3
w0(Logw0 −1)dpdx ≤ 0,

showing the assertion. 	

It is possible to express divP and divU in terms of A and T and its derivatives

[2]. If the “temperature” T is slowly varying, these expressions can be simplified
and we obtain the following expansion. For a proof we refer to [2, Sect. 5.2].

Proposition 13.5. For slowly varying variables T in the sense of |∇T/T | = δ � 1,
the following approximations hold:

divP = n∇(A/T )+O(δ ),

divU = (P + ne Id) ·∇(A/T)− ε2

8
n∇Δ(A/T )+O(δ ).

Moreover, the current densities can be approximated by

Jn = n∇(A/T −V)+O(δ ),

Je = (P + ne Id) ·∇(A/T −V)− ε2

8
n∇Δ(A/T −V)+O(δ ).

Unfortunately, no approximation of the quantum pressure P is known up to now.
Furthermore, the mathematical structure of the above quantum energy-transport
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model is unclear. More explicit expressions are obtained in the O(ε4) approxima-
tion. For this, we need to expand P, U , and ne in terms of ε2. If ∇ logT = O(ε2),
some tedious computations lead to the following formulas:

P = nT Id− ε2

12
n(∇⊗∇) logn +O(ε4), ne =

3
2

nT − ε2

24
nΔ logn +O(ε4),

U =
5
2

nT 2 Id− ε2

24
nT (Δ logn Id+ 7(∇⊗∇) logn)+O(ε4).

Equations (13.7) and (13.8) together with the above constitutive relations are called
the local quantum energy-transport equations. Notice that the expressions for P and
U differ from those presented in [1]. We expect that the local model possesses an
entropic formulation similar to the classical energy-transport model (see Sect. 6.3)
but currently, no entropic structure is known.

In Fig. 13.1 we illustrate the nonlocal and local quantum models derived in this
and the previous chapter.

Quantum drift-diffusion and energy-transport models

 Wigner-Boltzmann equation

Nonlocal quantum
drift-diffusion model

Local quantum
drift-diffusion model

Entropic quantum
drift-diffusion model

Nonlocal quantum
energy-transport model

Local quantum
energy-transport model

O(ε4) expansion

diffusion 
approximation

Fig. 13.1 Macroscopic quantum models and their relations

References
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Chapter 14
Quantum Hydrodynamic Equations

In the previous chapters, we have derived quantum macroscopic models from a
Wigner–Boltzmann equation using a diffusion scaling. In this chapter, we show that,
in analogy to the semi-classical situation, quantum hydrodynamic models can be de-
rived by employing a hydrodynamic scaling. We present two derivations: one from
the (mixed-state) Schrödinger equation and one from a Wigner–Boltzmann equa-
tion. This approach can be extended to general quantum moment hydrodynamics,
presented in the final section.

14.1 Zero-Temperature Quantum Hydrodynamic Equations

It is well known since Madelung [1] that there exists a fluiddynamical description
of the Schrödinger equation, also called the Madelung hydrodynamic formulation
or quantum fluid dynamics. In this section we consider a single electron moving in
a vacuum. Electron ensembles are studied in the following sections.

The quantum evolution of the particle with mass m is described by the single-
state Schrödinger equation

ih̄∂tψ = − h̄2

2m
Δψ −qV(x,t)ψ , t > 0, ψ(·,0) = ψI in R

3,

where ψ is the wave function and V the electric potential. The potential may be a
given function or the solution of the Poisson equation. In the following, we assume
that V is a given function. However, the following arguments do not change if V
solves the Poisson equation. First we scale the equation by introducing reference
values for the time τ , length λ , and potential U . We assume that the kinetic energy
is of the same order as the electric energy,

m

(
λ
τ

)2

= qU.

Jüngel, A.: Quantum Hydrodynamic Equations. Lect. Notes Phys. 773, 283–308 (2009)
DOI 10.1007/978-3-540-89526-8 14 c© Springer-Verlag Berlin Heidelberg 2009
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Then the scaled Schrödinger equation becomes

iε∂t ψ = −ε2

2
Δψ −V(x,t)ψ , t > 0, ψ(·,0) = ψI in R

3, (14.1)

where the scaled Planck constant is the ratio between wave energy and kinetic
energy:

ε =
h̄/τ

m(λ/τ)2 =
h̄τ

mλ 2 .

This is the same scaling as in Sect. 10.2 after choosing U = kBTL/q.
In order to derive a fluiddynamical formulation, we need to assume that the initial

wave function is given in the WKB (Wentzel [2], Kramers [3], Brillouin [4]) state:

ψI =
√

nI exp(iSI/ε), (14.2)

where nI(x) ≥ 0 and SI(x) ∈ R are some functions. Then, inserting the ansatz ψ =√
nexp(iS/ε) in the Schrödinger equation leads to the following result.

Theorem 14.1 (Zero-temperature quantum hydrodynamic equations). Let ψ
be a solution of the initial-value problem (14.1) with initial datum (14.2). Then
n = |ψ |2, Jn = −ε Im(ψ∇ψ) are a solution of the zero-temperature quantum hydro-
dynamic or Madelung equations

∂t n−divJn = 0, ∂t Jn −div

(
Jn ⊗ Jn

n

)

+ n∇V +
ε2

2
n∇

(
Δ
√

n√
n

)

= 0, (14.3)

n(·,0) = nI, Jn(·,0) = JI in R
3,

where the initial data are given by nI = |ψI |2 and JI = −nI∇SI, as long as n > 0 in
R

3. On the other hand, let (n,S) be a (smooth) solution of

∂t n + div(n∇S) = 0, ∂t S +
1
2
|∇S|2 −V − ε2

2
Δ
√

n√
n

= 0, t > 0, (14.4)

n(·,0) = nI, S(·,0) = SI in R
3, (14.5)

such that n > 0 in R
3, t > 0. Then ψ =

√
nexp(iS/ε) solves the Schrödinger equa-

tion (14.1) with initial datum (14.2).

Proof. Let ψ be a solution of the initial-value problem (14.1) with initial datum
(14.2). As long as |ψ | > 0, we can decompose ψ =

√
nexp(iS/ε), where n = |ψ |2

and S is some phase function. Then

Jn = −ε Im(ψ∇ψ) = −ε Im

(√
n∇

√
n+

i
ε

n∇S

)

= −n∇S.

Thus, n and Jn satisfy the initial conditions. Inserting the decomposition ψ =√
nexp(iS/ε) into the Schrödinger equation (14.1) gives, after division by the factor

exp(iS/ε),
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iε
2

∂t n√
n
−√

n∂t S = −ε2

2

(

Δ
√

n+
2i
ε

∇
√

n ·∇S +
i
ε
√

nΔS−
√

n
ε2 |∇S|2

)

−√
nV.

(14.6)

The imaginary part of this equation equals

∂t n = −2
√

n∇
√

n ·∇S−nΔS = −div(n∇S),

which is the first equation of (14.3). Dividing the real part of (14.6) by
√

n, then
differentiating the resulting equation with respect to x and multiplying it by n, we
infer, using the first equation in (14.3), that

n∇V +
ε2

2
n∇

(
Δ
√

n√
n

)

= n∂t(∇S)+
1
2

n∇|∇S|2

= ∂t(n∇S)− (divJn)∇S +
1
2

n∇|∇S|2

= −∂t Jn + div

(
Jn ⊗ Jn

n

)

. (14.7)

For the last equality, we have employed the identity

1
2

n∇|∇S|2 = n((∇⊗∇)S)∇S = div(n∇S⊗∇S)−div(n∇S)∇S,

where (∇⊗∇)S denotes the Hessian of S. Equation (14.7) is the second equation in
(14.3).

Let (n,S) be a solution of (14.4) and (14.5) with n > 0 and set ψ =
√

nexp(iS/ε).
Then, differentiating ψ gives

iε∂tψ +
ε2

2
Δψ = eiS/ε

(

iε
∂tn

2
√

n
−√

n∂t S +
ε2

2
Δ
√

n+ iε∇
√

n ·∇S

+
iε
2

√
nΔS−

√
n

2
|∇S|2

)

= eiS/ε
(

− iε
2

div(n∇S)√
n

+ iε∇
√

n ·∇S +
iε
2

√
nΔS−√

nV

)

=−√
neiS/εV = −Vψ .

Thus, ψ solves the Schrödinger equation. 	

The system (14.3) is the quantum analogue of the classical pressureless Euler

equations of gas dynamics, which are obtained in the classical limit ε → 0. This limit
is made rigorous in some sense by Gasser and Markowich [5] (also see [6]). The
second equation in (14.4) is also called a quantum Hamilton–Jacobi equation [7].
We notice that the above derivation requires an irrotational initial velocity Jn/n since
curl(Jn/n) = −curl(∇S) = 0. The quantum term can be interpreted as a quantum
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self-potential with the so-called quantum or Bohm potential φB = Δ
√

n/
√

n or as a
quantum stress term:

ε2

2
n∇

(
Δ
√

n√
n

)

=
ε2

4
div(n(∇⊗∇) logn),

where P = (ε2/4)n(∇⊗∇) logn is a nondiagonal stress tensor. The quantum hydro-
dynamic equations are employed in Bohmian mechanics and for the description of
quantum trajectories [7]. They are also used, for instance, for simulations of pho-
todissociation problems [8], superfluidity models [9], collinear chemical reactions
[10], and for weakly interacting Bose gases [11].

There is a problem with the formulation (14.4) if vacuum occurs, i.e., if n = 0
locally. In this situation, the phase S is not defined which manifests in the fact that
the Bohm potential may become singular at vacuum points. The appearance and
properties of these vacuum points inside a nondissipative shock wave in the quan-
tum hydrodynamic equations are studied by El et al. [12]. It is shown by Gasser and
Markowich [5] that the formulation (14.3) has generally better mathematical proper-
ties than (14.4). In fact, it can be shown that n∇φB is an element of a Sobolev space
with negative index and not just a distribution. A mathematical formulation of the
quantum hydrodynamic equations based on polar factorization was given recently
by Antonelli and Marcati [13].

Another problem is the reconstruction of the initial datum ψI in terms of the
variables nI and JI . In the above theorem it is explicitly required that ψI is given
in terms of nI and SI . This problem is connected to a more general important prob-
lem in physics, the so-called Pauli problem [14], regarding the possibility to recon-
struct a pure quantum state by knowing a finite set of measurements of the state,
in our case: the particle and current densities. Here, the possible existence of vac-
uum points generally makes this reconstruction impossible (see [14] and references
therein).

14.2 Mixed-State Schrödinger Models
and Quantum Hydrodynamics

The quantum hydrodynamic model of the previous section is derived for a single
particle and therefore, it does not contain a temperature term. In order to include
temperature, we consider now an electron ensemble represented by a mixed state
(see Sect. 10.1). A mixed quantum state consists of a sequence of occupation prob-
abilities λ j ≥ 0 ( j ∈ N) for the jth state ψ j described by the scaled Schrödinger
equation [15]

iε∂tψ j = −ε2

2
Δψ j −V(x,t)ψ j, t > 0, ψ j(·,0) = ψ0

j in R
3, (14.8)
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where the electric potential is assumed to be given. The occupation numbers satisfy
∑∞

j=1 λ j = 1, which means that the probability of finding the electron ensemble in
any of the quantum states is one.

We define the single-state particle and current densities of the jth state as in the
previous section as

n j = |ψ j|2, Jj = −ε Im(ψ j∇ψ j), j ∈ N.

We claim that, following [15], the total electron density n and current density J of
the mixed state,

n =
∞

∑
j=1

λ j|ψ j|2, J =
∞

∑
j=1

λ jJ j, (14.9)

are a solution of the quantum hydrodynamic equations with a temperature tensor.

Theorem 14.2 (Quantum hydrodynamic equations). Let ψ j be single-state so-
lutions of the Schrödinger equation (14.8) with occupation numbers λ j of the jth
quantum state. Then (n,J), defined in (14.9), is a solution of the quantum hydrody-
namic equations

∂t n−divJ = 0, (14.10)

∂t J−div

(
J⊗ J

n
+ nθ

)

+ n∇V +
ε2

2
n∇

(
Δ
√

n√
n

)

= 0, (14.11)

where x ∈ R
3 and t > 0, with initial conditions

n(·,0) =
∞

∑
j=1

λ j|ψ0
j |2, J(·,0) = −ε

∞

∑
j=1

λ j Im(ψ0
j∇ψ0

j ) in R
3.

The temperature tensor θ is defined by θ = θcu + θos, where the “current tempera-
ture” and “osmotic temperature” are given by, respectively,

θcu =
∞

∑
j=1

λ j
n j

n
(ucu, j −ucu)⊗ (ucu, j −ucu),

θos =
∞

∑
j=1

λ j
n j

n
(uos, j −uos)⊗ (uos, j −uos),

and the variables

ucu, j = − Jj

n j
, ucu = −J

n
, uos, j =

ε
2

∇ logn j, uos =
ε
2

∇ logn

are called the “current velocities” and “osmotic velocities”, respectively.

The notion “osmotic” comes from the fact that the quantum term can be written
as the divergence of the quantum stress tensor P = (ε2/4)n(∇⊗∇) logn [15].
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Proof. The pair (n j,Jj) solves the single-state quantum hydrodynamic equations
(14.3) with initial conditions

n j(·,0) = |ψ0
j |2, Jj(·,0) = −ε Im(ψ0

j∇ψ0
j ).

Multiplication of (14.3) by λ j and summation over j yields

∂t n−divJ = 0,

∂t J−
∞

∑
j=1

λ jdiv

(
Jj ⊗ Jj

n j

)

+ n∇V +
ε2

2

∞

∑
j=1

λ jn j∇
(Δ√

n j√
n j

)

= 0. (14.12)

We rewrite the second and fourth term of the second equation. With the definitions
of the “current temperature” and “current velocity”, we obtain

∞

∑
j=1

λ jdiv

(
Jj ⊗ Jj

n j

)

=
∞

∑
j=1

λ jdiv(n jucu, j ⊗ucu, j)

=
∞

∑
j=1

λ jdiv (n j(ucu, j −ucu)⊗ (ucu, j −ucu)+ 2n jucu, j ⊗ucu)−div(nucu ⊗ucu)

= div(nθcu)+ 2
∞

∑
j=1

div

(

λ jJ j ⊗ J
n

)

−div

(
J ⊗ J

n

)

= div(nθcu)+ div

(
J⊗ J

n

)

.

Furthermore, employing the definitions of the “osmotic temperature” and “osmotic
velocity”, we compute

ε2

2

∞

∑
j=1

λ jn j∇
(Δ√

n j√
n j

)

=
ε2

4

∞

∑
j=1

λ jdiv

(

(∇⊗∇)n j − ∇n j ⊗∇n j

n j

)

=
ε2

4

∞

∑
j=1

λ jdiv

(

(∇⊗∇)n j +
n j

n
∇n⊗∇n

n
−2

∇n⊗∇n j

n

−n j

(
∇n j

n j
− ∇n

n

)

⊗
(

∇n j

n j
− ∇n

n

))

=
ε2

4
div

(

(∇⊗∇)n− ∇n⊗∇n
n

)

−div(nθos)

=
ε2

2
n∇

(
Δ
√

n√
n

)

−div(nθos).

Inserting these expressions into (14.12) gives (14.11). 	

The temperature tensor cannot be expressed in terms of the total particle and

current densities without further assumptions, and as in the derivation of the semi-
classical hydrodynamic equations, we need a closure condition to obtain a closed
set of equations. In the literature, the following closures were employed.
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Assume that the temperature tensor is diagonal with equal entries on the diagonal,
θ = T Id, where T is a scalar temperature and Id the identity matrix. Then we can
close Eqs. (14.10) and (14.11) by taking T to be constant and refer to this case as the
isothermal quantum hydrodynamic model. The isothermal model was first proposed
by Grubin and Kreskovsky in the context of semiconductor modeling [16]. If T
is given by T (n) = T0nα for some α > 0, we refer to (14.10) and (14.11) as the
isentropic quantum hydrodynamic models.

Another closure was proposed by Gasser et al. [17] using small temperature and
small (scaled) Planck constant asymptotics. In this work, the initial wave function
is written as

ψ0
j =

√
n0

j exp
(
iS0

j/ε
)

and the initial phase functions are assumed to satisfy

S0
j = SI +O

(√
δ
)

+O
(
ε2) , j ∈ N,

where δ > 0 is a small parameter. An initial state satisfying this condition is called
“almost coherent”. Initially, the current velocity ucu, j = −Jj/n j = ∇S j satisfies

u0
j = ∇S0

j = ∇SI +O
(√

δ
)

+O
(
ε2) .

It can be shown that then for all times,

ucu, j = − Jj

n j
= ∇S +O

(√
δ
)

+O
(
ε2) .

This implies that the difference Jj/n j − J/n is of the order O(
√

δ ) + O
(
ε2

)
and

hence, the current and osmotic temperatures, defined in Theorem 14.2, can be writ-
ten as

θcu = O(δ )+O
(√

δε2
)

+O
(
ε4) , θos = O

(
ε2) .

Then the temperature θ = θcu + θos satisfies

θ = θos +O(δ )+O
(√

δε2
)

+O
(
ε4) .

Now, we multiply as in the proof of Theorem 14.2 the single-state Schrödinger
equations (14.8) by λ j and sum over j. After similar calculations as in the proof of
the previous theorem, we arrive at Eqs. (14.10) and (14.11) for the particle density
n and the current density J, where now the temperature tensor θ solves the energy
equation

∂tE j� +
3

∑
m=1

∂
∂xm

(
Jm

n
E j� +

Jj

2n
P�m +

J�

2n
Pjm

)

+
1
2

(

Jj
∂V
∂x�

+ J�
∂V
∂x j

)

− ε2

8

3

∑
m=1

∂
∂xm

(

n
∂ 2

∂x j∂x�

(
Jm

n

))

= O(δ )+O(
√

δε2)+O
(
ε4) , (14.13)
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and the energy tensor E = (E j�) and stress tensor P = (Pj�) are given by

E =
1
2

(
J⊗ J

n
+ nθ − ε2

4
n(∇⊗∇) logn

)

, P = nθ − ε2

4
n(∇⊗∇) logn.

Thus, for “almost coherent” initial states with
√

δ � ε , the continuity equation
(14.10), the momentum equation (14.11), and the energy equation (14.13) are a
closed set of equations which are correct up to order O(δ )+O(

√
δε2)+O

(
ε4

)
. In

the case of exactly coherent initial states, the parameter δ vanishes, and the quantum
hydrodynamic equations are valid up to order O

(
ε4

)
. It is mentioned in [17] that

the standard single-state closure is not valid for fixed (scaled) Planck constant. The
above derivation, however, is based on small temperature and small Planck constant
asymptotics.

When the quantum hydrodynamic equations are considered in a bounded domain,
some boundary conditions are needed. In the literature, the following boundary
conditions for irrotational flows were suggested [18]. We consider the steady-state
isothermal equations

divJ = 0, −div

(
J ⊗ J

n

)

−∇n + n∇V +
ε2

6
n∇

(
Δ
√

n√
n

)

= 0 in Ω ,

and we assume that the velocity J/n is irrotational and that there exists a velocity
potential S such that J = −n∇S. Since div(J ⊗ J/n) = 1

2 n∇|∇S|2, we can write the
momentum equation as

n∇
(

1
2
|∇S|2 + logn−V − ε2

6
Δ
√

n√
n

)

= 0.

Supposing that n > 0, we infer that

1
2
|∇S|2 + logn−V − ε2

6
Δ
√

n√
n

= 0. (14.14)

The integration constant can be assumed to vanish by choosing a reference point for
the electric potential. This formulation allows us to write the stationary quantum hy-
drodynamic equations, together with a self-consistent electric potential, as a system
of second-order differential equations:

div(n∇S) = 0, λ 2
DΔV = n−C(x),

ε2

6
Δ
√

n =
1
2

√
n|∇S|2 +

√
n logn−√

nV.

Thus, we need boundary conditions for the functions S, n, and V .
The boundary ∂Ω is assumed to consist of two parts: the Dirichlet part ΓD and

the insulating part ΓN , where ΓD ∪ΓN = ∂Ω and ΓD ∩ΓN = /0. We suppose that the
normal derivatives of the variables vanish on the insulating boundary,
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∇n ·η = ∇S ·η = ∇V ·η = 0 on ΓN ,

where η denotes the exterior unit normal vector on ∂Ω . On the Dirichlet part, the
boundary data are assumed to be the superposition of the thermal equilibrium func-
tions (neq,Seq,Veq) and the applied potential U :

n = neq, S = Seq +U, V = Veq +U on ΓD.

The thermal equilibrium is defined by J = 0 or (as n is positive) S = const. By fixing
the reference point for S, we can suppose that Seq = 0. We assume further that

• the total space charge C−neq vanishes on the boundary and
• no quantum effects occur on the boundary, i.e., Δ√

neq/
√

neq = 0.

Then we obtain from (14.14)

1
2
|∇Seq|2 + logneq −Veq = 0

and, since Seq = 0, Veq = logneq on ΓD. Therefore, the Dirichlet boundary conditions
are given by

n = C, S = U, V = logC +U on ΓD.

These conditions were employed to prove the existence and uniqueness of solutions
for subsonic flow in [18].

14.3 Wigner–Boltzmann Equations and Quantum
Hydrodynamics

The quantum hydrodynamic model of the previous section does not include col-
lisional effects since the Schrödinger equation only models ballistic transport. In
order to allow for collisional phenomena, we employ a (scaled) Wigner–Boltzmann
equation

∂tw+ p ·∇xw+ θ [V ]w = Q(w), t > 0, w(x, p,0) = wI(x, p), (x, p) ∈ R
6

(see Sect. 11.3 for a discussion of Wigner–Boltzmann models). The electric poten-
tial V is assumed to be a solution of the Poisson equation

λ 2
DΔV =

2
(2πε)3

∫

R3
wdp−C(x), x ∈ R

3. (14.15)

The following presentation is based on [19] and [20]. A derivation of macroscopic
quantum models from a collisional Liouville–von Neumann equation, leading to
similar results as those presented below, can be found in [21]. We assume that the
collision operator Q(w) is the sum of two operators Q0 and Q1. We employ as in
Sect. 9.1 a hydrodynamic scaling and replace x by x/α and t by t/α , where α > 0
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is the ratio of the mean free paths corresponding to Q0 and Q1, respectively. We
assume that Q0 models collisions which occur more frequently than those described
by Q1, thus implying that α � 1. Then we can write the Wigner–Boltzmann equa-
tion as

α∂tw+ α (p ·∇xw+ θ [V ]w) = Q0(w)+ αQ1(w), w(·, ·,0) = wI . (14.16)

The collisions modeled by Q0 are supposed to conserve mass, momentum, and en-
ergy,

〈Q0(w)κ j(p)〉 = 0 for all w, j = 0,1,2, (14.17)

where the brackets are defined by 〈g(p)〉 = 2(2πε)−3 ∫
R3 g(p)dp and

κ0(p) = 1, κ1(p) = p, κ2(p) =
1
2
|p|2

are the weight functions. The collision operator Q1 remains unspecified, but we will
consider some examples below (see (14.43) and (14.47)). For the moment, we only
suppose that Q1 conserves mass:

〈Q1(w)〉 = 0 for all w. (14.18)

We also assume that the kernel of Q0 consists exactly of the quantum Maxwellians.
We need to specify this notion.

Let w be given. By Lemma 12.2, the maximizer of the quantum entropy

S(w) = − 2
(2πε)3

∫

R3×R3
w

(

Logw−1 +
|p|2

2
−V

)

dxdp

under the constraints

2
(2πε)3

∫

R3
w(x, p,t)

⎛

⎝
1
p

1
2 |p|2

⎞

⎠ dp =

⎛

⎝
n

nu
ne

⎞

⎠(x,t), x ∈ R
3, t > 0, (14.19)

where n = 〈w〉, nu = 〈pw〉, and ne = 〈 1
2 |p|2w〉, is (if it exists) given by

M[w](x,t) = Exp

(

A(x,t)− |p− v(x,t)|2
2T (x, t)

)

, (14.20)

where Log and Exp are the quantum logarithm and the quantum exponential, re-
spectively, defined in Sect. 12.1. The Lagrange multipliers A, v, and T are uniquely
determined by the moments of w. In the classical setting, they correspond to the log-
arithm of the particle density, the velocity, and the temperature, respectively. Thus,
the assumption on the kernel of Q0 can be formulated as

Q0(w) = 0 if and only if w = M[w]. (14.21)
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Derivation of the quantum hydrodynamic equations. The quantum hydrody-
namic equations are now derived in the formal limit α → 0. Let wα be a solution of
the Wigner–Boltzmann equation (14.16) and Vα be a solution of the Poisson equa-
tion (14.15). The limit α → 0 in (14.16) gives Q0(w) = 0, where w = limα→0 wα ,
and hence, by assumption, w = M[w]. Multiplying (14.16) by the weight functions
κ j(p) and integrating over p ∈ R

3 yield the moment equations

∂t〈κ jwα〉+ divx〈pκ jwα 〉+ 〈κ jθ [V ]wα〉 = 〈κ jQ1(wα)〉,

since 〈κ jQ0(wα )〉= 0 by assumption (14.17). The limit α → 0 in the moment equa-
tions then gives, taking into account the constraints (14.19), the property (14.18) on
Q1, and the moments of the potential operator, see (13.6) and Lemma 13.2,

∂tn−divJn = 0, (14.22)

∂t Jn −div〈p⊗ pM[w]〉+ n∇V = −〈pQ1(M[w])〉, (14.23)

∂t(ne)+ div

〈
1
2
|p|2 pM[w]

〉

+ Jn ·∇V =
〈

1
2
|p|2Q1(M[w])

〉

, (14.24)

where Jn = −nu is the current density. Defining the quantum stress tensor P and the
quantum heat flux q by

P = 〈(p−u)⊗ (p−u)M[w]〉, q =
〈

1
2
(p−u)|p−u|2M[w]

〉

, (14.25)

we can simplify the integrals 〈p⊗ pM[w]〉 and 〈 1
2 p|p|2M[w]〉 slightly:

〈p⊗ pM[w]〉 = P+
Jn ⊗ Jn

n
,

〈
1
2

p|p|2M[w]
〉

= −(P+ ne Id)
Jn

n
+ q.

The result is summarized in the following theorem.

Theorem 14.3 (Nonlocal quantum hydrodynamic equations). Let the collision
operator satisfy assumptions (14.17), (14.18), and (14.21). Let (wα ,Vα) be a solu-
tion of the Wigner–Boltzmann–Poisson system (14.15) and (14.16). Then, formally,
as α → 0, wα → w and Vα →V , where w = Exp(A−|p− v|2/2T ), and (A,v,T,V )
is a solution of the quantum hydrodynamic equations

∂t n−divJn = 0, (14.26)

∂t Jn −div

(
Jn ⊗ Jn

n
+ P

)

+ n∇V = −〈pQ1(w)〉, (14.27)

∂t(ne)−div ((P+ ne Id)Jn −q)+ Jn ·∇V =
〈

1
2
|p|2Q1(w)

〉

, (14.28)

λ 2
DΔV = n−C(x),
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where the quantum stress tensor P and quantum heat flux q are introduced in
(14.25). The initial data are given by

n(·,0) = 〈wI〉, Jn(·,0) = −〈pwI〉, (ne)(·,0) =
〈

1
2
|p|2wI

〉

,

and the Lagrange multipliers (A,v,T ) are determined by

⎛

⎝
n

nu
ne

⎞

⎠ =
2

(2πε)3

∫

R3
Exp

(

A− |p− v|2
2T

)
⎛

⎝
1
p

1
2 |p|2

⎞

⎠ dp,

where Jn = −nu is the current density.

The quantum hydrodynamic model of the above theorem is rather involved and
not easy to handle numerically. It can be made more explicit if we consider the
isothermal situation. Below, we will expand the integrals in powers of ε2 which
yields another simplification.

Isothermal quantum hydrodynamic equations. An isothermal quantum hydro-
dynamic model can be derived from the Wigner–Boltzmann equation (14.16) by
employing the quantum Maxwellian

M[w] = Exp

(

A− 1
2
|p− v|2

)

,

which follows from (14.20) after setting T = 1. For simplicity, we consider here only
the case Q1 = 0, as some choices of Q1 are discussed below. Similar to Sect. 12.4,
we introduce the modified Hamiltonian H(A,v) = W−1(A− |p − v|2/2), i.e., the
quantum Maxwellian reads as M[w] = exp(−H(A,v)). More explicitly, we find that

H(A,v) =
1
2
(iε∇+ v)2 + A.

If v = 0, H(A,0)=−(ε2/2)Δ +A, which is the Hamiltonian considered in Sect. 12.4.
We assume that H(A,v) has a complete set of orthonormal eigenfunction–eigenvalue
pairs (ψ j,λ j). Then the particle and current densities can be computed from the for-
mulas (also see (12.32))

n =
∞

∑
j=1

e−λ j |ψ j|2, Jn = −ε
∞

∑
j=1

e−λ j Im(ψ j∇ψ j). (14.29)

By exploiting Gauge invariance properties and arguing similarly as in Sect. 12.4,
Degond et al. [22] have formulated the isothermal quantum hydrodynamic equations

∂t n−divJn = 0,

∂t Jn + div(Jn ⊗ v)+ (∇v)(Jn + nv)+ n∇(V −A) = 0,
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where the densities n and Jn are related to the Lagrange multipliers A and v by
(14.29) through the modified Hamiltonian H(A,v). The velocity u = −Jn/n and
the Lagrange multiplier v are linked by the relation nv = nu + O

(
ε2

)
. Thus, the

convective term becomes div(Jn ⊗ v) = −div(Jn ⊗ Jn/n)+O
(
ε2

)
. It is shown in

[22] that in the irrotational case, u = v holds and hence, the convective term is the
same as in the classical hydrodynamic equations (see Sect. 9.1).

An approximate isothermal model can be derived by expanding the quantum
Maxwellian in powers of ε2. After some computations, which are detailed in [22,
23], the following quantum hydrodynamic model up to terms of order O

(
ε4

)
is

obtained:

∂t n−divJn = 0, (14.30)

∂t Jn −div

(
Jn ⊗ Jn

n

)

−∇n + n∇V +
ε2

6
n∇

(
Δ
√

n√
n

)

=
ε2

12
div(nU), (14.31)

where U is a tensor with the components

Uj� =
3

∑
m=1

(
∂um

∂x j
− ∂u j

∂xm

)(
∂um

∂x�
− ∂u�

∂xm

)

. (14.32)

The right-hand side of the momentum equation can be written in terms of the vor-
ticity ω = curlu [22, Sect. 3.1]:

div(nU) = ω × (curl(nω))+
1
2

n∇(|ω |2).

The vorticity satisfies the equation

∂tω + curl(ω × v) = 0,

which shows that the flow is irrotational for all time if it does so initially.
Equations (14.30) and (14.31), without the vorticity term, correspond to the quan-

tum hydrodynamic equations (14.10) and (14.11) with a diagonal temperature ten-
sor except for the factor of the quantum potential term which is 1

3 of the factor in
(14.11). We remark that this factor is not related to the space dimension since it
appears also when working in any dimension. In [24] it is argued that the factor 1

3
is a statistical factor coming from the expansion of the quantum potential to leading
order in ε2.

Local quantum hydrodynamic equations. The quantum hydrodynamic model
(14.26), (14.27), and (14.28) is nonlocal since the stress tensor and heat flux de-
pend implicitly on the moments through the Lagrange multipliers. In the following,
we will expand these expressions in powers of ε2 in order to derive a local version
of the model.
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An expansion of the quantum Maxwellian was given in Sect. 12.1, see Proposi-
tion 12.5. Inserting the expansion into the definition of the moments, we obtain after
some computations (see [20, Lemma 3.4] for details):

n =2(2πε2)−3/2eA − ε2

12T
(2πε2)−3/2eA

(

−2ΔA−|∇A|2 (14.33)

+ ∇ logT ·∇A−2Δ logT +
1
4
|∇ logT |2 +

1
2T

Tr(R�R)
)

+O
(
ε4) ,

ne =
3
2

nT +
1
2

n|u|2 − ε2

24
n

(

Δ logn− 1
T

Tr(R�R)− 3
2
|∇ logT |2

− Δ logT −∇ logT ·∇ logn)+O
(
ε4) , (14.34)

where the vorticity matrix R = (R j�) is the anti-symmetric part of the velocity deriva-
tives, R j� = ∂u j/∂x�−∂u�/∂x j and it relates to (14.32) by U = R�R. Furthermore,
the quantum stress tensor and quantum heat flux can be expanded as follows (see
[20, Lemma 3.5]):

P = nT Id+
ε2

12
n

(
5
2

∇ logT ⊗∇ logT −∇ logT ⊗∇ logn−∇ logn⊗∇ logT

− (∇⊗∇) log(nT 2)+
1
T

R�R

)

+
ε2

12
T div

( n
T

∇ logT
)

+O
(
ε4) , (14.35)

q = − ε2

24
n(5R∇ logT + 2divR + 3Δu)+O

(
ε4) . (14.36)

The expansions simplify if we assume that the temperature varies slowly in the
sense of ∇ logT = O

(
ε2

)
. Then the expressions ε2∇ logT are of order O

(
ε4

)
and

can be neglected in our approximation. We obtain, up to order O
(
ε4

)
:

P = nT Id− ε2

12
n

(

(∇⊗∇) logn− 1
T

R�R

)

,

q = − ε2

24
n(2divR + 3Δu),

ne =
3
2

nT +
1
2

n|u|2 − ε2

24
n

(

Δ logn− 1
T

Tr(R�R)
)

.

Equations (14.26), (14.27), and (14.28), together with the above expansions, form a
closed set of equations. The stress tensor consists of the classical pressure nT on the
diagonal, the quantum pressure (ε2/12)n(∇⊗∇) logn, and the vorticity correction
(ε2/12)nR�R/T . In the isothermal case, this correction coincides with the expres-
sion (ε2/12)nU in (14.31). The quantum heat flux depends on the second derivatives
of the velocity. Finally, the energy density consists of the thermal energy, kinetic en-
ergy, and quantum energy including a vorticity correction.
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Further simplifications are obtained by assuming that the vorticity tensor R is
small in the sense of R = O

(
ε2

)
. Notice that in one space dimension, this term

vanishes.

Theorem 14.4 (Local quantum hydrodynamic equations). Let the assumptions
of Theorem 14.3 hold. We assume further that the temperature variations and the
vorticity tensor are small in the sense of ∇ logT = O

(
ε2

)
and R = O

(
ε2

)
. Then

the moments (n,Jn,ne) of the limit quantum Maxwellian solve the quantum hydro-
dynamic equations

∂t n−divJn = 0, (14.37)

∂t Jn −div

(
Jn ⊗ Jn

n

)

−∇(nT )+ n∇V +
ε2

6
n∇

(
Δ
√

n√
n

)

= −〈pQ1(w)〉, (14.38)

∂t(ne)−div ((P+ ne Id)u)− ε2

8
div(nΔu)+ Jn ·∇V =

〈
1
2
|p|2Q1(w)

〉

,

(14.39)

where the energy density ne and the quantum stress tensor P are given by

P = nT Id− ε2

12
n(∇⊗∇) logn, ne =

3
2

nT +
1
2

n|u|2 − ε2

24
nΔ logn. (14.40)

The initial conditions for n, Jn, and ne are as in Theorem 14.3.

Notice that the above energy equation is scalar in contrast to the energy tensor
equation (14.13) mentioned in the previous section. The quantum heat flux q (but
not the vorticity tensor R) also appears in other quantum hydrodynamic derivations.
Gardner has derived it from a mixed-state Wigner model and interpreted it as a dis-
persive heat flux (see formula (36) in [25]). Moreover, it shows up in the quantum
hydrodynamic equations of Gardner and Ringhofer [26] involving a “smoothed”
potential, derived from a Wigner–Boltzmann equation by a Chapman–Enskog ex-
pansion. Numerical results in [20] indicate that the dispersive term stabilizes the
quantum hydrodynamic system numerically.

The above equations can be written in unscaled form as follows:

∂t n− 1
q

divJn = 0, x ∈ R
3, t > 0,

∂t Jn −div

(
Jn ⊗ Jn

qn

)

− qkB

m∗ ∇(nT )+
q2

m∗ n∇V +
qh̄2

6(m∗)2 n∇
(

Δ
√

n√
n

)

= −q
τ
〈pQ1(w)〉,

∂t(ne)−div ((P+ ne Id)u)− h̄2

8m∗ div(nΔu)+ Jn ·∇V

=
1
τ

〈
1
2
|p|2Q1(w)

〉

,
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where the unscaled pressure tensor and energy density read as

P = nkBT Id− h̄2

12m∗ n(∇⊗∇) logn, ne =
3
2

nkBT +
m∗

2
n|u|2 − h̄2

24m∗ nΔ logn,

and the current density is given by Jn = −qnu.

Comparison with other quantum hydrodynamic equations. A quantum hydrody-
namic model including an energy equation was derived first by Ferry and Zhou from
the Bloch equation for the density matrix [27]. A derivation from the Wigner equa-
tion was proposed by Gardner [28]. He obtained the equations (14.37) and (14.38)
except for the dispersive velocity term (ε2/8)div(nΔu). The origin of this differ-
ence lies in the different choice of the quantum Maxwellian. In both approaches,
closure of the moment equations is obtained by assuming that the Wigner function
is in equilibrium. However, the notion of equilibrium is different. In the following,
we explain this difference.

A quantum system, which is characterized by its energy operator H = W−1(h),
where W−1 is the inverse of the Wigner transform and h(p) = |p|2/2+V the Hamil-
tonian, attains its maximum of the relative von Neumann entropy in the mixed state
with Wigner function wQ = Exp(−h), as shown in Sect. 10.1. This state represents
the unconstrained quantum equilibrium. The expansion of wQ in terms of ε2 reads,
according to Wigner [29], as

wQ = e−h(x,p) (1 + ε2g(x, p)
)
+O

(
ε4)

with an appropriate function g. As a definition of the quantum equilibrium with
moment constraints, Gardner employed this expansion of wQ and modified it, mim-
icking the momentum shift of the equilibrium distribution in the classical situation
(see Example 2.1):

w̃Q = n(x)e−h(x,p)/T(x) (1 + εg(x, p− v(x)))+O
(
ε4) .

In contrast to the classical case, w̃Q is not the constrained maximizer for the quan-
tum entropy. The quantum Maxwellian M[w] = Exp(A−|p− v|2/2T ) is a genuine
maximizer of the quantum entropy with respect to the given moments.

Both approaches coincide if the temperature is constant and if only the parti-
cle density is prescribed as a constraint. In order to see this, we write Gardner’s
momentum-shifted quantum Maxwellian more explicitly as (see Remark 12.7)

w̃Q = eV/T−|p|2/2T
[

1 +
ε2

8T

(

ΔV +
1

3T
|∇V |2 − 1

3T
p�(∇⊗∇)V p

)]

+O
(
ε4) .

(14.41)

The quantum Maxwellian obtained from entropy maximization with given particle
density equals (see Corollary 12.6)

M[w] = eA−|p|2/2
[

1 +
ε2

8

(

ΔA +
1
3
|∇A|2 − 1

3
p�(∇⊗∇)Ap

)]

+O
(
ε4) .
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Using the expansion

n = 2(2πε)−3
∫

R3
w̃Q dp = (2πT )3/2eV/T +O

(
ε2) (14.42)

and assuming that the temperature varies slowly, Gardner has substituted ∇V =
T ∇ logn + O

(
ε2

)
into the formula for w̃Q in order to avoid second-order deriva-

tives of the electric potential. This substitution yields M[w] since, by (12.17),
∇A = ∇ logn+O

(
ε2

)
and thus, both expansions of w̃Q and M[w] coincide if T = 1.

The quantum hydrodynamic model is used for the simulation of quantum devices,
like the resonant tunneling diode [16, 28, 30] which consists of different materials.
At the interface of the materials (heterojunctions), the (mean-field) potential is cal-
ibrated by a barrier potential which models the gap between the conduction bands
of each material. The barrier potential is modeled by a given function which is con-
stant inside each material. Thus, the sum of the (mean-field) potential and the bar-
rier potential is discontinuous. However, in the derivation of Gardner’s model, the
approximation ∂ 2 logn/∂x j∂x� = T−1∂ 2V/∂x j∂x� + O

(
ε2

)
, which follows from

(14.42) for slowly varying temperature, was employed. This approximation is not
valid for discontinuous potentials. Gardner and Ringhofer [24] have overcome this
problem by deriving so-called “smooth” quantum hydrodynamic equations. More
precisely, they obtain in the Born approximation to the Bloch equation the model
(14.37), (14.38), (14.39) and (14.40) (without the dispersive velocity term) in which
the terms

ε2

6
n∇

(
Δ
√

n√
n

)

and
ε2

12
(∇⊗∇) lnn

are replaced by
ε2

4
div(n(∇⊗∇)V) and

ε2

4
(∇⊗∇)V ,

and V = V (x,T ) depends nonlocally on x and T (see [24] for details). The quantum
hydrodynamic equations (14.37), (14.38), (14.39), and (14.40) are recovered in the
O

(
ε2

)
approximation

V =
1
3

V +O
(
ε2) , ∇ logn =

∇V
T

+O
(
ε2) ,

if n, J, and T are varying very slowly.
Finally, we mention the approach of Frosali et al. [31] to derive high-field quan-

tum hydrodynamic equations. Starting from the rescaled Wigner–Boltzmann equa-
tion

∂twα + p ·∇xwα +
1
α

θ [V ]wα =
1
α

Q(wα ),

where the collision operator is of relaxation-time type, in the formal limit α → 0 and
employing Gardner’s quantum Maxwellian in the O

(
ε2

)
approximation (14.41), the

following quantum hydrodynamic model is obtained:
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∂t n−divJn = 0, ∂t Jn −div

(
Jn ⊗ Jn

n

)

−divP = 0,

∂t(ne)−div ((P + ne Id)u)+ divq = 0,

where the high-field stress tensor P and quantum heat flux q are given by

P = nT Id− ε2

12
n(∇⊗∇)V + nuw⊗uw, q = −ε2

8
nΔuw + n(uw⊗uw)uw

and uw = ∇V is a kind of velocity coming from the formula

nuw =
2

(2πε)3

∫

R3
pwdp,

where w = limα→0 wα is the solution of the Wigner–Boltzmann equation in the
α → 0 limit, i.e., w solves θ [V ]w = Q(w). Interestingly, the first expression in the
heat flux resembles the quantum heat flux in (14.39).

Dissipative quantum hydrodynamic equations. By specifying the collision op-
erator Q1, we can make explicit the right-hand sides of (14.38) and (14.39). In
Sect. 11.3 we have discussed various quantum collision models. For instance, with
a variant of the Caldeira–Leggett operator (11.21) from Sect. 11.3,

Q1(w) =
1
τ
(Δpw+ divp(pw)), (14.43)

we obtain 〈Q1(w)〉 = 0 and, by integration by parts,

−〈pQ1(M[w])〉 =
1
τ

2
(2πε)3

∫

R3
(∇pM[w]+ pM[w])dp = −Jn

τ
, (14.44)

〈
1
2
|p|2Q1(M[w])

〉

= −1
τ

2
(2πε)3

∫

R3
p · (∇pM[w]+ pM[w])dp (14.45)

=
1
τ

2
(2πε)3

∫

R3
(3M[w]−|p|2M[w])dp = −2

τ

(

ne− 3
2

n

)

.

Thus, in the space homogeneous case and in the absence of external forces, equa-
tions (14.38) and (14.39) become

∂t Jn = −Jn

τ
, ∂t(ne) = −2

τ

(

ne− 3
2

n

)

,

and for t → ∞, the current and energy densities converge to their equilibrium values
Jn = 0 and ne = 3

2 n. Therefore, the expressions (14.44) and (14.45) are referred to
as relaxation-time terms and the parameter τ as the relaxation time. In the literature,
the quantum hydrodynamic model is usually considered with these terms. The exis-
tence of solutions of the stationary isentropic quantum hydrodynamic equations in
bounded domains with physically motivated boundary conditions was shown in [18]
under a smallness condition on the applied voltage, which corresponds to a subsonic



14.3 Wigner–Boltzmann Equations and Quantum Hydrodynamics 301

condition on the velocity for the underlying Euler system. In [32], the non-existence
of weak solutions was proved for particular boundary conditions. The semi-classical
and inviscid limits were analyzed in [33]. Furthermore, in [34], current–voltage
characteristics for simplified quantum hydrodynamic equations were derived. The
existence of local-in-time solutions was proved in [35]. For the time-dependent
model in the whole space, a global-in-time existence result for arbitrary velocities
was shown in [13].

Interestingly, the quantum hydrodynamic equations with relaxation-time terms
are formally equivalent to a nonlinear Schrödinger equation. More precisely, let us
consider the isothermal quantum hydrodynamic model

∂t n−divJn = 0, ∂t Jn −div

(
Jn ⊗ Jn

n

)

−∇n + n∇V +
ε2

2
n∇

(
Δ
√

n√
n

)

= −Jn

τ
.

(14.46)
Then, if the quantum flow is irrotational and we can write Jn = −n∇S for some
phase function S, and setting ψ =

√
nexp(iS/ε), the above system of equations is

formally equivalent to the Schrödinger–Langevin equation

iε∂tψ = −ε2

2
Δψ −Vψ + log(|ψ |2)ψ − iε

τ
log

ψ
ψ

.

This equation was derived by Kostin [36] from a Heisenberg–Langevin equation
modeling linearly coupled harmonic oscillators. The fluid formulation of this equa-
tion in terms of the velocity Jn/n instead of the current density Jn was investigated
by Nassar [37].

In the so-called relaxation-time limit, the solutions of the quantum hydrodynamic
model converge to a solution of the quantum drift-diffusion model. More precisely,
we consider the isothermal model (14.46) and rescale the time by t �→ t/τ and the
current density by Jn �→ τJn. Then the rescaled equations become

τ∂t n− τdivJn = 0,

τ2∂t Jn − τ2div

(
Jn ⊗ Jn

n

)

−∇n + n∇V +
ε2

2
n∇

(
Δ
√

n√
n

)

= −Jn,

and the formal limit τ → 0 gives the quantum drift-diffusion model

∂t n−divJn = 0, Jn = ∇n−n∇V − ε2

2
n∇

(
Δ
√

n√
n

)

,

studied in Chap. 11. This limit was made rigorous in the whole space for smooth
solutions in [38].

When the collision operator Q1 is given by the Fokker–Planck operator (11.20),

Q1(w) = DppΔpw+ 2γdivp(pw)+ DqqΔxw+ 2Dpqdivx(∇pw), (14.47)

where Dpp, Dpq, Dqq, and γ are nonnegative parameters, we obtain additional vis-
cous terms. For this, we compute for w = M[w]
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〈Q1(w)〉 = DqqΔxn, (14.48)

−〈pQ1(w)〉 = 4(2πε)−3
∫

R3
(γ pw+ Dpq∇xw)dp−2Dqq(2πε)−3Δx

∫

R3
pwdp

= −2γJn + 2Dpq∇xn + DqqΔxJn, (14.49)
〈

1
2
|p|2Q1(w)

〉

= −2(2πε)−3
∫

R3

(
Dpp p ·∇pw+ 2γ|p|2w+ 2Dpqp ·∇xw

)
dp

+ 2Dqq(2πε)−3Δx

∫

R3

1
2
|p|2wdp

= −2

(

2γne− 3
2

Dppn

)

+ 2DpqdivxJn + DqqΔx(ne). (14.50)

The spatial second-order expressions involving the parameter Dqq can be interpreted
as viscous terms. The corresponding model is called the viscous quantum hydrody-
namic equations. They were first suggested in [39]. Existence results for the sta-
tionary isothermal model in one space dimension were shown in [40], and the tran-
sient equations were analyzed in [41–43]. The long-time behavior of the solutions is
studied in [44, 45]; numerical results are presented in [40, 46]. Notice that the mass
conservation equation now reads as

∂t n−divJn = DqqΔn,

which can be written in conservative form as

∂t n−div(Jn + Dqq∇n) = 0.

Then the quantity Jn + Dqq∇n can be interpreted as an effective current density.

Conserved quantities. We consider the local quantum hydrodynamic equations
(14.26), (14.27), and (14.28) without scattering terms, coupled to the Poisson equa-
tion (14.15) and together with the relations (14.35) and (14.36) for the quantum
stress tensor and the heat flux, neglecting the O

(
ε4

)
terms. Clearly, the mass is

conserved but not the momentum due to the electric force given by
∫

n∇V dx. We
show that also the energy is conserved [20].

Proposition 14.5. Let Q1 = 0 and let (n,Jn,ne,V ) be a solution of (14.26), (14.27),
and (14.28), (14.35), and (14.36) (without the O

(
ε4

)
terms), and the Poisson equa-

tion (14.15). Then the energy

E(t) =
∫

R3

(

ne +
λ 2

D

2
|∇V |2

)

dx,

where ne is defined in (14.34) (without the O
(
ε4

)
terms), is conserved, i.e., dE(t)/dt

= 0 for all t > 0. Furthermore, the energy can be written as
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E(t) =
∫

R3

(
3
2

nT +
1
2

n|u|2 +
λ 2

D

2
|∇V |2 +

ε2

6
|∇√

n|2

+
ε2

16
n|∇ logT |2 +

ε2

24T
nTr(R�R)

)

dx ≥ 0. (14.51)

Proof. We differentiate the energy with respect to time and employ (14.15) and
(14.28),

dE
dt

=
∫

R3
(∂t(ne)+ λ 2

D∇V ·∇∂tV )dx =
∫

R3
(−Jn ·∇V −λ 2

DV∂tΔV )dx

=
∫

R3
((divJn)V −V∂t n)dx = 0.

It remains to prove formula (14.51). By (14.34), the integral of the energy density
ne can be written as

∫

R3
nedx =

∫

R3

(
3
2

nT +
1
2

n|u|2 +
ε2

16
n|∇ logT |2 +

ε2

24T
nTr(R�R)

)

dx

+
ε2

24

∫

R3
(−nΔ logn + nΔ logT + n∇ logT ·∇ logn) dx.

The last integral equals, after an integration by parts,

ε2

24

∫

R3

(
4|∇√

n|2 −∇n ·∇ logT + n∇ logT ·∇ logn
)

dx =
ε2

6

∫

R3
|∇√

n|2 dx,

which shows the claim. 	

The energy (14.51) consists of, in this order, the thermal energy, the kinetic en-

ergy, the electric energy, and the energy of the Bohm potential. The remaining two
terms represent additional field quantum energies associated with spatial variations
of the temperature and the vorticity. In the case of the local quantum hydrodynamic
equations of Theorem 14.4, the energy is given by (14.51) except the last two terms.

In the presence of the relaxation-time terms (14.44) and (14.45) or the viscous
terms (14.48), (14.49), and (14.50), the energy is no longer conserved due to the
dissipative effects but it is bounded; see for instance, the estimates in [44].

The quantum hydrodynamic models of this and the previous sections are sum-
marized in Fig. 14.1.

14.4 Extended Quantum Hydrodynamic Equations

The strategy of the previous section can be used to derive general quantum moment
equations. Let wα be a solution of the Wigner–Boltzmann equation in the hydrody-
namic scaling (14.16),
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Quantum hydrodynamic models

 Wigner-Boltzmann 
equation

Isothermal 
QHD model

Viscous
QHD model

Zero-temperature 
QHD model 

Relaxation-time
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trans-

formation

Schrödinger
 equation

Mixed-state 
Schrödinger

constant
temperature 

closure

Fokker-
Planck 
operator

Caldeira-
Leggett

operator

Fig. 14.1 Overview of quantum hydrodynamic (QHD) equations

α∂twα + α (p ·∇xwα + θ [V ]wα) = Q(wα), wα(x, p,0) = wI , (14.52)

where x, p ∈ R
3, t > 0, and the potential Vα solves the Poisson equation

λ 2
DΔVα = 〈wα 〉−C(x), x ∈ R

3. (14.53)

Furthermore, let κ(p) = (κ0(p), . . . ,κN(p)) be weight functions with κ0(p) = 1. We
assume as in Sect. 14.3 that the collision operator is the sum of two operators Q0

and Q1,
Q(w) = Q0(w)+ αQ1(w),

where Q0 satisfies the properties

〈κ(p)Q0(w)〉 = 0 for all w, Q0(w) = 0 if and only if w = M[w], (14.54)

and Q1 conserves mass,
〈Q1(w)〉 = 0 for all w. (14.55)

A simple example of a collision operator satisfying (14.54) is the BGK operator
Q0(w) = M[w]−w. If κ(p) = (1, p, 1

2 |p|2), the first condition in (14.54) expresses
the conservation of mass, momentum, and energy.

For given w, the quantum Maxwellian M[w] is the maximizer of the quantum
entropy

S(w̃) = − 2
(2πε)3

∫

R3
w̃

(

Log w̃−1 +
|p|2

2
−V

)

dxdp

under the constraints 〈κ j(p)w〉 = 〈κ j(p)w̃〉, j = 0, . . . ,N. We call m j = 〈κ j(p)w〉
the jth moment of w. By Lemma 12.2, the quantum Maxwellian equals

M[w] = Exp(λ ·κ),
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where λ (x,t) = (λ0, . . . ,λN) are the Lagrange multipliers of the constrained ex-
tremal problem.

The moment equations are obtained by multiplying (14.52) by κ(p)/α , integrat-
ing over the momentum space, and employing (14.54):

∂t〈κ j(p)wα〉+ divx〈pκ j(p)wα 〉+ 〈κ j(p)θ [Vα ]wα〉 = 〈κ j(p)Q1(wα)〉.

The formal limit α → 0 in (14.52) gives Q0(w) = 0, where w = limα→0 wα , and
hence, w = M[w]. The same limit in the above moment equations leads to the fol-
lowing result which is due to [19].

Theorem 14.6 (Quantum moment hydrodynamic equations). Let the collision
operator Q(w) = Q0(w)+ αQ1(w) satisfy (14.54) and (14.55) and let (wα ,Vα) be
a solution of the Wigner–Poisson system (14.52) and (14.53). Then, in the formal
limit α → 0, (wα ,Vα) converges to (M[w],V ), solving the quantum moment hydro-
dynamic model

∂tm j + divx〈pκ j(p)M[w]〉+ 〈κ j(p)θ [V ]M[w]〉 = 〈κ j(p)Q1(M[w])〉, (14.56)

λ 2
DΔV = m0 −C(x), x ∈ R

3, t > 0, (14.57)

where the quantum Maxwellian is given by M[w] = Exp(λ ·κ) and mj = 〈κ jM[w]〉,
j = 0, . . . ,N. The initial conditions are mj(·,0) = 〈κ jwI〉.

In the classical gas-dynamics case, Levermore [47] has shown that the moment
equations are symmetrizable and hyperbolic. In the present situation, this concept
of hyperbolicity cannot be used since (14.56) is not a partial differential equation
but a differential equation with nonlocal operators of the type λ �→ 〈Exp(λ ·κ(p))〉.
Nevertheless, it is possible to prove that there exists a bound on the energy

E(t) =
1

(2πε)3

∫

R3×R3

(〈
1
2
|p|2M[w]

〉

+
λ 2

D

2
|∇V |2

)

dxdp.

Proposition 14.7. Let (w,V ) be a solution of (14.56) and (14.57). Furthermore, let
1 and 1

2 |p|2 be included in the set of weight functions. We assume that Q1 dissipates
energy, i.e., 〈 1

2 |p|2Q1(w)〉 ≤ 0 for all functions w. Then

dE
dt

(t) ≤ 0.

Proof. We recall that for all w, by Lemmas 12.9 and 13.2,

〈θ [V ]w〉 = 0, 〈pθ [V ]w〉 = −〈w〉∇xV,

〈
1
2
|p|2θ [V ]w

〉

= −〈pw〉 ·∇xV.

Thus, from the moment equations

∂t〈M[w]〉+ divx〈pM[w]〉 = 0,
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∂t

〈
1
2
|p|2M[w]

〉

+ divx

〈
1
2

p|p|2M[w]
〉

−〈pM[w]〉 ·∇xV

=
〈

1
2
|p|2Q1(M[w])

〉

≤ 0

and the Poisson equation (14.53), we obtain

dE
dt

≤
∫

R3

(〈pM[w]〉 ·∇xV + λ 2
D∇xV ·∂t∇xV

)
dx

=
∫

R3
(〈pM[w]〉 ·∇xV −V∂t〈M[w]〉) dx

=
∫

R3
(〈pM[w]〉 ·∇xV +Vdivx〈pM[w]〉) dx = 0,

which shows the monotonicity of the energy. 	

It is shown in [19] that the quantum fluid entropy,

S = − 2
(2πε)3

∫

R3×R3
Exp(λ ·κ)(λ ·κ −1)dxdp,

is nondecreasing along the solutions of (14.56). These dissipation properties may in-
dicate local well-posedness of the quantum moment hydrodynamic equations. How-
ever, due to the complicated mathematical structure, it seems to be difficult to prove
the existence of solutions, even locally in time, and to solve the model numerically.

On the other hand, the system of Eq. (14.56) possesses some interesting prop-
erties also present in classical thermodynamic systems. It is shown in [19] that the
entropy S = S(m) is concave. Denoting by Σ(λ ) the Legendre dual of α , the map-
ping λ �→ m, which relates the extensive variables m j to the intensive variables λ j,
can be inverted by means of the functionals S and Σ according to

dS
dm

= λ ,
dΣ
dλ

= m.

This relation also holds in classical nonequilibrium thermodynamics.
Finally, we notice that recently, an extended quantum hydrodynamic model based

on the entropy maximization closure and a variant of Wigner’s quantum equilibrium
function was proposed by Romano [48]. This model consists of the balance equa-
tions for the particle, current, energy density, and, additionally, the energy flux.
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classical, 234
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Liouville equation, 59
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matrix formulation, 218
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low-density limit, 123, 241
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many-particle Wigner equation, 232
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effective, 28
Maxwell–Boltzmann distribution, 37, 82
Maxwell–Boltzmann statistics, 173
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mean energy density, 46
mean free path, 47, 100
mean velocity, 46, 50
method
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perturbation, 28

Milne problem, 108
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mixed state, 219, 286
mixed-state Schrödinger equation, 219, 220
mobility

electrons, 106
low-field, 119

model
bipolar drift-diffusion, 111
Boltzmann–Poisson, 72
Chen, 151
degenerate drift-diffusion, 124
density-gradient, 262
drift-diffusion, 54, 105, 121, 124, 209
energy-transport, 167, 209
Gardner’s quantum hydrodynamic, 298
high-field drift-diffusion, 118
high-field quantum hydrodynamic, 299
hydrodynamic, 52, 198
hydrodynamic moment, 205
isentropic quantum hydrodynamic, 289
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Lyumkis, 152
Madelung, 284
quantum drift-diffusion, 259, 260
quantum energy-transport, 278, 282
quantum hydrodynamic, 284, 287, 293, 297
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Spherical Harmonics Expansion, 160
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Vlasov–Poisson, 68

moment, 46, 49, 172, 253, 304
moment equations, 51, 305

diffusive, 176
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Wigner–Boltzmann, 293

momentum
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operator, 23

monotone energy band, 179

Newton laws, 57
nondegenerate semiconductor, 37
nonnegativity of Wigner function, 236
nonparabolic energy band, 25, 145, 152, 164,
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occupation number, 45, 219
Onsager principle, 136, 146
open quantum system, 221, 242
operator

collision, 47
Hamilton, 6
momentum, 23

pseudo-differential, 232
translation, 13

optical phonons, 74
osmotic temperature, 287

parabolic energy band, 25, 143, 151, 164, 180
Pauli principle, 11, 34
perturbation method, 28
phonon scattering, 74
phonons, 9

acoustic, 74
optical, 74

plane wave, 8
point

Γ , 19
L, 19
X, 19
critical, 162

Poisson equation, 68
potential

Bohm, 262, 286
chemical, 35, 87
electro-chemical, 191
Hartree, 11
square-well, 8

pressure, 201
primal entropy variables, 188
primitive cell, 4
primitive vector, 3
principle

of detailed balance, 78
Onsager, 136, 146

probability density, 58
problem

closure, 51, 196
pseudo-differential operator, 232

symbol, 233
pseudo-wave vector, 15

quantum BBGKY hierarchy, 239
quantum Brownian motion, 243
quantum collisions

BGK model, 243
Caldeira–Leggett model, 243
Fokker–Planck model, 243

quantum diffusive moment equations, 276
quantum drift-diffusion equations

boundary conditions, 262
entropic, 268
local, 260
nonlocal, 259

quantum energy-transport equations
local, 282
nonlocal, 278
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quantum entropy, 253
quantum exponential, 252
quantum fluid dynamics, 283
quantum fluid entropy, 264, 279

O
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)
expansion, 264

quantum free energy, 264
quantum Hamilton–Jacobi equation, 285
quantum heat flux, 293

O
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)
expansion, 296

quantum hydrodynamic equations, 287, 293,
297

boundary conditions, 290
dissipative, 300
Gardner’s, 298
high-field, 299
isentropic, 289
isothermal, 289, 294
smooth, 299
viscous, 302
zero-temperature, 284

quantum kinetic entropy, 264
quantum Langevin equation, 243
quantum Liouville equation

semi-classical, 237
quantum logarithm, 252
quantum Maxwellian, 253, 268, 298
quantum moment hydrodynamic equations,
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quantum quasi Fermi potential, 263
quantum stress tensor, 259, 286, 293

O
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)
expansion, 296

quantum system
closed, 221
open, 221, 242

quantum thermal equilibrium, 298
quantum transmitting Schrödinger–Poisson

system, 224
quantum Vlasov equation, 240
quantum Vlasov–Poisson system, 242
quasi Fermi potential

quantum, 263

radiative generation–recombination, 91
reciprocal lattice, 3
recombination

Shockley–Read–Hall, 112
recombination of carriers, 91
reflection

diffusive, 90
specular, 89

relative entropy, 191
relaxation time, 84, 300
relaxation-time limit, 208, 301
resonant tunneling diode, 299

runaway phenomenon, 116

saturation velocity, 119
scaling

diffusion, 47
hydrodynamic, 47

scattering
carrier–carrier, 74, 76
ionized impurity, 76
phonon, 74

scattering rate, 72
Schrödinger equation, 6, 219
Schrödinger–Langevin equation, 301
Schrödinger–Poisson system, 220
second law of thermodynamics, 146
second moment, 46
second-order temperature, 191
semi-classical limit, 21
semi-classical picture, 21, 59
semi-classical quantum Liouville equation,

237
semiconductor, 3, 19

n-type, 43
p-type, 43
degenerate, 37
intrinsic, 42
nondegenerate, 37

SHE equations, 160
diffusion approximation, 164
explicit models, 163

shifted Maxwellian, 50, 298
Shockley–Read–Hall term, 112
single state, 220
six-moments transport equations, 187
Slater determinant, 11
smooth quantum hydrodynamic equations, 299
solid, 3
space charge, 43
specular reflection, 89
Spherical Harmonics Expansion equations,

130, 160
spherically symmetric energy band, 140, 163
spin–orbit interaction, 32
square-well potential, 8
statistics

Bose–Einstein, 74
Fermi–Dirac, 173
Maxwell–Boltzmann, 173

Stirling’s formula, 35
stress tensor, 51, 201

O
(
ε4

)
expansion, 296

quantum, 286, 293, 296
symbol of pseudo-differential operator, 233



Index 315

temperature, 35, 131
current, 287
of electrons, 50, 87
osmotic, 287
second-order, 191

temperature tensor, 287
theorem

Bloch, 13
Liouville, 58

thermal equilibrium
quantum, 298

thermal generation–recombination, 91
thermal voltage, 47, 100
thermodynamic energy, 148
thermodynamic flux, 135
thermodynamic force, 135
transform

Fourier, 231
Legrendre, 148
Wigner, 232
Wigner-Weyl, 232

transition rate, 72
translation operator, 13
transparent boundary conditions, 224, 227, 228

umklapp process, 77

valence band, 18
vector

primitive, 3

velocity
mean, 46

viscous quantum hydrodynamic equations, 302
Vlasov equation, 65

derivation, 62
quantum, 240

Vlasov–Maxwell equations, 61
Vlasov–Poisson system, 68

quantum, 242
von Neumann entropy, 253

waveguide
multi-dimensional, 225
one-dimensional, 222

weak-coupling limit, 241
weight function, 46, 49, 172
Weyl quantization, 252
Wigner equation

many-particle, 232
Wigner function, 232

nonnegativity, 236
Wigner transform, 232, 252
Wigner–Boltzmann equation, 242
Wigner–Fokker–Planck equation, 243
Wigner–Weyl transform, 232

X point, 19

zeroth moment, 46
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